
Oracle® Fusion Middleware
Developing Applications for Oracle Event Processing

12c Release (12.1.3)

E28538-09

November 2016

How to design and create Oracle Event Processing scalable
applications to process streaming events.

Oracle Fusion Middleware Developing Applications for Oracle Event Processing, 12c Release (12.1.3)

E28538-09

Copyright © 2007, 2015, Oracle and/or its affiliates. All rights reserved.

Primary Author: Oracle® Corporation

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless
otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates
will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface .. xi

Audience ... xi

Related Documents.. xi

Conventions.. xi

What's New in This Guide.. xiii

Part I Application Development

1 Introduction to Application Development

1.1 New in this Release ... 1-1

1.2 EPN Diagram.. 1-3

1.3 Component Configuration ... 1-3

1.4 Streams and Relations ... 1-5

1.5 Application Scalability and High Availability .. 1-6

1.6 Application Life Cycle... 1-6

1.7 API Overview... 1-9

1.8 Spring Framework... 1-13

1.9 OSGi Service Platform... 1-14

2 Application and Resource Configuration

2.1 Application Configuration ... 2-1

2.2 Assembly File Structure.. 2-2

2.2.1 Nested Stages in an EPN Assembly File ... 2-3

2.2.2 Foreign Stages in an EPN Assembly File .. 2-4

2.3 Component Configuration File Structure .. 2-5

2.4 Component and Server Configuration ... 2-5

2.5 Resource Access Configuration ... 2-6

2.5.1 Resource Access Annotations... 2-7

2.5.2 Static Resource Injection.. 2-7

2.5.3 Dynamic Resource Injection ... 2-9

iii

2.5.4 Dynamic Resource Lookup Using JNDI ... 2-9

2.5.5 Resource Name Resolution... 2-9

3 Events and Event Types

3.1 How Events Function.. 3-1

3.2 Choose a Data Structure for the Event Type ... 3-2

3.3 Design Constraints .. 3-3

3.4 Event Type Repository.. 3-6

3.5 Properties .. 3-6

3.6 Interval and Time Stamp Properties ... 3-7

3.6.1 Interval Properties.. 3-7

3.6.2 Time Stamp with Local Time Zone Properties .. 3-8

3.7 Create and Register a JavaBean Event Type .. 3-8

3.7.1 Data Types... 3-8

3.7.2 Create a JavaBean Event Type Declaratively ... 3-9

3.7.3 Create a JavaBean Event Type Programmatically ... 3-10

3.7.4 Usages .. 3-10

3.8 Create and Register a Tuple Event Type.. 3-11

3.8.1 Create a Tuple Event Type in the Assembly File... 3-11

3.8.2 Use a Tuple Event Type in Java Code ... 3-12

3.8.3 Use a Tuple Event Type Instance in Oracle CQL Code .. 3-12

3.9 Create and Register a Map Event Type .. 3-13

3.10 Access the Event Type Repository .. 3-14

3.10.1 EPN Assembly File... 3-14

3.10.2 Spring-DM @ServiceReference Annotation.. 3-15

3.10.3 Oracle Event Processing @Service Annotation .. 3-15

3.11 Share Event Types Between Application Bundles.. 3-15

3.12 Control Event Type Instantiation with an Event Type Builder Class.................................. 3-16

3.12.1 Implement an Event Type Builder Class .. 3-17

3.12.2 An Event Type that Uses an Event Type Builder .. 3-17

4 Adapters

4.1 Create Adapters ... 4-2

4.2 Cluster Distribution Service ... 4-2

4.3 Password Encryption .. 4-3

4.4 JAXB Support ... 4-3

4.4.1 EclipseLink Moxy... 4-3

4.4.2 APIs .. 4-3

4.5 CSV Adapters ... 4-6

4.6 EDN Adapters .. 4-7

4.6.1 Usage .. 4-8

4.6.2 Create EDN Adapters .. 4-8

4.7 File Adapter .. 4-9

iv

4.8 HTTP Publish-Subscribe Adapter ... 4-9

4.9 HTTP Publish-Subscribe Adapter Custom Converter Bean.. 4-10

4.9.1 Bayeux Protocol .. 4-11

4.9.2 Create a Custom Converter Bean... 4-11

4.10 JMS Adapters.. 4-12

4.10.1 Service Providers .. 4-12

4.10.2 Inbound Adapter Configuration.. 4-13

4.10.3 Outbound Adapter Configuration... 4-14

4.11 JMS Custom Message Converter Bean ... 4-14

4.11.1 Implement Interfaces ... 4-15

4.11.2 Implement the Inbound JMS Adapter... 4-15

4.11.3 Implement the Outbound JMS Adapter ... 4-16

4.12 Oracle Business Rules Adapter.. 4-17

4.13 REST Adapter... 4-19

4.14 RMI Adapters ... 4-20

5 Channels

5.1 When to Use a Channel... 5-1

5.2 Channel Configuration ... 5-2

5.2.1 Assembly File.. 5-2

5.2.2 Configuration File .. 5-3

5.3 Control Which Queries Output to a Downstream Channel .. 5-3

5.4 Batch Processing Channels... 5-4

5.5 Fault Handling ... 5-4

5.6 EventPartitioner Channels.. 5-5

6 Oracle CQL Processors

6.1 Processor Data Sources ... 6-1

6.2 Assembly and Configuration Files.. 6-2

6.3 Queries .. 6-2

6.3.1 Stream Channels... 6-3

6.3.2 Time-Based Relations (Windows).. 6-4

6.3.3 Processor Output Control (Slides) ... 6-7

6.3.4 Views.. 6-8

6.4 CQL Aggregations... 6-9

6.5 Configure a Table Source.. 6-10

6.5.1 Assembly File.. 6-10

6.5.2 Configuration File .. 6-10

6.6 Configure an Oracle CQL Processor for Parallel Query Execution.. 6-11

6.6.1 Set Up Parallel Query Execution Support .. 6-12

6.6.2 The ordering-constraint Attribute ... 6-12

6.6.3 Using partition-order-capacity with Partitioning Queries... 6-13

6.6.4 Limitations... 6-14

v

6.7 Fault Handling ... 6-15

6.7.1 Implement a Fault Handler Class .. 6-16

6.7.2 Register a Fault Handler.. 6-17

7 Event Beans

7.1 Event Beans and Spring Beans... 7-1

7.1.1 Threading Behavior.. 7-2

7.1.2 Receive Heartbeat Events.. 7-2

7.1.3 Create an Event Bean ... 7-2

7.1.4 Create a Spring Bean.. 7-3

7.2 Event Sink Interfaces ... 7-3

7.2.1 Implement StreamSink .. 7-4

7.2.2 Implement RelationSink.. 7-5

7.3 Event Source Interfaces... 7-6

7.3.1 Implement StreamSender.. 7-7

7.3.2 Implement RelationSender ... 7-7

8 Cached Event Data

8.1 Caching Defined .. 8-1

8.1.1 Supported Caching Implementations ... 8-2

8.1.2 Use Cases ... 8-2

8.2 Configure an Oracle Coherence Caching System and Cache.. 8-3

8.2.1 Assembly File.. 8-4

8.2.2 Configuration File .. 8-5

8.2.3 Cache Loader Bean... 8-7

8.3 Configure a Local Caching System and Cache.. 8-8

8.3.1 Assembly File.. 8-8

8.3.2 Configuration File .. 8-8

8.4 Configure a Cache as an Event Listener... 8-10

8.5 Index a Cache with a Key ... 8-10

8.5.1 Assembly File.. 8-10

8.5.2 Metadata Annotation... 8-11

8.5.3 Composite Key ... 8-11

8.6 Configure a Cache as an Event Source ... 8-11

8.7 Configure a Cache with a Cache Listener .. 8-12

8.8 Configure a Third-Party Caching System and Cache .. 8-12

8.9 Exchange Data Between a Cache and Another Data Source... 8-14

8.9.1 Load Cache Data from a Read-Only Data Source ... 8-14

8.9.2 Exchange Data with a Read-Write Data Source... 8-16

8.10 Access a Cache from Application Code ... 8-17

8.10.1 Access a Cache from an Oracle CQL Statement .. 8-18

8.10.2 Access a Cache from an Adapter ... 8-20

8.10.3 Access a Cache From a Business POJO ... 8-21

vi

8.10.4 Access a Cache From an Oracle CQL User-Defined Function................................... 8-21

8.10.5 Access a Cache with JMX .. 8-23

9 EclipseLink, JPA, and Oracle Coherence

9.1 High-Level Procedure ... 9-1

9.2 HelloWorld Example... 9-2

9.2.1 persistence.xml Configuration File .. 9-2

9.2.2 HelloWorldAdapter.java... 9-2

9.2.3 HelloWorldEvent.java ... 9-4

9.2.4 HelloWorldBean.java... 9-4

9.3 JPA Coherence Example ... 9-6

9.3.1 persistence.xml Configuration File .. 9-6

9.3.2 Classes.. 9-6

10 Web Services

10.1 Supported Platforms ... 10-1

10.2 Invoke a Web Service From an Application .. 10-1

10.3 Expose an Application as a Web Service.. 10-2

11 Parameterized Applications

11.1 Application Parameters .. 11-1

11.2 Object Class Definitions .. 11-1

11.3 Attribute Descriptions... 11-2

11.4 Targeting ... 11-2

11.5 Example metatype File.. 11-3

11.6 Where You Can Use Parameterized Applications .. 11-4

11.6.1 Document an Application ... 11-4

11.6.2 Channel Configuration .. 11-4

11.6.3 Oracle CQL Processor Query.. 11-5

11.7 Deploy the HelloWorld Application... 11-5

12 Internationalization

12.1 Message Catalogs... 12-1

12.1.1 Hierarchy ... 12-2

12.1.2 Naming .. 12-2

12.1.3 Message Arguments... 12-3

12.1.4 Formats .. 12-4

12.1.5 Message Catalog Localization .. 12-5

12.2 Generate Localization Classes.. 12-6

vii

Part II Deploy, Test, and Debug

13 Assemble and Deploy

13.1 OSGi bundles.. 13-1

13.2 Application Dependencies ... 13-2

13.3 Application Libraries... 13-3

13.3.1 Library Directory.. 13-3

13.3.2 Library Extensions Directory.. 13-3

13.4 Deployment Order... 13-3

13.5 Configuration History... 13-4

13.6 Assemble an OSGi Bundle with appC.. 13-4

13.7 Assemble an OSGi Bundle with bundle.sh.. 13-6

13.7.1 Prepare and Organize the Files .. 13-6

13.7.2 Create the MANIFEST.MF File... 13-7

13.7.3 Include Third-Party JAR Files .. 13-9

13.7.4 Access Third-Party JAR Files with -Xbootclasspath ... 13-10

13.7.5 Reference Foreign Stages... 13-10

13.7.6 Assemble an OSGi Bundle that Activates... 13-11

13.8 Deploy an OSGi Bundle.. 13-14

14 Testing 1-2-3

14.1 Load Generator and the csvgen Adapter ... 14-1

14.1.1 Create the Properties File .. 14-2

14.1.2 Create the Data Feed File .. 14-2

14.1.3 Configure the csvgen Adapter in Your Application ... 14-3

14.2 Event Inspector Service... 14-4

14.2.1 Event Types ... 14-5

14.2.2 HTTP Publish-Subscribe Channel and Server ... 14-6

14.2.3 Configure a Local or Remote Server.. 14-7

14.2.4 Inject Events .. 14-8

14.2.5 Trace Events .. 14-8

14.2.6 Event Inspector API ... 14-9

14.3 EPN Shell .. 14-10

14.3.1 Oracle CQL Queries ... 14-11

14.3.2 Management Commands .. 14-11

14.3.3 Regression Testing ... 14-13

14.3.4 EPN Variable... 14-13

14.3.5 EPN Commands ... 14-13

14.3.6 Management Commands .. 14-14

14.4 EPN Command Interface.. 14-15

14.4.1 Session Variables .. 14-15

14.4.2 Methods ... 14-15

viii

14.4.3 Example ... 14-16

15 Debug with Event Record and Playback

15.1 Event Flow .. 15-1

15.2 Berkeley DB .. 15-2

15.3 Record Events... 15-2

15.4 Play Back Events .. 15-3

15.5 Configure Berkeley DB ... 15-3

15.6 Configure a Component to Record Events .. 15-4

15.7 Configure a Component to Play Back Events.. 15-7

15.8 Start and Stop the Record and Playback of Events... 15-10

Part III Tune and Scale

16 Performance Tuning

16.1 Channel and JMS Performance Tuning.. 16-1

16.2 High Availability Performance Tuning.. 16-1

17 High Availability Applications

17.1 Oracle Coherence ... 17-1

17.2 Architecture .. 17-1

17.3 Life Cycle and Failover ... 17-2

17.3.1 Secondary Failure... 17-3

17.3.2 Primary Failure and Failover.. 17-3

17.3.3 Rejoining the High Availability MultiServer Domain .. 17-4

17.4 Deployment Group and Notification Group... 17-4

17.5 High Availability Adapters.. 17-5

17.5.1 High Availability Input Adapter ... 17-6

17.5.2 Buffering Output Adapter .. 17-7

17.5.3 Broadcast Output Adapter.. 17-7

17.5.4 Correlating Output Adapter... 17-7

17.6 High Availability and Scalability .. 17-8

17.7 Choose a Quality of Service Option .. 17-9

17.7.1 Simple Failover ... 17-9

17.7.2 Simple Failover with Buffering .. 17-10

17.7.3 Light-Weight Queue Trimming ... 17-10

17.7.4 Precise Recovery with JMS.. 17-11

17.8 Design Applications for High Availability .. 17-12

17.8.1 Primary High Availability Use Case ... 17-12

17.8.2 High Availability Design Patterns .. 17-13

17.8.3 Oracle CQL Query Restrictions ... 17-18

17.9 Configure High Availability Quality of Service.. 17-19

17.9.1 Configure a Simple Failover ... 17-19

ix

17.9.2 Configure Simple Failover With Buffering... 17-21

17.9.3 Configure Light-Weight Queue Trimming .. 17-23

17.9.4 Configure Precise Recovery With JMS.. 17-29

17.10 Configure High Availability Adapters... 17-34

17.10.1 Configure the High Availability Input Adapter.. 17-35

17.10.2 Configure the Buffering Output Adapter... 17-36

17.10.3 Configure the Broadcast Output Adapter .. 17-38

17.10.4 Configure the Correlating Output Adapter ... 17-40

18 Scalable Applications

18.1 Default Channel Scalability Settings... 18-1

18.1.1 Configure Partitioning on the Channel... 18-2

18.1.2 Configure Parallel Processing on the Channel... 18-2

18.1.3 Configure Parallel Processing on the Upstream Adapter .. 18-3

18.2 Partition an Incoming JMS Event Stream... 18-3

18.2.1 Configure Partitioning without High Availability.. 18-4

18.2.2 Configure Partitioning with High Availability.. 18-6

18.3 Notification Group Naming Conventions ... 18-11

18.4 Custom Channel Event Partitioner ... 18-11

18.4.1 EventPartitioner Interface ... 18-11

18.4.2 Implement the EventPartitioner Interface .. 18-12

x

Preface

This document describes how to create, deploy, and debug Oracle Event Processing
applications.

Audience
This document is intended for developers who want to create Oracle Event Processing
applications.

Related Documents
For more information, see the following:

• Administering Oracle Event Processing

• Getting Started with Oracle Event Processing

• Schema Reference for Oracle Event Processing

• Using Visualizer for Oracle Event Processing

• Customizing Oracle Event Processing

• Developing Applications with Oracle CQL Data Cartridges

• Oracle CQL Language Reference for Oracle Event Processing

• Java API Reference for Oracle Event Processing

• Using Oracle Stream Explorer

• Getting Started with Oracle Stream Explorer

• Oracle Database SQL Language Reference at: http://docs.oracle.com/cd/
E16655_01/server.121/e17209/toc.htm

• SQL99 Specifications (ISO/IEC 9075-1:1999, ISO/IEC 9075-2:1999, ISO/IEC
9075-3:1999, and ISO/IEC 9075-4:1999)

• Oracle Event Processing Forum: http://forums.oracle.com/forums/
forum.jspa?forumID=820.

Conventions
The following text conventions are used in this document:

xi

http://docs.oracle.com/cd/E16655_01/server.121/e17209/toc.htm
http://docs.oracle.com/cd/E16655_01/server.121/e17209/toc.htm
http://forums.oracle.com/forums/forum.jspa?forumID=820
http://forums.oracle.com/forums/forum.jspa?forumID=820

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xii

What's New in This Guide

The following table lists sections that have been added or changed. See Introduction to
Application Development for a description of new features for this release.

For information about customizing adapters, event beans, and event store providers,
see Using Visualizer for Oracle Event Processing.

The support for QuickFix Adapter has been deprecated in this release.

Sections Description

Entire Guide Product renamed to Oracle Event Processing.

Part I: Getting Started with Creating
Oracle Event Processing
Applications

This section is now in the book Getting Started with Oracle Event
Processing.

Part II: Oracle Event Processing IDE
for Eclipse

This section is replaced by chapters on Oracle JDeveloper in the book
Getting Started with Oracle Event Processing.

Part III: Developing Oracle Event
Processing Applications

This is now Part I: Developing Oracle Event Processing Applications

Chapter 8 Walkthrough: Assembling
a Simple Application

This chapter is now in the book Getting Started with Oracle Event
Processing.

Introduction to Application
Development

This chapter has been rewritten to introduce Oracle Event Processing for
developers.

Application and Resource
Configuration

This chapter was added to provide information about the application
configuration files and how to create them.

xiii

Part I
Application Development

Part I contains the following chapters

• Introduction to Application Development

• Application and Resource Configuration

• Events and Event Types

• Adapters

• Channels

• Oracle CQL Processors

• Event Beans

• Cached Event Data

• Web Services

• Parameterized Applications.

1
Introduction to Application Development

An Oracle Event Processing application monitors and processes streaming data in real
time. Streaming data flows into, through, and out of an application. Raw data flows
into the application and is converted into events. Events flow through application
stages for processing and filtering according to your application requirements. At the
end, the application converts the processed and filtered events back to data in a format
that is suitable for the destination, which could be, for example, storage, display on a
web page, or further processing by another application.

If you are new to Oracle Event Processing application development, start with Event
Processing Overview in Getting Started with Oracle Event Processing. The getting started
guide presents an overview of Oracle Event Processing, provides hands-on
walkthroughs, and describes the sample applications. This guide explains how to
create, configure, and deploy an Oracle Event Processing application with the
components provided in the platform. If you want to build an application with
customized adapters or event beans, see Custom Adapters in Customizing Oracle Event
Processing.

• EPN Diagram

• Component Configuration

• Streams and Relations

• Application Scalability and High Availability

• Application Life Cycle

• API Overview

• Spring Framework

• OSGi Service Platform.

1.1 New in this Release
The 12c release includes the following new features:

• QuickStart Installation that provides Oracle JDeveloper with the Oracle event
Processing plug-in and an integrated Oracle WebLogic Server. The integrated
Oracle WebLogic Server enables you to write applications that exchange event data
with Oracle SOA Suite. See EDN Adapters.

• Oracle JDeveloper supports Oracle Event Processing application development.
When you launch Oracle JDeveloper in the Studio Developer (All Features) role, it
provides a full feature set for creating Oracle Event Processing applications. See
Getting Started with Oracle Event Processing.

Introduction to Application Development 1-1

• Oracle CQL Features.

– Oracle CQL Pattern components in Oracle JDeveloper. The Oracle CQL pattern
components provide templates to help you form standard event queries, such as
detecting missing events, averaging a series of events, partitioning by event
pattern, and multiple forms of selections. Getting Started with Oracle Event
Processing

– Oracle CQL fault handler enables you to write code to handle faults that occur
in code that does not have an inherent fault handling mechanism. See Oracle
CQL Processors.

– A CQL aggregation aggregates events into a Java collection so you can use the
Collection APIs to manipulate the events. See Oracle CQL Language Reference for
Oracle Event Processing.

– Hadoop and Oracle NoSQLDB Big Data extensions. Hadoop is a data cartridge
extension for an Oracle CQL processor to provide access to large quantities of
data in a Hadoop distributed file system (HDFS). HDFS is a non-relational data
store. NoSQLDB is a data cartridge extension for an Oracle CQL processor to
provide access to large quantities of data in an Oracle NoSQL Database. The
Oracle NoSQLDB Database stores data in key-value pairs. See Developing
Applications with Oracle CQL Data Cartridges.

– Spatial cartridge performance enhancements for better monitoring of geometric
shapes that pass through the EPN. See Developing Applications with Oracle CQL
Data Cartridges.

• Adapters. Oracle Event Processing provides a number of different kinds of
inbound and outbound adapters to handle different types of data such as CSV,
Event Delivery Network (EDN), REST, RMI, Oracle Business Rules (OBR), HTTP,
and JMS. See Adapters.

• Testing tools. Testing tools include the load generator with the CSV inbound
adapter to simulate a data feed, an event inspector service to debug Oracle CQL
queries, and EPN shell commands to test the EPN from the command line. See
Testing 1-2-3.

• Parameterized applications contain application metadata in parameters that is used
to configure and customize the application. See Parameterized Applications.

• Java Persistence API (JPA) is available for you to use in your Oracle Event
Processing Java code. The Oracle Event Processing installation includes the
EclipseLink open source mapping and persistence framework to support the use of
JPA in your applications. See EclipseLink, JPA, and Oracle Coherence.

• Custom data cartridges: The Data Cartridge SPI is now public so users and vendors
can create cartridges to plug into Oracle Event Processing to extend Oracle CQL.
See Java API Reference for Oracle Event Processing and Developing Applications with
Oracle CQL Data Cartridges.

• JAXB support. Oracle Event Processing provides a simplified interface for using
Java Architecture for XML Binding (JAXB) mapping capabilities in adapters and
event beans. See JAXB Support.

New in this Release

1-2 Developing Applications for Oracle Event Processing

1.2 EPN Diagram
Oracle Event Processing application development centers on the Event Processing
Network (EPN) application model. The EPN diagram represents how event data flows
into, through, and out of an Oracle Event Processing application. You assemble the
EPN diagram in Oracle JDeveloper by selecting and configuring EPN components and
providing logic as needed. In an EPN diagram, event data flows from left to right.

The figure shows the EPN diagram for the TradeReport application. Data enters the
EPN through the StockTradeCSV adapter on the left, which handles data in the form
of comma-separated values (CSV). The StockTradeCSVadapter logic translates the
incoming CSV data into Oracle Event Processing events. The AdapterOutputChannel
carries the newly generated events to the Oracle CQL processor.

The GetHighVolumeProcessor component queries the events as they stream through
and selects stock trades that have a volume greater than 4000. The
ProcessorOutputChannel component sends the selected events to the ListenerBean
component, which prints their stock symbol and volume information to the command
line.

Create Oracle Event Processing Project in Getting Started with Oracle Event Processing
describes how to use Oracle JDeveloper to create Oracle Event Processing applications.
A walkthough of the TradeReport application and a fraud detection application are
included.

1.3 Component Configuration
When you develop an Oracle Event Processing application, you assemble and
configure a network of components into an EPN.

Each component has a role in processing the data. The following sections describe
EPN components and their roles.

Events and Event Types

An event type is a data structure that defines the data contained in an event. Event
types are the foundation of the EPN because they determine how event data funnels
through the EPN and the operations that can be performed on it. When you start your
application, the first thing to do is to create the event type or types for your EPN
because you will need to configure components such as adapters, channels, relational
database tables, and big data storage with the appropriate event type.

Adapters

Oracle Event Processing provides a selection of input and output adapters to
accommodate every type of data that might flow into and out of the EPN. For
example, you can access Java Message Service (JMS) objects, an HTTP Publish-
Subscribe server, and financial market feeds. You can also develop your own adapters
to integrate systems that are not supported by default. See Configure the Event Type
Repository in Using Visualizer for Oracle Event Processing.

EPN Diagram

Introduction to Application Development 1-3

You configure adapters with an event type and other relevant configuration
information. The specific configuration depends on whether the adapter handles event
input or output and the source of the data. For example, in the TradeReport
application, the input CSV adapter configuration specifies the location of the CSV file,
and values that tell the adapter when to start reading the CSV file and how long to
wait between consecutive readings.

Channels

You configure a channel with an event type so that it can transfer events of that type to
the next stage in the EPN that is appropriate for the given event type. A channel can
represent either a stream or a relation.

A stream or relation channel inserts events into a collection and sends the resulting
stream to the next EPN stage. Events in a stream can never be deleted from the stream.
Events in a relation can be inserted into, deleted from, and updated in the relation. For
insert, delete, and update operations, events in a relation must always be referenced to
a particular point in time. See Streams and Relations for more information.

Oracle CQL Processors

You configure Oracle CQL processors with Oracle CQL query code to examine events
as they pass through. The Oracle JDeveloper Components window provides CQL
Patterns to facilitate the formation of Oracle CQL queries. The wizard for each CQL
Pattern prompts you for the correct configuration data to ensure that you form a valid
Oracle CQL query.

Beans

A bean defines application event logic written in the Java programming language that
conforms to standard Spring-based beans.

An event bean is a Java class that implements logic to listen for and work on events.
This type of Java class is called a listener Java class. A listener that receives events
(event sink) might create new events when it finds a certain type of data and send the
new events to the next stage for further processing. A listener event sink can also
initiate other processes in the same or in another application based on the event data.

Spring beans are managed by the Spring framework, and are a good choice if you
want to integrate your bean to an existing Spring deployment. Event beans use Oracle
Event Processing conventions for configuring beans so that they are managed by the
Oracle Event Processing server. With an event bean, for example, you get the support
of Oracle Event Processing server features such as monitoring and event record and
playback. You can use event record and playback to debug an application.

Caching

You can integrate a cache system with your Oracle Event Processing application to
make a cache available as source or destination for data and event data that your
application uses. Integrating a cache can provide access to relatively static data at a
speed that is suited to an application that handles streaming data.

A cache is a temporary storage area for events that you can create to improve the
overall performance of your Oracle Event Processing application. A cache is not
necessary for the application to function correctly. To increase the availability of the
events and increase the performance of their applications, Oracle Event Processing
applications can publish to or consume events from a cache.

A caching system defines a named set of configured caches. Oracle Event Processing
distributes the configuration for remote cache communications across multiple
servers. The Spring context file supports caching configuration. Listeners that are
configured with a Spring context file receive events from the cache.

Component Configuration

1-4 Developing Applications for Oracle Event Processing

Data-Related Components

Table: The Table component provides access to a relational database. You configure
the Table component with an ID, event type, and a data source to feed specific events
into a relational database table. Oracle Event Processing provides the Hadoop and
NoSQLDB data cartridges for accessing big data storage.

Hadoop: A data cartridge extension for an Oracle CQL processor to access large
quantities of data in a Hadoop distributed file system (HDFS). HDFS is a non-
relational data store. The Oracle CQL processor provides the Oracle CQL query code
for the big data access. You configure Hadoop with an ID, event type, the path to the
database, and the file separator character.

NoSQLDB: A data cartridge extension for an Oracle CQL processor to access large
quantities of data in an Oracle NoSQL Database. The Oracle NoSQLDB Database
stores data in key-value pairs. The Oracle CQL processor provides the Oracle CQL
query code for the big data access. You configure NoSQLDB with an ID, event type,
store name, and store locations.

1.4 Streams and Relations
An Oracle Event Processing application handles events that arrive in a stream as raw
event data. The raw event data enters the EPN through an adapter that converts the
raw event data into an event. An event is an ordered set of values (tuple).

Events are similar to a table row in a relational database in that an event has a schema.
The event schema defines the properties and types for each event value. Events are
unlike a table row in a database in that a table row contains static data. In a stream of
events, when an event arrives, including which event arrives before or after another
event, can make a difference. Your application needs to be able to account for time and
sequence.

For example, in an application that processes stock trades, events made up of stock
symbol, price, last price, percentage change, and volume information would arrive one
after the other in the order in which each trade was executed. Your application logic
might look for trades of one stock that occurred immediately after trades of another.

In an event processing application, the sequence in which events occur in a stream is
as important as the data types and values of each event property. Oracle Event
Processing programming conventions reflect the importance of time and sequence.

Your code needs to discover which events are related to one another based on certain
criteria, such as a shared stock symbol. Your code also needs to discover sequence
patterns, such as trades within fifteen seconds of one another. To account for both the
sequential and relational aspects of event data, Oracle Event Processing implements
the concepts of streams and relations through low latency channels.

• A stream is a potentially infinite sequence of events where each event has its own
time stamp. In a stream, the events must be ordered by time, one after the other, so
that time stamps do not decrease from one event to the next. There can be events in
a stream that have the same time stamp.

• In a relation, sequence might be unimportant. Instead, events in a relation are
related because they meet certain criteria. For example, events in a relation might
be the result of a query executed against a stream of stock trades, where the query
looks for trade volumes above a particular level.

In a stream of stock trade events, the events arrive in sequence and each event has its
own time stamp. To isolate the share price for trades that occurred within 5 seconds of

Streams and Relations

Introduction to Application Development 1-5

one another, configure an Oracle CQL processor to query the stream when it arrives
from the channel with the following Oracle CQL code:

select price from StockTradeChannel [range 5 seconds]

Because the query uses the [range 5 seconds] window to isolate the events, the
output of this query is a relation. Although the events returned from the query have
time stamps, they are unordered in the relation. Because the incoming events are in a
stream, the query executes continuously against every 5 seconds' worth of events as
they pass into the Oracle CQL processor. As new events come along, those meeting the
query terms are inserted into the relation, while those that do not meet the query
terms are deleted from the relation.

This is important because the integrity of the order in a stream is important.
Technically, a stream is a continuously moving and ordered set of events. In a stream,
every event is inserted into the stream one after the other. When you get a subset of
the stream from a CQL query, you no longer have the order. Before you pass a relation
to the next stage in the EPN, you can convert the relation back into a stream with the
IStream operator.

1.5 Application Scalability and High Availability
A scalable Oracle Event Processing application incorporates Oracle Event Processing
design patterns with implementation and configuration conventions to ensure that the
application operation scales as the event load increases.

You can achieve scalability and high availability by integrating application design
patterns, server resources, and configuration conventions so that your deployed
application continues to operate even in the event of software or hardware failures.

For more information, see the following:

High Availability Applications.

Scalable Applications.

1.6 Application Life Cycle
Figure 1-1 shows a state diagram for the Oracle Event Processing application life cycle.
In this diagram, the state names (STARTING, INITIALIZING, RUNNING,
SUSPENDING, SUSPENDED, and FAILED) correspond to the
ApplicationRuntimeMBean method getState return values. These states are
specific to Oracle Event Processing. They are not OSGi bundle states.

Application Scalability and High Availability

1-6 Developing Applications for Oracle Event Processing

Figure 1-1 Oracle Event Processing Application Life Cycle State Diagram

Note:

For information on Oracle Event Processing server life cycle, see Server Life
Cycle in Administering Oracle Event Processing.

This section describes the life cycle of an application deployed to the Oracle Event
Processing server and the sequence of com.bea.wlevs.ede.api API callbacks. The
information explains how Oracle Event Processing manages an application's life cycle
so that you can better use the life cycle APIs in your application. For a description of
these life cycle APIs (such as RunnableBean and SuspendableBean), see:

• API Overview

• Java API Reference for Oracle Event Processing.

The life cycle description is broken down into actions that a user performs, including
those described in the following sections.

Install an Application or Start the Server with the Application Deployed

Oracle Event Processing performs the following actions:

1. Oracle Event Processing installs the application as an OSGI bundle. OSGI resolves
the imports and exports, and publishes the service.

2. Oracle Event Processing creates beans (for both standard Spring beans and those
that correspond to the Oracle Event Processing tags in the EPN assembly file). For
each bean, Oracle Event Processing:

• Sets the properties on the Spring beans. The <wlevs:instance-property>
values are set on adapters and event-beans.

• Injects appropriate dependencies into services specified by @Service or
@ServiceReference annotations.

Application Life Cycle

Introduction to Application Development 1-7

• Injects appropriate dependencies into static configuration properties.

• Calls the InitializingBean.afterPropertiesSet method.

• Calls configuration callbacks (@Prepare,@Activate) on Spring beans as well
as factory-created stages.

For more information, see Resource Access Configuration.

3. Application state is now INITIALIZING.

4. Oracle Event Processing registers the MBeans.

5. Oracle Event Processing calls the
ActivatableBean.afterConfigurationActive method on all
ActivatableBeans.

6. Oracle Event Processing calls the ResumableBean.beforeResume method on
all ResumableBeans.

7. For each bean that implements RunnableBean, Oracle Event Processing starts it
running in a thread.

8. Application state is now RUNNING.

Suspend the Application

Oracle Event Processing performs the following actions:

1. Oracle Event Processing calls the SuspendableBean.suspend method on all
SuspendableBeans.

2. Application state is now SUSPENDED.

Resume the Application

Oracle Event Processing performs the following actions:

1. Oracle Event Processing calls the ResumableBean.beforeResume method on
all ResumableBeans

2. For each bean that implements RunnableBean, starts it running in a thread.

3. Application state is now RUNNING.

Uninstall the Application

Oracle Event Processing performs the following actions:

1. Oracle Event Processing calls the SuspendableBean.suspend method on all
SuspendableBeans.

2. Oracle Event Processing unregisters MBeans.

3. calls the DisposableBean.dispose method on all DisposableBeans.

4. Oracle Event Processing uninstalls application bundle from OSGI.

Updating the application

This is equivalent to first uninstalling an application and then installing it again.

See those user actions in this list.

Application Life Cycle

1-8 Developing Applications for Oracle Event Processing

Call Methods of Stream and Relation Sources and Sinks

You cannot call a method on a stream or relation source or sink from a life cycle
callback because components might not be ready to receive events until after these
phases of the application life cycle completes.

For example, you cannot call StreamSender method sendInsertEvent from a life
cycle callback such as such as afterConfigurationActive or beforeResume.

You can call a method on a stream or relation source or sink from the run method of
beans that implement RunnableBean.

See Event Beans.

1.7 API Overview
The APIs enable you to programmatically implement functionality for all aspects of
Oracle Event Processing applications as described in this documentation set.

This section presents an overview of the API packages in terms of their intended
usages and includes cross-references to where you can learn more.

For the full reference documentation (Javadocs) for all classes and interfaces, see Java
API Reference for Oracle Event Processing. See also Samples in Oracle Event Processing
APIs in Getting Started with Oracle Event Processing.

• Configuration

• Adapters

• ChannelsEvent Repositories

• Event-Driven Environment

• Event Bean Life Cycle

• JAXB

• Caching

• Cache Loader

• Cluster Group Management

• Management Beans

• High Availability

• Testing and Utility Tools

• Cartridge Framework

• Spring Support.

Configuration

The com.bea.wlevs.configuration package provides interfaces to activate,
prepare, and roll back configuration objects. When you implement the Prepare
interface, provide a method that accepts, checks, and stores a configuration object. The
Java type of the configuration object is determined by JAXB. By default, the Java class
name is the same as the name of the XML Schema complex type that describes the
configuration data for the applicable stage. See the /Oracle/Middleware/my_oep/

API Overview

Introduction to Application Development 1-9

oep/ xsd/wlevs_application_config.xsd schema for schema details. See also
Application and Resource Configuration.

Adapters

Oracle Event Processing provides several packages that provide interfaces and classes
for managing adapter behavior. See Adapters.

Packages:

• com.bea.wlevs.adapters.httppubsub.api package provides interfaces for
converting inbound JavaScript Object Notation (JSON) messages to event types and
back again. To customize the way inbound and outbound JSON messages are
converted to an event type and back to JSON format, create a custom converter
bean and use this API.

• com.bea.wlevs.adapters.httppubsub.support package provides classes
for establishing a connection to an HTTP publish-subscribe server.

• com.bea.wlevs.adapters.jms.api package provides interfaces for
converting inbound JMS messages to event types and back again. If you want to
customize the way inbound and outbound JMS messages are converted to an event
type and back, create a custom converter bean. and use this API.

• com.bea.wlevs.ede.api: package provides interfaces for creating custom
adapters. See Oracle Fusion Middleware Customizing Oracle Event Processing
Components.

Channels

The com.bea.wlevs.channel package provides an interface for implementing
event partitioning and a class for managing the number of events in channels. See
Channels and Scalable Applications.

Event Repositories

To manage events and event types, Oracle Event Processing uses an event store
repository and an event type repository. The event store repository persists the event
and the event type repository persists the event type.

Packages:

• com.bea.wlevs.eventstore package provides interfaces and classes to
manage the event store repository. See Persistent Event Store in Using Visualizer for
Oracle Event Processing.

• com.bea.wlevs.ede.api package provides the EventTypeRepository
interface to manage the event type repository. See Events and Event Types.

Event-Driven Environment

The com.bea.wlevs.ede.api package provides interfaces for creating and
customizing Oracle Event Processing application code that responds to events. The
package provides interfaces for creating event beans and adapters and making them
event sinks and event sources. Other interfaces in this package enable you to manage
all aspects of how events flow through the EPN, such as event creation, event flow
through channels, event metadata and properties, the event type repository, external
data sources, EPN stages, fault handling, event bean life cycle, and so on.

For sample Java code that uses some of these APIs, see Events and Event Types and
Event Beans. See also Resource Access Configuration for information about using

API Overview

1-10 Developing Applications for Oracle Event Processing

Oracle Event Processing annotations and deployment XML to configure resource
injection.

Event Bean Life Cycle

The com.bea.wlevs.ede.api package also enables control over event bean life
cycle. You can manage event bean initialization, configure dynamic activation, use
threading, suspend and resume processing, and release resources when the
application is undeployed. See Application Life Cycle for information about the event
bean and application life cycles.

Note that the Spring framework implements similar bean life cycle interfaces.
However, the equivalent Spring interfaces do not allow you to manipulate beans that
were created by factories, while the Oracle Event Processing interfaces do.

JAXB

Oracle Event Processing provides a simplified interface for using Java Architecture for
XML Binding (JAXB) mapping capabilities in adapters and event beans to marshall
and unmarshall event data between XML and Java objects. See JAXB Support.

Packages:

• com.oracle.cep.mappers.api package provides interfaces for marshalling
and unmarshalling event data for most applications requirements.

• com.oracle.cep.mappers.jaxb package provides interfaces that provide
specialized method signatures for marshalling and unmarshalling.

Caching

You can configure a caching system so that applications have ready access to event
data. The caches in the system can be a combination of Oracle Coherence distributed
caching, Oracle Event Processing local caching, and caching solutions provided by
third parties. You can access the events in the caches with Oracle CQL and Java
classes. See Cached Event Data.

Packages:

• com.bea.wlevs.cache.spi package provides interfaces that enable you to
create a caching system that can be used by Oracle Event Processing applications.

• com.bea.wlevs.cache.spi.coherence package provides interfaces that
enable you to extend the caching system to include Oracle Coherence caching.

Cache Loader

The com.oracle.cep.cacheloader package provides the CsvCacheLoader
class for loading CSV events into a Coherence cache. See Cached Event Data.

Cluster Group Management

The com.bea.wlevs.ede.api.cluster package provides interfaces for managing
server groups within multiserver domains (clusters). You can get information about
the configuration, implement event beans and adapters to listen for cluster
membership changes, set the group name for the containing EPN, and get information
about a group server. See Server Groups in Administering Oracle Event Processing.

Management Beans

Management beans (MBeans) enable you to programmatically access configuration
and runtime information to perform tasks. There are two types of MBeans (tasks):
configuration and run time. Configuration MBeans contain information about EPN

API Overview

Introduction to Application Development 1-11

component configuration. Run time MBeans contain information about component
throughput and latency. See MBean Management Commands in Administering Oracle
Event Processing.

Packages:

• com.bea.wlevs.management package contains interfaces for managing
constants used by client applications and to provide a super-interface for all Oracle
WebLogic Event Server MBeans.

• com.bea.wlevs.management.configuration package provides interfaces for
managing applications, adapters, caches, configuration, Oracle CQL processors,
event beans, stages, streams, and table sinks and sources.

• com.bea.wlevs.management.diagnostic package provides interfaces for
managing diagnostic profiles. A diagnostic profile is an XML file that contains
application stage information for testing throughput and latency. See Monitor the
Throughput and Latency in Using Visualizer for Oracle Event Processing.

• com.bea.wlevs.management.diagnostic.notification package provides
a class for wrapping diagnostic change notifications sent by background probes.

• com.bea.wlevs.diagnostic package provides interfaces and classes for
listening for newly deployed applications and removed applications. When
applications are deployed and undeployed a profile manager (group of diagnostic
profiles) is also created and removed and corresponding profile manager events
are issued.

• com.bea.wlevs.management.runtime package provides interfaces for getting
runtime information about the application, the application Oracle CQL processors,
the domain, the server, and EPN stages.

• com.bea.wlevs.monitor package provides interfaces for monitoring the
throughput and latency of application endpoints in the event server.

• com.bea.wlevs.monitor.management package provides interfaces for
receiving monitoring metrics for an application stage and for monitoring latency
between endpoints in the EPN.

• com.bea.wlevs.deployment.mbean package provides interfaces to manage
application deployment.

• com.bea.wlevs.eventinspector.management package provides interfaces
and classes for controlling the behavior of event tracing and event injection. See
Testing 1-2-3.

• com.oracle.cep.cluster.ha.adapter.management package provides
interfaces and classes for managing JMX communications in a high availability
environment.

High Availability

Oracle Event Processing provides application design patterns and high availability
adapters, to enable you to increase the backup and failover processing capabilities of
your applications. See High Availability Applications.

Packages:

• com.oracle.cep.cluster.ha.adapter package provides interfaces and
classes for queue trimming.

API Overview

1-12 Developing Applications for Oracle Event Processing

• com.oracle.cep.cluster.ha.adapter.inbound package provides classes
for creating a high availability broadcast inbound adapter. This adapter is for
applications that use system time and need to be highly available.

• com.oracle.cep.cluster.ha.adapter.management package provides
interfaces and classes for managing JMX communications in a high availability
environment.

• com.oracle.cep.cluster.ha.adapter.runtime package provides
interfaces and class implementations for managing JMX interfaces to other high
availability interfaces.

• com.oracle.cep.cluster.ha.api package provides interfaces and classes for
simple fail over functionality.

• com.oracle.cep.cluster.hagroups package provides interfaces and classes
for creating event beans and adapter that listen for property group membership
changes, make the changes available, and enable subscriptions to broadcast group
members.

• com.oracle.cep.cluster.hagroups.runtime package provides interfaces
and classes to get notification group information.

Testing and Utility Tools

Oracle Event Processing provides different ways to test your application depending
on what and how you want to test. See Testing 1-2-3.

Packages:

• com.bea.wlevs.eventinspector.management package provides interfaces
and classes for managing event tracing and injection.

• com.oracle.cep.shell package provides interfaces and classes for
programmatically invoking commands for testing Oracle Event Processing
applications.

• com.bea.wlevs.util package provides interfaces and classes for marking
methods as requiring an OSGi service reference, getting and setting error messages,
parsing parameters, returning OSGi importer services cardinality, and loading a
service class.

Cartridge Framework

The com.oracle.cep.cartridge package provides interfaces and classes that
form the Data Cartridge Framework. The Data Cartridge Framework is a service
provider interface (SPI) that enables users and vendors to create cartridges to extend
Oracle CQL functionality. See Oracle CQL Data Cartridge Framework in Developing
Applications with Oracle CQL Data Cartridges.

Spring Support

The com.bea.wlevs.spring.support package provides interfaces and classes for
using Spring functionality in Oracle Event Processing applications.

1.8 Spring Framework
The Spring Framework provides Java-based APIs and a configuration model that you
can use to create portable and flexible enterprise applications.

For more information about Spring:

Spring Framework

Introduction to Application Development 1-13

• Spring Framework API 3.1.1:http://docs.spring.io/spring/docs/
3.1.1.RELEASE/javadoc-api/

• The Spring Framework - Reference Documentation 3.1:http://
docs.spring.io/spring/docs/3.1.1.RELEASE/spring-framework-
reference/html/

1.9 OSGi Service Platform
The OSGi Service Platform provides a dynamic application execution environment
where you can install, update, ore remove OSGI bundles (modules) dynamically.

For more information about OSGi:

• OSGi Release 4 Service Platform Javadoc: http://www.osgi.org/Release4/Javadoc

• OSGi Release 4 Core Specification: https://www.osgi.org/developer/
specifications/

Service Annotations

Use the com.bea.wlevs.util.Service (@Service) annotation to specify a
component method that is injected with an OSGi service reference. You typically add
this annotation to JavaBean setter methods where needed. The @Service annotation
has the following attributes.

Table 1-1 Attributes of the com.bea.wlevs.util.Service JWS Annotation Tag

Name Description Data
Type

Required
?

serviceBeanName The name of the bean that backs the injected
service. Can be null.

String No.

cardinality Valid values for this attribute are:

• ServiceCardinality.C0__1

• ServiceCardinality.C0__N

• ServiceCardinality.C1__1

• ServiceCardinality.C1__N

Default value is
ServiceCardinality.C1__1.

enum No.

contextClassloa
der

Valid values for this attribute are:

• ServiceClassloader.CLIENT

• ServiceClassloader.SERVICE_PROV
IDER

• ServiceClassloader.UNMANAGED

Default value is
ServiceClassloader.CLIENT.

enum No.

timeout Timeout for service resolution in milliseconds.

Default value is 30000.

int No.

serviceType Interface (or class) of the service to be injected

Default value is Service.class.

Class No.

filter Specifies the filter used to narrow service
matches. Value may be null.

String No.

OSGi Service Platform

1-14 Developing Applications for Oracle Event Processing

http://docs.spring.io/spring/docs/3.1.1.RELEASE/javadoc-api/
http://docs.spring.io/spring/docs/3.1.1.RELEASE/javadoc-api/
http://docs.spring.io/spring/docs/3.1.1.RELEASE/spring-framework-reference/html/
http://docs.spring.io/spring/docs/3.1.1.RELEASE/spring-framework-reference/html/
http://docs.spring.io/spring/docs/3.1.1.RELEASE/spring-framework-reference/html/
http://www.osgi.org/Release4/Javadoc
https://www.osgi.org/developer/specifications/
https://www.osgi.org/developer/specifications/

The following example shows how to use the @Service annotation. For another
example, see Access the Event Type Repository.

@Service(filter = "(Name=StockDs)")
public void setDataSourceService(DataSourceService dss) {
 initStockTable(dss.getDataSource());
}

OSGi Service Platform

Introduction to Application Development 1-15

OSGi Service Platform

1-16 Developing Applications for Oracle Event Processing

2
Application and Resource Configuration

An Oracle Event Processing EPN has two types of configuration files: assembly files
and component configuration files. The assembly file is a context file that describes the
EPN diagram stages and structure. The configuration file describes component
configuration and the dynamic parameters of the EPN stages. Dynamic parameters are
parameters that can be changed at runtime through the Oracle Event Processing
Visualizer or programmatically through the JMX APIs.

This chapter includes the following sections:

• Application Configuration

• Assembly File Structure

• Component Configuration File Structure

• Component and Server Configuration

• Resource Access Configuration.

2.1 Application Configuration
Oracle Event Processing application configuration settings are stored in XML files that
are based on standard schemas. When you install Oracle Event Processing, the XSD
files for the schemas are installed in the Oracle/Middleware/oep/xsd directory.

By default, Oracle JDeveloper generates one assembly file named <Project-
Name>.context.xml, and one default configuration file named
processor.xml.An application can have one or more assembly files and one or
more configuration files. You decide how many configuration files to use and what to
name them when you build the EPN. Your project must have one configuration file
named prcessor.xml to contain the Oracle CQL processor configuration settings.

When you create components such as adapters, the processor.xml file displays as
the default configuration file in the new component wizard. If you take the default, the
component configuration information is stored in the default procesor.xml. To put
all of your adapter configurations in one file named adapter.xml, change
processor.xml to adapters.xml in the wizard.

In the component configuration wizard, if you specify a new file name such as
adapters.xml, but use only default settings, Oracle JDeveloper does not generate
the new file because there are no configuration settings to store in it. You can either
create the component again with a custom setting or use the File menu to create a new
empty configuration file. See Create a Component Configuration File in Getting Started
with Oracle Event Processing.

The assembly and configuration files are stored in the following locations within your
project:

• Assembly files: <Project-Name>/META-INF/spring/*.xml.

Application and Resource Configuration 2-1

• Configuration files: <Project-Name>/META-INF/wlevs/*.xml.

You can modify the configuration by editing the application assembly file or by
editing the component configuration file. You can edit anything you want in the files,
but you have to be careful to keep the assembly file ID value consistent with the
configuration file name value. If you change the ID value in the assembly file, you
have to change the name value in the configuration file to match, and vice versa. You
can change any other information in one file only. Oracle JDeveloper uses the ID and
name value pairing to keep the information in the application assembly and
component configuration files synchronized.

The following components have a configuration file that defaults to processor.xml.
Oracle CQL patterns must be placed in the processor.xml file, but all other
components in this list can use a configuration file by another name.

• All adapters

• Channels

• Oracle CQL Patterns

• Local Cache System

• Cache

• RMIOutbound extension

The Coherence Cache System has a default coherence-cache- file. You can change
the name of this file.

Component configuration files are deployed as part of the Oracle Event Processing
application bundle. You can later update this configuration at runtime using Oracle
Event Processing Visualizer, the wlevs.Admin utility, or by manipulating the
appropriate JMX MBeans.

2.2 Assembly File Structure
The spring-wlevs-v12_1_3_0.xsd schema file describes the EPN assembly file
structure.

This schema file is installed in the Oracle/Middleware/oep/xsd directory. See
EPN Assembly Schema in Schema Reference for Oracle Event Processing.

The EPN assembly file has a top-level root element named beans that contains a
sequence of sub-elements. Each individual sub-element contains the configuration
data for an Oracle Event Processing component.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:osgi="http://www.springframework.org/schema/osgi"
 xmlns:wlevs="http://www.bea.com/ns/wlevs/spring"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/osgi
 http://www.springframework.org/schema/osgi/spring-osgi.xsd
 http://www.bea.com/ns/wlevs/spring
 http://www.bea.com/ns/wlevs/spring/spring-wlevs-v12_1_3_0.xsd">

 <wlevs:event-type-repository>
 <wlevs:event-type type-name="HelloWorldEvent">

Assembly File Structure

2-2 Developing Applications for Oracle Event Processing

 <wlevs:class>com.bea.wlevs.event.example.helloworld.HelloWorldEvent</
wlevs:class>
 </wlevs:event-type>
 </wlevs:event-type-repository>

 <wlevs:adapter id="helloworldAdapter"
 class="com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapter" >
 <wlevs:instance-property name="message" value="HelloWorld - the current time
is:"/>
 </wlevs:adapter>

 <wlevs:channel id="helloworldInputChannel" event-type="HelloWorldEvent" >
 <wlevs:listener ref="helloworldProcessor"/>
 <wlevs:source ref="helloworldAdapter"/>
 </wlevs:channel>

 <wlevs:processor id="helloworldProcessor" />

 <wlevs:channel id="helloworldOutputChannel"
 event-type="HelloWorldEvent" advertise="true">
 <wlevs:listener>
 <bean class="com.bea.wlevs.example.helloworld.HelloWorldBean"/>
 </wlevs:listener>
 <wlevs:source ref="helloworldProcessor"/>
 </wlevs:channel>
</beans>

2.2.1 Nested Stages in an EPN Assembly File
When you define a child stage within a parent stage in an EPN, the child stage is said
to be nested. Only the parent stage can specify the child stage as a listener.

The following example shows the EPN assembly source in which HelloWorldBean
is nested within the helloworldOutputChannel. Only the parent
helloworldOutputChannel may specify the nested bean as a listener.

<wlevs:adapter id="helloworldAdapter"
class="com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapter" >
 <wlevs:instance-property name="message" value="HelloWorld - the current time
is:"/>
</wlevs:adapter>

<wlevs:channel id="helloworldInputChannel" event-type="HelloWorldEvent" >
 <wlevs:listener ref="helloworldProcessor"/>
 <wlevs:source ref="helloworldAdapter"/>
</wlevs:channel>

<wlevs:processor id="helloworldProcessor" />

<wlevs:channel id="helloworldOutputChannel" event-type="HelloWorldEvent"
advertise="true">
 <wlevs:listener>
 <bean class="com.bea.wlevs.example.helloworld.HelloWorldBean"/>
 </wlevs:listener>
 <wlevs:source ref="helloworldProcessor"/>
</wlevs:channel>

Alternatively, you can define this EPN so that all stages are nested as Example 2-1
shows. The helloworldAdapter, the outermost parent stage, is the only stage
accessible to other stages in the EPN.

Assembly File Structure

Application and Resource Configuration 2-3

Example 2-1 EPN Assembly File with All Stages Nested

<wlevs:adapter id="helloworldAdapter"
class="com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapter" >
 <wlevs:instance-property name="message"
 value="HelloWorld - the current time is:"/>
 <wlevs:listener>
 <wlevs:channel id="helloworldInputChannel" event-type="HelloWorldEvent" >
 <wlevs:listener>
 <wlevs:processor id="helloworldProcessor">
 <wlevs:listener>
 <wlevs:channel id="helloworldOutputChannel"
 event-type="HelloWorldEvent">
 <wlevs:listener>
 <bean
 class="com.bea.wlevs.example.helloworld.HelloWorl
dBean"/>
 </wlevs:listener>
 </wlevs:channel>
 </wlevs:listener>
 </wlevs:processor>
 </wlevs:listener>
 </wlevs:channel>
 </wlevs:listener>
</wlevs:adapter>

2.2.2 Foreign Stages in an EPN Assembly File
You can refer to a stage that is in another Oracle Event Processing application. A stage
from another application is considered a foreign stage. You do this by id attribute
when you define both the source and target stage in the same application.

Note:

You cannot connect an Oracle CQL processor stage to a channel that is a
foreign stage.

To refer to a stage you define in a different application, you use the following syntax:

FOREIGN-APPLICATION-NAME:FOREIGN-STAGE-ID

Where FOREIGN-APPLICATION-NAME is the name of the application in which you
defined the foreign stage and FOREIGN-STAGE-ID is the id attribute of the foreign
stage.

The following example shows how the reference in application1 to the foreign
stage HelloWorldBeanSource that you define in application application2.

<wlevs:stream id="helloworldInstream" >
 <wlevs:listener ref="helloworldProcessor"/>
 <wlevs:source ref="application2:HelloWorldBeanSource"/>
</wlevs:stream>

<wlevs:event-bean id="HelloWorldBeanSource"
 class="com.bea.wlevs.example.helloworld.HelloWorldBeanSource"
 advertise="true"/>

The following stages cannot be foreign stages:

Assembly File Structure

2-4 Developing Applications for Oracle Event Processing

• Cache

When creating Oracle Event Processing applications with foreign stages, you must
consider foreign stage dependencies when assembling, deploying, and redeploying
your application. For more information, see Reference Foreign Stages.

2.3 Component Configuration File Structure
The wlevs_application_config.xsd schema file describes the structure of
component configuration files.

When you install Oracle Event Processing, XSD files such as this one are included in
the directory Oracle/Middleware/oep/xsd.

This XSD schema imports the following schemas:

• wlevs_base_config.xsd: Defines common elements that are shared between
application configuration files and the server configuration file

• wlevs_eventstore_config.xsd: Defines event store-specific elements.

• wlevs_diagnostic_config.xsd: Defines diagnostic elements.

See Schema Component Configuration in Schema Reference for Oracle Event Processing.

The structure of application configuration files is as follows. There is a top-level root
element named config that contains a sequence of sub-elements. Each individual
sub-element contains the configuration data for an Oracle Event Processing
component (Oracle CQL processor, channel, or adapter). For example:

<?xml version="1.0" encoding="UTF-8"?>
<n1:config xmlns:n1="http://www.bea.com/ns/wlevs/config/application"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <processor>
 <name>helloworldProcessor</name>
 <rules>
 <query id="helloworldRule">
 <![CDATA[select * from helloworldInputChannel [Now] >
 </query>
 </rules>
 </processor>
 <channel>
 <name>helloworldInputChannel</name>
 <max-size>10000</max-size>
 <max-threads>2</max-threads>
 </channel>
 <channel>
 <name>helloworldOutputChannel</name>
 <max-size>10000</max-size>
 <max-threads>2</max-threads>
 </channel>
</n1:config>

2.4 Component and Server Configuration
Use the ConfigurationPropertyPlaceholderConfigurer class to reference
existing configuration file properties, in both component configuration and server
configuration files, using a symbolic placeholder.

This allows you to define a value in one place and refer to that one definition rather
than hard-coding the same value in many places.

Component Configuration File Structure

Application and Resource Configuration 2-5

You might want to do this if you want to configure Java Message Service (JMS)
without hard-coding JMS information such as the factory name in the assembly file for
your Oracle Event Processing application.

Use the
com.bea.wlevs.spring.support.ConfigurationPropertyPlaceholderCon
figurer class, to create a JMS adapter and provide placeholders for the server
connection factory name, user name, password, and the location to a separate file that
contains the actual factory name, user name, and password values. The
ConfigurationPropertyPlaceholderConfigurer class is implemented on top
of the Spring framework.

The server configuration file is used by Oracle Event Processing server administrators.
This file contains configuration information that is specific to a domain, and is located
in /Oracle/Middleware/my_oep/user_projects/domains/<domain_name>/
<server_name>/config/.

To use reference existing configuration file properties, insert a
ConfigurationPropertyPlaceholderConfigurer bean in the assembly file for
your project as shown below.

 <bean class="com.bea.wlevs.spring.support.ConfigurationPropertyPlaceholderConfigurer"/>

For complete details, see the
com.bea.wlevs.spring.support.ConfigurationPropertyPlaceholderCon
figurer class in the Java API Reference for Oracle Event Processing.

2.5 Resource Access Configuration
Because Oracle Event Processing applications are low latency high-performance event-
driven applications, they run on a lightweight container and are developed with a
POJO-based programming model.

In POJO (Plain Old Java Object) programming, business logic is implemented in the
form of POJOs, and then injected with the services they need. This is popularly called
dependency injection. The injected services can range from those provided by Oracle
Event Processing services, such as configuration management, to those provided by
another Oracle product such as Oracle Kodo, to those provided by a third party.

By using Oracle Event Processing and standard Java annotations and deployment
XML, you can configure the Oracle Event Processing Spring container to inject
resources (such as data sources or persistence managers, and so on) into your Oracle
Event Processing application components.

The Spring container typically injects resources during component initialization.
However, it can also inject and re-inject resources at runtime and supports the use of
JNDI lookups at runtime.

Oracle Event Processing supports the following types of resource access:

• Resource Access Annotations

• Static Resource Injection

• Dynamic Resource Injection

• Dynamic Resource Lookup Using JNDI

• Resource Name Resolution.

Resource Access Configuration

2-6 Developing Applications for Oracle Event Processing

In the following sections, consider the example resource that Example 2-2 shows. This
is a data source resource named StockDS that you specify in the Oracle Event
Processing server file.

Example 2-2 Sample Resource: Data Source StockDS

<config ...>
 <data-source>
 <name>StockDs</name>
 ...
 <driver-params>
 <url>jdbc:derby:</url>
 ...
 <driver-params>
 </data-source>
...
</config>

2.5.1 Resource Access Annotations
Use the javax.annotation.Resource (@Resource) annotation to configure
resource access at design time and the corresponding deployment XML to override
this configuration at deploy time.

2.5.2 Static Resource Injection
Static resource injection refers to the injection of resources during the initialization
phase of the component life cycle. Once injected, resources are fixed, or static, while
the component is active or running.

You can configure static resource injection using:

• Static Resource Names

• Dynamic Resource Names.

2.5.2.1 Static Resource Names

When you configure static resource injection using static resource names, the resource
name you use in the @Resource annotation or Oracle Event Processing assembly
XML file must exactly match the name of the resource as you defined it. The resource
name is static in the sense that you cannot change it without recompiling.

To configure static resource injection using static resource names at design time, you
use the standard javax.annotation.Resource annotation as shown in the
example below.

To override design time configuration at deploy time, you use Oracle Event Processing
assembly file XML.

In the following examples the resource name StockDs exactly matches the name of
the data source in the Oracle Event Processing server file.

< wlevs:event-bean id="simpleBean" class="...SimpleBean"/>
 <wlevs:resource property="dataSource" name="StockDs"/>
</wlevs:event-bean>

If the name of the EventBean set method matches the name of the resource, then the
@Resource annotation name attribute is not needed. Similarly, in this case, the
wlevs:resource element name attribute is not needed.

Resource Access Configuration

Application and Resource Configuration 2-7

import javax.annotation.Resource;

public class SimpleBean implements EventBean {
...
 @Resource ()
 public void setStockDs (DataSource dataSource){
 this.dataSource = dataSource;
 }
}

< wlevs:event-bean id="simpleBean" class="...SimpleBean"/>
 <wlevs:resource property="dataSource"/>
</wlevs:event-bean>

Example 2-3 Static Resource Injection Using Static Resource Names: Annotations

import javax.annotation.Resource;

public class SimpleBean implements EventBean {
...
 @Resource (name="StockDs")
 public void setDataSource (DataSource dataSource){
 this.dataSource = dataSource;
 }
}

2.5.2.2 Dynamic Resource Names

A dynamic resource name is one that is specified as part of the dynamic or external
configuration of an application. Using a dynamic resource name, the deployer or
administrator can change the resource name without requiring that the application
developer modify the application code or the Spring application context.

To add a dynamic resource name to a component, such as an adapter or POJO, you
must first specify custom configuration for your component that contains the resource
name.

<simple-bean>
 <name>SimpleBean</name>
 <trade-datasource>StockDs</trade-datasource>
</simple-bean>

To configure static resource injection using dynamic resource names at design time,
use the standard javax.annotation.Resource annotation.

To override design time configuration at deploy time, you use Oracle Event Processing
assembly file XML.

import javax.annotation.Resource;

public class SimpleBean implements EventBean {
...
 @Resource (name="trade-datasource")
 public void setDataSource (DataSource dataSource){
 this.dataSource = dataSource;
 }
}

< wlevs:event-bean id="simpleBean" class="...SimpleBean"/>
 <wlevs:resource property="dataSource" name="trade-datasource"/>
</wlevs:event-bean>

Resource Access Configuration

2-8 Developing Applications for Oracle Event Processing

2.5.3 Dynamic Resource Injection
Dynamic resource injection refers to the injection of resources dynamically while the
component is active in response to a dynamic configuration change using Spring
container method injection.

To configure dynamic resource injection at design time, use the standard
javax.annotation.Resource annotation as Example 2-4 shows.

The component calls the getDataSource method at runtime whenever it needs to
retrieve a new instance of the resource that the resource name trade-datasource
refers to.

Typically, the component calls the getDataSource method during the @Prepare or
@Activate methods when dynamic configuration changes are handled.

Another strategy is to always call the getDataSource prior to using the data source.
That is, the application code does not store a reference to the data source as a field in
the component.

