
Oracle® Fusion Middleware
Developing Services with Oracle Service Bus

12c (12.2.1.4.0)
E95448-06
June 2021

Oracle Fusion Middleware Developing Services with Oracle Service Bus, 12c (12.2.1.4.0)

E95448-06

Copyright © 2008, 2021, Oracle and/or its affiliates.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or "commercial computer software documentation" pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience lvii

Documentation Accessibility lvii

Related Documents lvii

Conventions lvii

 What's New in This Guide

Part I Introduction to Oracle Service Bus

1 About Oracle Service Bus

1.1 Oracle Service Bus Overview 1-1

1.1.1 Functional Areas 1-2

1.1.2 Adaptive Messaging 1-3

1.1.3 Service Security 1-3

1.1.4 Service Virtualization 1-3

1.1.5 Configuration Framework 1-4

1.1.6 Service Management 1-4

1.2 Service Bus Architectural Concepts 1-5

1.2.1 Message Processing 1-5

1.2.2 Proxy Service Role in Message Processing 1-6

1.2.3 Transport Layer (Inbound) 1-6

1.2.4 Binding Layer 1-6

1.2.5 Pipeline Role in Message Processing 1-6

1.2.6 Transport Layer (Outbound) 1-7

1.2.7 Business Service Role in Message Processing 1-7

1.3 Service Bus Components 1-7

1.3.1 Service Components 1-7

1.3.1.1 Proxy Services 1-7

1.3.1.2 Business Services 1-8

iii

1.3.2 Message Flows 1-8

1.3.2.1 Pipelines 1-8

1.3.2.2 Split-Joins 1-9

1.3.3 Transports, Adapters, and Bindings 1-10

1.3.3.1 Supported Transport Protocols 1-10

1.3.3.2 Service Types 1-11

1.3.4 Transformation Resources 1-11

1.3.4.1 XQuery Mappings 1-12

1.3.4.2 XSLT Mappings 1-12

1.3.4.3 Cross References 1-12

1.3.4.4 Domain Value Maps 1-13

1.3.5 Transport and Adapter Related Resources 1-13

1.3.5.1 JCA Bindings 1-13

1.3.5.2 JAR Files (Archives) 1-13

1.3.5.3 JavaScript Files 1-14

1.3.5.4 MQ Connections 1-14

1.3.6 Schema and Document Resources 1-14

1.3.6.1 XML Schemas 1-15

1.3.6.2 XML Documents 1-15

1.3.6.3 WSDL Documents 1-15

1.3.6.4 WADL Documents 1-16

1.3.6.5 MFL Resources 1-16

1.3.7 Security Resources 1-16

1.3.7.1 Service Key Providers 1-16

1.3.7.2 Service Accounts 1-17

1.3.7.3 WS-Policy Resources 1-17

1.3.8 Alert Destinations 1-17

1.3.9 Throttling Group Resources 1-17

1.3.10 System Resources 1-18

1.3.10.1 JNDI Providers 1-18

1.3.10.2 SMTP Servers 1-18

1.3.10.3 Proxy Servers 1-18

1.3.10.4 UDDI Registries 1-19

1.4 Service Bus Messaging Models 1-19

1.4.1 Message Formats 1-19

1.4.2 Message Context 1-20

1.4.3 Content Types 1-20

1.5 Using Work Managers with Service Bus 1-21

1.6 Service Bus Security 1-21

1.6.1 Service Bus Security Features 1-21

1.6.2 Service Bus Service Security Model 1-22

iv

1.6.3 Oracle Web Services Manager 1-22

1.6.4 Oracle Platform Security Services 1-23

1.6.5 WS-Policies 1-23

1.6.6 Types of Security 1-23

1.6.6.1 Inbound Security 1-23

1.6.6.2 Outbound Security 1-24

1.6.6.3 Identity Propagation 1-24

1.6.6.4 User Management and Administrative Security 1-24

1.6.6.5 Transport-Level Security 1-24

1.6.6.6 Message-Level Security 1-25

1.6.7 Custom Security Credentials 1-25

1.7 Approaches for Designing Service Bus Services 1-25

1.7.1 Service Bus Top-Down Roadmap 1-25

1.7.2 Service Bus Bottom-Up Roadmap 1-26

1.8 Naming Guidelines for Service Bus Components 1-27

1.9 Viewing Service Bus Resources in a Web Browser 1-27

1.9.1 WSDL Documents 1-28

1.9.2 WS Policies 1-28

1.9.3 Message Format Language (MFL) Resources 1-28

1.9.4 Schema Resources 1-28

1.9.5 Notes About Viewing Service Bus Resources in a Web Browser 1-28

1.10 Accessibility Options 1-29

1.10.1 How to Set Accessibility Options in JDeveloper 1-29

1.10.2 How to Set Accessibility Options in the Oracle Service Bus Console 1-29

1.10.3 Notes on Screen Reader Mode 1-30

1.11 Additional Resources 1-30

2 Getting Started with the Oracle Service Bus Console

2.1 Overview of the Oracle Service Bus Console 2-1

2.1.1 Service Bus Sessions 2-1

2.1.2 Oracle Service Bus Console Layout 2-2

2.1.3 Service Bus Projects and Folders 2-3

2.1.3.1 The System Project 2-3

2.1.3.2 Projects and Folder Names 2-4

2.1.3.3 Qualified Resource Names Using Projects and Folders 2-4

2.1.4 Service Bus Resources 2-4

2.1.5 Oracle Service Bus Console Editors 2-5

2.2 Getting Started 2-5

2.2.1 How to Access the Oracle Service Bus Console 2-5

2.2.2 How to Exit the Oracle Service Bus Console 2-6

v

2.3 Working with Sessions 2-6

2.3.1 How to Create a Session 2-6

2.3.2 How to Activate a Session 2-7

2.3.3 How to Exit a Session 2-8

2.4 Working with Projects, Folders, and Resources in Oracle Service Bus Console 2-8

2.4.1 How to Locate Services 2-8

2.4.2 Working with the Project and Folder Definition Editors 2-9

2.4.2.1 About Viewing Project, Folder, and Resource Information 2-9

2.4.2.2 Viewing All Projects in the Session 2-9

2.4.2.3 Viewing Folders and Resources in a Project 2-10

2.4.2.4 Viewing the Subfolders and Resources in a Folder 2-11

2.4.2.5 How to Filter Components on the Project and Folder Definition Editors 2-12

2.4.3 Create New Projects and Folders for Resources 2-13

2.4.3.1 Creating a Project in the Project Navigator 2-13

2.4.3.2 Creating a Folder in the Project Navigator 2-13

2.4.4 Creating Resources with the Resource Gallery 2-13

2.4.5 How to Clone Projects, Folders, and Resources 2-14

2.4.5.1 What Happens When You Clone a Project 2-14

2.4.5.2 What Happens When You Clone a Folder 2-14

2.4.6 How to Rename Projects, Folders, and Resources 2-15

2.4.7 How to Move Projects, Folders, and Resources 2-15

2.4.8 How to Delete Projects, Folders, and Resources 2-16

2.4.8.1 Deleting a Service Bus Component using the Project Navigator 2-16

2.4.8.2 Deleting a Service Bus Component Using an Editor 2-16

2.5 Viewing and Resolving Conflicts 2-17

2.5.1 How to View Conflicts and Errors 2-17

2.5.1.1 Viewing All Conflicts and Errors in the Service Bus Console 2-18

2.5.1.2 Viewing Conflicts and Errors for a Deployed Resource 2-18

2.5.2 How to Resolve Conflicts and Errors 2-18

2.5.2.1 Resolving Concurrent Update Conflicts 2-19

2.5.2.2 Resolving Error Conflicts 2-19

2.6 Viewing Historical Data 2-19

2.6.1 How to View the Changes in the Current Session 2-19

2.6.2 How to View the Existing Sessions 2-20

2.6.3 How to View the Changes in an Activated Session 2-21

2.6.4 How to Purge Activated Sessions 2-21

2.7 Undoing Changes and Activations 2-22

2.7.1 How to Undo Specific Changes in the Current Session 2-22

2.7.2 How to Undo a Session Activation 2-23

2.8 Viewing References 2-24

2.8.1 Viewing Resource References 2-24

vi

2.9 Customizing the Appearance of the Oracle Service Bus Console 2-25

2.9.1 How to Customize Table Views 2-25

2.9.1.1 Specifying the Columns to Display 2-25

2.9.1.2 Sorting the Columns in a Table 2-26

2.9.1.3 Reordering Columns in a Table 2-26

2.9.1.4 Viewing a Table in Full-Screen Mode 2-26

3 Getting Started with Oracle Service Bus in JDeveloper

3.1 JDeveloper Concepts for Service Bus 3-1

3.1.1 Application Navigator 3-2

3.1.2 Service Bus Overview Editor 3-3

3.1.3 Resource Editors 3-3

3.1.4 Components Window 3-4

3.1.5 Resources Window 3-5

3.1.6 Properties Window 3-5

3.1.7 Structure View 3-6

3.1.8 Log Window 3-6

3.2 Managing Service Bus Components in JDeveloper 3-6

3.3 Refactoring Service Bus Projects, Folders, and Resources 3-6

3.3.1 How to Rename a Service Bus Folder or Resource in JDeveloper 3-7

3.3.2 How to Move a Service Bus Folder or Resource in JDeveloper 3-7

3.3.3 How to Delete a Project or Resource 3-8

3.3.3.1 Deleting a Resource 3-8

3.3.3.2 Deleting a Project 3-8

3.3.4 How to Clone a Project or Folder 3-9

4 Setting up the Development Environment for JDeveloper

4.1 Creating Server Connections in JDeveloper 4-1

4.1.1 How to Create an Application Server Connection 4-1

4.1.2 How to Create a SOA-MDS Connection 4-1

4.1.3 How to Change the MDS Repository Location 4-2

4.2 Creating Connection Factories for Oracle JCA Adapters 4-3

4.3 Disabling the JMS Reporting Provider 4-4

5 Developing Service Bus Applications in JDeveloper

5.1 Introduction to the Service Bus Overview Editor 5-1

5.1.1 Service Bus Overview Editor Components 5-1

5.1.2 Transports, Adapters, and Bindings 5-4

5.1.3 Project and Overview Diagram Synchronization 5-9

vii

5.2 Creating Service Bus Applications and Projects in JDeveloper 5-10

5.2.1 How to Create a Service Bus Application and Project 5-10

5.2.1.1 Guidelines for Creating Applications and Projects 5-11

5.2.1.2 Creating a Service Bus Application with No Project 5-12

5.2.1.3 Creating a Service Bus Application and Project 5-12

5.2.1.4 Adding a Service Bus Project to a Service Bus Application 5-13

5.2.2 Developing Service Bus Projects in Reference Configuration Mode 5-14

5.3 Adding Service Bus Components 5-15

5.3.1 How to Launch the Service Bus Overview Editor 5-15

5.3.2 How to Add a Pipeline 5-16

5.3.3 How to Add a Split-Join 5-16

5.3.4 How to Create a Proxy Service 5-17

5.3.4.1 Creating a Proxy Service with an Adapter 5-17

5.3.4.2 Creating a Proxy Service with a Transport 5-18

5.3.4.3 Creating a Proxy Service from an Existing Pipeline or Split-Join 5-18

5.3.5 How to Reuse Existing Proxy Services in the Overview 5-19

5.3.6 How to Create a Business Service 5-19

5.3.6.1 Creating a Business Service with an Adapter 5-19

5.3.6.2 Creating a Business Service with a Transport 5-20

5.3.7 How to Reuse Existing Business Services in the Overview 5-21

5.3.8 How to Invoke Deployed Service Bus and SOA Applications 5-21

5.3.9 What You May Need to Know About Adding Components 5-22

5.4 Modifying and Deleting Components in the Service Bus Overview Editor 5-22

5.4.1 How to Edit Components from the Service Bus Overview Editor 5-22

5.4.2 How to Rename Components in the Service Bus Overview Editor 5-23

5.4.3 How to Delete Components in the Service Bus Overview Editor 5-24

5.5 Synchronizing the Overview Diagram 5-24

5.6 Wiring Service Bus Components 5-24

5.6.1 How to Wire Service Bus Components 5-25

5.6.2 How to Delete Wires Between Services 5-26

5.7 Attaching Security Policies to Service Bus Components 5-26

5.8 Testing Service Bus Components in the Overview Editor 5-26

5.8.1 How to Test a Service Bus Component 5-27

5.8.2 How to Debug a Service Bus Component 5-27

5.9 Deploying a Service Bus Application 5-27

Part II Working with Oracle Service Bus Resources

6 Creating and Configuring Project Resources

6.1 Introduction to Service Bus Project Resources 6-1

viii

6.1.1 Project Resources and Sessions in the Oracle Service Bus Console 6-2

6.2 Working with Service Accounts 6-2

6.2.1 Service Account Authentication Types 6-2

6.2.1.1 Static 6-2

6.2.1.2 User Name and Password Pass-Through 6-2

6.2.1.3 User Mapping Authentication 6-3

6.2.2 How to Create Service Accounts 6-3

6.2.2.1 Creating a Service Account that Passes Though Authentication
Information 6-4

6.2.2.2 Creating a Service Account with a Static Password 6-4

6.2.2.3 Creating a Service Account that Maps Incoming Passwords 6-5

6.2.3 How to Edit Service Accounts 6-6

6.2.4 How to Delete Service Accounts 6-7

6.3 Working with Service Key Providers 6-7

6.3.1 How to Create Service Key Providers 6-8

6.3.2 How to Edit Service Key Providers 6-9

6.3.3 How to Delete Service Key Providers 6-10

6.4 Working with Alert Destinations 6-10

6.4.1 Alert Destination Types 6-10

6.4.1.1 Email 6-11

6.4.1.2 SNMP Traps 6-11

6.4.1.3 Reporting 6-11

6.4.1.4 Alert Logging 6-11

6.4.1.5 JMS 6-11

6.4.2 How To Create Alert Destinations 6-12

6.4.3 How to Define Email Recipients for an Alert Destination 6-12

6.4.4 How to Define JMS Recipients for an Alert Destination 6-13

6.4.5 How to Edit Alert Destinations 6-14

6.4.6 How to Delete Alert Destinations 6-14

6.4.7 Working with SNMP 6-15

6.4.7.1 Guidelines for Working with SNMP Agents for Service Bus 6-15

6.4.7.2 How to Start Listening for Traps 6-16

6.5 Working with XML Schemas 6-16

6.5.1 How to Create XML Schemas 6-16

6.5.2 How to Edit XML Schemas 6-17

6.5.3 How to Delete XML Schemas 6-18

6.6 Working with XML Documents 6-18

6.6.1 How to Create XML Documents 6-18

6.6.2 How to Edit XML Documents 6-19

6.6.3 How to Delete XML Documents 6-20

6.7 Working with JAR Files 6-20

ix

6.7.1 How to Add JAR Files 6-20

6.7.2 How to Update a JAR File 6-21

6.7.3 How to Modify JAR File Dependencies 6-22

6.7.4 How to Delete a JAR File 6-23

7 Creating and Configuring System Resources

7.1 Working with JNDI Provider Resources 7-1

7.1.1 Classpath Requirements for JBoss Application Server 7-1

7.1.2 About JBoss Initial Context Factory Environment Properties 7-2

7.1.3 How to View JNDI Provider Resources in the Oracle Service Bus Console 7-3

7.1.4 How to Create a JNDI Provider Resource 7-4

7.1.5 How to Edit JNDI Provider Resources 7-5

7.1.6 How to Delete JNDI Provider Resources 7-6

7.2 Working with SMTP Server Resources 7-6

7.2.1 How to View SMTP Server Resources in the Oracle Service Bus Console 7-6

7.2.2 How to Create SMTP Server Resources 7-7

7.2.3 How to Configure a Default SMTP Server 7-8

7.2.4 How to Edit SMTP Server Resources 7-8

7.2.5 How to Delete SMTP Server Resources 7-8

7.3 Working with Proxy Server Resources 7-9

7.3.1 Using Proxy Servers with SSL 7-9

7.3.2 How to View Proxy Server Resources in Oracle Service Bus Console 7-9

7.3.3 How to Create Proxy Server Resources 7-10

7.3.4 How to Edit Proxy Server Resources 7-11

7.3.5 How to Delete Proxy Server Resources 7-11

8 Creating and Configuring Proxy Services

8.1 Introduction to Proxy Services 8-1

8.1.1 Proxy Service Definitions 8-2

8.1.2 Service Types and Protocols for Proxy Services 8-2

8.1.3 When to Use SOAP or Any XML Service Types 8-3

8.1.4 When to Use the Messaging Service Type 8-3

8.1.5 Binding Definitions and Runtime Variables for Proxy Service Types 8-3

8.1.5.1 WSDL Service Type 8-3

8.1.5.2 Messaging Service Type 8-3

8.1.5.3 Any SOAP Service 8-4

8.1.5.4 Any XML Service 8-5

8.1.6 Proxy Service Transport Protocol Configuration 8-5

8.2 Securing Proxy Services 8-5

x

8.3 Service Level Agreement Alert Rules 8-6

8.4 Web Services Interoperability Compliance 8-6

8.5 Creating Proxy Services 8-6

8.5.1 How to Create a Proxy Service 8-7

8.5.2 How to Create a Proxy Service Using the Service Bus Console 8-7

8.5.3 How to Create a Typed REST Proxy Service Using the Service Bus Console 8-9

8.5.4 How to Create a Proxy Service Using JDeveloper 8-11

8.5.5 How to Generate a Proxy Service from a JCA Binding Resource 8-13

8.5.5.1 Generating a Proxy Service from a JCA Binding in JDeveloper 8-13

8.5.5.2 Generating a Proxy Service from a JCA Binding in the Console 8-14

8.5.6 How to Generate a Proxy Service from an Existing Service in JDeveloper 8-14

8.5.7 How to Generate a Proxy Service from a WSDL Document in JDeveloper 8-15

8.6 Configuring Proxy Services 8-15

8.6.1 How to Configure General Information for a Proxy Service 8-15

8.6.2 How to Configure a Proxy Service Transport 8-17

8.6.3 How to Configure Proxy Service Message Handling 8-18

8.6.4 How to Configure Security for a Proxy Service 8-20

8.6.5 How to Configure Service Level Agreement Alerts for a Proxy Service 8-20

8.7 Deleting Proxy Services 8-20

8.7.1 How to Delete a Proxy Service 8-20

8.8 Consuming Proxy Services in JDeveloper with WSIL 8-21

8.8.1 How to Consume Service Bus Proxy Services in JDeveloper with WSIL 8-21

9 Creating and Configuring Business Services

9.1 Introduction to Business Services 9-1

9.1.1 Business Service Definitions 9-1

9.1.2 Service Types and Protocols for Business Services 9-2

9.1.3 Binding Definitions and Runtime Variables for Business Service Types 9-3

9.1.4 Business Service Transport Protocol Configuration 9-3

9.1.4.1 About the Load Balancing Algorithm 9-3

9.1.4.2 About Business Service URI Retries 9-4

9.1.4.3 Suppressing Retries in Case of Application Errors 9-4

9.1.5 Message Handling for Business Services 9-5

9.1.5.1 XOP/MTOM Support 9-5

9.1.5.2 Attachments 9-5

9.1.5.3 Web Services Interoperability Compliance 9-5

9.2 Using Proxy Servers 9-6

9.3 Service Level Agreement Alert Rules 9-6

9.4 Security and Security Policies for Business Services 9-6

9.5 Creating Business Services 9-6

xi

9.5.1 How to Create a SOAP Business Service Using the Service Bus Console 9-7

9.5.2 How to Create a Typed or Untyped REST Business Service Using the Service
Bus Console 9-8

9.5.3 How to Create a Typed REST Business Service Specifying WADL Details
Using the Service Bus Console 9-9

9.5.4 How to Create a REST Business Service Based on a SOAP Service Using the
SOAP to REST Wizard 9-11

9.5.5 How to Create a Business Service That Connects to Oracle Integration Using
the Service Bus Console 9-14

9.5.5.1 Consuming an Integration in the Service Bus Console By Browsing 9-15

9.5.5.2 Consuming an Integration in the Service Bus Console Using a Direct Link 9-16

9.5.6 How to Create a Business Service Using JDeveloper 9-16

9.5.7 How to Create a Business Service That Connects to Oracle Integration Using
JDeveloper 9-18

9.5.7.1 Create an Oracle Integration Connection 9-18

9.5.7.2 Create a REST Binding 9-19

9.5.7.3 Configure OWSM Policies on the REST Reference 9-21

9.5.7.4 Configure and Deploy the Application 9-21

9.5.8 How to Generate a Business Service from a JCA Binding Resource 9-21

9.5.8.1 Generating a Business Service from a JCA Binding in JDeveloper 9-22

9.5.8.2 Generating a Business Service from a JCA Binding in the Console 9-22

9.5.9 How to Generate a Business Service from a Proxy Service in JDeveloper 9-22

9.5.10 How to Generate a Business Service from a WSDL Document in JDeveloper 9-23

9.6 Configuring Business Services 9-23

9.6.1 How to Configure General Information for a Business Service 9-23

9.6.2 How to Configure a Business Service Transport 9-24

9.6.3 How to Configure Business Service Message Handling 9-26

9.6.4 How to Configure Performance for a Business Service 9-27

9.6.5 How to Configure Security for a Business Service 9-27

9.6.6 How to Configure Service Level Agreement Alerts for a Business Service 9-27

9.7 Deleting a Business Service 9-27

9.8 Improving Performance by Caching Business Service Results 9-28

9.8.1 How Result Caching Works 9-28

9.8.1.1 Flushing Cached Results 9-29

9.8.2 Result Caching Best Practices 9-30

9.8.3 How to Delete Entries in the Result Cache 9-30

9.8.4 Result Cache Metadata 9-32

9.8.4.1 Cache Token 9-32

9.8.4.2 Expiration Time 9-32

9.8.4.3 Request Metadata 9-33

9.8.4.4 Response Metadata 9-33

9.8.5 Testing Result Caching 9-33

xii

9.8.6 How to Configure a Business Service for Result Caching 9-33

9.8.7 Result Caching Advanced Configuration 9-35

9.8.7.1 Working with Unicast and Multicast 9-35

9.8.7.2 How to Disable Coherence for Service Bus 9-36

9.8.7.3 About Out-of-Process Coherence Servers 9-36

9.8.7.4 How to Use an Out-of-Process Coherence Cache Server 9-37

9.8.7.5 More Information on Configuring and Using Oracle Coherence 9-37

10

Improving Service Performance with Split-Join

10.1 Introduction to Split-Joins 10-1

10.1.1 Static Split-Joins 10-2

10.1.1.1 Static Split-Join – Sample Scenario 10-2

10.1.2 Dynamic Split-Join 10-3

10.1.2.1 Dynamic Split-Join – Sample Scenario 10-3

10.1.3 Split-Join Operations 10-4

10.1.3.1 Split-Join Communication Operations 10-4

10.1.3.2 Split-Join Flow Control Operations 10-4

10.1.3.3 Split-Join Assign Operations 10-5

10.1.4 Using Split-Join with Content in SOAP Headers 10-6

10.1.5 Transaction Support 10-7

10.1.6 Security with Split-Joins 10-7

10.1.7 Split-Join Resource Type and Environment Variable 10-7

10.2 Service Level Agreement Alert Rules 10-8

10.3 Working with Split-Joins in JDeveloper 10-8

10.3.1 How to Create a Split-Join in JDeveloper 10-8

10.3.2 How to Generate a Split-Join from a WSDL Document in JDeveloper 10-9

10.3.3 How to Display the Components Window and Properties Windows 10-9

10.3.3.1 Displaying the Components Window 10-9

10.3.3.2 Displaying the Properties Window 10-9

10.3.4 How to Configure the Start Node 10-10

10.3.5 How to View External Services 10-10

10.3.6 How to Configure Global and Local Variables 10-10

10.3.6.1 Defining Global and Local Variables 10-10

10.3.6.2 Editing Global or Local Variables 10-11

10.3.7 How to Configure the Receive Operation 10-11

10.4 Adding Communication Operations in JDeveloper 10-12

10.4.1 How to Invoke a Service 10-12

10.4.2 How to Configure a Reply 10-13

10.5 Adding Flow Control Operations in JDeveloper 10-14

10.5.1 How to Create a Container Node 10-14

xiii

10.5.2 How to Iterate Through a Variable Number of Requests 10-15

10.5.3 How to Process a Fixed Number of Requests in Parallel 10-16

10.5.4 How to Define If-Else Conditional Logic 10-16

10.5.5 How to Create Error Handlers 10-18

10.5.6 How to Raise an Error 10-18

10.5.7 How to Re-Raise an Error 10-19

10.5.8 How to Repeat an Operation Until it Evaluates to True 10-19

10.5.9 How to Repeat an Operation Until it Evaluates to False 10-20

10.5.10 How to Insert a Pause in Processing 10-20

10.6 Adding Assign Operations in JDeveloper 10-21

10.6.1 About Transformations and Expressions in Assign Operations 10-21

10.6.2 Assign Operation Expression Resolution 10-22

10.6.3 How to Assign a Value to a Variable 10-22

10.6.4 How to Copy a Value from a Source to a Destination Document 10-23

10.6.5 How to Delete a Set of Nodes 10-24

10.6.6 How to Insert the Result of an XQuery Expression 10-25

10.6.7 How to Invoke a Java Method in a Split-Join 10-25

10.6.8 How to Log Split-Join Data 10-26

10.6.9 How to Replace a Node or Its Contents 10-27

10.7 Working with Split-Joins in the Oracle Service Bus Console 10-28

10.7.1 How to Import a Split-Join into the Console 10-28

10.7.2 How to Configure Split-Joins in the Console 10-28

10.7.3 How to Define Service Level Agreement Rules for a Split-Join 10-29

10.8 Static and Dynamic Split-Join Samples 10-29

10.8.1 Designing a Static Split-Join 10-29

10.8.1.1 Creating a New Split-Join 10-29

10.8.1.2 Adding an Assign 10-30

10.8.1.3 Adding a Parallel Node 10-30

10.8.1.4 Adding an Assign for Each Branch 10-31

10.8.1.5 Adding an Invoke Service 10-31

10.8.1.6 Adding an Assign for Each Branch 10-31

10.8.1.7 Exporting and Testing the Split-Join 10-31

10.8.2 Designing a Dynamic Split-Join 10-32

10.8.2.1 Creating a New Split-Join 10-33

10.8.2.2 Adding an Assign 10-34

10.8.2.3 Adding a For Each 10-34

10.8.2.4 Adding an Assign 10-35

10.8.2.5 Adding an Invoke Service 10-35

10.8.2.6 Adding an Assign 10-35

10.8.2.7 Adding an Error Handler 10-35

xiv

10.8.2.8 Exporting and Testing the Split-Join 10-35

11

Working with WSDL Documents

11.1 WSDL Overview 11-1

11.1.1 WSDL Types 11-2

11.1.2 WSDL Messages 11-2

11.1.3 WSDL Port Types 11-3

11.1.4 WSDL Bindings 11-3

11.1.5 WSDL Services and Ports 11-3

11.2 WSDL Documents in Service Bus 11-4

11.2.1 Web Service Types 11-4

11.2.1.1 SOAP Document Wrapped Web Services 11-4

11.2.1.2 SOAP Document Style Web Services 11-5

11.2.1.3 SOAP RPC Web Services 11-6

11.2.2 About Effective WSDL Documents and Generated WSDL Documents 11-9

11.2.2.1 Effective WSDL Documents 11-9

11.2.2.2 Generated WSDL Documents 11-10

11.3 Services Based on WSDL Ports and on WSDL Bindings 11-10

11.3.1 Effective WSDL Documents for Proxy Services 11-10

11.3.2 Effective WSDL Files for Non-Transport-Type Business Services 11-11

11.3.3 Effective WSDL Files for Transport-Type Business Services 11-12

11.3.4 Examples of Proxy Services Based on a Port and on a Binding 11-12

11.3.4.1 A Service Based on a Port 11-13

11.3.4.2 A Service Based on a Binding 11-13

11.4 Importing and Exporting WSDL Resources 11-14

11.5 Working with WSDL Documents in JDeveloper 11-14

11.5.1 How to Create a WSDL Resource in JDeveloper 11-14

11.5.1.1 How to move from SOAP 1.1 version to SOAP 1.2 11-16

11.5.2 How to Generate a WSDL File from a Service in JDeveloper 11-17

11.5.3 How to Edit a WSDL Document in JDeveloper 11-18

11.5.4 How to Delete a WSDL Document in JDeveloper 11-18

11.6 Working with WSDL Documents in the Oracle Service Bus Console 11-18

11.6.1 How to Create a WSDL Resource in the Console 11-19

11.6.2 How to Export a WSDL File in the Console 11-19

11.6.2.1 Exporting a WSDL FIle from a Project or Folder in the Console 11-20

11.6.2.2 Exporting a WSDL File From a Service Definition Editor 11-20

11.6.3 How to Generate a WSDL File from a Service in the Console 11-20

11.6.4 How to Edit a WSDL Document in the Console 11-21

11.6.5 How to Delete a WSDL Document in the Console 11-21

xv

11.7 Viewing Effective WSDL Documents 11-22

Part III Working with Oracle Service Bus Pipelines

12

Modeling Message Flow in Oracle Service Bus

12.1 Pipeline Components 12-2

12.1.1 Building a Message Flow 12-3

12.1.2 Message Execution 12-3

12.2 Branching in Pipelines 12-3

12.2.1 Operational Branching 12-4

12.2.2 Conditional Branching 12-4

12.2.3 REST Branching 12-5

12.3 Configuring Actions in Stages and Route Nodes 12-5

12.3.1 Communication Actions 12-5

12.3.2 Flow Control Actions 12-6

12.3.3 Message Processing Actions 12-7

12.3.4 Reporting Actions 12-8

12.3.5 Configuring Transport Headers in Pipelines 12-9

12.3.5.1 Global Pass Through and Header-Specific Copy Options 12-9

12.3.5.2 How the Runtime Uses Transport Headers Settings 12-10

12.3.5.3 Limitations to Transport Header Values you Specify in Transport
Header Actions 12-10

12.4 Performing Transformations in Pipelines 12-13

12.4.1 Transformations and Publish Actions 12-13

12.4.1.1 Publish Action Behavior with Quality of Service 12-13

12.4.2 Transformations and Route Nodes 12-14

12.5 Constructing Service Callout Messages 12-14

12.5.1 SOAP Document Style Services 12-14

12.5.2 SOAP RPC Style Services 12-16

12.5.3 XML Services 12-18

12.5.4 Messaging Services 12-18

12.6 Using Attachments with Service Callout Messages 12-19

12.6.1 Example of Using Attachments with SOAP-Document Style Services 12-19

12.6.2 Example of Using Attachments with SOAP RPC Style Service 12-23

12.6.3 MTOM/XOP Support 12-26

12.6.4 Page Attachments to Disk 12-26

12.7 Handling Errors as the Result of a Service Callout 12-27

12.7.1 Transport Errors 12-27

12.7.2 SOAP Faults 12-28

12.7.3 Unexpected Responses 12-29

xvi

12.8 Handling Errors in Pipelines 12-30

12.8.1 Generating the Error Message, Reporting, and Replying 12-31

12.8.2 Different Behavior of Security Fault Handling in Service Bus 11g and 12c 12-32

12.8.3 Example of Action Configuration in Error Handlers 12-32

12.9 Using Dynamic Routing 12-33

12.9.1 Implementing Dynamic Routing 12-34

12.9.1.1 Sample XML File 12-35

12.9.1.2 Creating an XQuery Resource From the Sample XML 12-35

12.9.1.3 Creating and Configuring the Pipeline to Implement Dynamic Routing 12-36

12.9.1.4 Guidelines for Implementing Identity-Based Routing 12-37

12.10 Accessing Databases Using XQuery 12-38

12.11 Understanding Message Context 12-39

12.11.1 Message Context Components 12-40

12.11.2 Guidelines for Viewing and Altering Message Context 12-41

12.11.3 Copying JMS Properties From Inbound to Outbound 12-42

12.12 Using Variable Structures 12-43

12.12.1 Using the Inline XQuery Expression Editor 12-44

12.12.1.1 Inline XQueries 12-45

12.12.1.2 Uses of the Inline XQuery Expression Editor 12-45

12.13 Quality of Service 12-46

12.13.1 Delivery Guarantees 12-46

12.13.1.1 Overriding the Default Element Attribute 12-47

12.13.1.2 Delivery Guarantee Rules 12-48

12.13.1.3 Threading Model 12-50

12.13.1.4 Splitting Proxy Services 12-50

12.13.2 Outbound Message Retries 12-51

12.14 Using the JavaScript Action and JavaScript Expressions 12-51

12.14.1 JavaScript Action and Message Context Variables 12-53

12.14.2 Update Context Variables Using JavaScript Expressions 12-54

12.14.3 Creating Variables Using JavaScript Expressions 12-54

12.14.4 Deleting Variables Using JavaScript Expressions 12-55

12.14.5 About XQuery, XPath, and JSON Variables 12-55

12.14.6 Streaming $body Variables and the JavaScript Action 12-55

12.14.7 JavaScript Action and Custom Java Functions 12-56

12.14.8 Logging and Reporting the Result of JavaScript Expressions 12-56

12.15 Using Work Managers with Service Bus 12-56

12.16 Content Types, JMS Type, and Encoding 12-57

12.17 Throttling Pattern 12-58

12.18 WS-I Compliance 12-58

12.18.1 WS-I Compliance Checks 12-59

xvii

12.19 Converting Between SOAP 1.1 and SOAP 1.2 12-61

13

Working with Pipelines in Oracle Service Bus Console

13.1 Introduction to the Oracle Service Bus Console Pipeline Designer 13-1

13.1.1 Edit Message Flow Page on the Console 13-1

13.1.2 Edit Stage Configuration Page on the Console 13-4

13.2 Viewing and Editing Pipelines in the Console 13-5

13.2.1 How to View and Edit Pipelines in the Console 13-5

13.2.2 How to Add Shared Variables to Pipelines in the Console 13-6

13.2.3 How to Add Pipeline Pairs to Pipelines 13-6

13.2.4 How to Add Conditional Branches to Pipelines in the Console 13-7

13.2.5 How to Add Operational Branches to Pipelines in the Console 13-8

13.2.6 How to Add REST Branches to Pipelines in the Console 13-9

13.2.7 How to Add Stages to Pipelines in the Console 13-11

13.2.8 How to Add Route Nodes to Pipelines in the Console 13-11

13.3 Cutting, Copying, and Pasting Stages and Route Nodes 13-12

13.4 Configuring the Resequencer in the Console 13-12

13.4.1 How to Configure Resequencing in a Pipeline in the Console 13-13

13.4.2 How to Select the Resequence Level in the Console 13-14

13.4.3 How to Configure the Resequencing Mode in the Console 13-15

13.4.3.1 Configuring a Standard Resequencer 13-15

13.4.3.2 Configuring a FIFO Resequencer 13-16

13.4.3.3 Configuring a Best Effort Resequencer 13-16

13.5 Creating Variable Structure Mappings 13-17

13.5.1 Sample WSDL Document 13-17

13.5.2 Creating the Resources You Need for the Examples 13-18

13.5.2.1 Save the WSDL File as a Resource 13-19

13.5.2.2 Create a Proxy Service and Pipeline 13-19

13.5.2.3 Build a Message Flow for the Sample Pipeline 13-20

13.5.2.4 Create a Business Service 13-20

13.5.3 Example 1: Selecting a Predefined Variable Structure 13-20

13.5.4 Example 2: Mapping a Variable to a Type 13-21

13.5.5 Example 3: Mapping a Variable to an Element 13-23

13.5.6 Example 4: Mapping a Variable to a Child Element 13-24

13.5.7 Example 5: Mapping a Variable to a Business Service 13-25

13.5.8 Example 6: Mapping a Child Element to Another Child Element 13-26

14

Working with Pipeline Actions in Oracle Service Bus Console

14.1 Adding and Editing Pipeline Actions in the Console 14-2

xviii

14.2 Adding Publish Actions in the Console 14-8

14.3 Adding Publish Table Actions in the Console 14-9

14.4 Adding Dynamic Publish Actions in the Console 14-10

14.5 Adding Routing Options Actions in the Console 14-11

14.6 Adding Service Callout Actions in the Console 14-12

14.7 Adding Transport Header Actions in the Console 14-15

14.7.1 Setting Cookies in Outbound HTTP Transport Headers 14-17

14.7.1.1 Setting a Cookie as a Complex XML Expression 14-17

14.7.1.2 Setting a Cookie with a String Expression 14-17

14.8 Adding Dynamic Routing to Route Nodes in the Console 14-17

14.9 Adding Routing Actions to Route Nodes in the Console 14-18

14.10 Adding Routing Tables to Route Nodes in the Console 14-19

14.11 Adding For-Each Actions in the Console 14-20

14.12 Adding If-Then Actions in the Console 14-21

14.13 Adding Raise Error Actions in the Console 14-21

14.13.1 Transactions 14-22

14.14 Adding Reply Actions in the Console 14-22

14.15 Adding Resume Actions in the Console 14-22

14.16 Adding Skip Actions in the Console 14-23

14.17 Adding Assign Actions in the Console 14-23

14.18 Adding Delete Actions in the Console 14-23

14.19 Adding Insert Actions 14-24

14.20 Adding Java Callout Actions in the Console 14-25

14.21 Adding JavaScript Actions in the Console 14-26

14.22 Adding MFL Translate Actions in the Console 14-27

14.23 Adding nXSD Translate Actions 14-28

14.24 Adding Rename Actions in the Console 14-30

14.25 Adding Replace Actions in the Console 14-31

14.26 Adding Validate Actions in the Console 14-32

14.27 Adding Alert Actions in the Console 14-33

14.28 Adding Log Actions in the Console 14-34

14.29 Adding Report Actions in the Console 14-35

14.30 Adding Error Handlers in the Console 14-36

14.30.1 Adding Pipeline Error Handlers in the Console 14-36

14.30.2 Adding Stage Error Handlers in the Console 14-37

14.30.3 Adding Route Node Error Handlers in the Console 14-38

14.30.4 Editing Error Handlers in the Console 14-39

14.31 Disabling an Action or a Stage in the Console 14-39

14.31.1 Disabling an Action on the Pipeline 14-40

14.31.2 Re-Enabling an Action in the Pipeline 14-40

14.31.3 Disabling a Stage in the Pipeline 14-40

xix

14.31.4 Re-Enabling a Stage in the Pipeline 14-40

15

Working With Expression Editors in Oracle Service Bus Console

15.1 Creating and Editing Inline XQuery and XPath Expressions 15-1

15.2 Understanding XQuery Editor Layouts and Tasks 15-3

15.2.1 Palettes 15-3

15.2.2 Workspace 15-4

15.2.3 Property Inspector 15-4

15.3 Building Expressions in the Editor Workspace Text Fields 15-4

15.4 Creating Namespaces to Use in Inline Expressions 15-7

15.5 Creating Variable Structures in the XQuery Editors 15-7

15.6 Creating Custom XPath Functions in the XQuery Editors 15-11

15.7 Binding External XQuery Resources to Inline XQueries 15-11

15.8 Binding External XSLT Resources to Inline XQueries 15-12

15.9 Binding Dynamic XQuery Expressions to Inline XQueries 15-13

15.10 Binding Dynamic XSLT Expressions to Inline XQueries 15-14

15.11 Entering XQuery Comparison Expressions Using the Builder Option 15-15

15.12 Entering Unary Expressions Using the Builder Option 15-16

16

Working with Pipelines in Oracle JDeveloper

16.1 Adding a Pipeline Component in JDeveloper 16-1

16.1.1 How to Add a Pipeline in JDeveloper 16-1

16.2 Viewing and Editing Pipelines in JDeveloper 16-2

16.2.1 How to View and Edit a Pipeline in JDeveloper 16-2

16.3 Adding Shared Variables to Pipelines in JDeveloper 16-4

16.3.1 How to Add a Shared Variable to a Pipeline in JDeveloper 16-5

16.4 Adding Pipeline Pair Nodes to Pipelines in JDeveloper 16-5

16.4.1 How to Add a Pipeline Pair Node to a Pipeline in JDeveloper 16-5

16.5 Adding Conditional Branches to Pipelines in JDeveloper 16-6

16.5.1 How to Add a Conditional Branch to a Pipeline in JDeveloper 16-6

16.6 Adding Operational Branches to Pipelines in JDeveloper 16-8

16.6.1 How to Add an Operational Branch to a Pipeline in JDeveloper 16-8

16.7 Adding REST Branches to Pipelines in JDeveloper 16-9

16.7.1 How to Add a REST Branch to a Pipeline in JDeveloper 16-10

16.8 Adding Stages to Pipelines in JDeveloper 16-11

16.8.1 How to Add a Stage to a Pipeline in JDeveloper 16-11

16.9 Adding Route Nodes to Pipelines in JDeveloper 16-12

16.9.1 How to Add a Route Node to a Pipeline in JDeveloper 16-12

16.10 Cutting, Copying, and Pasting Stages and Route Nodes in JDeveloper 16-13

xx

16.11 Adding and Searching for Pipeline Node Descriptions 16-13

16.11.1 How to Add and Search for Pipeline Node Descriptions in JDeveloper 16-13

16.12 Configuring the Resequencer in JDeveloper 16-14

16.12.1 How to Configure Resequencing in a Pipeline in JDeveloper 16-15

16.12.2 Selecting the Resequence Level in JDeveloper 16-17

16.12.3 How to Configure the Resequencing Mode in JDeveloper 16-17

16.12.3.1 Configuring a Standard Resequencer 16-17

16.12.3.2 Configuring a FIFO Resequencer 16-18

16.12.3.3 Configuring a Best Effort Resequencer 16-18

17

Working with Pipeline Actions in Oracle JDeveloper

17.1 Adding and Editing Actions in Pipelines in JDeveloper 17-2

17.2 Adding Publish Actions in JDeveloper 17-8

17.3 Adding Publish Table Actions in JDeveloper 17-9

17.4 Adding Dynamic Publish Actions in JDeveloper 17-10

17.5 Adding Routing Options Actions in JDeveloper 17-11

17.6 Adding Service Callout Actions in JDeveloper 17-13

17.7 Adding Transport Header Actions in JDeveloper 17-14

17.8 Adding Dynamic Routing to Route Nodes in JDeveloper 17-15

17.9 Adding Routing Actions to Route Nodes in JDeveloper 17-16

17.10 Adding Routing Tables to Route Nodes in JDeveloper 17-17

17.11 Adding For Each Actions in JDeveloper 17-18

17.12 Adding If Then Actions in JDeveloper 17-19

17.13 Adding Raise Error Actions in JDeveloper 17-20

17.14 Adding Reply Actions in JDeveloper 17-21

17.15 Adding Resume Actions in JDeveloper 17-21

17.16 Adding Skip Actions in JDeveloper 17-22

17.17 Adding Assign Actions in JDeveloper 17-23

17.18 Adding Delete Actions in JDeveloper 17-24

17.19 Adding Insert Actions in JDeveloper 17-24

17.20 Adding Java Callout Actions in JDeveloper 17-26

17.21 Adding JavaScript Actions in JDeveloper 17-27

17.22 Adding MFL Translate Actions in JDeveloper 17-28

17.23 Adding nXSD Translate Actions in JDeveloper 17-29

17.24 Adding Rename Actions in JDeveloper 17-30

17.25 Adding Replace Actions in JDeveloper 17-31

17.26 Adding Validate Actions in JDeveloper 17-33

17.27 Adding Alert Actions in JDeveloper 17-34

17.28 Adding Log Actions in JDeveloper 17-35

17.29 Adding Report Actions in JDeveloper 17-36

xxi

17.30 Adding Error Handlers in JDeveloper 17-38

17.30.1 How to Add Error Handlers in Pipelines in JDeveloper 17-38

17.31 Disabling an Action or a Stage in JDeveloper 17-39

17.31.1 Disabling an Action or Stage 17-40

17.31.2 Re-Enable an Action or Stage 17-40

18

Working with Pipeline Templates

18.1 Adding a Pipeline Template 18-1

18.1.1 How to Add a Pipeline Template 18-1

18.2 Editing a Pipeline Template 18-2

18.2.1 How to Edit a Pipeline Template 18-2

18.2.1.1 How to View External Services 18-4

18.2.1.2 How to View Shared Variables 18-4

18.3 Adding Placeholder Blocks to a Pipeline Template Message Flow 18-5

18.4 Locking an Action in a Pipeline Template 18-5

18.4.1 How to Lock an Action in a Pipeline Template 18-6

18.5 Creating a Concrete Pipeline from a Pipeline Template 18-6

18.5.1 How to Create a Concrete Pipeline 18-6

18.6 Editing the Message Flow for a Concrete Pipeline 18-7

18.6.1 How to Edit the Message Flow for a Concrete Pipeline 18-7

18.7 Converting a Concrete Pipeline in to a Regular Pipeline 18-9

18.7.1 How to Break a Template Link for a Concrete Pipeline 18-9

Part IV Transforming Data

19

Transforming Data with XQuery

19.1 Introduction to XQuery Transformations 19-1

19.2 XQuery Editors and Mappers 19-1

19.2.1 JDeveloper Editors and Mappers 19-2

19.2.2 Oracle Service Bus Console Editors 19-2

19.3 Creating XQuery Maps in JDeveloper 19-2

19.3.1 How to Create XQuery Mappings in JDeveloper 19-2

19.4 Testing Service Bus Projects Converted from XQuery 2004 to XQuery 1.0 in
JDeveloper 19-3

19.5 Working with XQuery Resources in the Oracle Service Bus Console 19-3

19.5.1 How to Create an XQuery Resource in the Console 19-4

19.5.2 How to Edit an XQuery Resource in the Console 19-4

19.5.3 How to Delete an XQuery Resource in the Console 19-5

19.5.4 How to Upgrade Your XQuery Resources to use XQuery 1.0 19-5

xxii

19.5.4.1 Syntax Errors After Xquery Update to V1.0 19-6

19.6 Service Bus XQuery Functions 19-6

19.6.1 Supported Function Extensions from Oracle 19-6

19.6.2 Function Extensions from Service Bus 19-7

19.6.2.1 fn-bea:lookupBasicCredentials 19-7

19.6.2.2 fn-bea:isUserInGroup 19-8

19.6.2.3 fn-bea:isUserInRole 19-8

19.6.2.4 fn-bea: uuid 19-8

19.6.2.5 fn-bea:execute-sql() 19-9

19.6.2.6 fn-bea:serialize() 19-12

19.6.2.7 fn-bea:binary-to-text 19-12

19.6.2.8 fn-bea:binary-to-xml 19-12

19.6.3 Creating and Using Custom XPath Functions 19-12

20

Transforming Data with XSLT

20.1 Introduction to XSLT 20-1

20.2 XSLT Editors and Mappers 20-1

20.2.1 JDeveloper Editors and Mappers 20-1

20.2.2 Oracle Service Bus Console Editors and Mappers 20-2

20.3 Creating XSLT Mappings in JDeveloper 20-2

20.3.1 How to Create XSLT Mappings in JDeveloper 20-2

20.4 Working with XSLT Resources in the Oracle Service Bus Console 20-3

20.4.1 How to Create XSLT Resources in the Console 20-3

20.4.2 How to Edit XSLT Resources and Upload XSL Transformations in the
Console 20-5

20.5 How to Open the XSLT Mapper from the Service Bus Console 20-5

20.6 How to Delete an XSLT Resource 20-6

21

Mapping Data with Cross-References

21.1 Introduction to Cross References 21-1

21.1.1 Cross Reference Database Tables 21-1

21.1.2 Cross Reference Functions 21-2

21.1.3 Managing Cross Reference Data at Runtime 21-2

21.2 Creating Cross Reference Tables in JDeveloper 21-2

21.2.1 How to Create Cross Reference Tables in JDeveloper 21-2

21.3 Working with Cross Reference Resources in the Oracle Service Bus Console 21-3

21.3.1 How to Create Cross Reference (XRef) Resources in the Console 21-3

21.3.2 How to Edit Cross Reference Resources in the Console 21-4

21.3.3 How to Create a Custom Database Table in the Console 21-4

21.4 Deleting a Cross Reference Resource 21-5

xxiii

21.4.1 How to Delete a Cross Reference Resource 21-5

21.5 Populating Cross Reference Tables in Oracle Service Bus 21-5

22

Mapping Data with Domain Value Maps

22.1 Introduction to Domain Value Maps 22-1

22.1.1 Domain Value Map Functions 22-1

22.2 Creating Domain Value Maps in JDeveloper 22-2

22.2.1 How to Create a Domain Value Map in JDeveloper 22-2

22.3 Working with DVM Resources in the Oracle Service Bus Console 22-3

22.3.1 How to Create DVM Resources in the Console 22-3

22.3.2 How to Add Domains to a Domain Value Map 22-4

22.3.3 How to Add Domain Values to a Domain Value Map 22-4

22.3.4 How to Edit a Domain Value Map in the Console 22-5

22.4 Deleting a Domain Value Map 22-5

22.4.1 How to Delete a Domain Value Map 22-5

22.5 Using Domain Value Maps in Expressions and Conditions 22-6

23

Defining Data Structures with Message Format Language

23.1 Introduction to the Format Builder 23-1

23.1.1 About MFL Files 23-1

23.1.2 Valid Names for Formats, Fields, and Groups 23-2

23.1.3 Supported Character Delimiters 23-2

23.2 Working with MFL Resources in the Oracle Service Bus Console 23-3

23.2.1 How to Create MFL Resources in the Console 23-3

23.2.2 How to Edit MFL Resources in the Console 23-4

23.3 Creating the MFL Message Structure 23-5

23.3.1 Using Drag and Drop in the Format Builder 23-5

23.3.2 How to Create an MFL File in JDeveloper 23-5

23.3.3 How to Create a Group 23-5

23.3.4 How to Create a Field 23-6

23.3.5 How to Reference Groups or Fields 23-6

23.3.6 How to Add a Comment 23-7

23.4 Configuring the MFL Message Structure 23-7

23.4.1 How to Make a Node Recurring 23-8

23.4.2 How to Define Delimiters 23-8

23.4.2.1 Specifying a Delimiter by Reference 23-8

23.4.2.2 Specifying a Delimiter by Value 23-9

23.5 Importing and Converting Metadata 23-9

23.5.1 How to Convert a Guideline XML File 23-10

xxiv

23.5.2 How to Convert an XML Schema 23-10

23.5.3 How to Convert a COBOL Copybook 23-10

23.5.4 How to Convert C Structures 23-11

23.5.5 How to Convert an FML Field Table Class 23-12

23.6 Deleting MFL Resources 23-13

23.6.1 How to Delete an MFL Resource 23-14

23.7 Testing Format Definitions 23-14

23.7.1 How to Start Format Tester 23-14

23.7.2 How to Test Using the Non-XML Window 23-14

23.7.2.1 Using the Data Offset Feature 23-15

23.7.2.2 Using the Text Feature 23-15

23.7.3 How to Test Using the XML Window 23-15

23.7.4 How to Test Using the Debug Window 23-15

23.7.5 How to Debug Format Definitions 23-16

23.7.5.1 Searching for Values 23-16

23.7.5.2 Searching for Offsets 23-16

23.7.5.3 Using the Debug Log 23-17

23.7.6 Format Tester Command Reference 23-17

23.7.6.1 File Menu 23-18

23.7.6.2 Edit Menu 23-18

23.7.6.3 Display Menu 23-18

23.7.6.4 Generate Menu 23-19

23.7.6.5 Transform Menu 23-19

23.8 Using the Palette 23-19

23.8.1 How to Display the Palette Window 23-19

23.8.2 How to Add Items to the Palette 23-19

23.8.3 How to Add Palette Items to a Message Format 23-20

23.9 Format Builder Supported Data Types 23-20

23.9.1 MFL Data Types 23-20

23.9.2 COBOL Copybook Importer Data Types 23-24

23.9.3 Unsupported C Language Features 23-26

23.10 Format Builder Field Reference 23-27

23.10.1 Format Builder Window 23-27

23.10.2 Format Builder Tool Bar 23-27

23.10.3 Format Builder Tree Pane 23-28

23.10.4 Field Configuration Window 23-29

23.10.5 Group Configuration Window 23-33

23.10.6 Format Builder Reference Configuration Window 23-34

xxv

24

Using Java Callouts and POJOs

24.1 Introduction to Java Callouts 24-1

24.1.1 Java Callout Usage Guidelines 24-1

24.1.2 Java Callouts or EJBs 24-2

24.2 Working with Streaming Content 24-2

24.2.1 Passing Streaming Content to a Java Callout 24-2

24.2.2 Streaming Content Results from a Java Callout 24-3

24.3 Best Practices for Java Callouts and POJOs 24-3

Part V Working with JCA Adapters, Transports, and Bindings

25

Using the JCA Transport and JCA Adapters

25.1 Introduction to the JCA Transport 25-1

25.1.1 Supported JCA Adapters 25-2

25.1.1.1 AQ Adapter 25-2

25.1.1.2 Oracle BAM 11g Adapter 25-2

25.1.1.3 Coherence Adapter 25-2

25.1.1.4 Database Adapter 25-3

25.1.1.5 File Adapter 25-3

25.1.1.6 FTP Adapter 25-3

25.1.1.7 JDE World Adapter 25-3

25.1.1.8 JMS Adapter 25-3

25.1.1.9 LDAP Adapter 25-4

25.1.1.10 MQ Series Adapter 25-4

25.1.1.11 MSMQ Adapter 25-4

25.1.1.12 Oracle E-Business Suite Adapter 25-4

25.1.1.13 Salesforce Cloud Adapter 25-4

25.1.1.14 SAP Adapter 25-5

25.1.1.15 Socket Adapter 25-5

25.1.1.16 Third Party Adapter 25-5

25.1.1.17 User Messaging Service Adapter 25-5

25.1.2 Oracle JCA Adapter Limitations 25-5

25.1.2.1 Limitations that Apply to All JCA Adapters 25-5

25.1.2.2 Oracle JCA Adapters for Files/FTP Limitations 25-6

25.1.3 JCA Adapter Framework 25-6

25.1.4 JCA Transport Messaging 25-6

25.1.5 Security for JCA Transports 25-6

25.1.5.1 Proxy Services 25-7

25.1.5.2 Business Services 25-7

xxvi

25.1.6 Logging 25-7

25.1.6.1 Oracle BAM Adapter Logging 25-7

25.1.7 JCA Transport Error Handling 25-8

25.1.8 URI Rewriting with JCA Transports 25-8

25.1.9 JCA Transport Message Encoding 25-8

25.1.10 Rejected Messages 25-8

25.2 JCA Adapter Configuration Recommendations for Service Bus 25-8

25.2.1 Configuring the JCA Adapter Connections 25-8

25.2.2 Configuring JCA Adapters that Poll a Database 25-9

25.2.3 Configuring the Oracle JCA Adapter for Database 25-9

25.2.3.1 Configuring the Oracle JCA Adapter for Database to Poll from a Single
Server 25-9

25.2.4 Configuring the Oracle JCA Adapter for AQ 25-10

25.2.5 Configuring the Oracle JCA Adapter for Coherence 25-11

25.2.6 Configuring the Salesforce Cloud Adapter 25-11

25.3 Working with JCA Binding Resources 25-11

25.3.1 How to Create a JCA Adapter in JDeveloper 25-11

25.3.2 How to Import JCA Adapters in the Oracle Service Bus Console 25-12

25.3.3 How to Create a JCA Binding Resource in the Oracle Service Bus Console 25-12

25.3.4 How to Edit JCA Binding Resources in the Console 25-13

25.3.5 How to Delete JCA Binding Resources 25-13

25.3.6 Using Custom JCA Adapters 25-14

25.3.6.1 About the Custom Adapter Registration File 25-14

25.3.6.2 Registering and Using a Custom JCA Adapter with Service Bus 25-15

25.4 Working with JavaScript Resources 25-15

25.4.1 How to Create JavaScript Resources 25-16

25.4.2 How to Edit JavaScript Resources 25-16

25.4.3 How to Delete JavaScript Resources 25-17

25.5 JCA Transport Configuration Reference 25-17

25.5.1 JCA Transport Endpoint URIs 25-17

25.5.1.1 Endpoint Redeployment 25-18

25.5.2 JCA Transport Headers and Normalized Message Properties 25-18

25.5.3 JCA Transport Endpoint Properties 25-19

25.5.3.1 Standard Endpoint Properties 25-19

25.5.3.2 Dynamic Endpoint Properties 25-20

25.5.3.3 JCA Adapter Properties 25-20

25.5.3.4 Activation and Interaction Specification Properties 25-21

25.5.4 JCA Transport Environment Variables 25-21

25.5.5 Configuring Proxy and Business Services to Use the JCA Transport 25-21

25.5.6 Proxy Service Operation Configuration 25-24

xxvii

26

Creating REST Services with Oracle Service Bus

26.1 Oracle Service Bus and REST 26-1

26.1.1 REST Features in Service Bus 26-1

26.1.2 REST Implementation in Service Bus 26-2

26.1.3 Service Type Compatability of Native REST Services 26-3

26.1.4 Payloads Supported by Native REST Services 26-4

26.1.5 Response and Failure Codes for Native REST Services 26-5

26.1.6 Unhandled Errors and Native REST Services 26-6

26.1.7 REST Security 26-6

26.2 WADL Documents for REST Services in Service Bus 26-6

26.2.1 WADL Documents in the Design Time and Runtime 26-7

26.2.2 Media Type Representations Supported by Typed Native REST Services 26-7

26.2.3 Query Operations with WADL 26-8

26.2.4 Query and Template Parameters 26-9

26.2.5 Resource Method Identification 26-9

26.2.6 WADL Restrictions for WSDL-based REST Services 26-10

26.2.7 Effective WADL Documents 26-10

26.3 Creating WADL Documents 26-10

26.3.1 How to Create a WADL Resource in the Oracle Service Bus Console 26-10

26.4 Modifying WADL Documents 26-11

26.4.1 How to Edit a WADL Document 26-11

26.4.2 How to Delete a WADL Document 26-12

26.5 Creating REST Services Using JDeveloper 26-12

26.5.1 Creating Native REST Services 26-13

26.5.2 How to Create WSDL-Based REST Services for Service Bus Using
JDeveloper 26-13

26.5.3 How to Create Typed REST Services for Service Bus Using JDeveloper 26-15

26.5.4 How to Create or Configure a REST Operation in JDeveloper 26-16

26.5.5 How to Create or Configure a REST Method in JDeveloper 26-18

26.5.6 How to Expose an HTTP Proxy or Business Service as REST 26-19

26.5.7 What You May Need to Know About Configuring URI Parameters for REST 26-20

26.6 Accessing WADL Documents in a Web Browser 26-20

26.6.1 Viewing WADL Documents in XML Format 26-20

26.6.2 Viewing WADL Documents in a Readable Format 26-21

27

Using the DSP Transport

27.1 Introduction to the DSP Transport 27-1

27.2 Enabling Data Services for Service Bus 27-1

27.3 Using the DSP Transport 27-1

27.3.1 Generate the WSDL File in Oracle Data Service Integrator 27-2

xxviii

27.3.1.1 Step 1. Start Your Server 27-2

27.3.1.2 Step 2. Generate a WSDL File from the Data Service 27-2

27.3.1.3 Step 3: Obtain the Web Service Address 27-2

27.3.2 Create the Service Bus Project 27-2

27.3.2.1 Step 4: Import the Data Service WSDL File into Service Bus 27-2

27.3.2.2 Step 5: Create the Business Service 27-3

27.3.2.3 Step 6: Create the Proxy Service 27-3

27.3.2.4 Step 7: Create a Pipeline 27-3

27.3.2.5 Step 8: Test Your Setup 27-3

27.4 DSP Transport Configuration Reference 27-6

27.4.1 DSP Transport Endpoint URIs 27-6

27.4.2 Configuring Business Services to Use the DSP Transport 27-6

28

Using the EJB Transport

28.1 Introduction to the EJB Transport 28-1

28.2 Prerequisites for Creating Services that Invoke EJBs 28-2

28.2.1 Registering a JNDI Provider Resource 28-2

28.2.2 Registering an EJB Client or Converter JAR Resource 28-3

28.2.2.1 Adding a Client or Converter JAR File 28-3

28.2.2.2 Create a Service Account (Optional) 28-3

28.2.2.3 Locate an EJB in the JNDI Tree 28-3

28.3 Invoking EJB Business Services 28-4

28.4 Exposing EJBs as Web Services 28-4

28.5 Advanced EJB Transport Topics 28-4

28.5.1 EJB Transport Transactions 28-4

28.5.2 EJB Transport Retries and Failover 28-5

28.5.3 EJB Transport Error Handling 28-6

28.5.4 Supported Types and Converter Classes 28-6

28.5.4.1 About XMLBean Support 28-7

28.5.4.2 About User-defined Java Datatypes and JAX-WS 28-7

28.5.4.3 Custom Converter Classes 28-7

28.5.4.4 Using a Converter Class for an EJB Business Service 28-8

28.5.5 Business Exception Classes 28-8

28.6 Troubleshooting EJB Transports 28-8

28.6.1 WSDL Backward Compatibility 28-8

28.6.2 Temp Directories 28-11

28.6.3 Deployed Application 28-11

28.6.4 EJB Transport Errors 28-11

28.7 EJB Transport Configuration Reference 28-12

28.7.1 EJB Endpoint URI Format 28-12

xxix

28.7.2 Configuring Business Services to Use the EJB Transport 28-12

29

Using HTTP and Poller Transports

29.1 Introduction to Poller Transports 29-1

29.2 Using the HTTP Transport 29-1

29.2.1 HTTP Session Stickiness 29-1

29.2.2 Retrieving the HTTP Authorization Header in a Proxy Service 29-2

29.2.3 Compressed HTTP Request and Response Payload Support 29-2

29.2.3.1 Accept-Encoding 29-2

29.2.3.2 Content-Encoding 29-3

29.2.3.3 Content-Length 29-4

29.2.3.4 Transfer-Encoding 29-4

29.2.3.5 ETag 29-4

29.2.3.6 Sample Requests and Responses 29-4

29.2.4 HTTP Transport WS-RM Support 29-5

29.2.5 HTTP Transport Configuration Reference 29-6

29.2.5.1 HTTP Transport Endpoint URIs 29-6

29.2.5.2 Configuring Proxy Services to Use the HTTP Transport 29-6

29.2.5.3 Configuring Business Services to Use the HTTP Transport 29-8

29.2.6 REST Support 29-12

29.2.6.1 REST in Proxy Services 29-13

29.2.6.2 REST in Business Services 29-14

29.2.7 Response Codes and Error Handling for HTTP Business Services 29-15

29.2.8 Large Payload Rejection with the HTTP Transport 29-16

29.3 Using the Email Transport 29-16

29.3.1 Email Transport Configuration Reference 29-16

29.3.1.1 Email Transport Endpoint URIs 29-16

29.3.1.2 Configuring Proxy Services to Use the Email Transport 29-17

29.3.1.3 Configuring Business Services to Use the Email Transport 29-18

29.4 Using the File Transport 29-19

29.4.1 File Transport Configuration Reference 29-20

29.4.1.1 File Transport Endpoint URIs 29-20

29.4.1.2 Configuring Proxy Services to Use the File Transport 29-20

29.4.1.3 Special Considerations for NFS File Systems 29-21

29.4.1.4 Configuring Business Services to Use the File Transport 29-22

29.5 Using the FTP Transport 29-22

29.5.1 FTP Transport Configuration Reference 29-22

29.5.1.1 FTP Transport Endpoint URIs 29-23

29.5.1.2 Configuring Proxy Services to Use the FTP Transport 29-23

29.5.1.3 Configuring Business Services to Use the FTP Transport 29-25

xxx

29.6 Using the SFTP Transport 29-26

29.6.1 SFTP Transport Features 29-26

29.6.2 General Principles of SFTP Authentication 29-27

29.6.3 SFTP Transport Runtime Behavior 29-27

29.6.4 Enabling SFTP Authentication 29-28

29.6.4.1 Creating the Known Hosts File 29-28

29.6.4.2 Enabling User Name and Password Authentication 29-29

29.6.4.3 Enabling Host-Based Authentication 29-29

29.6.4.4 Enabling Public Key Authentication 29-30

29.6.5 About FIPS Compliance for the SFTP Transport 29-30

29.6.5.1 Enabling FIPS Compliance 29-30

29.6.5.2 FIPS Compliance Upgrade Considerations 29-31

29.6.6 Handling SFTP Transport Communication Errors 29-31

29.6.7 Troubleshooting the SFTP Transport 29-31

29.6.8 Importing SFTP Transport Services 29-32

29.6.8.1 Importing Resources Used by the SFTP Transport 29-32

29.6.8.2 Importing and Publishing Services: UDDI Registries 29-32

29.6.9 SFTP Transport Configuration Reference 29-33

29.6.9.1 SFTP Transport Endpoint URIs 29-33

29.6.9.2 Configuring Proxy Services to Use the SFTP Transport 29-33

29.6.9.3 Configuring Transport Headers in the Pipeline 29-38

29.6.9.4 Configuring Transports Headers and Metadata in the Test Console 29-38

29.6.9.5 Configuring Business Services to Use the SFTP Transport 29-38

29.6.9.6 SFTP Transport Environment Values 29-40

30

Using the JEJB Transport

30.1 Introduction to the JEJB Transport 30-1

30.1.1 Differences Between the JEJB Transport and the EJB Transport 30-1

30.1.2 JEJB Transport WSDL Generation 30-1

30.1.3 JEJB Transport Error Handling 30-2

30.1.3.1 Exception Propagation in the Response 30-2

30.1.3.2 Application and Connection Errors 30-3

30.2 Prerequisites for Creating JEJB Services 30-4

30.2.1 Creating and Packaging Your Client EJB JAR File 30-4

30.2.2 Registering a JNDI Provider Resource (Business Services) 30-4

30.3 Use Cases 30-5

30.3.1 EJB Invoking an External Service 30-5

30.3.2 Non-EJB Client Invoking an EJB 30-6

30.3.3 EJB Invoking EJB 30-7

30.4 UDDI Integration 30-7

xxxi

30.4.1 UDDI Publish 30-8

30.4.2 UDDI Import 30-8

30.5 JEJB Transport Configuration Reference 30-8

30.5.1 JEJB Transport Endpoint URI 30-9

30.5.1.1 Proxy Service JEJB Endpoint URI 30-9

30.5.1.2 Business Service JEJB Endpoint URI 30-9

30.5.2 Configuring Proxy Services to Use the JEJB Transport 30-10

30.5.3 Configuring Business Services 30-11

30.5.4 JEJB Transport Environment Values 30-13

31

Using the JMS Transport

31.1 Introduction to the JMS Transport 31-1

31.1.1 JMS Content Type for Services 31-1

31.1.2 JMS Transport Security 31-1

31.1.3 Asynchronous Request-Response Messaging 31-2

31.1.4 Sending and Receiving Java Objects in Messages 31-2

31.1.5 Required JMS Resources 31-3

31.1.6 Large Payload Rejection with JMS Transport 31-3

31.1.7 Platform Interoperability 31-3

31.1.7.1 Interoperability with WebLogic JMS 31-4

31.1.7.2 Interoperability with WebSphere MQ 31-4

31.1.7.3 Interoperability with Tibco EMS 31-4

31.2 Using SOAP Over JMS Transport 31-4

31.2.1 Interoperating with WebLogic Server 31-4

31.2.2 Configuring the Response Queues for Cross-Domain JMS Calls 31-5

31.3 Naming Guidelines for Domains, Servers, and URIs 31-6

31.3.1 JMS Server Names 31-6

31.3.2 JNDI Names and Service Bus 31-6

31.4 JMS Client ID in Proxy Services 31-6

31.4.1 About the Client ID and Subscriber Name 31-7

31.4.2 Recommended Usage 31-7

31.5 JMS Transport Error Handling 31-7

31.5.1 Application Errors 31-8

31.5.2 Communication Errors 31-8

31.5.3 Pipeline Exceptions with Java Objects 31-8

31.6 WSDL-Defined SOAP Fault Messages 31-9

31.6.1 Adding a Fault in a SOAP Message if the Fault is Constructed from inside a
Service Bus Pipeline 31-10

31.7 Message ID and Correlation ID Patterns for JMS Request/Response 31-10

31.7.1 Overview of JMS Request-Response and Design Patterns 31-11

31.7.1.1 Patterns for Messaging 31-11

xxxii

31.7.2 JMS Message ID Pattern 31-13

31.7.2.1 Access to the JMSReplyTo Property 31-13

31.7.2.2 JMS Message ID Pattern in a Cluster 31-14

31.7.3 JMS Correlation ID Pattern 31-14

31.7.4 Comparison of Message ID and Correlation ID Patterns 31-14

31.7.5 Interoperating with JAX-RPC Over JMS 31-15

31.7.5.1 Invoking a JAX-RPC Web Service Using the JMS Message ID Pattern 31-15

31.7.5.2 Invoking a JMS Request-Response Proxy Service from a JAX-RPC
Client 31-17

31.7.6 JMS Message ID Pattern Examples 31-17

31.7.6.1 MQ Service Using a JMS Message ID to Correlate the Request-
Response Message 31-17

31.7.6.2 JAX-RPC Client with a Proxy Service 31-18

31.7.6.3 Service Bus as a Client of a WebLogic Server JAX-RPC Service 31-19

31.8 JMS Transport Configuration Reference 31-19

31.8.1 JMS Transport Endpoint URIs 31-20

31.8.2 Configuring Proxy Services to Use the JMS Transport 31-20

31.8.3 JMS Transport Headers 31-24

31.8.3.1 Configuring Transport Headers 31-26

31.8.4 Configuring Business Services to Use the JMS Transport 31-26

32

Using the Local Transport

32.1 Introduction to the Local Transport 32-1

32.1.1 Features and Characteristics of Local Transport Proxy Services 32-1

32.2 Using Local Transport Proxy Services 32-2

32.2.1 Changes from Previous Usage 32-3

32.3 Propagating SOAP Faults Between Proxy Services 32-4

32.4 Using OWSM Security with Local Proxy Services 32-4

33

Using the MQ Transport

33.1 Introduction to the MQ Transport 33-1

33.1.1 MQ Transport Features 33-1

33.1.2 MQ Transport Advantages 33-2

33.1.3 Messaging Patterns 33-2

33.1.4 MQ Connection Resources 33-3

33.1.5 Quality of Service 33-3

33.1.6 Multi-instance Queue Manager Support 33-3

33.1.7 MQ Clusters and the MQ Transport 33-3

33.1.8 Limitations of the MQ Transport 33-4

33.1.9 Large Payload Rejection with the MQ Transport 33-4

xxxiii

33.2 Setting Up the Environment for the MQ Transport 33-4

33.2.1 How to Add MQ Client Libraries to Your Environment 33-5

33.2.2 How to Configure Environment Variables 33-5

33.3 Working with MQ Connections 33-5

33.3.1 How to Create MQ Connections 33-6

33.3.2 How to Edit MQ Connections 33-7

33.3.3 How to Delete MQ Connections 33-8

33.3.4 How to Monitor an MQ Connection Pool 33-8

33.3.5 Improve Activation Performance 33-9

33.4 MQ Transport Error Handling 33-9

33.5 Using the WebSphere JMS MQ Interface 33-10

33.5.1 Using the WebSphere MQ JMS Interface 33-10

33.5.2 MQ Messaging Types 33-11

33.5.2.1 Non-Persistent Messaging 33-11

33.5.2.2 Non-XA Persistent Messaging 33-11

33.5.2.3 XA Messaging 33-11

33.5.3 Tuning WebSphere MQ 33-12

33.6 MQ Transport Configuration Reference 33-12

33.6.1 MQ Transport Endpoint URIs 33-13

33.6.2 Configuring Proxy Services to Use the MQ Transport 33-13

33.6.3 Configuring Business Services to Use the MQ Transport 33-17

33.6.4 MQ Transport Environment Values 33-21

33.7 MQ Transport Headers 33-22

33.7.1 Configuring Transport Headers 33-28

33.7.2 About RFH2 Headers 33-28

34

Using the Oracle BPEL Process Manager Transport

34.1 Introduction to the BPEL Transport 34-1

34.1.1 SOAP Support with the BPEL Transport 34-2

34.1.2 Transaction Propagation in the BPEL Transport 34-2

34.1.3 SSL Support in the BPEL Transport 34-2

34.1.4 BPEL Transport Environment Values 34-2

34.2 BPEL Transport Simple Use Cases (Synchronous) 34-3

34.2.1 Synchronous: Invoking Processes in Oracle BPEL Process Manager 34-3

34.2.1.1 Creating and Configuring the Services 34-3

34.2.2 Synchronous: Calling External Services from Oracle BPEL Process Manager 34-4

34.2.2.1 Creating and Configuring the Services 34-4

34.2.3 Associating Messages with the Correct Conversation 34-5

34.3 Advanced Use Cases (Asynchronous) 34-5

34.3.1 Asynchronous: Invoking Processes in Oracle BPEL Process Manager 34-5

xxxiv

34.3.1.1 Creating and Configuring the Services 34-6

34.3.2 Asynchronous: Calling Service Providers from Oracle BPEL Process Manager 34-6

34.3.2.1 Creating and Configuring the Services 34-7

34.4 BPEL Transport Security 34-8

34.4.1 Using SSL from Oracle Service Bus to Oracle Servers 34-8

34.5 BPEL Transport Error Handling 34-8

34.5.1 Application Errors 34-9

34.5.2 Connection Errors 34-9

34.5.3 Other Errors 34-9

34.6 WS-Addressing Reference 34-9

34.6.1 ReplyTo 34-9

34.6.1.1 Calling a BPEL Process Asynchronously Through Service Bus 34-9

34.6.1.2 BPEL Processes Calling External Services Through Service Bus 34-10

34.6.2 MessageID / RelatesTo 34-10

34.7 Examples of XML Messaging with the BPEL Transport 34-10

34.7.1 Conversation ID Examples 34-11

34.7.1.1 Port and Message Definitions 34-11

34.7.1.2 WS-Addressing that Sets the Conversation ID 34-12

34.7.1.3 Message Payload Data that Sets the Conversation ID 34-12

34.7.1.4 Transformation Examples 34-14

34.7.2 Asynchronous BPEL to BPEL Through Service Bus Example 34-15

34.7.2.1 Port and Message Definitions 34-16

34.7.2.2 BP1 to P1 – Initiate operation 34-16

34.7.2.3 P1/B1 to BP2 34-17

34.7.2.4 BP2 to P2 – onResult operation 34-17

34.7.2.5 P2/B2 to BP1 – onResult operation 34-18

34.8 BPEL Transport Configuration Reference 34-18

34.8.1 BPEL Transport Endpoint URI 34-18

34.8.2 Configuring Business Services to Use the BPEL Transport 34-19

35

Using the SB Transport

35.1 Introduction to the SB Transport 35-1

35.1.1 SB Transport Features 35-1

35.2 SB Transport Error Handling 35-2

35.3 UDDI and the SB Transport 35-3

35.3.1 Publishing a Service 35-3

35.3.2 Importing a Service 35-3

35.4 SB Transport Configuration Reference 35-4

35.4.1 SB Transport Environment Values 35-4

35.4.2 Configuring Proxy Services to Use the SB Transport 35-4

xxxv

35.4.3 Configuring Business Services to Use the SB Transport 35-5

35.4.3.1 JNDI Providers 35-6

36

Using the SOA-DIRECT Transport

36.1 Introduction to the SOA-DIRECT Transport 36-1

36.1.1 SOA-DIRECT Transport Features 36-1

36.1.2 Service Binding Types 36-2

36.1.3 WS-Addressing for the SOA-DIRECT Transport 36-2

36.1.4 SOA-DIRECT Transport Security 36-2

36.1.5 SOA-DIRECT Transport Error Handling 36-3

36.1.5.1 Connection Errors 36-3

36.1.5.2 Application Errors 36-3

36.1.5.3 Generic Errors 36-3

36.2 Using SOA Suite Services with Service Bus 36-3

36.2.1 Simple Use Cases – Synchronous 36-4

36.2.1.1 Transactional Boundaries 36-4

36.2.1.2 Synchronous Invocation of a SOA Composite 36-4

36.2.1.3 Synchronous Invocation from a SOA Composite 36-5

36.2.1.4 Associating Messages with the Correct Conversation 36-6

36.2.2 Advanced Use Cases – Asynchronous 36-6

36.2.2.1 Asynchronous Invocation of a SOA Composite 36-7

36.2.2.2 Asynchronous Invocation from a SOA Composite 36-9

36.3 SOA-DIRECT Transport Configuration Reference 36-11

36.3.1 SOA-DIRECT Endpoint URIs 36-11

36.3.1.1 Endpoint URI Format in a Cluster 36-12

36.3.1.2 Endpoint URI Examples 36-12

36.3.2 Configuring Business Services to Use the SOA-DIRECT Transport 36-12

36.3.3 SOA-DIRECT Transport Environment Values 36-14

36.4 WS-Addressing Reference 36-15

36.4.1 ReplyTo Header 36-15

36.4.1.1 Calling a SOA Composite Asynchronously 36-15

36.4.1.2 Calling Back to a SOA Composite Asynchronously 36-15

36.4.2 MessageID / RelatesTo Headers 36-15

36.5 XML Messaging Examples 36-16

36.5.1 Conversation ID Examples 36-16

36.5.1.1 Port and Message Definitions 36-16

36.5.1.2 WS-Addressing that Sets the Conversation ID 36-17

36.5.1.3 Message Payload Data that Sets the Conversation ID 36-18

36.5.1.4 Transformation Examples 36-20

36.5.2 Asynchronous Composite to Composite Communication Through Service Bus 36-21

xxxvi

36.5.2.1 Port and Message Definitions 36-21

36.5.2.2 BP1 to P1 – Initiate operation 36-22

36.5.2.3 P1/B1 to BP2 36-22

36.5.2.4 BP2 to P2 – onResult operation 36-23

36.5.2.5 P2/B2 to BP1 – onResult operation 36-23

37

Using the Tuxedo Transport

37.1 Introduction to the Tuxedo Transport 37-1

37.1.1 Capabilities of the Tuxedo Transport 37-2

37.2 Configuring Oracle Tuxedo Connector 37-3

37.2.1 Before You Begin 37-4

37.2.2 Configuring Oracle Tuxedo Connector 37-4

37.3 Using Tuxedo Services from Service Bus 37-4

37.3.1 Configuring a Tuxedo-Based Business Service 37-5

37.3.1.1 Business Service Endpoint URIs for Tuxedo Transports 37-5

37.3.2 Load Balancing and Failover for Tuxedo-Based Business Services 37-6

37.3.3 Error Handling for Tuxedo-Based Business Services 37-7

37.3.4 Testing Your Configuration 37-7

37.4 Using Service Bus from Tuxedo 37-7

37.4.1 Configuring a Tuxedo-Based Proxy Service 37-8

37.4.2 Testing Your Configuration 37-8

37.5 Tuxedo Transport Buffer Transformation 37-8

37.5.1 Buffer Transformation with the Any XML Service Type 37-8

37.5.2 Buffer Transformation with the Messaging Service Type 37-9

37.6 Tuxedo Transport Transaction Processing 37-10

37.6.1 Inbound Tuxedo Service Transaction Processing 37-10

37.6.2 Outbound Tuxedo Service Transaction Processing 37-10

37.7 Tuxedo Transport Configuration Reference 37-10

37.7.1 Configuring Proxy Services to Use the Tuxedo Transport 37-11

37.7.2 Configuring Business Services to Use the Tuxedo Transport 37-12

38

Using the WS Transport

38.1 Introduction to the WS Transport 38-1

38.1.1 Web Services Reliable Messaging 38-1

38.1.2 WS Transport Features 38-1

38.1.3 Messaging Patterns 38-2

38.1.4 WS-Policies in the WS Transport 38-3

38.1.4.1 WS-Policy Configurations 38-3

38.1.5 Streaming Content for Large Messages 38-3

xxxvii

38.1.6 Web Services Interoperability 38-3

38.2 Authentication and Authorization of Services 38-4

38.2.1 Proxy Service Authentication 38-4

38.2.2 Proxy Service Authorization 38-4

38.2.3 Business Service Authentication 38-4

38.3 Using the WS Transport 38-5

38.3.1 Importing the WSDL Document into the Oracle Service Bus Console 38-5

38.3.2 Configuring WS Policies 38-5

38.3.3 Attaching WS Policies to a Service 38-6

38.3.4 Configuring an Error Queue 38-6

38.3.5 Routing the WS Transport Through an HTTP Proxy Server 38-6

38.3.6 WS Transport Error Handling 38-6

38.3.7 Importing and Exporting Resources 38-7

38.3.8 Importing and Publishing Services Using UDDI Registries 38-7

38.4 WS Transport Configuration Reference 38-7

38.4.1 Endpoint URIs for the WS Transport 38-7

38.4.2 Configuring Business Services to Use the WS Transport 38-7

38.4.3 Configuring Proxy Services to Use the WS Transport 38-9

Part VI Creating Custom Transport Providers

39

Learning About Custom Transport Providers

39.1 Introduction to Transport Providers 39-1

39.2 Introduction to the Transport SDK 39-2

39.2.1 Transport SDK Features 39-2

39.2.1.1 Handling Inbound and Outbound Messages 39-2

39.2.1.2 Deploying Transport-Related Artifacts 39-3

39.2.1.3 Processing Messages Asynchronously 39-3

39.2.2 Transport Provider Modes 39-3

39.2.3 Related Features 39-3

39.2.3.1 Load Balancing 39-4

39.2.3.2 Monitoring and Metrics 39-4

39.3 Determining Whether to Develop a Custom Transport Provider 39-4

39.3.1 When to Use the Transport SDK 39-4

39.3.2 When Alternative Approaches are Recommended 39-5

39.4 Transport Provider Components 39-6

39.4.1 Design-Time Component 39-6

39.4.2 Runtime Component 39-8

39.5 The Transaction Model 39-9

39.5.1 Overview of Transport Endpoint Properties 39-9

xxxviii

39.5.1.1 Transactional vs. Non-Transactional Endpoints 39-10

39.5.1.2 Supported Message Patterns 39-10

39.5.2 Support for Synchronous Transactions 39-10

39.5.2.1 Use Case 1 (Response Pipeline Processing) 39-11

39.5.2.2 Use Case 2 (Service Callout Processing) 39-11

39.5.2.3 Use Case 3 (Suspending Transactions) 39-12

39.5.2.4 Use Case 4 (Multiple URIs) 39-12

39.6 Transport SDK Security Model 39-12

39.6.1 Inbound Request Authentication 39-12

39.6.2 Outbound Request Authentication 39-13

39.6.2.1 Outbound User Name and Password Authentication 39-13

39.6.2.2 Outbound SSL Client Authentication (Two-Way SSL) 39-14

39.6.2.3 Outbound JAAS Subject Authentication 39-14

39.6.3 Link-Level or Connection-Level Credentials 39-15

39.6.4 Uniform Access Control to Proxy Services 39-15

39.6.5 Identity Propagation and Credential Mapping 39-15

39.7 Transport SDK and the Threading Model 39-16

39.7.1 Inbound Request Message Thread 39-16

39.7.2 Outbound Response Message Thread 39-17

39.7.3 Support for Asynchrony 39-17

39.7.4 Publish and Service Callout Threading 39-17

39.8 Designing for Message Content 39-18

39.8.1 Sources and Transformers 39-18

39.8.2 Sources and the MessageContext Object 39-19

39.8.3 Built-In Transformations 39-21

40

Developing Custom Transport Providers

40.1 Development Road Map 40-1

40.1.1 Planning 40-1

40.1.2 Developing 40-2

40.1.3 Packaging and Deploying 40-2

40.2 Before You Begin 40-2

40.3 Basic Development Steps 40-3

40.3.1 Step1. Review the Transport Framework Components 40-3

40.3.2 Step 2. Create a Directory Structure for Your Transport Project 40-4

40.3.3 Step 3. Create an XML Schema File for Transport-Specific Artifacts 40-4

40.3.4 Step 4. Define Transport-Specific Artifacts 40-5

40.3.4.1 EndPointConfiguration 40-5

40.3.4.2 RequestMetaDataXML 40-6

40.3.4.3 RequestHeadersXML 40-6

xxxix

40.3.4.4 ResponseMetaDataXML 40-7

40.3.4.5 ResponseHeadersXML 40-7

40.3.5 Step 5. Define the TransportProviderConfiguration XMLBean 40-8

40.3.6 Step 6. Implement the Transport Provider User Interface 40-8

40.3.7 Step 7. Implement the Runtime Interfaces 40-10

40.3.8 Step 8. Package and Deploy the Transport Provider 40-11

40.4 Important Development Topics 40-11

40.4.1 Handling Messages 40-11

40.4.1.1 Sending and Receiving Message Data 40-12

40.4.1.2 Request and Response Metadata Handling 40-12

40.4.1.3 Character Set Encoding 40-13

40.4.1.4 Co-Located Calls 40-13

40.4.1.5 Returning Outbound Responses to the Service Bus Runtime 40-14

40.4.2 Transforming Messages 40-14

40.4.3 Working with TransportOptions 40-15

40.4.3.1 Inbound Processing 40-15

40.4.3.2 Outbound Processing 40-16

40.4.3.3 Request Mode 40-16

40.4.4 Handling Errors 40-17

40.4.4.1 Case 1: The Exception Occurs Before the Outbound Call 40-17

40.4.4.2 Case 2: The Exception Occurs During the Outbound Call 40-17

40.4.4.3 Case 3: The Exception Occurs After the Outbound Call 40-18

40.4.4.4 Catching Application Errors 40-19

40.4.4.5 Catching Connection Errors 40-19

40.4.5 Defining Custom Environment Value Types 40-20

40.4.6 Publishing Proxy Services to a UDDI Registry 40-21

40.4.7 When to Implement TransportWLSArtifactDeployer 40-22

40.5 Creating Help for Custom Transports 40-23

40.5.1 About Custom Transport Online Help 40-24

40.5.2 How to Provide Custom Transport Help in the Console 40-24

40.5.2.1 Implement the CustomHelpProvider Interface 40-25

40.5.2.2 Create an HTML File to Launch 40-26

40.5.2.3 Create a Simple Web Application to Display Expanded Help (Optional) 40-27

40.5.3 How to Provide Custom Transport Help in JDeveloper 40-28

40.5.4 Packaging Help for the Transport Plug-in 40-29

41

Developing Custom Transport Providers for JDeveloper

41.1 Introduction 41-1

41.2 Services Runtime and Services Configuration 41-1

41.2.1 Offline Methods 41-2

xl

41.2.2 Restrictions when Working Offline 41-4

41.2.3 Working Offline with a Remote Server 41-4

41.2.4 Bootstrapping Transports in Offline Mode 41-5

41.3 Packaging Transports for JDeveloper 41-5

41.4 Custom Transport Provider Reference for Offline Tools 41-6

41.4.1 Working in Different Modes 41-7

41.4.2 TransportProviderFactory 41-8

41.4.3 TransportManagerHelper Methods 41-8

42

Packaging and Deploying a Custom Transport Provider

42.1 Packaging and Deployment Overview 42-1

42.1.1 Custom Transport Provider Components 42-1

42.1.2 Custom Transport Provider Resources 42-2

42.2 Packaging the Transport Provider 42-2

42.2.1 Transport JAR File Packaging 42-2

42.2.2 Transport EAR File Packaging 42-3

42.2.3 Transport Plug-in Registration for JDeveloper 42-3

42.3 Transport Plug-in Installation 42-4

42.4 Deploying the Transport Provider 42-4

42.4.1 Transport Registration 42-4

42.5 Undeploying a Transport Provider 42-5

42.6 Deploying to a Cluster 42-5

43

Creating a Sample Socket Transport Provider

43.1 Sample Socket Transport Provider Design 43-1

43.1.1 Concepts Illustrated by the Sample 43-1

43.1.2 Basic Architecture of the Sample 43-1

43.1.3 Configuration Properties 43-2

43.2 Sample Location and Directory Structure 43-4

43.3 Building and Deploying the Sample 43-5

43.3.1 How to Set Up the Environment 43-5

43.3.2 How to Build the Sample Transport Provider 43-5

43.3.3 How to Deploy the Sample Transport Provider 43-5

43.3.4 Registering the Sample Transport Provider With JDeveloper 43-6

43.4 Creating a Socket Transport Sample Project 43-6

43.4.1 Creating the Project 43-7

43.4.2 Creating the Business Service 43-7

43.4.3 Creating the Proxy Service 43-8

43.4.4 Creating the Pipeline 43-8

xli

43.4.5 Connecting the Proxy Service and Pipeline 43-11

43.5 Testing the Socket Transport Provider 43-11

43.5.1 Using the Sample Server and Client for Testing 43-11

43.5.1.1 Starting the Sample External Service 43-11

43.5.1.2 Starting the Sample Initiating Service 43-12

43.5.2 Using the Test Console 43-12

Part VII Sharing Artifacts and Services

44

Importing and Exporting Resources and Configurations

44.1 About Importing and Exporting Resources 44-1

44.1.1 About Exporting Resources 44-1

44.1.1.1 Data Encryption During Export 44-2

44.1.2 About Importing Resources 44-2

44.1.2.1 Improving Import Performance 44-2

44.1.2.2 Importing Service Accounts or Service Key Providers 44-3

44.1.2.3 Preserving Operational Settings During Import 44-3

44.1.2.4 Preserving Security Configuration During Import 44-3

44.1.2.5 Customizing Environment Values After an Import 44-5

44.2 Importing and Exporting Resources in JDeveloper 44-5

44.2.1 How to Export Resources to a Configuration JAR File in Oracle JDeveloper 44-6

44.2.2 How to Export Resources to a Server in Oracle JDeveloper 44-7

44.2.3 How to Import Resources in JDeveloper 44-8

44.3 Importing and Exporting Resources in the Oracle Service Bus Console 44-10

44.3.1 How to Export Resources to a Configuration JAR File in the Console 44-10

44.3.2 How to Import Resources from a Configuration JAR File in the Console 44-11

44.3.2.1 Importing New Version of Projects in the Console 44-12

44.3.3 How to Import Resources from a ZIP File in the Console 44-12

