Pro*COBOL Precompiler

Programmer’s Guide

Release 8.1.6

December 1999
Part No. A76951-01

ORrRACLE

Pro*COBOL Precompiler Programmer’s Guide, Release 8.1.6
Part No. A76951-01

Copyright © 1996, 1999, Oracle Corporation. All rights reserved.
Primary Authors: Jack Melnick, Tom Portfolio

Contributors: Michael Chiocca, Nancy Ikeda, Maura Joglekar, Alex Keh, Thomas Kurian, Shiao-yen Lin,
Diana Lorentz, Lee Osborne, Jacqui Pons, Ajay Popat, Pamela Rothman, Simon Slack, Gael Stevens, Eric
Wan

Graphic Designer: Valarie Moore

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Pro*COBOL, SQL*Forms, SQL*Net, and SQL*Plus, Net8, Oracle
Call Interface, Oracle7, Oracle7 Server, Oracle8, Oracle8 Server, Oracle8i, Oracle Forms, PL/SQL, Pro*C,
Pro*C/C++, and Trusted Oracle are registered trademarks or trademarks of Oracle Corporation.

Contents

Send US YOUr COMMENTS ...t
PIEIACE ...t
What This Manual Has t0 OFFer ..o e
Who Should Read ThisS ManUAaI?..........cccoiiiiiiiiiice e
How This Manual IS Organizedccccveiiiiiiiieiise et st a e eneas
Text Conventions Used in ThisS ManuUal...........c.ccooco oo
N[0} 7 1 (o] s IS TSRO P RSP PR RPN
)Y L= Vel B Tt ol] o)1 o S
SAMPIE PrOGIAIMS ...ttt ettt ettt bt bbb bt b e sbesb e b et et e ms e b e e b e e bt ebesbesbesbeneas
Does the Pro*COBOL Precompiler Meet Industry Standards?...........c.cccvevvvineinnineinenens
Lo [0 1T (=T 0 0 T=T £ RS SSRS

(0] 001 o] 1=V g o1 2SSOSR PRURURPRRN

FIPS FIBGOET ...ttt bbbttt bbbt bbbttt et

ST @ o] 1 o o [USRS

(1= T o 1) 7= (0] o SRS

IMILAZ SPIRIT ettt sttt ettt et e e at e s be e s beeaesbeebesta e besbs e beetsebeensennas

Your CommENtS AFe WEICOME..........ccvii ittt sttt st sttt e e ens

1 Introduction

WRAL IS PrO*COBOL? ...ttt bbbt

LanNQUAGE AEINALIVEScciiiiiiie ettt bbb ettt et e b e bbb e
Why Use the Pro*COBOL PreCOMPIIEI? ..ot
WY USE SOttt bbbt bbbt

1-2
1-3
1-3
1-3

WY USE PL/SQL? .ttt sttt et e et et e be s b et et e sb et et e e e st essesseneebeetesaearesrs 1-4
What D0ES Pro*COBOL OFfEI7 ...ttt ettt ettt e st e s sba e e s sb e e s sata e sareas 1-4

2 Precompiler Concepts

Key Concepts of Embedded SQL Programmingccccoeorenreneneneesee e 2-2
Steps in Developing an Embedded SQL Application ..o 2-2
Embedded SQL STAtEMENTS........cciiieiiice sttt sae e sre s 2-3
EMbedded SQL SYNTAX ..ottt ettt bbb an e ane e 2-6
Static versus Dynamic SQL StatemMentS.......ccccccerereieeireisie e 2-6
Embedded PLZSQL BIOCKScciiieiiiiccie ettt et nne s 2-7
Host Variables and Indicator Variables............cocoiiiiiii s 2-7
(O = Tod o BT =1 Y 1= S 2-8
LI 11 L= TSSO PP UR PRSPPI 2-8
Errors and WAININGScoiiiiiiii ettt sb bbb an e ane e 2-9

Programming GUIAEIINESccccviiiiiice et neeneene e enenns 2-11
ADDIEVIALIONS ... ettt ane 2-11
CaSE-INSENSITIVITY .. .cuiitiiitciet bbbt b bbbt b n e ebe e 2-11
COBOL Versions SUPPOITEAccvcviiiiiiieieriesiee s e et ste st sne e e saenaeseesesnessesses 2-11
(0700 [g Lo I AN == USSP 2-12
L670] 0101 0 0T LTSV PUPTRPRURO 2-12
1070] 1910 11=T o | £ TSP T PP TSP PR PRTPRPRON 2-12
CONLINUALION LINES ...ttt bbb bbbttt ebe e 2-13
COPY STALEMBINTS ... e e et sb e srenns 2-14
Decimal-POiNt IS COMMIA.....cciiiiiiiiieiie bbbt bbb 2-14
DBIIMITEIS ...ttt bbbttt b b bbb e b et et e s e e se e bt ebeebenbenbe s 2-14
Division Headers that are Optionalcoooiiiiiinie e 2-15
(S a] o=To [0 [=To ST T I3 Y/ | - DGR 2-15
FIQUPAtiVE CONSTANTSc.viiiieiicicie ettt et et e st e s te et e saeenaesteesresnaestenraens 2-15
FIIE LENGEN ...t 2-16
FILLER IS AHOWET......coiiiiiiieciese ettt et 2-16
HOSE Variable NAMEScoiiiiii e ettt ene s 2-16
HYPNENATEA INAIMES......ceiiiitiiti bbbttt bbb 2-16
LEVEI INUMIDETS ...t bbbttt bbb 2-17
MAXLITERAL DEFAUIL.......ceiiiieiiciees e 2-17
MUItI-BYTE DALALYPESeueitieiitiiitiieiit ettt bbbttt bbb 2-17

INULLS 1N SQL ..ottt ettt nn e an et an e ar et an e an e 2-17

Paragraph and SECtION NAMIES.cciiiiiii s 2-17
REDEFINES CIAUSEcutiiitiieiirieiiestesie ettt 2-18
REIAtIONAL OPEIALOLScoeiuiitiitiiie ittt bttt bbb bbbttt b e bbb b e 2-18
SENTENCE TEIMINGATONiitiiiiii et sttt sttt e b et e en e s e eneenesresresrens 2-19
THE DECIAIE SECTION.... ..ottt bttt et nnne 2-19
What iS @ DECIAre SECLION?.......c.oiiiiiiitie et sbe e 2-19
Precompiler Option DECLARE_SECTIONccccoiiiiiiniiiiieesese s 2-20
Using the INCLUDE StatemMeENt.........ccceieierieiceeeeee sttt sre s 2-21
N[y (=T0 [e oo = Vg LSS 2-22
SUPPOIt FOr NESTEA PrOGIamIS........coucuiiiiiieiirieiinieiisieisi ettt 2-23
Conditional PrecomMpPilations...........ccoviiiiiiiiiiice e ane 2-25
AN EXAIMPIE oo b et e ettt b bbb 2-25
DefiNiNg SYMDOIS ..ot 2-26
Separate PreCOMPIlAtioNS..........coviv it eenenresrenneas 2-26
GUIAETINES ... bbb bbb bbb et e e e e bt e bt bt b et nbe b 2-26
L CEES] € o1 o] LRSS 2-27
Compiling aNd LINKINGcovoiirie e st e e neenesresrennens 2-27
SAMPIE TABIES ... bbbt et be st b nne 2-28
SAMPIE DALA. ... ettt bbbttt 2-28
Sample Programs: SAMPLELPCO ...ttt se e sne s snesnens 2-29

3 Database Concepts

(7o T aT=To1 ([o 1R (o @ 7 U] 1= TS 3-2
Default Databases and CONNECLIONSccciiiiiiiiire e 3-3
CONCUITENT LOGONS ..ottt sttt ar s 3-3
USING USErNamMe/PasSWOIG.........cieieriirieieriiieieieseeesese e e e ssesie e saesesseesnsesessessessessessessens 3-5
YU (o]0 g F= L ol 0T o] o =SSR 3-9
Changing Passwords at RUNTIME ..o e 3-10
Connect Without Alter AUthOFIZAtioN..........ccciiiii e 3-10
L0 Y1 o T] USSR 3-11
Some Terms YOU ShoUld KNOWcooiiiiiic ettt 3-12
How Transactions Guard YOUr Databasecc.cccuveinniinniineieieise s 3-13
How to Begin and ENd TranNSaCtiONSc.ccviiiiiiciiireic ettt 3-13
Using the COMMIT STATEMENT.........ccoiiiiiiiiicircere ettt 3-14

WITH HOLD Clause in DECLARE CURSOR Statements..........ccccoeevreininnenseneenreennee 3-15

CLOSE_ON_COMMIT Precompiler OPLioNccooiiieiieinieeiccsieesiee e 3-15
Using the ROLLBACK State@mMENT.......ccccviiviiiiieieeeies et sre e 3-16
Statement-LeVel ROIDACKS ... 3-17
Using the SAVEPOINT STatemMENTccoiriiiiiiiriiiieiese e 3-17
USIiNg the RELEASE OPTION......ccciiiiii ittt ss e e e s ena e e anesnenns 3-19
Using the SET TRANSACTION Statement..........ccooviiiiieiececc et 3-20
Overriding Default LOCKINGccoiiiiiii e 3-21
Using the FOR UPDATE OF ClAUSEccvciviieieisisn et ene e 3-21
FEtChing ACIOSS COMIMITSciiiiiii et e et te e e teesaesreeneenneenes 3-22
Using the LOCK TABLE STAtEMENTccooiiiiirieirieisieese et 3-23
Handling Distributed TranSaCtiONS.........ccccvvieviriereieicie s e e sneas 3-23
Guidelines for Transaction PrOCESSINGcccvciiiieiiiicie ettt sre e 3-24
DesignNing APPHICATIONScviuiiiiiiiieiee bbb 3-24
(@] 7= U1 1T o T 0 To] &SR 3-25
USING PLZSQL ..ttt ettt ettt sttt sttt nbere b 3-25
XZOPEN APPIICATIONS. ..ottt bbbttt e 3-25

4 Datatypes and Host Variables

vi

THe Oracle8i DatalyPES.cu ittt ettt bbbt b et b e bt bbb bttt nnens 4-2
LY CcT e LD oY =LY o T SRS 4-2
EXEEINAl DAATYPES. .. cviiveteitiiteiie ettt bbb bbbttt be bbb b e 4-4

HOSE VariabIes. ..ot sttt et e et n e te e nne s 4-13
Declaring HOSt VariableS.........cocoviiiiiiie et nne s 4-13
Referencing HOSt VariabIesSocvvii it 4-20

INAICAtOr Vari@bIES.cvoeieee ettt e 4-23
UsSINg INAIicator Variablescoiviiiiiccec st ne s 4-23
Declaring Indicator VariabIes ... 4-24
Referencing INAicator Variables ..o 4-24

VARCHAR VarTabIES..... .ot sbe et 4-26
Declaring VARCHAR Variables ...t 4-26
IMPplicit VARCHAR Group ITEIMS ..ottt 4-27
Referencing VARCHAR Variables.........cooiioiiic e 4-28

Handling Character Data..........cccccviieiiiie ettt e ens e sre et sre s 4-29
DEfAUIT FOI PIC Xttt bt sttt neese st ebenbesreaneas 4-29

Effects of the PICX OPLIONcociiiiiiiiiee et e 4-29

Fixed-Length Character Variables ... 4-29
Varrying-Length Variables..........cccviiiiiiiiii s 4-31
UNIVEISAl ROWVIDS ...ttt bbb bbb bbbt b et be bt e 4-32
Subprogram SQLROWIDGETcciiiiiiiieiniesiesee e 4-33
National Language SUPPOIT.........cciiiiieierieeeieee e ie st ste sttt sae e e essesseseeseesessessessessessenes 4-35
MUlti-Byte NLS CharaCter SIS ...ttt 4-37
Restrictions When NLS_LOCALZYES ...t 4-37
Character Strings in Embedded SQLccooeiiici e 4-38
EMDEAAEA DL ...ttt e bbbt ettt b et be b 4-38
BIaNK PaOOiNGccveiiticiiieiee bbbttt 4-38
INAICAOr VAriaDIEsc..oiiiiiee e 4-39
DatatyPE CONVEISION......uiiiiiiiitiitiite ettt bbbt b b bbb bbbt et bt et e b e abesbe st e 4-39
Explicit Control Over DATE String FOMMAL........ccocooiiiiiiiiiiie e 4-41
Datatype EQUIVAIENCINGccciiiiieiiee ettt a s re e snesre e nns 4-42
Why EQUIVAIENCE DAtatyPES?ccuiiiiiiiiiieiiiee ettt sttt 4-42
Host Variable EQUIVAIENCINGciiiiiiiieee e 4-43
Using the CHARF Datatype SPECITIErcccciviicececccn st 4-47
GUIAETINES ...t b b bbb bbb et et b e b e bt b benbe b 4-48
RAW and LONG RAW VAIUES........coiiiieieieee et sttt 4-49
Sample Program 4; Datatype EQUIVAIENCING........cccoiiiiiiiie e 4-49
.. 4-53
5
Embedded SQL
USING HOSE VAriabIes.c.oii s 5-2
Output Versus INput HOSt VariabIeSc.covvviiiiciie e 5-2
USING INAICALOr Variables..........cooiiiiiiicc ettt 5-3
INPUE VATTADIES ...ttt 5-3
L@ 811 01U AV U =1 o] LTS 5-4
L FY T AT o T A O L SRS 5-4
Handling ReTUINEA NULLS..........coiiiiiiie e 5-5
(0= (od T To T N USSR 5-5
TESEING FOF NULLS ..ottt e b et esbe et s aeesaesneenteanes 5-6
Fetching Truncated ValUES............cooiiiiiiiiiiee e 5-6

Vii

The BasiC SQL StAteIMENTSccviiiiiiie ettt st te e et e sna e beeneenreenes 5-7

SEIECTING ROWVS......ceiiiiiiiitectet bbbt bbbt b ettt b et b et et e 5-8
INSEITING ROWS....coeiiiiiicticese sttt et be st st e be s aese et en e e eneeneenesneanenaenrenrens 5-9
DML REUINING CIAUSEueiitiiieiieeie ettt ettt s e et e e te e e te s e ta e st e sbe e s e sneentesneenreanees 5-9
USING SUDGQUETTES ...ttt btttk 5-10
(01T - UL T N (01T SR 5-10
[T] =] AT Lo T (1YY £ SRR 5-11
USING the WHERE CIAUSEc.cciiiiiiiiicee ettt 5-11
L1 U] £=T0] £ TP T TP SUSPR RPN 5-11
(D LTol P T T o I W OA U | <o] SRS 5-12
OPENING 8 CUISOE ...ttt ettt sb et b et b et b et b et eb e ekt ekt se et e sb ekt sbeb e ab e st ab et e b e e ene e ene e 5-14
FEtChing fromM @ CUISOTociiii e s et e e r e neerenns 5-14
(0 (011 [o = T O U] Yo T USSP 5-15
Using the CURRENT OF ClIAUSEcociiiiiiieienieie ettt 5-16
RESEFICHIONS ...t bbbttt ettt et e 5-17
A Typical Sequence Of STATEMENTScooiiiiiiie e 5-17
POSITIONEA UPAALE ..ottt bbb 5-18
The PREFETCH Precompiler OPtiON......ccccoiiiieiieccese e 5-18
Sample Program 2: CUrsor OPEratioNScocoueieiiiiieinese sttt 5-19
.. 5-21

6 Embedded PL/SQL

viii

EMBDEdding PLISQL ..ottt bbbttt b ettt 6-2
HOSE WVATTADIES ...t bbbt ettt ettt et 6-2
VARCHAR VAriabIescooiiiii e 6-2
T o 1ot oY g £= U g T=1 o] L= TSSOSO 6-2
SQLCHECK ...ttt bbbttt ettt b et e bbbt b e bt ne s 6-3

AAVaNtages OF PLISQLociiiiieie ettt sttt e st et e st e enb et e eneenreenes 6-3
Better PErfOITNANCEveci et e be et e s be e ste s ae e stesaeesteaneas 6-3
INtegration With OraCle8i...........cccviiiiriiiiiesc e sre 6-3
CUISOE FOR LOOIS ..ttt sttt sttt sttt ab et sb et sb e bbbt e bt et e bt e s e b e e e e nneenes 6-4
SUDPIOGIAMS ...ttt bbbt bbb bbb bbbttt nn et et 6-4
o To] 1 Vo = 6-5
PLZSQL TABIES ...ttt bbbttt se bbb s et ena e nbe e 6-6
0T B =] g T=To I R =TT] o [T P SRS 6-6

Embedding PL/ISQL BIOCKSccveiiiiei ettt ettt st anes 6-7

Host Variables and PLISQLc.oiiie ettt sbe st nnesne s 6-8
1@ I T Y o] 1= USSP 6-8
A More ComplexX EXAMPIE ..o 6-9
VARCHAR PSEUAOLYPE.ciiiiitiiiteiete etttk 6-11
Indicator Variables and PL/SQL ..ottt sttt et sbe e sbe s 6-12
[P2 T 1 1T T T N 1 SRS SSTS 6-13
Handling TrunCated VAlUES...........ccciiiiriiiiiiese ettt 6-13
HOSt TabIES AN PL/ISQL....cuiiiiiiiecee ettt ettt sttt st be et sbeenbeebeenbeereenns 6-14
ARRAYLEN STAEMENT ..o 6-16
Cursor Usage in Embedded PL/ISQL ..ot 6-20
Stored PL/SQL and Java SUDPIrOGIamS.........cccieeierieieieeciese s as e ssessessesnens 6-21
Creating Stored SUDPIrOQIramISco.oiiiiiee e 6-21
Calling a Stored PL/SQL or Java SUDProgram ... 6-22
USING DYNAMIC PLZSQL ...oviiiie ettt s st neenenne e 6-24
SUDPrOgrams RESTIFICTIONoiuiiiiieieiieie ettt sne s 6-25
Sample Program 9: Calling a Stored ProCedure ... 6-25
REIMIOTE ACCESS. ...ttt ettt b bbbt b bt e et b bt n e e e st e b e e b e b e er e b e 6-30
CUISOE VATTADIES ...ttt bbb bbb et s e et eb e st abe b 6-30
Declaring a Cursor Variable............ccoiiiiiiiie e 6-31
Allocating a Cursor Variablecccoeceec e 6-32
Opening a Cursor Variable ..o 6-32
Fetching from a Cursor Variable ... 6-34
Closing @ CUrsOr Variable ... 6-35
Freeing a Cursor Variable.........cc.oov it 6-35
Restrictions 0N CUISOr VariableScooiiiiiieieieieiee et 6-35
Sample Program 11: CUursor Variables. ... 6-36
Host Tables
WHat 1S @ HOSE TADIE? ...t 7-2
WHY USE HOSE TADIES?.......ccice ettt et et e st e e re e naesaeesreanes 7-2
Tables in Data Manipulation StatemeENtS............cooiiiiiiine e 7-2
[1=To F= LT o I o (0TS A I] T S 7-2
Referencing HOSt TaDIESc.viiiece e nre e 7-3
USING INAICALOr TADIESc.oiiiiiic e 7-5

Host Group Item Containing TabIesS.........ccoiiiiii s 7-5

OFACIE RESIIICTIONS ...ttt bbbt st e et ne et e et eebeene st es 7-6
ANSI Restriction and REQUITEMENTScoveieieiceeese e sre e 7-6
Selecting INTO TADIES........c.oo ettt sre e e sreanees 7-6
BAtCh FEICNES ... ettt ettt re e 7-7
USING SQLERRD(3)...ittieiteitiitese sttt e et e st sttt ae et sa e e e e e s esaeneeneaneatessesnesre e nes 7-8
Number of ROWS FEICNEAooiiiiie e 7-8
Restrictions 0n USING HOSE TADIES........c.ciiiiiiiiiicee et 7-9
L= (o] T o TN L 7-9
Fetching TrunCated ValUES.........c.oov ittt st sre s 7-9
Sample Program 3: Fetching in BatChes ... 7-10
INSErtiNng WIth TabIES ..o e e e e re s 7-12
ResStrictions 0N HOSE TADIES ..o s 7-13
UPdating With TADIES ..o e 7-13
RESLFICLIONS 1N UPDATE ..ottt ettt s 7-14
Deleting WIth TADIESoovie ettt re e sre e sreennes 7-14
RESTIICLIONS 1N DELETE ..ottt st ettt sbe e 7-15
USING INAICALOr TABIES ... erenrs 7-15
USING the FOR CHAUSEoiiiciceece sttt ettt st te e te e s e taeneenneenes 7-16
[LeES] € o1 o] LSS 7-17
USING the WHERE CHAUSEccviiiiiecise ettt sttt et a e enasneaneanenns 7-18
Mimicking the CURRENT OF ClaUSEccuoiieiiiiece ettt 7-19
Tables of Group Items as HOSt Variables ... 7-20
Sample Program 14: Tables of Group IteMSccoveieicieieie e 7-22

Error Handling and Diagnostics

The Need for Error HaNAIiNGcc.coooiiiiccccse et 8-2
Error Handling AIEINAtIVESc..ooi ittt ste e s e e re e e sreens 8-2
SO C A b bR R Rt R e bRt Rt R e Rt R et Re bt e et a et e aenennenen 8-2
ORACA bbb h R R R R bR R bR bR ettt 8-3
ANSI SQLSTATE VAIIADIEocoeiiieiceiee ettt 8-3
Declaring SQLSTATE ...ttt bbbt bbbt 8-4
Using the SQL COMMUNICAtIONS ATC@......c.c.coeieiieieieiseeeseseseseste e sesaesaeseesaesaeseesesressessesseseenes 8-6
WHhat's INThe SQLCAT? ..o et e st et e e re e beeaeentesneenreaneas 8-7

Declaring the SQLCAot bbbttt bbb 8-8

Key Components of Error REPOITING........cooeiiiiiiiiieinee e 8-8

SQLCA STIUCTUIE ...ttt ettt b bbbt bt e bt b e e s b e b e e ebeebeenbees b e nbeenbenbeenee 8-10
PLZSQL CONSIAEIALIONSc.viiviciiitiiiecte ettt sttt s be et sba e besteebesbe et e ebsesbesnsesbeenneebeennes 8-13
Getting the FUll Text of Error MESSAgES.ccvcviiiieiiiei ettt 8-13
L] AV A = TP PSPPSRI 8-14
WHENEVER DIFECHIVE ..ottt st sb e e sne e 8-15
Coding the WHENEVER StatemeNntc.ccoveiiiieiiiice et 8-17
Getting the Text of SQL StAtEMENTS.......cccoi i e 8-21
Using the Oracle COmMMUNICAtIONS ATBa........ccceiviiierierieieisese s e e resre s 8-23
WHat's INThe ORACAT ...ttt sttt st sb ettt et e e st et e ebeseete e 8-23
Declaring the ORACA ... bbbttt ar et b et b e ene e 8-24
ENabliNg the ORACA ...ttt et st e e et e s e e neaneerenrenes 8-24
ChooSIiNG RUNLIME OPTIONS.ottt ettt sne s 8-25
ORACA SETUCTUIE ...ttt ettt b e bt b e bt be e be s be e sbesbe e sbeebeesbeesbesbeenbenbeenne 8-25
ORACA EXAMPIE ...ttt sttt e e e e e e e eneeseaneenesresrennens 8-28
How Errors Map t0 SQLSTATE COUESc.couiiiiiiireiie ettt 8-31
Status Variable COMbBINATIONSooiiiiiec e 8-37

Oracle Dynamic SQL

What IS DYNAMIC SQL7....iiiiiiiiiitiiieete ettt b et b et se et sr et nn bt sb e ene e 9-3
Advantages and Disadvantages of Dynamic SQLccccviviiviviivinine e 9-3
When to Use DYNAMIC SQLoooiiiciicee ettt et ae e na e aeesreanes 9-3
Requirements for Dynamic SQL StatemMENTSccooiiiiiiinieirieiieseesee s 9-4
How Dynamic SQL Statements Are ProCeSSEd.........ccuivvvriiiriiiineneieseieiesesseesese e seesne e 9-4
Methods for Using DYyNamic SQLccoiiiiiiiiicce e 9-5
1V 1=3 1 To o 100 OSSR SOPSOSR U 9-5
IMIEENOM 2 ... bbbttt 9-5
1Y 1=3 1 g ToTo IR OO T O RSO PSP R PRSP 9-6
1V 1=3 1 To o IR OSSOSO 9-6
GUIRIINES ...t b et bbbttt ettt 9-7
L] o TN 1Y/ =] 1 T Yo I SRS SS 9-8
The EXECUTE IMMEDIATE StatemMENTcooveiiiiiiieseisie et sne e 9-9
F N T -V 1] o 1 9-9
Sample Program 6: Dynamic SQL Method 1..........ccocooiiiiiiiiiiiie e 9-10
USING METNOA 2.ttt 9-13

Xi

10

Xii

TRE USING CHAUSE.......cociteie ittt ettt e e e et e s s e e e st e e e s eabe s s sabaesssbaee s 9-15