Example 2-4 Dynamic Resource Injection: Annotations

import javax.annotations.Resource;

public class SimpleBean implements EventBean {
...
 @Resource ("trade-datasource")
 public abstract DataSource getDataSource ();
 ...
}

2.5.4 Dynamic Resource Lookup Using JNDI
Oracle Event Processing supports the use of JNDI to look up resources dynamically.

import javax.naming.InitialContext;

public class SimpleBean implements EventBean {
...
 public abstract void getDataSource () throws Exception {
 InitialContext initialContext= new InitialContext ();
 return initialContext.lookup ("StockDs");
 }
}

The JNDI name StockDs must exactly match the name of the data source in the
Oracle Event Processing server file.

Note:

You must disable security when starting the Oracle Event Processing server in
order to use JNDI. Oracle does not recommend the use of JNDI for this reason.

2.5.5 Resource Name Resolution
Oracle Event Processing server resolves resource names by examining the naming
scopes that Table 2-1 lists.

Resource Access Configuration

Application and Resource Configuration 2-9

Table 2-1 Resource Name Resolution

Naming
Scope

Contents Resolution
Behavior

Component The property names of the component's custom
configuration

Mapping

Application The names of the configuration elements in the
application configuration files

Matching

Server The names of the configuration elements in the server
configuration file

Matching

JNDI The names registered in the server's JNDI registry Matching

Each naming scope contains a set of unique names. The name resolution behavior is
specific to a naming scope. Some naming scopes resolve names by simple matching.
Other scopes resolve names by mapping the name used to do the lookup into a new
name. Once a name is mapped, lookup proceeds recursively beginning with the
current scope.

Resource Access Configuration

2-10 Developing Applications for Oracle Event Processing

3
Events and Event Types

An event type is a data structure that defines the data contained in an event. When
raw event data comes into the Oracle Event Processing application, the application
binds that data to an event of a particular event type. In your application, you define
the event type in terms of its data set and the corresponding data types.

This chapter includes the following sections:

• How Events Function

• Choose a Data Structure for the Event Type

• Design Constraints

• Event Type Repository

• Properties

• Interval and Time Stamp Properties

• Create and Register a JavaBean Event Type

• Create and Register a Tuple Event Type

• Create and Register a Map Event Type

• Access the Event Type Repository

• Share Event Types Between Application Bundles

• Control Event Type Instantiation with an Event Type Builder Class.

3.1 How Events Function
An event is structured data that relates to something that happens or is happening. For
example, if your application reacts to changes to a cluster of servers, events capture
snapshot data that is collected by the device that monitors the servers.

Or if your application monitors trends and patterns related to stock market trades,
events contain event data that corresponds to stock trades.

Event data can arrive at an application in many forms. By creating an event type to
represent the data inside the application, you create a predictable way for application
logic to work with the data.

Events carry event data through the event processing network (EPN). When you
design the event type, keep in mind how you plan to access, process, and manipulate
the event data in your code.

Events and Event Types 3-1

3.2 Choose a Data Structure for the Event Type
An event type can get its structure from a JavaBean class, a tuple, or a
java.util.Map class. Oracle recommends that you use JavaBean classes to
structure event types. JavaBeans provide greater flexibility within your application
and simplify integration with existing systems.

JavaBean event types are flexible. For example, you assign a JavaBean event type to a
property of a tuple or java.util.Map event type. The following code shows the
event type Student that defines its address property as the JavaBean event type
Address.

<wlevs:event-type-repository>
<wlevs:event-type type-name="Student">
 <wlevs:properties>
 <wlevs:property name="name" type="char"/>
 <wlevs:property name="address" type="classpackage.Address"/>
 </wlevs:properties>
</wlevs:event-type>
</wlevs:event-type-repository>

JavaBeans also enable you to closely control event type instantiation by implementing
an event type builder class. For more information on event type builder classes, see
Control Event Type Instantiation with an Event Type Builder Class.

Table 3-1 compares JavaBean classes, tuples, and java.util.Map classes.

Table 3-1 Data Types for Event Types

Data Type Description Benefits and Limitations

JavaBean A Java class written to JavaBean
conventions. In addition to being
used by logic you write, the type's
accessor (get and set) methods will
be used by the Oracle Event
Processing server and Oracle CQL
processor to retrieve and set event
property values.

Benefits: This type is the best practice
because it provides the greatest
flexibility and ease of use for application
logic that handles events. You access
property values directly through
accessor methods. A JavaBean class is
more likely to be useful when integrating
your Oracle Event Processing application
with other systems. For control over how
the type is instantiated, you can
implement an event type builder class.

Limitations: Requires writing a JavaBean
class, rather than simply declaring the
event type in a configuration file. Oracle
CQL does not support JavaBean
properties in GROUP BY, PARTITION
BY, and ORDER BY, although you can
work around this by using an Oracle
CQL view.

Choose a Data Structure for the Event Type

3-2 Developing Applications for Oracle Event Processing

Table 3-1 (Cont.) Data Types for Event Types

Data Type Description Benefits and Limitations

Tuple A structure that you create and
register declaratively in the EPN
assembly file.

For more information, see Create
and Register a Tuple Event Type.

Benefits: Requires no Java programming
to create the event type. An event type is
created by declaring it in the EPN
assembly file. Useful for quick
prototyping.

Limitations: Using instances of this type
in Java application logic requires
programmatically accessing the event
type repository to get the instance's
property values. A tuple is also unlikely
to be useful when integrating the Oracle
Event Processing with other systems.

java.uti
l.Map

Based on an instance of
java.util.Map. You don't
implement or extend the Map
interface. Rather, you specify that
the interface should be used when
configuring the event type in the
EPN assembly file. If you write Java
code to access the type instance, you
treat it as a Map instance.

For more information, see Create
and Register a Map Event Type.

Benefits: Requires no Java programming
to create the type. An event type is
created by declaring it in the EPN
assembly file. Useful for quick
prototyping.

Limitations: Does not perform as well as
other types.

3.3 Design Constraints
Keep in mind the following CSV adapter and database table constraints when you
design event types.

CSV Adapter Constraints

When you declaratively specify the properties of an event type for use with CSV
adapters, you can only use the data types that Table 3-2 describes.

Table 3-2 CSV Adapter Types

Type Usage

char Single or multiple character values. Use for both char and
java.lang.String values.

Optionally, you may use the length attribute to specify the maximum length
of the char value for the property with name id. The default length is 256
characters. If you need more than 256 characters you should specify an
adequate length.

int Numeric values in the range that java.lang.Integer specifies.

float Numeric values in the range that java.lang.Float specifies.

long Numeric values in the range that java.lang.Long specifies.

double Numeric values in the range that java.lang.Double specifies.

Design Constraints

Events and Event Types 3-3

For more information, see:

• Testing 1-2-3

Database Table Constraints

You can use a relational database table as a source of event data, binding data from the
table to your event type instance at runtime. When your event data source is a
database table, you must follow the guidelines represented by the following tables.

When an event type will receive data from a database table, a property configured for
the type will each receive data from a particular column in the database. When
configuring the event type, note that its property child elements have attributes that
have particular meanings and value constraints, as described in Table 3-3.

Table 3-3 EPN Assembly File event-type Element Property Attributes

Attribute Description

name The name of the table column you want to access as specified in the SQL
create table statement. You do not need to specify all columns.

type The Oracle Event Processing Java type from Table 3-4 that corresponds to the
column's SQL data type.

length The column size as specified in the SQL create table statement.

When you specify the properties of an event type for use with a relational database
table, you must observe the additional JDBC type restrictions listed in Table 3-4.

When you join a stream with the Derby database, where the join condition compares
two timestamp values - one value is from the stream attribute and the other value is
from the Derby data source attribute, the Derby database performs the predicate
evaluation. However, the Derby database supports only the yyyy-MM-dd-
HH.mm.ss[.nnnnnn] format. For the Derby database to perform the evaluation
correctly, the stream timestamp value must use the Derby database format.

Table 3-4 SQL Column Types and Oracle Event Processing Type Equivalents

SQL Type Oracle Event
Processing Java
Type

com.bea.wlevs.ede.a
pi.Type

Description

ARRAY [Ljava.lang.Ob

ject

Array, of depth 1, of
java.lang.Object.

BIGINT java.math.BigI

nteger

bigint An instance of
java.math.BigInteger.

BINARY byte[] Array, of depth 1, of byte.

BIT java.lang.Bool

ean

boolean An instance of
java.lang.Boolean.

BLOB byte[] Array, of depth 1, of byte.

BOOLEAN java.lang.Bool

ean

boolean An instance of
java.lang.Boolean.

Design Constraints

3-4 Developing Applications for Oracle Event Processing

Table 3-4 (Cont.) SQL Column Types and Oracle Event Processing Type
Equivalents

SQL Type Oracle Event
Processing Java
Type

com.bea.wlevs.ede.a
pi.Type

Description

CHAR java.lang.Char

acter

char An instance of
java.lang.Character.

CLOB byte[] Array, of depth 1, of byte.

DATE java.sql.Date timestamp An instance of
java.sql.Date.

DECIMAL java.math.BigD

ecimal

An instance of
java.math.BigDecimal.

BINARY_DOU

BLE or
DOUBLE

java.lang.Doub

le

double An instance of
java.lang.Double

BINARY_FLO

AT or FLOAT
java.lang.Doub

le

float An instance of
java.lang.Double

INTEGER java.lang.Inte

ger

int An instance of
java.lang.Integer.

JAVA_OBJEC

T

java.lang.Obje

ct

object An instance of
java.lang.Object.

LONGNVARCH

AR

char[] char Array, of depth 1, of char.

LONGVARBIN

ARY

byte[] Array, of depth 1, of byte.

LONGVARCHA

R

char[] char Array, of depth 1, of char.

NCHAR char[] char Array, of depth 1, of char.

NCLOB byte[] Array, of depth 1, of byte.

NUMERIC java.math.BigD

ecimal

An instance of
java.math.BigDecimal.

NVARCHAR char[] char Array, of depth 1, of char.

OTHER java.lang.Obje

ct

object An instance of
java.lang.Object.

REAL java.lang.Floa

t

float An instance of
java.lang.Float

Design Constraints

Events and Event Types 3-5

Table 3-4 (Cont.) SQL Column Types and Oracle Event Processing Type
Equivalents

SQL Type Oracle Event
Processing Java
Type

com.bea.wlevs.ede.a
pi.Type

Description

SMALLINT java.lang.Inte

ger

int An instance of
java.lang.Integer.

SQLXML xmltype xmltype

TIME java.sql.Time An instance of
java.sql.Time.

TIMESTAMP java.sql.Times

tamp

timestamp An instance of
java.sql.Timestamp.

TINYINT java.lang.Inte

ger

int An instance of
java.lang.Integer.

VARBINARY byte[] Array, of depth 1, of byte.

VARCHAR char[] char Array, of depth 1, of char.

For more information, see: Configure a Table Source.

3.4 Event Type Repository
Oracle Event Processing manages event types in an event type repository. The Oracle
Event Processing server accesses the assembly file at run time to retrieve the
information it needs to manage the application.

The following example shows an event type entry in the repository:

<wlevs:event-type-repository>
 <wlevs:event-type type-name="TradeEvent">
 <wlevs:class>tradereport.TradeEvent</wlevs:class>
 </wlevs:event-type>
</wlevs:event-type-repository>

To define and edit event types, you can use the Oracle JDeveloper Event tab, work in
the assembly file directly, or call APIs from your application code. The Event tab
displays when you open the EPN diagram for an Oracle JDeveloper project.

For more information, see Access the Event Type Repository.

3.5 Properties
When you create an event type, you add the <wlevs:properties> and
<wlevs:property> elements to the <wlevs:event-type> element to define the
event type properties.

Properties have name and type attributes that define the kind of information, such as
ticker name, ticker symbol, and closing price, and the corresponding data type, such as
String, String, and Double. For more information about the <wlevs:event-
type> element, see wlevs:event-type in Schema Reference for Oracle Event Processing.

Event Type Repository

3-6 Developing Applications for Oracle Event Processing

Assembly File

The following assembly file entries show a simple event type with one event type and
one property defined by the <wlevs:class> element. The properties for this event
type are defined in a JavaBean class.

 <wlevs:event-type-repository>
 <wlevs:event-type type-name="TradeEvent">
 <wlevs:class>tradereport.TradeEvent</wlevs:class>
 </wlevs:event-type>
 </wlevs:event-type-repository>

The following assembly file entries show a message count event type with properties
defined by the <wlevs:properties> element, which encloses three
<wlevs:property> elements.

<wlevs:event-type-repository>
 <wlevs:event-type id="messagecounts" type-name="SimpleEvent">
 <wlevs:properties>
 <wlevs:property name="msg" type="char" />
 <wlevs:property name="count" type="long" />
 <wlevs:property name="time_stamp" type="timestamp" />
 </wlevs:properties>
 </wlevs:event-type>
...
</wlevs:event-type-repository>

3.6 Interval and Time Stamp Properties
Event types also support the day-to-second and year-to-month interval properties and
the time stamp with local time zone properties.

3.6.1 Interval Properties
The following assembly file entries show the interval properties.

<wlevs:event-type-repository>
 <wlevs:event-type type-name="IntervalDataTypeEvent">
 <wlevs:properties>
 <wlevs:property name="Comment" type="char" length="256" />
 <wlevs:property name="intervalProp" type="interval day(1) to second(2)"/>
 <wlevs:property name="intervalymProp" type="interval year(2) to month"/>
 <wlevs:property name="intervaldhProp" type="interval day to hour"/>
 <wlevs:property name="intervaldmProp" type="interval day to minute"/>
 <wlevs:property name="intervalhsProp" type="interval hour(1)
 to second(2)"/>
 <wlevs:property name="intervalhmProp" type="interval hour to minute"/>
 <wlevs:property name="intervalmsProp" type="interval minute(2)
 to second(2)"/>
 <wlevs:property name="intervaldProp" type="interval day(1)"/>
 <wlevs:property name="intervalyProp" type="interval year(2)"/>
 <wlevs:property name="intervalmProp" type="interval month"/>
 </wlevs:properties>
 </wlevs:event-type>
</wlevs:event-type-repository>

Day-to-second combinations:

INTERVAL DAY[(day_precision)]
TO SECOND[(fractional_seconds_precision)]

Interval and Time Stamp Properties

Events and Event Types 3-7

day_precision is the number of digits in the DAY date-time field. Accepted values
are 0 to 9. The default is 2.

fractional_seconds_precision is the number of digits in the fractional part of
the SECOND date-time field. Accepted values are 0 to 9. The default value is 6.

Year-to-month combinations:

INTERVAL YEAR [(year_precision)] TO MONTH

year_precision is the number of digits in the YEAR date-time field. The default
value for year_precision is 2.

3.6.2 Time Stamp with Local Time Zone Properties
The following assembly file entries show the time stamp with local time zone
properties.

<wlevs:event-type-repository>
<wlevs:event-type type-name="IntervalDataTypeEvent">
<wlevs:properties>
 <wlevs:property name="Comment" type="char" length="256" />
 <wlevs:property name="timestamptzProp" type="timestamp with time zone"/>
 <wlevs:property name="timestampltzProp" type="timestamp with local time zone"/>
</wlevs:properties>
</wlevs:event-type>
</wlevs:event-type-repository>

With time zone:

TIMESTAMP [(fractional_seconds_precision)] WITH TIME ZONE

fractional_seconds_precision optionally specifies the number of digits Oracle
stores in the fractional part of the SECOND datetime field. When you create a column of
this data type, the value can be a number in the range 0 to 9. The default value is 6.

With local time zone:

TIMESTAMP [(fractional_seconds_precision)] WITH LOCAL TIME ZONE

fractional_seconds_precision optionally specifies the number of digits Oracle
stores in the fractional part of the SECOND datetime field. When you create a column of
this data type, the value can be a number in the range 0 to 9. The default value is 6.

3.7 Create and Register a JavaBean Event Type
First, identify the event data that the event type carries and then decide the properties
the event type requires. This section walks you through the following steps. To make
the JavaBean an event source or sink, see Event Beans .

3.7.1 Data Types
You can use the following Java types for the properties:

• The fully qualified name of a Java class. The name must conform to the
Class.forName rules and be available in the application class loader.

• A Java primitive such as int or float.

• An array by appending square brackets ([])to the primitive or class name. For
example, short[] or java.lang.Integer[].

Create and Register a JavaBean Event Type

3-8 Developing Applications for Oracle Event Processing

3.7.2 Create a JavaBean Event Type Declaratively

1. Create a JavaBean class to represent your event type.

package com.bea.wlevs.example.algotrading.event;

public final class MarketEvent {
 private final Long timestamp;
 private final String symbol;
 private final Double price;
 private final Long volume;
 private final Long latencyTimestamp;

 public MarketEvent() {}

 public Double getPrice() {
 return this.price;
 }
 public void setPrice(Double price) {
 this.price = price;
 }

 public String getSymbol() {
 return this.symbol;
 }
 public void setSymbol(String symbol) {
 this.symbol = symbol;
 }

 public Long getTimestamp() {
 return this.timestamp;
 }
 public void setTimestamp(Long timestamp) {
 this.timestamp = timestamp;
 }

 public Long getLatencyTimestamp() {
 return this.latencyTimestamp;
 }
 public void setLatencyTimestamp(Long latencyTimestamp) {
 this.latencyTimestamp = latencyTimestamp;
 }

 public Long getVolume() {
 return this.volume;
 }
 public void setVolume(Long volume) {
 this.volume = volume;
 }

 // Implementation for hashCode and equals methods.
}

2. Compile the JavaBean class.

3. Register your JavaBean event type in the Oracle Event Processing event type
repository:

<wlevs:event-type-repository>
 <wlevs:event-type type-name="MarketEvent">
 <wlevs:class>
 com.bea.wlevs.example.algotrading.event.MarketEvent
 </wlevs:class>
 </wlevs:event-type>
</wlevs:event-type-repository>

Create and Register a JavaBean Event Type

Events and Event Types 3-9

3.7.3 Create a JavaBean Event Type Programmatically
Steps 1 and 2 are the same as steps 1 and 2 in Create a JavaBean Event Type
Declaratively. Then, for step 3, do the following.

To register a JavaBean event type programmatically, use the EventTypeRepository
class as shown:

EventTypeRepository rep = getEventTypeRepository();
rep.registerEventType("MarketEvent",
com.bea.wlevs.example.algotrading.event.MarketEvent.getClass()
);

For more information, see Access the Event Type Repository.

3.7.4 Usages
Once you create a JavBean even type, you can reference it in your application Java
code. The following code references the MarketEvent event type in the
onInsertEvent method implementation. The onInsertEvent method is from an
event sink class that receives events. For more information on event sinks, see Event
Sink Interfaces.

public void onInsertEvent(Object event) throws EventRejectedException {
 if (event instanceof MarketEvent){
 MarketEvent marketEvent = (MarketEvent) event;
 System.out.println("Price: " + marketEvent.getPrice());
 }
}

The following Oracle CQL rule shows how to reference the MarketEvent event type
in a SELECT statement. It assumes an upstream channel called
marketEventChannel with a MarketEvent event type.

<query id="helloworldRule">
 <![CDATA[SELECT MarketEvent.price FROM marketEventChannel [NOW] >
</query>

Also, with property data types implemented as JavaBeans, Oracle CQL code can get
values within those properties by using standard JavaBean-style property access. For
example, the following configuration snippet declares a StudentType event type that
is implemented as a JavaBean class. The school.Student class is a JavaBean with an
address property that is an Address JavaBean class. The following query suggests
how you might access values of the Address object underlying the address property.
This query selects student addresses whose postal code begins with 97.

<query id="studentAddresses">
 FOR StudentType SELECT student.address
 FROM
 StudentType as student
 WHERE
 student.address.postalCode LIKE '^97'
</query>

EventRejectedException Behavior in onInsertEvent Implementations

You need to explicitly throw EventRejectedException in onInsertEvent
implementations for exceptions you do not want to get dropped. You can raise an
EventProcessingException and it is propagated all the way to the source of the
error through a CQL processor. An EventRejectedException can chain exceptions from

Create and Register a JavaBean Event Type

3-10 Developing Applications for Oracle Event Processing

its downstream listeners, in case there is more than one exception. The CQL processor
converts the EventRejectedException to a soft exception. See Fault Handling for
more information.

3.8 Create and Register a Tuple Event Type
First, identify the event data that the event type carries and then decide the properties
the event type requires. When you design your event, you must restrict the properties
to the data types described in Design Constraints.

With a tuple-based event type, your Java code must always set and get its property
values with the EventTypeRepository APIs.

Note:

The order in which the EPN processes tuples with the same time stamp is not
guaranteed when the EPN is made up of multiple streams.

Data Types

When you specify the tuple event type properties declaratively in the application
assembly file, you can use any of the native Oracle CQL data types in the property
type.

The following XML shows the use of different types in the application assembly file.

<wlevs:event-type-repository>
 <wlevs:event-type type-name="SimpleEvent">
 <wlevs:properties>
 <wlevs:property name="id" type="char" length="1000" />
 <wlevs:property name="msg" type="char" />
 <wlevs:property name="count" type="double" />
 <wlevs:property name="time_stamp" type="timestamp" />
 </wlevs:properties>
 </wlevs:event-type>
...
</wlevs:event-type-repository>

Procedures

• Create a Tuple Event Type in the Assembly File

• Use a Tuple Event Type in Java Code

• Use a Tuple Event Type Instance in Oracle CQL Code

3.8.1 Create a Tuple Event Type in the Assembly File
Register your event type declaratively in the Oracle Event Processing event type
repository with the wlevs:event-type-repository element and the
wlevs:event-type child element.

Create a Tuple Event Type in the Assembly File

The following XML stanzas create a the CrossRateEvent tuple event type with the
properties price, fromRate, and toRate.

Create and Register a Tuple Event Type

Events and Event Types 3-11

<wlevs:event-type-repository>
 <wlevs:event-type type-name="CrossRateEvent">
 <wlevs:properties>
 <wlevs:property name="price" type="double"/>
 <wlevs:property name="fromRate" type="char"/>
 <wlevs:property name="toRate" type="char"/>
 </wlevs:properties>
 </wlevs:event-type>
</wlevs:event-type-repository>

See wlevs:event-type-repository in Schema Reference for Oracle Event Processing.

3.8.2 Use a Tuple Event Type in Java Code
Before you can use a tuple event type in Java code, you must create an event type
repository. You use the event type repository to get the property names and values so
you can work on them in your code. To create an event type repository, include the
com.bea.wlevs.ede.api.EventTypeRepository class.

The following code is part of an event sink class. The code creates an event type
repository with a call to the setEventTypeRespository method. The Oracle Event
Processing server then calls the onInsertEvent method with an event parameter.
The onInsertEvent method gets information about the event from the event type
repository.

For more information about creating an EventTypeRepository object, see Access
the Event Type Repository.

@Service
// Create an event type repository
public void setEventTypeRepository(EventTypeRepository etr) {
 etr_ = etr;
}
...
// Called by the server to pass in the event type instance.
public void onInsertEvent(Object event) throws EventRejectedException {

 // Get the event type for the current event instance
 EventType eventType = etr_.getEventType(event);

 // Get the event type name
 String eventTypeName = eventType.getTypeName();

 // Get the event property names
 String[] propNames = eventType.getPropertyNames();

 // See if property you're looking for is present
 if(eventType.isProperty("fromRate")) {
 // Get property value
 Object propValue =
 eventType.getProperty("fromRate").getValue(event);
 }
 // Throw com.bea.wlevs.ede.api.EventRejectedException to have an
 // exception propagated up to senders. Other errors will be
 // logged and dropped.
}

3.8.3 Use a Tuple Event Type Instance in Oracle CQL Code
The following Oracle CQL rule shows how to reference the CrossRateEvent in a
SELECT statement. FxQuoteStream is a channel with the CrossRateEvent event
type.

Create and Register a Tuple Event Type

3-12 Developing Applications for Oracle Event Processing

<query id="FindCrossRatesRule"><![CDATA[
 select ((a.price * b.price) + 0.05) as internalPrice,
 a.fromRate as crossRate1,
 b.toRate as crossRate2
 from FxQuoteStream [range 1] as a, FxQuoteStream [range 1] as b
 where
 NOT (a.price IS NULL)
 and
 NOT (b.price IS NULL)
 and
 a.toRate = b.fromRate
></query>

3.9 Create and Register a Map Event Type
First, identify the event data that the event type carries and then decide the properties
the event type requires. You create a java.util.map event type by adding the
configuration XML to the application assembly file.

An event type based on a hash map is called a map-based event type.

• Data Types

• To create and register a java.util.Map event type:

• Usages

Data Types

You can use the following Java types for the properties:

• The fully qualified name of a Java class. The name must conform to the
Class.forName rules and be available in the application class loader.

• A Java primitive such as int or float.

• An array by appending square brackets ([])to the primitive or class name. For
example, short[] or java.lang.Integer[].

The following XML code shows examples of event property declarations in the event
repository.

<wlevs:event-type-repository>
 <wlevs:event-type type-name="AnotherEvent">
 <wlevs:properties type="map">
 <wlevs:property>
 <entry key="name" value="java.lang.String"/>
 <entry key="employeeId" value="java.lang.Integer[]"/>
 <entry key="salary" value="float"/>
 <entry key="projectIds" value="short[]"/>
 </wlevs:property>
 <wlevs:properties>
 </wlevs:event-type>
</wlevs:event-type-repository>

To create and register a java.util.Map event type:

First, identify the event data that the event type carries and then decide the properties
the event type requires.

• To register declaratively, edit the EPN assembly file using the wlevs:event-
type-repository element wlevs:event-type child element as shown:

<wlevs:event-type-repository>
 <wlevs:event-type type-name="AnotherEvent">
 <wlevs:properties type="map">

Create and Register a Map Event Type

Events and Event Types 3-13

 <wlevs:property name="name" value="java.lang.String"/>
 <wlevs:property name="age" value="java.lang.Integer"/>
 <wlevs:property name="address" value="java.lang.String"/>
 </wlevs:properties >
 </wlevs:event-type>
</wlevs:event-type-repository>

At runtime, Oracle Event Processing generates a bean instance of the
AnotherEvent class for you. The AnotherEvent class has three properties:
name, age, and address.

• To register programmatically, use the EventTypeRepository class as shown:

EventTypeRepository rep = getEventTypeRepository();
java.util.Map map = new Map({name, java.lang.String},
 {age, java.lang.Integer}, {address, java.lang.String});
rep.registerEventType("AnotherEvent", map);

Usages

public void onInsertEvent(Object event)
 throws EventRejectedException {

 java.util.Map anEvent = (java.util.Map) event;
 System.out.println("Age: " + anEvent.get("age"));
}

The following Oracle CQL rule shows how you can reference the MarketEvent in a
SELECT statement:

<query id="helloworldRule">
 <![CDATA[select age from eventChannel [now] >
</query>

3.10 Access the Event Type Repository
The Oracle Event Processing event type repository keeps track of the event types
defined for your application. When you create an event type in Oracle JDeveloper, it
becomes available to the Oracle Event Processing application.

In some cases, you might need to write code that explicitly accesses the repository. For
example, when your event type is created as a tuple, Java logic that accesses instance
of the type will need to first retrieve the type definition using the repository API, then
use the API to access the instance property values.

The EventTypeRepository is a singleton OSGi service. Because it is a singleton,
you only need to specify its interface name to identify it. You can get a service from
OSGi in any of the following ways:

• EPN Assembly File

• Spring-DM @ServiceReference Annotation

• Oracle Event Processing @Service Annotation

For more information, see Java API Reference for Oracle Event Processing.

3.10.1 EPN Assembly File
You can access the EventTypeRepository by specifying an osgi:reference in
the EPN assembly file.

<osgi:reference id="etr" interface="com.bea.wlevs.ede.api.EventTypeRepository" />
<bean id="outputBean" class="com.acme.MyBean" >

Access the Event Type Repository

3-14 Developing Applications for Oracle Event Processing

 <property name="eventTypeRepository" ref="etr" />
</bean>

Then, in the MyBean class, you can access the EventTypeRepository using the
eventTypeRepository property initialized by Spring.

package com.acme;

import com.bea.wlevs.ede.api.EventTypeRepository;
import com.bea.wlevs.ede.api.EventType;

public class MyBean {
 private EventTypeRepository eventTypeRepository;

 public void setEventTypeRepository(EventTypeRepository eventTypeRepository) {
 this.eventTypeRepository = eventTypeRepository;
 }

 public void onInsertEvent(Object event) throws EventRejectedException {
 // get the event type for the current event instance
 EventType eventType = eventTypeRepository.getEventType(event);

 // Throw com.bea.wlevs.ede.api.EventRejectedException to have an
 // exception propagated up to senders. Other errors will be
 // logged and dropped.

 }
}

3.10.2 Spring-DM @ServiceReference Annotation
You can access the EventTypeRepository by using the Spring-DM
@ServiceReference annotation to initialize a property in your Java source.

import org.springframework.osgi.extensions.annotation.ServiceReference;
import com.bea.wlevs.ede.api.EventTypeRepository;
...
@ServiceReference
setEventTypeRepository(EventTypeRepository etr) {
 ...
}

3.10.3 Oracle Event Processing @Service Annotation
You can access the EventTypeRepository with the Oracle Event Processing
@Service annotation to initialize a property in your Java source.

import com.bea.wlevs.util.Service;
import com.bea.wlevs.ede.api.EventTypeRepository;
...
@Service
setEventTypeRepository(EventTypeRepository etr) {
 ...
}

3.11 Share Event Types Between Application Bundles
Each Oracle Event Processing application gets its own Java classloader and loads
application classes using that class loader. This means that, by default, one application
cannot access the classes in another application.

However, because the event type repository is a singleton service, you can configure
the repository in one bundle and then explicitly export the event type classes so that

Share Event Types Between Application Bundles

Events and Event Types 3-15

applications in separate bundles (deployed to the same Oracle Event Processing
server) can use these shared event types.

The event type names in this case are scoped to the entire Oracle Event Processing
server instance. This means that you will get an exception if you try to create an event
type that has the same name as an event type that has been shared from another
bundle, but the event type classes are different.

To share event type classes, add their package name to the Export-Package header
of the MANIFEST.MF file of the bundle that contains the event type repository you
want to share.

Be sure you deploy the bundle that contains the event type repository before all
bundles that contain applications that use the shared event types, or you will get a
deployment exception.

For more information, see:

• Choose a Data Structure for the Event Type

Reference Foreign Stages

• Java API Reference for Oracle Event Processing.

3.12 Control Event Type Instantiation with an Event Type Builder Class
You can create an event type builder to have more control over how event type
instances are created. For example, using an event type builder you can ensure that the
properties of a configured event are correctly bound to the properties of an event type
class, such as one you have implemented as a JavaBean.

You would need an event type builder in a case, for example, where event property
names assumed in CQL code are different from the names of properties declared in
the class.

For example, assume the event type has a firstname property, but the CQL rule that
executes on the event type assumes the property is called fname. Assume also that
you cannot change either the event type class (because you are using a shared event
class from another bundle, for example) or the CQL rule to make them compatible
with each other. In this case you can use an event type builder factory to change the
way the event type instance is created so that the property is named fname rather
than firstname.

At runtime, an event type builder class receives property values from the Oracle Event
Processing server and uses those values to create an instance of the event type class
you created. Your event type builder then returns the instance to the server. In this
way, your builder class is in effect an intermediary, instantiating event types in cases
where the server is unable to determine how to map configured properties to event
type properties.

Creating and using an event type builder involves implementing the builder class and
configuring a JavaBean event type to use the builder, as described in the following
sections:

• Implement an Event Type Builder Class

• An Event Type that Uses an Event Type Builder

Control Event Type Instantiation with an Event Type Builder Class

3-16 Developing Applications for Oracle Event Processing

3.12.1 Implement an Event Type Builder Class
When you program the event type builder factory, you must implement the
EventBuilder.Factory inner interface of the
com.bea.wlevs.ede.api.EventBuilder interface; see the Java API Reference for
Oracle Event Processing for details about the methods you must implement, such as
createBuilder and createEvent.

The following example of an event type builder factory class is taken from the FX
sample:

package com.bea.wlevs.example.fx;

import java.util.HashMap;
import java.util.Map;
import com.bea.wlevs.ede.api.EventBuilder;
import com.bea.wlevs.example.fx.OutputBean.ForeignExchangeEvent;

public class ForeignExchangeBuilderFactory implements EventBuilder.Factory {

 // Called by the server to get an instance of this builder.
 public EventBuilder createBuilder() {
 return new ForeignExchangeBuilder();
 }

 // Inner interface implementation that is the builder.
 static class ForeignExchangeBuilder implements EventBuilder {

 // A Map instance to hold properties until the event type is instantiated.
 private Map<String,Object> values = new HashMap<String,Object>(10);

 // Called by the server to put an event type property. Values from the map
 // will be used to instantiate the event type.
 public void put(String property, Object value) throws IllegalStateException {
 values.put(property, value);
 }

 // Called by the server to create the event type instance once property
 // values have been received.
 public Object createEvent() {
 return new ForeignExchangeEvent(
 (String) values.get("symbol"),
 (Double) values.get("price"),
 (String) values.get("fromRate"),
 (String) values.get("toRate"));
 }
 }
}

3.12.2 An Event Type that Uses an Event Type Builder
When you register the event type in the EPN assembly file, use the
<wlevs:property name="builderFactory"> child element of the
wlevs:event-type element to specify the name of the event type builder class. The
hard-coded builderFactory value of the name attribute alerts Oracle Event
Processing that it should use the specified factory class, rather than its own default
factory, when creating instances of this event. For example, in the FX example, the
builder factory is registered as shown in bold:

Control Event Type Instantiation with an Event Type Builder Class

Events and Event Types 3-17

<wlevs:event-type-repository>
 <wlevs:event-type type-name="ForeignExchangeEvent">
 <wlevs:class>com.bea.wlevs.example.fx.OutputBean$ForeignExchangeEvent</wlevs:class>
 <wlevs:property name="builderFactory">
 <bean id="builderFactory"
 class="com.bea.wlevs.example.fx.ForeignExchangeBuilderFactory"/>
 </wlevs:property>
 </wlevs:event-type>
</wlevs:event-type-repository>

Control Event Type Instantiation with an Event Type Builder Class

3-18 Developing Applications for Oracle Event Processing

4
Adapters

Adapters manage data entering and leaving the EPN. Oracle Event Processing
provides a number of different kinds of inbound and outbound adapters to handle
different types of data such as CSV, RMI, and HTTP. All adapters have a provider
property that is a reference to the OSGi-registered adapter factory service and defines
the type of data that the adapter handles.

Inbound adapters receive event data from a data stream entering the EPN, assign the
data to an event according to the event type, and send the data to the next stage in the
EPN. Outbound adapters receive events processed by the EPN, convert the events to
their output form, and send the converted data to an output data source such as
another EPN, a non-EPN application, a CSV file, or a web page.

This chapter includes the following sections:

• Create Adapters

• Cluster Distribution Service

• Password Encryption

• JAXB Support

• CSV Adapters

• EDN Adapters

• File Adapter

• HTTP Publish-Subscribe Adapter

• HTTP Publish-Subscribe Adapter Custom Converter Bean

• JMS Adapters

• JMS Custom Message Converter Bean

• Oracle Business Rules Adapter

• REST Adapter

• RMI Adapters.

For information about the high availability adapters, see High Availability
Applications.

See Testing 1-2-3 for information about how to use the csvgen adapter with the load
generator to simulate a data feed to test your application.

Adapters 4-1

4.1 Create Adapters
The best way to create most adapters is with Oracle JDeveloper. The Oracle
JDeveloper components window provides the following inbound and outbound
adapters: CSV, EDN, RMI, HTTP, and JMS.

For the other adapters, edit the configuration files directly. Each adapter section in this
chapter provides example assembly and configuration file configurations so that you
can see the settings.

Before you create an adapter, use Oracle JDeveloper to create an event type to assign
to the adapter. See Create and Register an Event Type in Getting Started with Oracle
Event Processing for information about creating event types.

This chapter describes some of the assembly and configuration file settings for the
different types of adapters. For complete information about adapter settings, see
adapter in Schema Reference for Oracle Event Processing. See also the Oracle/
Middleware/my_oep/oep/wlevs_application_config.xsd directory in your
Oracle Event Processing installation for adapter schema information.

4.2 Cluster Distribution Service
The cluster distribution feature provides a mechanism for various Oracle Event
Processing adapter types to distribute incoming events to all of the servers in a cluster.

An individual adapter or event bean instance can be configured to distribute events,
and in this case, all input events processed by that adapter are sent (distributed) to all
servers in the cluster.

The distribution adapter ensures that all input events are sent (distributed) to all
servers in the cluster. To convert an input adapter to a distribution adapter, add the
distributeInput element and set it to true as follows. The
distributionThreadsCount property is optional and defaults to 1.

<wlevs:adapter id="myLoadgenAdapter" provider="loadgen">
 <wlevs:instance-property name="distributeToClusterGroup" value="true"/>
 <wlevs:instance-property name="distributionThreadsCount" value="1"/>
</wlevs:adapter>

Oracle Event Processing supports the Cluster Distribution service for the loadgen, CSV
inbound, and JMS inbound (queue) adapters. Oracle Event Processing does not
support the Cluster Distribution service for the CSV outbound, JMS inbound (topic),
JMS outbound, and HTTP publish-subscribe adapters. It is an error to configure topic
destinations for input distribution. A topic configuration generates a warning log
message and is ignored.

In addition to the adapter types listed above, you can also configure an event bean to
distribute all of the events it receives to all cluster members by specifying the provider
for the bean to be clusterGroupDistributor as shown in the following example:

<wlevs:event-bean id="distributor-bean" provider="clusterGroupDistributor">
 <wlevs:instance-property name="distributionThreadsCount" value="1"/>
 ... other event bean properties ...
</wlevs:event-bean>

Oracle JDeveloper does not currently provide a component for the Cluster
Distribution service. However, you can create a Cluster Distribution service by adding
entries to the assembly and configuration files for your Oracle Event Processing
application.

Create Adapters

4-2 Developing Applications for Oracle Event Processing

4.3 Password Encryption
Some of the adapters have user name and password child elements. Oracle Event
Processing provides the encryptMSAConfig command so that you can encrypt the
file that contains the password. See encryptMSAConfig Command-Line Utility in
Administering Oracle Event Processing for more information.

4.4 JAXB Support
Oracle Event Processing provides a simplified interface for using Java Architecture for
XML Binding (JAXB) mapping capabilities in adapters and event beans to marshall
and unmarshall event data between XML and Java objects.

The JAXB interface supports the JAXB 2.2 specification and EclipseLink Moxy
provider extensions.

You can configure the mapping operations in the following ways:

• Map from an XML schema to Java objects to output a set of annotated Java classes.

• Map from one set of Java objects to another set of Java Objects or to XML using
JAXB annotations.

• Map from an existing XML schema to an existing, predefined Java object
representation. This approach uses the EclipseLink Moxy extensions and requires
an external metadata file that contains the mapping details. The metadata file is
referenced by the application configuration.

4.4.1 EclipseLink Moxy
EclipseLink Moxy provides extensions that enable you to map between an existing
XML schema and a predefined set of Java classes without modifying the XML schema
or the Java classes without providing annotations. You provide the mapping
information in an external metadata file using a XPath syntax.

The flexible EclipseLink Moxy extensions enable you to perform complex operations.
For example, you can map a subset of complex XML data to a much simpler event
representation. You can also flatten a deeply nested XML document into a flat Java
bean event format for processing by Oracle CQL.

You specify EclipseLink Moxy external metadata in XML. Access the schema at:
http://www.eclipse.org/eclipselink/xsds/eclipselink_oxm_2_2.xsd.

4.4.2 APIs
The adapter or event bean that requires JAXB functionality obtains the functionality by
injection of a bean that implements the com.oracle.cep.mappers.api.Mapper
interface. The Mapper interface follows:

public interface Mapper {
 Marshaller createMarshaller() throws MapperException;
 Unmarshaller createUnmarshaller() throws MapperException;
}

The adapter or other EPN component code uses the injected bean to create marshalling
and unmarshalling objects. The com.oracle.cep.mappers.api.Marshaller and
com.oracle.cep.mappers.api.Unmarshaller interfaces shown below work
for most applications.

Password Encryption

Adapters 4-3

http://www.eclipse.org/eclipselink/xsds/eclipselink_oxm_2_2.xsd

public interface Marshaller {
 void marshal(Object object, javax.xml.transform.Result result)
 throws MapperException;
 }

public interface Unmarshaller {
 Object unmarshal(javax.xml.transform.Source source)
 throws MapperException;
}

Some applications might need specialized method signatures for marshalling and
unmarshalling such as an unmarshall method that takes the target class as an
argument. In these cases, use the
com.oracle.cep.mappers.jaxb.JAXBMarshallerImpl and
com.oracle.cep.mappers.jaxb.JAXBUnmarshallerImplinterfaces instead.
These interfaces provide methods that correspond to the full set of marshall and
unmarshall methods that are supported by the javax.xml.bind.Marshaller and
javax.xml.bind.Unmarshaller interfaces.

Assembly File

The following assembly file entries call a mapper bean with properties to specify the
event type and the metadata file.

<bean id="mapperBean" class="com.oracle.cep.mappers.jaxb.JAXBMapperImpl" >
 <property name="eventTypeName" value="CallCenterActivity" />
 <property name="metadata" value="external_metadata_case1.xml" />
</bean>

If you want to call a factory to make the mapper bean, specify the following for the
bean element:

<bean id="mapperBean" class="com.oracle.cep.mappers.jaxb.JAXBMapperFactory"
 factorymethod="create"/>

Configuration File

The following configuration file entries specify properties for the mapper bean.

<jaxb-mapper>
 <name>mapperBean</name>
 <event-type-name>CallCenterActivity</event-type-name>
 <metadata>external_metadata_case1.xml</metadata>
</jaxb-mapper>

Properties

A mapper bean supports properties. All of the properties except metadataMap can be
configured as assembly file properties or as elements in the configuration file.

JAXB Support

4-4 Developing Applications for Oracle Event Processing

Table 4-1 Mapper Bean Properties and Elements

Assembly File
Property Name

Configuration File
Element Name

Description

eventTypeName event-type-name The name of an event type registered by the
application in the event type repository. The
event type corresponds to a Java class. The
package name of this class is used as the
context path when initializing the
JAXBContext represented by the mapper
bean.

The configuration must specify either an
eventTypeName or a contextPath to be
used in constructing the context path for the
JAXBContext represented by the mapper.
The packages must exist on the classpath
of the application and contain either schema
generated classes, JAXB annotated classes, or
classes referenced by Moxy external
metadata. The classes will be used as the Java
object graph for marshalling and
unmarshalling operations.

See context-path inSchema Reference for Oracle
Event Processing for more information.

contextPath context-path A colon-separated list of Java package names.
The specified context path to initialize the
JAXBContext represented by the mapper
bean.

The configuration must specify either an
eventTypeName or a contextPath to be
used in constructing the context path for the
JAXBContext represented by the mapper.
The packages must exist on the classpath
of the application and contain either schema
generated classes, JAXB annotated classes, or
classes referenced by Moxy external
metadata. The classes will be used as the Java
object graph for marshalling and
unmarshalling operations.

validate validate Boolean value that defaults to false. When
true, you must provide the schema. Schema
validation occurs during marshalling and
unmarshalling.

schema schema The file name of the XML schema file used
for validation. Package the schema file with
the application in the META-INF/wlevs/
mappers/jaxb directory.

JAXB Support

Adapters 4-5

Table 4-1 (Cont.) Mapper Bean Properties and Elements

Assembly File
Property Name

Configuration File
Element Name

Description

metadata metadata The name of the file that contains the
EclipseLink Moxy external metadate for
mapping customization. Package the file with
the application in the Meta-INF/wlevs/
mappers/jaxb directory.

metadataMap N/A The Spring <map> element that contains one
entry that corresponds to each component of
the contextPath. For each entry, the key is
the package name from the contextPath
and the corresponding value is the name of a
file that contains the EclipseLink Moxy
external metadata for that package.

If the application uses EclipseLink Moxy-specific external metadata, the location of
the metadata is specified by either the metadata property or the metadataMap
property. The metadataMap property is required when there is more than one
package on the contextPath. There is no support for specifying the metadataMap
property in a component configuration file.

4.5 CSV Adapters
CSV adapters handle inbound and outbound data that is separated by commas. Use a
CSVInbound adapter to accept data in the form of comma-separated values entering
the EPN, and use a CSVOutbound adapter to send data in comma-separated values
out of the EPN.

You can test an Oracle Event Processing Application that uses CSV inbound adapters
with the load generator provided in your Oracle Event Processing installation. The
load generator reads an ASCII file that contains sample data. You must use the CSV
Inbound adapter because it is coded to decipher the data packets generated by the
load generator. See Load Generator and the csvgen Adapter.

Note:

With the java.sql.TimeStamp type, the CSV adapter reads and writes data
in the format yyyy-mm-dd‘T‘hh:mm:ss[.fffffffff]. For example,
"2012-12-12T12:12:12.120".

The best way to create CSV adapters is through the Oracle JDeveloper components
window. The following assembly and configuration files generated by Oracle
JDeveloper show the CSV inbound and outbound adapter configurations.

Assembly File

The inbound CSV adapter translates data read from the StockData.csv file into an
event with the TradeEvent event type.

The wlevs:listener element specifies the component that listens to the inbound
CSV adapter for TradeEvent activity. In this example, the listener is

CSV Adapters

4-6 Developing Applications for Oracle Event Processing

AdapterOutputChannel. The AdapterOutputChannel component listens for and
receives trade events from StockTradeCSVInboundAdapter to send to the next
stage.

<wlevs:adapter id="StockTradeCSVInboundAdapter" provider="csv-inbound">
 <wlevs:listener ref="AdapterOutputChannel"/>
 <wlevs:instance-property name="eventType" value="TradeEvent"/>
 <wlevs:instance-property name="sourceUrl"
 value="file:/scratch/mpawlan/oep9-19/oep/utils/load-generator/StockData.csv"/>
 </wlevs:adapter>

The outbound adapter assembly file configuration is similar to the inbound adapter,
but includes an append attribute. When set to true, Oracle Event Processing appends
data to an existing output file. When set to false, Oracle Event Processing creates a
new file or overwrites an existing file of the same name.

 <wlevs:adapter id="StockTradeCSVOutboundAdapter" provider="csv-outbound">
 <wlevs:instance-property name="eventType" value="TradeEvent"/>
 <wlevs:instance-property name="outputFile" value="/scratch/mpawlan/oep9-19/oep/
utils/load-generator/StockData.csv"/>
 <wlevs:instance-property name="append" value="false"/>
 </wlevs:adapter>

You can provide an absolute or relative path for the outputFile value. For the
relative path, you can specify ../filename.csv. ./result.csv, or upload/
result.csv. When you specify a relative path, make sure that the abstract path
includes the parent directory. For example, in UNIX, specify a file in the current
directory as ./result.csv instead of simply result.csv.

Configuration File

The adapter elements in the configuration file show the adapter name attribute and its
value. The adapter name must match the adapter id attribute in the assembly file.

<csv-adapter>
 <name>StockTradeCSVInboundAdapter</name>
 <event-interval units="nanoseconds">5</event-interval>
</csv-adapter>

<csv-adapter>
 <name>StockTradeCSVOutboundAdapter</name>
</csv-adapter>

4.6 EDN Adapters
Event Delivery Network (EDN) inbound and outbound adapters use JAXB to enable
an EPN to interface with an Oracle SOA Suite event network.

The EDN adapters have a raw-xml-content configuration element that specifies
whether to represent the EDN XML data transmission as raw XML (if true) or as a Java
object using JAXB. In the JAXB case, the adapter expects the Oracle Event Processing
application bundle to include the appropriate set of schema (xjc) generated classes on
its class path.

You configure an EDN adapter with an event type and a reference to an EDL file.
During initialization, the adapter searches the EDL file that contains an event
definition QName that matches the configured event type. If the configured event type
is found in the EDL, the adapter registers a subscription with EDN for the
corresponding QName.

EDN Adapters

Adapters 4-7

To learn how to use EDN adapters and an EDL file, see Create an Application with
EDN Adapter in Getting Started with Oracle Event Processing.

4.6.1 Usage
Use an EDNInbound adapter to receive incoming data from the Oracle SOA Suite
event network. The EDN input adapter subscribes to a specified EDN event type and
converts the incoming EDN events to an Oracle Event Processing event type for
processing by an Oracle Event Processing application.

Use an EDNOutbound adapter to send outbound data to the Oracle SOA Suite event
network. The EDN output adapter converts the Oracle Event Processing events into
corresponding EDN events and publishes them to the EDN. The published events can
be new events that originate in the Oracle Event Processing application or EDN events
that were received by the EDN input adapter, processed by the Oracle Event
Processing application, and sent to the EDN output adapter.

4.6.2 Create EDN Adapters
The best way to create EDN adapters is through the Oracle JDeveloper components
window. The following assembly and configuration files generated by Oracle
JDeveloper show the EDN inbound and outbound adapter configurations.

See edn-adapter in Schema Reference for Oracle Event Processing for information about
the EDN adapter.

Assembly File

The following assembly file entries show the elements and attribute settings for the
inbound and outbound EDN adapters created in the Fraud Detection walkthrough
from Fraud Detection Application in Getting Started with Oracle Event Processing.

• The input EDN adapter listens to the EDN input channel for events of type
FraudCheckRequest.

• The EDN output adapter sends events of type FraudCheckRequest to the next
stage in the EPN.

<wlevs:adapter id="edn-inbound-adapter" provider="edn-inbound">
 <wlevs:listener ref="ednInputChannel"/>
 <wlevs:instance-property name="eventType" value="FraudCheckRequest"/>
</wlevs:adapter>

<wlevs:adapter id="edn-outbound-adapter" provider="edn-outbound">
 <wlevs:instance-property name="eventType" value="FraudCheckResponse"/>
</wlevs:adapter>

Configuration file

The following configuration file entries show the configuration settings for the EDN
inbound and outbound EDN adapters created in the Fraud Detection walkthrough
from Fraud Detection Application in Getting Started with Oracle Event Processing.

Note: You must put the EDL and schema (xsd) files in the fixed path of the
bundled JAR file.

<edn-adapter>
 <name>edn-outbound-adapter</name>
 <edl-file>FraudCheckEvent.edl</edl-file>

EDN Adapters

4-8 Developing Applications for Oracle Event Processing

 <validate>false</validate>
 <raw-xml-content>false</raw-xml-content>
 <jndi-provider-url>t3://localhost:7101</jndi-provider-url>
 <jndi-factory>weblogic.jndi.WLInitialContextFactory</jndi-factory>
 <user>weblogic</user>
 <password>welcome1</password>
</edn-adapter>

<edn-adapter>
 <name>edn-inbound-adapter</name>
 <edl-file>FraudCheckEvent.edl</edl-file>
 <schema-file>FraudCheckType.xsd</schema-file>
 <validate>false</validate>
 <raw-xml-content>false</raw-xml-content>
 <jndi-provider-url>t3://localhost:7101</jndi-provider-url>
 <jndi-factory>weblogic.jndi.WLInitialContextFactory</jndi-factory>
 <user>weblogic</user>
 <password>welcome1</password>
</edn-adapter>

4.7 File Adapter
The File adapter reads data from a file into the EPN and converts the data to an event.

Oracle JDeveloper does not currently provide a component for the File adapter.
However, you can create a File adapter by adding entries to the assembly and
configuration files for your Oracle Event Processing application.

Assembly File

The path property provides the location of the input file. As the adapter reads the
data from the input file, it converts the incoming data to an event of type
OrderArrivalEvent. There is an initialDelay of 5000 nanoseconds before the
File adapters starts to read the file. The downstream OrderArrival channel listens
for events of type OrderArrivalEvent.

<wlevs:adapter id="inputAdapter" provider="file" >
 <wlevs:instance-property name="path"
 value="@wlevs.domain.home@/inpOrderArrival.txt"/>
 <wlevs:instance-property name="eventType" value="OrderArrivalEvent"/>
 <wlevs:instance-property name="initialDelay" value="5000"/>
 <wlevs:listener ref="OrderArrival"/>
</wlevs:adapter>

Configuration File

 <adapter>
 <name>inputAdapter</name>
 </adapter>

4.8 HTTP Publish-Subscribe Adapter
Use the HTTP Publisher adapter to send JavaScript Object Notation (JSON) event data
out of the EPN to a web-based user interface. Use the HTTP Subscriber adapter to
accept JavaScript Object Notation (JSON) event data entering the EPN. JSON event
data comes from an HTTP server where user actions generate events.

The HTTP Publish-Subscribe server in Oracle Event Processing is based on the Bayeux
protocol that is proposed by the cometd project. The Bayeux protocol defines a
contract between the client and the server for communicating with asynchronous
messages over HTTP.

File Adapter

Adapters 4-9

You can create a remote or a local HTTP Publisher adapter, and a remote HTTP
Subscriber adapter. Whether an HTTP adapter is local or remote is determined by the
local or remote URL you supply to the required <server-url> child element.

The best way to create HTTP publish and subscribe adapters is to use Oracle
JDeveloper.

Note:

Byte arrays are not supported as property types in event types used with the
HTTP Publish and Subscribe adapters.

Assembly File

<wlevs:adapter id="http-pub-adapter" provider="httppub"/>

<wlevs:adapter id="http-sub-adapter" provider="httpsub" />

Configuration File

For every local and remote adapter, provide a URL to the server in the server-url
property. The server can be an Oracle Event Processing server, a WebLogic Server
instance, or any third-party HTTP Publish-Subscribe server.

For every local adapter for publishing, add a server-context-path element to
specify the path to the local HTTP Publish-Subscribe server associated with the Oracle
Event Processing instance hosting the current Oracle Event Processing application.

By default, each Oracle Event Processing server is configured with an HTTP Publish-
Subscribe server with path /pubsub. If you have created a new local HTTP Publish-
Subscribe server or changed the default configuration, then specify the location of the
server in the server file. In the file specify the http-pubsub element path value with
the location of the server. You can locate the server file in your Oracle Event
Processing installation at: /Oracle/Middleware/my_oep/examples/domains/
<my_domain>/defaultserver.

The channel child element specifies the channel that the adapter publishes or
subscribes to.

<http-pub-sub-adapter>
 <name>http-pub-adapter</name>
 <server-url>http://myhost.com:9102/pubsub</server-url>
 <channel>/channel2</channel>
 <event-type>com.mycompany.httppubsub.PubsubEvent</event-type>
 <user>wlevs</user>
 <password>wlevs</password>
</http-pub-sub-adapter>

<http-pub-sub-adapter>
 <name>http-sub-adapter</name>
 <server-url>http://myhost.com:9102/pubsub</server-url>
 <channel>/channel2</channel>
 <event-type>com.mycompany.httppubsub.PubsubEvent</event-type>
</http-pub-sub-adapter>

4.9 HTTP Publish-Subscribe Adapter Custom Converter Bean
The HTTP Publish-Subscribe adapter converts incoming JavaScript Object Notation
(JSON) messages to event types and back again. To customize the way inbound and

HTTP Publish-Subscribe Adapter Custom Converter Bean

4-10 Developing Applications for Oracle Event Processing

outbound JSON messages are converted to an event type and back, create a custom
converter bean.

4.9.1 Bayeux Protocol
The HTTP Publish-Subscribe (pub-sub) server is based on the Bayeux protocol that is
proposed by the cometd project. The Bayeux protocol defines a contract between the
client and the server for communicating with asynchronous messages over HTTP. The
pub-sub server can communicate with any client that understands the Bayeux
protocol.

You can develop your web client with the following frameworks:

• Dojo JavaScript library that supports the Bayeux protocol. Oracle Event Processing
does not provide this library. You can find information about it at: http://
dojotoolkit.org/.

• WebLogic Workshop Flex plug-in that enables development of a Flex client that
uses the Bayeux protocol to communicate with a pub-sub server.

For information about securing an HTTP pub-sub server channel, see HTTP Publish-
Subscribe Server in Administering Oracle Event Processing.

4.9.2 Create a Custom Converter Bean
A custom converter bean is a Java class that implements the following interfaces:

• InboundMessageConverter interface to convert inbound JSON messages to
events.

• OutboundMessageConverter interface to convert events to JSON messages.

See the Java API Reference for Oracle Event Processing for a full description of these APIs.

Inbound HTTP Pub-Sub JSON Message

The custom converter bean for an inbound HTTP pub-sub JSON message implements
the com.bea.wlevs.adapters.httppubsub.api.InboundMessageConverter
interface. This interface has only the convert method:

public List convert(JSONObject message) throws Exception;

The message parameter is the inbound HTTP pub-sub message in JSON format. The
return value is a List of events to pass to the next node in the EPN.

Outbound HTTP Pub-Sub JSON Message

The custom converter bean for an outbound HTTP pub-sub message implements the
com.bea.wlevs.adapters.httppubsub.api.OutboundMessageConverter
interface. This interface has only the convert method:

public List<JSONObject> convert(Object event) throws Exception;

The event parameter is an event received by the outbound HTTP pub-sub adapter
from the source node in the EPN. The return value is a List of JSON messages.

Example

The following example shows a custom converter bean that implements both the
InboundMessageConverter and OutboundMessageConvert interfaces. You can
use this bean for both inbound and outbound HTTP pub-sub adapters.

HTTP Publish-Subscribe Adapter Custom Converter Bean

Adapters 4-11

http://dojotoolkit.org/
http://dojotoolkit.org/

Note:

You can use the GSON Java library to convert Java objects to JSON format. For
more information, see http://www.json.org and http://
code.google.com/p/google-gson.

package com.sample.httppubsub;
import com.bea.wlevs.adapters.httppubsub.api.InboundMessageConverter;
import com.bea.wlevs.adapters.httppubsub.api.OutboundMessageConverter;
import com.bea.httppubsub.json.JSONObject;
import java.util.List;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.Map;
public class TestConverter implements InboundMessageConverter, OutboundMessageConverter {
 public List convert(JSONObject message) throws Exception {
 List eventCollection = new ArrayList();
 PubsubTestEvent event = new PubsubTestEvent();
 event.setMessage("From TestConverter: " + message);
 eventCollection.add(event);
 return eventCollection;
 }
 public List<JSONObject> convert(Object event) throws Exception {
 List<JSONObject> list = new ArrayList<JSONObject>(1);
 Map map = new HashMap();
 map.put("message", ((PubsubTestEvent) event).getMessage());
 list.add(new JSONObject(map));
 return list;
 }
}

4.10 JMS Adapters
Use JMS adapters to connect the Java Message Service (JMS) with an Oracle Event
Processing EPN to receive and send JMS messages.

The Oracle Event Processing JMS adapters support any JMS service provider that
provides a Java client that is compliant with Java EE.

The JMS Inbound adapter converts the incoming JMS messages to Oracle Event
Processing events and the JMS outbound adapter converts Oracle Event Processing
events to JMS messages. You can customize the inbound conversion by writing your
own Java class. See Custom Adapters in Customizing Oracle Event Processing.

The best way to create JMS adapters is through the Oracle JDeveloper components
window. The following assembly and configuration files generated by Oracle
JDeveloper show the JMS inbound and outbound adapter configurations.

Note:

An exception that occurs in the MessageConverter object associated with a
outbound JMS adapter does not cause the underlying JMS transaction to roll
back. If the exception occurs outside of the MessageConverter object within
the outbound JMS adapter, then an existing JMS transaction is rolled back.

4.10.1 Service Providers
Oracle Event Processing is tested against the following service providers:

JMS Adapters

4-12 Developing Applications for Oracle Event Processing

http://www.json.org
http://code.google.com/p/google-gson
http://code.google.com/p/google-gson

• WebLogic T3 Client, which is a Java RMI client that uses Oracle T3 protocol to
communicate with Oracle WebLogic Server.

• Version 10.0, 10.3, and 10.3.1 of Oracle WebLogic Server JMS

• The current version of Tibco EMS JMS

If the service provider you want to use is not in the list, you can configure Oracle
Event Processing JMS adapters for use with your service provider by contacting your
service provider and getting the jndi-provider-url and jndi-factory
information needed for the jms-adapter configuration.

4.10.2 Inbound Adapter Configuration
Assembly File

<wlevs:adapter id="jms-inbound-adapter" provider="jms-inbound" />

Configuration File

The inbound adapter converts incoming JMS messages to a TradeEvent. The JNDI
factory and service provider are weblogic.jndi.WLInitialContextFactory
and t3://localhost:7101. The incoming client finds the adapter with the JNDI
name of JNDIName. After the JMS adapter converts the JMS message to an event, the
adapter sends the events to the JNDI destination of Queue1.

The optional connection-jndi-name element provides the JNDI name of the JMS
connection factory. The required destination-jndi-name element provides the
JNDI name of the JMS destination. The session-transacted element when false
indicates that the session is not transactional.

 <jms-adapter>
 <name>jms-inbound-adapter</name>
 <event-type>TradeEvent</event-type>
 <jndi-provider-url>t3://localhost:7101</jndi-provider-url>
 <jndi-factory>weblogic.jndi.WLInitialContextFactory</jndi-factory>
 <connection-jndi-name>JNDIName</connection-jndi-name>
 <destination-jndi-name>Queue1</destination-jndi-name>
 <session-transacted>false</session-transacted>
 </jms-adapter>

4.10.2.1 Single and Multithreaded Inbound JMS Adapters

By default, an inbound JMS adapter is single-threaded. When the inbound JMS
adapter is single-threaded, event order is guaranteed.

To improve scalability, you can configure an inbound JMS adapter to use multiple
threads to read messages from the JMS destination. When the inbound JMS adapter is
multi-threaded, event order is not guaranteed. To use multiple threads, configure the
adapter with a work manager with the work-manager child element. You can specify
a dedicated work manager to be used only by the adapter, or you can share a work
manager among several components such as other adapters and Jetty.

4.10.2.2 Configure a JMS Adapter for Durable Subscriptions

You can configure an inbound JMS adapter to be a client in a durable subscription to a
JMS topic. A durable subscription ensures that the adapter receives published
messages even when the adapter becomes inactive. When the inbound adapter
connects to the JMS server, it registers the durable subscription and subsequent
messages sent to the topic are retained during periods when the subscriber is
disconnected (unless they expire) and delivered when the subscriber reconnects.

JMS Adapters

Adapters 4-13

A durable subscription assumes that the publisher that is publishing JMS messages to
the topic is using the persistent delivery mode. Note that publisher might be the
Oracle Event Processing outbound JMS adapter (in other words, its delivery-mode
value must be persistent, the default value).

Create a Durable Subscription in the Adapter

1. Ensure that the JMS message publisher is delivering messages in persistent mode.

2. Specify a client ID for the connection factory. On Oracle WebLogic Server, the
client ID can be set on the connection factory administratively with the console.
You should have a dedicated connection factory configured for each adapter
instance that is using durable subscribers.

3. Set the following three jms-adapter properties:

• destination-type to TOPIC.

• durable-subscription to true.

• durable-subscription-name to a unique subscription identifier.