44.3.4 How to Import Resources from a URL in the Console 44-13

44.4 Exporting a Service Bus Configuration Offline 44-14

44.4.1 About the Export Process 44-14

44.4.2 Preparing to Export a Service Bus Configuration 44-15

44.4.2.1 Before You Begin 44-15

44.4.2.2 Creating the Export Settings File 44-16

44.4.2.3 Configuring the Environment 44-16

44.4.3 Exporting a Service Bus Configuration Offline 44-16

44.4.3.1 Exporting a Configuration Offline Using a Command Line 44-16

44.4.3.2 Exporting a Configuration Offline Using Ant 44-17

44.4.3.3 Exporting a Configuration Offline Using WLST 44-18

44.4.4 Export Settings File Format, Samples, and Schema 44-18

xlii

44.4.4.1 Export Settings File Format 44-18

44.4.4.2 Validation 44-19

44.4.4.3 Inclusion and Exclusion Rules 44-19

44.4.4.4 Export Settings File Samples 44-19

44.4.4.5 Export Settings File Schema Definition 44-21

45

Sharing Data Using the Metadata Services Repository

45.1 Service Bus and the MDS Repository 45-1

45.2 Managing the MDS Repository 45-2

45.3 Sharing Artifacts Using the MDS Repository 45-2

45.3.1 How to Publish Service Bus Artifacts to the MDS Repository 45-2

45.4 Consuming Artifacts Stored in the MDS Repository 45-5

45.4.1 How to Consume MDS Repository Artifacts Using the Resource Browser 45-5

45.4.2 How to Add MDS Repository Artifacts to a Service Bus Project 45-7

45.4.3 How to Create a Business Service from a WSDL File in the MDS Repository 45-8

45.4.4 How to Create a Business Service from a WADL File in the MDS Repository 45-9

45.4.5 How to Expose a WSDL File in the MDS Repository as a REST Service 45-10

45.4.6 Opening the Project Overview File Through a SOA-MDS Connection 45-11

46

Working with UDDI Registries

46.1 UDDI, UDDI Registries, and Web Services 46-1

46.1.1 Basic Concepts of the UDDI Specification 46-2

46.1.2 Benefits of Using a UDDI Registry with Service Bus 46-2

46.1.3 Introduction to UDDI Entities 46-3

46.2 Service Bus and UDDI 46-4

46.2.1 UDDI Registry URLs 46-4

46.2.2 UDDI Registry Security Configuration 46-5

46.2.3 Authentication Configuration and UDDI Registries 46-5

46.2.4 About Publishing Proxy Services to a UDDI Registry 46-5

46.2.5 About Importing Services from a UDDI Registry 46-6

46.2.5.1 About Business Entities and Patterns 46-7

46.3 Keeping Services Synchronized 46-7

46.3.1 Automatic Publishing for Proxy Services 46-7

46.3.1.1 Changes to the Default Registry 46-7

46.3.1.2 Auto-Publish Synchronization Process 46-8

46.3.2 Automatic Importing of UDDI Services 46-8

46.3.2.1 Synchronization of Imported Services 46-8

46.3.2.2 Unlinking Imported Services 46-9

46.4 Related References 46-9

xliii

46.5 Working with UDDI Registry Resources 46-10

46.5.1 How to View UDDI Registry Resources in the Oracle Service Bus Console 46-10

46.5.2 How to Create UDDI Registry Resources 46-10

46.5.3 How to Create a UDDI Registry Resource from a JDeveloper UDDI
Connection 46-12

46.5.4 How to Edit a UDDI Registry Resource 46-12

46.5.5 How to Specify a Default UDDI Registry Resource 46-13

46.5.6 How to Delete a UDDI Registry Resource 46-13

46.6 Sharing UDDI Registry Services in JDeveloper 46-14

46.6.1 How to Create a UDDI Registry Connection in JDeveloper 46-14

46.6.2 How to Create a Business Service from a UDDI Registry Service 46-15

46.6.3 How to Download a Service From a UDDI Registry 46-16

46.7 Sharing UDDI Registry Services in the Oracle Service Bus Console 46-16

46.7.1 Publishing Proxy Services to a UDDI Registry 46-17

46.7.1.1 How to Automatically Publish Proxy Services to a UDDI Registry 46-17

46.7.1.2 How to Manually Publish a Proxy Service to a UDDI Registry 46-18

46.7.2 How to Import Resources from a UDDI Registry 46-18

46.7.3 How to Automatically Synchronize Imported Services 46-19

46.7.4 How to Manually Synchronize an Imported Service 46-20

46.7.5 How to Unlink an Imported Service From the UDDI Registry 46-20

46.8 Sample Business Scenarios for Service Bus and UDDI 46-21

46.8.1 Basic Proxy Service Communication with a UDDI Registry 46-21

46.8.2 Cross-Domain Deployment in Service Bus 46-21

46.9 Mapping Service Bus Proxy Services to UDDI Entities 46-22

46.9.1 UDDI Mapping Details for a Service Bus Proxy Service 46-24

46.9.2 Transport Attributes 46-26

46.9.3 Service Type Attributes 46-28

46.9.4 Canonical tModels Supporting Service Bus Services 46-28

46.9.5 Mapping Example 46-30

Part VIII Security

47

Understanding Oracle Service Bus Security

47.1 Inbound Security 47-1

47.2 Outbound Security 47-3

47.3 Options for Identity Propagation 47-3

47.3.1 Using a Service Account with Business Service when Attaching OWSM
Policies 47-11

47.3.2 Example: Authentication with a User Name Token 47-11

47.4 Administrative Security 47-12

xliv

47.5 Access Control Policies 47-13

47.5.1 Configuring Proxy Service Access Control 47-13

47.5.2 Access Control Policy Management 47-14

47.5.2.1 Deleting a Proxy Service 47-14

47.5.2.2 Deleting the Access Control Policy Assigned to a Proxy Service 47-14

47.5.2.3 Moving or Renaming a Proxy Service 47-15

47.5.2.4 Renaming a Proxy Service Operation 47-15

47.6 Configuring the Oracle WebLogic Security Framework: Main Steps 47-15

47.7 Context Properties Are Passed to Security Providers 47-18

47.7.1 Context Properties for HTTP Transport-Level Authentication 47-19

47.7.2 ContextHandler Properties for Access Control and Custom Authentication 47-19

47.7.3 Additional Transport-Specific Context Properties 47-20

47.7.4 Administrator-Supplied Context Properties for Message-Level Authentication 47-21

47.7.5 Security Provider Must Have Knowledge of the Property Name 47-21

47.7.6 WebLogic Server Administrative Channel is Supported 47-22

47.7.6.1 Using the Administrative Channel: Main Steps 47-22

47.8 Using Security Providers 47-23

47.8.1 Configuring Authentication Providers 47-23

47.8.2 Using a Custom Authorization Provider to Protect Service Bus Resources 47-24

47.8.2.1 WebLogic Authorization Provider Usage Information 47-24

47.8.2.2 ALSBProxyServiceResource Object 47-25

47.8.2.3 ProjectResourceV2 Object 47-27

47.8.2.4 ConsoleResource Object 47-27

47.8.3 About Errors When Using Security Provider Policies 47-27

48

Oracle Service Bus Security FAQ

48.1 How are Service Bus and WebLogic Server Security related? 48-1

48.2 What is Transport-Level Security? 48-1

48.3 What is Web Services Security? 48-2

48.4 What is Web Service Policy? 48-2

48.5 What are Web Service Policy assertions? 48-2

48.6 Are Access Control Policy and Web Service Policy the same? 48-3

48.7 What is Web Services Security Pass-Through? 48-3

48.8 What is a Web Services Security Active Intermediary? 48-3

48.9 What is outbound Web Services Security? 48-3

48.10 What is SAML? 48-4

48.11 Is it possible to customize the format of the subject identity in a SAML assertion? 48-4

48.12 What is the Certificate Lookup And Validation Framework? 48-4

48.13 Does Service Bus support identity propagation in a proxy service? 48-4

48.14 Is single sign-on supported in Service Bus? 48-5

xlv

48.15 Are security errors monitored? 48-5

48.16 Can I configure security for MBeans? 48-5

49

Securing Business and Proxy Services

49.1 Introduction to Policies 49-1

49.2 Security and Security Policies for Business and Proxy Services 49-2

49.2.1 Security Policies in Service Bus 49-2

49.2.2 Policy Overrides 49-2

49.2.3 Security Settings 49-3

49.2.4 Global Policies 49-3

49.2.5 Service Accounts in Business Services 49-3

49.2.6 Security-Related Validation for Active Proxy Services 49-4

49.3 Attaching and Configuring Policies in JDeveloper 49-4

49.3.1 How to Attach Oracle Web Services Manager Policies in JDeveloper 49-5

49.3.2 How to Define Override Values for a Policy in JDeveloper 49-7

49.3.3 How to Configure Custom Authentication for Proxy Services in JDeveloper 49-7

49.3.3.1 Configuring Proxy Service Custom Authentication in JDeveloper 49-8

49.3.4 How to Specify a Service Key Provider for a Proxy Service in JDeveloper 49-9

49.3.5 How to Specify Web Services Policy Enforcement in JDeveloper 49-9

49.4 Attaching and Configuring Policies in the Oracle Service Bus Console 49-9

49.4.1 How to Attach Oracle Web Services Manager Policies in the Console 49-10

49.4.2 How to Define Override Values for a Policy in the Console 49-12

49.4.3 How to Configure Custom Authentication for a Proxy Service in the Console 49-12

49.4.3.1 Configuring Proxy Server Custom Authentication in the Console 49-13

49.4.4 How to Specify a Service Key Provider for a Proxy Service in the Console 49-13

49.4.5 How to Specify Web Services Policy Enforcement in the Console 49-14

49.5 Configuring Service Bus Client Access Security 49-14

49.5.1 How To Configure Transport-Level Access Policies 49-14

49.5.1.1 Enabling HTTP URL Links to Open the Policy Editor 49-15

49.5.1.2 Configuring Transport-Level Access Policies 49-15

49.5.2 How to Configure Message-Level Access Policies 49-16

49.5.3 How to Add Policy Conditions 49-17

49.6 Hiding Personally Identifiable Information in Messages 49-20

49.6.1 How to Hide Personally Identifiable Information 49-21

49.6.1.1 Hiding Personally Identifiable Information Using JDeveloper 49-21

49.6.1.2 Hiding Personally Identifiable Information Using the Console 49-22

50

Configuring Message-Level Security for Web Services

50.1 About Message-Level Security 50-2

xlvi

50.1.1 Sample Sequence of Actions in Message-Level Security 50-2

50.2 Message-Level Access Control Policies for Proxy Services 50-3

50.3 Configuring Proxy Service Message-Level Security 50-3

50.3.1 Creating an Active Intermediary Proxy Service: Main Steps 50-3

50.3.2 Creating a Pass-Through Proxy Service: Main Steps 50-5

50.4 Configuring Business Service Message-Level Security: Main Steps 50-5

50.5 Using the Service Identity Certificate Extensions 50-7

50.5.1 Publishing Certificate Identity Extension in a Proxy Service Effective WSDL 50-7

50.5.2 Consuming Certificate Identity Extension in a Business Service 50-7

50.6 Examples of Custom WS-Policy Statements 50-8

50.6.1 Example: Encrypting Part of the SOAP Body and Header 50-8

50.6.2 Example: Encryption Policy for a Business Service 50-10

50.6.3 Example: Encrypting a Custom SOAP Header 50-11

50.6.4 Example: Signing the Message Body and Headers 50-12

50.6.5 Example: Signing a SOAP Body with SAML Holder-of-Key 50-13

50.6.6 Example: Authenticating, Signing, and Encrypting with SAML Sender
Vouches 50-15

50.7 Disabling Outbound WS-Security 50-17

51

Configuring Transport-Level Security

51.1 Configuring Transport-Level Security for HTTPS 51-1

51.1.1 HTTPS Authentication Levels 51-2

51.1.2 Configuring Inbound HTTPS Security: Main Steps 51-2

51.1.3 Configuring Outbound HTTPS Security: Main Steps 51-3

51.2 Configuring Transport-Level Security for HTTP 51-4

51.2.1 Configuring Inbound HTTP Security: Main Steps 51-4

51.2.2 Configuring Outbound HTTP Security: Main Steps 51-5

51.2.3 Using Custom Authentication for Outbound HTTP Security 51-6

51.3 Configuring Transport-Level Security for JMS 51-6

51.3.1 Configuring Inbound JMS Transport-Level Security: Main Steps 51-7

51.3.2 Configuring Outbound JMS Transport-Level Security: Main Steps 51-8

51.4 Configuring Transport-Level Security for SFTP Transport 51-8

51.4.1 How Two-Way Authentication is Performed 51-9

51.4.2 Use of the known_hosts File 51-9

51.4.3 SFTP Transport Authentication Process 51-10

51.4.3.1 Inbound One-Way Download to the Proxy Service 51-10

51.4.3.2 Outbound One-Way Upload from the Business Service 51-11

51.4.4 Configuring Inbound SFTP Transport-Level Security: Main Steps 51-11

51.4.5 Configuring Outbound SFTP Transport-Level Security: Main Steps 51-13

51.4.6 SFTP Security Attributes Preserved During Import 51-15

51.4.7 SFTP Credential Life Cycle 51-15

xlvii

51.5 Email, FTP, and File Transport-Level Security 51-15

51.5.1 Email and FTP Transport-Level Security 51-15

51.5.2 File Transport Security 51-16

51.6 Configuring Transport-Level Security for SB Transport 51-16

51.6.1 Configuring SAML Authentication With Service Bus (SB) Transport 51-17

51.7 Configuring Transport-Level Security for WS Transport 51-17

51.7.1 Reliable Web Services Messaging Defined 51-17

51.7.2 WS Transport Resources Visible in WLS Console 51-18

51.7.3 Use of WS-Policy Files for Web Service Reliable Messaging Configuration 51-18

51.7.3.1 Preconfigured WS-RM Policy Files 51-18

51.7.4 RM WS-Policy Required Prior to Activation 51-19

51.7.5 Async Responses 51-19

51.7.6 Proxy Service Authentication 51-19

51.7.7 Preserving Security Configuration on Import 51-21

51.7.8 Configuring Inbound and Outbound WS Transport-Level Security 51-21

51.8 Configuring Transport-Level Security for WebSphere Message Queue Transport 51-21

51.8.1 Configuring Inbound MQ Transport-Level Security: Main Steps 51-21

51.8.2 Configuring Outbound MQ Transport-Level Security: Main Steps 51-22

51.9 Transport-Level Security Elements in the Message Context 51-23

52

Securing Oracle Service Bus with Oracle Web Services Manager

52.1 About Oracle Web Services Manager Integration with Oracle Service Bus 52-2

52.1.1 Security Providers 52-2

52.1.1.1 JPS Providers 52-2

52.1.1.2 CSS Providers 52-3

52.2 Using Oracle Web Services Manager with Oracle Service Bus 52-3

52.2.1 Attaching Oracle Web Services Manager Policies to Oracle Service Bus
Services 52-3

52.2.1.1 Policy Overrides 52-4

52.2.2 Configuring SAML 52-4

52.2.3 Advertising WSDL Files to Support WS Standards 52-4

52.2.3.1 WSDL Query Parameter Reference for WS Policies 52-5

52.2.4 Deployment Considerations 52-6

52.2.5 Auditing 52-6

52.2.6 Monitoring Statistics 52-6

52.2.7 Predefined Policies and Unsupported Assertions 52-7

52.2.7.1 Predefined Policies 52-7

52.2.7.2 wss_http_token_*_policy Guidelines 52-8

52.2.7.3 OWSM Authentication Policy Guidelines 52-9

52.2.7.4 OWSM Policies and SOAP with Attachments (SwA) 52-10

52.2.7.5 OWSM Policies and MTOM-Formatted Messages 52-10

xlviii

52.2.7.6 WS-ReliableMessaging Support Using OWSM Policies 52-10

52.2.7.7 Unsupported Assertions 52-13

52.2.8 Custom Assertions 52-14

52.3 Securing Services with REST Endpoints Using OAuth 52-14

52.3.1 Supported OAuth Use Cases 52-15

52.3.2 Configuring Oracle Access Management for Using OAuth with Service Bus 52-15

52.3.2.1 Configuring the OAuth Server 52-16

52.3.2.2 Configuring OWSM 52-19

52.3.3 Attaching OAuth OWSM Policies to Service Bus Services 52-20

53

Securing Oracle Service Bus Proxy and Business Services with WS-
Policy

53.1 About Web Services Policy 53-1

53.1.1 Relationship Between WS-Security and WS-Policy 53-2

53.1.2 Abstract and Concrete WS-Policy Statements 53-2

53.2 Oracle-Proprietary Security Policy Best Practices 53-3

53.3 Policy Subjects and Effective Policy 53-4

54

Using SAML with Oracle Service Bus

54.1 Mapping Identity to a SAML Token 54-1

54.2 Configuring SAML Pass-Through Identity Propagation 54-2

54.3 Authenticating SAML Tokens in Proxy Service Requests 54-2

54.4 Configuring SAML Authentication with Service Bus (SB) Transport 54-3

54.5 Using SAML Identity Switching 54-3

54.5.1 Protecting the Identity-Switching Resource 54-3

54.6 Troubleshooting SAML with Oracle Service Bus 54-3

55

Configuring Custom Authentication

55.1 Introduction to Custom Authentication in Oracle Service Bus 55-1

55.1.1 Understanding Custom Authentication Tokens 55-1

55.1.2 Custom Authentication Token Use and Deployment 55-2

55.1.3 Understanding Transport-Level Custom Authentication 55-2

55.1.3.1 Import/Export and Transport-Level Custom Token Authentication 55-3

55.1.4 Understanding Message-Level Custom Authentication 55-3

55.1.5 Propagating the Identity Obtained From Custom Authentication Tokens 55-4

55.1.6 Combining WS-Security with Custom User Name/Password and Tokens 55-4

55.2 Format of XPath Expressions 55-4

55.3 Configuring Identity Assertion Providers for Custom Tokens 55-5

xlix

55.3.1 Object Type of Custom Tokens 55-6

55.3.2 Configuring a Custom Token Type in an Identity Assertion Provider 55-7

55.3.2.1 How to Configure a Custom Token Type in an Identity Assertion
Provider 55-7

55.3.2.2 Setting the Supported and Active Types in the MBean 55-7

55.4 Configuring Custom Authentication Transport-Level Security 55-8

55.4.1 How to Create a Custom Authentication Class for Outbound 55-8

55.4.2 How to Configure Transport-Level Custom Authentication 55-9

55.5 Configuring Message-Level Custom Authentication 55-9

55.5.1 How to Configure Message-Level Custom Authentication for Proxy Services 55-10

56

Defining Message-Level Security with .Net 2.0

56.1 Message-Level Security Between .NET 2.0 and Oracle Service Bus 56-1

56.2 What is .NET? 56-1

56.3 Message-Level Security Configuration in .NET 56-1

56.4 Oracle Service Bus Configuration for Message-Level Security with .NET 56-3

56.4.1 Sample WSDL File 56-5

Part IX Completing Oracle Service Bus Services

57

Debugging Oracle Service Bus Applications

57.1 Introduction to the Debugger 57-1

57.1.1 Debug Servers 57-1

57.1.2 Local and Remote Debugging 57-2

57.1.3 Debugging With Breakpoints 57-2

57.1.3.1 About Conditional Breakpoints 57-3

57.1.3.2 About Exception Breakpoints 57-6

57.1.4 JDeveloper Debugging Windows 57-7

57.1.5 XSLT Editor Debugging Support 57-8

57.2 Configuring the Project and Debugger 57-8

57.2.1 How to Create Run Configuration for Remote Debugging 57-8

57.2.2 How to Choose a Run Configuration for Debugging 57-9

57.3 Accessing the Debugger 57-9

57.4 Debugging a Service Bus Application 57-10

57.4.1 How to Set Breakpoints on Service Bus Components 57-10

57.4.2 How to Set Exception Breakpoints for Service Bus Components 57-10

57.4.3 How to Debug Using Breakpoints 57-11

57.4.4 How to Step Through a Debugging Session 57-12

57.4.5 How to End or Detach from Debugging 57-12

l

57.5 Working with the Debugger Windows 57-12

57.5.1 How to Edit Breakpoint Options 57-13

57.5.2 How to Create a Breakpoint Group 57-13

57.5.2.1 Creating a Breakpoint Group 57-13

57.5.2.2 Adding a Breakpoint to an Existing Group 57-13

57.5.3 How to Remove or Disable Breakpoints 57-14

57.5.4 How to Enable a Disabled Breakpoint 57-14

57.5.5 How to View and Modify Variable Values at the Current Breakpoint 57-14

57.5.6 How to Add a Watch 57-15

58

Using the Test Console

58.1 Introduction to the Test Console 58-1

58.1.1 Proxy Service Testing 58-2

58.1.2 Pipeline Testing 58-2

58.1.2.1 Execution Tracing in Pipelines Using the Test Console 58-2

58.1.3 Business Service Testing 58-3

58.1.4 Recommended Approaches to Testing Services 58-4

58.1.5 HTTP Requests 58-5

58.2 Accessing the Test Console 58-5

58.2.1 Prerequisites 58-5

58.2.2 How to Access the Test Console from the Oracle Service Bus Console 58-6

58.2.2.1 Accessing the Test Console from a Component's Definition Editor 58-6

58.2.2.2 Accessing the Test Console from the Project or Folder Definition Editor 58-6

58.2.3 How to Access the Test Console from Fusion Middleware Control 58-7

58.2.4 How to Access the Test Console from JDeveloper 58-7

58.2.4.1 Accessing the Test Console from JDeveloper 58-7

58.2.4.2 Accessing the Test Console for a Transformation from JDeveloper 58-7

58.3 Testing Proxy Services, Business Services, Pipelines, and Split-Joins 58-8

58.3.1 How to Test Service Bus Services 58-8

58.3.2 How to Test Attachments in Services 58-10

58.3.3 How To Trace Pipeline Processing 58-11

58.3.4 How to View Service Test Results 58-12

58.4 Testing MFL Transformations 58-12

58.4.1 How to Test MFL Transformations in the Test Console 58-13

58.4.2 MFL Test Console Example 58-13

58.5 Testing XSLT Transformations (Resources) 58-14

58.5.1 How to Test XSLT Transformations Using the Test Console 58-14

58.5.2 How to Test XSLT Transformations Using the JDeveloper XSLT Mapper 58-15

58.6 Testing XQuery Transformations (Resources) 58-15

58.6.1 XQuery Transformation Testing Prerequisites and Guidelines 58-16

li

58.6.2 How to Test XQuery Transformations in the Test Console 58-16

58.7 Testing Inline Expressions 58-17

58.7.1 How to Test XQuery Expressions 58-17

58.7.2 How to Test XPath Expressions 58-17

58.8 Testing Services With OWSM Security 58-18

58.8.1 Limitations for Services and Policies 58-20

58.9 About Security and Transports 58-21

58.10 Undeploying the Test Console 58-21

58.10.1 Untargeting the Test Console Before Domain Creation 58-21

58.10.2 Untargeting the Test Console when the Server is Running 58-22

58.10.3 Untargeting the Test Console when the Server is Not Running 58-22

58.11 Test Console Page Reference for Services 58-23

58.11.1 Test Configuration Test Console Properties 58-23

58.11.2 Service Operation Test Console Properties 58-23

58.11.3 Request Document Test Console Properties 58-24

58.11.4 Security Test Console Properties 58-26

58.11.5 Authentication Test Console Properties 58-26

58.11.6 Transport Test Console Properties 58-27

58.11.6.1 Test Console Transport Settings 58-27

58.11.6.2 How the Runtime Uses the Transport Settings in the Test Console 58-29

58.11.7 Attachment Test Console Properties 58-31

59

Deploying Oracle Service Bus Services

59.1 Deployment Overview 59-1

59.2 Before You Deploy 59-1

59.2.1 Creating a Service Bus Domain Using the Configuration Wizard 59-2

59.2.2 Resolving Conflicts 59-2

59.2.3 Configuring JMS Resources 59-2

59.2.4 Configuring Security 59-2

59.3 Deploying from the Oracle Service Bus Console 59-3

59.3.1 How to Deploy from the Console 59-3

59.4 Deploying Service Bus Applications or Projects in JDeveloper 59-4

59.4.1 How to Create a Connection to the WebLogic Server 59-4

59.4.2 How to Create a Deployment Profile 59-6

59.4.3 How to Customize Your Service Bus Deployment 59-6

59.4.4 How to Deploy a Service Bus Project or Application 59-8

59.4.5 How to Deploy a Project or Application Using the Previous Configuration 59-9

59.4.6 What Happens When You Deploy Using JDeveloper 59-9

59.5 Deploying a Service Bus Configuration JAR File in Fusion Middleware Control 59-9

59.6 Updating an Online Configuration 59-10

lii

59.6.1 What You Need to Know for Successful Online Configuration Updates 59-11

59.6.2 Changing an Online Business Service 59-11

59.6.3 Changing an Online Proxy Service 59-12

59.6.4 Changing an Online Pipeline 59-12

59.7 Updating an Online Configuration in a Cluster 59-12

59.7.1 Changing a Business Service in a Cluster 59-12

59.7.2 Installing a New Version of a Proxy Service in a Cluster 59-13

60

Using the Oracle Service Bus Development Maven Plug-In

60.1 Introduction to the Oracle Service Bus Maven Plug-In 60-1

60.1.1 Maven Lifecycle Phases and Goals 60-1

60.1.2 POM Files and Archetypes 60-2

60.2 Installing and Configuring Maven 60-2

60.2.1 How to Configure the Oracle Service Bus Development Maven Plug-In 60-3

60.2.2 How to Use Maven Online Help 60-4

60.3 Using the Oracle Service Bus Development Maven Plug-In 60-4

60.3.1 How to Generate a Service Bus Project POM File 60-4

60.3.2 How to Generate a Service Bus Project POM File from an Archetype 60-5

60.3.2.1 Creating a Service Bus Project POM File from an Archetype in
JDeveloepr 60-5

60.3.2.2 Generating a Service Bus Project POM File from an Archetype Using a
Command Line 60-5

60.3.3 How to Generate a Service Bus System Resources POM File from an
Archetype 60-6

60.3.3.1 Generating a Service Bus System Resources POM File from an
Archetype in JDeveloper 60-6

60.3.3.2 Generating a Service Bus System Resources POM File from a
Command Line 60-7

60.3.4 Parameters for Generating a POM File 60-7

60.4 Service Bus Development Maven Plug-In Goals 60-8

60.4.1 package 60-8

60.4.2 deploy 60-10

60.5 Oracle Service Bus Development Maven Plug-In POM File Samples 60-13

Part X Appendixes

A Message Context

A.1 The Message Context Model A-1

A.2 Predefined Context Variables A-1

A.3 Message-Related Variables A-2

liii

A.3.1 Header Variable A-3

A.3.2 Body Variable A-3

A.3.3 Attachments Variable A-3

A.3.4 Message Types and Context Variables A-5

A.3.5 Binary Content in the Body and Attachments Variables A-6

A.3.5.1 Sending SOAP with Attachments to Business Processes A-6

A.3.6 Java Content in the Body Variable A-7

A.3.7 Streaming Body Content A-7

A.3.7.1 Best Practices for Using Content Streaming A-8

A.3.8 Streaming Attachments A-9

A.3.8.1 Inbound Message Handling A-10

A.3.8.2 Outbound Response Message Handling A-10

A.3.9 XOP/MTOM Support A-10

A.3.9.1 XOP/MTOM in Pipelines A-11

A.3.9.2 XOP/MTOM in Business Services A-12

A.3.9.3 XOP/MTOM Attachments Streaming A-13

A.3.10 Custom MIME Headers A-13

A.4 Inbound and Outbound Variables A-14

A.4.1 Sub-Elements of the Inbound and Outbound Variables A-15

A.4.1.1 service A-15

A.4.1.2 transport A-15

A.4.1.3 security A-19

A.4.2 Related Topics A-20

A.5 Operation Variable A-20

A.6 Fault Variable A-21

A.6.1 Error Codes A-21

A.6.2 Error Details A-22

A.6.3 XML Parsing Errors (PayloadDetail) A-23

A.7 messageID Variable A-23

A.8 Initializing Context Variables A-23

A.8.1 Initializing the Attachments Context Variable A-24

A.8.2 Initializing the Header and Body Context Variables A-24

A.8.2.1 SOAP Services A-24

A.8.2.2 XML Services (Non SOAP) A-25

A.8.2.3 Messaging Services A-25

A.9 Performing Operations on Context Variables A-25

A.9.1 $body A-25

A.9.2 $header A-26

A.9.3 Related Topics A-26

A.10 Constructing Messages to Dispatch A-26

A.10.1 SOAP Services A-27

liv

A.10.2 XML Services (Non SOAP) A-27

A.10.3 Messaging Services A-27

A.10.3.1 About Sending Binary Content in Email Messages A-28

A.10.4 Related Topics A-28

A.11 Message Context Schema A-29

A.12 Errors Schema A-33

B XPath Extension Functions

B.1 Cross-Reference Functions B-1

B.1.1 lookupPopulatedColumns B-1

B.1.2 lookupXRef B-2

B.1.3 lookupXRef1M B-3

B.1.4 markForDelete B-3

B.1.5 populateLookupXRefRow B-4

B.1.6 populateXRefRow B-5

B.1.7 populateXRefRow1M B-6

B.2 Domain Value Map Functions B-6

B.2.1 lookup B-7

B.2.2 lookupValue B-7

B.2.3 lookupValue1M B-8

B.3 Creating Custom XPath Functions B-9

B.3.1 Registering Custom Functions with Service Bus B-9

B.3.2 Creating and Packaging the Custom Function Java Classes B-11

B.3.2.1 Creating the Class and Method B-11

B.3.2.2 Packaging the Custom Function Class B-12

B.3.3 Using Custom Functions B-13

B.3.3.1 Custom Functions In Inline XQuery Expressions and XQuery Resources B-13

B.3.3.2 Custom Functions In XSLT Resources B-13

B.3.4 Deploying Custom Functions in a Cluster B-14

C Oracle Service Bus APIs

C.1 Resource Update and Customization C-1

C.2 Management and Monitoring C-2

C.3 Deployment C-2

D Transport SDK Interfaces and Classes

D.1 Introduction D-1

D.2 Schema-Generated Interfaces D-1

D.3 General Classes and Interfaces D-2

lv

D.3.1 Summary of General Classes D-2

D.3.2 Summary of General Interfaces D-3

D.4 Source and Transformer Classes and Interfaces D-4

D.4.1 Summary of Source and Transformer Interfaces D-4

D.4.2 Summary of Source and Transformer Classes D-4

D.5 Metadata and Header Representation for Request and Response Messages D-6

D.5.1 Runtime Representation of Message Contents D-6

D.5.2 Interfaces D-7

D.6 User Interface Configuration D-7

D.6.1 Summary of UI Interfaces D-8

D.6.2 Summary of UI Classes D-8

E Transport SDK UML Sequence Diagrams

E.1 Service Bus Runtime Inbound Messages E-1

E.2 Service Bus Runtime Outbound Messages E-2

E.3 Design Time Service Registration E-3

F XQuery-SQL Mapping Reference

F.1 IBM DB2/NT 8 F-1

F.2 Microsoft SQL Server F-2

F.3 Oracle8i, 8.1.x F-3

F.4 Oracle 9i and Later F-4

F.5 Sybase 12.5.2 (and higher) F-5

F.6 Base (Generic) RDBMS Data Type Mapping F-6

G Work Managers and Threading

G.1 Key Threading Concepts G-1

G.2 Pipeline Actions G-2

G.2.1 Route Action G-2

G.2.2 Publish Action G-2

G.2.3 Service Callout Action G-2

G.3 Work Managers G-2

G.3.1 Work Manager Configuration G-3

G.3.2 Work Manager Priority G-3

G.4 Designating Work Managers G-3

lvi

Preface

Developing Services with Oracle Service Bus describes how to use the Oracle Service Bus
Console and Oracle JDeveloper to create and configure proxy and business services, split-
joins, and pipelines; perform message transformation with XQuery, XSLT, and MFL; configure
transports, work with JCA adapters, and create custom transports; configure security using
WS-Security; use the Service Bus API; and create global JNDI resources.

Audience
This guide is intended for those who develop services for Oracle Service Bus.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Accessible Access to Oracle Support

Oracle customers who have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you
are hearing impaired.

Related Documents
Refer to the Oracle Fusion Middleware library on the Oracle Help Center for additional
information.

• For Oracle Service Bus information, see Oracle Service Bus.

• For Oracle SOA Suite information, see Oracle SOA Suite.

• For versions of platforms and related software for which Oracle Service Bus is certified
and supported, review the Certification Matrix on OTN.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

lvii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certification-100350.html

Convention Meaning

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

lviii

What's New in This Guide

For Oracle Service Bus 12c (12.2.1.x), this guide has been updated to include the following
new and changed development features:

• In 12c (12.2.1.4), with patch 32467052 (at minimum) applied: Support for encrypting
service account credentials. See How to Enable Encryption of Service Account
Credentials in Creating a Service Account with a Static Password.

• In 12c (12.2.1.4): New optional parameters to use with the Maven plug-in command to
package Service Bus resources: passphrase and weblogicRootDirectory. See the table
of parameters in package.

• In 12c (12.2.1.4): Support for developing Service Bus projects in Reference Configuration
mode so that new adapters that you create will have special JCA endpoint properties
defined in their source files. See Developing Service Bus Projects in Reference
Configuration Mode, Deploying Service Bus Applications or Projects in JDeveloper, and
JCA Adapter Properties. See also:

– Large Payload Rejection with JMS Transport

– Large Payload Rejection with the MQ Transport

– Large Payload Rejection with the HTTP Transport

• Support for consuming REST-based integrations created in Oracle Integration (in Oracle
Cloud) in on-premises SOA composite applications. See:

– How to Create a Business Service That Connects to Oracle Integration Using the
Service Bus Console

– How to Create a Business Service That Connects to Oracle Integration Using
JDeveloper

• Support for displaying comments (descriptions) of each action in the JDeveloper
Overview Editor. See Adding and Searching for Pipeline Node Descriptions.

• The MQ8 Transport was enhanced to provide XA support. See Using the MQ Transport.

• The Oracle JCA adapter can be configured to work in active-passive mode using the
same configuration, resulting in only a single managed server being active at any point in
time. If the active server fails, the service migrates to one of the other available servers in
the cluster. See Configuring the Oracle JCA Adapter for Database to Poll from a Single
Server.

• More detailed information about the WS-AT policy was added to the WS-
ReliableMessaging Suppport Using OWSM Policies topic.

• Additional information was added to the Configuring a Standard Resequencer topic for
JDeveloper and Configuring a Standard Resequencer topic for the Service Bus Console.

• Additional information about how to persist any non-persistent messages or to roll them
back for any issue was added to the Non-Persistent Messaging topic.

• Added How to Monitor an MQ Transport Pool.

lix

Further Information

For other Oracle Service Bus new features and known issues in this release, see
Release Notes for Oracle Service Bus.

Note:

Screens shown in this guide may differ slightly from your implementation.
Any differences are cosmetic.

What's New in This Guide

lx

Part I
Introduction to Oracle Service Bus

This part provides an overview of Oracle Service Bus and the two interfaces you can use to
create Service Bus services. It also describes how to set up a Service Bus environment and
create Service Bus services using the Service Bus Overview Editor in Oracle JDeveloper.

This part includes the following chapters:

• Learning About Oracle Service Bus

• Getting Started with the Oracle Service Bus Console

• Getting Started with Oracle Service Bus in JDeveloper

• Setting up the Development Environment for JDeveloper

• Developing Oracle Service Bus Applications in JDeveloper

1
About Oracle Service Bus

This chapter provides an overview of Service Bus, its architecture and components, and how
to use Service Bus to develop services. It also provides roadmaps for developing Service Bus
applications and descriptions of different development approaches.

This chapter includes the following topics:

• Oracle Service Bus Overview

• Service Bus Architectural Concepts

• Service Bus Components

• Service Bus Messaging Models

• Using Work Managers with Service Bus

• Service Bus Security

• Approaches for Designing Service Bus Services

• Naming Guidelines for Service Bus Components

• Viewing Service Bus Resources in a Web Browser

• Accessibility Options

• Additional Resources

1.1 Oracle Service Bus Overview
Oracle Service Bus is a configuration-based, policy-driven enterprise service bus designed
for SOA life cycle management. It provides foundation capabilities for service discovery and
intermediation, rapid service provisioning and deployment, and governance.

Service Bus provides scalable and reliable service-oriented integration, service management,
and traditional message brokering across heterogeneous environments. It combines
intelligent message brokering with routing and transformation of messages, along with
service monitoring and administration. Service Bus leverages industry standards to connect
services and support a high level of heterogeneity, connecting your existing middleware,
applications, and data sources, and protecting existing investments.

Service Bus adheres to the SOA principles of building coarse-grained, loosely coupled, and
standards-based services. These services create a neutral container in which business
functions can connect service consumers and back-end business services, regardless of the
underlying infrastructure. The following figure illustrates the role of Service Bus as a service
intermediary in an enterprise IT SOA landscape.

1-1

Figure 1-1 Service Bus Intermediary

1.1.1 Functional Areas
The following diagram illustrates the primary functional areas of Service Bus, including
virtualization, messaging, security, configuration, and runtime management.

Figure 1-2 Service Bus Functional Features

Chapter 1
Oracle Service Bus Overview

1-2

1.1.2 Adaptive Messaging
Adaptive messaging provides flexible message handling and manipulation between clients
and services. For example, a client sends a SOAP message over HTTP through Service Bus,
which in turn transforms the message and invokes a back-end EJB. Or a client sends a
REST/JSON message over HTTP, and Service Bus transforms the message and invokes a
back-end SOAP/XML service (or uses any of the available adapters). Adaptive messaging
also supports a variety of communication patterns such as request/response, synchronous
and asynchronous, split-join, and publish/subscribe. It supports different patterns for inbound
and outbound messages in a single message life cycle.

1.1.3 Service Security
Service Bus ensures service security at all levels, based on Oracle Platform Security
Services and Oracle Web Services Manager (OWSM) for web services. You can plug in
custom or third-party security components. Built-in capabilities allow flexibility in
implementation by enabling security at the following levels:

• Transport-level security, including SSL, basic authorization, and custom security
credentials

• Message-level security, including WS-Security, SAML, user ID and password, X509,
signing and encryption, and custom security credentials

• Console security, including single-sign-on and role-based access

• Policy security

1.1.4 Service Virtualization
Service virtualization provides agility through message manipulation and control. Service Bus
lets you flexibly control messages using validation, transformation, routing based on message
content, parallel processing of multiple items in a message, alert triggering, and error
handling at different points in a message flow. For example, Service Bus provides the
following capabilities:

• XQuery-based policies or callouts to external services for message routing.

• Routing policies that apply to both point-to-point and one-to-many routing scenarios
(publish). For publish, routing policies serve as subscription filters.

• Routing table abstracted from pipelines, which enables modification of routes without
having to reconfigure pipelines.

• Identity-based routing, to classify clients into user-defined groups and apply routing
policies based on these groups.

• Conditional routing, including dynamic content-based routing of messages and runtime
protocol selection.

• Database lookups, which can be used for message enrichment, routing decisions, or
customizing the behavior of a pipeline.

• Transformations using XQuery or XSLT maps.

Chapter 1
Oracle Service Bus Overview

1-3

1.1.5 Configuration Framework
The Configuration Framework gives you full control over your Service Bus production
environment and its associated resources.The framework includes session
management, the Test Console, and import/export tools. Service Bus configurations
are managed in sessions, which provide the unique ability to lock the current
configuration while changes are being made. Service Bus can continue to receive and
process requests for services while configuration changes are being made in a
session. These changes do not affect the runtime configuration until you activate the
current session. This way, ongoing changes can be made without disrupting services.
Configuration and resource changes you make are tracked, and you can undo or redo
changes, resolve conflicts, maintain dependencies among resources, and test
changes in the Test Console.

The built-in Test Console is a browser-based test environment used to validate
resources as well as inline expressions used in pipelines or split-joins. Use the Test
Console to configure the test object (such as a pipeline, business service, or XQuery
expression), execute the test, and view test results. It allows message flow tracing
when testing a service, to examine the state of the message at specific trace points.

Service Bus allows the propagation of configuration data from environment to
environment by exporting and importing resources and projects. For example, you can
transfer configurations from a development domain to a test domain to a production
domain. The import and export features let you maintain resource dependencies and
preserve environment values between environments.

The Configuration Framework also includes a metadata-driven interface for service
discovery, publishing, and synchronization using UDDI registries, including automatic
import and synchronization of services with UDDI.

1.1.6 Service Management
Service management includes a powerful set of runtime configuration tools for
monitoring, alerting, and reporting. Service Bus is fully integrated with Fusion
Middleware Control for SOA-wide service management. Service management lets you
do the following:

• Gather statistics about message invocations, errors, performance characteristics,
messages passed, and SLA violations.

• Send SLA and pipeline alerts as SNMP traps, enabling integration with third-party
enterprise system management solutions.

• Log selected parts of messages for both systems operations and business
auditing purposes.

• Search message reports by extracting key information from a message, which can
then be used as a search index.

• Integrate with widely adopted third-party reporting tools as well as custom
enterprise system management frameworks.

• Support open interfaces for operational and deployment customization, JMX
monitoring interfaces, and SNMP Alerts.

Chapter 1
Oracle Service Bus Overview

1-4

1.2 Service Bus Architectural Concepts
Service Bus is an intermediary that processes incoming service request messages,
determines routing logic, and transforms those messages for compatibility with other service
consumers.

It receives messages through a transport protocol such as HTTP(S), JMS, File, or FTP, and
sends messages through the same or a different transport protocol. Service response
messages follow the inverse path. Message processing by Service Bus is driven by
metadata, specified in the message flow definition (pipeline).

Service Bus provides message delivery services based on standards including SOAP, HTTP,
and Java Messaging Service (JMS). It supports XML as a native data type, while also offering
alternatives for handling other data types. Service Bus lets you establish loose coupling
between service clients and business services, while maintaining a centralized point of
security control and monitoring. It stores persistent policy, service, and related resource
configurations in metadata, which can be customized and propagated from development
through staging to production environments. The message-brokering engine accesses this
configuration information from its metadata cache.

1.2.1 Message Processing
Messages can contain data or status information about application processes, as well as
instructions for the recipient. Service Bus lets you route messages based on their contents
and perform transformations on that content. The processing happens through the transport
and binding layers of Service Bus.

The processing of messages through Service Bus occurs in the following sequence of
events:

1. A client sends a message to Service Bus using a specific transport protocol.

2. A transport provider processes the inbound message, handling communication with the
service client endpoint and acting as the entry point for messages into Service Bus.

3. The binding layer packs and unpacks messages, handles message security, and hands
messages off to the pipeline.

4. The pipeline performs any transformation, validation, logging, and reporting, and then
routes the message to an endpoint (either a business service or another proxy service).

5. Service Bus processes the response message in a similar manner as the above steps.

The following figure illustrates the flow of data through Service Bus, from inbound endpoint
(proxy service) to outbound endpoint (in this case, a business service). The transports listed
are a subset of those available through Service Bus.

Chapter 1
Service Bus Architectural Concepts

1-5

Figure 1-3 Oracle Service Bus Message Processing

The following sections describe each layer involved in this message processing.

1.2.2 Proxy Service Role in Message Processing
Proxy services are the interfaces that service consumers use to connect with managed
back-end services. Proxy services are definitions of intermediary web services that
Service Bus implements locally. The proxy service interface is defined in terms of Web
Services Description Language (WSDL) or Web Application Definition Language
(WADL) and the type of transport it uses.

1.2.3 Transport Layer (Inbound)
The inbound transport layer is the communication layer between client services (or
service consumers) and Service Bus. It is responsible for handling communication with
the service client endpoint and acts as the entry point for messages into Service Bus.
The inbound transport layer primarily deals with raw bytes of message data in the form
of input/output streams. The transport layer provides support for compatible transport
protocols, including HTTP(S), JMS, FTP, File, email, and others. It is not involved in
data processing but is responsible for returning response messages to service
consumers and handles metadata for messages, including endpoint URIs, transport
headers, and so on.

1.2.4 Binding Layer
The binding layer for both inbound and outbound performs the following functions in
message processing:

• Packs and unpacks messages as necessary

• Handles security for messages

• Hands messages off to start the pipeline (request and response)

1.2.5 Pipeline Role in Message Processing
A pipeline defines the flow of request and response messages through Service Bus,
including routing, transformations, validations, publishing, reporting and exception

Chapter 1
Service Bus Architectural Concepts

1-6

management. It accepts messages from the binding layer of the proxy service, performs any
transformations or validations, and then forwards the message to the binding layer of the
outbound service, either a proxy or business service. Along the way, the pipeline can make
callouts to other services, Java objects, or POJOs.

1.2.6 Transport Layer (Outbound)
The outbound transport layer is responsible for the communication between external services
(or service producers) and Service Bus. It is responsible for moving messages from Service
Bus to the business service or proxy service and for receiving the response from the
services. At the transport level, the message data are in raw bytes in the form of input/output
streams. The outbound transport layer provides support for compatible transport protocols,
including HTTP(S), JMS, FTP, File, email, and others. It is not involved in data processing but
handles metadata for messages, including endpoint URIs, transport headers, and so on.

1.2.7 Business Service Role in Message Processing
Business services are the interfaces that connect with service producers. The business
service interface is defined in terms of Web Services Description Language (WSDL) or Web
Application Definition Language (WADL) and the type of transport it uses.

1.3 Service Bus Components
Service Bus routes message between external services (such as enterprise services and
databases) and service clients (such as presentation applications or other business services).
The service and flow components you create in a Service Bus project rely on local and
system resources in Service Bus to define additional information like user names and
passwords, keystore credentials, server connections, and transformations.
Service Bus resources are reusable definitions of entities that typically include metadata for
those entities. Multiple services can use resources and provide standardized definitions or
descriptions for use across an enterprise or department.

1.3.1 Service Components
Proxy services and business services define the endpoints in a Service Bus system. They
include the binding and transport layers, and are the points at which Service Bus
communicates with external services, including producers and consumers.

1.3.1.1 Proxy Services
Proxy services are Service Bus definitions of generic intermediary web services that are
hosted locally on Service Bus. A proxy service communicates with external services through
interfaces, which may or may not be identical to that of a service provider or service
consumer business service. Through pipelines, you can route messages from a proxy service
to multiple business services using their configured independent interfaces.

A proxy service's configuration includes its interface (service type), the type and configuration
of the transport it uses to connect with client services, security requirements, and service
level agreement (SLA) alert rules. When a proxy service interfaces with multiple business
services, its associated pipeline is configured to route messages to the appropriate business
service and map the message data into the format required by the business service's
interface.

Chapter 1
Service Bus Components

1-7

For more information, see Creating and Configuring Proxy Services.

1.3.1.2 Business Services
Business services are Service Bus definitions of the enterprise services that exchange
messages during business processes. A business service's configuration includes its
interface (service type), the type and configuration of transport it uses to connect with
service producers, security requirements, message handling, performance tuning, and
SLA alert rules. A business service also specifies the endpoint URI, and can specify
multiple endpoints for load balancing and high availability. A business service definition
is similar to that of a proxy service, but with additional options for message handling,
endpoint throttling, and result caching, which help improve performance.

You can create a service account to provide authentication when connecting to a
business service. It acts as an alias resource for the required user name and
password pair. You can also use Oracle WebLogic Server to directly manage security
credentials for a business service requiring credential-level validation.

For more information, see Creating and Configuring Business Services.

1.3.2 Message Flows
A message flow defines how messages are routed, validated, and transformed
between services. The message flow is typically defined in a pipeline, but can also be
defined in a split-join for parallel processing.

1.3.2.1 Pipelines
Pipelines define message routing and transformation logic, as well as message
handling options. This logic includes activities such as transformation, publishing,
logging, reporting, alerts, and exception management. Each of these activities are
configured as individual actions within the message flow. Both JDeveloper and the
Oracle Service Bus Console provide graphical modeling tools to help you model your
pipelines.

The following primary elements are used to construct a pipeline:

• A start node.

• A pipeline pair, one for the request and one for the response. Each pipeline in a
pair consists of a sequence of stages that specify actions to perform during
request or response processing.

• A branch node, to branch based on the values in designated parts of the message
or message context, or to branch based on the operation invoked.

• A route node, to define the message destination. The default route node is an
echo node that reflects the request as the response.

• An error handler, which can be attached to any node or stage to handle potential
errors at that location.

At a minimum, a start node and route node are required. While an error handler is not
required, it is recommended. If an instance fails and no error handler is defined, the
error is not recoverable. Pipeline elements can be combined in arbitrary ways to form
a tree structure with the start node always (and only) occurring as the root of the tree
and the route nodes. The last nodes in a branch (leaf nodes) can be route nodes or
echo nodes.

Chapter 1
Service Bus Components

1-8

Since a pipeline can route messages to multiple business services, a pipeline can be
configured with an interface that is independent of the business services it communicates
with. Using generic templates, the pipeline can be a configured to dynamically route
messages to appropriate business services based on content-based routing logic. A pipeline
can also map message data into appropriate protocol formats required by the end-point
business service, allowing for dynamic runtime protocol switching.

For more information, see Working with Oracle Service Bus Pipelines

1.3.2.1.1 How Data Flows Through a Pipeline

In a pipeline, the request message starts at the start node and follows a path to a leaf node,
executing actions in the request pipelines. If the leaf is a route node, a response is
generated. If the leaf is an echo node, the request is also considered to be the response. The
response follows the inverse path in the tree, skipping actions in the branch nodes but
executing actions in response pipelines. A response is then sent from the top of the tree if the
interface or operation was request/response; otherwise the response is discarded.

A set of transformations that affects context variables can be defined before the message is
sent to the selected endpoint or after the response is received. A web services callout can be
an alternative to an XQuery or XSLT transformation to set the context variables.

1.3.2.1.2 Message Context

The context of a pipeline is a set of XML variables that are shared across the request flow
and response flow. New variables can be dynamically added or deleted to the context, and
these variables can be shared across multiple pipelines or used locally within one pipeline.
Predefined context variables contain information about the message, transport headers,
security principles, metadata for the current pipeline, and metadata for the primary routing
and publishing services invoked by the pipeline.

The context can be read and modified by XQuery or XSLT expressions, and updated by
transformation and in-place update actions. The core of the context contains the
variables $header, $body, and $attachments. These wrapper variables contain the Simple
Object Access Protocol (SOAP) header elements, SOAP body element, and Multipurpose
Internet Mail Extensions (MIME) attachments, respectively. The context gives the impression
that all messages are SOAP messages, and non-SOAP messages are mapped to this
paradigm.

1.3.2.2 Split-Joins
The split-join message flow improves service performance by splitting a message payload
and processing multiple operations in a message simultaneously and then combining, or
joining, all results. A standard pipeline processes operations one after another.

The following primary elements are used to construct a message flow in a split-join:

• A start node, which contains the request and response variables introspected from the
WSDL operation.

• A receive node, to receive incoming request messages.

• A reply node, to send response messages.

• A scope, which is a container that creates a context that influences the behavior of its
enclosed elements.

Chapter 1
Service Bus Components

1-9

• A parallel node, which is a placeholder for a fixed number of processing branches,
each with its own scope.

The available elements can be combined in arbitrary ways to form a tree structure with
the start node always (and only) occurring as the root of the tree. The last node is
always the reply.

For more information, see Improving Service Performance with Split-Join.

1.3.3 Transports, Adapters, and Bindings
Service Bus provides connectivity to external systems through a variety of transports,
each of which is specific to a type of external system. Service Bus supports optimized
database queries, and interoperability with web service integration technologies such
as .NET, IBM MQ Series, IBM WebSphere, Apache Axis, and iWay adapters. The JCA
transport expands the list of supported technologies by letting you connect to external
systems using Oracle JCA technology and applications adapters. Additionally, Service
Bus supports the REST binding, allowing you to connect to RESTful services using the
HTTP transport.

You configure a transport's processing and connectivity information directly within a
proxy or business service; you configure Oracle adapters using a configuration wizard
specific to each adapter.

For more information, see Working with JCA Adapters, Transports, and Bindings

1.3.3.1 Supported Transport Protocols
Service Bus supports the following transport protocols:

• DSP (Oracle Data Service Integrator)

• EJB/RMI

• Email (POP/SMTP/IMAP)

• File

• (S)FTP

• HTTP(S)

• JCA

• JEJB

• JMS (including MQ using JMS, and JMS/XA)

• Local (Oracle proprietary for inter-ESB communication)

• MQ (WebSphere MQ)

• SB (RMI support)

• SOA-DIRECT (Oracle SOA Suite) and BPEL

• Tuxedo (Oracle Tuxedo)

• WS (Web Services Reliable Messaging

Service Bus also provides the Custom Transport SDK so you can create new
transports to connect with systems not covered above.

Chapter 1
Service Bus Components

1-10

1.3.3.2 Service Types
Service Bus supports a variety of service types ranging from conventional web services
(using XML or SOAP bindings in WSDL files) to non-XML (generic) services. You select and
configure the service type when you create a business or proxy service. The available service
types for a proxy or business service depend on the transport being used. Service Bus
supports request and response as well as one-way paradigms, for both the HTTP and the
JMS asynchronous transport protocols. If the underlying transport supports ordered delivery
of messages, Service Bus also extends the same support.

Not all service types can be used with all transport protocols. The following table shows the
service types and the transport protocols they support.

Service Type Transport Protocols

WSDL Based Service BPEL-10g, DSP, HTTP(S), JCA, JMS, Local, SB, SOA-DIRECT, WS

JMS request and JMS response are not supported if WS-Security is
enabled.

Any SOAP Service (non-
WSDL)

HTTP(S), DSP, JMS, Local, SB

JMS request and JMS response are not supported if WS-Security is
enabled.

Any XML Service (non-
WSDL)

DSP, email, File, FTP, HTTP(S), JMS, Local, MQ, SB, SFTP, Tuxedo

HTTP GET is only supported for XML with no WSDL.

Messaging Service email, File, FTP, HTTP(S), JMS, Local, MQ, SFTP, Tuxedo

Business services using the email, File, FTP, or SFTP transport support
one-way messaging services only; the response message type should be
none.

Native REST Service HTTP(S), Local

The BPEL-10g, DSP, EJB, and SOA-DIRECT transports are only supported with business
services.

1.3.4 Transformation Resources
In addition to creating inline XQuery expressions directly in message flow actions, you can
reference transformation maps that define more complex mappings between source and
destination services. When disparate message data types exist between source and
destination services, data mapping ensures service compatibility. Service Bus supports data
mapping using XQuery and eXtensible Stylesheet Language Transformation (XSLT)
standards, along with XPath expressions. You can also use cross reference tables and
domain value maps to map field values between services.

Messages can be transformed in the following ways:

• Using XQuery or XSLT to reformat the message structure.

• Manipulating message content by adding, removing, or replacing certain data elements.

• Using cross reference or domain value map tables to map entities across systems.

Chapter 1
Service Bus Components

1-11

1.3.4.1 XQuery Mappings
The XQuery Mapper in JDeveloper is a graphical tool that lets you define mappings
that transform data between XML, non-XML, and Java data types so you can rapidly
integrate heterogeneous applications. For example, XML data that is valid against one
schema can be converted to XML that is valid against a different schema. The data
can be based on XML schemas, Web Service Definition Language (WSDL) files, and
Message Format Language (MFL) files. You can create an XQuery mapping in
JDeveloper, and then upload the .xqy file generated by the mapper to an XQuery
resource in the Service Bus Console. XQuery mappings are stored in XQuery
resources in Service Bus, which can be referenced from the expressions you create
using the expression editors in a message flow action.

The output of the XQuery Mapper is a query in the XQuery language, which is defined
by the World Wide Web Consortium (W3C). For more information about W3C and the
XQuery language, see http://www.w3.org/XML/Query/.

For more information, see:

• Transforming Data with XQuery

• Creating Transformations with the XQuery Mapper in Developing SOA
Applications with Oracle SOA Suite

1.3.4.2 XSLT Mappings
eXtensible Stylesheet Language Transformation (XSLT) maps describe XML-to-XML
mappings. The XSLT mapper in JDeveloper is a graphical tool that lets you define
mappings between schema root elements, Web Services Description Language
(WSDL) message parts, or WSDL messages. Schema root elements can come from
XSD schema files or WSDL files. Only those WSDL messages that contain a single
message part can be mapped directly.

The XSLT Mapper in JDeveloper lets you define transformations that apply to the
whole message body to convert messages from one XML schema to another, enabling
data interchange among applications that use different schemas. You can create an
XSLT mapping in JDeveloper, and then upload the .xsl file generated by the mapper
to an XSLT resource in the Service Bus Console. XSLT mappings are stored in XSLT
resources in Service Bus, which can be referenced from the expressions you create
using the expression editors in a message flow action.

For more information, see:

• Transforming Data with XSLT

• Creating Transformations with the XSLT Mapper in Developing SOA Applications
with Oracle SOA Suite

1.3.4.3 Cross References
Cross reference tables map identifiers that represent equivalent objects across
multiple applications, associating like objects created in different external applications.
They are used to manage the runtime correlation between the various applications that
share data through Service Bus. For example, you can use cross references to map
customer identifiers for records that were created in multiple customer management
systems. Cross reference values can be updated during runtime, allowing you to

Chapter 1
Service Bus Components

1-12

http://www.w3.org/XML/Query/

dynamically integrate values between systems. Any cross reference data updated at runtime
is persisted in the database. Cross references can be used across Oracle SOA Suite
components. In Service Bus, you can create cross reference tables in both JDeveloper and
the Oracle Service Bus Console.

Service Bus provides a set of XPath functions for looking up and modifying cross reference
values. These functions are available to use in the expressions you create using the
expression editors in a message flow action. For more information, see Mapping Data with
Cross-References.

1.3.4.4 Domain Value Maps
A domain value map associates terms used by different domains to describe the same entity,
providing the capability to map the terms across vocabularies or systems. For example, each
domain might use different terminology for country codes, city codes, currency codes, and so
on. You can enter these values in a map and look up those values at runtime to transform the
data when passing it from one domain to another. Domain value maps are similar to cross
references, but they are defined statically rather than dynamically. You create and populate
domain value maps in the design time, and deploy them to the runtime. Domain value map
data are not changed by runtime activities as it is for cross references, but rather the domain
value maps are used for lookups only.

Domain value maps can be used across Oracle SOA Suite components. In Service Bus, you
can create domain value maps in both JDeveloper and the Oracle Service Bus Console.
Service Bus provides a set of XPath functions for looking up domain value map values.
These functions are available to use in the expressions you create using the expression
editors in a message flow action. For more information, see Mapping Data with Domain Value
Maps.

1.3.5 Transport and Adapter Related Resources
Some transports rely on specific types of files, such as JavaScript and JAR files or MQ
connections. The JCA transport requires the JCA file and any files it references, such as a
WSDL file. This section describes the resources that are specific to certain transports.

1.3.5.1 JCA Bindings
JCA binding resources in Service Bus let you create business and proxy services that interact
with external services through Oracle SOA Suite JCA adapters. A JCA binding is made up of
a service WSDL document and a corresponding JCA file created in Oracle JDeveloper. In
JDeveloper, you can add a JCA adapter directly to a Service Bus project using the Service
Bus Overview Editor by dragging and dropping the adapter type from the Components
window to the editor's canvas. The proxy or business service is automatically generated from
the JCA adapter configuration, and is based on the JCA transport. In the Oracle Service Bus
Console, you need to upload the JCA file into a JCA binding resource in order to create a
business or proxy service based on that JCA adapter. You can also import the JCA file and its
associated WSDL file using the import feature.

For more information, see Working with JCA Binding Resources.

1.3.5.2 JAR Files (Archives)
A JAR (Java Archive) is a zipped file that contains a set of Java classes. It is used to store
compiled Java classes and associated metadata that can constitute a program. A JAR acts

Chapter 1
Service Bus Components

1-13

like a callable program library for Java code elements, so a single compilation link
provides access to multiple elements rather than requiring bindings for each element
individually.

In JDeveloper, you can add JAR files to a project or component directly from the file
system, but in the Oracle Service Bus Console, you need to upload each JAR file to
add to a project into an archive resource. In Service Bus, JAR files are used the
following components:

• Java callout actions (in pipelines) that provide a Java exit mechanism

• EJB-based business services

• JEJB-based business and proxy services

• Tuxedo-based proxy and business services

For more information, see Working with JAR Files.

1.3.5.3 JavaScript Files
JavaScript files are used by the JCA Socket Adapter as a mechanism for handling the
handshake. XSLT and custom Java code are also supported handshake mechanisms.
In JDeveloper, you can create a JavaScript file and then select the file when you
configure a JCA socket adapter. You can also create the JavaScript when you
configure the adapter. In the Oracle Service Bus Console, you can either upload an
existing JavaScript file to a JavaScript resource, or you can create the text for the
JavaScript in a text editor in the console. Alternatively, you can use the console's
import feature to import the Socket adapter's JCA file and its dependencies, such as
WSDL and JavaScript files.

Service Bus supports JavaScript handshake for both inbound and outbound socket
adapters, and for one-way and request/response messaging. Request/response
handshakes require a separate JavaScript file for the request and the response.

For more information, see Working with JavaScript Resources.

1.3.5.4 MQ Connections
MQ connection resources provide the connection parameters required to connect to
an MQ queue manager. They are used in proxy and business services configured to
use the MQ transport, and can be shared and reused across multiple services. MQ
proxy and business services must connect to an MQ queue manager before they can
access an MQ queue. Each MQ connection resource uses a connection pool, and
every business or proxy service that connects to a queue manager using the same
MQ connection resource also uses the same connection pool. Thus, multiple business
and proxy services can use the same queue manager and share a connection pool.

In order to create MQ connections in the Oracle Service Bus Console, you must install
the WebSphere MQ client library to the Service Bus domain. This is described in How
to Create MQ Connections.

1.3.6 Schema and Document Resources
Service Bus services rely on different document types to define information like
message structures and web interfaces. These documents include XML schemas,
MFL files, and XML files to describe data, and WSDL and WADL documents to
describe interfaces.

Chapter 1
Service Bus Components

1-14

Service Bus has a built-in type system that is available for use at design time. When creating
an XQuery expression in a condition, in-place update action, or transformation, the variable
can be declared to be of a given type in an editor to assist in easily creating the XQuery. The
types can be the following:

• XML schema types or elements

• WSDL types or elements

• MFL types

1.3.6.1 XML Schemas
XML schemas are documents that define valid content for primitive or structured data in XML
documents. XML schemas specify the structure of documents, the data type of each element
and attribute contained in the document, and the rules that XML business data must follow.
XML schemas can import or include other XML schemas. Schemas are used to add XML
information to messages exchanged in Service Bus, and may be required for XQuery
expressions, WSDL files, and so on.

For more information, see Working with XML Schemas.

1.3.6.2 XML Documents
XML document resources store XML files that can then be referenced when configuring proxy
or business services. For example, you might use XML documents for TopLink mapping files
needed in JCA proxy or business services that communicate with JCA-compliant systems.

XML documents are a standard feature in JDeveloper. In the Oracle Service Bus Console,
the easiest way to create XML documents is to use the import feature. For example, if you
import JCA resources (JCA file, along with its associated WSDL and mapping files), Service
Bus automatically generates XML document resources out of mapping files and maintains the
dependencies among resource files. You can also create an XML document resource, and
upload the contents of an XML file to the resource.

For more information, see Working with XML Documents.

1.3.6.3 WSDL Documents
A Web Service Definition Language (WSDL) interface defines a service interface for a SOAP
or XML service. For web services, a WSDL document describes what the web service's
interface is, where it resides, and how to invoke it. Service Bus defines proxy and business
services in terms of two WSDL entities:

• The abstract WSDL interface, which defines the operations in that interface and the types
of message parts in the operation signature.

• The binding WSDL interface, which defines the binding of the message parts to the
message (packaging), and the binding of the message to the transport.

A WSDL file can also describe the concrete interface of the service (for example, the
transport URL).

You can base the definition of a proxy or business service on an existing WSDL file, which
automatically configures portions of the service. WSDL files used as the basis for defining
services are stored as Service Bus resources. In JDeveloper, you can create WSDL files
using the built-in WSDL editor. You can then import those WSDL files, and any schemas used
by the file, into the Oracle Service Bus Console. The console can also be used to resolve the

Chapter 1
Service Bus Components

1-15

references in the WSDL files, ensuring all schemas and WSDL files are linked
correctly. Service Bus uses its own representation of the interface for messaging
services.

For more information, see Working with WSDL Documents.

1.3.6.4 WADL Documents
A Web Application Definition Language (WADL) document is similar to a WSDL
document, described above, but it is specifically used to described the interface for
REST proxy or business services. When you create a proxy or business service based
on the REST binding in JDeveloper, the required WADL document is automatically
generated from the WSDL document you specify for the binding. A WADL file can
have dependencies on a WSDL file and on one or more XML schemas.

If you are using the Oracle Service Bus Console, you can create WADL documents by
importing them or by creating a WADL resource. For more information, see Creating
WADL Documents.

1.3.6.5 MFL Resources
Service Bus uses Message Format Language (MFL) to describe the structure of typed
non-XML data. MFL is an Oracle proprietary language used to define the rules that
transform formatted binary data into XML data. MFL documents are used at runtime to
transform an instance of a non-XML data record to an instance of an XML document
(or the other way around).

You create MFL documents using the Format Builder tool in JDeveloper. The Format
Builder allows you to describe the layout and hierarchy of the non-XML data so it can
be transformed to or from XML. Using the Format Builder, you define each field in the
message, including the type and size of data, the name of the field, any delimiters, and
so on. You can also indicate whether the field is repeating, and whether it is optional or
required.

For more information, see Defining Data Structures with Message Format Language.

1.3.7 Security Resources
Security information can be passed through proxy and business services using service
accounts, which define how the user name and password are obtained, or using
service key providers, which define encryption credentials.

1.3.7.1 Service Key Providers
Service Key Provider resources contain Public Key Infrastructure (PKI) credentials
used by proxy services for decrypting inbound SOAP messages and for outbound
authentication and digital signatures. PKI credentials are private keys paired with
certificates that can be used for digital signatures and encryption (for Web Services
Security) and for outbound SSL authentication. The certificate contains the public key
that corresponds to the private key.

Service Bus uses service key providers to supply the following types of credential-level
validation to proxy services.

• SSL client authentication

Chapter 1
Service Bus Components

1-16

• Digital signature

• Encryption

• Web Services Security X509 token

For more information, see Working with Service Key Providers.

1.3.7.2 Service Accounts
Service account resources provide user names and passwords that Service Bus uses for
authentication when connecting to a service or server. Service accounts are used by proxy
and business services for outbound authentication or for authentication to a local or remote
resource, such as an FTP server or a JMS server. You can configure a service account to use
a specific user name and password pair, to use the user names and passwords received from
incoming requests, or to map user names and passwords provided by clients to user names
and passwords you specify. One service account can be used for multiple business and proxy
services.

For more information, see Working with Service Accounts.

1.3.7.3 WS-Policy Resources
In previous versions, WS-Policy resources were used to store custom web service policies so
they could be referenced by multiple WSDL documents. Beginning in 12c, Oracle Web
Services Manager (OWSM) policies replace WLS9 policies, so there is no longer an option to
create new services with WSDL-based WLS9 policies. While WS-Policy resources are still
visible in imported projects, the associated web services should be updated to use OWSM
policies. However, you can still import and activate a project from a previous version that
uses WS-Policy resources.

1.3.8 Alert Destinations
An alert destination resource defines a list of recipients that can receive alert notifications
from Service Bus. For example, when a service level agreement (SLA) or pipeline alert is
generated, you can specify that notifications be sent to specific email addresses or JMS
queues, ensuring that only the relevant people receive the notifications. An alert destination
could include one or more of the following types of destinations: the Service Bus reporting
data stream, SNMP trap, alert log, email, JMS queue, or JMS topic. In the case of email and
JMS destinations, a destination resource could include a list of email addresses or JMS URIs,
respectively.

For more information, see Working with Alert Destinations.