Sample Program 7: Dynamic SQL Method 2...........ccciiiiiiiiiiiiiieeeee e 9-15
L ST 1T TN Y/ L1 1 g o o I PSS 9-18
PREPARE ..ottt et b et bbbttt ekt ettt ettt 9-19
DECLARE ...ttt bRttt bbb nenrene 9-20
OPEN L.ttt bbb bR ek e bt b e e bR bt bbb b e b b e re e 9-20
= 1O o OSSOSO 9-20
CLOSE ..ottt sttt bbb b e b et bt b et E et R et et e bt e b e R e b e e b e be e eae e re e 9-21
Sample Program 8: Dynamic SQL Method 3...........cov oo 9-21
USING Oracle MetROA 4 ..ottt e e ere e 9-25
Need fOr the SQLDAttt st st b e et e e e neeseeresnesrens 9-25
The DESCRIBE StateMENT........cociiiiiiiieirieitesie ettt 9-26
WHAL 1S @ SQLDA? ... ettt sttt ettt bbb e 9-26
IMPIemMenting METNOA 4 ..o s 9-27
Using the DECLARE STATEMENT Statement.........ccccovviiiiieiienese e e e 9-28
USING HOSE TADIES ...t be et te e s e s te e e nneenes 9-29
USING PLISQL ..ttt ettt ettt et b n e b s nn s 9-29
WIth IMEBENOA L. bbbttt bbb e 9-30
WIth IMEBENOA 2. bbbttt bbb b 9-30
WIth IMIEBENOM ... bbbttt ettt bt e b s snne 9-30
WIth IMEENOA 4. bbbttt bbb rne 9-30
F N 1 (= 01 (o] o TP PTUSOUPUR PSPPI 9-31
(O U 4 o] o OSSOSO 9-31

ANSI Dynamic SQL

Basics Of ANSI DYNAMIC SQL ..ottt 10-2
g g=Tolo T 0] oY1 =] @] o] o] o 1< SR 10-2
Overview of ANSI SQL StatemMeENTS.......cccoi et 10-3
SAMPIE COUE ...t bbbt b et bbbt b et bbb 10-6
OFACIE EXLENSIONS ...ttt bbb bbbtttk ettt st nb bbb 10-7
RETEIENCE SEMENTICSeviiii it bbb ettt eb e 10-8
Using Tables for BUlK OPErations ...ttt 10-9
ANSI Dynamic SQL Precompiler OPtioNSccccoveiviieieieeieese e 10-12
Full Syntax of the Dynamic SQL StatementS..........ccccoiviiiiiii s 10-13
ALLOCATE DESCRIPTOR ..ottt ane s 10-13

11

DEALLOCATE DESCRIPTORcciiiiiiiiii e 10-14

GET DESCRIPTORottt ettt st et s st ss s s s ten s sensnsenes 10-15
SET DESCRIPTOR ...cocitiiiiiieiiiteste sttt ettt ettt 10-18
USE OF PREPAREottt ettt bbbt et sttt e 10-20
DESCRIBE INPUT ..ottt sttt sttt ettt sttt st sb s st nesans 10-21
DESCRIBE OUTPUT ...ttt sttt ettt st bbb s sb et 10-22
EXECUTE ..ot itetcteiete ettt etttk ettt n et st et e et s e eb e s e e be e ebe e ebe e ebe e ebeneas 10-23
Use Of EXECUTE IMMEDIATE.......coiiitiiitietse sttt sve sttt sne e 10-24
Use of DYNAMIC DECLARE CURSORcocoiiiiiitree sttt 10-24
OPEN CUISOT ...ttt b ettt st eb e e s bt e e e bt e b e st e e bt eb e e bt entenneenneaneannas 10-25
o 1O o OSSO PSPPSRSO 10-26
CLOSE @ DYNAMIC CUISOIeviitiieiiiieieitesieieeeeeeeresessestes e ssessessestessessessesasssessesessessessessenns 10-27
Differences From Oracle Dynamic Method 4...........ccoov i 10-27
RESTIICTIONS ...ttt ettt b et e bt sb e be st et et e e e e eneeseebeaneebents 10-28
Sample Programs: SAMPLEL2.PCO......ccccccviiiiiiiieieceeese et 10-28
Oracle Dynamic SQL: Method 4
Meeting the Special Requirements of Method 4...........c.ccoov v 11-2
What Makes Method 4 SPECIAIT..........ccovi i 11-2
What Information Does the Database Need? ... 11-2
Where IS the INformation StOred? ... 11-3
How Is the Information OBtaINed?cooiiiiiii s 11-3
Understanding the SQL Descriptor Area (SQLDA) ...t 11-4
PUrpose Of the SQLDA........co et sttt e e e s e e reeneerenre e 11-4
MUILIPIE SQLDAS ...ttt ettt sttt e bbb e besb e b e sbe s e sbe e abe e abe e nbe e 11-4
Declaring @ SQLDA ...ttt 11-5
The SQLDA VArIADIESccv ittt ettt et be et st b e ba e s beeteesbeenbesbeenns 11-8
SOME PrEliMINAIIES ... bbb bbb ettt e et et 11-14
USING SQLADR ...ttt ettt e ettt sa et e s b e s e st e s e ebe e et e e ebe e eteseeteneas 11-14
(070 a1V /=T] o T 1D - - RSP PS 11-15
COBICING DALALYPES ...ttt ettt b bbb bt bbbt e st st ebe st e 11-18
Handling NULLZ/NOt NULL DatatyPescccociieineiiieinenesiessiesesie s 11-21
B QLI T T 1] (=T o 1SS 11-22
A Closer LOOK @t EACH STEPccuiiiiiiiie ettt et 11-23
Declare @ HOSE SIFINGcovoiiiiiieiiee ettt 11-24

Xiii

12

13

Xiv

DeClare the SQLDAS........o et be et e r e b et enre b e e 11-25

Set the Maximum Number to0 DESCRIBE ... 11-26
INItIaliZe the DESCIIPTOIS.....ciiiie e e e erenns 11-26
Store the Query Text in the HOSt StFNG ...cccveviiieiiccc e 11-29
PREPARE the Query from the HOSt STFiNg ..ot 11-29
DECLARE @ CUISOK ...ttt sttt sh b b sn e n b nn et e s 11-29
DESCRIBE the Bind Variablesccoo o 11-29
Reset Number of Place-holdErS ..o 11-32
Get Values for Bind VariabIes ..o 11-32
OPEN the CUISOE ...t ettt b bbbt b b bbb e e e e e aneene s 11-34
DESCRIBE the SEIECE LiST.....cviviiiiieiiiiciiiciriee ettt s 11-34
Reset Number of Select-LiSt ItEMS ..o 11-35
Reset Length/Datatype of Each Select-List Itemccccoeiiiiiiiiiniie e 11-36
FETCH ROWS from the ACLIVE SEt.......cccooiiiiiiieee e 11-37
Get and Process SeleCt-LiSt VAIUES........cccoci i 11-38
CLOSE The CUISOI ...ttt bbbt bbb bbb e e aneene s 11-38
Using Host Tables With Method 4 ..o 11-39
Sample Program 10: Dynamic SQL Method 4...........ccooiviviiiiiiiinie e 11-44
Multithreaded Applications
WAL Are TRFEAAS? ..o bbbt bbbt benes 12-2
Runtime Contexts IN PrOFCOBOLccciiiiiiieeeee ettt 12-2
Runtime Context Usage MOGEIS ..o e 12-4
Multiple Threads Sharing a Single Runtime CONteXt..........c.ccoovvivieriniereneseereee e 12-5
Multiple Threads Sharing Multiple Runtime CONEXES.........cccoierireneieneeeeeeeeeseie 12-6
User Interface Features for Multithreaded AppPlications...........cccoevieiiiinennenceeee e 12-7
THREADS OPLION....ttiitiiieiiieiriese ettt b e bbb bbb bt e bt neenes 12-7
Embedded SQL Statements and Directives for Runtime Contexts...........cccocvvvvevieiininnnns 12-7
Communication With Pro*C/C++ Programs..........ccoceieiieineeneieneesee e 12-9
Multithreading Programming Considerations...........cccccoovviviivninieneneniesesesesesesseesieseanens 12-9
Multiple CONEXE EXAMPIES......cciiiiiiiie e 12-9
Multithreaded EXAMPIEco.oiiiiiiiicie bbb 12-14
Large Objects (LOBS)
WAL A8 LOBS? ...ttt ettt s st b ek e b bt ettt st e b et se e e en e e s e eneaneebesneanens 13-2

INTEINAL LOBS ...ttt st e e st e e e bt e s s b e e e s sab e s e st e e e sabeeesebbeseabbasesareas 13-2

EXEEINAL LOBS.....coeeiieceee ettt sttt st bt ettt ne b e b b ere e e 13-2
SECUTILY FOF BFILEScciiicieie ettt eneene e enenrenrennens 13-2
LOBS vS. LONG and LONG RAWcociiiireiste sttt sttt ettt 13-3
LLOB LOCAIONSc.ueitiiiieite ettt sttt sttt b bbbt bt et be e sb e e bt e sb e e b e e nbeen b e eb e et e sbeebesaeenbesneas 13-3
BT 10 0] = UV] PSSP 13-3
LOB BUFfering SUDSYSTEIMooieiiiiciicie ettt sttt sre s 13-4
HOW t0 USe LOBS iN YOUF PIrOGIaMccouiiiiiiiiieiieienieie ettt 13-5
TWO WaAYS 10 ACCESS LOBSceciiiieiiie sttt e e sie st te e ste s e steaneesneeneesseeseessaeseesranns 13-5
LOB Locators in YOUr APPHCAION. ..ot 13-6
INTIAIIZING 8 LOBottt 13-7
RUIES TOr LOB StAtEMENTS.....c.ciuiiitiiieieiieie ettt sb et sbe b 13-8
FOr All LOB SEAEMENTS ..ottt bbb bttt et 13-9
For the LOB BUFfEring SUDSYSTEIMcccoiiiiiiiiiecreeri s 13-9
FOr HOSt VariabIes ..ot 13-10
LOB STAEIMENTS ...ttt b et r e bt b e e e s b e e bt s b e e b e eb e e b e enreaneenneaneennes 13-10
o 0 TSSO 13-10
AASSIGIN L. bbbt Rt E e et e e bbb nane 13-11
CLOSE ... ettt b bbb bbb R bRt R bRt Rt R et e Rt a Rt n s 13-12
L0] = RS RSRRR 13-13
CREATE TEMPORARY ..ottt sttt ettt nes 13-14
DISABLE BUFFERINGccoiiiiiieieiiee ettt sttt bbb 13-14
ENABLE BUFFERINGccoiiiiciiee ettt sttt sb e sbe et st sn et snene e 13-15
BRASE ..o bbb a e bbbttt e b e 13-15
FILE CLOSE ALL ..ottt ettt sttt sttt ettt e ebe e ene e 13-16
FILE SET .ottt b e b e b et ettt et ettt e a b e e b s e bR e b e et et e e re e erenas 13-17
FLUSH BUFFER ..ottt sttt ettt 13-17
FREE TEMPORARY ..ottt sttt ettt sttt sttt et e et e ebe e eteneebe e 13-18
LOAD FROM FILEooiiicece ettt sttt st s b e 13-18
OPEN .ot bbbt b b e R bbb bR e Rttt e Rt n ettt 13-20
READ ...ttt ettt bbbt b et E e e R R R e bR e bR e b et ettt et nas 13-20
TRIM oottt s et s bRt e s et e bR et e R e bR e ke s e R st Rt R bRttt re b nenrns 13-22
WVRITE <.t b bbb ettt ettt et s b et bbb n b 13-23
DESCRIBE ...ttt sttt st b e b ettt et ettt bbbt r e b b renaene 13-24
READ and WRITE Using the Polling Method ... 13-27

XV

14

XVi

LOB Sample Program: LOBDEMOZLPCO ..ottt 13-29

Precompiler Options
The Pro*COBOL COMIMANG........coiiiiiiiiie ittt be b 14-2
CaSE-SENSTLIVITY ...ttt ettt b bbbt ne et nb bbbt bt bt r e b ene e 14-2
What Occurs during Precompilation?..........cccooviiiiiicccec s 14-3
ADOUL THE OPTIONS ...ttt bbb bbb ettt be e b b ene s 14-3
Precedence Of OPLION VAIUES ...t 14-4
V= To goTe=TaTo Y/ TTod fo T @] o £ o] o -SSP 14-5
Determining CUITENt ValUES..........c.ociii ettt sttt 14-6
ENTEIING OPLIONS ...ttt bbb bbbt bbbttt bbb 14-6
ON the COMMEANG LINE.....coiiiiieereeee ettt e b e ebe et 14-7
NN ettt bbbt b h R b bbb et h bbbt b e e 14-7
CoNfIGUIALION FIIES ... 14-8
S TeT0] 010 1@ o] 1 [o] o 1< 0SS 14-9
(@ T T o] T =] =] (] L= USSR 14-10
Using Pro*COBOL Precompiler OPTIONS...........covviiiiiriiiiisesieise e 14-12
AASACC bR E R bbb bR e bR b e Rt ettt nes 14-12
ASSUME_SQLCODE ..ottt ettt ane s 14-13
AUTO_CONNECT ..ttt ettt b bbbttt ettt 14-14
CLOSE_ON_COMMIT .ottt sttt ettt s e 14-14
CONFIG .o e b e bt bbbttt be st e be e e be st et e s b eresbesesberesbenenaens 14-15
DATE _FORMAT ..ottt sttt ettt ettt b et s s s et en et n e be e benes 14-16
DBIMIS ...ttt E R E R bRt e bR bbbt n ettt 14-17
DECLARE_SECTIONcititiiitiisttiiete ettt ettt ss et ssen et s st ane s 14-17
DEFINE ..ottt sttt ettt et s et ettt b bR et Rt R e n et et R et n et et nen 14-18
DYNADMIC ..ottt b e bbbt bbbt b ettt nes 14-18
END _OF FETCH ..ottt ettt 14-19
ERRORS ...ttt bbbttt R bRt R Rt R et R bbbt b b ne s rns 14-20
F IS e R bR bRt E Rt bbbt bbb 14-20
FORMAT L.ttt bbbk R bRtk e sttt e bt e b ettt e bt re b nenane 14-22
HOLD_CURSOR ..ottt ettt bbbt bbb e bbbttt 14-22
L (O 1S OSSO ROPTRRR 14-23
INAIME ..ot b ettt b ettt sttt s b bt e a e e b e e bt et e e et ettt enretenas 14-24
INCLUDE ..o ittt ettt ettt bbb te st et e s b e s e e b e s e et e e et e e ebe e ebe e eteseeteneas 14-24

LITDELIM ..ottt st ane s 14-26
LINADME ..o 14-26
LRECLEN Lo e e 14-27
LT Y P E et 14-27
MAXLITERAL. ..o 14-28
MAXOPENCURSORS........oiiii s 14-29
IMIODIE ...ttt b e h e ettt 14-30
INESTED ...ttt ettt et r et 14-31
NLS_LOCAL ..o e e 14-31
OINAME L 14-32
ORACA s 14-33
ORECLEN ... e 14-33
PAGELEN ... s 14-34
Pl X e e 14-34
PREFETCH ... s 14-35
RELEASE_CURSOR.......cooiiiiiit e 14-35
SELECT_ERROR ..ottt 14-37
SQLCHECK ... e 14-37
THREADS ... e 14-39
TYPE_CODBE..... oottt 14-40
UNSAFE_NULL ..ot 14-40
USERID .. 14-41
VARCHAR .ttt et 14-41
XREF e 14-42

A New Features

New Features 0F REIEASE 8.1........cccooiiiiiiicce e A-2
Multithreading Applications SUPPOITEA........ccciiiiiiiiiiiicieer s A-2
CALL STAEMENT.......oiiiece ettt n et A-2
LOF: 1] [T o T F= Y7 WAV =1 1 0T T SRS A-2
LLOB SUPPOIT. ...ttt r bbbt A-2
F N AN S I)Y/ g T 1 4T3 S A-2
PREFETCH OPLION ...ttt bbbttt A-2
DML REIUINING CIAUSE ...ttt A-3

XVii

(0 LAY =T X L @ AV 1 B R A-3

SYSDBA/SYSOPER Privileges in CONNECT Statements........c.ccoverieniencinsinecnecneenns A-3
LI 0] LoTs o)] (0T U o TN 1 =T o LSS A-3
WHENEVER DO CALL BranChccooiiiiiiiiice e A-3
DECIMAL-POINT IS COMMA ...ttt bbbt A-3
Optional DiVISION HEAUEIS..........ccviiiiciiisise e e e renne s A-3
INESTED OPTION ...couiiitiieiiiisieteitesist ettt bbbt bbbt bbbttt e n e A-3
DB2 Compatibility Features of Release 8.0.........cccoiiiiiiiii e A-4
Optional DECIare SECHIONccociviiiiiiice e e e e nesrenne s A-4
Support of AdditioNal DAtatYPESccocerereiiiiieieieeeeer et A-4
Support of Group Items as Host Variables ... A-4
Implicit Form of VARCHAR Group HEMScveviieiiice e e e nnens A-5
Explicit Control Over the END-OF-FETCH SQLCODE Returned...........cccocooevninieninnnenn A-5
Support of the WITH HOLD Clause in the DECLARE CURSOR Statement A-5
New Precompiler Option CLOSE_ON_COMMIT ... A-5
SUPPOIt FOF DSNTIAR ...ttt bttt et be b b A-6
Date String Format Precompiler OPLioNc.cccooeiiiiineieieiscesese e A-6
Any Terminator Allowed After SQL StatemMENTtS.........cccvivvierieiierieie e A-7
Other New Features 0f REIEASE 8.0coiiiiiiiie e A-7
New Name for Configuration File ... A-7
Support of Other Additional DatatyPeS.........cccerererieireiriese e A-7
SUPPOIt OFf NESTEA PrOGIamMS......c.oiiiuiiiiiiitiiie ettt ettt sb et A-7
Support for REDEFINES and FILLERcccccooiiiiiiiciccseeee s A-7
New Precompiler OPtion PICXcoooioiiicieiese ettt a e sne s A-8
Optional CONVBUFSZ Clause in VAR Statement ... A-8
IMProved Error REPOITINGcooiiiiiiiieiiee et A-8
Changing Password When CONNECING........c.covviererieesese s A-8
Error MESSAJE COUESooiiieiiiiieie sttt te st sttt et e e s ae et e eaeenteaneentesneenreanes A-8
Migration From Earlier REIEASES..........cccciiiiiiiicee e A-9

B Operating System Dependencies

System-Specific References in this Manual..............cccooiiiiiiic B-2
(1@ 1@ T I =T] o LS B-2
HOSE VANADIES ...ttt et e st et e s ae e aesaeenteanes B-2
INCLUDE STAtEIMENTS ...cuviiiie ettt e s be et e e ta e saa e e te e snaeebe e s nbeenraesnee s B-2

Xviii

MAXLITERAL DEFAUITocviiiiiciice s B-3

PIC N or Pic G Clause for Multi-byte NLS Characters ..o B-3
RETURN-CODE Special Register May Be Unpredictable...........cccccooeiviviiiciiiiiniisenns B-3
Byte-order Of BiNAry Data...........c.cccoiiiiiieiie ettt ste e ste e steesaenreens B-3

C Reserved Words, Keywords, and Namespaces

Reserved WOords and KEYWOIUSc..ccveiiiiie et e et sae e sae e sresneas C-2
RESEIVEA NAIMESPACESeueitiiitiieeti ettt b bbbt bbbt b bbb bbbt e st enes C-5
D
Performance Tuning
What Causes POOK PErfOrMENCE? ..ot D-2
How Can Performance be IMProvVed?...........coiiiiiee e D-2
USING HOSE TADIES ...ttt D-3
Y aTo I o IS @ T T g o [N - D-3
OptiMizing SQL STATEMENTS.ciiiiiiierteie e bbb ettt et sbe b b e D-4
OPLIMIZEN HINTS ...t bbbttt et D-5
QLI U= = (o1 Y D-5
(0] [[0 T Lo (2= SRS D-6
Taking Advantage of ROW-LeVel LOCKINGccooiiiiiiiiiie e D-6
Eliminating UNNECeSSary ParSINg.......cccouciireieierieiesesesesteste e ssesseseeseessesaesesssssessessessessessessessesees D-6
HaNdliNg EXPHCIT CUISOES......cciiiiiiiieiieieere ettt ettt be b e D-7
Using the Cursor Management OPLIONS ..o e D-9

E Syntactic and Semantic Checking

What Are Syntactic and Semantic CheCKiNg? ... E-2
Controlling the Type and Extent of CheCKingcccooviiviiiiii i E-2
Specifying SQLCHECK=SEMANTICScoiitiiitiietere et E-3

Enabling @ SEMAaNtIC CHECKcciiiiiiiie e E-3

F Embedded SQL Statements and Precompiler Directives

Summary of Precompiler Directives and Embedded SQL Statementsccccocevvverenenn. F-4
About the Statement DeSCriPLiONSccvoi e e F-6
How to Read SYNtax DIAagramScciiiieiiiieie sttt sbe b e sreennesneesreanees F-7

Xix

XX

) e L= g AT AL =T 1T = (] TR F-8

Required Keywords and PArameters ...ttt F-8

Optional Keywords and Parameters.........ccoccievererereeieeisiese e s s see s sees s e snssse e s F-9

SYNTAX LLOOPS ..ottt b et h e bbb b b e bbb e b e n e n e nrenn e F-9

MUIEI-PAIT DIBGEAMS. ...ttt b bbbt bbb e F-10

OFACIE NBIMES ...ttt ettt sttt se et s b et e st e b e s b et eb e e e b e e et et e F-10
ALLOCATE (Executable Embedded SQL EXtENSION)cccccveiiiiieiiiiee e F-10
ALLOCATE DESCRIPTOR (Executable Embedded SQL)ccccoeniirininniciiriccenieee F-12
CALL (Executable EMbedded SQL)ccccooieriericicieese e F-13
CLOSE (Executable Embedded SQL).......cccoiieiiiiiiiicse ettt F-14
COMMIT (Executable Embedded SQL) ..ot F-15
CONNECT (Executable Embedded SQL EXENSION)cccvvvivriiineie e F-17
CONTEXT ALLOCATE (Executable Embedded SQL EXtENSION)cccccevvevieviveniesieiesienn, F-19
CONTEXT FREE (Executable Embedded SQL EXENSION)ccoveriieninieniienisenee e F-20
CONTEXT USE (Oracle Embedded SQL DireCtiVe)........ccccvivvivrerienenenireeseeeeeese e F-21
DEALLOCATE DESCRIPTOR (Embedded SQL Statement)........cccccovvvrniirnivneinnieinneenienns F-23
DECLARE CURSOR (Embedded SQL DireCtiVe)........cccoeiiriiiriiiniiiiiicieeeneeeieeseee s F-24
DECLARE DATABASE (Oracle Embedded SQL Directive)cccoevvievieieieneiereeie e F-26
DECLARE STATEMENT (Embedded SQL DireCtiVe)cccocvvriieriiinininsinscneesieesieesiens F-27
DECLARE TABLE (Oracle Embedded SQL DireCtiVe)ccoiiiiiiiniiineinecneesieesieeneens F-29
DELETE (Executable Embedded SQL)ccccoviiiiiiiiceeceer s sne F-31
DESCRIBE (Executable Embedded SQL) ...t F-34
DESCRIBE DESCRIPTOR (Executable Embedded SQL).........cccconimienninicieierece e F-36
ENABLE THREADS (Executable Embedded SQL EXteNSion)cccccocvvevvrierieneeieecsiesn e F-38
EXECUTE ... END-EXEC (Executable Embedded SQL EXtENSION)ccccevvvieriveieiieieninn, F-39
EXECUTE (Executable Embedded SQL) ..o F-41
EXECUTE DESCRIPTOR (Executable Embedded SQL.......c..ccccvvivvinineiencreieseeeeese e F-43
EXECUTE IMMEDIATE (Executable Embedded SQL)......ccccccvviiniieniiincene e F-44
FETCH (Executable Embedded SQL)........ccoiiiiiiiiiie e F-46
FETCH DESCRIPTOR (Executable Embedded SQL)ccoovivviiiiinenine e F-49
FREE (Executable Embedded SQL EXENSION)c.coviiiiiieiiiicic et F-51
GET DESCRIPTOR (Executable Embedded SQL)........ccoiiiiiiiiiiiieiieesese e F-52
INSERT (Executable Embedded SQL) ..ot F-55
LOB APPEND (Executable Embedded SQL EXtENSION).......cccccevviiieiieiieiieieeiese e F-58
LOB ASSIGN (Executable Embedded SQL EXIENSION)cccoiiiiiiiiiiiiiicceceeees F-59

LOB CLOSE (Executable Embedded SQL EXENSION)ccccccviveiiiieiieie e F-59

LOB COPY (Executable Embedded SQL EXIENSION)cccceiiiieiiieiiiiirieineeeee e F-60
LOB CREATE TEMPORARY (Executable Embedded SQL EXtension)ccccccecvvevvvennnnnn F-60
LOB DESCRIBE (Executable Embedded SQL EXtension).........ccccoovvvvvieiievinie s F-61
LOB DISABLE BUFFERING (Executable Embedded SQL EXtension).........ccccccoevvviiiennnn F-62
LOB ENABLE BUFFERING (Executable Embedded SQL EXtension)ccccceevvvvvivcnnnnnn F-63
LOB ERASE (Executable Embedded SQL EXteNSioN)c.ccccovviieveiie e F-63
LOB FILE CLOSE ALL (Executable Embedded SQL EXtENSION)ccccocevveniienneneenieieene F-64
LOB FILE SET (Executable Embedded SQL EXENSION)c.ccccvievireieriieereeeeeee e F-65
LOB FLUSH BUFFER (Executable Embedded SQL EXtENSION)cccccvvvveviinievieeieceeieeeeenns F-65
LOB FREE TEMPORARY (Executable Embedded SQL EXtENSion)ccccovenveneenieennen F-66
LOB LOAD (Executable Embedded SQL EXtENSION)ccccvvviviirineie e F-66
LOB OPEN (Executable Embedded SQL EXtENSION)......c.cccccveviiieiiiie e F-67
LOB READ (Executable Embedded SQL EXENSION)........cccooeireiineriienineniseeie e F-68
LOB TRIM (Executable Embedded SQL EXtENSION)cccccvvvvvierineie e F-68
LOB WRITE (Executable Embedded SQL EXENSION)ccccccveveiieiiiieiecie e F-69
OPEN (Executable Embedded SQL) ...ttt F-70
OPEN DESCRIPTOR (Executable Embedded SQL)ccccvivieiiinnienenese e F-72
PREPARE (Executable Embedded SQL)........ccccoiiiiiiieiicieii et F-74
ROLLBACK (Executable Embedded SQL)cccoiiiiiiiiiiiiiiee e F-76
SAVEPOINT (Executable Embedded SQL)cccceiueiiieieiiirsise s sesesie e e e snens F-79
SELECT (Executable Embedded SQL).......cccooieiiiieieiiece ettt F-80
SET DESCRIPTOR (Executable Embedded SQL)cccoeiriiiiiiniiieeseeeeee s F-83
UPDATE (Executable Embedded SQL)cccooiiiiieiecese e F-86
VAR (Oracle Embedded SQL DIreCLIVE)ccceiveiiiicie et F-90
WHENEVER (Embedded SQL DIreCliVE)ccceiriiirieinieieseesieesee et F-92

XXi

XXii

Send Us Your Comments

Pro*COBOL Precompiler Programmer’s Guide, Release 8.1.6
Part No. A76951-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

« Did you find any errors?