4.10.3 Outbound Adapter Configuration
The outbound JMS adapter converts events into a JMS map message and sends the
JMS message to a JMS destination. You can also customize this conversion by writing
your own Java class to specify exactly how you want the event types to be converted
into outgoing JMS messages. See Custom Adapters in Customizing Oracle Event
Processing.

Assembly File

<wlevs:adapter id="jms-outbound-adapter" provider="jms-outbound"/>

Configuration File

The JMS Outbound adapter configuration is almost the same as the JMS Inbound
adapter configuration. The outbound adapter specifies a JMS destination and provides
a user name and password to access the JMS destination. This session is transactional
and non-persistent.

 <jms-adapter>
 <name>jms-outbound-adapter</name>
 <event-type>TradeEvent</event-type>
 <jndi-provider-url>t3://localhost:7101</jndi-provider-url>
 <jndi-factory>weblogic.jndi.WLInitialContextFactory</jndi-factory>
 <connection-jndi-name>Topic</connection-jndi-name>
 <destination-jndi-name>Queue2</destination-jndi-name>
 <user>weblogic</user>
 <password>welcome1</password>
 <session-transacted>true</session-transacted>
 <delivery-mode>nonpersistent</delivery-mode>
 </jms-adapter>

4.11 JMS Custom Message Converter Bean
To customize the conversion between JMS messages and event types, create inbound
and outbound converter beans and package them with your Oracle Event Processing
Application.

JMS Custom Message Converter Bean

4-14 Developing Applications for Oracle Event Processing

4.11.1 Implement Interfaces
The inbound and outbound converter beans implement methods in the following two
inbound and outbound interfaces. See the Java API Reference for Oracle Event Processing
for a full description of these APIs.

• Inbound:
com.bea.wlevs.adapters.jms.api.InboundMessageConverter. You
have to implement its convert method. The return value is a List of events to
be passed downstream.

public List convert(Message message)
 throws MessageConverterException, JMSException;

message parameter: Corresponds to the incoming JMS message.

• Outbound:
com.bea.wlevs.adapters.jms.api.OutboundMessageConverter
interface. You have to implement its convert method. The return value is a
List of JMS messages.

public List<Message> convert(Session session, Object event)
 throws MessageConverterException, JMSException;

session parameter: The javax.jms.Session to use to create the messages.

event parameter: An event received by the outbound JMS adapter from the source
stage in the EPN.

4.11.2 Implement the Inbound JMS Adapter
This example shows you how to implement the convert method for the inbound JMS
adapter.

1. In Oracle JDeveloper, add a Java class to your application project.

2. Implement the
com.bea.wlevs.adapters.jms.api.InboundMessageConverter interface.

The following example shows a possible implementation.

package com.customer;
import com.bea.wlevs.adapters.jms.api.InboundMessageConverter;
import com.bea.wlevs.adapters.jms.api.MessageConverterException;
import com.bea.wlevs.adapters.jms.api.OutboundMessageConverter;
import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.Session;
import javax.jms.TextMessage;
import java.util.ArrayList;
import java.util.List;
public class MessageConverter implements InboundMessageConverter,
 OutboundMessageConverter {
 public List convert(Message message) throws MessageConverterException, JMSException {
 TestEvent event = new TestEvent();
 TextMessage textMessage = (TextMessage) message;
 event.setString_1(textMessage.getText());
 List events = new ArrayList(1);
 events.add(event);
 return events;
 }
 public List<Message> convert(Session session, Object inputEvent)

JMS Custom Message Converter Bean

Adapters 4-15

 throws MessageConverterException, JMSException {
 TestEvent event = (TestEvent) inputEvent;
 TextMessage message = session.createTextMessage(
 "Text message: " + event.getString_1()
);
 List<Message> messages = new ArrayList<Message>();
 messages.add(message);
 return messages;
 }
}

3. Specify the converter in your application EPN assembly file.

• Register the converter class using a bean element.

• Associate the converter class with the JMS adapter by adding a
wlevs:instance-property with name set to converterBean and ref set
to the id of bean.

The following example shows how to register and associate the converter class.

...
 <bean id="myConverter" class="com.customer.MessageConverter"/>
 <wlevs:adapter id="jmsInbound" provider="jms-inbound">
 <wlevs:instance-property name="converterBean" ref="myConverter"/>
 <wlevs:listener ref="mySink"/>
 </wlevs:adapter>

4.11.3 Implement the Outbound JMS Adapter
This example shows you how to implement the convert method for the outbound
JMS adapter.

1. Using the Oracle JDeveloper (or your preferred IDE), add a Java class to your
application project.

2. Implement the
com.bea.wlevs.adapters.jms.api.OutboundMessageConverter
interface.

The example shows a possible implementation.

package com.customer;
import com.bea.wlevs.adapters.jms.api.InboundMessageConverter;
import com.bea.wlevs.adapters.jms.api.MessageConverterException;
import com.bea.wlevs.adapters.jms.api.OutboundMessageConverter;
import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.Session;
import javax.jms.TextMessage;
import java.util.ArrayList;
import java.util.List;
public class MessageConverter implements InboundMessageConverter,
 OutboundMessageConverter {
 public List convert(Message message) throws MessageConverterException, JMSException {
 TestEvent event = new TestEvent();
 TextMessage textMessage = (TextMessage) message;
 event.setString_1(textMessage.getText());
 List events = new ArrayList(1);
 events.add(event);
 return events;
 }
 public List<Message> convert(Session session, Object inputEvent)
 throws MessageConverterException, JMSException {
 TestEvent event = (TestEvent) inputEvent;
 TextMessage message = session.createTextMessage(

JMS Custom Message Converter Bean

4-16 Developing Applications for Oracle Event Processing

 "Text message: " + event.getString_1()
);
 List<Message> messages = new ArrayList<Message>();
 messages.add(message);
 return messages;
 }
}

3. Specify the converter in your application EPN assembly file.

• Register the converter class using a bean element.

• Associate the converter class with the JMS adapter by adding a
wlevs:instance-property with name set to converterBean and ref set
to the id of bean.

The following example shows how to register and associate the converter class.

<bean id="myConverter" class="com.customer.MessageConverter"/>
 <wlevs:adapter id="jmsOutbound" provider="jms-outbound">
 <wlevs:instance-property name="converterBean" ref="myConverter"/>
 </wlevs:adapter>

4.12 Oracle Business Rules Adapter
The Oracle Business Rules (OBR) adapter is an event bean that wraps the business
rules engine from the Oracle Business Rules product. The OBR adapter lets you assert
and retract events as facts to trigger business rules.

You can configure OBR rules to generate events and add business logic to an Oracle
CQL processor downstream to process the events. For example you can invoke
StreamSender.sendInsertEvent within the rules file to send data out of an OBR
adapter as an event.

Oracle JDeveloper does not provide a drag and drop component for the assembly file
or the EPN diagram, but it does provide a drag-and-drop component for the
configuration file.

You can create an OBR adapter by adding entries to the assembly file and by dragging
and dropping the OBR adapter into the configuration file. For more information about
creating OBR adapters by adding entries, see the OBR documentation at: http://
www.oracle.com/technetwork/middleware/business-rules/
documentation/index.html.

Assembly File

The event-type-repository element specifies the event type repository for the
application. In the following example, the repository has a single event type named
HelloWorldEvent and is implemented by the HelloWorldEvent.java class.

The next adapter specifies an id equal to helloworldAdapter ID with a value of the
HelloWorldAdapter Java class. An adapter is created from the
HelloWorldAdapter Java class. The OBR adapter configuration includes a message
element with the specified message text. The HelloWorldAdapter class prints the
message during application execution. In this example, the HelloWorldAdapter
class is the event source.

The OBR adapter declaration comes after the channel and Oracle CQL processor
configurations: <wlevs:adapter id="OBRAdapter" provider = "obr">
followed by the decisionFunction and dictionaryURL properties. The
dictionaryURL property is the path to the OBR dictionary file that contains the
rules, and decisionFunction property is the OBR function you want to use. The
handler1 property is a handle for other components to access this information.

Oracle Business Rules Adapter

Adapters 4-17

http://www.oracle.com/technetwork/middleware/business-rules/documentation/index.html
http://www.oracle.com/technetwork/middleware/business-rules/documentation/index.html
http://www.oracle.com/technetwork/middleware/business-rules/documentation/index.html

Note:

The OBR adapter does not handle automatic Fact retraction. If the upstream
processor outputs a stream, retract the Fact in the rule file when appropriate
or when the last rule is triggered according to rule priority.

At the bottom is the HelloWorldBeand configuration. The HelloWorldBean is a
Java class that instantiates the HelloworldEvent and HelloWorldAdapter classes.

<wlevs:event-type-repository>
 <wlevs:event-type type-name="HelloWorldEvent">
 <wlevs:class>com.bea.wlevs.event.example.helloworld.HelloWorldEvent
 </wlevs:class>
 </wlevs:event-type>
</wlevs:event-type-repository>
<wlevs:adapter id="helloworldAdapter"
 class="com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapter" >
 <wlevs:instance-property name="message" value="HelloWorld - The time is:"/>
</wlevs:adapter>

<wlevs:channel id="helloworldInputChannel" event-type="HelloWorldEvent" >
 <wlevs:listener ref="helloworldProcessor"/>
 <wlevs:source ref="helloworldAdapter"/>
</wlevs:channel>

<wlevs:processor id="helloworldProcessor" />

<wlevs:channel id="helloworldOutputChannel" event-type="HelloWorldEvent"
 advertise="true" max-threads="0" max-size="0" >
<wlevs:listener ref="OBRAdapter"/>
<wlevs:source ref="helloworldProcessor"/>
</wlevs:channel>

<wlevs:adapter id="OBRAdapter" provider = "obr">
<wlevs:instance-property name="decisionFunction" value="handler1" />
<wlevs:instance-property name="dictionaryUrl" value="file:helloworld.rules"/>
<wlevs:listener ref="OutputBean"/>
</wlevs:adapter>

<wlevs:event-bean id="OutputBean"
 class="com.bea.wlevs.example.helloworld.HelloWorldBean">
</wlevs:event-bean>

Configuration File

The configuration file declares the Oracle CQL processor and query rules to use to
process the HelloworldEvent received from the OBR adapter. It also provides the
OBR adapter handler (handler1) for accessing the OBR rules. The dictionary-url
element specifies the path to the OBR dictionary file that contains the rules and
decision function you want to use. The decision-function element specifies the
name of the OBR decision function you want to use.

<processor>
 <name>helloworldProcessor</name>
 <rules>
 <query id="helloworldRule">
 <![CDATA[select * from helloworldInputChannel[range 10 slide 5]]] >
 select * from helloworldInputChannel[now]
 </query>

Oracle Business Rules Adapter

4-18 Developing Applications for Oracle Event Processing

 </rules>
</processor>
<obr-adapter>
 <name>OBRAdapter</name>
 <dictionary-url>file:helloworld.rules</dictionary-url>
 <decision-function>handler1</decision-function>
</obr-adapter>

4.13 REST Adapter
The Representational State Transfer (REST) inbound adapter receives HTTP Post data
from an external client through the HTTP protocol. A REST adapter can accept data in
XML, CSV, and JavaScript Object Notation (JSON) and convert that data into the
Oracle Event Processing event configured on the inbound REST adapter.

To convert data to events, the REST adapter requires a Java Architecture for XML
Binding (JAXB) mapper and a CSV mapper. A mapper is a JavaBean class that
implements the marshalling and unmarshalling of the incoming data.

Oracle JDeveloper does not currently provide a component for the REST adapter.
However, you can create a REST adapter by adding entries to the assembly and
configuration files for your Oracle Event Processing application.

Assembly File

The following assembly file shows the settings for an inbound REST adapter that
handles input data of type XML, CSV, and JSON.

<bean id="xmlMapperBean" class="com.oracle.cep.mappers.jaxb.JAXBMapperFactory"
 factory-method="create" />
<bean id="csvMapperBean" class="com.oracle.cep.mappers.csv.CSVMapper" />

<bean id="jsonMapperBean"
 class="com.oracle.cep.mappers.jaxb.JAXBMapperFactory"
 factory-method="create" />
<wlevs:adapter id="restInbound" provider="rest-inbound">
<wlevs:instance-property name="mapper" ref="xmlMapperBean" />
<wlevs:instance-property name="csvMapper" ref="csvMapperBean" />
<wlevs:instance-property name="eventTypeName" value="CallCenterActivity" />
<wlevs:instance-property name="contextPath" value="/testhttpadapter" />
</wlevs:adapter>

The following assembly file shows the settings for an outbound REST adapter that
unmarshalls an event to the XML or JSON content types.

<wlevs:adapter id="restXmlOutbound" provider="rest-outbound">
 <wlevs:instance-property name="mapper" ref="xmlMapperBean" />
 <wlevs:instance-property
 name="url" value="http://localhost:9002/testadapter" />
 </wlevs:adapter>

 <wlevs:adapter id="restJsonOutbound" provider="rest-outbound">
 <wlevs:instance-property name="mapper" ref="jsonMapperBean" />
 <wlevs:instance-property name="url"
 value="http://localhost:9002/testadapter" />
 </wlevs:adapter>

Configuration File

The following configuration file shows the rest-adapter configuration for receiving
POST data, and the jaxb-mapper configuration for handling incoming XML and
JSON data.

REST Adapter

Adapters 4-19

 <rest-adapter>
 <name>restInbound</name>
 <event-type-name>CallCenterActivity</event-type-name>
 <context-path>/testhttpadapter</context-path>
 </rest-adapter>
 <jaxb-mapper>
 <name>xmlMapperBean</name>
 <event-type-name>CallCenterActivity</event-type-name>
 <metadata>external_metadata_case1.xml</metadata>
 </jaxb-mapper>
<json-mapper>
 <name>jsonMapperBean</name>
 <event-type-name>CallCenterActivity</event-type-name>
 <media-type>application/json</media-type>
</json-mapper>

The following configuration file shows the settings for an outbound REST adapter that
unmarshalls an event to the XML or JSON content types.

 <rest-adapter>
 <name>restXmlOutbound</name>
 <url>http://localhost:9002/testrestadapter</url>
 </rest-adapter>

 <rest-adapter>
 <name>restJsonOutbound</name>
 <url>http://localhost:9002/testrestadapter</url>
 </rest-adapter>

<jaxb-mapper>
 <name>xmlMapperBean</name>
 <event-type-name>CallCenterActivity</event-type-name>
 <metadata>external_metadata_case1.xml</metadata>
</jaxb-mapper>

<json-mapper>
 <name>jsonMapperBean</name>
 <event-type-name>CallCenterActivity</event-type-name>
 <media-type>application/json</media-type>
</json-mapper>

Note: To support XML content type in the REST inbound and outbound
adapters, use the XML Mapper. Adding XML annotations or generating JAXB
bindings file automatically is not supported in this release.

4.14 RMI Adapters
Use the RMI Inbound and Outbound adapters to read event information from and
write event information to an RMI connection. The best way to create RMI adapters is
through the Oracle JDeveloper components window.

The following assembly and configuration files generated by Oracle JDeveloper show
the RMI inbound and outbound adapter configurations.

RMI Adapters

4-20 Developing Applications for Oracle Event Processing

Note:

The RMI client connection cannot be closed. See question F1 at http://
docs.oracle.com/javase/8/docs/technotes/guides/rmi/
faq.html.

Assembly File

The inbound RMI adapter has a JNDI name to enable inbound clients to locate the
EPN.

<wlevs:adapter id="rmi-inbound-adapter" provider="rmi-inbound">
 <wlevs:instance-property name="jndiName"
 value="TradeReportApplication.TradeReport/rmi-inbound-adapter"/>
 </wlevs:adapter>
<wlevs:adapter id="rmi-outbound-adapter" provider="rmi-outbound"/>

Configuration File

The JNDI name enables the RMI outbound adapter to locate the output resource for
the event data. The JNDI provider enables directory service implementations to be
plugged into the JNDI framework.

In this example, the JNDI provider is the default Oracle WebLogic T3 client. Oracle
WebLogic T3 clients are Java RMI clients that use the Oracle T3 protocol to
communicate with Oracle WebLogic Server. T3 clients typically outperform other
client types.

<rmi-adapter>
 <name>rmi-outbound-adapter</name>
 <jndi-name>RMIOutboundJNDIName</jndi-name>
 <jndi-provider-url>t3://localhost:7001</jndi-provider-url>
 <jndi-factory>weblogic.jndi.WLInitialContextFactory</jndi-factory>
 </rmi-adapter>

RMI Adapters

Adapters 4-21

http://docs.oracle.com/javase/8/docs/technotes/guides/rmi/faq.html
http://docs.oracle.com/javase/8/docs/technotes/guides/rmi/faq.html
http://docs.oracle.com/javase/8/docs/technotes/guides/rmi/faq.html

RMI Adapters

4-22 Developing Applications for Oracle Event Processing

5
Channels

A channel represents the logical conduit through which events flow between other
types of components (stages). For example, between adapters and Oracle CQL
processors or between Oracle CQL processors and event beans.

This chapter includes the following sections:

• When to Use a Channel

• Channel Configuration

• Control Which Queries Output to a Downstream Channel

• Batch Processing Channels

• Fault Handling

• EventPartitioner Channels.

5.1 When to Use a Channel
Channels provide buffering, queuing, and concurrency capabilities that enable you to
tune the performance of your application later in the design life cycle.

By default, the channel max-threads attribute is set to 0, which means the channel is
in pass-through mode and incurs no performance penalty.

When constructing your EPN, consider the following rules:

• A channel is mandatory when you connect an Oracle CQL processor to a
downstream stage.

• A channel is mandatory when you connect a stream or relation to an Oracle CQL
processor.

Note that based on the previous two points, it is mandatory to have a channel
between an adapter and a processor. When you use Oracle JDeveloper to connect
an adapter to a processor, the channel wizard displays for you to create the
channel. See Create a Channel in Getting Started with Oracle Event Processing.

• A channel is optional when you connect any of the following components to an
Oracle CQL processor: an external relation, cache, or table source.

A channel is not needed between a pull source, such as a cache or table, and a
processor because the pull source represents an external relation. For an external
relation, the only valid operation is a join between a stream and a NOW window
operator, and hence it is considered a pull source. The join actually happens outside of
the Oracle CQL processor. Because it is a pull, the Oracle CQL processor does not need
to be aware of its shape (that is, no DDL is required) and does not need the channel to
act as intermediary.

Channels 5-1

In general, use a channel between components when:

• Buffering is needed between the emitting component and the receiver.

• Queueing or concurrency is needed for the receiving component.

• If a custom adapter is used and thread control is necessary.

5.2 Channel Configuration
When you add a channel to your Event Processing Network (EPN), it has a default
configuration. The default channel has a name, an ID, is a system time-stamped stream
channel, and has a default heartbeat time out of 100 milliseconds or 100,000,000
nanoseconds.

The default configuration is adequate for most applications.You can modify the
configuration by editing the application assembly file or by editing the component
configuration file.

When a channel is time stamped by the system, Oracle Event Processing assigns a new
time from the CPU clock when a new event arrives and when the configurable
heartbeat time out expires.

When a channel is time stamped by an application, the time stamp of an event is
determined by the wlevs:expression element. A common example of an
expression is a reference to a property on the event. If no expression is specified, then
the time stamp can be propagated from a prior event. For example, when a channel
that is time stamped by the system from one Oracle CQL processor feeds events into a
channel that is time stamped by an application of another downstream Oracle CQL
processor. In addition, an application can use the StreamSender.sendHeartbeat
method to send an event of type heart-beat downstream to StreamSink listeners
in the EPN.

Note:

When a channel is both application time stamped and map-based (uses a hash
map event type), Oracle Event Processing adds a time stamp. A delete or
update operation without a key does not work on a channel with this
configuration because application time stamped events hold an always
changing timestamp property.

This chapter describes some of the assembly and configuration file channel settings.

5.2.1 Assembly File
The assembly file shows the channel settings for the helloworldInputChannel. The
settings indicate that helloworldProcessor listens to the channel for events, and that
events flow into the channel from helloworldAdapter.

<wlevs:channel id="helloworldInputChannel" event-type="HelloWorldEvent" >
 <wlevs:listener ref="helloworldProcessor"/>
 <wlevs:source ref="helloworldAdapter"/>
</wlevs:channel>

To configure the channel as a relation, add the is-relation setting to the assembly
file as follows:

Channel Configuration

5-2 Developing Applications for Oracle Event Processing

<wlevs:channel id="helloworldInputChannel" event-type="HelloWorldEvent"
is-relation="true" primary-key="myprimarykey" />

If you make the channel a relation, you must also configure the primary-key
attribute. The primary key is a list of event property names separated by white space
or a comma that uniquely identifies each event. See wlevs:metadata in Schema
Reference for Oracle Event Processing for information about how to define a primary key.

To configure the channel to be application time stamped, add the application-
timestamped and expression elements to the assembly file as follows. When you
set the is-total-order element to true, the application time published is always
strictly greater than the last value used.

<wlevs:application-timestamped is-total-order="true">
 <wlevs:expression>mytime+10</wlevs:expression>
</wlevs:application-timestamped>

5.2.2 Configuration File
The configuration file shows the channel configuration settings. The settings
customize the channel to buffer process events asynchronously (max-size), to use a
maximum of 4 threads (max-threads), and to use a heartbeat time out of 10000
nanoseconds (heartbeat).

 <channel>
 <name>helloworldInputChannel</name>
 <max-size>10000</max-size>
 <max-threads>4</max-threads>
 <heartbeat>10000</name>
</channel>

5.3 Control Which Queries Output to a Downstream Channel
If you configure an Oracle CQL processor with more than one query, then by default,
all queries send their results to the downstream channel. You can control which
queries send their results to the downstream channel with the selector element.

Figure 5-1 shows an EPN with channel filteredStream connected to the upstream
Oracle CQL processor, filteredFanoutProcessor.

Figure 5-1 EPN With Oracle CQL Processor and Downstream Channel

The following example shows the queries configured for the Oracle CQL processor.

<processor>
 <name>filterFanoutProcessor</name>
 <rules>
 <query id="Yr3Sector"><![CDATA[
 select cusip, bid, srcId, bidQty, ask, askQty, seq
 from priceStream where sector="3_YEAR"
 ></query>
 <query id="Yr2Sector"><![CDATA[
 select cusip, bid, srcId, bidQty, ask, askQty, seq
 from priceStream where sector="2_YEAR"
 ></query>
 <query id="Yr1Sector"><![CDATA[
 select cusip, bid, srcId, bidQty, ask, askQty, seq
 from priceStream where sector="1_YEAR"

Control Which Queries Output to a Downstream Channel

Channels 5-3

 ></query>
 </rules>
</processor>

If you specify more than one query for an Oracle CQL processor, then by default, all
query results are output to the Oracle CQL processor outbound channel
(filteredStream in Figure 5-1). Optionally, in the component configuration source,
you can use the channel element selector child element to specify a space-
delimited list of one or more Oracle CQL query names that can output their results to
the channel. In the following example, query results for query Yr3Sector and
Yr2Sector are output to filteredStream but not query results for query
Yr1Sector.

<channel>
 <name>filteredStream</name>
 <selector>Yr3Sector Yr2Sector</selector>
</channel>

You can configure a channel element with a selector before you create the queries
in the upstream Oracle CQL processor. In this case, you must specify query names that
match the names in the selector.

Note:

The selector child element is only applicable if the upstream stage is an
Oracle CQL processor. For more information, see Oracle CQL Processors .

5.4 Batch Processing Channels
By default, a channel processes events as they arrive. You can configure a channel to
batch events that have the same time stamp and were output from the same query by
setting the wlevs:channel attribute batching to true.

Batching events can improve application performance.

<wlevs:channel id="priceStream" event-type="PriceEvent" batching="true">
 <wlevs:listener ref="filterFanoutProcessor" />
 <wlevs:source ref="PriceAdapter" />
</wlevs:channel>

See also:

• Implement RelationSender

• batch-size in Schema Reference for Oracle Event Processing

• batch-time-out in Schema Reference for Oracle Event Processing.

5.5 Fault Handling
You can write code to handle exceptions that occur in stages that are downstream
from a channel and thrown to the channel.

By default, the fault-handling behavior for a channel is as follows:

• If the channel max-threads setting is 0 (a pass-through channel), then the
exception is thrown again to the next upstream stage in the EPN.

• If the channel max-threads setting is greater than 0, then the exception is logged
and dropped. any events associated with the fault are also logged and dropped.

Batch Processing Channels

5-4 Developing Applications for Oracle Event Processing

You can write a fault handling class and associate the handler with a channel with
max-threads values that are greater than 0. With a fault handler associated with the
channel, exceptions thrown to the channel are received by the handler, which contains
code to either handle the fault or throw it again. If your fault handling code throws the
exception again, the exception is logged, but events related to the exception are lost. If
you want to keep track of events involved in these exceptions, you must persist them
with your code, such as by writing the event data to a data source connected to your
EPN.

Note:

To handle an exception thrown by a multithreaded channel, the fault handler
must be registered in a component that is upstream from the channel such as a
processor. If you do not register the fault handler with an upstream
component, the exception is passed upstream, but the fault handler is not
invoked.

For information on writing fault handlers, see Fault Handling.

5.6 EventPartitioner Channels
By default, a channel broadcasts each event to every listener.

When you configure a channel to use an EventPartitioner, each time an incoming
event arrives, the channel selects a listener and dispatches the event to that listener
instead of broadcasting each event to every listener. You can use an
EventPartitioner on a channel to improve scalability.

EventPartitioner Channels

Channels 5-5

EventPartitioner Channels

5-6 Developing Applications for Oracle Event Processing

6
Oracle CQL Processors

An Oracle CQL Processor processes incoming events from various input channels and
other data sources. You use Oracle CQL to write the business logic in the form of
continuous queries that process incoming events. Oracle CQL filters, aggregates,
correlates, and processes events in real time.

Note:

You can create a Java class with methods that enhance the functionality
available in Oracle CQL. Within Oracle CQL you reference the compiled class
by name and call its methods from a SELECT statement. See SELECT Clause in
Oracle CQL Language Reference for Oracle Event Processing.

This chapter includes the following sections:

• Processor Data Sources

• Assembly and Configuration Files

• Queries

• CQL Aggregations

• Configure a Table Source

• Configure an Oracle CQL Processor for Parallel Query Execution

• Fault Handling.

This chapter presents an overview of Oracle CQL with examples to help you
understand the basic concepts. See Cached Event Data for information about
performing CQL queries on caches. See also Oracle CQL Queries, Views, and Joins in
Oracle CQL Language Reference for Oracle Event Processing.

Oracle JDeveloper provides Oracle CQL Pattern components that provide templates
for creating common Oracle CQL queries. See Using Oracle CQL Patterns in Getting
Started with Oracle Event Processing.

This chapter describes some of the assembly and configuration file Oracle CQL
Processor settings For a complete reference, see Processor inSchema Reference for Oracle
Event Processing .

6.1 Processor Data Sources
Oracle CQL queries can define one or more statements to process incoming event data
from one or more input sources and send the outgoing event data to one or more
output channels.

Oracle CQL Processors 6-1

Each channel (input or output) and data source has an associated event type.

For example, one input can be a channel and another input can be a Coherence cache.
The channel and Coherence cache have different event types because the Coherence
cache provides additional information to the Oracle CQL processor query that is
related to, but not the same as, the event data coming from the input channel.

If you configure an Oracle CQL processor with more than one query, by default, all
queries output their results to all of the output channels. You can control which
queries output their results to which output channels by putting a selector element
on the downstream channel or channels. Use the selector element to specify a space
delimited list of one or more query names that can output their results to that channel.
The Oracle CQL query assigned to the output channel has the correct attributes to
match the event type defined on the output channel. For more information, see
Control Which Queries Output to a Downstream Channel.

6.2 Assembly and Configuration Files
When you add an Oracle CQL processor to your EPN, the assembly file shows the
following entry.

<wlevs:processor id="processor"/>

When you add an Oracle CQL Pattern such as the Averaging Rule to the EPN in
Oracle JDeveloper, the assembly file shows the following entries.

<wlevs:processor id="processor"/>
<wlevs:processor id="averaging-rule"/>

Configuration File

When you add the Oracle CQL processor to your EPN, the configuration file shows
the following entry. By default, you get a template for rules that contains a template
for one query.

 <processor>
 <name>processor</name>
 <rules>
 <query id="ExampleQuery"><![CDATA[
 select * from MyChannel [now] >
 </query>
 </rules>
 </processor>

• The rules element groups the Oracle CQL statements that the Oracle CQL
statements this processor executes.

• The query element contains Oracle CQL select statements. The query element id
attribute defines the query name.

• The XML CDATA type indicates where to put the Oracle CQL rule.

• The select statement is the actual query. The template provides the [now]
operator so that you can perform a now operation as described in NOW and Last
Event Windows.

6.3 Queries
The following sections show how to perform basic Oracle CQL processor queries on
stock trade events.

Assembly and Configuration Files

6-2 Developing Applications for Oracle Event Processing

• Stream Channels

• Time-Based Relations (Windows)

• Processor Output Control (Slides)

Objective

The objective for this section is understand how to use windows, slides, and views in
Oracle CQL queries.

• Windows convert event streams to time-based event relations to make it possible to
perform Oracle CQL operations on the events. See Time-Based Relations
(Windows).

• Slides enable you to batch events to control how the rate at which the CQL
processor outputs events. See Processor Output Control (Slides).

• Views enable you to create an Oracle CQL statement that can be reused by other
Oracle CQL queries. See Views.

Event Type Definition

The stock trade events used in the examples for this section are type
StockTradeEventType with the following field and type definitions:

• tickerSymbol: String

• price: Double

• dailyHigh: Double

• dailyLow: Double

• closingValue: Double

6.3.1 Stream Channels
A stream channel inserts events into a collection and sends the stream to the next EPN
stage. Events in a stream flow continuously, can never be deleted from the stream, and
have no end. You can perform queries on the continuous stream of events flowing into
your application.

A query on the input stream channel, StockTradeIChannel, to retrieve all stock
trade events with the Oracle ticker symbol follows.

SELECT tickerSymbol
FROM StockTradeIStreamChannel
WHERE tickerSymbol = ORCL

The following configuration file entry shows the query. ISTREAM is a relation to
stream operator described in Relation to Stream Operators.

<processor>
 <rules>
 <query id=rule1 <![CDATA[ISTREAM (SELECT tickerSymbol
 FROM StockTradeIStreamChannel WHERE tickerSymbol = ORCL)>
 </query>
 </rules>
</processor>

Queries

Oracle CQL Processors 6-3

6.3.2 Time-Based Relations (Windows)
A relation channel inserts events into a collection and sends the relation to the next
EPN stage. A relation is a window of time on the stream that has a beginning and an
end. Events in a relation can be inserted into, deleted from, and updated in the
relation. For insert, delete, and update operations, events in a relation must be
referenced to a particular point in time to ensure the operation takes place on the
correct event. All operations on a relation are time based.

Most applications do not use relation channels. You can put a window of time on
events coming from a stream channel to create a relation for time-based processing
operations. To find the average price for a particular stock, you must determine a time
frame (window) in which to calculate the average. When you define a window on a
stream, you have a collection of data that is not flowing, and unlike a stream, has a
beginning and an end. The window is an in-memory relation on which you can apply
a function such as AVG and also perform insert, update, and delete operations.

Operators that put a window of time on a stream are called stream to relation
operators. The output of stream to relation operations are relations. You use relation to
stream operators to convert a relation back to a stream to output a stream that contains
every event, only inserted events, or only deleted events.

Oracle CQL processor output typically goes to a stream channel and on to the next
stage in the EPN.

6.3.2.1 Stream to Relation Operators

The stream to relation operators are RANGE and ROW.

RANGE Operator

You can specify a window of time with the time-based window operator, RANGE, as
follows:

SELECT AVG(price)
FROM StockTradeIStreamChannel [RANGE 1 MINUTE]

In this example and to keep the example easy to understand, the range is 1 minute,
ticks in seconds, and one input event is received every second. The query starts
averaging the prices contained in the events at zero seconds and outputs a value of 0
because there is no event in the relation at zero seconds. When the next event arrives
at 1 second, the average price is the price in the first event. When the next event
arrives at 2 seconds, the average price is the average of the two events in the relation.
This continues until 59 seconds (1 minute) is reached.

An important concept with time-based window operators is that the window shifts
over the event stream based on time. When 60 seconds have elapsed, the window
shifts by one-second to average the prices in the events from 1 to 60 seconds, and
when 60 more seconds are reached, the window shifts by one more second to average
the prices in the events from 2 to 61 seconds. The window shifting over the relation
behavior continues as long as the application runs.

The following configuration file entry shows the query. ISTREAM is a relation to
stream operator described in Relation to Stream Operators.

<processor>
 <rules>
 <query id=rule2 <![CDATA[ISTREAM (SELECT AVG(price)
 FROM StockTradeIStreamChannel [RANGE 1 MIN >
 </query>

Queries

6-4 Developing Applications for Oracle Event Processing

 </rules>
</processor>

Note:

Very large numbers must be suffixed. Without the suffix, Java treats very large
numbers like an integer and the value might be out of range for an integer,
which throws an error.

Add a suffix as follows:

l or L for Longf or F for floatd or D for doublen or N for big decimal

For example: SELECT * FROM channel0[RANGE
1368430107027000000l nanoseconds]

ROW Operator

You can specify a tuple-based window with the time-based ROWS operator as follows:

SELECT AVG(price)
FROM StockTradeIStreamChannel [ROWS 3]

A tuple is an event, so the ROWS 3 operation means to average the price on three
events in the relation starting when the first event arrives. The way it works is that the
average operation is performed on the first event that enters the relation. When the
second event enters the relation, the average operation is performed on the two events.
When the third event enters the relation, the average operation is performed on the
three events. No averaging occurs again until the fourth event enters the relation.
When the fourth event enters the relation, the second, third, and fourth events are
averaged. Likewise, when the fifth event enters the relation, the third, fourth, and fifth
events are averaged.

The prior examples have averaged the price for all stocks. To compute the average for
specific stocks in the stream, the following query uses a partitioned window.

SELECT AVG(price), tickerSymbol
FROM StockTradeIStreamChannel [PARTITION by tickerSymbol ROWS 3]
GROUP BY tickerSymbol

A partitioned window creates separate relation-windows for each partition. So in this
example with the PARTITION by tickerSymbol clause, stocks with the same ticker
symbol are grouped by three events and averaged. Without the partition and using
only the GROUP BY clause, the tuple keeps the last three events as expected, but the
ticker symbols in the tuple do not always match, which introduces averaging errors.

The following is the configuration file entry for this query. ISTREAM is a relation to
stream operator described in Relation to Stream Operators.

<procesor>
 <rules>
 <query id="Example"><![CDATA[ISTREAM select tickerSymbol, AVG(price)
 from StockTradeIStream
 [PARTITION by tickerSymbol ROWS 3]
 GROUP BY tickerSymbol) >
 </query>
 </rules>
</processor>

Queries

Oracle CQL Processors 6-5

6.3.2.2 Relation to Stream Operators

The relation to stream operators are ISTREAM, DSTREAM, and RSTREAM.

ISTREAM Operator

The ISTREAM operator puts an insert event from the relation into the output stream.
Events that were deleted or updated in the relation are ignored. When the average
changes, the query sends a delete event to the relation to remove the previous
average and then sends an insert event to the relation to add the new average into
the relation. The following example uses the ISTREAM operator to update the output
stream when a new average is calculated.

ISTREAM (SELECT AVG(price)
FROM StockTradeIStreamChannel [RANGE 1 MINUTE])

The following configuration file entry shows the ISTREAM operator.

<processor>
 <rules>
 <query id=rule2 <![CDATA[ISTREAM (SELECT AVG(price)
 FROM StockTradeIStreamChannel [RANGE 1 MIN >
 </query>
 </rules>
</processor>

DSTREAM Operator

Use the DSTREAM operator to find out when a situation is no longer useful such as
when a stock has been delisted from the exchange. The following example uses the
DSTREAM operator to update the output stream with the old average after the new
average is calculated in the relation.

DSTREAM (SELECT AVG(price)
FROM StockTradeIStreamChannel [RANGE 1 MINUTE])

The following configuration file entry shows the DSTREAM operator.

<processor>
 <rules>
 <query id=rule2 <![CDATA[DSTREAM (SELECT AVG(price)
 FROM StockTradeIStreamChannel [RANGE 1 MIN >
 </query>
 </rules>
</processor>

RSTREAM Operator

The RSTREAM operator inserts all events into the output stream regardless of whether
events were deleted or updated. Use this operator when you need to take downstream
action on every output. The following examples uses the RSTREAM operator to select
all events in the input stream, wait for two events to arrive in the relation, and put the
two events from the relation into the output stream.

RSTREAM (SELECT *
FROM StockTradeIStreamChannel [ROWS 2])

The following configuration file entry shows the RSTREAM operator.

<processor>
 <rules>
 <query id=rule2 <![CDATA[RSTREAM (SELECT *

Queries

6-6 Developing Applications for Oracle Event Processing

 FROM StockTradeIStreamChannel [ROWS 2 >
 </query>
 </rules>
</processor>

6.3.2.3 NOW and Last Event Windows

A NOW window to contain the event that happened at the last tick of the system. With
the NOW operator, the last input event can be deleted in the next time tick (the new
NOW) so you might not have captured what you want. If you truly the last input event,
use a last event window. The following example shows how to construct a NOW
window.

SELECT * FROM StockTradeIStream[NOW]

The following configuration file entry shows the NOW operator.

<processor>
 <rules>
 <query id=rule2 <![CDATA[ISTREAM (SELECT *
 FROM StockTradeIStreamChannel [NOW>
 </query>
 </rules>
</processor>

A last event window captures the last event received. The following example shows
how to construct a last event window.

SELECT * FROM StockTradeIStream[ROWS 1]

The following configuration file entry shows a last event window.

<processor>
 <rules>
 <query id=rule2 <![CDATA[ISTREAM (SELECT *
 FROM StockTradeIStreamChannel [ROWS 1 >
 </query>
 </rules>
</processor>

6.3.3 Processor Output Control (Slides)
Instead of outputting query results as they happen, you can use the SLIDE operator in
a subclause to batch the output events. You can batch the events based on the number
of events when you use the ROW operator or an amount of time (time window) when
you use the RANGE operator.

Note:

When a slide value is not specified, the query assumes the default value of 1
row for tuple-based windows, and 1 time tick for time-based windows.

Batch by Number of Events

The following example outputs every 2 events (2, 4, 6, 8, ...).

SELECT * FROM StockTradeIStreamChannel[ROWS 3 SLIDE 2]

Queries

Oracle CQL Processors 6-7

The output from the SLIDE operator includes deleted events. When the first two
events arrive in the relation, the query outputs both events to the stream. When the
next event arrives, there are three events in the relation, but output happens next at
the fourth event. When the fourth event arrives, the first event is deleted and output
with the third and fourth events.

The following example shows how to use a slide with the RSTREAM operator. In this
case, when the fourth event arrives, events 2, 3, and 4 are sent to the output stream.
The RSTREAM operator sends all events to the output stream regardless of whether
events were deleted or updated.

RSTREAM(SELECT * FROM StockTradeIStreamChannel[ROWS 3 SLIDE 2])

The following configuration file entry uses an RSTREAM to batch by numbers.

<processor>
 <rules>
 <query id=rule2 <![CDATA[RSTREAM (SELECT *
 FROM StockTradeIStreamChannel [ROWS 3 SLIDE 2 >
 </query>
 </rules>
</processor>

Batch by Time Window

With a time window, Oracle Event Processing batches events by a time interval
(RANGE operator). When you specify the time interval, Oracle CQL sends the events to
the output stream at a time that is a multiple of the number you specified. For
example, if you specify 5 seconds, the events are sent at 5, 10, 15, 20, and so on
seconds. In the case where the first event arrives at 1, 2, or 3 seconds into the interval,
the first output will be smaller than the others.

The following example specifies a range of 5 minutes with a slide every 30 seconds.

SELECT * FROM StockTradeIStream[RANGE 5 MIN SLIDE 30 SECONDS]

The following configuration file entry shows a time-based slide.

<processor>
 <rules>
 <query id=rule2 <![CDATA[RSTREAM (SELECT *
 FROM StockTradeIStreamChannel [RANGE 5 MIN 30 SECONDS >
 </query>
 </rules>
</processor>

6.3.4 Views
Views enable you to create an Oracle CQL statement that can be reused by other
Oracle CQL queries. A view element contains Oracle CQL subquery statements. The
view element id attribute defines the view name. A top-level SELECT statement that
you create in a view element is called a view.

Note:

Subqueries are used with binary set operators such as union, union all, and
minus). You must use parentheses in the subqueries so that the right
precedence is applied to the query.

Queries

6-8 Developing Applications for Oracle Event Processing

The following example shows view v1 and query q1 on the view. The view selects
from stream S1 of xmltype stream elements. The view v1 uses the XMLTABLE clause
to parse data from the xmltype stream elements with XPath expressions. The query
q1 selects from view v1 as it would from any other data source. The XMLTABLE clause
also supports XML name spaces.

An xmltype stream contains XML data. With the Oracle CQL XMLTABLE clause, you
can parse data from an xmltype stream into columns using XPath expressions and
access the data by column name. XPath expressions enable you to navigate through
elements and attributes in an XML document.

Note:

The data types in the view's schema match the data types of the parsed data in
the COLUMNS clause.

<view id="v1" schema="orderId LastShares LastPrice"><![CDATA[
 SELECT
 X.OrderId,
 X.LastShares,
 X.LastPrice
 FROM S1, XMLTABLE (
 "FILL"
 PASSING BY VALUE
 S1.c1 as "."
 COLUMNS
 OrderId char(16) PATH "fn:data(../@ID)",
 LastShares integer PATH "fn:data(@LastShares)",
 LastPrice float PATH "fn:data(@LastPx)"
) as X
></view>

<query id="q1"><![CDATA[
 IStream(
 select
 orderId,
 sum(LastShares * LastPrice),
 sum(LastShares * LastPrice) / sum(LastShares)
 from
 v1[now]
 group by orderId
)
></query>

6.4 CQL Aggregations
Oracle CQL supports aggregate functions such as AVG, COUNT, SUM, which are
calculated incrementally and MAX, and MIN, which are not incremental.

The aggregate functions aggregate events into a Java collection so that you can use the
Collection APIs to manipulate the events.

You can check for conditions on the aggregated results with the HAVING clause. In the
following example only averages higher than 50 are output.

SELECT AVG(price) FROM StockTradeIStreamChannel [RANGE 1 HOUR]
HAVING AVG(price) > 50

CQL Aggregations

Oracle CQL Processors 6-9

Oracle CQL provides a variety of built-in single-row functions and aggregate
functions based on the Colt open source libraries for high performance scientific and
technical computing. The functions which are available as part of Colt library will not
support Big Decimal data type and NULL input values. Also the value computation of
the functions are not incremental. See the COLT website for details.

6.5 Configure a Table Source
You can access a relational database table from an Oracle CQL query by creating a
table component with an associated data source. Oracle Event Processing relational
database table event sources are pull data sources, which means that Oracle Event
Processing periodically polls the event source.

• You can join a stream only with a NOW window and only to a single database table.

Because changes in the table source are not coordinated in time with stream data,
you can only join the table source to an event stream with a Now window, and you
can only join to a single database table.

• With Oracle JDBC data cartridge, you can integrate arbitrarily complex SQL
queries and multiple tables and data sources with your Oracle CQL queries. See
Oracle JDBC Data Cartridge in Developing Applications with Oracle CQL Data
Cartridges.

Note:

Oracle recommends the Oracle JDBC data cartridge for accessing relational
database tables from an Oracle CQL statement.

Whether you use the NOW window or the data cartridge, you must define data sources
in the Oracle Event Processing server file as described in Define Data Sources in
Administering Oracle Event Processing.

6.5.1 Assembly File
The following assembly file entry shows the setting for a table source with an id
attribute of Stock.

<wlevs:table id="Stock" event-type="TradeEvent" data-source="StockDataSource"/>

Oracle Event Processing uses the event type and the data source to map a relational
table row to the event type. The TradeEvent event type is created from a Java class
that has the following five private fields that map to columns in the relational
database: symbol, price, lastPrice, percChange, and volume.

Note:

The XMLTYPE property is not supported for table sources.

6.5.2 Configuration File
 <data-source>
 <name>StockDs</name>
 <connection-pool-params>
 <initial-capacity>1</initial-capacity>
 <max-capacity>10</max-capacity>
 </connection-pool-params>

Configure a Table Source

6-10 Developing Applications for Oracle Event Processing

 <driver-params>
 <url>jdbc:derby:</url>
 <driver-name>org.apache.derby.jdbc.EmbeddedDriver</driver-name>
 <properties>
 <element>
 <name>databaseName</name>
 <value>db</value>
 </element>
 <element>
 <name>create</name>
 <value>true</value>
 </element>
 </properties>
 </driver-params>
 <data-source-params>
 <jndi-names>
 <element>StockDs</element>
 </jndi-names>
 <global-transactions-protocol>None</global-transactions-protocol>
 </data-source-params>
 </data-source>

After configuration, you can define Oracle CQL queries that access the Stock table as
if it were another event stream.

In the following example, the query joins the StockTradeIStreamChannel event
stream to the Stock table:

SELECT StockTradeIStreamChannel.symbol, StockTradeIStreamChannel.price,
 StockTradeIStream.lastPrice, StockTradeIStream.percChange,
 StockTradeIStream.volume, Stock
FROM StockTraceIStreamChannel [Now], Stock
WHERE StockTradeIStreamChannel.symbol = Stock.symbol

Because changes in the table source are not coordinated in time with stream data, you
can only join the table source to an event stream with a Now window, and you can
only join to a single database table.

6.6 Configure an Oracle CQL Processor for Parallel Query Execution
For improved performance, you can enable a CQL query to execute in parallel rather
than serially, as it does by default.

When the CQL code supports it, you can configure a query so that it can process
incoming events in parallel when multiple threads are available to the CQL processor.

You should enable parallel query execution only in cases where the relative order of
the query output events is unimportant to the query's downstream client. For
example, event ordering probably is not important if your query is intended primarily
to filter events, such as to deliver to clients a set of stock transactions involving a
particular company, where the transaction sequence is irrelevant.

By default (without enabling parallel execution), queries process events from a
channel serially. For events routed through a channel that uses a system time stamp,
event order is the order in which events are received; through a channel that is time
stamped by an application, event order is the order determined by a time stamp value
included in the event. Relaxing the total order constraint allows the configured query
to not consider event order for that query, processing events in parallel where
possible.

Configure an Oracle CQL Processor for Parallel Query Execution

Oracle CQL Processors 6-11

6.6.1 Set Up Parallel Query Execution Support
While specifying support for parallel query execution is at its core a simple
configuration task, be sure to follow the other steps below so that you get the most out
of the feature.

• Use the ordering-constraint attribute to support parallel execution.

• Make sure you have enough threads calling into the processor to meet your
performance goals. The maximum amount of parallel query execution is
constrained by the number of threads available to the CQL processor. For example,
if an adapter upstream of the processor supports the number of threads you need
and there is a channel between the adapter and the processor, try configuring the
channel with a max-threads count of 0 so that it acts as a pass-through.

If you don't want a pass-through, be sure to configure the query's upstream
channel with a max-threads value greater than 1. (To make a max-threads
value setting useful, you'll need to also set the max-size attribute to a value
greater than 0.) For more information, see Channels .

• Follow other guidelines related to setting the max-threads attribute value. For
example, to make a max-threads value setting useful, you'll need to also set the
max-size attribute to a value greater than 0.

• Ensure, if necessary, that a bean receiving the query results is thread-aware, such as
by using synchronized blocks. For example, you might need to do so if the bean's
code builds a list from results received from queries executed on multiple threads.

6.6.2 The ordering-constraint Attribute
You enable parallel query execution by relaxing the default ordering constraint that
ensures that events are processed serially. You do this by setting the ordering-
constraint attribute on a query or view element.

In the following example, the ordering-constraint attribute is set to UNORDERED
so that the query will execute in parallel whenever possible:

<query id="myquery" ordering-constraint="UNORDERED">
 SELECT symbol FROM S WHERE price > 10
</query>

The ordering-constraint attribute supports the following three values:

• ORDERED means that the order of output events (as implied by the order of input
events) is important. The CQL engine will process events serially. This is the
default behavior.

• UNORDERED means that order of the output events is not important to the consumer
of the output events. This gives the freedom to the CQLProcessor to process events
in parallel on multiple threads. When possible, the query will execute in parallel on
multiple threads to process the events.

• PARTITION_ORDERED means that you're specifying that order of output events
within a partition is to be preserved (as implied by the order of input events) while
order of output events across different partitions is not important to the consumer
of the output events. This relaxation provides some freedom to the CQL engine to
process events across partitions in parallel (when possible) on multiple threads.

Configure an Oracle CQL Processor for Parallel Query Execution

6-12 Developing Applications for Oracle Event Processing

Use the PARTITION_ORDERED value when you want to specify that events
conforming to a given partition are processed serially, but that order can be
disregarded across partitions and events belonging to different partitions may be
processed in parallel. When using the PARTITION_ORDERED value, you must also
add the partition-expression attribute to specify which expression for
partitioning should be the basis for relaxing the cross-partition ordering constraint.

In the following example, the GROUP BY clause partitions the output based on symbol
values. The partition-expression attribute specifies that events in a given subset
of events corresponding to a particular symbol value should be handled serially.
Across partitions, on the other hand, order can be disregarded.

<query id="myquery" ordering-constraint="PARTITION_ORDERED"
 partitioning-expression="symbol">
 SELECT
 COUNT(*) as c, symbol
 FROM
 S[RANGE 1 minute]
 GROUP BY
 symbol
</query>

6.6.3 Using partition-order-capacity with Partitioning Queries
In general, you will probably see improved performance for queries by making more
threads available and setting the ordering-constraint attribute so that they're
able to execute in parallel when possible. As with most performance tuning
techniques, a little trial and error with these settings should yield a combination that
gets better results.

However, in some cases where your queries use partitioning -- and you've set the
ordering-constraint attribute to PARTITION_ORDERED -- you might not see the
amount of scaling you'd expect. For example, consider a case in which running with
four threads doesn't improve performance very much over running with two threads.
In such a case, you can try using the partition-order-capacity value to get the
most out of CQL engine characteristics at work with queries that include partitions.

The partition-order-capacity value specifies the maximum amount of
parallelism that will be permitted within a given processor instance when processing a
PARTITION_ORDERED query. When available threads are handling events belonging
to different partitions, the value sets a maximum number of threads that will be
allowed to simultaneously run in the query.

As with other aspects of performance tuning, getting the most out of partition-
order-capacity may take a bit of experimentation. When tuning with partition-
order-capacity, a good starting point is to set it equal to the maximum number of
threads you expect to have active in any CQL processor instance. In some cases (for
example, at high data rates or with expensive processing downstream from the CQL
processor), it may be helpful to set the partition-order-capacity value even
higher than the available number of threads. However, you should only do this if
performance testing confirms that it's helpful for a given application and load.

The partition-order-capacity value is set from one of four places, two of which
you can fall back on when you do not explicitly set it yourself.

These are, in order of precedence.

1. The partition-order-capacity element set on a channel configuration. If
you specify this on the input channel for a processor, it takes effect for any
PARTITION_ORDERED queries in that processor.

Configure an Oracle CQL Processor for Parallel Query Execution

Oracle CQL Processors 6-13

2. The partition-order-capacity property in server configuration. This value
will be used for all PARTITION_ORDERED queries running on the server unless
the value is set on a channel.

3. The max-threads value set on a channel configuration. If you specify this on the
input channel for a processor, it takes effect for any PARTITION_ORDERED
queries in that processor

4. A system default value (currently set to 4) is used if you don't specify either a
partition-order-capacity value or max-threads value, or if the max-
threads value is set to 0 (meaning it's a pass-through channel).

When using partition-order-capacity, keep in mind the following:

• The partition-order-capacity value is only useful when you're setting the
ordering-constraint attribute to PARTITION_ORDERED.

• Increasing partition-order-capacity generally increases parallelism and
scaling. For example, if your profiling reveals lock contention bottlenecks, you
might find it helpful to increase partition-order-capacity to see if
contention is reduced.

• Setting partition-order-capacity even higher than the number of available
threads can be helpful in some cases because of the particular way partitioning is
done in the CQL processor.

• There is some resource cost in memory used by specifying very high values.

• Tuning this parameter is very dependent on details of the application and the input
rate. Tuning by experimentation may be necessary to determine an optimal value.

6.6.4 Limitations
Think of parallel query execution as a performance enhancement feature that you
specify support for so that the CQL processor can use it whenever possible. Not all
queries can be executed in parallel. This includes queries using certain CQL language
features.

For example, if your query uses some form of aggregation -- such as to find the
maximum value from a range of values -- the CQL processor may not be able to fully
execute the query in parallel (this is needed to guarantee the correct result considering
the ordering constraint). Some query semantics in themselves also constrain the query
to ordered processing. Such queries will be executed serially regardless of whether
you specify support for parallel execution.

Also, the IStream, RStream and DStream operators maintain the state of their
operand for processing, making it necessary for the CQL processor to synchronize
threads in order to execute the query.

Note that the CQL processor always respects the semantic intention of your query. In
cases where the ordering-constraint attribute would change this intention, the
attribute is coerced to a value that keeps the intention intact.

If you're using the partitioning-expression attribute, keep in mind that the
attribute supports a single expression only. Entering multiple property names for the
value is not supported.

Configure an Oracle CQL Processor for Parallel Query Execution

6-14 Developing Applications for Oracle Event Processing

6.7 Fault Handling
You can write code to handle faults that occur in code that does not have an inherent
fault handling mechanism. This includes Oracle CQL code and multithreaded EPN
channels.

By default, the CQL language has no mechanism for handling errors that occur, as
does Java with its try/catch structure. To handle faults that occur in CQL, you can
write a fault handler, then connect the handler to the EPN stage for which it handles
faults, such as an Oracle CQL processor.

You can also associate a fault handler with a multithreaded channel, which is a
channel whose max-threads setting is greater than 0. This provides fault handling in
the case of exceptions that are thrown to the channel from a stage that is downstream
of the channel. Note that channels whose max-threads setting is 0 are pass-through
channels that already rethrow exceptions to their upstream stages. For additional
information specific to fault handlers for channels, see Fault Handling.

A fault handler is a Java class that implements the
com.bea.wlevs.ede.api.FaultHandler interface. You connect the class to an
EPN stage by registering your fault handler as an OSGi service and associating it with
the stage. For more information about OSGi, see Spring Framework.

Without a custom fault handler, you get the following default fault handling behavior:

• When an exception occurs in Oracle CQL, the CQL engine catches the exception
and stops the query processor.

• If an exception occurs in a stage that is downstream to the processor, then that
stage is dropped as a listener.

• Exceptions are logged (under the CQLServer category) and the events that are part
of the exception clause are discarded.

• Upstream stages are not notified of the failure.

When using custom fault handlers you write, you can:

• Associate a fault handler with an Oracle CQL processor or multithreaded channel
so that faults in those stages are thrown as exceptions to the handler. There, you
can handle or rethrow the exception.

• Allow query processing to continue as your code either handles the exception or
rethrows it to the stage that is next upstream.

• Save event data from being lost while handling a fault. For example, if you have
configured a connection to a data source, you could save event data there.

• Log fault and event information when faults occur.

• Use multiple fault handlers where needed in an EPN so that exceptions thrown
upstream are handled when they reach other Oracle CQL processors and channels.

Consider associating a fault handler with a stage that does not have its own
mechanism for responding to faults, including Oracle CQL processors and
multithreaded channels. Other stages, such as custom adapters that have their own
exception-handling model, do not benefit from a fault handler.

Fault Handling

Oracle CQL Processors 6-15

Queries can continue as your fault handling code evaluates the fault to determine
what action should be taken, including rethrowing the fault to a stage that is upstream
from the Oracle CQL processor.

For example, the upstream stage of the Oracle CQL processor could be the JMS
subscriber adapter, which can roll back the JMS transaction (if the session is
transacted) to allow the event to be redelivered. It can also commit the transaction if
the event has been re-delivered already and found that the problem is not solvable.

Note that when you use a custom fault handler, the query state is reset after a fault as
if the query had been stopped and restarted. In contrast the default behavior stops the
query and drops all subsequent events.

6.7.1 Implement a Fault Handler Class
You create a fault handler class by implementing the
com.bea.wlevs.ede.api.FaultHandler interface. After you have written the
class, you associate it with the stage for which it handles faults by registering it as an
OSGi service. For more information, see Register a Fault Handler.

Your implementation of the handleFault method receives exceptions for the EPN
stage with which the handler is associated. The exception itself is either an instance of
com.bea.wlevs.ede.api.EventProcessingException or, if there has been a
JVM error, an instance of java.lang.Error.

The method also receives a string array that contains the names of upstream stages, or
catchers, to which the exception goes when your code rethrows it. If there is more than
one catcher in the array, your rethrown exception goes to all of them. There are two
cases when the catchers array is empty: when the exception occurs while executing a
temporal query and when the exception is thrown to a channel's fault handler. In these
cases, the fault handler executes in the context of a background thread, and there is no
linkage to upstream stages.

An exception that is rethrown from a fault handler travels through upstream EPN
stages until it is either caught or reaches a stage that cannot catch it (such as a
processor or multithreaded channel that does not have an associated fault handler).
Note that if you rethrow an exception, any channels in the catcher's list must have an
associated fault handler to catch the exception.

The EventProcessingException instance could also be one of the exception types
that extend that class, including CQLExecutionException,
ArithmeticExecutionException, and others. See the Java API Reference for Oracle
Event Processing. The EventProcessingException instance provides methods with
which your code can retrieve insert, delete, and update events that were involved in
generating the fault.

Your implementation of the method should do one of the following:

• Consume the fault in the way that a Java try and catch statement might. If your
implementation does not rethrow the fault, then event processing continues with
subsequent events. However, query processing continues with its state reset as if
the query had been restarted. The processing state is lost and processing begins
fresh with events that follow those that provoked the fault.

• Rethrow the fault so that it is received by upstream stages (or their fault handlers).
As when the fault is consumed, queries continue processing events, although the
query state is reset with subsequent events. The upstream stage receiving the fault
always has the option of explicitly stopping the offending query by using the CQL
processor's MBean interface.

Fault Handling

6-16 Developing Applications for Oracle Event Processing

Note:

When you update an Oracle CQL query with an MBean, do not send events
during the update procedure. If you send events during some queries, the
order of the events in the output stream is not guaranteed. For example, when
you update an Oracle CQL query from unordered to ordered in an Oracle
CQL parallelism execution.

In the following example the code provides a high-level illustration of handling a
fault.

package com.example.faulthandler;

import com.bea.wlevs.ede.api.FaultHandler;

public class SimpleFaultHandler implements FaultHandler
{
 private String suppress;

 // Called by the server to pass in fault information.
 @Override
 public void handleFault(Throwable fault, String[] catchers) throws Throwable
 {
 // Log the fault.
 return;
 }
}

6.7.2 Register a Fault Handler
After you have written a fault handling class, you can associate it with an EPN stage
by registering it as an OSGi service. The simplest way to do this is to register the
handler declaratively in the EPN assembly file.

Note:

Due to inherent OSGi behavior, runtime fault handler registration from your
configuration happens asynchronously, meaning that a small amount of
warm-up time might be required before the handler can receive faults. To be
sure your handler is ready for the first events that enters the network, add a
wait period before the application begins to receive events.

In the following example, the EPN assembly file excerpt shows a service element
stanza that registers the SimpleFaultHandler class as the fault handler for the
Oracle CQL processor with an id of exampleProcessor.

<osgi:service interface="com.bea.wlevs.ede.api.FaultHandler">
 <osgi:service-properties>
 <entry key="application.identity" value="myapp"/>
 <entry key="stage.identity" value="exampleProcessor"/>
 </osgi:service-properties>
 <bean class="com.example.faulthandler.SimpleFaultHandler"/>
</osgi:service>

<!-- A processor with a user-defined function. -->
<wlevs:processor id="exampleProcessor" >

Fault Handling

Oracle CQL Processors 6-17

 ...
</wlevs:processor>

For more on the schema for registering OSGi services, see http://
static.springsource.org/osgi/docs/1.1.x/reference/html/appendix-
schema.html. For more on OSGi, see http://en.wikipedia.org/wiki/OSGi.

Fault Handling

6-18 Developing Applications for Oracle Event Processing

http://static.springsource.org/osgi/docs/1.1.x/reference/html/appendix-schema.html
http://static.springsource.org/osgi/docs/1.1.x/reference/html/appendix-schema.html
http://static.springsource.org/osgi/docs/1.1.x/reference/html/appendix-schema.html
http://en.wikipedia.org/wiki/OSGi

7
Event Beans

Java is the language you use to write logic for event bean and Spring bean components
to add to the EPN. Use an event bean in your EPN to define application logic that
works on event data. Use a Spring bean in your EPN when your deployment context
and the features you want to use are based on Spring.

Event bean application logic functions as an event sink, an event source, or both. An
event sink receives and works on large quantities of event data. An event source sends
large quantities of event data. In an EPN, you can configure event beans and adapters
with logic to make them behave as event sources, event sinks, or both. In the case of an
event bean, the event sink and event source logic comes from its associated JavaBean.
In the case of an adapter, the event sink and event source logic comes from its
JavaBean event type. See Events and Event Types for information about creating a
JavaBean event type.

You can use JAXB in event bean logic. See JAXB Support for information.

This chapter includes the following sections:

• Event Beans and Spring Beans

• Event Sink Interfaces

• Event Source Interfaces

7.1 Event Beans and Spring Beans
Event beans and Spring beans are based on Java classes. The Java class you use for an
event or Spring bean can conform to the JavaBean specification or not conform,
depending on your application requirements.

An event bean is an Oracle extension to the regular Spring-based bean.

An event bean can be an event sink, event source, or both an event sink and an event
source. You can add event sinks and sources to adapters and event beans.

• An event sink is a JavaBean or Java class that listens for and works on events. An
event sink can receive events, retrieve data from the events, and create a new event
from the data to send to a downstream component.

• An event source is a JavaBean or Java class that sends events.

If your deployment context and the features you want to use are based on Spring, use
a Spring bean. Otherwise, use an event bean. Table 7-1 lists the features provided by
event beans and Spring beans.

Event Beans 7-1

Table 7-1 Comparison of Event Beans and Spring Beans

Bean Type Description

Event bean Useful as an EPN stage to actively use the capabilities of the Oracle Event
Processing server container. An event bean:

• Is a type of Oracle Event Processing EPN stage.
• Can be monitored by the Oracle Event Processing monitoring framework.
• Can make use of the configuration metadata annotations.
• Can be set to record and play back events that pass through it.
• Can participate in the Oracle Event Processing server bean life cycle by

specifying methods in its XML declaration, rather than by implementing
Oracle Event Processing server API interfaces.

Spring bean Useful for legacy integration to Spring. A Spring bean:

• Is useful if you have a Spring bean you want to add to an EPN.
• Is not a type of Oracle Event Processing EPN stage.
• Cannot be monitored by the Oracle Event Processing monitoring

framework.
• Cannot use the configuration metadata annotations.
• Cannot be set to record and play back events that pass through it.