1.3.9 Throttling Group Resources
Throttling helps improve performance and stability by preventing message overload on high-
traffic business services. To control the flow of messages to a business service and prevent
backlogs, you can enable and configure message throttling for a business service or group of
business services in your Service Bus applications. When messages are throttled, the
business service can only concurrently process the number of messages you specify. When
that capacity is reached, messages are stored in an in-memory queue until the business
service is ready to process more messages.

For more information, see "Configuring Business Services for Message Throttling" in
Administering Oracle Service Bus.

Chapter 1
Service Bus Components

1-17

1.3.10 System Resources
System resources are globally available resources that can be shared across all
projects in your Service Bus instance. They define server connections and
authentication information, and include the following:

• JNDI Providers

• SMTP Servers

• Proxy Servers

• UDDI Registries

In the Oracle Service Bus Console, system resources are stored in a separate project
named System. In JDeveloper, system resources are stored in the Application
Resources panel under Service Bus System Resources.

1.3.10.1 JNDI Providers
JNDI provider resources define the connection and authentication information needed
to access JNDI-named objects. They describe the URL (or list of URLs in the case of
clustered deployments) of the JNDI providers used by Service Bus. For example, in a
business service used to invoke an EJB, you include the name of a JNDI provider
resource in the endpoint URI. When the business service is invoked, Service Bus uses
the details in the referenced JNDI provider resource to make the initial connection to
the JNDI provider.

If the JNDI provider is secured, then the JNDI provider resource also defines a user
name and password to gain access. JNDI providers offer a great deal of flexibility. If a
JNDI connection changes, you only need to modify the JNDI provider resource, and
anything that references the JNDI provider automatically uses the updated
configuration.

For more information, see Working with JNDI Provider Resources.

1.3.10.2 SMTP Servers
SMTP server resources define the address of SMTP servers corresponding to email
destinations, port numbers, and, if required, authentication credentials. They describe
the URL for the SMTP servers used by Service Bus. If the SMTP server is secured,
the SMTP server resource description also includes a user name and password to
gain access. SMTP server resources are referenced when configuring alert destination
resources and email transport-based business services.

For more information, see Working with SMTP Server Resources.

1.3.10.3 Proxy Servers
Proxy server resources define the connection and authentication information needed
to access JNDI-named objects. They describe the URL for the proxy servers used by
Service Bus. If the proxy server is secured, the proxy server resource description also
includes a user name and password to gain access. You can use a proxy server to
proxy requests from a client application, and you typically use a proxy server when
Service Bus is behind a firewall. When you configure business services to route
messages through a proxy server, associate the proxy server resource with that

Chapter 1
Service Bus Components

1-18

business service. This instructs Service Bus to connect to the business service through the
configured proxy server.

You can configure multiple proxy servers for each proxy server resource. In this case, Service
Bus can perform load balancing and offer fault tolerance among the configured proxy servers.

For more information, see Working with Proxy Server Resources.

1.3.10.4 UDDI Registries
Universal Description, Discovery and Integration (UDDI) registries are used to share web
services. UDDI provides a framework in which to classify your business, its services, and the
technical details about the services you want to expose. A UDDI registry resource stores
information about a UDDI registry accessed by Service Bus for service discovery, publishing,
and synchronization. After the UDDI registry resource is configured, you can publish Service
Bus proxy services to the associated registry, or import business services from the registry to
be used by a proxy service. UDDI registry resources define the inquiry, publish, security, and
subscription URLs, along with a user name and password to gain access to the registry.

For more information, see Working with UDDI Registries.

1.4 Service Bus Messaging Models
This section discusses the types of messaging supported by Service Bus, the message
formats, and the context variables that are passed through the components in a Service Bus
project.

Service Bus accommodates multiple messaging paradigms and supports the following types
of communication:

• Synchronous request/response

• Asynchronous publish one-to-one

• Asynchronous publish one-to-many

• Asynchronous request/response (synchronous-to-asynchronous bridging)

In sync-async bridging, a synchronous client issues a request to an asynchronous provider.
For this pattern, you can publish a message to one JMS queue. You then configure a second
JMS queue for the response, with a timeout value for listening for the response. This type of
service appears as a synchronous service to the service consumer. Using asynchronous
request/response messages has these advantages:

• No blocking by the request thread, removing thread management issues that can occur
when numerous blocking request/response invocations are made.

• More reliable messaging.

1.4.1 Message Formats
Service Bus supports the following message formats:

• Email with or without attachments

• Java

• JMS with headers

• MFL (Message Format Language)

Chapter 1
Service Bus Messaging Models

1-19

• Raw Data (opaque non-XML data with no known schema)

• Text

• SOAP and SOAP with attachments (SOAP described or not described by a WSDL
document)

• XML and XML with attachments (XML described or not described by a WSDL
document or a schema)

1.4.2 Message Context
All messages sent to and received by a proxy service are defined internally by a set of
properties that hold the message data and metadata related to that message. This set
of properties is known as the message context and is implemented using context
variables. The context is defined by an XML schema. Some context variables are
predefined and others are user defined.

Predefined context variables contain information about the message, transport
headers, security principals, metadata for the current proxy service, and metadata for
the primary routing and publishing services invoked by the proxy service. You typically
use an XQuery expression in a pipeline to manipulate context variables as a message
moves through Service Bus. You can also modify context variables using
transformation and in-place update actions.

For a complete description of the message context and context variables used in the
message flow, see Message Context.

1.4.3 Content Types
To support interoperability with heterogeneous endpoints, Service Bus lets service
configurations control the content type, JMS type, and encoding used. It does not
make assumptions about what the external client or service needs, but instead uses
the configuration of the proxy or business service. Service Bus derives the content
type for outbound messages from the service type and interface and uses the
following specifications:

• For XML or SOAP (with or without a WSDL file), the content type is text/XML.

• For messaging services when the interface is MFL or binary, the content type is
binary/octet-stream.

• For messaging services when the interface is text, the content type is text/plain.

• For messaging services when the interface is XML, the content type is text/XML.

• For services using the REST binding, the content types is application/xml or
application/json.

The content type can be overridden in the outbound context variable ($outbound) for
pipelines invoking a service, and in the inbound context variable ($inbound) for a
pipeline response. Additionally, there is a JMS type (byte or text) that can be
configured when the service is defined. Encoding is explicitly configured in the service
definition for all outbound messages.

Chapter 1
Service Bus Messaging Models

1-20

1.5 Using Work Managers with Service Bus
Service Bus uses Oracle WebLogic Server Work Managers to optimize performance and to
maintain service-level agreements. Work Managers prioritize work and allocate threads
bases on rules you define and based on runtime performance. When you create and
configure a Work Manager, you define the maximum and minimum number of threads to use,
server capacity, and request and response classes that express scheduling guidelines. One
default Work Manager is provided, but you can create as many Work Managers as necessary
to optimize your services. In Service Bus, you specify a Work Manager for a proxy service or
business service in the Dispatch Policy property of the transport configuration.
For more information about Work Managers, see "Using Work Managers to Optimize
Scheduled Work" in Administering Server Environments for Oracle WebLogic Server. For
more information about Work Managers in Service Bus, see Using Work Managers with
Service Bus.

1.6 Service Bus Security
Service Bus uses Oracle Platform Security Services (OPSS) and Oracle Web Services
Manager (OWSM) as the building blocks for higher-level security services. These services
include authentication, identity assertion, authorization, role mapping, auditing, and credential
mapping.

Service Bus uses Oracle Platform Security Services (OPSS) and Oracle Web Services
Manager (OWSM) as the building blocks for higher-level security services. These services
include authentication, identity assertion, authorization, role mapping, auditing, and credential
mapping. To configure Service Bus access security, you must first configure Oracle WebLogic
Server security. Service Bus uses OWSM to provide a policy framework to manage and
secure web services consistently across your organization.

1.6.1 Service Bus Security Features
Service Bus provides the following security features:

• Integration with OWSM and OPSS

• Authentication, encryption and decryption, and digital signatures as defined in the Web
Services Security (WS-Security) specification

• SSL to support traditional transport-level security for HTTP and JMS transport protocols

• One-way and two-way certificate based authentication

• HTTP basic authentication

• Encryption and export of resources (such as service accounts, service key providers,
UDDI registries, SMTP providers, and JNDI providers) that contain user names and
passwords

• Service accounts and service key providers to define the user name, password, and
credential alias binding

• Client-specified custom authentication credentials for both transport-level and message-
level inbound requests

Chapter 1
Using Work Managers with Service Bus

1-21

1.6.2 Service Bus Service Security Model
A Service Bus service can be secured by security policies that apply to messages in
its interface. A security policy can be specified for a service or for individual messages
associated with the operations of a service. When a security policy is specified for a
service, the policy applies to all messages sent to that service.

You can secure Service Bus services using the following types of security:

• Inbound security

• Outbound security

• Options for identity propagation

• Administrative security

• Supported standards and security providers

Figure 1-4 illustrates security features at different points in a message life cycle.

Figure 1-4 Optimized Pluggable Security Layer

1.6.3 Oracle Web Services Manager
You can secure your Service Bus services by attaching Oracle Web Services Manager
(OWSM) policies. OWSM is a component of Oracle Enterprise Manager Fusion
Middleware Control, a runtime framework that provides centralized management and
governance of Oracle SOA Suite environments and applications. It provides
capabilities to build, enforce, run, and monitor web service policies, such as security,

Chapter 1
Service Bus Security

1-22

reliable messaging, MTOM, and addressing policies. OWSM can be used by developers at
design time and by system administrators in production environments. OWSM allows for
policy-driven centralized management of web services with local enforcement. OWSM
provides a policy framework to manage and secure web services consistently across your
organization.

1.6.4 Oracle Platform Security Services
Oracle Platform Security Services (OPSS) provides a standards-based, portable, integrated,
enterprise-grade security framework for Java Standard Edition (Java SE) and Java Enterprise
Edition (Java EE) applications. OPSS provides an abstraction layer in the form of standards-
based APIs that insulate developers from security and identity management implementation
details. Developers do not need to know the details of cryptographic key management or
interfaces with user repositories and other identity management infrastructures.

1.6.5 WS-Policies
Through OWSM, Service Bus security supports the Web Services Policy (WS-Policy)
specification, a standards-based framework for defining a web service's security constraints
and requirements using policies, each of which contains one or more assertions. WS-Policy
assertions specify a web service's requirements for digital signatures and encryption, along
with the security algorithms and authentication mechanisms that it requires.

You can include WS-Policy policies directly in a WSDL document or include them by
reference. A WSDL document can import other WSDL documents that contain or refer to
WS-Policy policies. The runtime environment recognizes both abstract and concrete WS-
Policy statements. Abstract WS-Policy statements do not specify security tokens. Concrete
WS-Policy statements specify the security tokens for authentication, encryption, and digital
signatures. The Service Bus runtime environment determines which security token types an
abstract policy will accept.

For more information on WS-Policy specification, see the Web Services Policy Framework
(WS-Policy) and Web Services Policy Attachment (WS-PolicyAttachment) which is available
at http://specs.xmlsoap.org/ws/2004/09/policy/.

1.6.6 Types of Security
The following sections discuss the security features available in the Service Bus security
model.

• Inbound Security

• Outbound Security

• Identity Propagation

• User Management and Administrative Security

• Transport-Level Security

• Message-Level Security

1.6.6.1 Inbound Security
Inbound security ensures that proxy services handle only the requests that come from
authorized clients, and that no unauthorized user has viewed or modified the data sent from
the client. For outward-facing proxy services, which receive requests from service

Chapter 1
Service Bus Security

1-23

http://specs.xmlsoap.org/ws/2004/09/policy/

consumers, strict security requirements such as two-way SSL over HTTPS are used. If
a proxy service uses public key infrastructure (PKI) technology for digital signatures,
encryption, or SSL authentication, you can create a service key provider to provide
private keys paired with certificates.

1.6.6.2 Outbound Security
Outbound security secures communication between a proxy service and a business
service. Most of the tasks involve configuring proxy services to comply with the
transport-level or message-level security requirements that business services specify.
If a business service requires SSL authentication or PKI technology for digital
signatures, a service key provider is required, which provides private keys paired with
certificates.

1.6.6.3 Identity Propagation
The options provided by Service Bus for identity propagation allow for decision making
when designing security, including how to propagate the identities that clients provide.
Service Bus can be configured to authenticate the credentials provided by clients,
perform authorization checks, pass credentials through as is, and map credentials.

1.6.6.4 User Management and Administrative Security
Service Bus user management is based on WebLogic Server security, which supports
task-level authorization based on security policies associated with roles assigned to
named groups or individual users. You use Fusion Middleware Control and the Oracle
WebLogic Server Administration Console to manage Service Bus users, groups, and
roles.

To give users access to functions, such as creating proxy services and other
resources, you assign them to one or more of the predefined security roles with
predefined access privileges. The access privileges for the Service Bus administrative
security roles cannot be changed but the conditions under which a user or group is in
one of the roles can be changed. By default, the first user created for an Service Bus
domain is WebLogic Server administrator. This user has full access to all Service Bus
objects and functions, and can execute user management tasks to provide controlled
access to Service Bus functions.

For more information, see "Defining Access Security for Oracle Service Bus" in
Administering Oracle Service Bus.

1.6.6.5 Transport-Level Security
Service Bus supports transport-level confidentiality, message integrity, and client
authentication for one-way requests or request/response transactions over HTTPS.
HTTP(S) proxy services or business services can be configured to require basic
authentication, client certificate (two-way SSL) authentication, custom authentication,
or no client authentication at all. Transport security for transports other than HTTP is
supported in Service Bus as follows:

• For the email and FTP transports, security is provided using credentials to connect
to a FTP or email server.

• For the file transport, security is provided using a login control to the machine on
which the files are located.

Chapter 1
Service Bus Security

1-24

1.6.6.6 Message-Level Security
Service Bus supports OASIS Web Services Security (WSS) 1.0. WSS defines a framework
for message confidentiality, integrity, and sender authentication for SOAP messages. Using
WSS, Service Bus provides support for securing messages using digital signatures,
encryption, or both. Though it is not a substitute for transport-level security, WSS is ideal for
end-to-end message confidentiality and integrity. WSS is more flexible than SSL since
individual parts of the SOAP envelope can be signed, encrypted or both, while other parts are
neither signed nor encrypted. This is a powerful feature when combined with the ability of
Service Bus to make routing decisions and perform transformations on the data based on the
message content. Service Bus supports WSS over HTTP(S) and JMS.

For more information on the WSS specification, see the OASIS Web Services Security TC
which is available at http://www.oasis-open.org/committees/tc_home.php?
wg_abbrev=wss.

1.6.7 Custom Security Credentials
Service Bus supports client-specified custom authentication credentials for both transport-
level and message-level inbound requests. The custom authentication credentials can be in
the form of tokens, or a user name and password token combination. Service Bus accepts
and attempts to authenticate the following:

• A custom token passed to a proxy service in an HTTP header, SOAP header (for SOAP-
based proxy services) or in the payload (for non-SOAP proxy services).

• A user name and password token passed in a SOAP header (for SOAP based proxy
services), or in the payload for non-SOAP proxy services.

For outbound requests, custom authentication is supported at the transport-level based on a
custom authenticator Java class you create. The custom authentication mechanisms work
alone or in concert with the message-level security for web services. For more information on
custom security credentials, see Configuring Custom Authentication..

1.7 Approaches for Designing Service Bus Services
When creating Service Bus services, you have a choice of approaches, depending on
whether you use the Oracle Service Bus Console or JDeveloper. JDeveloper supports both
approaches; the console supports the bottom-up approach.

• Top-Down: With this approach, you analyze your processes and identify activities in
support of this process. You create a Service Bus application and project, and define the
Service Bus components through the Service Bus Overview Editor.

• Bottom-Up: With this approach, you analyze existing applications and assets to identify
those that can be used as services. As you create a Service Bus application, you build
the services on an as-needed basis. This approach works well when IT must react to a
change.

1.7.1 Service Bus Top-Down Roadmap
With this approach to developing Service Bus services, you can create all your primary
components at one time using the Service Bus Overview Editor. This includes proxy and
business services, pipelines, split-joins, and JCA adapters. The editor simplifies the creation
and configuration of project components, and provides a graphic view of the overall structure

Chapter 1
Approaches for Designing Service Bus Services

1-25

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

of the data flow. Once you create and wire these components, you can define the
configuration options for each, and define message routing and transformation in
pipelines and split-joins.

The following table outlines the steps and provides links for further information.

Table 1-1 Service Bus Development Roadmap - Top-Down Approach

Step Description More Information

1 Create the necessary supporting
resources, such as service accounts,
WSDL files, or XQuery maps.

Links for each type of resource are
provided in Oracle Service Bus Overview.

2 Create any proxy services, pipelines,
business services, and optionally split-
joins.

Adding Service Bus Components

3 Wire the components together. Wiring Service Bus Components

4 Configure the proxy services and their
transports.

Configuring Proxy Services

Working with JCA Adapters, Transports,
and Bindings

5 Configure the pipelines and split-joins. Working with Oracle Service Bus
Pipelines

Improving Service Performance with Split-
Join

6 Configure the business services and their
transports.

Configuring Business Services

Working with JCA Adapters, Transports,
and Bindings

7 Configure security for the business and
proxy services.

Securing Business and Proxy Services

8 Test and debug the services and
resources.

Debugging Oracle Service Bus
Applications

Using the Test Console

9 Deploy the service. Deploying Oracle Service Bus Services

10 Monitor and administer the runtime. Oracle Service Bus Runtime Monitoring

1.7.2 Service Bus Bottom-Up Roadmap
With this approach to developing Service Bus services, you create and configure each
project component individually. The flow of messages through the system is defined by
references you create between project components, such as proxy services, business
services, pipelines, split-joins. This approach does not use the Service Bus Overview
Editor, so you are not working with a graphical representation of the components.
However, if you are working in JDeveloper, the components you create are added to
the overview file and appear in the Service Bus Overview Editor.

The following table outlines the steps and provides links for further information.

Chapter 1
Approaches for Designing Service Bus Services

1-26

Table 1-2 Service Bus Development Roadmap - Bottom-Up Approach

Step Description More Information

1 Create the necessary supporting resources,
such as service accounts, WSDL files, or
XQuery maps.

Links for each type of resource are provided
in Oracle Service Bus Overview.

2 Create a proxy service and pipeline. You can
generate a proxy service when you create
the pipeline.

Creating Proxy Services

Working with Oracle Service Bus Pipelines

3 Configure the proxy service and its transport. Configuring Proxy Services

Working with JCA Adapters, Transports, and
Bindings

4 Define the message flow in the pipeline. Working with Oracle Service Bus Pipelines

5 Optionally, create and configure a split-join
for parallel processing.

Working with Split-Joins in JDeveloper

6 Create and configure a business service. Creating Business Services

Configuring Business Services

7 Configure security for the services. Securing Business and Proxy Services

8 Test and debug the services and resources. Debugging Oracle Service Bus Applications

Using the Test Console

9 Deploy the service. Deploying Oracle Service Bus Services

10 Monitor and administer the runtime. Oracle Service Bus Runtime Monitoring

1.8 Naming Guidelines for Service Bus Components
Some special characters are allowed in a directory or resource name in a Service Bus
project.

• All Java identifier characters, including Java keywords, as described in the "Identifiers"
and "Keywords" sections of the Java Language Specification at http://java.sun.com/docs/
books/jls/third_edition/html/lexical.html#3.8.

• Blanks, periods, and hyphens within the names (not leading or trailing).

Characters such as / \ * : " < > ? | are not allowed.

1.9 Viewing Service Bus Resources in a Web Browser
You can view some of the Service Bus resources described in this document in a standard
web browser using the URLs, described in these sections.

• WSDL Documents

• WS Policies

• Message Format Language (MFL) Resources

• Schema Resources

• Notes About Viewing Service Bus Resources in a Web Browser

Chapter 1
Naming Guidelines for Service Bus Components

1-27

http://java.sun.com/docs/books/jls/third_edition/html/lexical.html#3.8
http://java.sun.com/docs/books/jls/third_edition/html/lexical.html#3.8

1.9.1 WSDL Documents
• URL to display a WSDL document:

http://host:port/sbresource?WSDL/project_path/wsdlname

• URL to display the WSDL document for WSDL-based HTTP proxy services:

http://host:port/proxy_service_endpoint_URI?WSDL

• URL to display the WSDL document for WSDL-based proxy services:

http://host:port/sbresource?PROXY/project_path/proxyname

• URL to display the WSDL document for proxy services with Oracle Web Services
Manager policies attached:

http://host:port/sbresource?ORAPROXY/project_path/proxyname

• URL to display the WSDL document for WSDL-based business services:

http://host:port/sbresource?BIZ/project_path/bizname

• URL to display the WSDL document for WSDL-based business services with
Oracle Web Services Manager policies attached:

http://host:port/sbresource?ORABIZ/project_path/bizname

1.9.2 WS Policies
Use the following URL to display WS security policies:

http://host:port/sbresource?POLICY/project_path/policyname

1.9.3 Message Format Language (MFL) Resources
Use the following URL to display an MFL file:

http://host:port/sbresource?MFL/project_path/mflname

1.9.4 Schema Resources
Use the following URL to display an XML schema:

http://host:port/sbresource?SCHEMA/project_path/schemaname

1.9.5 Notes About Viewing Service Bus Resources in a Web Browser
You can also retrieve WSDL documents containing Oracle Web Services Manager
policies so the policies conform to supported WS-Policy and WS-Security Policy
standards. For more information, see Advertising WSDL Files to Support WS
Standards.

If you use special characters in your resource names, the URLs used to expose the
resources in Service Bus must be encoded in UTF-8 in order to escape special
characters.

Chapter 1
Viewing Service Bus Resources in a Web Browser

1-28

1.10 Accessibility Options
Service Bus uses both JDeveloper and the Oracle Service Bus Console for development. You
can set accessibility options in both environments.

• How to Set Accessibility Options in JDeveloper

• How to Set Accessibility Options in the Oracle Service Bus Console

• Notes on Screen Reader Mode

1.10.1 How to Set Accessibility Options in JDeveloper
JDeveloper provides accessibility options, such as support for screen readers, screen
magnifiers, and standard shortcut keys for keyboard navigation. You can also customize
JDeveloper for better readability, including the size and color of fonts and the color and shape
of objects. For information and instructions on configuring accessibility in JDeveloper, see
Oracle JDeveloper Accessibility Information in Developing Applications with Oracle
JDeveloper.

1.10.2 How to Set Accessibility Options in the Oracle Service Bus Console
Accessibility settings help you read all components of the application. You can set
accessibility options in the Oracle Service Bus Console for the current instance only. The
console presents the Accessibility menu on the login page, so you can configure accessibility
before you log in.

To set accessibility options:

1. Launch the Oracle Service Bus Console.

2. On the login page, click Accessibility in the bottom right corner of the screen.

The Edit Accessibility Settings page appears, as shown below.

Figure 1-5 Edit Accessibility Settings Page

Chapter 1
Accessibility Options

1-29

Note:

This page indicates that settings can also be changed using the
Preferences option once you log in. Currently, you can only configure
accessibility options from the Accessibility Settings page.

3. Select the Use Screen Reader option.

4. Click Use for this session.

1.10.3 Notes on Screen Reader Mode
When you log in to the Oracle Service Bus Console with the screen reader mode
enabled, selecting the context menus from the Project Navigator requires extra steps.
To access the context menus for projects and components in the Project Navigator,
navigate to the component using the Tab key, press Enter to select the component,
and then press Ctrl+Alt+M to launch the menu. Use the up and down arrows to
navigate the options in the menu.

1.11 Additional Resources
In addition to this guide, the following resources help you learn how you can best use
Oracle Service Bus.

• Understanding Oracle SOA Suite introduces you to Oracle SOA Suite and Oracle
Service Bus, and provides you with a high-level understanding of what you can
accomplish with the suite.

• Administering Oracle Service Bus provides information on how to monitor running
services and update the runtime environment.

• Oracle Service Bus samples provide more learning tools to help you get started
with Service Bus features at http://www.oracle.com/technetwork/middleware/
service-bus/learnmore/index.html.

• You can use the following cloud adapters with Oracle Service Bus to send and
receive messages from a cloud server:

– Cloud Adapter for Ariba

– Cloud Adapter for Eloqua

– Cloud Adapter for ERP

– Cloud Adapter for NetSuite

– Cloud Adapter for RightNow

– Cloud Adapter for Salesforce

– Cloud Adapter for Sales Cloud

– Cloud Adapter for ServiceNow

– Cloud Adapter for SuccessFactors

See the Oracle Cloud Adapters section in Oracle Fusion Middleware
Documentation Library for information about these cloud adapters.

Chapter 1
Additional Resources

1-30

http://www.oracle.com/technetwork/middleware/service-bus/learnmore/index.html
http://www.oracle.com/technetwork/middleware/service-bus/learnmore/index.html
https://docs.oracle.com/en/middleware/fusion-middleware/index.html
https://docs.oracle.com/en/middleware/fusion-middleware/index.html

2
Getting Started with the Oracle Service Bus
Console

This chapter provides general information about how to use the Oracle Service Bus Console
to configure services and other Service Bus resources. These activities are largely design-
time and require a running WebLogic Server instance, but you can also perform runtime tasks
using the console.
This chapter includes the following topics:

• Overview of the Oracle Service Bus Console

• Getting Started

• Working with Sessions

• Working with Projects, Folders, and Resources in Oracle Service Bus Console

• Viewing and Resolving Conflicts

• Viewing Historical Data

• Undoing Changes and Activations

• Viewing References

• Customizing the Appearance of the Oracle Service Bus Console

2.1 Overview of the Oracle Service Bus Console
Oracle Service Bus Console is a web-based console where you can create and configure
most Service Bus resources, test the resources, and activate your changes to the runtime.

You can also import and export Service Bus configuration JAR files. The console utilizes a
change session mechanism similar to the WebLogic Server Administration Console in which
you can complete your changes within a session. Once you are satisfied with those changes,
you can activate them into the runtime. Service Bus components, called resources, are
grouped into projects and folders.

2.1.1 Service Bus Sessions
Most of what you do in the Oracle Service Bus Console is done within an open session. Once
you make your changes to Service Bus components and projects, resolve any conflicts, and
are ready to propagate the changes to the runtime, you can activate the session. Sessions
allow team collaboration when services and metadata are being configured in Service Bus.
Each team member works in a sandbox session until they are ready to check in the working
configuration to the core configuration of the bus. Sessions provide multiple levels of undo,
and visibility into conflicts, as multiple users work on the configuration.

The available options on each page vary depending on whether you are in a session. For
example, you cannot edit resources outside of a session, and you can only test services
when you are working outside of a session. Also, in a session, the Changes page that

2-1

appears when you open the History tab lists all the changes you have made in that
session; outside a session, the page lists no changes.

2.1.2 Oracle Service Bus Console Layout
The Oracle Service Bus Console lists all projects, folders, and resources in the Project
Navigator in a tree view. Selecting any component in the navigator displays its
configuration in an editor. Most editors are divided into tabbed pages, each of which let
you configure specific types of properties. Figure 2-1 shows an example of a proxy
service displayed in the Proxy Service Definition Editor. The top toolbar provides links
to the WebLogic Server Administration Console, Fusion Middleware Control, and
online help topics. The editor toolbar lets you save changes, view information about
the displayed component, launch the Test Console or Pipeline Editor, and export the
WSDL file on which a service is based.

Figure 2-1 Proxy Service Configuration on the Oracle Service Bus Console

By selecting any of the auxiliary tabs from the Tools icon, you can view conflicts and a
history of changes and activations. Use these tabs to resolve conflicts before
activating changes, and to undo actions or even session activations. Figure 2-2 shows
the Tools menu expanded and Figure 2-3 shows the History tab with the Changes
subtab selected.

Chapter 2
Overview of the Oracle Service Bus Console

2-2

Figure 2-2 Expanded Tools Menu

Figure 2-3 History Tab with Changes Subtab Selected

2.1.3 Service Bus Projects and Folders
The Project Navigator organizes configurations and resources into projects and folders. You
can view all the projects in a domain on the All Projects Definition Editor; all the resources in
a project on the Project Definition Editor; and all the resources in a folder on the Folder
Definition Editors. On the Project and Folder Definition Editors, you can also take actions
against resources, such as launching the Test Console or launching the Pipeline Editor. Click
the name of a project, folder, or resource on any of these editors to display the editor for that
component.

All Service Bus resources, such as services, WSDL files, and XQuery transformations, reside
in only one project. Projects do not overlap. Resources can be created directly under a
project, or they can be further organized into folders. However, you can reference any
resource regardless of the project in which it resides.

When you create a domain in Service Bus, a default project is automatically created.

2.1.3.1 The System Project
The Project Navigator includes a default project named System, which contains a flat file of
global resources such as JNDI providers, SMTP servers, proxy servers, and UDDI registries.
The project includes a folder for each type of global resource. You cannot create any projects
or folders in the System folder, only global resources. The global resources you create in the
System project can be used by the resources in any of the Service Bus projects you create.

Chapter 2
Overview of the Oracle Service Bus Console

2-3

Figure 2-4 System Project in the Console

2.1.3.2 Projects and Folder Names
Project names and folder names are limited to 64 characters and must follow the
guidelines list in Naming Guidelines for Service Bus Components.

The names, length, and levels of nesting of projects and folders are ultimately affected
by the limits of your operating system. Creating folders or projects with very long
names or deeply nesting folders can fail due to the limitations of the operating system.

2.1.3.3 Qualified Resource Names Using Projects and Folders
Projects and folders qualify the names of Service Bus resources. A reference to a
resource is constructed as follows:

project-name/folder/.../subfolder/resource-name

2.1.4 Service Bus Resources
The components you create in Service Bus are known as resources. Resources can
include proxy and business services that defines the endpoints of the service, and
pipelines and split-joins that define the message processing logic for the service.

Chapter 2
Overview of the Oracle Service Bus Console

2-4

Resources also include supporting resources, such as service accounts, WSDL documents,
JNDI providers, MQ connections, and so on. Resources are stored in the projects and folders
in which they are created. Some resources can be shared among different projects.

2.1.5 Oracle Service Bus Console Editors
Each type of resource can be configured using an editor in the console that is specific to that
type of resource. When you open a resource from the Project Navigator, that resource's
definition editor appears, and you can configure the properties for the resource. The definition
editors have a standard set of tools in the upper right toolbar, including Save, Save All, Help,
Close, and Close All. In addition, each editor includes tools specific to the resource being
configured. These tools allow you to perform additional tasks, like launch the Test Console,
launch the Pipeline Editor, export a WSDL file, view references, and so on. The following
figure shows the Proxy Service Definition Editor.

Figure 2-5 Proxy Service Definition Editor

2.2 Getting Started
To get started using the Oracle Service Bus Console, you must have a web browser and a
login ID and password.

• How to Access the Oracle Service Bus Console

• How to Exit the Oracle Service Bus Console

2.2.1 How to Access the Oracle Service Bus Console
You access the Oracle Service Bus Console from a web browser.

Chapter 2
Getting Started

2-5

To start the Oracle Service Bus Console:

1. Start the Service Bus domain.

2. When the server starts, enter one of the following URLs in your browser:

http://hostname:port/servicebus

or, for SSL:

https://hostname:port/servicebus

where hostname represents the name of the Service Bus Admin Server and port
represents the port number on which it is listening.

The login page appears.

3. Enter the user name and the password you specified during installation.

4. Click Login.

2.2.2 How to Exit the Oracle Service Bus Console
To log out of the Oracle Service Bus Console, click Logout on the banner near the
upper right.

2.3 Working with Sessions
When you create and modify Service Bus resources in the console, you do so within
the context of a session.

When you are ready to test your resources, you activate the session to promote them
to the runtime. You must save all changes before activating or exiting a session.

To view a history of sessions, see How to View the Existing Sessions.

• How to Create a Session

• How to Activate a Session

• How to Exit a Session

2.3.1 How to Create a Session
Before making any changes to your Service Bus projects in the Oracle Service Bus
Console, you must start a new session or edit an existing session using the buttons in
the Sessions toolbar. These buttons change depending on the state of the session. If
there is no active session, the Edit button in the figure below is Create. If you are
working in a session, the Edit button is Activate.

Figure 2-6 Sessions Toolbar

To create a session:

Chapter 2
Working with Sessions

2-6

1. Do one of the following:

• To begin a new session, click Create.

• To modify an existing session, click Edit.

The name of the session appears in the upper left corner of the screen.

2. Make your changes within the session.

3. For each component you change, click Save.

4. To discard the changes you made in the current session, click Discard.

5. When you are done making changes, activate the session as described in How to
Activate a Session.

2.3.2 How to Activate a Session
Creating a session and discarding a session proceeds regardless of other activity in the
system. However, if another session is in the process of being activated, an error occurs
indicating the user that has the pending WebLogic Server changes.

You cannot activate a session until you have resolved all error conflicts. You can activate a
session that has only warnings. For information on resolving conflicts, see Viewing and
Resolving Conflicts.

Note:

When you try to activate a session with a JMS endpoint URI on another server (a
single server other than the one on which you are working or a Managed Server in
a cluster), ensure that the destination server is available. Service Bus does not
allow registration of proxy services with the JMS transport if the JMS endpoint URL
specifies a destination that is unreachable. In other words, for JMS services,
Service Bus checks if the specified connection factory exists; if it does not, a
session activation error occurs.

To activate a session:

1. Once you finish making changes for a session, click Activate.

2. If there are no validation errors, skip to step 5.

3. If there are validation errors, an error message appears. View and fix configuration
conflicts before you proceed.

If new conflicts arise while you view the existing conflicts, a message appears informing
you of the new conflicts.

4. Once all conflicts are resolved, click Activate again.

5. In the Description field, enter a brief description to identify the session. This is displayed
in the Description column when you to view the history of configuration changes caused
by session activations.

6. To complete the activation, click Activate. If no new conflicts have arisen in the interim,
the session ends and the configuration is deployed to the runtime.

Chapter 2
Working with Sessions

2-7

2.3.3 How to Exit a Session
Exiting a session does not end the session or activate any changes to the runtime.
After exiting, the console displays the core configuration that is active in the runtime
state. Any changes you made during the session that were not activated are not
shown. This behavior also applies if you log out of the console or close your browser.
The session and all changes that you have made in the session persist even if you log
out or the server is restarted. If you return to the session by clicking Edit, your
previous changes reappear and you can continue making changes.

The session ends only after it has been activated or discarded. See How to Activate a
Session.

To exit a session:

• Click Exit at any time to exit the session.

2.4 Working with Projects, Folders, and Resources in Oracle
Service Bus Console

Service Bus resources can be organized into separate projects, which are non-
hierarchical, disjointed, top-level grouping constructs. All resources (such as services,
WSDL files, XQuery transformations, and so on) reside in exactly one non-overlapping
project.

You create resources directly under a project or in folders within the project to organize
them further. Each folder contains a set of resources and can also contain more
folders, like directories in a file system with the project level being the top-level
directory. Resources located in one project can reference and use resources that are
defined in other projects. You can move resources between projects or folders, and
rename or delete them. Service Bus also lets you clone a resource, project, or folder to
create a copy of that resource with the specified target identity. Cloning a Service Bus
component copies all artifacts in the project or folder to a different location. Service
Bus preserves dependencies when resources are renamed or moved, and also
adjusts any references to a renamed or moved resource.

2.4.1 How to Locate Services
You can find services in the Oracle Service Bus Console by navigating through the
projects and folders in the Project Navigator, or you can perform a search for the
service you want to find.

Note:

Searches accept wildcard characters. Use an asterisk (*) to represent
multiple unknown characters, and use a question mark (?) to represent a
single unknown character. The search is case-sensitive.

To search for services in any project:

Chapter 2
Working with Projects, Folders, and Resources in Oracle Service Bus Console

2-8

1. In the Search field next to the Designer tab, enter the name of the proxy service,
business service, pipeline, or split-join you want to find, and then click the Search icon.

The results of your search appear on the Search Results tab.

Figure 2-7 Service Search Results Tab

2. To view the results in a full page, click Detach.

3. To change your view options, see How to Customize Table Views.

2.4.2 Working with the Project and Folder Definition Editors
Use the Project and Folder Definition Editors to view information about the projects, folders,
and resources in your Service Bus session and in the configuration framework. From these
editors, you can view each project in the session, each folder and resource in a project, and
each resource in a folder. You can also take actions against certain objects, such as testing a
resource, launching the Pipeline Editor, and so on. The available actions depend on the type
of resource you are viewing.

2.4.2.1 About Viewing Project, Folder, and Resource Information
The Project and Folder Definition Editors let you customize the way you view information
about Service Bus projects, folders, and resources. In the table views on the editors, you can
show and hide columns, change the order of columns, and filter the projects, folders, and
resources you see by their names.

2.4.2.2 Viewing All Projects in the Session
To view all projects in the session:

1. In the Project Navigator, click All Projects.

The All Project Definition Editor appears, with a list of projects displayed in the All
Projects table.

Chapter 2
Working with Projects, Folders, and Resources in Oracle Service Bus Console

2-9

Figure 2-8 All Projects Definition Editor

2. To filter the projects listed in the table by name, see How to Filter Components on
the Project and Folder Definition Editors.

3. To change the way information appears in the table, see How to Customize Table
Views.

2.4.2.3 Viewing Folders and Resources in a Project
To view the folders and resources in a project:

1. In the Project Navigator, click the name of the project.

The Project Definition Editor appears, with a list of each folder and Service Bus
resource contained in the project you selected.

Chapter 2
Working with Projects, Folders, and Resources in Oracle Service Bus Console

2-10

Figure 2-9 Project Definition Editor

2. To filter the folders and resources listed in the table by name, see How to Filter
Components on the Project and Folder Definition Editors.

3. To change the way information appears in the table, see How to Customize Table Views.

2.4.2.4 Viewing the Subfolders and Resources in a Folder
To view the subfolders and resources in a folder:

1. In the Project Navigator, navigate to and click the name of the folder to view.

The Folder Definition Editor appears, with a list of each subfolder and Service Bus
resource contained in the folder you selected.

Chapter 2
Working with Projects, Folders, and Resources in Oracle Service Bus Console

2-11

Figure 2-10 Folder Definition Editor

2. To filter the folders and resources listed in the table by name, see How to Filter
Components on the Project and Folder Definition Editors.

3. To change the way information appears in the table, see How to Customize Table
Views.

2.4.2.5 How to Filter Components on the Project and Folder Definition Editors
Service Bus provides a Query by Example feature that lets you filter the projects,
folders, or resources displayed on the Project or Folder Definition Editor so you can
view only the Service Bus components you need without having to scroll through all
the components listed.

To filter components on the Project and Folder Definition Editors:

1. Launch the Project or Folder Definition Editor, as described in About Viewing
Project, Folder, and Resource Information.

2. If the Query by Example bar is not visible above the top row of the table, click
Query by Example (the filter icon).

3. In the field above the Name column, enter the name of the project, folder, or
resource you want to view, and press Enter.

The list displays only the components matching the name you entered.

Note:

Queries accept wildcard characters. Use an asterisk (*) to represent
multiple unknown characters, and use a question mark (?) to represent a
single unknown character. The query is case-sensitive.

Chapter 2
Working with Projects, Folders, and Resources in Oracle Service Bus Console

2-12

2.4.3 Create New Projects and Folders for Resources
Resources in the console are grouped in projects. You must create a project before you can
create Service Bus resources. You can create folders within projects and within other folders
to organize the project components into logical groupings.

2.4.3.1 Creating a Project in the Project Navigator
To create a project:

1. In the Project Navigator, right-click All Projects.

2. Select Create > Project.

The Create a New Project dialog appears.

3. Enter a unique name for the project, and optionally add a description.

For information about naming guidelines, see Projects and Folder Names.

4. Click Create.

The new project appears in the Project Navigator and the Project Definition Editor.

2.4.3.2 Creating a Folder in the Project Navigator
To create a folder:

1. In the Project Navigator, right-click the project or folder to which you want to add the new
folder.

2. Select Create > Folder.

The Create a New Folder dialog appears.

3. Enter a unique name for the folder, and optionally add a description.

4. Click Create.

The new folder appears in the Project Navigator and the Folder Definition Editor.

2.4.4 Creating Resources with the Resource Gallery
The Resource Gallery collects all of the resources that can be added to the Service Bus
console. Use the Resource Gallery to create resources in this release of Oracle Service Bus.

To add a resource to the Console with the Resource Gallery:

1. From the Project Navigator, right-click the project or folder in which you want to add the
resource, select Create > Resource

The Resource Gallery is displayed.

2. Navigate through the Resource Gallery to find the type of resource you want to add.
Select the resource, and then click OK.

The creation dialog for the selected resource is displayed. Complete the required steps to
finish creating the resource.

Chapter 2
Working with Projects, Folders, and Resources in Oracle Service Bus Console

2-13

2.4.5 How to Clone Projects, Folders, and Resources
Cloning a project or folder copies all resources in a project or folder to a different
location. You can also clone individual resources to copy them to a different folder or
project. Service Bus preserves dependencies when an object is cloned, and also
adjusts any references.

To clone projects, folders, and resources:

1. In the Project Navigator, navigate to the project, folder, or resource you want to
clone and right-click it.

2. Click Clone.

The Clone dialog appears.

3. Optionally, in the New <Resource> Name field, enter a new name for the
component.

4. In the Destination section, select the project or folder to which you want to clone
the selected component.

5. Click Clone.

The cloned component appears in the location you selected. Any dependencies
are retained.

2.4.5.1 What Happens When You Clone a Project
Depending on the name and destination of the new project, the project can be
demoted to a folder, merged with an existing project, or merged with an existing folder.
If you clone a project into the root location, you must enter a new name for the cloned
component. You can clone a project in the following ways. In all cases, the original
project remains unchanged.

• Clone the project with a new name at the All Projects level. The original project
and its clone exist as peer projects, and the cloned project contains the same
folders and resources as the original.

• Clone the project using the name of an existing project other than the source
project. The folders and resources from the source project are merged with the
folders and resources of the project whose name was given to the clone.

• Clone the project in a new location (in an existing project or project folder) with a
unique name. The cloned project is demoted to a folder in the new location and it
contains the same folders and resources as the original project.

• Clone the project in a new location (in an existing project or project folder) with the
same name as an existing folder. The contents (subfolders and resources) of the
project are merged with the contents of the target folder in the target folder.

2.4.5.2 What Happens When You Clone a Folder
Depending on the name and destination of the new folder, the folder can be converted
to a project, merged with an existing project, or merged with an existing folder. If you
clone a folder into its current location, you must enter a new name for the cloned
component. You can clone a folder in the following ways. In all cases, the original
folder remains unchanged.

Chapter 2
Working with Projects, Folders, and Resources in Oracle Service Bus Console

2-14

• Clone the folder with a new name at the same location as the original folder. The original
folder and its clone exist as peers, and the cloned folder contains the same subfolders
and resources as the original.

• Clone the folder using the name of an existing folder other than the source folder. The
subfolders and resources from the source folder are merged with the subfolders and
resources of the folder whose name was given to the clone. The original folder remains
unchanged.

• Clone the folder in a new location, in an existing project or project folder. In this case, the
cloned folder contains the same folders and resources as the original folder. The original
folder remains unchanged.

2.4.6 How to Rename Projects, Folders, and Resources
When you rename Service Bus components, any references are automatically updated.

Note:

If you rename a business service imported from the UDDI registry, the service will
become detached from the registry.

To rename a Service Bus component:

1. In the Project Navigator, navigate to the component whose name you want to change.

2. Right-click the component and select Rename.

3. Select the text of the component's name, and enter the new name. For naming
guidelines, see Projects and Folder Names.

4. Press Enter.

The component is renamed.

2.4.7 How to Move Projects, Folders, and Resources
When you move resources to a different location, Service Bus retains any dependencies
against that resource. If you move a project into another project, Service Bus converts it to a
folder within the second project. Conversely, if you move a folder into the All Projects node,
Service Bus converts it to a project.

To move a Service Bus component:

1. In the Project Navigator, navigate to the project, folder, or resource you want to move and
right-click it.

2. Click Move.

The Move dialog appears.

3. In the Destination section, select the project or folder to which you want to move the
selected component.

4. Click Move.

The moved component appears in the location you selected. Any dependencies are
retained.

Chapter 2
Working with Projects, Folders, and Resources in Oracle Service Bus Console

2-15

Note:

You cannot move a component to a project or folder that already
contains a component by the same name.

2.4.8 How to Delete Projects, Folders, and Resources
When you delete a project or folder, all resources under the folder are deleted. If any
resources under this folder are referenced by resources under a different project or
folder, you can still delete it but with a warning confirmation. This might result in
conflicts due to unresolved references to the deleted resource.

You can delete Service Bus components from the Project Navigator or from the Project
or Folder Definition Editor. When you delete from an editor, you can delete multiple
components in the same container at once.

Caution:

If you delete a project or folder that contains a pipeline template resource, all
the concrete pipelines derived from that template are unlinked.

2.4.8.1 Deleting a Service Bus Component using the Project Navigator
To delete a Service Bus component using the Project Navigator:

1. In the Project Navigator, navigate to the component you want to delete.

2. Right-click the component and select Delete.

3. On the Confirmation dialog that appears, click Yes to complete the process.

The component is removed from the Project Navigator and from the session.

2.4.8.2 Deleting a Service Bus Component Using an Editor
To delete Service Bus components using an editor:

1. In the Project Navigator, navigate to the project or folder containing the
components you want to delete.

2. Click the project or folder to display its editor. To delete projects, click the All
Projects node instead.

The Project or Folder Definition Editor appears.

3. In the components table, select each component you want to delete, and then click
the Delete icon.

Chapter 2
Working with Projects, Folders, and Resources in Oracle Service Bus Console

2-16

Tip:

To select multiple components, hold down the Ctrl key and click each
component to delete.

4. On the Confirmation dialog that appears, click Yes to complete the process.

The components are removed from the editor, the Project Navigator, and the session.

2.5 Viewing and Resolving Conflicts
The Conflicts tab displays diagnostic messages about errors in your configuration, along with
any conflicts between changes made in your session and other activated sessions.

A conflict occurs if there is a semantic error in a Service Bus resource or if a resource
modified in the current session has already been modified and activated in another session.
Two changes to the same resource by two sessions do not cause a conflict until one of the
sessions is activated. You can view and resolve conflicts from the Conflicts tab, accessible by
clicking the Conflicts icon.

The Conflicts icon in the toolbar displays the number of live conflicts in the session.

Figure 2-11 Conflict Icon in the Toolbar

The Conflicts tab displays the following sets of information, depending on the nature of the
conflicts:

• Errors: An Error icon denotes non-committable, critical conflicts within your configuration.
You cannot commit your changes without resolving the conflicts.

• Concurrent Updates: A Warning icon denotes committable, non-critical conflicts. These
warn you of incompatible changes with other activated sessions.

• Informational Messages: A Warning icon denotes committable, non-critical conflicts
within your configuration.

2.5.1 How to View Conflicts and Errors
The Conflicts tab displays errors in your current Service Bus configuration and reflects any
conflicts your changes have with other activations. You can view all conflicts, or just those for
the resource displayed in the current resource editor. Click the Conflicts icon to display the
Conflicts tab.

Chapter 2
Viewing and Resolving Conflicts

2-17

Figure 2-12 Conflicts Tab

2.5.1.1 Viewing All Conflicts and Errors in the Service Bus Console
To view all conflicts and errors:

1. Access the Conflicts tab by doing one of the following:

• Click the Errors icon in the uppermost toolbar.

• Click the Conflicts tab at the bottom of the page.

2. To view errors in your configuration click Errors on the Conflicts tab.

3. To view conflicts with concurrent updates in other activations, click Concurrent
Updates on the Conflicts tab.

4. To display details of a specific conflict, click the link in the Name column for that
conflict.

2.5.1.2 Viewing Conflicts and Errors for a Deployed Resource
If a Service Bus resource contains errors, when you display that component in its
editor, a conflict icon appears next to the name of the editor.

To view conflicts and errors for the displayed resource:

1. With a resource displayed in its editor, click the Conflicts icon next to the editor
title (for example, next to Business Service Definition).

The first conflict is highlighted in the Conflict tab at the bottom of the page.

2. Expand the conflict to view additional information about the error that caused the
conflict.

3. To scroll through the conflicts for a component, click the left and right arrows next
to the Conflicts icon.

2.5.2 How to Resolve Conflicts and Errors
You must resolve all error conflicts in a session before you can activate that session.
To resolve a conflict, use the information provided in the Errors and Concurrent
Updates tables on the Conflicts tab to understand the problem and then modify the
component that is causing the conflict.

Chapter 2
Viewing and Resolving Conflicts

2-18

2.5.2.1 Resolving Concurrent Update Conflicts
If you have a conflict that occurs because a resource was modified in the current session and
it was already modified and activated in another session, you can resolve the conflict in one
of two ways.

• To save your changes to the runtime and override the changes deployed in the conflicting
session, click Activate in the upper right toolbar.

The changes activated by the conflicting session's user are overwritten by your changes
in this session.

• To restore a component in this session to the state in which it was saved in the runtime,
select the component in the Concurrent Updates table and click Synchronize above the
table.

The resource in your session is updated with the changes activated in the conflicting
session. You can then make your updates and activate your changes.

2.5.2.2 Resolving Error Conflicts
To resolve error conflicts:

1. In the Errors table of the Conflicts tab, click the Expand icon to the left of the resource
you want to resolve.

The error message appears below the resource.

2. Click the name of the resource to open it in a Service Bus editor.

3. Update the resource to fix the issue based on the information provided in the error
message.

4. Click Save.

5. Repeat these steps until you resolve all conflicts.

2.6 Viewing Historical Data
The History tab has three different views: Changes, Sessions, and Activations.

• How to View the Changes in the Current Session

• How to View the Existing Sessions

• How to View the Changes in an Activated Session

• How to Purge Activated Sessions

2.6.1 How to View the Changes in the Current Session
The Changes view of the History tab displays different information based on whether or not
you are in a session. When you are in a session, the Changes view displays a list of
configuration changes that you have made during the current session. When you are outside
a session, the Changes view does not display any changes.

Chapter 2
Viewing Historical Data

2-19

Figure 2-13 History Tab

To view the changes in the current session:

1. Click the Tools icon , and then click History, as shown in the following figure:

The History tab appears with the Changes view selected. The Changes table
displays the type of change made, the time each change was made, the person
who made each change, the status, and, if the change was reversed, the person
who reversed it.

2. To undo any of the changes listed, see How to Undo Specific Changes in the
Current Session.

2.6.2 How to View the Existing Sessions
The Sessions view of the History tab displays a list of all existing sessions within the
Oracle Service Bus Console. You can view these sessions if you are currently in a
session or outside a session.

You only view all sessions if you are logged in with an Administration role. For more
information, see "Defining Access Security for Oracle Service Bus" in Administering
Oracle Service Bus.

To view the existing sessions:

1. From the top-left of the Service Bus Console, click the Tools icon , and then click
History.

The History tab appears with the Changes view selected.

Chapter 2
Viewing Historical Data

2-20

2. Click Sessions above the table.

The Sessions table appears with a list of sessions, the user who created each session,
the date and time each session was created and modified, and the number of resources
that were changed.

3. To switch to a session in the list, select that session and click the Switch to Session
icon.

Note:

The same user logged in to multiple browsers is not supported. It causes
unpredictable behavior in the console.

2.6.3 How to View the Changes in an Activated Session
The Activations view of the History tab displays a list of all Service Bus activations. For each
activation listed, you can view a history of changes that were activated.

To view the changes in an activated session:

1. From the top-left of the Service Bus Console, click the Tools icon , and then click
History.

The History tab appears with the Changes view selected.

2. Click Activations above the table.

The Activations table appears with a list of activations, their descriptions, the time each
activation occurred, the user who activated each session, the status of the activation,
and, if the activation was reversed, the user who reversed it.

3. To view information about each change in an activation, click that activation in the
Activation column.

The Task Details dialog appears with a list of each change made in the selected session.

4. To view any of the resources or locations (paths) listed in the task details, click the name
of the resource or location.

The resource or location opens in a Service Bus editor.

5. To undo activations or purge tasks for an activation, see the following topics:

• How to Purge Activated Sessions

• How to Undo a Session Activation

• How to Undo Specific Changes in the Current Session

2.6.4 How to Purge Activated Sessions
You can purge all sessions activated or only those over a specific period, delimited by start
and end dates. This action can only be performed outside a session.

Chapter 2
Viewing Historical Data

2-21

Caution:

Purging session activation history involves deleting data that enables
multiple levels of undo. If you purge session activation history for a specific
period, you will not be able to undo sessions activated during that period.

To view the changes in an activated session:

1. Make sure you are not in an active session.

2. From the top-left of the Service Bus Console, click the Tools icon , and then click
History.

The History tab appears with the Changes view selected.

3. Click Activations above the table.

4. Click the Purge Tasks icon above the table.

The Purge Activation History dialog appears.

5. On the Purge Activation History dialog, do one of the following:

• To purge all tasks for all sessions, select Purge All Tasks.

• To purge tasks for a specific time period, select Purge Selected Tasks, and
enter the beginning and ending dates and times for the period to purge.

6. Click Purge, and then click Yes to confirm the purge.

The selected activations are removed from the list, and a new entry appears with a
description of the purge.

2.7 Undoing Changes and Activations
When you are working in a session, you can undo tasks in any order. The undo
operation sets the configuration of a resource to its configuration prior to the change
you are undoing. If the task being undone was one that created a resource, there is no
previous state to which the resource can be returned. In other words, no resource
existed before this task was performed. Effectively, the undo operation deletes the
resource from the session. In this case, errors occur if there are any references to the
resource being deleted. You can view such errors on the Conflicts tab. Service Bus
supports unlimited undo operations. This feature means you can even reverse undo
operations.
When you are not working in a session, you can view a history of sessions that were
previously activated. You can also undo those sessions. If an error in the runtime
configuration would result from the undo action, you cannot undo a session that was
previously activated. For example, if you attempt to undo a session activation that
results in deleting a resource referenced by another resource, that undo action is not
allowed.

2.7.1 How to Undo Specific Changes in the Current Session
In the Changes view of the History tab, you can undo specific tasks that you performed
during your current session. You can undo any change in the current session.
However if you realize you performed an undo operation in error, you can undo that
action as well.

Chapter 2
Undoing Changes and Activations

2-22

To undo specific changes in the current session:

1. From the top-left of the Service Bus Console, click the Tools icon , and then click
History.

The History tab appears with the Changes view selected.

2. Select the change you want to undo, and then click the Undo icon above the table.

The change is reversed. If you reversed a Create task, the selected resource is removed
from the session and no longer appears in the Project Navigator. If you reversed a Delete
task, the selected resource is added back to the session and reappears in the Project
Navigator.

2.7.2 How to Undo a Session Activation
In the Activations view of the History tab, you can undo session activations. If semantic errors
result from undoing a session activation, you are prevented from undoing an activation. The
alternative is to undo the session activation and have the changes put into a new session.
You can then fix the semantic errors and activate the new session. You can also use this
capability of undoing into a session to explore the ramifications of undoing a session
activation. You can examine all the changes that result, and determine whether to undo the
activation. Service Bus lets you undo multiple levels of session activation, constrained only by
your system resources.

To undo a session activation:

1. From the top-left of the Service Bus Console, click the Tools icon , and then click
History.

The History tab appears with the Changes view selected.

2. Click Activations above the table.

The Activation table displays the previous activations.

Figure 2-14 Activations Tab

3. To undo an activation, do the following:

• Click the empty field to the right of the session you want to undo to select it.

• Click the Undo icon above the table.

The session activation is reversed.

Chapter 2
Undoing Changes and Activations

2-23

4. To undo an activation into a session, do the following:

• Click the empty field to the right of the session you want to undo to select it.

• Click Undo in a Session.

The session activation is reversed and a new session is created pre-populated
with the tasks needed to undo the changes activated in the session.

2.8 Viewing References
The References tab displays information about resources that either reference other
resources or are referenced by other resources.

For projects and folders, the References tab lists the following:

• Resources outside of the current project or folder that are referenced by resources
inside the project or folder.

• Resources outside of the current project or folder that reference resources inside
the project or folder.

For any project, folder, or resource in the console, click the References icon in the
upper right on the editor to view information about these references on the References
tab.

2.8.1 Viewing Resource References
You can view references to resources whether or not you are in a session.

To view resource references:

1. Open a project, folder, or resource in its Service Bus editor.

2. Click the Tools icon in the upper right portion of the editor, and then select
References.

The References page appears, and shows the selected resource in bold. The
Referenced By column lists any resources that reference the selected resource.
The References column lists any resources that the selected resource references.

Figure 2-15 References Tab

3. Click the name of a resource to display it in its editor.

4. Click the left arrow next to a resource in the Referenced By column to view the
references for that resource.

5. Click the right arrow next to a resource in the References column to view the
references for that resource.

Chapter 2
Viewing References

2-24

2.9 Customizing the Appearance of the Oracle Service Bus
Console

Several editors in the console display information in tables. You can customize how tables
display this information.

• How to Customize Table Views

2.9.1 How to Customize Table Views
The menu bar above each table lets you specify which columns to display and in what order.
You can also specify the sort order for the columns and view the table full-screen.

2.9.1.1 Specifying the Columns to Display
To specify the columns to display:

1. In the upper left of the table, click View and select Columns.

A sub-menu appears, displaying a list of available columns. A check next to a column
indicates that it is visible.

2. To display all available columns, select Show All.

3. To specify which columns to display, select Manage Columns.

The Manage Columns dialog appears.

Figure 2-16 Manage Columns dialog

4. To hide a displayed column, select the column name in the Hidden Columns panel and
click the right arrow button.

5. To display a hidden column, select the column name in the Visible Columns panel and
click the left arrow button.

An asterisk denotes a required column.

6. Repeat until you have listed all the column names you want to display in the Visible
Columns field.

In the Visible Columns field, you can use the up and down arrows to reorder the column
names.

Chapter 2
Customizing the Appearance of the Oracle Service Bus Console

2-25

7. Click OK.

2.9.1.2 Sorting the Columns in a Table
To sort the columns in a table:

Note:

The default sort order for any table is determined by the first column in the
table.

1. In the upper left of the table, click View and select Sort.

2. Select Advanced Sort.

3. In the Sort By field, select the column name by which to sort first, and then select
either Ascending or Descending.

4. In the Then By field, select the column name by which to sort second, and then
select either Ascending or Descending.

5. Click OK.

2.9.1.3 Reordering Columns in a Table
To reorder the columns in a table:

1. In the upper left of the table, click View and select Reorder Columns.

2. On the Reorder Columns dialog, use the up and down arrows to change the order
of the columns.

3. When you are done, click OK.

Tip:

You can also move a column by clicking on the column heading and
dragging it to a new location in the table.

2.9.1.4 Viewing a Table in Full-Screen Mode
To view the table full-screen:

To detach the table from its current page and view it on a page the size of your
browser, click View above the table and select Detach.

Chapter 2
Customizing the Appearance of the Oracle Service Bus Console

2-26

3
Getting Started with Oracle Service Bus in
JDeveloper

This chapter provides general information about how to use Service Bus in JDeveloper to
configure services and other service bus resources. These are design-time activities that,
except where noted, do not require a running WebLogic Server instance.

This chapter includes the following topics:

• JDeveloper Concepts for Service Bus

• Managing Service Bus Components in JDeveloper

• Refactoring Service Bus Projects, Folders, and Resources

For complete information on using JDeveloper, see Developing Applications with Oracle
JDeveloper.

3.1 JDeveloper Concepts for Service Bus
Service Bus uses editors, wizards, and dialogs in JDeveloper to create and configure Service
Bus applications. Some of these items are specific to Service Bus components, and some
are standard JDeveloper tools.

For example, proxy service and business service editors are specific to Service Bus, but
other products share the XSLT and XQuery mappers in JDeveloper. Service Bus shares
many features with SOA Suite components in JDeveloper.

The following figure shows Service Bus artifacts in JDeveloper. Project files are in the
application navigator, the Service Bus Overview Editor is in the center, and the Components
is window on the right. The Service Bus Overview Editor is where you define services and
message flows. The Components window lists all the different Service Bus and SOA Suite
components you can drag onto the Overview Editor design canvas.

3-1

Figure 3-1 Oracle Service Bus in JDeveloper

3.1.1 Application Navigator
The Application Navigator displays the key files for all the resources and services
included in the Service Bus project, which can include the following:

• An XML file that is automatically created when you create a Service Bus project.
This file describes the entire Service Bus application, including services,
resources, references, and wires. In the Application Navigator, this file has the
same name as the project. In the file system, it is named servicebus.sboverview.

• Any proxy service files (service_name.proxy).

• Any business service files (service_name.bix).

• Pipeline files (pipeline_name.pipeline).

• Split-join files (splitjoin_name.flow).

• Any resource files, such as service accounts, WSDL files, service key providers,
alert destinations, and so on.

• Additional subfolders for class files, XSD files (schemas), and XSL files
(transformations).

Chapter 3
JDeveloper Concepts for Service Bus

3-2

3.1.2 Service Bus Overview Editor
The Service Bus Overview Editor lets you design your Service Bus application from the top
down in a graphical view of the components included in the application. You drag pipelines,
split-joins, transports, adapters, and bindings from the Components window into the designer
window of the editor. When you drag and drop a component into the designer window, a
corresponding wizard appears so you can perform basic configuration tasks related to that
component. For example, when you drag and drop a pipeline to the Pipelines/Split Joins
section of the editor, the Create Pipeline Service wizard appears. After you complete the
wizard, the component appears in the editor, and you can double-click the component to
open its editor and further define its configuration. The following figure shows the Overview
Editor with a mixture of services, pipelines, and split-joins.

Figure 3-2 Service Bus Overview Editor

3.1.3 Resource Editors
Each type of Service Bus resource can be configured in an editor that is specific to that
resource. Most editors have multiple views, which you select in the lower left corner of the
editor. The Configuration view is available for most resources, and is where you do most of
the resource configuration. Design view is available for the Service Bus Overview Editor,
pipelines, and split-joins, and provides a graphical representation of how messages are
processed. In design mode, you can drag and drop activities from the Components window
directly into a split-join or pipeline. For some resources, you can view the source code using
the Source view. Several editors also include a History view, where you can look at a history
of changes to the displayed resource. The following figure shows the General configuration
page of the Proxy Service Definition Editor.

Chapter 3
JDeveloper Concepts for Service Bus

3-3

Figure 3-3 Proxy Service Definition Editor in JDeveloper

3.1.4 Components Window
The Components window appears when the Service Bus Overview Editor, the Pipeline
Editor, or the Split-Join Editor is open. The Components window lists the various
components that you can use in a Service Bus application, pipeline, or split-join,
depending on which editor is visible. For the overview editor, the Components window
displays the components you can add to the application, including resources,
adapters, and transports. For pipelines and split-joins, the Components window
displays routing, transformation, and error handling actions that you can use to define
the flow of data between services.

The elements listed in the Components window can be dragged and dropped from the
Components window to the visible editor. If the Components window is not visible,
select Components from the Window main menu. The following figure shows the
Components window for the Service Bus Overview Editor.

Chapter 3
JDeveloper Concepts for Service Bus

3-4

Figure 3-4 Service Bus Components Window

3.1.5 Resources Window
When you select an item in the Resources window, a dialog appears in which you can
browse both local and remote resources. For example, you can access the following
resources:

• Shared local application metadata such as schemas, WSDL files, event definitions,
business rules, and so on.

• WSIL browser functionality that uses remote resources that can be accessed through an
HTTP connection, file URL, or Application Server connection.

• Remote resources that are registered in a Universal Description, Discover, and
Integration (UDDI) registry.

If the Resources window is not visible, select Resources from the Window main menu.

3.1.6 Properties Window
The Properties window displays properties for the selected Service Bus resource or
component, and lets you modify the properties for pipeline actions and split-join operations.

Chapter 3
JDeveloper Concepts for Service Bus

3-5

For information about the properties you can configure, see the online help for Service
Bus and the following chapters in this guide:

• Improving Service Performance with Split-Join

• Working with Pipeline Actions in Oracle Service Bus Console

If the Property Inspector is not visible, select Property Inspector from the Window
main menu.

3.1.7 Structure View
The Structure window offers a structural view of the component currently displayed in
the editor. Depending on the document currently open, the Structure Window lets you
view data in two modes, as indicated by the tabs near the bottom of this window:

• Source mode displays the code structure of the file currently open in the editor.
This is applicable to technologies that allow code editing, such as XML. For
example, this tab will not be available when a pipeline is open for editing.

• Design mode displays the tree structure of the file currently open in the editor, and
lets you navigate through the different nodes of the component.

The Structure window is dynamic, always tracking the current selection of the active

3.1.8 Log Window
The Log window displays messages about application compilation, validation, and
deployment.

3.2 Managing Service Bus Components in JDeveloper
In JDeveloper, Service Bus components are contained within a Service Bus project.
Service Bus projects can be gathered into Service Bus applications. The resources are
stored as files in the file system. All resources (such as services, WSDL files, XQuery
transformations, and so on) reside in one non-overlapping project.
You create resources directly under a project or in folders within the project to organize
them further. Each folder contains a set of resources and can also contain additional
folders, like directories in a file system. Resources located in one project can reference
and use resources that are defined in other projects. You can move resources
between projects or folders, and rename or delete them. Service Bus preserves
dependencies when resources are renamed or moved, and also adjusts any
references to a renamed or moved resource.

3.3 Refactoring Service Bus Projects, Folders, and
Resources

You can rename, move, and delete Service Bus resources in JDeveloper using its
refactoring features. You can also rename and move folders. Refactoring maintains
references between the resources you change, except when you delete a resource or
folder. Refactoring also moves, renames, or deletes the resource files and updates
information in the Service Bus Overview Editor. In addition to the refactoring features
in JDeveloper, Service Bus lets you clone a project or folder to a different location.

Chapter 3
Managing Service Bus Components in JDeveloper

3-6

You can rename and delete resources from the Application Navigator or from the Service Bus
Overview Editor. This section describes the Application Navigator steps. For information on
refactoring in the Overview Editor, see How to Rename Components in the Service Bus
Overview Editor and How to Delete Components in the Service Bus Overview Editor.

3.3.1 How to Rename a Service Bus Folder or Resource in JDeveloper
When you rename Service Bus components, any references are automatically updated.

Note:

If you rename a business service imported from the UDDI registry, the service will
become detached from the registry.

To rename a folder or resource:

1. In the Application Navigator, right-click the folder or resource you want to rename.

2. Point to Refactor and click Rename.

3. For resources, do the following:

a. In the Rename To field of the Rename dialog, enter a new name for the resource. Do
not change the file extension.

b. If the resource is referenced by another resource, click Show Usages to view those
references.

c. Click OK to finalize the new name.

4. For folders, do the following:

a. In the Name field of the Rename Directory dialog, enter the full path and a new name
for the folder.

b. To view a list of files before confirming the change, select Preview.

c. Click OK.

d. If you selected Preview, review the list of files in the Rename Directory Log. Click
Refactor to complete the change.

5. In the JDeveloper toolbar, click Save All.

3.3.2 How to Move a Service Bus Folder or Resource in JDeveloper
When you move resources to a different location, Service Bus retains any dependencies
against that resource. If you move a project into another project, Service Bus converts it to a
folder within the second project.

To move a folder or resource:

1. In the Application Navigator, right-click the project, folder, or resource you want to move.

2. Point to Refactor and click Move.

3. For resources, do the following:

Chapter 3
Refactoring Service Bus Projects, Folders, and Resources

3-7

• If the resource is referenced by another resource, click Show Usages to view
those references.

• In the Move To field of the Move dialog, enter the new directory path for the
resource or click Browse to navigate to and select a new directory.

• Click OK.

4. For folders, do the following:

• In the Move Directory dialog, navigate to and select the new location for the
folder.

• Click Select.

5. In the JDeveloper toolbar, click Save All.

3.3.3 How to Delete a Project or Resource
When you delete a project, all resources under the project are deleted. If any
resources under this folder are referenced by resources under a different project or
folder, you can still delete it but this might result in conflicts due to unresolved
references to the deleted resource.

Caution:

If you delete a project or folder that contains a pipeline template resource, all
the concrete pipelines derived from that template are unlinked.

3.3.3.1 Deleting a Resource
To delete a resource:

1. In the Application Navigator, right-click the project, folder, or resource you want to
delete.

2. Point to Refactor and click Delete.

3. If the resource is referenced by another resource, click Show Usages to view
those references.

4. Click Yes to delete the resource.

3.3.3.2 Deleting a Project
To delete a project:

1. In the Application Navigator, right-click the project you want to delete.

2. Click Delete.

3. Select whether to just remove the project from the application or to also delete all
of its files and directories from the file system.

4. Click Yes.

5. On the Confirmation Dialog, click Yes.

Chapter 3
Refactoring Service Bus Projects, Folders, and Resources

3-8

3.3.4 How to Clone a Project or Folder
Cloning a project or folder copies all resources in a project or folder to a different location.
Service Bus preserves dependencies when an object is cloned and also adjusts any
references. For information on clone processing, see What Happens When You Clone a
Project and What Happens When You Clone a Folder.

To clone a project or folder:

1. In the Application Navigator, right-click the project, folder, or resource you want to clone.

2. Point to Service Bus and click Clone.

3. On the Select Clone Target dialog, enter a name for the cloned component.

4. Do one of the following:

• To clone this project or folder as a project, select As project.

• To clone this project or folder as a folder, select As folder in location and then select
the project or folder where you want to locate the cloned project.

5. Click OK.

Chapter 3
Refactoring Service Bus Projects, Folders, and Resources

3-9

4
Setting up the Development Environment for
JDeveloper

This chapter describes development environment setup topics that are relevant to Service
Bus, such as using the default Derby database and disabling the default JMS reporting
provider.

This chapter includes the following topics:

• Creating Server Connections in JDeveloper

• Creating Connection Factories for Oracle JCA Adapters

• Disabling the JMS Reporting Provider

4.1 Creating Server Connections in JDeveloper
To deploy services from JDeveloper, the JDeveloper environment must be connected to an
Oracle WebLogic Server. To do this task, you create an application server connection. You
can also create connections to the Oracle Metadata Services (MDS) repository to share
artifacts with SOA Suite applications.

• How to Create an Application Server Connection

• How to Create a SOA-MDS Connection

• How to Change the MDS Repository Location

4.1.1 How to Create an Application Server Connection
When developing in JDeveloper, you must create a connection to the application server to
which Service Bus applications will be deployed. Once you create this connection, you can
deploy your applications to the server and you can access other applications and artifacts
already deployed to that server.

For instructions, see "How to Create a Connection to the Target Application Server" in
Developing Applications with Oracle JDeveloper.

4.1.2 How to Create a SOA-MDS Connection
To deploy a Service Bus application that shares data with other composites, use the Create
SOA-MDS Connection wizard to create a connection to a database-based Oracle MDS
Repository server.

To create a SOA-MDS connection:

1. From the File main menu, point to new New and select From Gallery.

The New Gallery wizard appears.

2. In the General category, select Connections.

4-1

3. Select SOA-MDS Connection, and click OK.

The Create SOA-MDS Connection dialog appears.

4. In the connection fields, provide values appropriate to your environment.

Click Help on the dialog to get information about each field and the values you
need to enter.

5. Click OK.

You can now browse the connection in the Resources window and view shared
artifacts under the /apps node.

4.1.3 How to Change the MDS Repository Location
The default MDS Repository connection uses a default repository located
in $JDEV_USER_DIR/soamds in the JDeveloper system or application data folders. You
can change the location of the repository if needed.

To change the MDS Repository location:

1. If the Resources window is not visible in JDeveloper, click the Window menu and
select Resources.

2. In the Resources window, expand SOA-MDS, right-click the repository name (the
default name is SOA_DesignTimeRepository), and click Properties.

The Edit SOA-MDS Connection dialog appears.

Chapter 4
Creating Server Connections in JDeveloper

4-2

Figure 4-1 Edit SOA-MDS Connection Dialog

3. In the MDS Root Folder field, select the new root directory for the repository.

Note:

You can select any directory, but it must have a folder named apps directly
beneath it.

4. Click Test Connection to verify the directory.

5. Upon successful completion of the test, click OK.

4.2 Creating Connection Factories for Oracle JCA Adapters
The Oracle JCA adapters are deployed as JCA resource adapters in a WebLogic Server
container. Adapters are packaged as Resource Adapter Archive (RAR) files using a JAR
format. When adapters are deployed, the RAR files are used and the adapters are registered
as connectors with the WebLogic Server or middle-tier platform.

The RAR file contains the following:

Chapter 4
Creating Connection Factories for Oracle JCA Adapters

4-3

• The ra.xml file, which is the deployment descriptor XML file containing
deployment-specific information about the resource adapter

• Declarative information about the contract between Oracle WebLogic Server and
the resource adapter

Adapters also package the weblogic-ra.xml template file, which defines the
endpoints for connection factories. For information about creating connection factories
and connection pools, see "Adapter Framework" in Understanding Technology
Adapters.

4.3 Disabling the JMS Reporting Provider
By default, the Service Bus JMS reporting provider is deployed in a Service Bus
domain. The reporting provider uses a database to persist reporting data. If you do not
want to use the JMS reporting provider in your development domain, you can disable
or untarget it during the domain creation process.

For more information, see Untargeting a JMS Reporting Provider in Administering
Oracle Service Bus. Disabling the reporting provider prevents benign JMS reporting
provider errors at server startup.

Chapter 4
Disabling the JMS Reporting Provider

4-4

5
Developing Service Bus Applications in
JDeveloper

This chapter describes how to use JDeveloper to develop Service Bus applications from the
top down, using the Service Bus Overview Editor.

This chapter includes the following sections:

• Introduction to the Service Bus Overview Editor

• Creating Service Bus Applications and Projects in JDeveloper

• Adding Service Bus Components

• Modifying and Deleting Components in the Service Bus Overview Editor

• Synchronizing the Overview Diagram

• Wiring Service Bus Components

• Attaching Security Policies to Service Bus Components

• Testing Service Bus Components in the Overview Editor

• Deploying a Service Bus Application

5.1 Introduction to the Service Bus Overview Editor
The Service Bus Overview Editor provides a graphical interface for you to design and
configure Service Bus projects. A project overview file is automatically generated when you
create a project, which describes the Service Bus project.

In the Application Navigator, the node representing this file has the same name as the project
it represents; in the file system, it is named servicebus.sboverview. You can open this file in
the Service Bus Overview Editor to create and configure the Service Bus components.

Opening the overview file launches the Service Bus Overview Editor, which appears as a tab
in the JDeveloper designer. This file describes the entire application assembly of proxy
services, business services, pipelines, and split-joins. There is one overview file for each
Service Bus project.

5.1.1 Service Bus Overview Editor Components
When you work with the project overview file, you primarily use the Overview Editor canvas,
the Components window, and the component configuration wizards. The editor lets you view
many of your files in a WYSIWYG environment, and you can view a file in an overview editor
where you can declaratively make changes, or you can view the source code for the file. The
Structure window shows the structure of the currently selected file.

5-1

Figure 5-1 Service Bus Overview Editor

Table 5-1 describes the Service Bus Overview Editor.

Chapter 5
Introduction to the Service Bus Overview Editor

5-2

Table 5-1 Service Bus Overview Editor

Element Description

Application Navigator Displays the key files for the components included in the Service Bus
project:

• A project_name node (servicebus.sboverview file) that is
automatically created when you create a Service Bus project. This
file describes the entire composite assembly of proxy services,
business services, pipelines, split-joins, and wires. Once you open
the file in the Service Bus Overview Editor, the name changes to
match that of the containing project.

• The pipeline component file (pipeline_name.pipeline)
• The proxy service component file (proxy_name.proxy)
• The business service component file (business_name.bix)
• The split-join component file (splitjoin_name.flow)
• The individual files that describe Service Bus components, such as

alert destinations, service key providers, and service accounts.
• Optional subfolders for class files, WSDL files, schema definitions,

transformations, and test suites. These can also be created directly
under the project. By default, components generated by the adapter
wizard are created in a subfolder named Resources.

Structure Window The Structure window provides a structural view of the data in the
document currently selected in the active window.

Overview Editor You drag Service Bus components from the Components window into
the canvas of the Overview Editor. When you drag and drop a
component into the designer, a corresponding wizard appears so you
can create and configure that component.

For all subsequent editing sessions, double-click these components to
re-open their editors.

Middle Swimlane (Pipelines/
Split Joins)

The middle swimlane is for the components that provide routing and
transformation logic, restricting this lane to pipelines and split-joins.

Left Swimlane (Proxy
Services)

The left swimlane is for services that provide an entry point to the
application, so this lane is restricted to proxy services. If you drag a JCA
adapter or a transport to this lane, you generate a proxy service based
on the selected adapter or transport.

Right Swimlane (External
Services)

The right swimlane is for references that send messages to external
services in the outside world, which can be business services or proxy
services. If you drag a JCA adapter or a transport to this lane, you
generate a business service.

Proxy services that appear in this lane are actually references to existing
proxy services, so they cannot be added by dragging a JCA adapter or a
transport to the canvas. They can only be added by selecting the
existing proxy service to use.

Components Window The Components window provides the various Service Bus components
that you can use in a Service Bus application. It contains pipelines, split-
joins, technology adapters, application adapters, transports, and a REST
binding. Proxy services and business services are not included in the
Components window, but you can create them by dragging adapters,
transports, or bindings to the left or right swimlanes of the canvas.

For more information about the available components, see the online
help for the Overview Editor in JDeveloper. If the Components window is
not visible, select Components from the View main menu.

Chapter 5
Introduction to the Service Bus Overview Editor

5-3

Table 5-1 (Cont.) Service Bus Overview Editor

Element Description

Resources Window The Resources window provides a single dialog from which you can
browse both local and remote resources. For example, you can access
the following resources:

• Shared local application metadata such as schemas, WSDL
documents, event definitions, and so on.

• WSIL browser functionality that uses remote resources that can be
accessed through an HTTP connection, file URL, or application
server connection.

• Remote resources that are registered in a Universal Description,
Discovery, and Integration (UDDI) registry.

You select these resources for the Service Bus application through the
Resource Browser dialog. This dialog is accessible through a variety of
methods. For example, when you select the WSDL file to use with a
pipeline or drag a business service from the Components window, the
Resource Browser dialog appears. Click Resources at the top of this
dialog to access available resources.

If the Resources window is not visible, then select Resources from the
View main menu.

Log Window The Log window displays messages about application compilation,
validation, and deployment.

Properties Window The Properties window displays properties for the selected Service Bus
component. You also use the Properties window to define properties for
pipeline and split-join actions.

If the Properties window is not visible, select Properties from the View
main menu.

Application Resources In the Application Resources panel, the system resources for Service
Bus applications and projects are listed under Service Bus System
Resources. System resources include UDDI registries, proxy services,
JNDI providers, and SNMP servers.

5.1.2 Transports, Adapters, and Bindings
Using the Service Bus Overview Editor, you can create proxy and business services
based on Service Bus transports, Oracle JCA Adapters, or the REST binding. Service
Bus is fully integrated with JCA adapters, and you can create and configure a JCA
adapter and its associated files directly in a Service Bus project using the Overview
Editor. In previous versions, you created the JCA adapter in a separate SOA Suite
project and then imported it into Service Bus. When you create a JCA adapter, the
concrete WSDL file and proxy or business service are created automatically. The
same applies when you create a service using the REST binding; the associated
WADL file and proxy or business service are automatically created for you.