« Isthe information clearly presented?

« Do you need more information? If so, where?

« Are the examples correct? Do you need more examples?
« What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,
section, and page number (if available). You can send comments to us in the following ways:

« E-mail - infodev@us.oracle.com
« FAX-(650) 506-7228 Attn: Information Development Department
« Postal service:

Oracle Corporation

Information Development Department

500 Oracle Parkway MS 4opl2

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, and telephone number below.

If you have problems with the software, please contact your local Oracle Support Services.

XXili

XXiV

Preface

This manual is a comprehensive user’s guide and reference to the Oracle
Pro*COBOL Precompiler. It shows you how to develop COBOL programs that use
the database languages SQL and PL/SQL to access and manipulate Oracle data. See
Oracle8i SQL Reference and PL/SQL User’s Guide and Reference for more information
on SQL and PL/SQL.

This preface covers these topics:

What This Manual Has to Offer

Who Should Read This Manual?

How This Manual Is Organized

Text Conventions Used in This Manual

Sample Programs

Does the Pro*COBOL Precompiler Meet Industry Standards?

Your Comments Are Welcome

XXV

What This Manual Has to Offer

This manual shows you how the Oracle Pro*xCOBOL Precompiler and embedded
SQL can benefit your entire applications development process. It gives you lessons
in how to design and develop applications that harness the power of Oracle. And,
as quickly as possible, it helps you become proficient in writing embedded SQL
programs.

An important feature of this manual is its emphasis on getting the most out of
Pro*COBOL and embedded SQL. To help you master these tools, this manual shows
you all the "tricks of the trade" including ways to improve program performance. It
also includes many program examples to better your understanding and
demonstrate the usefulness of embedded SQL.

Note: You will not find installation instructions or system-specific information
in this manual. For that kind of information, refer to your system-specific
Oracle documentation.

For information about migrating your applications from Oracle7 to Oracle8i, see
Oracle8i Migration.

Who Should Read This Manual?

Anyone developing new COBOL applications or converting existing applications to
run in the Oracle8i environment will benefit from reading this manual. Written
especially for programmers, this comprehensive treatment of Pro*COBOL will also
be of value to systems analysts, project managers, and others interested in
embedded SQL applications.

To use this manual effectively, you need a working knowledge of the following
subjects:

« Applications programming in COBOL.
« The SQL database language.

« Oracle8i concepts and terminology.

How This Manual Is Organized
A brief summary of what you will find in each chapter and appendix follows.

Chapter 1, "Introduction”

XXVi

This chapter introduces you to Pro*COBOL. You look at its role in developing
application programs that manipulate Oracle data and find out what are its key
benefits and features.

Chapter 2, "Precompiler Concepts™"

This chapter explains how embedded SQL programs work. Then the guidelines for
programming in Pro*COBOL are presented. Compilation issues are discussed and
the sample Oracle tables used in this guide are presented, as is the first of the demo
programs, SAMPLEL.PCO.

Chapter 3, "Database Concepts”

This chapter describes transaction processing. You learn the basic techniques that
safeguard the consistency of your database. You then learn how to connect to a
database and how to connect to multiple distributed databases.

Chapter 4, "Datatypes and Host Variables™"

The internal and external datatypes are defined at length. Then you are shown how
to use the datatypes in your COBOL program. Then runtime contexts and ROWIDs
are explained, followed by National Language Support, datatype conversion and
datatype equivalencing. (with a sample program).

Chapter 5, "Embedded SQL"

This chapter teaches you the essentials of embedded SQL programming. You learn
how to use host variables, indicator variables, cursors, cursor variables, and the
fundamental SQL commands that insert, update, select, and delete Oracle data.

Chapter 6, "Embedded PL/SQL"

This chapter shows you how to improve performance by embedding PL/SQL
transaction processing blocks in your program. You learn how to use PL/SQL with
host variables, indicator variables, cursors, stored subprograms in either PL/SQL or
Java, host tables, and dynamic PL/SQL.

Chapter 7, "Host Tables"

This chapter looks at using host (COBOL) tables to improve program performance.
You learn how to manipulate Oracle data using tables, how to operate on all the
elements of a table with a single SQL statement, and how to limit the number of
table elements processed.

Chapter 8, "Error Handling and Diagnostics"

This chapter provides an in-depth discussion of error reporting and recovery. You
learn how to detect and handle errors using the status variable SQLSTATE, the

XXVil

XXViii

SQLCA structure, and the WHENEVER statement. You also learn how to diagnose
problems using the ORACA.

Chapter 9, "Oracle Dynamic SQL"

This chapter shows you how to take advantage of dynamic SQL. You are taught
three methods, from simple to complex, for writing flexible programs that let users
build SQL statements interactively at run time.

Chapter 10, "ANSI Dynamic SQL"

ANSI Dynamic SQL, Method 4, is presented. This method supports all Oracle

datatypes, while the older Oracle Method 4 does not support cursor variables,
tables of group items, DML Returning Clause, and LOBs. ANSI Method 4 uses
embedded SQL statements that set up descriptor areas in memory. ANSI SQL

should be used for all new applications.

Chapter 11, "Oracle Dynamic SQL: Method 4"

This chapter shows you how to maintain existing applications that use dynamic
SQL Method 4. Numerous examples are used to illustrate the method.

Chapter 12, "Multithreaded Applications”

Writing multithreaded applications is discussed in this chapter. Your compiler must
also support multithreading.

Chapter 13, "Large Obijects (LOBs)"

This chapter presents large object datatypes (BLOBs, CLOBs, NCLOBs, and
BFILEs). The embedded SQL commands that provide functionality comparable to
OCI and PL/SQI are presented and used in sample code.

Chapter 14, "Precompiler Options™

This chapter details the requirements for running the Pro*COBOL precompiler, and
a list of the precompiler options. You learn what happens during precompilation,
how to issue the Pro*COBOL command, and how to specify the many useful
precompiler options.

Appendix A, "New Features”

This appendix highlights the improvements and new features introduced with both
releases 8.1 and 8.0 of Pro*xCOBOL.

Appendix B, "Operating System Dependencies”

Some details of Pro*COBOL programming vary from one system to another. So, you
are occasionally referred to other manuals for system-specific information. For
convenience, this appendix collects all such external issues.

Appendix C, "Reserved Words, Keywords, and Namespaces"

This appendix refers you to a table of reserved words that have a special meaning to
Pro*COBOL. The namespaces that are reserved for Oracle libraries are presented.

Appendix D, "Performance Tuning"

This appendix gives you some simple methods for improving the performance of
your applications.

Appendix E, "Syntactic and Semantic Checking"

This appendix shows you how to use the SQLCHECK option to control the type
and extent of syntactic and semantic checking done on embedded SQL statements
and PL/SQL blocks.

Appendix F, "Embedded SQL Statements and Precompiler Directives"

This appendix contains descriptions of precompiler directives, embedded SQL
commands, and Oracle embedded SQL extensions. The purpose, prerequisites,
syntax diagrams, keywords, parameters, usage notes, examples, and related topics
are presented for each statement and directive.

Note: The former chapter 12, "User Exits" has been omitted from this release.

Text Conventions Used in This Manual

Notation

Important terms being defined for the first time are italicized. In discussions, UPPER
CASE is used for database objects, precompiler options, and SQL keywords.
Variables and constants are in monospaced font, as are code samples.

The following notation is used in this manual:

<> Angle brackets enclose the name of a syntactic element. Sometimes
italics are used.

A dot separates an object name from a component name and so
qualifies a reference.

Two dots separate the lowest and highest values in a range.

XXiX

An ellipsis shows that statements or clauses irrelevant to the
discussion were left out.

This character is used in text to represent blank spaces when
referring to the content of a database column.

Syntax Description

Embedded SQL syntax is described using a variant of Backus-Naur Form (BNF),
which includes the following symbols:

[1 Brackets enclose optional items.
{} Braces enclose items only one of which is required.
| A vertical bar separates alternatives within brackets or braces.

An ellipsis shows that the preceding parameter can be repeated.

Sample Programs

This manual provides several Pro*COBOL programs to help you in writing your
own. These programs illustrate the key concepts and features of ProxCOBOL
programming and demonstrate techniques that let you take full advantage of SQL’s
power and flexibility.

Each complete sample program in this manual is available on-line in the demo
directory. However, the exact filenames are system-dependent. For exact filenames,
see your Oracle system-specific documentation. We present sample code developed
for the Solaris operating system in this manual.

Does the Pro*COBOL Precompiler Meet Industry Standards?

XXX

SQL has become the standard language for relational database management
systems. This section describes how the Pro*COBOL Precompiler conforms to the
latest SQL standards established by the following organizations:

« American National Standards Institute (ANSI)
« International Standards Organization (1SO)
« U.S. National Institute of Standards and Technology (NIST)

Those organizations have adopted SQL as defined in the following publications:

« ANSI Document ANSI X3.135-1992, Database Language SQL
« ANSI Document ANSI X3.168-1992, Database Language Embedded SQL
« International Standard ISO/IEC 9075:1992, Database Language SQL

« NIST Federal Information Processing Standard FIPS PUB 127-2, Database
Language SQL

Requirements

ANSI X3.135-1992 (known informally as SQL92) specifies a "conforming SQL
language" and, to allow implementation in stages, defines three language levels:

« Full SQL

« Intermediate SQL (a subset of Full SQL)

« Entry SQL (a subset of Intermediate SQL)

A conforming SQL implementation must support at least Entry SQL.

ANSI X3.168-1992 specifies the syntax and semantics for embedding SQL
statements in application programs written in a standard programming language
such as COBOL-74 and COBOL-85.

ISO/IEC 9075-1992 fully adopts the ANSI standards.

FIPS PUB 127-2, which applies to RDBMS software acquired for federal use, also
adopts the ANSI/ISO standards. In addition, it specifies minimum sizing
parameters for database constructs and requires a "FIPS Flagger" to identify ANSI
extensions.

For copies of the ANSI standards, write to

American National Standards Institute
1430 Broadway
New York, NY 10018, USA

For a copy of the ISO standard, write to the national standards office of any ISO
participant. For a copy of the NIST standard, write to

National Technical Information Service
U.S. Department of Commerce
Springfield, VA 22161, USA

XXXi

Compliance

FIPS Flagger

FIPS Option

Certification

XXX

The Pro*COBOL precompiler complies 100% with the ANSI, I1SO, and NIST
standards. As required, they support Entry SQL and provide a FIPS Flagger.

According to FIPS PUB 127-1:

"An implementation that provides additional facilities not specified by this standard
shall also provide an option to flag nonconforming SQL language or conforming
SQL language that may be processed in a nonconforming manner.”

To meet this requirement, the Pro*COBOL Precompiler provides the FIPS Flagger,
which flags ANSI extensions. An extension is any SQL element that violates ANSI
format or syntax rules, except privilege enforcement rules. For a list of Oracle
extensions to standard SQL, see the Oracle8i SQL Reference.

You can use the FIPS Flagger to identify

« nonconforming SQL elements that might have to be modified if you move the
application to a conforming environment

« conforming SQL elements that might behave differently in another processing
environment

Thus, the FIPS Flagger helps you develop portable applications.

An option named FIPS governs the FIPS Flagger. To enable the FIPS Flagger, you
specify FIPS=YES inline or on the command line. For more information about the
command-line option FIPS, see "FIPS" on page 14-20.

NIST tested the Pro*COBOL Precompiler for ANSI Entry SQL compliance using the
SQL Test Suite, which consists of nearly 300 test programs. Specifically, the programs
tested for conformance to the COBOL embedded SQL standards. As a result, the
Pro*COBOL Precompiler was certified 100% ANSI-compliant.

For more information about the tests, write to

National Computer Systems Laboratory
Attn.: Software Standards Testing Program
National Institute of Standards and Technology

Gaithersburg, MD 20899
USA

MIA/SPIRIT

The Pro*COBOL Precompiler provides National Language Support (NLS) of
multi-byte character data by complying with the Multivendor Integration
Architecture (MIA) specification, Version 1.3, and the Service Providers Integrated
Requirements for Information Technology (SPIRIT) specification, Issue 2.

Your Comments Are Welcome

The Oracle Corporation technical staff values your comments. As we write and
revise, your opinions are the most important feedback we receive. Please use the
Reader’s Comment Form to tell us what you like and dislike about this Oracle
publication.

« electronic mail - infodev@us.oracle.com
« FAX-(650) 506-7228 Attn.: Information Development Department
« postal service:

Oracle Corporation

Information Development Department
500 Oracle Parkway

Redwood Shores, CA 94065 USA

Xxxiii

XXXIV

1

Introduction

This chapter introduces you to the Pro*COBOL Precompiler. You look at its role in
developing application programs that manipulate Oracle data and find out what it
allows your applications to do. The following questions are answered:

What Is Pro*COBOL?

Why Use the Pro*COBOL Precompiler?
Why Use SQL?

Why Use PL/SQL?

What Does Pro*COBOL Offer?

Introduction 1-1

What Is Pro*COBOL?

What Is Pro*COBOL?

The Pro*COBOL Precompiler is a programming tool that allows you to embed SQL
statements in a host COBOL program. As Figure 1-1 shows, the precompiler
accepts the host program as input, translates the embedded SQL statements into
standard Oracle run-time library calls, and generates a source program that you can
compile, link, and execute in the usual way.

Figure 1-1 Embedded SQL Program Development

Host
Program

Oracle
Precompiler

Source
Program

Object
Program

Executable
Program

1-2 Pro*COBOL Precompiler Programmer’s Guide

With embedded SQL statements

With all SQL statements replaced by library calls

Oracle
Runtime
Library

To resolve calls (SQLLIB)

Why Use SQL?

Language Alternatives

Oracle Precompilers are available (but not on all systems) for the following
high-level languages:

« C/C++
. COBOL
« FORTRAN

Pro*Pascal, Pro*ADA and Pro*PL/1 will not be released again. However, Oracle will
continue to issue patch releases for Pro*FORTRAN as bugs are reported and
corrected.

Why Use the Pro*COBOL Precompiler?

The Pro*COBOL Precompiler lets you pack the power and flexibility of SQL into
your application programs. You can embed SQL statements in COBOL. A
convenient, easy to use interface lets your application access Oracle directly.

Unlike many application development tools, Pro*COBOL lets you create highly
customized applications. For example, you can create user interfaces that
incorporate the latest windowing and mouse technology. You can also create
applications that run in the background without the need for user interaction.

Furthermore, with Pro*xCOBOL you can fine-tune your applications. They allow
close monitoring of resource usage, SQL statement execution, and various run-time
indicators. With this information, you can adjust program parameters for maximum
performance.

Why Use SQL?

If you want to access and manipulate Oracle data, you need SQL. Whether you use
SQL interactively or embedded in an application program depends on the job at
hand. If the job requires the procedural processing power of COBOL, or must be
done on a regular basis, use embedded SQL.

SQL has become the database language of choice because it is flexible, powerful,
and easy to learn. Being non-procedural, it lets you specify what you want done
without specifying how to do it. A few English-like statements make it easy to
manipulate Oracle data one row or many rows at a time.

You can execute any SQL (not SQL*Plus) statement from an application program.
For example, you can:

Introduction 1-3

Why Use PL/SQL?

« CREATE, ALTER, and DROP database tables dynamically.
« SELECT, INSERT, UPDATE, and DELETE rows of data.
« COMMIT or ROLLBACK transactions.

Before embedding SQL statements in an application program, you can test them

interactively using SQL*Plus. Usually, only minor changes are required to switch
from interactive to embedded SQL.

Why Use PL/SQL?

An extension to SQL, PL/SQL is a transaction processing language that supports
procedural constructs, variable declarations, and robust error handling. Within the
same PL/SQL block, you can use SQL and all the PL/SQL extensions.

The main advantage of embedded PL/SQL is better performance. Unlike SQL,
PL/SQL allows you to group SQL statements logically and send them to Oracle in a
block rather than one by one. This reduces network traffic and processing overhead.

For more information about PL/SQL including how to embed it in an application
program, see Chapter 6, "Embedded PL/SQL".

What Does Pro*COBOL Offer?

As Figure 1-2 shows, Pro*COBOL offers many features and benefits that help you
to develop effective, reliable applications.

1-4 Pro*COBOL Precompiler Programmer’s Guide

What Does Pro*COBOL Offer?

Figure 1-2 Features and Benefits

Runtime Event Language ANSI/ISO SQL
Diagnostics Handling [Alternatives Conformance
Separate Highly
Precompilation Customized
Applications
Conditional gyNnSeIamic
Precompilation SOL
Pro*COBOL
Support for
Concurrent PL/SQL
Connects and Java
Host
Support Table
for LOBs Support
Datatype Syntax Precompiler
Equivalencing Checking User Exits Options

For example, the Pro*COBOL Precompiler allows you to:
= Write your application in COBOL.
« Conform to the ANSIZISO embedded SQL standard.

« Take advantage of ANSI Dynamic SQL Method 4, an advanced programming
technique that lets your program accept or build any valid SQL statement at
run-time in a COBOL program

« Design and develop highly customized applications.

« Convert automatically between Oracle8i internal datatypes and COBOL
datatypes.

Introduction 1-5

What Does Pro*COBOL Offer?

« Improve performance by embedding PL/SQL transaction processing blocks in
your COBOL application program.

« Specify useful precompiler options and change their values during
precompilation.

« Use datatype equivalencing to control the way Oracle8i interprets input data
and formats output data.

« Precompile several program modules separately, then link them into one
executable program.

« Check the syntax and semantics of embedded SQL data manipulation
statements and PL/SQL blocks.

« Access Oracle8i databases on multiple nodes concurrently, using Net8.
« Use arrays as input and output program variables.

« Precompile sections of code conditionally so that your host program can run in
different environments.

« Interface with tools such as Oracle Forms and Oracle Reports via user exits
written in a high-level language.

« Handle errors and warnings with the ANSI-approved status variables
SQLSTATE and SQLCODE, and/or the SQL Communications Area (SQLCA)
and WHENEVER statement.

« Use an enhanced set of diagnostics provided by the Oracle Communications
Area (ORACA).

« Access Large Object (LOB) database types.

1-6 Pro*COBOL Precompiler Programmer’s Guide

2

Precompiler Concepts

This chapter explains how embedded SQL programs do their work. Definitions of
important words, explanations of basic concepts, and "rules
of the road" are presented.

Topics covered are:

Key Concepts of Embedded SQL Programming
Programming Guidelines

The Declare Section

Nested Programs

Conditional Precompilations

Separate Precompilations

Sample Tables

Sample Tables

Sample Programs: SAMPLE1.PCO

Precompiler Concepts 2-1

Key Concepts of Embedded SQL Programming

Key Concepts of Embedded SQL Programming

This section lays the conceptual foundation on which later chapters build.

Steps in Developing an Embedded SQL Application

Precompiling results in a source file that can be compiled normally. Although
precompiling adds a step to the traditional development process, that step is well
worth taking because it lets you write very flexible applications.

Figure 2-1 walks you through the embedded SQL application development process:

2-2 Pro*COBOL Precompiler Programmer’s Guide

Key Concepts of Embedded SQL Programming

Figure 2-1 Application Development Process

Steps Results

Design ——| Specs I
yes Host
_> COde _>

. Source
Precompile —p Program

Compile L grtgg‘r:;m
Linked
ﬁ

Execute

Embedded SQL Statements

The term embedded SQL refers to SQL statements placed within an application
program. Because the application program houses the SQL statements, it is called a

Precompiler Concepts 2-3

Key Concepts of Embedded SQL Programming

host program, and the language in which it is written is called the host language. For
example, with Pro*COBOL you can embed SQL statements in a COBOL host
program.

To manipulate and query Oracle data, you use the INSERT, UPDATE, DELETE, and
SELECT statements. INSERT adds rows of data to database tables, UPDATE
modifies rows, DELETE removes unwanted rows, and SELECT retrieves rows that
meet your search criteria.

Only SQL statements—not SQL*Plus statements—are valid in an application
program. (SQL*Plus has additional statements for setting environment parameters,
editing, and report formatting.)

Executable versus Declarative Statements

Embedded SQL includes all the interactive SQL statements plus others that allow
you to transfer data between Oracle and a host program. There are two types of
embedded SQL statements: executable statements and directives.

Executable SQL statements generate calls to the database. They include almost all
gueries, DML (Data Manipulation Language), DDL (Data Definition Language),
and DCL (Data Control Language) statements.

Directives, on the other hand, do not result in calls to SQLLIB and do not operate on
Oracle data.

You use directives to declare Oracle objects, communications areas, and SQL
variables. They can be placed wherever COBOL declarations can be placed.

Appendix F, "Embedded SQL Statements and Precompiler Directives" contains a
presentation of the most important statements and directives.Table 2-1 groups some
examples of embedded SQL statements (not a complete list):

Table 2-1 Embedded SQL Statements

Directives

STATEMENT PURPOSE

ARRAYLEN* To use host tables with PL/SQL
BEGIN DECLARE SECTION* To declare host variables

END DECLARE SECTION*
DECLARE* To name Oracle objects
INCLUDE* To copy in files

2-4 Pro*COBOL Precompiler Programmer’s Guide

Key Concepts of Embedded SQL Programming

Table 2-1 Embedded SQL Statements

VAR* To equivalence variables
WHENEVER* To handle runtime errors
Executable SQL

STATEMENT PURPOSE

ALLOCATE* To define and control Oracle data
ALTER

CONNECT*

CREATE

DROP

GRANT

NOAUDIT

RENAME

REVOKE

TRUNCATE

CLOSE* To query and manipulate Oracle data
DELETE

EXPLAIN PLAN

FETCH*

INSERT

LOCK TABLE

OPEN*

SELECT

UPDATE

COMMIT To process transactions
ROLLBACK

SAVEPOINT

SET TRANSACTION

DESCRIBE* To use dynamic SQL
EXECUTE*
PREPARE*

Precompiler Concepts 2-5

Key Concepts of Embedded SQL Programming

Table 2-1 Embedded SQL Statements

ALTER SESSION To control sessions
SET ROLE

*Has no interactive counterpart

Embedded SQL Syntax

In your application program, you can freely intermix SQL statements with
host-language statements and use host-language variables in SQL statements. The
only special requirement for building SQL statements into your host program is that
you begin them with the words EXEC SQL and end them with the token
END-EXEC. Pro*COBOL translates all executable EXEC SQL statements into calls to
the runtime library SQLLIB.

Most embedded SQL statements differ from their interactive counterparts only
through the addition of a new clause or the use of program variables. Compare the
following interactive and embedded ROLLBACK statements:

ROLLBACKWORK; — interactive

* embedded
EXEC SQL
ROLLBACK WORK
END-EXEC.

A period or any other terminator can follow a SQL statement. Either of the
following is allowed:

EXEC SQL ... END-EXEC,
EXEC SQL ... END-EXEC.

Static versus Dynamic SQL Statements

Most application programs are designed to process static SQL statements and fixed
transactions. In this case, you know the makeup of each SQL statement and
transaction before run time. That is, you know which SQL commands will be
issued, which database tables might be changed, which columns will be updated,
and so on. See Chapter 5, "Embedded SQL".

However, some applications are required to accept and process any valid SQL
statement at run time. So, you might not know until then all the SQL commands,
database tables, and columns involved.

2-6 Pro*COBOL Precompiler Programmer’s Guide

Key Concepts of Embedded SQL Programming

Dynamic SQL is an advanced programming technique that lets your program accept
or build SQL statements at run time and take explicit control over datatype
conversion. See Chapter 9, "Oracle Dynamic SQL", Chapter 10, "ANSI Dynamic
SQL", and Chapter 11, "Oracle Dynamic SQL: Method 4".