7.1.1 Threading Behavior
Event beans are executed in parallel when they implement either the Runnable or the
RunnableBean interface. The infrastructure uses a work manager associated with the
application for spawning the thread.

You can associate a work manager to an application by naming the work manager
with the same name as the application. If you do not explicitly specify a work manager
for your application, then Oracle Event Processing creates a work manager with
default values for the minimum (MIN) and maximum (MAX) number of threads.

If you need finer control over the threading, a custom event bean can implement the
interface com.bea.wlevs.ede.spi.WorkManagerAware. In this case, the event
bean is injected with the work manager of the application during initialization. The
work manager can be used to explicitly manage the threading for the event bean
instance.

7.1.2 Receive Heartbeat Events
Implement the com.bea.wlevs.ede.api.HeartbeatAware interface if you want
your event bean to receive heartbeat events. A heartbeat event is an event of type
heartbeat that you can use to model the advance of time. This interface has the
onHeartbeat(long timestamp) callback method to implement.

7.1.3 Create an Event Bean
An event bean is an EPN component that applies logic to events as they pass through.
The event bean logic is defined by its JavaBean event type.

This chapter describes some of the assembly and configuration file event bean settings.
For a complete reference, see event-bean in Schema Reference for Oracle Event Processing.

Event Beans and Spring Beans

7-2 Developing Applications for Oracle Event Processing

Assembly File

The following event bean assembly file entry shows the event bean id, associated
class, and that the event bean listens for events from the upstream
BeanOutputChannel component.

<wlevs:event-bean id="eventBean" class="tradereport.TradeEvent" >
 <wlevs:listener ref="BeanOutputChannel"/>
<wlevs:event-bean>

Configuration File

The following event bean configuration file entry shows an event bean configured
with the record-parameters child element:

 <event-bean>
 <name>eventBean</name>
 <record-parameters>
 <dataset-name>tradereport_sample</dataset-name>
 <event-type-list>
 <event-type>TradeEvent</event-type>
 </event-type-list>
 <batch-size>1</batch-size>
 <batch-time-out>10</batch-time-out>
 </record-parameters>
 </event-bean>

7.1.4 Create a Spring Bean
You can configure a Java class as a Spring bean to include the class in an event
processing network. This is a good option if you have an existing Spring bean that you
want to incorporate into the EPN or if you want to incorporate Spring features into
your Java code.

In a Spring bean you plan to add to an EPN, you can implement the various life cycle
interfaces. These include InitializingBean, DisposableBean, and the active
interfaces, such as RunnableBean. The Spring bean event source can also use
configuration metadata annotations such as @Prepare, @Rollback, and @Activate.

A Spring bean is a Java class managed by the Spring framework. You add a class as a
Spring bean by configuring it in the EPN assembly file using the standard bean
element.

A Spring bean is not an Oracle Event Processing stage. You cannot monitor a Spring
bean with the Oracle Event Processing monitoring framework, you cannot use the
configuration metadata annotations in a Spring bean, and you cannot set a Spring
bean to record and play back events that pass through it.

Assembly File

In the assembly file, you use the bean element to declare a custom Spring bean as a
component in the event processor network. For example:

<bean id="TradeListenerBean"
 class="com.oracle.cep.example.tradereport.TradeListener">
</bean>

7.2 Event Sink Interfaces
You create an event sink to receive events in an EPN and apply logic that responds to
the event data. A Java class that is an event sink implements one of the interfaces
described in this section.

Event Sink Interfaces

Event Beans 7-3

Each of these interfaces provides methods that the Oracle Event Processing server uses
to pass events to the class as the events exit the EPN stage connected upstream from
the Java class, which is typically a channel.

The interfaces described here provide support for events arriving either as streams or
relations. However, interfaces for relations also support receiving events arriving as
streams. As described in the following table, the interfaces are hierarchically related.

Interface Description

com.bea.wlevs.ede.api.StreamSink Implement to receive events sequentially in a
stream.

com.bea.wlevs.ede.api.RelationSi
nk

Implement to receive events sequentially in a
relation. Extends StreamSink to receive
events in a stream.

com.bea.wlevs.ede.api.BatchStrea
mSink

Implement to receive batched events in a
stream. Events might arrive batched by time
stamp when the upstream channel allows
batching. Extends StreamSink to support
receiving events unbatched.

com.bea.wlevs.ede.api.BatchRelat
ionSink

Implement to receive batched events as a
relation. Events might arrive batched by time
stamp when the upstream channel allows
batching. Extends RelationSink to support
receiving events unbatched as streams or
relations.

EventRejectedException Behavior in onInsertEvent Implementations

You need to explicitly throw EventRejectedException in onInsertEvent
implementations for exceptions you do not want to get dropped. You can raise an
EventProcessingException and it is propagated all the way to the source of the
error through a CQL processor. An EventRejectedException can chain exceptions from
its downstream listeners, in case there is more than one exception. The CQL processor
converts the EventRejectedException to a soft exception. See Fault Handling for
more information.

7.2.1 Implement StreamSink
A class that receives events as a stream only receive events that are, from the Oracle
Event Processing standpoint, inserted. That is because in a stream, events are always
appended to the end of a sequence. Events in a stream are also always received in
ascending time order so that their time stamps have non-decreasing values from one
event to the one that follows. Non-decreasing time stamps enables the time stamp of
one event to be the same as the time stamp of the event that precedes it, but not earlier
than that preceding time stamp. The time stamp is either the same or later.

As a result, the interfaces that support receiving events as a stream have one method
each for receiving events. The interfaces for receiving events as a relation support
receiving multiple kinds of events.

Implement the StreamSink interface if your class receives unbatched events as a
stream. The StreamSink interface has a single method, onInsertEvent, which the
Oracle Event Processing server calls to pass in each event from the stream as events
leave the upstream stage that is connected to your class.

Event Sink Interfaces

7-4 Developing Applications for Oracle Event Processing

In Example 7-1, a simple StreamSink implementation that receives stock trade
events where each event is an Object instance, and tests to see whether the event is
an instance of a particular event type. If so, then the code retrieves values of properties
known to be members of that type.

You implement the BatchStreamSink interface if you expect your class to receive
batched events as a stream. The interface has a single method, onInsertEvents,
which the Oracle Event Processing server calls to pass in a collection of events
received from the upstream stage. The BatchStreamSink interface extends
StreamSink, so can receive unbatched events also.

For more information about event batching, see Batch Processing Channels.

Example 7-1 Implement the StreamSink Interface

public class TradeListener implements StreamSink {

 public void onInsertEvent(Object event) throws EventRejectedException {
 if (event instanceof TradeEvent){
 String symbolProp = ((TradeEvent) event).getSymbol();
 Integer volumeProp = ((TradeEvent) event).getVolume();
 // Code to do something with the property values.
 }
 }
}

7.2.2 Implement RelationSink
A class that receives events as a relation can receive any of the kinds of events possible
in a relation, which are insert events, delete events, and update events. Unlike a
stream, events in a relation are unordered and include events that have been updated
or deleted by code that created or operated on the relation.

As a result, the interfaces that support receiving events as a relation have methods
through which your class can receive insert, delete, or update events.

You implement the RelationSink interface if your class receives unbatched events
as a relation. The RelationSink interface has three methods, one of which it inherits
from the StreamSink interface: onInsertEvent, onDeleteEvent, and
onUpdateEvent. At runtime, the Oracle Event Processing server calls the appropriate
method depending on which type of event is received from the upstream channel
connected to your class.

public class TradeListener implements RelationSink {

 public void onInsertEvent(Object event) throws EventRejectedException {
 if (event instanceof TradeEvent){
 String symbolProp = ((TradeEvent) event).getSymbol();
 Integer volumeProp = ((TradeEvent) event).getVolume();
 // Do something with the inserted event.
 }
 }

 @Override
 public void onDeleteEvent(Object event) throws EventRejectedException {
 if (event instanceof TradeEvent){
 // Do something with the deleted event.
 }
 }

 @Override

Event Sink Interfaces

Event Beans 7-5

 public void onUpdateEvent(Object event) throws EventRejectedException {
 if (event instanceof TradeEvent){
 // Do something with the updated event.
 }
 }
}

Implement the BatchRelationSink interface if your class receives batched events
as a relation. It has an onEvents method designed to receive all three types of events
from the batch in java.util.Collection instances:

onEvents(insertEvents, deleteEvents, updateEvents)

In addition, the BatchRelationSink interface extends the RelationSink interface to
support receiving unbatched events.

At runtime, the Oracle Event Processing server calls the appropriate method to pass in
events received from the upstream stage connected to your class.

For more information about event batching, see Batch Processing Channels.

For complete API reference information about the Oracle Event Processing APIs
described in this section, see the Java API Reference for Oracle Event Processing.

7.3 Event Source Interfaces
You can create a Java class that sends events to a downstream stage in an event
processing network. You can create an event source, for example, to send events your
Java code has created or altered from event data flowing through the EPN.

A Java class that is an event source implements one of the interfaces described in this
section. Each of these interfaces provides a method used by the Oracle Event
Processing server to pass into your class an instance of a sender class.

The sender instance your event source receives implements one of the sender
interfaces described in this section. The sender interfaces provide methods your code
can call to send events as streams or relations, and batched or unbatched to the
downstream EPN stage that follows, such as a channel.

The interfaces described here support sending events either as streams or relations.
Interfaces for relation also support sending events as streams.

Table 7-2 Interfaces for Implementing an Event Source

Interface Description

com.bea.wlevs.ede.api.StreamSou
rce

Implement this interface to send events as a
stream. At runtime, the Oracle Event Processing
server injects an instance of a stream sender
class.

com.bea.wlevs.ede.api.RelationS
ource

Implement this interface to send events as a
relation or stream. At runtime, the Oracle Event
Processing server injects an instance of a relation
sender class. Extends StreamSource, so it also
supports stream events.

The interfaces listed in Table 7-3 are implemented by sender classes your event source
class receives from the Oracle Event Processing server.

Event Source Interfaces

7-6 Developing Applications for Oracle Event Processing

Table 7-3 Interfaces Implemented by Sender Classes

Interface Description

com.bea.wlevs.ede.api.StreamSender Provides a method to send events as a
stream.

com.bea.wlevs.ede.api.RelationSender Provides methods to send events as a
relation. Extends StreamSender, so it
also support stream events.

com.bea.wlevs.ede.api.BatchStreamSen
der

Provides a method with which your code
can send batched events as a stream. You
might send events batched by time stamp
if the downstream stage to which you're
sending them is a channel configured for
batched events. Extends StreamSender,
so it also provides support for sending
events unbatched.

com.bea.wlevs.ede.api.BatchRelationS
ender

Provides a method to send batched events
as a relation. You can send events batched
by time stamp when the downstream
stage is a channel configured for batched
events. Extends RelationSender to
support unbatched events.

7.3.1 Implement StreamSender
A class that is a source of stream events should send only events that are, from the
Oracle Event Processing standpoint, inserted. Sending only inserted events models a
stream, rather than a relation. Events sent from a stream source should also have non-
decreasing time stamps from one event to the event that follows. The time stamp of an
event that follows another should either be the same as, or later than, the event that
preceded it.

When you implement StreamSource, your code can send events batched or
unbatched. Your implementation of the StreamSource setEventSender method
receives a sender instance that you can cast to one of the types described in Table 7-3.
Use the sender instance in your code to send events as expected by the downstream
stage.

If your code sends events to a channel that enables batching, use one of the batched
event senders to batch events by time stamp before sending them. For more
information, see Batch Processing Channels.

The sender instance provides a sendHeartbeat method to send a heartbeat when the
receiving channel is configured to be application time stamped.

7.3.2 Implement RelationSender
A class that is a source of events as a relation can send insert, delete, and update
events to the downstream stage. When you implement the RelationSource
interface, your code can send events batched or unbatched. Your implementation of
the RelationSource setEventSender method receives a sender instance that you
can cast to one of the types described in Table 7-3. Use the sender instance to send
events to the downstream stage.

Event Source Interfaces

Event Beans 7-7

Keep in mind the following constraints for handling the sender instance your class
receives:

• For sendDeleteEvent, you must send an instance of the same event type as that
configured for the channel.

• For sendInsertEvent, a unique constraint violation exception is raised and the
input event discarded if an event with the same primary key is already in the
relation.

• For sendUpdateEvent, an invalid update tuple exception will be raised and the
input event will be discarded if an event with the given primary key is not in the
relation.

In the following example, a simple RelationSource implementation receives a
StreamSender, then casts the sender to a RelationSender to send events as a
relation. This class creates a new TradeEvent instance from the event type
configured in the repository, but the sendEvents method could as easily have
received an instance as a parameter from another part of the code.

package com.oracle.cep.example.tradereport;

import com.bea.wlevs.ede.api.EventType;
import com.bea.wlevs.ede.api.EventTypeRepository;
import com.bea.wlevs.ede.api.RelationSender;
import com.bea.wlevs.ede.api.RelationSource;
import com.bea.wlevs.ede.api.StreamSender;
import com.bea.wlevs.util.Service;

public class TradeEventSource implements RelationSource {

 // Variables for event type respository and event sender. Both
 // will be set by the server.
 EventTypeRepository m_repos = null;
 RelationSender m_sender = null;

 // Called by the server to set the repository instance.
 @Service
 public void setEventTypeRepository(EventTypeRepository repos) {
 m_repos = repos;
 }

 // Called by the server to set the sender instance.
 @Override
 public void setEventSender(StreamSender sender) {
 // Cast the received StreamSender to a RelationSender
 m_sender = (RelationSender)sender;
 }

 /**
 * Sends events to the next EPN stage using the sender
 * received from the server. This code assumes that an event
 * instance isn't received from another part of the class,
 * instead creating a new instance from the repository.
 */
 private void sendEvents(){
 EventType eventType = m_repos.getEventType("TradeEvent");
 TradeEvent tradeEvent = (TradeEvent)eventType.createEvent();
 m_sender.sendDeleteEvent(tradeEvent);
 }
}

Event Source Interfaces

7-8 Developing Applications for Oracle Event Processing

8
Cached Event Data

You can configure a caching system so that applications have ready access to event
data. The caches in the system can be a combination of Oracle Coherence distributed
caching, Oracle Event Processing local caching, and caching solutions provided by
third parties. You can access the events in the caches with Oracle CQL and Java
classes.

This chapter includes the following sections:

• Caching Defined

• Configure an Oracle Coherence Caching System and Cache

• Configure a Local Caching System and Cache

• Configure a Cache as an Event Listener

• Index a Cache with a Key

• Configure a Cache as an Event Source

• Configure a Cache with a Cache Listener

• Configure a Third-Party Caching System and Cache

• Exchange Data Between a Cache and Another Data Source

• Access a Cache from Application Code.

8.1 Caching Defined
A cache is a temporary storage area for event data. To increase the availability of event
data and to increase application performance, you can create a cache so that
applications can publish to or consume events from the cache.

An application can also access the processed event data written to the cache by other
applications.

You can configure any stage in an Oracle Event Processing application that generates
events to publish its events to the cache. A cache does not have to be a stage in the
EPN. Another component or Spring bean can access events in the cache
programmatically with the caching APIs.

A caching system is a configured instance of a caching implementation. A caching
system defines a named set of configured caches and the configuration for remote
communication when any of the caches are distributed across multiple machines.

Oracle Event Processing caching enables an application to perform the following tasks.
All of these tasks happen incrementally without halting the application or causing
latency spikes.

Cached Event Data 8-1

• Pre-load a cache with event data before an application is deployed.

• Periodically refresh, invalidate, and flush the event data in a cache.

• Dynamically update a cache configuration.

8.1.1 Supported Caching Implementations
Oracle Event Processing supports the following caching implementations:

• Oracle Event Processing local cache: a local, in-memory single-JVM cache. This
implementation is best for local use (it cannot be used in a cluster). It might also be
useful for development in the early stages because it is relatively simple to set up.

• Oracle Coherence: a JCache-compliant in-memory distributed data grid solution
for clustered applications and application servers. It coordinates updates to the
data using cluster-wide concurrency control, replicates data modifications across
the cluster using the highest performing clustered protocol available, and delivers
notifications of data modifications to any servers that request them. You take
advantage of Oracle Coherence features using the standard Java collections API to
access and modify data, and use the standard JavaBean event model to receive data
change notifications.

Note:

Before you can use Oracle Event Processing with Oracle Coherence, you must
obtain a valid Oracle Coherence license such as a license for Coherence
Enterprise Edition, Coherence Grid Edition, or Oracle WebLogic Application
Grid.

For more information on Oracle Coherence, see http://
docs.oracle.com/middleware/1213/coherence/index.html.

• Third-party caches: you can create a plug-in to allow Oracle Event Processing to
work with other, third-party cache implementations.

8.1.2 Use Cases
Caching technology is a great fit for streaming data use cases, where high throughput
can be particularly important. Getting data from a cache is usually much faster than
getting the same data from a relational database.

The following scenarios describe common use cases for caching in Oracle Event
Processing applications.

• Publish events to a cache

A financial application publishes events to a cache while the financial market is
open, and then processes data in the cache after the market closes. Publishing
events to a cache makes them available to the application or available to other
Oracle Event Processing applications running in the server. Publishing events to a
cache also allows for asynchronous writes to a secondary storage by the cache
implementation.

• Consume data from a cache

Oracle Event Processing applications sometimes need to access non-streaming
data. By caching this data, you can increase the performance of the application. The

Caching Defined

8-2 Developing Applications for Oracle Event Processing

http://docs.oracle.com/middleware/1213/coherence/index.html
http://docs.oracle.com/middleware/1213/coherence/index.html

standard components of an Oracle Event Processing application that are allowed
direct programming access to a cache are input- and output-adapters and business
POJOs.

Additionally, applications can access a cache from Oracle CQL either by a user-
defined function or directly from an Oracle CQL statement. In the case of a user-
defined function, programmers use Spring to inject the cache resource into the
implementation of the function. For more information, see Application and
Resource Configuration.

Applications can also query a cache directly from Oracle CQL statements that run
in a processor. In this case, the cache functions as another type of data source to a
processor so that querying a cache is similar to querying a channel except that data
is pulled from a cache.

An example of using Oracle CQL to query a cache is from a financial application
that publishes orders and the trades used to execute the orders to a cache. At the
end of the day when the markets close, the application queries the cache to find all
the trades related to a particular order.

• Update and delete data in a cache

An Oracle Event Processing application can update and delete data in a cache
when required. For example, a financial application might need to update an order
in the cache each time individual trades that fulfill the order are executed, or an
order might need to be deleted if it has been cancelled. The components of an
application that are allowed to consume data from a cache are also allowed to
update it.

• Use a cache in a multiserver domain

If you build an Oracle Event Processing application that uses a cache, and you plan
to deploy that application in a multiserver domain, then you must use a caching
system that supports a distributed cache. In this case, you must use either Oracle
Coherence or a third-party caching system that supports a distributed cache.

For more information, see:

– Configure an Oracle Coherence Caching System and Cache

– Configure a Third-Party Caching System and Cache

8.2 Configure an Oracle Coherence Caching System and Cache
You can configure your application to use the Oracle Coherence caching system and
cache. Use this caching system if you plan to deploy your application to a multiserver
domain.

When you configure with Oracle Coherence, only the first caching-system can be
configured in a server. The Oracle Event Processing server ignores other caching
systems that you have configured.

Configure an Oracle Coherence Caching System and Cache

Cached Event Data 8-3

Note:

Before you can legally use Oracle Event Processing with Oracle Coherence,
you must obtain a valid Coherence license such as a license for Coherence
Enterprise Edition, Coherence Grid Edition, or Oracle WebLogic Application
Grid.

For more information on Oracle Coherence, see http://
docs.oracle.com/middleware/1213/coherence/index.html.

The following assembly and configuration file settings configure an Oracle Coherence
caching system and cache for an Oracle CQL processor. The cache uses an event type
to specify the key properties for locating table rows in the relational database. This
caching system is advertised, which means other applications can access the data in its
caches.

8.2.1 Assembly File
The assembly file settings configure the caching system and cache1. The value-type
setting is the event type into which you want to load the database values. This cache is
advertised.

 <wlevs:cache id="cache1" value-type="TradeReport" advertise="true">
 <wlevs:caching-system ref="coherence-caching-system"/>
 </wlevs:cache>
 <wlevs:caching-system id="coherence-caching-system" provider="coherence"/>

Note:

When you change the id setting for a coherence cache in the EPN diagram,
the id changes in the assembly file and in the coherence-cache- file. However,
if you change the id setting in the assembly file source editor, the id changes
in the assembly file only. In this case, you must manually change the cache-
name setting in the coherence-cache- to match the id setting in the
assembly file. You also have to change all references to that cache.

When the cache is advertised, a component in the EPN of an application in a separate
bundle can reference the advertised cache. The following example shows how a
processor in one bundle can use the cache-source element to reference a cache
source in another bundle with a cache-id of cacheprovider:

<wlevs:processor id="myProcessor2">
 <wlevs:cache-source ref="cacheprovider:cache-id">
</wlevs:processor>

Configure an Oracle Coherence Caching System and Cache

8-4 Developing Applications for Oracle Event Processing

http://docs.oracle.com/middleware/1213/coherence/index.html
http://docs.oracle.com/middleware/1213/coherence/index.html

Note:

When you have Oracle Coherence caches in the EPN assembly files of one or
more applications deployed to the same Oracle Event Processing server, never
configure multiple instances of the same cache with a loader or a store.

You can inadvertently do this by employing multiple applications that each
configure the same Oracle Coherence cache with a loader or store in their
respective EPN assembly file. If you configure multiple instances of the same
cache with a loader or a store, Oracle Event Processing throws an exception.

8.2.2 Configuration File
The coherence-cache-config.xml file is the basic Oracle Coherence
configuration file and must conform to the Oracle Coherence DTDs, as is true for any
Oracle Coherence application.

See the Oracle Coherence documentation for information about coherence-cache-
config.xml: http://docs.oracle.com/middleware/1213/coherence/
index.html.

An Oracle Event Processing Oracle Coherence factory must be declared when you use
Spring to configure a loader or store for a cache. You specify the factory with the
cachestore-scheme element and include a factory class that enables Oracle
Coherence to call into Oracle Event Processing and retrieve a reference to the loader or
store that is configured for the cache. The only difference between configuring a loader
or store is that the method-name element has a value of getLoader when a loader is
used and getStore when a store is being used. You pass the cache name to the
factory as an input parameter.

<cache-config>
 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>myCoherenceCache</cache-name>
 <scheme-name>new-replicated</scheme-name>
 </cache-mapping>
 <cache-mapping>
 <cache-name>myLoaderCache</cache-name>
 <scheme-name>test-loader-scheme</scheme-name>
 </cache-mapping>
 <cache-mapping>
 <cache-name>myStoreCache</cache-name>
 <scheme-name>test-store-scheme</scheme-name>
 </cache-mapping>
 <cache-mapping>
 <cache-name>
 cache1
 </cache-name>
 <scheme-name>
 new-replicated
 </scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>
 <caching-schemes>
 <replicated-scheme>
 <scheme-name>new-replicated</scheme-name>
 <service-name>ReplicatedCache</service-name>
 <backing-map-scheme>
 <class-scheme>

Configure an Oracle Coherence Caching System and Cache

Cached Event Data 8-5

http://docs.oracle.com/middleware/1213/coherence/index.html
http://docs.oracle.com/middleware/1213/coherence/index.html

 <scheme-ref>my-local-scheme</scheme-
ref>
 </class-scheme>
 </backing-map-scheme>
 </replicated-scheme>
 <class-scheme>
 <scheme-name>my-local-scheme</scheme-name>
 <class-name>com.tangosol.net.cache.LocalCache</class-name>
 <eviction-policy>LRU</eviction-policy>
 <high-units>100</high-units>
 <low-units>50</low-units>
 </class-scheme>
 <local-scheme>
 <scheme-name>test-loader-scheme</scheme-name>
 <eviction-policy>LRU</eviction-policy>
 <high-units>100</high-units>
 <low-units>50</low-units>

<!-- A cachestore-scheme element that gets a loader starts here -->
 <cachestore-scheme>
 <class-scheme>
 <class-factory-name>com.bea.wlevs.cache.coherence.configuration.SpringFactory
 </class-factory-name>
 <method-name>getLoader</method-name>
 <init-params>
 <init-param>
 <param-type>java.lang.String</param-type>
 <param-value>myCoherenceCache</param-value>
 </init-param>
 <init-param>
 <param-type>
 java.lang.String
 </param-type>
 <param-value>
 cache1
 </param-value>
 </init-param>
 </init-params>
 </class-scheme>
 </cachestore-scheme>
 <!-- The cachestore-scheme element ends here -->
 </local-scheme>

 <local-scheme>
 <scheme-name>test-store-scheme</scheme-name>
 <eviction-policy>LRU</eviction-policy>
 <high-units>100</high-units>
 <low-units>50</low-units>

<!-- A cachestore-scheme element that gets a store starts here -->
 <cachestore-scheme>
 <class-scheme>
 <class-factory-name>com.bea.wlevs.cache.coherence.configuration.SpringFactory
 </class-factory-name>
 <method-name>getStore</method-name>
 <init-params>
 <init-param>
 <param-type>java.lang.String</param-type>
 <param-value>myCoherenceCache</param-value>

Configure an Oracle Coherence Caching System and Cache

8-6 Developing Applications for Oracle Event Processing

 </init-param>
 <init-param>
 <param-type>
 java.lang.String
 </param-type>
 <param-value>
 cache1
 </param-value>
 </init-param>
 </init-params>
 </class-scheme>
 </cachestore-scheme>
 <!-- The cachestore-scheme element ends here -->
 </local-scheme>
 </caching-schemes>
</cache-config>

tangosol-coherence-override.xml File (optional)

The tangosol-coherence-override.xml file is a global per-server file. It
contains what is referred to as the operational configuration in the Oracle Coherence
documentation. This file contains global, server-wide configuration settings for Oracle
Coherence caching. You create this file in an XML editor and put it in the Oracle Event
Processing server config directory for the server you want to configure.

Note:

Do not include the tangosol-coherence-override.xml file when you
use Oracle Coherence for clustering.

Add the following XML to the Oracle Coherence configuration file to reference the
tangosol-coherence-override.xml file. Include the cluster-name element to
prevent Oracle Coherence from attempting to join existing Oracle Coherence clusters
when Oracle Event Processing starts up. This can cause problems and sometimes
prevent Oracle Event Processing from starting.

...
<coherence xml-override="/tangosol-coherence-override.xml">
 <cluster-config>
 <member-identity>
 <cluster-name>com.bea.wlevs.example.provider</cluster-name>
 </member-identity>
...
</coherence>

For more information about Oracle Event Processing clusters, see Native Clusters in
Oracle Event Processing in Administering Oracle Event Processing.

8.2.3 Cache Loader Bean
The com.oracle.cep.cacheloader package provides the CsvCacheLoader
class for loading CSV events into a Coherence cache. You use a cache loader with an
inbound adapter by replacing the sourceUrl property.

The first assembly file CSV adapter configuration shows a CSV inbound adapter that
loads a file with the sourceUrl property. The second assembly file CSV adapter entry
shows a CSV inbound adapter that loads a cache loader bean.

Configure an Oracle Coherence Caching System and Cache

Cached Event Data 8-7

Load Events in a CSV file

<wlevs:adapter id="StockTradeCSVInboundAdapter" provider="csv-inbound">
 <wlevs:listener ref="AdapterOutputChannel"/>
 <wlevs:instance-property name="eventType" value="TradeEvent"/>
 <wlevs:instance-property name="sourceUrl"
 value="file:/scratch/mpawlan/oep9-19/oep/utils/load-generator/StockData.csv"/>
</wlevs:adapter>

Load Events with a Cache Loader

 <wlevs:cache id="csvcache" key-properties="sequenceNo"
 value-type="TradeEvent" advertise="true">
 <wlevs:caching-system ref="cachesys" />
 </wlevs:cache>
 <bean id="csvloader" class="com.oracle.cep.cacheloader.CsvCacheLoader">
 <property name="cacheName" value="csvcache"/>
 <property name="sourceUrl"
 value="file:///scratch/juhe/view_storage/trade.csv"/>
 </bean>

8.3 Configure a Local Caching System and Cache
You can configure your application to use the Oracle Event Processing local caching
system and cache. The Oracle Event Processing local caching system is appropriate
when you do not plan to deploy your application to a multiserver domain.

If you plan to deploy your application to a multiserver domain, use an Oracle
Coherence cache.

This chapter describes some of the configuration settings. For complete information,
see Component Configuration Schema and Coherence Caching System in Schema
Reference for Oracle Event Processing.

8.3.1 Assembly File
The following assembly file settings configure the local caching system and cache. The
value-type setting is the event type into which you want to load the database
values.

<wlevs:cache id="localcache" value-type="HelloWorldEvent">
 <wlevs:caching-system ref="caching-system"/>
 </wlevs:cache>
 <wlevs:caching-system id="caching-system" provider="wlevs" advertise="false"/>

8.3.2 Configuration File
The following configuration file settings specify a maximum size and eviction policy
for the local caching system.The maximum size specifies the number of cache elements
in memory after which the eviction policy occurs. The example also specifies the
maximum amount of time in milliseconds that an entry is cached. Default time-to-
live value is infinite. This example specifies 3600 milliseconds.

 <caching-system>
 <name>caching-system</name>
 <cache>
 <name>localcache</name>
 <max-size>64</max-size>
 <eviction-policy>LFU</eviction-policy>
 <time-to-live>3600</time-to-live>

Configure a Local Caching System and Cache

8-8 Developing Applications for Oracle Event Processing

 </cache>
 </caching-system>

The following configuration file settings add a write-behind element as a child
element of cache. The write-behind element means Oracle Event Processing
invokes the cache store from a separate thread after a create or update of a cache entry.
The child elements of write-behind indicate the following:

• The number of updates that are picked up from the store buffer to write back to the
backing store (batch-size). The default value is 100.

• The number of attempts that the user thread makes to write to the store buffer. The
user thread is the thread that creates or updates a cache entry. If all attempts by the
user thread to write to the store buffer fail, it will invoke the store synchronously
(batch-write-attempts). The default value is 1.

• The time in milliseconds the user thread waits before aborting an attempt to write
to the store buffer (buffer-write-timeout). The attempt to write to the store
buffer fails only when the buffer is full. After the time out, further attempts can be
made to write to the buffer based on the value of buffer-write-attempts. The
default value is 100.

<caching-system>
 <name>caching-system-id</name>
 <cache>
 <name>cache-id</name>
 <max-size>100000</max-size>
 <eviction-policy>LRU</eviction-policy
 <time-to-live>3600</time-to-live>
 <write-behind>
 <buffer-size>200</buffer-size>
 <buffer-write-attempts>2</buffer-write-attempts>
 <buffer-write-timeout>200</buffer-write-timeout>
 </write-behind>
 </cache>
</caching-system>

The following configuration file settings add a listeners child element to configure
the behavior of components that listen to the cache. The listener element has an
asynchronous attribute that you can set to either true (listeners are invoked
asynchronously) or false (listeners are invoked synchronously).

The work-manager-name child element specifies the work manager to use to
asynchronously invoke listeners. This value is ignored if synchronous invocations are
enabled. If a work manager is specified for the cache, this value overrides that setting
for invoking listeners only. The value of the work-manager-name element
corresponds to the name element of the work-manager setting in the Oracle Event
Processing config.xml server configuration file.

<caching-system>
 <name>caching-system-id</name>
 <cache>
 <name>cache-id</name>
 <max-size>100000</max-size>
 <eviction-policy>LRU</eviction-policy
 <time-to-live>3600</time-to-live>
 <write-behind>
 <buffer-size>200</buffer-size>
 <buffer-write-attempts>2</buffer-write-attempts>
 <buffer-write-timeout>200</buffer-write-timeout>

Configure a Local Caching System and Cache

Cached Event Data 8-9

 </write-behind>
 <listeners asynchronous="true">
 <work-manager-name>cachingWM</work-manager-name>
 </listeners>
 </cache>
</caching-system>

8.4 Configure a Cache as an Event Listener
You can configure a cache to receive events as they pass through the network. For
example, to specify that a cache listens to a channel, configure the channel with a
wlevs:listener element that has a reference to the cache.

In the following example, as the channel sends new events to the cache, the events are
inserted into the cache. If the channel sends a remove event (an old event that exits the
output window), then the event is removed from the cache.

<wlevs:caching-system id="caching-system-id"/>

<wlevs:cache id="cache-id" name="alternative-cache-name">
 <wlevs:caching-system ref="caching-system-id"/>
</wlevs:cache>

<wlevs:channel id="tradeStream">
 <wlevs:listener ref="cache-id"/>
</wlevs:channel>

8.5 Index a Cache with a Key
The following sections describe the options available to you to specify the key that is
used to index the cache.

When you do not explicitly specify a key, the event object serves as both the key and
value when the event is inserted into the cache. In this case, the event class must
include a valid implementation of the equals and hashcode methods that take into
account the values of the key properties.

8.5.1 Assembly File
Specify a property name for the key property in the assembly file with the key-
properties attribute, as shown in the following example:

<wlevs:cache id="myCache" key-properties="key-property-name">
 <wlevs:caching-system ref="caching-system-id"/>
</wlevs:cache>

In this case, all events that are inserted into the cache are required to have a property
of this name at runtime, otherwise Oracle Event Processing throws an exception. For
example, assume the event type being inserted into the cache looks something like the
following; note the key property (only relevant Java source shown):

public class MyEvent {
 private String key;
 public MyEvent() {}
 public MyEvent(String key) { this.key = key; }
 public String getKey() { return key;}
 public void setKey(String key) { this.key = key;}
}

The corresponding declaration in the assembly file looks like the following:

<wlevs:cache id="myCache" key-properties="key">
 <wlevs:caching-system ref="caching-system-id"/>
</wlevs:cache>

Configure a Cache as an Event Listener

8-10 Developing Applications for Oracle Event Processing

8.5.2 Metadata Annotation
you can use the metadata annotation com.bea.wlevs.ede.api.Key to annotate the
event property in the Java class that implements the event type. This annotation does
not have any attributes.

To use a metadata annotation to specify a key:

1. Import the com.bea.wlevs.ede.api.Key package.

2. Apply the @Key annotation to a method.

The following example shows how to specify that the key property of the
MyEvent event type is the key; only relevant code is shown:

import com.bea.wlevs.ede.api.Key;
public class MyEvent {
 private String key;
 public MyEvent() {}
 public MyEvent(String key) { this.key = key; }
 public String getKey() { return key; }
 @Key
 public void setKey(String key) { this.key = key; }
}

8.5.3 Composite Key
You can use the key-class attribute of the wlevs:cache element to specify a
composite key in which multiple properties form the key. The value of the key-
class attribute must be a JavaBean class with public fields that match the fields of
the event class. The JavaBean class must override the equals and hashCode
methods from the java.lang.Object class. The matching is done according to
the field name. For example:

<wlevs:cache id="myCache" key-class="key-class-name">
 <wlevs:caching-system ref="caching-system-id"/>
</wlevs:cache>

For a cache with a composite key composed of key-field1 and key-field2, you can
execute both of the following queries:

SELECT stream.field2, cache.key-field1 from stream[NOW], cache WHERE
stream.field2=cache.key-field1 AND stream.field2=cache.key-field2

SELECT stream.field1, cache.key-field1 from stream[NOW], cache WHERE
stream.field1=cache.key-field1

8.6 Configure a Cache as an Event Source
You can configure a cache as an event source. To use a cache as an event source, you
need to implement the com.bea.wlevs.ede.api.StreamSink interface.

The configuration follows:

<wlevs:cache id="cache-id" name="alternative-cache-name"
 caching-system="caching-system-id">
 <wlevs:listener ref="cache-listener-id" />
</wlevs:cache>

Configure a Cache as an Event Source

Cached Event Data 8-11

8.7 Configure a Cache with a Cache Listener
You can configure a cache as a source of events to which another component in the
event processing network listens. The listening component can be an adapter or a
bean.

A class that listens to a cache must implement an interface that provides methods for
receiving events, as follows:

• A class that listens to a Coherence cache must implement the
com.tangosol.util.MapListener interface.

• A class that listens to an Oracle Event Processing local cache must implement the
com.bea.cache.jcache.CacheListener interface.

<wlevs:caching-system id="caching-system-id"/>
...
<wlevs:cache id="cache-id" name="alternative-cache-name">
 <wlevs:caching-system ref="caching-system-id"/>
 <wlevs:cache-listener ref="cache-listener-id" />
</wlevs:cache>
...
<bean id="cacheListenerId" class="com.bea.wlevs.example.provider.coherence"/>

In the example, the cacheListenerId Spring bean listens to events coming from the
cache. In this case, the user-defined class that implements this component,
com.bea.wlevs.example.MyCacheListener, is listening to an Oracle Coherence
cache. It must implement the appropriate Oracle Coherence-specific Java interfaces,
including com.tangosol.util.MapListener. The following example illustrates
this implementation.

package com.bea.wlevs.example.provider.coherence;

import com.tangosol.util.MapEvent;
import com.tangosol.util.MapListener;

public class LocalListener implements MapListener {
 public static int deleted = 0;
 public static int inserted = 0;
 public static int updated = 0;

 public void entryDeleted(MapEvent event) { deleted++; }
 public void entryInserted(MapEvent event) { inserted++; }
 public void entryUpdated(MapEvent event) { updated++; }
}

8.8 Configure a Third-Party Caching System and Cache
You can configure your application to use a third-party caching system and cache.

Configure a Third-Party Caching System and Cache

1. Create a plug-in to define the third-party caching system as an Oracle Event
Processing caching system provider:

• Implement the com.bea.wlevs.cache.spi.CachingSystem interface

• Create a factory that creates caching systems of this type.

• Register the factory with an attribute that identifies its provider type.

Configure a Cache with a Cache Listener

8-12 Developing Applications for Oracle Event Processing

2. Declare the caching system in the EPN assembly file.

Use the wlevs:caching-system element to declare a third-party
implementation; use the class or provider attribute to specify additional
information.

For simplicity, you can include the third-party implementation code inside the
Oracle Event Processing application bundle itself to avoid having to import or
export packages and manage the life cycle of a separate bundle that contains the
third-party implementation. In this case the wlevs:caching-system element
appears in the EPN assembly file as shown in the following example:

<wlevs:caching-system id="caching-system-id"
 class="third-party-implementation-class"/>

The class attribute specifies a Java class that must implement the
com.bea.wlevs.cache.spi.CachingSystem interface. For details about this
interface, see the Java API Reference for Oracle Event Processing.

Sometimes you might not be able to or want to include the third-party caching
implementation in the same bundle as the Oracle Event Processing application that
is using it. In this case, you must create a separate bundle with a Spring application
context that includes the wlevs:caching-system element, with the mandatory
advertise attribute:

<wlevs:caching-system id ="caching-system-id"
 class="third-party-implementation-class" advertise="true"/>

Alternately, if you want to decouple the implementation bundle from the bundle
that references it, or you are plugging in a caching implementation that supports
multiple caching systems per Java process, you can specify a factory as a provider:

<wlevs:caching-system id ="caching-system-id" provider="caching-provider"/>
<factory id="factory-id" provider-name="caching-provider">
 <class>the.factory.class.name</class>
</factory>

The factory class (the.factory.class.name) must implement the
com.bea.wlevs.cache.spi.CachingSystemFactory interface. This interface
has the create method that returns a
com.bea.wlevs.cache.spi.CachingSystem instance.

You must deploy this bundle with the application bundle so that the application
bundle can start using it.

3. Add one or more caches for this caching system in the EPN assembly file.

<wlevs:caching-system id ="caching-system-id" provider="caching-provider"/>
...
<wlevs:cache id="cache-id" name="alternative-cache-name">
 <wlevs:caching-system ref="caching-system-id"/>
</wlevs:cache>

Specify the optional name attribute only when the name of the cache in the caching
system is different from its ID. The wlevs:caching-system child element
references the already-declared caching system that contains the cache. You must
specify this child element only when there is more than one caching system
declared (either implicitly or explicitly) or when the caching system is in a different
application or bundle.

You can export both the caching system and the cache as an OSGI service with the
advertise attribute.

Configure a Third-Party Caching System and Cache

Cached Event Data 8-13

<wlevs:caching-system id="caching-system-id" advertise="true"/>
...
<wlevs:cache id="cache-id" name="alternative-cache-name" advertise="true" >
 <wlevs:caching-system ref="caching-system-id"/>
</wlevs:cache>

If the cache is advertised, then a component in the EPN of an application in a
separate bundle can reference it. The following example shows how a processor in
one bundle can use as a cache source the cache with ID cache-id located in a
separate bundle (called cacheprovider):

<wlevs:processor id="myProcessor2">
 <wlevs:cache-source ref="cacheprovider:cache-id"/>
</wlevs:processor>

The caching system creates the cache associated with a particular name and returns
a reference to the cache. The resulting cache bean implements the java.util.Map
interface.

4. Configure the third-party caching system and its caches by updating the third-
party caching configuration file or files for the application.

Refer to your third-party cache documentation.

5. Optionally, override the default third-party cache configuration by updating the
appropriate configuration file with one or more additional cache element child
elements. Refer to your third-party cache documentation.

• Specify that a cache is an event sink by configuring it as a listener to another
component in the event processing network.

• Specify that a cache is an event source to which another component in the event
processing network listens.

• Configure a cache loader or store.

6. When you assemble your application, verify that the META-INF/MANIFEST.MF
file includes the following import:

com.bea.wlevs.cache.spi; version ="<version>"

If the MANIFEST.MF files does not include this import, update the MANIFEST.MF
file to add this import before deploying your application.

8.9 Exchange Data Between a Cache and Another Data Source
You can have a cache in an EPN exchange data with another data source, including a
database. For example, you can load a cache with data when the application starts or
create a read/write relationship between the cache and a database.

If the cache will only be reading data, including when the backing store is read-only,
you should use a cache loader. If the cache will read and write data, use a cache store.
In both cases, creating the relationship involves specific configuration and a Java class
that knows how to communicate with the data source.

8.9.1 Load Cache Data from a Read-Only Data Source
Using a cache loader, you can have a cache in your EPN load data from a read-only
data source. A cache loader is a Java class that loads cache objects into a cache. You
create a cache loader by writing a Java class that implements the appropriate interfaces
to enable the loader class to communicate with the cache. Then you configure a cache

Exchange Data Between a Cache and Another Data Source

8-14 Developing Applications for Oracle Event Processing

loader by using the wlevs:cache-loader child element of the wlevs:cache
element to specify the bean that does the loading work.

If the backing store is read-write, use a cache store instead (see Exchange Data with a
Read-Write Data Source).

When creating a cache loader, you implement interfaces as follows:

• To load cache data into an Oracle Coherence cache, create a class that implements
the appropriate Oracle Coherence-specific Java interfaces, including
com.tangosol.net.cache.CacheLoader. See Example 8-2 for an example.

• To load cache data into an Oracle Event Processing local cache, create a class that
implements com.bea.cache.jcache.CacheLoader interface. This interface
includes the load method to customize loading a single object into the cache;
Oracle Event Processing calls this method when the requested object is not in the
cache. The interface also includes loadAll methods that you implement to
customize the loading of the entire cache.

In Example 8-1, the localLoader bean loads events into an Oracle Coherence cache
when the backing store is read-only.

When working with a Coherence cache, note that if you specify a cache loader in your
configuration file, you must also specify the corresponding class factory method name
in your Coherence cache configuration file. For a cache loader, you specify the
getLoader method of
com.bea.wlevs.cache.coherence.configuration.SpringFactory. For
example code, see Configure an Oracle Coherence Caching System and Cache.

Example 8-1 Oracle Coherence Cache EPN Assembly File for a Cache Loader

<wlevs:caching-system id="caching-system-id"/>
<wlevs:cache id="myCache" advertise="false">
 <wlevs:caching-system ref="caching-system-id"/>
 <wlevs:cache-loader ref="localLoader"/>
</wlevs:cache>
<bean id="localLoader"
 class="com.bea.wlevs.example.provider.coherence.LocalLoader"/>

Example 8-2 Oracle Coherence Cache LocalLoader Implementation

package com.bea.wlevs.example.provider.coherence;

import java.util.Collection;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Map;
import java.util.Set;

import com.bea.wlevs.example.provider.event.ProviderData;
import com.tangosol.net.cache.CacheLoader;

public class LocalLoader implements CacheLoader {
 public static int loadCount = 0;
 public static Set keys = new HashSet();

 public LocalLoader() {
 }
 public Object load(Object key) {
 loadCount++;
 keys.add(key);
 return new ProviderData((String) key);
 }
 public Map loadAll(Collection keys) {
 Map result = new HashMap();

Exchange Data Between a Cache and Another Data Source

Cached Event Data 8-15

 for (Object key : keys) {
 result.put(key, load(key));
 }
 return result;
 }
}

8.9.2 Exchange Data with a Read-Write Data Source
Using a cache store, you can have a cache in your EPN exchange data with a read-
write data source. A cache store is a Java class that exchanges cache objects with a
cache. You create a cache store by writing a Java class that implements the appropriate
interfaces to enable it to communicate with the data source. Then you add the cache
store to the EPN by using the wlevs:cache-store child element of the
wlevs:cache element to specify the bean that communicates with the data source.

If the backing store is read-only, use a cache loader instead (see Load Cache Data from
a Read-Only Data Source).

When creating a cache store, you implement interfaces as follows:

• To exchange cache data with an Oracle Coherence cache, create a class that
implements the appropriate Oracle Coherence-specific Java interfaces, including
com.tangosol.net.cache.CacheStore. See Example 8-4for an example.

• To exchange cache data with an Oracle Event Processing local cache, create a class
that implements the com.bea.cache.jcache.CacheStore interface. This
interface includes the store method that stores the data in the backing store using
the passed key; Oracle Event Processing calls this method when it inserts data into
the cache. The interface also includes the storeAll method for storing a batch of
data to a backing store in the case that you have configured asynchronous writes
for a cache with the write-behind configuration element.

In Example 8-3, the localStore bean loads events into the cache when the backing
store is read-write.

Note that if you specify a cache store in your Spring configuration file, you must also
specify the corresponding class factory method name in your Coherence cache
configuration file. For a cache store, you specify the getStore method of
com.bea.wlevs.cache.coherence.configuration.SpringFactory. For
example code, see Configure an Oracle Coherence Caching System and Cache.

Example 8-3 Oracle Coherence Cache EPN Assembly File for a Cache Store

<wlevs:caching-system id="caching-system-id"/>
<wlevs:cache id="myCache" advertise="false">
 <wlevs:caching-system ref="caching-system-id"/>
 <wlevs:cache-store ref="localStore"/>
</wlevs:cache>
<bean id="localStore"
 class="com.bea.wlevs.example.provider.coherence.LocalStore"/>

Example 8-4 Oracle Coherence Cache LocalStore Implementation

package com.bea.wlevs.example.provider.coherence;

import java.util.Collection;
import java.util.HashMap;
import java.util.Map;
import java.util.Set;

import com.bea.wlevs.example.provider.event.ProviderData;
import com.tangosol.net.cache.CacheStore;

Exchange Data Between a Cache and Another Data Source

8-16 Developing Applications for Oracle Event Processing

public class LocalStore implements CacheStore {
 public static int eraseCount = 0;
 public static int storeCount = 0;
 public static int loadCount = 0;

 public void erase(Object key) {
 eraseCount++;
 }
 public void eraseAll(Collection keys) {
 for (Object key : keys) {
 erase(key);
 }
 }
 public void store(Object key, Object value) {
 //
 // Do the store operation here.
 //
 }
 public void storeAll(Map entries) {
 for (Map.Entry entry : (Set <Map.Entry>)entries.entrySet()) {
 store(entry.getKey(), entry.getValue());
 }
 }
 public Object load(Object key) {
 loadCount++;
 return new ProviderData((String) key);
 }
 public Map loadAll(Collection keys) {
 Map result = new HashMap();
 for (Object key : keys) {
 result.put(key, load(key));
 }
 return result;
 }
}

8.10 Access a Cache from Application Code
Once you have configured a cache, you can access the cache from several components
in an Oracle Event Processing application.

This section describes how to do that.

For more information, see the following sections:

• Access a Cache from an Oracle CQL Statement

• Access a Cache from an Adapter

• Access a Cache From a Business POJO

• Access a Cache From an Oracle CQL User-Defined Function

• Access a Cache with JMX.

Before you assemble and deploy the application, edit your META-INF/MANIFEST.MF
file to import packages that are required in your implementation. For example, if your
application implements cache listeners, loaders or stores, your manifest should import
com.tangosol.net.cache packages, which contain the Coherence APIs.

Oracle Event Processing provides caching APIs that you can use in your application to
perform certain tasks. The APIs are in the com.bea.cache.jcache package, which
includes the APIs used to access a cache and create cache loader, listeners, and stores.
If you want to use the loader, listener, and store functionality, then import the
com.tangosol.net and com.tangosol.net.cache packages.

Access a Cache from Application Code

Cached Event Data 8-17

You create, configure, and wire caching systems and caches with the EPN assembly
file and component configuration files. This means that you typically never explicitly
use the Cache and CachingSystem interfaces in your application. The only reason to
use them is when you have additional requirements over the standard configuration.
For example, if you want to provide integration with a third-party cache provider,
then you must use the CachingSystem interface. If you want to perform operations
on a cache that are not part of the java.util.Map interface, then you can use the
Cache interface.

If you create cache listeners, loaders, or stores for an Oracle Event Processing local
cache, then the beans you write must implement the CacheListener,
CacheLoader, or CacheStore interfaces.

If you create cache listeners, loaders, or stores for an Oracle Coherence cache, then the
beans you write must implement the appropriate Oracle Coherence interfaces.

If you create cache listeners, loaders, or stores for a third-party cache, then the beans
you write must implement the appropriate third-party cache interfaces.

8.10.1 Access a Cache from an Oracle CQL Statement
You can reference a cache from an Oracle CQL statement in much the same way you
reference an event source such as a channel; this feature enables you to enrich
standard streaming data with data from a separate source. The code in the following
example shows a valid Oracle CQL query that joins trade events from a standard
channel named S1 with stock symbol data from a cache named stockCache.

You must abide by these restrictions when using a cache in an Oracle CQL query:

• Whenever you query a cache, you must join against the [Now] window.

This guarantees that the query will execute against a snapshot of the cache. If you
join against any other window type, then if the cache changes before the window
expires, the query will be incorrect.

The following example shows an invalid Oracle CQL query that joins a Range
window against a cache. If the cache changes before this window expires, the query
will be incorrect. Consequently, this query will raise Oracle Event Processing server
error “external relation must be joined with s[now]."

SELECT trade.symbol, trade.price, trade.numberOfShares, company.name
FROM TradeStream [Range 8 hours] as trade, CompanyCache as company
WHERE trade.symbol = company.id

When you use data from a cache in an Oracle CQL query, Oracle Event Processing
pulls the data rather than it being pushed, as is the case with a channel. This means
that, continuing with the query executes only when a channel pushes a trade
event to the query; the stock symbol data in the cache never causes a query to
execute, it is only pulled by the query when needed.

• You must specify the key property needed to do a lookup based on the cache key.

Consider two streams S and C with schemas (id, group, value) where the cache
key is id. A valid query is:

select count(*) as n from S [now], C
where S.id = C.id

• Joins must be executed only by referencing the cache key.

• You cannot use a cache in a view. Instead, use a join.

Access a Cache from Application Code

8-18 Developing Applications for Oracle Event Processing

• Only a single channel source may occur in the FROM clause of an Oracle CQL
statement that joins cache data source(s).

• If the cache is a processor source, you connect the cache directly to the channel on
the EPN.

• If the cache is a processor sink, it can be connected directly to a processor.

Access a Cache from an Oracle CQL Statement

This procedure assumes that you have already configured the caching system and
caches. For more information, see:

• Configure a Local Caching System and Cache

• Configure an Oracle Coherence Caching System and Cache

• Configure a Third-Party Caching System and Cache

1. If you have not already done so, create the event type that corresponds to the
cache data and register it in the event repository.

See Events and Event Types.

2. Specify the key properties for the data in the cache.

3. In the EPN assembly file, update the configuration of the cache to declare the
event type of its values; use the value-type attribute of the wlevs:cache
element. For example:

<wlevs:caching-system id="caching-system-id"/>
...
<wlevs:cache id="cache-id"
 name="alternative-cache-name"
 value-type="CompanyEvent">
 <wlevs:caching-system ref="caching-system-id"/>
</wlevs:cache>

The value-type attribute specifies the type for the values contained in the cache.
This must be a valid type name in the event type repository.

This attribute is required only if the cache is referenced in an Oracle CQL query.
This is because the query processor needs to know the type of events in the cache.

4. In the EPN assembly file, update the configuration of the processor that executes
the Oracle CQL query that references a cache:

a. If the cache is a processor source: you connect the cache directly to the
processor on the EPN as Figure 8-1 shows.

Figure 8-1 Cache as Processor Source

Update the wlevs:processor element a wlevs:cache-source child
element that references the cache. For example:

Access a Cache from Application Code

Cached Event Data 8-19

<wlevs:channel id="S1"/>

<wlevs:processor id="cacheProcessor">
 <wlevs:source ref="S1">
 <wlevs:cache-source ref="cache-id">
</wlevs:processor>

In the example, the processor will have data pushed to it from the S1 channel
as usual; however, the Oracle CQL queries that execute in the processor can
also pull data from the cache-id cache. When the query processor matches
an event type in the FROM clause to an event type supplied by a cache, such as
CompanyEvent, the processor pulls instances of that event type from the
cache.

b. If the cache is a processor sink: you must connect the processor to the cache
using a channel on the EPN (that is, there must be a channel between the
processor and the cache sink) as Figure 8-2 shows.

Figure 8-2 Cache as Processor Sink

In this case, the application assembly file looks like this:

<wlevs:channel id="channel1" event-type="StockTick">
 <wlevs:listener ref="processor" />
</wlevs:channel>
<wlevs:processor id="processor">
 <wlevs:listener ref="channel2" />
</wlevs:processor>
<wlevs:channel id="channel2" event-type="StockTick">
 <wlevs:listener ref="cache-id" />
</wlevs:channel>

SELECT S1.symbol, S1.lastPrice, stockCache.description
FROM S1 [Now], stockCache
WHERE S1.symbol = stockCache.symbol

8.10.2 Access a Cache from an Adapter
An adapter can also be injected with a cache using the standard Spring mechanism for
referencing another bean. A cache bean implements the java.util.Map interface
which is what the adapter uses to access the injected cache.

First, the configuration of the adapter in the EPN assembly file must be updated with a
wlevs:instance-property child element, as shown in the following example:

<wlevs:caching-system id="caching-system-id"/>
 ...
<wlevs:cache id="cache-id" name="alternative-cache-name">
 <wlevs:caching-system ref="caching-system-id"/>
</wlevs:cache>
...
<wlevs:adapter id="myAdapter" provider="myProvider">
 <wlevs:instance-property name="map" ref="cache-id"/>
</wlevs:adapter>

In the example, the ref attribute of wlevs:instance-property references the id
value of the wlevs:cache element. Oracle Event Processing automatically injects the
cache, implemented as a java.util.Map, into the adapter.

Access a Cache from Application Code

8-20 Developing Applications for Oracle Event Processing

In the adapter Java source, add a setMap (Map) method with the code that
implements whatever you want the adapter to do with the cache:

package com.bea.wlevs.example;
…
import java.util.Map;
public class MyAdapter implements Runnable, Adapter, EventSource, SuspendableBean {
...
 public void setMap (Map map) {...}
}

8.10.3 Access a Cache From a Business POJO
A business POJO, configured as a standard Spring bean in the EPN assembly file, can
be injected with a cache using the standard Spring mechanism for referencing another
bean. In this way the POJO can view and manipulate the cache. A cache bean
implements the java.util.Map interface which is what the business POJO uses to
access the injected cache. A cache bean can also implement a vendor-specific sub-
interface of java.util.Map, but for portability it is recommended that you
implement Map.

First, the configuration of the business POJO in the EPN assembly file must be
updated with a property child element, as shown in the following example based on
the Output bean of the FX example (see Foreign Exchange (FX) Example in Getting
Started with Oracle Event Processing):

<wlevs:caching-system id="caching-system-id"/>
...
<wlevs:cache id="cache-id" name="alternative-cache-name">
 <wlevs:caching-system ref="caching-system-id"/>
</wlevs:cache>
...
<bean class="com.bea.wlevs.example.helloworld.HelloWorldBean">
 <property name="map" ref="cache-id"/>
</bean>

In the example, the ref attribute of the property element references the id value of
the wlevs:cache element. Oracle Event Processing automatically injects the cache,
implemented as a java.util.Map, into the business POJO bean.

In the business POJO bean Java source, add a setMap (Map) method with the code
that implements whatever you want the POJO to do with the cache:

package com.bea.wlevs.example.helloworld;
…
import java.util.Map;
public class HelloWorldBean implements EventSink {
...
 public void setMap (Map map) {...}
}

8.10.4 Access a Cache From an Oracle CQL User-Defined Function
In addition to standard event streams, Oracle CQL rules can also invoke the member
methods of a user-defined function.

These user-defined functions are implemented as standard Java classes and are
declared in the component configuration file of the Oracle CQL processor, as shown in
the following example:

<bean id="orderFunction" class="orderFunction-impl-class"/>

Access a Cache from Application Code

Cached Event Data 8-21

The processor in which the relevant Oracle CQL rule runs must then be injected with
the user-defined function using the wlevs:function child element, referencing the
Spring bean with the ref attribute:

<wlevs:processor id= "tradeProcessor">
 <wlevs:function ref="orderFunction"/>
</wlevs:processor>

Alternatively, you can specify the bean class in the wlevs:function element:

<wlevs:processor id="testProcessor">
 <wlevs:listener ref="providerCache"/>
 <wlevs:listener ref="outputCache"/>
 <wlevs:cache-source ref="testCache"/>
 <wlevs:function function-name="mymod" exec-method="execute" />
 <bean class="com.bea.wlevs.example.function.MyMod"/>
 </wlevs:function>
</wlevs:processor>

The following Oracle CQL rule, assumed to be configured for the tradeProcessor
processor, shows how to invoke the existsOrder method of the orderFunction
user-defined function:

INSERT INTO InstitutionalOrder
SELECT er.orderKey AS key, er.symbol AS symbol, er.shares as cumulativeShares
FROM ExecutionRequest er [Range 8 hours]
WHERE NOT orderFunction.existsOrder(er.orderKey)

You can also configure the user-defined function to access a cache by injecting the
function with a cache using the standard Spring mechanism for referencing another
bean. A cache bean implements the java.util.Map interface which is what the user-
defined function uses to access the injected cache.

First, the configuration of the user-defined function in the EPN assembly file must be
updated with a wlevs:property child element, as shown in the following example:

<wlevs:caching-system id="caching-system-id"/>
 ...
<wlevs:cache id="cache-id" name="alternative-cache-name">
 <wlevs:caching-system ref="caching-system-id"/>
</wlevs:cache>
 ...
<bean id="orderFunction" class="orderFunction-impl-class">
 <wlevs:property name="cache" ref="cache-id"/>
</bean>

In the example, the ref attribute of the wlevs:property element references the id
value of the wlevs:cache element. Oracle Event Processing automatically injects the
cache, implemented as a java.util.Map, into the user-defined function.

In the user-defined function's Java source, add a setMap (Map) method with the code
that implements whatever you want the function to do with the cache:

package com.bea.wlevs.example;
…
import java.util.Map;
public class OrderFunction {
...
 public void setMap (Map map) {...}
}

For more information on user-defined functions, see User Defined Functions in Oracle
CQL Language Reference for Oracle Event Processing.

Access a Cache from Application Code

8-22 Developing Applications for Oracle Event Processing

8.10.5 Access a Cache with JMX
At runtime, you can access a cache programmatically using JMX and the MBeans that
Oracle Event Processing deploys for the caching systems and caches you define. For
more information, see JMX in Administering Oracle Event Processing.

8.10.5.1 How to Access a Cache With JMX Using Oracle Event Processing Visualizer

The simplest and least error-prone way to access a caching system or cache with JMX
is to use the Oracle Event Processing Visualizer. For more information, see JMX
Management in Using Visualizer for Oracle Event Processing.

8.10.5.2 How to Access a Cache With JMX Using Java

The simplest and least error-prone way to access a caching system or cache with JMX
is to use the Oracle Event Processing Visualizer (see How to Access a Cache With JMX
Using Oracle Event Processing Visualizer). Alternatively, you can access a caching
system or cache with JMX using Java code that you write.

Oracle Event Processing creates a StageMBean for each cache that your application
uses as a stage. The Type of this MBean is Stage.

To access a cache with JMX using Java:

1. Connect to the JMX service that Oracle Event Processing server provides.

For more information, see Connect to JMX Server in Administering Oracle Event
Processing.

2. Get a list of cache StageMbean using either of:

• CachingSystemMBean.getCacheMBeans()

• ApplicationMBean.getStageMBeans()

3. Get the ObjectName for a given StageMBean that represents a cache in your
caching system:

ObjectName cacheName = ObjectName.getInstance (
 'com.bea.wlevs:Name =
newCache,Type=Stage,CachingSystem=newCachingSystem,Application=provider'
);

4. Get a proxy instance for the StageMBean with this ObjectName:

StageMBean cache = (StageMBean) MBeanServerInvocationHandler.newProxyInstance(
 server, cacheName, StageMBean.class, false
);

5. Use the methods of the StageMBean to access the cache.

Access a Cache from Application Code

Cached Event Data 8-23

Access a Cache from Application Code

8-24 Developing Applications for Oracle Event Processing

9
EclipseLink, JPA, and Oracle Coherence

The Oracle Event Processing installation includes the EclipseLink 2.4.2 open source
mapping and persistence framework to support the use of the Java Persistence API
(JPA) in your applications. JPA is the standard for object-relational mapping (ORM)
and enterprise Java persistence.

This chapter presents two sample Oracle Event Processing applications, HelloWorld
and JPA-Coherence-Sample-Code, that use EclipseLink and JPA to read from and
write to a database. The JPA-Coherence-Sample-Code also uses a coherence cache for
coordinated data updates in an environment with clustered applications and servers.

This chapter includes the following sections:

• High-Level Procedure

• HelloWorld Example

• JPA Coherence Example.

9.1 High-Level Procedure
Use the following high-level steps to create an Oracle Event Processing application
that includes EclipseLink:

1. Create your Oracle Event Processing application including JPA and Oracle
Coherence as needed.

2. Create a persistence.xml file with the correct JPA configuration. This file
contains the properties that control runtime operation.

3. Put the persistence.xml file in the META-INF directory of your application.

4. Bundle and deploy the application.

Learn more about EclipseLink at http://eclipse.org/eclipselink/.

Note: Coherence socket exception occurs when you run CQL sample on AIX
6.1 Japanese platform. To resolve this issue:

Add the -Djava.net.preferIPv4Stack=true parameter to the last line
of the startwlevs.sh script.