In addition to the full range of support for Oracle JCA Adapters, Service Bus provides
connectivity to external systems through a variety of transports, each of which is
specific to a type of external system. You can use a combination of transports,
adapters, and REST bindings to create services in Service Bus.

Table 5-2, Table 5-3, and Table 5-4 describe the transport, adapters, and bindings
available in the Components window. For more information, see Working with JCA
Adapters, Transports, and Bindings .

Chapter 5
Introduction to the Service Bus Overview Editor

5-4

Table 5-2 Technology Components

Component Description

AQ Drag an AQ adapter to either the Proxy Services or External Services
swimlane to create and configure an Oracle AQ Adapter, and to create
its associated service. The AQ Adapter lets Service Bus interact with
a single consumer or a multi-consumer queue.

This action launches the AQ Adapter Configuration wizard.

AS/400 Drag an AS/400 adapter to either the Proxy Services or External
Services swimlane to create and configure an Oracle Database
Adapter for AS/400, and to create its associated service.

This action launches the Database Adapter Configuration wizard.

BAM Drag a BAM adapter to either the Proxy Services or External Services
swimlane to create and configure an Oracle BAM Adapter, and to
create its associated service. The BAM Adapter lets Service Bus
interact with Oracle Business Activity Monitoring.

This action launches the BAM Adapter Configuration wizard.

Coherence Drag a Coherence adapter to either the Proxy Services or External
Services swimlane to create and configure an Oracle Coherence
Resource Adapter, and to create its associated service. Use the
Coherence Resource Adapter to perform cache operations in a
transaction.

This action launches the Coherence Adapter Configuration wizard.

Database Drag a Database adapter to either the Proxy Services or External
Services swimlane to create and configure a Database JCA Adapter,
and to create its associated service. The Database Adapter lets
Service Bus communicate with Oracle and other databases through
JDBC.

This action launches the Database Adapter Configuration wizard.

Direct Drag a Direct transport to the External Services swimlane to create a
business service using the SOA-DIRECT transport. Use the SOA
DIRECT transport to exchange messages over a remote method
invocation (RMI).

This action launches the Create Business Service wizard. The Direct
transport can only be used with business services.

File Drag a File adapter to either the Proxy Services or External Services
swimlane to create and configure an Oracle File Adapter, and to
create its associated service. The File Adapter lets Service Bus
applications read and write messages from files on a local file system.

This action launches the File Adapter Configuration wizard.

FTP Drag an FTP adapter to either the Proxy Services or External
Services swimlane to create and configure an Oracle FTP Adapter,
and to create its associated service. The FTP Adapter lets Service
Bus applications read and write messages from remote service files.

This action launches the FTP Adapter Configuration wizard.

HTTP Drag an HTTP transport to the Proxy Services swimlane to create an
HTTP proxy service, or to the External Services swimlane to create
an HTTP business service. The HTTP transport lets you invoke
applications through HTTP POST and GET operations.

This action launches either the Create Proxy Service wizard or the
Create Business Service wizard.

Chapter 5
Introduction to the Service Bus Overview Editor

5-5

Table 5-2 (Cont.) Technology Components

Component Description

JEJB Drag a JEJB transport to the Proxy Services swimlane to create a
JEJB proxy service, or to the External Services swimlane to create a
JEJB business service. The JEJB transport lets you pass Plain Old
Java Objects (POJOs) through Service Bus.

This action launches either the Create Proxy Service wizard or the
Create Business Service wizard.

JMS Drag a JMS Transport to the Proxy Services swimlane to create a
JMS proxy service, or to the External Services swimlane to create a
JMS business service. The JMS transport configures services that
interact with Java Messaging Service.

This action launches either the Create Proxy Service wizard or the
Create Business Service wizard.

LDAP Drag an LDAP adapter to either the Proxy Services or External
Services swimlane to create and configure an Oracle LDAP Adapter,
and to create its associated service. The LDAP Adapter lets Service
Bus interact with an LDAP directory.

This action launches the LDAP Adapter Configuration wizard.

MQ Drag an MQ adapter to either the Proxy Services or External Services
swimlane to create and configure an Oracle MQ Series Adapter, and
to create its associated service. The MQ Series Adapter lets Service
Bus connect to MQ Series queue managers and to add and remove
messages in queues.

This action launches the MQ Series Adapter Configuration wizard.

MSMQ Drag an MSMQ adapter to either the Proxy Services or External
Services swimlane to create and configure an Oracle MSMQ Adapter,
and to create its associated service.

This action launches the MSMQ Adapter Configuration wizard.

REST Drag REST binding to either the Proxy Services or External Services
swimlane to create and configure a REST binding component, and to
create its associated service.

This action launches the Create REST Binding dialog.

SB Drag an SB transport to the Proxy Services swimlane to create an SB
proxy service, or to the External Services swimlane to create an SB
business service. Use the SB transport to allow Oracle products to
synchronously invoke a proxy service using RMI.

This action launches either the Create Proxy Service wizard or the
Create Business Service wizard.

Socket Drag a Socket adapter to either the Proxy Services or External
Services swimlane to create and configure an Oracle Socket Adapter,
and to create its associated service. The Oracle Socket Adapter lets
Service Bus create a client or server socket, and establish a
connection.

This action launches the SOCKET Adapter Configuration wizard.

Tuxedo Drag a Tuxedo transport to the Proxy Services swimlane to create a
Tuxedo proxy service, or to the External Services swimlane to create
a Tuxedo business service. The Tuxedo transport to access a Tuxedo
domain from Service Bus.

This action launches either the Create Proxy Service wizard or the
Create Business Service wizard.

Chapter 5
Introduction to the Service Bus Overview Editor

5-6

Table 5-2 (Cont.) Technology Components

Component Description

UMS Drag a UMS adapter to either the Proxy Services or External Services
swimlane to create and configure an Oracle UMS Adapter, and to
create its associated service. The Oracle UMS Adapter lets Service
Bus send and receive notifications using email, SMS, or instant
messaging.

This action launches the UMS Adapter Configuration wizard.

WS Drag a WS transport to the Proxy Services swimlane to create a WS
proxy service, or to the External Services swimlane to create a WS
business service. The WS transport implements requests for services
derived from based on SOAP 1.1- or SOAP 1.2-based WSDL
documents with WSRM policy.

This action launches either the Create Proxy Service wizard or the
Create Business Service wizard.

Table 5-3 Application Components

Component Description

JDE World Drag a JDE World adapter to either the Proxy Services or External
Services swimlane to create and configure an Oracle JDE World
Adapter, and to create its associated service. This action launches the
JDE World Adapter Configuration wizard.

Oracle Drag an Oracle adapter to either the Proxy Services or External
Services swimlane to create and configure an Oracle Applications
Adapter, and to create its associated service. This action launches the
Oracle Applications Adapter Configuration wizard.

SAP Drag a SAP adapter to either the Proxy Services or External Services
swimlane to create and configure an Oracle SAP Adapter, and to
create its associated service. This action launches the Oracle SAP
Adapter Configuration wizard.

Table 5-4 Advanced Components

Component Description

BPEL 10g Drag a BPEL 10g transport to the External Services swimlane to
create a BPEL Process Manager business service. Use the BPEL
Processing Manager (BPEL-10g) to define messaging with Oracle
SOA Suite 10g BPEL processes.

This action launches the Create Business Service wizard. The BPEL
10g transport can only be used with business services.

Note: For messaging with Oracle SOA Suite 11g BPEL processes,
use the SOA_DIRECT transport.

Custom Drag a Custom adapter to either the Proxy Services or External
Services swimlane to create and configure an Oracle Custom
Adapter, and to create its associated service. The Oracle Custom
Adapter lets you create a customized adapter to connect to external
systems.

This action launches the Custom Adapter Configuration wizard.

Chapter 5
Introduction to the Service Bus Overview Editor

5-7

Table 5-4 (Cont.) Advanced Components

Component Description

DSP Drag a DSP transport to the External Services swimlane to create a
DSP business service. Use the DSP transport to communicate with
Oracle Data Service Integrator.

This action launches the Create Business Service wizard. The DSP
transport can only be used with business services.

EJB Drag an EJB transport to the External Services swimlane to create an
EJB business service. Use the EJB transport to create an Enterprise
JavaBeans service for using SDO parameters or Java interfaces with
Enterprise JavaBeans.

This action launches the Create Business Service wizard. The EJB
transport can only be used with business services.

Email Drag an Email transport to the Proxy Services swimlane to create an
email proxy service, or to the External Services swimlane to create an
email business service. The Email transport lets Service Bus
communicate with email servers.

This action launches either the Create Proxy Service wizard or the
Create Business Service wizard.

File Transport Drag a File Transport to the Proxy Services swimlane to create a file
proxy service, or to the External Services swimlane to create a file
business service. The File transport configures services that read and
write messages from files on a local file system.

This action launches either the Create Proxy Service wizard or the
Create Business Service wizard.

FTP Transport Drag an FTP Transport to the Proxy Services swimlane to create an
FTP proxy service, or to the External Services swimlane to create an
FTP business service. The FTP transport configures services that
read and write messages from remote service files.

This action launches either the Create Proxy Service wizard or the
Create Business Service wizard.

JCA Drag a JCA transport to the Proxy Services swimlane to create a
proxy service based on an existing JCA adapter, or to the External
Services swimlane to create a business service based on an existing
JCA adapter.

This action launches either the Create Proxy Service wizard or the
Create Business Service wizard.

JMS Drag a JMS adapter to either the Proxy Services or External Services
swimlane to create and configure an Oracle JMS Adapter, and to
create its associated service. The JMS Adapter lets Service Bus
interact with Java Messaging Service.

This action launches the JMS Adapter Configuration wizard.

Local Drag a Local transport to the Proxy Services swimlane to create a
Local proxy service. Local proxy services can only be invoked by
other proxy services, not by external clients.

This action launches the Create Proxy Service wizard. The Local
transport can only be used with proxy services.

Chapter 5
Introduction to the Service Bus Overview Editor

5-8

Table 5-4 (Cont.) Advanced Components

Component Description

MQ Transport Drag an MQ Transport to the Proxy Services swimlane to create an
MQ proxy service, or to the External Services swimlane to create an
MQ business service. The MQ transport provides access to IBM
WebSphere MQ.

This action launches either the Create Proxy Service wizard or the
Create Business Service wizard.

SFTP Drag an SFTP Transport to the Proxy Services swimlane to create an
SFTP proxy service, or to the External Services swimlane to create an
SFTP business service. The SFTP transport lets you transfer files
securely over the SSH File Transfer Protocol (SFTP).

This action launches either the Create Proxy Service wizard or the
Create Business Service wizard.

Third Party Drag a Third Party adapter to either the Proxy Services or External
Services swimlane to create and configure an Oracle Third Party
Adapter, and to create its associated service. The Third Party Adapter
lets Service Bus interact with third-party services as long as a WSDL
document is already defined.

This action launches the Create Third Party Adapter Service dialog.

5.1.3 Project and Overview Diagram Synchronization
Performing certain tasks outside of the Overview Editor results in components being
automatically added to or changed in the Service Bus Overview Editor diagram. When you
create proxy services, pipelines, and split-joins outside of the Service Bus Overview Editor
(that is, you create them directly in the project using their creation wizards), Service Bus adds
the generated components to the Overview Editor diagram. This does not occur when you
add business services, since they can be used by multiple projects.

When you add a new outbound messaging or callout activity to a pipeline or split-join and
configure the activity to call an external service, Service Bus adds the referenced component
to the External Services swimlane in the overview diagram if it is not already there. Service
Bus also wires the pipeline or split-join to the referenced component. If you remove the call to
the external service, the wire is also removed. When you add, remove, or modify the target
service in the Proxy Service Definition Editor, Service Bus modifies the wires on the overview
diagram accordingly.

If you import a new Service Bus project, Service Bus generates the project overview file and
adds all derivable Service Bus components to the diagram in the Service Bus Overview
Editor. If your import updates an existing Service Bus project, the overview diagram is also
updated with any new components or updated wiring.

The overview is synced when you make changes to or import resources. After you add,
update, or delete a resource, the changes will appear in the Service Bus Overview Editor the
next time you refresh or open it.

Chapter 5
Introduction to the Service Bus Overview Editor

5-9

5.2 Creating Service Bus Applications and Projects in
JDeveloper

In JDeveloper, Service Bus resources are organized into projects, which can be further
divided into folders. Service Bus projects are grouped into Service Bus applications.

Note:

To create and deploy Service Bus applications and projects in JDeveloper,
you must install the Service Bus extension. For instructions on installing this
extension for JDeveloper, see Enabling Oracle JDeveloper Extensions in
Installing Oracle JDeveloper.

• How to Create a Service Bus Application and Project

• Developing Service Bus Projects in Reference Configuration Mode

5.2.1 How to Create a Service Bus Application and Project
When you create a Service application, you assign it a name and to specify the
directory in which to save source files. By creating an application using application
templates provided by JDeveloper, you automatically get the organization of the
workspace into projects, along with the project overview file.

You can create a Service Bus application with a Service Bus project, or you can create
just the application and create the project separately. The following figure shows the
creation wizard when you create the application and project together.

Chapter 5
Creating Service Bus Applications and Projects in JDeveloper

5-10

Figure 5-2 Create Service Bus Application with Service Bus Project Wizard

• Guidelines for Creating Applications and Projects

• Creating a Service Bus Application with No Project

• Creating a Service Bus Application and Project

• Adding a Service Bus Project to a Service Bus Application

5.2.1.1 Guidelines for Creating Applications and Projects
Make sure to follow these guidelines when you create Service Bus applications and projects
in JDeveloper.

• When you create applications and projects, you can specify the directory in which the
associated files are stored. You must create Service Bus projects in the same folder as
their containing application.

• Do not create application or project names with spaces.

• Do not create applications and projects in directory paths that have spaces (for example,
c:\Program Files).

• The combination of application and component name cannot exceed 500 characters.

• A project deployed to the same infrastructure must have a unique name across Service
Bus applications. For example, do not perform the actions described in Table 5-5. During
deployment, the second deployed project overwrites the first deployed project.

Chapter 5
Creating Service Bus Applications and Projects in JDeveloper

5-11

Table 5-5 Restrictions on Naming a Service Bus Project

Create an Application Named... With a Project Named...

Application1 Project1

Application2 Project1

Caution:

Do not create SOA Tier components in Service Bus applications, nor Service
Bus Tier components in SOA Suite applications. Mixing technologies within
an application will result in errors.

5.2.1.2 Creating a Service Bus Application with No Project

Before you begin:

To avoid errors, become familiar with the information in Guidelines for Creating
Applications and Projects before creating applications or projects.

To create a Service Bus application with no project:

1. Start Oracle JDeveloper Studio Edition.

2. Do one of the following to create a new Service Bus application:

• If no applications are open, click New Application in the Application
Navigator.

• In the JDeveloper toolbar, click File, point to New, and select Applications.

• In the JDeveloper toolbar, click Application and then select New.

The New Gallery opens, where you can select different application components to
create.

3. In the Categories tree, select General > Applications.

4. In the Items pane, select Service Bus Application, and click OK.

The Create Service Bus Application wizard appears.

5. On the Name your Application page, optionally change the name and directory
location for the application.

6. Click Finish.

7. From the File menu, select Save All.

8. To add projects to your application, see Adding a Service Bus Project to a Service
Bus Application.

5.2.1.3 Creating a Service Bus Application and Project

Before you begin:

To avoid errors, become familiar with the information in Guidelines for Creating
Applications and Projects before creating applications or projects.

Chapter 5
Creating Service Bus Applications and Projects in JDeveloper

5-12

To create a Service Bus application and project:

1. Start Oracle JDeveloper Studio Edition.

2. Do one of the following to create a new Service Bus application:

• If no applications are open, click New Application in the Application Navigator.

• In the JDeveloper toolbar, click File, point to New, and select Applications.

• In the JDeveloper toolbar, click Application and then select New.

The New Gallery opens, where you can select different application components to create.

3. In the Categories tree, select General > Applications.

4. In the Items pane, select Service Bus Application with Service Bus Project, and click
OK.

The Create Service Bus Application wizard appears.

5. On the Name your Application page, optionally change the name and location for the
application.

6. On the Name your Project page, optionally change the name of your Service Bus project.
Make sure the project directory is in the application directory (this is the default).

7. Click Finish.

JDeveloper adds the Service Bus project technology, the project's XML file that describes
the Service Bus application, and the necessary libraries to your project.

8. From the File main menu, select Save All.

5.2.1.4 Adding a Service Bus Project to a Service Bus Application

Before you begin:

To avoid errors, become familiar with the information in Guidelines for Creating Applications
and Projects before creating applications or projects.

To add a Service Bus project to a Service Bus application:

Note:

The following instructions are for the first time you create a Service Bus project. You
can continue to follow these steps for future project, but a Project option will also
appear when you right-click in the Application Navigator and select New.

1. Start Oracle JDeveloper Studio Edition.

2. Using the Application menu, open the Service Bus application.

3. Click File, point to New, and then select Project.

The New Gallery dialog appears.

4. In the Categories panel, scroll down to and select Service Bus Tier.

5. In the Items panel, select Service Bus Project, and click OK.

The Create Service Bus Project wizard appears.

Chapter 5
Creating Service Bus Applications and Projects in JDeveloper

5-13

6. On the Name your Project page, you can optionally change the name for your
Service Bus project. Leave the directory at its default value, which is located in the
containing application's folder.

7. Click Finish.

JDeveloper adds the Service Bus project technology, the project's XML file that
describes the Service Bus application, and the necessary libraries to your project.

8. From the File main menu, select Save All.

5.2.2 Developing Service Bus Projects in Reference Configuration
Mode

Beginning with Release 12c (12.2.1.4), you can create either a Reference
Configuration domain or a Classic domain on the Templates screen in the
Configuration Wizard during installation. A Reference Configuration domain guards
servers from running into out-of-memory, stuck threads, endpoint connectivity, and
database issues. A Reference Configuration domain supports SOA, OSB, and B2B
topologies. The templates in these products include Reference Configuration in their
names, and are the default templates listed in the Configuration Wizard for these
products.

Notes:

• A Reference Configuration domain does not support BPM or BAM
components.

• There is no specific Reference Configuration template for ESS. However,
ESS can be added to both a Reference Configuration domain and to a
Classic domain.

• The Reference Configuration feature does not apply to MFT domains.

Developing a Service Bus project in Reference Configuration mode means that you
enable Reference Configuration settings in JDeveloper so that new adapters that you
create in the project will have special JCA endpoint properties defined in their source
files. You can modify these properties directly in the Adapter Configuration Wizard for
projects newly created in Release 12c (12.2.1.4). See JCA Endpoint Properties in the
Adapter Configuration Wizard in Understanding Technology Adapters.

To create a Reference Configuration domain, see Selecting the Configuration
Template for Oracle Service Bus in Installing and Configuring Oracle Service Bus. To
configure the domain, see Configuring a Reference Configuration Domain in
Administering Oracle Service Bus.

Chapter 5
Creating Service Bus Applications and Projects in JDeveloper

5-14

Note:

If you develop Service Bus projects in Reference Configuration mode, Oracle
recommends that you deploy them to a server that is in a Reference Configuration
domain. If a Service Bus project is developed in Classic mode and the server to
which it is deployed is in a Reference Configuration domain, or vice versa,
JDeveloper displays a Mismatch notification in the Deploy Composite Wizard. For
more information, see Deploying Service Bus Applications or Projects in
JDeveloper.

How to Enable Reference Configuration Settings

By default, JDeveloper is in Classic mode. To develop Service Bus projects in Reference
Configuration mode, you must manually enable this feature in JDeveloper:

1. From the Tools menu, select Preferences.

2. Select Reference Configuration Settings.

3. Select Enable Reference Configuration settings in adapters.

5.3 Adding Service Bus Components
Once you create your Service Bus applications and projects, the next step is to add Service
Bus components that implement the business logic or processing rules of your application.

You can use the Components window from the Service Bus Overview Editor to drag and drop
components into the overview editor. Dragging Service Bus components to the editor
launches a corresponding creation wizard where you can create the component and any
associated resources, such as WSDL files and schema definitions. You can also create
components by right-clicking in one of the swimlanes, and then selecting from the available
options for that lane. Once you create the component, the corresponding files are generated
in the project directory structure and appear in the Application Navigator.

5.3.1 How to Launch the Service Bus Overview Editor
The Overview Editor displays a graphical representation of the servicebus.sboverview file.
In the Application Navigator, this file is represented by the node with the same name as the
project.

Note:

When you open the Overview Editor, Service Bus always tries to synchronize the
diagram to the current state of the project components.

To open the project overview:

• Do one of the following:

– Double-click the node in the Service Bus project with the same name as the project.

Chapter 5
Adding Service Bus Components

5-15

– Right-click the node in the Service Bus project with the same name as the
project and select Open.

5.3.2 How to Add a Pipeline
Add a pipeline to define the message flow and any data transformation, error handling,
and validation for the project. When you create a new pipeline, you have the option to
generate a proxy service from the pipeline configuration.

To add a pipeline:

1. From the Components window, select Service Bus.

2. From the Resources list, drag a Pipeline into the Pipelines/Split Joins lane in the
designer.

The Create Pipeline Service wizard appears.

3. Configure the settings for the pipeline.

For help with the configuration fields, click Help or press F1. For more information
about creating pipelines, see Working with Pipelines in Oracle JDeveloper .

4. To generate a proxy service to associate with the pipeline, click Expose as a
Proxy Service on the Type page of the wizard. Select a transport for the proxy
service and, optionally, modify the name.

5. On the last page of the wizard, click Finish.

The pipeline file is added to the project, and the pipeline appears in the Pipelines/
Split Joins section of the designer. If you exposed the pipeline as a proxy service,
the proxy service also appears in the Proxy Services swim lane, and the
components are automatically wired.

6. To define the message flow in the pipeline, see Working with Pipeline Actions in
Oracle JDeveloper.

7. Click Save All in the JDeveloper toolbar.

5.3.3 How to Add a Split-Join
Add a split-join to define a message flow that performs concurrent processing to
improve service performance. You can also define data transformations, validations,
error handling, and reporting in a split-join. When you create a new split-join, you have
the option to generate a proxy service from the split-join configuration.

To add a split-join:

1. From the Components window, select Service Bus.

2. From the Resources list, drag a SplitJoin into the Pipelines/Split Joins lane in the
designer.

The Create Split-Join Service wizard appears.

3. Configure the settings for the split-join.

For help with the configuration fields, click Help or press F1. For more information
about creating split-joins, see How to Create a Split-Join in JDeveloper.

Chapter 5
Adding Service Bus Components

5-16

4. To generate a proxy service to associate with the split-join, click Expose as a Proxy
Service on the Type page of the wizard. Select a transport for the proxy service and,
optionally, modify the name.

5. On the last page of the wizard, click Finish.

The split-join file is added to the project, and the split-join appears in the Pipelines/Split
Joins section of the designer. If you exposed the split-join as a proxy service, the proxy
service also appears in the Proxy Services swim lane, and the components are
automatically wired.

6. To define the message flow in the split-join, see Improving Service Performance with
Split-Join.

7. Click Save All in the JDeveloper toolbar.

5.3.4 How to Create a Proxy Service
A proxy service is the entry point of data into the Service Bus application. There are several
ways to create a proxy service using the Service Bus Overview Editor.

• Drag an adapter or transport from the Components window to the Proxy Services lane.
Adapters and transports are under Technology, Applications, and Advanced in the
Components window.

• When you create a pipeline or split-join, expose it as a proxy service. This creates the
pipeline or split-join, the proxy service, and the connecting wire between the two. For
more information, see How to Add a Pipeline and How to Add a Split-Join.

• After you create a pipeline or split-join, drag the input anchor to the Proxy Services
swimlane to create a new proxy service.

5.3.4.1 Creating a Proxy Service with an Adapter
When you use a JCA adapter to create a proxy service, Service Bus generates a concrete
WSDL file along with a JCA-based proxy service. The WSDL file generated for the JCA
adapter is abstract. The concrete WSDL file has the text "concrete" appended to the file
name.

To create a proxy service with an adapter:

1. Do one of the following:

• Right-click in the Proxy Services swim lane, point to Insert Adapters, and select the
adapter to use from the list of options.

• From the Components window, select Service Bus and drag an adapter into the
Proxy Services lane.

Tip:

Adapters are designated by a unique icon in the Technology section of the
Components window.

The creation wizard for the selected adapter appears.

2. Configure the settings for the adapter.

Chapter 5
Adding Service Bus Components

5-17

For help with the configuration fields, click Help or press F1. For more information
about configuring adapters, see Generic Oracle JCA Adapter Properties in
Understanding Technology Adapters.

3. On the last page of the wizard, click Finish.

The proxy service, adapter, and associated WSDL files are added to the project,
and the proxy service appears in the Proxy Services section of the designer. The
proxy service is configured for a JCA adapter, and it is named based on the type of
JCA adapter used.

4. To configure the proxy service, see Configuring Proxy Services and Using the JCA
Transport and JCA Adapters.

5. Click Save All in the JDeveloper toolbar.

5.3.4.2 Creating a Proxy Service with a Transport
To create a proxy service with a transport:

1. Do one of the following:

• Right-click in the Proxy Services swim lane, point to Insert Transports, and
select the transport to use from the list of options.

• From the Components window, select Service Bus and drag a transport into
the Proxy Services lane.

Tip:

Transports are designated by a plain gear icon in the Technology
and Advanced sections of the Components window.

The Create Proxy Service Wizard appears.

2. Configure the settings for the proxy service.

For help with the configuration fields, click Help or press F1. For more information
about creating proxy services, see How to Create a Proxy Service.

3. On the last page of the wizard, click Finish.

The proxy service file is added to the project, and the proxy service appears in the
Proxy Services section of the designer.

4. To configure the proxy service and transport, see Configuring Proxy Services and
Working with JCA Adapters, Transports, and Bindings

5. Click Save All in the JDeveloper toolbar.

5.3.4.3 Creating a Proxy Service from an Existing Pipeline or Split-Join
To create a proxy service from an existing pipeline or split-join:

1. Click the left anchor of the pipeline or split-join and drag it to the Proxy Services
swimlane.

The Create Proxy Service wizard appears.

2. Configure the settings for the proxy service.

Chapter 5
Adding Service Bus Components

5-18

For help with the configuration fields, click Help or press F1. For more information about
creating proxy services, see How to Create a Proxy Service.

3. On the last page of the wizard, click Finish.

The proxy service file is added to the project, and the proxy service appears in the Proxy
Services section of the designer.

4. To configure the proxy service and transport, see Configuring Proxy Services and
Working with JCA Adapters, Transports, and Bindings

5. Click Save All in the JDeveloper toolbar.

5.3.5 How to Reuse Existing Proxy Services in the Overview
A proxy service can be called as an external service from a pipeline or split-join in the Service
Bus application. You can add a proxy service to reference from the External Services context
menu or from an existing pipeline or split-join. The proxy service to reference must already be
created in the current application. Typically, proxy services are referenced so their logic is not
exposed, and they usually use the local transport.

To add an existing proxy service as a reference:

1. Do one of the following:

• Right-click in the External Services swim lane, point to Choose, and select Proxy
Service.

The Select Proxy Service dialog appears.

• Click the right anchor of a pipeline or split-join, and drag it to the External Services
swimlane.

The Resource Chooser dialog appears.

2. In the list of projects, expand the project and any folders containing the proxy service you
want to use.

3. Select the proxy service to use, and then click Finish.

4. Click Save All in the JDeveloper toolbar.

5.3.6 How to Create a Business Service
A business service communicates with the external systems with which you share data. You
can create a business service by dragging either an adapter or a transport from the
Components window to the External Services lane. Adapters and transports are under
Technology, Applications, and Advanced in the Components window.

5.3.6.1 Creating a Business Service with an Adapter
When you use a JCA adapter to create a business service, Service Bus generates a concrete
WSDL file along with the business service. The WSDL file generated for the JCA adapter is
abstract. The concrete WSDL file has the text "concrete" appended to the file name.

To create a business service with an adapter:

1. Do one of the following:

• Right-click in the External Services swim lane, point to Insert Adapters, and select
the adapter to use from the list of options.

Chapter 5
Adding Service Bus Components

5-19

• From the Components window, select Service Bus and drag an adapter into
the External Services lane in the designer.

Tip:

Adapters are designated by a unique icon in the Technology section
of the Components window.

The creation wizard for the selected adapter appears.

2. Configure the settings for the adapter.

For help with the configuration fields, click Help or press F1. For more information
about configuring adapters, see Generic Oracle JCA Adapter Properties in
Understanding Technology Adapters.

3. On the last page of the wizard, click Finish.

The business service, adapter, and associated WSDL files are added to the
project, and the business service appears in the External Services section of the
designer. The business service is configured for a JCA adapter, and is named
based on the type of JCA adapter used.

4. To configure the business service, see Configuring Business Services and Using
the JCA Transport and JCA Adapters.

5. Click Save All in the JDeveloper toolbar.

5.3.6.2 Creating a Business Service with a Transport
To create a business service with a transport:

1. Do one of the following:

• Right-click in the External Services swim lane, point to Insert Transports, and
select the transport to use from the list of options.

• From Components window, select Service Bus and drag a transport into the
External Services lane in the designer.

Tip:

Transports are designated by a plain gear icon in the Technology
and Advanced sections of the Components window.

The Create Business Service Wizard appears.

2. Configure the settings for the business service.

For help with the configuration fields, click Help or press F1.

3. On the last page of the wizard, click Finish.

The business service file is added to the project, and the business service appears
in the External Services section of the designer.

4. To configure the business service and transport, see Configuring Business
Services and Working with JCA Adapters, Transports, and Bindings .

Chapter 5
Adding Service Bus Components

5-20

5. Click Save All in the JDeveloper toolbar.

5.3.7 How to Reuse Existing Business Services in the Overview
If the business service you want to use already exists in the project, you can reference that
business service from the Overview Editor. You can add the business service from the
External Services context menu or from an existing pipeline or split-join. The business service
must already be created in the current application.

To add an existing business service to the overview:

1. Do one of the following:

• Right-click in the External Services swim lane, point to Choose, and select Business
Service.

The Select Business Service dialog appears.

• Click the right anchor of a pipeline or split-join, and drag it to the External Services
swimlane.

The Resource Chooser dialog appears.

2. In the list of projects, expand the project and any folders containing the business service
you want to use.

3. Select the business service to use, and then click Finish.

4. Click Save All in the JDeveloper toolbar.

5.3.8 How to Invoke Deployed Service Bus and SOA Applications
From your Service Bus applications, you can invoke other Service Bus or SOA applications
that have already been deployed to the Oracle WebLogic Server.

To invoke deployed Service Bus and SOA applications:

1. Launch the Create Business Service or Create Proxy Service wizard by dragging a
transport or adapter to the Proxy Services or External Services swim lane on the Service
Bus Overview Editor.

2. On the Type page, select WSDL and click the Find existing WSDLs icon.

The Select WSDL dialog appears.

3. In the list at the top, select Application Server.

4. Select the Oracle WebLogic Server on which the application is deployed.

5. Expand the tree to display the Service Bus or SOA application you want to invoke.

6. Continue expanding the application until the service to invoke is visible.

7. Select the service and click OK.

The Import Service Bus Resources dialog appears.

8. Verify the resource and location information, and click Next.

9. On the Configuration page, make sure the service and any dependent resource (such as
schemas) are selected, and click Finish.

10. On the Type page of the Create Business/Proxy Service wizard, verify the binding or port
information, and click Next.

Chapter 5
Adding Service Bus Components

5-21

11. Verify the transport and URI information, and click Finish.

For information about creating an application server connection, see Deploying Oracle
Service Bus Services.

5.3.9 What You May Need to Know About Adding Components
Note the following about adding components:

• You can create a component from either the Service Bus Overview Editor or the
Application Navigator menu, which is accessed by right-clicking a project or folder.
Both ways add the component to the overview and add the component's file to the
project.

The following chapters provide instructions for adding components from the
Application Navigator:

– Creating and Configuring Proxy Services

– Creating and Configuring Business Services

– Improving Service Performance with Split-Join

– Working with Oracle Service Bus Pipelines

• You can also create Service Bus components from web services deployed to the
runtime and those shared using the Metadata Services (MDS) repository. Use the
Resources window to browse for the web services. For more information, see
Sharing Data Using the Metadata Services Repository.

5.4 Modifying and Deleting Components in the Service Bus
Overview Editor

From the Service Bus Overview Editor, you can rename a component, delete a
component, and access a component's definition editor to update its configuration.

• How to Edit Components from the Service Bus Overview Editor

• How to Rename Components in the Service Bus Overview Editor

• How to Delete Components in the Service Bus Overview Editor

5.4.1 How to Edit Components from the Service Bus Overview Editor
Once you create components in the Overview Editor, additional configuration is
required. You can access a component's definition editor from the Overview Editor in
order to configure specific details about that component.

To edit a Service Bus component:

1. Double-click the component in the Service Bus Overview Editor to display the
appropriate editor or designer, as described in Table 5-6.

Chapter 5
Modifying and Deleting Components in the Service Bus Overview Editor

5-22

Table 5-6 Starting Service Bus Editors from the Service Bus Overview Editor

Component Description

Pipeline Double-click a pipeline in the Service Bus Overview Editor to
launch the Pipeline Definition Editor, where you can define data
flow and transformations. This editor provides a graphical format
where you can drag and drop stages, actions, and error handlers
into the message flow.

Split-Join Double-click a split-join in the Service Bus Overview Editor to
launch the Split-Join Definition Editor, where you can define the
data flow and transformations for processing message parts in
parallel. This editor provides a graphical format where you can
drag and drop operations and error handlers into the message
flow.

Proxy Service Double-click a proxy service in the Service Bus Overview Editor to
launch the Proxy Service Definition Editor, where you can further
configure the transport, connectivity information, and security
policies for the proxy service.

Business Service Double-click a business service in the Service Bus Overview Editor
to launch the Business Service Definition Editor, where you can
further configure the transport, connectivity information, and
security policies for the business service.

2. To edit the JCA Adapter on which a proxy or business service is based, right-click the
proxy or business service in the Overview Editor and select Edit JCA.

The configuration wizard for the associated adapter appears.

3. To edit the REST Binding on which a proxy or business service is based, right-click the
proxy or business service in the Overview Editor and select Edit REST.

The REST Binding wizard appears.

4. To return to the Service Bus Overview Editor from the editor for any Service Bus
component, double-click the project_name node in the Application Navigator or single-
click the project_name tab above the designer.

For help with a service component editor, click Help or press F1.

5. From the File main menu, select Save All.

5.4.2 How to Rename Components in the Service Bus Overview Editor
When you rename a component from the Service Bus Overview Editor, the names of the file
and the corresponding node in the Application Navigator are updated to reflect the change.
Any references to the renamed component are also updated.

Note:

When you change a component's name using JDeveloper's refactoring feature, the
same processing occurs.

To rename a Service Bus component:

1. Right-click the component you want to rename in the Service Bus Overview Editor.

Chapter 5
Modifying and Deleting Components in the Service Bus Overview Editor

5-23

2. Click Rename.

3. On the Rename dialog, enter a new name for the component in the Rename To
field. Do not change the file extension.

4. If the component is referenced by another component, click Show Usages to view
those references.

5. Click OK to finalize the new name.

6. In the JDeveloper toolbar, click Save All.

5.4.3 How to Delete Components in the Service Bus Overview Editor
When a component is deleted, all references pointing to it are invalidated and all wires
are removed. This also deletes the file that defines the component. Associated files,
like WSDL documents or XML schemas, are not deleted.

To delete a Service Bus component:

1. In the Service Bus Overview Editor, right-click the component to delete and select
Delete.

The Confirm Delete dialog appears.

2. If the component is used in any projects, click Show Usages to view more
information.

3. To proceed with deleting the component, click Yes.

5.5 Synchronizing the Overview Diagram
You can add and edit Service Bus components from both inside and outside the
Service Bus Overview Editor. Changes made from outside the Overview Editor are
automatically synchronized with the overview diagram when you launch the Overview
Editor. The Overview Editor toolbar gives you options to refresh and update the
diagram, if you suspect the diagram is not displaying properly.

• Refresh Diagram: Synchronizes the composite diagram with the current state of
the project components as stored in the configuration framework.

• Refresh Validation State: Runs a validation check and highlights all the conflict
indicators on the composite nodes. Ared icon with an "x" in the middle indicates a
conflict.

When you close the Service Bus Overview Editor while there are unsaved changes to
project components, a dialog appears with a list of files that must be saved. You can
select which files to save before closing the editor. Any files you do not save revert to
their last saved state when the editor closes. It is always good practice to save your
work frequently to avoid loss of data and to keep project files synchronized.

5.6 Wiring Service Bus Components
You wire (connect) proxy services, pipelines, split-joins, and external services to
indicate the order in which components are called during message processing. These
guidelines apply when wiring Service Bus components.

Chapter 5
Synchronizing the Overview Diagram

5-24

• Since a proxy service is an inbound service, the reference handle appears on the right
side. External services are outbound, so the service handle appears on the left side.
Pipelines and split-joins have handles on both sides.

• You can wire a proxy service to any other component or reference type. When you wire
from a proxy service to another component, Service Bus updates the Target Service field
for the proxy service with the new target information.

• You can wire pipelines and split-joins to any other component or reference type. When
you wire from a pipeline or a split-join to another component, Service Bus adds the
component information to the External Services node of the pipeline or split-join.

• A proxy service can only post to one component or reference, so each proxy service can
only have one outbound wire.

• If the source and destination services you are wiring have incompatible binding types,
you cannot wire the components. This validation is based on the currently saved state.

5.6.1 How to Wire Service Bus Components
You can wire a proxy service to a pipeline, split-join, or external service. You can wire
pipelines and split-joins to each other and to an external service. For example, you can wire a
proxy service to a pipeline, wire that pipeline to a split-join, and then wire the split-join to a
business service.

To wire Service Bus components:

1. Click the handle on the component to wire from, and then drag a wire to the component
to wire to.

Tip:

When you drag the wire, make sure to drag into the receiving handle on the
component. Otherwise, the wire might not be created.

2. Select Save All from the File main menu.

3. To verify the target service for a proxy service, do the following:

a. Double-click the proxy service.

b. Verify that the wired component appears in the Target Service field on the General
tab.

4. To verify the external services for a pipeline, do the following:

a. Double-click the pipeline.

b. In the Pipeline Definition Editor, click the left-arrow button next to the root node.

c. Expand External Services.

The wired proxy services appear in the list.

5. To verify the external services for a split-join, do the following:

a. Double-click the split-join.

b. In the Split-Join Definition Editor, click the left-arrow button next to the root node.

c. Expand External Services.

Chapter 5
Wiring Service Bus Components

5-25

The wired business services appear in the list.

5.6.2 How to Delete Wires Between Services
When you delete wires, any linking information is cleaned up and removed as well.

• When you remove a wire from a proxy service to a pipeline, split-join, or business
service, Service Bus removes the service information from the Target Service field
for the proxy service.

• When you remove a wire from a pipeline or a split-join to another component,
Service Bus removes the component information from the External Services node
of the pipeline or split-join.

• When an activity in a component is linked with a deleted link, validating that
component reports the error so you can explicitly correct it. Service Bus does not
perform automatic corrections for this when you delete a wire.

To delete wires between services:

1. Right-click the wire to remove and click Delete.

2. On the Confirm Delete dialog, click Yes.

5.7 Attaching Security Policies to Service Bus Components
As you create your Service Bus components in the Service Bus Overview Editor, you
can secure services by attaching security policies to proxy and business services.
Security can also be defined at the message and transport levels for certain services.

For more information about implementing policies, see Securing Business and Proxy
Services.

To attach a security policy to a proxy or business service:

1. In the Service Bus Overview Editor, right-click the proxy or business service to
which you want to add security.

2. Select Configure OSB WS Policies.

The editor for the selected service appears with the Policies tab displayed.

3. Attach policies as described in Attaching and Configuring Policies in JDeveloper.

4. When you are done, click Save in the JDeveloper toolbar.

5.8 Testing Service Bus Components in the Overview Editor
You can access the Run and Debug features of JDeveloper directly from the Service
Bus Overview Editor to test and debug the components you create.

Selecting Run or Debug for a component in the editor launches the Service Bus Test
Console, where you can enter your test input and configure more options for testing.
Debugging lets you set breakpoints in pipelines and split-joins so you can step through
the message flow and test it in manageable sections.

Chapter 5
Attaching Security Policies to Service Bus Components

5-26

5.8.1 How to Test a Service Bus Component
Access the Test Console directly from the Overview Editor to test Service Bus components.

To test a Service Bus component:

1. In the Service Bus Overview Editor, right-click the component to test, and select Run.

The component to test can be a proxy service, business service, pipeline, or split-join.
The Test Console appears in a web browser.

2. Enter the input in the Test Console, and then click Execute.

For information about setting properties in the Test Console, see Test Console Page
Reference for Services.

3. When you are done testing, click Terminate in the JDeveloper toolbar and select the
name of the running process.

5.8.2 How to Debug a Service Bus Component
Use JDeveloper's debug feature to set breakpoints in pipelines and split-joins and test them
in the Test Console.

To debug a Service Bus pipeline or split-join:

1. Set the breakpoints for the pipeline or split-join, as described in How to Set Breakpoints
on Service Bus Components.

2. In the Service Bus Overview Editor, right-click the pipeline or split-join to debug, and
select Debug.

The Test Console appears in a web browser.

3. Enter the input in the Test Console, and then click Execute.

For information about setting properties in the Test Console, see Test Console Page
Reference for Services.

4. When you are done testing, click Terminate in the JDeveloper toolbar and select the
name of the debugging process.

5.9 Deploying a Service Bus Application
To deploy a Service Bus application from JDeveloper, the instance of JDeveloper must have
a connection to an Oracle WebLogic Server. You can also export Service Bus projects, import
them into the Oracle Service Bus Console, and activate the projects from the console.

For more information about deploying Service Bus applications, see Deploying Oracle
Service Bus Services.

Chapter 5
Deploying a Service Bus Application

5-27

Part II
Working with Oracle Service Bus Resources

This part describes the primary resources that you can create and use in Service Bus
projects, and provides instructions for creating and maintaining those resources.

This part includes the following chapters:

• Creating and Configuring Project Resources

• Creating and Configuring System Resources

• Creating and Configuring Proxy Services

• Creating and Configuring Business Services

• Improving Service Performance with Split-Join

• Working with WSDL Documents

Information about pipelines is provided in a separate part, Working with Oracle Service Bus
Pipelines.

6
Creating and Configuring Project Resources

This chapter provides information about project resources you can create to support your
Service Bus services, and provides links to additional resources. Project resources can be
shared and re-used among services throughout a session. Local resource include things like
authentication accounts, JAR files, MQ connections, email or JMS alert destinations,
mappings, and so on. Several of these resources can be referenced from proxy and business
services, and need to be created before you can configure the proxy or business services
that use them.
This chapter includes the following topics:

• Introduction to Service Bus Project Resources

• Working with Service Accounts

• Working with Service Key Providers

• Working with Alert Destinations

• Working with XML Schemas

• Working with XML Documents

• Working with JAR Files

The following topics provide information and instructions for additional local resource types:

• Working with WSDL Documents

• WADL Documents for REST Services in Service Bus

• Transforming Data with XQuery

• Transforming Data with XSLT

• Mapping Data with Cross-References

• Mapping Data with Domain Value Maps

• Defining Data Structures with Message Format Language

• Working with JCA Binding Resources

• Working with JavaScript Resources

• Working with MQ Connections

• "Configuring Throttling for a Group of Business Services" in Administering Oracle Service
Bus

6.1 Introduction to Service Bus Project Resources
Service Bus project resources refer to those resources that can be referenced by several
components within an application or session. They are also known as local resources.

Project resources include things like service accounts, which define authentication
information for remote servers; XML documents and schemas; JAR files; XSLT and XQuery
mappings; WSDL and WADL files; and so on. Certain Service Bus components require

6-1

access to specific project resources, and those project resources must be created
before you can create the components that rely on them. For example, if you create a
proxy service with an email transport, you must first create the service account that
defines the login information for the email server. To create an MQ proxy or business
service, you must first create the MQ connection resource.

6.1.1 Project Resources and Sessions in the Oracle Service Bus
Console

When you create, modify, or delete project resources in the Oracle Service Bus
Console, you must be in an active session. If you discard the session, any project
resources your created and the associated data are also discarded. When you activate
a session after creating or modifying resources, Service Bus makes that information
available to the runtime.

6.2 Working with Service Accounts
A service account provides a user name and password that proxy services and
business services use for outbound authentication or authentication to a local or
remote resource, such as an FTP server or a JMS server. The user names and
passwords that you define for Service Bus access are used for inbound authentication
and for authenticating administrative requests.

For example, if a business service is required to supply a user name and password for
transport-level authentication with a web service, you create a service account that
specifies the user name and password. You then configure the business service to
include the service account credentials in its outbound requests.

6.2.1 Service Account Authentication Types
You can use the same service account for multiple business services and proxy
services. To specify the user name and password that a service account provides, you
can define any of the following types:

• Static

• User Name and Password Pass-Through

• User Mapping Authentication

6.2.1.1 Static
With a static type of authentication, you save a user name and password with the
service account configuration. The service account encodes this user name and
password in the outbound request. Use this type of authentication when the login
information does not need to change for different messages.

6.2.1.2 User Name and Password Pass-Through
A pass-through service account provides the user names and passwords that it
receives from incoming client requests. For example, if an inbound HTTP basic
request contains pat and patspassword as the user name and password, the service
account encodes pat and patspassword in the outbound request.

Chapter 6
Working with Service Accounts

6-2

Because this type requires that client requests include clear-text user names and passwords,
it is applicable only for client requests that use either the HTTP basic protocol, a Web
Services Security Username Token authentication with a clear-text password, or a custom
user name and password token.

Oracle recommends that you use this technique only when Service Bus and the endpoint
belong to the same authentication domain. For example, use this technique when you are
routing messages within a single organization and both Service Bus and the message
consumer authenticate against a common LDAP server.

The following restrictions apply to this technique:

• It cannot be used in outbound requests that authenticate Service Bus to a local or remote
server or system resource, such as an FTP server or a JMS server.

• It cannot be used with the fn-bea:lookupBasicCredentials XQuery function. For more
information, see Service Bus XQuery Functions.

Note:

If your proxy is an active WSS intermediary, you can use WS-Security to
encrypt a WS-Security Username Token or custom user name and password.
In this instance, user name and password pass-through works because the
proxy first decrypts the request and then has access to the clear-text user name
and password.

6.2.1.3 User Mapping Authentication
A service account that uses mapping authentication maps the user name from one or more
authenticated clients to user names and passwords that you specify. The mapping
authentication type requires you to correlate (map) the user name obtained by authenticating
an inbound request from a client (the local user name) to a user name and password that you
specify (the remote user name and password). When the service account receives a request
from an authenticated client that has been mapped, it provides the appropriate remote user
name and password for the business service or proxy service outbound request.

If the client authenticates at both the transport level and message level, the service account
maps the message level user name to the remote user name and password. You can also
map an anonymous user name to a remote user name and password.

The following restrictions apply to mapping authentication:

• It cannot be used in outbound requests that authenticate Service Bus to a local or remote
server or system resource, such as an FTP server or a JMS server.

• It cannot be used with the fn-bea:lookupBasicCredentials XQuery function. For more
information, see Service Bus XQuery Functions.

6.2.2 How to Create Service Accounts
Use service accounts to provide authentication information to proxy and business services for
outbound authentication or for resource authentication, such as FTP and JMS servers.
Service accounts can define authentication information in the following ways:

• Providing a static user name and password.

Chapter 6
Working with Service Accounts

6-3

• Passing the incoming user name and password through to the server.

• Mapping the incoming user name and password to a user name and password
you specify.

For more information about these authentication types, see Service Account
Authentication Types. For more information about service account properties, see the
online help provided with Service Bus.

6.2.2.1 Creating a Service Account that Passes Though Authentication
Information

To create a service account that passes through authentication information:

1. Do one of the following:

• For JDeveloper: In the Application Navigator, right-click the project or folder to
contain the new service account, point to New, and select Service Account.

• For Oracle Service Bus Console: In the Project Navigator, right-click the
project or folder to contain the new service account, point to Create, and
select Resource. Click Security, click Service Account, and then click OK.

2. Enter a unique name for this service account, and an optional description.

3. Click Create or Finish.

The Service Account Definition Editor appears. By default, the type is Pass
Through.

4. Click Save.

The service account is created and saved in the current session.

6.2.2.2 Creating a Service Account with a Static Password
To create a service account with a static password:

1. Create a service account, as described above.

2. On the Service Account Definition Editor, select Static for the type.

Tip:

If you are working in the Oracle Service Bus Console, you can also
select Static for the type on the Create Service Account dialog when you
first create the resource.

User name and password fields appear in the editor.

3. Enter the user name and password, and then confirm the password you entered.
To encrypt these credentials, see the steps below.

4. In the toolbar, click Save.

How to Enable Encryption of Service Account Credentials
These settings are available in 12c (12.2.1.4) only if you have installed patch
32467052. Sign in to My Oracle Support and search for the patch number to locate
and download the patch.

Chapter 6
Working with Service Accounts

6-4

https://support.oracle.com/

By default, the user name and password for a service account are not encrypted. If you want
to encrypt these credentials, you must manually enable encryption in JDeveloper before you
create the service account:

1. From the Tools menu, select Preferences.

2. Select ServiceBus Service Account.

3. Select Enable encryption on service account user credentials.

Note:

The encryption of service account credentials is machine-specific. This means that
in a development environment where multiple developers on different machines
work on the same project using source control, they will not have access to the
service account as one machine cannot decrypt credentials encrypted on another
machine. To share projects that include encrypted service account credentials
across machines, you can use JDeveloper to export and import Service Bus
projects. During export, JDeveloper decrypts the service account credentials,
allowing the project to be successfully imported using JDeveloper on a different
machine. See Importing and Exporting Resources in JDeveloper.

6.2.2.3 Creating a Service Account that Maps Incoming Passwords
To create a service account that maps incoming passwords:

1. Create a service account, as described above.

2. On the Service Account Definition Editor, select Mapping for the type.

Tip:

If you are working in the Oracle Service Bus Console, you can also select
Mapping for the type on the Create Service Account dialog when you first
create the resource.

Mapping tables appear in the editor.

3. In the Remote Users table, do the following:

a. Click the Add icon above the table.

b. In the new row that appears, enter the user name and password that you want to
send in outbound requests.

c. Repeat the above steps for each remote user to add.

d. To remove a remote user, select the row in the table and click the Delete icon.

4. To map remote users to local users, do the following in the Local Users table:

a. Click the Add icon above the table.

b. In the Local User Name column, enter the name that identifies a client that has been
authenticated on its inbound request.

Chapter 6
Working with Service Accounts

6-5

c. From the Remote User Name list of options, select the user name to send in
outbound requests for the authenticated user you specified in the Local User
Name field.

The list of options is populated from the values you created in the Remote
Users table.

d. Repeat the above steps for each local user to add.

Note:

If you have not already added these users in Fusion Middleware
Control, do so before you use this mapping in a runtime
environment. Otherwise, the mapping will never match an
authenticated user and will never be used. For more information
about adding users, see "Creating Oracle Service Bus Users" in
Administering Oracle Service Bus.

e. To remove a local user, select the row in the table and click the Delete icon.

5. To map anonymous requests to a specific remote user account, select Map
Anonymous Requests to Remote User, and then select the user name from the
list of options.

This list of options is also populated from the values you created in the Remote
Users table.

6. In the toolbar, click Save.

6.2.3 How to Edit Service Accounts
Once you create a service account you can modify its description and authentication
type, including updating static login credentials, and adding and removing remote and
local users for mapped authentication.

To edit a service account:

1. In the Application Navigator or Project Navigator, expand the project and folders
containing the service account to edit.

2. Right-click the service account name, and select Open.

3. Make any of the following changes:

• Update the description.

• Change the authentication type. Make sure to reconfigure the authentication
information, as described in How to Create Service Accounts.

• For mapped authentication types: Add or remove remote and local users,
modify remote user passwords, modify local user mappings, and update
anonymous user mappings.

For more information about these tasks, see Creating a Service Account that
Maps Incoming Passwords and the online help.

You cannot change the service account name.

4. When you are done making changes, click Save.

Chapter 6
Working with Service Accounts

6-6

5. If you are using the Oracle Service Bus Console, click Activate to end the session and
deploy the configuration to the runtime.

Note:

If the service account that you modified authenticates with a WebLogic JMS
server, the JMS server might not recognize your modification for up to 60
seconds. By default, WebLogic Server JMS checks permissions for each
destination every 60 seconds. To change this behavior, modify the WebLogic
Server startup command by setting the following system property to the
frequency (in seconds) that you want WebLogic Server JMS to check
permissions: weblogic.jms.securityCheckInterval.

A value of 0 (zero) for this property ensures that a permissions check is
performed for every send, receive, and getEnumeration action on a JMS
resource.

6.2.4 How to Delete Service Accounts
When you delete a service account, the user name, password, or local-user to remote-user
mapping data that the service account defines are also deleted. You can delete the service
account even if it is referenced by other resources, though this might result in conflicts due to
unresolved references to the deleted resource.

Before you Begin:

If any business service or proxy service is configured to use the service account, remove the
service account from the business service or proxy service. In the Oracle Service Bus
Console, open the service account in the Service Account Definition Editor and click the
Tools icon in the upper right, and then select References to find out whether any services
are using it. In JDeveloper, right-click the service account and select Explore Dependencies.

To delete a service account:

1. In the Application Navigator or Project Navigator, expand the project and folders
containing the service account to delete.

2. Right-click the service account, and select Delete.

3. If you are using JDeveloper, a confirmation dialog displays the number of references for
the service account. Click Show Usages to view information about the references, and
then click Yes to confirm that you want to delete the resource.

4. If you are using the Oracle Service Bus Console, click Activate to end the session and
deploy the configuration to the runtime.

6.3 Working with Service Key Providers
A service key provider contains Public Key Infrastructure (PKI) credentials that proxy services
use for decrypting inbound SOAP messages and for outbound authentication and digital
signatures.

A PKI credential is a private key paired with a certificate that can be used for digital
signatures and encryption (for Web Services Security) and for outbound SSL authentication.
The certificate contains the public key that corresponds to the private key.

Chapter 6
Working with Service Key Providers

6-7

Note:

• To use a service key provider, you must configure a PKI credential
mapping provider. For information on configuration, see Configuring the
Oracle WebLogic Security Framework: Main Steps.

• In earlier versions of Service Bus, service key providers were called
proxy service providers.

A single service key provider can contain all the following PKI credentials:

• A key-pair for digital encryption.

Proxy services use this key-pair to decrypt inbound SOAP messages that have
been encrypted to conform with a Web Services Policy statement. For the service
key provider to support digital encryption, the key store that is associated with the
PKI credential mapper must contain at least one X.509 certificate that supports
encryption.

• A key-pair for digital signatures.

Proxy services use this key-pair when its endpoint is a web service and the web
service requires clients to sign one or more parts of a SOAP envelope.

• A key-pair for SSL client authentication (two-way SSL).

Proxy services use this key-pair to authenticate when acting as a client during an
outbound TLS/SSL (Secure Sockets Layer) connection. For example, when
routing a message to an HTTPS business service or proxy service that requires
client certificate authentication.

You can use the same service key provider for multiple proxy services.

6.3.1 How to Create Service Key Providers
When you associate an encryption key service key provider with a proxy service,
Service Bus embeds the X.509 certificate into the proxy service's WSDL file. The
proxy service then uses this certificate to encrypt the messages that it sends to its
endpoint. The proxy service uses the private key in the PKI credential to decrypt the
messages that the endpoint returns.

To create a service key provider:

1. Do one of the following:

• For JDeveloper: In the Application Navigator, right-click the project or folder to
contain the new service key provider, point to New, and select Service Key
Provider.

• For Oracle Service Bus Console: In the Project Navigator, right-click the
project or folder to contain the new service key provider, point to Create, and
select Resource. Click Security, then click Service Key Provider, and then
click OK.

2. Enter a unique name for this service key provider, and an optional description.

3. Click Create or Finish.

The Service Key Provider Definition Editor appears.

Chapter 6
Working with Service Key Providers

6-8

4. To configure an encryption key, do the following:

a. Next to Encryption Key, click the Browse icon.

The Select an alias for Encryption Key window displays the key aliases from the key
store that your realm's PKI credential mapper uses.

b. Enter the password you use to secure access to the key store. (You set this
password when you create the keystore.)

c. Select a key alias that maps to an X.509 certificate and that supports encryption.

d. Click Submit.

5. To configure a digital signature key, do the following:

a. Next to Digital Signature Key, click the Browse icon.

The Select an alias for Digital Signature Key window displays the key aliases from
the key store that your realm's PKI credential mapper uses.

b. Enter the password you use to secure access to the key store. (You set this
password when you create the keystore.)

c. Select a key alias.

d. Click Submit.

6. To configure an SSL client authentication key for two-way SSL, do the following:

a. Next to SSL Client Authentication Key, click the Browse icon.

The Select an alias for SSL Client Authentication Key window displays the key
aliases from the key store that your realm's PKI credential mapper uses.

b. Enter the password you use to secure access to the key store. (You set the password
when you create the keystore.)

c. Select a key alias.

d. Click Submit.

7. In the toolbar, click Save.

8. If you are using the Oracle Service Bus Console, click Activate to end the session and
deploy the configuration to the runtime.

6.3.2 How to Edit Service Key Providers
Once you create a service key provider, you can reconfigure the key information.

To edit a service key provider:

1. In the Application Navigator or Project Navigator, expand the project and folders
containing the service key provider to edit.

2. Right-click the service account name, and select Open.

3. To make a change to the fields, click the icons to the right of the fields to select, remove,
or edit a key.

For information about the fields you can edit, see How to Create Service Key Providers
and the online help provided with Service Bus.

4. When you are done making changes, click Save in the toolbar.

Chapter 6
Working with Service Key Providers

6-9

5. If you are using the Oracle Service Bus Console, click Activate to end the session
and deploy the configuration to the runtime.

6.3.3 How to Delete Service Key Providers
When you delete a service key provider, Service Bus also deletes the associated alias
to key-pair bindings from the PKI credential mapping provider. Service Bus does not
delete the associated key-certificate pair from the key store. You can delete the service
key provider even if it is referenced by other resources, though this might result in
conflicts due to unresolved references to the deleted resource.

Before you Begin:

If any proxy service is configured to use the service key provider, remove the service
key provider from the proxy service. In the Oracle Service Bus Console, open the
service key provider in the Service Key Provider Definition Editor and click the Tools
icon in the upper right, and then select References to find out if it has any references.
In JDeveloper, right-click the service key provider and select Explore Dependencies.

To delete a service key provider:

1. In the Application Navigator or Project Navigator, expand the project and folders
containing the service key provider to delete.

2. Right-click the name of the service key provider, and select Delete.

3. If you are using JDeveloper, a confirmation dialog displays the number of
references for the service key provider. Click Show Usages to view information
about the references, and then click Yes to confirm that you want to delete the
resource.

4. If you are using the Oracle Service Bus Console, click Activate to end the session
and deploy the configuration to the runtime.

6.4 Working with Alert Destinations
An alert destination resource defines a list of recipients that can receive alert
notifications from Service Bus.

You can configure each alert destination resource to include a set of recipients
according to a given context and then associate the resource with the alerts you
define. Alert destinations give you the flexibility to specify whether alerts are sent to
SNMP traps, collected for reporting, logged to the alert log of the local server , or sent
to e-mail recipients or JMS destinations.

When you configure an Alert action in a pipeline, or an SLA alert rule for a service, the
configuration includes specifying an alert destination, which defines who receives
alerts when they are generated. For email and JMS destinations, a destination
resource can include a list of email addresses or JMS URIs, respectively. You can
reuse alert destinations across alert configurations.

6.4.1 Alert Destination Types
For each alert destination, you can specify that the alerts be sent to multiple types of
destinations, as described in the following sections.

• Email

Chapter 6
Working with Alert Destinations

6-10

• SNMP Traps

• Reporting

• Alert Logging

• JMS

6.4.1.1 Email
Alert notifications can be sent to multiple emails addresses. To configure an email alert
destination, you need an SMTP server global resource or a JavaMail session in Oracle
WebLogic Server. When an alert is delivered, email metadata consisting of the details about
the alert is prefixed to the details of the payload. For information about SMTP server
resources, see Working with SMTP Server Resources. For information about configuring
JavaMail sessions, see Configure Access to JavaMail in the Oracle WebLogic Server
Administration Console Online Help.

6.4.1.2 SNMP Traps
Simple Network Management Protocol (SNMP) traps allow any third-party software to
monitor service level agreements within Service Bus. With SNMP notifications enabled, Web
Services Management (WSM) and Enterprise Service Management (ESM) tools can monitor
SLA violations and pipeline alerts.

SNMP is an application-layer protocol which allows the exchange of information on the
management of a resource across a network. It enables you to monitor a resource and, if
required, take some action based on the data obtained from the resource. Service Bus
supports SNMP version 1 and 2. SNMP includes the following components:

• Managed Resource

• Management Information Base (MIB)

• SNMP Agent

• SNMP Manager

• Network Management System (NMS)

6.4.1.3 Reporting
The Reporting destination lets you send notifications of pipeline alerts and SLA alerts to a
custom reporting provider that can be developed using the reporting APIs provided with
Service Bus. This allows third parties to receive and process alerts in custom Java code.

6.4.1.4 Alert Logging
Each alert destination lets you configure whether or not the alerts sent to that destination are
logged. Logged alerts are sent to the local alert log. Each Service Bus server has its own
alert log. In a cluster, the Admin Server collects the alert logs from all Managed Servers and
aggregates the alerts for logging.

6.4.1.5 JMS
Alert notifications can be sent to one or more Java Messaging Service (JMS) queues or
topics. You must configure a JNDI URL for the JMS destination for alerts, create a JMS
connection factory and a queue or topic, and target them to the appropriate JMS server in the

Chapter 6
Working with Alert Destinations

6-11

Oracle WebLogic Server Administration Console. For information, see Methods for
Configuring JMS System Resources in Administering JMS Resources for Oracle
WebLogic Server. When you define the JMS alert destination you can either use a
destination queue or a destination topic. The message type can be bytes or text. For
more information about how to configure JMS alert destinations see How to Define
JMS Recipients for an Alert Destination.

6.4.2 How To Create Alert Destinations
Alerts are aggregated at runtime, and you can view them on the Service Bus
Dashboard in Fusion Middleware Control.

To create an alert destination:

1. Do one of the following:

• For JDeveloper: In the Application Navigator, right-click the project or folder to
contain the new alert destination, point to New, and select Alert Destination.

• For Oracle Service Bus Console: In the Project Navigator, right-click the
project or folder to contain the new alert destination, point to Create, and
select Resource. Click Miscellaneous, then click Alert Destination, and then
click OK.

2. Enter a unique name for this alert destination, and an optional description.

3. Click Create or Finish.

The Alert Destination Definition Editor appears.

4. Select any of the following destinations to include them in this alert destination
resource. In JDeveloper, select Yes to select a destination type.

• SNMP Trap: Alerts are sent as SNMP traps, and can be processed by any
third-party enterprise monitoring systems.

• Reporting: Alerts are sent to the Service Bus reporting module and can be
captured using a custom reporting provider developed using the reporting
APIs provided with Service Bus. This allows third-parties to receive and
process alerts in custom Java code.

• Alert Logging: Alerts sent to this alert destination are logged to the alert log.

5. To add email recipients to the alert destination resource definition, see How to
Define Email Recipients for an Alert Destination.

6. To add JMS destinations to the alert destination resource definition, see How to
Define JMS Recipients for an Alert Destination.

7. Click Save.

6.4.3 How to Define Email Recipients for an Alert Destination
Before you add an email destination, you must configure an SMTP server (see How to
Create SMTP Server Resources), or a JavaMail session in WebLogic Server. If there
are no SMTP server resources or JavaMail sessions available, configured, you cannot
configure an email recipient.

To add or update email recipients in an alert destination:

1. Create an alert destination, as described in How To Create Alert Destinations.

Chapter 6
Working with Alert Destinations

6-12

2. Above the email Recipients table, click Add.

In JDeveloper, email configuration fields appear in the bottom of the page. In the Oracle
Service Bus Console, the Add email Recipients dialog appears.

3. In the Mail Recipients field, enter an email recipient in the format
mailto:username@hostname.

To specify multiple email recipients, enter the user names and hostnames in a comma-
separated list. For example, mailto:username@hostname[,username_1@hostname_1]...
[,username_n@hostname_n]

Only the first mail recipient needs to be prefixed with the text "mailto:".

4. To send messages over secure sockets layer (SSL), select SSL Required.

5. Do only one of the following:

• To use an SMTP server for outgoing mail, click in the SMTP Server field and select
the name of the SMTP server to use.

• To use a Java Mail session, click in the Mail Session field and select an available
mail session.

6. In the From Name field, enter the sender's name for the alert notification.

7. In the From Address field, enter the sender's email address.

This field is required if a value for From Name is specified.

8. In the Reply To Name field, enter a name to which replies are addressed.

9. In the Reply To Address field, enter an email address to which replies are sent. This
field is required if a value for Reply To Name is specified.

10. In the Connection Timeout field, enter the number of milliseconds a connection must
wait for a response from the server before timing out.

11. In the Socket I/O Timeout field, enter the number of milliseconds for a socket I/O timeout
when waiting for a response from the server.

12. In the Request Encoding field, enter a character set encoding value.

The default encoding value is iso-8859-1.

13. If you are using Oracle Service Bus Console, click OK to close the dialog.

14. To make changes to an email recipient, select that row in the table and click Edit to the
upper right of the table. Modify any of the above fields.

15. To delete an email recipient, select that row in the table and click Delete to the upper
right of the table.

16. Click Save.

6.4.4 How to Define JMS Recipients for an Alert Destination
While WebLogic Server allows forward slashes in JNDI names, such as "myqueues/
myqueue", JNDI names with forward slashes interfere with the URI format required by
Service Bus, and you cannot use those names. To work around this issue, define a JMS
foreign server and reference that foreign server in the URI. For more information, see
Configure Foreign Servers in the Oracle WebLogic Server Administration Console Online
Help.

To add or update JMS destinations in an alert destination:

Chapter 6
Working with Alert Destinations

6-13

1. Create an alert destination, as described in How To Create Alert Destinations.

2. Above the JMS Destinations table, click Add.

In JDeveloper, JMS configuration fields appear in the bottom of the page. In the
Oracle Service Bus Console, the Add JMS Destination dialog appears.

3. In the Destination URI field, enter a JMS destination URI in the format jms://
host:port/factoryJndiName/destJndiName.

4. In the Destination Type field, select Queue or Topic.

5. In the Message Type field, select Bytes or Text.

6. In the Request Encoding field, enter a character set encoding value.

The default encoding value is UTF-8.

7. If you are using Oracle Service Bus Console, click OK to close the dialog.

8. To make changes to a JMS destination, select that row in the table and click Edit
to the upper right of the table. Modify any of the above fields.

9. To delete a JMS destination, select that row in the table and click Delete to the
upper right of the table.

10. Click Save.

6.4.5 How to Edit Alert Destinations
Once you create an alert destination you can modify its description, and add, update,
or remove email recipients and JMS destinations.

To edit an alert destination:

1. In the Application Navigator or Project Navigator, expand the project and folders
containing the alert destination to edit.

2. Right-click the alert destination name, and select Open.

3. Modify the description or any of the configuration details:

• To change the type of destinations to which alerts are sent, select or deselect
any of the following types: SNMP Trap, Reporting, and Alert Logging.

In JDeveloper, select Yes to select a type and select No to deselect it.

• To add, update, or delete email recipients, see How to Define Email Recipients
for an Alert Destination.

• To add, update, or delete JMS destinations, see How to Define JMS
Recipients for an Alert Destination.

4. When you are done making changes, click Save.

5. If you are using the Oracle Service Bus Console, click Activate to end the session
and deploy the configuration to the runtime.

6.4.6 How to Delete Alert Destinations
When you delete alert destinations, you need to update any alert actions or rules that
reference the resource. To delete specific email recipients or JMS destinations from an
alert destination, see How to Define Email Recipients for an Alert Destination or How
to Define JMS Recipients for an Alert Destination.

Chapter 6
Working with Alert Destinations

6-14

Before you Begin:

If the alert destination has any references, remove them before deleting it. In the Oracle
Service Bus Console, open the alert destination in the Alert Destination Definition Editor and
click the Tools icon in the upper right, and then select References to find out whether there
are any references. In JDeveloper, right-click the alert destination and select Explore
Dependencies.

To delete an alert destination:

1. In the Application Navigator or Project Navigator, expand the project and folders
containing the alert destination to delete.

2. Right-click the alert destination, and select Delete.

3. If you are using JDeveloper, a confirmation dialog displays the number of references for
the alert destination. Click Show Usages to view information about the references, and
then click Yes to confirm that you want to delete the resource.

4. If you are using the Oracle Service Bus Console, click Activate to end the session and
deploy the configuration to the runtime.

6.4.7 Working with SNMP
SNMP is an application-layer protocol that allows the exchange of information on the
management of a resource across a network. SNMP lets you to monitor a resource and, if
required, take an action based on the data obtained from the resource. For more information
about SNMP, see Monitoring Oracle WebLogic Server with SNMP.

6.4.7.1 Guidelines for Working with SNMP Agents for Service Bus
You can create and target SNMP agents in an existing Oracle WebLogic domain to trap
SNMP messages generated by Service Bus. For instructions on creating and targeting SNMP
agents, see the following topics in the Oracle WebLogic Server Administration Console
Online Help:

• Create SNMP agents

• Target SNMP agents

• Create trap destinations

You can create SNMP agents that are either domain-scoped or server-scoped. Domain-
scoped agents, which are targeted to the domain rather than to an individual server, are for
backward compatibility and are being deprecated. Oracle recommends that you create
server-scoped agents.

When creating and targeting an SNMP server-scoped agent for Service Bus, use the
following guidelines:

• Targeting the Agent: When targeting an SNMP agent to Service Bus, target only the
Service Bus Admin Server. Only agents targeted to the Admin Server receive alerts from
Service Bus. Agents targeted to Managed Servers do not receive SNMP messages.

• Creating a Trap Destination: Enter the following settings for the destination:

– Name: alsbDestination-0

– Community: weblogic

Chapter 6
Working with Alert Destinations

6-15

– Host and Port: Set the values to point to the host and port where the SNMP
manager is listening for these alerts, such as localhost and 163.

6.4.7.2 How to Start Listening for Traps
You can run a command-line utility to listen for the traps generated within Service Bus.

To start listening for traps:

1. In a command window, change directories to WL_ORACLE_HOME/server/bin, and
run the following command:

setWLSEnv.cmd(.sh)

2. Run the following Java command to start the WebLogic Server SNMP command
line utility, which listens for traps and prints them on the server console (using 163
as the listen port for traps):

java weblogic.diagnostics.snmp.cmdline.Manager SnmpTrapMonitor -p 163

From then on, the generated traps should reach the running command line utility.

Note:

On Solaris, port numbers 0 to 1023 are reserved for root login. If you
want to use ports 161 and 163 (as used in this procedure), you may
have to start the server and command line utility using root login. To
avoid this problem, and to avoid using the root login, specify port
numbers above 1023 for both the SNMP agent and the SNMP manager
command.

6.5 Working with XML Schemas
Schemas describe types for primitive or structured data. XML schemas are an XML
vocabulary that describes the rules XML business data must follow. XML schemas
specify the structure of documents, and the data type of each element and attribute
contained in the document.

You use XML schemas as references for WSDL resources and to validate an element
specified with an XPath expression in a pipeline. For more information, see Adding
Validate Actions in the Console.

6.5.1 How to Create XML Schemas
XML schemas are a standard feature in JDeveloper. For information about the editors
and tools you use to create XML schemas, see Developing Applications Using XML in
Developing Applications with Oracle JDeveloper.

If you are using the Oracle Service Bus Console, you can create XML schemas by
importing them or by creating an XML schema resource. For more information on
importing, see Importing and Exporting Resources and Configurations . Use the
following procedure to manually create XML schema resources.

To create an XML schema in the Oracle Service Bus Console:

Chapter 6
Working with XML Schemas

6-16

1. In the Project Navigator, right-click the project or folder to contain the new XML schema,
point to Create, and select Resource. Click Interfaces, then click Schema, and then
click OK.

The Create Schema dialog appears.

2. Do one of the following:

• To create the resource from an existing schema file, click Browse next to the File
Upload field and then navigate to and select the file to use.

The Resource Name field is automatically populated with the file name minus the file
extension. You can change this name.

• To create a new XML schema, enter a unique name for the XML schema resource.

3. Optionally, enter a brief description of the resource.

4. Click Create.

The XML schema elements, if defined, appear in the Schema Definition Editor.

5. To modify the schema, do the following:

a. Click Edit Source in the toolbar.

The Edit Source dialog appears.

b. To browse to and select a new schema file to upload, click Browse.

c. To modify the contents of the file, update the code directly in the Contents section of
the dialog.

d. Click Save.

6. In the Schema Definition Editor toolbar, click Save.

7. To end the session and deploy the configuration to the runtime, click Activate.

6.5.2 How to Edit XML Schemas
XML schemas are a standard feature in JDeveloper. For information about editing XML
schemas, see Developing Applications Using XML in Developing Applications with Oracle
JDeveloper.

If you are using the Oracle Service Bus Console, use the following procedure to edit XML
schemas.

To edit an XML schema in the Oracle Service Bus Console:

1. In the Project Navigator, expand the project and folders containing the XML schema to
edit.

2. Right-click the XML schema name, and select Open.

3. Click Edit Source in the toolbar.

The Edit Source dialog appears.

4. To browse to and select a new XML schema file to upload, click Browse.

5. To modify the contents of the file, update the code directly in the Contents section of the
dialog.

6. Click Save.

7. In the Schema Definition Editor toolbar, click Save.

Chapter 6
Working with XML Schemas

6-17

8. To end the session and deploy the configuration to the runtime, click Activate.

6.5.3 How to Delete XML Schemas
If any resources reference the XML schema you want to delete, remove those
references before deleting the XML schema. In the Oracle Service Bus Console, open
the XML schema in the Schema Definition Editor and click the Tools icon in the upper
right, and then select References to find out if it has any references. In JDeveloper,
right-click the XML schema and select Explore Dependencies.

You can delete the XML schema even if it is referenced by other resources, though
this might result in conflicts due to unresolved references to the deleted resource.

To delete an XML schema:

1. In the Application Navigator or Project Navigator, expand the project and folders
containing the XML schema to delete.

2. Right-click the name of the schema, and select Delete.

3. If you are using JDeveloper, a confirmation dialog displays the number of
references for the schema. Click Show Usages to view information about the
references, and then click Yes to confirm that you want to delete the resource.

4. If you are using the Oracle Service Bus Console, click Activate to end the session
and deploy the configuration to the runtime.

6.6 Working with XML Documents
XML document resources store XML files for use in proxy or business service
configurations.

For example, you can create XML document resources for TopLink mapping files
needed in JCA proxy or business services that communicate with JCA-compliant
systems.

For more information about JCA services, see Using the JCA Transport and JCA
Adapters.

6.6.1 How to Create XML Documents
XML documents are a standard feature in JDeveloper. For information about the
editors and tools you use to create XML files, see Developing Applications Using XML
in Developing Applications with Oracle JDeveloper.

If you are using the Oracle Service Bus Console, the easiest way to create XML
documents is to use the import feature. For example, if you import JCA resources
(JCA file, associated WSDL file, and TopLink mapping file), Service Bus automatically
generates XML document resources out of mapping files and maintains the
dependencies among resource files. For more information on importing, see Importing
and Exporting Resources and Configurations .

If you do not bulk import, use the following procedure to manually create XML
documents.

To create XML documents in the Oracle Service Bus Console:

Chapter 6
Working with XML Documents

6-18

1. In the Project Navigator, right-click the project or folder to contain the new XML
document, point to Create, and select Resource. Click Miscellaneous, click XML
Document, and then click OK.

The Create XML Document dialog appears.

2. Do one of the following:

• To create the resource from an existing XML file, click Browse next to the File
Upload field and then navigate to and select the XML file to use.

The Resource Name field is automatically populated with the file name minus the file
extension. You can change this name.

• To create a new XML document for the resource, enter a unique name for the XML
document resource.

3. Optionally, enter a brief description of the resource.

4. Click Create.

The XML document appears in the XML Document Definition Editor.

5. To modify the XML code, do the following:

a. Click Edit Source in the toolbar.

The Edit Source dialog appears.

b. To browse to and select a new XML file to upload, click Browse.

c. To modify the contents of the file, update the code directly in the Contents section of
the dialog.

d. Click Save.

6. In the XML Document Definition Editor toolbar, click Save.

7. To end the session and deploy the configuration to the runtime, click Activate.

6.6.2 How to Edit XML Documents
XML documents are a standard feature in JDeveloper. For information about editing XML
files, see Developing Applications Using XML in Developing Applications with Oracle
JDeveloper.

If you are using the Oracle Service Bus Console, use the following procedure to edit XML
files.

To edit an XML document in the Oracle Service Bus Console:

1. In the Project Navigator, expand the project and folders containing the XML document to
edit.

2. Right-click the XML document name, and select Open.

3. Click Edit Source in the toolbar.

The Edit Source dialog appears.

4. To browse to and select a new XML file to upload, click Browse.

5. To modify the contents of the file, update the code directly in the Contents section of the
dialog.

6. Click Save.

Chapter 6
Working with XML Documents

6-19

7. In the XML Document Definition Editor toolbar, click Save.

8. To end the session and deploy the configuration to the runtime, click Activate.

6.6.3 How to Delete XML Documents
If any resources, such as JCA bindings, reference the XML document you want to
delete, remove those references before deleting the XML document. In the Oracle
Service Bus Console, open the XML document in the XML Document Definition Editor
and click the Tools icon in the upper right, and then select References to find out if it
has any references. In JDeveloper, right-click the XML document and select Explore
Dependencies.

To delete an XML document:

1. In the Application Navigator or Project Navigator, expand the project and folders
containing the XML document to delete.

2. Right-click the name of the document, and select Delete.

3. If you are using JDeveloper, a confirmation dialog displays the number of
references for the XML document. Click Show Usages to view information about
the references, and then click Yes to confirm that you want to delete the resource.

4. If you are using the Oracle Service Bus Console, click Activate to end the session
and deploy the configuration to the runtime.

6.7 Working with JAR Files
A JAR (Java Archive) is a zipped file that contains a set of Java classes. JAR files
store the compiled Java classes and associated metadata that can constitute a
program. A JAR file acts like a callable program library for Java code elements so a
single compilation link provides access to multiple elements, rather than requiring
bindings for each element individually.

To use JAR files in a Service Bus project, you upload them to JAR resources. JAR files
in Service Bus are used in:

• Java callout actions

• EJB-based business services

• JEJB services

• Tuxedo-based proxy and business services

6.7.1 How to Add JAR Files
JAR file integration is a standard feature in JDeveloper. For information about adding
JAR files and libraries to your Service Bus projects, see How to Manage Libraries in
Developing Applications with Oracle JDeveloper.