Embedded PL/SQL Blocks

Pro*COBOL treats a PL/SQL block like a single embedded SQL statement. So, you
can place a PL/SQL block anywhere in an application program that you can place a
SQL statement. To embed PL/SQL in your host program, you simply declare the
variables to be shared with PL/SQL and bracket the PL/SQL block with the
keywords EXEC SQL EXECUTE and END-EXEC.

From embedded PL/SQL blocks, you can manipulate Oracle data flexibly and
safely because PL/SQL supports all SQL data manipulation and transaction
processing commands. For more information about PL/SQL, see Chapter 6,
"Embedded PL/SQL".

Host Variables and Indicator Variables

A host variable is a scalar or table variable or group item declared in the COBOL
language and shared with Oracle, meaning that both your program and Oracle can
reference its value. Host variables are the key to communication between Oracle
and your program.

You use input host variables to pass data to the database. You use output host
variables to pass data and status information from the database to your program.

Host variables can be used anywhere an expression can be used. But, in SQL
statements, host variables must be prefixed with a colon, "’ to set them apart from
database schema names.

You can associate any host variable with an optional indicator variable. An indicator
variable is an integer variable that indicates the value or condition of its host
variable. A NULL is a missing, an unknown, or an inapplicable value. You use
indicator variables to assign NULLSs to input host variables and to detect NULLs in
output variables or truncated values in output character host variables.

A host variable must not be
« prefixed with a colon in COBOL statements
« used in data definition (DDL) statements such as ALTER and CREATE

Precompiler Concepts 2-7

Key Concepts of Embedded SQL Programming

In SQL statements, an indicator variable must be prefixed with a colon and
appended to its associated host variable (to improve readability, you can precede
the indicator variable with the optional keyword INDICATOR).

Every program variable used in a SQL statement must be declared according to the
rules of the COBOL language. Normal rules of scope apply. COBOL variable names
can be any length, but only the first 30 characters are significant for Pro*COBOL.
Any valid COBOL identifier can be used as a host variable identifier, including those
beginning with digits.

The external datatype of a host variable and the internal datatype of its source or
target database column need not be the same, but they must be compatible.
Table 4-9, "Conversions Between Internal and External Datatypes"” shows the
compatible datatypes between which Oracle8i converts automatically when
necessary.

Oracle Datatypes

Tables

Typically, a host program inputs data to the database, and the database outputs data
to the program. Oracle inserts input data into database tables and selects output
data into program host variables. To store a data item, Oracle must know its
datatype, which specifies a storage format and valid range of values.

Oracle recognizes two kinds of datatypes: internal and external. Internal datatypes
specify how Oracle stores data in database columns. Oracle also uses internal
datatypes to represent database pseudo-columns, which return specific data items
but are not actual columns in a table.

External datatypes specify how data is stored in host variables. When your host
program inputs data to Oracle, if necessary, Oracle converts between the external
datatype of the input host variable and the internal datatype of the database
column. When Oracle outputs data to your host program, if necessary, Oracle
converts between the internal datatype of the database column and the external
datatype of the output host variable.

Note: You can override default datatype conversions by using dynamic SQL
Method 4 or datatype equivalencing. For information about datatype
equivalencing, see "Datatype Equivalencing" on page 4-42.

Pro*COBOL lets you define table host variables (called host tables) and operate on
them with a single SQL statement. Using the SELECT, FETCH, DELETE, INSERT,

2-8 Pro*COBOL Precompiler Programmer’s Guide

Key Concepts of Embedded SQL Programming

and UPDATE statements, you can query and manipulate large volumes of data with
ease.

For a complete discussion of host tables, see Chapter 7, "Host Tables".

Errors and Warnings

When you execute an embedded SQL statement, it either succeeds or fails, and
might result in an error or warning. You need a way to handle these results.
Pro*COBOL provides these error handling mechanisms;

« SQLCODE status variable

« SQLSTATE status variable

« SQL Communications Area (SQLCA)

« WHENEVER statement

« Oracle Communications Area (ORACA)

SQLCODE/SQLSTATE Status Variables

After executing a SQL statement, the Oracle Server returns a status code to a
variable named SQLCODE or SQLSTATE. The status code indicates whether the
SQL statement executed successfully or caused an error or warning condition.

SQLCA Status Variable

The SQLCA is a data structure that defines program variables used by Oracle to
pass runtime status information to the program. With the SQLCA, you can take
different actions based on feedback from Oracle about work just attempted. For
example, you can check to see if a DELETE statement succeeded and if so, how
many rows were deleted.

The SQLCA provides for diagnostic checking and event handling. At runtime, the
SQLCA holds status information passed to your program by Oracle8i. After
executing a SQL statement, Oracle8i sets SQLCA variables to indicate the outcome,
as illustrated in Figure 2-2.

Precompiler Concepts 2-9

Key Concepts of Embedded SQL Programming

Figure 2-2 Updating the SQLCA

Host Program

[——

Warning Flag Settings

Number of Rows

Diagnostic Test

SQL

Database Server

You can check to see if an INSERT, UPDATE, or DELETE statement succeeded and
if so, how many rows were affected. Or, if the statement failed, you can get more
information about what happened.

When MODE={ANSI13 | ORACLE}, you must declare the SQLCA by hard-coding
it or by copying it into your program with the INCLUDE statement. The section
"Using the SQL Communications Area" on page 8-6 shows you how to declare and use
the SQLCA.

WHENEVER Statement

With the WHENEVER statement, you can specify actions to be taken automatically
when Oracle detects an error or warning condition. These actions include

2-10 Pro*COBOL Precompiler Programmer’s Guide

Programming Guidelines

continuing with the next statement, calling a subprogram, branching to a labeled
statement, performing a paragraph, or stopping.

ORACA

When more information is needed about runtime errors than the SQLCA provides,
you can use the ORACA. The ORACA is a data structure that handles Oracle
communication. It contains cursor statistics, information about the current SQL
statement, option settings, and system statistics.

Precompiler Options and Error Handling

Oracle returns the success or failure of SQL statements in status variables,
SQLSTATE and SQLCODE. With precompiler option MODE=ORACLE, you use
SQLCODE, declared by including SQLCA. With MODE=ANSI, either SQLSTATE or
SQLCODE must be declared, but SQLCA is not necessary.

For more information, see Chapter 8, "Error Handling and Diagnostics".

Programming Guidelines

Abbreviations

This section deals with embedded SQL syntax, coding conventions, and
Pro*COBOL-specific features and restrictions.

Note: Topics are arranged alphabetically for quick reference.

You can use the standard COBOL abbreviations, such as PIC for PICTURE IS and
COMP for USAGE IS COMPUTATIONAL.

Case-Insensitivity

Pro*COBOL precompiler options and values as well as all EXEC SQL statements,
inline commands, and COBOL statements are case-insensitive. The precompiler
accepts both upper- and lower-case tokens.

COBOL Versions Supported

Pro*COBOL supports the standard implementation of COBOL for your operating
system (usually COBOL-85 or COBOL-74). Some platforms may support both
COBOL implementations. For more information, see your Oracle system-specific
documentation.

Precompiler Concepts 2-11

Programming Guidelines

Coding Areas
The precompiler option FORMAT, specifies the format of your source code. If you
specify FORMAT=ANSI (the default), you are conforming as much as possible to
the ANSI standard, in which columns 1 through 6 can contain an optional sequence
number, and column 7 (indicator area) can indicate comments or continuation lines.
Division headers, section headers, paragraph names, FD and 01 statements begin in
columns 8 through 11 (area A). Other statements, including EXEC SQL and EXEC
ORACLE statements, must be placed in area B (columns 12 through 72). These
guidelines for source code format can be overridden by your compiler’s rules.
If you specify FORMAT=TERMINAL, COBOL statements can begin in column 1
(the left-most column), or column one can be the indicator area. This is also subject
to the rules of your compiler.
Consult your COBOL compiler documentation for your own platform to determine
the actual acceptable formats for COBOL statements.
Note: In this manual, COBOL code examples use the FORMAT=TERMINAL
setting. The online sample programs in the demo directory use
FORMAT=ANSI.
Commas
In SQL, you must use commas to separate list items, as the following example
shows:
EXEC SQL SELECT ENAME, JOB, SAL
INTO :EMP-NAME, :JOB-TITLE, :SALARY
FROM EMP
WHERE EMPNO =:EMP-NUMBER
END-EXEC.
In COBOL, you can use commas or blanks to separate list items. For example, the
following two statements are equivalent:
ADD AMT1, AMT2, AMT3 TO TOTAL-AMT.
ADD AMT1 AMT2 AMT3 TO TOTAL-AMT.
Comments

You can place COBOL comment lines within SQL statements. COBOL comment
lines start with an asterisk (*) in the indicator area.

2-12 Pro*COBOL Precompiler Programmer’s Guide

Programming Guidelines

You can also place ANSI SQL-style comments starting with "-- " within SQL
statements at the end of a line (but not after the last line of the SQL statement).

COBOL comments continue for the rest of the line after these two characters; "*>".
You can place C-style comments (/* ... */) in SQL statements.
The following example shows all four styles of comments:

MOVE 12 TO DEPT-NUMBER. *> This is the software development group.
EXEC SQL SELECT ENAME, SAL
* assign column values to output host variables
INTO :EMP-NAME, :SALARY - output host variables
F column values assigned to output host variables */
FROM EMP
WHERE DEPTNO = :DEPT-NUMBER
END-EXEC. -illegal Comment

You cannot nest comments or place them on the last line of a SQL statement after
the terminator END-EXEC.

Continuation Lines

You can continue SQL statements from one line to the next, according to the rules of
COBOL, as this example shows:

EXEC SQL SELECT ENAME, SAL INTO :EMP-NAME, :SALARY FROM EMP
WHERE DEPTNO =:DEPT-NUMBER
END-EXEC.
No continuation indicator is needed.

To continue a string literal from one line to the next, code the literal through column
72. On the next line, code a hyphen (-) in column 7, a quote in column 12 or beyond,
and then the rest of the literal. An example follows:

WORKING STORAGE SECTION.
EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 UPDATE-STATEMENT PIC X(80) VALUE "UPDATE EMP SET BON

- "US =500 WHERE DEPTNO = 20",
EXEC SQL END DECLARE SECTION END-EXEC.

Precompiler Concepts 2-13

Programming Guidelines

Copy Statements

Copy statements are not supported by Pro*COBOL. Instead, use the INCLUDE
precompiler statement which is documented on "Using the INCLUDE Statement”
on page 2-21. Be careful when using INCLUDE and also using
DECLARE_SECTION=YES. Group items should be either placed all inside or all
outside of a Declare Section.

Decimal-Point is Comma

Pro*COBOL supports the DECIMAL-POINT IS COMMA clause in the
ENVIRONMENT DIVISION. If the DECIMAL-POINT IS COMMA clause appears
in the source file, then the comma will be allowed as the symbol beginning the
decimal part of any numeric literals in the VALUE clauses.

For example, the following is allowed:

IDENTIFICATION DIVISION.
PROGRAM-D. FOO
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECIAL-NAMES.
DECIMAL-POINT IS COMMA. > < i
DATADIVISION.
WORKING-STORAGE SECTION.

01 WDATAL PIC S9VO999VALUE +567.%> <—*
01 WDATA2 PIC SOVO99VALUE -234.%> <—*

Delimiters

The LITDELIM option specifies the delimiters for COBOL string constants and
literals. If you specify LITDELIM=APOST, the Pro*COBOL uses apostrophes when
generating COBOL code. If you specify LITDELIM=QUOTE (default), quotation marks are
used, asin

CALL "SQLROL" USING SQL-TMPO.

In SQL statements, you must use quotation marks to delimit identifiers containing
special or lowercase characters, as in

EXEC SQL CREATE TABLE "Emp2"' END-EXEC.

However, you must use apostrophes to delimit string constants, as in

2-14 Pro*COBOL Precompiler Programmer’s Guide

Programming Guidelines

EXEC SQL SELECT ENAME FROM EMP WHERE JOB ="CLERK’ END-EXEC.

Regardless of which delimiter is used in the Pro*COBOL source file, Pro*COBOL
generates the delimiter specified by the LITDELIM value.

Division Headers that are Optional
The following division headers are optional:
. IDENTIFICATION DIVISION
. ENVIRONMENT DIVISION
. DATADIVISION

Note that the PROCEDURE DIVISION header is not optional. The following source
can be precompiled:

*DENTIFICATION DIVISION header is optional
PROGRAM-D. HELLO.

*ENVIRONMENT DIVISION header is optional
CONFIGURATION SECTION.

*DATA DIVISION header is optional
WORKING-STORAGE SECTION.
PROCEDURE DIVISION.

DISPLAY "Hello World!".
STOP RUN.

Embedded SQL Syntax

To use a SQL statement in your Pro*COBOL program, precede the SQL statement
with the EXEC SQL clause, and end the statement with the END-EXEC keyword.
Embedded SQL syntax is described in the Oracle8 Server SQL Reference.

Figurative Constants

Figurative constants, such as HIGH-VALUE, ZERO, and SPACE, cannot be used in
SQL statements. For example, the following is invalid:

EXEC SQL DELETE FROM EMP WHERE COMM =ZERO END-EXEC.

Instead, use the following:

EXEC SQL DELETE FROM EMP WHERE COMM =0 END-EXEC.

Precompiler Concepts 2-15

Programming Guidelines

File Length

Pro*COBOL cannot process arbitrarily long source files. Some of the variables used
internally limit the size of the generated file. There is no absolute limit to the
number of lines allowed, but the following aspects of the source file are contributing
factors to the file-size constraint:

« complexity of the embedded SQL statements (for example, the number of bind
and define variables)

« Wwhether a database name is used (for example, connecting to a database with
an AT clause)

« number of embedded SQL statements

To prevent problems related to this limitation, use multiple program units to
sufficiently reduce the size of the source files.

FILLER is Allowed

The word FILLER is allowed in host variable declarations. The word FILLER is used
to specify an elementary item of a group that cannot be referred to explicitly. The
following declaration is valid:

01 STOCK.
05 DIVIDEND PIC X(5).
05 FILLER PICX.
05 PRICE PICX().

Host Variable Names

Any valid standard COBOL identifier can be used as a host variable. Variable
names can be any length, but only the first 30 characters are significant. The
maximum number of significant characters recognized by COBOL compilers is 30.

For SQL92 standards conformance, restrict the length of host variable names to 18
or fewer characters.

For a list of words that have restrictions on their use in applications, see
Appendix C, "Reserved Words, Keywords, and Namespaces".

Hyphenated Names

You can use hyphenated host-variable names in static SQL statements but not in
dynamic SQL. For example, the following usage is invalid:

2-16 Pro*COBOL Precompiler Programmer’s Guide

Programming Guidelines

MOVE "DELETE FROM EMP WHERE EMPNO = :EMP-NUMBER" TO SQLSTMT.
EXEC SQL PREPARE STMT1 FROM SQLSTMT END-EXEC.

Level Numbers

When declaring host variables, you can use level numbers 01 through 49, and 77.
Pro*COBOL does not allow variables containing the VARYING clause, or

pseudo-type variables (these datatypes are prefixed with "SQL- ") to be declared
level 49 or 77.

MAXLITERAL Default

With the MAXLITERAL option, you can specify the maximum length of string
literals generated by Pro*COBOL, so that compiler limits are not exceeded. For
Pro*COBOL, the default value is 256, but you might have to specify a lower value.

Multi-Byte Datatypes

ANSI standard National Character Set datatypes are supported for handling
multi-byte character data. The PIC N or PIC G clause, if supported by your
compiler, defines variables that store fixed-length NCHAR strings. You can store
variable-length, multi-byte National Character Set strings using COBOL group
items consisting of a length field and a string field. See "VARCHAR Variables" on
page 4-26.

The environmental variable NLS_NCHAR is available to specify a client-side
National Character Set.

NULLs in SQL

In SQL, a NULL represents a missing, unknown, or inapplicable column value; it
equates neither to zero nor to a blank. Use the NVL function to convert NULLSs to
non-NULL values, use the IS [NOT] NULL comparison operator to search for
NULLs, and use indicator variables to insert and test for NULLSs.

Paragraph and Section Names

You can associate standard COBOL paragraph and section names with SQL
statements, as shown in the following example:

LOAD-DATA.
EXEC SQL
INSERT INTO EMP (EMPNO, ENAME, DEPTNO)

Precompiler Concepts 2-17

Programming Guidelines

VALUES (EMP-NUMBER, :EMP-NAME, :DEPT-NUMBER)
END-EXEC.

Also, you can reference paragraph and section names in a WHENEVER ... DO or
WHENEVER ... GOTO statement, as the next example shows:

PROCEDURE DIVISION.
MAIN.
EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.

SQL-ERROR SECTION.

You must begin all paragraph names in area A.

REDEFINES Clause

You can use the COBOL REDEFINES clause to redefine group or elementary items
For example, the following declarations are valid:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 RECAD PICX().

01 REC-NUM REDEFINES REC-HD PIC S9(4) COMP.
EXEC SQL END DECLARE SECTION END-EXEC.

And:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 STOCK.

05 DIVIDEND PICX(5).
05 PRICE PICX(6).

01 BOND REDEFINES STOCK.
05 COUPON-RATE PIC X(4).
05 PRICE PICX(?).

EXEC SQL END DECLARE SECTION END-EXEC.

Pro*COBOL issues no warning or error if a single INTO clause uses items from both
a group item host variable and from its re-definition.

Relational Operators

COBOL relational operators differ from their SQL equivalents, as shown in

Table 2-2. Furthermore, COBOL allows the use of words instead of symbols,
whereas SQL does not.

2-18 Pro*COBOL Precompiler Programmer’s Guide

The Declare Section

Table 2-2 Relational Operators
SQL Operators COBOL Operators

= = EQUAL TO
<> 1=, A= NOT=, NOT EQUAL TO

> >, GREATER THAN

< <, LESS THAN

>= >=, GREATER THAN OR EQUAL TO
<= <=, LESS THAN OR EQUAL TO

Sentence Terminator
A COBOL sentence includes one or more COBOL and/or SQL statements and ends with a
period. In conditional sentences, only the last statement must end with a period, as the
following example shows.

IF EMP-NUMBER =ZERO

MOVE FALSE TO VALID-DATA

PERFORM GET-EMP-NUM UNTIL VALID-DATA=TRUE
ELSE

EXEC SQL DELETE FROM EMP

WHERE EMPNO =:EMP-NUMBER

END-EXEC

ADD 1 TO DELETE-TOTAL.
END-IF.

SQL statements may be ended by a comma, a period, or another COBOL statement.

The Declare Section

Passing data between the database server and your application program requires
host variables and error handling. This section shows you how to meet these
requirements.

What is a Declare Section?
A Declare Section, begins with the statement:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

and ends with the statement:

Precompiler Concepts 2-19

The Declare Section

EXEC SQL END DECLARE SECTION END-EXEC.

Between these two statements only the following are allowed:
= host-variable and indicator-variable declarations

= non-host COBOL variables

« EXEC SQL DECLARE statements

« EXEC SQL INCLUDE statements

« EXEC SQL VAR statements

=« EXEC ORACLE statements

« COBOL Comments

An Example

In the following example, you declare four host variables for use later in your
program.

WORKING-STORAGE SECTION.
EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 EMP-NUMBER PIC 9(4) COMP VALUE ZERO.

01 EMP-NAME PIC X(10) VARYING.

01 SALARY PIC S9(5)V99 COMP-3 VALUE ZERO.

01 COMMISSION PIC S9(5)V99 COMP-3 VALUE ZERO.
EXEC SQL END DECLARE SECTION END-EXEC.

Precompiler Option DECLARE_SECTION

The Declare Section is optional. For backward compatibility with releases prior to
8.0, for which it was required, Pro*COBOL provides a command-line precompiler
option for explicit control over whether only declarations in the Declare Section are
allowed as host variables. This option is

DECLARE_SECTION={YES | NO} (default is NO)

You must use the DECLARE_SECTION option on the command line or in a
configuration file.

When MODE=ORACLE and DECLARE_SECTION=YES, only variables declared
inside the Declare Section are allowed as host variables. When MODE=ANSI then

2-20 Pro*COBOL Precompiler Programmer’s Guide

The Declare Section

DECLARE_SECTION is implicitly set to YES. See the discussion of macro and micro
options in "Macro and Micro Options" on page 14-5.

When the precompiler option DECLARE_SECTION is set to NO (the default), the
Declare Section is optional. This optional behavior is a change from Pro*xCOBOL
prior to release 8.0. If DECLARE_SECTION is YES, you must declare all program
variables used in SQL statements inside the Declare Section.

If DECLARE_SECTION is set to NO, it is optional to use a Declare Section. Then
declarations of host variables and indicator variables can be made either inside or
outside a Declare Section. See "DECLARE_SECTION" on page 14-17 for details of
the option.

Multiple Declare Sections are allowed per precompiled unit. Furthermore, a host
program can contain several independently precompiled units.

Using the INCLUDE Statement

The INCLUDE statement lets you copy files into your host program, as the
following example shows;

* Copy in the SQL Communications Area (SQLCA)
EXEC SQL INCLUDE SQLCA END-EXEC.

* Copy in the Oracle Communications Area (ORACA)
EXEC SQL INCLUDE ORACA END-EXEC.

You can INCLUDE any file. When you precompile your Pro*COBOL program, each
EXEC SQL INCLUDE statement is replaced by a copy of the file named in the
statement.

Filename Extensions

If your system uses file extensions but you do not specify one, Pro*COBOL assumes
the default extension for source files (usually COB). For more information, see your
Oracle system-specific documentation.

Search Paths

If your system uses directories, you can set a search path for included files using the
INCLUDE option, as follows:

INCLUDE=ath

where path defaults to the current directory.

Precompiler Concepts 2-21

Nested Programs

Pro*COBOL first searches the current directory, then the directory specified by the
INCLUDE option, and finally the directory for standard INCLUDE files. You need
not specify a path for standard files such as the SQLCA and ORACA. However, a
path is required for nonstandard files unless they are stored in the current directory.

You can also specify multiple paths on the command line, as follows:
... INCLUDE=<path1> INCLUDE=<path2> ...

When multiple paths are specified, Pro*COBOL searches the current directory first,
then the pathl directory, then the path2 directory, and so on. The directory containing
standard INCLUDE files is searched last. The path syntax is system specific. For more
information, see your Oracle system-specific documentation.

Note: Remember that Pro*COBOL searches for a file in the current directory first
even if you specify a search path. If the file you want to INCLUDE is in another
directory, make sure no file with the same name is in the current directory or any
other directory that precedes it in the search path. If your operating system is case
sensitive, be sure to specify the same upper/lowercase filename under which the
file is stored.

Nested Programs

Nesting programs in COBOL means that you place one program inside another. The
contained programs may reference some of the resources of the programs within
which they are contained. The names within the higher-level program and the
nested program can be the same, and describe different data items without conflict,
because the names are known only within the programs. However, names
described in the Configuration Section of the higher-level program can be
referenced in the nested program.

Some compilers do not support the GLOBAL clause. Pro*COBOL supports nested
programs by generating code that contains GLOBAL clauses. To avoid generating
GLOBAL clauses unconditionally, specify the precompiler option NESTED=NO.
NESTED (=YES or NO) defaults to YES and can be used in configuration files, or on
the command line, but not inline (EXEC ORACLE statement).

See "NESTED" on page 14-31.

The higher-level program can contain several nested programs. Likewise, nested
programs can have programs nested within them. You must place the nested
program directly before the END PROGRAM header of the program in which it is
nested.

2-22 Pro*COBOL Precompiler Programmer’s Guide

Nested Programs

You can call a nested program only by a program in which it is either directly or
indirectly nested. If you want a nested program to be called by any program, even
one on a different branch of the nested tree structure, you code the COMMON
clause in the PROGRAM-ID paragraph of the nested program. You can code
COMMON only for nested programs:

PROGRAM-ID. <nested-program-name>COMMON.

You can code the GLOBAL phrase for File Definitions and level 01 data items (any
subordinate items automatically become global). This allows them to be referenced
in all subprograms directly or indirectly contained within them. You code GLOBAL
on the higher-level program. If the nested program defines the same name as one
declared GLOBAL in a higher-level program, COBOL uses the declaration within
the nested program. If the data item contains a REDEFINES clause, GLOBAL must
follow it.

FD file-name GLOBAL ...
01 data-namel GLOBAL ...
01 data-name2 REDEFINES data-name3 GLOBAL ...

Support for Nested Programs

Pro*COBOL allows nested programs with embedded SQL within a single source
file. All 01 level items which are marked as global in a containing program and are
valid host variables at the containing program level are usable as valid host
variables in any programs directly or indirectly contained by the containing
program. Consider the following example:

IDENTIFICATION DIVISION.
PROGRAM-ID. MAINPROG.
ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01REC1 GLOBAL.
05 VARL PICX(10).
05 VAR2 PICX(10).
01VAR1 PIC X(10) GLOBAL.
EXEC SQL END DECLARE SECTION END-EXEC.

PROCEDURE DIVISION.

<main program statements>

Precompiler Concepts 2-23

Nested Programs

IDENTIFICATION DIVISION.
PROGRAM-D. NESTEDPROG.
ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.