Note: Spatial sample is not supported on AIX Platform.

EclipseLink, JPA, and Oracle Coherence 9-1

http://eclipse.org/eclipselink/

9.2 HelloWorld Example
The HelloWorld example uses EclipseLink to establish a read and write JDBC
connection to the data source to access and store HelloWorld events.

In this example, HelloWorld events contain date and time information.

The example is comprised of the following files, which are discussed in this section:

• persistence.xml Configuration File

• HelloWorldAdapter.java

• HelloWorldEvent.java

• HelloWorldBean.java

9.2.1 persistence.xml Configuration File
The following persistence.xml file has one persistence unit (persistence-
unit) called helloworld. The helloworld persistence unit has a transaction-
type of RESOURCE_LOCAL because Oracle Event Processing is a Java SE environment.
The EclipseLink properties specify the settings for database read and write operations
and logging. For this example, the managed persistable class that represents objects in
the database is
com.bea.wlevs.event.example.helloworld.HelloWorldEvent.

This persistence.xml file has entries for JPA logging that are commented out and
set to false. You can uncomment these settings and set them to true to debug or
otherwise monitor the application behavior. For information on property settings, see
http://eclipse.org/eclipselink/documentation/2.4/jpa/extensions/
toc.htm.

<?xml version="1.0" encoding="UTF-8" ?>
<persistence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence http://
java.sun.com/xml/ns/persistence/persistence_2_0.xsd"
 version="2.0" xmlns="http://java.sun.com/xml/ns/persistence">
 <persistence-unit name="helloworld" transaction-type="RESOURCE_LOCAL">
 <class>com.bea.wlevs.event.example.helloworld.HelloWorldEvent</class>
 <properties>
 <property name="eclipselink.jdbc.read-connections.min" value="1"/>
 <property name="eclipselink.jdbc.write-connections.min" value="1"/>
 <!--
 <property name="eclipselink.logging.timestamp" value="false"/>
 <property name="eclipselink.logging.thread" value="false"/>
 <property name="eclipselink.logging.session" value="false"/>
 <property name="eclipselink.logging.exceptions" value="false"/>
 <property name="eclipselink.logging.connection" value="false"/>
 <property name="eclipselink.logging.level" value="FINER"/>
 -->
 </properties>
 </persistence-unit>
</persistence>

9.2.2 HelloWorldAdapter.java
The HelloWorldAdapter.java class is a custom threaded adapter that
continuously creates events of type HelloWorldEvent. The application constructs

HelloWorld Example

9-2 Developing Applications for Oracle Event Processing

http://eclipse.org/eclipselink/documentation/2.4/jpa/extensions/toc.htm
http://eclipse.org/eclipselink/documentation/2.4/jpa/extensions/toc.htm

message text of type DateFormat, which is used by the generateHelloMessage
method to create events of type HelloWorldEvent.

The Oracle Event Processing framework calls the setEventSender method to
initialize the eventSender private variable with a StreamSender instance. The
StreamSender instance sends events emitted by a StreamSource instance to a
StreamSink listener. In this example the StreamSink listener is the
HellowWorldBean instance.

package com.bea.wlevs.adapter.example.helloworld;

import java.text.DateFormat;
import java.util.Date;
import com.bea.wlevs.ede.api.RunnableBean;
import com.bea.wlevs.ede.api.StreamSender;
import com.bea.wlevs.ede.api.StreamSource;
import com.bea.wlevs.event.example.helloworld.HelloWorldEvent;

public class HelloWorldAdapter implements RunnableBean, StreamSource {
 private static final int SLEEP_MILLIS = 300;
 private DateFormat dateFormat;
 private String message;
 private boolean suspended;
 private StreamSender eventSender;

 public HelloWorldAdapter() {
 super();
 dateFormat = DateFormat.getTimeInstance();
 }
 public void run() {
 suspended = false;
 while (!isSuspended()) { // Generate messages forever...
 generateHelloMessage();
 try {
 synchronized (this) {
 wait(SLEEP_MILLIS);
 }
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }
 public void setMessage(String message) {
 this.message = message;
 }
 private void generateHelloMessage() {
 String message = this.message + dateFormat.format(new Date());
 HelloWorldEvent event = new HelloWorldEvent();
 event.setMessage(message);
 eventSender.sendInsertEvent(event);
 }
 public void setEventSender(StreamSender sender) {
 eventSender = sender;
 }
 public synchronized void suspend() {
 suspended = true;
 }
 private synchronized boolean isSuspended() {
 return suspended;
 }
}

HelloWorld Example

EclipseLink, JPA, and Oracle Coherence 9-3

9.2.3 HelloWorldEvent.java
The HelloWorldEvent.java class creates an event from a message. The
HelloWorldAdapter.generateHelloMessage method calls the
HelloWorldEvent.setMessage method to create an event from a
message. The HelloWorldBean class stores the message and its generated id to
and retrieves them from the data store.

package com.bea.wlevs.event.example.helloworld;

import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;

@Entity
public class HelloWorldEvent {
 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 private long id;
 private String message;

 public String getMessage() {
 return message;
 }

 public void setMessage (String message) {
 this.message = message;
 }
}

9.2.4 HelloWorldBean.java
The HelloWorldBean.java class is an event sink and source that retrieves events
from HelloWorldEvent and performs read and write operations on the database
with JPA.

The Oracle Event Processing framework calls the setEventSender method to
initialize the m_eventSender private variable with a StreamSender instance. The
onInserEvent method sends the events emitted by the StreamSource instance
downstream to StreamSink listeners.

package com.bea.wlevs.example.helloworld;

import java.util.HashMap;
import java.util.List;
import javax.annotation.Resource;
import javax.sql.DataSource;
import javax.persistence.EntityManager;
import javax.persistence.EntityManagerFactory;
import javax.persistence.Persistence;
import javax.persistence.Query;
import org.springframework.beans.factory.DisposableBean;
import org.eclipse.persistence.config.PersistenceUnitProperties;
import com.bea.wlevs.ede.api.StreamSink;
import com.bea.wlevs.ede.api.StreamSource;
import com.bea.wlevs.ede.api.StreamSender;
import com.bea.wlevs.event.example.helloworld.HelloWorldEvent;

public class HelloWorldBean implements StreamSink, StreamSource, DisposableBean {

HelloWorld Example

9-4 Developing Applications for Oracle Event Processing

 private static final String PERSISTENCE_UNIT_NAME = "helloworld";
 private EntityManagerFactory m_entityMgrFactory;
 private EntityManager m_entityMgr;
 private DataSource m_ds;
 private boolean m_shuttingDown;
 private StreamSender m_eventSender;

 public void setEventSender(StreamSender sender){
 m_eventSender = sender;
 }
 private void setupEntityManager(){
 if (m_entityMgr!=null)
 return;
 HashMap props = new HashMap();
 props.put(PersistenceUnitProperties.NON_JTA_DATASOURCE, m_ds);
 props.put("eclipselink.ddl-generation", "create-tables");
 props.put("eclipselink.ddl-generation.output-mode", "database");
 m_entityMgrFactory = Persistence.createEntityManagerFactory
 (PERSISTENCE_UNIT_NAME, props);
 m_entityMgr = m_entityMgrFactory.createEntityManager();
 }
 public void onInsertEvent(Object event){
 if (m_shuttingDown)
 return;
 setupEntityManager();
 if (event instanceof HelloWorldEvent) {
 HelloWorldEvent helloWorldEvent = (HelloWorldEvent) event;
 System.out.println("Message: " + helloWorldEvent.getMessage());
 m_entityMgr.getTransaction().begin();
 try {
 m_entityMgr.persist(helloWorldEvent);
 m_entityMgr.getTransaction().commit();
 } finally {
 if (m_entityMgr.getTransaction().isActive())
 m_entityMgr.getTransaction().rollback();
 }
 }
 Query q = m_entityMgr.createQuery("select t from HelloWorldEvent t");
 List<HelloWorldEvent> hwlist = q.getResultList();
 System.out.println("Stored " + hwlist.size() + " helloworld events");
 m_eventSender.sendInsertEvent(event);
 }
 @Resource(name="derbyDS")
 public void setDataSource(DataSource ds){
 m_ds = ds;
 }
 public void destroy(){
 m_shuttingDown = true;

 if (m_entityMgr!=null){
 m_entityMgr.close();
 m_entityMgr=null;
 }
 if (m_entityMgrFactory!=null){
 m_entityMgrFactory.close();
 m_entityMgrFactory=null;
 }
 }
}

HelloWorld Example

EclipseLink, JPA, and Oracle Coherence 9-5

9.3 JPA Coherence Example
The JPA Coherence example demonstrates the usage of the EclipseLink JPA
implementation for the Coherence CacheLoader or CacheStore interfaces.

9.3.1 persistence.xml Configuration File
The EclipseLink properties specify the settings for database read and write operations
and logging. The managed persistable classes that represents objects in the database
are com.oracle.cep.sample.PriceTarget and
com.oracle.cep.sample.SaleEvent.

This persistence.xml file has entries for JPA logging that are commented out and
set to false. You can uncomment these settings and set them to true to debug or
otherwise monitor the application behavior. For information on property settings, see
http://eclipse.org/eclipselink/documentation/2.4/jpa/extensions/
toc.htm.

<?xml version="1.0" encoding="UTF-8" ?>
<persistence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence http://
java.sun.com/xml/ns/persistence/persistence_2_0.xsd"
 version="2.0" xmlns="http://java.sun.com/xml/ns/persistence">
 <persistence-unit name="derby" transaction-type="RESOURCE_LOCAL">
 <class>com.oracle.cep.sample.PriceTarget</class>
 <class>com.oracle.cep.sample.SaleEvent</class>
 <properties>
 <property name="eclipselink.jdbc.read-connections.min" value="1"/>
 <property name="eclipselink.jdbc.write-connections.min" value="1"/>
 <property name="javax.persistence.jdbc.driver"
 value="org.apache.derby.jdbc.EmbeddedDriver"/>
 <property name="javax.persistence.jdbc.url"
 value="jdbc:derby:test1;create=true"/>
 <property name="eclipselink.ddl-generation" value="create-tables"/>
 <property name="eclipselink.ddl-generation.output-mode" value="database"/>
 <!--
 <property name="eclipselink.logging.timestamp" value="false"/>
 <property name="eclipselink.logging.thread" value="false"/>
 <property name="eclipselink.logging.session" value="false"/>
 <property name="eclipselink.logging.exceptions" value="false"/>
 <property name="eclipselink.logging.connection" value="false"/>
 <property name="eclipselink.logging.level" value="FINER"/>
 -->
 </properties>
 </persistence-unit>
</persistence>

9.3.2 Classes
The example is comprised of the following classes:

• CoherenceMapListener.java

• PriceTarget.java

• PriceTargetLoader.java

• SaleEvent.java

JPA Coherence Example

9-6 Developing Applications for Oracle Event Processing

http://eclipse.org/eclipselink/documentation/2.4/jpa/extensions/toc.htm
http://eclipse.org/eclipselink/documentation/2.4/jpa/extensions/toc.htm

• SaleEventsGenerator.java

In this example, an initial set of items go on sale and the requested target prices are set
up in a data store. The data store is available in the PriceTarget.java Coherence
cache because it is set up to be used with CacheLoader. A stream of SaleEvents is
generated from the SaleEventsGenerator adapter. If the sale prices match the
target prices, they are stored in SaleEvent Coherence cache. A Coherence
MapListener implementation verifies that the SaleEvents stored in the cache are
actually available in the data store as well.

9.3.2.1 CoherenceMapListener.java

The CoherenceMapListener.java class listens for events published to the
coherence cache.

package com.oracle.cep.sample;

import java.util.List;
import javax.persistence.EntityManager;
import javax.persistence.EntityManagerFactory;
import javax.persistence.Persistence;
import javax.persistence.Query;
import org.springframework.beans.factory.DisposableBean;
import com.tangosol.util.MapListener;
import com.tangosol.util.MapEvent;
import com.tangosol.util.ObservableMap;
import com.bea.wlevs.ede.api.InitializingBean;
import com.bea.wlevs.ede.api.StreamSource;
import com.bea.wlevs.ede.api.StreamSender;

public class CoherenceMapListener implements MapListener,
InitializingBean, StreamSource {
 private static final String PERSISTENCE_UNIT_NAME = "derby";
 private EntityManagerFactory m_entityMgrFactory;
 private EntityManager m_entityMgr;
 private ObservableMap m_saleEventCache;
 private StreamSender m_sender;

 public void afterPropertiesSet()
 {
 m_saleEventCache.addMapListener(this);
 }
 public void setEventSender(StreamSender sender)
 {
 m_sender = sender;
 }
 public void setSaleEventCache(ObservableMap cache)
 {
 m_saleEventCache = cache;
 }
 public void entryInserted(MapEvent event)
 {
 verifyEventInStore(event);
 }
 private void verifyEventInStore(MapEvent event){
 if (!(event.getNewValue() instanceof SaleEvent)){
 System.out.println("Unexpected type in SaleEvent cache");
 return;
 }
 if (m_entityMgr==null){
 setupEntityMgr();

JPA Coherence Example

EclipseLink, JPA, and Oracle Coherence 9-7

 }
 SaleEvent sale = (SaleEvent) event.getNewValue();
 Query q = m_entityMgr.createQuery("SELECT s FROM SaleEvent s
 WHERE s.itemID = :itemID");
 q.setParameter("itemID", sale.getItemID());
 List<SaleEvent> saleEvents = q.getResultList();
 if (saleEvents.size()==0)
 System.out.println("ERROR! Matched SaleEvent not found in store");
 else {
 System.out.println("Found sale event for " +
 saleEvents.get(0).getItemID() + " for $" +
 saleEvents.get(0).getSalePrice());
 m_sender.sendInsertEvent(sale);
 }
 }
 private void setupEntityMgr() {
 m_entityMgrFactory = Persistence.createEntityManagerFactory(
 PERSISTENCE_UNIT_NAME);
 m_entityMgr = m_entityMgrFactory.createEntityManager();
 }
 public void entryUpdated(MapEvent event){
 verifyEventInStore(event);
 }
 public void entryDeleted(MapEvent event){
 System.out.println("SaleEvent cache entry deleted.
 Should not see this event for this sample");
 }
}

9.3.2.2 PriceTarget.java

package com.oracle.cep.sample;

import javax.persistence.Entity;
import javax.persistence.Id;

@Entity
public class PriceTarget implements java.io.Serializable {
 @Id
 private String itemID;
 private double targetPrice;

 public String getItemID() {
 return itemID;
 }
 public void setItemID(String itemID) {
 this.itemID = itemID;
 }
 public double getTargetPrice(){
 return targetPrice;
 }
 public void setTargetPrice(double targetPrice){
 this.targetPrice = targetPrice;
 }
}

9.3.2.3 PriceTargetLoader.java

package com.oracle.cep.sample;

import java.util.ArrayList;

JPA Coherence Example

9-8 Developing Applications for Oracle Event Processing

import java.util.List;
import javax.persistence.EntityManager;
import javax.persistence.EntityManagerFactory;
import javax.persistence.Persistence;
import javax.persistence.Query;
import org.springframework.beans.factory.DisposableBean;
import com.bea.wlevs.ede.api.InitializingBean;

public class PriceTargetLoader implements DisposableBean, InitializingBean {
 private static final String PERSISTENCE_UNIT_NAME = "derby";
 static ArrayList<PriceTarget> s_entriesToLoad = new ArrayList<PriceTarget>();
 static {
 setUpEntriesToLoad();
 }

 private EntityManagerFactory m_entityMgrFactory;
 private EntityManager m_entityMgr;

 public void afterPropertiesSet() {
 m_entityMgrFactory = Persistence.createEntityManagerFactory(
 PERSISTENCE_UNIT_NAME);
 m_entityMgr = m_entityMgrFactory.createEntityManager();
 m_entityMgr.getTransaction().begin();
 try{
 Query q = m_entityMgr.createQuery("SELECT t FROM PriceTarget t
 WHERE t.itemID = :itemID");
 for (PriceTarget target : s_entriesToLoad){
 q.setParameter("itemID", target.getItemID());
 List<PriceTarget> targetList = q.getResultList();
 if (targetList.size()==0){
 System.out.println("Persisting target " + target.getItemID());
 m_entityMgr.persist(target);
 } else {
 System.out.println("Found target " + target.getItemID());
 }
 }
 m_entityMgr.getTransaction().commit();
 }
 finally {
 if(m_entityMgr.getTransaction().isActive())
 m_entityMgr.getTransaction().rollback();
 }
 }

 public void destroy() {
 if(m_entityMgr!=null) {
 m_entityMgr.close();
 m_entityMgr=null;
 }
 if(m_entityMgrFactory!=null){
 m_entityMgrFactory.close();
 m_entityMgrFactory=null;
 }
 }
 private static void setUpEntriesToLoad(){
 // 'smith', ipad2, $400
 PriceTarget target = new PriceTarget();
 target.setItemID("ipad2");
 target.setTargetPrice(400);
 s_entriesToLoad.add(target);
 // 'doe', kindle, $100

JPA Coherence Example

EclipseLink, JPA, and Oracle Coherence 9-9

 target = new PriceTarget();
 target.setItemID("kindle");
 target.setTargetPrice(100);
 s_entriesToLoad.add(target);
 // walker, rebel, $400
 target = new PriceTarget();
 target.setItemID("rebel");
 target.setTargetPrice(400);
 s_entriesToLoad.add(target);
 // williams, lasko1320, $25
 target = new PriceTarget();
 target.setItemID("lasko1320");
 target.setTargetPrice(25);
 s_entriesToLoad.add(target);
 }
}

9.3.2.4 SaleEvent.java

package com.oracle.cep.sample;
import javax.persistence.Entity;
import javax.persistence.Id;

@Entity
public class SaleEvent implements java.io.Serializable {
 @Id
 private String itemID;
 private double salePrice;

 public SaleEvent() { }
 public SaleEvent(String itemID, double salePrice){
 this.itemID = itemID;
 this.salePrice = salePrice;
 }
 public String getItemID(){
 return itemID;
 }
 public void setItemID(String itemID){
 this.itemID = itemID;
 }
 public double getSalePrice(){
 return salePrice;
 }
 public void setSalePrice(double salePrice) {
 this.salePrice = salePrice;
 }
 public String toString() {
 return "SaleEvent(" + itemID + ":" + salePrice + ")";
 }
}

9.3.2.5 SaleEventsGenerator.java

package com.oracle.cep.sample;

import java.util.Map;
import java.util.Random;
import com.bea.wlevs.ede.api.RunnableBean;
import com.bea.wlevs.ede.api.StreamSender;
import com.bea.wlevs.ede.api.StreamSource;
import com.bea.wlevs.ede.api.InitializingBean;

JPA Coherence Example

9-10 Developing Applications for Oracle Event Processing

public class SaleEventsGeneraton implements RunnableBean, StreamSource,
 InitializingBean{
 private static final int SLEEP_MILLIS = 1000;
 private static final String[] s_itemIDs = {
 "kodaksport",
 "ipodtouch-8GB",
 "ipad2",
 "kindle",
 "garmin1690",
 "rebel",
 "logitech1080",
 "tomtom",
 "ipad2",
 "cuisinart10s",
 "keurig-b70",
 "lasko1320" };
 private static final double[] s_prices = {
 60.0,
 200.0,
 450.0,
 99,
 120,
 400,
 70,
 100,
 399,
 100,
 150,
 20 };

 private boolean m_suspended;
 private Thread m_thread;
 private StreamSender m_sender;
 private Map m_priceTargetCache;

 public void setPriceTargetCache(Map cache){
 m_priceTargetCache = cache;
 }
 public void afterPropertiesSet() {
 // pre-load PriceTarget cache
 for (PriceTarget target : PriceTargetLoader.s_entriesToLoad)
 {
 System.out.println("Getting : " + target.getItemID());
 m_priceTargetCache.get(target.getItemID());
 }
 }
 public void run() {
 m_thread = Thread.currentThread();
 m_suspended = false;
 // send random sale events
 Random random = new Random(System.currentTimeMillis());
 while (!isSuspended())
 {
 int index = random.nextInt(s_itemIDs.length);
 SaleEvent event = new SaleEvent(s_itemIDs[index], s_prices[index]);
 m_sender.sendInsertEvent(event);
 try {
 synchronized (this) { wait(SLEEP_MILLIS); }
 } catch (InterruptedException e) {
 if (isSuspended())

JPA Coherence Example

EclipseLink, JPA, and Oracle Coherence 9-11

 return;
 }
 }
 }
 public void setEventSender(StreamSender sender) {
 m_sender = sender;
 }
 public synchronized void suspend() {
 m_suspended = true;
 if (m_thread!=null)
 m_thread.interrupt();
 }
 private synchronized boolean isSuspended() {
 return m_suspended;
 }
}

JPA Coherence Example

9-12 Developing Applications for Oracle Event Processing

10
Web Services

You can use web services platforms to integrate an Oracle Event Processing
application with other systems. This chapter explains how to invoke services from an
application and how to expose an application as a web service.

This chapter includes the following sections:

• Supported Platforms

• Invoke a Web Service From an Application

• Expose an Application as a Web Service.

10.1 Supported Platforms
Oracle Event Processing supports version 2.0 of the JAX-WS API standard using the
Glassfish reference implementation of JAX-WS 2.0

This includes:

• JAX-WS 2.0 (Java API for XML Web Services, defined in JSR 224)

• WS-I Basic Profile 1.1

• WS-I Attachments Profile 1.0 (SOAP Messages with Attachments)

• WS-I Simple SOAP Binding Profile 1.0

• SOAP 1.1 and 1.2 (Simple Object Access Protocol)

• MTOM (Message Transmission Optimization Mechanism)

• WSDL 1.1 (Web Services Definition Language)

• JAXB 2.0 (Java API for XML Binding, references through a separate JAXB module)

• SAAJ 1.3 (SOAP with Attachments API for Java).

10.2 Invoke a Web Service From an Application
This procedure describes how to create an application that invokes a web service.

In this scenario, the application is the web service client.

Invoke a Web Service from an Application:

1. Create or obtain the web service definition language (WSDL) file for the web
service.

This example uses a WSDL named EchoService.WSDL.

Web Services 10-1

2. Generate the compiled class files you need to invoke the Web Service with the
following command. Keep the entire command on one line:

java -cp /Oracle/Middleware/my_oep/modules/
com.bea.core.ws.glassfish.jaxws.tools_12.0.0.0.jar com.sun.tools.ws.WsImport
EchoService.WSDL

3. Archive the generated class files the Oracle Event Processing application JAR file.

4. Add the Export-Package header and packages to the MANIFEST.MF file to
export the web services Java packages for the client code:

Export-Package: com.oracle.ocep.sample.echoService;

5. Add the following packages to the MANIFEST.MF file with the Import-Package
header:

Manifest-Version: 1.0
Export-Package: echo
Bundle-Vendor: %project.vendor
Bundle-ClassPath: .,lib/echo.jar
Bundle-Version: 1.0.0
Bundle-Localization: bundle
Bundle-ManifestVersion: 2
Bundle-Name: %project.name
Import-Package: com.bea.wlevs.configuration;version="11.1.1",com.bea.w
 levs.ede;version="11.1.1",com.bea.wlevs.ede.api;version="11.1.1",com.
 bea.wlevs.ede.impl;version="11.1.1",com.bea.wlevs.ede.spi;version="11
 .1.1",com.bea.wlevs.management.spi;version="11.1.1",com.bea.wlevs.spr
 ing;version="11.1.1",com.bea.wlevs.spring.support;version="11.1.1",co
 m.bea.wlevs.util;version="11.1.1",com.ctc.wstx.stax;version="4.0.5",c
 om.sun.xml.bind.v2;version="2.1.14",com.sun.xml.bind.v2.model.annotat
 ion;version="2.1.14",com.sun.xml.messaging.saaj.soap;version="2.1.0",
 com.sun.xml.messaging.saaj.soap.ver1_1;version="2.1.0",javax.jws,java
 x.xml,javax.xml.bind,javax.xml.bind.annotation,javax.xml.namespace,ja
 vax.xml.transform.stream,oracle.jdbc;version="1.1.0.0_11-2-0-2-0",ora
 cle.sql;version="1.1.0.0_11-2-0-2-0",org.apache.commons.logging;versi
 on="1.1.0",org.springframework.beans;version="2.5.6",org.springframew
 ork.beans.factory;version="2.5.6",org.springframework.beans.factory.c
 onfig;version="2.5.6",org.springframework.core.annotation;version="2.
 5.6",org.springframework.ejb.config,org.springframework.osgi.context;
 version="1.2.0",org.springframework.osgi.extensions.annotation;versio
 n="1.2.0",org.springframework.osgi.service;version="1.2.0",org.spring
 framework.util;version="2.5.6",org.xml.sax,org.xml.sax.ext,weblogic.j
 dbc.extensions;version="1.10.0.0",weblogic.xml.stax;version="1.10.0.0
 "

6. Add the following lines of code to your application to invoke the web service:

EchoService service = new EchoService();
EchoPort port = service.getEchoServicePort();
String echo = port.echo("foo");

10.3 Expose an Application as a Web Service
In this example, the application is the web service provider.

To Expose an Application as a Web Service:

1. Create or obtain the WSDL for the web service.

Expose an Application as a Web Service

10-2 Developing Applications for Oracle Event Processing

This example uses a WSDL named EchoService.WSDL.

2. Implement the service.

Consider using the java.jws annotations @WebService and @WebMethod.

3. Add a bea-jaxws.xml file to your application bundle. Table 10-1 describes the
attributes in this file.

<endpoints>
 <endpoint>
 <name>EchoService</name>
 <implementation-class>
 com.bea.wlevs.test.echo.impl.EchoServiceImpl
 </implementation-class>
 <url-pattern>/echo</url-pattern>
 <wsdl-location>
 /META-INF/wsdl/echo.wsdl
 </wsdl-location>
 <service-name>
 {http://wsdl.oracle.com/examples/cep/echo}EchoService
 </service-name>
 <port-name>
 {http://wsdl.oracle.com/examples/cep/echo}EchoServicePort
 </port-name>
 </endpoint>
</endpoints>

Table 10-1 bea-jaxws.xml File Attributes

Attribute Description

name The name of the web service.

implementation-
class

The class that implements the service.

url-pattern The url pattern to access the web service.

wsdl-location Relative path to the wsdl in the bundle.

service-name QName of the service.

port-name QName of the port.

4. Reference the bea-jaxws.xml file in the MANIFEST.MF file with the BEA-
JAXWS-Descriptor header:

BEA-JAXWS-Descriptor: META-INF/bea-jaxws.xml;

5. Add the Import-Package header and packages to the MANIFEST.MF file to
import the following packages to the application:

Import-Package: com.ctc.wstx.stax,
 com.bea.core.ws.glassfish.jaxws,
 com.sun.xml.bind.v2,
 com.sun.xml.messaging.saaj.soap,
 com.sun.xml.ws,
 javax.jws,
 javax.xml.bind,
 javax.xml.bind.annotation,

Expose an Application as a Web Service

Web Services 10-3

 javax.xml.namespace,
 javax.xml.soap,
 javax.xml.transform,
 javax.xml.transform.stream,
 javax.xml.ws,
 javax.xml.ws.spi,
 org.xml.sax,
 weblogic.xml.stax

6. Add a glassfish-ws element to the Oracle Event Processing server
DOMAIN_DIR/config/config.xml file that describes your Oracle Event
Processing domain, where DOMAIN_DIR refers to your domain directory:

<glassfish-ws>
 <name>JAXWS</name>
 <http-service-name>JettyServer</http-service-name>
</glassfish-ws>

Expose an Application as a Web Service

10-4 Developing Applications for Oracle Event Processing

11
Parameterized Applications

Parameterized Applications contain special parameters (variables) that must be
configured before the application starts. Generally, you configure a parameterized
application when you deploy the application with the Oracle Event Processing EPN
shell. After a parameterized applications is configured, it functions as a regular
application.

This chapter includes the following sections:

• Application Parameters

• Object Class Definitions

• Attribute Descriptions

• Targeting

• Example metatype File

• Where You Can Use Parameterized Applications

• Deploy the HelloWorld Application.

11.1 Application Parameters
Application parameters define property values that can be set when the user launches
an application. You can parameterize properties for adapters, channels, event beans,
Spring beans, and Oracle CQL parameterized queries with and without views.

You define application parameters (attributes) by grouping attribute definitions (ADs)
into object class definitions (OCDs). You create one OCD for each application
component that you want to parameterize. An OCD contains one or more ADs to
specify the component properties to parameterize and the prompt text.

Place the OCDs in an XML document (metatype file) in the OSGI-INF/metatype
directory within the Oracle Event Processing application. The metatype file uses and
complies with the schema defined by the specification at: http://www.osgi.org/
xmlns/metatype/v1.1.0/metatype.xsd.

See Example metatype File for an example configuration.

Oracle Event Processing parameterized applications conform to the OSGi MetaType
specification at http://www.osgi.org. See the Apache implementation at http://
felix.apache.org/documentation/subprojects/apache-felix-
metatype-service.html.

11.2 Object Class Definitions
Every OCD requires the name, id, and description parameters. The following
example is an OCD with no ADs.

Parameterized Applications 11-1

http://www.osgi.org/xmlns/metatype/v1.1.0/metatype.xsd
http://www.osgi.org/xmlns/metatype/v1.1.0/metatype.xsd
http://www.osgi.org
http://felix.apache.org/documentation/subprojects/apache-felix-metatype-service.html
http://felix.apache.org/documentation/subprojects/apache-felix-metatype-service.html
http://felix.apache.org/documentation/subprojects/apache-felix-metatype-service.html

This OCD defines application metadata, but because there are no ADs, the description
displays, but the user is not prompted for input. This type of OCD documents the
application.

<OCD name="HelloWorld Sample" id="com.oracle.cep.sample.helloworld"
 description="The helloworld OEP application is a sample application
 for Oracle Event Processing.">
</OCD>

11.3 Attribute Descriptions
Every AD requires the name, id, and description parameters. The following
example is an OCD with two ADs.

The OCD provides a common definition for the channel component and provides
parameterized attributes (ADs) for the maximum number of threads and the
maximum buffer size of the channel.

When the user runs the application, the application displays the description and the
other information that you provided, and waits for the user to enter the requested
information and press the Return key.

<OCD name="Channel Configuration" id="com.oracle.cep.channel"
 description="The channel definition in the OCEP Application"
 ocep:binding="jmx:EventChannel">
 <AD name="Max Threads" id=".maxThreads" type="Integer" required="true"
 default="0" min="0" max="100"
 description="Number of threads generating messages."
 ocep:binding="MaxThreads" />
 <AD name="Max Size" id=".maxSize" type="Integer" required="true"
 default="0" min="0" max="100"
 description="The maximum size of the FIFO buffer for this channel."
 ocep:binding="MaxSize" />
</OCD>

Note:

To avoid errors, always define Max Threads before Max Size in the metatype
file.

For the 12c release, the only supported binding is Java Management Extension (JMX).
This means that the AD attributes must be bound to a corresponding JMX attribute.
See Targeting.

11.4 Targeting
You can connect an OCD and an application component with the Designate
element. The application class definition can then be a target for multiple designates
(components of the same type) to enable the reuse of definitions.

To prevent ambiguities, each designate can be associated with one object class
definition only.

Oracle Event Processing supports the following designates:

• Adapter, Oracle CQL Processor, event bean, or Spring bean.

Attribute Descriptions

11-2 Developing Applications for Oracle Event Processing

• Oracle CQL processor rules such as a query or a view. In the case of a rule, the
designate ID must identify the parent component followed by the subcomponent.
For example, helloworldProcessor:q1.

Oracle Event Processing assigns a parameter to an application component after the call
to the afterPropertiesSet life cycle method, but prior to the call to
afterConfigurationActive life cycle method. This timing enables an application
to treat an application parameter as a proper application configuration and to
distinguish an application parameter from a bean property.

An ocep:binding attribute determines how Oracle Event Processing assigns the
parameter to the application. Put the ocep:binding attribute in the OCD or in the AD.
When you put it in the OCD, the meta-object is bound to an implementation object
such as JMX ObjectInstance. When you put the OCD in an AD, the meta-attribute
is bound to an implementation attribute scoped to the implementation object, such as
JMX MBean attribute.

11.5 Example metatype File
The following code shows the entire metatype file.

<MetaData xmlns="http://www.osgi.org/xmlns/metatype/v1.1.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://www.osgi.org/xmlns/metatype/v1.1.0;
 http://www.osgi.org/xmlns/metatype/v1.1.0/metatype.xsd">

 <OCD name="HelloWorld Sample" id="com.oracle.cep.sample.helloworld"
 description="The helloworld OEP application is a sample application
 for Oracle Event Processing.">
 </OCD>

 <OCD name="HelloWorld Channel" id="com.oracle.cep.sample.helloworld.channel" >
 <AD name="Max Threads" id="EventChannel.MaxThreads" type="Integer"
 required="true" default="0" min="0" max="100"
 description="Number of threads generating helloworld messages." />

 <AD name="Max Size" id=".maxSize" type="Integer" required="true"
 default="0" min="0" max="100" description="The maximum size of the FIFO
 buffer for this channel." ocep:binding="MaxSize" />
 </OCD>

 <OCD name="HelloWorld Message Filtering"
 id="com.oracle.cep.sample.helloworld.filter" >
 <AD name="Filter" id="CQLProcessor.parameters" type="String"
 description="Message filter." />
 </OCD>

 <Designate pid="helloworld" >
 <Object ocdref="com.oracle.cep.sample.helloworld" />
 </Designate>

 <Designate pid="helloworldInputChannel" >
 <Object ocdref="com.oracle.cep.sample.helloworld.channel" />
 </Designate>

 <Designate pid="helloworldProcessor.helloworldRule" >
 <Object ocdref="com.oracle.cep.sample.helloworld.filter" />
 </Designate>
</MetaData>

Example metatype File

Parameterized Applications 11-3

11.6 Where You Can Use Parameterized Applications
You can use parameterized applications in the following three ways:

• Document an Application

• Channel Configuration

• Oracle CQL Processor Query

11.6.1 Document an Application
The following example documents the com.oracle.cep.parameterizedapp
application. The pid attribute of the designate element corresponds to the Bundle-
SymbolicName in the MANIFEST.MF.

<OCD name="Parameterized App Testing" id="com.oracle.cep.parameterizedapp"
 description="The application is for parameterized app testing.">
</OCD>

<Designate pid="parameterizedapp">
 <Object ocdref="com.oracle.cep.parameterizedapp" />
</Designate>

11.6.2 Channel Configuration
The following example shows how to use an OCD with ADs to configure a channel.
The pid attribute of the designate element corresponds to the channel component
in the EPN file.

<OCD name="Channel Configuration" id="com.oracle.cep.channel"
 description="The channel definition in the OCEP Application"
 ocep:binding="jmx:EventChannel">
 <AD name="Max Threads" id=".maxThreads" type="Integer" required="true"
 default="0" min="0" max="100"
 description="Number of threads generating messages."
 ocep:binding="MaxThreads" />
 <AD name="Max Size" id=".maxSize" type="Integer" required="true"
 default="0" min="0" max="100"
 description="The maximum size of the FIFO buffer for this channel."
 ocep:binding="MaxSize" />
 <AD name="HEARTBEAT" id=".heartbeat" type="Long" required="false"
 default="5000000000" min="0" max="100000000000"
 description="The value for the heartbeat timeout on this channel.
 The default time unit is nanoseconds."
 ocep:binding="HeartbeatTimeout" />
</OCD>

<Designate pid="helloworldInputChannel">
 <Object ocdref="com.oracle.cep.channel" />
</Designate>

<Designate pid="helloworldOutputChannel">
 <Object ocdref="com.oracle.cep.channel" />
</Designate>

Where You Can Use Parameterized Applications

11-4 Developing Applications for Oracle Event Processing

11.6.3 Oracle CQL Processor Query
The following example shows how to configure an Oracle CQL processor query. The
ADs definition correspond to query parameters 1 and 2 in the sequence.

<OCD name="Product Filter" id="com.oracle.cep.solution.product.filter"
 ocep:binding="jmx:CQLProcessor" ocep:multi-valued="true">
 <AD name="range" id=".range" type="Integer" required="true" min="0"
 max="1000000000" default="10"
 description="The range scope"
 ocep:binding="Parameters" />
 <AD name="field" id=".field" type="String" required="true"
 default="'remainingQty'"
 description="select one field you want to do range controlling"
 ocep:binding="Parameters">
 <Option label="remainingQty" value="remainingQty" />
 <Option label="totalQty" value="totalQty" />
 <Option label="price" value="price" />
 </AD>
</OCD>

<Designate pid="productProcessor.productRule">
 <Object ocdref="com.oracle.cep.solution.product.filter" />
</Designate>

Add a processor element to the config.xml file that defines the
productProcessor, as follows. Note that the ADs definitions correspond to query
parameters :1 and :2 in the sequence.

<processor>
 <name>productProcessor</name>
 <rules>
 <query id="productRule">
 <![CDATA[
 IStream (select FROM productInputChannel [RANGE :1 on :2)]]
 >
 </query>
 </rules>
</processor>

11.7 Deploy the HelloWorld Application
The following example uses the EPN shell with Apache Felix Gogo to deploy the
parameterized HellowWorld application. The EPN shell interfaces with OSGi Bundle
Repository (OBR) and uses introspection to locate the available metadata and to form
the applicable prompts to the user.

The following example shows the HelloWorld application output when it is deployed
with the EPN shell.

Note:

Parametrized applications are not supported on a clustered domain. Also you
can deploy only through the EPN shell. For this release, parameterized
application deployment is not supported in Oracle JDeveloper or in Oracle
Event Processing Visualizer.

Deploy the HelloWorld Application

Parameterized Applications 11-5

 ./startwleves.sh -shell
Oracle CEP Shell (using Apache Felix Gogo)
 shell>
 shell> deployapp file:///Users/myuserid/helloworld.jar
 ---- HelloWorld Sample ----
 The helloworld OEP application is a sample application for Oracle OEP.
 Enter Y/N [default is Y] if you would like to set the parameter "Max Threads" :
-- Application parameter "Max Threads"
 --Description : Number of threads generating helloworld messages.
 Type: Integer
Default value: 2
Enter value for "Max Threads" or empty for default value :
 Using default value of "2".
-- Application parameter "Filter"
--Description : Message filter.
 Type: String
Options for parameter "Filter" are :
(0) Select all messages starting with 'Hello'
 (1) Select all messages starting with 'Hi'Select option by entering number
[0,1] or empty for default value :
 <Jan 23, 2012 7:20:40 AM EST> <Notice> <Deployment> <BEA-2045000>
 <The application bundle "helloworld" was deployed successfully>
 <Jan 23, 2012 7:20:41 AM EST> <Notice> <Spring> <BEA-2047000>
 <The application context for "helloworld" was started successfully>
 Message: HelloWorld - the current time is:7:20:41 AM
 Message: HelloWorld - the current time is:7:20:42 AM

Deploy the HelloWorld Application

11-6 Developing Applications for Oracle Event Processing

12
Internationalization

You can use message catalogs to internationalize message text that your application
sends to the server log or displays to the user. The messages can provide information
about anything occurring in the application, such as which user invoked specific
application components, error conditions, or help you debug an application before its
release.

This chapter includes the following sections:

• Message Catalogs

• Generate Localization Classes

12.1 Message Catalogs
A message catalog is a single XML file that contains a collection of messages, with each
message indexed by a unique ID. All internationalized text is externalized and defined
in message catalogs and each message catalog defines a collection of log messages or
simple text.

With message catalogs, message strings can be converted to multiple locales without
changing or recompiling the application code.

Message IDs are unique across all log message or locale message catalogs. Within the
message catalog file, each localized version of the message is assigned a unique
message ID and message text specific to the error. Ideally, a message is logged from
only one location within the system so that a support team can easily find it. Message
IDs in simple text catalogs are unique within each simple text catalog.

There are the following three types of message catalogs:

• Log message catalogs: Informational or error messages that your application logs to
the server logs.

• Simple text message catalogs: Simple messages that your application displays to
the user.

• Locale message catalogs: A collection of locale-specific messages that correspond to
a top-level log message catalog or a simple text catalog that contains the English
version of the messages. There are corresponding locale-specific catalogs with one
catalog for each additional supported locale.

The top-level English version catalog has all of the information needed to define
the message. The locale-specific catalogs contain only the message ID, the date
changed, and the translation of the message for the specific locale.

You create your own catalog of log or simple text messages and use Oracle WebLogic
utilities to generate Java classes that have logging methods. You import the Java
classes into your application code, and implement your application code to supply
runtime values to the logging methods. The log messages generated by the logging

Internationalization 12-1

methods are integrated with and treated in the same way as log messages that are
generated by the Oracle Event Processing server.

The message catalog files are defined by one of the following XML document type
definition (DTD) files:

• msgcat.dtd: Describes the syntax of top-level, default catalogs.

• l10n_msgcat.dtd: Describes the syntax of locale-specific catalogs.

The DTDs are stored in /Oracle/Middleware/wlevserver/modules/
com.bea.core.i18n.generator_VERSION.jar. VERSION points to a particular
version that changes.

You can create a single log message catalog for all logging requirements, or create
smaller catalogs based on a subsystem or on Java packages. Oracle recommends using
multiple subsystem catalogs so you can focus on specific portions of the log during
viewing. For simple text catalogs, Oracle recommends that you create a single catalog
for each utility to be internationalized

12.1.1 Hierarchy
All messages must be defined in the default, top-level catalog. Catalogs that provide
different localizations of the base catalogs are defined in msgcat subdirectories
named for the locale, for example, msgcat/de for Germany. You might have a top-
level catalog named mycat.xml, and a German translation called ..de/mycat.xml.
Typically the top-level catalog is English. However, English is not required for any
catalogs.

Locale designations, for example, de, also have a hierarchy as defined in the
java.util.Locale documentation. A locale can include a language, country, and
variant. Language is the most common locale designation. Language can be extended
with a country code. For example, en\US, indicates American English. The name of
the associated catalog is ..en\US\mycat.xml. Variants are specific to a vendor or
browser and are used to introduce minor differences, such as collation sequences,
between two or more locales defined by either language or country.

12.1.2 Naming
Because the name of a message catalog file, without the .xml extension, is used to
generate runtime class and property names, choose the name carefully. Follow these
guidelines for naming message catalogs:

• Do not choose a message catalog name that conflicts with the names of existing
classes in the target package for which you are creating the message catalog.

• Choose message catalogs names that contain only characters that are allowed in
class names.

• Follow class naming standards.

For example, the resulting class names for a catalog named Xyz.xml are
XyzLogLocalizer and XyzLogger.

The following considerations also apply to message catalog files:

• Log message IDs are generally six-character strings with leading zeros. Some
interfaces also support integer representations.

• Simple text catalogs message IDS can consist of any string value.

Message Catalogs

12-2 Developing Applications for Oracle Event Processing

• Java lets you group classes into a collection called a package. Oracle recommends
that a package name be consistent with the name of the subsystem in which a
particular catalog resides. Consistent naming makes OSGi imports easier to define.

• The log Localizer classes are actually ResourceBundle property files.

12.1.3 Message Arguments
The message body, message detail, cause, and action sections of a log message can
include message arguments, as described by java.text.MessageFormat. Make
sure your message content conforms to the patterns defined by
java.text.MessageFormat.

Arguments are values that can be dynamically set at runtime. These values are passed
to routines, such as a routine for printing a message. A message can support up to 10
arguments, numbered 0-9. You can include any subset of these arguments in any text
section of the message definition (message body, message detail, probable cause),
although the message body must include all of the arguments.

• Only the message body section in a simple text message can include arguments.

• You must assign a severity level for log messages. Log messages are generated
through the generated Logger methods, as defined by the method attribute.

You insert message arguments into a message definition during development, and
these arguments are replaced by the appropriate message content at runtime when the
message is logged.

• Arguments are type String or representable as a String type.

• Numeric data is represented as {n,number}.

• Dates are supported as {n,date}.

The following excerpt from an XML log message definition shows how to use message
arguments. The argument number must correspond to one of the arguments specified
in the method attribute. Specifically, {0} with the first argument, {1} with the
second, and so on. In the following example, {0} represents the file that cannot be
opened, while {1} represents the file that is opened in its place.

<messagebody>Unable to open file, {0}. Opening {1}. All arguments must be in body.</messagebody>

 <messagedetail> File, {0} does not exist. The server will restore the file
 contents from {1}, resulting in the use of default values for all future
 requests. </messagedetail>

 <cause>The file was deleted</cause>

 <action>If this error repeats then investigate unauthorized access to the
 file system.</action>

An example of a method attribute is as follows:

-method="logNoFile(String name, String path)"

The message example expects two arguments, {0} and {1}:

• Both are used in the <messagebody>

• Both are used in the <messagedetail>

• Neither is used in <cause> or <action>

Message Catalogs

Internationalization 12-3

12.1.4 Formats
The catalog format for top-level and locale-specific catalog files differs. Top-level
catalogs define the textual messages for the base locale. Locale-specific catalogs only
provide translations of text defined in the top-level version. Also, log message catalogs
are defined differently from simple text catalogs.

Log Message Catalog

This example shows the MyUtilLog.xml message catalog that has one log message
to show how to use the messagebody, messagedetail, cause, and action
elements.

<?xml version="1.0"?>
<!DOCTYPE message_catalog PUBLIC "weblogic-message-catalog-dtd"
"http://www.bea.com/servers/wls90/dtd/msgcat.dtd">
<message_catalog
 l10n_package="programs.utils"
 i18n_package="programs.utils"
 subsystem="MYUTIL"
 version="1.0"
 baseid="600000"
 endid="600100"
 <log_message
 messageid="600001"
 severity="warning"
 method="logNoAuthorization(String arg0, java.util.Date arg1,int arg2)"
 <messagebody>
 Could not open file, {0} on {1,date} after {2,number} attempts.
 </messagebody>
 <messagedetail>
 The configuration for this application will be defaulted to
 factory settings. Custom configuration information resides
 in file, {0}, created on {1,date}, but is not readable.
 </messagedetail>
 <cause>
 The user is not authorized to use custom configurations. Custom
 configuration information resides in file, {0}, created on
 {1,date}, but is not readable.The attempt has been logged to
 </cause>
 the security log.
 <action>
 The user needs to gain approriate authorization or learn to
 live with the default settings.
 </action>
 </log_message>
</message_catalog>

Simple Text Catalog

This example shows the MyUtilLabels.xml text catalog with one text definition.

<?xml version="1.0"?>
<!DOCTYPE message_catalog PUBLIC "weblogic-message-catalog-dtd"
 "http://www.bea.com/servers/wls90/dtd/msgcat.dtd">
<message_catalog>
 l10n_package="programs.utils"
 i18n_package="programs.utils"
 subsystem="MYUTIL"
 version="1.0"
 <message>
 messageid="FileMenuTitle"
 <messagebody>
 File
 </messagebody>
 </message>
</message_catalog>

Message Catalogs

12-4 Developing Applications for Oracle Event Processing

Locale-Specific Catalog

This example shows a French translation of a message that is in the ..\msgcat\fr
\MyUtilLabels.xml file.

<?xml version="1.0"?>
<!DOCTYPE message_catalog PUBLIC
 "weblogic-locale-message-catalog-dtd"
 "http://www.bea.com/servers/wls90/dtd/l10n_msgcat.dtd">
<locale_message_catalog
 l10n_package="programs.utils"
 subsystem="MYUTIL"
 version="1.0">
 <message>
 <messageid="FileMenuTitle">
 <messagebody> Fichier </messagebody>
 </message>
</locale_message_catalog>

When you enter text in the messagebody, messagedetail, cause, and action
elements, use a tool that generates valid Unicode Transformation Format-8 (UTF-8)
characters, and have appropriate keyboard mappings installed. UTF-8 is an efficient
encoding of Unicode character-strings that optimizes the encoding ASCII characters.
Message catalogs always use UTF-8 encoding.

12.1.5 Message Catalog Localization
Catalog subdirectories are named after lowercase, two-letter ISO 639 language codes,
for example, ja for Japanese and fr for French. You can find supported language
codes in the java.util.Locale Javadoc.

You can achieve variations to language codes with uppercase, two-letter ISO 3166
country codes and variants, each of which are subordinate to the language code. The
generic syntax is lang\country\variant.

For example, zh is the language code for Chinese. CN is a country code for simplified
Chinese, whereas TW is the country code for traditional Chinese. Therefore zh\CN and
zh\TW are two distinct locales for Chinese.

Variants are helpful when there is a functional difference in platform vendor handling
of specific locales. Examples of vendor variants are WIN, MAC, and POSIX. There may
be two variants used to further qualify the locale. In this case, the variants are
separated with an underscore (for example, Traditional_Mac as opposed to
Modern_MAC).

Note:

Language, country, and variants are all case sensitive.

A fully-qualified locale would look like zh\TW\WIN, identifying traditional Chinese
on a Win32 platform. Message catalogs to support the above locale involve the
following files:

• *.xml - default catalogs

• \zh*.xml - Chinese localizations

• \zh\TW*.xml - Traditional Chinese localizations

• \zh\TW\WIN*.xml - Traditional Chinese localizations for Win32 code sets

Message Catalogs

Internationalization 12-5

Specific localizations do not need to cover all messages defined in parent localizations.

12.2 Generate Localization Classes
After you create your message catalog XML files, use the weblogic.i18ngen utility
to create the Logger and TextFormatter classes that localize the text in log
messages. The weblogic.i18ngen utility creates or updates the
i18n_user.properties properties file that loads the message ID lookup hashtable
weblogic.i18n.L10nLookup.

Any errors, warnings, or informational messages are sent to stderr.

For user catalogs to be recognized, the i18n_user.properties file must reside in a
directory identified in the Oracle Event Processing server class path. Oracle
recommends that the i18n_user.properties file reside in the Oracle Event
Processing server class path. If the i18n_user.properties file is in
targetdirectory, then targetdirectory should be in the Oracle Event
Processing server class path.

Parse a Message Catalog to Generate the Logger and TextFormatter Classes

The following steps summarize how to create an internationalized message to use
with the Oracle Event Processing server.

1. Create or edit a top-level log message catalog or simple text message catalog by
defining the messages in the catalog.

In addition to message text, include information about the type and placement of
runtime values that the message contains.

2. Run weblogic.i18ngen to validate the catalog you created or edited in Step 1
to generate the Logger and TextFormatter classes.

java weblogic.i18ngen [options] [filelist]

The generated classes contain a method for each message. The class is defined
according to information specified in the message catalog entry. The classes
include methods for logging or getting message text, depending on the type of
catalog. The class name ends with Logger or TextFormatter. For details, see
weblogic.i18ngen Utility.

Table 12-1 weblogic.i18ngen Utility Options

Option Description

-build Generates all necessary files and compiles them. Combines the -
i18n, -l10n, -keepgenerated, and -compile options.

-d

targetdirecto

ry

Specifies the root directory for the generated Java source files. User
catalog properties are placed in i18n_user.properties, relative
to the targetdirectory. Files are placed in appropriate
directories based on the i18n_package and l10n_package values
in the corresponding message catalog. The default target directory is
the current directory and is created as necessary.

If this argument is omitted, all classes are generated in the current
directory, without regard to any class hierarchy described in the
message catalog.

-n Parse and validate, but do not generate classes.

Generate Localization Classes

12-6 Developing Applications for Oracle Event Processing

Table 12-1 (Cont.) weblogic.i18ngen Utility Options

Option Description

-

keepgenerated

Keep generated Java source (located in the same directory as the
class files).

-ignore Ignore errors.

-i18n Generates internationalizers (for example, Loggers and
TextFormatters).

-l10n Generates localizers (for example, LogLocalizers and
TextLocalizers).

-compile Compiles generated Java files using the current CLASSPATH. The
resulting classes are placed in the directory identified by the -d
option. The resulting classes are placed in the same directory as the
source.

Errors detected during compilation generally result in no class files
or properties file being created. i18ngen exits with a bad exit status.

-nobuild Parse and validate only.

-debug Debugging mode.

-dates Causes weblogic.i18ngen to update message time stamps in the
catalog. If the catalog is writable and time stamps have been
updated, the catalog is rewritten.

filelist Process the files and directories in this list of files. If directories are
listed, the command processes all XML files in the listed directories.
The names of all files must include an XML suffix. All files must
conform to the msgcat.dtd syntax. weblogic.i18ngen prints the fully-
qualified list of names (Java source) to the stdout log for those files
actually generated.

3. Create locale-specific catalogs as needed for the message catalog you created in
Step 1.

4. Run weblogic.l10ngen to process the locale-specific catalogs you created in
Step 3.

5. Code your application to use the Logger or TextFormatter classes you
generated in Step 2.

Use the OSGi import statements in the application MANIFEST.MF file to import
the following packages into your Oracle Event Processing application:

weblogic.i18n.logging weblogic.logging

When your application calls one of the Logger or TextFormatter methods to
log or return a message, the method writes the localized version of the message
text to the target location. A Logger method writes the localized version of the
message to the localized log files, and a TextFormatter method writes the
localized version of the message to the display.

Generate Localization Classes

Internationalization 12-7

6. Make sure that the i18n_user.properties file is in the Oracle Event
Processing server class path.

The weblogic.i18ngen utility generates the i18n_user.properties file that
loads the message ID lookup hashtable weblogic.i18n.L10nLookup.

Generate Localization Classes

12-8 Developing Applications for Oracle Event Processing

Part II
Deploy, Test, and Debug

Part II contains the following chapters:

• Assemble and Deploy

• Testing 1-2-3

• Debug with Event Record and Playback

13
Assemble and Deploy

To deploy and run an Oracle Event Processing application, you assemble the
application files into an OSGi bundle and deploy the OSGi bundle to a domain on an
Oracle Event Processing server. A deployed application processes client requests in
the domain to which it is deployed.

You can assemble and deploy an application in Oracle JDeveloper, with Oracle Event
Processing Visualizer, and manually. This chapter explains how to assemble and
deploy an application wrapped in an OSGi bundle manually

See Deploying an Application in Using Visualizer for Oracle Event Processing for
information about how to assemble and deploy an application and how to deploy and
view an application library with Oracle Event Processing Visualizer.

This chapter includes the following sections:

• OSGi bundles

• Application Dependencies

• Application Libraries

• Deployment Order

• Configuration History

• Assemble an OSGi Bundle with appC

• Assemble an OSGi Bundle with bundle.sh

• Deploy an OSGi Bundle.

13.1 OSGi bundles
An OSGi bundle contains one or more JAR files that contain the Java classes, packages,
and libraries that define an Oracle Event Processing application and its services and
resources (dependencies).

You can make the application services and resources available to other bundles. You
can also create an OSGi bundle that contains only services and resources that are used
by other bundled applications. For example, an OSGi bundle can contain a JDBC
driver that is accessed by other applications that execute in the same domain.

An OSGi bundle that contains an application and its resources is an application
bundle, and an OSGi bundle that contains only resources is an application library
bundle.

An OSGi application bundle contains the following files:

• The compiled Java class files that implement the application components, such as
event types and event beans.

Assemble and Deploy 13-1

• One or more Oracle Event Processing configuration files that contain the
component configurations.

Place the configuration files in the META-INF/wlevs directory of the OSGi bundle
JAR file to deploy. For example, /Oracle/Middleware/my_oep/
user_projects/domains/<domain>/<server>/applications/
<OSGi_Bundle_Symbolic_Name>.

If you have an application already in the domain directory, then extract the
configuration files in the same directory as the application files.

• An assembly file that describes all of the application components and how they
connect to each other.

Place the assembly file in the OSGi bundle JAR file META-INF/spring directory.

• A MANIFEST.MF file that describes the contents of the JAR file. This file enables
you to make the application resources available to other bundles.

The following directory structure shows the structure of an OSGi application bundle:

Figure 13-1 OSGi Application Bundle Structure

13.2 Application Dependencies
Applications depend on imported packages and libraries, which can be shared with
other applications executing in the same domain.

You specify OSGi bundle dependencies in the MANIFEST-MF as follows:

• Use the Import-Package attribute to list imported packages and libraries.

• Use the Export-Package attribute to list packages that other OSGi bundles need
to access. These packages are not bundled in and deployed with the application
OSGi bundle, but are deployed to the Oracle Event Processing server application
library directory.

Application Dependencies

13-2 Developing Applications for Oracle Event Processing

13.3 Application Libraries
Application libraries make services and resources available to other applications
executing in the same domain. You can use application libraries to add functionality
such as drivers or foreign stages to your application.

A foreign stage is a stage that is in another Oracle Event Processing application.

You can add an application library to a project as an embedded JAR file, but using an
OSGI application library has the following advantages:

• Simplified application assembly and maintenance activities, such as deploying an
updated version of the library.

• Artifact reuse.

• Reduced server disk space consumption.

You deploy application libraries to the Oracle Event Processing server into the library
and library extensions directories.

13.3.1 Library Directory
By default, the Oracle Event Processing server library directory is DOMAIN_DIR/
servername/modules, for example:

/Oracle/Middleware/my_oep/user_projects/domains/mydomain/myserver/modules

Oracle Event Processing loads the libraries in the library directory after the
components in the library extensions directory, but before the Oracle Event Processing
applications. If your library is a driver, such as a JDBC driver, put the library in the
library extensions directory so it activates in the correct order.

13.3.2 Library Extensions Directory
By default, the Oracle Event Processing server library extensions directory is
DOMAIN_DIR/servername/modules/ext. For example:

/Oracle/Middleware/my_oep/user_projects/domains/mydomain/myserver/modules/ext

Oracle Event Processing loads the libraries in the library extensions directory first at
the same time as the Oracle Event Processing server core modules. Put drivers in the
library extensions library to activate them first to override an older driver or to
provide access to an alternative driver. If your library is not a driver, put it in the
library directory.

13.4 Deployment Order
The Oracle Event Processing server loads components in the following order at Oracle
Event Processing server start up time:

1. Load libraries in the library extensions directory.

2. Load libraries in the library directory.

3. Load Oracle Event Processing applications.

Application Libraries

Assemble and Deploy 13-3

The Oracle Event Processing server loads libraries from both the library extensions
directory and the library directory based on the lexical order of the library names.
Lexical ordering includes the relative directory name plus JAR file name. For example:

• modules/a.jar starts before modules/b.jar.

• modules/0/my.jar starts before module/my.jar because 0/my.jar comes
before my.jar in lexical order.

This convention enables you to control the order in which the Oracle Event Processing
server deploys JAR files by organizing JAR files into appropriately named
subdirectories of either the library extensions directory or library directory.

As soon as the application deploys, the Oracle Event Processing server creates an
application configuration history, and the configured adapters start to listen for
events.

13.5 Configuration History
Configuration changes that you make to Oracle CQL rules or to the Oracle Event
Processing high availability adapter configuration are recorded in the history.

You can view and roll-back (undo) these changes with the Oracle Event Processing
Visualizer or wlevs.Admin command-line tool.

You can export the change history to a file and use that file to update your application
source with changes made at runtime. For more information, see:

• Manage Application Configuration History in Using Visualizer for Oracle Event
Processing

• Manage Configuration History in Administering Oracle Event Processing.

13.6 Assemble an OSGi Bundle with appC
The appC utility is a command-line tool that enables you to build, validate, and
compile an application.

You can create or modify the various files that comprise an Oracle Event Processing
project. The appC tool validates against the following schema versions: spring-
wlevs-v12_1_3_0.xsd and spring-beans.xsd and spring-osgi.xsd. You
must have the JDK installed for this command to work because it depends on the Java
compiler.

Note:

The appC tool does not support multiple component configuration files and
multiple assembly files. In this case, use the bundle.sh script or Oracle
JDeveloper.

The appC tool validates the configuration and assembly files and the created OSGi
bundle to ensure Oracle CQL validation and that the OSGi bundle deploys
successfully.

Configuration History

13-4 Developing Applications for Oracle Event Processing

Note:

Currently, appC performs only schema validations with no extensive semantic
validations. Custom adapter providers are not validated.

The appC.jar file is located in /Oracle/Middleware/my_oep/bin.

Syntax

java -jar appC.jar -cmd [cmd option] -basedir <path to workspace> [arguments]

cmd options

Choose one of the following command options to execute with the -cmd argument.

buildAll: Creates the template, generates the manifest, and validates the component
configuration file and the assembly file.

createTemplate: Creates the workspace file structure with either input XML files or
template XML files.

generateManifest: Compiles the input source files and generates the OSGi
manifest file based on resulting class files.

validate: Validates the component configuration and assembly files against their
schemas.

arguments

-cmd: Execute one of the command options. Specify the root directory with -basedir
to indicate the root of the project workspace.

-help: Prints help information for the command options and arguments to the
command line.

-basedir: The root of the project workspace that you set up previous to using the
appC utility.

-cp: The class path to use to compile the bundle classes.

-config: The full path to the component configuration file.

-context: The full to the assembly file.

-manifest: An optional input manifest file. When no manifest file is specified, the
appC utility generates one.

Note:

The underlying BND package used in Oracle Event Processing to generate the
manifest cannot find reflection usage.

-name: The name of the project (OSGi bundle name).

-destdir: The full path to the directory for the output JAR file. The default is
basedir.

-srcdir: The full path to the source root directory.

-excludedirs: A comma-separated list of directory names to exclude from the
source tree. These directories are subdirectories of the source directory root (srcdir).

Assemble an OSGi Bundle with appC

Assemble and Deploy 13-5

Examples

Compile the input source files and generate the OSGi MANIFEST.MF file.

java -jar appC.jar -cmd generateManifest -basedir

Create the template, generate the MANIFEST.MF file, and validate the component
configuration file and the assembly file.

java -jar appC.jar -cmd buildALL -basedir

13.7 Assemble an OSGi Bundle with bundle.sh
Oracle Event Processing provides the bundler.sh UNIX shell script that you can use
to manually assemble an OSGi bundle that provides services and packages to other
bundles.

For example, you can deploy a JDBC driver in an OSGi bundle JAR file to make it
available to other OSGi applications.

Note:

There is no Windows support (no bundler.cmd).

The bundle.sh shell script reads the source JAR files and creates a target JAR file that
includes the content of the source JAR files and a MANIFEST.MF file with the
appropriate bundle-related entries specified. All Java packages found in the source
archive are exported to the target bundle.

With bundler.sh, you can also generate a bundle activator. A bundler activator
instantiates one or more classes in the JAR file and registers each instantiated object as
an OSGi service. This feature enables component bundles to access and manipulate
multiple versions of specific factory classes during execution.

The procedure to manually assembly an OSGi bundle consists of the following steps:

• Prepare and Organize the Files

• Create the MANIFEST.MF File

• Include Third-Party JAR Files

• Reference Foreign Stages

• Assemble an OSGi Bundle that Activates.

Note:

See the HelloWorld example source directory for a sample build.xml Ant
file that performs many of the steps described below.

The build.xml file is located in Oracle/Middleware/my_oep/ oep/
examples/source/applications/helloworld.