If you are using the Oracle Service Bus Console, you can add JAR files by either
importing them into a Service Bus project or uploading them into archive resources.
For more information on importing, see Importing and Exporting Resources and
Configurations . Use the procedure below to upload a JAR file into an archive
resource.

To add a JAR file using the Oracle Service Bus Console:

Chapter 6
Working with JAR Files

6-20

1. In the Project Navigator, right-click the project or folder to contain the new JAR file, point
to Create, and select Resource. Click Miscellaneous, then click Archive, and then click
OK.

The Create Archive dialog appears.

2. Click Browse next to the File Upload field and then navigate to and select the JAR file to
upload.

The Resource Name field is automatically populated with the file name minus the file
extension. You can change this name.

3. Optionally, enter a brief description of the resource.

4. Click Create.

The configuration details and dependencies for the JAR file appear in the Archive
Definition Editor.

5. To add dependencies, do the following:

a. Click Add above the dependencies table.

A new row appears in the table.

b. Click in the new row in the name column, and then click Browse.

The Search and Select dialog appears.

c. Enter a file name or the path to the file, and click Search.

d. In the results list, select the name of the file containing the dependency, and then
click OK.

6. Repeat the above steps for each dependency to add. Use the up and down arrows above
the Dependencies table to re-order the list of dependencies.

7. In the Archive Definition Editor toolbar, click Save.

8. To end the session and deploy the configuration to the runtime, click Activate.

6.7.2 How to Update a JAR File
Updating an archive resource essentially involves pointing the resource to a new version of
the JAR file or to a different JAR file, as you cannot edit a JAR using Service Bus. JAR file
integration is a standard feature in JDeveloper. For information about updating JAR files, see
How to Manage Libraries in Developing Applications with Oracle JDeveloper.

If you are using the Oracle Service Bus Console, use the following procedure to update a
JAR file in an archive resource.

Caution:

If you update the JAR file used by an EJB business service by updating to a newer
version of the file, you must redeploy the EJB, edit any EJB service that uses the
JAR file, and reselect the JAR resource, save, and activate. This repackages the
EJB business service to use the new JAR.

Java callout actions and Tuxedo-based services automatically pick up the new JAR
file.

Chapter 6
Working with JAR Files

6-21

To update a JAR file in the Oracle Service Bus Console:

1. In the Project Navigator, expand the project and folders containing the archive
resource to edit.

2. Right-click the archive resource name, and select Open.

3. To update the JAR file, do the following:

a. Click Upload New JAR File in the toolbar.

The Upload New JAR File dialog appears.

b. Click Browse, and then navigate to and select the new JAR file to use.

c. Click Save.

The information on the Archive Definition Editor is updated with the new JAR
file configuration.

4. To add a dependency, do the following:

a. Click Add above the dependencies table.

A new row appears in the table.

b. Click in the new row in the name column, and then click Browse.

The Search and Select dialog appears.

c. Enter a file name or the path to the file, and click Search.

d. In the results list, select the name of the file containing the dependency, and
then click OK.

5. To delete a dependency, select the row in the Dependencies table that contains
the dependency, and then click Delete.

The row is removed.

6. To re-order the dependencies, use the up and down arrows above the table.

7. When you are done updating the archive resource, click Save in the Archive
Definition Editor toolbar.

8. To end the session and deploy the configuration to the runtime, click Activate.

6.7.3 How to Modify JAR File Dependencies
Service Bus provides additional JAR file features in JDeveloper to let you modify JAR
file dependencies. If you are using Oracle Service Bus Console, modify dependencies
as described in How to Update a JAR File.

To modify JAR file dependencies in JDeveloper:

1. In the Application Navigator, find the JAR file whose dependencies you want to
modify.

2. Right-click the name of the file, point to Service Bus and select Modify JAR
Dependencies.

The Modify JAR Dependencies dialog appears.

3. To add dependencies, move JAR files from the Available JARs pane to the JAR
References pane.

Chapter 6
Working with JAR Files

6-22

4. To remove dependencies, move JAR files from the JAR References pane to the Available
JARs pane.

5. Click OK when you are done.

6.7.4 How to Delete a JAR File
If any resources reference the JAR file you want to delete, remove those references before
deleting the archive resource. In the Oracle Service Bus Console, open the archive resource
in the Archive Definition Editor and click the Tools icon in the upper right, and then select
References to find out whether it has any references. In JDeveloper, right-click the JAR file
and select Explore Dependencies.

You can delete the JAR file even if it is referenced by other resources, though this might
result in conflicts due to unresolved references to the deleted resource.

To delete a JAR file:

1. In the Application Navigator or Project Navigator, expand the project and folders
containing the archive resource for the JAR file to delete.

2. Right-click the name of the resource, and select Delete.

3. If you are using JDeveloper, a confirmation dialog displays the number of references for
the JAR file. Click Show Usages to view information about the references, and then click
Yes to confirm that you want to delete the resource.

4. If you are using the Oracle Service Bus Console, click Activate to end the session and
deploy the configuration to the runtime.

Chapter 6
Working with JAR Files

6-23

7
Creating and Configuring System Resources

This chapter describes how to add and configure system resources, such as JNDI providers,
SMTP servers, and proxy servers. System resources can be reused by Service Bus services
in all projects in the session.

This chapter includes the following sections:

• Working with JNDI Provider Resources

• Working with SMTP Server Resources

• Working with Proxy Server Resources

UDDI registries are also system resources in Service Bus. You can learn more about them in
Working with UDDI Registries.

In the Oracle Service Bus Console, you create system resources in the System project, which
by default includes a folder for each type of system resource. In JDeveloper, you create the
resources in the Service Bus System Resources folder in the Application Resources panel.
In the file system, these resources are located in the System subfolder under the JDeveloper
application folder.

7.1 Working with JNDI Provider Resources
JNDI provider resources perform the JNDI lookups for Service Bus projects, providing the
protocols and security credentials required for accessing remote servers.

You can use any protocol for the JNDI provider, including HTTP, HTTPS, t3, t3s, IIOP, and
IIOPS. Service Bus supports several initial context factory classes for the JNDI lookup,
depending on the application server you are using. When connecting to JBoss Application
Server using IIOP or IIOPS, use the com.sun.jndi.cosnaming.CNCtxFactory class (IIOP/S is
not supported in JBoss 7.0.0 or later).

7.1.1 Classpath Requirements for JBoss Application Server
When using JBoss initial context factory classes, make sure to include the class and any
dependent classes in the Service Bus server classpath. The following JAR files are required
in the server post-classpath or domain_name/lib directory. These files are located in your
JBoss installation in the /client directory.

• jbossall-client.jar for JBoss 4.x through 6.x

• jboss-client.jar for JBoss 7.x

• log4j.jar

7-1

Note:

If you do not want to add the client JAR file to the classpath, you can add the
following files individually: jboss-client.jar, jboss-common-core.jar,
jboss-integration.jar, jboss-logging-spi.jar, jboss-remoting.jar,
jboss-security-spi.jar, jboss-serialization.jar, jbosssx-client.jar,
and jnp-client.jar.

In addition, add jboss-ejb-client.properties to the server classpath or library with
the following properties defined:

• For unsecure connections:

– remote.connectionprovider.create.options.org.xnio.Options.SSL_ENABL
ED=false

– remote.connections=<name_of_connection>

– remote.connection.conn1.host=<hostname>

– remote.connection.conn1.port=<port>

• For secure connections:

– remote.connectionprovider.create.options.org.xnio.Options.SSL_ENABL
ED=false

– remote.connections=<name_of_connection>

– remote.connection.conn2.host=<hostname>

– remote.connection.conn2.port=<port>

– remote.connection.conn2.connect.options.org.xnio.Options.SASL_DISAL
LOWED_MECHANISMS=JBOSS-LOCAL-USER

– remote.connection.conn2.username=<username>

– remote.connection.conn2.password=<password>

When using the IIOP protocol, include the following JAR files in the Oracle WebLogic
Server classpath. These files are located in your JBoss installation in /server/all/
lib, except logkit.jar, which is located in the /client directory.

• jacorb.jar

• avalon-framework.jar

• logkit.jar

7.1.2 About JBoss Initial Context Factory Environment Properties
You can invoke EJBs deployed in JBoss Application Server using the EJB and JEJB
transports. Service Bus supports the following initial context factory implementations
for JBoss. You can specify environment properties for each of the classes for JBoss
versions 4.x through 6.x.

• org.jnp.interfaces.NamingContextFactory

• org.jboss.naming.HttpNamingContextFactory

Chapter 7
Working with JNDI Provider Resources

7-2

• org.jboss.security.jndi.LoginInitialContextFactory

For JBoss 7.x, you can specify environment properties for
org.jboss.naming.remote.client.InitialContextFactory.

The following table lists the environment properties and indicates whether they are supported
for each factory class. For more information about these classes and the properties you can
set, see "The Naming InitialContext Factories" at http://docs.jboss.org/jbossas/
jboss4guide/r1/html/ch3.chapter.html

Table 7-1 JBoss Initial Context Factory Environment Parameters

Parameter NamingContext
Factory (4.x-6.x)

HttpNaming
ContextFactory (
4.x-6.x)

LoginInitial
ContextFactory
(4.x-6.x)

InitialContext
Factory (7.x
only)

java.naming.factory.initial Yes Yes Yes Yes

java.naming.provider.url Yes Yes Yes Yes

java.naming.factory.url.pkgs Yes Yes Yes Yes

jnp.socketFactory Yes No No Yes

jnp.timeout Yes No No Yes

jnp.sotimeout Yes No No Yes

java.naming.security.principal No No Yes Yes

java.naming.security.credentials No No Yes Yes

java.naming.security.protocol No No Yes Yes

In addition, the following initial context properties may be required when looking up EJBs
deployed on a JBoss cluster.

• jnp.partitionName

• jnp.discoveryGroup

• jnp.discoveryPort

• jnp.discoveryTimeout

• jnp.disableDiscovery

7.1.3 How to View JNDI Provider Resources in the Oracle Service Bus
Console

The Folders Definition Editor for JNDI providers lists all the JNDI provider resources you have
created in the current session. Use this page to quickly find and access the JNDI provider
resources you have defined.

To view JNDI providers in the console:

1. Expand the System project, right-click JNDI Providers, and then select Open.

The Folder Definition Editor appears with a list of existing JNDI provider resources.

2. To locate specific JNDI providers, do the following:

a. If the query fields are not visible above the JNDI Providers table, click Query by
Example in the table toolbar.

Chapter 7
Working with JNDI Provider Resources

7-3

http://docs.jboss.org/jbossas/jboss4guide/r1/html/ch3.chapter.html
http://docs.jboss.org/jbossas/jboss4guide/r1/html/ch3.chapter.html

b. Enter the name of the JNDI provider resource you want to find above the
Name column, and press Enter.

You can enter wildcard characters (? for a single character; * for multiple
characters) to perform a more general search.

c. To view all JNDI providers again, clear the query fields and press Enter.

3. To view the configuration for a JNDI provider, click the resource name in the JNDI
Providers table.

4. To delete a JNDI provider resource, select the name of the resource in the table
and click Delete. See How to Delete JNDI Provider Resources.

7.1.4 How to Create a JNDI Provider Resource
When you create a JNDI provider resource, you specify connection information for the
remote server, including the URL, the initial context factory, security credentials, and,
optionally, environment properties for JBoss context factories.

To create a JNDI provider resource:

1. Do one of the following:

• If you are using JDeveloper, expand the Application Resources panel, right-
click Service Bus System Resources, point to New, and then select JNDI
Provider.

Tip:

To create JNDI provider resources directly in a project, making it a
project-level resource, right-click the project, point to New, and then
select JNDI Provider.

• If you are using Oracle Service Bus Console, expand the System project,
right-click JNDI Providers, point to Create, and then select Create JNDI
Provider.

The Create JNDI Service dialog appears.

2. Enter a name and optional description for the resource, and then click Finish or
Create.

The JNDI Provider Definition Editor appears.

3. Enter the URL for the JNDI provider in the format protocol://hostname:port.

For clusters, use a comma-separated list of Managed Servers, in the format:
protocol://hostname:ms1port, hostname:ms2port

4. In the Initial Context Factory field, select the initial context factory class name for
the JNDI provider you are creating.

5. In the JNDI Request Timeout field, enter the JNDI request timeout in
milliseconds.

6. Select JNDI Cache to enable local caching of JNDI objects.

7. To add environment properties for JBoss initial context factories, click the Add icon
above the Environment Parameters table, and enter the parameter name and
value in the new line that appears.

Chapter 7
Working with JNDI Provider Resources

7-4

For information about the parameters, see About JBoss Initial Context Factory
Environment Properties.

8. If access to the target JNDI provider requires a user name and password, enter a user
name in the User Name field, and the associated password in the Password and
Confirm Password fields.

9. Click Save.

10. If you are using the Oracle Service Bus Console, do any of the following in the toolbar in
the upper right:

• To reset the JNDI context to discard the JNDI connection and locally cached objects,
click the Reset icon.

• To test whether the JNDI provider can successfully establish a connection and obtain
a JNDI context, click the Test icon.

11. If you are using the Oracle Service Bus Console, click Activate to end the session and
deploy the configuration to the runtime.

7.1.5 How to Edit JNDI Provider Resources
Once you create a JNDI provider resource, you can modify its description and most of the
JNDI properties.

To edit a JNDI provider resource:

1. Expand the project and folders containing the resource to edit. This can be any of the
following locations:

• In JDeveloper, the Service Bus System Resources folder in the Application
Resources panel.

• In JDeveloper, the Service Bus project or folder in which the JNDI provider resource
is located in the Application Navigator.

• In Oracle Service Bus Console, the JNDI Providers folder in the System project.

2. Right-click the JNDI provider name, and select Open.

The JNDI Provider Definition Editor appears.

3. Modify any of the fields described in How to Create a JNDI Provider Resource. The
online help describes these fields in greater detail.

Note:

The New Password field is only editable if the JNDI provider was not
configured with a user name and password.

4. When you are done making changes, click Save.

5. If you are using the Oracle Service Bus Console, click Activate to end the session and
deploy the configuration to the runtime.

Chapter 7
Working with JNDI Provider Resources

7-5

7.1.6 How to Delete JNDI Provider Resources
When you delete a JNDI provider resource, any references to the resource from other
Service Bus resources are broken. To find out whether any resources reference a
JNDI provider, open the JNDI provider resource in the JNDI Provider Definition Editor
and click the Tools icon in the upper right, and then select References. In JDeveloper,
right-click the JNDI provider and select Explore Dependencies.

To delete a JNDI provider resource:

1. Expand the project and folders containing the resource to edit. This can be any of
the following locations:

• In JDeveloper, the Service Bus System Resources folder in the Application
Resources panel.

• In JDeveloper, the Service Bus project or folder in which the JNDI provider
resource is located in the Application Navigator.

• In Oracle Service Bus Console, the JNDI Providers folder in the System
project.

2. Right-click the JNDI provider resource, and select Delete.

3. If you are using JDeveloper, a confirmation dialog displays the number of
references for the resource. Click Show Usages to view information about the
references, and then click Yes to confirm that you want to delete the resource.

4. If you are using the Oracle Service Bus Console, click Activate to end the session
and deploy the configuration to the runtime.

7.2 Working with SMTP Server Resources
SMTP server resources define connection properties for SMTP servers and are used
while configuring alert destination resources and business services based on the email
transport.

The SMTP server global resource captures the address of the SMTP server, port
number, and if necessary, the authentication credentials. The authentication
credentials are stored inline and are not stored as a service account. For information
about alert destinations, see Working with Alert Destinations.

7.2.1 How to View SMTP Server Resources in the Oracle Service Bus
Console

The Folders Definition Editor for SMTP servers lists all the SMTP server resources you
have created in the current session. Use this page to quickly find and access the
SMTP server resources you have defined.

To view SMTP servers in the console:

1. Expand the System project, right-click SMTP Servers, and then select Open.

The Folder Definition Editor appears with a list of existing SMTP server resources.

2. To locate specific SMTP server resources, do the following:

Chapter 7
Working with SMTP Server Resources

7-6

a. If the query fields are not visible above the SMTP Servers table, click Query by
Example in the table toolbar.

b. Enter the name of the SMTP server resource you want to find above the Name
column, and press Enter.

You can enter wildcard characters (? for a single character; * for multiple characters)
to perform a more general search.

c. To view all SMTP servers again, clear the query fields and press Enter.

3. To view the configuration for an SMTP server, click the resource name in the SMTP
Servers table.

4. To delete an SMTP server resource, select the name of the resource in the table and
click Delete. See How to Delete SMTP Server Resources .

7.2.2 How to Create SMTP Server Resources
When you create an SMTP server resource, you specify connection information for the
server, including the URL and port number. Security information is only required if the server
requires authentication.

To create an SMTP server resource:

1. Do one of the following:

• If you are using JDeveloper, expand the Application Resources panel, right-click
Service Bus System Resources, point to New, and then select SMTP Server.

Note:

To create SMTP server resources directly in a project, making it a project-
level resource, right-click the project, point to New, and then select SMTP
Server.

• If you are using Oracle Service Bus Console, expand the System project, right-click
SMTP Servers, point to Create, and then select Create SMTP Server.

The Create SMTP Server dialog appears.

2. Enter a name and optional description for the resource.

3. If you are using the console, enter the SMTP server URL and port number.

4. Click Finish or Create.

The SMTP Server Definition Editor appears.

5. If you are using JDeveloper, enter the URL and port number to access the SMTP server.

6. If access to the SMTP server requires authentication, enter a user name in the User
Name field, and the associated password in the Password and Confirm Password
fields.

7. Click Save.

8. If you are using the Oracle Service Bus Console, click Activate to end the session and
deploy the configuration to the runtime.

Chapter 7
Working with SMTP Server Resources

7-7

7.2.3 How to Configure a Default SMTP Server
In the Oracle Service Bus Console, you can designate one of the configured SMTP
servers as the default server for the domain.

To configure a default SMTP server:

1. If you have not already done so, click Create to create a new session or click Edit
to enter an existing session.

2. In the Project Navigator, expand System > SMTP Servers.

3. Right-click the name of the SMTP server you want to be the default server, and
then select Set as Default.

4. To end the session and deploy the configuration to the runtime, click Activate.

7.2.4 How to Edit SMTP Server Resources
Once you create an SMTP server resource, you can modify its description and most of
the server properties.

To edit an SMTP server resource:

1. Expand the project and folders containing the resource to edit. This can be any of
the following locations:

• In JDeveloper, the Service Bus System Resources folder in the Application
Resources panel.

• In JDeveloper, the Service Bus project or folder in which the SMTP server
resource is located in the Application Navigator.

• In Oracle Service Bus Console, the SMTP Servers folder in the System
project.

2. Right-click the SMTP server name, and select Open.

The SMTP Server Definition Editor appears.

3. Modify any of the fields described in How to Create SMTP Server Resources. The
online help describes these fields in greater detail.

4. When you are done making changes, click Save.

5. If you are using the Oracle Service Bus Console, click Activate to end the session
and deploy the configuration to the runtime.

7.2.5 How to Delete SMTP Server Resources
When you delete an SMTP server resource, any references to the resource from other
Service Bus resources are broken. To find out whether any resources reference an
SMTP server, open the SMTP server resource in the SMTP Server Definition Editor
and click the Tools icon in the upper right, and then select References. In JDeveloper,
right-click the SMTP server and select Explore Dependencies.

To delete an SMTP server resource:

1. Expand the project and folders containing the resource to edit. This can be any of
the following locations:

Chapter 7
Working with SMTP Server Resources

7-8

• In JDeveloper, the Service Bus System Resources folder in the Application
Resources panel.

• In JDeveloper, the Service Bus project or folder in which the SMTP server resource is
located in the Application Navigator.

• In Oracle Service Bus Console, the SMTP Servers folder in the System project.

2. Right-click the SMTP server resource, and select Delete.

3. If you are using JDeveloper, a confirmation dialog displays the number of references for
the resource. Click Show Usages to view information about the references, and then
click Yes to confirm that you want to delete the resource.

4. If you are using the Oracle Service Bus Console, click Activate to end the session and
deploy the configuration to the runtime.

7.3 Working with Proxy Server Resources
Proxy server resources are used while configuring the HTTP transport for business services.

For more information, see Using HTTP and Poller Transports.

• Using Proxy Servers with SSL

• How to View Proxy Server Resources in Oracle Service Bus Console

• How to Create Proxy Server Resources

• How to Edit Proxy Server Resources

• How to Delete Proxy Server Resources

7.3.1 Using Proxy Servers with SSL
When configuring a proxy server, you can specify the clear text or SSL port number for the
server, in addition to the host name or IP address. Note that the port specified in the proxy
server resource configuration corresponds to the actual physical port of the web proxy server
and not the port of the back end service. The endpoint configuration on the business service,
however, corresponds to the actual endpoint of the back end service. This is true even in the
case of SSL/TLS Tunneling using the HTTP CONNECT command.

While some web proxy servers support HTTP CONNECT using both clear text and SSL
sockets, other servers support it using only clear text sockets. For example, Oracle iPlanet
Web Proxy Server 4.0 supports HTTP CONNECT using clear text and SSL sockets while
Apache Web Server 2.2 in proxy server mode supports it using only clear sockets.

Typically, for SSL/TLS Tunneling support, you do not need to install server or Certificate
Authority (CA) certificates on the physical proxy server. Instead, the web proxy server uses
the certificate received from the caller (Service Bus, in this case) to open a secure socket.
Similarly, when the server hosting the business application requires a client certificate, the
certificate of the server hosting the proxy service (Service Bus) is used for authentication.

7.3.2 How to View Proxy Server Resources in Oracle Service Bus Console
The Folders Definition Editor for proxy servers lists all the proxy server resources you have
created in the current session. Use this page to quickly find and access the proxy server
resources you have defined.

To view proxy servers in the console:

Chapter 7
Working with Proxy Server Resources

7-9

1. Expand the System project, right-click Proxy Servers, and then select Open.

The Folder Definition Editor appears with a list of existing proxy server resources.

2. To locate specific proxy server resources, do the following:

a. If the query fields are not visible above the Proxy Servers table, click Query
by Example in the table toolbar.

b. Enter the name of the proxy server resource you want to find above the Name
column, and press Enter.

You can enter wildcard characters (? for a single character; * for multiple
characters) to perform a more general search.

c. To view all proxy servers again, clear the query fields and press Enter.

3. To view the configuration for a proxy server, click the resource name in the Proxy
Servers table.

4. To delete a proxy server resource, select the name of the resource in the table and
click Delete. See How to Delete Proxy Server Resources.

7.3.3 How to Create Proxy Server Resources
When you create a proxy server resource, you specify connection information for the
server, including the server name and port number. Security information is only
required if the server requires authentication.

You can configure multiple proxy servers for each proxy server resource. In this case,
Service Bus can perform load balancing and offer fault tolerance features for the
resource.

To create a proxy server resource:

1. Do one of the following:

• If you are using JDeveloper, expand the Application Resources panel, right-
click Service Bus System Resources, point to New, and then select Proxy
Server.

• If you are using Oracle Service Bus Console, expand the System project,
right-click Proxy Servers, point to Create, and then select Create Proxy
Server.

The Create Proxy Server dialog appears.

2. Enter a name and optional description for the resource.

3. Click Finish or Create.

The Proxy Server Definition Editor appears.

4. To define proxy servers, do the following in the Host-Port Parameters table:

a. Click the Add icon above the table.

A new row appears in the table.

b. In the Host field, enter the host name or IP address of the proxy server.

c. In the Port field, enter the proxy server's port number.

d. To remove a host name and port number from the list, select the row in the
table containing the server to delete and click the Delete icon.

Chapter 7
Working with Proxy Server Resources

7-10

5. If access to the proxy server requires authentication, enter a user name in the User
Name field, and the associated password in the Password and Confirm Password
fields.

6. Click Save.

7. If you are using the Oracle Service Bus Console, click Activate to end the session and
deploy the configuration to the runtime.

7.3.4 How to Edit Proxy Server Resources
Once you create a proxy server resource, you can modify its description and security options,
and you can modify, add, and delete proxy servers from the host list.

To edit a proxy server resource:

1. Expand the project and folders containing the resource to edit. This can be any of the
following locations:

• In JDeveloper, the Service Bus System Resources folder in the Application
Resources panel.

• In JDeveloper, the Service Bus project or folder in which the proxy server resource is
located in the Application Navigator.

• In Oracle Service Bus Console, the Proxy Servers folder in the System project.

2. Right-click the proxy server name, and select Open.

The Proxy Server Definition Editor appears.

3. Modify any of the fields described in How to Create Proxy Server Resources. The online
help describes these fields in greater detail.

4. When you are done making changes, click Save.

5. If you are using the Oracle Service Bus Console, click Activate to end the session and
deploy the configuration to the runtime.

7.3.5 How to Delete Proxy Server Resources
When you delete a proxy server resource, any references to the resource from other Service
Bus resources are broken. To find out whether any resources reference a proxy server, open
the proxy server resource in the Proxy Server Definition Editor and click the Tools icon in the
upper right, and then select References. In JDeveloper, right-click the proxy server and
select Explore Dependencies.

To delete a proxy server resource:

1. Expand the project and folders containing the resource to edit. This can be any of the
following locations:

• In JDeveloper, the Service Bus System Resources folder in the Application
Resources panel.

• In JDeveloper, the Service Bus project or folder in which the proxy server resource is
located in the Application Navigator.

• In Oracle Service Bus Console, the Proxy Servers folder in the System project.

2. Select the proxy server resource, and click Delete.

Chapter 7
Working with Proxy Server Resources

7-11

3. If you are using JDeveloper, a confirmation dialog displays the number of
references for the resource. Click Show Usages to view information about the
references, and then click Yes to confirm that you want to delete the resource.

4. If you are using the Oracle Service Bus Console, click Activate to end the session
and deploy the configuration to the runtime.

Chapter 7
Working with Proxy Server Resources

7-12

8
Creating and Configuring Proxy Services

This chapter describes how to create, configure, and manage proxy services using the Oracle
Service Bus Console and JDeveloper. Service Bus proxy services, along with business
services, provide the means for managing services, transforming messages, and routing
messages through the enterprise.

This chapter includes the following sections:

• Introduction to Proxy Services

• Securing Proxy Services

• Service Level Agreement Alert Rules

• Web Services Interoperability Compliance

• Creating Proxy Services

• Configuring Proxy Services

• Deleting Proxy Services

• Consuming Proxy Services in JDeveloper with WSIL

8.1 Introduction to Proxy Services
Proxy services provide the interface that service consumers use to connect with back-end
services through Service Bus. They are definitions of intermediary web services that Service
Bus hosts locally.

Service Bus uses proxy services to route messages between business services, such as
enterprise web services and databases. It also uses proxy services for messages between
service clients, such as presentation applications or other business services.

Proxy services define the interfaces in terms of Web Services Description Language (WSDL)
or Web Application Definition Language (WADL) and the type of transport used. A proxy
service defines the communication interface, the type of transport, transport settings, security
settings, and the associated message processing logic. It then uses a message flow
definition, or pipeline, to transform and route messages to one or more business services.
The pipeline defines the logic that determines how messages are handled as they flow
through Service Bus. If a proxy service is based on a WSDL document, the configuration also
includes a WSDL port or a WSDL binding.

You can base proxy services on existing WSDL and WADL documents, including those
imported from a UDDI registry, a SOA Oracle Metadata Services (MDS) Repository, an
application server, or the file system. Service Bus also supports proxy services that use the
REST binding (see Creating REST Services with Oracle Service Bus). These proxy services
are based on WADL documents. You can create REST Services using the Service Bus
console or JDeveloper.

8-1

8.1.1 Proxy Service Definitions
Each proxy service is defined by whether it is based on a WSDL web service, a REST
service, or a Service Bus transport. A WSDL-based service is a SOAP or XML proxy
service whose interface is described by a WSDL document. A REST service is defined
in one of two ways: a Typed REST service is based on a WADL document if some
information (operations) is known at design time, and an Untyped REST service is not
bound to a specific WADL document or schema (operations may not be known at
design time). A transport-typed service is a proxy service based on a Service Bus
transport, including the JCA transport, which provides support for configuring proxy
services for Oracle JCA-compliant adapters. It also includes REST proxy services,
which use the HTTP transport. Each type of proxy service supports transport protocols
specific to its definition. Service Bus supports several standard transport protocols as
well as custom transports.

You can use either the Create Proxy Service wizard or the Service Bus Overview
Editor in JDeveloper to create proxy services with a WSDL-based, REST, or transport-
typed service. Using the Service Bus Overview Editor, you can also generate proxy
services directly from a JCA adapter to create a proxy service already configured for
that adapter type. Both the wizard and the editor let you expose business services and
pipelines as proxy services.

8.1.2 Service Types and Protocols for Proxy Services
Service Bus supports various service types ranging from conventional web services
(using XML or SOAP bindings in WSDL files) to non-XML (generic) services. When
you create a transport-typed proxy service, you also need to further define the service
by specifying and configuring the service type. The service types you can select are
restricted based on the transport used to communicate with the service endpoint. For
information about the transports supported with each service type, see Transports,
Adapters, and Bindings.

A proxy service can have one of the following service types, identified by the types of
messages it processes:

• WSDL Based Service: This service type is generated from an existing WSDL
document or one that you create at the same time you create the proxy service.
When creating a WSDL-based service, you need to specify the port or binding to
use.

• Messaging Service: This service type can receive messages of one data type
and respond with messages of a different data type. Supported data types include
XML, Message Format Language (MFL), text, untyped, binary, Java, and
attachments where the interface is not described by WSDL

• Any SOAP Service: This service type exchanges SOAP messages. SOAP
messages are constructed by wrapping the contents of the header and body
variables inside a <soap:Envelope> element. If the body variable contains a piece
of reference XML, it is sent as is; that is, the referenced content is not substituted
into the message. If attachments are defined in the attachments variable, a MIME
package is created from the main message and the attachment data. Content
handling for each attachment part is similar to how it is handled for messaging
services.

• Any XML Service (non-SOAP): With this service type, messages to XML-based
services are XML, but can be of any type the proxy service configuration allows. In

Chapter 8
Introduction to Proxy Services

8-2

messages that include attachments, their content is a MIME package that includes the
primary XML payload as one of its parts (typically the first part or the one identified by the
top-level content-type header).

• REST Service: This type of service is based on the REST binding, and can be generated
from an existing WADL or one that you create at the same time you create the proxy
service (Typed REST), or can be created without a WADL or schema (Untyped REST).
For more information, see Creating REST Services with Oracle Service Bus .

8.1.3 When to Use SOAP or Any XML Service Types
If you want to expose one port to clients for a variety of enterprise applications, use Any
SOAP or Any XML service types. For Any SOAP, you must specify if it is SOAP 1.1 or SOAP
1.2.

8.1.4 When to Use the Messaging Service Type
If one of the request or response messages is non-XML, you must use the messaging service
type. Service Bus does not automatically perform "misunderstand" SOAP header checking.
However, you can use XQuery conditional expressions and validate actions to explicitly
perform this type of check in the pipeline. For more information on the validate action, see
Adding Validate Actions in the Console. For more information on conditional XQuery
expressions, see Working With Expression Editors in Oracle Service Bus Console.

8.1.5 Binding Definitions and Runtime Variables for Proxy Service Types
No matter its definition or type, each proxy service type is modeled following the same
pattern. Each service type must define these characteristics:

• Binding definition

• Runtime configuration

• Runtime variables ($operation, $body, $header, $attachments)

8.1.5.1 WSDL Service Type
Runtime Variables

• For SOAP-based WSDL services, the variables are similar to Any SOAP service types
except $operation is initialized based on the operation selection algorithm.

• For XML-based WSDL services, the variables are similar to Any XML service types
except the $operation is initialized based on the operation selection algorithm.

8.1.5.2 Messaging Service Type
Binding Definition

The binding definition for messaging services consists of configuring the content type of the
messages that are exchanged. The content type for the response does not need to be the
same as for the request; therefore, the response is configured separately. For example, the
service could accept an MFL message and return an XML acknowledgment receipt. The
response could also be set to None.

Chapter 8
Introduction to Proxy Services

8-3

By definition, messaging-based services do not have a WSDL definition. It is not
possible to request a WSDL document for those services. Following are the content
types to choose from for the request and response:

• None

• Binary

• Text

• MFL

• XML

• Java

Note:

• If you are using a Reply action in the pipeline to propagate success or
failure messages from a service to the calling client, select an option
other than None. The None option blocks the reply.

• Email, File, FTP, and SFTP transport proxy services with a messaging
service type support one-way messaging only, so there is no response
message. The content type for the response message should be None.

Runtime Variables

This service type is message-based. There is no concept of multiple operations as
there is for web services. Therefore, the $operation variable is left empty. The $body
variable holds the incoming message wrapped in a <soap:Body> element. For SOAP
1.1 proxy services, $body uses the SOAP 1.1 namespace Body; for SOAP 1.2 proxy
services, it uses SOAP 1.2 namespace Body. The $header variable is not applicable to
this service type, and is set to its default value. The $attachments variable contains
message attachments if there are any.

To learn more about the message context variables, see Message-Related Variables
and Constructing Messages to Dispatch.

8.1.5.3 Any SOAP Service
Binding Definition

The only information this service type defines is that the service is receiving or sending
SOAP messages, regardless of their WSDL binding definition. The binding
configuration for this type is empty, so the combination of this type and the content-
type of the message is sufficient to determine whether or not there are attachments to
the message. By definition, "any" services (SOAP or XML) do not have any WSDL
definition. It is not possible to generate or view a WSDL document for those services.

Runtime Variables

The $body and $header variables respectively hold the <soap:Body> and
<soap:Header> of the incoming SOAP message. (For SOAP 1.1 proxies, $body
and $header use SOAP 1.1 namespace Body and namespace; for SOAP 1.2 proxies,
they use SOAP 1.2 namespace Body and namespace.) The $attachments variable

Chapter 8
Introduction to Proxy Services

8-4

contains the SOAP message attachments, if any. The $operation variable is not applicable
to this service type because you do not define a port type.

To learn more about the message context variables, see Message-Related Variables and
Constructing Messages to Dispatch.

8.1.5.4 Any XML Service
Binding Definition

The only information this service type defines is that the service is receiving or sending XML
messages, regardless of their WSDL binding definition. The binding configuration for this type
is empty, so the combination of this type and the content-type of the message is sufficient to
determine whether or not there are attachments to the message.

As per their definition, "any" services (SOAP or XML) do not have a WSDL definition. It is not
possible to request a WSDL document for those services.

Runtime Variables

The $body variable holds the incoming XML message wrapped in a <soap:Body> element.
(For SOAP 1.1 proxies, $body and $header use SOAP 1.1 namespace Body and namespace;
for SOAP 1.2 proxies, they use SOAP 1.2 namespace Body and namespace.)
The $attachments variable contains message attachments, if there are any. The $header
variable is not applicable to this service type and is set to its default value. The $operation
variable is not applicable to this service type because you do not define a port type.

To learn more about the message context variables, see Message-Related Variables and
Constructing Messages to Dispatch.

8.1.6 Proxy Service Transport Protocol Configuration
Much of the configuration for proxy services involves the transport protocol. Transports are
the communication layer between the external systems and the proxy services, acting as an
entry point into Service Bus. The available transport protocols for a proxy service vary
depending on the service type you are creating. Each transport protocol has its own
configuration requirements. For more information about transport protocols and their
configuration requirements, see Working with JCA Adapters, Transports, and Bindings and
click the link to the specific protocol you are interested in.

Based on the transport and WSDL file, the transport mode is automatically selected, but you
can overwrite it in the $inbound or $outbound variable.

8.2 Securing Proxy Services
You can secure proxy services through multiple methods, including Oracle Web Services
Manager (WSM) policies, authentication mappings, and service key providers.

A service provider is required if the proxy service routes messages to HTTPS services that
require client certificate authentication, and could be required in some message-level security
scenarios. A service account can be created to provide authentication when connecting to a
business service. It acts as an alias resource for the required user name and password pair.
WebLogic Server can be used to directly manage security credentials for a business service
requiring credential-level validation.

Chapter 8
Securing Proxy Services

8-5

For more information about securing proxy services, see Securing Business and Proxy
Services.

8.3 Service Level Agreement Alert Rules
Service Level Agreement (SLA) alert rules define conditions under which an alert is
generated.

These conditions are typically indicators of the overall health of the Service Bus
application or of a specific service component. For information about defining SLA
alert rules for a proxy service, see Creating Service Level Agreement Alert Rules in
Administering Oracle Service Bus.

8.4 Web Services Interoperability Compliance
You can configure a proxy service to enforce WS-I compliance (for SOAP 1.1 services
only) and select the selection algorithm to determine the operation called by this proxy
service. This option is only available for SOAP or XML services defined from a WSDL
file.

The WSDL specification defines a default algorithm to compute which operation is
called based on the type of the SOAP message received. There are cases when you
might need to select the operation based on other means. For example, there could be
performance or signature/encryption issues, or the default algorithm is not applicable.

Service Bus provides additional algorithms. Each follows the same pattern and is
based on the evaluation of an expression to get a value that is then used to look up
the corresponding operation in a static table.

Service Bus is very forgiving if an inbound message is either missing data such that
the operation cannot be determined or has data that does not correspond to a valid
operation. Both of these conditions result in $operation being empty. Rather than
reject all such messages, Service Bus does not initialize the operation variable in the
context but otherwise continues to process the message. However, security
requirements are enforced if the proxy service is WSDL-based and at least one of the
following conditions is true:

• The WSDL file has a WS-Security policy and the proxy is an active intermediary.

• The proxy has message-level custom authentication (either custom token or user
name/password).

If these conditions are met, then there is a runtime check to make sure that the
operation selection algorithm returns a valid operation name. If the operation selection
returns null or an operation that is not in the WSDL file, then the message is rejected
and an error is raised.

8.5 Creating Proxy Services
This section describes how to create proxy services using JDeveloper or the Oracle
Service Bus Console.

For information about creating Service Bus applications and projects, see Creating
Service Bus Applications and Projects in JDeveloper or, for the console, Create New
Projects and Folders for Resources.

Chapter 8
Service Level Agreement Alert Rules

8-6

You can use various methods to create a proxy service, including the Create Proxy Service
wizard, the Service Bus Overview Editor, generating it from an existing service or JCA
resource, and exposing a pipeline as a proxy service when you create the pipeline. When you
create a proxy service, the Create Proxy Service wizard provides a series of pages where
you can configure certain proxy service properties. This section describes how to use the
Create Proxy Service wizard to create proxy services. For information on using the Service
Bus Overview Editor, see Developing Oracle Service Bus Applications in JDeveloper.

Before You Begin

If you are using any system resources, such as SMTP servers, MQ connections, or UDDI
servers, make sure to create those resources before beginning to create a proxy service.
Configuring the proxy service includes specifying or selecting those resources, and you
cannot complete the proxy service configuration until the required resources exist in Service
Bus.

If you are working in JDeveloper, create or open the application and project to which you
want to add the proxy service. If you are working in the Oracle Service Bus Console, make
sure that you are in an active session and the project to which you want to add the proxy
service exists.

8.5.1 How to Create a Proxy Service
When you create a proxy service, you need to specify certain information, such as the service
type and whether to use a WSDL file or Service Bus transport. The following topics provide
additional information about creating proxy services:

• For information about proxy service types, see Proxy Service Definitions

• For information about WSDL files, see Working with WSDL Documents.

• For information about the different transports you can use, see Working with JCA
Adapters, Transports, and Bindings .

To create a proxy service, complete one of the following tasks, depending on whether you
want to use the Service Bus Console or JDeveloper to create the service:

• How to Create a Proxy Service Using the Service Bus Console

• How to Create a Typed REST Proxy Service Using the Service Bus Console

• How to Create a Proxy Service Using JDeveloper

8.5.2 How to Create a Proxy Service Using the Service Bus Console
You create proxy services in the Service Bus Console using the Create Proxy Service wizard,
which is accessed from the Resource Gallery.

To create a proxy service:

Note:

The procedure for creating a Typed REST Service from the Wizard (with a WADL)
differs from the process for creating other proxy services. See How to Create a
Typed REST Proxy Service Using the Service Bus Console for the procedure for
creating services of this type with the wizard.

Chapter 8
Creating Proxy Services

8-7

1. In the Project Navigator, right-click the project or folder in which you want to create
the service, point to Create, and then select Resource.

The Resource Gallery is displayed.

2. In the Resource Gallery, click Proxy Service, and then navigate to the type of
service you want to create. Select it and click OK.

3. Enter a name for the service and, optionally, a description.

Note:

For naming requirements, see Naming Guidelines for Service Bus
Components.

4. Depending on the type of service you selected in step 2, you might have to
configure one of the following options:

• If generating a proxy service configuration from an existing WSDL file, from
the WSDL option, click the Search icon to search for a WSDL resource. Once
you specify the WSDL file, select the port or binding to use from the Port/
Binding field.

• If generating a REST proxy service, optionally click the Choose WADL
Resource icon in the WADL Name field to display the Search and Select:
WADL Resource dialog. Use this dialog to search for and select a WADL
resource from which to generate this service. This creates a native typed
REST service. Leave the WADL Name field empty to create a native untyped
REST service.

• If generating a proxy service by configuring its transport, from the Transport
option, confirm that the correct transport is selected in the Protocol list. If you
want to create a service with a different transport type, select it from the
Protocol list.

5. Enter a new name for the pipeline generated for the proxy service (optional). If you
do not want to generate a pipeline, clear the Generate Pipeline check box.

Note:

This option is disabled for the JEJB transport.

6. Click Next.

The fields on the remaining pages in the wizard depend on your selections from
the first page. The options described in the following steps might not be available
for all configurations.

7. If creating a WSDL-based or REST-based service, skip to step 10.

8. If you chose a Transport definition on the first page, select one of the available
service types:

• WSDL: If you select this option, click Choose a WSDL from the Name field to
browse to and select a WSDL file to use. Select the port or binding type from
the list of options.

Chapter 8
Creating Proxy Services

8-8

• REST: (Optional) Click the Choose WADL Resource icon in the WADL Name field
to display the Search and Select: WADL Resource dialog. Use this dialog to search
for and select a WADL resource from which to generate this service. This creates a
native typed REST service. Leave the WADL Name field empty to create a native
untyped REST service.

• Any SOAP: If you select this option, select the SOAP version to use.

• Any XML: This option requires no additional configuration.

• Messaging: If you select this option, select the data type for the request message
and the response message. If you select MFL, you must also select the schema file.
If you select XML, you can optionally select the schema file.

9. Click Next.

The Transport page appears.

10. If the protocol you want to use is not already selected, select a new protocol from the list.

11. Specify the endpoint URI. For required URI formats, see the online help provided with
Service Bus.

12. Click Create.

The Proxy Service Definition Editor displays the general configuration of the new proxy
service.

After you create the service:

• Configure the proxy service, as described in Configuring Proxy Services.

• Configure the message flow in a pipeline or split-join. To learn more, see Working with
Pipelines in Oracle Service Bus Console and Improving Service Performance with Split-
Join.

8.5.3 How to Create a Typed REST Proxy Service Using the Service Bus
Console

You can create a native typed REST proxy service with the Create Native REST Proxy
Service wizard. You specify the resources and methods of the service in the wizard; the
wizard creates a WADL file describing the service and detailing the resources and methods
available.

See REST Implementation in Service Bus for additional information about typed REST
services.

To create a native typed REST proxy service in the console:

1. In the Project Navigator, right-click the project or folder in which you want to create the
service, point to Create, and then select Resource.

The Resource Gallery is displayed.

2. In the Resource Gallery, click Proxy Service, click Typed REST from wizard (with
WADL), and then click OK.

The Create Native REST Proxy Service wizard is displayed.

3. From the Basic Information page, provide basic details for the service:

a. Enter a name for the service in the Name field.

b. (Optional) Enter a description into the Description field.

Chapter 8
Creating Proxy Services

8-9

c. Enter a base URI for the service, such as /reservationService, into the
Base URI field.

d. Click Next.

4. From the Resources page, specify the resources to be included with the service:

Note:

Each service must have at least one resource.

a. Enter a unique resource path into the URI field, such as /makeReservation.

b. (Optional) Enter a description of the resource path into the Description field.

c. Click Add Resource.

d. To add additional resources, repeat steps a through c.

Tip:

To add a resource as a child to a resource that you’ve already
added, click the Add icon next to that resource instead of the Add
Resource button, as shown in the following image.

e. Click Next when you are finished adding resources.

5. From the Methods page, specify the methods available for each resource:

a. To add a method to a resource, click the arrow next to Methods, and then
click an HTTP verb to add a method using that HTTP verb.

Note:

The available HTTP verbs are GET, PUT, POST, and DELETE. Each
resource can have multiple GET methods, but only one method for
each of the PUT, POST, and DELETE verbs.

b. Enter a name for the method into the Name field.

c. (Optional) Enter a description of the method into the Description field.

d. On the Request tab, configure the request for this method.

Chapter 8
Creating Proxy Services

8-10

The options available on this tab differ depending on the HTTP Verb you chose for
the method.

• Configure the payload. Select None to send no payload. Select Media, and then
select a media type to display the payload in that format: XML, JSON, URL-
Encoded, Text, Opaque or Other. If you choose Other, enter the name for the
custom media type.

• Click Add Parameter to add additional parameter to the request. Provide the
parameter name, type, and default value by populating the fields that appear,
repeating for each parameter that you want to add:

– Enter a name for the parameter into the Parameter Name field.

– Select a type for the parameter (like string or integer) from the Type list.

– Enter a default value for a parameter in the Default Value field.

e. On the Response tab, configure the response for this method:

• For the success payload, select None to display no payload, or select Media,
and then select media types in which the payload can be displayed: XML, JSON,
URL-Encoded, Text, Opaque or Other. If you choose Other, enter the name for
the custom media type. Enter an HTTP status code to be sent on success into
the Success Status field.

• For the failure payload, select None to display no payload, or select Media, and
then select media types in which the payload can be displayed: XML, JSON,
URL-Encoded, Text, Opaque or Other. If you choose Other, enter the name for
the custom media type. Enter an HTTP status code to be sent on failure into the
Failure Status field.

f. Click Done when you are finished configuring a method.

g. Repeat steps a through f to add additional methods to resources. Each resource
must have at least one method.

6. Click Create to create the service.

The Proxy Service Definition editor is displayed.
After you create the service:

• Configure the proxy service, as described in Configuring Proxy Services.

• Configure the message flow in a pipeline or split-join. To learn more, see Working with
Pipelines in Oracle Service Bus Console and Improving Service Performance with Split-
Join.

8.5.4 How to Create a Proxy Service Using JDeveloper
You create proxy services based on WSDL files, based on transports, and native untyped
REST services using the Create Proxy Service wizard.

To create native typed REST proxy services and REST proxy services based on WSDL files,
see How to Create Typed REST Services for Service Bus Using JDeveloper and How to
Create WSDL-Based REST Services for Service Bus Using JDeveloper.

To create a proxy service:

1. In the Application Navigator, right-click the project, point to New, and then select Proxy
Service.

The Create Proxy Service wizard appears.

Chapter 8
Creating Proxy Services

8-11

2. Enter a name for the service and, optionally, a description.

Note:

• JDeveloper lets you modify the location where the proxy service file
is stored on the server. The file should be stored under the
application and project folders, which is the default location.

• For naming requirements, see Naming Guidelines for Service Bus
Components.

3. Do one of the following:

• To generate a native untyped REST service, select REST.

• To generate the proxy service by configuring its transport, select Transport,
and then select the type of transport from the list.

• To generate the proxy service configuration from an existing WSDL file, select
WSDL and then enter the name of the WSDL file or click the Search icon to
search for a WSDL resource. Once you specify the WSDL file, select the port
or binding to use from the Port/Binding field.

4. Enter a new name for the pipeline generated for the proxy service (optional). If you
do not want to generate a pipeline, clear the Generate Pipeline check box.

Note:

This option is disabled for the JEJB transport.

5. Click Next.

The fields on the remaining pages in the wizard depend on your selections from
the first page. The options described in the following steps might not be available
for all configurations.

6. If you chose WSDL or REST definition on the first page, skip to step 9.

7. If you chose a Transport definition on the first page, select one of the following
service types:

• REST: This option requires no additional configuration.

• WSDL: If you select this option, enter the WSDL file name or click Choose a
WSDL to browse to and select a WSDL file to use. Select the port or binding
type from the list of options.

• Any SOAP: If you select this option, select the SOAP version to use.

• Any XML: This option requires no additional configuration.

• Messaging: If you select this option, select the data type for the request
message and the response message. If you select MFL, you must also select
the schema file. If you select XML, you can optionally select the schema file.

8. Click Next.

The Transport page appears.

Chapter 8
Creating Proxy Services

8-12

9. If the protocol you want to use is not already selected, select a new protocol from the list.

10. Specify the endpoint URI. For required URI formats, see the online help provided with
Service Bus.

11. Click Finish.

The Proxy Service Definition Editor displays the general configuration of the new proxy
service.

12. Configure the proxy service, as described in Configuring Proxy Services.

13. After you create a proxy service, you need to configure the message flow in a pipeline or
split-join. To learn more, see Working with Pipelines in Oracle Service Bus Console and
Improving Service Performance with Split-Join.

8.5.5 How to Generate a Proxy Service from a JCA Binding Resource
With Service Bus, you can generate proxy services from inbound JCA files. JCA services,
which use the Service Bus JCA transport, communicate with Enterprise Information Systems
(EIS) through a JCA adapter framework and JCA-compliant adapters. For more information
on JCA binding resources, see Using the JCA Transport and JCA Adapters.

Before You Begin:

Create the JCA file, its associated abstract WSDL file, and any other required resources,
such as a TopLink mapping file in JDeveloper. For more information, see Using the JCA
Transport and JCA Adapters and Understanding Technology Adapters.

Note:

• If you select an outbound JCA binding instead of an inbound one, the option to
generate a proxy service is not available.

• In JDeveloper, you can also generate a proxy service when you create the JCA
adapter if you create it from the Service Bus Overview Editor. For more
information, see How to Create a Proxy Service.

8.5.5.1 Generating a Proxy Service from a JCA Binding in JDeveloper
To generate a proxy service from a JCA binding in JDeveloper:

1. In the Application Navigator, right-click the inbound JCA file, point to Service Bus, and
then select Generate Proxy Service.

The Create Proxy Service wizard appears, configured for the selected JCA binding.

2. On the wizard, keep the default service name and location, or specify new ones. The
location must be in the current application's directory structure.

See Naming Guidelines for Service Bus Components for naming guidance.

3. To generate a corresponding pipeline for the proxy service, leave Generate Pipeline
selected and specify a name for the pipeline (or accept the default name). Clear the
Generate Pipeline check box if you do not want to create the pipeline at this time.

4. Click Next.

Chapter 8
Creating Proxy Services

8-13

The Type page appears.

5. Select a WSDL binding if necessary, and then click Next again.

The Transport page appears.

6. Update the endpoint URI if necessary, and then click Finish.

Service Bus generates the proxy service and the concrete WSDL file used by the
proxy service.

7. Configure the proxy service, as described in Configuring Proxy Services.

8.5.5.2 Generating a Proxy Service from a JCA Binding in the Console
Before you begin, import the JCA resource files from JDeveloper to the console so all
references to dependencies are maintained. For more information, see Working with
JCA Binding Resources. and Importing and Exporting Resources and Configurations .

To generate a proxy service from a JCA binding in the console:

1. In the Project Navigator, right-click the inbound JCA file, and select Generate
WSDL and Service.

The Generate WSDL and Service dialog appears.

2. Optionally, modify the names of the WSDL file and the service you want to
generate, and select a location for these new resources.

See Naming Guidelines for Service Bus Components for naming guidance.

3. Click Generate.

Service Bus generates the service and its corresponding WSDL file.

4. In the Project Navigator, navigate to the new resources, and open the proxy
service in the Proxy Service Definition Editor.

5. Configure the proxy service, as described in Configuring Proxy Services.

8.5.6 How to Generate a Proxy Service from an Existing Service in
JDeveloper

In JDeveloper, you can generate proxy services from other proxy services, business
services, pipelines, and split-joins. The configuration of the proxy service is based on
that of the existing service.

To generate a proxy service from another service in JDeveloper:

1. In the Application Navigator, right-click the existing service, point to Service Bus,
and then select Generate Proxy Service.

The Create Proxy Service wizard appears.

2. Configure the name, description, and file location for the service, and then click
Next.

The Type page appears.

3. If the service is a WSDL service, select the binding to use and then click Next.

4. On the Transport page, select the transport protocol and update the endpoint URI.
For required URI formats, see the online help provided with Service Bus.

Chapter 8
Creating Proxy Services

8-14

5. Click Finish.

6. Configure the proxy service, as described in Configuring Proxy Services.

8.5.7 How to Generate a Proxy Service from a WSDL Document in
JDeveloper

You can use an existing WSDL document to generate a proxy service, business service,
pipeline, or split-join.

To generate a proxy service from a WSDL document in JDeveloper:

1. In the Application Navigator, right-click the existing WSDL document, point to Service
Bus, and then select Generate Proxy Service.

The Create Proxy Service wizard appears.

2. Configure the name, description, file location, and WSDL binding for the service.

3. To generate a corresponding pipeline for the proxy service, leave Generate Pipeline
selected and specify a name for the pipeline (or accept the default name). Clear the
Generate Pipeline check box if you do not want to create the pipeline at this time.

4. Click Next.

5. On the Transport page, select the transport protocol and update the endpoint URI. For
required URI formats, see the online help provided with Service Bus.

6. Click Finish.

7. Configure the proxy service, as described in Configuring Proxy Services.

8.6 Configuring Proxy Services
Once you create a proxy service, you can edit the configuration, add security policies, modify
security settings, and set up SLA alert rules.

The information you can modify depends on how the service was originally configured. For a
list of all the configurable properties for proxy services, see the online help available for each
Proxy Service Definition Editor page.

If you are working in the Oracle Service Bus Console, make sure that you are in an active
session before performing any of the tasks in this section.

8.6.1 How to Configure General Information for a Proxy Service
The General tab of the Proxy Service Definition Editor displays information about the service
such as a description of the service, the transport used by the service, the service type, any
WSDL ports or bindings, the XQuery version, and the service invoked by the proxy service.
The following figure shows the General tab in the Oracle Service Bus Console.

Chapter 8
Configuring Proxy Services

8-15

Figure 8-1 Proxy Service General Configuration Page in the Console

To configure general information for a proxy service:

1. In the Project or Application Navigator, right-click the proxy service to edit, and
click Open.

2. Click the General tab if it is not already the visible page.

3. Enter or update the description for the service.

4. If the service references any resources, such as a WSDL or MFL document, click
the name of the resource to view the document in its own editor.

5. To change the target service for the proxy service, click Choose a Service
Resource next to the Target Service name. In JDeveloper, browse to and select a
new target service. In the console, search for and select a new target resource.

6. To change the XQuery version used, select a new option from the XQuery
Processing list.

7. If you are working in the Oracle Service Bus Console, select Auto Publish to
Registry if you want the proxy service to automatically be published to the default
UDDI registry,

In order to automatically publish proxy services, you must define a default UDDI
server. For more information, see Keeping Services Synchronized.

8. When you are done making changes, click Save All.

9. If you are working in the Oracle Service Bus Console, click Activate to end the
session and deploy the configuration to the runtime.

Chapter 8
Configuring Proxy Services

8-16

8.6.2 How to Configure a Proxy Service Transport
Use the Transport and Transport detail page to configure the transport for the proxy service.
The available properties vary for each transport. The following figure shows the Transport tab
in the Oracle Service Bus Console.

Figure 8-2 Proxy Service Transport Configuration Page in the Console

To configure a proxy service transport:

1. In the Project or Application Navigator, right-click the proxy service to edit, and click
Open.

2. Click the Transport tab, and do any of the following:

• Update the endpoint URI.

• To retrieve all headers, select Get All Headers.

• To retrieve a subset of headers, select Get Specified Headers, and specify the
headers to retrieve in the Headers table. Click Add above the table to add headers.

3. Click the Transport Detail tab.

The properties you can configure here are based on the transport for the proxy service.
For information about specific transports, see Working with JCA Adapters, Transports,
and Bindings . The following figure shows the HTTP transport properties in the console.

Chapter 8
Configuring Proxy Services

8-17

Figure 8-3 Proxy Service Transport Details Page in the Console

4. When you are done making changes, click Save All.

5. If you are working in the Oracle Service Bus Console, click Activate to end the
session and deploy the configuration to the runtime.

8.6.3 How to Configure Proxy Service Message Handling
On the Message Handling page, you can configure how the proxy service processes
message contents, including checking for WS-I compliance and the XQuery version to
use. The following figure shows the Message Handling tab in the Oracle Service Bus
Console.

Chapter 8
Configuring Proxy Services

8-18

Figure 8-4 Proxy Service Message Handling Page in the Console

To configure message handling for a proxy service:

1. In the Project or Application Navigator, right-click the proxy service to edit, and click
Open.

2. Click the Message Handling tab.

3. To check messages for WS-I compliance, select the check box for Enforce WS-I
Compliance.

4. Select one of the following selection algorithms:

• Transport Header: Lets you define the transport header that contains the lookup
value. If you select this option, you must also specify a header name and the
operational values in the new fields that appear.

• SOAP Action Header: Specifies that operation mapping be done automatically from
the WSDL file associated with this proxy service.

• WS-Addressing: Specifies that the lookup value is contained by the WS-Addressing
Action tag located in the SOAP headers of the SOAP message. If you select this
option, you must also specify the operational values in the new fields that appear.

• SOAP Header: Lets you define an XPath expression to be evaluated against the
SOAP headers. This allows you to get the lookup value. If you select this option, you
must also define an XPath expression and value in the new fields that appear.

• SOAP Body Type: Uses the default algorithm defined by the WSDL specification to
compute which operation is called based on the type of the SOAP message received.

• Payload Type: This option is only available for XML services based on a WSDL port
or WSDL binding.

For more information about these algorithms, see the online help provided for this page.

5. When you are done making changes, click Save All.

Chapter 8
Configuring Proxy Services

8-19

6. If you are working in the Oracle Service Bus Console, click Activate to end the
session and deploy the configuration to the runtime.

8.6.4 How to Configure Security for a Proxy Service
You can secure proxy services through multiple methods, including Oracle Web
Services Manager (OWSM) policies and access control at the transport and message
levels. For more information about securing proxy services, see Securing Proxy
Services and Securing Business and Proxy Services.

8.6.5 How to Configure Service Level Agreement Alerts for a Proxy
Service

SLA alerts let system administrators know when certain conditions are met that
indicate the health of a proxy service. For information about defining SLA alerts, see
"Creating Service Level Agreement Alert Rules" in Administering Oracle Service Bus.

8.7 Deleting Proxy Services
Deleting a proxy service deletes all the ACLs referenced by the proxy from the
repository controlled by Service Bus, as well as from the appropriate authorization
provider.

If other resources reference the proxy service, you can still delete it. However, this
could result in conflicts due to unresolved references to the deleted service.

8.7.1 How to Delete a Proxy Service
Before deleting a proxy service, check for any dependencies. In the Oracle Service
Bus Console, open the proxy service in the Proxy Service Definition Editor and click
the Tools icon in the upper right, and then select References to find out whether any
services are using it. In JDeveloper, right-click the proxy service and select Explore
Dependencies.

To delete a proxy service:

1. In the Project or Application Navigator, right-click the proxy service to delete, and
select Delete.

A confirmation dialog appears.

2. In JDeveloper, if other resources reference this proxy service the confirmation
dialog displays the number of references. Click Show Usages to view information
about the reference.

3. On the confirmation dialog, click Yes to confirm you want to delete the service.

The proxy service is deleted.

4. If you are working in the Oracle Service Bus Console, click Activate to end the
session and deploy the configuration to the runtime.

Chapter 8
Deleting Proxy Services

8-20

8.8 Consuming Proxy Services in JDeveloper with WSIL
Service Bus makes its WSDL-based proxy services available through the Web Services
Inspection Language (WSIL), letting you consume Service Bus WSDL proxy services in
JDeveloper for service orchestration in Oracle SOA Suite.

The Service Bus WSIL servlet automatically registers WSDL-based proxy services deployed
in the Service Bus runtime environment. By creating a WSIL connection in JDeveloper, you
can access those proxy services through different URL patterns that map to different
hierarchy levels, such as project, folder, and individual service. For example, when you
connect to the Service Bus WSIL servlet with a project-level URL, you can see all the child
folders and WSDL-based proxy services in that project in JDeveloper.

8.8.1 How to Consume Service Bus Proxy Services in JDeveloper with
WSIL

The following procedure guides you through the process of creating a WSIL connection in
JDeveloper and generating web service references out of Service Bus WSDL proxy services
for use in SOA applications.

To consume proxy services in JDeveloper with WSIL:

1. In JDeveloper, open or create a SOA application.

2. Create a new WSIL connection.

In the Resources window, click the Add icon, select IDE Connections, and select WSIL.

On the Create WSIL Connection dialog, do the following:

a. Enter a name for the connection.

See Naming Guidelines for Service Bus Components for naming guidance.

b. Enter the credentials for one of the following Service Bus roles: Administrator,
Deployer, Operator, or Monitor.

c. Enter the URL to the Service Bus WSIL in one of the following formats:

• Domain (gets all projects, folders, and WSDL-based proxy services):

http://host:port/sbinspection.wsil

• Project (gets all child folders and WSDL-based proxy services):

http://host:port/sbinspection.wsil?refpath=project_name

• Folder (in a project, gets the folder, all child folders, and WSDL-based proxy
services):

http://host:port/sbinspection.wsil?refpath=project_name/folder_path

For example:

http://localhost:7021/sbinspection.wsil?refpath=MortgageBroker/ProxyServices

• Proxy Service (gets an individual WSDL-based proxy service):

http://host:port/sbinspection.wsil?refpath=project_name/folder_path/
wsdl_proxy_service

Chapter 8
Consuming Proxy Services in JDeveloper with WSIL

8-21

For example:

http://localhost:7021/sbinspection.wsil?refpath=MortgageBroker/
ProxyServices/loanGateway1

In a cluster, the WSIL servlet is deployed on Managed Servers and not the
Admin Server. Use a Managed Server host name and port in the URL.

d. Click Test Connection to verify the connection is valid.

e. Click OK. The WSIL connection appears in the Resources window in the
hierarchy determined by the URL you entered.

3. To use a Service Bus WSDL-based proxy service in your SOA application, create
a web service reference to it.

• In the Components window, create a new web service. In the Create Web
Service window, click the WSDL URL browse icon.

• In the SOA Resource Browser, select Resources, and select the Service Bus
proxy service in the WSIL connection created in the previous step.

When you create the web service reference to a Service Bus WSDL-based proxy
service, you can use it as an external reference in your SOA application.

The Service Bus WSIL servlet leverages the SBResource servlet. If the SBResource is
undeployed, the WSIL connection is not available.

Chapter 8
Consuming Proxy Services in JDeveloper with WSIL

8-22

9
Creating and Configuring Business Services

This chapter describes how to create, configure, and manage business services using the
Oracle Service Bus Console and JDeveloper. Service Bus business services, along with
proxy services, provide the means for managing services, transforming messages, and
routing messages through the enterprise.

• Introduction to Business Services

• Using Proxy Servers

• Service Level Agreement Alert Rules

• Security and Security Policies for Business Services

• Creating Business Services

• Configuring Business Services

• How to Delete a Business Service

• Improving Performance by Caching Business Service Results

9.1 Introduction to Business Services
Business services are Service Bus definitions of the enterprise services with which you want
to exchange messages. They define enterprise web services to which Service Bus is a client.
Those external web services are implemented in and hosted by external systems. Service
Bus must know what to invoke, how to invoke it, and what to expect as a result. Business
services model those interfaces so that Service Bus can invoke the external services.
You define business services using WSDL (Web Services Definition Language) or Web
Application Definition Language (WADL), just as you would define a proxy service. A
business service configuration includes its interface, transport settings, and security settings.
If the business service is based on a WSDL document, the configuration also includes a
WSDL port or a WSDL binding. (See Working with WSDL Documents.)

You can base business services on existing WSDL and WADL documents, including
documents imported from a UDDI registry, SOA Oracle Metadata Services (MDS) Repository,
an application server, or the file system. Service Bus also supports business services that
use the REST binding (see Creating REST Services with Oracle Service Bus). These
services are based on WADL documents and can only be created using the Service Bus
Overview Editor in JDeveloper.

9.1.1 Business Service Definitions
Each business service is defined by whether it is based on a WSDL web service or a Service
Bus transport. A WSDL-based service is a SOAP or XML business service whose interface is
described by a WSDL document. A transport-typed service is a business service based on a
Service Bus transport, including the JCA transport, which provides support for configuring
business services for Oracle JCA-compliant adapters. It also includes REST business
services, which use the HTTP transport. Each type of business service supports transport

9-1

protocols specific to its definition. Service Bus supports several standard transport
protocols as well as custom transports.

You can use either the Create Business Service wizard or the Service Bus Overview
Editor in JDeveloper to create business services with either a WSDL-based or
transport-typed service. Using the Service Bus Overview Editor, you can also generate
business services directly from a JCA adapter to create a business service already
configured for that adapter type. Both the wizard and the editor let you generate
business services from proxy services.

9.1.2 Service Types and Protocols for Business Services
Service Bus supports various service types ranging from conventional web services
(using XML or SOAP bindings in WSDL files) to non-XML (generic) services. When
you create a transport-typed business service, you also need to further define the
service by specifying and configuring the service type. The service types you can
select are restricted based on the transport used to communicate with the service
endpoint. For information about the transports supported with each service type, see
Transports, Adapters, and Bindings.

A business service can have one of the following service types, identified by the types
of messages it processes:

• WSDL Based Service: This service type is generated from an existing WSDL
document or one that you create at the same time you create the business
service. When creating a WSDL-based service, you need to specify the port or
binding to use.

• Messaging Service: This service type can receive messages of one data type
and respond with messages of a different data type. Supported data types include
XML, Message Format Language (MFL), text, untyped, binary, Java, and
attachments where the interface is not described by WSDL

• Any SOAP Service: This service type exchanges SOAP messages. SOAP
messages are constructed by wrapping the contents of the header and body
variables inside a <soap:Envelope> element. If the body variable contains a piece
of reference XML, it is sent as is; that is, the referenced content is not substituted
into the message. If attachments are defined in the attachments variable, a MIME
package is created from the main message and the attachment data. Content
handling for each attachment part is similar to how it is handled for messaging
services.

• Any XML Service (non-SOAP): With this service type, messages to XML-based
services are XML, but can be of any type the business service configuration
allows. In messages that include attachments, their content is a MIME package
that includes the primary XML payload as one of its parts (typically the first part or
the one identified by the top-level content-type header).

• REST Service: This type of service is based on the REST binding, and can be
generated from an existing WADL or one that you create at the same time you
create the proxy service (Typed REST), or can be created without a WADL or
schema (Untyped REST). For more information, see Creating REST Services with
Oracle Service Bus .

Chapter 9
Introduction to Business Services

9-2

9.1.3 Binding Definitions and Runtime Variables for Business Service
Types

Each business service type is modeled following the same pattern, which must be configured
for the service. These models are the same as those for proxy services. For more
information, see Binding Definitions and Runtime Variables for Proxy Service Types.

9.1.4 Business Service Transport Protocol Configuration
Much of the configuration for business services involves the transport protocol. Transports
are the communication layer between the external systems and the business services. The
available transport protocols for a business service vary depending on the service type you
are creating. Each transport protocol has its own configuration requirements. For more
information about transport protocols and their configuration requirements, see Working with
JCA Adapters, Transports, and Bindings and click the link to the specific protocol you are
interested in.

Based on the transport and WSDL file or interface, the transport mode is automatically
selected, but you can overwrite it using the routing options action for a route or publish action.

You can configure the following parameters for each business service:

• List of weighted endpoint URIs in the format <string URI, integer weight>; for
example, <http://www.oracle.com, 100>. For a random-weighted list, the list should
contain at least one element.

• Load-balancing algorithm, which can be round-robin, random, or random-weighted. If you
select random-weighted, the weights are applicable for each URI.

• Retry Count

• Retry Iteration Interval

• Retry Application Errors

The transport you select must be able to support the transport mode (that is, request/
response, one-way or both) required by the binding definition, and be configured accordingly.

For services exchanging messages in both modes (request/response and one-way), you
must configure the binding layer so it can select the transport mode accordingly. This occurs
automatically when the service is a concrete type, as it is described in the binding definition.
When it is not a concrete type, to configure the binding layer, you must use the routing
options action in the pipeline to set the mode for a route or publish.

For a Tuxedo transport-based service, if the service type is XML, an FML32 buffer with an
FLD_MBSTRING field from a Tuxedo client will not be transformed to XML For information
about configuring business services based on various transport protocols, see Working with
JCA Adapters, Transports, and Bindings .

9.1.4.1 About the Load Balancing Algorithm
The load balancing algorithm defines the order in which the endpoint URIs are selected at
runtime. Service Bus supports the following algorithms:

• Round-robin: Dynamically orders the URIs that you define for a business service. If the
first one fails, it tries the next one, and so on until the retry count is exhausted. For every
new message, there is a new order of URIs.

Chapter 9
Introduction to Business Services

9-3

• Random: Randomly orders the list of URIs that you define for a business service.
If the first one fails, it tries the next one, and so on until the retry count is
exhausted.

• Random-weighted: Randomly orders the list of URIs that you define for a
business service, but some are retried more than others based on the value you
enter in the Weight field.

• None: Orders the list of URIs that you define for a business service from top to
bottom.

9.1.4.2 About Business Service URI Retries
The retry option for business services specifies the maximum number of times a
business service can attempt to access endpoint URIs after an initial failure. For
example, consider the behavior of a business service B with endpoint URIs eu1, eu2,
and eu3, when the retry count is set to 1, 2, and 4.

When Retry Count = 1: If business service B fails to process a request or is unable to
access the endpoint URI eu1, it tries to process the request with eu2 (retry 1). If the
retry fails then the business service returns failure. The business service does not retry
the third endpoint URI eu3.

When Retry Count = 2: If business service B fails to process a request or is unable to
access the endpoint URI eu1, it tries to process the request with eu2 (retry 1). If the
retry fails then the business service tries to process the request with eu3 (retry 2). If the
retry fails then the business service returns failure.

When Retry Count = 4: If business service B fails to process a request or is unable to
access the endpoint URI eu1, it tries to process the request with eu2 (retry 1). If the
retry fails then the business service tries to process the request with eu3 (retry 2).
Then the business service waits for a interval you have configured for retry iteration
interval (in seconds) before trying eu1 (retry 3). If this fails the business service retries
eu2 (retry 4). If the retry fails then the business service returns failure.

If the retry count is set to 0, then the business service does not retry after the failure.

Note:

The order in which a business service retries the endpoints is controlled by
the load balancing algorithm.

9.1.4.3 Suppressing Retries in Case of Application Errors
A business service might fail to process a request due to communication or application
errors. Communication errors occur due to random network problems. Retrying such
requests with another endpoint URI can be successful. Application errors occur when
a request is malformed or other errors, and cannot be processed by any of the
endpoints. You can turn off retry behavior for the application errors by clearing the
Retry Application Errors option in the Transport Configuration page for a business
service, depending on the transport used.

Chapter 9
Introduction to Business Services

9-4

9.1.5 Message Handling for Business Services
Business services include properties that define how the service processes message
contents, including MTOM/XOP support, MIME attachments, checking for WS-I compliance,
and the XQuery version to use.

9.1.5.1 XOP/MTOM Support
A business services enabled for XOP/MTOM support can encode outbound messages in
MTOM/XOP format. SOAP Message Transmission Optimization Mechanism (MTOM) is a
method of sending binary data to and from web services. MTOM uses XML-binary Optimized
Packaging (XOP) to transfer the binary data.

Service Bus supports XOP/MTOM using the following transports:

• HTTP/S

• Local

• SB

Binary data in the $header and $body message context variables can be handled in either of
two ways:

• Include Binary Data by Reference: (Default) In an outbound response message,
replace xop:Include elements with ctx:binary-content elements when setting up
the $body message context variable.

• Include Binary Data by Value: In an outbound response message, replace xop:Include
elements with Base64-encoded text versions of corresponding binary data when setting
up the $body message context variable.

Note that if XOP/MTOM support is enabled for a business service, it is not required that every
outbound message be in the MTOM format. Instead, this setting specifies that the business
service is capable of handling an MTOM payload. Since Service Bus does not support a
combination of MTOM and SwA, the system issues a runtime error when Service Bus
attempts to dispatch an outbound request to a business service and the business service is
both enabled for MTOM/XOP and the $attachments message context variable is not null.

9.1.5.2 Attachments
Service Bus supports streaming MIME attachments using the HTTP/S transport. This feature
lets you store attachments in outbound response messages to a disk file and then process
the data in a streaming fashion without buffering the attachment contents in memory. This
enables the business service to process large attachments robustly and efficiently.

Note that if you enable XOP/MTOM support and choose the Include Binary Data by Value
option, a warning appears if you try to select Page Attachments to Disk. These two options
are not compatible. Note also that payloads that contain attachments must conform to RFC
822. Specifically, lines containing internet headers need to be terminated with CRLF (carriage
return line feed).

9.1.5.3 Web Services Interoperability Compliance
In a business service's message handling properties, you can specify whether the service
must conform to the Basic Profile defined by the Web Services Interoperability Organization

Chapter 9
Introduction to Business Services

9-5

(WS-I). This option is available for or SOAP 1.1 services only. When a service is
marked WS-I compliant, checks are performed against the messages sent to and from
that service.

9.2 Using Proxy Servers
You can configure business services to route messages through a proxy server by
creating a proxy server resource.

This resource specifies one or more proxy servers together with the necessary
credentials. You can then associate the proxy server resource with a business service.
This association instructs Service Bus to connect to the business service through the
configured proxy server.

Adding multiple proxy servers to a resource enables Service Bus to perform load
balancing and offer fault tolerance among the configured proxy servers. The
credentials are used when opening a connection to the proxy server. If a particular
proxy server is not reachable, Service Bus attempts to use the next proxy server in the
configuration. If all proxy servers are unreachable, Service Bus tries to connect to the
back end service directly. If that too fails, a fault is raised and sent back to the caller.

For information about proxy server resources, see Working with Proxy Server
Resources.

9.3 Service Level Agreement Alert Rules
Service Level Agreement (SLA) alert rules define conditions under which an alert is
generated.

These conditions are typically indicators of the overall health of the Service Bus
application or of a specific service component. For information about defining SLA
alert rules for a business service, see "Creating Service Level Agreement Alert Rules"
in Administering Oracle Service Bus.

9.4 Security and Security Policies for Business Services
You can secure business services through multiple methods, including Oracle Web
Services Manager (OWSM) policies and access control at the transport level.

Outbound transport-level security applies to the connections between proxy services
and business services. OWSM policies are bound by reference, not inlined in the
effective WSDL file. When you secure business services with OWSM, you can also
specify policy overrides.

For more information about transport-level security, see Configuring Transport-Level
Security. For more information about securing business services, see Securing
Business and Proxy Services.

9.5 Creating Business Services
You can create business services using Oracle JDeveloper or the Oracle Service Bus
Console.

Chapter 9
Using Proxy Servers

9-6

You can use various methods to create a business service, including generating it from an
existing service, a JCA resource, or WSDL document. When you create a business service,
the Create Business Service wizard provides a series of pages where you can configure
certain business service properties.

If you are using any system resources, such as SMTP servers, MQ connections, or UDDI
servers, make sure to create those resources before creating a business service. Configuring
the business service includes specifying or selecting those resources, and you cannot
complete the business service configuration until the required resources exist in Service Bus.

If you are working in JDeveloper, create or open the application and project to which you
want to add the business service. If you are working in the Oracle Service Bus Console,
make sure that you are in an active session and the project to which you want to add the
business service exists.

The following topics provide additional information about creating business services:

• For information about business service types, see Business Service Definitions.

• For information about WSDL files, see Working with WSDL Documents.

• For information about the different transports you can use, see Working with JCA
Adapters, Transports, and Bindings .

• For information about load balancing, see About the Load Balancing Algorithm .

To create a business service, complete one of the following tasks, depending on whether you
want to use the Service Bus Console or JDeveloper to create the service:

• How to Create a SOAP Business Service Using the Service Bus Console

• How to Create a Typed or Untyped REST Business Service Using the Service Bus
Console

• How to Create a Typed REST Business Service Specifying WADL Details Using the
Service Bus Console

• How to Create a REST Business Service Based on a SOAP Service Using the SOAP to
REST Wizard

• How to Create a Business Service That Connects to Oracle Integration Using the Service
Bus Console

• How to Create a Business Service Using JDeveloper

• How to Create a Business Service That Connects to Oracle Integration Using JDeveloper

• How to Generate a Business Service from a JCA Binding Resource

• How to Generate a Business Service from a Proxy Service in JDeveloper

• How to Generate a Business Service from a WSDL Document in JDeveloper

9.5.1 How to Create a SOAP Business Service Using the Service Bus
Console

You can create a SOAP business service in the Service Bus Console using the Create
Business Service wizard, which is accessed from the Resource Gallery.

To create a SOAP business service:

1. In the Project Navigator, right-click the project or folder in which you want to create the
service, point to Create, and then select Resource.

Chapter 9
Creating Business Services

9-7

The Resource Gallery is displayed.

2. In the Resource Gallery, click Business Service, then Web Service, then SOAP.
Click OK.

3. Enter a name for the service and, optionally, a description.

Note:

For naming requirements, see Naming Guidelines for Service Bus
Components.

4. To generate a SOAP business service configuration from an existing WSDL file,
select the WSDL Based Service option, then click the Search icon in the Name
field to display the Search and Select: WSDL Resource dialog. Use this dialog to
search for and select a WSDL resource from which to generate this service. Once
you specify the WSDL file, select the port or binding to use from the Port/Binding
field.

5. Click Next.

6. If the protocol you want to use is not already selected, select a new protocol from
the list.

7. Specify the endpoint URI. For required URI formats, see the online help.

Note:

In the console, you can add multiple URIs to the list. Click Add and then
modify the new URI that appears. Use the up and down arrows to
reorder the URIs.

8. Click Create.

The Business Service Definition Editor displays the general configuration of the new
business service.

After you create the business service, configure it as described in Configuring
Business Services.

9.5.2 How to Create a Typed or Untyped REST Business Service
Using the Service Bus Console

You can create a typed or untyped REST business service in the Service Bus Console
using the Create Business Service wizard, which is accessed from the Resource
Gallery.

To create a typed or untyped REST business service:

1. In the Project Navigator, right-click the project or folder in which you want to create
the service, point to Create, and then select Resource.

The Resource Gallery is displayed.

Chapter 9
Creating Business Services

9-8

2. In the Resource Gallery, click Business Service, then Web Service, then Typed/
Untyped REST. Click OK.

3. Enter a name for the service and, optionally, a description.

Note:

For naming requirements, see Naming Guidelines for Service Bus
Components.