01VARL PIC S9().
PROCEDURE DIVISION.
EXEC SQL SELECT X, Y INTO :REC1 FROM .. END-EXEC,
EXEC SQL SELECT X INTO :VARL FROM ... END-EXEC.
EXEC SQL SELECT X INTO :REC1VARL FROM .. END-EXEC.

END PROGRAM NESTEDPROG.
END PROGRAM MAINPROG.

The main program declares the host variable REC1 as global and thus the nested
program can use RECL1 in the first select statement without having to declare it.
Since VARL1 is declared as a global variable and also as a local variable in the nested
program, the second select statement will use the VAR1 declared as S9(4),
overriding the global declaration. In the third select statement, the global VARL1 of
RECL1 declared as PIC X(10) is used.

The previous paragraph describes the results when DECLARE_SECTION=NO is
used. When DECLARE_SECTION=YES, Pro*COBOL will not recognize host
variables unless they are declared inside a Declare Section. If the above program is
precompiled with DECLARE_SECTION=YES, then the second select statement
would result in an ambiguous host variable error. The first and third select
statements would function the same.

Note: Recursive nested programs are not supported

Declaring the SQLCA

About declaring the SQLCA for nested programs, (see "SQLCA Status Variable" on
page 2-9), the included SQLCA definition provided will be declared as global, so
the declaration of SQLCA is only required in the higher-level program. The SQLCA
can change each time a new SQL statement is executed. The SQLCA provided can
always be modified to remove the global specification if you want to declare

2-24 Pro*COBOL Precompiler Programmer’s Guide

Conditional Precompilations

additional SQLCA areas in the nested programs. The same will apply to SQLDA
and ORACA.

Nested Program Example
See SAMPLE13.PCO in the demo directory.

Conditional Precompilations

An Example

Conditional precompilation includes (or excludes) sections of code in your host
program based on certain conditions. For example, you might want to include one
section of code when precompiling under UNIX and another section when
precompiling under VMS. Conditional precompilation lets you write programs that
can run in different environments.

Conditional sections of code are marked by statements that define the environment
and actions to take. You can code host-language statements as well as EXEC SQL
statements in these sections. The following statements let you exercise conditional
control over precompilation:

* —define asymbol

EXEC ORACLE DEFINE symbol END-EXEC.
* —ifsymbolis defined

EXEC ORACLE IFDEF symbol END-EXEC.
* —if symbolis not defined

EXEC ORACLE IFNDEF symbol END-EXEC.
* - otherwise

EXEC ORACLE ELSE END-EXEC.
* —end this control block

EXEC ORACLE ENDIF END-EXEC.

A conditional statement must be terminated with END-EXEC.

Note: The conditional compilation feature of your compiler may not be supported
by Pro*COBOL.

In the following example, the SELECT statement is precompiled only when the
symbol SITE2 is defined:

EXEC ORACLE IFDEF SITE2 END-EXEC.
EXEC SQL SELECT DNAME
INTO :DEPT-NAME

Precompiler Concepts 2-25

Separate Precompilations

FROM DEPT
WHERE DEPTNO = :DEPT-NUMBER
EXEC ORACLE ENDIF END-EXEC.

Blocks of conditions can be nested as shown in the following example:
EXEC ORACLE IFDEF OUTER END-EXEC.
EXEC ORACLE IFDEF INNER END-EXEC.

EXEC ORACLE ENDIF END-EXEC.
EXEC ORACLE ENDIF END-EXEC.

You can "Comment out" host-language or embedded SQL code by placing it
between IFDEF and ENDIF and not defining the symbol.

Defining Symbols

You can define a symbol in two ways. Either include the statement
EXEC ORACLE DEFINE symbol END-EXEC.

in your host program or define the symbol on the command line using the syntax
... INAME=filename ... DEFINE=symbol

where symbol is not case-sensitive.

Some port-specific symbols are predefined for you when Pro*COBOL is installed on
your system. For example, predefined operating system symbols include CMS,
MVS, UNIX, and VMS.

Separate Precompilations

Guidelines

You can precompile several COBOL program modules separately, then link them
into one executable program. This supports modular programming, which is
required when the functional components of a program are written and debugged
by different programmers. The individual program modules need not be written in
the same language.

The following guidelines will help you avoid some common problems.

2-26 Pro*COBOL Precompiler Programmer’s Guide

Compiling and Linking

Restrictions

Referencing Cursors

Cursor names are SQL identifiers, whose scope is the precompilation unit. Hence,
cursor operations cannot span precompilation units (files). That is, you cannot
declare a cursor in one file and open or fetch from it in another file. So, when doing
a separate precompilation, make sure all definitions and references to a given cursor
are in one file.

Specifying MAXOPENCURSORS

When you precompile the program module that connects to Oracle, specify a value
for MAXOPENCURSORS that is high enough for any of the program modules. If
you use it for another program module, MAXOPENCURSORS is ignored. Only the
value in effect for the connect is used at run time.

Using a Single SQLCA
If you want to use just one SQLCA, you must declare it globally in SQLCA.COB by
changing the line

01 SQLCA.

to
01 SQLCAEXTERNAL.

Using a Single DATE_FORMAT
You must use the same format string for DATE in each program module.

All references to an explicit cursor must be in the same program file. You cannot
perform operations on a cursor that was DECLAREGJ in a different module. See
Chapter 4 for more information about cursors.

Also, any program file that contains SQL statements must have a SQLCA that is in
the scope of the local SQL statements.

Compiling and Linking

To get an executable program, you must compile the source file(s) produced by
Pro*COBOL, then link the resulting object module with any modules needed from
SQLLIB and system-specific Oracle libraries.

Precompiler Concepts 2-27

Sample Tables

The linker resolves symbolic references in the object modules. If these references
conflict, the link fails. This can happen when you try to link third party software
into a precompiled program. Not all third-party software is compatible with Oracle,
so you might have problems. Check with Oracle Customer Support to see if the
software is supported.

Compiling and linking are system-dependent. For example, on some systems, you
must turn off compiler optimization when compiling a host language program. For
instructions, see your system-specific Oracle manual.

Sample Tables

Most of the complete program examples in this guide use two sample database
tables: DEPT and EMP. If they do not exist in your demo directory, create them
before running the sample programs. Their definitions follow:

CREATE TABLE DEPT
(DEPTNO NUMBER(2),
DNAME VARCHAR2(14),
LOC VARCHAR2(13))

CREATE TABLE EMP

(EMPNO NUMBER(@) primary key,
ENAME VARCHAR2(10),

JOB VARCHAR2(9),

MGR NUMBER(),
HIREDATE DATE,

SAL NUMBER(7.2),

COMM NUMBER(72),
DEPTNO NUMBER(Q);

Sample Data
Respectively, the DEPT and EMP tables contain the following rows of data:
DEPTNO DNAME LOC

10 ACCOUNTING NEW YORK
20 RESEARCH DALLAS

30 SALES CHICAGO

40 OPERATIONS BOSTON

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO

2-28 Pro*COBOL Precompiler Programmer’s Guide

Sample Programs: SAMPLE1.PCO

7369 SMITH CLERK 7902 17-DEC-80 800 20
7499 ALLEN SALESMAN 7698 20-FEB-81 1600 300 30
7521 WARD SALESMAN 7698 22-FEB-81 1250 500 30
7566 JONES MANAGER 783902-APR-81 2975 20
7654 MARTIN SALESMAN 7698 28-SEP-81 1250 1400 30
7698 BLAKE MANAGER 7839 01-MAY-81 2850 30
7782 CLARK MANAGER 783909-JUN-81 2450 10
7788 SCOTT ANALYST 7566 19-APR-87 3000 20
7839KING PRESIDENT 17-NOv-81 5000 10
7844 TURNER SALESMAN 7698 08-SEP-81 1500 30
7876 ADAMS CLERK 778823-MAY-87 1100 20
7900JAMES CLERK 7698 03-DEC-81 950 30
7902FORD ANALYST 7566 03-DEC-81 3000 20
7934MILLER CLERK 7782 23-JAN-82 1300 10

Sample Programs: SAMPLE1.PCO

A good way to get acquainted with embedded SQL is to look at a program example.
This program is SAMPLE1.PCO in the demo directory.

The program logs on to the database, prompts the user for an employee number,
gueries the database table EMP for the employee’s name, salary, and commission.
The selected results are stored in host variables EMP-NAME, SALARY, and
COMMISSION. The program uses the host indicator variable, COMM-IND to
detect NULL values in column COMMISSION. See "Indicator Variables" on

page 4-23.

The paragraph DISPLAY-INFO then displays the result.

The COBOL variables USERNAME, PASSWD, and EMP-NUMBER are declared
using the VARYING clause, which allows you to use a variable-length string
external Oracle datatype called VARCHAR. This datatype is explained in
"VARCHAR Variables" on page 4-26.

The SQLCA Communications Area is included to handle errors. If an error occurs,
paragraph SQL-ERROR is performed. See "Using the SQL Communications Area"
on page 8-6.

The BEGIN DECLARE SECTION and END DECLARE SECTION statements used
are optional, unless you set the precompiler option DECLARE_SECTION to YES, or
option MODE to ANSI. See "MODE" on page 2-2.

The WHENEVER statement is used to handle errors. For more details, see
"WHENEVER Directive" on page 8-15.

Precompiler Concepts 2-29

Sample Programs: SAMPLE1.PCO

The program ends when the user enters a zero employee number.

*Sample Program 1: Simple Query *

*This program logs on to ORACLE, promptsthe userforan ~ *
* employee number, queries the database for the employee's *
*name, salary, and commission, then displays the result. ~ *
*The program terminates when the user enters a 0. *

ID DIVISION.

PROGRAM-ID. QUERY.
ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 USERNAME PIC X(10) VARYING.
01 PASSWD PIC X(10) VARYING.
01 EMP-REC-VARS.
05 EMP-NAME PIC X(10) VARYING.
05 EMP-NUMBER PIC S9(4) COMP VALUE ZERO.
05 SALARY PIC S9(5)V99 COMP-3 VALUE ZERO.
05 COMMISSION PIC S9(5)V99 COMP-3 VALUE ZERO.
05 COMM-ND PIC S9(4) COMP VALUE ZERO.
EXEC SQL END DECLARE SECTION END-EXEC.

EXEC SQL INCLUDE SQLCA END-EXEC.

01 DISPLAY-VARIABLES.
05 D-EMP-NAME PIC X(10).
05 D-SALARY PIC Z(4)9.99.
05 D-COMMISSION PIC Z(4)9.99.
05 D-EMP-NUMBER PIC 9(4).

01 D-TOTAL-QUERIED PIC 9(4) VALUE ZERO.
PROCEDURE DIVISION.
BEGIN-PGM.
EXEC SQL WHENEVER SQLERROR
DO PERFORM SQL-ERROR END-EXEC.

PERFORM LOGON.

2-30 Pro*COBOL Precompiler Programmer’s Guide

Sample Programs: SAMPLE1.PCO

QUERY-LOOP.
DISPLAY "".
DISPLAY "ENTER EMP NUMBER (0 TO QUIT): "
WITH NO ADVANCING.

ACCEPT D-EMP-NUMBER.

MOVE D-EMP-NUMBER TO EMP-NUMBER.
IF (EMP-NUMBER = 0)
PERFORM SIGN-OFF.
MOVE SPACES TO EMP-NAME-ARR.
EXEC SQL WHENEVER NOT FOUND GOTO NO-EMP END-EXEC.
EXEC SQL SELECT ENAME, SAL, NVL(COMM, 0)
INTO :EMP-NAME, :SALARY,, :COMMISSION:COMM-ND
FROM EMP
WHERE EMPNO = EMP-NUMBER
END-EXEC.
PERFORM DISPLAY-INFO.
ADD 1 TO D-TOTAL-QUERIED.
GO TO QUERY-LOOP.

NO-EMP.
DISPLAY "NOT AVALID EMPLOYEE NUMBER - TRY AGAIN.".
GO TO QUERY-LOOP.

LOGON.
MOVE "SCOTT" TO USERNAME-ARR.
MOVE 5 TO USERNAME-LEN.
MOVE '"TIGER" TO PASSWD-ARR.
MOVE 5 TO PASSWD-LEN.
EXEC SQL
CONNECT :USERNAME IDENTIFIED BY :PASSWD
END-EXEC.
DISPLAY ",
DISPLAY "CONNECTED TO ORACLE AS USER: ", USERNAME-ARR.

DISPLAY-INFO.
DISPLAY "".
DISPLAY "EMPLOYEE SALARY COMMISSION".
DISPLAY "—r — ———".
MOVE EMP-NAME-ARR TO D-EMP-NAME.
MOVE SALARY TO D-SALARY.
IF COMM-IND =-1
DISPLAY D-EMP-NAME, D-SALARY, " NULL"

Precompiler Concepts 2-31

Sample Programs: SAMPLE1.PCO

ELSE

MOVE COMMISSION TO D-COMMISSION

DISPLAY D-EMP-NAME, D-SALARY," ", D-COMMISSION
END-IF.

SIGN-OFF.
DISPLAY "".
DISPLAY "TOTAL NUMBER QUERIED WAS ",
D-TOTAL-QUERIED, ".".
DISPLAY "".
DISPLAY "HAVE A GOOD DAY.".
DISPLAY "".
EXEC SQL COMMIT WORK RELEASE END-EXEC.
STOP RUN.

SQL-ERROR.
EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
DISPLAY ",
DISPLAY "ORACLE ERROR DETECTED:".
DISPLAY ",
DISPLAY SQLERRMC.
EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
STOP RUN.

2-32 Pro*COBOL Precompiler Programmer’s Guide

3

Database Concepts

This chapter explains the CONNECT statement and its options, Net8, and related
network connection statements. Transaction processing is presented. You learn the
basic techniques that safeguard the consistency of your database, including how to
control whether changes to Oracle data are made permanent or undone.

Connecting to Oracle

Default Databases and Connections
Concurrent Logons

Some Terms You Should Know

Some Terms You Should Know

How Transactions Guard Your Database
How to Begin and End Transactions
Using the COMMIT Statement

Using the ROLLBACK Statement

Using the SAVEPOINT Statement

Using the RELEASE Option

Using the SET TRANSACTION Statement
Overriding Default Locking

Fetching Across Commits

Handling Distributed Transactions

Guidelines for Transaction Processing

Database Concepts 3-1

Connecting to Oracle

Connecting to Oracle

Your Pro*COBOL program must log on to Oracle before querying or manipulating
data. To log on, you use the CONNECT statement, as in

EXEC SQL
CONNECT :USERNAME IDENTIFIED BY :PASSWD
END-EXEC.

where USERNAME and PASSWD are PIC X(n) or PIC X(n) VARYING host variables.
Alternatively, you can use the statement:

EXEC SQL
CONNECT :USR-PWD
END-EXEC.

where the host variable USR-PWD contains your username and password
separated by a slash (/) followed by an optional tnsnames.ora alias (@TNSALIAS).

The syntax for the CONNECT statement has an optional ALTER
AUTHORIZATION clause. The complete syntax for CONNECT is shown here:

EXEC SQL

CONNECT {:user IDENTIFIED BY :oldpswd | :usr_psw}

[[AT {dbname | :host_variable J] USING :connect_string]

[{ALTER AUTHORIZATION :newpswd | IN{SYSDBA | SYSOPER} MODE}]
END-EXEC.

The ALTER AUTHORIZATION clause is explained in "Changing Passwords at
Runtime" on page 3-10. The SYSDBA and SYSOPER options are explained in
"SYSDBA or SYSOPER Privileges" on page 3-11.

The CONNECT statement must be the first SQL statement executed by the
program. That is, other executable SQL statements can positionally, but not
logically, precede the CONNECT statement. If the precompiler option
AUTO_CONNECT=YES, a CONNECT statement is not needed.)

To supply the username and password separately, you define two host variables as
character strings or VARCHAR variables. If you supply a userid containing both
username and password, only one host variable is needed.

Make sure to set the username and password variables before the CONNECT is
executed or it will fail. Your program can prompt for the values or you can
hard-code them, as follows:

WORKING STORAGE SECTION.

3-2 Pro*COBOL Precompiler Programmer’s Guide

Default Databases and Connections

01 USERNAME PIC X(10).
01 PASSWD PIC X(10).

PROCEDURE DVISION.
LOGON.
EXEC SQL WHENEVER SQLERROR GOTO LOGON-ERROR END-EXEC.
MOVE "SCOTT" TO USERNAVE.
MOVE "TIGER" TO PASSWD.
EXEC SQL
CONNECT :USERNAME IDENTIFIED BY :PASSWD
END-EXEC.

However, you cannot hard-code a username and password into the CONNECT
statement or use quoted literals. For example, the following statements are invalid:

EXEC SQL
CONNECT SCOTT IDENTIFIED BY TIGER
END-EXEC.

EXEC SQL
CONNECT "SCOTT" IDENTIFIED BY 'TIGER"
END-EXEC.

Default Databases and Connections

It is possible within a Pro*COBOL program to maintain more than one database
connection at the same time.

Concurrent Logons

Pro*COBOL supports distributed processing via Net8. Your application can
concurrently access any combination of local and remote databases or make
multiple connections to the same database. In Figure 3-1, an application program
communicates with one local and three remote Oracle8i databases. ORA2, ORA3,
and ORA4 are simply logical names used in CONNECT statements.

Database Concepts 3-3

Default Databases and Connections

Figure 3-1 Connecting via Net8

Application Local

Program Oracle
Database

Remote Remote
Oracle Oracle
Database Remote Database
Oracle
Database

By eliminating the boundaries in a network between different machines and
operating systems, Net8 provides a distributed processing environment for Oracle
tools. This section shows you how the Pro*COBOL supports distributed processing
via Net8. You learn how your application can

« access other databases directly or indirectly
« concurrently access any combination of local and remote databases
« make multiple connections to the same database

Normally you would only need a single connection achieved by EXEC SQL
CONNECT :USR-PWD END-EXEQhe database that is connected to is determined
by what USR-PWD contains. If it contains "SCOTT/TIGER", it will connect to the
database defined as the default for the session and if it contains
"SCOTT/TIGER@REMDB" it will connect via Net8 to the REMDB database as
defined by your Net8 configuration. (An alternative is to use the USING clause to
specify the Net8 connection string). This is known as the default connection.

3-4 Pro*COBOL Precompiler Programmer’s Guide

Default Databases and Connections

To make further concurrent connections to either the same or different databases
you make use of the AT clause, that is, EXEC SQL AT DB1 CONNECT :USR-PWD
END-EXEC The name after the AT clause uniquely identified a "non-default"
connection and any SQL statements with the same name after the AT clause are
executed against that connection. If the AT clause is omitted in an SQL statement
then it is executed against the default connection.

All database names must be unique, but two or more database names can specify
the same connection. That is, you can have multiple connections to any database on
any node.

Using Username/Password
Usually, you establish a connection to Oracle as follows:
EXEC SQL CONNECT :USERNAME IDENTIFIED BY :PASSWORD END-EXEC.

Or, you can use:
EXEC SQL CONNECT :USR-PWD END-EXEC.

where USR-PWD contains any valid Oracle connect string.
You can also log on automatically as shown in "Automatic Logons" on page 3-9.

These are simplified subsets of the CONNECT statement. For all details, read the
next sections in this chapter and also see "CONNECT (Executable Embedded SQL
Extension)" on page F-17.

Named Database Connections

In the following example, you connect to a named database. Normally you only use
a named database connection for multiple concurrent connections. The example
only shows a single connection to illustrate the syntax.:

*— Declare necessary host variables
WORKING-STORAGE SECTION.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 USERNAME PIC X(10).
01 PASSWORD PIC X(10).
01 DB-STRING PIC X(20).

EXEC SQL END DECLARE SECTION END-EXEC.

PROCEDURE DIVISION.

Database Concepts 3-5

Default Databases and Connections

MOVE "scott' TO USERNAME.
MOVE "tiger" TO PASSSWORD.
MOVE "nyremote” TO DB-STRING.

*— Assign a unique name to the database connection.
EXEC SQL DECLARE DBNAME DATABASE END-EXEC.
*— Connect to the non-default database
EXEC SQL
CONNECT :USERNAME IDENTIFIED BY :PASSWORD
AT DBNAME USING :DB-STRING
END-EXEC.

The identifiers in this example serve the following purposes:
« The host variables USERNAME and PASSWORD identify a valid user.

« The host variable DB-STRING contains the Net8 syntax for logging on to a non-default
database at a remote node.

« Theundeclared identifier DBNAME names a non-default connection; it is an identifier
used by Oracle, not a host or program variable.

The USING clause specifies the network, machine, and database to be associated
with DBNAME. Later, SQL statements using the AT clause (with DBNAME) are executed at
the database specified by DB-STRING.

Alternatively, you can use a character host variable in the AT clause, as the
following example shows:

*— Declare necessary host variables
WORKING-STORAGE SECTION.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 USERNAME PIC X(10).
01 PASSWORD PIC X(10).
01 DB-NAME PIC X(10).
01 DB-STRING PIC X(20).

EXEC SQL END DECLARE SECTION END-EXEC.
PROCEDURE DIVISION.

MOVE "scott’ TO USERNAME.

MOVE "tiger" TO PASSSWORD.

MOVE "oraclel" TO DB-NAME.

MOVE "nyremote” TO DB-STRING.

*— Connect to the non-default database

3-6 Pro*COBOL Precompiler Programmer’s Guide

Default Databases and Connections

EXEC SQL
CONNECT :USERNAME IDENTIFIED BY :PASSWORD
AT :DB-NAME USING :DB-STRING

END-EXEC.

If DB-NAME is a host variable, the DECLARE DATABASE statement is not needed. Only if
DBNAME is an undeclared identifier must you execute a DECLARE DBNAME DATABASE
statement before executinga CONNECT ... AT DBNAME statement.

SQL Operations. If granted the privilege, you can execute any SQL data
manipulation statement at the non-default connection. For example, you might
execute the following sequence of statements:

EXEC SQL AT DBNAME SELECT ...
EXEC SQL AT DBNAME INSERT ...
EXEC SQL AT DBNAME UPDATE ...

In the next example, DB-NAME is a host variable:
EXEC SQL AT :DB-NAME DELETE ...

If DB-NAME is a host variable, all database tables referenced by the SQL statement must be
defined in DECLARE TABLE statements.

Cursor Control. Cursor control statements such as OPEN, FETCH, and CLOSE are
exceptions—they never use an AT clause. If you want to associate a cursor with an
explicitly identified database, use the AT clause in the DECLARE CURSOR
statement, as follows:

EXEC SQL AT :DB-NAME DECLARE emp_cursor CURSOR FOR ...
EXEC SQL OPEN EMP-CURSOR ...

EXEC SQL FETCH EMP-CURSOR ...

EXEC SQL CLOSE EMP-CURSOR END-EXEC.

If DB-NAME is a host variable, its declaration must be within the scope of all SQL statements
that refer to the declared cursor. For example, if you open the cursor in one subprogram, then
fetch from it in another, you must declare DB-NAME globally or pass it to each subprogram.

When opening, closing, or fetching from the cursor, you do not use the AT clause.
The SQL statements are executed at the database named in the AT clause of the
DECLARE CURSOR statement or at the default database if no AT clause is used in
the cursor declaration.

The AT :host-variable clause allows you to change the connection associated with a cursor.
However, you cannot change the association while the cursor is open. Consider the following
example:

Database Concepts 3-7

Default Databases and Connections

EXEC SQL AT :DB-NAME DECLARE EMP-CURSOR CURSOR FOR ...
MOVE "oraclel" TO DB-NAME.
EXEC SQL OPEN EMP-CURSOR END-EXEC.
EXEC SQL FETCH EMP-CURSOR INTO. ...
MOVE "oracle2" TO DB-NAME.
*—illegal, cursor still open
EXEC SQL OPEN EMP-CURSOR END-EXEC.
EXEC SQL FETCH EMP-CURSOR INTO. ...

This is illegal because EMP-CURSOR is still open when you try to execute the second
OPEN statement. Separate cursors are not maintained for different connections; there is only
one EMP-CURSOR, which must be closed before it can be reopened for another connection.
To debug the last example, simply close the cursor before reopening it, as follows:

* — close cursor first
EXEC SQL CLOSE EMP-CURSOR END-EXEC.
MOVE "oracle?2" TO DB-NAME.
EXEC SQL OPEN EMP-CUROR END-EXEC.
EXEC SQL FETCH EMP-CURSORIINTO...

Dynamic SQL. Dynamic SQL statements are similar to cursor control statements in
that some never use the AT clause. For dynamic SQL Method 1, you must use the
AT clause if you want to execute the statement at a non-default connection. An
example follows:

EXEC SQL AT :DB-NAME EXECUTE IMMEDIATE :SQL-STMT END-EXEC.

For Methods 2, 3, and 4, you use the AT clause only in the DECLARE STATEMENT
statement if you want to execute the statement at a non-default connection. All
other dynamic SQL statements such as PREPARE, DESCRIBE, OPEN, FETCH, and
CLOSE never use the AT clause. The next example shows Method 2:

EXEC SQL AT :DB-NAME DECLARE SQL-STMT STATEMENT END-EXEC.
EXEC SQL PREPARE SQL-STMT FROM :SQL-STRING END-EXEC.
EXEC SQL EXECUTE SQL-STMT END-EXEC.

The following example shows Method 3:

EXEC SQL AT :DB-NAME DECLARE SQL-STMT STATEMENT END-EXEC.
EXEC SQL PREPARE SQL-STMT FROM :SQL-STRING END-EXEC.