13.7.1 Prepare and Organize the Files
To bundle an application or library into an OSGi bundle manually, you first need to
prepare and organize the files to be bundled. For simplicity, this procedure creates a

Assemble an OSGi Bundle with bundle.sh

13-6 Developing Applications for Oracle Event Processing

temporary directory that contains the required artifacts, and then jars the contents of
this temporary directory. This is a suggested approach, and you are not required to
assemble the application this way.

1. Create an empty directory, such as output:

prompt> mkdir output

2. Compile all application Java files into the output directory.

3. Create an output/META-INF/spring directory.

4. Copy the EPN assembly file that describes the components of your application and
how they are connected into the output/META-INF/spring directory.

5. Create an output/META-INF/wlevs directory.

6. Copy the XML files that configure the components of your application, such as the
processors or adapters, into the output/META-INF/wlevs directory.

7. Create a MANIFEST.MF file that contains information about the bundle.

See Create the MANIFEST.MF File.

8. If you need to access third-party JAR files from your Oracle Event Processing
application, see Include Third-Party JAR Files.

9. Create a JAR file that contains the contents of the output directory.

Be sure to specify the MANIFEST.MF file you created in the previous step rather
than the default manifest file.

You can name the JAR file anything you want. In the Oracle Event Processing
examples, the name of the JAR file is a combination of Java package name and
version, such as:

com.bea.wlevs.example.helloworld_1.0.0.0.jar

Consider using a similar naming convention to clarify which bundles are deployed
to the server.

10. If your application depends on foreign stages, see Reference Foreign Stages.

13.7.2 Create the MANIFEST.MF File
The structure and contents of the MANIFEST.MF file is specified by the OSGi
Framework. Although the value of many of the headers in the file is specific to your
application or business, many of the headers are required by Oracle Event Processing.

In particular, the MANIFEST.MF file defines the following:

• Application name: Specified with the Bundle-Name header.

• Symbolic application name: Specified with the Bundle-SymbolicName header.

Many of the Oracle Event Processing tools, such as the wlevs.Admin utility and
JMX subsystem, use the symbolic name of the bundle when referring to the
application.

• Application version: Specified with the Bundle-Version header.

Assemble an OSGi Bundle with bundle.sh

Assemble and Deploy 13-7

• Imported packages: Specified with the Import-Package header.

Oracle Event Processing requires that you import the following packages at a
minimum:

Import-Package:
 com.bea.wlevs.adapter.defaultprovider;version="11.1.1",
 com.bea.wlevs.ede;version="11.1.1",
 com.bea.wlevs.ede.api;version="11.1.1",
 com.bea.wlevs.ede.impl;version="11.1.1",
 org.osgi.framework;version="1.3.0",
 org.springframework.beans.factory;version="2.5.6",
 org.apache.commons.logging;version="1.1.0",
 com.bea.wlevs.spring;version="11.1.1",
 com.bea.wlevs.util;version="11.1.1",
 org.springframework.beans;version="2.5.6",
 org.springframework.util;version="2.0",
 org.springframework.core.annotation;version="2.5.6",
 org.springframework.beans.factory;version="2.5.6",
 org.springframework.beans.factory.config;version="2.5.6",
 org.springframework.osgi.context;version="1.2.0",
 org.springframework.osgi.service;version="1.2.0"

• Exported packages: Specified with the Export-Package header. You should
specify this header only when you need to share one or more application classes
with other deployed applications. A typical example is sharing an event bean.

If possible, you should export packages that include only the interfaces, and not the
implementation classes themselves. If other applications use the exported classes,
you cannot fully undeploy the application that is exporting the classes.

Exported packages are server-wide, so be sure their names are unique across the
server.

The following is the MANIFEST.MF file from the HelloWorld example application.

Note:

Oracle Event Processing requires the following MANIFEST.MF setting to
deploy to an Oracle WebLogic Server container: Bundle-ManifestVersion
2. This is because Oracle Event Processing uses Felix in the Oracle WebLogic
Server container.

Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-Version: 1.0.0
Bundle-Vendor: Oracle Corporation
Bundle-Copyright: Copyright (c) 2006-2009 by Oracle.
Export-Package: com.bea.wlevs.event.example.helloworld;version="12.1.2",
 com.bea.wlevs.example.helloworld;version="12.1.2"
Import-Package: com.bea.wlevs.configuration;version="12.1.2"
 com.bea.wlevs.ede.api;version="12.1.2",
 com.bea.wlevs.ede.impl;version="12.1.2",
 com.bea.wlevs.ede.spi;version="12.1.2",
 com.bea.wlevs.ede;version="12.1.2",
 com.bea.wlevs.management.spi;version="12.1.2",
 com.bea.wlevs.spring.support;version="12.1.2",
 com.bea.wlevs.spring;version="12.1.2",
 com.bea.wlevs.util;version="12.1.2",
 org.apache.commons.logging;version="1.1.0",
 org.springframework.beans.factory.config;version="2.5.6",
 org.springframework.beans.factory;version="2.5.6",

Assemble an OSGi Bundle with bundle.sh

13-8 Developing Applications for Oracle Event Processing

 org.springframework.beans;version="2.5.6",
 org.springframework.core.annotation;version="2.5.6",
 org.springframework.osgi.context;version="1.2.0",
 org.springframework.osgi.extensions.annotation;version="1.2.0",
 org.springframework.osgi.service;version="1.2.0",
 org.springframework.util;version="2.5.6"
Bundle-Name: example.helloworld
Bundle-Description: OCEP example helloworld
Bundle-SymbolicName: helloworld

13.7.3 Include Third-Party JAR Files
When you create your Oracle Event Processing applications, you might need to access
legacy libraries within existing third-party JAR files. You can ensure access to this
legacy code with any of the following approaches:

• Bundle-Classpath

• Operating System Path

• -Xbootclasspath

Bundle-Classpath

The recommended approach is to package the third-party JAR files in your Oracle
Event Processing application JAR file. You can put the JAR files anywhere you want.

Note:

This approach gives you little control over the order in which JAR files are
loaded and it is possible that dependency conflicts may occur. For this reason,
Oracle recommends that you use the Oracle Event Processing server
application library approach instead.

To ensure that your Oracle Event Processing application finds the classes in the third-
party JAR file, you must update the application class path by adding the Bundle-
Classpath header to the MANIFEST.MF file. Set Bundle-Classpath to a comma-
separate list of the JAR file path names that should be searched for classes and
resources. Use a period (.) to specify the bundle itself. For example:

Bundle-Classpath: ., commons-logging.jar, myExcitingJar.jar, myOtherExcitingJar.jar

If you need to access native libraries, you must also package them in your JAR file and
use the Bundle-NativeCode header of the MANIFEST.MF file to specify their
location in the JAR.

Operating System Path

You can create an application library that depends on native code libraries that you do
not choose to package as application libraries. In this case, you can put the native code
libraries in the operating system path (bootclasspath) of the Oracle Event
Processing server. When the server starts, the library bundles that need to call this
native code load the native code libraries.

-Xbootclasspath

If the JAR files include libraries used by all applications deployed to Oracle Event
Processing, such as JDBC drivers, you can add the JAR file to the server's boot class
path by specifying the -Xbootclasspath/a option to the java command in the
scripts used to start up an instance of the server.

Assemble an OSGi Bundle with bundle.sh

Assemble and Deploy 13-9

Note:

This approach gives you little control over the order in which JAR files are
loaded and dependency conflicts can occur. Oracle recommends that you use
the Oracle Event Processing server application library approach instead. For
more information, see Operating System Path approach instead.

The name of the server start script is startwlevs.cmd (Windows) or
startwlevs.sh (UNIX), and the script is located in the server directory of your
domain directory. The out-of-the-box sample domains are located in
ORACLE_CEP_HOME/ocep_11.1/samples/domains, and the user domains are
located in ORACLE_CEP_HOME/user_projects/domains, where
ORACLE_CEP_HOME refers to the main Oracle Event Processing installation directory,
such as d:\oracle_cep.

13.7.4 Access Third-Party JAR Files with -Xbootclasspath
Update the start script by adding the -Xbootclasspath/a option to the java
command that executes the wlevs_2.0.jar file. Set the -Xbootclasspath/a
option to the full path name of the third-party JAR files you want to access system-
wide.

For example, if you want all deployed applications to be able to access a JAR file called
e:\jars\myExcitingJAR.jar, update the java command in the start script as
follows. The updated section is shown in bold (in practice, the command should be on
one line):

%JAVA_HOME%\bin\java -Dwlevs.home=%USER_INSTALL_DIR% -Dbea.home=%BEA_HOME%
 -Xbootclasspath/a:e:\jars\myExcitingJAR.jar
 -jar "%USER_INSTALL_DIR%\bin\wlevs_2.0.jar" -disablesecurity %1 %2 %3 %4 %5 %6

13.7.5 Reference Foreign Stages
You can refer to a stage that is in another Oracle Event Processing application. A stage
from another application is called a foreign stage. When you assemble applications
that depend on foreign stages, be aware of class path dependencies. Consider the
application dependency graph that Figure 13-2 shows.

Figure 13-2 Foreign Stage Dependency Graph

In this example, Application A depends on Application B, Application B depends on
Application C, and Application C depends on Application A. Application C declares
and exports the MarketEvent class. Applications A and B import the MarketEvent

Assemble an OSGi Bundle with bundle.sh

13-10 Developing Applications for Oracle Event Processing

class that Application C provides. In this example the MANIFEST.MF files of the OSGi
bundles A and B should contain Require-Bundle: C.

Note the following:

• When you redeploy a foreign stage, you must redeploy all foreign stages that
depend on that application or foreign stage.

For example, if you redeploy Application B, you must redeploy Application A.

• If there is a class path dependency between one foreign stage and another, when
you deploy the foreign stage that declares and exports the shared class, you must
redeploy all foreign stages that import the shared class.

For example, if you redeploy Application C, you must also redeploy Application A
and B because Application A and B have a class path dependency on Application C
(MarketEvent).

13.7.6 Assemble an OSGi Bundle that Activates
Once you prepare and organize the files, you can use the bundle.sh shell script to
assemble the files into an OSGi bundle and define the activator classes. You can find
the bundle.sh script in the /Oracle/Middleware/my_oep/bin directory.

If want to bundle an application library for a new JDBC driver, see Database Driver
with an Application Library in Administering Oracle Event Processing.

13.7.6.1 Command Location, Syntax, and Arguments

You can find the bundler.sh script in the /Oracle/Middleware/my_oep/bin
directory. The following shows the bundler.sh command syntax. Table 13-1 describes
the command arguments.

bundler -source JAR -name NAME -version VERSION
[-factory CLASS+] [-service INTERFACE+] [-fragmenthost HOST]
[-stagedir PATH] [-targetdir PATH]
[+import PACKAGE|REGEX+] [-imods REGEX;MODS+] [-import PACKAGE+]
[+export PACKAGE|REGEX+] [-emods REGEX;MODS+]
[-dimport PACKAGE+] [-explode] [-verbose]

Table 13-1 bundler.sh Command-Line Options

Argument Description

-source JAR The path of the source JAR file to be bundled.

-name NAME The symbolic name of the bundle. The root of the target JAR file
name is derived from the name value.

-version VERSION The bundle version number. All exported packages are qualified
with a version attribute with this value. The target JAR file name
contains the version number.

-factory CLASS+ An optional argument that specifies a space-delimited list of one
or more factory classes that are to be instantiated and registered
as OSGi services. Each service is registered with the OSGi service
registry with name (-name) and version (-version) properties.

This argument is incompatible with the -fragmenthost
argument.

Assemble an OSGi Bundle with bundle.sh

Assemble and Deploy 13-11

Table 13-1 (Cont.) bundler.sh Command-Line Options

Argument Description

-service INTERFACE+ An optional argument that specifies a space-delimited list of one
or more Java interfaces that are used as the object class of each
factory object service registration. If no interface names are
specified, or the number of interfaces specified does not match the
number of factory classes, then each factory object will be
registered under the factory class name.

-fragmenthost HOST An optional argument indicating that the resultant bundle is a
fragment bundle and specifies the symbolic name of the host
bundle.

This argument is incompatible with the -factory argument.

-stagedir PATH An optional argument that specifies where to write temporary
files when creating the target JAR file.

Default: ./bundler.tmp

-targetdir PATH An optional argument that specifies the location of the generated
bundle JAR file.

Default: current working directory (.).

+import PACKAGE|
REGEX+

A space-delimited list of one or more packages or regular
expressions that select the packages to exclude from the manifest
Import-Package attribute.

By default, all dependent packages will be imported (except
java.*).

-imods REGEX;MODS+ The import modifiers are applied to the packages matching
regular expression.

-import PACKAGE Additional packages to include on the manifest Import-
Package attribute.

Note that any specified import modifiers will not be applied.

+export PACKAGE|
REGEX+

A space-delimited list of one or more packages or regular
expressions that select the packages to exclude from the manifest
Export-Package attribute.

By default, all bundle packages will be exported.

-emods REGEX;MODS+ The export modifiers will be applied to the packages matching
regular expression.

-dimport PACKAGE+ Packages to include on the manifest DynamicImport-Package
attribute.

-explode This optional flag specifies that the content of the source JAR
should be exploded into the target JAR file.

By default, the source JAR is nested within the target JAR file and
the generated bundle manifest will contain an appropriate
Bundle-Classpath attribute.

-verbose An optional flag to enable verbose output.

Assemble an OSGi Bundle with bundle.sh

13-12 Developing Applications for Oracle Event Processing

13.7.6.2 Assemble an OSGi Bundle

1. Execute the bundler.sh script to create an OSGi bundle. See Command
Location, Syntax, and Arguments.

The following bundle.sh command shows how to use the bundler.sh to
create an OSGi bundle for an Oracle JDBC driver.

bundler.sh \
 -source C:\drivers\com.oracle.ojdbc14_11.2.0.jar \
 -name oracle12c \
 -version 12.1.3.0 \
 -factory oracle.jdbc.xa.client.OracleXADataSource oracle.jdbc.OracleDriver \
 -service javax.sql.XADataSource java.sql.Driver \
 -targetdir C:\stage

The -source option specifies a JAR file that is an Oracle driver located in
directory C:\drivers. The name of the generated bundle JAR is the
concatenation of the -name and -version arguments
(oracle10g_11.2.0.jar) and is created in the C:\stage directory. The
bundle JAR contains the following files:

 1465 Thu Jun 29 17:54:04 EDT 2006 META-INF/MANIFEST.MF
1540457 Thu May 11 00:37:46 EDT 2006 com.oracle.ojdbc14_11.2.0.jar
 1700 Thu Jun 29 17:54:04 EDT 2006 com/bea/core/tools/bundler/Activator.class

The -factory option specifies that there are two factory classes to be instantiated
and registered as an OSGi service when the bundle activates, each under a
separate object class as Table 13-2 shows.

Table 13-2 Factory Class and Service Interfaces

Factory Class Service Interface

oracle.jdbc.xa.client.OracleXADataSource javax.sql.XADataSource

oracle.jdbc.OracleDriver java.sql.Driver

The -service option registers services with a name property set to oracle12c
and a version property with a value of 12.1.3.0. The following example
shows the Oracle Event Processing server log messages with the service
registrations:

...
INFO: [Jun 29, 2006 5:54:18 PM] Service REGISTERED: { version=12.1.3.0, name=oracle12c,
objectClass=[javax.sql.XADataSource], service.id=23 }
INFO: [Jun 29, 2006 5:54:18 PM] Service REGISTERED: { version=12.1.3.0, name=oracle12c,
objectClass=[java.sql.Driver], service.id=24 }
INFO: [Jun 29, 2006 5:54:18 PM] Bundle oracle11g STARTED
...

2. Copy the application library JAR to the appropriate Oracle Event Processing
server application library directory:

a. If your bundle is a driver, you put it in the library extensions directory.

See Library Extensions Directory.

b. If your bundle is not a driver, you can put it in the library directory.

See Library Directory

Assemble an OSGi Bundle with bundle.sh

Assemble and Deploy 13-13

3. Stop and start the Oracle Event Processing server.

See Start and Stop a Server in Administering Oracle Event Processing.

13.8 Deploy an OSGi Bundle
After you assemble your Oracle Event Processing application or library into an OSGi
bundle, you deploy it to an Oracle Event Processing server domain. You can deploy an
application with Oracle JDeveloper, Oracle Event Processing Visualizer, and with the
Deployer utility.

This section explains how to use the Deployer utility.

With the Deployer utility, you can deploy an application to either a stand-alone or
multiserver domain. You can only deploy to a group when the server is part of a
multiserver domain (clustering is enabled). You cannot deploy to a group when the
server is part of a standalone server domain (clustering is disabled).

Oracle Event Processing uses the deployments.xml file to internally maintain a list
of deployed OSGi bundles. This file is located in the DOMAIN_DIR/servername
directory, where DOMAIN_DIR refers to the main domain directory corresponding to
the server instance to which you are deploying your application and servername
refers to the actual server. This information is provided for your information only;
Oracle does not recommend updating the deployments.xml file manually.

Before you Begin

Be sure you have configured Jetty for the Oracle Event Processing instance to which
you are deploying your application. For more information, see Application
Deployment in Administering Oracle Event Processing .

Open a command window and update your CLASSPATH variable to include the
wlevsdeploy.jar JAR file, which is in the following directory. The Deployer utility
is in the JAR file.

/Oracle/Middleware/my_oep/bin

Deploy an OSGi Bundle with the Deployer Utility

After the OSGi bundle successfully installs and all initialization tasks complete, Oracle
Event Processing starts the application and the adapter components listen for
incoming events.

1. Assemble your OSGi bundle as described in Assemble an OSGi Bundle with
bundle.sh.

2. Open a command window and run the Deployer utility as follows. Keep
everything on one line.

prompt> java -jar wlevsdeploy.jar -url http://host:port/wlevsdeployer
 -user user -password password -install application_jar_file

host: The name of the computer where the Oracle Event Processing server is
running.

port: The port number where Oracle Event Processing listens. The default value
is 9002. This port is specified in the DOMAIN_DIR/config/ file that describes
the Oracle Event Processing domain. The port number is the value of the <Port>
child element of the <Netio> element in the file:

<Netio>
 <Name>NetIO</Name>

Deploy an OSGi Bundle

13-14 Developing Applications for Oracle Event Processing

 <Port>9002</Port>
</Netio>

user: The user name of the Oracle Event Processing administrator.

password: The password of the Oracle Event Processing administrator.

application_jar_file: The OSGi bundle. The OSGi bundle must be located
on the same computer where you execute the Deployer utility. For example, if
Oracle Event Processing is running on host ariel, listening on port 9002, user
name and password of the administrator is wlevs/wlevs, and your application
JAR file is called myapp_1.0.0.0.jar and is located in the /applications
directory, then the command is the following. Keep everything on one line.

prompt> java -jar wlevsdeploy.jar -url http://ariel:9002/wlevsdeployer
 -user wlevs -password wlevs -install /applications/myapp_1.0.0.0.jar

The Deployer utility provides additional options over what was described here to
resume, suspend, update, uninstall and deploy an OSGi bundle to a specified group of
multiserver domains. For more information, see Deployment Commands Using
Deployer Utility in Administering Oracle Event Processing.

Deploy an OSGi Bundle

Assemble and Deploy 13-15

Deploy an OSGi Bundle

13-16 Developing Applications for Oracle Event Processing

14
Testing 1-2-3

Oracle Event Processing provides different ways to test your application depending
on what and how you want to test.

This chapter includes the following sections:

• Load Generator and the csvgen Adapter

• Event Inspector Service

• EPN Shell

• EPN Command Interface.

14.1 Load Generator and the csvgen Adapter
The load generator utility simulates a data feed so that you can test your application
without connecting to a real-world data feed. To test your application with the load
generator, you must use the csvgen adapter in your application because the csvgen
adapter is specifically coded to decipher the data packets generated by the load
generator.

Once you have tested your application with the csvgen adapter, you can replaced it
with the appropriate input adapter for your application as described in Adapters.

The load generator reads an ASCII file that contains the sample data feed information
and sends each line of data in order to a port. The csvgen adapter listens for data at the
same port.

A load generator properties file indicates the name of the data file, the port where the
server listens, the server host, and the packet type. You can also set the data rate and
how long it takes for the load generator to ramp up to a specified final rate.

The following steps present an overview of how to configure and run the load
generator utility. Detailed information for each step follows.

1. Create a properties file that contains the configuration properties for particular
run of the load generator. Oracle Event Processing provides a default property file
you can use if the default property values are adequate. See Create the Properties
File.

2. Create a file that contains the actual data feed values. See Create the Data Feed
File.

3. Configure the csvgen adapter so that it correctly reads the data feed generated by
the load generator. See Configure the csvgen Adapter in Your Application.

4. Run the load generator and specify the properties file you created in step 1 to
begin the simulated data feed. For example, if the name of your properties file is
c:\loadgen\myDataFeed.prop, execute the following command:

Testing 1-2-3 14-1

prompt> runloadgen.cmd c:\loadgen\myDataFeed.prop

If you redeploy your application, you must also restart the load generator.

5. To stop and load generator, go to directory where you have load generator
running and type ctrl-c.

14.1.1 Create the Properties File
Oracle Event Processing provides a default properties file called csvgen.prop in
the /Oracle/Middleware/my_oep/utils/load-generator directory. The
format of the file is simple: each property-value pair is on its own line.

The following example shows the default csvgen.prop file; Oracle recommends you
use this file as a template for your own property file:

name of file containing your test data
 test.csvDataFile=test.csv
port the server will listen on for client connection
 test.port=9001
server host (localhost if not specified)
test.host=
do not change the packetType

 test.packetType=CSV

Table 14-1 Load Generator Properties

Property Description Data
Type

Required
?

test.csvDataFi
le

Specifies the file that contains the data feed
values.

String Yes

test.port The port number to which the load generator
sends the data feed.

Each input adapter must be associated with its
own test.port.

Integer Yes

test.secs Total duration of the load generator run, in
seconds.

The default value is 30.

Integer No

test.rate Final data rate, in messages per second.

The default value is 1.

Integer No

test.startRate Initial data rate, in messages per second.

The default value is 1.

Integer No

test.rampUpSec
s

Number of seconds to ramp up from
test.startRate to test.rate.

The default value is 0.

Integer No

14.1.2 Create the Data Feed File
A load generator data feed file contains the sample data feed values that correspond to
the event type registered for your Oracle Event Processing application.

The following example show an EmployeeEvent and a load generator data feed file
corresponding to this event type.

Load Generator and the csvgen Adapter

14-2 Developing Applications for Oracle Event Processing

<wlevs:event-type-repository>
 <wlevs:event-type type-name="EmployeeEvent">
 <wlevs:properties>
 <wlevs:property name="name" type="char" />
 <wlevs:property name="age" type="int" />
 <wlevs:property name="birthplace" type="char" length="512" />
 </wlevs:properties>
 </wlevs:event-type>
...
</wlevs:event-type-repository>

 Lucy,23,Madagascar
 Nick,44,Canada
 Amanda,12,Malaysia
 Juliet,43,Spain
 Horatio,80,Argentina

A load generator data feed file follows a simple format:

• Put each data feed item is on its own line.

• Separate the fields of a data feed item with commas.

• Do not include commas in a string field.

• Do not include extraneous spaces before or after the commas, unless the space is
literally part of the field value.

• Include only string and numerical data in a data feed file such as integer, long,
double, and float.

• Keep within the maximum string length of 256 characters or specify a long string
length. To specify a longer string, set the length attribute of the char property in
your event-type for the birthplace property.

Note:

The load generator does not fully comply with the CSV specification at
http://www.creativyst.com/Doc/Articles/CSV/CSV01.htm

For more information about CSV adapter constraints, see Design Constraints.

14.1.3 Configure the csvgen Adapter in Your Application
When using the load generator utility, you must use the csvgen adapter in your
application because this Oracle Event Processing-provided adapter is specifically
coded to read the data packets generated by the load generator.

You register the csvgen adapter using the wlevs:adapter element in the EPN
assembly file of your application, as with all adapters. Set the provide attribute to
csvgen to specify that the provider is the csvgen adapter, rather than your own
adapter. Additionally, you must specify the following child tags:

• wlevs:instance-property element with name attribute port and value
attribute configured_port, where configured_port corresponds to the value
of the test.port property in the load generator property file. See Create the
Properties File.

Load Generator and the csvgen Adapter

Testing 1-2-3 14-3

http://www.creativyst.com/Doc/Articles/CSV/CSV01.htm

• wlevs:instance-property element with name attribute eventTypeName and
value attribute event_type_name, where event_type_name corresponds to
the name of the event type that represents an item from the load-generated feed.

• wlevs:instance-property element with name attribute
eventPropertyNames and value attribute ordered_list_of_properties,
where ordered_list_of_properties lists the names of the properties in the
order that the load generator sends them, and consequently the csvgen adapter
receives them.

Before showing an example of how to configure the adapter, first assume that your
application registers an event type called PersonType in the EPN assembly file using
the wlevs:metada element shown below:

<wlevs:event-type-repository>
 <wlevs:event-type type-name="PersonType">
 <wlevs:properties>

 <wlevs:property name="name" type="char"/>
 <<wlevs:property name="age" type="int"/>
 <<wlevs:property name="birthplace" type="char"/>
 </wlevs:properties>
 </wlevs:event-type>
</wlevs:event-type-repository>

This event type corresponds to the data feed file shown in Create the Data Feed File.

To configure the csvgen adapter that receives this data, use the following
wlevs:adapter element:

<wlevs:adapter id="csvgenAdapter" provider="csvgen">
 <wlevs:instance-property name="port" value="9001"/>
 <wlevs:instance-property name="eventTypeName" value="PersonType"/>
 <wlevs:instance-property name="eventPropertyNames" value="name,age,birthplace"/>
</wlevs:adapter>

Note how the bold values in the adapter configuration example correspond to the
PersonType event type registration.

If you use the wlevs:class element to specify your own JavaBean when registering
the event type, then the eventPropertyNames value corresponds to the JavaBean
properties. For example, if your JavaBean has a getName method, then one of the
properties of your JavaBean is name.

For more information on event types, see Events and Event Types.

14.2 Event Inspector Service
Use the Event Inspector service to test and debug Oracle CQL queries during
development. With the Event Inspector service you can view (trace) the events that
flow out of any EPN stage and inject events into any EPN stage.

The Event Inspector service uses a common HTTP pub-sub channel and server to trace
and inject events.

Note:

Do not use the Event Inspector service on a production Oracle Event
Processing server. Use this service during development only.

Event Inspector Service

14-4 Developing Applications for Oracle Event Processing

A trace event must have its binding attribute set to outbound, and an injected event
must have its binding attribute set to inbound. Using an Event Inspector client, you
can inject:

• A single, simple event by type, such as the StockTick event. The specific event
property types that you can use depends on the client.

• A single event directly to the HTTP pub-sub channel as a JSON-formatted character
string. You can use any event property that JSON can represent.

• Multiple events using a file that contains one or more JSON-formatted character
strings. You can use any event property that JSON can represent. The Event
Inspector service client parses the file and injects all of its JSON strings to the HTTP
pub-sub channel.

You can use the GSON Java library to help you convert Java objects to JSON format
when creating your input file. For more information, see:

• http://www.json.org/

• http://code.google.com/p/google-gson

The Event Inspector service supports Oracle Event Processing Visualizer. See Event
Inspector Service Management in Using Visualizer for Oracle Event Processing.

14.2.1 Event Types
The Event Inspector service supports all Oracle Event Processing event types:
JavaBean class, Map, and tuple. The Event Inspector service converts events to the
JavaScript Object Notation (JSON) format before publishing to the trace channel. You
must inject events in JSON format.

Note:

Byte arrays are not supported as property types in event types used with the
event inspector.

JSON-formatted events must conform to the structure. Table 14-1 lists the required
attributes.

{
 "event-type": "myEventType",
 "operation": "insert",
 "binding": "outbound",
 "value":{
 "firstname": "Jane",
 "lastname": "Doe",
 "phone": {
 "code": 12345,
 "number": "office"
 },
 }
}

Event Inspector Service

Testing 1-2-3 14-5

http://www.json.org/
http://code.google.com/p/google-gson

Table 14-2 Event Inspector JSON Event Required Attributes

Attribute Description

event-
type

The name of the Oracle Event Processing event as you defined it in the
application assembly file's event-type-repository.

operatio
n

Specify the type of event:

• insert: insert event.
• delete: delete event
• update: update event
• heartbeat: heartbeat event

binding One of:

• inbound: injected event.
• outbound: trace event.

value One or more JSON-formatted event properties as defined by the event-type.

14.2.2 HTTP Publish-Subscribe Channel and Server
The Event Inspector service uses a dynamic HTTP publish-subscribe (HTTP pub-sub)
channel with the following name that is defined in the server config.xml file:

/SERVERNAME/APPLICATIONNAME/STAGENAME/DIRECTION

SERVERNAME: The name of the Oracle Event Processing server where the EPN stage
runs.

APPLICATIONNAME: the name of the Oracle Event Processing application.

STAGENAME: the name of the EPN stage.

DIRECTION: one of either:

• input: Event injection.

• output: Event tracing.

For example:

/server-1/myapp/MyInputAdapter/input

The Event Inspector service uses an HTTP pub-sub server. This can be any of:

• Local: You configure the server file with an event-inspector element and
configure its pubsub-server-name child element with the name of the local
pubsub server that is running on this machine.

• Remote: You configure the server file with an event-inspector element and
configure its pubsub-server-url child element with a URL to an HTTP pub-sub
server that is running on a remote machine.

• Default: if there is only one HTTP pub-sub server defined in the server file, and
you do not specify a local or remote HTTP pub-sub server, the Event Inspector
service uses the local HTTP pub-sub server by default.

The Event Inspector service uses the same HTTP pub-sub channel and server for
tracing and injecting events.

Event Inspector Service

14-6 Developing Applications for Oracle Event Processing

14.2.3 Configure a Local or Remote Server
You can configure the Event Inspector service with a local or remote HTTP pub-sub
server. You configure the Event Inspector HTTP pub-sub server in a component
configuration file. When there is only one HTTP pub-sub server defined in the server,
and you do not specify a local or remote HTTP pub-sub server, the Event Inspector
service uses the local HTTP pub-sub server by default.

Configure for a Local HTTP Publish-Subscribe Server

For any component configuration file that has a component that you want to test, add
the event-inspector name element as follows.

<event-inspector>
 <name>myEventInspectorConfig</name>
 <pubsub-server-name>myPubSub</pubsub-server-name>
</event-inspector>

The pubsub-server-name value myPubSub is the value of the http-pubsub
element name child element as defined in the local Oracle Event Processing server file
as the following example shows.

<http-pubsub>
 <name>myPubSub</name>
 <path>/pubsub</path>
 <pub-sub-bean>
 <server-config>
 <supported-transport>
 <types>
 <element>long-polling</element>
 </types>
 </supported-transport>
 <publish-without-connect-allowed>true</publish-without-connect-allowed>
 </server-config>
 <channels>
 ...
 </channels>
 </pub-sub-bean>
</http-pubsub>

Configure for a Remote HTTP Publish-Subscribe Server

For any component configuration file that has a component that you want to test, add
the event-inspector name element as follows.

<event-inspector>
 <name>myEventInspectorTraceConfig</name>
 <pubsub-server-url>http://HOST:PORT/PATH</pubsub-server-url>
</event-inspector>

HOST: The host name or IP address of the remote Oracle Event Processing server.

PORT: The remote Oracle Event Processing server netio port as defined in the remote
Oracle Event Processing server file. Default: 9002.

PATH: The value of the http-pubsub element path child element as defined in the
remote Oracle Event Processing server file.

Given the http-pubsub configuration that the example shows, a valid pubsub-
server-url would be as follows:

http://remotehost:9002/pubsub

Event Inspector Service

Testing 1-2-3 14-7

The pubsub-server-name value myPubSub is the value of the http-pubsub
element name child element as defined in the local Oracle Event Processing server file
as the following example shows.

<http-pubsub>
 <name>myPubSub</name>
 <path>/pubsub</path>
 <pub-sub-bean>
 <server-config>
 <supported-transport>
 <types>
 <element>long-polling</element>
 </types>
 </supported-transport>
 <publish-without-connect-allowed>true</publish-without-connect-allowed>
 </server-config>
 <channels>
 ...
 </channels>
 </pub-sub-bean>
</http-pubsub>

14.2.4 Inject Events
After you configure the Event Inspector service HTTP pub-sub server, you can use
Event Inspector clients to inject events. To configure event injection, you can use the
Oracle Event Processing Visualizer, or you can edit a component configuration file in
your application to specify injection settings that are in place when the application is
deployed or redeployed.

Configure event injection in Oracle Event Processing Visualizer with settings that can
be discarded when the application is redeployed. See Inject Events in Using Visualizer
for Oracle Event Processing.

For event injection configuration settings that are in place when the application is
deployed or redeployed, configure injection by editing component configuration
settings for the stage to which you want to inject.

For example, the component configuration excerpt shown in the example illustrates
how you might configure a processor for event injection. The inject-parameters
element's active child element specifies that injection is on, while the channel-
name element specifies the HTTP pub-sub channel from which injected elements
should be sent.

<processor>
 <name>FindCrossRates</name>
 <inject-parameters>
 <active>true</active>
 <channel-name>/NonClusteredServer/fx/FindCrossRates/output</channel-name>
 </inject-parameters>
 <rules>
 <!-- Query rules omitted. -->
 </rules>
</processor>

For reference information about the elements, see Schema Reference for Oracle Event
Processing.

14.2.5 Trace Events
After you configure the Event Inspector service HTTP pub-sub server, you can use
Event Inspector clients to trace events flowing out of any stage of your EPN. To trace

Event Inspector Service

14-8 Developing Applications for Oracle Event Processing

events, you can either use the Oracle Event Processing Visualizer to configure tracing
or you can edit a component configuration file in your application to specify trace
settings that are in place when the application is deployed or redeployed.

Configure event tracing in Oracle Event Processing Visualizer with settings that can be
discarded when the application is redeployed. See Trace Events in Using Visualizer for
Oracle Event Processing.

For event tracing configuration settings that are in place when the application is
deployed or redeployed, configure tracing by editing component configuration
settings for the stage from which you want to trace.

For example, the component configuration excerpt shown in the example illustrates
how you might configure a processor for event tracing. The trace-parameters
element's active child element specifies that tracing is on, while the channel-name
element specifies the HTTP pub-sub channel to which traced elements should be sent.

<processor>
 <name>FindCrossRates</name>
 <trace-parameters>
 <active>true</active>
 <channel-name>/NonClusteredServer/fx/FindCrossRates/output</channel-name>
 </trace-parameters>
 <rules>
 <!-- Query rules omitted. -->
 </rules>
</processor>

For reference information about the elements, see Processor in Schema Reference for
Oracle Event Processing.

14.2.6 Event Inspector API
You can use the Event Inspector API to inject and trace events. The Oracle Event
Processing API provides the EventInspectorMBean interface that you can
implement to control the event tracing and injection behavior. Only the administrator
and monitor administrator roles can invoke the startInject, stopInject,
startTrace, and stopTrace methods. See Java API Reference for Oracle Event
Processing for information about the EventInspectorMBean interface and its
methods.

Once you implement the EventInspectorMBean interface, you can call its methods
from your application to inject and trace events as follows.

Inject Events

1. Get an instance of
com.bea.wlevs.eventinspector.management.EventInspectorMBean
from the server through JMX.

2. Call the EventInspectorMBean.startInject method to start event injection
on the stage specified in the server config.xml file configuration for an HTTP
publish-Subscribe channel as explained in HTTP Publish-Subscribe Channel and
Server.

3. Publish events to the specified HTTP publish-subscribe channel.

4. Use the EventInspectorMBean.isInjecting method to verify that event
injection has started on the stage.

Event Inspector Service

Testing 1-2-3 14-9

5. Call the EventInspectorMBean.stopInject method to stop event injection.

Trace Events

1. Get an instance of
com.bea.wlevs.eventinspector.management.EventInspectorMBean
from the server through JMX.

2. Call the EventInspectorMBean.startTrace method to start event tracing on the
stage specified in the server config.xml file configuration for an HTTP publish-
subscribe channel as explained in HTTP Publish-Subscribe Channel and Server.

3. Use the EventInspectorMBean.isTracing method to verify that event tracing
has started on the HTTP Publish-Subscribe channel.

4. Call the EventInspectorMBean.stopTrace method to stop event tracing.

14.3 EPN Shell
The EPN shell provides shell commands for testing

Oracle Event Processing applications. See EPN Command Interface for information
about how to perform EPN operations programmatically.

The EPN shell extends the Apache Felix Gogo shell, which provides a standard shell
command prompt for OSGi frameworks. See the Apache Felix Gogo documentation at:
http://felix.apache.org/documentation/subprojects/apache-felix-
gogo.html.

To start the server in the EPN shell, go to /Oracle/Middleware/my_oep/
user_projects/domains/<my_domain>/<server> and start the Oracle Event
Processing server in the EPN shell as follows:

UNIX:

./startwlevs.sh -shell

...
g!

Windows:

startwlevs.cmd -shell
...
g!

When the EPN shell starts, you see the g! prompt. Type help to display a list of all of
the commands. The commands specific to EPN, are prefixed by epn:, for example,
epn:channel.

g! help

To display help about a particular command, type help <command>. For example, to
see help about the begin command, type the following:

g! help begin
begin - Begins new session for invoking EPN commands
 scope: epn
 parameters:
 CommandSession

EPN Shell

14-10 Developing Applications for Oracle Event Processing

http://felix.apache.org/documentation/subprojects/apache-felix-gogo.html
http://felix.apache.org/documentation/subprojects/apache-felix-gogo.html

Note:

Some of the Apache Felix Gogo commands have a CommandSession
argument, which is an internal shell argument that does not execute with the
Apache Felix Gogo commands. When you do a help listing for some of the
EPN shell commands, the CommandSession parameter is listed by the help,
but does not work.

14.3.1 Oracle CQL Queries
By default, an EPN session has an implicit Oracle CQL processor that is connected to
an event sink that prints all outputs to the shell console. To test Oracle CQL queries,
create an input channel, define the queries, and send events as follows:

g! begin
g! channel MyChannel [msg=String]
MyChannel
g! query "select * from MyChannel"
q0
g! send MyChannel [msg='Hi']
11:14:26 618 -> insert event: {msg=Hi}
q! end

Use the begin command to start an EPN session and the end command to end an
EPN session. Ending a session destroys all EPN components that were created during
that session. A session is not multithread aware.

The channel command creates MyChannel with an event-type that has the msg
property of type String. You can also specify a Java class name for the event-type.

The query command registers the "select * query from MyChannel“ in the
implicit Oracle CQL processor for this session. You can remove the query from the
processor with the remove command.

The send command dispatches an insert event to MyChannel. If the session has a
single channel only, then the name of the channel is optional. For example, the
following two commands are equivalent: “send MyChannel [msg='Hi']" and
“send [msg='Hi']".

The syntax “[msg='Hi']" creates a map that contains a single key-value pair, with a
key of “msg" and a value of “Hi". This matches the event-type created in the first
line with channel MyChannel [msg=String].

You can use the update and delete commands to send an update event and a delete
event to a relation-based channel. The insert command is equivalent to the send
command. Also, you can check the current registered statements in a session with the
statement command and find out the channels you have created in a session with
the channels command. The eventtypes commands enables you to display the
structure of all event-types in the server.

For more information about Oracle CQL processor queries, see Oracle CQL
Processors .

14.3.2 Management Commands
Management commands enable you to list the deployed Oracle Event Processing
applications, list libraries, install an application, send events to an existing application,
subscribe to channel events, list all public stages, retrieve an OSGi service and call
standard Java methods, perform JMX operations, and shut down the server.

EPN Shell

Testing 1-2-3 14-11

List all deployed Oracle Event Processing applications in the running server:

g! listapps
com.bea.wlevs.dataservices

List all Oracle Event Processing libraries. This commen lists all of the bundles that are
unzipped in the modules directory to run the EPN shell.

g! llistlibs
org.apache.felix.bundlerepository
org.apache.felix.gogo.runtime
com.oracle.cep.shell
org.apache.felix.gogo.command
org.apache.felix.gogo.shell

Install a new application. The following example deploys and immediately starts the
application.

g! deployapp file:///Users./oepapps/hwlloworld.jar

Undeploy an application:

g! deployapp file:///Users./oepapps/hwlloworld.jar
g! undeployapp file:///Users./oepapps/hwlloworld.jar

Send events to an existing Oracle Event Processing application by specifying the full
name of the channel when you use the send, insert, update, and delete
commands. This example sends an event to the helloworldInputChannel in the
helloworld application. For this to work, you must advertise the channel so the EPN
shell can find it. To advertise the channel, set the advertise attribute to true in
the assembly file first.

Assembly file setting:

<wlevs:channel id="helloworldInputChannel" event-type="HelloWorldEvent"
advertise="true" >

EPN shell commands:

g! event1=createevent HelloWorldEvent
g! $event1 message "Hi Shell"
g! send helloworld:helloworldInputChannel $event1

Subscribe to a channel. The events subscribed to are sent either to the shell console or
to a file when you specify a file name. Make sure the channel is advertised by setting
the advertise attribute to true in the assembly file. The following command
subscribes to all output from the helloworld application and send the output to the
shell console:

g! subscribe helloworld:helloworldOutputChannel

List all public (advertised) stages in the application.

g!introspect helloworld
Application 'helloworld' provides the following OCEP services:
Event Channel 'helloworldOutputChannel' for Event Type 'HelloWorldEvent'

Retrieve the CQLProcessorMBean for the helloworld Oracle CQL processor and
invoke the getAllQueries operation.

g! proc = mbean helloworld:helloworldProcessor CQLProcessor
g! $proc allQueries

EPN Shell

14-12 Developing Applications for Oracle Event Processing

helloworldRule
select * from helloworldInputChannel

You can use the retrieved mbean with the mbean command to test and manipulate
JMX operations.

Stop the server.

g! stop

14.3.3 Regression Testing
You can automate application testing by running the shell headless and using scripts.
For example, you can execute the following script named send-event.oep by
specifying the gosh.args system property in the startwlevs command.

begin
channel -a [a=Long]
query "select * from ch0"
send 0 [a=1]
send 1 [a=2]
end

Note:

In a script, use double quotes to enclose a String tuple value with the send
command. For example, send [msg="Enter a value."]. Single quotes
do not work in a script.

To execute the send-event.oep script when you start the server, edit the last line of
the startwlevs command as follows:

"$JAVA_HOME/bin/java" -Dgosh.args=send-event.oep $JVM_ARGS $DEBUG_ARGS -
Dwlevs.home="$USER_INSTALL_DIR" -Dbea.home="$BEA_HOME" -jar "$
{USER_INSTALL_DIR}/bin/wlevs.jar" $ARGS

One approach is to have a test driver script that invokes other scripts and directs their
output, as follows:

source send-event.oep | tac test-output/log/send-event.out
source test-delete.oep | tac test-output/log/test-delete.out

14.3.4 EPN Variable
You can set the time stamp format or turn time stamps off for an EPN session.

OUT_TIME: FORMATTED | PLAIN | OFF

To turn off the time stamp on output events, enter the following:

g! OUT_TIME=OFF

To indicate formatted time stamping.

h! OUT_TIME=FORMATTED

14.3.5 EPN Commands
The EPN commands are shown and described in the following list.

EPN Shell

Testing 1-2-3 14-13

epn:begin: Begins a new session for invoking EPN commands.

epn:channel: Performs different actions based on the parameters:

• Create a channel with a map-based event type.

• Create a named relation channel with update keys and a Java class event type.

• Create a named channel with a map-based event type.

• Create a named channel with a Java class event type.

• Create a channel with a Java class event type.

• Create a named relation channel with update keys and a map-based event type.

epn:channels: Lists all channels within the EPN scope.

epn:createevent: Creates an event of the provided event type.

epn:end: Ends the EPN session.

epn:eventtypes: Lists all event types

epn:heartbeat: Sends a heartbeat to channel that is time stamped by an application.

epn:query: Registers an Oracle CQL query.

epn:remove: Removes all statements that are registered within the EPN scope.

epn:send: Sends an insert event to a named channel. Same as the sendinsert
command.

epn:senddelete: Deletes a named event in a named channel.

epn:sendinsert: Sends an insert event to a named channel. Same as the send
command.

epn:sendupdate: Updates an OSGi bundle with the bundle at the provided URL.

epn:statements: Lists all registered Oracle CQL statements within the EPN scope.

epn:subscribe: Subscribe to an event channel and output events to a file.

epn:unsubscribe: Unsubscribe from an event channel.

epn:view: Register an Oracle CQL view.

14.3.6 Management Commands
The management commands are shown and described in the following list.

mngt:deployapp: Deploys an application with optional parameters.

mngt:deployrepapp: Deploys an application from the respository.

mngt:introspect: Introspects an application for its public interfaces.

mngt:listapps: Lists all deployed applications.

mngt:listlibs: Lists all deployed libraries.

mngt:mbean: Retrieves the MBean stage from the local MBean server

mngt:shutdown: Shuts the server down.

mngt:undeployapp: Undeploys the specified application.

EPN Shell

14-14 Developing Applications for Oracle Event Processing

14.4 EPN Command Interface
The EpnCommand interface is a Java API on top of the Oracle Event Processing EPN
CQL programming model. You can use the EpnCommand interface in a Java
application to manipulate EPN components.

You can programmatically start an EPN session and execute EPN commands similar
to using the command-line EPN shell described in EPN Shell.

Use beginSession() to start an EPN session and endSession() to end an EPN
session. Ending a session destroys all EPN components that were created during that
session. A session is not multithread aware and must be synchronized in your
application code.

To use EPN commands in an Oracle Event Processing application, first retrieve the
EpnCommand OSGi service, which registers the service as an OSGi service factory.
Once you retrieve the OSGi service, you can create test cases similar to JUnit test
cases for testing EPN components and Oracle CQL statements. Only the commands
exposed in the EpnCommand class as methods can be use for JUnit-like test cases.

You can also use the EpnCommand interface to create an Oracle Event Processing
application through programming.

14.4.1 Session Variables
You can set session variables to indicate the time stamp format to use for output
events. The time stamping can be FORMATTED, PLAIN, or OFF.

14.4.2 Methods
void beginSession(): Begins a new session for invoking commands. Only a single
session can be active at one time. The following list shows the EpnCommand methods
and parameters. Refer the EpnCommand Javadoc for more information.

endSession(): Ends the current session. Only a single session can be active at one
time.

void getEventChannels(): Returns all channels created in the current session.

EventChannel[] getEventChannel(String channelName): Returns the
named event channel.

EventChannel getEventChannel(String channelName): Retrieves the named
event channel.

Create different types of channels based on the parameters.

• EventChannel createChannel(String channelName, Class<?>
clazz): Create a new system time stamped channel with a Java class event type.

• EventChannel createChannel(boolean relation, String
applicationTimestampProp, boolean totalOrder, List<String>
keys, String channelName, Class<?> class): Create a new channel with
a Java class event type.

• EventChannel createChannel(boolean relation, String
applicationTimestampProp, boolean totalOrder, List<String>
keys, String channelName, Class<?> class,
EventBuilder.Factory factory): Create a new channel with a Java class
event type.

EPN Command Interface

Testing 1-2-3 14-15

• EventChannel createChannel(String channelName, Map<String,
String> metadata): Create a new system timestamped channel with a
metadata-based event type.

• EventChannel createChannel(boolean relation, String
applicationTimestampProp, boolean totalOrder, List<String>
keys, String channelName, Map<String, String> metadata): Create
a new channel with a metadata-based event type.

• EventChannel createChannel(boolean relation, String
applicationTimestampProp, boolean totalOrder, List<String>
keys, String channelName, Map<String, String> metadata,
EventBuilder.Factory factory): Create a new channel with a metadata-
based event type.

Processor[] getProcessors(): Returns all Oracle CQL processors created in the
current session.

Processor createProcessor(): Creates an Oracle CQL processor in the current
session.

StreamSource link(StreamSource fromStage, StreamSink toStage):
Connects a stage to stage.

void unlink(StreamSource source, StreamSink sink): Disconnects the
source from the sink.

Statement createView(Processor processor, String id, String
StatementValue): Creates an Oracle CQL view.

Statement createQuery(Processor processor, String id, String
statementValue): Creates an Oracle CQL query.

Object createEvent(String eventTypeName): Creates an event based on the
event type name. The event is created only when it is available in the Event Type
repository.

MapEventObject createMapEvent(EventChannel channel, Map<String,
Object> event): Create a map event for a metadata-based channel.

void sendInsert(String channelName, Object event): Send an insert
event to the channel.

void sendUpdate(String channelName, Object event): Send an update
event to the channel.

void sendDelete(String channelName, Object event): Send a delete
event to the channel.

void sendHeartbeat(Long timestamp, String channelName): Send a
heartbeat to the channel.

14.4.3 Example
The following example shows a basic JUnit test case.

//Get the OSGI service
ServiceReference ref = ctx.getServiceReference(EpnCommand.class.getName());
commandSession = (EpnCommand) ctx.getService(ref);

//Begin a session

EPN Command Interface

14-16 Developing Applications for Oracle Event Processing

commandSession.begin();

//Create an Oracle CQL processor
Processor p1 = commandSession.createProcessor("p1");

//Create two stream channels from the MyEvent Java class.
EventChannel ch1 = commandSession.createChannel(false, "c1", MyEvent.class);
EventChannel ch2 = commandSession.createChannel(false, "c2", MyEvent.class);

//Create a listener to retrieve events that equal event e1
//The MyEventListener class implements the StreamSink or RelationSink interface
MyEventListener listener = new MyEventListener();

//Connect channel ch1 and processor p1
commandSession.link((StreamSource) ch1, (StreamSink) p1);

//Connect channel p1 and processor ch2
commandSession.link((StreamSource) p1, (StreamSink) ch2);

//Connect channel ch2 and processor listener
commandSession.link((StreamSource) ch2, (StreamSink) listener);

//Create the query in processor p1
commandSession.createQuery(p1, "q1", "select * from c1");

//Create event e1 and assign two properties, a and 1.
Object e1 = new MyEvent("a", 1);

//Send insert event e1 to channel ch1
ch1.sendInsertEvent(e1);

//Test whether event e1 equals the event retrieved by the listener
assertEquals(e1, listener.getEvent());

//End the session
commandSession.end();

EPN Command Interface

Testing 1-2-3 14-17

EPN Command Interface

14-18 Developing Applications for Oracle Event Processing

15
Debug with Event Record and Playback

You can use the event record and playback feature to debug a running Oracle Event
Processing application. While the application runs, you record the events that flow out
of an EPN component into a persistent store. You play the events back at a later stage
in the application such as in an event bean. In the event bean, you query the events
and make fixes to your application based on your findings.

The sample code in this chapter is from the event record and playback example in /
Oracle/Middleware/my_oep/examples/source/applications/recplay.
For details about running and building the example, see Run the Event Record/
Playback Example in Getting Started with Oracle Event Processing.

This chapter includes the following sections:

• Event Flow

• Berkeley DB

• Record Events

• Play Back Events

• Configure Berkeley DB

• Configure a Component to Record Events

• Configure a Component to Play Back Events

• Start and Stop the Record and Playback of Events.

15.1 Event Flow
The following graphic shows the EPN of the event record and playback example to
demonstrate where you can record events and where you can play events back. The
simpleEventSource adapter is configured to record events. The recording happens
as events flow out of the adapter. The eventStream channel is configured to play
back events. The playback happens where events flow into the channel.

Debug with Event Record and Playback 15-1

Figure 15-1 Configuring Record and Playback in an EPN

15.2 Berkeley DB
Berkeley DB is a fast, scalable, transactional database with industrial grade reliability
and availability.

When you record events, by default the Oracle Event Processing server stores them in
Berkeley DB, which is a persistent event store that is bundled with the Oracle Event
Processing server. For more information about Berkeley DB, see:

http://www.oracle.com/technetwork/database/database-
technologies/berkeleydb/overview/index.html.

When you deploy an application that is configured to use the record and playback
feature, the Oracle Event Processing server creates the database schema and an
instance of Berkeley DB in the following directory.

/Oracle/Middleware/my_oep//user_projects/domains/domainname/servername/bdb

Note:

The database key is the record time plus the sequence number.

You can use the default Berkeley database configuration as is. You only need to make
configuration changes to customize the location of the Berkeley database instance or to
tune performance. See Configure Berkeley DB for information about how to configure
Berkeley DB.

You can use the event store API to query a store for past events given a record time
range and the component from which the events were recorded. The actual query you
use depends on the event repository provider; for example, you would use Oracle
CQL for the default persistent event store provider included with Oracle Event
Processing. You can also use these APIs to delete old events from the event store.

15.3 Record Events
You can configure recording for any component in the EPN that produces events, such
as processors, adapters, channels, and event beans. Processors and channels always
produce events.

Adapters and event beans must implement the EventSource interface.

You can configure events from different components in the EPN to be stored in
different persistent stores, or that all events go to the same store. Only events that are
output by the component are recorded.

Berkeley DB

15-2 Developing Applications for Oracle Event Processing

http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index.html
http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index.html

You enable the recording of events for a component by updating its configuration file
and adding the record-parameters element. Using the child elements of record-
parameters, you specify the event store to which the events are recorded, an initial
time period when recording should take place, the list of event types you want to
store, and so on.

After you deploy the application and events start flowing through the network,
recording begins either automatically because you configured it to start at a certain
time or because you dynamically start it using administration tools. For each
component you have configured for recording, Oracle Event Processing stores the
events that flow out of it to the appropriate store along with a time stamp of the time it
was recorded.

15.4 Play Back Events
You can configure playback for any component in the EPN: processors, adapters,
streams, and event beans. Typically the playback component is a stage later in the
network than the stage that recorded the events.

You enable the playback of events for a component by updating its configuration file
and adding the playback-parameters element. Using the child elements of
playback-parameters, you specify the event store from which the events are
played back, the list of event types you want to play back (by default all are played
back), the time range of the recorded events you want to play back, and so on. By
default, Oracle Event Processing plays back the events in a time accurate manner.
However, you can configure that the events get played back either faster or slower
than they originally flowed out of the component from which they were recorded.

After you deploy the application and events start flowing through the network, you
must start the playback with Oracle Event Processing Visualizer or wlevs.Admin.
Oracle Event Processing reads the events from the persistent store and inserts them
into the appropriate place in the EPN.

When a component receives a playback event, the playback event looks exactly like
the original event. If a downstream component is configured to record events, then
Oracle Event Processing records the arriving playback events and real-time events.

For more information, see:

• Playback Events in Using Visualizer for Oracle Event Processing

• Controlling Playback in Administering Oracle Event Processing.

15.5 Configure Berkeley DB
You can use the default Berkeley DB configuration as is. You only need to make
configuration changes to customize the location of the Berkeley database instance or to
set the cache size to tune performance.

To configure an event store for Oracle Event Processing server:

1. Stop the Oracle Event Processing server instance, if it is running.

2. Open the server config.xml file for editing.

The file is located in /Oracle/Middleware/my_oep/user_projects/
domains/<domain_name>/<server_name>/config.

3. Edit the bdb-config element in the config.xml file.

Play Back Events

Debug with Event Record and Playback 15-3

The following example shows a fully configured bdb-config element.

<bdb-config>
 <db-env-path>bdb</db-env-path>
 <cache-size>1000</cache-size>
</bdb-config>

Table 15-1 lists the bdb-config child elements.

Table 15-1 Child Elements of bdb-config

Child Element Description

db-env-path Specifies the subdirectory in which OracleEvent Processing server
creates the Berkeley DB instances relative to the config directory
of your server.

Default: bdb

cache-size Specifies the amount of memory, in bytes, available for Berkeley
DB cache entries. You can adjust the cache size to tune Berkeley
database performance. The cache size must be a power of 2, but it
is otherwise limited only by available memory and performance
considerations.

Default: je.maxMemoryPercent * JVM maximum memory.

4. Restart the Oracle Event Processing server.

15.6 Configure a Component to Record Events
You can configure any processor, adapter, channel, or event bean in your application
to record events.

This section updates an adapter configuration to record events. See Component
Configuration in Schema Reference for Oracle Event Processingfor additional information.

1. Open the component configuration file and add a record-parameters child
element to the component you want to configure to record events, as follows:

 <csv-adapter>
 <name>StockTradeCSVAdapter</name>
 <record-parameters>
 ...
 </record-parameters>
 </csv-dapter>

2. Add child elements to record-parameters to specify a data set name, the list of
one or more events to be stored, the recording start and stop times, and so on:

<csv-adapter>
 <name>StockTradeCSVAdapter/name>
 <record-parameters>
 <dataset-name>recplay_sample</dataset-name>
 <event-type-list>
 <event-type>TradeEvent</event-type>
 </event-type-list>

 <time-range>
 <start>2010-01-20T05:00:00</start>
 <end>2010-01-20T18:00:00</end>
 </time-range>

 </record-parameters>
</csv-adapter>

Configure a Component to Record Events

15-4 Developing Applications for Oracle Event Processing

Table 15-2 lists the child elements of record-parameters that you can specify. Only
dataset-name is required.

Table 15-2 Child Elements of record-parameters

Child Element Description

dataset-name Berkeley DB: Identifies the recorded data and places it in a directory
of this name below the directory specified by the db-env-path
setting in the server config.xml file.

Oracle RDBMS-based provider: Specifies the database area, or
schema, in which the tables that store the recorded events are created.
When you configure the Oracle RDBMS-based provider, you must
specify this element.

event-type-list Berkeley DB: Specifies the event types that are recorded to the event
store. If this element is not specified, then Oracle Event Processing
records all event types that flow out of the component.

Oracle RDBMS-based provider: You must specify this element.

time-range Specifies the time period during which recording takes place.
Configure the time period with a start child element to specify a
start time and an end child element to specify the end time.

Express the start and end time as XML Schema dateTime values of
the form:

yyyy-mm-ddThh:mm:ss

For example, to have recording start on January 20, 2010, at 5:00 am
and end on January 20, 2010, at 6:00 pm, enter the following:

 <time-range>
 <start>2010-01-20T05:00:00</start>
 <end>2010-01-20T18:00:00</end>
 </time-range>

For complete details of the XML Schema dateTime format, see
http://www.w3.org/TR/xmlschema-2/#dateTime-lexical-

representation.

If you do not specify a time period, then no events are recorded when
the application is deployed and recording happens only after you
explicitly start it with Oracle Event Processing Visualizer or
wlevs.Admin.

You can specify time-range or time-range-offset, but not
both.

Configure a Component to Record Events

Debug with Event Record and Playback 15-5

http://www.w3.org/TR/xmlschema-2/#dateTime-lexical-representation
http://www.w3.org/TR/xmlschema-2/#dateTime-lexical-representation

Table 15-2 (Cont.) Child Elements of record-parameters

Child Element Description

time-range-

offset

Specifies the time period during which recording takes place.
Configure the time period with a start child element to specify a
start time, and a duration child element to specify the length of
time to run the recording.

Express the start time as an XML Schema dateTime value of the
form:

yyyy-mm-ddThh:mm:ss

Express the duration in the form:

hh:mm:ss

For example, to have recording start on January 20, 2010, at 5:00 am
and continue for 3 hours, enter the following:

 <time-range-offset>
 <start>2010-01-20T05:00:00</start>
 <duration>03:00:00</duration>
 </time-range-offset>

For complete details of the XML Schema dateTime format, see
http://www.w3.org/TR/xmlschema-2/#dateTime-lexical-

representation.

If you do not specify a time period, then no events are recorded when
the application is deployed and recording happens only after you
explicitly start it with Oracle Event Processing Visualizer or
wlevs.Admin.

You can specify time-range or time-range-offset, but not
both.

batch-size Specifies the number of events that Oracle Event Processing picks up
in a single batch from the event buffer to write the event store.

Default value is 1000.

batch-time-out Specifies the number of seconds that Oracle Event Processing waits
for the event buffer window to fill up with the batch-size number
of events before writing to the event store.

Default value is 60

max-size When specified, Oracle Event Processing uses a stream when writing
to the event store, and this element specifies the size of the stream.
Non-zero values indicate asynchronous writes.

Default value is 1024.

max-threads When specified, Oracle Event Processing uses a stream when writing
to the event store, and this element specifies the maximum number of
threads to be used to process events for this stream. Setting this value
has no effect when max-size is 0.

The default value is 1.

Configure a Component to Record Events

15-6 Developing Applications for Oracle Event Processing

http://www.w3.org/TR/xmlschema-2/#dateTime-lexical-representation
http://www.w3.org/TR/xmlschema-2/#dateTime-lexical-representation

15.7 Configure a Component to Play Back Events
You can configure any processor, adapter, channel, or event bean in your application
to play back events. The component must downstream from the recording component
so that the playback component can receive the events and play them back.

This section updates a channel configuration to play back events.

See Component Configuration in Schema Reference for Oracle Event Processing for
additional information.

1. Open the component configuration XML file and add a playback-parameters
child element to the component you want to configure to playback events. For
example, to configure a channel called eventStream:

<channel>
 <name>eventStream</name>
 <playback-parameters>
 ...
 </playback-parameters>
</channel>

2. Add child elements to playback-parameters to specify a data set, one or more
events to be played back, and so on. For example:

 <channel>
 <name>eventStream</name>
 <playback-parameters>
 <dataset-name>recplay_sample</dataset-name>
 <event-type-list>
 <event-type>SimpleEvent</event-type>
 </event-type-list>
 </playback-parameters>
 </channel>

Table 15-3 lists the child elements of playback-parameters that you can specify.
Only dataset-name is required.

Table 15-3 Child Elements of playback-parameters

Child Element Description

dataset-name Berkeley DB: Identifies the recorded data and places it in a directory
of this name below the directory specified by the db-env-path
setting in the server config.xml file.

Oracle RDBMS-based provider: Specifies the database area, or
schema, in which the tables that store the recorded events are created.
When you configure the Oracle RDBMS-based provider, you must
specify this element. When you configure the Oracle RDBMS-based
provider, you must specify this element.

event-type-list Berkeley DB: Specifies the event types that are played back from the
event store. If this element is not specified, then Oracle Event
Processing plays back all event types.

Oracle RDBMS-based provider: You must specify this element.

Configure a Component to Play Back Events

Debug with Event Record and Playback 15-7

Table 15-3 (Cont.) Child Elements of playback-parameters

Child Element Description

time-range Specifies the time period during which play back takes place with a
start and end time. Configure the time period with a start child
element to specify a start time and an end child element to specify the
end time.

Express the start and end time as XML Schema dateTime values of
the form:

yyyy-mm-ddThh:mm:ss

For example, to specify that play back to start on January 20, 2010, at
5:00am and end on January 20, 2010, at 6:00 pm, enter the following:

 <time-range>
 <start>2010-01-20T05:00:00</start>
 <end>2010-01-20T18:00:00</end>
 </time-range>

For complete details of the XML Schema dateTime format, see
http://www.w3.org/TR/xmlschema-2/#dateTime-lexical-

representation.

If you do not specify a time period, then no events are played back
when the application is deployed and play back happens only after
you explicitly start it using Oracle Event Processing Visualizer or
wlevs.Admin.

You can specify time-range or time-range-offset, but not
both.