4. Configure the following options:

• To generate a WADL-based REST business service, select WADL Based REST
Service, then click the Search icon in the Name field to display the Search and
Select: WADL Resource dialog. Use this dialog to search for and select a WADL
resource from which to generate this service. This creates a native typed REST
service. Leave the WADL Name field empty to create a native untyped REST
service.

• To generate a Swagger-based untyped REST business service, select Swagger
Based REST Service, then enter the URL to the Swagger document in the Swagger
Link field.

5. Click Next.

6. If the protocol you want to use is not already selected, select a new protocol from the list.

7. Specify the endpoint URI. For required URI formats, see the online help provided with
Service Bus.

Note:

In the console, you can add multiple URIs to the list. Click Add and then modify
the new URI that appears. Use the up and down arrows to re-order the URIs.

8. Click Create.

The Business Service Definition Editor displays the general configuration of the new business
service.

After you create the business service, configure it as described in Configuring Business
Services.

9.5.3 How to Create a Typed REST Business Service Specifying WADL
Details Using the Service Bus Console

You can create a native typed REST business service with the Create Native REST Business
Service wizard. You specify the resources and methods of the service in the wizard; the
wizard creates a WADL file describing the service and detailing the resources and methods
available.

See REST Implementation in Service Bus for additional information about typed REST
services.

To create a native typed REST business service in the console:

Chapter 9
Creating Business Services

9-9

1. In the Project Navigator, right-click the project or folder in which you want to create
the service, point to Create, and then select Resource.

The Resource Gallery is displayed.

2. In the Resource Gallery, click Business Service, then Web Service, then Typed
REST from wizard (with WADL). Click OK.

The Create Native REST Business Service wizard is displayed.

3. From the Basic Information page, provide basic details for the service:

a. Enter a name for the service in the Name field.

b. (Optional) Enter a description into the Description field.

c. Enter a base URI for the service, such as http://example.com:7002/
reservationservice, into the Base URI field.

d. (Optional) If you want to create a proxy service targeting this business
service, select the Virtualize option.

e. Click Next.

4. From the Resources page, specify the resources to be included with the service:

Note:

Each service must have at least one resource.

a. Enter a unique resource path into the URI field, such as /makeReservation.

b. (Optional) Enter a description of the resource path into the Description field.

c. Click Add Resource.

d. To add additional resources, repeat steps a through c.

Tip:

To add a resource as a child to a resource that you’ve already
added, click the Add icon next to that resource instead of the Add
Resource button, as shown in the following image.

e. Click Next when you are finished adding resources.

5. From the Methods page, specify the methods available for each resource:

a. To add a method to a resource, click the arrow next to Methods, and then
click an HTTP verb to add a method using that HTTP verb.

Chapter 9
Creating Business Services

9-10

Note:

The available HTTP verbs are GET, PUT, POST, and DELETE. Each resource
can have multiple GET methods, but only one method for each of the PUT,
POST, and DELETE verbs.

b. Enter a name for the method into the Name field.

c. (Optional) Enter a description of the method into the Description field.

d. On the Request tab, configure the request for this method.

The options available on this tab differ depending on the HTTP Verb you chose for
the method.

• Configure the payload. Select None to send no payload. Select Media, and then
select a media type to display the payload in that format: XML, JSON, URL-
Encoded, Text, Opaque, or Other. If you choose Other, enter the name for the
custom media type.

• Click Add Parameter to add additional parameter to the request. Provide the
parameter name, type, and default value by populating the fields that appear,
repeating for each parameter that you want to add:

– Enter a name for the parameter into the Parameter Name field.

– Select a type for the parameter (like string or integer) from the Type list.

– Enter a default value for a parameter in the Default Value field.

e. On the Response tab, configure the response for this method:

• For the success payload, select None to display no payload, or select Media,
and then select media types in which the payload can be displayed: XML, JSON,
URL-Encoded, Text, Opaque, or Other. If you choose Other, enter the name for
the custom media type.

• For the failure payload, select None to display no payload, or select Media, and
then select media types in which the payload can be displayed: XML, JSON,
URL-Encoded, Text, Opaque, or Other. If you choose Other, enter the name for
the custom media type.

f. Click Done when you are finished configuring a method.

g. Repeat steps a through f to add additional methods to resources. Each resource
must have at least one method.

6. Click Create to create the service.

The Business Service Definition editor is displayed.
After you create the business service, configure it as described in Configuring Business
Services.

9.5.4 How to Create a REST Business Service Based on a SOAP Service
Using the SOAP to REST Wizard

You can expose operations from a SOAP XML schema to a REST service.

To create a typed REST business service based on a SOAP service in the console:

Chapter 9
Creating Business Services

9-11

1. In the Project Navigator, right-click the project or folder in which you want to create
the service, point to Create, and select Resource.

The Resource Gallery is displayed.

2. In the Resource Gallery, click Business Service, then Web Service, then SOAP
to REST. Click OK.

The Create REST Business Service wizard is displayed.

3. From the Basic Information page, provide basic details for the service:

a. Enter a name for the service in the Name field.

b. (Optional) Enter a description in the Description field.

c. Enter a base URI for the service, such as http://example.com:7002/
reservationservice, in the Base URI field.

d. (Optional) If you want to create a proxy service targeting this business
service, select the Virtualize option.

e. Click Next.

4. From the Resources page, specify the resources to be included with the service:

Note:

Each service must have at least one resource.

a. Enter a unique resource path into the URI field, such as /makeReservation.

b. (Optional) Enter a description of the resource path into the Description field.

c. Click Add Resource.

d. To add additional resources, repeat steps a through c.

Tip:

To add a resource as a child to a resource that you’ve already
added, click the Add icon next to that resource instead of the Add
Resource button, as shown in the following image.

e. Click Next when you are finished adding resources.

5. From the Methods page, specify the methods available for each resource:

a. To add a method to a resource, click the arrow next to Methods, and then
click an HTTP verb to add a method using that HTTP verb.

Chapter 9
Creating Business Services

9-12

Note:

The available HTTP verbs are GET, PUT, POST, and DELETE. Each resource
can have multiple GET methods, but only one method for each of the PUT,
POST, and DELETE verbs.

b. Enter a name for the method into the Name field.

c. (Optional) Enter a description of the method into the Description field.

d. On the Request tab, configure the request for this method:

Note:

The options available on this tab differ depending on the HTTP Verb you
chose for the method.

• From the Schema field, click the Choose an XML Schema icon to search for
and select the XML schema containing the operation you want to map to the
request.

• From the Element list, select the element corresponding with the request
operation. Service Bus automatically populates parameters, and a parameter
name, type, expression, and default value for each parameter, if applicable,
based on the element you select.

• Configure the payload. Select None to send no payload. Select Media, and then
select a media type to display the payload in that format: XML, JSON, URL-
Encoded or Other. If you choose Other, enter the name for the custom media
type.

• Click Add Parameter to add additional parameter to the request. Provide the
parameter name, type, XPath expression, and default value by populating the
fields that appear, repeating for each parameter that you want to add:

Note:

You can also edit values for parameters populated from schema
elements.

– Enter a name for the parameter into the Parameter Name field.

– Select a type for the parameter (like string or integer) from the Type list.

– Enter an XPath expression function for the parameter into the Expression
field. An expression editor window will not display, so you must know the
XPath expression for a given parameter.

– Enter a default value for a parameter in the Default Value field.

e. On the Response tab, configure the response for this method:

Chapter 9
Creating Business Services

9-13

• Enter HTTP Statuses to be sent with the response (separated by spaces)
into the HTTP Statuses field.

• For the payload, select None to display no payload, or select Media, and
then select media types in which the payload can be displayed: XML,
JSON, URL-Encoded or Other. If you choose Other, enter the name for
the custom media type.

• From the Schema field, click the Choose an XML Schema icon to search
for and select the XML schema containing the operation you want to map
to the response.

• From the Element list, select the element to map to the response.

f. (Optional) On the Fault tab, configure faults for this method:

• Click Add Fault to add a fault for this method.

• Enter a name for the fault into the Fault Name field.

• Enter HTTP Statuses to be sent with the fault (separated by spaces) into
the HTTP Statuses field.

• For the fault payload, select None to display no payload, or select Media,
and then select media types in which the payload can be displayed: XML,
JSON, URL-Encoded or Other. If you choose Other, enter the name for
the custom media type.

• Repeat these steps to add additional faults, if necessary.

g. Click Done when you are finished configuring a method.

h. Repeat steps a through g to add additional methods to resources. Each
resource must have at least one method.

6. Click Create to create the service.

The Business Service Definition editor is displayed.
After you create the service, configure it as described in Configuring Business
Services.

9.5.5 How to Create a Business Service That Connects to Oracle
Integration Using the Service Bus Console

The REST Adapter can connect to REST-based integrations created in Oracle
Integration from either the Service Bus Console or JDeveloper. This allows you to
browse integrations created in Oracle Integration (in Oracle Cloud) and select them for
use in on-premises Service Bus applications.

Note:

This feature is available in 12c (12.2.1.3) only if you have installed the server
patches 30176463 and 30217119.

This type of integration may be called a hybrid integration—an integration developed in
the cloud that can be used in on-premises applications. An integration must meet the
following criteria to be used in Service Bus applications:

• Have a REST endpoint

Chapter 9
Creating Business Services

9-14

• Be deployed and activated

• Have a Swagger document for the integration

To consume integrations created in Oracle Integration using JDeveloper, see How to Create a
Business Service That Connects to Oracle Integration Using JDeveloper.

To consume integrations created in Oracle Integration using the Service Bus Console,
perform one of the following tasks:

• Consuming an Integration in the Service Bus Console By Browsing

• Consuming an Integration in the Service Bus Console Using a Direct Link

9.5.5.1 Consuming an Integration in the Service Bus Console By Browsing
Before you perform this procedure, you must have a service account that contains credentials
to access the Oracle Integration server. If you create a new service account with these
credentials, the session must be activated, or the service account will not be available in the
Integrations screen.
To consume an Oracle Integration REST-based integration by browsing:

1. In the Service Bus Console, right-click the project or folder to contain the integration,
point to Create, and click Resource.

2. In the Resource Gallery, click Business Service then Web Service, then Oracle
Integration Connect. Click OK.

3. Enter a name for the resource and, optionally, a description.

Note:

For naming requirements, see Naming Guidelines for Service Bus
Components.

4. Click Next.

5. On the Integrations page, enter the URL of the Oracle Integration server.

6. Select the Service Account containing credentials to access the Oracle Integration
server.

7. Click Get Integrations.

8. Click the desired integration.

You can click Swagger Doc Contents to view the Swagger document.

9. Click Next.

10. On the Transport page, the endpoint URI for the Oracle Integration server should already
be filled in. Click Create.

The business service and a WADL resource are created. You can click the WADL
definition resource and click View/Edit to see the WADL file.

11. Open the Business Service definition and click Transport Details.

12. In the Authentication section, click Basic.

13. Select a service account with credentials for runtime access to the Oracle Integration
server, and click OK.

Chapter 9
Creating Business Services

9-15

9.5.5.2 Consuming an Integration in the Service Bus Console Using a Direct
Link

If you know the Swagger URL of the integration, you can consume it using a direct
Swagger link.

To consume an Oracle Integration REST-based integration using a direct Swagger
link:

1. In the Service Bus Console, right-click the project or folder to contain the
integration, point to Create, and click Resource.

2. In the Resource Gallery, click Business Service then Web Service, then Typed/
Untyped REST. Click OK.

3. Enter a name for the resource and, optionally, a description.

Note:

For naming requirements, see Naming Guidelines for Service Bus
Components.

4. Select Swagger Based REST Service and enter the URL of the Swagger
document in the Swagger Link field.

You can obtain the Swagger URL in Oracle Integration by clicking the How to run
icon next to the integration name, and clicking the Endpoint URL link.

5. Click Next.

6. Click Create.

The business service and a WADL resource are created. You can click the WADL
definition resource and click View/Edit to see the WADL file.

7. Open the Business Service definition and click Transport Details.

8. In the Authentication section, click Basic.

9. Select a service account with credentials for runtime access to the Oracle
Integration server, and click OK.

9.5.6 How to Create a Business Service Using JDeveloper
You create business services based on WSDL files, based on transports, and native
untyped REST services using the Create Business Service wizard in JDeveloper.

To create native typed REST business services and REST business services based on
WSDL files, see How to Create Typed REST Services for Service Bus Using
JDeveloper and How to Create WSDL-Based REST Services for Service Bus Using
JDeveloper.

To create a business service:

1. In the Application Navigator, right-click the project, point to New, and then select
Business Service.

The Create Business Service wizard appears.

Chapter 9
Creating Business Services

9-16

2. Enter a name for the service and, optionally, a description.

Note:

• JDeveloper lets you modify the location where the business service file is
stored on the server. The file should be stored under the application and
project folders, which is the default location.

• For naming requirements, see Naming Guidelines for Service Bus
Components.

3. Do one of the following:

• To generate a native untyped REST service, select REST.

• To generate the business service by configuring its transport, select Transport, and
then select the type of transport from the list.

• To generate the business service configuration from an existing WSDL file, select
WSDL and then enter the name of the WSDL file or click the Search icon to search
for a WSDL resource. Once you specify the WSDL file, select the port or binding to
use from the Port/Binding field.

4. Click Next.

The fields on the remaining pages in the wizard depend on your selections from the first
page. The options described in the following steps might not be available for all
configurations.

5. If you chose WSDL or REST definition on the first page, skip to step 8.

6. If you chose a Transport definition on the first page, select one of the following service
types:

• REST: This option requires no additional configuration.

• WSDL: If you select this option, enter the WSDL file name or click Choose a WSDL
to browse to and select a WSDL file to use. Select the port or binding type from the
list of options.

• Any SOAP: If you select this option, select the SOAP version to use.

• Any XML: This option requires no additional configuration.

• Messaging: If you select this option, select the data type for the request message
and the response message. If you select MFL, you must also select the schema file.
If you select XML, you can optionally select the schema file.

7. Click Next.

The Transport page appears.

8. If the protocol you want to use is not already selected, select a new protocol from the list.

9. Specify the endpoint URI. For required URI formats, see the online help provided with
Service Bus.

Chapter 9
Creating Business Services

9-17

Note:

In JDeveloper, you can add multiple URIs when you configure the
business service.

10. Click Finish.

The Business Service Definition Editor displays the general configuration of the
new business service.

11. Configure the business service, as described in Configuring Business Services.

9.5.7 How to Create a Business Service That Connects to Oracle
Integration Using JDeveloper

The REST Adapter can connect to REST-based integrations created in Oracle
Integration from either the Service Bus Console or JDeveloper. This allows you to
browse integrations created in Oracle Integration (in Oracle Cloud) and select them for
use in on-premises Service Bus applications.

This type of integration may be called a hybrid integration—an integration developed in
the cloud that can be used in on-premises applications. An integration must meet the
following criteria to be used in Service Bus applications:

• Have a REST endpoint

• Be deployed and activated

• Have a Swagger document for the integration

To consume integrations created in Oracle Integration using the Service Bus Console,
see How to Create a Business Service That Connects to Oracle Integration Using the
Service Bus Console.

To consume integrations created in Oracle Integration using JDeveloper, perform the
following tasks:

• Create an Oracle Integration Connection

• Create a REST Binding

• Configure OWSM Policies on the REST Reference

• Configure and Deploy the Application

9.5.7.1 Create an Oracle Integration Connection
To create an Oracle Integration connection:

1. In the Oracle JDeveloper Resources window, click the New icon, select IDE
Connections, then select Oracle Integration Connection.

2. In the Create Oracle Integration Connection dialog, enter a name for the
connection in the Connection Name field.

3. In the URL field, enter the hostname and port number of the Oracle Integration
instance.

4. Enter the User Name and Password of the Oracle Integration instance.

Chapter 9
Creating Business Services

9-18

5. Click Test Connection and accept the security certificate.

6. Click OK.

9.5.7.2 Create a REST Binding
To create a REST binding:

1. In Oracle JDeveloper, right-click in the project design window (in the External References
swimlane), select Insert, then REST.

2. In Step 1 of the REST Binding Configuration Wizard, enter a name for the REST binding.

3. Click Next.

4. In Step 2 of the REST Binding Configuration Wizard, select the integration in one of two
ways:

• Create a REST binding by selecting an integration:

– In the WADL or Swagger Chooser dialog, with the Oracle Integration Connect
plugin highlighted, select the connection that you created for the Oracle
Integration instance.

Chapter 9
Creating Business Services

9-19

If a connection does not exist for the Oracle Integration instance you need,
you can create a new connection. To create a connection, either click the

Create new connection icon or follow the steps in Create an Oracle
Integration Connection to open the Create Oracle Integration Connection
dialog.

– Select the integration you want to use.

Click the Information icon to display details about the integration,
including name, version, description, and a View Swagger button to view
the Swagger document for the integration.

– Click OK.

– Click Finish in the wizard.

• Create a REST binding using the Swagger Document URL:

– In the WADL or Swagger Document URL field, enter the URL of the
Swagger document for the integration you want to use.

You can find this URL through the WADL method described above, where
selecting the integration shows the Swagger document URL in the
Selection field at the bottom of the wizard. You can also obtain the
Swagger URL in Oracle Integration by clicking the How to run icon next to
the integration name, and clicking the Endpoint URL link.

Chapter 9
Creating Business Services

9-20

The wizard fetches the contents of the Swagger document, converts it into
WADL, and displays the resources.

– Click Finish.

9.5.7.3 Configure OWSM Policies on the REST Reference
If the Oracle Integration endpoint has configured policies, configure appropriate SOA OWSM
policies on the REST reference:

1. Right-click the created REST business object and select Configure Policy.

2. In the Policy Configuration screen, select From OWSM Policy Store.

3. Click the + icon for the policy type you wish to configure.

4. Select the policy.

5. Click Save.

9.5.7.4 Configure and Deploy the Application
To configure and deploy your application to use the integration:

1. Complete your application by adding Inbound and BPEL Process to invoke the REST
reference.

2. Deploy your application to the SOA server.

3. Test your application.

9.5.8 How to Generate a Business Service from a JCA Binding Resource
With Service Bus, you can generate a business service from an outbound JCA binding
resource. JCA services, which use the Service Bus JCA transport, communicate with
Enterprise Information Systems (EIS) through a JCA adapter framework and JCA-compliant
adapters. For more information on JCA binding resources, see Using the JCA Transport and
JCA Adapters.

Before You Begin:

Create the JCA file, its associated abstract WSDL file, and any other required resources,
such as a TopLink mapping file in JDeveloper. For more information, see Using the JCA
Transport and JCA Adapters and Understanding Technology Adapters.

Note:

• If you select an inbound JCA binding instead of an outbound one, the option to
generate a business service is not available.

• In JDeveloper, you can also generate a business service when you create the
JCA adapter if you create it from the Service Bus Overview Editor. For more
information, see How to Create a Business Service.

Chapter 9
Creating Business Services

9-21

9.5.8.1 Generating a Business Service from a JCA Binding in JDeveloper
To generate a business service from a JCA binding in JDeveloper:

1. In the Application Navigator, right-click the outbound JCA file, point to Service
Bus, and then select Generate Business Service.

The Create Business Service wizard appears, configured for the selected JCA
binding.

2. On the wizard, keep the default service name and location, or specify new ones.
The location must be in the current application's directory structure.

See Naming Guidelines for Service Bus Components for naming guidance.

3. Click Next.

The Type page appears.

4. Select a WSDL binding if necessary, and then click Next again.

The Transport page appears.

5. Update the endpoint URI if necessary, and then click Finish.

Service Bus generates the business service and the concrete WSDL file that is
used by the business service.

6. Configure the business service, as described in Configuring Business Services.

9.5.8.2 Generating a Business Service from a JCA Binding in the Console
Before you begin, import the JCA resource files from JDeveloper to the console so all
references to dependencies are maintained. For more information, see Working with
JCA Binding Resources and Importing and Exporting Resources and Configurations .

To generate a business service from a JCA binding in the console:

1. In the Project Navigator, right-click the outbound JCA file, and select Generate
WSDL and Service.

The Generate WSDL and Service dialog appears.

2. Optionally, modify the names of the WSDL file and the service you want to
generate, and select a location for these new resources.

See Naming Guidelines for Service Bus Components for naming guidance.

3. Click Generate.

Service Bus generates the service and its corresponding WSDL file.

4. In the Project Navigator, navigate to the new resources, and open the business
service in the Business Service Definition Editor.

5. Configure the business service, as described in Configuring Business Services.

9.5.9 How to Generate a Business Service from a Proxy Service in
JDeveloper

In JDeveloper, you can generate business services from the proxy services you
create. The configuration of the business service is based on that of the proxy service.

Chapter 9
Creating Business Services

9-22

To generate a business service from a proxy service in JDeveloper:

1. In the Application Navigator, right-click the existing proxy service, point to Service Bus,
and then select Generate Business Service.

The Create Business Service wizard appears.

2. Configure the name, description, and file location for the service, and then click Next.

The Type page appears.

3. If the service is a WSDL service, select the binding to use and then click Next.

4. On the Transport page, select the transport protocol and update the endpoint URI. For
required URI formats, see the online help provided with Service Bus.

5. Click Finish.

6. Configure the business service, as described in Configuring Business Services.

9.5.10 How to Generate a Business Service from a WSDL Document in
JDeveloper

You can use an existing WSDL document to generate a proxy service, business service,
pipeline, or split-join.

To generate a business service from a WSDL document in JDeveloper:

1. In the Application Navigator, right-click the existing WSDL document, point to Service
Bus, and then select Generate Business Service.

The Create Business Service wizard appears.

2. Configure the name, description, file location, and WSDL binding for the service, and
then click Next.

3. On the Transport page, select the transport protocol and update the endpoint URI. For
required URI formats, see the online help provided with Service Bus.

4. Click Finish.

5. Configure the business service, as described in Configuring Business Services.

9.6 Configuring Business Services
Once you create a business service, you can edit the configuration, add security policies,
modify security settings, and set up SLA alert rules.

The information you can modify depends on how the service was originally configured. For a
list of all the configurable properties for business services, see the online help available for
each Business Service Definition Editor page.

If you are working in the Oracle Service Bus Console, make sure that you are in an active
session before performing any of the tasks in this section.

9.6.1 How to Configure General Information for a Business Service
The General tab of the Business Service Definition Editor displays information about the
service such as a description of the service, the transport used by the service, the service

Chapter 9
Configuring Business Services

9-23

type, and any WSDL ports or bindings. You can only modify the description on this
page. The following figure shows the General tab in the Oracle Service Bus Console.

Figure 9-1 Business Service General Configuration Page in the Console

To configure general information for a business service:

1. In the Project or Application Navigator, right-click the business service to edit, and
click Open.

2. Click the General tab if it is not already the visible page.

3. Enter or update the description for the service.

4. If the service references any resources, such as a WSDL or MFL document, click
the name of the resource to view the document in its own editor.

5. When you are done making changes, click Save All.

6. If you are working in the Oracle Service Bus Console, click Activate to end the
session and deploy the configuration to the runtime.

9.6.2 How to Configure a Business Service Transport
Use the Transport and Transport detail page to configure the transport for the business
service. The available properties vary for each transport. The following figure shows
the Transport tab in the Oracle Service Bus Console.

Chapter 9
Configuring Business Services

9-24

Figure 9-2 Business Service Transport Configuration Page in the Console

To configure a business service transport:

1. In the Project or Application Navigator, right-click the business service to edit, and click
Open.

2. Click the Transport tab, and do any of the following:

• To change the load-balancing algorithm, select a new algorithm from the list of
available options.

For more information, see About the Load Balancing Algorithm .

• Update or add endpoint URIs. For more information, see the online help provided for
this page.

• In the Retry Count field, specify the number of times to retry URI endpoints.

• In the Retry Iteration Interval field, specify the amount of time in seconds to wait
after trying all URIs before trying again.

• Select or clear Retry Application Errors to specify whether to retry application
errors.

3. Click the Transport Detail tab.

The properties you can configure here are based on the transport for the business
service. For information about specific transports, see Working with JCA Adapters,
Transports, and Bindings or the online help for the Transport Detail tab.

4. When you are done making changes, click Save All.

5. If you are working in the Oracle Service Bus Console, click Activate to end the session
and deploy the configuration to the runtime.

Chapter 9
Configuring Business Services

9-25

9.6.3 How to Configure Business Service Message Handling
On the Message Handling page, you can configure how the business service
processes message contents, including MTOM/XOP support, attachments, checking
for WS-I compliance, and the XQuery version to use. The following figure shows the
Message Handling tab in the Oracle Service Bus Console.

Figure 9-3 Business Service Message Handling Page in the Console

To configure message handling for a business service:

For information about message handling properties, see Message Handling for
Business Services.

1. In the Project or Application Navigator, right-click the business service to edit, and
click Open.

2. Click the Message Handling tab.

3. To enable XOP/MTOM support, select XOP/MTOM Enabled, and select whether
to include binary data by reference or value.

4. To specify how MIME attachments are handled, select or clear Page Attachments
to Disk.

5. To check messages for WS-I compliance, select the check box for Enforce WS-I
Compliance.

6. Select the version of XQuery to use for processing, either 2004 or 1.0.

Chapter 9
Configuring Business Services

9-26

Note:

XQuery 1.0 is the recommended version. Support for XQuery 2004 will be
deprecated in future releases.

7. (Optional) If you are configuring a WSDL-based REST service, select the Enforce XML
Schema Ordering option to reorder JSON payloads to match the order of the elements in
the XML schema. This includes inbound request payloads and responses from outbound
requests.

8. When you are done making changes, click Save All.

9. If you are working in the Oracle Service Bus Console, click Activate to end the session
and deploy the configuration to the runtime.

9.6.4 How to Configure Performance for a Business Service
On the Performance tab, you can configure result caching to improve the performance of the
business service. For more information, see Improving Performance by Caching Business
Service Results. For instructions, see How to Configure a Business Service for Result
Caching.

9.6.5 How to Configure Security for a Business Service
You can secure business services through multiple methods, including Oracle Web Services
Manager (WSM) policies and access control at the transport level. For more information
about securing business services, see Security and Security Policies for Business Services
and Securing Business and Proxy Services.

9.6.6 How to Configure Service Level Agreement Alerts for a Business
Service

SLA alerts let system administrators know when certain conditions are met that indicate the
health of a business service. For information about defining SLA alerts, see "Creating Service
Level Agreement Alert Rules" in Administering Oracle Service Bus.

9.7 Deleting a Business Service
If resources reference a business service, you can still delete it. The deletion could result in
conflicts due to unresolved references to the deleted resource.

Check for dependencies before removing a business service. In the Oracle Service Bus
Console, open the business service in the Business Service Definition Editor. Click the Tools
icon in the upper right, and then select References to find out whether any services are using
it. In JDeveloper, right-click the business service and select Explore Dependencies.

To delete a business service:

1. In the Project or Application Navigator, right-click the business service to delete, and
select Delete.

A confirmation dialog appears.

Chapter 9
Deleting a Business Service

9-27

2. In JDeveloper, if other resources reference this business service the confirmation
dialog displays the number of references. To view information about the reference,
click Show Usages

3. To confirm that you want to delete the service, click Yes on the confirmation
message.

The business service is deleted.

4. If you are working in the Oracle Service Bus Console, click Activate to end the
session and deploy the configuration to the runtime.

9.8 Improving Performance by Caching Business Service
Results

If you use business services that return results that do not change often, you can
configure those business services to cache results. When you enable result caching,
the service returns results from the cache rather than invoking the external service.
This configuration improves performance by reducing network overhead to access the
external service. Result caching also helps improve scalability by reducing the load on
the back-end servers that host the external service.

In this section, the term result cache refers to the cache itself, which all business
services share to store their respective results. The term cached result refers to a
single result in the result cache. For business services that use result caching, you can
control the time to live for the cached result. After the cached result expires, the next
business service call results in invoking the back-end service to get the result. This
result is then stored in the cache for future requests to access.

Service Bus uses the result caching mechanism of Oracle Coherence, which is
included with WebLogic Server. The Service Bus implementation of result caching
includes global enable/disable, cache message variables, configuration fields on each
business service, and cache options for service statistics, debugging, and alert rules.

9.8.1 How Result Caching Works
Figure 9-4 illustrates a client invoking a business service and receiving a response that
contains cached results.

Note:

Result caching works only with request/response operations.

Chapter 9
Improving Performance by Caching Business Service Results

9-28

Figure 9-4 Business Service Result Caching

Each cached result is uniquely identified by a cache key that is made up of the ServiceRef
(the unique identifier for the service which is the fully qualified path name of the service), the
operation being invoked, and a cache token string. The cache token helps to uniquely identify
a single cache result among other cache results for one business service. You control the
value of the cache token. You can set the cache token either by configuring the cache token
expression in the result caching configuration for the business service or by using the cache-
token metadata element in $transportMetaData using the pipeline.

If the business service locates cached results through a cache key, it returns those cached
results to the client instead of invoking the external service directly.

In Figure 9-4, the solid arrows represent the message path between the client and a cached
result. The dotted arrows show the message path if no cached result exists. If no cached
result exists, the business service invokes the external service directly, returns the result to
the client, and stores the result in cache. A result cache could be empty for a number of
reasons, such as for a first-time invocation where no cache exists yet, a caching error, or the
cache was flushed.

For cache expiration, cached results have a time-to-live (TTL) attribute. You can configure
cache expiration either with the Expiration Time property in the result caching configuration
on the business service or the cache-ttl element in $transportMetaData using the pipeline. If
Coherence finds that the TTL has expired, it flushes the cache, and the business service
invokes the external service for a result. That result is then stored in the cache (if there is no
error in the result), and the result is available in the cache so that it can be returned to the
next request.

9.8.1.1 Flushing Cached Results
Service Bus with Coherence can flush an individual cached result or all cached results for a
business service. The following events illustrate how the cache is flushed:

• Cache TTL has expired. Each cached result has its own TTL. When a TTL is reached,
Coherence flushes that individual cached result.

• Disable result caching on a single business service. When you disable result caching on
a business service, Service Bus triggers flushing of all cached results for that business
service in Coherence.

Chapter 9
Improving Performance by Caching Business Service Results

9-29

• Update, rename, or delete a business service. These actions trigger the flushing of
all cached results for that business service from Coherence.

• Update a dependent resource. Updating a dependent resource, such as a WSDL
document, triggers the flushing of all cached results for that business service from
Coherence. However, changes to the following dependent resources do not cause
cache flushing: service provider, UDDI registry, and alert destination.

• Globally disable result caching. Globally disabling result caching, triggers the
flushing of the entire result cache (all cached results for all business services) from
Coherence.

9.8.2 Result Caching Best Practices
Because cached results bypass the security of invoking an external service directly, do
not use result caching with business services that provide security with a non-static
service account or a WS-Security policy. Before deploying a Service Bus environment
that will use result caching in production, you should plan and implement Coherence
setup and configuration to allow for best performance, as described in Understanding
Configuration in Developing Applications with Oracle Coherence.

9.8.3 How to Delete Entries in the Result Cache
Oracle Service Bus provides APIs for deleting entries from the OSB result cache. The
APIs can be use to delete a single entry or delete all entries for a specific business
service. The APIs will be exposed through JMX interfaces (MBean).

The ResultCacheRuntimeMBean provides the APIs to delete cached entries from the
result cache. There is one instance of this MBean per domain. You can invoke the
ResultCacheRuntimeMBean from a Java callout. The interface contains the following
methods:

/**
 * MBean for deleting result cache entry
 */
public interface ResultCacheRuntimeMBean {
 /**
 * Method to remove an entry from the resultcache
 *
 * @param ref
 * the reference for the resource
 * @param operation
 * Applicable for WSDL based services
 NULL for any Xml type.
 * @param token
 * the token
 * @throws Exception
 * thrown if there are semantic validation errors
 */
 public void deleteCacheEntry (Ref ref,String operation, String
token) throws Exception;
 /**
 * Method to delete all cached service data for a specific business
service.
 *

Chapter 9
Improving Performance by Caching Business Service Results

9-30

 * @param ref
 * the reference for the resource to remove cache entries from
 *
 * @throws Exception
 * thrown if there are semantic validation errors
 */
 public void deleteAllCacheEntriesFromServiceRef (Ref ref) throws
Exception;

The API takes the service reference (the business service Ref object on which the result
caching is configured), the operation name (the service method invoked in case of WSDL
based services, NULL for XML type messages), and the cache token to delete a single entry
from the result cache.

Result Cache Configuration shows a sample of the result cache configuration for a WSDL
based business service. The customer id is used as the cache token to cache the results
returned from the FindCustomer webservice call. This configuration caches the webservice
response returned against the xquery expression evaluated.

Figure 9-5 Result Cache Configuration

The code snippet below shows how to invoke the MBean API to delete the cached result
corresponding to customer id = 10, for example. You can use a java callout and invoke it from
a pipeline to pass the business service name, webservice operation name, and the cache
token to delete the cached entry.

//Initialize the JMXConnector
JMXConnector conn =
initConnection(machine,Integer.parseInt(adminPort),username,password);
MBeanServerConnection mbconn = conn.getMBeanServerConnection();
ObjectName resultCacheObj = new
ObjectName(ResultCacheRuntimeMBean.OBJECT_NAME);
ResultCacheRuntimeMBean resultCacheRuntimeMBean
 = (ResultCacheRuntimeMBean)
MBeanServerInvocationHandler.newProxyInstance(mbconn,
 mbconn.queryNames(resultCacheObj,
null).iterator().next(),
 ResultCacheRuntimeMBean.class, false);
String cacheBizRefPath = "resultcache/CacheBiz";
String[] arrayOfRef = cacheBizRefPath.split("/");
Ref cacheBizRef = new Ref("BusinessService", arrayOfRef);

Chapter 9
Improving Performance by Caching Business Service Results

9-31

// Removes the result cached entry corresponding to the customer id 10
resultCacheRuntimeMBean. deleteCacheEntry(cacheBizRef, “FindCustomer”,
“10”);

9.8.4 Result Cache Metadata
The result cache uses a cache key to identify cached results, and an expiration time to
determine when to flush cached results.

• Cache Token

• Expiration Time

• Request Metadata

• Response Metadata

9.8.4.1 Cache Token
Service Bus uses cache keys to identify cached results for retrieval or population, and
the cache token portion of the cache key provides the unique identifier. You can use an
expression, the cache token expression, to generate the cache token part of the cache
key to uniquely identify a cached result for the business service. To generate the
cache token from a value in the request (in the pipeline or split-join that invokes the
business service), use an expression that gets the value from the
pipeline $body, $header, $operation, or $transportMetaData ($outbound/
ctx:transport/ctx:request or $outbound/ctx:transport/ctx:response). For
example, you can populate the cache-token from a customer ID in the message $body.

The cache token expression must resolve to a String or the value of simple content,
such as an attribute or an element with no child elements. If the expression evaluates
to null or causes an error, results are not cached. You can also generate the cache
token from the request, without setting a cache token expression in the business
service configuration. To do this, include a value in $outbound/ctx:transport/
ctx:request/ctx:cache-token in the pipeline. Any value in that cache-token
overrides the cache token expression in the business service configuration.

9.8.4.2 Expiration Time
The expiration time, or time to live (TTL), determines when an entry in the business
service's result cache is flushed. You can use the default expiration time, define a
duration of time before the result cache is flushed, or define an expression that
generates the expiration time from a value in the request or response. The default
expiration time is defined in the expiry-delay value in the osb-coherence-cache-
config.xml file in resultcache.gar. You can define the duration directly in the
business service configuration.

To generate the expiration time from a value in the request or response, use an
expression that gets the value from the pipeline or split-
join $body, $header, $operation, or $transportMetaData ($outbound/ctx:transport/
ctx:request or $outbound/ctx:transport/ctx:response). For example, use a value
you have set in the Cache-Control HTTP header.

The expiration time must resolve to an integer (representing seconds), an XQuery
dayTimeDuration (XSD type), or the integer value of simple content representing

Chapter 9
Improving Performance by Caching Business Service Results

9-32

seconds, such as an attribute or an element with no child elements. If the expression
evaluates to null or causes an error, results are not cached.

You can also generate the expiration from the request, without setting an expiration time in
the business service configuration. To do this, include a value in $outbound/ctx:transport/
ctx:request/ctx:cache-ttl in the pipeline or split-join. Any value in the cache-ttl element
overrides the expiration time in the business service configuration.

9.8.4.3 Request Metadata
The request metadata used with result caching include cache-token and cache-ttl, both
String values. You can configure both in the business service configuration. You can also
leave the cache token or TTL undefined in the business service and provide the cache token
or TTL in the request with these metadata. When you set the cache token or TTL in the
request, those values override any cache token or TTL you have defined in the business
service configuration.

When using expressions to configure result caching, whether with the cache token
expression, the TTL, or both, you can enter the namespaces and corresponding prefixes to
use in the expressions. This field also lets you view a list of existing namespaces.

9.8.4.4 Response Metadata
The response metadata used with result caching include the following:

• cache-token: Contains the cache token that was used to retrieve content from the result
cache or add content to the result cache after invoking the external service.

• cache-originated: Contains a boolean value, true or false. A value of true means the
returned content came from the result cache. A value of false means the returned value
came from invoking the external service.

9.8.5 Testing Result Caching
Result caching takes effect only when the business service configured with result caching is
invoked (for example, with a route or service callout activity) from a pipeline or split-join.
Therefore, in order to test result caching, do not invoke the business service directly from the
Test Console. Instead, use the Test Console to test the pipeline or the split-join that invokes
the business service.

9.8.6 How to Configure a Business Service for Result Caching
If you invoke business services whose results seldom change, result caching improves
business service performance by returning cached results to the client instead of invoking an
external service directly. You can only configure result caching for a business service using
the Oracle Service Bus Console.

For both cache token expressions and expiration time expressions, you use the Expression
Editor to define the expression. For more information about working with the Expression
Editor, see Transforming Data with XQuery. The following image shows the Performance tab
in the Oracle Service Bus Console, where you configure result caching.

Chapter 9
Improving Performance by Caching Business Service Results

9-33

Figure 9-6 Business Service Performance Page in the Console

To configure result caching:

1. In the Oracle Service Bus Console Project Navigator, navigate to and open the
business service you want to configure.

2. On the Business Service Definition Editor, select the Performance subtab.

3. Select Result Caching Support.

Note:

Even though result caching is enabled here, you must also enabled it in
Fusion Middleware Control as described in "Configuring Operational
Settings at the Global Level" in Administering Oracle Service Bus.

4. To define an expression to generate the cache token part of the cache key, click
the Expression Editor icon next to the Cache Token Expression field.

For more information about the cache token expression, see Cache Token.

5. To define an expiration time for the business service's result cache, select one of
the following:

• Default: This option uses the expiry-delay value in the osb-coherence-
cache-config.xml file in resultcache.gar. The default is 5 minutes.

• Duration: This option lets you specify a length of time to live. Use the Days
and hr:min:sec fields to define the duration.

• XQuery Expression: This option uses an XQuery expression that gets an
expiration time from the request or response. To define the expression, click
the Expression Editor icon next to the Expression field. After you define the

Chapter 9
Improving Performance by Caching Business Service Results

9-34

expression, select whether to evaluate the expression against the request or
response in the Evaluate Against field.

Note:

A duration of zero (0) means no expiration. A negative duration means do not
cache.

For more information about the expiration time, see Expiration Time.

9.8.7 Result Caching Advanced Configuration
In each Service Bus domain, you can modify how the domain uses Coherence for business
service result caching. Service Bus provides its own default Coherence configuration for the
servers in a domain by providing two files, resultcache.gar and resultcache.ear, both
located in MW_HOME/osb/lib/apps. The GAR file defines the Coherence cache to use for
result caching. In order to set up the results cache, you deploy resultcache.gar to WebLogic
Server and specify the servers or clusters to which the cache is targeted. You can then
configure the cache using the console (or WLST commands, if you prefer).

The default cache configuration is embedded in the GAR file. You can define your own
configuration for the cache by extracting osb-coherence-cache-config.xml from the GAR
file and modifying the properties as needed. By default, a distributed cache scheme is used
for the result cache. For more information, see "Cache Configuration Elements" in Developing
Applications with Oracle Coherence.

To use a different cache configuration, you need to create a new Cache Configuration for the
Coherence cluster in the WebLogic Server Administration Console. The Cache Configuration
must be named /osb/service/ResultCache, the JNDI name must be servicebus/result-
cache, and it must be in the same Coherence Cluster used by Service Bus. You can use a
different configuration on different servers in your domain.

9.8.7.1 Working with Unicast and Multicast
You can configure unicast settings to restrict Coherence cache access to only the local
server. With this configuration, nodes started on different servers do not join the same
Coherence cluster to share cached information. Alternatively, you can configure multicast
values to create a Coherence cluster that is shared by any WebLogic Server node on the
same subnet created from the same template. You configure these properties on the General
Configuration tab of the Coherence cluster in the WebLogic Server Administration Console.

A best practice is to configure the Coherence cluster to use a unicast listener with an explicit
list of nodes for the Coherence cluster. For information about multicast and unicast
properties, see the online help provided with WebLogic Server. Also see "Using Well Known
Addresses" in Developing Applications with Oracle Coherence.

You can specify overrides using system properties. Use the following guidelines when
configuring the Coherence cluster to ensure the correct sharing of a Coherence cluster
among multiple servers:

• If you want to switch from a multicast listener to a unicast listener in a cluster, configure
well-known addresses.

Chapter 9
Improving Performance by Caching Business Service Results

9-35

• If you have multiple WebLogic Server clusters in the same subnet, modify the
relevant Coherence address and port properties to ensure correct sharing of a
Coherence cluster. Do not use the same address and port as those used for the
WebLogic Server cluster.

• If you have multiple Admin Servers with Managed Servers in the same subnet,
modify the relevant Coherence address and port properties to ensure correct
sharing of a Coherence cluster.

• If you have any combination of WebLogic Server clusters and Admin Servers with
Managed Servers in the same subnet, modify the relevant Coherence address and
port properties to ensure correct sharing of a Coherence cluster.

• If multiple Coherence clusters are running in the same subnet, modify the
Multicast Address and Multicast Port to specify which Coherence cluster a node
should connect to.

9.8.7.2 How to Disable Coherence for Service Bus
To prevent Service Bus from using Coherence completely, perform the following steps:

1. Delete all Coherence cluster resources targeted to the servers that are running
Service Bus.

2. Undeploy the Service Bus result cache enterprise application (resultcache.ear).

3. Disable global result caching.

9.8.7.3 About Out-of-Process Coherence Servers
The following figure illustrates an out-of-process Coherence server.

Figure 9-7 Out-of-Process Coherence Cluster

In the above example, there are two WebLogic Server clusters. The first WebLogic
Server cluster contains Managed Servers 1 and 2 and also has the following:

• Service Bus running

Chapter 9
Improving Performance by Caching Business Service Results

9-36

• Service Bus results cache enterprise application deployed (resultcache.ear)

• Storage disabled

The second WebLogic Server cluster contains Managed Servers 3 and 4 and also has the
following:

• Service Bus result cache grid archive deployed (resultcache.gar)

• Storage enabled

All the cached entries will be stored in Managed Servers 3 and 4.

9.8.7.4 How to Use an Out-of-Process Coherence Cache Server
If you plan to use result caching heavily with Service Bus and want to avoid using too much
heap space for result caching, you can set up a Coherence cache server to run on its own
JVM rather than sharing a Service Bus domain JVM. Running a Coherence cache server
outside of a Service Bus JVM—out of process—lets the Coherence cache server use its own
heap space without affecting the heap space Service Bus uses to process messages.

Note:

Any out-of-process Coherence cache server used with Service Bus must use the
same version of Coherence as the version included with Service Bus.

9.8.7.4.1 Creating an Out-of-Process Coherence Cache Server
To create an out-of-process Coherence cache server:

1. Create new WebLogic Server nodes and clusters that use the same Coherence cluster.

2. Deploy the MW_HOME/osb/lib/apps/resultcache.gar file to the new clusters.

9.8.7.4.2 Configuring the Servers for an Out-of-Process Coherence Cache Server
In order to use an out-of-process Coherence cache server, you need to disable local caching
on each Service Bus node.

To configure the servers for an out-of-process Coherence cache server:

1. Disable local caching on each Service Bus node by adding the following argument to the
Service Bus node startup:

-Dtangosol.coherence.distributed.localstorage=false

2. Set the Coherence cluster name with the following argument.

-DOSB.coherence.cluster=cluster_name

9.8.7.5 More Information on Configuring and Using Oracle Coherence
You can perform many other types of cache configuration flexibly, without changing
application code, using the Oracle Coherence configuration framework. For example, you can
use attributes to modify the cache type and behavior, and you can query the cache. For more
information, see Using Caches in Developing Applications with Oracle Coherence.

Chapter 9
Improving Performance by Caching Business Service Results

9-37

10
Improving Service Performance with Split-Join

This chapter provides an overview of split-joins and how to create them, and also
demonstrates static and dynamic split-join scenarios. Split-join is an advanced mediation
feature that helps you improve service performance by concurrently processing individual
messages in a request.

This chapter includes the following sections:

• Introduction to Split-Joins

• Service Level Agreement Alert Rules

• Working with Split-Joins in JDeveloper

• Adding Communication Operations in JDeveloper

• Adding Flow Control Operations in JDeveloper

• Adding Assign Operations in JDeveloper

• Working with Split-Joins in the Oracle Service Bus Console

• Static and Dynamic Split-Join Samples

10.1 Introduction to Split-Joins
A split-join is a mediation pattern that can be used in a Service Bus to direct the flow and
processing of messages. A split-join greatly improves service performance over standard
sequential processing.

A Split-join splits an input message payload, such as an order, into submessages (split). The
messages are then routed concurrently to their destinations., and the responses are
aggregated into one overall return message (join). This process of payload splitting and
response aggregation is called a split-join pattern.

Split-joins are useful for optimizing overall response times in scenarios where payloads
delivered by faster systems are being directed to responding services on slower systems.
Without split-join, individual messages in a payload are normally resolved in sequential order
by the recipient, which can take a long time if the responding system is slow. With split-joins,
multiple messages are processed simultaneously, which reduces burden on the responding
system and greatly improves response times. Without a split-join, the overall response time is
the sum of the individual response times for each message. With a split-join, the overall
response time is roughly that of the longest individual message response time plus some
minor system overhead.

You create and design split-joins in the JDeveloper Split-Join Definition Editor. You can then
export the split-join and its associated resources, and import those resources to the Oracle
Service Bus Console for testing and production. A split-join is saved to a .flow file in
JDeveloper, and is always based on a WSDL operation. A split-join can be invoked from a
proxy service, a pipeline, or another split-join. A split-join can invoke a proxy or business
service, a pipeline, or another split-join.

10-1

There are two types of split-join pattern: static split-join to handle a known number of
requests, and dynamic split-join to handle a variable number of requests. These
patterns are described in the following sections.

Note:

A split-join can invoke another split-join in the same Service Bus
configuration. This feature provides more flexibility in service design by
letting you split up complex split-join functionality into multiple split-joins. This
feature allows for componentization and reuse of split-join functionality.
Performance is maintained, because there is no marshalling and
unmarshalling of data between the split-joins.

Ensure that you do not create circular split-join references; Service Bus does
not check for circular references.

10.1.1 Static Split-Joins
A static split-join branches from the main execution thread of a Service Bus message
flow by splitting a payload into a fixed number of new branches according to the
configuration of the split-join. At design time you determine the number and variety of
services to be invoked. For instance, a customer places an order for a cable package
that includes three separate services: internet service, TV service, and telephone
service. In the static use case, you could execute all three requests in separate
parallel branches to improve performance time over the standard sequential execution.

10.1.1.1 Static Split-Join – Sample Scenario
This scenario illustrates a telco company that employs static split-join to process a
customer's order for a communications services package. In this case, the customer
might sign up for DSL and voice services all at once. Rather than executing each
request in the payload separately in order, the telco can execute the messages in
parallel using a static split-join.

Static split-join is the ideal pattern in this case because you know there will always be
exactly two incoming service requests for this particular service package: DSL and
voice. Splitting the requests into parallel branches allows them to be processed
concurrently, which improves the overall response time for processing the payload.
After all messages are processed, the generated responses are aggregated back into
one reply in the execution thread.

Figure 10-1 illustrates a static split-join that splits two known service requests, DSL
activation and phone activation, processes each request in parallel, and joins the
responses into a single reply.

Chapter 10
Introduction to Split-Joins

10-2

Figure 10-1 Static Split-Join – Known Number of Service Requests

10.1.2 Dynamic Split-Join
A dynamic split-join branches from the main execution thread of a Service Bus pipeline by
dynamically creating new branches according to the contents of the incoming payload. The
number of message requests created is variable. A dynamic split-join uses conditional logic
to determine the number of branches to create. All requests are handled simultaneously, and
the responses are aggregated into a single reply. For instance, a retailer places a batch order
containing a variable number of individual purchase orders. In the dynamic use case, you
could parse the batch order and create a separate message request for each purchase. Like
the static use case, these messages are then executed in parallel for improved performance.

10.1.2.1 Dynamic Split-Join – Sample Scenario
This scenario illustrates a company that uses dynamic split-join when it places automated
stationery orders for its employees. If the orders are automatically placed every week based
on employee submissions, there is no way to know how many individual orders are included
in any one weekly order. Rather than placing each order separately, the company could use a
dynamic split-join to place the orders concurrently using a dynamic split-join.

Dynamic split-join is the ideal pattern in this case, because there is no way of knowing how
many orders will be submitted each week. The dynamic split-join loops through all the orders
and places them in parallel. You can also limit the number of orders that are processed. After
all of the orders have been processed, the generated order responses are aggregated back
into one reply in the execution thread.

Figure 10-2 illustrates a dynamic split-join that splits 15 orders, processes them concurrently,
and joins the responses into a single reply.

Chapter 10
Introduction to Split-Joins

10-3

Figure 10-2 Dynamic Split-Join – Unknown Number of Service Requests

10.1.3 Split-Join Operations
The Split-Join Components window lists all the operations you can use to construct a
split-join. The operations are divided into the following categories: Communication,
Flow Control, and Assign.

10.1.3.1 Split-Join Communication Operations
Communication operations define how the split-join interacts with external services.
The available operations are described in Table 10-1.

Table 10-1 Split-Join Communication Operations

Operation Description

Invoke Service This operation invokes a WSDL-based, non-transport-typed
business service, a WSDL-based proxy service, a WSDL-based
proxy service, or a split-join. See How to Invoke a Service.

Reply This operation sends a response or fault back to the Oracle
Service Bus message flow. See How to Configure a Reply.

10.1.3.2 Split-Join Flow Control Operations
Flow control operations define how incoming messages flow through the split-join.

Chapter 10
Introduction to Split-Joins

10-4

Table 10-2 Split-Join Flow Control Operations

Operation Description

For Each This operation executes the logic configured within its Scope a
specified number of times. See How to Iterate Through a Variable
Number of Requests.

Condition Operations Condition operations let you define conditions that evaluate to true or
false, and then carry out the behavior defined for each condition. You
can define any of the following conditions:

• If: The associated If branch of an if-else operation is executed
when the condition evaluates to true. Else-if operations also
appear in the conditional node. The associated Else If branch of
an if-else operation is executed when the initial If condition
evaluates to false but the secondary condition evaluates to true.
See How to Define If-Else Conditional Logic.

• While: The associated operation is repeated until the condition
evaluates to false. The condition is evaluated before each loop
commences. See How to Repeat an Operation Until it Evaluates
to False.

• Repeat Until: The associated operation is repeated until the
condition evaluates to true. The condition is evaluated after each
loop finishes. See How to Repeat an Operation Until it Evaluates
to True.

Parallel This operation creates a fixed number of configured parallel branches,
so you can define a static split-join that handles a fixed number of
message requests. Parallels contain one or more Scope branches.
See How to Process a Fixed Number of Requests in Parallel.

Raise Error This operation generates an error that causes the split-join to stop
normal processing. If the error is not handled using an error handler,
the split-join will terminate and a Fault will be sent to the Oracle
Service Bus message flow. See How to Raise an Error.

Re-Raise Error This operation lets you re-raise an error caught by an error handler
catch or catch all. You can configure a name and description for a Re-
Raise Error operation. See How to Re-Raise an Error.

Scope This operation creates a context that influences the behavior of its
enclosed operations. Local variables and the error handler defined
within the scope are restricted to this context. There are no
configuration properties for a Scope operation. See How to Create a
Container Node.

Wait This operation inserts a pause in the split-join flow for a short duration
to wait for other dependent jobs to complete. After the specified
duration is reached, the split-join execution resumes. See How to
Insert a Pause in Processing .

10.1.3.3 Split-Join Assign Operations
The assign operations let you manipulate the data in the message you process, including
initializing and updating a variable. You can perform the following operations in an assign
node: assign, copy, delete, insert, Java callout, log, and replace.

Chapter 10
Introduction to Split-Joins

10-5

Table 10-3 Split-Join Assign Operations

Operation Description

Assign This operation lets you assign the result of an XQuery
expression to a variable. See How to Assign a Value to a
Variable.

Copy This operation lets you copy the information specified by an
XPath expression from a source document to a destination
document. See How to Copy a Value from a Source to a
Destination Document.

Delete This operation lets you delete a set of nodes specified by an
XPath Expression. See How to Delete a Set of Nodes.

Insert This operation lets you insert the result of an XQuery expression
at an identified place relative to nodes selected by an XPath
Expression. See How to Insert the Result of an XQuery
Expression.

Java Callout This operation lets you invoke a static Java method from a split-
join for custom actions to be handled in Java such as validation,
transformation, and logging. See How to Invoke a Java Method
in a Split-Join.

Log This operation lets you log data at a specified severity so that
administrators can take appropriate action. See How to Log
Split-Join Data.

Replace This operation lets you replace a node or the contents of a node
specified by an XPath expression. See How to Replace a Node
or Its Contents.

10.1.4 Using Split-Join with Content in SOAP Headers
You can use split-join to enhance the performance of services that place message
content in SOAP headers. By default, split-joins do not propagate SOAP headers;
however, you can modify the WSDL file to accommodate this, allowing proxy services
to pass SOAP headers into split-joins and allowing split-joins to pass SOAP headers to
proxy and business services as an invocation or response.

To enable this capability, you must declare the header parts along with the body parts
in a single request/response message in the split-join WSDL file and in the WSDL file
of the proxy or business services invoked by the split-join. With the message parts
declared in the WSDL files, SOAP header content is available to split-joins in the
request/response message variables.

Following is an example of the message and binding definitions in the WSDL file.

Message

<wsdl:message name="retrieveCustomerOverviewByIdRequestMessage">
 <wsdl:part name="retrieveCustomerOverviewByIdRequest"
 element="co:retrieveCustomerOverviewByIdRequest"/>
 <wsdl:part name="serviceContext" element="sc:serviceContext"/>
</wsdl:message>

Binding

Chapter 10
Introduction to Split-Joins

10-6

<wsdl:input>
<soap:body use="literal" parts="retrieveCustomerOverviewByIdRequest"/>
 <soap:header message="tns:retrieveCustomerOverviewByIdRequestMessage"
 part="serviceContext" use="literal"/>
</wsdl:input>

10.1.5 Transaction Support
Split-joins provide support for propagating transactions. Many split-join operations provide an
option for setting specific quality of service (QoS) values, which control transaction support.
The QoS value of Exactly Once on a split-join operation ensures the operation executes in
the context of a transaction if one exists.

Setting QoS values on individual operations gives you the flexibility to execute multiple
operations in the context of a transaction and execute other operations outside of a
transaction in a single split-join. Operations set with a QoS of Exactly Once are executed in
the transaction. Operations set with a QoS of Best Effort do not execute in the context of a
transaction.

Split-joins do not handle transaction rollback in the case of exceptions. It is the responsibility
of the service component that called the split-join to handle transaction exceptions and
rollback.

The following split-join operations support transaction propagation:

• Invoke Service

• Assign

• Delete

• Insert

• Java Callout

• Replace

10.1.6 Security with Split-Joins
Split-joins do not enforce security policies, which means you cannot create a split-join with a
WSDL file that includes policies, and you cannot call a WSDL-based business service that
contains WSDL policies from a split-join.

To ensure security enforcement when using split-joins, use proxy services to handle security
enforcement in the following ways:

• Use the inbound proxy that invokes the split-join to enforce policies.

• If the split-join needs to invoke a WSDL business service that contains policies, have the
split-join call a local proxy (configured without the security policies), which in turn invokes
the business service with the required policies.

10.1.7 Split-Join Resource Type and Environment Variable
If you reference split-joins in any scripts or custom code, use the following values:

• typeId: FLOW

• Work manager environment value type: Work Manager

Note that work manager is another name for dispatch policy.

Chapter 10
Introduction to Split-Joins

10-7

10.2 Service Level Agreement Alert Rules
Service Level Agreement (SLA) alert rules define conditions under which an alert is
generated. These conditions are typically indicators of the overall health of the Service
Bus application or of a specific service component.

For information about defining SLA alert rules for a split-join, see "Creating Service
Level Agreement Alert Rules" in Administering Oracle Service Bus.

10.3 Working with Split-Joins in JDeveloper
You can only create and configure split-joins in JDeveloper.

JDeveloper provides a graphical modeling editor so you can easily model split-joins by
dragging operations to the canvas, and configuring properties in the Properties
window.

10.3.1 How to Create a Split-Join in JDeveloper
You create and configure split-joins in JDeveloper. If you develop Service Bus projects
in the Oracle Service Bus Console, you can import the split-joins created in
JDeveloper into the console. Split-Joins are defined in a .flow file, which is generated
when you create a split-join in JDeveloper. The file might have references to proxy
services, business services, or to external WSDL resources. Resources on which the
split-join depends must be present on the server before you can activate the split-join.

To create a split-join in JDeveloper:

1. In Oracle JDeveloper, open or create the application and project to which you want
to add the split-join.

2. In the Application Navigator, right-click the project, point to New, and then select
Split-Join.

The Create Split-Join Service wizard appears.

3. On the Create Service page, enter a name for the split-join and, optionally, enter a
location and description.

For naming requirements, see Naming Guidelines for Service Bus Components.
Do not use the following characters in split-join names: leading space, trailing
space, / \ * : " < > ? |

4. Optionally, enter a brief description of the split-join or modify the location of the
files.

By default, files are saved in the project folder.

5. Click Next.

6. On the Type page, do one of the following:

• To use an existing WSDL file, click Find existing WSDLs to the right of the
WSDL field and search for and select the WSDL file to use.

• To create a new WSDL file, click Generate WSDL from schema(s) to the
right of the WSDL field. For more information, see "Generating a WSDL File"
in Developing SOA Applications with Oracle SOA Suite.

Chapter 10
Service Level Agreement Alert Rules

10-8

7. Select the WSDL binding and operation to use from the options lists that appear for those
fields.

8. To generate a proxy service from this split-join, select Expose as Proxy Service, and
enter the following information:

• Proxy Name: A unique name for the proxy service. See the naming requirements
above.

• Proxy Location: The path where you want to store the proxy service file. The default
is the project folder.

• Proxy Transport: Select the type of transport to use for the proxy service. For more
information, see Working with JCA Adapters, Transports, and Bindings .

9. Click Finish.

A basic split-join is created and displayed as a diagram in the Design view of the Split-
Join Definition Editor. By default, it consists of a start node, a receive node, and a reply
node (if the split-join is based on a request/response WSDL file). The start node contains
the variables introspected from the WSDL operation. The receive node is used to receive
incoming request messages. The reply node is used to send response messages.

10.3.2 How to Generate a Split-Join from a WSDL Document in
JDeveloper

You can use a WSDL document that already exists in the Service Bus application to generate
a split-join. If the WSDL document does not exist in the application, import it and then perform
the following steps.

To generate a split-join from a WSDL document in JDeveloper:

1. In the Application Navigator, right-click the existing WSDL document, point to Service
Bus, and then select Generate Split Join.

2. Name and configure the service, as described in How to Create a Split-Join in
JDeveloper..

10.3.3 How to Display the Components Window and Properties Windows
You select the operations you add to a split-join from the Components window, so the window
must be visible in JDeveloper in order to configure a split-join. You configure each operation
using the JDeveloper Properties window, which also must be visible.

10.3.3.1 Displaying the Components Window
To display the Components Window

• If the Components window is not visible on the JDeveloper window, select Window >
Components.

The Components window appears on the right side of the JDeveloper window.

10.3.3.2 Displaying the Properties Window
To display the Properties Window

Chapter 10
Working with Split-Joins in JDeveloper

10-9

• If the Properties window is not visible on the JDeveloper window, select Window >
Properties.

The Properties window appears on the right side of the JDeveloper window. You
can move this window to a different location, such as below the Split-Join
Definition Editor, for better readability.

10.3.4 How to Configure the Start Node
The Start Node is generated automatically when you create a new split-join. It is the
starting point from which all the other nodes proceed. The only element to configure in
the Start Node is its name.

To change the Start Node name:

To change the name of the label for the Start Node, click the name of the node. In the
field that appears, enter a unique, identifying string for the node. The name you enter
appears underneath the node in the split-join editor

10.3.5 How to View External Services
The external services listed in the Start Node are those invoked outside the context of
the split-join. They are specified in an Invoke Service node but are listed here for
convenience.

To view external services:

To view external services, click the left-arrow button on the Start Node. The External
Services box appears to the left of the Start Node. Hover your mouse over an external
service to view the complete path of the service resource.

10.3.6 How to Configure Global and Local Variables
Variables in the Start Node store data that can be referenced globally, that is by any
node in the split-join. By default, every Start Node is assigned both a request and a
response variable when the split-join is initially created. From the Start Node, you can
either create a new global variable or edit an existing global variable.

Variables in a Scope store data that can be referenced locally, that is only by the node
to which it is attached. From a Scope, you can create new local variables or edit an
existing local variable.

For more information about global and local variables, see How to Create a Container
Node.

10.3.6.1 Defining Global and Local Variables
To define global and local variables:

1. In the Split-Join Definition Editor, do one of the following:

• To create a global variable, right-click the Start Node, and then select Create
Variable.

• To create a local variable, right-click the Scope to which you want to add the
variable, and then select Create Variable.

The Create Variable Alias dialog appears.

Chapter 10
Working with Split-Joins in JDeveloper

10-10

2. Enter a name for the variable.

3. Select the variable type (Built in, XML Schema, or WSDL Message).

4. Click Browse next to the variable type you selected to select the type from the type
chooser dialog.

5. Click OK.

The new variable appears in the list of variables in the Variables box.

10.3.6.2 Editing Global or Local Variables
To edit a global or local variable:

1. If the variable you want to edit is not visible on the editor, click the arrow button on the
lower left side of the Start Node or Scope containing the variable.

The Variables box appears.

2. Right-click the variable to edit and select Edit Variable.

The Edit Variable Alias dialog appears.

3. Do any of the following:

• Modify the variable's name.

• Select the variable type (Built in, XML Schema, or WSDL Message).

• Click Browse next to the selected variable type to select the type from the type
chooser dialog.

4. Click OK.

10.3.7 How to Configure the Receive Operation
A Receive operation is generated automatically whenever you create a new split-join. The
Receive operation places incoming request data in a variable and makes the contents
available for later nodes to use. To configure the receive operation, you can specify the
incoming message variable the Receive operation initializes and, optionally, a new name and
description for the operation. A default variable, request, is automatically defined for the
Receive operation.

To configure the receive operation:

1. If the Properties window is not visible on the JDeveloper window, select Window >
Properties.

2. Select the Receive operation in the Split-Join Definition Editor.

3. To specify the incoming message variable, click the Receive tab on the Properties
window and then do one of the following:

• To select an existing variable, select the variable name from the list of available
options in the Request Variable field.

• To create a new variable, click Create Variable next to the Request Variable field.
On the Create Variable dialog, enter a name for the variable and click OK.

4. To change the name of the Receive operation, click the General tab of the Properties
window, and enter a unique, identifying string in the Name field.

The new name appears beneath the node in the Split-Join Definition Editor.

Chapter 10
Working with Split-Joins in JDeveloper

10-11

5. In the Description field, enter any notes that you think are important.

6. In the JDeveloper toolbar, click Save.

10.4 Adding Communication Operations in JDeveloper
Communication operations define how the split-join interacts with external services.
They include the Invoke Service and Reply operations.

• How to Invoke a Service.

• How to Configure a Reply.

10.4.1 How to Invoke a Service
Use the Invoke Service operation to invoke external, WSDL-based business services,
WSDL-based proxy services, WSDL-based pipelines, and split-joins.

To invoke a service from a split-join:

1. Under Communication in the Components window, click Invoke Service and drag
it onto the editor in the location in the flow where you want to invoke the service.

2. Select the new Invoke Service node.

3. In the Properties window, click the Invoke tab.

4. In the Service field, click Browse to select the service to invoke.

5. In the Operation field, select the operation upon which the Invoke Service is
based.

6. In the Request Variable field, select a message type variable with the type
matching the operation's input message type, or click Create Variable to create a
new variable.

7. In the Response Variable field, select a message type variable with the type
matching the operation's output message type, or click Create Variable to create a
new variable.

Note:

An Invoke Service requires both a request variable and a response
variable unless it is a one-way invocation. Either type of variable can be
global (available within the entire split-join) or local (available within a
particular context Scope.)

8. In the QoS field, select either Best Effort (not executed in the context of a
transaction) or Exactly Once (executed in a transaction).

9. To change the name of the Invoke Service node, click the General tab of the
Properties window, and enter a unique, identifying string in the Name field.

The new name appears beneath the node in the Split-Join Definition Editor.

10. In the Description field, enter any notes that you think are important.

11. On the JDeveloper toolbar, click Save.

Chapter 10
Adding Communication Operations in JDeveloper

10-12

10.4.2 How to Configure a Reply
A global Reply node is generated automatically when you create a new split-join. The
purpose of the global Reply is to send a response back to the calling service. However, you
can also create a Reply elsewhere in the split-join, including within error handlers.

The Reply can either send a response or a fault back to the client, depending on how you
configure the variable. The available fault options vary depending upon whether the Reply is
global or local.

• A global Reply (that is, a Reply in a split-join outside of an Error Handler) can never have
a SOAP Fault but can have a WSDL Fault. This is why the SOAP Fault option is disabled
in this case.

• A local Reply (that is, a Reply attached to an Error Handler) can have either a WSDL
Fault or a SOAP Fault. WSDL Faults are available only if they were defined in the WSDL
file upon which the split-join is based. The SOAP Fault option is always available
provided one has been previously defined in the Error Handler.

Note:

Switching back and forth between the Response and Fault buttons will clear
either configuration. For instance, if you previously selected Propagate SOAP
Fault and you then switch to the Response configuration, Propagate SOAP
Fault is no longer selected.

The default Reply operation automatically includes an implicit exit operation to end that
instance of the flow without triggering a fault. The exit operation is not visible in the
development environment.

To configure a reply:

In some circumstances, no Faults or only a SOAP Fault will be available for a Reply
operation.

1. To add a new Reply operation, under Communication in the Components window, click
Reply and drag it onto the editor in the appropriate location.

2. Select a Reply node to configure it.

3. In the Properties window, click the Reply tab.

4. To send a response back to the calling service, do the following:

a. Select the Response option.

b. In the Response field, select a message variable whose type matches the
operation's output message type. Select from the list of available variables or click
Create Variable to define a new message variable.

5. To send a WSDL fault as a response, do the following:

a. Select the Fault Name option.

b. In the Fault Name field, select the name of the fault to send back to the message
flow from the list of existing faults.

Chapter 10
Adding Communication Operations in JDeveloper

10-13

c. In the Fault Variable field, select the variable to which the fault will be
assigned. Select from the list of available variables or click Create Variable to
define a new fault variable.

6. To propagate the SOAP fault in the SOAP fault variable defined in the Error
Handler, select Propagate SOAP Fault.

7. To change the name of the Reply node, click the General tab of the Properties
window, and enter a unique, identifying string in the Name field.

The new name appears beneath the node in the Split-Join Definition Editor.

8. In the Description field, enter any notes that you think are important.

9. On the JDeveloper toolbar, click Save.

10.5 Adding Flow Control Operations in JDeveloper
Flow control operations define how incoming messages move through the split-join.
They let you define conditional logic, define error handling, and define parallel
processing.

• How to Create a Container Node

• How to Iterate Through a Variable Number of Requests

• How to Process a Fixed Number of Requests in Parallel

• How to Define If-Else Conditional Logic

• How to Create Error Handlers

• How to Raise an Error

• How to Re-Raise an Error

• How to Repeat an Operation Until it Evaluates to True

• How to Repeat an Operation Until it Evaluates to False

10.5.1 How to Create a Container Node
A Scope is a container that groups various elements together. The container creates a
context that influences the behavior of its enclosed elements. Local variables and any
error handlers defined within the scope are restricted to this context. However, some
nodes within the scope may operate both locally (that is, within the scope) and globally
(that is, outside of the scope.) For instance, an Invoke Service within a certain scope
might call upon an service external to the scope's context.

Although variables are visible in the scope in which they are defined and in all scopes
nested within that scope, a variable declared in an outer scope is hidden when you
declare a variable with an identical name in an inner scope. For example, if you define
variable myVar in an outer scope (So) and then define variable myVar again in an inner
scope (Si) which is contained by the outer scope So, then you can only access the
myVar you defined in the inner scope (Si). This myVar overrides the myVar you defined
in the outer scope So.

To create a container node:

1. Under Flow Control in the Components window, click Scope and drag it onto the
editor in the appropriate location in the flow.

Chapter 10
Adding Flow Control Operations in JDeveloper

10-14

2. Select the new Scope node.

3. To change the name of the Scope node, click the General tab of the Properties window,
and enter a unique, identifying string in the Name field.

The new name appears beneath the node in the Split-Join Definition Editor.

4. Add operations to the scope to define its processing logic, and configure them using the
Properties windows.

For information about the available operations, see Adding Flow Control Operations in
JDeveloper and Adding Assign Operations in JDeveloper.

5. To define local variables for the Scope node, see How to Configure Global and Local
Variables.

6. On the JDeveloper toolbar, click Save.

10.5.2 How to Iterate Through a Variable Number of Requests
A For Each node executes logic configured within its scope a specified number of times.Use
the For Each operation to create conditional logic for iterating through a variable number of
requests. It is primarily used to create dynamic Split-Joins.

To iterate through a variable number of requests:

1. Under Flow Control in the Components window, click For Each and drag it onto the editor
in the appropriate location in the flow.

2. Select the new For Each node.

3. In the Properties window, click the For Each tab.

4. In the Execution Mode field, select whether to process each iteration of the For Each
loop sequentially or in parallel. .

5. In the Counter Variable Name field, enter the name of the implicit variable that counts
the iterations.

6. Next to the Start Counter Value field, click the Expression Builder icon to launch the
XPath Expression Builder and define an expression that specifies the initial value of the
counter variable.

Note:

The lowest possible starting and finishing counter value is "1."

7. Next to the Final Counter Value field, click the Expression Builder icon to launch the
XPath Expression Builder and define an expression that specifies the final value of the
counter variable after the last iteration.

8. Next to the Number of Finished Branches field, click the Expression Builder icon to
launch the XPath Expression Builder and define an expression that determines when to
stop creating branches.

9. To count only successfully completed branches to determine whether the completion
condition has been met, select Successful Branches Only.

10. To change the name of the For Each node, click the General tab of the Properties
window, and enter a unique, identifying string in the Name field.

Chapter 10
Adding Flow Control Operations in JDeveloper

10-15

The new name appears beneath the node in the Split-Join Definition Editor.

11. In the Description field, enter any notes that you think are important.

12. On the JDeveloper toolbar, click Save.

10.5.3 How to Process a Fixed Number of Requests in Parallel
A Parallel operation creates a fixed number of configured parallel branches, letting you
create a static split-join that handles a fixed number of message requests. Each
branch has its own Scope, which in turn can contain any number of operations.

A Parallel node is essentially a placeholder for a fixed number of processing branches,
each with its own scope. Two branches are automatically generated when you add a
Parallel operation to the flow. You can define the unique processing logic for each
scope by dragging the appropriate operations into the scope. You can also add more
branches with the Add Scope button.

Figure 10-3 Add Scope Button

To process a fixed number of requests in parallel:

1. Under Flow Control in the Components window, click Parallel and drag it onto the
editor in the appropriate location in the flow.

2. To add more branches, click the Add Scope button in the upper right corner of the
Parallel node.

3. For each branch, define the processing logic by dragging additional operations into
the scope and then configuring them in the Properties window.

For information about the operations you can add, see Adding Flow Control
Operations in JDeveloper and Adding Assign Operations in JDeveloper.

4. To change the name of the Parallel node, click Parallel at the top of the node and
enter a new name in the field that appears.

5. On the JDeveloper toolbar, click Save.

10.5.4 How to Define If-Else Conditional Logic
An If Activity provides conditional logic within a split-join. It is composed of a number of
nodes that determine the behavior for the overall If activity. Each node must be
individually configured. When you create an If activity, an If branch and an Else branch
are automatically generated within it.

Each If and Else If branch provides a unit of conditional logic (defined by an XPath
Expression) within the overall If activity. Those branches also define the processing

Chapter 10
Adding Flow Control Operations in JDeveloper

10-16

logic to carry out when the conditions are met. The Else branch defines the processing logic
to carry out when the conditions are not met. You can add an unlimited number of Else If
nodes to the If operation.

To define if-else conditional logic:

1. Under Flow Control in the Components window, click If and drag it onto the editor in the
appropriate location in the flow.

An If node appears with an If branch and an Else branch.

2. To configure the If branch, do the following:

a. In the new If node, select the If branch.

b. In the Properties window, click the Condition tab.

c. Next to the Condition field, click the Expression Builder icon to launch the XPath
Expression Builder and define an expression that defines the If condition.

d. To define the processing that occurs if the If condition is met, drag operations from
the Components window to the If branch and then configure them in the Properties
window.

For information about the operations you can add, see Adding Flow Control
Operations in JDeveloper and Adding Assign Operations in JDeveloper.

3. To add an Else If branch, do the following:

a. Click the yellow diamond-shaped icon in the upper right corner of the If node, or right-
click in the If node and select Add Elseif.

Figure 10-4 Add Else If Button

A new Else If branch appears to the left of the Else branch.

b. Configure the Else If branch in the same way as the If branch, described in step 2.

4. To define the processing that occurs if none of the conditions are met, drag operations
from the Components window to the Else branch and then configure them in the
Properties window.

5. To change the name of the If node or any of the branches, select the node or branch
icon, click the General tab of the Properties window, and enter a unique, identifying string
in the Name field.

6. In the Description field, enter any notes you think are important.

7. On the JDeveloper toolbar, click Save.

Chapter 10
Adding Flow Control Operations in JDeveloper

10-17

10.5.5 How to Create Error Handlers
An error handler and receives and handles errors. An error handler can be attached to
a Start Node or a Scope. When attached to a Start Node, it is a global error handler
and serves as a catch-all for the output of all local Raise Error nodes. When attached
to a Scope, it only handles errors raised locally.

To create an error handler:

1. Select the Start Node or Scope node to which you want to add the Error Handler.

2. Right-click the selected node and select Add Catch or Add CatchAll.

A new Error Handlers node appears to the right of the selected node.

3. To invoke a SOAP Fault for a Catch All handler, select the Catch All branch, click
the Catch All tab on the Properties window, and enter the fault name in the SOAP
Fault Variable Name.

4. To configure a Catch handler, select the Catch branch, click the Catch tab on the
Properties window, and do one of the following:

• To invoke a fault that you define, select User-defined Fault and click the Edit
icon. On the Edit QName dialog, enter the fault's name and namespace.

• To invoke a predefined fault, select Pre-defined Fault and select a fault from
the list of options.

5. To configure additional processing for a Catch or Catch All branch before a
response is sent, drag Assign, If, and/or Reply nodes from the Components
window and configure them in the Properties window.

6. To change the name of the Error Handler node or any of the branches, select the
node or branch icon, click the General tab of the Properties window, and enter a
unique, identifying string in the Name field.

7. In the Description field, enter any notes you think are important.

8. On the JDeveloper toolbar, click Save.

10.5.6 How to Raise an Error
The Raise Error generates an error that causes the split-join to stop normal
processing. If the error is not handled using an Error Handler, the split-join will
terminate and a Fault will be sent to the Service Bus message flow. Configuring a
Raise Error can optionally include documenting the nature of the error in the General
Information tab.

To raise an error:

1. Under Flow Control in the Components window, click Raise Error and drag it onto
the editor in the appropriate location in the flow.

2. Select the new Raise Error node.

3. In the Properties window, click the Raise Error tab.

4. To invoke a fault that you define, select User-defined Fault and click the Edit
icon. On the Edit QName dialog, enter the fault's name and namespace.

Chapter 10
Adding Flow Control Operations in JDeveloper

10-18

5. To invoke a predefined fault, select Pre-defined Fault and select a fault from the list of
options.

6. To change the name of the Raise Error node, select the node or branch icon, click the
General tab of the Properties window, and enter a unique, identifying string in the Name
field.

7. In the Description field, enter any notes you think are important.

8. On the JDeveloper toolbar, click Save.

10.5.7 How to Re-Raise an Error
You can add a Re-Raise Error operation to an error handler. This operation lets you re-raise
an error caught by an error handler Catch or Catch All operation. This operation does not
require any configuration, but you can modify the name and add a description.

To re-raise an error:

1. Under Flow Control in the Components window, click Re-Raise Error and drag it onto the
editor in the appropriate location in the flow.

2. Select the new Re-Raise Error node.

3. To change the name of the Re-Raise Error node, enter a unique, identifying string in the
Name field on the Properties window.

4. In the Description field, enter any notes you think are important.

5. On the JDeveloper toolbar, click Save.

10.5.8 How to Repeat an Operation Until it Evaluates to True
A Repeat Until node provides conditional logic within a split-join. When you define a Repeat
Until node, the associated operations repeat until the condition you define evaluates to true.
The associated operations are defined in the loop of the Repeat Until node. The condition is
evaluated after each loop finishes.

To repeat an operation until it evaluates to true:

1. Under Flow Control in the Components window, click Repeat Until and drag it onto the
editor in the appropriate location in the flow.

A Repeat Until node appears with a conditional branch.

2. In the new Repeat Until node, select the Condition icon.

3. In the Properties window, click the Condition tab.

4. Next to the Condition field, click the Expression Builder icon to launch the XPath
Expression Builder and define an expression that must evaluate to true in order for the
process to stop repeating.

5. To define the processing logic that is repeated until the condition evaluates to true, drag
operations from the Components window to the Repeat Until node and then configure
them in the Properties window.

For information about the operations you can add, see Adding Flow Control Operations in
JDeveloper and Adding Assign Operations in JDeveloper.

6. To change the name of the Repeat Until node, select the node, click the General tab of
the Properties window, and enter a unique, identifying string in the Name field.

Chapter 10
Adding Flow Control Operations in JDeveloper

10-19

7. In the Description field, enter any notes you think are important.

8. On the JDeveloper toolbar, click Save.

10.5.9 How to Repeat an Operation Until it Evaluates to False
A While node provides conditional logic within a split-join. When you define a While
node, the associated operations repeat until the condition you define evaluates to
false. The associated operations are defined in the loop of the Repeat Until node. The
condition is evaluated before each loop finishes.

To repeat an operation until it evaluates to false:

1. Under Flow Control in the Components window, click While and drag it onto the
editor in the appropriate location in the flow.