EXEC SQL DECLARE EMP-CURSOR CURSOR FOR SQL-STMT END-EXEC.
EXEC SQL OPEN EMP-CURSOR ...

EXEC SQL FETCH EMP-CURSOR INTO ...

EXEC SQL CLOSE EMP-CURSOR END-EXEC.

3-8 Pro*COBOL Precompiler Programmer’s Guide

Default Databases and Connections

You need not use the AT clause when connecting to a remote database unless you
open two or more connections simultaneously (in which case the AT clause is
needed to identify the active connection). To make the default connection to a
remote database, use the following syntax:

EXEC SQL
CONNECT :USERNAME IDENTIFIED BY :PASSWORD USING :DB-STRING
END-EXEC.

Automatic Logons
You can log on to Oracle automatically with the userid:
<prefix><usemame>
where prefix is the value of the Oracle initialization parameter OS_ AUTHENT_PREFIX (the
default value is OPS$) and username is your operating system user or task name. For

example, if the prefix is OPS$, your user name is TBARNES, and OPS$TBARNES is a valid
Oracle userid, you log on to Oracle as user OPS$TBARNES.

To take advantage of the automatic logon feature, you simply pass a slash (/)
character to Pro*COBOL, as follows:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 ORACLEID PICX.

EXEC SQL END DECLARE SECTION END-EXEC.

MOVE 7 TO ORACLEID.
EXEC SQL CONNECT :ORACLEID END-EXEC.

This automatically connects you as user OPS$username. For example, if your operating
system username is RHILL, and OPS$RHILL is a valid Oracle username, connecting with a
slash (/) automatically logs you on to Oracle as user OPS$SRHILL.

You can also pass a character string to Pro*COBOL. However, the string cannot
contain trailing blanks. For example, the following CONNECT statement will fail:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01ORACLEID PICX().

EXEC SQL END DECLARE SECTION END-EXEC.

MOVE'/ ' TO ORACLEID.
EXEC SQL CONNECT :ORACLEID END-EXEC.

Database Concepts 3-9

Default Databases and Connections

The AUTO_CONNECT Precompiler Option

Pro*COBOL lets your program log on to the default database without using the
CONNECT statement. Simply specify the precompiler option AUTO_CONNECT
on the command line.

Assume that the default value of OS_ AUTHENT_PREFIX is OPS$, your username
is TBARNES, and OPS$TBARNES is a valid Oracle userid. When
AUTO_CONNECT=YES, as soon as Pro*COBOL encounters an executable SQL
statement, your program logs on to Oracle automatically with the userid
OPS$TBARNES.

When AUTO_CONNECT=NO (the default), you must use the CONNECT
statement to log on to Oracle.

Changing Passwords at Runtime

Pro*COBOL provides client applications with a convenient way to change a user
password at runtime through the optional ALTER AUTHORIZATION clause.

The syntax for the ALTER AUTHORIZATION clause is shown here:
EXEC SQL CONNECT .. ALTER AUTHORIZATION : NEWPSVEDD-EXEC.

Using this clause indicates that you want to change the account password to the
value indicated by NEWPSWD. After the change is made, when an attempt is made
to connect as USERYNEWPSWDhis can have the following results:

« The application will connect without issue
« The application will fail to connect. This could be due to either of the following:

« Password verification failed for some reason. In this case the password
remains unchanged.

« The account is locked. Changes to the password are not permitted.

Connect Without Alter Authorization

This section describes the possible outcomes of different variations of the
CONNECT statement.

Standard CONNECT
If an application issues the following statement

EXEC SQL CONNECT ... /*No ALTER AUTHORIZATION clause */

3-10 Pro*COBOL Precompiler Programmer’s Guide

Default Databases and Connections

Using Links

it performs a normal connection attempt. The possible results include the following:
« The application will connect without issue.

« The application will connect, but will receive a password warning. The warning
indicates that the password has expired but is in a grace period which will
allow logons. At this point, the user is encouraged to change the password
before the account becomes locked.

« The application will fail to connect. Possible causes include the following:
« The password is incorrect.

« The account has expired, and is possibly in a locked state.

SYSDBA or SYSOPER Privileges

Before Oracle release 8.1 you did not have to use this clause to have the SYSOPER
or SYSDBA system privilege, but now you must.

Append the following optional string to the CONNECT statement after all other
clauses if you want to log on with either SYSDBA or SYSOPER system privileges:

IN{SYSDBA | SYSOPER } MODE

For example:

EXEC SQL CONNECT ... IN SYSDBA MODE END-EXEC.

Here are the restrictions that apply to this option:

« This option is not supported when using the AUTO_CONNECT=YES
precompiler option setting.

« The option is not permitted when using the ALTER AUTHORIZATION
keywords in the CONNECT statement.

Database links are supported through the Oracle8i distributed database option. For
example, a distributed query allows a single SELECT statement to access data on
one or more non-default databases.

The distributed query facility depends on database links, which assign a name to a
CONNECT statement rather than to the connection itself. At run time, the

Database Concepts 3-11

Some Terms You Should Know

embedded SELECT statement is executed by the specified database server, which
connects implicitly to the non-default database(s) to get the required data.

For more information, see Net8 Administrator’s Guide.

Some Terms You Should Know

Before delving into the subject of transactions, you should know the terms defined
in this section.

The jobs or tasks that the database manages are called sessions. A user session is
started when you run an application program or a tool such as Oracle Forms and
connect to the database. Oracle8i allows user sessions to work simultaneously and
share computer resources. To do this, Oracle8i must control concurrence, the
accessing of the same data by many users. Without adequate concurrence controls,
there might be a loss of data integrity. That is, changes to data or structures might be
made in the wrong order.

Oracle8i uses locks to control concurrent access to data. A lock gives you temporary
ownership of a database resource such as a table or row of data. Thus, data cannot
be changed by other users until you finish with it. You need never explicitly lock a
resource, because default locking mechanisms protect table data and structures.
However, you can request data locks on tables or rows when it is to your advantage
to override default locking. You can choose from several modes of locking such as
row share and exclusive.

A deadlock can occur when two or more users try to access the same database object.
For example, two users updating the same table might wait if each tries to update a
row currently locked by the other. Because each user is waiting for resources held
by another user, neither can continue until the server breaks the deadlock. The
server signals an error to the participating transaction that had completed the least
amount of work, and the "deadlock detected while waiting for resource" error code
is returned to SQLCODE in the SQLCA.

When a table is being queried by one user and updated by another at the same time,
the database generates a read-consistent view of the table’s data for the query. That
is, once a query begins and as it proceeds, the data read by the query does not
change. As update activity continues, the database takes snapshots of the table’s data
and records changes in a rollback segment. The database uses information in the
rollback segment to build read-consistent query results and to undo changes if
necessary.

3-12 Pro*COBOL Precompiler Programmer’s Guide

How to Begin and End Transactions

How Transactions Guard Your Database

The database is transaction oriented; it uses transactions to ensure data integrity. A
transaction is a series of one or more logically related SQL statements you define to
accomplish some task. The database treats the series of SQL statements as a unit so
that all the changes brought about by the statements are either committed (made
permanent) or rolled back (undone) at the same time. If your application program
fails in the middle of a transaction, the database is automatically restored to its
former (pre-transaction) state.

The coming sections show you how to define and control transactions. Specifically,
you learn how to:

« begin and end transactions
« use the COMMIT statement to make transactions permanent

« use the SAVEPOINT statement with the ROLLBACK TO statement to undo
parts of transactions

« use the ROLLBACK statement to undo whole transactions
« specify the RELEASE option to free resources and log off the database
« use the SET TRANSACTION statement to set read-only transactions

=« use the FOR UPDATE clause or LOCK TABLE statement to override default
locking

For details about the SQL statements discussed in this chapter, see the Oracle8i SQL
Reference.

How to Begin and End Transactions

You begin a transaction with the first executable SQL statement (other than
CONNECT) in your program. When one transaction ends, the next executable SQL
statement automatically begins another transaction. Thus, every executable
statement is part of a transaction. Because they cannot be rolled back and need not
be committed, declarative SQL statements are not considered part of a transaction.

You end a transaction in one of the following ways:

« Code a COMMIT or ROLLBACK statement, with or without the RELEASE
option. This explicitly makes permanent or undoes changes to the database.

Database Concepts 3-13

Using the COMMIT Statement

« Code a data definition statement (ALTER, CREATE, or GRANT, for example)
that issues an automatic commit before and after executing. This implicitly
makes permanent changes to the database.

A transaction also ends when there is a system failure or your user session stops
unexpectedly because of software problems, hardware problems, or a forced
interrupt. Oracle8i rolls back the transaction.

If your program fails in the middle of a transaction, Oracle8i detects the error and
rolls back the transaction. If your operating system fails, Oracle8i restores the
database to its former (pre-transaction) state.

Using the COMMIT Statement

You use the COMMIT statement to make changes to the database permanent. Until
changes are committed, other users cannot access the changed data; they see it as it
was before your transaction began. The COMMIT statement has no effect on the
values of host variables or on the flow of control in your program. Specifically, the
COMMIT statement

« Makes permanent all changes made to the database during the current
transaction.

« Makes these changes visible to other users.
« Erases all savepoints (see the next section).
« Releases all row and table locks, but not parse locks.

= Closes cursors declared using the FOR UPDATE clause or referenced elsewhere
in the code with the CURRENT OF clause. If MODE=ANSI | ANSI14 or
CLOSE_ON_COMMIT=YES is used, then all explicit cursors are closed.

« Ends the transaction.

When MODE={ANSI13 | ORACLE}, explicit cursors not referenced in a CURRENT
OF clause remain open across commits. This can boost performance. For an
example, see "Fetching Across Commits" on page 3-22.

Because they are part of normal processing, COMMIT statements should be placed
inline, on the main path through your program. Before your program terminates, it
must explicitly commit pending changes. Otherwise, Oracle8i rolls them back. In
the following example, you commit your transaction and disconnect:

EXEC SQL COMMIT WORK RELEASE END-EXEC.

3-14 Pro*COBOL Precompiler Programmer’s Guide

Using the COMMIT Statement

The optional keyword WORK provides ANSI compatibility. The RELEASE option
frees all resources (locks and cursors) held by your program and logs off the
database.

You need not follow a data definition statement with a COMMIT statement because
data definition statements issue an automatic commit before and after executing. So,
whether they succeed or fail, the prior transaction is committed.

WITH HOLD Clause in DECLARE CURSOR Statements

Any cursor that has been declared with the clause WITH HOLD after the word
CURSOR, remains open after a COMMIT or a ROLLBACK. The following example
shows how to use this clause:

EXEC SQL

DECLARE C1 CURSOR WITH HOLD

FOR SELECT ENAME FROM EMP

WHERE EMPNO BETWEEN 7600 AND 7700
END-EXEC.

The cursor must not be declared for UPDATE. The WITH HOLD clause is used in
DB2 to override the default, which is to close all cursors on commit. Pro*COBOL
provides this clause in order to ease migrations of applications from DB2 to Oracle.
When MODE=ANSI, Oracle uses the DB2 default, but all host variables must be
declared in a Declare Section. To avoid having a Declare Section, use the
precompiler option CLOSE_ON_COMMIT described next. See "DECLARE
CURSOR (Embedded SQL Directive)" on page F-24.

CLOSE_ON_COMMIT Precompiler Option

The precompiler option CLOSE_ON_COMMIT is available to override the default
behavior of MODE=ANSI (if you specify MODE=ANSI on the command line, any
cursors not declared with the WITH HOLD clause are closed on commit):

CLOSE_ON_COMMIT ={YES | NO}
The default is NO. This option must be entered only on the command line or in a
configuration file.

Note: Use this option carefully; applications may be slowed if cursors are
opened and closed many times because of the need to re-parse for each OPEN
statement. See "CLOSE_ON_COMMIT" on page 14-14.

Database Concepts 3-15

Using the ROLLBACK Statement

Using the ROLLBACK Statement

You use the ROLLBACK statement to undo pending changes made to the database.
For example, if you make a mistake, such as deleting the wrong row from a table,
you can use ROLLBACK to restore the original data. The ROLLBACK statement has
no effect on the values of host variables or on the flow of control in your program.
Specifically, the ROLLBACK statement

« undoes all changes made to the database during the current transaction
« erases all savepoints

« ends the transaction

« releases all row and table locks, but not parse locks

« closes cursors declared using the FOR UPDATE clause or referenced elsewhere
in the code with the CURRENT OF clause. If MODE={ANSI | ANSI14}, then all
explicit cursors are closed.

When MODE={ANSI13 | ORACLE}, explicit cursors not referenced in a CURRENT
OF clause remain open across rollbacks.

Because they are part of exception processing, ROLLBACK statements should be
placed in error handling routines, off the main path through your program. In the
following example, you roll back your transaction and disconnect:

EXEC SQL ROLLBACK WORK RELEASE END-EXEC.

The optional keyword WORK provides ANSI compatibility. The RELEASE option
frees all resources held by your program and logs off the database.

If a WHENEVER SQLERROR GOTO statement branches to an error handling
routine that includes a ROLLBACK statement, your program might enter an infinite
loop if the rollback fails with an error. You can avoid this by coding WHENEVER
SQLERROR CONTINUE before the ROLLBACK statement.

For example, consider the following:

EXEC SQL
WHENEVER SQLERROR GOTO SQL-ERROR
END-EXEC.

DISPLAY 'Employee number? .

ACCEPT EMP-NUMBER.

DISPLAY Employee name?".

ACCEPT EMP-NAME.

EXEC SQL INSERT INTO EMP (EMPNO, ENAME)

3-16 Pro*COBOL Precompiler Programmer’s Guide

Using the SAVEPOINT Statement

VALUES (EMP-NUMBER, :EMP-NAME)
END-EXEC.

SQL-ERROR.
EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
DISPLAY 'PROCESSING ERROR..
DISPLAY 'ERROR CODE :’, SQLCODE.
DISPLAY 'MESSAGE ?, SQLERRMC.
EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
STOP RUN.

Oracle8i rolls back transactions if your program terminates abnormally.

Statement-Level Rollbacks

Before executing any SQL statement, Oracle8i marks an implicit savepoint (not
available to you). Then, if the statement fails, Oracle8i rolls it back automatically
and returns the applicable error code to SQLCODE in the SQLCA. For example, if
an INSERT statement causes an error by trying to insert a duplicate value in a
unique index, the statement is rolled back.

Only work started by the failed SQL statement is lost; work done before that
statement in the current transaction is kept. Thus, if a data definition statement fails,
the automatic commit that precedes it is not undone.

Note: Before executing a SQL statement, Oracle8i must parse it, that is, examine
it to make sure it follows syntax rules and refers to valid database objects.
Errors detected while executing a SQL statement cause a rollback, but errors
detected while parsing the statement do not.

Oracle8i can also roll back single SQL statements to break deadlocks. Oracle8i
signals an error to one of the participating transactions and rolls back the current
statement in that transaction.

Using the SAVEPOINT Statement

You use the SAVEPOINT embedded SQL statement to mark and name the current
point in the processing of a transaction. Each marked point is called a savepoint. For
example, the following statement marks a savepoint named start_delete:

EXEC SQL SAVEPOINT start_delete END-EXEC.

Savepoints let you divide long transactions, giving you more control over complex
procedures. For example, if a transaction performs several functions, you can mark

Database Concepts 3-17

Using the SAVEPOINT Statement

a savepoint before each function. Then, if a function fails, you can easily restore the
data to its former state, recover, then re-execute the function.

To undo part of a transaction, you use savepoints with the ROLLBACK statement
and its TO SAVEPOINT clause. The TO SAVEPOINT clause lets you roll back to an
intermediate statement in the current transaction, so you do not have to undo all
your changes. Specifically, the ROLLBACK TO SAVEPOINT statement

« undoes changes made to the database since the specified savepoint was marked
« erases all savepoints marked after the specified savepoint

« releases all row and table locks acquired since the specified savepoint was
marked

In the example below, you access the table MAIL_LIST to insert new listings, update
old listings, and delete (a few) inactive listings. After the delete, you check
SQLERRD(3) in the SQLCA for the number of rows deleted. If the number is
unexpectedly large, you roll back to the savepoint start_delete, undoing just the
delete.

* — For each new customer
DISPLAY 'New customer number? .
ACCEPT CUST-NUMBER.
IF CUST-NUMBER =0
GO TOREV-STATUS
END-IF.
DISPLAY 'New customer name? .
ACCEPT CUST-NAME.
EXEC SQL INSERT INTO MAIL-LIST (CUSTNO, CNAME, STAT)
VALUES (:CUST-NUMBER, :CUST-NAME, 'ACTIVE).
END-EXEC.

* — For each revised status
REV-STATUS.
DISPLAY "Customer number to revise status? .
ACCEPT CUST-NUMBER.
IF CUST-NUMBER =0
GO TO SAVE-POINT
ENDAF.
DISPLAY 'New status? .
ACCEPT NEW-STATUS.
EXEC SQL UPDATE MAIL-LIST
SET STAT = :NEW-STATUS WHERE CUSTNO = :CUST-NUMBER
END-EXEC.

3-18 Pro*COBOL Precompiler Programmer’s Guide

Using the RELEASE Option

*— mark savepoint
SAVE-POINT.
EXEC SQL SAVEPOINT START-DELETE END-EXEC.
EXEC SQL DELETE FROM MAIL-LIST WHERE STAT ='INACTIVE'
END-EXEC.
IF SQLERRD(3) <25
*— check number of rows deleted
DISPLAY 'Number of rows deleted is’, SQLERRD(3)
ELSE
DISPLAY 'Undoing deletion of ', SQLERRD(3), ' rows'
EXEC SQL
WHENEVER SQLERROR GOTO SQL-ERROR
END-EXEC
EXEC SQL
ROLLBACK TO SAVEPOINT START-DELETE
END-EXEC
ENDAF.
EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
EXEC SQL COMMIT WORK RELEASE END-EXEC.
STOP RUN.
*— exit program.

SQL-ERROR.
EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
DISPLAY 'Processing error.

* — exit program with an enror.
STOP RUN.

Note that you cannot specify the RELEASE option in a ROLLBACK TO
SAVEPOINT statement.

Rolling back to a savepoint erases any savepoints marked after that savepoint. The
savepoint to which you roll back, however, is not erased. For example, if you mark
five savepoints, then roll back to the third, only the fourth and fifth are erased. A
COMMIT or ROLLBACK statement erases all savepoints.

Using the RELEASE Option

Oracle8i rolls back changes automatically if your program terminates abnormally.
Abnormal termination occurs when your program does not explicitly commit or roll
back work and disconnect using the RELEASE embedded SQL statement.

Database Concepts 3-19

Using the SET TRANSACTION Statement

Normal termination occurs when your program runs its course, closes open cursors,
explicitly commits or rolls back work, disconnects, and returns control to the user.
Your program will exit gracefully if the last SQL statement it executes is either

EXEC SQL COMMIT WORK RELEASE END-EXEC.

or
EXEC SQL ROLLBACK WORK RELEASE END-EXEC.

where the token WORK is optional. Otherwise, locks and cursors acquired by your
user session are held after program termination until Oracle8i recognizes that the
user session is no longer active. This might cause other users in a multi-user
environment to wait longer than necessary for the locked resources.

Using the SET TRANSACTION Statement

You use the SET TRANSACTION statement to begin a read-only or read-write
transaction, or to assign your current transaction to a specified rollback segment. A
COMMIIT, ROLLBACK, or data definition statement ends a read-only transaction.

Because they allow "repeatable reads," read-only transactions are useful for running
multiple queries against one or more tables while other users update the same
tables. During a read-only transaction, all queries refer to the same snapshot of the
database, providing a multi-table, multi-query, read-consistent view. Other users
can continue to query or update data as usual. An example of the SET
TRANSACTION statement follows:

EXEC SQL SET TRANSACTION READ ONLY END-EXEC.

The SET TRANSACTION statement must be the first SQL statement in a read-only
transaction and can appear only once in a transaction. The READ ONLY parameter
is required. Its use does not affect other transactions. Only the SELECT (without
FOR UPDATE), LOCK TABLE, SET ROLE, ALTER SESSION, ALTER SYSTEM,
COMMIT, and ROLLBACK statements are allowed in a read-only transaction.

In the example below, as a store manager, you check sales activity for the day, the
past week, and the past month by using a read-only transaction to generate a
summary report. The report is unaffected by other users updating the database
during the transaction.

EXEC SQL SET TRANSACTION READ ONLY END-EXEC.

EXEC SQL SELECT SUM(SALEAMT) INTO :DAILY FROM SALES
WHERE SALEDATE = SYSDATE END-EXEC.

EXEC SQL SELECT SUM(SALEAMT) INTO :‘WEEKLY FROM SALES

3-20 Pro*COBOL Precompiler Programmer’s Guide

Overriding Default Locking

WHERE SALEDATE > SYSDATE - 7 END-EXEC.
EXEC SQL SELECT SUM(SALEAMT) INTO :MONTHLY FROM SALES
WHERE SALEDATE > SYSDATE - 30 END-EXEC.
EXEC SQL COMMIT WORK END-EXEC.
*— simply ends the transaction since there are no changes
*— to make permanent
*— format and print report

Overriding Default Locking

By default, Oracle8i implicitly (automatically) locks many data structures for you.
However, you can request specific data locks on rows or tables when it is to your
advantage to override default locking. Explicit locking lets you share or deny access
to a table for the duration of a transaction or ensure multi-table and multi-query
read consistency.

With the SELECT FOR UPDATE OF statement, you can explicitly lock specific rows
of a table to make sure they do not change before an update or delete is executed.
However, Oracle8i automatically obtains row-level locks at update or delete time.
So, use the FOR UPDATE OF clause only if you want to lock the rows before the
update or delete.

You can explicitly lock entire tables using the LOCK TABLE statement.

Using the FOR UPDATE OF Clause

When you DECLARE a cursor, you can meanwhile optionally specify the FOR
UPDATE clause which has the effect of acquiring an exclusive lock on all rows
defined by the cursor. This is useful, for example, when you want to base an update
on existing rows in a table and want to ensure that they are not meanwhile changed
by anyone else.

Note that if you refer to a cursor with the CURRENT OF clause, that the
precompiler will automatically add the FOR UPDATE clause to the cursor
definition and the word OF is optional. For instance, instead of

EXEC SQL DECLARE EMP-CURSOR CURSOR FOR
SELECT ENAME, JOB, SAL FROM EMP WHERE DEPTNO =20
FOR UPDATE OF SAL
END-EXEC.
you can drop the OF part of the clause and simply code

EXEC SQL DECLARE EMP-CURSOR CURSOR FOR

Database Concepts 3-21

Fetching Across Commits

SELECT ENAME, JOB, SAL FROM EMP WHERE DEPTNO =20
FOR UPDATE
END-EXEC.

For an example, see "Using the CURRENT OF Clause" on page 5-16.

Restrictions

You cannot use FOR UPDATE with multiple tables, but you must use FOR UPDATE
OF to identify a column in the table that you want locked. Row locks obtained by a
FOR UPDATE statement are cleared by a COMMIT, which explains why the cursor
is closed for you. If you try to fetch from a FOR UPDATE cursor after a commit,
Oracle8i generates a Fetch out Sequence error.

Fetching Across Commits

If you want to mix commits and fetches, do not use the CURRENT OF clause.
Instead, select the ROWID of each row, then use that value to identify the current
row during the update or delete. Consider the following example:

EXEC SQL DECLARE EMP-CURSOR CURSOR FOR
SELECT ENAME, SAL, ROWID FROM EMP WHERE JOB ='CLERK’
END-EXEC.

EXEC SQL OPEN EMP-CURSOR END-EXEC.
EXEC SQL WHENEVER NOT FOUND GOTO. ...
PERFORM
EXEC SQL
FETCH EMP-CURSOR INTO :EMP_NAME, :SALARY, -ROW-D
END-EXEC

EXEC SQL UPDATE EMP SET SAL = :NEW-SALARY
WHERE ROWID = :ROW-ID
END-EXEC
EXEC SQL COMMIT END-EXEC
END-PERFORM.

Note, however, that the fetched rows are not locked. So, you can receive inconsistent

results if another user modifies a row after you read it but before you update or
delete it.

3-22 Pro*COBOL Precompiler Programmer’s Guide

Handling Distributed Transactions

Using the LOCK TABLE Statement

You use the LOCK TABLE statement to lock one or more tables in a specified lock
mode. For example, the statement below locks the EMP table in row share mode.
Row share locks allow concurrent access to a table; they prevent other users from
locking the entire table for exclusive use.

EXEC SQL
LOCK TABLE EMP IN ROW SHARE MODE NOWAIT
END-EXEC.

The lock mode determines what other locks can be placed on the table. For
example, many users can acquire row share locks on a table at the same time, but
only one user at a time can acquire an exclusive lock. While one user has an
exclusive lock on a table, no other users can insert, update, or delete rows in that
table. For more information about lock modes, see the Oracle8i Application
Developer’s Guide - Fundamentals.

The optional keyword NOWAIT tells Oracle8i not to wait for a table if it has been
locked by another user. Control is immediately returned to your program, so it can
do other work before trying again to acquire the lock. (You can check SQLCODE in
the SQLCA to see if the table lock failed.) If you omit NOWAIT, Oracle8i waits until
the table is available; the wait has no set limit.