Configure a Component to Play Back Events

15-8 Developing Applications for Oracle Event Processing

http://www.w3.org/TR/xmlschema-2/#dateTime-lexical-representation
http://www.w3.org/TR/xmlschema-2/#dateTime-lexical-representation

Table 15-3 (Cont.) Child Elements of playback-parameters

Child Element Description

time-range-

offset

Specifies the time period during which play back takes place with a
start time and a duration. Configure the time period with a start
child element to specify a start time and a duration child element to
specify the length of time to play back events.

Express the start time as an XML Schema dateTime value of the
form:

yyyy-mm-ddThh:mm:ss

Express the duration in the form:

hh:mm:ss

For example, to specify that play back should start on January 20,
2010, at 5:00am and continue for 3 hours, enter the following

 <time-range-offset>
 <start>2010-01-20T05:00:00</start>
 <duration>03:00:00</duration>
 </time-range-offset>

For complete details of the XML Schema dateTime format, see
http://www.w3.org/TR/xmlschema-2/#dateTime-lexical-

representation.

If you do not specify a time period, then no events are played back
when the application is deployed and playback happens after you
explicitly start it using Oracle Event Processing Visualizer or
wlevs.Admin.

You can specify time-range or time-range-offset, but not
both.

playback-speed Specifies the playback speed as a positive float.

The default value is 1, which corresponds to normal speed. A value of
2 means that events are played back 2 times faster than the original
record speed. A value of 0.5 means that events will be played back at
half the speed.

repeat Specifies whether to playback events again after the playback of the
specified time interval completes.

Valid values are true and false. Default value is false. A value of
true means that the repeat of playback continues an infinite number
of times until it is deliberately stopped. False means that events are
played back once.

max-size If specified, Oracle Event Processing uses a stream when playing back
events from the event store. This element specifies the size of the
stream with non-zero values indicating asynchronous writes.

Default value is 1024.

Configure a Component to Play Back Events

Debug with Event Record and Playback 15-9

http://www.w3.org/TR/xmlschema-2/#dateTime-lexical-representation
http://www.w3.org/TR/xmlschema-2/#dateTime-lexical-representation

Table 15-3 (Cont.) Child Elements of playback-parameters

Child Element Description

max-threads If specified, Oracle Event Processing uses a stream to play back
events from the event store. This element specifies the maximum
number of threads to use to process events for the stream. This value
has no effect when max-size is 0.

The default value is 1.

15.8 Start and Stop the Record and Playback of Events
After you configure the record and playback functionality for the components of an
application, and you deploy the application to Oracle Event Processing, the server
starts to record events only when you have configured explicit star and stop
information in the configuration file.

For example, if you included the following element in a component configuration,
then recording starts on January 20, 2010 at 5:00 am:

<time-range>
 <start>2010-01-20T05:00:00</start>
 <end>2010-01-20T18:00:00</end>
</time-range>

To enable the recording and playback of events, use Oracle Event Processing
Visualizer or wlevs.Admin. Once recording and playback are enabled, they start and
stop according to their configuration settings.

For more information, see:

• Record and Playback Events in Using Visualizer for Oracle Event Processing

• Start Playback in Administering Oracle Event Processing

• Stop Playback in Administering Oracle Event Processing

Visualizer and wlevs.Admin use managed beans (MBeans) to dynamically start and
stop event recording and playback and manage the event store configuration. A
managed bean is a Java bean that provides a Java Management Extensions (JMX)
interface. JMX is the Java EE solution for monitoring and managing resources on a
network. You can create your own administration tool and use JMX to manage event
store functionality with
com.bea.wlevs.management.configuration.StageMBean.

For more information, see:

• Java API Reference for Oracle Event Processing.

Start and Stop the Record and Playback of Events

15-10 Developing Applications for Oracle Event Processing

Part III
Tune and Scale

Part III contains the following chapters:

• Performance Tuning

• High Availability Applications

• Scalable Applications

16
Performance Tuning

This chapter describes techniques for improving Oracle Event Processing application
performance by using partitioning and batching, and includes information specific to
high availability performance tuning.

This chapter includes the following sections:

• Channel and JMS Performance Tuning

• High Availability Performance Tuning.

16.1 Channel and JMS Performance Tuning
You can tune application performance of by configuring an event partitioner channel,
batching events, and partitioning an incoming Java Message Service (JMS) stream.

Event partitioner channel: You can improve scalability by configuring an event
partitioner channel. When you configure a channel to use an event partitioner, each
time an incoming event arrives, the channel selects a listener and dispatches the event
to that listener instead of broadcasting each event to every listener for partitioning
events on a channel across its output event sinks.

Batching channel: By default, a channel processes events as they arrive. Alternatively,
you can configure a channel to batch events that have the same time stamp and were
output from the same query by setting the wlevs:channel attribute batching to
true. See Batch Processing Channels for an example.

Scalability with ActiveActiveGroupBean. Use
com.oracle.cep.cluster.hagroups.ActiveActiveGroupBean to partition an
incoming JMS stream in Oracle Event Processing applications with the notification
groups that the ActiveActiveGroupBean creates. For more information, see
Scalable Applications.

16.2 High Availability Performance Tuning
When creating high-availability applications for deployment to multiserver domains,
consider the following performance tuning options:

Host configuration: To maximize high availability performance, ensure that all hosts
in the multiserver domain are configured with equivalent processing capacity (similar
number and type of CPUs), and that all hosts have sufficient memory and disk for the
needs of the application

High availability input adapter and quality of service: The Oracle Event Processing
high availability input adapter is applicable to all high availability quality of service
options. However, because the high availability input adapter increases performance
overhead, it is not appropriate for some high availability quality of service options,
such as those described in Simple Failover and Simple Failover with Buffering. If you
are using application time from the event, then you do not need to use the input

Performance Tuning 16-1

adapter. Application time from the event is always preferable from a performance
standpoint.

High availability input adapter configuration: Consider increasing the batch-size
to reduce the amount of time the primary server spends broadcasting event messages
and to reduce the amount of time the secondary servers spend processing these
messages. Increasing the batch-size can increase the likelihood of missed and
duplicate events when the primary fails before broadcasting an event message with a
large number of events.

Broadcast output adapter configuration: Decrease the trimming-interval to
reduce the amount of time the primary server spends broadcasting trimming
messages and to reduce the amount of time the secondary servers spend processing
these messages. Decreasing the trimming-interval may increase recovery time as
the new primary server's in-memory queue will be more out of date relative to the old
primary.

Oracle Coherence performance tuning options. When you configure Oracle
Coherence in a high-availability architecture, consider the following options:

• Increase the Oracle Coherence heartbeat time out machine frequency to reduce the
number of heartbeats before failure. See Oracle Coherence Developer's Guide at
http://download.oracle.com/docs/cd/E15357_01/coh.360/e15723/
tune_perftune.htm.

• Implement the Oracle Coherence Portable Object Format (POF) for serialization to
improve messaging performance. POF is a language agnostic binary format that
was designed to be very efficient in both space and time. Using POF instead of Java
serialization can greatly improve performance.

High Availability Performance Tuning

16-2 Developing Applications for Oracle Event Processing

http://download.oracle.com/docs/cd/E15357_01/coh.360/e15723/tune_perftune.htm
http://download.oracle.com/docs/cd/E15357_01/coh.360/e15723/tune_perftune.htm

17
High Availability Applications

High availability is critical to Oracle Event Processing applications because they
continuously monitor streaming data. Oracle Event Processing provides application
design patterns and high availability adapters, to enable you to increase the backup
and failover processing capabilities of you applications.

This chapter includes the following sections:

• Oracle Coherence

• Architecture

• Life Cycle and Failover

• Deployment Group and Notification Group

• High Availability Adapters

• High Availability and Scalability

• Choose a Quality of Service Option

• Design Applications for High Availability

• Configure High Availability Quality of Service

• Configure High Availability Adapters.

17.1 Oracle Coherence
Oracle Event Processing high availability options depend on Oracle Coherence. You
cannot implement Oracle Event Processing high availability options without Oracle
Coherence.

When considering performance tuning, be sure to evaluate your Oracle Coherence
configuration in addition to your Oracle Event Processing application.

For more information, see:

• High Availability Performance Tuning

• Oracle Coherence in Administering Oracle Event Processing

• Oracle Coherence Configuration in Developing Applications with Oracle Coherence.

17.2 Architecture
Oracle Event Processing supports an active-active high availability architecture. This
approach has the advantages of high performance, simplicity, and short failover time
to mitigate the likelihood and impact of data and service faults.

High Availability Applications 17-1

Deploy high availability applications to a group of two or more Oracle Event
Processing servers running in a multiserver domain. Oracle Event Processing chooses
one server in the group to be the active primary server. The other servers become
active secondary servers.

The primary and secondary servers are configured to receive the same input events
and process them in parallel but only the primary server outputs events to the Oracle
Event Processing application client. Depending on the quality of service you choose,
the secondary servers buffer their output events using in-memory queues and the
primary server keeps the secondary servers up to date with which events the primary
has already output.

Figure 17-1 shows a typical configuration with one active server and two primary
servers.

Figure 17-1 Oracle Event Processing High Availability: Primary and Secondary
Servers

17.3 Life Cycle and Failover
Figure 17-2 shows a state diagram for the Oracle Event Processing high availability life
cycle. In this diagram, the state names (SECONDARY, BECOMING_PRIMARY, and
PRIMARY) correspond to the Oracle Event Processing high availability adapter
RuntimeMBean method getState return values. These states are specific to Oracle
Event Processing. See High Availability Input Adapter for more information about the
high availability adapter.

Life Cycle and Failover

17-2 Developing Applications for Oracle Event Processing

Figure 17-2 Oracle Event Processing High Availability Life Cycle State Diagram

You cannot specify the initial primary server. Initially, the first server in the
multiserver domain to start up becomes the primary so by starting servers in a
particular order, you can influence primary selection. There is no way to force a
particular, running server to become the primary. If a primary fails and comes back
up, then it does not automatically become the primary again unless the current
primary fails and causes a failover.

17.3.1 Secondary Failure
In general, when a secondary server fails, there is no effect on Oracle Event Processing
application operation as Figure 17-3 shows. Regardless of the quality of service you
choose, there are no missed or duplicate events.

Figure 17-3 Secondary Failure

17.3.2 Primary Failure and Failover
When a primary server fails, as Figure 17-4 shows, Oracle Event Processing performs a
failover that can cause missed or duplicate events, depending on the quality of service
you choose.

Life Cycle and Failover

High Availability Applications 17-3

Figure 17-4 Primary Failure and Failover

During failover, Oracle Event Processing selects a new primary and the new primary
transitions from the SECONDARY state to the BECOMING_PRIMARY state. Depending
on the quality of service you choose, the new primary does not transition to PRIMARY
state until a configurable readiness threshold is met. For details, see the specific
quality of service option in Choose a Quality of Service Option.

17.3.3 Rejoining the High Availability MultiServer Domain
When a new Oracle Event Processing server is added to an Oracle Event Processing
high availability multiserver domain or an existing failed server restarts, the server
does not fully join the Oracle Event Processing high availability deployment and
notification groups until all applications deployed to it have fully joined. The type of
application determines when it can fully join.

If the application must generate exactly the same sequence of output events as existing
secondaries (a Type 1 application), then it must be able to rebuild its internal state by
processing input streams for some finite period of time (the warm-up-window-
length period). This warm-up-window-length time determines the minimum time
it takes for the application to fully join the Oracle Event Processing high availability
deployment and notification groups.

If the application does not need to generate exactly the same sequence of output
events as existing secondaries (a Type 2 application), then it does not require a warm-
up-window-length time and fully joins the Oracle Event Processing high
availability deployment and notification groups when it deploys.

For more information, see Choose an Adequate warm-up-window-length Time.

17.4 Deployment Group and Notification Group
All of the servers in the multiserver domain belong to the same deployment group. the
deployment group is the group to which you deploy an application. For the purposes
of Oracle Event Processing high availability, you must deploy the same application to
all of the servers in this group.

By default, all of the servers in the multiserver domain also belong to the same
notification group. The servers listen to the notification group for membership
notifications that indicate when a server fails (and exits the group) or resumes
operation (and rejoins the group), and for synchronization notifications from the
primary.

Deployment Group and Notification Group

17-4 Developing Applications for Oracle Event Processing

If you need to scale your Oracle Event Processing high availability application, use the
ActiveActiveGroupBean to define a notification group that allows two or more
servers to function as a primary server unit while retaining the convenience of a single
deployment group that spans all servers (primaries and secondaries).

You must use Oracle Coherence-based clustering to create the multiserver domain
deployment group. You can use either default groups or custom groups.

For more information, see:

• High Availability and Scalability

• Oracle Coherence

• Custom Deployment Groups in Administering Oracle Event Processing.

17.5 High Availability Adapters
To implement Oracle Event Processing high availability, add the optional high
availability input adapter and the required high availability output adapters to the
EPN.

High Availability Input Adapter

The optional high availability input adapter in the primary server communicates with
the corresponding high availability input adapters in each secondary server to
normalize event time stamps. Oracle Event Processing high availability provides one
type of high availability input adapter.

See High Availability Input Adapter.

High Availability Output Adapters

To have high availability functionality in your application, put a high availability
output adapter before each output adapter in your EPN. The high availability output
adapter in the primary server outputs events to the output streams that connect the
Oracle Event Processing application to its downstream client.

The high availability output adapter in the primary also communicates with the
corresponding high availability output adapters in each secondary, and depending on
the high availability quality of service you choose, can instruct the secondary output
adapters to trim their in-memory queues of output events.

For information about the high availability output adapters, see Buffering Output
Adapter, Broadcast Output Adapter, and Correlating Output Adapter. Which output
adapter you choose is determined by the high availability quality of service you
choose. See Choose a Quality of Service Option.

Figure 17-5 shows a simplified EPN with all possible high availability adapters in
place. The figure shows no channels and one processor.

High Availability Adapters

High Availability Applications 17-5

Figure 17-5 High Availability Adapters in the EPN

17.5.1 High Availability Input Adapter
Each event is associated with a point in time at which the event occurred. There are
two different approaches to generating event timestamps: application timestamps and
system timestamps (see Channels for information about application and system time
stamps). Application time means that a time value is assigned to each event externally
by the application before the event enters a CQL processor. System time means that a
time value is associated with an event automatically by Oracle Event Processing when
it arrives at a CQL processor.

Application time is generally the best approach for applications that need to be highly
available. The application time is associated with an event before the event is sent to
Oracle Event Processing, so it is consistent across active primary and secondary
instances. System time can cause application instances to generate different results
because the time value associated with an event can be different on each instance due
to system clocks not being synchronized.

Using system time is not a problem for applications whose CQL queries do not use
time-based windows. Applications that use only event-based windows depend only
on the arrival order of events rather than the arrival time, so system time can be used
in this case.

For applications that use time-based windows and do not have externally generated
(application) time stamps, the optional Oracle Event Processing high availability input
adapter can be used to provide a consistent time value across all servers. The input
adapter instance on the primary server assigns a time (in nanoseconds) to events as
they arrive at the adapter and forwards the time values assigned for each event to all
secondary servers.

Because a time value is assigned to each event before the event reaches any
downstream channels in the EPN, downstream channels should be configured to use
application time so that they do not assign a new time value to events as they arrive at
the channel.

Input events must have a key that uniquely identifies each event in order to use this
adapter.

High Availability Adapters

17-6 Developing Applications for Oracle Event Processing

You can configure the Oracle Event Processing high availability input adapter to send
heartbeat events.

The Oracle Event Processing high availability input adapter is applicable to all high
availability quality of service options. However, because the high availability input
adapter increases performance overhead, it is not appropriate for some high
availability quality of service options (such as Simple Failover and Simple Failover
with Buffering). For these options, you should instead consider using application time
with some incoming event property.

For more information, see:

• Light-Weight Queue Trimming

• Precise Recovery with JMS

• Configure the High Availability Input Adapter.

17.5.2 Buffering Output Adapter
The Oracle Event Processing high availability buffering output adapter implements a
buffered queue trimming strategy. The buffer is a sliding window of output events
from the stream. The size of the window is measured in milliseconds.

The Oracle Event Processing high availability buffering output adapter applies to
simple failover, and simple failover with buffering high availability quality of service
options.

For more information, see:

• Simple Failover

• Simple Failover with Buffering

• Configure the Buffering Output Adapter.

17.5.3 Broadcast Output Adapter
The Oracle Event Processing high availability broadcast output adapter implements a
distributed queue trimming strategy. The active primary instance broadcasts messages
to the active secondary instances in the notification group telling them when to trim
their local representation of the queue.

The Oracle Event Processing high availability broadcast output adapter applies to the
light-weight queue trimming high availability quality of service option.

For more information, see:

• Light-Weight Queue Trimming

• Configure the Broadcast Output Adapter.

17.5.4 Correlating Output Adapter
The Oracle Event Processing high availability correlating output adapter correlates
two event streams, usually from JMS. This adapter correlates an inbound buffer of
events with a second source of the same event stream, outputting the buffer if
correlation fails after a configurable time interval. Correlated events are trimmed from
the queue. Correlated events are assumed to be in-order.

High Availability Adapters

High Availability Applications 17-7

The Oracle Event Processing high availability correlating output adapter applies to
precise recovery with JMS high availability quality of service option.

For more information, see:

• Precise Recovery with JMS

• Configure the Correlating Output Adapter.

17.6 High Availability and Scalability
If you need to scale your Oracle Event Processing high availability application, use the
notification groups Spring bean, ActiveActiveGroupBean to increase scalability in
JMS applications.

The ActiveActiveGroupBean defines a notification group that allows two or more
servers to function as a high availability unit while retaining the convenience of a
single deployment group that spans all servers (primaries and secondaries).

Figure 17-6 shows three Oracle Event Processing application scenarios progressing
from the simplest configuration, to high availability, and then to both high availability
and scalability.

Figure 17-6 High Availability and Scalability

Most applications begin in a single-server domain without high availability. In this
case, the simplest scenario, which is an Oracle Event Processing application running
on one Oracle Event Processing server processes an input event stream and produces
output events.

High Availability and Scalability

17-8 Developing Applications for Oracle Event Processing

High availability scenario: The application is configured to use Oracle Event
Processing high availability options, is deployed to the deployment group of a
multiserver domain composed of two server, and only the primary server outputs
events.

High availability and scalability scenario: The high availability application is
configured to use the ActiveActiveGroupBean to define notification groups. Each
notification group contains two or more servers that function as a single, high
availability unit. In this scenario, only the primary server in each notification group
outputs events. Should the primary server in a notification group go down, an Oracle
Event Processing high availability fail over occurs and a secondary server in that
notification group is declared the new primary and resumes outputting events
according to the Oracle Event Processing high availability quality of service you
configure.

For more information, see Configure Partitioning with High Availability.

17.7 Choose a Quality of Service Option
Choose the quality of service option that suits your application's tolerance for missed
and duplicate events and expected event throughput. Note that primary and
secondary server hardware requirements increase as the quality of service becomes
more precise.

You can choose any of the quality of service options that Table 17-1 lists.

Table 17-1 Oracle Event Processing High Availability Quality of Service

High Availability Option Missed
Events?

Duplicate
Events?

Performanc
e Overhead

Simple Failover Yes
(many)

Yes (few) Negligible

Simple Failover with Buffering Yes (few) Yes
(many)

Low

Light-Weight Queue Trimming No Yes (few) Low-
Medium

Precise Recovery with JMS No No High

17.7.1 Simple Failover
The simple failover high availability quality of service is characterized by the lowest
performance overhead (fastest recovery time) and the least data integrity (both missed
events and duplicate events are possible during failover).

The primary server outputs events and secondary servers discard their output events
because they do not buffer output events. If the current active primary fails, a new
active primary is chosen and begins sending output events once it is notified.

During failover, many events can be missed or duplicated by the new primary
depending on whether it is running ahead of or behind the old primary, respectively.

During the failover window, events can be missed. For example, if you process 100
events per second and failover takes 10 seconds, then you miss 1000 events

The new primary server enters the PRIMARY state immediately. There is no
configurable readiness threshold that must be met before the new primary server

Choose a Quality of Service Option

High Availability Applications 17-9

transitions out of the BECOMING_PRIMARY state. When an Oracle Event Processing
server rejoins the multiserver domain, it is immediately available as a secondary.

To implement this high availability quality of service, you configure your EPN with a
high availability buffering output adapter (with a sliding window of size zero) before
each output adapter. To reduce performance overhead, rather than use a high
availability input adapter, use application time with some incoming event property.

For more information, see Configure a Simple Failover.

17.7.2 Simple Failover with Buffering
The simple failover with buffering high availability quality of service is characterized
by a low performance overhead (faster recovery time) and increased data integrity (no
missed events but many duplicate events are possible during failover).

The primary server outputs events and the secondary servers buffer their output
events. If the current active primary fails, a new active primary is chosen and begins
sending output events once it is notified.

During the failover window, events might be missed. For example, if you are
processing 100 events per second and failover takes 10 seconds, then you miss 1000
events. If the secondary buffers are large, a significant number of duplicates can be
output. On the other hand, a larger buffer reduces the chances of missed messages.

When an Oracle Event Processing server rejoins the multiserver domain, if your
application is an Oracle Event Processing high availability Type 1 application (the
application must generate exactly the same sequence of output events as existing
secondaries), then it must wait the warm-up-window-length time you configure for
the Oracle Event Processing high availability output adapter before it is available as a
secondary.

To implement this high availability quality of service, you configure your EPN with a
high availability buffering output adapter with a sliding window of size greater than
zero before each output adapter. To reduce performance overhead, rather than use a
high availability input adapter, use application time with some incoming event
property.

For more information, see:

• Choose an Adequate warm-up-window-length Time

• Configure Simple Failover With Buffering.

17.7.3 Light-Weight Queue Trimming
This high availability quality of service is characterized by a low performance
overhead (faster recovery time) and increased data integrity (no missed events but a
few duplicate events are possible during failover).

The active primary communicates to the secondaries the events that it has actually
processed. This enables the secondaries to trim their buffer of output events so that it
contains only those events that have not been sent by the primary at a particular point
in time. Because events are only trimmed after they have been sent by the current
primary, this allows the secondary to avoid missing any output events when there is a
failover.

The frequency with which the active primary sends queue trimming messages to
active secondaries is configurable:

Choose a Quality of Service Option

17-10 Developing Applications for Oracle Event Processing

• Every n events (n>0)

This limits the number of duplicate output events to at most n events at failover.

• Every n milliseconds (n>0)

The queue trimming adapter requires a way to identify events consistently among the
active primary and secondaries. The recommended approach is to use application time
to identify events, but any key value that uniquely identifies events works.

The advantage of queue trimming is that output events are never lost. There is a slight
performance overhead at the active primary, however, for sending the trimming
messages that need to be communicated. This overhead increases as the frequency of
queue trimming messages increases.

During failover, the new primary enters the BECOMING_PRIMARY state and does not
transition into the PRIMARY state until its event queue (that it was accumulating as a
secondary) has been flushed. During this transition, new input events are buffered and
some duplicate events can be output.

When an Oracle Event Processing server rejoins the multiserver domain, if your
application is an Oracle Event Processing high availability Type 1 application (an
application that must generate exactly the same sequence of output events as existing
secondaries), then it must wait the warm-up-window-length time you configure for
the Oracle Event Processing high availability output adapter before it is available as a
secondary.

To implement this high availability quality of service, you configure your EPN with a
high availability input adapter after each input adapter and a high availability
broadcast output adapter before each output adapter.

For more information, see Configure Light-Weight Queue Trimming.

17.7.4 Precise Recovery with JMS
The precise recovery with JMS high availability quality of service is characterized by a
high performance overhead (slower recovery time) and maximum data integrity (no
missed events and no duplicate events during failover). This high availability quality
of service is compatible with only JMS input and output adapters.

In the precise recovery with JMS high availability quality of service, the focus is not on
transactional guarantees along the event path for a single-server, but on guaranteeing
a single output from a set of servers. To achieve guarantee, secondary servers listen
over JMS to the event stream being published by the primary. As Figure 17-7 shows,
this incoming event stream is a source of reliable queue-trimming messages that the
secondaries use to trim their output queues. If JMS is configured for reliable delivery,
we can be sure that the stream of events seen by the secondary is precisely the stream
of events output by the primary and so failover allows the new primary server to
output precisely those events not delivered by the old primary server.

Choose a Quality of Service Option

High Availability Applications 17-11

Figure 17-7 Precise Recovery with JMS

During failover, the new primary server enters the BECOMING_PRIMARY state and
does not transition into the PRIMARY state in its event queue (that was accumulating
as a secondary) has been flushed. During this transition, new input events are buffered
and no duplicate events are output.

When an Oracle Event Processing server rejoins the multiserver domain, if your
application is an Oracle Event Processing high availability Type 1 application (the
application must generate exactly the same sequence of output events as existing
secondaries), it must wait the warm-up-window-length time you configure for the
Oracle Event Processing high availability output adapter before it is available as a
secondary server.

To implement the precise recovery with JMS high availability quality of service, you
configure your EPN with a high availability input adapter after each input adapter
and a high availability correlating output adapter before each output adapter.

To increase scalability, you can also use the cluster groups bean with high availability
quality of service.

For more information, see:

• Configure Precise Recovery With JMS

• Partition an Incoming JMS Event Stream.

17.8 Design Applications for High Availability
When you design your application for high availability, consider the primary use case,
design patterns, and Oracle CQL query restrictions discussed here.

Although you can implement Oracle Event Processing high availability declaratively,
to fully benefit from the high availability quality of service you choose, you must
design your Oracle Event Processing application to take advantage of the high
availability options that Oracle Event Processing provides.

17.8.1 Primary High Availability Use Case
You can adapt high availability options to various Oracle Event Processing application
designs but in general, Oracle Event Processing high availability is designed for the
following use case:

Design Applications for High Availability

17-12 Developing Applications for Oracle Event Processing

• An application receives input events from one or more external systems.

• The external systems are publish-subscribe style systems that allow multiple
instances of the application to connect simultaneously and receive the same stream
of messages.

• The application does not update any external systems in a way that would cause
conflicts when multiple copies of the application run concurrently.

• The application sends output events to an external downstream system. Multiple
instances of the application can connect to the downstream system simultaneously,
although only one instance of the application can send messages at any one time.

Within these constraints, the following different cases are of interest:

• The application is allowed to skip sending some output events to the downstream
system when there is a failure. Duplicates are also allowed. Use the “Simple
Failover” high availability quality of service option.

• The application is allowed to send duplicate events to the downstream system, but
must not skip any events when there is a failure. Use the Simple Failover with
Buffering and Light-Weight Queue Trimming high availability quality of service
options.

• The application must send exactly the same stream of messages/events to the
downstream system when there is a failure, modulo a brief pause during which
events may not be sent when there is a failure. Use the Precise Recovery with JMS
high availability quality of service option.

17.8.2 High Availability Design Patterns
When designing your Oracle Event Processing application for use with Oracle Event
Processing high availability options, observe the following design patterns:

• Select the Minimum High Availability Your Application can Tolerate

• Use High Availability Components at All Ingress and Egress Points

• Preserve What You Need

• Limit Oracle Event Processing Application State

• Choose an Adequate warm-up-window-length Time

• Ensure Applications are Idempotent

• Source Event Identity Externally

• Understand the Importance of Event Ordering

• Write Oracle CQL Queries with High Availability in Mind

• Avoid Coupling Servers

• Plan for Server Recovery.

17.8.2.1 Select the Minimum High Availability Your Application can Tolerate

Be sure that the extra cost of precise recovery (per-stage throughput decrease) is
actually necessary for your application.

Design Applications for High Availability

High Availability Applications 17-13

17.8.2.2 Use High Availability Components at All Ingress and Egress Points

Use a high availability input adapter after each regular input adapter and use a high
availability output adapter before each regular output adapter.

17.8.2.3 Preserve What You Need

Oracle Event Processing systems receive a large number of raw input events that are
queried to generate a smaller number of relevant events. In general it makes sense to
preserve the relevant event because there are fewer of them, and they are more
valuable.

17.8.2.4 Limit Oracle Event Processing Application State

Oracle Event Processing systems enable you to query windows of events. It can be
tempting to build systems with very large windows, but this increases the state that
needs to be rebuilt when failure occurs. In general it is better to think of long-term
state as something kept in stable storage, such as a distributed cache or a database to
leverage the high availability facilities of these technologies.

17.8.2.5 Choose an Adequate warm-up-window-length Time

When a new Oracle Event Processing server is added to a high availability multiserver
domain or when an existing failed server restarts, the server does not fully join the
Oracle Event Processing high availability deployment and notification groups until all
applications deployed to it have fully joined. The type of application determines when
it fully joins.

Oracle Event Processing high availability applications can be described as Type 1 or
Type 2 applications as Table 17-2 shows.

Table 17-2 Oracle Event Processing High Availability Application Types

Application
Type

Must generate exactly
the same sequence of
output events?

Must be able to rebuild
internal state by
processing input
streams within a finite
period of time?

Must wait this period of
time before it has fully
joined?

Type 1 Yes Yes Yes

Type 2 No No No

For more information, see Rejoining the High Availability MultiServer Domain.

17.8.2.5.1 Type 1 Applications

A Type 1 application requires the new secondary server to generate exactly the same
sequence of output events as existing secondary servers once it fully joins the high
availability deployment and notification groups.

A Type 1 application must be able to rebuild its internal state by processing its input
streams for a finite period of time (warm-up-window-length time), after which it
generates the same stream of output events as other secondary servers running the
application.

Configure the warm-up-window-length time on a high availability output adapter.
Specify the length of the warm-up-window-length time length in seconds or
minutes. For example, if the application contains Oracle CQL queries with range-

Design Applications for High Availability

17-14 Developing Applications for Oracle Event Processing

based windows of 5, 7, and 15 minutes, then the minimum warm-up-window-
length time is 15 minutes (the maximum range-based window size). Oracle
recommends that the maximum window length be padded with a few minutes to
ensure that the necessary state is available. So, in the previous example 17 minutes or
20 minutes would be a good length for the warm-up-window-length time.

The server uses system time during the warm-up-window-length time period, so
the server time is not directly correlated with the application time associated with
events being processed.

Type 1 applications must only be interested in events that occurred during a finite
amount of time. All range-based Oracle CQL windows must be shorter than the
warm-up-window-length time and tuple-based windows must be qualified by
time. For example, the application should only query the last 10 events if they
occurred within the last five minutes. Applications that do not have this property
cannot be Type 1 applications and cannot use the warm-up-window-length period.

For example, an application that uses an tuple-based partitioned window that has no
time qualification cannot use the warm-up-window-length period because an
arbitrary amount of time is required to rebuild the state of the window.

If a Type 1 application uses the high availability broadcast output adapter, it can trim
events with a unique application-specific key, or a monotonic key like application
time. Trimming events with application time is encouraged because it is more robust
and less susceptible to bugs in the application that can cause an output event to not be
generated.

For more information, see:

• Oracle CQL Query Restrictions

• Buffering Output Adapter

• Broadcast Output Adapter

• Correlating Output Adapter

17.8.2.5.2 Type 2 Applications

A Type 2 application does not require the new secondary server to generate the same
sequence of output events as existing secondary servers once it fully joins the high
availability deployment and notification groups. It simply requires that the new
cluster member generate valid output events with respect to the point in time at which
it begins processing input events.

A Type 2 application does not require a warm-up-window-length period.

Most applications are Type 2 applications. It is common for an application to be
brought up at an arbitrary point in time (on the primary Oracle Event Processing
server), begin processing events from input streams at that point, and generate valid
output events. The input stream is not paused while the application starts and input
events are constantly being generated and arriving. You can assume that in many
cases a secondary stage that does the same thing, but at a slightly different time, also
produces output events that are valid from the point of view of the application,
although not necessarily identical to those events produced by the primary server
because of slight timing differences.

For example, a financial application that only runs while the market is open might
operate as a Type 2 application as follows: All servers can be brought up before the
market opens and begin processing incoming events at the same point in the market
data stream. Multiple secondary servers can be run to protect against failure, and if the

Design Applications for High Availability

High Availability Applications 17-15

number of secondary servers is sufficient while the market is open, then do not restart
secondary servers that fail or add additional secondary servers because no secondary
server needs to recover its state.

17.8.2.6 Ensure Applications are Idempotent

You scan run two copies of an application on different servers and the copies do not
conflict in a shared cache or database. If you use an external relation (such as a cache
or table), then you must ensure that when a server rejoins the cluster, your application
accesses the same cache or table as before. The application must join to the same
external relation again. The data source defined on the server must not have been
changed to ensure that you are pulling data from same data source.

17.8.2.7 Source Event Identity Externally

Many high availability solutions require that events be correlated between different
servers. To correlate events, the events must be universally identifiable. The best way
to make event universally identifiable is use external information, preferably a time
stamp, to seed the event. For more information, see Prefer Application Time .

17.8.2.8 Understand the Importance of Event Ordering

Primary and secondary servers must generate the same output events and in exactly
the same order when you choose high availability quality of service options that use
queue trimming and equality-based event identify (non-monotonic event identifiers
that do not increase continually). Generating output events in different orders can
cause missed output events or unnecessary duplicate output events when a failure
occurs.

Consider the output event streams shown in Figure 17-8. The primary server has
output events a, b, and c. After outputting event c, the primary sends the secondary a
queue trimming message.

Figure 17-8 Event Order

The secondary server trims all events in its queue generated prior to event c including
event c itself. In this case, the set of events trimmed will be {a, b, e, d, c},
which is wrong because the primary server has not yet output events d and e. If a
failover occurs after processing the trimming message for event c, events are lost.

17.8.2.8.1 Prefer Deterministic Behavior

For an application to generate events in the same order when run on multiple
instances, it must be deterministic. The application must not rely on things like:

• Random number generators that can return different results on different machines.

• Methods like System.getTimeMillis or System.nanoTime that can return
different results on different machines because the system clocks are not
synchronized.

Design Applications for High Availability

17-16 Developing Applications for Oracle Event Processing

17.8.2.8.2 Avoid Multithreading

Because thread scheduling algorithms are very timing dependent, multithreading can
be a source of nondeterministic behavior in applications. Different threads can be
scheduled at different times on different machines.

For example, avoid creating an EPN in which multiple threads send events to a high
availability adapter in parallel. If such a channel is an event source for a high
availability adapter, it would cause events to be sent to the adapter in parallel by
different threads and could make the event order nondeterministic. Also, do not send
events to the mediator (JMS server) with multiple threads, which acts as an event
source.

For more information on channel configuration to avoid, see:

• Configuration File Elements and Properties in Customizing Oracle Event Processing

• max-threads in Schema Reference for Oracle Event Processing.

17.8.2.8.3 Prefer Monotonic Event Identifiers

Event identifiers can be monotonic or non-monotonic. A monotonic identifier is one
that increases continually (such as a time value). A non-monotonic identifier does not
increase continually and may contain duplicates.

In general, design your application with monotonic event identifiers. With a
monotonic event identifier, the Oracle Event Processing high availability adapter can
handle an application that may produce events out of order.

17.8.2.9 Write Oracle CQL Queries with High Availability in Mind

Not all Oracle CQL query usage is supported when using Oracle Event Processing
high availability. You might need to redefine your Oracle CQL queries to address
these restrictions. For more information, see Oracle CQL Query Restrictions .

17.8.2.10 Avoid Coupling Servers

The best high availability performance for Oracle Event Processing systems comes
when servers can run without requiring coordination. Generally this can be done
when there is no shared state, and the downstream system can tolerate duplicates.
Increasing levels of high availability are targeted at increasing the fidelity of event
stream that the downstream system sees, but the increase in fidelity has a performance
penalty.

17.8.2.11 Plan for Server Recovery

When a secondary server rejoins the multiserver domain, the server needs time to
rebuild the application state to match the current primary and active secondaries. See
Choose an Adequate warm-up-window-length Time.

The time it takes for a secondary server to become available as an active secondary
server after it rejoins the multiserver domain is a factor in the number of active
secondary servers you require.

If a secondary is declared to be the new primary server before it is ready, the
secondary server throw an exception.

Design Applications for High Availability

High Availability Applications 17-17

17.8.3 Oracle CQL Query Restrictions
In a high availability application, Oracle CQL queries have the following restrictions.
For more information about Oracle CQL and the topics covered in this section, see
Queries in Oracle CQL Language Reference for Oracle Event Processing.

17.8.3.1 Range-Based Windows

In a Type 1 application where the application must generate exactly the same sequence
of output events as existing secondaries, all range-based Oracle CQL windows must
be shorter than the warm-up-window-length time. See Choose an Adequate warm-
up-window-length Time.

Channels must use application time when Oracle CQL queries contain range-based
Windows. See Prefer Application Time .

17.8.3.2 Tuple-Based Windows

In a Type 1 application where the application must generate exactly the same sequence
of output events as existing secondaries, all tuple-based windows must be qualified by
time. See Choose an Adequate warm-up-window-length Time.

17.8.3.3 Partitioned Windows

Avoid partitioned windows because there are situations in which a partition cannot be
rebuilt. If you do use partitioned windows, configure a warm-up-window-length
time long enough to give the Oracle Event Processing server time to rebuild the
partition. See Choose an Adequate warm-up-window-length Time.

17.8.3.4 Sliding Windows

Oracle CQL queries should not use sliding windows when new stages that join the
multiserver domain are expected to generate exactly the same output events as
existing stages. See Rejoining the High Availability MultiServer Domain.

17.8.3.5 DURATION Clause and Non-Event Detection

You must use application time when Oracle CQL queries contain a DURATION clause
for non-event detection. See Prefer Application Time .

17.8.3.6 Prefer Application Time

In Oracle Event Processing each event is associated with a point in time at which the
event occurred. Oracle CQL recognizes two types of time:

• Application time: A time value assigned to each event outside of Oracle CQL by
the application before the event enters the Oracle CQL processor.

• System time: A time value associated with an event when it arrives at the Oracle
CQL processor, essentially by calling System.nanoTime().

Application time is generally the best approach for applications that need to be highly
available. The application time is associated with an event before the event is sent
downstream, so it is consistent across active primary and secondary servers.

System time can cause application instances to generate different results because the
time value associated with an event can be different on each server due to system
clocks not being synchronized. You can use system time for applications when Oracle
CQL queries do not use time-based windows. Applications that use only event-based

Design Applications for High Availability

17-18 Developing Applications for Oracle Event Processing

windows depend only on the arrival order of events rather than the arrival time, so
you can use system time in this case.

If you must use system time with Oracle CQL queries that do use time-based
windows, then you must use a Oracle Event Processing high availability input adapter
that intercepts incoming events and assigns a consistent time that spans primary and
secondary servers.

17.9 Configure High Availability Quality of Service
You configure Oracle Event Processing high availability quality of service in the
assembly and component configuration files.

After you make Oracle Event Processing high availability configuration changes, you
must redeploy your Oracle Event Processing application.

This section includes the following procedures:

• Configure a Simple Failover

• Configure Simple Failover With Buffering

• Configure Light-Weight Queue Trimming

• Configure Precise Recovery With JMS.

17.9.1 Configure a Simple Failover
You configure simple failover with the Oracle Event Processing high availability
buffering output adapter with a sliding window size of zero (0).

This procedure starts with the example EPN that Figure 17-9 shows and adds the
required components to configure it for a simple failover.

Figure 17-9 Simple Failover EPN

Configure a simple failover:

1. Create a multiserver domain using Oracle Coherence.

For more information, see Multiserver Administration in Administering Oracle Event
Processing.

2. Create an Oracle Event Processing application.

3. Edit the MANIFEST.MF file to add the following Import-Package entries:

• com.bea.wlevs.ede.api.cluster

• com.oracle.cep.cluster.hagroups

• com.oracle.cep.cluster.ha.adapter

• com.oracle.cep.cluster.ha.api

Configure High Availability Quality of Service

High Availability Applications 17-19

4. Configure your Oracle Event Processing application EPN assembly file to add an
Oracle Event Processing high availability buffering output adapter as the following
assembly file entries show.

• Add a wlevs:adapter element with provider set to ha-buffering after
channel helloworldOutputChannel.

• Update the wlevs:listener element in channel
helloworldOutputChannel to reference the ha-buffering adapter by its
id.

• Add a wlevs:listener element to the ha-buffering adapter that
references the HelloWorldBean class.

<wlevs:event-type-repository>
 <wlevs:event-type type-name="HelloWorldEvent">
 <wlevs:class>com.bea.wlevs.event.example.helloworld.HelloWorldEvent
 </wlevs:class>
 </wlevs:event-type>
</wlevs:event-type-repository>

<wlevs:adapter id="helloworldAdapter"
 class="com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapter" >
<wlevs:instance-property name="message" value="HelloWorld -
 the current time is:"/>
</wlevs:adapter>

<wlevs:channel id="helloworldInputChannel" event-type="HelloWorldEvent" >
 <wlevs:listener ref="helloworldProcessor"/>
</wlevs:channel>

<wlevs:processor id="helloworldProcessor" />

<wlevs:channel id="helloworldOutputChannel" event-type="HelloWorldEvent"
 advertise="true">
 <wlevs:listener ref="myHaSlidingWindowAdapter"/>
 <wlevs:source ref="helloworldProcessor"/>
 </wlevs:channel>

 <wlevs:adapter id="myHaSlidingWindowAdapter" provider="ha-buffering" >
 <wlevs:listener>
 <bean class="com.bea.wlevs.example.helloworld.HelloWorldBean"/>
 </wlevs:listener>
 </wlevs:adapter>

5. Optionally, configure the channel downstream from the input adapter
(helloworldInputChannel) to configure an application time stamp based on an
appropriate event property as assembly file entries show.

For simple failover, you can use system time stamps because events are not
correlated between servers. However, it is possible that slightly different results
might be output from the buffer if application time stamps are not used.

In this example, event property arrivalTime is used.

The wlevs:expression should be set to this event property.

<wlevs:channel id="helloworldInputChannel" event-type="HelloWorldEvent" >
 <wlevs:listener ref="helloworldProcessor"/>
 <wlevs:source ref="myHaInputAdapter"/>
 <wlevs:application-timestamped>
 <wlevs:expression>arrivalTime</wlevs:expression>
 </wlevs:application-timestamped>
 </wlevs:channel>

6. Configure the Oracle Event Processing high availability buffering output adapter.

Configure High Availability Quality of Service

17-20 Developing Applications for Oracle Event Processing

Set the instance property windowLength to zero (0) as shown.

<wlevs:adapter id="myHaSlidingWindowAdapter" provider="ha-buffering" >
 <wlevs:listener>
 <bean class="com.bea.wlevs.example.helloworld.HelloWorldBean"/>
 </wlevs:listener>
 <wlevs:instance-property name="windowLength" value="0"/>
</wlevs:adapter>

7. Optionally, configure the component configuration file to include the Oracle Event
Processing high availability buffering output adapter as shown.

<processor>
 <name>helloworldProcessor</name>
 <rules>
 <query id="helloworldRule">
 <![CDATA[select * from helloworldInputChannel [Now] >
 </query>
 </rules>
</processor>

<ha:ha-buffering-adapter >
 <name>myHaSlidingWindowAdapter</name>
 <window-length>0</window-length>
</ha:ha-buffering-adapter >

8. Deploy your application to the deployment group you created in step 1.

Oracle Event Processing automatically selects one of the Oracle Event Processing
servers as the primary.

17.9.2 Configure Simple Failover With Buffering
You configure simple failover using the Oracle Event Processing buffering output
adapter with a sliding window size greater than zero (0).

This procedure starts with the example EPN that Figure 17-10 shows and adds the
required components to configure it for simple failover with buffering.

Figure 17-10 Simple Failover With Buffering EPN

Configure simple failover with buffering:

1. Create a multiserver domain using Oracle Coherence.

For more information, see Multiserver Administration in Administering Oracle Event
Processing.

2. Create an Oracle Event Processing application.

3. Edit the MANIFEST.MF file to add the following Import-Package entries:

• com.bea.wlevs.ede.api.cluster

• com.oracle.cep.cluster.hagroups

• com.oracle.cep.cluster.ha.adapter

Configure High Availability Quality of Service

High Availability Applications 17-21

• com.oracle.cep.cluster.ha.api

4. Configure your Oracle Event Processing application EPN assembly file to add an
Oracle Event Processing high availability buffering output adapter as the following
assembly file entries show.

• Add a wlevs:adapter element with provider set to ha-buffering after
channel helloworldOutputChannel.

• Update the wlevs:listener element in channel
helloworldOutputChannel to reference the ha-buffering adapter by its
id.

• Add a wlevs:listener element to the ha-buffering adapter that
references the HelloWorldBean class.

<wlevs:event-type-repository>
 <wlevs:event-type type-name="HelloWorldEvent">
 <wlevs:class>com.bea.wlevs.event.example.helloworld.HelloWorldEvent</wlevs:class>
 </wlevs:event-type>
</wlevs:event-type-repository>

<wlevs:adapter id="helloworldAdapter"
 class="com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapter" >
 <wlevs:instance-property name="message" value="HelloWorld - the current time is:"/>
</wlevs:adapter>

<wlevs:channel id="helloworldInputChannel" event-type="HelloWorldEvent" >
 <wlevs:listener ref="helloworldProcessor"/>
</wlevs:channel>

<wlevs:processor id="helloworldProcessor" />

<wlevs:channel id="helloworldOutputChannel" event-type="HelloWorldEvent" advertise="true">
 <wlevs:listener ref="myHaSlidingWindowAdapter"/>
 <wlevs:source ref="helloworldProcessor"/>
</wlevs:channel>

<wlevs:adapter id="myHaSlidingWindowAdapter" provider="ha-buffering" >
 <wlevs:listener>
 <bean class="com.bea.wlevs.example.helloworld.HelloWorldBean"/>
 </wlevs:listener>
</wlevs:adapter>

5. Optionally, configure the channel downstream from the input adapter
(helloworldInputChannel) to configure an application time stamp based on an
appropriate event property as shown.

For simple failover with buffering, you can use system time stamps because events
are not correlated between servers. However, it is possible that slightly different
results might be output from the buffer if application time stamps are not used.

In this example, event property arrivalTime is used.

The wlevs:expression should be set to this event property.

<wlevs:channel id="helloworldInputChannel" event-type="HelloWorldEvent" >
 <wlevs:listener ref="helloworldProcessor"/>
 <wlevs:source ref="myHaInputAdapter"/>
 <wlevs:application-timestamped>
 <wlevs:expression>arrivalTime</wlevs:expression>
 </wlevs:application-timestamped>
</wlevs:channel>

6. Configure the Oracle Event Processing high availability buffering output adapter.

Configure High Availability Quality of Service

17-22 Developing Applications for Oracle Event Processing

Set the instance property windowLength to a value greater than zero (0) as shown.

<wlevs:adapter id="myHaSlidingWindowAdapter" provider="ha-buffering" >
 <wlevs:listener>
 <bean class="com.bea.wlevs.example.helloworld.HelloWorldBean"/>
 </wlevs:listener>
 <wlevs:instance-property name="windowLength" value="15000"/>
</wlevs:adapter>

7. Optionally, configure the component configuration file to include the Oracle Event
Processing high availability buffering output adapter as shown.

<processor>
 <name>helloworldProcessor</name>
 <rules>
 <query id="helloworldRule">
 <![CDATA[select * from helloworldInputChannel [Now] >
 </query>
 </rules>
</processor>

<ha:ha-buffering-adapter >
 <name>myHaSlidingWindowAdapter</name>
 <window-length>15000</window-length>
</ha:ha-buffering-adapter >

8. If your application is an Oracle Event Processing high availability Type 1
application where the application must generate exactly the same sequence of
output events as existing secondaries) configure the warm-up-window-length
for the buffering output adapter.

For more information, see Choose an Adequate warm-up-window-length Time

9. Deploy your application to the deployment group you created in step 1.

Oracle Event Processing automatically selects one of the Oracle Event Processing
servers as the primary.

17.9.3 Configure Light-Weight Queue Trimming
You configure light-weight queue trimming using the Oracle Event Processing high
availability input adapter and the broadcast output adapter.

This procedure starts with the example EPN that Figure 17-11 shows and adds the
required components to configure it for light-weight queue trimming.

Figure 17-11 Light-Weight Queue Trimming EPN

Configure light-weight queue trimming:

1. Create a multiserver domain using Oracle Coherence.

For more information, see Multiserver Administration in Administering Oracle Event
Processing.

2. Create an Oracle Event Processing application.

3. Edit the MANIFEST.MF file to add the following Import-Package entries:

Configure High Availability Quality of Service

High Availability Applications 17-23

• com.bea.wlevs.ede.api.cluster

• com.oracle.cep.cluster.hagroups

• com.oracle.cep.cluster.ha.adapter

• com.oracle.cep.cluster.ha.api

4. Configure your Oracle Event Processing application EPN assembly file to add an
Oracle Event Processing high availability input adapter as the following example
shows.

• Add a wlevs:adapter element with provider set to ha-inbound after the
regular input adapter helloworldAdapter.

• Add a wlevs:listener element to the regular input adapter
helloworldAdapter that references the ha-inbound adapter by its id.

• Add a wlevs:source element to the helloworldInputChannel that
references the ha-inbound adapter by its id.

 <wlevs:event-type-repository>
 <wlevs:event-type type-name="HelloWorldEvent">
 <wlevs:class>com.bea.wlevs.event.example.helloworld.HelloWorldEvent</
wlevs:class>
 </wlevs:event-type>
</wlevs:event-type-repository>

<wlevs:adapter id="helloworldAdapter"
 class="com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapter" >
<wlevs:instance-property name="message" value="HelloWorld -
 the current time is:"/>

 <wlevs:listener ref="myHaInputAdapter"/>
</wlevs:adapter>

<wlevs:adapter id="myHaInputAdapter" provider="ha-inbound" >
</wlevs:adapter>

<wlevs:channel id="helloworldInputChannel" event-type="HelloWorldEvent" >
 <wlevs:listener ref="helloworldProcessor"/>
 <wlevs:source ref="myHaInputAdapter"/>
</wlevs:channel>

<wlevs:processor id="helloworldProcessor" />

<wlevs:channel id="helloworldOutputChannel" event-type="HelloWorldEvent"
 advertise="true">
 <wlevs:listener>
 <bean class="com.bea.wlevs.example.helloworld.HelloWorldBean"/>
 </wlevs:listener>
 <wlevs:source ref="helloworldProcessor"/>
 </wlevs:channel>

5. Configure your Oracle Event Processing application EPN assembly file to add an
Oracle Event Processing high availability broadcast output adapter as shown.

• Add a wlevs:adapter element with provider set to ha-broadcast after
channel helloworldOutputChannel.

• Update the wlevs:listener element in channel
helloworldOutputChannel to reference the ha-broadcast adapter by its
id.

Configure High Availability Quality of Service

17-24 Developing Applications for Oracle Event Processing

• Add a wlevs:listener element to the ha-broadcast adapter that
references the HelloWorldBean class.

<wlevs:event-type-repository>
 <wlevs:event-type type-name="HelloWorldEvent">
 <wlevs:class>com.bea.wlevs.event.example.helloworld.HelloWorldEvent
 </wlevs:class>
 </wlevs:event-type>
</wlevs:event-type-repository>

<wlevs:adapter id="helloworldAdapter"
 class="com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapter" >
 <wlevs:instance-property name="message" value="HelloWorld -
 the current time is:"/>
 <wlevs:listener ref="myHaInputAdapter"/>
</wlevs:adapter>

<wlevs:adapter id="myHaInputAdapter" provider="ha-inbound" >
</wlevs:adapter>

<wlevs:channel id="helloworldInputChannel" event-type="HelloWorldEvent" >
 <wlevs:listener ref="helloworldProcessor"/>
 <wlevs:source ref="myHaInputAdapter"/>
</wlevs:channel>

<wlevs:processor id="helloworldProcessor" />

<wlevs:channel id="helloworldOutputChannel" event-type="HelloWorldEvent"
 advertise="true">
 <wlevs:listener ref="myHaBroadcastAdapter"/>
 <wlevs:source ref="helloworldProcessor"/>
</wlevs:channel>

<wlevs:adapter id="myHaBroadcastAdapter" provider="ha-broadcast" >
 <wlevs:listener>
 <bean class="com.bea.wlevs.example.helloworld.HelloWorldBean"/>
 </wlevs:listener>
</wlevs:adapter>

6. Configure the Oracle Event Processing high availability input adapter.

Consider using one of the following example configurations.

This example shows a high availability input adapter configuration using all
defaults. The mandatory key is based on all event properties and the event
property that the high availability input adapter assigns a time value to is an event
property named arrivalTime.

<wlevs:adapter id="myHaInputAdapter" provider="ha-inbound" >
 <wlevs:instance-property name="timeProperty" value="arrivalTime"/>
</wlevs:adapter>

This example shows a high availability input adapter configuration using all
defaults. The mandatory key is based on all event properties and the event
property that the high availability input adapter assigns a time value to is an event
property named arrivalTime. Because the events are tuple-based events, you
must specify the event type (MyEventType) using the eventType property.

<wlevs:adapter id="myHaInputAdapter" provider="ha-inbound" >
 <wlevs:instance-property name="timeProperty" value="arrivalTime"/>
 <wlevs:instance-property name="eventType" value="MyEventType"/>
</wlevs:adapter>

This example shows a high availability input adapter configuration where the
mandatory key is based on one event property (named id) and the event property

Configure High Availability Quality of Service

High Availability Applications 17-25

that the high availability input adapter assigns a time value to is an event property
named arrivalTime.

<wlevs:adapter id="myHaInputAdapter" provider="ha-inbound" >
 <wlevs:instance-property name="keyProperties" value="id"/>
 <wlevs:instance-property name="timeProperty" value="arrivalTime"/>
</wlevs:adapter>

This example shows a high availability input adapter configuration where the
mandatory key is based on more than one event property (properties orderID and
accountID) and the event property that the high availability input adapter
assigns a time value to is an event property named arrivalTime.

<wlevs:adapter id="myHaInputAdapter" provider="ha-inbound" >
 <wlevs:instance-property name="timeProperty" value="arrivalTime"/>
 <wlevs:instance-property name="keyClass" value="com.acme.MyCompoundKeyClass"/>
</wlevs:adapter>

A compound key Java class (com.acme.MyCompoundKeyClass) is mandatory
and its implementation is shown. The hashCode and equals methods are
required. When you specify a keyClass, the keyProperties instance property
is ignored: Oracle Event Processing assumes that the compound key is based on all
the getter methods in the keyClass.

package com.acme;

public class MyCompoundKeyClass {
 private int orderID;
 private int accountID;

 public MyCompoundKeyClass() {}

 public int getOrderID() {
 return orderID;
 }
 public setOrderID(int orderID) {
 this.orderID = orderID;
 }
 public int getAccountID() {
 return accountID;
 }
 public setOrderID(int accountID) {
 this.accountID = accountID;
 }

 public int hashCode() {
 int hash = 1;
 hash = hash * 31 + orderID.hashCode();
 hash = hash * 31 + (accountID == null ? 0 : accountID.hashCode());
 return hash;
 }

 public boolean equals(Object obj) {
 if (obj == this) return true;
 if (obj == null) return false;
 if (!(obj instanceof MyCompoundKeyClass)) return false;
 MyCompoundKeyClass k = (MyCompoundKeyClass) obj;
 return k.accountID == accountID && k.orderID == orderID;
 }
}

7. Configure the channel downstream from the high availability input adapter
(helloworldInputChannel) to configure an application time stamp based on
the high availability input adapter timeProperty setting as the following
example shows.

Configure High Availability Quality of Service

17-26 Developing Applications for Oracle Event Processing

The wlevs:expression should be set to the timeProperty value.

<wlevs:adapter id="myHaInputAdapter" provider="ha-inbound" >
 <wlevs:instance-property name="keyProperties" value="id"/>
 <wlevs:instance-property name="eventType" value="HelloWorldEvent"/>
 <wlevs:instance-property name="timeProperty" value="arrivalTime"/>
</wlevs:adapter>

<wlevs:channel id="helloworldInputChannel" event-type="HelloWorldEvent" >
 <wlevs:listener ref="helloworldProcessor"/>
 <wlevs:source ref="myHaInputAdapter"/>
 <wlevs:application-timestamped>
 <wlevs:expression>arrivalTime</wlevs:expression>
 </wlevs:application-timestamped>
</wlevs:channel>

8. Configure the Oracle Event Processing high availability broadcast output adapter.

Consider using one of the following example configurations:

This example shows a broadcast output adapter configuration using all defaults.
The mandatory key is based on all event properties, key values are non-monotonic
(do not increase continually) and total order (unique).

<wlevs:adapter id="myHaSlidingWindowAdapter" provider="ha-broadcast" >
 <wlevs:listener>
 <bean class="com.bea.wlevs.example.helloworld.HelloWorldBean"/>
 </wlevs:listener>
</wlevs:adapter>

This example shows a broadcast output adapter configuration where the
mandatory key is based on one event property (named timeProperty), key
values are monotonic (they do increase continually) and not total order (not
unique).

<wlevs:adapter id="myHaSlidingWindowAdapter" provider="ha-broadcast" >
 <wlevs:listener>
 <bean class="com.bea.wlevs.example.helloworld.HelloWorldBean"/>
 </wlevs:listener>
 <wlevs:instance-property name="keyProperties" value="timeProperty"/>
 <wlevs:instance-property name="monotonic" value="true"/>
 <wlevs:instance-property name="totalOrder" value="false"/>
 </wlevs:adapter>

This example shows a broadcast output adapter configuration where the
mandatory key is based on more than one event property (properties
timeProperty and accountID), key values are monotonic (they do increase
continually) and total order (unique).

<wlevs:adapter id="myHaSlidingWindowAdapter" provider="ha-broadcast" >
 <wlevs:listener>
 <bean class="com.bea.wlevs.example.helloworld.HelloWorldBean"/>
 </wlevs:listener>
 <wlevs:instance-property name="keyClass" value="com.acme.MyCompoundKeyClass"/>
 <wlevs:instance-property name="monotonic" value="true"/>
 <wlevs:instance-property name="totalOrder" value="true"/>
</wlevs:adapter>

A compound key Java class (com.acme.MyCompoundKeyClass) is mandatory
and its implementation is shown in the following example. The hashCode and
equals methods are required. When you specify a keyClass, the
keyProperties instance property is ignored: Oracle Event Processing assumes
that the compound key is based on all the getter methods in the keyClass.

package com.acme;

Configure High Availability Quality of Service

High Availability Applications 17-27

public class MyCompoundKeyClass {
 private int timeProperty;
 private int accountID;

 public MyCompoundKeyClass() {}

 public int getTimeProperty() {
 return orderID;
 }
 public setTimeProperty(int timeProperty) {
 this.timeProperty = timeProperty;
 }
 public int getAccountID() {
 return accountID;
 }
 public setOrderID(int accountID) {
 this.accountID = accountID;
 }

 public int hashCode() {
 int hash = 1;
 hash = hash * 31 + timeProperty.hashCode();
 hash = hash * 31 + (accountID == null ? 0 : accountID.hashCode());
 return hash;
 }

 public boolean equals(Object obj) {
 if (obj == this) return true;
 if (obj == null) return false;
 if (!(obj instanceof MyCompoundKeyClass)) return false;
 MyCompoundKeyClass k = (MyCompoundKeyClass) obj;
 return k.accountID == accountID && k.orderID == orderID;
 }
}

9. Optionally, configure the component configuration file to include the Oracle Event
Processing high availability input adapter and buffering output adapter as shown.

<processor>
 <name>helloworldProcessor</name>
 <rules>
 <query id="helloworldRule">
 <![CDATA[select * from helloworldInputChannel [Now] >
 </query>
 </rules>
</processor>

<ha:ha-inbound-adapter>
 <name>myHaInputAdapter</name>
</ha:ha-inbound-adapter>

<ha:ha-broadcast-adapter>
 <name>myHaBroadcastAdapter</name>
 <trimming-interval units="events">10</trimming-interval>
</ha:ha-broadcast-adapter>

10. If your application is an Oracle Event Processing high availability Type 1
application where the application must generate exactly the same sequence of
output events as existing secondaries, configure the warm-up-window-length
for the broadcast output adapter.

11. Oracle Event Processing automatically selects one of the Oracle Event Processing
servers as the primary.

Configure High Availability Quality of Service

17-28 Developing Applications for Oracle Event Processing

17.9.4 Configure Precise Recovery With JMS
You configure precise recovery with JMS using the Oracle Event Processing high
availability input adapter and correlating output adapter.

This procedure describes how to create the example EPN that Figure 17-12 shows. For
more information about this Oracle Event Processing high availability quality of
service, see Precise Recovery with JMS.

Note:

The JMS destination used by JMS adapters for precise recovery must be topics,
rather than queues.

Figure 17-12 Precise Recovery With JMS EPN

Configure precise recovery with JMS

1. Create a multiserver domain using Oracle Coherence.

For more information, see Multiserver Administration in Administering Oracle Event
Processing.

2. Create an Oracle Event Processing application.

3. Edit the MANIFEST.MF file to add the following Import-Package entries:

• com.bea.wlevs.ede.api.cluster

• com.oracle.cep.cluster.hagroups

• com.oracle.cep.cluster.ha.adapter

• com.oracle.cep.cluster.ha.api

4. Configure your Oracle Event Processing application EPN assembly file to add an
Oracle Event Processing high availability input adapter as shown:

• Add a wlevs:adapter element with provider set to ha-inbound after the
regular input adapter JMSInboundAdapter.

• Add a wlevs:listener element to the regular input adapter
JMSInboundAdapter that references the ha-inbound adapter by its id.

• Add a wlevs:source element to the channel channel1 that references the
ha-inbound adapter by its id.

 <wlevs:event-type-repository>
 <wlevs:event-type type-name="StockTick">
 <wlevs:properties>
 <wlevs:property name="lastPrice" type="double" />

Configure High Availability Quality of Service

High Availability Applications 17-29

 <wlevs:property name="symbol" type="char" />
 </wlevs:properties>
 </wlevs:event-type>
 </wlevs:event-type-repository>

 <wlevs:adapter id="JMSInboundAdapter" provider="jms-inbound">

 <wlevs:listener ref="myHaInputAdapter"/>
 </wlevs:adapter>

 <wlevs:adapter id="myHaInputAdapter" provider="ha-inbound" >
 </wlevs:adapter>

 <wlevs:channel id="channel1" event-type="StockTick">
 <wlevs:listener ref="processor1" />
 <wlevs:source ref="myHaInputAdapter"/>
 </wlevs:channel>

5. Configure your Oracle Event Processing application EPN assembly file to add an
Oracle Event Processing high availability correlating output adapter as shown.

• Add a wlevs:adapter element with provider set to ha-correlating after
channel channel2.

• Update the wlevs:listener element in channel channel2 to reference the
ha-correlating adapter by its id.

• Add a wlevs:listener element to the ha-correlating adapter that
references the regular output adapter JMSOutboundAdapter.