A While node appears with a conditional branch.

2. In the new While node, select the Condition icon.

3. In the Properties window, click the Condition tab.

4. Next to the Condition field, click the Expression Builder icon to launch the XPath
Expression Builder and define an expression that must evaluate to false in order
for the process to stop repeating.

5. To define the processing logic that is repeated until the condition evaluates to
false, drag operations from the Components window to the While node and then
configure them in the Properties window.

For information about the operations you can add, see Adding Flow Control
Operations in JDeveloper and Adding Assign Operations in JDeveloper.

6. To change the name of the While node, select the node, click the General tab of
the Properties window, and enter a unique, identifying string in the Name field.

7. In the Description field, enter any notes you think are important.

8. On the JDeveloper toolbar, click Save.

10.5.10 How to Insert a Pause in Processing
A Wait operation inserts a pause in the split-join flow for a short duration to wait for
other dependent jobs to complete. After the specified duration is reached, the split-join
execution resumes.

To insert a pause in processing:

1. Under Flow Control in the Components window, click Wait and drag it onto the
editor in the appropriate location in the flow.

A While node appears with a conditional branch.

2. Select the new Wait node.

3. In the Properties window, click the Wait tab.

4. Next to the Duration field, click the Expression Builder icon to launch the XPath
Expression Builder and define an expression that evaluates to a duration type of
xsd:duration in the following format:

PnYnMnDTnHnMnS (number of years, months, days, hours, minutes, and seconds,
with a date/time separator, represented by "T".)

Chapter 10
Adding Flow Control Operations in JDeveloper

10-20

5. To change the name of the Wait node, select the node, click the General tab of the
Properties window, and enter a unique, identifying string in the Name field.

6. In the Description field, enter any notes you think are important.

7. On the JDeveloper toolbar, click Save.

10.6 Adding Assign Operations in JDeveloper
Assign operations include Assign, Copy, Delete, Insert, Java Callout, Log, and Replace.
Every Assign is composed of one or more of these operations, which you can add to the
Assign using the Design view.

The assign operations you can use in a split-join are:

• Assign: Assigns the result of an XQuery or XSLT expression to a variable.

• Copy: Copies the information specified by an XPath expression from a source document
to a destination document.

• Delete: Deletes a set of nodes specified by an XPath expression.

Note:

Unlike the Service Bus delete, only an XPath expression can be deleted in a
split-join, not the entire variable.

• Insert: Inserts the result of an XQuery Expression at an identified place relative to nodes
selected by an XPath expression.

• Java Callout: Invokes a Java method for processing such as validation, transformation,
and logging.

• Log: Logs split-join data at a specified severity to the server log file.

• Replace: Replaces a node or the contents of a node specified by an XPath expression.

10.6.1 About Transformations and Expressions in Assign Operations
You can use a variety of XQuery and XSLT resources to define the transformations and
expressions that derive values for the assign operations. Most assign operations support the
following methods. You can find more information in the links given below.

• Transforming Data with XQuery

• Transforming Data with XSLT

• Working With Expression Editors in Oracle Service Bus Console

• "Creating Transformations with the XQuery Mapper" in Developing SOA Applications with
Oracle SOA Suite

• "Creating Transformations with the XSLT Map Editor" in Developing SOA Applications
with Oracle SOA Suite

Chapter 10
Adding Assign Operations in JDeveloper

10-21

Note:

The Assign operations in the split-join editor are similar to the corresponding
pipeline actions. However, one important difference is that when you are
using the XQuery, XSLT, or XPath Editors to edit expressions in the split-join
context, only variables and namespaces internal to the split-join are
available.

10.6.2 Assign Operation Expression Resolution
The assign functionality in split-joins conforms to the WS-BPEL specification for
resolution of XPath, XQuery, and XSLT expressions to simple type variables.
Supported simple types for binding expressions to variables in split-joins are String,
Boolean, and Float. The Assign operation converts the value you provide to the type
with which the variable is defined.

For example:

• If you assign <order><number>4</number></order> to a response variable defined
as a String ($response.result), Service Bus returns <number>4</number> as a
String in the result through a simple copy of the child element and value.

• If you map <order><number>4</number></order> to a String variable (such as
myStr), then assign $myStr to $response.result, Service Bus returns
<result>4</result>, because it first converts the value in $myStr to a String
before it makes the assignment to the $response.result String variable.

10.6.3 How to Assign a Value to a Variable
Use an Assign to manipulate data by initializing and updating a variable using XSLT or
XQuery expressions or resources. You can also use dynamic XSLT or XQuery.

When Service Bus binds variables in an inline XQuery, it assumes the type is
xs:string. This can cause parser errors in operations with constants that are
incompatible with xs:string. To ensure compatible types, use an explicit XQuery cast.
For example, the following inline XQuery will fail. Although the $itemsTotal is of type
xs:double, it is bound as an xs:string, which is incompatible in the test against
10000.

if ($itemsTotal < 10000) then . . .

To make this inline XQuery work, explicitly cast the $itemsTotal to an xs:double:

if (($itemsTotal cast as xs:double) < 10000) then . . .

When creating an assign operation to a String result or variable, make sure your
expression returns a String value. Assigning a non-String value to a String result or
String global variable does not cause a MismatchedAssignmentFailure exception, as
specified by the WS-BPEL specification.

To assign a value to a variable:

1. Under Assign Operations in the Components window, click Assign and drag it
onto the editor in the location in the flow where you want to update the variable.

Chapter 10
Adding Assign Operations in JDeveloper

10-22

2. Select the new Assign node.

3. In the Properties window, click the Assign tab.

4. Next to the Value field, select the Expression Builder icon or click the down arrow next to
the icon to select the type of transformation you want to use to derive the variable value.

The expression builder for the transformation you selected appears.

5. Define the transformation or select a resource to use. For more information, see About
Transformations and Expressions in Assign Operations.

Note:

When you select XQuery or XSLT resources that are not already included in the
current project, you need to import them. When you select the resource from
the expression builder, an import dialog automatically appears. For more
information, see How to Import Resources in JDeveloper.

6. To specify the variable to which you are assigning the value, do one of the following:

• To select an existing variable, select the variable name from the list of available
options in the Variable field.

• To create a new variable, click Create Variable next to the Variable field. Complete
the Create Variable Alias dialog, as described in "To define global and local
variables:".

7. In the QoS field, select either Best Effort (not executed in the context of a transaction) or
Exactly Once (executed in a transaction).

8. To change the name of the Assign node, click the General tab of the Properties window,
and enter a unique, identifying string in the Name field.

The new name appears beneath the node in the Split-Join Definition Editor.

9. In the Description field, enter any notes that you think are important.

10. On the JDeveloper toolbar, click Save.

10.6.4 How to Copy a Value from a Source to a Destination Document
The Copy operation lets you copy the information specified by an XPath expression or literal
value from a source document to a destination document. It is an operation unique to the
split-join editor.

To copy a value:

1. Under Assign Operations in the Components window, click Copy and drag it onto the
editor in the location in the flow where you want to copy the data.

2. Select the new Copy node.

3. In the Properties window, click the Copy tab.

4. To use the existing element name in the destination to hold the copied value, select Keep
Source Element.

If this option is not selected, the name of the source element in the destination is used to
hold the copied value.

Chapter 10
Adding Assign Operations in JDeveloper

10-23

5. In the From: Type field, select the type of element to copy from.

6. Do one of the following:

• If you selected Expression, Variable, or XML Fragment, click the Expression
Builder icon by the Value field. Define the expression in the dialog that
appears.

• If you selected Literal, enter the literal string to copy in the Value field.

7. In the To: Type field, select the type of element to copy to.

8. Click the Expression Builder icon below the Value or Query field. Define the
expression in the dialog that appears.

9. To change the name of the Copy node, click the General tab of the Properties
window, and enter a unique, identifying string in the Name field.

The new name appears beneath the node in the Split-Join Definition Editor.

10. In the Description field, enter any notes that you think are important.

11. On the JDeveloper toolbar, click Save.

10.6.5 How to Delete a Set of Nodes
The Delete operation lets you delete a set of nodes specified by an XPath expression.

Note:

Unlike the Service Bus delete, only an XPath expression may be deleted in a
split-join, not the entire variable.

To delete a set of nodes:

1. Under Assign Operations in the Components window, click Delete and drag it onto
the editor in the location in the flow where you want to delete the nodes.

2. Select the new Delete node.

3. In the Properties window, click the Delete tab.

4. In the Location field, select the variable on which the XPath expression is
executed to select the nodes to be deleted.

5. Click the Expression Builder icon to launch the expression editor and define an
XPath expression that specifies the nodes to be deleted.

6. In the QoS field, select either Best Effort (not executed in the context of a
transaction) or Exactly Once (executed in a transaction).

7. To change the name of the Delete node, click the General tab of the Properties
window, and enter a unique, identifying string in the Name field.

The new name appears beneath the node in the Split-Join Definition Editor.

8. In the Description field, enter any notes that you think are important.

9. On the JDeveloper toolbar, click Save.

Chapter 10
Adding Assign Operations in JDeveloper

10-24

10.6.6 How to Insert the Result of an XQuery Expression
The Insert operation inserts the result of an XQuery expression at an identified place relative
to nodes selected by an XPath expression.

To insert the result of an XQuery expression:

1. Under Assign Operations in the Components window, click Insert and drag it onto the
editor in the location in the flow where you want to insert the result.

2. Select the new Insert node.

3. In the Properties window, click the Insert tab.

4. Next to the Value field, select the Expression Builder icon or click the down arrow next to
the icon to select the type of transformation you want to use to create the data that to
insert at a specified location in a variable.

The expression builder for the transformation you selected appears.

5. In the expression builder, define the transformation or select a resource to use. For more
information, see About Transformations and Expressions in Assign Operations.

Note:

When you select XQuery or XSLT resources that are not already included in the
current project, you need to import them. When you select the resource from
the expression builder, an import dialog automatically appears. For more
information, see How to Import Resources in JDeveloper.

6. In the Position field, select the position where you want to insert the data. Select from
before, after, as first child of, or as last child of.

7. In the Location field, select the variable into which you want to insert the data, or click
Create Variable to add a new variable.

8. Click the Expression Builder icon below the Location field to launch the XPath
Expression Builder, and define an expression that specifies the nodes to be selected.

9. In the QoS field, select either Best Effort (not executed in the context of a transaction) or
Exactly Once (executed in a transaction).

10. To change the name of the Insert node, click the General tab of the Properties window,
and enter a unique, identifying string in the Name field.

The new name appears beneath the node in the Split-Join Definition Editor.

11. In the Description field, enter any notes that you think are important.

12. On the JDeveloper toolbar, click Save.

10.6.7 How to Invoke a Java Method in a Split-Join
A Java callout operation lets you invoke a static Java method from a split-join for custom
operations to be handled in Java such as validation, transformation, and logging.

To invoke a Java method in a split-join:

Chapter 10
Adding Assign Operations in JDeveloper

10-25

1. Under Assign Operations in the Components window, click Java Callout and drag
it onto the editor in the location in the flow where you want to use the callout.

2. Select the new Java Callout node.

3. In the Properties window, click the Java Callout tab.

4. Next to the Method field, click Browse, navigate to and select the JAR file that
contains the method to invoke, and then select the method.

Any arguments for the method appears in the Arguments table.

5. In the Value column, click the Expression Builder icon, or click the down arrow
next to the icon to select a transformation type.

The expression builder for the transformation you selected appears.

6. Define an expression to map data to the input parameters of the static Java
method. For more information, see About Transformations and Expressions in
Assign Operations.

Note:

When you select XQuery or XSLT resources that are not already
included in the current project, you need to import them. When you
select the resource from the expression builder, an import dialog
automatically appears. For more information, see How to Import
Resources in JDeveloper.

7. In the Return field, select the variable to contain the result value for the Java
method from the list of options. If the variable does not exist, click Create Variable
to add a new one.

8. In the Service Account field, click Browse to select a service account to use to
put the appropriate subject on the thread when executing the Java callout.

9. In the QoS field, select either Best Effort (not executed in the context of a
transaction) or Exactly Once (executed in a transaction).

10. To change the name of the Java Callout node, click the General tab of the
Properties window, and enter a unique, identifying string in the Name field.

The new name appears beneath the node in the Split-Join Definition Editor.

11. In the Description field, enter any notes that you think are important.

12. On the JDeveloper toolbar, click Save.

10.6.8 How to Log Split-Join Data
A log operation lets you log split-join data of a specified severity to the server log file.
Administrators can use log information to take appropriate actions based on the
severity of the data logged.

To log split-join data:

1. Under Assign Operations in the Components window, click Log and drag it onto
the editor in the location in the flow where you want to create log entries.

2. Select the new Log node.

Chapter 10
Adding Assign Operations in JDeveloper

10-26

3. In the Properties window, click the Log tab.

4. Next to the Content field, click the Expression Builder icon, or click the down arrow next
to the icon to select a transformation type.

The expression builder for the transformation you selected appears.

5. Define an expression to select the data to be logged. For more information, see About
Transformations and Expressions in Assign Operations.

Note:

When you select XQuery or XSLT resources that are not already included in the
current project, you need to import them. When you select the resource from
the expression builder, an import dialog automatically appears. For more
information, see How to Import Resources in JDeveloper.

6. In the Summary field, specify a note for the log. The annotation is logged along with the
data selected by the expression

7. In the Severity field, select one of the following the severity levels for the log:

• Debug

• Info

• Warning

• Error

8. To change the name of the Log node, click the General tab of the Properties window, and
enter a unique, identifying string in the Name field.

The new name appears beneath the node in the Split-Join Definition Editor.

9. In the Description field, enter any notes that you think are important.

10. On the JDeveloper toolbar, click Save.

10.6.9 How to Replace a Node or Its Contents
A Replace operation replaces a node or the contents of a node specified by an XPath
expression.

To replace a node or its contents:

1. Under Assign Operations in the Components window, click Replace and drag it onto the
editor in the location in the flow where you want to replace data.

2. Select the new Replace node.

3. In the Properties window, click the Replace tab.

4. In the Location field, select the variable containing the data to be replaced, or click
Create Variable to add a new variable.

5. Click the Expression Builder icon below the Location field to launch the XPath
Expression Builder, and define an expression that specifies the nodes to be replaced.

6. Next to the Value field, click the Expression Builder icon, or click the down arrow next to
the icon to select a transformation type.

Chapter 10
Adding Assign Operations in JDeveloper

10-27

The expression builder for the transformation you selected appears.

7. Define an expression to select the data to be replaced. For more information, see
About Transformations and Expressions in Assign Operations.

Note:

When you select XQuery or XSLT resources that are not already
included in the current project, you need to import them. When you
select the resource from the expression builder, an import dialog
automatically appears. For more information, see How to Import
Resources in JDeveloper.

8. In the Replace field, select Entire Node to replace the entire node or select Node
Contents to replace just the content of the node.

9. In the QoS field, select either Best Effort (not executed in the context of a
transaction) or Exactly Once (executed in a transaction).

10. To change the name of the Log node, click the General tab of the Properties
window, and enter a unique, identifying string in the Name field.

The new name appears beneath the node in the Split-Join Definition Editor.

11. In the Description field, enter any notes that you think are important.

12. On the JDeveloper toolbar, click Save.

10.7 Working with Split-Joins in the Oracle Service Bus
Console

You create and configure split-joins in JDeveloper, but you can import split-joins into
the Oracle Service Bus Console to add them to projects in the console.

You can also import them by importing the entire project. From the console, you can
specify dispatch policies, update the XQuery version, and define SLA alerts.

10.7.1 How to Import a Split-Join into the Console
Before you can work with a split-join in the console, you need to export it from
JDeveloper and then import it into the console. Once the resource is in the console,
you can open it in the Split-Join Definition Editor to configure certain properties and
define SLA alert rules. For information about exporting and importing resources, see
Importing and Exporting Resources in the Oracle Service Bus Console .

10.7.2 How to Configure Split-Joins in the Console
You can only configure certain properties of split-joins in the Oracle Service Bus
Console; you cannot configure the processing logic of the split-join.

To configure split-joins in the Console:

1. In the Project Navigator, navigate to the split-join you want to configure.

2. Right-click the split-join and select Open.

Chapter 10
Working with Split-Joins in the Oracle Service Bus Console

10-28

The split-join appears in the Split-Join Definition Editor.

3. In the Description field, enter any important notes about the split-join.

4. In the Dispatch Policy field, select the WebLogic Server Work Manager to use to
execute the split-join.

5. In the Version for snippets field, select the version of XQuery for processing XQuery in
the split-join.

6. Click Save.

10.7.3 How to Define Service Level Agreement Rules for a Split-Join
Service level agreement (SLA) alerts let system administrators know when certain conditions
are met that indicate the health of a split-join. You can define alerts based on statistics such
as error counts, message counts, elapsed time, and failure or success ratios for message
processing. For more information about defining SLA alerts, see "Creating Service Level
Agreement Alert Rules" in Administering Oracle Service Bus.

10.8 Static and Dynamic Split-Join Samples
This section describes how to create static and dynamic split-joins using sample scenarios.

• Designing a Static Split-Join

• Designing a Dynamic Split-Join

10.8.1 Designing a Static Split-Join
This scenario creates a new split-join called Service Availability that handles orders for a
telco's cable service package including TV, phone, and internet service. The idea is for the
split-join to receive an incoming package order and to reply with an order acknowledgment
for each type of service. In this case, Service Availability is designed as a Static split-join
because there are three message requests per order, one for each type of service. In this
particular example the customer requests only TV and DSL service.

Creating the Service Availability split-join may include the following tasks:

Creating a New Split-Join

Adding an Assign

Adding a Parallel Node

Adding an Assign for Each Branch

Adding an Invoke Service

Adding an Assign for Each Branch

Exporting and Testing the Split-Join

10.8.1.1 Creating a New Split-Join
Create a new split-join based on the WSDL operation you want to use for placing the order. In
this case the WSDL operation we want is called "telecom."

Chapter 10
Static and Dynamic Split-Join Samples

10-29

After you select the WSDL operation, a skeleton of the newly created split-join appears
in the split-join editor, as shown in the following figure. It consists of a Start Node, a
Receive, a Reply. Edit the labels in the Properties window to better reflect the specific
function of each node in this particular split-join.

Figure 10-5 New Split-Join

The Start Node contains both a Request variable and a Response variable that were
determined by the WSDL operation initially selected. The Receive receives the
incoming request message (in this case for the three or fewer different kinds of cable
service), and the Reply generates a response message and sends it back to the client.

Note:

The Receive node requires no further configuration. Similarly the Reply
requires no further configuration, unless to generate an error fault, which is
not the case in this scenario.

10.8.1.2 Adding an Assign
The first Assign, Prepare Output Message, contains an Assign operation that prepares
the Response variable in a form such that the later nodes can work on the data within
it. This output message is relayed to the final Reply node in the split-join and, in turn,
returned to the original client.

10.8.1.3 Adding a Parallel Node
The Parallel node contains two main branches, one to check cable TV availability and
one to check DSL availability. Each branch is composed of a number of actions, the
sequence and general configuration being the same for both branches.

Chapter 10
Static and Dynamic Split-Join Samples

10-30

Figure 10-6 Parallel Node

10.8.1.4 Adding an Assign for Each Branch
The first Assign in each Parallel branch, Prepare Input Address, copies the incoming
customer address data into a Variable that is referenced to check the availability of the
service at that location. The Assigns are the same for each branch and would be for
additional branches as well.

10.8.1.5 Adding an Invoke Service
An External Service is then invoked to check whether the requested service type is available
at the customer's location. Each branch contains one Invoke Service, Check Cable TV
Availability and Check DSL Availability. Each invocation calls an External Service, which
compares the customer's address (stored in the Variable initialized in the previous step) to
the availability of the service at that location. The result is then stored in an output Variable
that is passed on to the final Assign in the Branch below.

10.8.1.6 Adding an Assign for Each Branch
The final two Assigns, Update Cable TV Status in Output Message and Update DSL Status in
Output Message, take the results of the external service invocations and put them into the
output message using a Replace operation. The aggregated response are then sent to the
original client in the final Reply node, which requires no further configuration.

10.8.1.7 Exporting and Testing the Split-Join
After you design the split-join, you can export it to the Oracle Service Bus Console for testing
and production.

Chapter 10
Static and Dynamic Split-Join Samples

10-31

Figure 10-7 Completed Split-Join Ready for Testing

Related Topics

• How to Create a Split-Join in JDeveloper

• How to Configure the Start Node

• How to Assign a Value to a Variable

• How to Invoke a Service

• How to Process a Fixed Number of Requests in Parallel

10.8.2 Designing a Dynamic Split-Join
This scenario illustrates a split-join that handles a batch order from a retailer
containing a variable number of individual purchase orders (as opposed to a fixed
number of orders). The idea is for the split-join to receive the batch order and to reply
with an order acknowledgment for each order within. This would be a Dynamic split-
join because the number of individual purchase order requests is variable and
unknown at design time.

Creating this split-join may include the following tasks:

Creating a New Split-Join

Chapter 10
Static and Dynamic Split-Join Samples

10-32

Adding an Assign

Adding a For Each

Adding an Assign

Adding an Invoke Service

Adding an Assign

Adding an Error Handler

Exporting and Testing the Split-Join

10.8.2.1 Creating a New Split-Join
Create a new split-join based off of the WSDL operation you want to use for placing the order.
In this case the WSDL operation we want is called batchOrders. After the operation is
selected, a skeleton of the newly created split-join appears in the split-join editor consisting of
a Start Node, a Receive, a Reply. The labels are then edited in the general properties tab to
better reflect the specific function of each node in this particular split-join.

Figure 10-8 New Split-Join With Edited Labels

The Start Node, Order Placement, contains both a request variable, inputVar, and an
response variable, outputVar. The Receive, Receive Batch Order Request, will initialize the
contents of the Request Variable (in this case purchase orders), and the Reply, Reply Order
Placement, will send a response, based on the order acknowledgments aggregated into the
Response Variable, back to the client. In this example Order Placement also contains a
callout to an External Service, "Order" that will be invoked to approve individual orders.

Chapter 10
Static and Dynamic Split-Join Samples

10-33

Note:

The Receive node requires no further configuration. Similarly, the Reply
requires no further configuration, unless you would like to generate an error
fault—which is not the case in this scenario (see How to Configure a Reply
for more information on generating faults).

10.8.2.2 Adding an Assign
The first Assign, Prepare Output Message, contains an Assign operation that prepares
the response variable (here labeled an "Output Message" for readability) in a form
such that the later nodes can work on the data captured within it (that is, Copy/Insert/
Assign/Replace/Delete into the Variable). In this case, that data would consist of order
acknowledgments and/or errors.This Output Message is relayed to the final Reply
node in the split-join and, in turn, returned to the original client.

10.8.2.3 Adding a For Each
The For Each, Iterate Through Orders, contains logic that will parse through each
order in the batch, send it to an external proxy for approval, and capture an order
acknowledgment in response. If there is a problem with an order, an error is sent from
the invoked proxy and captured in the Error Handler. The following figure depicts the
entire scope of the For Each logic.

Figure 10-9 For Each Node Labeled "Iterate Through Orders"

Chapter 10
Static and Dynamic Split-Join Samples

10-34

10.8.2.4 Adding an Assign
The Assign, Prepare Purchase Order, copies the incoming purchase order requests into a
variable that is referenced to check approval of the order in the next step.

10.8.2.5 Adding an Invoke Service
An external service, Check Order Availability, is then invoked to approve each individual
purchase order. If the order is accepted, the service responds with an order acknowledgment.
If the order is not accepted, the service responds with an error.The result is then stored in an
output variable that is passed on to the final Assign in the next step.

10.8.2.6 Adding an Assign
The final Assign, Update Order Status in Output Message, takes the results of the external
service invocation and copies them into the output message using an Insert operation. The
aggregated response is then sent to the original client in the final Reply node, which requires
no further configuration.

10.8.2.7 Adding an Error Handler
The Error Handler captures any Errors returned by the invoked service. It takes these errors
and inserts them into the output message using an Assign operation.

Figure 10-10 Error Handler

10.8.2.8 Exporting and Testing the Split-Join
After you design the split-join, you can export it to the Oracle Service Bus Console for testing
and production.

Chapter 10
Static and Dynamic Split-Join Samples

10-35

Figure 10-11 Completed Split-Join Ready for Testing

Chapter 10
Static and Dynamic Split-Join Samples

10-36

11
Working with WSDL Documents

This chapter describes Web Service Definition Language (WSDL) documents and how you
can use them in Service Bus projects to generate business and proxy services, pipelines, and
split-joins. A WSDL document is the formal description of a web service, defining what the
service can do, where it resides, and how to invoke it.

This chapter contains the following sections:

• WSDL Overview

• WSDL Documents in Service Bus

• Services Based on WSDL Ports and on WSDL Bindings

• Importing and Exporting WSDL Resources

• Working with WSDL Documents in JDeveloper

• Working with WSDL Documents in the Oracle Service Bus Console

• Viewing Effective WSDL Documents

11.1 WSDL Overview
A WSDL document describes a service, its location, its operations, and how clients can
communicate with it. This section provides a brief introduction to WSDL, to provide context
for discussing Service Bus features.

Table 11-1 summarizes the main elements used to define WSDL services.

Table 11-1 High-level WSDL Elements

Element Description

types Type definitions for message content.

messag
e

Abstract definition of the data being exchanged. A message consists of parts, which
describe the logical, abstract content of the message.

portType Abstract collection of operations supported by the service.

operatio
n

Abstract description of an action supported by the service.

binding Concrete protocol and data format specification for a port type.

port A single endpoint, consisting of a network address and a binding.

service Collection of related ports, or endpoints.

WSDL specifies SOAP, HTTP, MIME, and Service Bus-specific binding extensions, which
extend the WSDL binding mechanism to support features specific to the protocol or message
format.

11-1

11.1.1 WSDL Types
The types element is a container for data type definitions. It uses a type system, such
as XML Schema (XSD), to define the vocabulary of messages handled by this service.
For example, a service that provides stock quotes might define an XML vocabulary,
with the terms TradePriceRequest and TradePrice, as shown in the following
example.

Example -WSDL Types Example

<types>
 <schema targetNamespace="http://example.com/stockquote.xsd"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="TradePriceRequest">
 <complexType>
 <all>
 <element name="tickerSymbol" type="string"/>
 </all>
 </complexType>
 </element>
 <element name="TradePrice">
 <complexType>
 <all>
 <element name="price" type="float"/>
 </all>
 </complexType>
 </element>
 </schema>
</types>

11.1.2 WSDL Messages
The message element provides an abstract, typed definition of the data being
communicated. A message consists of parts, each of which describes one logical,
abstract unit of the message. A WSDL document can define one or more messages,
each of which may have one or more parts. For example, the WSDL fragment in the
following example defines four message types, sellerInfoMessage,
buyerInfoMessage, response, and negotiationMessage, each of which has one or
more parts.

Example - WSDL Message Example

<message name="sellerInfoMessage">
 <part name="inventoryItem" type="xsd:string"/>
 <part name="askingPrice" type="xsd:integer"/>
</message>

<message name="buyerInfoMessage">
 <part name="item" type="xsd:string"/>
 <part name="offer" type="xsd:integer"/>
</message>

<message name="response">
 <part name="result" type="xsd:string"/>
</message>

<message name="negotiationMessage">
 <part name="item" type="xsd:string"/>

Chapter 11
WSDL Overview

11-2

 <part name="price" type="xsd:integer"/>
 <part name="outcome" type="xsd:string"/>
</message>

11.1.3 WSDL Port Types
The portType element defines a set of operations supported by one or more endpoints,
which are defined in the port element (see WSDL Services and Ports). The port type
provides the public interface for the operations provided by the service. Each operation is
defined in an <operation> element, each of which is an abstract description of an action
supported by the service.

For example, the following example defines a port type with one operation,
GetLastTradePrice, which can handle an input message, GetLastTradePriceInput, and an
output message, GetLastTradePriceOuput. The concrete descriptions of these messages
are defined in the WSDL binding, as shown in the soap:operation subelement in the
following example.

Example - WSDL Port Type and Operation Example

<portType name="StockQuotePortType">
 <operation name="GetLastTradePrice">
 <input message="tns:GetLastTradePriceInput"/>
 <output message="tns:GetLastTradePriceOutput"/>
 </operation>
</portType>

11.1.4 WSDL Bindings
The binding element specifies a concrete data format specification and a concrete transport
protocol for a port type. The following example specifies the binding for the
StockQuotePortType port type, which is provided as the value for the type attribute. The
soap:binding subelement signifies that the binding is bound to the SOAP protocol format. In
that subelement, the style attribute specifies that the data format is SOAP document style,
and the transport attribute specifies that the transport protocol is HTTP.

Example - WSDL Binding Example

<binding name="StockQuoteSoapBinding" type="tns:StockQuotePortType">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="GetLastTradePrice">
 <soap:operation
 soapAction="http://example.com/GetLastTradePrice"/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
</binding>

11.1.5 WSDL Services and Ports
The service element defines a collection of related endpoints, each of which is defined in a
child port element. A port is defined as a binding associated with a network address. The

Chapter 11
WSDL Overview

11-3

following example defines two ports, StockQuotePort, and StockQuotePortUK. They
both use the same binding, tns:StockQuoteSoapBinding, which is concretely defined
in binding, but they have different network addresses: http://example.com/
stockquote and http://example.uk/stockquote. These are alternative ports
available for this service.

Example - WSDL service and port Example

<service name="StockQuoteService">
 <port name="StockQuotePort" binding="tns:StockQuoteSoapBinding">
 <soap:address location="http://example.com:9999/stockquote"/>
 </port>
 <port name="StockQuotePortUK" binding="tns:StockQuoteSoapBinding">
 <soap:address location="http://example.uk:9999/stockquote"/>
 </port>
</service>

11.2 WSDL Documents in Service Bus
In Service Bus, a WSDL document describes a proxy or business service, pipeline, or
split-join. You can base SOAP and XML services on an existing WSDL resource.

Service Bus defines some types of business services, proxy services, and pipelines
using a WSDL document, an XML-based specification for describing web services. All
split-joins are based on a WSDL document. A WSDL document describes service
operations, input and output parameters, and how a client application connects to the
service. For the WSDL 1.1 specification, see the W3C Note, "W3C Web Services
Description Language (WSDL) 1.1," at http://www.w3.org/TR/wsdl.

Oracle Service Bus defines proxy services and business services in terms of two
WSDL entities:

• The abstract WSDL interface, which defines the operations in that interface and
the types of message parts in the operation signature.

• The binding WSDL interface, which defines the binding of the message parts to
the message (packaging), and the binding of the message to the transport.

11.2.1 Web Service Types
If a service has a well-defined WSDL interface, it is recommended, although not
required, that you use the WSDL document to define the service. There are three
types of WSDL documents you can define:

• SOAP Document Wrapped Web Services

• SOAP Document Style Web Services

• SOAP RPC Web Services

11.2.1.1 SOAP Document Wrapped Web Services
A document wrapped web service is described in a WSDL file as a Document Style
Service. However, it follows some additional conventions. Standard document-oriented
web service operations take only one parameter or message part, typically an XML
document. This means that the methods that implement the operations must also have
only one parameter. Document-wrapped web service operations, however, can take
any number of parameters, although the parameter values will be wrapped into one

Chapter 11
WSDL Documents in Service Bus

11-4

http://www.w3.org/TR/wsdl

complex data type in a SOAP message. This wrapped complex data type is described in the
WSDL document as the single document for the operation.

11.2.1.2 SOAP Document Style Web Services
You can configure Service Bus services as SOAP-style services. The following example
provides an example of a WSDL for a sample document style web service using SOAP 1.1.

Example - WSDL for a Sample Document Style Web Service

<definitions name="Lookup"
targetNamespace="http://example.com/lookup/service/defs"
xmlns:tns="http://example.com/lookup/service/defs"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:docs="http://example.com/lookup/docs"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns="http://schemas.xmlsoap.org/wsdl/">
 <types>
 <xs:schema targetNamespace="http://example.com/lookup/docs"
 elementFormDefault="qualified">
 <xs:element name="PurchaseOrg" type="xs:string"/>
 <xs:element name="LegacyBoolean" type="xs:boolean"/>
 </xs:schema>
 </types>
 <message name="lookupReq">
 <part name="request" element="docs:purchaseorg"/>
 </message>
 <message name="lookupResp">
 <part name="result" element="docs:legacyboolean"/>
 </message>
 <portType name="LookupPortType">
 <operation name="lookup">
 <input message="tns:lookupReq"/>
 <output message="tns:lookupResp"/>
 </operation>
 </portType>
 <binding name="LookupBinding" type="tns:lookupPortType">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="lookup">
 <soap:operation/>
 <input>
 <soap:body use="literal" />
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>
</definitions>

The service has an operation (equivalent to a method in a Java class) called lookup. The
binding indicates that this is a SOAP 1.1 document style web service.

When the WSDL document shown above is used for a request, the value of the body variable
($body) that the document style proxy service obtains is displayed in the following example.

Chapter 11
WSDL Documents in Service Bus

11-5

Note:

Namespace declarations have been removed from the XML in the listings
that follow for the sake of clarity.

Example - Body Variable Value

<soap-env:body>
 <req:purchaseorg>Oracle</req:purchaseorg>
</soap-env:body>

In the previous example, soap-env is the predefined SOAP 1.1 namespace and req is
the namespace of the PurchaseOrg element (http://example.com/lookup/docs).

If the business service to which the proxy service is routing uses the above WSDL file,
the value for the body variable ($body) given above is the value of the body variable
($body) from the proxy service.

The value of the body variable ($body) for the response from the invoked business
service that the proxy service receives is displayed in the following example.

Note:

Namespace declarations have been removed from the XML in the listings
that follow for the sake of clarity.

Example - Body Variable Value

<soap-env:body>
 <req:legacyboolean>true</req:legacyboolean>
</soap-env:body>

This is also the value of the body variable ($body) for the response returned by the
proxy service using this WSDL file.

There are many tools available that take the WSDL file of a proxy service (obtained by
adding the ?WSDL suffix to the URL of the proxy service in the browser) and generate a
Java class with the appropriate request and response parameters to invoke the
operations of the service. This Java class can be used to invoke the proxy service that
uses this WSDL file.

11.2.1.3 SOAP RPC Web Services
You can configure proxy services and business services as RPC-style services. The
following example provides an example of a WSDL file for a sample RPC style web
service using SOAP 1.1.

Example - WSDL File for a Sample RPC Style Web Service

<definitions name="Lookup"
targetNamespace="http://example.com/lookup/service/defs"
xmlns:tns="http://example.com/lookup/service/defs"
xmlns:xs="http://www.w3.org/2001/XMLSchema"

Chapter 11
WSDL Documents in Service Bus

11-6

xmlns:docs="http://example.com/lookup/docs"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns="http://schemas.xmlsoap.org/wsdl/">
 <types>
 <xs:schema targetNamespace="http://example.com/lookup/docs"
 elementFormDefault="qualified">
 <xs:complexType name="RequestDoc">
 <xs:sequence>
 <xs:element name="PurchaseOrg" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="ResponseDoc">
 <xs:sequence>
 <xs:element name="LegacyBoolean" type="xs:boolean"/>
 </xs:sequence>
 </xs:complexType>
 </xs:schema>
 </types>
 <message name="lookupReq">
 <part name="request" type="docs: RequestDoc"/>
 </message>
 <message name="lookupResp">
 <part name="result" type="docs: ResponseDoc"/>
 </message>
 <portType name="LookupPortType">
 <operation name="lookup">
 <input message="tns:lookupReq"/>
 <output message="tns:lookupResp"/>
 </operation>
 </portType>
 <binding name="LookupBinding" type="tns:lookupPortType">
 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="lookup">
 <soap:operation/>
 <input>
 <soap:body use="literal" namespace="http://example.com/lookup/service"/>
 </input>
 <output>
 <soap:body use="literal" namespace="http://example.com/lookup/service"/>
 </output>
 </operation>
 </binding>
</definitions>

The service described in the preceding listing includes an operation (equivalent to a method
in a Java class) called lookup. The binding indicates that this is a SOAP RPC web service. In
other words, the web service's operation receives a set of request parameters and returns a
set of response parameters. The lookup operation has a parameter called request and a
return parameter called result. The namespace of the operation in the binding is:

http://example.com/lookup/service/defs

When the WSDL document shown in the previous WSDL File for a sample RPC Style Web
Service Example is used for a request, the value of the body variable ($body) that the SOAP
RPC proxy service obtains is displayed in the following example.

Chapter 11
WSDL Documents in Service Bus

11-7

Note:

Namespace declarations have been removed from the XML in the listings
that follow for the sake of clarity.

Example - Body Variable Value

<soap-env:body>
 <ns:lookup>
 <request>
 <req:purchaseorg>Oracle</req:purchaseorg>
 </request>
 </ns:lookup>
<soap-env:body>

In the above, soap-env is the predefined SOAP 1.1 name space, ns is the operation
namespace (http://example.com/lookup/service) and, req is the namespace of the
PurchaseOrg element (http://example.com/lookup/docs).

If the business service to which the proxy service routes the messages uses the
WSDL file shown in the previous example, the value for the body variable ($body),
shown in the following example, is the value of the body variable ($body) from the
proxy service.

When this WSDL document is used for a request, the value of the body variable
($body) for the response from the invoked business service that the proxy service
receives is displayed in the following example.

Example - Body Variable Value

<soap-env:body>
 <ns:lookupResponse>
 <result>
 <req:legacyboolean>true</req:legacyboolean>
 </result>
 </ns:lookupResponse>
<soap-env:body>

This is also the value of the body variable ($body) for the response returned by the
proxy service using this WSDL file.

There are many tools available that take the WSDL file of a proxy service (obtained by
adding the ?WSDL suffix to the URL of the proxy in the browser) and generate a Java
class with the appropriate request and response parameters to invoke the operations
of that service. You can use such Java classes to invoke the proxy services that use
this WSDL file.

The benefits of using a WSDL document include the following:

• The system can provide metrics for each operation in a WSDL document.

• Operational branching is possible in the pipeline. For more information, see
Branching in Pipelines.

• For SOAP 1.1 services, the SOAPAction header is automatically populated for
services invoked by a proxy service. For SOAP 1.2 services, the action

Chapter 11
WSDL Documents in Service Bus

11-8

parameter of the Content-Type header is automatically populated for services invoked by
a proxy service.

• A WSDL file is required for services using WS-Security. WS-Policies are attached to
WSDL files.

• The system supports the <url>?WSDL syntax, which allows you to dynamically obtain the
WSDL file of an HTTP proxy service. This is useful for a number of SOAP client
generation tools. For more information, see Viewing Service Bus Resources in a Web
Browser.

• In the XQuery and XPath editors and condition builders, it is easy to manipulate the body
content variable ($body) because the editor provides a default mapping of $body to the
request message in the WSDL file of a proxy service. See Message Context.

• The runtime contents of $body for a specific action can be different from the default
mapping displayed in the editor. This is because Service Bus is not a programming
language in which typed variables are declared and used. Instead, variables are untyped
and are created dynamically at runtime when a value is assigned. In addition, the type of
the variable is the type that is implied by its contents at any point in the message flow. To
enable you to easily create XQuery and XPath expressions, the editor allows you to map
the type for a given variable by mapping the variable to the type in the editor. To learn
about using the XQuery and XPath editor to create expressions, see Using Variable
Structures.

11.2.2 About Effective WSDL Documents and Generated WSDL
Documents

In Service Bus, you can base a new service on an existing WSDL file (called a WSDL
resource) and then override or add configuration properties. In the runtime, Service Bus
generates an effective WSDL document for the service that includes the configuration of the
WSDL resource along with additional transport and runtime configuration.

11.2.2.1 Effective WSDL Documents
For WSDL-based services, Service Bus uses effective WSDL documents in the runtime
instead of the actual .wsdl files you create when you develop Service Bus services. The
effective WSDL document represents a service's WSDL properties as configured in Service
Bus and also includes additional properties configured outside of the source WSDL
document. The source WSDL document serves as a template for the effective WSDL
document.

When you create a service based on a WSDL document, Service Bus generates an effective
WSDL document at runtime by combining properties from the original WSDL document, any
transport properties you configured, runtime settings (like the target server), and any WS-
Policy configurations. Any properties you add or change from the original WSDL document
during runtime are included in the effective WSDL document. Properties from the source
WSDL document that are not used in the new configuration are omitted from the effective
WSDL document.

Service Bus can generate effective WSDL documents for SOAP and XML services that are
created from a WSDL document and that use any transport that supports WSDL-based
services, such as HTTP, JMS, SB, and so on. Service Bus cannot generate effective WSDL
documents for services of the following types: Any SOAP, Any XML, and messaging.

Chapter 11
WSDL Documents in Service Bus

11-9

Effective WSDL documents have different characteristics for proxy services and
business services and for services based on WSDL ports or on WSDL bindings. For
more information, see Services Based on WSDL Ports and on WSDL Bindings.

11.2.2.2 Generated WSDL Documents
A generated WSDL document is an effective WSDL document that Service Bus
generates for transport-type services that were not created from a WSDL resource but
that can be described using a WSDL document. For example, you can generate a
WSDL document from an EJB-based service.

11.3 Services Based on WSDL Ports and on WSDL
Bindings

When you create a service based on a WSDL resource, you must base the service on
a WSDL port or on a WSDL binding.

• When you create a new service based on a binding in a WSDL resource, you are
choosing the protocol and data format defined in the selected binding element in
the WSDL resource.

• When you create a new service based on a port in a WSDL resource, you are
choosing the binding and the network address defined in the port element.

When you create or modify the service, you can change the transport, but you cannot
override the data format. The port and binding definitions from the original WSDL
resource are modified in the effective WSDL depending on various factors, as
described in the following sections.

11.3.1 Effective WSDL Documents for Proxy Services
The following characteristics apply to effective WSDL documents generated for proxy
services:

• The effective WSDL document has one and only one wsdl:service section.

• The wsdl:service section has one and only one wsdl:port section.

• For SOAP services, any existing <wsdl:service> definition is removed, and a new
service definition containing a single <wsdl:port> is created.

• For SOAP binding over any of the supported transports the wsdl:binding section
contains the standard WSDL SOAP binding elements along with a unique
transport URI that identifies the transport.

• For XML binding over HTTP, the wsdl:binding section uses the standard binding
elements specified in the WSDL 1.1 specification.

• For XML binding over any of the other supported transports the wsdl:binding
section uses Oracle (Service Bus) proprietary WSDL XML binding elements.

If the service is based on a binding, the following characteristics apply:

• The effective WSDL document defines a new service and port
(<bindingname>QSService and <bindingname>QSPort). None of the ports defined
in the WSDL resource are included in the effective WSDL document.

Chapter 11
Services Based on WSDL Ports and on WSDL Bindings

11-10

• There may be multiple ports in that WSDL document associated with that binding. Each
port can use a different URL. Therefore, the effective WSDL document uses the binding
but generates an artificial port from the configuration on the service for that binding. All
other ports are removed.

If the service is based on a port, the following characteristics apply:

• The port on which the service is based is also defined in the effective WSDL document.
Any other ports defined in the WSDL resource are not included. Furthermore, if you base
the proxy service on a WSDL port, the effective WSDL document uses that port name.
The binding is determined from the port, and in turn, the port type is determined from the
binding.

• The effective WSDL document preserves any WS-Policies associated with the port
defined in the WSDL resource.

• The transport address specified in the port definition in the source WSDL document is
never used as the address for a proxy service in the effective WSDL document:

– For HTTP services, you must specify a transport address when configuring the
transport. That address is used in the port definition in the effective WSDL document.

– The URL specified as the transport address for a proxy service is always relative to a
path in a Service Bus domain, because Service Bus always hosts proxy services.

• For SOAP-protocol WSDL services, the transport URI in the SOAP binding depends on
the transport implementation. For standard transports (like HTTP and JMS), this value is
as per the SOAP specification or another universally accepted value. For transports for
which SOAP does not define a standard value, Service Bus sets one consisting of a
predefined namespace with the transport ID appended at the end: http://
www.oracle.com/transport/2007/05/.

• There is one service element in the effective WSDL document, and the port address
contains a URL whose syntax and semantic are defined by the transport selected in the
binding.

11.3.2 Effective WSDL Files for Non-Transport-Type Business Services
The following characteristics apply to effective WSDL documents generated for business
services that are not transport typed:

• The effective WSDL document has one and only one wsdl:service section.

• The wsdl:service section may have more than one wsdl:port sections. This is
generally true when load balancing is used and there are multiple endpoint addresses
that can be used using one of the load-balance algorithms supported.

• For SOAP binding over any of the supported transports, the wsdl:binding section
contains the standard WSDL SOAP binding elements along with a unique transport URI
that identifies the transport.

• For XML binding over any of the supported transports, the wsdl:binding section contains
the Oracle WSDL XML binding elements.

• The URL specified as the transport address is a remote location where the remote
service is hosted.

If the service is based on a port, the following characteristics apply:

• The effective WSDL document defines a port with the same name as the port in the
source WSDL document. If multiple endpoint addresses are configured for the business

Chapter 11
Services Based on WSDL Ports and on WSDL Bindings

11-11

service, the effective WSDL document generated from it defines ports for all the
endpoints, with the names <portname_in_template>_1,
<portname_in_template>_2,...

• The binding for the new service is determined from the port, and the port type is in
turn determined from the binding.

• The transport address URL is a remote location where the remote service is
hosted.

If the service is based on a binding, the following characteristics apply:

• The effective WSDL document defines a new service and port, based on the port
in the WSDL resource. None of the ports defined in the WSDL resource are
included in the effective WSDL file.

• A binding in the WSDL resource may be associated with multiple ports. Each port
can use a different URL and have a different WS-Policy attached to it. Therefore,
the generated WSDL document uses the binding but generates an artificial port for
that binding with no WS-Policy.

• For XML-based WSDL services, standard HTTP binding is used only if the service
uses HTTP transport. For all other services created from an XML-based WSDL
file, the effective WSDL document uses Oracle binding.

11.3.3 Effective WSDL Files for Transport-Type Business Services
Service Bus does not guarantee one and only one wsdl:service section in effective
WSDL documents generated for transport-type business services. Because the WSDL
document is generated by the transport, Service Bus does not generate nor clean up
extra service-port sections. Service Bus does, however, evaluate dependencies and
sets their references during export.

11.3.4 Examples of Proxy Services Based on a Port and on a Binding
The following example shows fragments of port and binding definitions in a WSDL
resource.

Example - WSDL Resource

<portType name="StockQuotePortType">
...
</portType>
<binding name="StockQuoteSoapBinding" type="tns:StockQuotePortType">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>
...
</binding>
<service name="StockQuoteService">
 <port name="StockQuotePort" binding="tns:StockQuoteSoapBinding">
 <soap:address location="http://example.com:9999/stockquote"/>
 </port>
 <port name="StockQuotePortUK" binding="tns:StockQuoteSoapBinding">
 <soap:address location="http://example.uk:9999/stockquote"/>
 </port>
</service>

Chapter 11
Services Based on WSDL Ports and on WSDL Bindings

11-12

11.3.4.1 A Service Based on a Port
If you create a proxy service based on the example in Examples of Proxy Services Based on
a Port and on a Binding, the effective WSDL document will look similar to the fragment in the
following example.

Example - Effective WSDL File for a Proxy Service Based on a Port

<binding name="StockQuoteSoapBinding" type="ns:StockQuotePortType">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>
...
</binding>
<service name="StockQuoteService">
 <port name="StockQuotePort" binding="ns:StockQuoteSoapBinding">
 <soap:address location="http://host:port/project/proxyname"/>
 </port>
</service>

Notice the following about the above example:

• The service name, StockQuoteService, is the same in both the template and the
effective WSDL document.

• The binding is the same in both the template and the effective WSDL document. In this
example, it specifies that the service will use the HTTP transport protocol for SOAP
document style messages. The binding also specifies the same binding operation in both
the WSDL resource and the effective WSDL document, but that is not shown in this
example.

• The second port defined in the WSDL resource, StockQuotePortUK, is not defined in the
effective WSDL document.

• The transport address (URI) defined in the WSDL resource's port, http://
example.com:9999/stockquote, is different from the address generated in the effective
WSDL document's port, http://host:port/project_path/proxy_service_name. The
effective WSDL document uses the address that was specified for the transport when it
was being configured.

11.3.4.2 A Service Based on a Binding
If you create a proxy service based on the StockQuoteBinding binding in Examples of Proxy
Services Based on a Port and on a Binding, the effective WSDL document will look
something like the fragment in the following section.

Example - Effective WSDL Document for a Proxy Service Based on a Binding

<binding name="StockQuoteSoapBinding" type="ns:StockQuotePortType">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>
...
</binding>
<wsdl:service name="StockQuoteSoapBindingQSService"
 <wsdl:port name="StockQuoteSoapBindingQSPort"
 binding="ns:StockQuoteSoapBinding">
 <soap:address location="http:/host:port/project/proxyname"/>
 </wsdl:port>
</wsdl:service>

Chapter 11
Services Based on WSDL Ports and on WSDL Bindings

11-13

Notice the following about the above example:

• The service and the port in the WSDL resource are different from the service and
the port generated in the effective WSDL document.

• The service name in the WSDL resource and the effective WSDL document are
different: StockQuoteService in the template and
StockQuoteSoapBindingQSService in the effective WSDL document.

• The binding is the same in both the WSDL resource and effective WSDL
document. In this example, it specifies that the service will use the HTTP transport
protocol for SOAP document style messages.

• The binding also specifies the same binding operation in both the template and the
effective WSDL document, but that is not shown in this example.

• The transport address (URI) defined in the WSDL resource's port, http://
example.com:9999/stockquote, is different from the address generated in the
effective WSDL's port, http://host:port/project/stockquote.

11.4 Importing and Exporting WSDL Resources
Exporting a WSDL document generates a JAR file that contains the effective WSDL
document along with any associated dependencies, such as XML schemas.

Service Bus evaluates the dependencies, and the appropriate location is added to the
location attribute of the WSDL import element. You cannot export a generated
WSDL document.

For more information about importing and exporting resources, see Importing and
Exporting Resources and Configurations .

11.5 Working with WSDL Documents in JDeveloper
In JDeveloper, a WSDL file is generated and added to the Service Bus project when
you create a new proxy or business service based on a JCA adapter. You can also
create a WSDL file from scratch using standard JDeveloper tools.

WSDL files are not generated in the Oracle Service Bus Console. Import the required
WSDL file to use it with a service.

WSDL files are a standard feature in JDeveloper. For information about the editors and
tools you use to create WSDL files, see Developing Applications Using XML in
Developing Applications with Oracle JDeveloper.

11.5.1 How to Create a WSDL Resource in JDeveloper
If the WSDL resource you want to create contains URL references to external
schemas that do not currently exist in JDeveloper, such as http://www.w3.org/2001/
XMLSchema.xsd, you must add those URL-referenced schemas, along with any
dependent schemas, to Service Bus by creating XML Schema resources. WSDL
resources in Service Bus can only reference locally available schemas. You can
generate the WSDL file using an XML schema definition (XSD) file or using a sample
file.

Defining input and output types for a new WSDL document requires specifying an XML
type for the message parts. If you want to use a schema XSD file that resides on your

Chapter 11
Importing and Exporting WSDL Resources

11-14

local file system, make sure the XSD file and any XSD files that it imports all reside in the
JDeveloper project directory. This ensures that the schema is deployed with the project and is
made available at runtime.

To create a WSDL document in JDeveloper:

1. Do one of the following:

• To create a new WSDL resource: In the Application Navigator, right-click the project
or folder in which you want to place the new WSDL file. Point to New and select SOA
WSDL Document.

• To create a new WSDL resource from within a service's creation wizard: Click the
Generate WSDL icon to the right of the WSDL field.

The Create WSDL dialog appears.

2. On the Create WSDL dialog, enter a unique name for the WSDL file, and enter the
directory where you want to store the file or accept the default.

By default, files are stored in the project folder. This must be the current project directory
or one of its subdirectories. If the specified directory does not exist, Oracle JDeveloper
creates it.

3. In the Namespace field, enter a namespace address for the WSDL file; for example,
http://example.com/OrderProcess/wsdl.

The namespace that you specify is defined as the tns namespace in the WSDL file.

4. In the Binding field, enter the name of the binding in the WSDL file to create for the
service. Select the binding type from the list of available options (SOAP 1.1, SOAP 1.2,
or XML).

5. Select Create Port Type to create a new port type and operation for the WSDL
document, or select Select Port Type to select a port type from an existing WSDL
document.

6. Do one of the following:

• If you chose to create a port type, continue to step 7.

• If you chose to select a port type, click Select WSDL next to the WSDL URL field,
and browse to and select the WSDL file to use. Then select the port type from the list
of available options. Skip to step 14.

7. In the Port Type field, enter a name for the port type that will contain the operation to
use.

8. In the Operation field, enter the name for the operation to use.

Note:

Spaces and special characters are not allowed in an operation name or port
type. Only alphabetic and numeric characters are supported, and the first
character cannot be a number.

9. In the Interface Type field, select One-Way Interface for request-only messaging, or
select Synchronous Interface for request-response messaging.

The available fields change based on your selection.

10. To the upper right of the Input field, click Add a new message part.

Chapter 11
Working with WSDL Documents in JDeveloper

11-15

11. On the Add Message Part dialog, do the following:

a. In the Part Name field, enter a name for the message part.

b. To the right of the URL field, click the browse for schema file icon to browse
for and select an XML type.

The Type Chooser dialog appears with a list of the schema and WSDL files to
choose from.

c. Expand the Type Explorer tree to locate and select the schema root element to
use, and click OK.

The Add Message Part dialog reappears with the URL and Schema Element
fields populated from the Type Chooser dialog. If you selected an XSD simple
type, the Schema Element field is replaced by a Simple Type field.

Tip:

If the schema you want to use is not located in the project in which
you are working, you can import a schema XSD file or WSDL file into
the project using the Import Schema File or Import WSDL icon in
the upper right corner of the dialog.

d. Click OK again.

The new message part information appears in the Input field of the Create
WSDL dialog.

12. If needed, repeat the above steps to define additional message parts.

13. If you selected Synchronous Interface as the interface type, repeat the above
steps to define the output and fault message parts.

14. Click OK.

Note:

Partner link types are generally used in BPEL, so you do not need to
select Generate partnerlinkType extension for Service Bus.

11.5.1.1 How to move from SOAP 1.1 version to SOAP 1.2
WebLogic web services use version 1.1 of SOAP. If you want your web services to use
version 1.2, specify the binding type in the JWS file that implements your service.

Migration to version 1.1 contains the following changes for each component in each
OSB project.

• Change the header reference from soap to soap1.2.

• Change any soap tag from <soap to <soap12.

• Replace all isSoap12="false” instances with isSoap12="true”

Make the changes for the following components:

Chapter 11
Working with WSDL Documents in JDeveloper

11-16

1. Edit the Proxy file <ProxyName>.proxy and change isSoap12 to true for each Proxy
Service. For example,

<ser:binding type="SOAP" xsi:type="con:SoapBindingType" isSoap12="false"
xmlns:con="http://www.bea.com/wli/sb/services/bindings/config">

to

<ser:binding type="SOAP" xsi:type="con:SoapBindingType" isSoap12="true"
xmlns:con="http://www.bea.com/wli/sb/services/bindings/config">

2. Edit the <BusinessServcieName>.bix files for each Business Service. For example,

<con1:binding type="SOAP" xsi:type="con:SoapBindingType" isSoap12="false"
xmlns:con="http://www.bea.com/wli/sb/services/bindings/config"
xmlns:con1="http://xmlns.oracle.com/servicebus/business/config">

to

<con1:binding type="SOAP" xsi:type="con:SoapBindingType" isSoap12="true"
xmlns:con="http://www.bea.com/wli/sb/services/bindings/config"
xmlns:con1="http://xmlns.oracle.com/servicebus/business/config">

3. Make the following changes for each pipeline.

a. Edit the file <PileLineName>.pipeline.

<con:binding type="SOAP" isSoap12="false"
xsi:type="con:SoapBindingType">

to

<con:binding type="SOAP" isSoap12="true"
xsi:type="con:SoapBindingType">

b. Create a new WSDL and change the WSDL to point to a new WSDL. For example,
ProviderInformationInquiriesServiceSOAP1.1.wsdl to
ProviderInformationInquiriesServiceSOAP1.2.wsdl.

11.5.2 How to Generate a WSDL File from a Service in JDeveloper
A generated WSDL file is a WSDL file resource that Service Bus generates for a service that
did not start with a WSDL resource but that can be described using a WSDL file. You can
generate a WSDL file associated with an EJB or JEJB transport-typed business service or a
JEJB proxy service.

To generate a WSDL file from service in JDeveloper:

1. In the Application Navigator, right-click the project or folder that contains the proxy or
business service from which you want to generate the WSDL file.

2. Point to Service Bus and then click Generate WSDL.

The Generate WSDL dialog appears.

Chapter 11
Working with WSDL Documents in JDeveloper

11-17

3. Specify a WSDL Name and location for the WSDL file.

By default, the current location is the path to the project and the name of the folder
in which the service resides.

4. Click OK.

Caution:

If you are generating a WSDL file to use with a pipeline configured for
resequencing, it's important to note that the resequencer supports only
one-way (request) operations. The WSDL file produced here includes
output tags, which need to be removed from the port type and binding
definitions before you can use it with the pipeline.

11.5.3 How to Edit a WSDL Document in JDeveloper
Once you create a WSDL document, you can further configure them using the
standard XML Editor in JDeveloper. For information about the editor and tool you use
to view and configure WSDL documents, see "Developing Applications Using XML" in
Developing Applications with Oracle JDeveloper.

11.5.4 How to Delete a WSDL Document in JDeveloper
Once you create a WSDL document, you can delete it from the project and the file
system. Using the refactoring feature of JDeveloper, you can view any resources that
reference the WSDL document. To view dependencies before deleting, right-click the
WSDL document and select Explore Dependencies.

To delete a WSDL document in JDeveloper:

1. In the Application Navigator, right-click the WSDL file you want to delete.

2. Point the Refactor and select Delete.

The Confirm Delete dialog appears.

3. If the WSDL document is referenced by another Service Bus resource, click Show
Usages to view the references to verify you want to delete the WSDL document.

4. When you are certain you want to delete the WSDL document, click Yes.

11.6 Working with WSDL Documents in the Oracle Service
Bus Console

If you are using the Oracle Service Bus Console, you can create WSDL documents by
importing them or by creating a WSDL resource.

For more information on importing, see Importing and Exporting Resources and
Configurations . Use the following procedure to create WSDL resources manually. You
should have an existing WSDL file to upload into the WSDL resource.

Chapter 11
Working with WSDL Documents in the Oracle Service Bus Console

11-18

11.6.1 How to Create a WSDL Resource in the Console
If the WSDL resource you want to create contains URL references to external schemas that
do not currently exist in Service Bus, such as http://www.w3.org/2001/XMLSchema.xsd, you
must import those URL-referenced schemas—and any dependent schemas—into the Oracle
Service Bus Console by creating XML Schema resources. WSDL resources in Service Bus
can only reference locally available schemas.

To create a WSDL resource in the Console:

1. If you have not already done so, click Create to create a new session or click Edit to
enter an existing session.

2. In the Project Navigator, right-click the project or folder to contain the new WSDL
document, point to Create, and select Resource. Click Interfaces, then click WSDL, and
then click OK.

The Create WSDL dialog appears.

3. Do one of the following:

• To create the resource from an existing WSDL file, click Browse next to the File
Upload field and then navigate to and select the WSDL file to use.

The Resource Name field is automatically populated with the file name minus the file
extension. You can change this name.

• To create a new WSDL file, enter a unique name for the WSDL resource.

4. Optionally, enter a brief description of the resource.

5. Click Create.

The WSDL elements, if defined, appear in the WSDL Definition Editor.

6. To modify the WSDL file content, do the following:

a. Click Edit Source in the toolbar.

The Edit Source dialog appears.

b. To browse to and select a new WSDL file to upload, click Browse.

c. To modify the contents of the file, update the code directly in the Contents section of
the dialog.

d. Click Save.

7. In the WSDL Definition Editor toolbar, click Save.

If there are any unresolved references for the new WSDL document, a Conflict icon
appears next to the editor's title bar. Use the previous and next arrow buttons to scroll
through any errors.

8. To end the session and deploy the configuration to the runtime, click Activate.

11.6.2 How to Export a WSDL File in the Console
Use the Project or Folder Definition Editor to export a WSDL file associated with a proxy
service or a business service. Service Bus exports the WSDL file as a JAR file. You can
export a WSDL file only when you are outside a session.

Chapter 11
Working with WSDL Documents in the Oracle Service Bus Console

11-19

By exporting a WSDL document, you make it available for consumption by external
tools such as IDEs. Note that the WSDL export feature is different from the Export
Resources feature, which you use to move and stage resources between two
domains. This feature is not available for all service types.

11.6.2.1 Exporting a WSDL FIle from a Project or Folder in the Console
To export a WSDL file from a project or folder in the console:

1. In the Project Navigator, click the project or folder that contains the WSDL file to
export.

The Project or Folder Definition Editor appears.

2. In the resources table, click the Export WSDL icon in the row of the proxy or
business service whose WSDL file you want to export.

A file dialog appears. The type of dialog and its options differ depending on the
web browser you are using.

3. Click Open to open the JAR file or click Save to save the JAR file to your desktop.

11.6.2.2 Exporting a WSDL File From a Service Definition Editor
To export a WSDL file from a service definition editor:

1. Make sure you are not in an open sessions in the Oracle Service Bus Console.

2. In the Project Navigator, click the proxy or business service from which you want
to export the WSDL file.

The Proxy or Business Service Definition Editor appears.

3. In editor's toolbar in the upper right, click the Tools icon, and then click Export
WSDL.

A file dialog appears. The type of dialog and its options differ depending on the
web browser you are using.

4. Click Open to open the JAR file or click Save to save the JAR file to your desktop.

11.6.3 How to Generate a WSDL File from a Service in the Console
A generated WSDL file is a WSDL file resource that Service Bus generates for a
service that did not start with a WSDL resource but that can be described using a
WSDL file. Use the Project or Folder Definition Editor to generate a WSDL file
associated with an EJB or JEJB transport-typed business service or a JEJB proxy
service. You must be working within a session to generate a WSDL file.

To generate a WSDL file from a business service in the console:

1. In the Project Navigator, click the project or folder that contains the proxy or
business service from which you want to generate the WSDL file.

The Project or Folder Definition Editor appears.

2. In the resources table, click the Generate WSDL icon in the row of the service
whose WSDL file you want to generate.

Chapter 11
Working with WSDL Documents in the Oracle Service Bus Console

11-20

The Generate WSDL Resource dialog appears with the current location (project name
and the name of the folder in which the business service resides) highlighted.

3. Specify a name and location for the WSDL resource, and then click Generate WSDL.

Caution:

If you are generating this WSDL resource to use with a pipeline configured for
resequencing, it's important to note that the resequencer supports only one-way
(request) operations. The WSDL file produced here includes output tags, which
need to be removed from the port type and binding definitions before you can
use it with the pipeline.

11.6.4 How to Edit a WSDL Document in the Console
Once you create a WSDL resource in the Oracle Service Bus Console, you can modify the
file as needed, but only by modifying the source code directly.

To edit a WSDL Document:

1. If you have not already done so, click Create to create a new session or click Edit to
enter an existing session.

2. In the Project Navigator, click the WSDL resource to edit.

The WSDL Definition Editor appears.

3. Click Edit Source in the toolbar.

The Edit Source dialog appears.

4. To browse to and select a new WSDL file to upload, click Browse.

5. To modify the contents of the file, update the code directly in the Contents section of the
dialog.

6. Click Save.

7. To end the session and deploy the configuration to the runtime, click Activate.

11.6.5 How to Delete a WSDL Document in the Console
If any resources reference the WSDL document you want to delete, remove those references
before deleting the WSDL resource. In the Oracle Service Bus Console, open the WSDL
document in the WSDL Definition Editor and click the Tools icon in the upper right, and then
select References to find out if it has any references.

To delete a WSDL document in the console:

1. In the Application Navigator, expand the project and folders containing the WSDL
resource to delete.

2. Right-click the name of the WSDL document, and select Delete.

The WSDL resource is deleted. A Deletion Warning icon appears when other resources
reference this resource. You can delete the resource with a warning confirmation. This
might result in conflicts due to unresolved references to the deleted resource.

3. Click Activate to end the session and deploy the configuration to the runtime.

Chapter 11
Working with WSDL Documents in the Oracle Service Bus Console

11-21

11.7 Viewing Effective WSDL Documents
You can view both the design-time and the effective WSDL documents through a web
browser. Accessing the files through a browser window displays the contents of the file
in XML format.

There are three ways to access an effective WSDL document:

• In a web browser, enter the fixed HTTP URL, using the following syntax:

http://host:port/sbresource?PROXY/project_path/proxy_service_name

or

http://host:port/sbresource?BIZ/project_path/business_service_name

This syntax works for all services for which Service Bus can generate effective
WSDL documents.

• In a web browser, enter the URL for an HTTP-based proxy service, appended
with ?WSDL.

This syntax works only for HTTP-transport-based services for which Service Bus
can generate effective WSDL documents.

• Export the WSDL resource. For more information, see How to Export a WSDL File
in the Console and How to Generate a WSDL File from a Service in the Console.
For general export information, see Importing and Exporting Resources and
Configurations .

Service Bus provides a resource servlet that is used to expose the resources
registered in Service Bus through a URL. For more information on accessing
Service Bus resources with a URL, see Viewing Service Bus Resources in a Web
Browser.

To view the design-time WSDL document, enter the URL using the following syntax:

http://host:port/sbresource?WSDL/project_path/wsdl_name

Chapter 11
Viewing Effective WSDL Documents

11-22

Part III
Working with Oracle Service Bus Pipelines

This part describes how to create and use pipelines in your Service Bus projects.

This part contains the following chapters:

• Modeling Message Flow in Oracle Service Bus

• Working with Pipelines in Oracle Service Bus Console

• Working with Pipeline Actions in Oracle Service Bus Console

• Working With Expression Editors in Oracle Service Bus Console

• Working with Pipelines in Oracle JDeveloper

• Working with Pipeline Actions in Oracle JDeveloper

• Working with Pipeline Templates

12
Modeling Message Flow in Oracle Service
Bus

This chapter describes the high-level aspects and concepts of creating and configuring
pipelines, or message flows, using the Oracle Service Bus Console. Topics include pipeline
components, message transformation, routing and service callout, error handling, message
context, and quality of service (QoS).

In Service Bus, a message flow defines the implementation of a pipeline. You can create and
configure pipelines in Oracle Service Bus Console or Oracle JDeveloper. You can also define
message flow in split-joins. For more information, see Improving Service Performance with
Split-Join.

The following sections describe pipelines in Service Bus:

• Pipeline Components

• Branching in Pipelines

• Configuring Actions in Stages and Route Nodes

• Performing Transformations in Pipelines

• Constructing Service Callout Messages

• Using Attachments with Service Callout Messages

• Handling Errors as the Result of a Service Callout

• Handling Errors in Pipelines

• Using Dynamic Routing

• Accessing Databases Using XQuery

• Understanding Message Context

• Using Variable Structures

• Quality of Service

• Using Work Managers with Service Bus

• Content Types, JMS Type, and Encoding

• Throttling Pattern

• WS-I Compliance

• Converting Between SOAP 1.1 and SOAP 1.2

For instructions on creating and configuring pipelines using the Oracle Service Bus Console,
see:

• Working with Pipelines in Oracle Service Bus Console

• Working with Pipeline Actions in Oracle Service Bus Console

For instructions on creating and configuring pipelines using Oracle JDeveloper, see:

12-1

• Working with Pipelines in Oracle JDeveloper

• Working with Pipeline Actions in Oracle JDeveloper

12.1 Pipeline Components
A pipeline is composed of components that define the logic for routing and
manipulating messages as they flow through a pipeline.

Nodes are configured to route messages through the message flow. Stages and
actions contain rules for processing and transforming messages.

Table 12-1 describes the components available for defining pipelines.

Table 12-1 Pipeline Components

Component Type Summary

Start node Every pipeline begins with a start node. All messages enter the pipeline
through the start node, and all response messages are returned to the
client through the start node. There is nothing to configure in a start
node.

Pipeline pair node A pipeline pair node combines a single request pipeline and a single
response pipeline in one top-level element. A pipeline pair node can have
only one direct descendant in the pipeline. During request processing,
only the request pipeline is executed when Service Bus processes a
pipeline pair node. The execution path is reversed when Service Bus
processes the response pipeline.

Stage Request pipelines, response pipelines, and error handlers can contain
stages, where you configure actions to manipulate messages passing
through the pipeline.

See also Configuring Actions in Stages and Route Nodes.

Error handler An error handler can be attached to any node or stage, to handle
potential errors at that location.

See also Handling Errors in Pipelines.

Branch node A branch node allows processing to proceed along exactly one of several
possible paths. Operational branching is supported for WSDL-based
services, where the branching is based on operations defined in the
WSDL file. Conditional branching is supported for conditions defined in
an XPath-based switch table. REST branching is supported for untyped
native REST services, where the branching is based on logic derived
from the media type consumed, relative URI, and the HTTP verb.
Operational branching is also supported for typed REST services, where
the branching is based on methods defined in the WADL file.

See also Branching in Pipelines.

Route node A route node performs request/response communication with another
service or component. It represents the boundary between request and
response processing for the pipeline. When the route node dispatches a
request message, the request processing is considered complete. When
the route node receives a response message, the response processing
begins. The route node supports conditional routing as well as request
and response transformations.

Because a route node represents the boundary between request and
response processing, it cannot have any descendants in the pipeline.

See also Configuring Actions in Stages and Route Nodes.

Chapter 12
Pipeline Components

12-2

12.1.1 Building a Message Flow
In general, a message flow is likely to be designed in one of the following ways:

• For non-operational services (services that are not based on WSDL files with operations),
the flow consists of a single pipeline pair at the root followed by a route node.

• For operational services, the flow consists of a single pipeline pair at the root, followed by
a branch node based on an operation (or consumed media type, path, or HTTP verb, for
a REST branch), with each branch consisting of a pipeline pair followed by a route node.

12.1.2 Message Execution
Table 12-2 and Table 12-3 briefly describe how request and response messages are
processed in a typical message flow.

Table 12-2 Path of a Request Message During a Message Flow

Pipeline Node What Happens During Message Processing?

Request Processing Request Processing container.

Start node Request processing begins at the start node.

Pipeline pair node Executes the request pipeline only.

Branch node Evaluates the branch table and proceeds down the relevant branch.

Route node Performs the route along with any request transformations.

In the pipeline, regardless of whether routing takes place or not, the route
node represents the transition from processing a request to processing a
response. At the route node, the direction of the message flow is reversed. If
a request path does not have a route node, the response processing is
initiated in the reverse direction without waiting for any response.

Table 12-3 Path of a Response Message During a Message Flow

Pipeline Node What Happens During Message Processing?

Response Processing Skips any branch nodes and continues with the node that preceded the
branch.

Route node Executes any response transformations.

Branch node Skips any branch nodes and continues with the node that preceded the
branch.

Pipeline pair node Executes the response pipeline.

Start node Sends the response back to the client.

12.2 Branching in Pipelines
Three kinds of branching are supported in pipelines: operational, conditional, and REST.

• Operational: When message flows define WSDL-based pipeline services, operation-
specific processing is required. When you create an operational branch node in a
pipeline, you can build branching logic based on the operations defined in the WSDL file.

Chapter 12
Branching in Pipelines

12-3

• Conditional: Use conditional branching to branch based on a specified condition,
for example the document type of a message.

• REST: When message flows define REST-based pipeline services, operation-
specific processing is required.

12.2.1 Operational Branching
You must use operational branching when a pipeline is based on a WSDL file with
multiple operations. You can consider using an operational branch node to handle
messages separately for each operation. You can also use operational branching
when a pipeline is based on a typed native REST service, where the branching is
based on methods defined in the WADL file.

12.2.2 Conditional Branching
Conditional branching is driven by a lookup table with each branch tagged with simple,
unique string values, for example, QuantityEqualToOrLessThan150 and
QuantityMoreThan150.

You can configure a conditional branch to branch based on the value of a variable in
the message context (declared, for example, in a stage earlier in the pipeline), or you
can configure the condition to branch based on the results of an XPath expression
defined in the branch itself.

At runtime, the variable or the expression is evaluated, and the resulting value is used
to determine which branch to follow. If no branch matches the value, the default
branch is followed. A branch node may have several descendants in the pipeline: one
for each branch, including the default branch. You should always define a default
branch. You should design the pipeline in such a way that the value of a lookup
variable is set before reaching the branch node.

For example, consider the following case using a lookup variable. A pipeline is of type
any SOAP or any XML, and you need to determine the type of the message so you
can perform conditional branching. You can design a stage action to identify the
message type and then design a conditional branching node later in the flow to
separate processing based on the message type.

Now consider the following case using an XPath expression in the conditional branch
node. You want to branch based on the quantity in an order. That quantity is passed
using a variable that can be retrieved from a known location in $body.

You could define the following XPath expression to retrieve the quantity:

declare namespace openuri="http://www.openuri.org/";
declare namespace com="oracle.com/demo/orders/cmnCust";
./openuri:processCust/com:cmnCust/com:Order_Items/com:Item/com:Quantity

The condition (for example, <500) is then evaluated in order down the message flow
against the expression. Whichever condition is satisfied first determines which branch
is followed. If no branch condition is satisfied, then the default branch is followed.

You can use conditional branching to expose the routing alternatives for the message
flow at the top level flow view. For example, consider a situation where you want to
invoke service A or service B based on a condition known early in the message flow
(for example, the message type). You could configure the conditional branching in a
routing table in the route node. However, that makes the branching somewhat more

Chapter 12
Branching in Pipelines

12-4

difficult to follow if you are just looking at the top level of the flow. Instead, you could use a
conditional branch node to expose this branching in the pipeline itself and use simple route
nodes as the subflows for each of the branches.

Consider your business scenario before deciding whether you configure branching in the
pipeline or in a stage or route node. When making your decision, remember that configuring
branches in the pipeline can be awkward in the design interface if a large number of
branches extend from the branch node.

12.2.3 REST Branching
When you create a REST branch node in a pipeline, you can build branching logic based on
the consumed media type, relative URI, or HTTP Verb. The REST Branch Node can only be
used in untyped Native REST pipelines or untyped Native REST templates. See Adding
REST Branches to Pipelines in JDeveloper and How to Add REST Branches to Pipelines in
the Console for more information.

12.3 Configuring Actions in Stages and Route Nodes
Actions provide instructions for handling messages in pipeline stages, error handler stages,
and route nodes.

The context determines which actions are available, as described in the following sections:

• Communication Actions

• Flow Control Actions

• Message Processing Actions

• Reporting Actions

See Also

• Working with Pipeline Actions in Oracle Service Bus Console

• Working with Pipeline Actions in Oracle JDeveloper

12.3.1 Communication Actions
Communication actions control message flow. Table 12-4 describes the communication
actions.

Table 12-4 Communication Actions

Action Use to... Available in

Dynamic Publish Publish a message to a service specified by
an XQuery expression.

• Pipeline stage
• Error handler stage
• Route node

Publish Identify a statically specified target service for
a message and to configure how the message
is packaged and sent to that service.

• Pipeline stage
• Error handler stage
• Route node

Publish Table Publish a message to zero or more statically
specified services. Switch-style condition logic
is used to determine at runtime which
services will be used for the publish.

• Pipeline stage
• Error handler stage
• Route node

Chapter 12
Configuring Actions in Stages and Route Nodes

12-5

Table 12-4 (Cont.) Communication Actions

Action Use to... Available in

Routing Options Modify any or all of the following properties in
the outbound request: URI, Quality of Service,
Mode, Retry parameters, Message Priority,
Verb, Relative Path, HTTP Accept Header,
and Query parameters.

• Route node

Service Callout Configure a synchronous (blocking) callout to
a Service Bus-registered proxy service,
business service, pipeline or split-join. See
Constructing Service Callout Messages.

• Pipeline stage
• Error handler stage
• Route node

Transport Headers Set the header values in messages. See
Configuring Transport Headers in Pipelines.

• Pipeline stage
• Error handler stage
• Route node

Dynamic Routing Assign a route for a message based on
routing information available in an XQuery
resource.

• Route Node

Routing Identify a target service for the message and
configure how the message is routed to that
service.

• Route Node

Routing Table Select different routes based upon the results
of a single XQuery expression.

• Route Node

12.3.2 Flow Control Actions
Flow controls actions implement conditional routing, conditional looping, and error
handling. You can also use them to notify the invoker of success or to skip the rest of
the actions in the stage. Table 12-5 describes the flow control actions.

Table 12-5 Flow Control Actions

Action Use to... Available in

For each Iterate over a sequence of values and
execute a block of actions

• Pipeline stage
• Error handler stage
• Route node

If... then... Perform an action or set of actions
conditionally, based on the Boolean result
of an XQuery expression or an inline
JavaScript expression.

• Pipeline stage
• Route node
• Error handler stage

Raise error Raise an exception with a specified error
code (a string) and description.

• Pipeline stage
• Error handler stage
• Route node

Chapter 12
Configuring Actions in Stages and Route Nodes

12-6

Table 12-5 (Cont.) Flow Control Actions

Action Use to... Available in

Reply Specify that an immediate reply be sent to
the invoker.

The reply action can be used in the
request, response or error pipeline. You
can configure it to result in a reply with
success or failure. In the case of reply with
failure where the inbound transport is
HTTP, the reply action specifies that an
immediate reply is sent to the invoker.

• Pipeline stage
• Error handler stage
• Route node

Resume Resume message flow after an error is
handled by an error handler. This action
has no parameters and can only be used
in error handlers.

• Error handler stage

Skip Specify that at runtime, the execution of
this stage is skipped and the processing
proceeds to the next stage in the pipeline.
This action has no parameters and can be
used in the request, response or error
pipelines.

• Pipeline stage
• Error handler stage
• Route node

12.3.3 Message Processing Actions
The actions in this category process the message flow. Table 12-6 describes the message
processing actions.

Table 12-6 Message Processing Actions

Action Use to... Available in

Assign Assign the result of an XQuery or XSLT expression
to a context variable.

• Pipeline stage
• Error handler stage
• Route node

Delete Delete a context variable or a set of nodes specified
by an XPath expression.

• Pipeline stage
• Error handler stage
• Route node

Insert Insert the result of an XQuery or XSLT expression at
an identified place relative to nodes selected by an
XPath expression.

• Pipeline stage
• Error handler stage
• Route node

Java Callout Invoke a Java method from within the pipeline. • Pipeline stage
• Error handler stage
• Route node

JavaScript Manipulate an XML or JSON payload using a
JavaScript expression.

• Pipeline stage
• Error handler stage
• Route node

Chapter 12
Configuring Actions in Stages and Route Nodes

12-7

Table 12-6 (Cont.) Message Processing Actions

Action Use to... Available in

MFL Translate Convert message content from XML to non-XML, or
vice versa, in the message pipeline. An MFL is a
specialized XML document used to describe the
layout of binary data. It is an Oracle proprietary
language used to define rules to transform formatted
binary data into XML data, or vice versa.