A table lock never keeps other users from querying a table, and a query never
acquires a table lock. So, a query never blocks another query or an update, and an
update never blocks a query. Only if two different transactions try to update the
same row will one transaction wait for the other to complete. Table locks are
released when your transaction issues a commit or rollback.

Handling Distributed Transactions

A distributed database is a single logical database comprising multiple physical
databases at different nodes. A distributed statement is any SQL statement that
accesses a remote node using a database link. A distributed transaction includes at
least one distributed statement that updates data at multiple nodes of a distributed
database. If the update affects only one node, the transaction is non-distributed.

When you issue a commit, changes to each database affected by the distributed
transaction are made permanent. If instead you issue a rollback, all the changes are
undone. However, if a network or machine fails during the commit or rollback, the
state of the distributed transaction might be unknown or in doubt. In such cases, if
you have FORCE TRANSACTION system privileges, you can manually commit or

Database Concepts 3-23

Guidelines for Transaction Processing

roll back the transaction at your local database by using the FORCE clause. The
transaction must be identified by a quoted literal containing the transaction ID,
which can be found in the data dictionary view DBA_2PC_PENDING. Some
examples follow:

EXEC SQL COMMIT FORCE "22.31.83' END-EXEC.
EXEC SQL ROLLBACK FORCE '25.33.86END-EXEC.

FORCE commits or rolls back only the specified transaction and does not affect
your current transaction. Note that you cannot manually roll back in-doubt
transactions to a savepoint.

The COMMENT clause in the COMMIT statement lets you specify a Comment to be
associated with a distributed transaction. If ever the transaction is in doubt, The
server stores the text specified by COMMENT in the data dictionary view
DBA_2PC_PENDING along with the transaction ID. The text must be a quoted
literal of no more than 50 characters in length. An example follows:

EXECSQL
COMMIT COMMENT 'In-doubt trans; notify Order Entry’
END-EXEC.

For more information about distributed transactions, see Oracle8i Concepts.

Guidelines for Transaction Processing

The following guidelines will help you avoid some common problems.

Designing Applications

When designing your application, group logically related actions together in one
transaction. A well-designed transaction includes all the steps necessary to
accomplish a given task — no more and no less.

Data in the tables you reference must be left in a consistent state. So, the SQL
statements in a transaction should change the data in a consistent way. For example,
a transfer of funds between two bank accounts should include a debit to one
account and a credit to another. Both updates should either succeed or fail together.
An unrelated update, such as a new deposit to one account, should not be included
in the transaction.

3-24 Pro*COBOL Precompiler Programmer’s Guide

Guidelines for Transaction Processing

Obtaining Locks

If your application programs include SQL locking statements, make sure the users
requesting locks have the privileges needed to obtain the locks. Your DBA can lock
any table. Other users can lock tables they own or tables for which they have a
privilege, such as ALTER, SELECT, INSERT, UPDATE, or DELETE.

Using PL/SQL
If a PL/SQL block is part of a transaction, commits and rollbacks inside the block

affect the whole transaction. In the following example, the rollback undoes changes
made by the update and the insert:

EXEC SQL INSERT INTO EMP ...
EXEC SQL EXECUTE
BEGIN UPDATE emp

EXCEPTION
WHEN DUP_VAL_ON_INDEX THEN
ROLLBACK;
END;
END-EXEC.

X/Open Applications

For instructions on using the XA interface in X/Open applications, see your
Transaction Processing (TP) Monitor user’s guide and Oracle8i Application
Developer’s Guide - Fundamentals.

Database Concepts 3-25

Guidelines for Transaction Processing

3-26 Pro*COBOL Precompiler Programmer’s Guide

A

Datatypes and Host Variables

This chapter provides the basic information you need to write a Pro*COBOL
program, including:

« The Oracle8i Datatypes

« Host Variables

« Indicator Variables

« VARCHAR Variables

« Handling Character Data

« Universal ROWIDs

« National Language Support

« Multi-Byte NLS Character Sets
« Datatype Conversion

« Explicit Control Over DATE String Format
« Datatype Equivalencing

« Sample Program 4: Datatype Equivalencing

Datatypes and Host Variables 4-1

The Oracle8i Datatypes

The Oracle8i Datatypes

Oracle8i recognizes two kinds of datatypes: internal and external. Internal datatypes
specify how Oracle8i stores data in database columns.

For complete descriptions of the Oracle internal (also called built-in) datatypes, see
Oracle8i SQL Reference

Oracle8i also uses internal datatypes to represent database pseudocolumns. An
external datatype specifies how data is stored in a host varable

Internal Datatypes
Table 4-1 summarizes the information about each Oracle built-in datatype.

Table 4-1 Summary of Oracle Built-In Datatypes

Datatype Description Column Length and Default

CHAR (size) Fixed-length character Fixed for every row in the table (with trailing
data of length size bytes blanks); maximum size is 2000 bytes per row,

default size is 1 byte per row. Consider the

character set (one-byte or multibyte) before

setting size.
VARCHAR?2 Variable-length Variable for each row, up to 4000 bytes per
(size) character data row: Consider the character set (one-byte or

multibyte) before setting size: A maximum size
must be specified.

4-2 Pro*COBOL Precompiler Programmer’s Guide

The Oracle8i Datatypes

Table 4-1 Summary of Oracle Built-In Datatypes (Cont.)

NCHAR (size)

NVARCHAR?2
(size)

CLOB

NCLOB

LONG

NUMBER(p,s)

DATE

BLOB

Fixed-length character
data of length size
characters or bytes,
depending on the
national character set

Variable-length
character data of length
size characters or bytes,
depending on national
character set: A
maximum size must be
specified

Single-byte character
data

Single-byte or
fixed-length multibyte
national character set
(NCHARdata

Variable-length
character data

Variable-length
numeric data.:
Maximum precision p
and/or scale s is 38

Fixed-length date and
time data, ranging
fromJan. 1, 4712 B.C.E.
to Dec. 31, 4712 C.E.

Unstructured binary
data

Fixed for every row in the table (with trailing
blanks). Column size is the number of
characters for a fixed-width national character
set or the number of bytes for a varying-width
national character set. Maximum size is
determined by the number of bytes required
to store one character, with an upper limit of
2000 bytes per row. Default is 1 character or 1
byte, depending on the character set.

Variable for each row. Column size is the
number of characters for a fixed-width
national character set or the number of bytes
for a varying-width national character set.
Maximum size is determined by the number of
bytes required to store one character, with an
upper limit of 4000 bytes per row. Default is 1
character or 1 byte, depending on the
character set.

Up to 2732 - 1 bytes, or 4 gigabytes.

Up to 2732 - 1 bytes, or 4 gigabytes.

Variable for each row in the table, up to 231 -
1 bytes, or 2 gigabytes, per row. Provided for
backward compatibility.

Variable for each row. The maximum space
required for a given column is 21 bytes per
row.

Fixed at 7 bytes for each row in the table.
Default format is a string (such as DDMONYY)
specified by NLS_DATE_FORMAparameter.

Up to 2732 - 1 bytes, or 4 gigabytes.

Datatypes and Host Variables 4-3

The Oracle8i Datatypes

Table 4-1 Summary of Oracle Built-In Datatypes (Cont.)

BFILE Binary data stored in Up to 2732 - 1 bytes, or 4 gigabytes.
an external file
RAW (size) Variable-length raw Variable for each row in the table, up to 2000
binary data bytes per row. A maximum size must be
specified. Provided for backward
compatibility.
LONG RAW Variable-length raw Variable for each row in the table, up to 2731 -
binary data 1 bytes, or 2 gigabytes, per row. Provided for
backward compatibility.
ROWID Binary data Fixed at 10 bytes (extended ROWID or 6 bytes
representing row (restricted ROWID for each row in the table.
addresses

External Datatypes

The external datatypes include all the internal datatypes plus several datatypes
found in other supported host languages. Use the datatype names in datatype
equivalencing, and the datatype codes in dynamic SQL Method 4.

Table 4-2 External Datatypes

Name Code Description

CHAR 1 <= 65535-byte, variable-length character string (1)
96 <= 65535-byte, fixed-length character string (1)

CHARF 96 <= 65535-byte, fixed-length character string

CHARZ 97 <= 65535-byte, fixed-length, null-terminated string (2)

DATE 12 7-byte, fixed-length date/time value

DECIMAL 7 COBOL packed decimal

DISPLAY 91 COBOL numeric character string with leading sign

DISPLAY TRAILING 152 COBOL numeric with trailing sign

FLOAT 4 4-byte or 8-byte floating-point number

INTEGER 3 2-byte or 4-byte signed integer

LONG 8 <= 2147483647-byte, fixed-length string

LONG RAW 24 <= 217483647-byte, fixed-length binary data

LONG VARCHAR 94 <= 217483643-byte, variable-length string

4-4 Pro*COBOL Precompiler Programmer’s Guide

The Oracle8i Datatypes

Table 4-2 External Datatypes

Name Code Description

LONG VARRAW 95 <= 217483643-byte, variable-length binary data

NUMBER 2 integer or floating-point number

OVERPUNCH 172 COBOL numeric character string with embedded leading

LEADING sign

OVERPUNCH 154 COBOL numeric character string with embedded trailing

TRAILING sign (equivalent to declarations of the form PIC
S9(n)V9(m) DISPLAY)

RAW 23 <= 65535-byte, fixed-length binary data (2)

ROWID 11 fixed-length binary value (system-specific)

STRING 5 <= 65535-byte, null-terminated character string (2)

UNSIGNED 68 2-byte or 4-byte unsigned integer

UNSIGNED DISPLAY 153 COBOL unsigned numeric

VARCHAR 9 <= 65533-byte, variable-length character string

VARCHAR?2 1 <= 65535-byte, variable-length character string (2)

VARNUM 6 variable-length binary number

VARRAW 15 <= 65533-byte, variable-length binary data

Notes:

1. CHAR is datatype 1 when PICX=VARCHAR?2 and datatype 96 when
PICX=CHARF.

2. Maximum size is 32767 (32K) on some platforms.

CHAR

CHAR behavior depends on the settings of the option PICX. See "PICX" on
page 14-34.

CHARF

By default, the CHARF datatype represents all non-varying character host variables.
You use the CHARF datatype to store fixed-length character strings. On most
platforms, the maximum length of a CHARF value is 65535 (64K) bytes. See "PICX"
on page 14-34.

Datatypes and Host Variables 4-5

The Oracle8i Datatypes

On Input. Oracle8i reads the number of bytes specified for the input host variable,
does not strip trailing blanks, then stores the input value in the target database
column.

If the input value is longer than the defined width of the database column, Oracle8i
generates an error. If the input value is all-blank, then a string of spaces is stored.

On Output. Oracle8i returns the number of bytes specified for the output host
variable, blank-padding if necessary, then assigns the output value to the target host
variable. If a NULL is returned, then the original value of the variable is not
overwritten.

If the output value is longer than the declared length of the host variable, Oracle8i
truncates the value before assigning it to the host variable. If an indicator variable is
available, Oracle8i sets it to the original length of the output value.

CHARZ

The CHARZ datatype represents fixed-length, null-terminated character strings. On
most platforms, the maximum length of a CHARZ value is 65535 bytes. You usually
will not need this external type in Pro*COBOL.

DATE

The DATE datatype represents dates and times in 7-byte, fixed-length fields. As
Table 4-3 shows, the century, year, month, day, hour (in 24-hour format), minute,
and second are stored in that order from left to right.

Table 4-3 Date Format

Byte 1 2 3 4 5 6 7
Meaning Century Year Month Day Hour Minute Second
Example 119 194 10 17 14 24 13

17-OCT-1994 at 1:23:12 PM

The century and year bytes are in excess-100 notation. The hour, minute, and
second are in excess-1 notation. Dates before the Common Era (B.C.E.) are less than
100. The epoch is January 1, 4712 B.C.E. For this date, the century byte is 53 and the
year byte is 88. The hour byte ranges from 1 to 24. The minute and second bytes
range from 1 to 60. The time defaults to midnight (1, 1, 1).

4-6 Pro*COBOL Precompiler Programmer’s Guide

The Oracle8i Datatypes

DECIMAL

The DECIMAL datatype represents packed decimal numbers for calculation. In
COBOL, the host variable must be a signed COMP-3 field with an implied decimal
point. If significant digits are lost during data conversion, the value is truncated to
the declared length.

DISPLAY

The DISPLAY datatype represents numeric character data. The DISPLAY datatype
refers to a COBOL "DISPLAY SIGN LEADING SEPARATE" number, which requires
n + 1 bytes of storage for PIC S9(n), and n + d + 1 bytes of storage for PIC
S9(n)V9(d).

FLOAT

The FLOAT datatype represents numbers that have a fractional part or that exceed
the capacity of the INTEGER datatype. FLOAT relates to the COBOL datatypes
COMP-1 (4-byte floating point) and COMP-2 (8-byte floating point).

Oracle8i can represent numbers with greater precision than floating point
implementations because the internal format of Oracle8i numbers is decimal.

Note: In SQL statements, when comparing FLOAT values, use the SQL function
ROUND because FLOAT stores binary (not decimal) numbers; so, fractions do
not convert exactly.

INTEGER

The INTEGER datatype represents numbers that have no fractional part. An integer
is a signed, 2- or 4-byte binary number. The order of the bytes in a word is
platform-dependent. You must specify a length for input and output host variables.
On output, if the column has a fractional part,the digits after the decimal point are
truncated.

LONG

The LONG datatype represents fixed-length character strings. The LONG datatype
is like the VARCHAR?2 datatype, except that the maximum length of a LONG value
is 2147483647 bytes (two gigabytes).

LONG RAW

The LONG RAW datatype represents fixed-length, binary data or byte strings. The
maximum length of a LONG RAW value is 2147483647 bytes (two gigabytes).

Datatypes and Host Variables 4-7

The Oracle8i Datatypes

LONG RAW data is like LONG data, except that Oracle8i assumes nothing about
the meaning of LONG RAW data and does no character set conversions when you
transmit LONG RAW data from one system to another.

LONG VARCHAR

The LONG VARCHAR datatype represents variable-length character strings. LONG
VARCHAR variables have a 4-byte length field followed by a string field. The
maximum length of the string field is 2147483643 bytes. In an EXEC SQL VAR
statement, do not include the 4-byte length field.

LONG VARRAW

The LONG VARRAW datatype represents binary data or byte strings. LONG
VARRAW variables have a 4-byte length field followed by a data field. The
maximum length of the data field is 2147483643 bytes. In an EXEC SQL VAR
statement, do not include the 4-byte length field.

NUMBER

The NUMBER datatype represents the internal Oracle NUMBER format which
cannot be represented by a COBOL datatype.

OVER-PUNCH

This is the default signed numeric for the COBOL language. Digits are held in
ASCII or EBCDIC format in radix 10, with one digit per byte of computer storage.
The sign is held in the high order nibble of one of the bytes. It is called
OVER-PUNCH because the sign is "punched-over" the digit in either the first or last
byte. The default sign position will be over the trailing byte. PIC S9(n)V9(m)
TRAILING or PIC S9(n)V9(m) LEADING is used to specify the over-punch.

RAW

The RAW datatype represents fixed-length binary data or byte strings. On most
platforms, the maximum length of a RAW value is 65535 bytes.

RAW data is like CHAR data, except that Oracle8i assumes nothing about the
meaning of RAW data and does no character set conversions when you transmit
RAW data from one system to another.

4-8 Pro*COBOL Precompiler Programmer’s Guide

The Oracle8i Datatypes

ROWID

This datatype represents the database row identifier in COBOL. To support both
logical and physical ROWIDs (as well as ROWIDs of non-Oracle tables) the
Universal ROWID (UROWID) was defined. Use the SQL-ROWID pseudotype for
this datatype (see "Universal ROWIDs" on page 4-32).

You can use VARCHAR?2 host variables to store ROWIDs in a readable format.
When you select or fetch a ROWID into a VARCHAR?2 host variable, Oracle8i
converts the binary value to an 18-byte character string and returns it in the format

BBBBBBBB.RRRR.FFFF

where BBBBBBBB is the block in the database file, RRRR is the row in the block (the
first row is 0), and FFFF is the database file. These numbers are hexadecimal. For
example, the ROWID

(000000O0E.000A.0007

points to the 11th row in the 15th block in the 7th database file.

Typically, you fetch a ROWID into a VARCHAR?2 host variable, then compare the
host variable to the ROWID pseudocolumn in the WHERE clause of an UPDATE or
DELETE statement. That way, you can identify the latest row fetched by a cursor.
For an example, see "Mimicking the CURRENT OF Clause" on page 7-19.

Note: If you need full portability or your application communicates with a
non-Oracle database via Transparent Gateway, specify a maximum length of
256 (not 18) bytes when declaring the VARCHAR?2 host variable. If your
application communicates with a non-Oracle data source via Oracle Open
Gateway, specify a maximum length of 256 bytes. Though you can assume
nothing about its contents, the host variable will behave normally in SQL
statements.

STRING

The STRING datatype is like the VARCHAR?2 datatype, except that a STRING value
is always terminated by a LOW-VALUE character.This datatype is usually not used
in Pro*COBOL.

UNSIGNED

The UNSIGNED datatype represents unsigned integers.This datatype is usually
not used in Pro*COBOL.

Datatypes and Host Variables 4-9

The Oracle8i Datatypes

VARCHAR

The VARCHAR datatype represents variable-length character strings. VARCHAR
variables have a 2-byte length field followed by a 65533-byte string field. However,
for VARCHAR array elements, the maximum length of the string field is 65530
bytes. When you specify the length of a VARCHAR variable, be sure to include 2
bytes for the length field. For longer strings, use the LONG VARCHAR datatype. In
an EXEC SQL VAR statement, do not include the 2-byte length field.

VARCHAR?2

The VARCHAR?2 datatype represents variable-length character strings. On most
platforms, the maximum length of a VARCHAR?2 value is 65535 bytes.

Specify the maximum length of a VARCHAR2(n) value in bytes, not characters. So,
if a VARCHAR2(n) variable stores multi-byte characters, its maximum length is less
than n characters.

On Input. Oracle8i reads the number of bytes specified for the input host variable,
strips any trailing blanks, then stores the input value in the target database column.

If the input value is longer than the defined width of the database column, Oracle8i
generates an error. If the input value is all SPACES, Oracle8i treats it like a NULL.

Oracle8i can convert a character value to a NUMBER column value if the character
value represents a valid number. Otherwise, Oracle8i generates an error.

On Output. Oracle8i returns the number of bytes specified for the output host
variable, blank-padding if necessary, then assigns the output value to the target host
variable. If a NULL is returned, Oracle8i fills the host variable with blanks.

If the output value is longer than the declared length of the host variable, Oracle8i
truncates the value before assigning it to the host variable. If an indicator variable is
available, Oracle8i sets it to the original length of the output value.

Oracle8i can convert NUMBER column values to character values. The length of the
character host variable determines precision. If the host variable is too short for the
number, scientific notation is used. For example, if you select the column value
123456789 into a host variable of length 6, Oracle8i returns the value "1.2E08" to the
host variable.

VARNUM

The VARNUM datatype is similar in format to NUMBER and is usually not used in
Pro*COBOL.

4-10 Pro*COBOL Precompiler Programmer’s Guide

The Oracle8i Datatypes

VARRAW

The VARRAW datatype represents variable-length binary data or byte strings. The
VARRAW datatype is like the RAW datatype, except that VARRAW variables have a
2-byte length field followed by a <= 65533-byte data field. For longer strings, use
the LONG VARRAW datatype. In an EXEC SQL VAR statement, do not include the
2-byte length field. To get the length of a VARRAW variable, simply refer to its
length field.

SQL Pseudocolumns and Functions
SQL recognizes the pseudocolumns in Table 4-4, which return specific data items:

Table 4-4 Pseudocolumns and Internal Datatypes

Pseudocolumn Internal Datatype
CURRVAL NUMBER
LEVEL NUMBER
NEXTVAL NUMBER
ROWID ROWID
ROWNUM NUMBER

Pseudocolumns are not actual columns in a table. However, pseudocolumns are
treated like columns, so their values must be SELECTed from a table. Sometimes it
is convenient to select pseudocolumn values from a dummy table.

In addition, SQL recognizes the functions without parameters in Table 4-5, which
also return specific data items:

Table 4-5 Functions and Internal Datatypes

Function Internal Datatype
SYSDATE DATE

uIiD NUMBER

USER VARCHAR2

You can refer to SQL pseudocolumns and functions in SELECT, INSERT, UPDATE,
and DELETE statements. In the following example, you use SYSDATE to compute
the number of months since an employee was hired:

Datatypes and Host Variables 4-11

The Oracle8i Datatypes

EXEC SQL SELECT MONTHS_BETWEEN(SYSDATE, HIREDATE)
INTO :MONTHS-OF-SERVICE
FROM EMP
WHERE EMPNO = :EMP-NUMBER

END EXEC.

Brief descriptions of the SQL pseudocolumns and functions follow. For details, see
the Oracle8i SQL Reference.

CURRVAL returns the current number in a specified sequence. Before you can
reference CURRVAL, you must use NEXTVAL to generate a sequence number.

LEVEL returns the level number of a node in a tree structure. The root is level 1,
children of the root are level 2, grandchildren are level 3, and so on.

LEVEL is used in the SELECT CONNECT BY statement to incorporate some or all
the rows of a table into a tree structure. In an ORDER BY or GROUP BY clause,
LEVEL segregates the data at each level in the tree.

You specify the direction in which the query walks the tree (down from the root or
up from the branches) with the PRIOR operator. In the START WITH clause, you
specify a condition that identifies the root of the tree.

NEXTVAL returns the next number in a specified sequence. After creating a
sequence, you can use it to generate unique sequence numbers for transaction
processing. In the following example, you use the sequence named partno to assign
part numbers:

EXEC SQL INSERT INTO PARTS
VALUES (PARTNO.NEXTVAL, :DESCRIPTION, :QUANTITY, :PRICE
END EXEC.

If a transaction generates a sequence number, the sequence is incremented when
you commit or rollback the transaction. A reference to NEXTVAL stores the current
sequence number in CURRVAL.

ROWNUM returns a number indicating the sequence in which a row was selected
from a table. The first row selected has a ROWNUM of 1, the second row has a
ROWNUM of 2, and so on. If a SELECT statement includes an ORDER BY clause,
ROWNUMs are assigned to the selected rows before the sort is done.

You can use ROWNUM to limit the number of rows returned by a SELECT
statement. Also, you can use ROWNUM in an UPDATE statement to assign unique
values to each row in a table. Using ROWNUM in the WHERE clause does not stop
the processing of a SELECT statement; it just limits the number of rows retrieved.
The only meaningful use of ROWNUM in a WHERE clause is

4-12 Pro*COBOL Precompiler Programmer’s Guide

Host Variables

... WHERE ROWNUM < constant END-EXEC.

because the value of ROWNUM increases only when a row is retrieved. The
following search condition can never be met because the first four rows are not

retrieved:
... WHERE ROWNUM =5 END-EXEC.

SYSDATE returns the current date and time.
UID returns the unique ID number assigned to an Oracle user.

USER returns the username of the current Oracle user.

Host Variables

Host variables are the key to communication between your host program and the
server. Typically, a host program inputs data to the server, and the server outputs
data to the program. The server stores input data in database columns and stores
output data in program host variables.

Declaring Host Variables

Host variables are declared according to COBOL rules, using the COBOL datatypes
that are supported by ProxCOBOL. COBOL datatypes must be compatible with the
source/target database column.

The supported COBOL variable declarations, descriptions, corresponding external
datatypes, and Oracle datatype codes are shown in Table 4-6:

Datatypes and Host Variables 4-13

Host Variables

Table 4-6 Host Variable Declaractions

External Type
Variable Declaration Description Datatype Code
PIC X..X fixed-length string of 1-byte characters (1) CHARF 96
PIC X(n) n-length string of 1-byte characters
PIC X..X VARYING variable-length string of 1-byte characters (1,2) VARCHAR 9
PIC X(n) VARYING E/Z%riable-length (n max.) string of 1-byte characters
PIC N...N fixed-length string of multi-byte NCHAR CHARF 96
PICG..G characters (1,3)
PIC N(n) n-length string of multi-byte NCHAR characters
PIC G(n) (3)
PIC N...N VARYING variable-length string of multi-byte characters (2,3) VARCHAR 9
PIC N(n) VARYING
PIC G...G VARYING variable-length (n max.) string of multi-byte
PIC G(n) VARYING characters (2,3)
PIC S9...9 BINARY integer (4,5,7) INTEGER 3
PIC S9(n) BINARY
PIC S9...9 COMP
PIC S9(n) COMP
PIC S9...9 COMP-4
PIC S9(n) COMP-4
PIC S9...9 COMP-5 byte-swapped integer (4,5,6,7) INTEGER 3
PIC S9(n) COMP-5
COMP-1 floating-point number (5) FLOAT 4
COMP-2
PIC S9...9[V9...9] COMP-3 packed-decimal (4,5) DECIMAL 7

PIC S9(n)[V9(n)] COMP-3

PIC S9...9[V9...9]

PACKED-DECIMAL

PIC S9(n)[VO(n)]

PACKED-DECIMAL

4-14 Pro*COBOL Precompiler Programmer’s Guide

Host Variables

Table 4-6 Host Variable Declaractions

External Type
Variable Declaration Description Datatype Code
PIC S9...9[V9...9] DISPLAY display leading (8,11) DISPLAY 91

SIGN LEADING SEPARATE
PIC S9(n)[VO(m)] DISPLAY

SIGN LEADING SEPARATE
PIC $9...9[V9...9] DISPLAY display trailing (8) DISPLAY 152

SIGN TRAILING SEPARATE TRAILING
PIC S9(n)[V9(m)] DISPLAY
SIGN TRAILING SEPARATE
PIC 9..9 DISPLAY unsigned display(9) UNSIGNED 153
PIC 9(n)[V9(m)] DISPLAY DISPLAY
PIC S9...9[V9...9] DISPLAY over-punch trailing (9) OVER-PUNCH 154
SIGN TRAILING TRAILING

PIC S9(n)[V9(m)] DISPLAY
SIGN TRAILING
PIC S9...9[V9...9] DISPLAY over-punch leading (9) OVER-PUNCH 172

SIGN LEADING LEADING
PIC S9(n)[V9(m)] DISPLAY

SIGN LEADING
SQL-CURSOR cursor variable
SQL-CONTEXT runtime context
SQL-ROWID universal ROWID UROWID 104
SQL-BFILE external binary file BFILE 112
SQL-BLOB binary LOB BLOB 113
SQL-CLOB character LOB CLOB 114

Notes:

1. X..Xand?9..9 stand for a given number (n) of Xs or 9s. For variable-length
strings, n is the maximum length.

Datatypes and Host Variables 4-15

Host Variables

2. The keyword VARYING assigns the VARCHAR external datatype to a character
string. For more information, see "Declaring VARCHAR Variables" on
page 4-26.