<wlevs:event-type-repository>
 <wlevs:event-type type-name="StockTick">
 <wlevs:properties>
 <wlevs:property name="lastPrice" type="double" />
 <wlevs:property name="symbol" type="char" />
 </wlevs:properties>
 </wlevs:event-type>
</wlevs:event-type-repository>

<wlevs:adapter id="JMSInboundAdapter" provider="jms-inbound">
 <wlevs:listener ref="myHaInputAdapter"/>
</wlevs:adapter>

<wlevs:adapter id="myHaInputAdapter" provider="ha-inbound" >
</wlevs:adapter>

<wlevs:channel id="channel1" event-type="StockTick">
 <wlevs:listener ref="processor1" />
 <wlevs:source ref="myHaInputAdapter"/>
</wlevs:channel>

<wlevs:processor id="processor1">
 <wlevs:listener ref="channel2" />
</wlevs:processor>

<wlevs:channel id="channel2" event-type="StockTick">
 <wlevs:listener ref="myHaCorrelatingAdapter" />
</wlevs:channel>

<wlevs:adapter id="myHaCorrelatingAdapter" provider="ha-correlating" >
 <wlevs:listener ref="JMSOutboundAdapter"/>
</wlevs:adapter>

<wlevs:adapter id="JMSOutboundAdapter" provider="jms-outbound">
</wlevs:adapter>

6. Configure the Oracle Event Processing high availability input adapter.

Configure High Availability Quality of Service

17-30 Developing Applications for Oracle Event Processing

Consider using one of the following example configurations:

This example shows a high availability input adapter configuration using all
defaults. The mandatory key is based on all event properties and the event
property that the high availability input adapter assigns a time value to is an event
property named arrivalTime.

<wlevs:adapter id="myHaInputAdapter" provider="ha-inbound" >
 <wlevs:instance-property name="timeProperty" value="arrivalTime"/>
</wlevs:adapter>

This example shows a high availability input adapter configuration using all
defaults. The mandatory key is based on all event properties and the event
property that the high availability input adapter assigns a time value to is an event
property named arrivalTime. Because the events are tuple-based events, you
must specify the event type (MyEventType) using the eventType property.

<wlevs:adapter id="myHaInputAdapter" provider="ha-inbound" >
 <wlevs:instance-property name="timeProperty" value="arrivalTime"/>
 <wlevs:instance-property name="eventType" value="MyEventType"/>
</wlevs:adapter>

This example shows a high availability input adapter configuration where the
mandatory key is based on one event property (named sequenceNo) and the
event property that the high availability input adapter assigns a time value to is an
event property named inboundTime.

<wlevs:adapter id="myHaInputAdapter" provider="ha-inbound" >
 <wlevs:instance-property name="keyProperties" value="sequenceNo"/>
 <wlevs:instance-property name="timeProperty" value="inboundTime"/>
</wlevs:adapter>

This example shows a high availability input adapter configuration where the
mandatory key is based on more than one event property (properties orderID and
accountID) and the event property that the high availability input adapter
assigns a time value to is an event property named arrivalTime.

A compound key Java class (com.acme.MyCompoundKeyClass) is mandatory
and its implementation is shown. The hashCode and equals methods are
required. When you specify a keyClass, the keyProperties instance property
is ignored: Oracle Event Processing assumes that the compound key is based on all
the getter methods in the keyClass.

<wlevs:adapter id="myHaInputAdapter" provider="ha-inbound" >
 <wlevs:instance-property name="timeProperty" value="arrivalTime"/>
 <wlevs:instance-property name="keyClass" value="com.acme.MyCompoundKeyClass"/>
</wlevs:adapter>

package com.acme;

public class MyCompoundKeyClass {
 private int orderID;
 private int accountID;

 public MyCompoundKeyClass() {}

 public int getOrderID() {
 return orderID;
 }
 public setOrderID(int orderID) {
 this.orderID = orderID;
 }
 public int getAccountID() {
 return accountID;
 }

Configure High Availability Quality of Service

High Availability Applications 17-31

 public setOrderID(int accountID) {
 this.accountID = accountID;
 }

 public int hashCode() {
 int hash = 1;
 hash = hash * 31 + orderID.hashCode();
 hash = hash * 31 + (accountID == null ? 0 : accountID.hashCode());
 return hash;
 }

 public boolean equals(Object obj) {
 if (obj == this) return true;
 if (obj == null) return false;
 if (!(obj instanceof MyCompoundKeyClass)) return false;
 MyCompoundKeyClass k = (MyCompoundKeyClass) obj;
 return k.accountID == accountID && k.orderID == orderID;
 }
}

7. Configure the channel downstream from the high availability input adapter
(channel1) to configure an application time stamp based on the high availability
input adapter timeProperty setting as the following example shows.

The wlevs:expression should be set to the timeProperty value.

<wlevs:adapter id="myHaInputAdapter" provider="ha-inbound" >
 <wlevs:instance-property name="eventType" value="HelloWorldEvent"/>
 <wlevs:instance-property name="keyProperties" value="sequenceNo"/>
 <wlevs:instance-property name="timeProperty" value="inboundTime"/>
</wlevs:adapter>

<wlevs:channel id="channel1" event-type="StockTick">
 <wlevs:listener ref="processor1" />
 <wlevs:source ref="myHaInputAdapter"/>
 <wlevs:application-timestamped>
 <wlevs:expression>inboundTime</wlevs:expression>
 </wlevs:application-timestamped>
</wlevs:channel>

8. Configure the Oracle Event Processing high availability correlating output adapter
failOverDelay.

The following example shows a correlating output adapter configuration where the
failOverDelay is 2000 milliseconds.

<wlevs:adapter id="myHaCorrelatingAdapter" provider="ha-correlating" >
 <wlevs:listener ref="JMSOutboundAdapter"/>
 <wlevs:instance-property name="failOverDelay" value="2000"/>
</wlevs:adapter>

9. Create a second regular JMS input adapter.

The following example shows a JMS adapter named JMSInboundAdapter2.

 <wlevs:adapter id="JMSInboundAdapter2" provider="jms-inbound">
 </wlevs:adapter>

The following JMS input adapter must be configured identically to the first JMS
input adapter (in this example, JMSInboundAdapter). The following example
shows the component configuration file for both the JMS input adapters. Note that
both have exactly the same configuration, including the same provider.

 <jms-adapter>
 <name>JMSInboundAdapter</name>
 <jndi-provider-url>t3://localhost:7001</jndi-provider-url>
 <destination-jndi-name>./Topic1</destination-jndi-name>

Configure High Availability Quality of Service

17-32 Developing Applications for Oracle Event Processing

 <user>weblogic</user>
 <password>weblogic</password>
 <work-manager>JettyWorkManager</work-manager>
 <concurrent-consumers>1</concurrent-consumers>
 </jms-adapter>

 <jms-adapter>
 <name>JMSInboundAdapter2</name>
 <jndi-provider-url>t3://localhost:7001</jndi-provider-url>
 <destination-jndi-name>./Topic2</destination-jndi-name>
 <user>weblogic</user>
 <password>weblogic</password>
 <work-manager>JettyWorkManager</work-manager>
 <concurrent-consumers>1</concurrent-consumers>
 </jms-adapter>
 ...
</wlevs:config>

10. Create a channel to function as the correlated source.

You must configure this channel with the second regular JMS input adapter as its
source.

The following example shows a correlated source named
clusterCorrelatingOutstream whose source is JMSInboundAdapter2.

 <wlevs:adapter id="JMSInboundAdapter2" provider="jms-inbound">
 </wlevs:adapter>

 <wlevs:channel id="clusterCorrelatingOutstream" event-type="StockTick" advertise="true">
 <wlevs:source ref="JMSInboundAdapter2"/>
 </wlevs:channel>

11. Configure the Oracle Event Processing high availability correlating output adapter
with the correlatedSource.

The following example shows a correlating output adapter configuration where the
correlatedSource is clusterCorrelatingOutstream.

<wlevs:adapter id="myHaCorrelatingAdapter" provider="ha-correlating" >
 <wlevs:listener ref="JMSOutboundAdapter"/>
 <wlevs:instance-property name="failOverDelay" value="2000"/>
 <wlevs:instance-property name="correlatedSource" ref="clusterCorrelatingOutstream"/>
</wlevs:adapter>

12. If your application is an Oracle Event Processing high availability Type 1
application where the application must generate exactly the same sequence of
output events as existing secondaries, configure the warm-up-window-length
for the correlating output adapter.

13. Configure the component configuration file to enable session-transacted for
both inbound JMS adapters and the outbound JMS adapter as the following
example shows:

 <jms-adapter>
 <name>JMSInboundAdapter</name>
 <jndi-provider-url>t3://localhost:7001</jndi-provider-url>
 <destination-jndi-name>./Topic1</destination-jndi-name>
 <user>weblogic</user>
 <password>weblogic</password>
 <work-manager>JettyWorkManager</work-manager>
 <concurrent-consumers>1</concurrent-consumers>
 <session-transacted>true</session-transacted>
 </jms-adapter>

 <jms-adapter>

Configure High Availability Quality of Service

High Availability Applications 17-33

 <name>JMSInboundAdapter2</name>
 <jndi-provider-url>t3://localhost:7001</jndi-provider-url>
 <destination-jndi-name>./Topic2</destination-jndi-name>
 <user>weblogic</user>
 <password>weblogic</password>
 <work-manager>JettyWorkManager</work-manager>
 <concurrent-consumers>1</concurrent-consumers>
 <session-transacted>true</session-transacted>
 </jms-adapter>
 ...
 <jms-adapter>
 <name>JMSOutboundAdapter</name>
 <event-type>JMSEvent</event-type>
 <jndi-provider-url>t3://localhost:7001</jndi-provider-url>
 <destination-jndi-name>./Topic2</destination-jndi-name>
 <delivery-mode>nonpersistent</delivery-mode>
 <session-transacted>true</session-transacted>
 </jms-adapter>
 ...
</wlevs:config>

14. Optionally, configure the component configuration file to include the Oracle Event
Processing high availability input adapter and correlating output adapter as
shown.

 <ha:ha-inbound-adapter>
 <name>myHaInputAdapter</name>
 </ha:ha-inbound-adapter>
 ...
 <ha:ha-correlating-adapter>
 <name>myHaBroadcastAdapter</name>
 <fail-over-delay>2000</fail-over-delay>
 </ha:ha-correlating-adapter>

15. Optionally, add an ActiveActiveGroupBean to your EPN to improve
scalability.

For more information, see Partition an Incoming JMS Event Stream.

16. Oracle Event Processing automatically selects one of the Oracle Event Processing
servers as the primary.

17.10 Configure High Availability Adapters
You configure Oracle Event Processing high availability adapters in the EPN assembly
file and component configuration files, similar to how you configure other
components in the EPN, such as channels or processors.

After making any Oracle Event Processing high availability configuration changes,
you must redeploy your Oracle Event Processing application. See Deploy an OSGi
Bundle.

This section includes the following procedures:

• Configure the High Availability Input Adapter

• Configure the Buffering Output Adapter

• Configure the Broadcast Output Adapter

• Configure the Correlating Output Adapter.

Configure High Availability Adapters

17-34 Developing Applications for Oracle Event Processing

17.10.1 Configure the High Availability Input Adapter
The Oracle Event Processing high availability broadcast input adapter is implemented
by the BroadcastInputAdapter interface.

Assembly File

The root element to declare an Oracle Event Processing high availability input adapter
is wlevs:adapter with the provider element set to ha-inbound. You also specify
a wlevs:listener element for the Oracle Event Processing high availability input
adapter in the input adapter.

<wlevs:adapter id="jmsAdapter" provider="jms-inbound"
 <wlevs:listener ref="myHaInputAdapter"/>
</wlevs:adapter>

<wlevs:adapter id="myHaInputAdapter" provider="ha-inbound">
 <wlevs:instance-property name="keyProperties" value="id"/>
 <wlevs:instance-property name="timeProperty" value="arrivalTime"/>
 <wlevs:instance-property name="eventType" value="MyEventType"/>
</wlevs:adapter>

<wlevs:channel id="inputChannel" event-type="MyEventType ">
 <wlevs:source ref="myHaInputAdapter"/>
 <wlevs:application-timestamped>
 <wlevs:expression>arrivalTime</wlevs:expression>
 </wlevs:application-timestamped>
</wlevs:channel>

Table 17-3 describes the additional child element.

Table 17-3 Child Elements of wlevs:adapter for the High Availability Input Adapter

Child Element Description

wlevs:instance-
property

Specify one or more instance-property element name and
value attributes.

Table 17-4 lists the supported instance properties with their name and value attributes.

Table 17-4 High Availability Input Adapter Instance Properties

Name Value

timeProperty Specify the name of the event property to which the high
availability input adapter assigns a time value.

This is the same property that you use in the
wlevs:application-timestamped element of the
downstream EPN component to which the high availability input
adapter is connected.

keyProperties Specify a space delimited list of one or more event properties that
the Oracle Event Processing high availability input adapter uses to
identify event instances.

If you specify more than one event property, you must specify a
keyClass.

Default: all event properties.

Configure High Availability Adapters

High Availability Applications 17-35

Table 17-4 (Cont.) High Availability Input Adapter Instance Properties

Name Value

keyClass Specify the fully qualified Java class name of to use for the
compound key.

By default, all JavaBean properties in the keyClass are assumed
to be keyProperties, unless the keyProperties setting is
used.

eventType Specify the type name of the events that the Oracle Event
Processing high availability input adapter receives from the actual
input adapter. This is the same event type that you use in the
downstream EPN component to which the high availability input
adapter is connected.

For tuple events, this property is mandatory. For all other Java
class-based event types, this property is optional.

Configuration File

The root element for configuring an Oracle Event Processing high availability input
adapter is ha-inbound-adapter. The name child element must match the id
attribute of the corresponding wlevs:adapter element in the assembly file as
shown.

<ha:ha-inbound-adapter>
 <name>myHaInputAdapter</name>
 <heartbeat units="millis">1000</heartbeat>
 <batch-size>10</batch-size>
</ha:ha-inbound-adapter>

Table 17-5 describes the additional child elements.

Table 17-5 Child Elements

Child Element Description

heartbeat Specify the length of time that the high availability input adapter
can be idle before it generates a heartbeat event to advance time.

Valid integer values for the units attribute:

• nanos: wait the specified number of nanoseconds.
• millis: wait the specified number of milliseconds.
• secs: wait the specified number of seconds.
Default: Heartbeats are not sent.

batch-size Specify the number of events in each timing message that the
primary broadcasts to its secondaries. A value of n means that n
{key, time} pairs are sent in each message. You can use this
property for performance tuning.

Default: 1 (disable batching).

17.10.2 Configure the Buffering Output Adapter
The Oracle Event Processing high availability buffering output adapter is
implemented by the SlidingWindowQueueTrimmingAdapter interface.

Configure High Availability Adapters

17-36 Developing Applications for Oracle Event Processing

Assembly File

The root element for declaring an Oracle Event Processing high availability buffering
output adapter is wlevs:adapter with provider element set to ha-buffering as
the following example shows.

<wlevs:adapter id="mySlidingWindowingAdapter" provider ="ha-buffering">
 <wlevs:listener>
 <bean class="com.bea.wlevs.example.cluster.ClusterAdapterBean"/>
 </wlevs:listener>
 <wlevs:instance-property name="windowLength" value="15000"/>
</wlevs:adapter>

Table 17-6 describes the additional child elements.

Table 17-6 Child Elements

Child Element Description

wlevs:listener Specify the regular output adapter downstream from this Oracle
Event Processing high availability buffering output adapter.

wlevs:instance-
property

Specify one or more instance-property element name and
value attributes as Table 17-7 describes.

Table 17-7 lists the instance properties.

Table 17-7 Instance Properties

Name Value

windowLength Specify the sliding window size as an integer number of
milliseconds.

Default: 15000.

Configuration File

The root element for configuring an Oracle Event Processing high availability
buffering output adapter is ha-buffering-adapter. The name child element for a
particular adapter must match the id attribute of the corresponding wlevs:adapter
element in the assembly file as shown.

<ha:ha-buffering-adapter >
 <name>mySlidingWindowingAdapter</name>
 <window-length>15000</window-length>
 <warm-up-window-length units="minutes">6</warm-up-window-length>
</ha:ha-buffering-adapter >

Table 17-8 describes the additional child elements of ha-buffering-adapter you
can configure for an Oracle Event Processing high availability buffering output
adapter.

Configure High Availability Adapters

High Availability Applications 17-37

Table 17-8 Child Elements

Child Element Description

window-length Specify the sliding window size as an integer number of
milliseconds.

Default: 15000.

warm-up-window-
length

Specify the length of time that the high availability input adapter
can be idle before it generates a heartbeat event to advance tim

Valid integer values for the units attribute:

• seconds: wait the specified number of seconds.
• minutes: wait the specified number of minutes.
Default: units is seconds.

17.10.3 Configure the Broadcast Output Adapter
The Oracle Event Processing high availability broadcast output adapter is
implemented by the GroupBroadcastQueueTrimmingAdapter class.

Assembly File

The root element to declare an Oracle Event Processing high availability broadcast
output adapter is wlevs:adapter with the provider element set to ha-
broadcast as shown.

<wlevs:adapter id="myBroadcastAdapter" provider="ha-broadcast">
 <wlevs:listener ref="actualAdapter"/>
 <wlevs:instance-property name="keyProperties" value="time"/>
 <wlevs:instance-property name="monotonic" value="true"/>
</wlevs:adapter>

Table 17-9 describes the additional child elements.

Table 17-9 Child Elements

Child Element Description

wlevs:listener Specify the regular output adapter downstream from this Oracle
Event Processing high availability broadcast output adapter.

wlevs:instance-
property

Specify one or more instance-property element name and
value attributes as Table 17-10 describes.

Table 17-10 lists the instance properties.

Table 17-10 Instance Properties

Name Value

keyProperties Specify a space delimited list of one or more event properties that
the Oracle Event Processing high availability broadcast output
adapter uses to identify event instances.

If you specify more than one event property, you must specify a
keyClass.

Default: all event properties.

Configure High Availability Adapters

17-38 Developing Applications for Oracle Event Processing

Table 17-10 (Cont.) Instance Properties

Name Value

keyClass Specify the fully qualified class name of a Java class used as a
compound key.

By default, all JavaBean properties in the keyClass are assumed
to be keyProperties, unless the keyProperties setting is
used.

A compound key may be monotonic and may be totalOrder.

monotonic Specify whether the key value is constantly increasing (like a time
value).

Valid values are:

• true: the key is constantly increasing.
• false: the key is not constantly increasing.
Default: false.

totalOrder Specify whether event keys are unique. Applicable only when
instance property monotonic is set to true.

Valid values are:

• true: event keys are unique.
• false: event keys are not unique.
Default: true.

Configuration File

The root element for configuring an Oracle Event Processing high availability
broadcast output adapter is ha-broadcast-adapter. The name child element for a
particular adapter must match the id attribute of the corresponding wlevs:adapter
element in the EPN assembly file that declares this adapter as shown.

<ha:ha-broadcast-adapter>
 <name>myBroadcastAdapter</name>
 <trimming-interval units="events">10</trimming-interval>
 <warm-up-window-length units="minutes">6</warm-up-window-length>
</ha:ha-broadcast-adapter>

Table 17-11 describes the additional child elements.

Table 17-11 Child Elements

Child Element Description

trimming-interval Specify the interval at which trimming messages are broadcast as
an integer number of units. You can use this property for
performance tuning (see High Availability Performance Tuning).

Valid values for attribute units:

• events: broadcast trimming messages after the specified
number of events are processed.

• millis: broadcast trimming messages after the specified
number milliseconds.

Default: units is events.

Configure High Availability Adapters

High Availability Applications 17-39

Table 17-11 (Cont.) Child Elements

Child Element Description

warm-up-window-
length

Specify the length of time it takes the application to rebuild state
after a previously failed secondary restarts or a new secondary is
added.

Valid integer values for the units attribute:

• seconds: wait the specified number of seconds.
• minutes: wait the specified number of minutes.
Default: units is seconds.

For more information, see Choose an Adequate warm-up-
window-length Time.

17.10.4 Configure the Correlating Output Adapter
The Oracle Event Processing high availability correlating output adapter is
implemented by the CorrelatedQueueTrimmingAdapter interface.

Assembly File

The root element to declare an Oracle Event Processing high availability correlating
output adapter is wlevs:adapter with the provider element set to ha-
correlating as shown.

<wlevs:adapter id="myCorrelatingAdapter" provider="ha-correlating">
 <wlevs:listener>
 <bean class="com.bea.wlevs.example.cluster.ClusterAdapterBean"/>
 </wlevs:listener>
 <wlevs:instance-property name="correlatedSource" ref="clusterCorrOutstream"/>
 <wlevs:instance-property name="failOverDelay" value="2000"/>
</wlevs:adapter>

Table 17-12 describes the additional child elements.

Table 17-12 Child Elements

Child Element Description

wlevs:listener Specify the regular output adapter downstream from this Oracle
Event Processing high availability buffering output adapter.

wlevs:instance-
property

Specify one or more instance-property element name and
value attributes as Table 17-13 describes.

Table 17-13 lists the instance properties.

Table 17-13 Instance Properties

Name Value

correlatedSource Specify the event source to correlate against. Events seen from this
source are purged from the trimming queue. Events still in the
queue at failover are replayed.

Configure High Availability Adapters

17-40 Developing Applications for Oracle Event Processing

Table 17-13 (Cont.) Instance Properties

Name Value

failOverDelay Specify the delay timeout in milliseconds that is used to decide
how soon after failover correlation should restart.

Default: 0 ms.

Configuration File

The root element for configuring an Oracle Event Processing high availability
correlating output adapter is ha-correlating-adapter. The name child element
for a particular adapter must match the id attribute of the corresponding
wlevs:adapter element in the EPN assembly file that declares this adapter as
shown.

<ha:ha-correlating-adapter>
 <name>myCorrelatingAdapter</name>
 <window-length>15000</window-length>
 <warm-up-window-length units="minutes">6</warm-up-window-length>
</ha:ha-correlating-adapter>

Table 17-14 describes the child elements.

Table 17-14 Child Elements

Child Element Description

fail-over-delay Specify the delay timeout in milliseconds that is used to decide
how soon after failover correlation should restart.

Default: 0 ms.

warm-up-window-
length

Specify the length of time it takes the application to rebuild state
after a previously failed secondary restarts or a new secondary is
added as an integer number of units.

Valid values for attribute units:

• seconds: wait the specified number of seconds.
• minutes: wait the specified number of minutes.
Default: units is seconds.

For more information, see Choose an Adequate warm-up-
window-length Time.

window-length The length of the saved buffer of events in milliseconds.

trimming-interval The interval at which events should be trimmed from a secondary
buffer. Units can be events or millis.

heartbeat The value (n) for the heartbeat time out on this adapter. A
heartbeat is generated when n time units go by without any event
being generated on this adapter. The default time unit is
nanoseconds.

batch-size The batch size in terms of events for sending event time stamps to
the secondary. By default, batching is disabled.

Configure High Availability Adapters

High Availability Applications 17-41

Configure High Availability Adapters

17-42 Developing Applications for Oracle Event Processing

18
Scalable Applications

You can build scalability into your application design with partitioning and parallel
processing, and by taking high availability options into consideration. Oracle Event
Processing enables you to use default or custom partitioning and parallel processing
settings on channels and the upstream adapter. You can also partition an incoming
JMS event stream and configure the JSMS Event stream group pattern matching.

This chapter includes the following sections:

• Default Channel Scalability Settings

• Partition an Incoming JMS Event Stream

• Notification Group Naming Conventions

• Custom Channel Event Partitioner.

18.1 Default Channel Scalability Settings
You can configure a channel to use the default event property-based event partitioner.
With this default configuration, every time an incoming event arrives, the channel
selects a listener and dispatches the event to that listener instead of broadcasting every
event to every listener.

Note:

Batching is not supported when you configure a channel with an event
partitioner.

Figure 18-1 shows an EPN that uses an event partitioner property to partition a
channel. In this example, the inbound adapter sends events of type PriceEvent,
which has two properties: stock symbol and stock price. The example partitions the
channel on the symbol property and shows you how to add multithreading to either
the channel or the upstream adapter.

Figure 18-1 EventPartitioner EPN

Scalable Applications 18-1

• Configure Partitioning on the Channel

• Configure Parallel Processing on the Channel

• Configure Parallel Processing on the Upstream Adapter.

18.1.1 Configure Partitioning on the Channel
See Customizing Event Store in Customizing Oracle Event Processing for information
about customizing an event store.

1. Add a channel to your EPN.

In Figure 18-1, the channel is EventPartitionerChannel.

2. Connect the channel to an upstream adapter.

In Figure 18-1, the upstream adapter is inbound.

3. Connect the channel to two or more listeners.

In Figure 18-1, the channel is connected to Oracle CQL processors processor1,
processor2, and processor3.

4. Edit the assembly file to add a partitionByEventProperty instance property
to the channel element.

The value of this instance-property is the name of the event property by
which the channel partitions events.

In this example, the channel partitions events by the event property symbol.

<wlevs:event-type-repository>
 <wlevs:event-type type-name="PriceEvent">
 <wlevs:properties>
 <wlevs:property name="symbol" type="char" />
 <wlevs:property name="price" type="long" />
 </wlevs:properties>
 </wlevs:event-type>
</wlevs:event-type-repository>

<wlevs:channel id="EventPartitionerChannel" event-type="PriceEvent">
 <wlevs:instance-property name="partitionByEventProperty" value="symbol" />
 <wlevs:listener ref="processor1" />
 <wlevs:listener ref="processor2" />
 <wlevs:listener ref="processor3" />
 <wlevs:source ref="inbound" />
</wlevs:channel>

18.1.2 Configure Parallel Processing on the Channel
If you want the channel to allocate threads, set the max-threads property to the
number of listeners in the EPN.

If you want to provide increased concurrency downstream from the channel, you can
associate a thread pool with the channel by setting the max-threads property on the
channel. The best value for the maximum number of threads can depend on many
factors including the details of the Oracle CQL queries in downstream processors (do
the queries allow parallel execution), and the behavior observed while running the
application (are all the CPU cores utilized). As a starting point in tuning the maximum
number of threads, it is reasonable to set it equal to the number of listeners on the
channel.

Default Channel Scalability Settings

18-2 Developing Applications for Oracle Event Processing

In this example, there are 3 listeners.

<wlevs:channel id="EventPartitionerChannel" event-type="PriceEvent" max-threads="3" >
 <wlevs:instance-property name="eventPartitioner" value="true" />
 <wlevs:listener ref="processor1" />
 <wlevs:listener ref="processor2" />
 <wlevs:listener ref="processor3" />
 <wlevs:source ref="inbound" />
</wlevs:channel>

18.1.3 Configure Parallel Processing on the Upstream Adapter

1. Edit the EPN assembly file to configure the channel to set the max-threads
attribute to 0.

<wlevs:channel id="EventPartitionerChannel" event-type="PriceEvent"
 max-threads="0" >
 <wlevs:instance-property name="eventPartitioner" value="true" />
 <wlevs:listener ref="processor1" />
 <wlevs:listener ref="processor2" />
 <wlevs:listener ref="processor3" />
 <wlevs:source ref="inbound" />
</wlevs:channel>

2. Edit the Oracle Event Processing server file to add a work-manager element.

Selecting the appropriate min-threads-constraint and max-threads-
constraint for the work manager can depend on a number of factors, including
the factors discussed in Configure Parallel Processing on the Channel for setting
thread counts on a channel and whether the work manager is dedicated to a
specific adapter or shared with other components (other adapters or the Jetty
service). As a starting point in tuning, it' is reasonable to set the min-threads-
constraint and max-threads-constraint properties equal to the number of
listeners downstream from the adapter if the work manager is dedicated to a single
adapter instance.

If this work manager is not shared by more than one component (that is, it is
dedicated to the upstream adapter in this configuration), then set the min-
threads-constraint and max-threads-constraint elements equal to the
number of listeners.

<work-manager>
 <name>adapterWorkManager</name>
 <min-threads-constraint>3</min-threads-constraint>
 <max-threads-constraint>3</max-threads-constraint>
</work-manager>

For more information about max-threads, see max-threads in Schema Reference for
Oracle Event Processing.

3. Edit the component configuration file to configure the upstream adapter with this
work-manager.

<adapter>
 <name>inbound</name>
 <work-manager-name>adapterWorkManager</work-manager-name>
 ...
</adapter>

18.2 Partition an Incoming JMS Event Stream
You can add the ActiveActiveGroupBean class to the assembly file to partition an
incoming JMS event stream by a selector in a multiserver domain.

Partition an Incoming JMS Event Stream

Scalable Applications 18-3

• Configure Partitioning without High Availability

• Configure Partitioning with High Availability

18.2.1 Configure Partitioning without High Availability

1. Create a multiserver domain.

In this example, the deployment group name is MyDeploymentGroup.

See About Multiserver Domains in Administering Oracle Event Processing.

2. Configure the Oracle Event Processing server configuration file on each Oracle
Event Processing server to add the appropriate ActiveActiveGroupBean
notification group to the groups child element of the cluster element.

The Oracle Event Processing server configuration file is located in /Oracle/
Middleware/my_oep/user_projects/domains/<domain_name>/
<server_name>/config.

Table 18-2 shows cluster elements for Oracle Event Processing servers ocep-
server-1, ocep-server-2, ocep-server-3, and ocep-server-4. The
deployment group is MyDeploymentGroup and the notification groups are
defined using default ActiveActiveGroupBean notification group naming.

Optionally, you can specify your own group naming convention as Notification
Group Naming Conventions describes.

Table 18-1 Server Configuration File Groups Element Configuration

Partition cluster Element

ocep-

server-1

<cluster>
 <server-name>ocep-server-1</server-name>
 ...
 <enabled>coherence</enabled>
 ...
 <groups>MyDeploymentGroup, ActiveActiveGroupBean_group1</groups>
</cluster>

ocep-

server-2

<cluster>
 <server-name>ocep-server-2</server-name>
 ...
 <enabled>coherence</enabled>
 ...
 <groups>MyDeploymentGroup, ActiveActiveGroupBean_group2</groups>
</cluster>

ocep-

server-3

<cluster>
 <server-name>ocep-server-3</server-name>
 ...
 <enabled>coherence</enabled>
 ...
 <groups>MyDeploymentGroup, ActiveActiveGroupBean_group3</groups>
</cluster>

Partition an Incoming JMS Event Stream

18-4 Developing Applications for Oracle Event Processing

Table 18-1 (Cont.) Server Configuration File Groups Element Configuration

Partition cluster Element

ocep-

server-4

<cluster>
 <server-name>ocep-server-4</server-name>
 ...
 <enabled>coherence</enabled>
 ...
 <groups>MyDeploymentGroup, ActiveActiveGroupBean_group4</groups>
</cluster>

3. Create an Oracle Event Processing application.

4. Add an ActiveActiveGroupBean element to the assembly file as follows.

<bean id="clusterAdapter" class="com.oracle.cep.cluster.hagroups.ActiveActiveGroupBean">
</bean>

5. Define a parameterized message-selector in the jms-adapter element for
the JMS inbound adapters.

a. Edit the component configuration file to add group-binding child elements
to the jms-adapter element for the JMS inbound adapters.

b. Add one group-binding element for each possible JMS message-selector
value as shown.

<jms-adapter>
 <name>JMSInboundAdapter</name>
 <event-type>StockTick</event-type>
 <jndi-provider-url>t3://ppurich-pc:7001</jndi-provider-url>
 <destination-jndi-name>./Topic1</destination-jndi-name>
 <user>weblogic</user>
 <password>weblogic1</password>
 <work-manager>JettyWorkManager</work-manager>
 <concurrent-consumers>1</concurrent-consumers>
 <session-transacted>true</session-transacted>
 <message-selector>${CONDITION}</message-selector>
 <bindings>
 <group-binding group-id="ActiveActiveGroupBean_group1">
 <param id="CONDITION">acctid > 400</param>
 </group-binding>
 <group-binding group-id="ActiveActiveGroupBean_group2">
 <param id="CONDITION">acctid BETWEEN 301 AND 400</param>
 </group-binding>
 <group-binding group-id="ActiveActiveGroupBean_group3">
 <param id="CONDITION">acctid BETWEEN 201 AND 300</param>
 </group-binding>
 <group-binding group-id="ActiveActiveGroupBean_group4">
 <param id="CONDITION">acctid <= 200</param>
 </group-binding>
 </bindings>
</jms-adapter>

In this configuration, when the application is deployed to an Oracle Event
Processing server with a cluster element groups child element that contains
ActiveActiveGroupBean_group1, then the CONDITION parameter is defined
as acctid > 400 and the application processes events whose acctid property
is greater than 400.

Partition an Incoming JMS Event Stream

Scalable Applications 18-5

Note:

Each in-bound JMS adapter must listen to a different topic. For more
information, see Adapters.

6. Deploy your application to the deployment group of your multiserver domain.

At runtime, each Oracle Event Processing server configures its instance of the
application with the message-selector that corresponds to its
ActiveActiveGroupBean notification group. This partitions the JMS topic so
that each instance of the application processes a subset of the total number of
messages in parallel.

18.2.2 Configure Partitioning with High Availability
This procedure uses the example application from Configure Precise Recovery With
JMS. Figure 18-2 shows the EPN diagram, and Example 18-1 and Example 18-2 show
the corresponding assembly and configuration files.

Figure 18-2 Precise Recovery With JMS EPN

The procedure creates the Oracle Event Processing high availability configuration
shown in Figure 18-3.

Figure 18-3 ActiveActiveGroupBean With High Availability

Configure Scalability in a JMS Application with High Availability

1. Create a multiserver domain.

Partition an Incoming JMS Event Stream

18-6 Developing Applications for Oracle Event Processing

In this example, the deployment group is named MyDeploymentGroup.

See About Multiserver Domains in Administering Oracle Event Processing.

2. Configure the Oracle Event Processing server configuration file on each Oracle
Event Processing server to add the appropriate ActiveActiveGroupBean
notification group to the groups child element of the cluster element.

The Oracle Event Processing server configuration file is located in /Oracle/
Middleware/my_oep/user_projects/domains/<domain_name>/
<server_name>/config.

Table 18-2 shows cluster elements for Oracle Event Processing servers ocep-
server-1, ocep-server-2, ocep-server-3, and ocep-server-4. The
deployment group is MyDeploymentGroup and notification groups are defined
using default ActiveActiveGroupBean notification group names.

Note that ocep-server-1 and ocep-server-2 use the same notification group
name (ActiveActiveGroupBean_group1) and ocep-server-3 and ocep-
server-4 use the same notification group name
(ActiveActiveGroupBean_group2).

Table 18-2 Server Configuration File Groups Element Configuration

Partition cluster Element

ocep-

server-1

<cluster>
 <server-name>ocep-server-1</server-name>
 ...
 <enabled>coherence</enabled>
 ...
 <groups>MyDeploymentGroup, ActiveActiveGroupBean_group1</groups>
</cluster>

ocep-

server-2

<cluster>
 <server-name>ocep-server-2</server-name>
 ...
 <enabled>coherence</enabled>
 ...
 <groups>MyDeploymentGroup, ActiveActiveGroupBean_group1</groups>
</cluster>

ocep-

server-3

<cluster>
 <server-name>ocep-server-3</server-name>
 ...
 <enabled>coherence</enabled>
 ...
 <groups>MyDeploymentGroup, ActiveActiveGroupBean_group2</groups>
</cluster>

ocep-

server-4

<cluster>
 <server-name>ocep-server-4</server-name>
 ...
 <enabled>coherence</enabled>
 ...
 <groups>MyDeploymentGroup, ActiveActiveGroupBean_group2</groups>
</cluster>

3. Create an Oracle Event Processing high availability application.

Partition an Incoming JMS Event Stream

Scalable Applications 18-7

For more information, see High Availability Applications.

4. Add an ActiveActiveGroupBean element to the assembly file as shown.

<bean id="clusterAdapter" class="com.oracle.cep.cluster.hagroups.ActiveActiveGroupBean">
</bean>

5. Edit the component configuration file to configure a jms-adapter element for
the inbound JMS adapters as shown.

You must set each inbound JMS adapter to listen to a different topic and set
session-transacted to true.

<?xml version="1.0" encoding="UTF-8"?>
<wlevs:config
 xmlns:wlevs="http://www.bea.com/ns/wlevs/config/application"
 xmlns:ha="http://www.oracle.com/ns/cep/config/cluster">
 ...
 <jms-adapter>
 <name>JMSInboundAdapter</name>
 <event-type>StockTick</event-type>
 <jndi-provider-url>t3://ppurich-pc:7001</jndi-provider-url>
 <destination-jndi-name>./Topic1</destination-jndi-name>
 <session-transacted>true</session-transacted>
 ... </jms-adapter>
 <jms-adapter>
 <name>JMSInboundAdapter2</name>
 <event-type>StockTick</event-type>
 <jndi-provider-url>t3://ppurich-pc:7001</jndi-provider-url>
 <destination-jndi-name>./Topic2</destination-jndi-name>
 <session-transacted>true</session-transacted>
 ... </jms-adapter>
</wlevs:config>

6. Define a parameterized message-selector in the jms-adapter element for
each JMS inbound adapter.

a. Edit the component configuration file to add group-binding child elements
to the jms-adapter element for the JMS inbound adapters.

b. Add one group-binding element for each possible JMS message-
selector value as shown.

<jms-adapter>
 <name>JMSInboundAdapter</name>
 <event-type>StockTick</event-type>
 <jndi-provider-url>t3://ppurich-pc:7001</jndi-provider-url>
 <destination-jndi-name>./Topic1</destination-jndi-name>
 <session-transacted>true</session-transacted>
 <message-selector>${CONDITION}</message-selector>
 <bindings>
 <group-binding group-id="ActiveActiveGroupBean_group1">
 <param id="CONDITION">acctid <= 1000</param>
 </group-binding>
 <group-binding group-id="ActiveActiveGroupBean_group2">
 <param id="CONDITION">acctid > 1000</param>
 </group-binding>
 </bindings>
</jms-adapter>

In this configuration, when the application is deployed to an Oracle Event
Processing server with a cluster element groups child element that contains
ActiveActiveGroupBean_group1, then the CONDITION parameter is defined
as acctid <= 1000 and the application processes events whose acctid
property is less than or equal to 1000. Similarly, when the application is deployed
to an Oracle Event Processing server with a cluster element groups child

Partition an Incoming JMS Event Stream

18-8 Developing Applications for Oracle Event Processing

element that contains ActiveActiveGroupBean_group2, then the CONDITION
parameter is defined as acctid > 1000 and the application processes events
whose acctid property is greater than 1000.

7. Edit the component configuration file to configure a jms-adapter element for
the outbound JMS adapter as shown:

Configure the out-bound JMS adapter with the same topic as the correlating in-
bound adapter (in this example, JMSInboundAdapter2: ./Topic2), and set
session-transacted to true.

<?xml version="1.0" encoding="UTF-8"?>
<wlevs:config
 xmlns:wlevs="http://www.bea.com/ns/wlevs/config/application"
 xmlns:ha="http://www.oracle.com/ns/cep/config/cluster">
 ...
 <jms-adapter>
 <name>JMSInboundAdapter</name>
 <event-type>StockTick</event-type>
 <jndi-provider-url>t3://ppurich-pc:7001</jndi-provider-url>
 <destination-jndi-name>./Topic1</destination-jndi-name>
 <session-transacted>true</session-transacted>
 ... </jms-adapter>
 <jms-adapter>
 <name>JMSInboundAdapter2</name>
 <event-type>StockTick</event-type>
 <jndi-provider-url>t3://ppurich-pc:7001</jndi-provider-url>
 <destination-jndi-name>./Topic2</destination-jndi-name>
 <session-transacted>true</session-transacted>
 ... </jms-adapter>
 <jms-adapter>
 <name>JMSOutboundAdapter</name>
 <event-type>StockTick</event-type>
 <jndi-provider-url>t3://ppurich-pc:7001</jndi-provider-url>
 <destination-jndi-name>./Topic2</destination-jndi-name>
 <session-transacted>true</session-transacted>
 ... </jms-adapter>
</wlevs:config>

8. Deploy your application to the deployment group of your multiserver domain.

At runtime, each Oracle Event Processing server configures its instance of the
application with the message-selector that corresponds to its
ActiveActiveGroupBean notification group. This partitions the JMS topic so
that each instance of the application processes a subset of the total number of
messages in parallel.

If the active Oracle Event Processing server in an ActiveActiveGroupBean
group goes down, the Oracle Event Processing server performs an Oracle Event
Processing high availability failover to the standby Oracle Event Processing server
in that ActiveActiveGroupBean group.

Example 18-1 Precise Recovery With JMS EPN Assembly File

<?xml version="1.0" encoding="UTF-8"?>
<beans ... >

 <wlevs:event-type-repository>
 <wlevs:event-type type-name="StockTick">
 <wlevs:properties>
 <wlevs:property name="lastPrice" type="double" />
 <wlevs:property name="symbol" type="char" />
 </wlevs:properties>
 </wlevs:event-type>
 </wlevs:event-type-repository>

Partition an Incoming JMS Event Stream

Scalable Applications 18-9

 <wlevs:adapter id="JMSInboundAdapter" provider="jms-inbound">
 <wlevs:listener ref="myHaInputAdapter"/>
 </wlevs:adapter>

 <wlevs:adapter id="myHaInputAdapter" provider="ha-inbound" >
 <wlevs:instance-property name="keyProperties" value="sequenceNo"/>
 <wlevs:instance-property name="timeProperty" value="inboundTime"/>
 </wlevs:adapter>

 <wlevs:channel id="channel1" event-type="StockTick">
 <wlevs:listener ref="processor1" />
 <wlevs:source ref="myHaInputAdapter"/>
 <wlevs:application-timestamped>
 <wlevs:expression>inboundTime</wlevs:expression>
 </wlevs:application-timestamped>
 </wlevs:channel>

 <wlevs:processor id="processor1">
 <wlevs:listener ref="channel2" />
 </wlevs:processor>

 <wlevs:channel id="channel2" event-type="StockTick">
 <wlevs:listener ref="myHaCorrelatingAdapter" />
 </wlevs:channel>

 <wlevs:adapter id="myHaCorrelatingAdapter" provider="ha-correlating" >
 <wlevs:instance-property name="correlatedSource" ref="clusterCorrelatingOutstream"/>
 <wlevs:instance-property name="failOverDelay" value="2000"/>
 <wlevs:listener ref="JMSOutboundAdapter"/>
 </wlevs:adapter>

 <wlevs:adapter id="JMSOutboundAdapter" provider="jms-outbound">
 </wlevs:adapter>

 <wlevs:adapter id="JMSInboundAdapter2" provider="jms-inbound">
 </wlevs:adapter>

 <wlevs:channel id="clusterCorrelatingOutstream" event-type="StockTick" advertise="true">
 <wlevs:source ref="JMSInboundAdapter2"/>
 </wlevs:channel>
</beans>

Example 18-2 Precise Recovery With JMS Component Configuration Assembly File

<?xml version="1.0" encoding="UTF-8"?>
<wlevs:config
 xmlns:wlevs="http://www.bea.com/ns/wlevs/config/application"
 xmlns:ha="http://www.oracle.com/ns/cep/config/cluster">
 <processor>
 <name>processor1</name>
 <rules>
 <query id="helloworldRule">
 <![CDATA[select * from channel1 [Now] >
 </query>
 </rules>
 </processor>
 <jms-adapter>
 <name>JMSInboundAdapter</name>
 <event-type>StockTick</event-type>
 <jndi-provider-url>t3://ppurich-pc:7001</jndi-provider-url>
 <destination-jndi-name>./Topic1</destination-jndi-name>
 <session-transacted>true</session-transacted>
 ...
 </jms-adapter>
 <jms-adapter>
 <name>JMSInboundAdapter2</name>
 <event-type>StockTick</event-type>
 <jndi-provider-url>t3://ppurich-pc:7001</jndi-provider-url>
 <destination-jndi-name>./Topic2</destination-jndi-name>

Partition an Incoming JMS Event Stream

18-10 Developing Applications for Oracle Event Processing

 <session-transacted>true</session-transacted>
 ...
 </jms-adapter>
 <jms-adapter>
 <name>JMSOutboundAdapter</name>
 <event-type>StockTick</event-type>
 <jndi-provider-url>t3://ppurich-pc:7001</jndi-provider-url>
 <destination-jndi-name>./Topic2</destination-jndi-name>
 <session-transacted>true</session-transacted>
 ...
 </jms-adapter>
</wlevs:config>

18.3 Notification Group Naming Conventions
By default, the ActiveActiveGroupBean class creates notification groups with the
following name where X is a string.

ActiveActiveGroupBean_X

At runtime, ActiveActiveGroupBean scans the existing groups defined on the
Oracle Event Processing server and applies the following default pattern match. When
ActiveActiveGroupBean finds a match, it creates a notification group with that name.

ActiveActiveGroupBean_\\w+

Optionally, you can define your own group pattern to specify a different notification
group naming pattern.

1. Configure the assembly file to add a groupPattern attribute to your
ActiveActiveGroupBean element as shown.

<bean id="clusterAdapter" class="com.oracle.cep.cluster.hagroups.ActiveActiveGroupBean">
 <property name="groupPattern" value="MyNotificationGroupPattern*"/>
</bean>

2. Specify a value for the groupPattern attribute that matches the cluster group
naming convention you want to use for notification groups.

18.4 Custom Channel Event Partitioner
Most channels use the default event partitioning, where if no partitioner is specified
and if the partitionByEventProperty element is not present, the channel sends
events to all listeners. The partitionByEventProperty element provides a level of
customization by partitioning on the specified event with a default partitioning
algorithm. This section explains how you can further customize how events are
dispatched to the channel listeners by programmatically configuring a custom
partitioner that provides finer control over the default partitioning algorithm. For
example, you can create an event partitioner that is based on a property range

18.4.1 EventPartitioner Interface
Use the com.bea.wlevs.channel.EventPartitioner interface to partition events across a
channel to customize how events are dispatched to the channel listener.

Note:

When you implement custom partitioning and parallel processing, make sure
to add code to preserve event order and to carefully manage multithreading.

Notification Group Naming Conventions

Scalable Applications 18-11

Figure 18-4 shows an EPN that uses an event partitioner to partition a channel. In this
example, the inbound adapter sends events of type PriceEvent, which has two
properties: stock symbol and stock price. The example partitions the channel on the
symbol property and shows you how to add multithreading to the channel or to the
upstream adapter.

Figure 18-4 Event Partitioner EPN

18.4.2 Implement the EventPartitioner Interface

1. In Oracle JDeveloper, open your Oracle Event Processing application.

2. Edit your MANIFEST.MF file to import package com.bea.wlevs.channel.

3. Select the project and select File > New > From Gallery.

The New Gallery dialog displays.

4. In the New Gallery dialog, select General in the left panel and Java Class in the
right panel, and click OK.

The Create Java Class dialog displays.

5. In the Create Java Class dialog, provide a class name, package name, and extends
information.

6. Under Optional Attributes and Implements, use the Add (+) button to locate the
com.bea.wlevs.channel.EventPartitioner interface.

7. Click OK.

A new EventPartitioner class is created.

8. Complete the implementation of your EventPartitioner as shown.

package com.acme;

import com.bea.wlevs.channel.EventPartitioner;
import com.bea.wlevs.ede.api.EventProcessingException;
import com.bea.wlevs.ede.api.EventType;

public class MyEventPartitioner implements EventPartitioner {

 private final EventType eventType;
 private int numberOfPartitions;

 @Override
 public void activateConfiguration(int numberOfPartitions, EventType eventType) {
 this.numberOfPartitions = numberOfPartitions;
 this.eventType = eventType;
 }

Custom Channel Event Partitioner

18-12 Developing Applications for Oracle Event Processing

 @Override
 public int partition(Object event) throws EventProcessingException {
 int dispatchToListener = 0;
 ... // Your implementation.
 return dispatchToListener;
 }
}

The activateConfiguration method is a callback that the Oracle Event
Processing server invokes before
ActivatableBean.afterConfigurationActive and before your
EventPartitioner class's partition method is invoked.

When you associate this EventPartitioner with a channel, the channel will
invoke your EventPartitioner class's partition method each time the
channel receives an event.

Your partition method must return the index of the listener to which the
channel should dispatch the event. The index must be an int between 0 and
numberOfPartitions - 1.

9. Add a channel to your EPN.

In Figure 18-4, the channel is EventPartitionerChannel.

10. Connect the channel to an upstream adapter.

In Figure 18-4, the upstream adapter is inbound.

11. Connect the channel to two or more listeners.

In Figure 18-4, the channel is connected to Oracle CQL processors processor1,
processor2, and processor3.

If you want to the channel to perform load balancing, each listener must be
identical.

12. Edit the EPN assembly file to add an eventPartitioner instance property to the
channel element.

The value of this instance-property is the fully qualified class name of the
EventPartitioner instance the channel will use to partition events. This class
must be on your Oracle Event Processing application class path.

In this example, the channel uses EventPartitioner instance
com.acme.MyEventPartitioner to partition events.

<wlevs:channel id="EventPartitionerChannel" event-type="PriceEvent" max-threads="0" >
 <wlevs:instance-property name="eventPartitioner"
 value="com.acme.MyEventPartitioner" />
 <wlevs:listener ref="filterFanoutProcessor1" />
 <wlevs:listener ref="filterFanoutProcessor2" />
 <wlevs:listener ref="filterFanoutProcessor3" />
 <wlevs:source ref="PriceAdapter" />
</wlevs:channel>

Custom Channel Event Partitioner

Scalable Applications 18-13

Custom Channel Event Partitioner

18-14 Developing Applications for Oracle Event Processing

	Contents
	Preface
	Audience
	Related Documents
	Conventions

	What's New in This Guide
	Part I Application Development
	1 Introduction to Application Development
	1.1 New in this Release
	1.2 EPN Diagram
	1.3 Component Configuration
	1.4 Streams and Relations
	1.5 Application Scalability and High Availability
	1.6 Application Life Cycle
	1.7 API Overview
	1.8 Spring Framework
	1.9 OSGi Service Platform

	2 Application and Resource Configuration
	2.1 Application Configuration
	2.2 Assembly File Structure
	2.2.1 Nested Stages in an EPN Assembly File
	2.2.2 Foreign Stages in an EPN Assembly File

	2.3 Component Configuration File Structure
	2.4 Component and Server Configuration
	2.5 Resource Access Configuration
	2.5.1 Resource Access Annotations
	2.5.2 Static Resource Injection
	2.5.2.1 Static Resource Names
	2.5.2.2 Dynamic Resource Names

	2.5.3 Dynamic Resource Injection
	2.5.4 Dynamic Resource Lookup Using JNDI
	2.5.5 Resource Name Resolution

	3 Events and Event Types
	3.1 How Events Function
	3.2 Choose a Data Structure for the Event Type
	3.3 Design Constraints
	3.4 Event Type Repository
	3.5 Properties
	3.6 Interval and Time Stamp Properties
	3.6.1 Interval Properties
	3.6.2 Time Stamp with Local Time Zone Properties

	3.7 Create and Register a JavaBean Event Type
	3.7.1 Data Types
	3.7.2 Create a JavaBean Event Type Declaratively
	3.7.3 Create a JavaBean Event Type Programmatically
	3.7.4 Usages

	3.8 Create and Register a Tuple Event Type
	3.8.1 Create a Tuple Event Type in the Assembly File
	3.8.2 Use a Tuple Event Type in Java Code
	3.8.3 Use a Tuple Event Type Instance in Oracle CQL Code

	3.9 Create and Register a Map Event Type
	3.10 Access the Event Type Repository
	3.10.1 EPN Assembly File
	3.10.2 Spring-DM @ServiceReference Annotation
	3.10.3 Oracle Event Processing @Service Annotation

	3.11 Share Event Types Between Application Bundles
	3.12 Control Event Type Instantiation with an Event Type Builder Class
	3.12.1 Implement an Event Type Builder Class
	3.12.2 An Event Type that Uses an Event Type Builder

	4 Adapters
	4.1 Create Adapters
	4.2 Cluster Distribution Service
	4.3 Password Encryption
	4.4 JAXB Support
	4.4.1 EclipseLink Moxy
	4.4.2 APIs

	4.5 CSV Adapters
	4.6 EDN Adapters
	4.6.1 Usage
	4.6.2 Create EDN Adapters

	4.7 File Adapter
	4.8 HTTP Publish-Subscribe Adapter
	4.9 HTTP Publish-Subscribe Adapter Custom Converter Bean
	4.9.1 Bayeux Protocol
	4.9.2 Create a Custom Converter Bean

	4.10 JMS Adapters
	4.10.1 Service Providers
	4.10.2 Inbound Adapter Configuration
	4.10.2.1 Single and Multithreaded Inbound JMS Adapters
	4.10.2.2 Configure a JMS Adapter for Durable Subscriptions

	4.10.3 Outbound Adapter Configuration

	4.11 JMS Custom Message Converter Bean
	4.11.1 Implement Interfaces
	4.11.2 Implement the Inbound JMS Adapter
	4.11.3 Implement the Outbound JMS Adapter

	4.12 Oracle Business Rules Adapter
	4.13 REST Adapter
	4.14 RMI Adapters

	5 Channels
	5.1 When to Use a Channel
	5.2 Channel Configuration
	5.2.1 Assembly File
	5.2.2 Configuration File

	5.3 Control Which Queries Output to a Downstream Channel
	5.4 Batch Processing Channels
	5.5 Fault Handling
	5.6 EventPartitioner Channels

	6 Oracle CQL Processors
	6.1 Processor Data Sources
	6.2 Assembly and Configuration Files
	6.3 Queries
	6.3.1 Stream Channels
	6.3.2 Time-Based Relations (Windows)
	6.3.2.1 Stream to Relation Operators
	6.3.2.2 Relation to Stream Operators
	6.3.2.3 NOW and Last Event Windows

	6.3.3 Processor Output Control (Slides)
	6.3.4 Views

	6.4 CQL Aggregations
	6.5 Configure a Table Source
	6.5.1 Assembly File
	6.5.2 Configuration File

	6.6 Configure an Oracle CQL Processor for Parallel Query Execution
	6.6.1 Set Up Parallel Query Execution Support
	6.6.2 The ordering-constraint Attribute
	6.6.3 Using partition-order-capacity with Partitioning Queries
	6.6.4 Limitations

	6.7 Fault Handling
	6.7.1 Implement a Fault Handler Class
	6.7.2 Register a Fault Handler

	7 Event Beans
	7.1 Event Beans and Spring Beans
	7.1.1 Threading Behavior
	7.1.2 Receive Heartbeat Events
	7.1.3 Create an Event Bean
	7.1.4 Create a Spring Bean

	7.2 Event Sink Interfaces
	7.2.1 Implement StreamSink
	7.2.2 Implement RelationSink

	7.3 Event Source Interfaces
	7.3.1 Implement StreamSender
	7.3.2 Implement RelationSender

	8 Cached Event Data
	8.1 Caching Defined
	8.1.1 Supported Caching Implementations
	8.1.2 Use Cases

	8.2 Configure an Oracle Coherence Caching System and Cache
	8.2.1 Assembly File
	8.2.2 Configuration File
	8.2.3 Cache Loader Bean

	8.3 Configure a Local Caching System and Cache
	8.3.1 Assembly File
	8.3.2 Configuration File

	8.4 Configure a Cache as an Event Listener
	8.5 Index a Cache with a Key
	8.5.1 Assembly File
	8.5.2 Metadata Annotation
	8.5.3 Composite Key

	8.6 Configure a Cache as an Event Source
	8.7 Configure a Cache with a Cache Listener
	8.8 Configure a Third-Party Caching System and Cache
	8.9 Exchange Data Between a Cache and Another Data Source
	8.9.1 Load Cache Data from a Read-Only Data Source
	8.9.2 Exchange Data with a Read-Write Data Source

	8.10 Access a Cache from Application Code
	8.10.1 Access a Cache from an Oracle CQL Statement
	8.10.2 Access a Cache from an Adapter
	8.10.3 Access a Cache From a Business POJO
	8.10.4 Access a Cache From an Oracle CQL User-Defined Function
	8.10.5 Access a Cache with JMX
	8.10.5.1 How to Access a Cache With JMX Using Oracle Event Processing Visualizer
	8.10.5.2 How to Access a Cache With JMX Using Java

	9 EclipseLink, JPA, and Oracle Coherence
	9.1 High-Level Procedure
	9.2 HelloWorld Example
	9.2.1 persistence.xml Configuration File
	9.2.2 HelloWorldAdapter.java
	9.2.3 HelloWorldEvent.java
	9.2.4 HelloWorldBean.java

	9.3 JPA Coherence Example
	9.3.1 persistence.xml Configuration File
	9.3.2 Classes
	9.3.2.1 CoherenceMapListener.java
	9.3.2.2 PriceTarget.java
	9.3.2.3 PriceTargetLoader.java
	9.3.2.4 SaleEvent.java
	9.3.2.5 SaleEventsGenerator.java

	10 Web Services
	10.1 Supported Platforms
	10.2 Invoke a Web Service From an Application
	10.3 Expose an Application as a Web Service

	11 Parameterized Applications
	11.1 Application Parameters
	11.2 Object Class Definitions
	11.3 Attribute Descriptions
	11.4 Targeting
	11.5 Example metatype File
	11.6 Where You Can Use Parameterized Applications
	11.6.1 Document an Application
	11.6.2 Channel Configuration
	11.6.3 Oracle CQL Processor Query

	11.7 Deploy the HelloWorld Application

	12 Internationalization
	12.1 Message Catalogs
	12.1.1 Hierarchy
	12.1.2 Naming
	12.1.3 Message Arguments
	12.1.4 Formats
	12.1.5 Message Catalog Localization

	12.2 Generate Localization Classes

	Part II Deploy, Test, and Debug
	13 Assemble and Deploy
	13.1 OSGi bundles
	13.2 Application Dependencies
	13.3 Application Libraries
	13.3.1 Library Directory
	13.3.2 Library Extensions Directory

	13.4 Deployment Order
	13.5 Configuration History
	13.6 Assemble an OSGi Bundle with appC
	13.7 Assemble an OSGi Bundle with bundle.sh
	13.7.1 Prepare and Organize the Files
	13.7.2 Create the MANIFEST.MF File
	13.7.3 Include Third-Party JAR Files
	13.7.4 Access Third-Party JAR Files with -Xbootclasspath
	13.7.5 Reference Foreign Stages
	13.7.6 Assemble an OSGi Bundle that Activates
	13.7.6.1 Command Location, Syntax, and Arguments
	13.7.6.2 Assemble an OSGi Bundle

	13.8 Deploy an OSGi Bundle

	14 Testing 1-2-3
	14.1 Load Generator and the csvgen Adapter
	14.1.1 Create the Properties File
	14.1.2 Create the Data Feed File
	14.1.3 Configure the csvgen Adapter in Your Application

	14.2 Event Inspector Service
	14.2.1 Event Types
	14.2.2 HTTP Publish-Subscribe Channel and Server
	14.2.3 Configure a Local or Remote Server
	14.2.4 Inject Events
	14.2.5 Trace Events
	14.2.6 Event Inspector API

	14.3 EPN Shell
	14.3.1 Oracle CQL Queries
	14.3.2 Management Commands
	14.3.3 Regression Testing
	14.3.4 EPN Variable
	14.3.5 EPN Commands
	14.3.6 Management Commands

	14.4 EPN Command Interface
	14.4.1 Session Variables
	14.4.2 Methods
	14.4.3 Example

	15 Debug with Event Record and Playback
	15.1 Event Flow
	15.2 Berkeley DB
	15.3 Record Events
	15.4 Play Back Events
	15.5 Configure Berkeley DB
	15.6 Configure a Component to Record Events
	15.7 Configure a Component to Play Back Events
	15.8 Start and Stop the Record and Playback of Events

	Part III Tune and Scale
	16 Performance Tuning
	16.1 Channel and JMS Performance Tuning
	16.2 High Availability Performance Tuning

	17 High Availability Applications
	17.1 Oracle Coherence
	17.2 Architecture
	17.3 Life Cycle and Failover
	17.3.1 Secondary Failure
	17.3.2 Primary Failure and Failover
	17.3.3 Rejoining the High Availability MultiServer Domain

	17.4 Deployment Group and Notification Group
	17.5 High Availability Adapters
	17.5.1 High Availability Input Adapter
	17.5.2 Buffering Output Adapter
	17.5.3 Broadcast Output Adapter
	17.5.4 Correlating Output Adapter

	17.6 High Availability and Scalability
	17.7 Choose a Quality of Service Option
	17.7.1 Simple Failover
	17.7.2 Simple Failover with Buffering
	17.7.3 Light-Weight Queue Trimming
	17.7.4 Precise Recovery with JMS

	17.8 Design Applications for High Availability
	17.8.1 Primary High Availability Use Case
	17.8.2 High Availability Design Patterns
	17.8.2.1 Select the Minimum High Availability Your Application can Tolerate
	17.8.2.2 Use High Availability Components at All Ingress and Egress Points
	17.8.2.3 Preserve What You Need
	17.8.2.4 Limit Oracle Event Processing Application State
	17.8.2.5 Choose an Adequate warm-up-window-length Time
	17.8.2.5.1 Type 1 Applications
	17.8.2.5.2 Type 2 Applications

	17.8.2.6 Ensure Applications are Idempotent
	17.8.2.7 Source Event Identity Externally
	17.8.2.8 Understand the Importance of Event Ordering
	17.8.2.8.1 Prefer Deterministic Behavior
	17.8.2.8.2 Avoid Multithreading
	17.8.2.8.3 Prefer Monotonic Event Identifiers

	17.8.2.9 Write Oracle CQL Queries with High Availability in Mind
	17.8.2.10 Avoid Coupling Servers
	17.8.2.11 Plan for Server Recovery

	17.8.3 Oracle CQL Query Restrictions
	17.8.3.1 Range-Based Windows
	17.8.3.2 Tuple-Based Windows
	17.8.3.3 Partitioned Windows
	17.8.3.4 Sliding Windows
	17.8.3.5 DURATION Clause and Non-Event Detection
	17.8.3.6 Prefer Application Time

	17.9 Configure High Availability Quality of Service
	17.9.1 Configure a Simple Failover
	17.9.2 Configure Simple Failover With Buffering
	17.9.3 Configure Light-Weight Queue Trimming
	17.9.4 Configure Precise Recovery With JMS

	17.10 Configure High Availability Adapters
	17.10.1 Configure the High Availability Input Adapter
	17.10.2 Configure the Buffering Output Adapter
	17.10.3 Configure the Broadcast Output Adapter
	17.10.4 Configure the Correlating Output Adapter

	18 Scalable Applications
	18.1 Default Channel Scalability Settings
	18.1.1 Configure Partitioning on the Channel
	18.1.2 Configure Parallel Processing on the Channel
	18.1.3 Configure Parallel Processing on the Upstream Adapter

	18.2 Partition an Incoming JMS Event Stream
	18.2.1 Configure Partitioning without High Availability
	18.2.2 Configure Partitioning with High Availability

	18.3 Notification Group Naming Conventions
	18.4 Custom Channel Event Partitioner
	18.4.1 EventPartitioner Interface
	18.4.2 Implement the EventPartitioner Interface