3. Before using the PIC N or PIC G datatype in your Pro*COBOL source files, verify that
it is supported by your COBOL compiler.

4. Only signed numbers (PIC S...) are allowed. For floating-point numbers,
however, PIC strings are not accepted.

5. Not all COBOL compilers support all of these datatypes.

6. With COMP or COMP-5, the number cannot have a fractional part; scaled
binary numbers are not supported.

7. The maximum value of n ranges from 9 to 18, depending upon your system.
8. Both DISPLAY and SIGN are optional.
9. DISPLAY is optional

10. If TRAILING is omitted, the embedded sign position is operating-system
dependent.

11. LEADING is optional.

In Table 4-6 and Table 4-7the symbols [’ and ']’ denote that an optional entry is
contained inside. The symbols '{” and '}’ denote that a choice must be made between
tokens separated by the symbol ’] .

Table 4-7, "Compatible Oracle Internal Datatypes” shows all the COBOL datatypes
that can be coverted to and from each internal datatype.

4-16 Pro*COBOL Precompiler Programmer’s Guide

Host Variables

Table 4-7 Compatible Oracle Internal Datatypes

Internal

Datatype Notes COBOL Datatype Description
CHAR(X) 1) PIC X(n) character string
VARCHARZ(y) ()] PIC X...X n-character string

NCHAR(u) @
NVARCHAR2(V) {2}
BLOB

CLOB

NCLOB

BFILE

PIC X(n) VARYING

PIC X...X VARYING

PIC S9...9 COMP

PIC S9(n) COMP

PIC S9...9 BINARY

PIC S9(n) BINARY

PIC S9...9 COMP-5

PIC S9(n) COMP-5
COMP-1

COMP-2

PIC S9...9[V9...9] COMP-3
PIC S9(n)[VO(n)] COMP-3
PIC S9...9[V9...9] DISPLAY
PIC S9(n)[VO(n)] DISPLAY
PIC{N..N | G..G}

PIC {N(n) | G(n)}
SQL-BLOB

SQL-CLOB

SQL-NCLOB

SQL-BFILE

variable-length string

integer

integer

integer

floating point number

packed decimal

display

national character string
n-national character string
binary LOB

character LOB

national character LOB
external binary file

Datatypes and Host Variables 4-17

Host Variables

Table 4-7 Compatible Oracle Internal Datatypes

Internal
Datatype Notes COBOL Datatype Description
NUMBER PIC S9...9 COMP integer
NUMBER (p,s) ®3) PIC S9(n) COMP
PIC S9...9 BINARY integer
PIC S9(n) BINARY
PIC S9...9 COMP-5 integer

PIC S9(n) COMP-5
COMP-1

COMP-2

PIC $9...9V9...9 COMP-3
PIC S9(n)V9(n) COMP-3
PIC $9...9V9...9 DISPLAY
PIC S9(n)V9(n) DISPLAY

PIC[X.X] N..N| G..G]
PIC [X(n) | N(n) | G(n)]
PIC X..X VARYING

PIC X(n) VARYING

floating point number

packed decimal

display

character string (4)

n-character string (4)

variable-length string
n-byte variable-length string

DATE (5) PIC X(n) n-byte character string
LONG
RAW 1) PIC X...X character string
PIC X(n)
PIC X(n) VARYING n-byte variable-length string
PIC X...X VARYING
LONG RAW
ROWID 6) SQL-ROWID universal rowid
Notes:

1. <=x<=2000 bytes, default is 1. 1<=y <=4000 bytes, default is 1.
2. 1<=u<=2000 bytes, default is 1. 1<=v<=4000 bytes, default is 1.

4-18 Pro*COBOL Precompiler Programmer’s Guide

Host Variables

3. pranges from 2 to 38. s ranges from -84 to 127.

4. Strings can be converted to NUMBERSs only if they consist of convertible
characters — 0 to 9, period (.), +, -, E, e. The NLS settings for your system might
change the decimal point from a period (.) to a comma (,).

5. When converted to a string type, the default size of a DATE depends on the
NCHAR settings in effect on your system. When converted to a binary value,
the length is 7 bytes.

6. When converted to a string type, a ROWID requires from 18 to 4000 bytes.
ROWID can also be converted to a character type. Oracle recommends the use
of SQL-ROWID for all new programs.

Example Declarations

In the following example, you declare several host variables for use later in your
Pro*COBOL program:

01 STR1 PICX(3).

01 STR2 PIC X(3) VARYING.
01 NUM1 PIC S9(5) COMP.
01 NUM2 COMP-1.

01 NUM3 COMP-2.

You can also declare one-dimensional tables of simple COBOL types, as the next
example shows:

01 XMP-TABLES.
05 TAB1 PIC XXX OCCURS 3 TIMES.
05 TAB2 PIC XXX VARYING OCCURS 3 TIMES.
05 TAB3 PIC S999 COMP-3 OCCURS 3 TIMES.

[nitialization

You can initialize host variables, except pseudotype host variables, using the
VALUE clause, as shown in the following example:

01 USERNAME PIC X(10) VALUE "SCOTT".
01 MAX-SALARY PIC S9(4) COMP VALUE 5000.

Datatypes and Host Variables 4-19

Host Variables

If a string value assigned to a character variable is shorter than the declared length
of the variable, the string is blank-padded on the right. If the string value assigned
to a character variable is longer than the declared length, the string is truncated.

No error or warning is issued, but any VALUES clause on a pseudotype variable is
ignored and discarded.

Restrictions

You cannot use alphabetic character (PIC A) variables or edited data items as host
variables. Therefore, the following variable declarations cannot be made for host
variables:

01 AMOUNT-OF-CHECK PIC **9.99.
01 FIRST-NAME PIC A(10).
01 BIRTH-DATE PIC 99/99/99.

Referencing Host Variables

You use host variables in SQL data manipulation statements. A host variable must be
prefixed with a colon (?) in SQL statements but must not be prefixed with a colon in COBOL
statements, as this example showvs:

WORKING-STORAGE SECTION.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 EMP-NUMBER PIC S9(4) COMP VALUE ZERO.
01 EMP-NAME PIC X(10) VALUE SPACE.

01 SALARY PIC S9(5)V99 COMP-3.
EXEC SQL END DECLARE SECTION END-EXEC.

PROCEDURE DIVISION.

DISPLAY "Employee number? " WITH NO ADVANCING.
ACCEPT EMP-NUMBER.
EXEC SQL SELECT ENAME, SAL
INTO :EMP-NAME, :SALARY FROM EMP
WHERE EMPNO = EMP-NUMBER
END-EXEC.
COMPUTE BONUS =SALARY/10.

4-20 Pro*COBOL Precompiler Programmer’s Guide

Host Variables

Though it might be confusing, you can give a host variable the same name as a table
or column, as the following example shows:

WORKING-STORAGE SECTION.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 EMPNO PIC S9(4) COMP VALUE ZERO.
01 ENAME PIC X(10) VALUE SPACE.
01 COMM PIC S9(5)V99 COMP-3.

EXEC SQL END DECLARE SECTION END-EXEC.

PROCEDURE DIVISION.

EXEC SQL SELECT ENAME, COMM
INTO :ENAME, :COMM FROM EMP
WHERE EMPNO =:EMPNO

END-EXEC.

Group Items as Host Variables

Pro*COBOL allows the use of group items in embedded SQL statements. Group
items with elementary items (containing only one level) can be used as host
variables. The host group items (also referred to as host structures) can be
referenced in the INTO clause of a SELECT or a FETCH statement, and in the
VALUES list of an INSERT statement. When a group item is used as a host variable,
only the group name is used in the SQL statement. For example, given the
following declaration

01 DEPARTURE.
05HOUR PICX(2).
05 MINUTE PIC X(2).

the following statement is valid:

EXEC SQL SELECT DHOUR, DMINUTE
INTO :DEPARTURE
FROM SCHEDULE
WHERE ...

The order that the members are declared in the group item must match the order
that the associated columns occur in the SQL statement, or in the database table if
the column list in the INSERT statement is omitted. Using a group item as a host
variable has the semantics of substituting the group item with elementary items. In
the above example, it would mean substituting :DEPARTURE with
:DEPARTURE.HOUR, :DEPARTURE.MINUTE.

Datatypes and Host Variables 4-21

Host Variables

Group items used as host variables can contain host tables. In the following
example, the group item containing tables is used to INSERT three entries into the
SCHEDULE table:

01 DEPARTURE.
05 HOUR PIC X(2) OCCURS 3 TIMES.
05 MINUTE PIC X(2) OCCURS 3 TIMES.

EXEC SQL INSERT INTO SCHEDULE (DHOUR, DMINUTE)
VALUES (DEPARTURE) END-EXEC.

If VARCHAR=YES is specified, Pro*COBOL will recognize implicit VARCHARs. If
the nested group item declaration resembles a VARCHAR host variable, then the
entire group item is treated like an elementary item of VARYING type. See
"VARCHAR" on page 14-41.

When referencing elementary items instead of the group items as host variables
elementary names need not be unique because you can qualify them using the
following syntax:

group_item.elementary _item

This naming convention is allowed only in SQL statements. It is similar to the IN (or
OF) clause in COBOL, examples of which follow:

MOVE MINUTE IN DEPARTURE TO MINUTE-OUT.
DISPLAY HOUR OF DEPARTURE.

The COBOL IN (or OF) clause is not allowed in SQL staterments. Qualify elementary
names to avoid ambiguity. For example:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 DEPARTURE.

05 HOUR PICX().

05 MINUTE PIC X(2).
01 ARRIVAL.

05 HOUR PICX(2).

05 MINUTE PIC X(2).

EXEC SQL END DECLARE SECTION END-EXEC.

EXEC SQL SELECT DHR, DMIN INTO :DEPARTURE.HOUR, :DEPARTURE.MINUTE

FROM TIMETABLE
WHERE ...

4-22 Pro*COBOL Precompiler Programmer’s Guide

Indicator Variables

Restrictions

A host variable cannot substitute for a column, table, or other object in a SQL
statement and must not be an Oracle8i reserved word. See Appendix C, "Reserved
Words, Keywords, and Namespaces'for a list of reserved words and keywords.

Indicator Variables

You can associate any host variable with an optional indicator variable. Each time
the host variable is used in a SQL statement, a result code is stored in its associated
indicator variable. Thus, indicator variables let you monitor host variables.

You use indicator variables in the VALUES or SET clause to assign NULLSs to input
host variables and in the INTO clause to detect NULLSs (or truncated values for
character columns) in output host variables.

Using Indicator Variables
Here are the values indicator variables can take on.

On Input The values your program can assign to an indicator variable have the
following meanings:

-1 Oracle will assigh a NULL to the column, ignoring the value of
the host variable.

>=0 Oracle will assign the value of the host variable to the column.

On Output T he values Oracle can assign to an indicator variable have the following

meanings:

-1 The column value is NULL, so the value of the host variable is
indeterminate.

0 Oracle assigned an intact column value to the host variable.

>0 Oracle assigned a truncated column value to the host variable.
The integer returned by the indicator variable is the original
length of the column value, and SQLCODE in SQLCA is set to
zero.

-2 Oracle assigned a truncated column variable to the host

variable, but the original column value could not be
determined (a LONG column, for example).

Datatypes and Host Variables 4-23

Indicator Variables

Declaring Indicator Variables

An indicator variable must be explicitly declared as PIC S9(4) COMP and must not
be a reserved word. In the following example, you declare an indicator variable
named COMM-IND (the name is arbitrary):

WORKING-STORAGE SECTION.

01 EMP-NAME PIC X(10) VALUE SPACE.
01 SALARY PIC S9(5)V99 COMP-3.

01 COMMISSION PIC S9(5)Va9 COMP-3.
01 COMMHND PIC S9(4) COMP.

Referencing Indicator Variables

In SQL statements, an indicator variable must be prefixed with a colon and
appended to its associated host variable. In COBOL statements, an indicator

variable must not be prefixed with a colon or appended to its associated host variable. An
example follows:

EXEC SQL SELECT SAL, COMM
INTO :SALARY, :COMMISSION:COMM-IND FROM EMP
WHERE EMPNO =:EMP-NUMBER

END-EXEC.

IFCOMM-IND =-1
COMPUTE PAY = SALARY

ELSE

COMPUTE PAY = SALARY + COMMISSION.

To improve readability, you can precede any indicator variable with the optional
keyword INDICATOR. You must still prefix the indicator variable with a colon. The
correct syntax is

: host variable INDICATOR: indicator_variable

and is equivalent to
 host _variable:indicator variable

You can use both forms of expression in your host program.

Use in Where Clauses

Indicator variables cannot be used in the WHERE clause to search for NULLSs. For
example, the following DELETE statement triggers an error at run time:

4-24 Pro*COBOL Precompiler Programmer’s Guide

Indicator Variables

* Setindicator variable.
COMM-IND =-1
EXEC SQL
DELETE FROM EMP WHERE COMM = :COMMISSION:COMM-IND
END-EXEC.

The correct syntax follows:

EXEC SQL
DELETE FROM EMP WHERE COMM IS NULL
END-EXEC.

Avoid Error Messagess

If you SELECT or FETCH a NULL into a host variable that has no indicator,
Oracle8i issues an error message.

You can disable the error message by also specifying UNSAFE_NULL=YES on the
command line. For more information, see Chapter 14, "Precompiler Options".

ANSI Requirements

When MODE=ORACLE, if you SELECT or FETCH a truncated column value into a
host variable that is not associated with an indicator variable, Oracle8i issues an
error message.

However, when MODE={ANSI | ANSI14 | ANSI13}, no error is generated. Values
for indicator variables are discussed in Chapter 5, "Embedded SQL".

Indicator Variables for Multi-Byte NCHAR Variables

Indicator variables for multi-byte NCHAR character variables can be used as with
any other host variable. However, a positive value (the result of a SELECT or
FETCH was truncated) represents the string length in multi-byte characters instead
of 1-byte characters.

Indicator Variables with Host Group Items

To use indicator variables with a host group item, either setup a second group item
that contains an indicator variable for each nullable variable in the group item or
use a table of half-word integer variables. You do NOT have to have an indicator
variable for each variable in the group item, but the nullable fields which you wish
to use indicators for must be placed at the beginning of the data group item. The
following indicator group item can be used with the DEPARTURE group item:

01 DEPARTURE-ND.

Datatypes and Host Variables 4-25

VARCHAR Variables

05 HOUR-IND PIC S9(4) COMP.
05 MINUTE-IND PIC S9(4) COMP.

If you use an indicator table, you do NOT have to declare a table of as many
elements as there are members in the host group item. The following indicator table
can be used with the DEPARTURE group item:

01 DEPARTURE-IND PIC S9(4) COMP OCCURS 2 TIMES.

Reference the indicator group item in the SQL statement in the same way that a host
indicator variable is referenced:

EXEC SQL SELECT DHOUR, DMINUTE
INTO :DEPARTURE:DEPARTURE-IND
FROM SCHEDULE
WHERE ...

When the query completes, the NULL/NOT NULL status of each selected
component is available in the host indicator group item. The restrictions on
indicator host variables and the ANSI requirements also apply to host indicator
group items.

VARCHAR Variables

COBOL string datatypes are fixed length. However, Pro*COBOL lets you declare a
variable-length string pseudotype called VARCHAR. A VARCHAR variable is a
pseuotype that allows you to specify the exact length of the data stored in the
database and to specify the exact length of the data to be passed to the database.

Declaring VARCHAR Variables

You define a VARCHAR host variable by adding the keyword VARYING to its
declaration, as shown in the following example:

01 ENAME PIC X(15) VARYING.

Note: PIC N and PIC G are not allowed in definitions that use VARYING. To see
how to correctly use PIC N and PIC G in VARCHAR variables, see "Implicit
VARCHAR Group Items" on page 4-27

The COBOL VARYING phrase is used in PERFORM and SEARCH statements to
increment subscripts and indexes. Do not confuse this with the Pro*COBOL
VARYING clause in the preceding example.

4-26 Pro*COBOL Precompiler Programmer’s Guide

VARCHAR Variables

VARCHAR is an extended Pro*COBOL datatype or pre-declared group item. For
example, Pro*COBOL expands the VARCHAR declaration

01 ENAME PIC X(15) VARYING.

into a group item with length and string fields, as follows:

01 ENAME.
05 ENAME-LEN PIC S9(4) COMP.
05 ENAME-ARR PIC X(15).

The length field (suffixed with -LEN) holds the current length of the value stored in the
string field (suffixed with -ARR). The maximum length in the VARCHAR host-variable
declaration must be in the range of 1 to 9,999 bytes.

The advantage of using VARCHAR variables is that you can explicitly set and
reference the length field. With input host variables, Pro*COBOL reads the value of
the length field and uses that many characters of the string field. With output host
variables, Pro*xCOBOL sets the length value to the length of the character string
stored in the string field.

Implicit VARCHAR Group ltems

Pro*COBOL implicitly recognizes some group items as VARCHAR host variables
when the precompiler option VARCHAR=YES is specified on the command line.
For variable-length single-byte character types, use the following structure (length
expressed in single-byte characters):

nn DATA-NAME-1.
49 DATA-NAME-2 PIC S9(4) COMP.
49 DATA-NAME-3 PIC X(length).

nn must be 01 through 48.

For variable-length multi-byte NCHAR characters, use these formats (length is
expressed in double-byte characters):

nn DATA-NAME-L.
49 DATA-NAME-2 PIC S9(4) COMP.
49 DATA-NAME-3 PIC N(length).

nn DATA-NAME-1.
49 DATA-NAME-2 PIC S9(4) COMP.
49 DATA-NAME-3 PIC G(length).

The elementary items in these group-tem structures must be declared as level

Datatypes and Host Variables 4-27

VARCHAR Variables

49 for Pro*COBOL to recognize them as VARCHAR host variables.

The VARCHAR=YES command line option must be specified for Pro*xCOBOL to
recognize the extended form of the VARCHAR group items. If VARCHAR=NO,
then any declarations that resemble the above formats will be interpreted as regular
group items. If VARCHAR=YES and a group item declaration format looks similar
(but not identical) to the extended VARCHAR format, then the item will be
interpreted as a regular group item rather than a VARCHAR group item. For
example, if VARCHAR=YES is specified and you write the following:

01 LASTNAME.
48 LASTNAME-LEN PIC S9(4) COMP.
48 LASTNAME-TEXT PIC X(15).

then, since level 48 instead of 49 is used for the group item elements, the item is
interpreted as a regular group item rather than a VARCHAR group item.

For more information about the Pro*COBOL VARCHAR option, see Chapter 14,
"Precompiler Options"

Referencing VARCHAR Variables

In SQL statements, you reference a VARCHAR variable using the group name
prefixed with a colon, as the following example shows:

WORKING-STORAGE SECTION.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 PART-NUMBER PIC X(5).
01 PART-DESC PIC X(20) VARYING.

EXEC SQL END DECLARE SECTION END-EXEC.
PROCEDURE DIVISION.

EXEC SQL

SELECT PDESC INTO :PART-DESC FROM PARTS

WHERE PNUM = :PART-NUMBER
END-EXEC.

After the query executes, PART-DESC-LEN holds the actual length of the character
string retrieved from the database and stored in PART-DESC-ARR.

4-28 Pro*COBOL Precompiler Programmer’s Guide

Handling Character Data

Handling Character Data

This section explains how Pro*xCOBOL handles character host variables. There are
two kinds of single-byte character host variables and two kinds of multi-byte NLS
character host variables:

« PIC X(n) (or PIC X...X)
» PIC X(n) VARYING (or PIC X..X VARYING)
« PIC N(n) (or PIC N...N) or PIC G(n) (or PIC G...G)

Attention: Before using multi-byte NCHAR datatypes, verify that the PIC N or
PIC G datatype is supported by your COBOL compiler.

Default for PIC X

The default datatype of PIC X variables is CHARF (was VARCHAR2 before release
8.0.) The precompiler command line option, PICX, is provided for backward
compatibility. PICX can be entered only on the command line or in a configuration
file. See "PICX" on page 14-34 for more details.

Effects of the PICX Option

The PICX option determines how Pro*COBOL treats data in character strings. The
PICX option allows your program to use ANSI fixed-length strings or to maintain
compatibility with previous versions of the database server and Pro*COBOL.

You must use PICX=VARCHAR?2 (not the default) to obtain the same results as
releases of Pro*xCOBOL before 8.0. Or, use

EXEC SQL vamame IS VARCHARZ2 END-EXEC.

for each variable.

Fixed-Length Character Variables

Fixed-length character variables are declared using the PIC X(n) and PIC G(n) and
PIC N(n) datatypes. These types of variables handle character data based on their roles as
input or output variables.

On Input

When PICX=VARCHARZ2, the program interface strips trailing blanks before
sending the value to the database. If you insert into a fixed-length CHAR column,

Datatypes and Host Variables 4-29

Handling Character Data

Pro*COBOL re-appends trailing blanks up to the length of the database column.
However, if you insert into a variable-length VARCHAR2 column, Pro*COBOL
never appends blanks.

When PICX=CHAREF, trailing blanks are never stripped.

Make sure that the input value is not trailed by extraneous characters. Normally,
this is not a problem because when a value is ACCEPTed or MOVEd into a PIC X(n)
variable, COBOL appends blanks up to the length of the variable.

The following example illustrates the point:
WORKING-STORAGE SECTION.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 EMPLOYEES.

05 EMP-NAME PIC X(10).

05 DEPT-NUMBER PIC S9(4) VALUE 20 COMP.

05 EMP-NUMBER PIC S9(9) VALUE 9999 COMP.

05 JOBNAME PICX(@).

EXEC SQL END DECLARE SECTION END-EXEC.
PROCEDURE DIVISION.

DISPLAY "Employee name? " WITH NO ADVANCING.
ACCEPT EMP-NAME.
* Assume that the name MILLER was entered
* EMP-NAME contains "MILLER " (4 trailing blanks)
MOVE "SALES" TO JOB-NAME.
* JOB-NAME now contains "SALES " (3 tralling blanks)
EXEC SQL INSERT INTO EMP (EMPNO, ENAME, DEPTNO, JOB)
VALUES (EMP-NUMBER, :EMP-NAME, :DEPT-NUMBER, :JOB-NAME
END-EXEC.

If you precompile the last example with PICX=VARCHAR?2 and the target database
columns are VARCHAR?2, the program interface strips the trailing blanks on input
and inserts just the 6-character string "MILLER" and the 5-character string "SALES"
into the database. However, if the target database columns are CHAR, the strings
are blank-padded to the width of the columns.

If you precompile the last example with PICX=CHARF and the JOB column is
defined as CHAR(10), the value inserted into that column is "SALES##H##" (five
trailing blanks). However, if the JOB column is defined as VARCHAR?2(10), the

4-30 Pro*COBOL Precompiler Programmer’s Guide

Handling Character Data

value inserted is "SALES###" (three trailing blanks), because the host variable is
declared as PIC X(8). This might not be what you want, so be careful.

On Output

The PICX option has no effect on output to fixed-length character variables. When
you use a PIC X(n) variable as an output host variable, Pro*COBOL blank-pads it. In our
example, when your program fetches the string "MILLER" from the database, EMP-NAME
contains the value "MILLER##4" (with four trailing blanks). This character string can be
used without change as input to another SQL statement.

Varrying-Length Variables

VARCHAR variables handle character data based on their roles as input or output
variables.

On Input

When you use a VARCHAR variable as an input host variable, your program must
assign values to the length and string fields of the expanded VARCHAR
declaration, as shown in the following example:

IFENAME-IND =-1
MOVE "NOT AVAILABLE" TO ENAME-ARR
MOVE 13 TO ENAME-LEN.

You need not blank-pad the string variable. In SQL operations, Pro*COBOL uses
exactly the number of characters given by the length field, counting any spaces.

Host input variables for multi-byte NLS data are not stripped of trailing double-byte
spaces. The length component is assumed to be the length of the data in characters,