• Pipeline stage
• Error handler stage
• Route node

nXSD Translate Convert message content from XML to native format
data, or vice versa, in the message pipeline.

• Pipeline stage
• Error handler stage
• Route node

Rename Rename elements selected by an XPath expression
without modifying the contents of the element.

• Pipeline stage
• Error handler stage
• Route node

Replace Replace a node or the contents of a node specified
by an XPath expression. The node or its contents
are replaced with the value returned by an XQuery
expression.

A replace action can be used to replace simple
values, elements and even attributes. An XQuery
expression that returns nothing is equivalent to
deleting the identified nodes or making them empty,
depending upon whether the action is replacing
entire nodes or just node contents.

The replace action is one of a set of Update actions.

• Pipeline stage
• Error handler stage
• Route node

Validate Validate elements selected by an XPath expression
against an XML schema element or a WSDL
resource. You can validate global elements only;
Service Bus does not support validation against
local elements.

• Pipeline stage
• Error handler stage
• Route node

12.3.4 Reporting Actions
You use the actions in this category to log or report errors and generate alerts if
required in a message flow within a stage. Table 12-7 describes the reporting actions.

Table 12-7 Reporting Actions

Action Use to... Available in

Alert Generate alerts based on message
context in a pipeline, to send to an alert
destination. Unlike SLA alerts, notifications
generated by the alert action are primarily
intended for business purposes, or to
report errors, and not for monitoring
system health. Alert destination should be
configured and chosen with this in mind.

If pipeline alerting is not enabled for the
service or enabled at the domain level, the
configured alert action is bypassed during
message processing.

• Pipeline stage
• Error handler stage
• Route node

Chapter 12
Configuring Actions in Stages and Route Nodes

12-8

Table 12-7 (Cont.) Reporting Actions

Action Use to... Available in

Log Construct a message to be logged and to
define a set of attributes with which the
message is logged.

• Pipeline stage
• Error handler stage
• Route node

Report Enable message reporting for a pipeline.
An XQuery/XSLT or JavaScript expression
is used to create the data that is reported
to the Service Bus dashboard. You use key
value pairs to extract key identifiers from
any message context variable or message
payload, and ignore the rest of the
message.

• Pipeline stage
• Error handler stage
• Route node

12.3.5 Configuring Transport Headers in Pipelines
The transport header action is a communication type action, and it is available in pipeline
stages and error handler stages.

12.3.5.1 Global Pass Through and Header-Specific Copy Options
The following options are available when you configure a transport headers action:

• The Pass all Headers through Pipeline option specifies that at runtime, the transport
headers action passes all headers through from the inbound message to the outbound
message or vice versa. Every header in the source set of headers is copied to the target
header set, overwriting any existing values in the target header set.

• The Copy Header from Inbound Request option and the Copy Header from
Outbound Response options specifies that at runtime, the transport headers action
copies the specific header with which this option is associated from the inbound message
to the outbound message or vice versa.

Use the options in a way that best suits your scenario. Both options result in the headers in
the source header set being copied to the target header set, overwriting any existing value in
the target set. Note that the Pass all Headers through Pipeline option is executed before
the header-specific Copy Header options. In other words, for a given transport headers
action configuration, if you select Pass all Headers through Pipeline, there is no need to
select the Copy Header option for given headers.

However, you can select Pass all Headers through Pipeline to copy all headers, and
subsequently configure the action such that individual headers are deleted by selecting
Delete Header for specific headers.

Chapter 12
Configuring Actions in Stages and Route Nodes

12-9

Caution:

Because transport headers are specific to the transport types, it is
recommended that the pass-through (or copy) options only be used to copy
headers between services of the same transport type. Passing (or copying)
headers between services of different transport types can result in an error if
the header being passed is not accepted by the target transport. For the
same reasons, be careful when you specify a header name using the Set
Header option.

12.3.5.2 How the Runtime Uses Transport Headers Settings
You can use transport header actions to configure the values of the transport headers
for outbound requests (the messages sent out by a proxy service in route, publish, or
service callout actions) and inbound responses (the response messages a proxy
service sends back to clients). In general, the header values can be:

• Specified using an XQuery expression

• Passed through from the source to the target service

• Deleted while going from the source to the target service

The transport headers action allows you to set, delete, or pass-through the headers
in $inbound or $outbound. If you set or delete these headers and then log $inbound
or $outbound, you can see the effects of your changes. However, when the message
is sent out, the Service Bus binding layer may modify or remove some headers
in $inbound or $outbound and the underlying transport may in turn ignore some of
these headers and use its own values. An important distinction is that any
modifications done by the binding layer on a header are done directly to $inbound
and $outbound, whereas modifications done by the transport affects only the
message's wire format. For example, although you can specify a value for the
outbound Content-Length header, the binding layer deletes it from $outbound when
sending the message. Consequently, the modification is visible in the response path
(for example, you can see the modified value if you log $outbound). If you set the
User-Agent header in $outbound, the HTTP transport ignores it and use its own value
—however, the value in $outbound is not changed.

Limitations to Transport Header Values you Specify in Transport Header Actions
describes the transport headers that are ignored or overwritten at runtime and other
limitations that exist for specific transport headers.

12.3.5.3 Limitations to Transport Header Values you Specify in Transport
Header Actions

Table 12-8 describes the transport headers that are ignored or overwritten at runtime
and other limitations that exist for specific transport headers.

Chapter 12
Configuring Actions in Stages and Route Nodes

12-10

Table 12-8 Limitations to Transport Header Values You Specify in Transport Header Actions

Transport Description of Limitation... Outbound Request Header Inbound Response
Header

HTTP Service Bus runtime may overwrite
these headers in the binding layer when
preparing the message for dispatch. If
these headers are modified, $inbound
and $outbound are updated
accordingly.

Content-Type Content-Type

HTTP The underlying transport may ignore
these headers and use different values
when sending the message. Any
changes done by the transport will not
be reflected in $inbound
or $outbound.

• Accept
• Content-Length
• Connection
• Host
• User-Agent

• Content-Length
• Date
• Transfer-Encoding

JMS Can only be set when the request is with
respect to a one-way service or a
request/response service based on
JMSMessageID correlation.

If sending to a request/response service
based on JMSCorrelationID
correlation, these headers are
overwritten at runtime.

JMSCorrelationID JMSCorrelationID

JMS The Service Bus runtime sets these
headers. In other words, any
specifications you make for these
headers at design time are overwritten
at runtime.

Note: Header names with the JMS_IBM
prefix are to be used with respect to
destinations hosted by an IBM MQ
server.

• JMSMessageID
• JMSRedelivered
• JMSTimestamp
• JMSXDeliveryCount
• JMSXUserID
• JMS_IBM_PutDate
• JMS_IBM_PutTime

JMS_IBM_PutApplType
• JMS_IBM_Encoding
• JMS_IBM_Character_S

et

• JMSMessageID
• JMSRedelivered
• JMSTimestamp
• JMSXDeliveryCount
• JMSXUserID
• JMS_IBM_PutDate
• JMS_IBM_PutTime
• JMS_IBM_PutApplType
• JMS_IBM_Encoding
• JMS_IBM_Character_S

et

JMS Because IBM MQ does not allow certain
properties to be set by a client
application, if you set these headers with
respect to an IBM MQ destination, a
runtime exception is raised.

• JMSXDeliveryCount
• JMSXUserID
• JMSXAppID

• JMSXDeliveryCount
• JMSXUserID
• JMSXAppID

Chapter 12
Configuring Actions in Stages and Route Nodes

12-11

Table 12-8 (Cont.) Limitations to Transport Header Values You Specify in Transport Header
Actions

Transport Description of Limitation... Outbound Request Header Inbound Response
Header

JMS These headers cannot be deleted when
the Pass all Headers through Pipeline
option is also specified.

• JMSDeliveryMode
• JMSExpiration
• JMSMessageID
• JMSRedelivered
• JMSTimestamp
• JMSXDeliveryCount

• JMSDeliveryMode
• JMSExpiration
• JMSMessageID
• JMSRedelivered
• JMSTimestamp
• JMSXDeliveryCount
• JMSCorelationID—if

the inbound message
has the correlation ID
set. For example, if the
inbound response
comes from a
registered JMS
business service

FTP and
File

No limitations. In other words you can
set or delete the header(s) for File and
FTP transports and your specifications
are honored by the Service Bus runtime.

Note: For FTP and file proxies, there is
an transport request header fileName.
The value of this request header is the
name of the file being polled.

N/A N/A

Email The Service Bus runtime sets these
headers. In other words, any
specifications you make for these
headers at design time are overwritten
at runtime.

Content-Type Content-Type

Email Service Bus does not use these headers
in outbound requests. If you set them
dynamically (that is, if you set them in
the $outbound headers section),
Service Bus ignores them.

These headers are received
in $inbound. Date is the time the mail
was sent by the sender. From is
retrieved from incoming mail headers.

• From (Name)
• Date

N/A

Note:

The same limitations around setting certain transport headers and metadata
are true when you set the inbound and outbound context variables, and
when you use the Service Bus Test Console to test your proxy or business
services.

Chapter 12
Configuring Actions in Stages and Route Nodes

12-12

12.4 Performing Transformations in Pipelines
Transformation maps describe the mapping between two data types. Service Bus supports
data mapping that uses the XQuery and the eXtensible Stylesheet Language Transformation
(XSLT) standards.

XSLT maps describe XML-to-XML mappings. XQuery maps can describe XML-to-XML, XML
to non-XML, and non-XML to XML mappings.

The point in a pipeline at which you specify a transformation depends on whether:

• The message format relies on target services—that is, the message format must be in a
format acceptable by the route destination. This rule applies when the transformation is
performed in a route node or in one of the publish actions.

Publish actions identify a target service for a message and configure how the message is
packaged and sent to that service. Service Bus also provides publish table actions. A
publish table action consists of a set of routes wrapped in a switch-style condition table. It
is a shorthand construct that allows different routes to be selected, based on the results
of a single XQuery expression.

• You perform the transformation on the response or request message regardless of the
route destination. In this case, you can configure the transformations in the request or
response pipeline stages.

12.4.1 Transformations and Publish Actions
When transformations are designed in publish actions, the transformations have a local copy
of the $outbound variable and message-related variables ($header, $body,
and $attachments). Any changes you make to an outbound message in a publish action
affect only the published message. In other words, the changes you make in the publish
action are rolled back before the message flow proceeds to any actions that follow the
publish action in your pipeline.

For example, consider a message flow that deals with a large purchase order, and you have
to send the summary of the purchase order, through email, to the manager. The summary of
the of the purchase order is created in the SOAP body of the incoming message when you
include a publish action in the request pipeline. In the publish action, the purchase order data
is transformed into a summary of the purchase order—for example, all the attachments
in $attachments can be deleted because they are not required in the summary of the
purchase order. After the publish action, the message in its state prior to the publish action
continues through the message flow, as described in the following section.

12.4.1.1 Publish Action Behavior with Quality of Service
This section describes how the publish action behaves with different quality of service (QoS)
settings.

Exactly-Once – When QoS is exactly-once, the publish action waits (blocking call) until the
response from the target service is available, although the response itself is discarded. When
the target is a business service, the publish action waits until the business service response
is available. When the target is a proxy service, the publish action waits until the proxy
service's response pipeline completes.

Chapter 12
Performing Transformations in Pipelines

12-13

Best-Effort – When QoS is best-effort and the target service is a one-way proxy
service or a one-way business service with retry count > 0, the publish action waits
until the target service returns. With a one-way target service there is no response, but
the publish action waits until the request is delivered.

If the target proxy or business service is request-response or a one-way business
service with retry count = 0, the publish action does not wait for the response (non-
blocking call).

12.4.2 Transformations and Route Nodes
You may need to route messages to one of two destinations, based on a WS-
addressing header. In that case, content-based routing and the second destination
require the newer version of the document in the SOAP body. In this situation, you can
configure the route node to conditionally route to one of the two destinations. You can
configure a transformation in the route node to transform the document for the second
destination.

You can also set the control elements in the outbound context variable ($outbound) to
influence the behavior of the system for the outbound message (for example, you can
set the Quality of Service).

See Inbound and Outbound Variables and Constructing Messages to Dispatch for
information about the sub-elements of the inbound and outbound variables and how
the content of messages is constructed using the values of the variables in the
message context.

See Also

• Message Context

• Transforming Data with XQuery and Transforming Data with XSLT

12.5 Constructing Service Callout Messages
When Service Bus calls a service using a service callout action, the content of the
message is constructed using the values of variables in the message context. The
message content for outbound messages is handled differently depending upon the
type of the target service.

The message content is created depending on the type of the target service and
whether the SOAP body or the payload (parameters or document) is configured.
These situations are described in the following topics:

• SOAP Document Style Services

• SOAP RPC Style Services

• XML Services

• Messaging Services

12.5.1 SOAP Document Style Services
Messages for SOAP Document Style services (including EJB document and
document-wrapped services), can be constructed as follows:

• The variable assigned for the request document contains the SOAP body.

Chapter 12
Constructing Service Callout Messages

12-14

• The variable assigned for the SOAP request header contains the SOAP header.

• The response must be a single XML document—it is the content of the SOAP body plus
the SOAP header (if specified)

To illustrate how messages are constructed during callouts to SOAP Document Style
services, consider a service callout action configured as follows:

• Request Document Variable: myreq

• Response Document Variable: myresp

• SOAP Request Header: reqheader

• SOAP Response Header: respheader

Assume also that at runtime, the request document variable, myreq, is bound to the following
XML.

Example - Content of Request Variable (myreq)

<sayHello xmlns="http://www.openuri.org/">
 <intVal>100</intVal>
 <string>Hello Oracle</string>
</sayHello>

At runtime, the SOAP request header variable, reqheader, is bound to the following SOAP
header.

Example - Content of SOAP Request Header Variable (reqheader)

<soap:Header xmlns:soap=http://schemas.xmlsoap.org/soap/envelope/
xmlns:wsa="http://schemas.xmlsoap.org/ws/2003/03/addressing">
 <wsa:Action>...</wsa:Action>
 <wsa:To>...</wsa:To>
 <wsa:From>...</wsa:From>
 <wsa:ReplyTo>...</wsa:ReplyTo>
 <wsa:FaultTo>...</wsa:FaultTo>
 </soap:Header>

In this example scenario, the full body of the message sent to the external service is shown in
the following example (the contents of the myreq and reqheader variables are shown in bold).

Example - Message Sent to the Service as a Result of Service Callout Action

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Header xmlns:soap=http://schemas.xmlsoap.org/soap/envelope/
 xmlns:wsa="http://schemas.xmlsoap.org/ws/2003/03/addressing">
 <wsa:Action>...</wsa:Action>
 <wsa:To>...</wsa:To>
 <wsa:From>...</wsa:From>
 <wsa:ReplyTo>...</wsa:ReplyTo>
 <wsa:FaultTo>...</wsa:FaultTo>
 </soap:Header>
 <soapenv:Body>
 <sayHello xmlns="http://www.openuri.org/">
 <intVal>100</intVal>
 <string>Hello Oracle</string>
 </sayHello>
 </soapenv:Body>
</soapenv:Envelope>

Chapter 12
Constructing Service Callout Messages

12-15

Based on the configuration of the service callout action described above, the response
from the service is assigned to the myresp variable. The full response from the external
service is shown in the following example.

Example - Response Message From the Service as a Result of Service Callout
Action

<?xml version="1.0" encoding="UTF-8"?>
<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:soapenc="http://schemas.xmlsoap.
org/soap/encoding/" xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <env:Header/>
 <env:Body env:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <m:sayHelloResponse xmlns:m="http://www.openuri.org/">
 <result xsi:type="xsd:string">This message brought to you by Hello
Oracle and the number 100
 </result>
 </m:sayHelloResponse>
 </env:Body>
</env:Envelope>

In this scenario, the myresp variable is assigned the value shown in the following
example.

Example - Content of Response Variable (myresp) as a Result of Service Callout
Action

<m:sayHelloResponse xmlns:m="http://www.openuri.org/">
 <result ns0:type="xsd:string" xmlns:ns0="http://www.w3.org/2001/XMLSchema-
instance">
This message brought to you by Hello Oracle and the number 100
 </result>
</m:sayHelloResponse>

12.5.2 SOAP RPC Style Services
Messages for SOAP RPC Style services (including EJB RPC services) can be
constructed as follows:

• Request messages are assembled from message context variables.

– The SOAP body is built based on the SOAP RPC format (operation wrapper,
parameter wrappers, and so on).

– The SOAP header is the content of the variable specified for the SOAP
request header, if one is specified.

– Part as element—the parameter value is the variable content.

– Part as simple type—the parameter value is the string representation of the
variable content.

– Part as complex type—the parameter corresponds to renaming the root of the
variable content after the parameter name.

• Response messages are assembled as follows:

– The output content is the content of SOAP header, if a SOAP header is
specified.

Chapter 12
Constructing Service Callout Messages

12-16

– Part as element—the output content is the child element of the parameter; there is at
most one child element.

– Part as simple/complex type—the output content is the parameter itself.

To illustrate how messages are constructed during callouts to SOAP RPC Style services, look
at this example with the following configuration:

• A message context variable input1 is bound to a value 100.

• A message context variable input2 is bound to a string value: Hello Oracle.

• A service callout action configured as follows:

– Request Parameter intval: input1

– Request Parameter string: input2

– Response Parameter result: output1

In this scenario, the body of the outbound message to the service is shown in the following
example.

Example - Content of Outbound Message

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <soapenv:Body>
 <sayHello2 xmlns="http://www.openuri.org/">
 <intVal>100</intVal>
 <string >Hello Oracle</string>
 </sayHello2>
 </soapenv:Body>
</soapenv:Envelope>

The response returned by the service to which the call was made is shown in the following
example.

Example - Content of Response Message From the helloWorld Service

<?xml version="1.0" encoding="UTF-8"?>
<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <env:Header/>
 <env:Body env:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <m:sayHello2Response xmlns:m="http://www.openuri.org/">
 <result xsi:type="n1:HelloWorldResult" xmlns:n1="java:">
 <message xsi:type="xsd:string">
 This message brought to you by Hello Oracle and the number 100
 </message>
 </result>
 </m:sayHello2Response>
 </env:Body>
</env:Envelope>

The message context variable output1 is assigned the value shown in the following example.

Example - Content of Output Variable (output1)

<message ns0:type="xsd:string" xmlns:ns0="http://www.w3.org/2001/XMLSchema-intance">
This message brought to you by Hello Oracle and the number 100</message>

Chapter 12
Constructing Service Callout Messages

12-17

12.5.3 XML Services
Messages for XML services can be constructed as follows:

• The request message is the content of the variable assigned for the request
document.

• The content of the request variable must be a single XML document.

• The output document is the response message.

To illustrate how messages are constructed during callouts to XML services, take for
example a service callout action configured as follows:

• Request Document Variable: myreq

• Response Document Variable: myresp

Assume also that at runtime, the request document variable, myreq, is bound to the
following XML.

Example - Content of myreq Variable

<sayHello xmlns="http://www.openuri.org/">
 <intVal>100</intVal>
 <string>Hello Oracle</string>
</sayHello>

In this scenario:

• The outbound message payload is the value of the myreq variable, as shown in the
previous example.

• The response and the value assigned to the message context variable, myresp, is
shown in the following example.

Example - Content of myresp Variable

<m:sayHelloResponse xmlns:m="http://www.openuri.org/">
 <result xsi:type="xsd:string">This message brought to you by Hello Oracle
and the number 100
 </result>
</m:sayHelloResponse>

12.5.4 Messaging Services
In the case of Messaging services:

• The request message is the content of the request variable. The content can be
simple text, XML, or binary data represented by an instance of <binary-content
ref=.../> reference XML.

• Response messages are treated as binary, so the response variable will contain
an instance of <binary-content ref= ... /> reference XML, regardless of the
actual content received.

For example, if the request message context variable myreq is bound to an XML
document of the following format: <hello>there</hello>, the outbound message
contains exactly this payload. The response message context variable (myresp) is
bound to a reference element similar to the following:

Chapter 12
Constructing Service Callout Messages

12-18

<binary-content ref=" cid:1850733759955566502-2ca29e5c.1079b180f61.-7fd8"/>

12.6 Using Attachments with Service Callout Messages
You can specify an optional variable to hold attachments for the outbound request and
another variable to hold attachments from the outbound response.

The Request Attachments and Response Attachments variables are used to specify the
request and response attachments respectively.

You can specify attachments for the request messages, response messages, or both. The
following code shows the schema type for the Request Attachments and Response
Attachments variables:

<!-- The schema type for -->
 <complexType name="AttachmentsType">
 <sequence>
 <!-- the 'attachments' variable is just a series of attachment elements -->
 <element ref="mc:attachment" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 <!-- Each attachment in the 'attachments' variable is represented by an instance
of this element -->
 <element name="attachment" type="mc:AttachmentType"/>
 <complexType name="AttachmentType">
 <all>
 <!-- Set of MIME headers associated with attachment -->
 <element name="Content-ID" type="string" minOccurs="0"/>
 <element name="Content-Type" type="string" minOccurs="0"/>
 <element name="Content-Transfer-Encoding" type="string" minOccurs="0"/>
 <element name="Content-Description" type="string" minOccurs="0"/>
 <element name="Content-Location" type="string" minOccurs="0"/>
 <element name="Content-Disposition" type="string" minOccurs="0"/>
 <!-- Contains the attachment content itself, either in-lined or as <binary-
content/> -->
 <element name="body" type="anyType"/>
 </all>
 </complexType>

The Request Attachments and Response Attachments variables are available regardless of
the target service binding type and transport type.

12.6.1 Example of Using Attachments with SOAP-Document Style
Services

The following example illustrates a sample WLS web service with a SOAP-document style
JWS. The web service has a single method that returns the input argument as its return
value. The input argument and the return value are sent and received as attachments.

Example - Sample SOAP-Document Style JWS

import javax.activation.DataHandler;

@WebService(name="AttachmentsService", targetNamespace="http://example.org")
@Binding(Binding.Type.SOAP12)
@SOAPBinding(style=SOAPBinding.Style.DOCUMENT,
 use=SOAPBinding.Use.LITERAL,
 parameterStyle=SOAPBinding.ParameterStyle.WRAPPED)

Chapter 12
Using Attachments with Service Callout Messages

12-19

@WLHttpTransport(contextPath="testAttachments", serviceUri="AttachmentsService")
public class AttachmentsServiceImpl
{
 @WebMethod(action="echoAttachmentAction")
 public DataHandler echoAttachment(DataHandler dh)
 {
 return dh;
 }
}

The following example illustrates the WSDL document corresponding to the web
service in the previous Sample SOAP-Document Style JWS example.

Example - WSDL Document Corresponding to the Web Service

<wsdl:definitions name="AttachmentsServiceImplServiceDefinitions"
 targetNamespace="http://example.org"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:exam="http://example.org"
 xmlns:soap12="http://schemas.xmlsoap.org/wsdl/
soap12/">
 <wsdl:types>
 <xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified"
 targetNamespace="http://example.org" xmlns:xs="http://www.w3.org/2001/
XMLSchema">
 <xs:import namespace="http://www.bea.com/servers/wls90/wsee/attachment"/>
 <xs:element name="echoAttachment">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="dh" type="att:datahandler"
 xmlns:att="http://www.bea.com/servers/wls90/wsee/attachment"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="echoAttachmentResponse">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="return" type="att:datahandler"
 xmlns:att="http://www.bea.com/servers/wls90/wsee/attachment"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:schema>
 <xs:schema targetNamespace="http://www.bea.com/servers/wls90/wsee/attachment"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:complexType name="datahandler">
 <xs:annotation>
 <xs:documentation>Internal type created by WebLogic - Do not
 edit!</xs:documentation>
 </xs:annotation>
 </xs:complexType>
 </xs:schema>
 </wsdl:types>
 <wsdl:message name="echoAttachment">
 <wsdl:part element="exam:echoAttachment" name="parameters"/>
 </wsdl:message>
 <wsdl:message name="echoAttachmentResponse">
 <wsdl:part element="exam:echoAttachmentResponse" name="parameters"/>
 </wsdl:message>
 <wsdl:portType name="AttachmentsService">

Chapter 12
Using Attachments with Service Callout Messages

12-20

 <wsdl:operation name="echoAttachment" parameterOrder="parameters">
 <wsdl:input message="exam:echoAttachment"/>
 <wsdl:output message="exam:echoAttachmentResponse"/>
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="AttachmentsServiceImplServiceSoapBinding"
 type="exam:AttachmentsService">
 <soap12:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="echoAttachment">
 <soap12:operation soapAction="echoAttachmentAction" style="document"/>
 <wsdl:input>
 <soap12:body parts="parameters" use="literal"/>
 </wsdl:input>
 <wsdl:output>
 <soap12:body parts="parameters" use="literal"/>
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="AttachmentsServiceImplService">
 <wsdl:port binding="exam:AttachmentsServiceImplServiceSoapBinding"
 name="AttachmentsServiceSoapPort">
 <soap12:address
 location="http://adc4110062:7001/testAttachments/AttachmentsService"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

Next, the preceding WSDL file is registered in Service Bus and a business service is
registered with this WSDL SOAP port. The service callout action is configured as follows:

• Request Document Variable: reqDoc

• Response Document Variable: respDoc

• Request Attachments Variable: reqatt

• Response Attachments Variable: respatt

See Adding Service Callout Actions in the Console for more information on adding and
configuring the service callout action.

The following examples show the values of the request document and request attachment
context variables when the service callout action is invoked.

Example - Value of the Request Document Variable (reqDoc) at Service Callout
Invocation

<m:echoAttachment xmlns:m="http://example.org">
 <m:dh href="cid:dh"/>
</m:echoAttachment>

Example - Value of the Request Attachments Variable (reqatt) at Service Callout
Invocation

<con:attachments xmlns:con="http://www.bea.com/wli/sb/context">
 <con:attachment>
 <con:Content-Type>image/jpeg</con:Content-Type>
 <con:Content-ID><dh></con:Content-ID>
 <con:body>
 <con:binary-content ref="cid:-6175a307:131072c66ef:-7f56"/>
 </con:body>

Chapter 12
Using Attachments with Service Callout Messages

12-21

 </con:attachment>
</con:attachments>

In the preceding example, the attachment body uses a binary content ref that points to
a source stored in the source repository. This can be the result of java callout, MFL
transformation, etc.

Note:

Make sure that the href value in the SOAP envelope matches the Content-
ID header of the attachment part. This links the body of the message with the
corresponding attachment. If the values do not match, you may receive a
SOAP Fault from the JWS invocation.

The following example shows a sample outbound payload for the service callout
action.

Example - Outbound Payload of the Service Callout

POST http://localhost:7001/default/test1

Content-Type: multipart/related;boundary="----=_Part_0
_39288954.1310192119320";type="text/xml";start="<soapPart>"

------=_Part_0_39288954.1310192119320
Content-Type: application/soap+xml; charset=utf-8
Content-Transfer-Encoding: 8bit
Content-ID: <soapPart>

<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">
 <env:Header/>
 <env:Body>
 <m:echoAttachment xmlns:m="http://example.org">
 <m:dh href="cid:dh"/>
 </m:echoAttachment>
 </env:Body>
</env:Envelope>

------=_Part_0_39288954.1310192119320
Content-Type: image/jpeg
Content-ID: <dh>

... binary content of some JPG file ….
------=_Part_0_39288954.1310192119320--

The following example illustrates the JWS response to the service invocation.

Example - Java Web Service (JWS) Response

HTTP/1.1 200 OK
Transfer-Encoding: chunked
Content-Type: multipart/related;boundary="----=_Part_13
_1460020940.1310334461289";type="text/xml";start="<soapPart>"
------=_Part_13_1460020940.1310334461289
Content-Type: application/soap+xml; charset=utf-8
Content-Transfer-Encoding: 8bit
Content-ID: <soapPart>

Chapter 12
Using Attachments with Service Callout Messages

12-22

<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">
 <env:Body>
 <m:echoAttachmentResponse xmlns:m="http://example.org">
 <return xmlns="http://example.org" href="cid:return"/>
 </m:echoAttachmentResponse>
 </env:Body>
</env:Envelope>

------=_Part_13_1460020940.1310334461289
Content-Type: image/jpeg
Content-ID: <return>

…. binary content of some JPG file …
------=_Part_13_1460020940.1310334461289--

The following examples show the values of the context variables in the service callout
response.

Example - Value of the Response Document Variable (respDoc)

<m:echoAttachmentResponse xmlns:m="http://example.org">
 <return xmlns="http://example.org" href="cid:return"/>
</m:echoAttachmentResponse>

Example - Value of the Response Attachments Variable (respatt)

<con:attachments xmlns:con="http://www.bea.com/wli/sb/context">
 <con:attachment>
 <con:Content-Type>image/jpeg</con:Content-Type>
 <con:Content-ID><return></con:Content-ID>
 <con:body>
 <con:binary-content ref="cid:-6175a307:131072c66ef:-7f57"/>
 </con:body>
 </con:attachment>
</con:attachments>

12.6.2 Example of Using Attachments with SOAP RPC Style Service
The following example shows a SOAP RPC-style WSDL file. The WSDL file is registered in
Service Bus as a business service. A service callout action is used to invoke this business
service.

Example - WSDL Document for the Business Service

<?xml version="1.0"?>
<wsdl:definitions xmlns:types="http://example.com/mimetypes"
 xmlns:ref="http://ws-i.org/profiles/basic/1.1/xsd"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soapbind="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
 targetNamespace="http://example.com/mimewsdl"
 xmlns:tns="http://example.com/mimewsdl">

 <wsdl:types>
 <xsd:schema targetNamespace="http://example.com/mimetypes"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:import namespace="http://ws-i.org/profiles/basic/1.1/xsd" />

Chapter 12
Using Attachments with Service Callout Messages

12-23

 <xsd:complexType name="ClaimDetailType">
 <xsd:sequence>
 <xsd:element name="Name" type="xsd:string"/>
 <xsd:element name="ClaimForm" type="ref:swaRef"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:schema>
 </wsdl:types>

 <wsdl:message name="ClaimIn">
 <wsdl:part name="ClaimDetail" type="types:ClaimDetailType"/>
 <wsdl:part name="ClaimPhoto" type="xsd:base64Binary"/>
 </wsdl:message>

 <wsdl:message name="ClaimOut">
 <wsdl:part name="ClaimRefNo" type="xsd:string"/>
 </wsdl:message>

 <wsdl:portType name="ClaimPortType">
 <wsdl:operation name="SendClaim">
 <wsdl:input message="tns:ClaimIn"/>
 <wsdl:output message="tns:ClaimOut"/>
 </wsdl:operation>
 </wsdl:portType>

 <wsdl:binding name="ClaimBinding" type="tns:ClaimPortType">
 <soapbind:binding style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="SendClaim">
 <soapbind:operation soapAction="http://example.com/soapaction"/>
 <wsdl:input>
 <mime:multipartRelated>
 <mime:part>
 <soapbind:body use="literal"
 parts="ClaimDetail"
 namespace="http://example.com/mimetypes"/>
 </mime:part>
 <mime:part>
 <mime:content part="ClaimPhoto"
 type="image/jpeg"/>
 </mime:part>
 </mime:multipartRelated>
 </wsdl:input>
 <wsdl:output>
 <soapbind:body use="literal"
 namespace="http://example.com/mimetypes"/>
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
</wsdl:definitions>

The service callout action is configured as follows:

• Request Parameter: claimDetail

• Response Parameter: claimRefNo

• Request Attachments Variable: reqatt

• Response Attachments Variable: respatt

Chapter 12
Using Attachments with Service Callout Messages

12-24

For more information about adding and configuring the service callout action, see Adding
Service Callout Actions in the Console and Adding Service Callout Actions in JDeveloper.

The following examples show the values of the message context variables when the service
callout is invoked.

Example - Value of the Request Parameter (claimDetail)

<ClaimDetail xmlns=" http://example.com/mimetypes">
 <Name>...</Name>
 <ClaimForm>cid:claimform@example.com</ClaimForm>
</ClaimDetail>

Example - Value of the Request Attachment Variable (reqatt)

<con:attachments xmlns:con="http://www.bea.com/wli/sb/context">
 <con:attachment>
 <con:Content-Type>text/xml</con:Content-Type>
 <con:Content-ID><claimform@example.com></con:Content-ID>
 <con:body>
 <form>...XML contents of claim form referenced by the swaRef... </form>
 </con:body>
 </con:attachment>
 <con:attachment>
 <con:Content-Type>image/jpeg</con:Content-Type>
 <con:Content-ID><ClaimPhoto=4d7a5fa2-14af-451c-961b-5c3abf786796@example.com></
con:Content-ID>
 <con:body>
 <con:binary-content ref="cid:-6175a307:131072c66ef:-7f58"/>
 </con:body>
 </con:attachment>
</con:attachments>

The following example shows a sample outbound request.

Example - Sample Outbound Request

Content-Type: Multipart/Related; boundary=MIME_boundary; type=text/xml;
 start="<rootpart@example.com>"

--MIME_boundary
Content-Type: text/xml; charset=UTF-8
Content-Transfer-Encoding: 8bit
Content-ID: <rootpart@example.com>

<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body xmlns:types="http://example.com/mimetypes">
 <types:SendClaim>
 <ClaimDetail>
 <Name>...</Name>
 <ClaimForm>cid:claimform@example.com</ClaimForm>
 </ClaimDetail>
 </types:SendClaim>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

--MIME_boundary
Content-Type: text/xml
Content-Transfer-Encoding: 8bit
Content-ID: <claimform@example.com>

Chapter 12
Using Attachments with Service Callout Messages

12-25

...claim form referenced by the swaRef...

--MIME_boundary
Content-Type: image/jpeg
Content-Transfer-Encoding: binary
Content-ID: <ClaimPhoto=4d7a5fa2-14af-451c-961b-5c3abf786796@example.com>

...MIME attachment of binary photograph...
--MIME_boundary--

The following example shows a sample response.

Example - Sample Response

Content-Type: text/xml; charset=UTF-8

<?xml version='1.0' ?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body xmlns:types="http://example.com/mimetypes">
 <types:SendClaimResponse>
 <ClaimRefNo>.............................</ClaimRefNo>
 </types:SendClaimResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The message context variables (claimRefNo and respatt) corresponding to the
response get set. The following example shows the value of the respatt variable.

Example - Value of the Response Attachments Variable (respatt)

<con:attachments xmlns:con=http://www.bea.com/wli/sb/context />

12.6.3 MTOM/XOP Support
You can use SOAP Message Transmission Optimization Mechanism (MTOM) with a
service callout. MTOM uses XML-binary Optimized Packaging (XOP) to transfer the
binary data.

However, you cannot mix MTOM and attachments. If the target service supports
MTOM and there are attachments in the outbound request, then you get the following
error:

"Mixing of XOP/MTOM and attachments is not allowed"

If the target service is MTOM-enabled, you should not configure any attachment
variables.

12.6.4 Page Attachments to Disk
Service callouts support page attachments to disk. It is possible to use the contents of
a previously paged attachment for the outbound request.

When the service callout is processing the outbound response, any business service
configured to page attachments to disk is invoked accordingly.

Chapter 12
Using Attachments with Service Callout Messages

12-26

12.7 Handling Errors as the Result of a Service Callout
You can configure error handling at the message flow, pipeline, route node, and stage level.
Errors that are received from an external service as the result of a service callout include
transport errors, SOAP faults, responses that do not conform to an expected response, and
so on.

The fault context variable is set differently for each type of error returned. You can build your
business and error handling logic based on the content of the fault variable. To learn more
about $fault, see Fault Variable.

12.7.1 Transport Errors
When a transport error is received from an external service and there is no error response
payload returned to Service Bus by the transport provider (for example, if an HTTP business
service accepts response types other than XML or SOAP and therefore cannot receive HTTP
response codes), the service callout action throws an exception, which in turn causes the
pipeline to raise an error. The fault variable in a user-configured error handler is bound to a
message formatted similarly to that shown in the following example.

Example - Contents of the fault Variable—Transport Error, no Error Response Payload

<con:fault xmlns:con="http://www.bea.com/wli/sb/context">
 <con:errorCode>OSB-380000</con:errorCode>
 <con:reason>Not Found</con:reason>
 <con:details>

 </con:details>
 <con:location>
 <con:node>PipelinePairNode1</con:node>
 <con:Pipeline>PipelinePairNode1_request</con:Pipeline>
 <con:Stage>Stage1</con:Stage>
 </con:location>
</con:fault>

In the case that there is a payload associated with the transport error—for example, when an
HTTP 500 error code is received from the business service and there is XML payload in the
response—a message context fault is generated with the custom error code: OSB-382502.

The following conditions must be met for a OSB-382502 error response code to be triggered
as the result of a response from a service—when that service uses an HTTP or JMS
transport:

• (HTTP) The response code must be any code 300 or greater.

• (JMS) The response must have a property set to indicate that it is an error response—the
transport metadata status code set to1 indicates an error.

• The content type must be text/xml, application/any_string+xml, or multipart/related.

• If the service is AnySoap or WSDL-based SOAP, then it must have a SOAP envelope.
The body inside the SOAP envelope must be XML format; it cannot be text.

• If the service type is AnyXML, REST, or a messaging service of type text returns XML
content with a non-successful response code (any code other than 200 or 202).

Chapter 12
Handling Errors as the Result of a Service Callout

12-27

If the transport is HTTP, the ErrorResponseDetail element will also contain the HTTP
error code returned with the response. The ErrorResponseDetail element in the fault
contains error response payload received from the service. The following example
shows an example of the ErrorResponseDetail element.

Example - Contents of the fault Variable—Transport Error, with Error Response
Payload

<ctx:Fault xmlns:ctx="http://www.bea.com/wli/sb/context">
 <ctx:errorCode>OSB-382502<ctx:errorCode>
 <ctx:reason> Service callout has received an error response from the server</
ctx:reason>
 <ctx:details>
 <alsb:ErrorResponseDetail xmlns:alsb="http://www.oracle.com/...">
 <alsb:detail> <![CDATA[
. . .
]]>
 </alsb:detail> <alsb:http-response-code>500</alsb:http-
response-code>
 </alsb:ErrorResponseDetail>
 </ctx:details>
 <ctx:location>. . .</ctx:location>
</ctx:Fault>

Note:

The XML schema for the service callout-generated fault is shown in
Unexpected Responses.

12.7.2 SOAP Faults
In case an external service returns a SOAP fault, the Service Bus runtime sets up the
context variable $fault with a custom error code and description with the details of the
fault. To do so, the contents of the 3 elements under the <SOAP-ENV:Fault> element in
the SOAP fault are extracted and used to construct a Service Bus fault element.

Take for example a scenario in which a service returns the following error.

Example - SOAP Fault Returned From Service Callout

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
 <SOAP-ENV:Fault>
 <faultcode>SOAP-ENV:Client</faultcode>
 <faultstring>Application Error</faultstring>
 <detail>
 <message>That's an Error!</message>
 <errorcode>1006</errorcode>
 </detail>
 </SOAP-ENV:Fault>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The <faultcode>, <faultstring>, and <detail> elements are extracted and wrapped
in an <alsb:ReceivedFault> element. Note that the faultcode element in the
example in Unexpected Responses contains a QName—any related namespace

Chapter 12
Handling Errors as the Result of a Service Callout

12-28

declarations are preserved. If the transport is HTTP, the ReceivedFault element will also
contain the HTTP error code returned with the fault response.

The generated <alsb:ReceivedFault> element, along with the custom error code and the
error string are used to construct the contents of the fault context variable, which in this
example takes a format similar to that shown in the previous example.

Example - Contents of the Service Bus Fault Variable—SOAP Fault

<ctx:Fault xmlns:ctx="http://www.bea.com/wli/sb/context">
 <ctx:errorCode>OSB-382500<ctx:errorCode>
 <ctx:reason> service callout received a soap Fault response</ctx:reason>
 <ctx:details>
 <alsb:ReceivedFault xmlns:alsb="http://www.oracle.com/...">
 <alsb:faultcode
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">SOAP-ENV:Client
 </alsb:faultcode>
 <alsb:faultstring>Application Error</alsb:faultstring>
 <alsb:detail>
 <message>That's an Error!</message>
 <errorcode>1006</errorcode>
 </alsb:detail>
 <alsb:http-response-code>500</alsb:http-response-code>
 </alsb:ReceivedFault>
 </ctx:details>
 <ctx:location> </ctx:location>
</ctx:Fault>

Note:

The unique error code OSB-382500 is reserved for the case when service callout
actions receive SOAP fault responses.

When chaining local proxy services, SOAP fault details are not propagated from one pipeline
to the next in the $fault variable. To propagate SOAP faults from proxy service to proxy
service, use an error handler with a Reply with Failure action, as described in Propagating
SOAP Faults Between Proxy Services in the Developing Services with Oracle Service Bus.

12.7.3 Unexpected Responses
When a service returns a response message that is not what the proxy service runtime
expects, a message context fault will be generated and initialized with the custom error code
OSB-382501. The details of the fault include the contents of the SOAP-Body element of the
response. If the transport is HTTP, the ReceivedFault element will also contain the HTTP
error code returned with the fault response.

The XML schema definition of the service callout-generated fault details is shown in the
following example.

Example - XML Schema for the Service Callout-Generated Fault Details

<xs:complexType name="ReceivedFaultDetail">
 <xs:sequence>
 <xs:element name="faultcode" type="xs:QName"/>
 <xs:element name="faultstring" type="xs:string"/>
 <xs:element name="detail" minOccurs="0" >

Chapter 12
Handling Errors as the Result of a Service Callout

12-29

 <xs:complexType>
 <xs:sequence>
 <xs:any namespace="##any" minOccurs="0"
maxOccurs="unbounded" processContents="lax" />
 </xs:sequence>
 <xs:anyAttribute namespace="##any" processContents="lax" />
 </xs:complexType>
 </xs:element>
 <xs:element name="http-response-code" type="xs:int" minOccurs="0"/>\
type="xs:int" minOccurs="0"/>
 </xs:sequence>
</xs:complexType>

<xs:complexType name="UnrecognizedResponseDetail">
 <xs:sequence>
 <xs:element name="detail" minOccurs="0" type="xs:string" />
 </xs:sequence>
</xs:complexType>

<xs:complexType name="ErrorResponseDetail">
 <xs:sequence>
 <xs:element name="detail" minOccurs="0" type="xs:string" />
 </xs:sequence>
</xs:complexType>

12.8 Handling Errors in Pipelines
The process described in this topic constitutes an error handling pipeline for the stage
of an error handler. In addition, an error pipeline can be defined for a pipeline pair
request or response, or for an entire pipeline.

The error handler at the stage level is invoked for handling an error. If the stage-level
error handler is not able to handle a given type of error, the pipeline error handler is
invoked. If the pipeline-level error handler also fails to handle the error, the service-
level error handler is invoked. If the service-level error handler also fails, the system
handles the error Table 12-9 summarizes the scope of the error handlers at various
levels in the pipeline.

Table 12-9 Scope of Error Handlers

Level Scope

Stage Handles all the errors within a stage.

Pipeline Handles all the errors in a pipeline, along with any unhandled errors
from any stage in a pipeline.

Service Handles all the errors in a pipeline, along with any unhandled errors in
any pipeline pair requests or responses in a service.

Note: All WS-Security errors are handled at this level.

System Handles all the errors that are not handled anywhere else in a pipeline.

Chapter 12
Handling Errors in Pipelines

12-30

Note:

There are exceptions to the scope of error handlers. For example, an exception
thrown by a non-XML transformation at the stage level is only caught by the
service-level error handler. Suppose that a transformation occurs that transforms
XML to MFL for an outgoing proxy service response message, it always occurs in
the binding layer. Therefore, for example, if a non-XML output is missing a
mandatory field at the stage level, only a service-level error handler can catch this
error.

You can handle errors by configuring a test that checks if an assertion is true and use the
reply action configured false. You can repeat this test at various levels. Also you can have an
error without an error handler at a lower level and handle it through an error handler at a
higher level in the pipeline.

In general, it is easier to handle specific errors at a stage level of the pipeline. Use error
handlers at the higher level for more general default processing of errors that are not handled
at the lower levels. It is good practice to explicitly handle anticipated errors in the pipelines
and allow the service-level handler to handle unanticipated errors.

12.8.1 Generating the Error Message, Reporting, and Replying
A predefined context variable (the fault variable) is used to hold information about any error
that occurs during message processing. When an error occurs, this variable is populated with
information before the appropriate error handler is invoked. The fault variable is defined only
in error handler pipelines and is not set in request and response pipelines, or in route or
branch nodes. For additional information about $fault, see Predefined Context Variables.

In the event of errors for request/response type inbound messages, it is often necessary to
send a message back to the originator outlining the reason why an error occurred. You can
accomplish this by using a Reply with Failure action after configuring the message context
variables with the response you want to send. For example, when an HTTP message fails,
Reply with Failure generates the HTTP 500 status. When a JMS message fails, Reply with
Failure sets the JMS_BEA_Error property to true.

An error handling pipeline is invoked if a service invoked by a proxy service returns a SOAP
fault or transport error. Any received SOAP fault is stored in $body, so if a Reply with Failure
is executed without modifying $body, the original SOAP fault is returned to the client that
invoked the service. If a reply action is not configured, the system error handler generates a
new SOAP fault message. The proxy service recognizes that a SOAP fault is returned
because an HTTP error status is set, or the JMS property SERVER_Error is set to true.

Some use cases require error reporting. You can use the report action in these situations. For
example, consider a scenario in which the request pipeline reports a message for tracking
purposes, but the service invoked by the route node fails after the reporting action. In this
case, the reporting system logged the message, but there is no guarantee that the message
was processed successfully, only that the message was successfully received.

You can use the Oracle Service Bus Console to track the message to obtain an accurate
picture of the message flow. This allows you to view the original reported message indicating
the message was submitted for processing, and also the subsequent reported error indicating
that the message was not processed correctly. To learn how to configure a report action and
use the data reported at runtime, see Working with Pipeline Actions in Oracle Service Bus
Console.

Chapter 12
Handling Errors in Pipelines

12-31

12.8.2 Different Behavior of Security Fault Handling in Service Bus
11g and 12c

Service Bus 12c handles security faults in the message flow differently than in Service
Bus 11g.

In Service Bus 11g, any security errors raised as a result of failed OWSM policies or
custom token message level authentication on inbound requests can be handled by a
user-configured service error handler in the pipeline message flow. For example, on a
service with username-token authentication policy, any authentication failures trigger a
service-level error handler, if one is configured.

In Service Bus 12c, any security errors raised by security processing of inbound
requests is not handled in the pipeline service-level error handler; rather, this results in
a SOAP Fault automatically generated by the default inbound system error handler.
These faults cannot be customized. It is not possible to route the failed request to the
next component (for example, a pipeline or business service).

12.8.3 Example of Action Configuration in Error Handlers
This example shows how you can configure the report and reply actions in error
handlers. The pipeline shown in Figure 12-1 includes an error handler on the validate
loan application stage. The error handler in this case is a simple message flow with
a single stage configured—it is represented in the Oracle Service Bus Console as
shown in Figure 12-1.

Figure 12-1 Error Handler Pipeline

The stage is, in turn, configured with actions (replace, report, and reply) as shown in
Figure 12-2.

Chapter 12
Handling Errors in Pipelines

12-32

Figure 12-2 Actions in Stage Error Handler

The actions control the behavior of the stage in the pipeline error handler as follows:

• Replace: The contents of a specified element of the body variable are replaced with the
contents of the fault context variable. The body variable element is specified by an
XPath expression. The contents are replaced with the value returned by an XQuery
expression—in this case $fault/ctx:reason/text()

• Report: Messages from the reporting action are written to the Service Bus reporting data
stream if the error handler configured with this action is invoked. The JMS Reporting
Provider reports the messages on the Service Bus Dashboard in Fusion Middleware
Control. Service Bus provides the capability to deliver message data to one or more
reporting providers. Message data is captured from the body of the message and from
any other variables associated with the message, such as header or inbound variables.
You can use the message delivered to the reporting provider for functions such as
tracking messages or regulatory auditing.

When an error occurs, the contents of the fault context variable are reported. The key
name is errorCode, and the key value is extracted from the fault variable using the
following XPath expression: ./ctx:errorCode. Key/value pairs are the key identifiers that
identify these messages in the Dashboard at runtime.

To configure a report action and use the data reported at runtime, see Working with
Pipeline Actions in Oracle Service Bus Console.

• Reply: At runtime, an immediate reply is sent to the invoker of the loanGateway3 proxy
service (see Figure 12-2) indicating that the message had a fault The reply is With
Failure.

12.9 Using Dynamic Routing
When you do not know the service you need to invoke from the pipeline you are creating, you
can use dynamic routing. For any given pipeline, you can use one of these techniques to
route messages dynamically.

Chapter 12
Using Dynamic Routing

12-33

• In a message flow pipeline, design an XQuery expression to set dynamically the
fully qualified service name in Service Bus and use the dynamic route or dynamic
publish actions.

Note:

Dynamic Routing can be achieved in a route node, whereas dynamic
publishing can be achieved in a stage in a request pipeline or a response
pipeline.

With this technique, the pipeline dynamically uses the service account of the
endpoint business service to send user names and passwords in its outbound
requests. For example, if a pipeline is routing a request to Business Service A,
then the invoking proxy service uses the service account from Business Service A
to send user names and passwords in its outbound request. See Implementing
Dynamic Routing.

• Configure a pipeline to route or publish messages to a business service. Then, in
the request actions section for the route action or publish action, add a Routing
Options action that dynamically specifies the URI of a service.

With this technique, to send user names and passwords in its outbound requests,
the proxy service uses the service account of the statically defined business
service, regardless of the URI to which the request is sent.

For information on how to use this technique, see Implementing Dynamic Routing.

Note:

This technique is used when the overview of the interface is fixed. The
overview of the interface includes message types, port types, and
binding, and excludes the concrete interface. The concrete interface is
the transport URL at which the service is located.

For a working example of dynamic service invocation, see the Service Bus samples at
http://www.oracle.com/technetwork/middleware/service-bus/learnmore/
index.html.

12.9.1 Implementing Dynamic Routing
You can use dynamic routing to determine the destination during the runtime of a
pipeline. To achieve this you can use a routing table in an XML file to create an
XQuery resource.

Note:

Instead of using the XQuery resource, you can also directly use the XML file
from which the resource is created.

Chapter 12
Using Dynamic Routing

12-34

http://www.oracle.com/technetwork/middleware/service-bus/learnmore/index.html
http://www.oracle.com/technetwork/middleware/service-bus/learnmore/index.html

An XML file or the XQuery resource can be maintained easily. At runtime you provide the
entry in the routing table that will determine the routing or publishing destination of the
pipeline.The XML file or the XQuery resource contains a routing table, which maps a logical
identifier (such as the name of a company) to the physical identifier (the fully qualified name
of the service in Service Bus). The logical identifier, which is extracted from the message,
maps on to the physical identifier, which is the name of the service you want to invoke.

Note:

To use the dynamic route action, you need the fully qualified name of the service in
Service Bus.

In a pipeline the logical identifier is obtained with an XPath into the message.You assign the
XML table in the XQuery resource to a variable. You implement a query against the variable
in the routing table to extract the physical identifier based on the corresponding logical
identifier. Using this variable you will be able to invoke the required service. The following
sections describe how to implement dynamic routing.

• Sample XML File

• Creating an XQuery Resource From the Sample XML

• Creating and Configuring the Pipeline to Implement Dynamic Routing

• Guidelines for Implementing Identity-Based Routing

12.9.1.1 Sample XML File
You can create an XQuery resource from the following XML file. Save this as
sampleXquery.xml.

Example - Sample XML File

<routing>
 <row>
 <logical>Oracle</logical>
 <physical>default/goldservice</physical>
 </row>
 <row>
 <logical>ABC Corp</logical>
 <physical>default/silverservice</physical>
 </row>
</routing>

12.9.1.2 Creating an XQuery Resource From the Sample XML
To create an XQuery resource from the sample XML in the Oracle Service Bus Console:

1. If you have not already done so, click Create to create a new session or click Edit to
enter an existing session.

2. From the top right of the Oracle Service Bus Console window, click the Designer tab.
The Project Navigator appears.

3. Expand the All Projects node by clicking the Expand (arrow) icon before it.

4. Right-click the project name to which you wish to add the XQuery resource.

Chapter 12
Using Dynamic Routing

12-35

5. From the context menu, click Create, and then click Resource.

6. From the Resource Gallery, click Transformations, and then click XQuery. The
Create XQuery dialog appears.

7. In the Resource Name field, enter the name of the resource. This is a mandatory.

8. In the Resource Description field, provide the a description for the resource. This
is optional.

9. Click Choose File to select the XML file you are using as the XQuery resource.

10. Click Create to create the XQuery resource.

11. Activate the session.

12.9.1.3 Creating and Configuring the Pipeline to Implement Dynamic Routing
To implement dynamic routing with a pipeline:

1. In the Project Navigator, select the project to which you want to add a pipeline, and
then click the down arrow next to the Create icon.

2. Select Pipeline from the list of options.

The Create Pipeline dialog appears.

3. In the Pipeline Name field of the General section, enter the name of the pipeline.
This is mandatory. Optionally, specify a Description for the pipeline.

4. Select the Service Type for the pipeline. For more information on selecting the
service type, see Service Types and Protocols for Proxy Services.

5. Select Expose as Proxy Service to create a proxy service corresponding to the
pipeline message flow. Specify the name and other details for the proxy service to
be created.

6. Click Create to create the pipeline resource. The pipeline is created and opened
up for editing.

7. Click the Open Message Flow icon near the top right corner of the window. The
Edit Message Flow page appears. The message flow initially consists of a single
icon.

8. Click the start node (pipeline icon), and select Add Pipeline Pair to add a pipeline
pair to the message flow.

9. Click Request Pipeline icon select Add Stage from the menu.

10. Click the Stage1 icon to and select Edit Stage from the menu. The Edit Stage
Configuration page appears.

11. Click Add Action icon. Choose Add an Action item from the menu.

12. Choose the Assign action from Message Processing.

13. Click Expression. The XQuery Expression Editor is displayed.

14. Click XQuery Resources. The browser displays the page where you can import
the XQuery resource. Click the Browse to locate the XQuery resource.

15. Click Validate to validate the imported XQuery resource.

16. Save the imported XQuery resource on successful validation.

17. On the Edit Stage Configuration page, enter the name of the variable in the field.

Chapter 12
Using Dynamic Routing

12-36

This assigns the XQuery resource to this variable. The variable now contains the
externalized routing table.

18. Add another Assign action.

19. Enter the following XQuery:

<ctx: route>
<ctx: service isProxy='false'> {$routingtable/row[logical/
text()=$logicalidentifier]/physical/text()}
</ctx: service>
</ctx: route>

In the above code, replace $logicalidentifier by the actual XPath to extract the logical
identifier from the message (example from $body).

20. Click Validate to validate the XQuery.

21. Save the XQuery on successful validation.

22. On the Edit Stage Configuration page, enter the name of the variable (for example,
routeresult) in the field.

This extracts the XML used by the dynamic route action into this variable.

23. Click the pipeline icon to add a route node to the end of the pipeline.

24. Click the Route Node icon and select Edit from the menu.

25. Click the Add Action icon. Choose Add an Action item from the menu.

26. Choose the Dynamic Route action.

27. Click Expression. The XQuery Expression Editor is displayed.

28. Enter the variable; for example, $routeresult.

12.9.1.4 Guidelines for Implementing Identity-Based Routing
If you want to dynamically route message based on the identity of an authenticated user,
Service Bus stores information such as user name, group membership (/principals/group),
and the name of the subject (/subject-properties/property/name in the following inbound
context variables:

• $inbound/ctx:security/ctx:transportClient/*

• $inbound/ctx:security/ctx:messageLevelClient/*

For more information on these context variables, see Table A-6.

Using the guidance provided in Using Dynamic Routing, use XQuery or simple XML to map
authenticated user identity characteristics to different endpoints using the desired mapping
technique.

The following predefined Service Bus XQuery functions are also available to perform security
checks in identity-based routing:

• fn-bea:lookupBasicCredentials

• fn-bea:isUserInGroup

• fn-bea:isUserInRole

For a working example of dynamic service invocation, see the Service Bus samples at
http://www.oracle.com/technetwork/middleware/service-bus/learnmore/index.html.

Chapter 12
Using Dynamic Routing

12-37

http://www.oracle.com/technetwork/middleware/service-bus/learnmore/index.html

12.10 Accessing Databases Using XQuery
Service Bus provides read-access to databases from pipelines without requiring you to
write a custom EJB or custom Java code and without the need for a separate
database product like Oracle Data Service Integrator.

You can use the execute-sql() function to make a simple JDBC call to a database to
perform simple database reads. Any SQL query is legal, from a query that gets a
single tax rate for the supplied location to a query that does a complex join to obtain
the current status of an order from several underlying database tables.

A database query can be used to get data for message enrichment, for routing
decisions, or for customizing the behavior of a pipeline. Take for example a scenario in
which a Service Bus pipeline receives "request for quote" messages. The pipeline can
route the requests based on the priority of the customer to one of various quotation
business services (say, standard, gold, or platinum level services). The pipeline can
then perform a SQL-based augmentation of the results that those services return. For
example, based on the selected ship method and the weight of the order, the shipping
cost can be looked up and that cost added to the request for quote message.

fn-bea:execute-sql() describes the syntax for the function and provides examples of its
use. The execute-sql() function returns typed data and automatically translates
values between SQL/JDBC and XQuery data models.

You can store the returned element in a user-defined variable in a Service Bus
pipeline.

The following databases and JDBC drivers are supported using the execute-sql()
function:

• The sample database provided by WebLogic Server.

IBM DB2/NT 8

• Microsoft SQL Server 2000, 2005

• Oracle9i, Oracle Database 10g, Oracle Database 11g, Oracle Database 12c

• Sybase 12.5.2 and 12.5.3

• WebLogic Type 4 JDBC drivers

• Third-party drivers supported by WebLogic Server

Use non-XA drivers for datasources you use with the fn-bea:execute-sql() function—
the function supports read-only access to the datasources.

Caution:

In addition to specifying a non-XA JDBC driver class to use to connect to the
database, you must ensure that you disable global transactions and two-
phase commit. (Global transactions are enabled by default in the Oracle
WebLogic Server Administration Console for JDBC data sources.) These
specifications can be made for your data source using the Oracle WebLogic
Server Administration Console. See Create JDBC Data Sources in the
Oracle WebLogic Server Administration Console Online Help.

Chapter 12
Accessing Databases Using XQuery

12-38

For complete information about database and JDBC drivers support in Service Bus, see
Oracle Fusion Middleware Supported System Configurations at:

http://www.oracle.com/technetwork/middleware/ias/downloads/fusion-
certification-100350.html

Databases other than the core set described in the preceding listing are also supported.
However, for the core databases listed above, the XQuery engine does a better recognition
and mapping of data types to XQuery types than it does for the non-core databases.
Sometimes, the proprietary JDBC extensions of a core database are used when fetching
data. For the non-core databases, the XQuery engine relies totally on the standard type
codes provided by the JDBC driver and standard JDBC resultset access methods.

When designing your pipeline, you can enter XQueries inline as part of an action definition
instead of entering them as resources. You can also use inline XQueries for conditions in If
Then actions in pipeline. For information about using the inline XQuery editor, see Creating
Variable Structure Mappings.

12.11 Understanding Message Context
The message context is a set of variables that hold message context and information about
messages as they are routed through Service Bus.

Together, the header, body, and attachments variables (referenced as $header, $body,
and $attachments in XQuery statements) represent the message as it flows through Service
Bus. The canonical form of the message is SOAP. Even if the service type is not SOAP, the
message appears as SOAP in the Service Bus message context.

Table 12-10 describes the Service Bus message context variables.

Table 12-10 Predefined Context Variables in Service Bus

Context Variable Description See Also

header For SOAP messages, $header contains the SOAP
header. If the pipeline is SOAP 1.2, $header
contains a SOAP 1.2 Header element.

For message types other than SOAP, $header
contains an empty SOAP header element.

Message-Related Variables

body This context varies depending on the message
type:

• SOAP messages: The <SOAP:Body> part
extracted from the SOAP envelope. If the
pipeline is SOAP 1.2, the $body variable
contains a SOAP 1.2 Body element.

• Non-SOAP, non-binary messages: The entire
message content wrapped in a <SOAP:Body>
element.

• Binary messages: A <SOAP:Body> wrapped
reference to an in-memory copy of the binary
message.

• Java objects: A <SOAP:Body> wrapped
reference to an in-memory copy of the Java
object.

Message-Related Variables

attachments The MIME attachments for a given message. Message-Related Variables

Chapter 12
Understanding Message Context

12-39

http://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certification-100350.html
http://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certification-100350.html

Table 12-10 (Cont.) Predefined Context Variables in Service Bus

Context Variable Description See Also

inbound The inbound transport headers along with
information about the proxy service that received a
message.

Inbound and Outbound
Variables

outbound The outbound transport headers along with
information about the target service to which a
message is to be sent.

Inbound and Outbound
Variables

operation The operation being invoked on a pipeline. Operation Variable

fault Information about errors that have occurred during
the processing of a message.

Fault Variable

messageId The transport provider-specific message identifier.
This ID must uniquely identify the message among
other messages going through the Service Bus
runtime, but it is not required that this is a unique
value.

messageID Variable

12.11.1 Message Context Components
In a Message Context, $header contains a SOAP header element and $body contains
a SOAP Body element. The Header and Body elements are qualified by the SOAP 1.1
or SOAP 1.2 namespace depending on the service type of the pipeline. Also in a
Message Context, $attachments contains a wrapper element called attachments with
one child attachment element per attachment. The attachment element has a body
element with the actual attachment.

When a message is received by a pipeline, the message contents are used to initialize
the header, body, and attachments variables. For SOAP services, the Header and
Body elements are taken directly from the envelope of the received SOAP message
and assigned to $header and $body respectively. For non-SOAP services, the entire
content of the message is typically wrapped in a Body element (qualified by the SOAP
1.1 namespace) and assigned to $body, and an empty Header element (qualified by
the SOAP 1.1 namespace) is assigned to $header.

Binary and MFL messages are initialized differently. For MFL messages, the
equivalent XML document is inserted into the Body element that is assigned to $body.
For binary messages, the message data is stored internally and a piece of reference
XML is inserted into the Body element that is assigned to $body. The reference XML
looks like <binary-content ref="..."/>, where "..." contains a unique identifier
assigned by the pipeline.

The message context is defined by an XML schema. You must use XQuery
expressions to manipulate the context variables in the pipeline. The predefined context
variables provided by Service Bus can be grouped into the following types:

• Message-related variables

• Inbound and outbound variables

• Operation variable

• Fault variable

Chapter 12
Understanding Message Context

12-40

For information about the predefined context variables, see Predefined Context Variables.

The $body contains message payload variable. When a message is dispatched from
Service Bus you can decide the variables, whose you want to include in the outgoing
message. That determination is dependent upon whether the target endpoint is expecting a
SOAP or a non-SOAP message:

• For a binary, any text or XML message content inside the Body element in $body is sent.

• For MFL messages, the Body element in $body contains the XML equivalent of the MFL
document.

• For text messages, the Body element in $body contains the text. For text attachments,
the body element in $attachments contains the text. If the contents are XML instead of
simple text, the XML is sent as a text message.

• For XML messages, the Body element in $body contains the XML. For XML attachments,
the body element in $attachments contains the XML.

• SOAP messages are constructed by wrapping the contents of the header and body
variables inside a <soap:Envelope> element. (The SOAP 1.1 namespace is used for
SOAP 1.1 services, while the SOAP 1.2 namespace is used for SOAP 1.2 services.) If
the body variable contains a piece of reference XML, it is sent.That is the referenced
content is not substituted in the message.

For non-SOAP services, if the Body element of $body contains a binary-content element, then
the referenced content stored internally is sent 'as is', regardless of the target service type.

For more information, see Message Context.

The types for the message context variables are defined by the message context schema
(MessageContext.xsd). When working with the message context variables in the Oracle
XQuery Mapper, you need to reference MessageContext.xsd, which is available in a JAR file,
OSB_ORACLE_HOME/lib/sb-schemas.jar, and the transport-specific schemas, which are available
at

OSB_ORACLE_HOME/lib/transports/

To learn about the message context schema and the transport specific schemas, see
Message Context Schema.

12.11.2 Guidelines for Viewing and Altering Message Context
Consider the following guidelines when you want to inspect or alter the message context:

• In an XQuery expression, the root element in a variable is not present in the path in a
reference to an element in that variable. For example, the following XQuery expression
obtains the Content-Description of the first attachment in a message:

$attachments/ctx:attachment[1]/ctx:content-Description

To obtain the second attachment

$attachments/ctx:attachment[2]/ctx:body/*

• A context variable can be empty or it can contain a single XML element or a string value.
However, an XQuery expression often returns a sequence. When you use an XQuery
expression to assign a value to a variable, only the first element in the sequence returned
by the expression is stored as the variable value. For example, if you want to assign the
value of a WS-Addressing Message ID from a SOAP header (assuming there is one in
the header) to a variable named idvar, the assign action specification is:

Chapter 12
Understanding Message Context

12-41

assign data($header/wsa:messageID to variable idvar

Note:

In this case, if two WS-Addressing MessageID headers exist, the idvar
variable will be assigned the value of the first one.

• The variables $header, $body, and $attachments are never empty.
However, $header can contain an empty SOAP Header element, $body can
contain an empty SOAP Body element, and $attachments can contain an empty
attachment element.

• In cases in which you use a transformation resource (XSLT or XQuery), the
transformation resource is defined to transform the document in the SOAP body of
a message. To make this transformation case easy and efficient, the input
parameter to the transformation can be an XQuery expression. For example, you
can use the following XQuery expression to feed the business document in the
Body element of a message ($body) as input to a transformation:

$body/* [1]

The result of the transformation can be put back in $body with a replace action.
That is replace the content of $body, which is the content of the Body element. For
more information, see Transforming Data with XQuery and Transforming Data with
XSLT.

• In addition to inserting or replacing a single element, you can also insert or replace
a selected sequence of elements using an insert or replace action. You can
configure an XQuery expression to return a sequence of elements. For example,
you can use insert and replace actions to copy a set of transport headers
from $inbound to $outbound. For information on adding an action, see Adding and
Editing Pipeline Actions in the Console. For an example, see Copying JMS
Properties From Inbound to Outbound.

12.11.3 Copying JMS Properties From Inbound to Outbound
It is assumed that the interfaces of the proxy services and of the invoked business
service may be different. Therefore, Service Bus does not propagate any information
(such as the transport headers and JMS properties) from the inbound variable to the
outbound variable.

The transport headers for the proxy service's request and response messages are
in $inbound and the transport headers for the invoked business service's request and
response are in $outbound.

For example, the following XQuery expression can be used in a case where the user-
defined JMS properties for a one-way message (an invocation with no response) need
to be copied from inbound message to outbound message:

Use the transport headers action to set

$inbound/ctx:transport/ctx:request/tp:headers/tp:user-header

as the first child of:

./ctx:transport/ctx:request/tp:headers

Chapter 12
Understanding Message Context

12-42

in the outbound variable.

To learn how to configure the transport header action, see Adding Transport Header Actions
in the Console.

12.12 Using Variable Structures
You can use the Inline XQuery Expression Editor to create variable structures, with which you
define the structure of a given variable for design purposes. For example, it is easier to
browse the XPath variable in the Administration Console rather than viewing the XML
schema of the XPath variable.

For examples of using variable structures in the Oracle Service Bus Console, see Creating
Variable Structure Mappings.

Note:

It is not necessary to create variable structures for your runtime to work. Variable
structures define the structure of the variable or the variable path but do not create
the variable. Variables are created at runtime as the target of the assign action in
the stage.

In a typical programming language, the scope of variables is static. Their names and types
are explicitly declared. The variable can be accessed anywhere within the static scope.

In Service Bus, there are some predefined variables, but you can also dynamically create
variables and assign value to them using the assign action or using the loop variable in the
for-loop. When a value is assigned to a variable, the variable can be accessed anywhere in
the pipeline. The variable type is not declared but the type is essentially the underlying type
of the value it contains at any point in time.

Note:

The scope of the for-loop variable is limited and cannot be accessed outside the
stage.

When you use the Inline XQuery Expression Editor, the XQuery has zero or more inputs and
one output. Because you can display the structure of the inputs and the structure of the
output visually in the Expression Editor itself, you do not need to open the XML schema or
WSDL resources to see their structure when you create the Inline XQuery. The graphical
structure display also enables you to drag and drop simple variable paths along the child axis
without predicates, into the composed XQuery.

Each variable structure mapping entry has a label and maps a variable or variable path to
one or more structures. The scope of these mappings is the stage or route node. Because
variables are not statically typed, a variable can have different structures at different points
(or at the same point) in the stage or route node. Therefore, you can map a variable or a
variable path to multiple structures, each with a different label. To view the structure, select
the corresponding label with a list.

Chapter 12
Using Variable Structures

12-43

Note:

You can also create variable structure mappings in the Inline XPath
Expression Editor. However, although the variable or a variable path is
mapped to a structure, the XPaths generated when you select from the
structure are XPaths relative to the variable. An example of a relative XPath
is ./ctx:attachment/ctx:body.

12.12.1 Using the Inline XQuery Expression Editor
Service Bus allows you to import XQueries that have been created with an external
tool such as the Oracle XQuery Mapper. You can use these XQueries anywhere in the
pipeline by binding the XQuery resource input to an Inline XQuery, and binding the
XQuery resource output to an action that uses the result as the input; for example, the
assign, replace, or insert actions.

However, you can enter the XQuery inline as part of the action definition instead of
entering the XQuery as a resource. You can also use Inline XQueries for the condition
in an If...Then... action.

Use the Inline XQuery Expression Editor to enter simple XQueries that consist of the
following:

• Fragments of XML with embedded XQueries.

• Simple variable paths along the child axis.

Note:

For more complex XQueries, it is recommended that you use the XQuery
Mapper, especially if you are not familiar with XQuery.

Inline XQueries can be used effectively to:

• Create variable structures by using the Inline XQuery Expression Editor. See
Using Variable Structures.

• Extract or access a business document or RPC parameter from the SOAP
envelope elements in $header or $body.

• Extract or access an attachment document in $attachments.

• Set up the parameters of a service callout action by extracting it from the SOAP
envelope.

• Insert the result parameter of a service callout action into the SOAP envelope.

• Extract a sequence from the SOAP envelope to drive a for loop.

• Update an item in the sequence in a for loop with an Update action.

Chapter 12
Using Variable Structures

12-44

Note:

You can also use the Inline XQuery Expression Editor to create variable
structures. For more information, see Using Variable Structures.

12.12.1.1 Inline XQueries
The inline XQuery and XPath editors allow you to declare a variable's structure by mapping it
to a type or element and then creating path expressions with a drag and drop action from the
graphical representation of the structure. You can also enter the path expressions manually.

You can use this feature directly for all user-defined variables, as well
as $inbound, $outbound, and $fault. However, you cannot use it directly to access XML
attachments in $attachments, headers in $header, or documents and RPC parameters
in $body, with one exception— you can use it directly to access documents and parameters
in $body for request messages received by a WSDL-based proxy service.

To learn more about creating variable structures, see Creating Variable Structure Mappings.

To learn more about XQuery engine support and the relationship with Oracle functions and
operators, see Service Bus XQuery Functions.

12.12.1.2 Uses of the Inline XQuery Expression Editor
You typically use the Inline XQuery Expression Editor to enter simple XQueries that consist of
the following:

• Fragments of XML with embedded XQueries.

• Simple variable paths along the child axis.

Note:

For more complex XQueries, we recommend that you use the Oracle XQuery
Mapper, an editor with drag-and-drop functionality. See "Creating
Transformations with the XQuery Mapper" in the Developing SOA Applications
with Oracle SOA Suite.

Examples of good uses of inline XQueries are:

• Extract or access a business document or RPC parameter from the SOAP envelope
elements in $header or $body.

• Extract or access an attachment document in $attachments.

• Set up the parameters of a service callout by extracting it from the SOAP envelope.

• Fold the result parameter of a service callout into the SOAP envelope.

• Extract a sequence from the SOAP envelope to drive a for loop.

• Update an item in the sequence in a for loop with an Update action.

You can also use the Inline XQuery Expression Editor to create variable structures. For more
information, see Using Variable Structures.

Chapter 12
Using Variable Structures

12-45

12.12.1.2.1 Best Practices for Type-Dependent Expressions
To help ensure expected results when using type-dependent expressions, manually
cast values to the desired types. For example, the following statement casts counter
as an integer for the XQuery compiler, which ensures a single return value:

<Body><result>{$foo/item[xs:int($counter)]}</result></Body>

12.13 Quality of Service
Service Bus supports reliable messaging. When messages are routed to another
service from a route node, the default quality of service (QoS) is exactly-once if the
proxy service is configured to be transactional; otherwise best-effort QoS is supported.

Quality of service is set in the qualityOfService element in the $outbound context
variable.

12.13.1 Delivery Guarantees
The following delivery guarantee types are provided in Service Bus, shown in
Table 12-11.

Table 12-11 Delivery Guarantee Types

Delivery Reliability Description

Exactly-once Exactly-once reliability means that messages are delivered from
inbound to outbound exactly-once, assuming a terminating error does
not occur before the outbound message send is initiated. Exactly-once
means reliability is optimized.

Exactly-once delivery reliability is a hint, not a directive. When exactly-
once is specified, exactly-once reliability is provided if possible. If
exactly-once is not possible, then at-least-once delivery semantics are
attempted; if that is not possible, best-effort delivery is performed.

Proxy services configured to be transactional have exactly-once quality
of service.

The default value of the qualityOfService element is also exactly-
once for a route node action for the following inbound transports:

• email
• FTP
• SFTP
• File
• JMS (transactional)
• Tuxedo (transactional)
• MQ (with Backout Threshold set to zero)
• WS
Note: Do not retry the outbound transport when the QoS is exactly-once

Chapter 12
Quality of Service

12-46

Table 12-11 (Cont.) Delivery Guarantee Types

Delivery Reliability Description

At-least-once At-least-once semantics means the message is delivered to the
outbound from the inbound at least once, assuming a terminating error
does not occur before the outbound message send is initiated. Delivery
is considered satisfied even if the target service responds with a
transport-level error. However it is not satisfied in the case of a time-out,
a failure to connect, or a broken communication link. If failover URLs are
specified, at-least-once semantics is provided with respect to at least
one of the URLs.

At-least-once delivery semantics is attempted if exactly-once is not
possible but the qualityOfService element is exactly-once.

Best-effort Best-effort means that there is no reliable messaging and there is no
elimination of duplicate messages—however, performance is optimized.
It is performed if the qualityOfService element is best-effort.
Best-effort delivery is also performed if exactly-once and at-least-once
delivery semantics are not possible but the qualityOfService
element is exactly-once.

The default value of the qualityOfService element for a route node
is best-effort for the following inbound transports:

• HTTP
• JMS (non-transactional)
• Tuxedo (non-transactional)
• MQ (with Backout Threshold set to greater than zero)
The default value of the qualityOfService element is always best-
effort for the following:

• Service callout action – always best-effort, but can be changed
if required.

• Publish action – defaults to best-effort, modifiable

For more information on QoS behavior in publish actions, see
Transformations and Publish Actions.

Note: When the value of the qualityOfService element is best-
effort for a publish action, all errors are ignored. However, when the
value of the qualityOfService element is best-effort for a route
node action or a Service Callout action, any error will raise an
exception.

For more detailed information about quality of service for other transports, see Working with
JCA Adapters, Transports, and Bindings in Developing Services with Oracle Service Bus.

12.13.1.1 Overriding the Default Element Attribute
To override the default exactly-once quality of service attribute, you must set the
qualityOfService in the outbound message context variable ($outbound). For more
information, see Message Context Schema.

You can override the default qualityOfService element attribute for the following pipeline
actions:

• Publish

• Dynamic Publish

Chapter 12
Quality of Service

12-47

• Publish Table

• Service Callout

• Routing

• Dynamic Routing

• Routing Table

To override the qualityOfService element attribute, add a Routing Options action to
any of the above actions, select the QoS option, and choose the override value.

12.13.1.2 Delivery Guarantee Rules
The delivery guarantee supported when a pipeline publishes a message or routes a
request to a business service depends on the following conditions:

• The value of the qualityOfService element.

• The inbound transport (and connection factory, if applicable).

• The outbound transport (and connection factory, if applicable).

However, if the inbound proxy service is a Local Transport and is invoked by another
proxy service, the inbound transport of the invoking proxy service is responsible for the
delivery guarantee. That is because a proxy service that invokes another proxy service
is optimized into a direct invocation if the transport of the invoked proxy service is a
Local Transport. For more information on transport protocols, see Creating and
Configuring Proxy Services and Creating and Configuring Business Services.

Note:

No delivery guarantee is provided for responses from a proxy service.

The following rules govern delivery guarantees, shown in Table 12-12.

Table 12-12 Delivery Guarantee Rules

Delivery Guarantee Provided Rule

Exactly-once The proxy service inbound transport is transactional and the
value of the qualityOfService element is exactly-once
to an outbound transport.

At-least-once The proxy service inbound transport is file, FTP, or email
and the value of the qualityOfService element is
exactly-once.

At-least-once The proxy service inbound transport is transactional and the
value of the qualityOfService element, where applicable,
is exactly-once to an outbound transport that is not
transactional.

No delivery guarantee All other cases, including all response processing cases.

Chapter 12
Quality of Service

12-48

Note:

To support at-least-once and exactly-once delivery guarantees with JMS, you must
exploit JMS transactions and configure a retry count and retry interval on the JMS
queue to ensure that the message is redelivered in the event of a server crash or a
failure that is not handled in an error handler with a Reply or Resume action. File,
FTP, and email transports also internally use a JMS/XA queue. The default retry
count for a proxy service with a JMS/XA transport is 1.

The following are additional delivery guarantee rules:

• If the transport of the inbound proxy service propagates or starts a transaction, the
request processing is performed in a transaction.

– When the qualityOfService element is set to exactly-once, any route node actions
executed in the request flow to a transactional destination are performed in the same
transaction. Publish and Service Callout actions in a transaction context are best-
effort by default and therefore execute outside of the transaction context. Setting
those actions to exactly-once causes them to execute in the transaction context.

– When the qualityOfService element is set to best-effort for any action in a route
node, service callout or publish actions are executed outside of the request flow
transaction. Specifically, for JMS, Tuxedo, Transactional Tuxedo, or EJB transport,
the request flow transaction is suspended and the Transactional Tuxedo work is done
without a transaction or in a separate transaction that is immediately committed.

– If an error occurs during request processing, but is caught by a user error handler
that manages the error (by using the resume or reply action), the message is
considered successfully processed and the transaction commits. A transaction is
aborted if the system error handler receives the error—that is, if the error is not
handled before reaching the system level. The transaction is also aborted if a server
failure occurs during request pipeline processing.

• If a response is received by a proxy service that uses a JMS/XA transport to business
service (and the proxy inbound is not Transactional Tuxedo), the response processing is
performed in a single transaction.

– When the qualityOfService element is set to exactly-once, all route, service
callout, and publish actions are performed in the same transaction.

– When the qualityOfService element is set to best-effort, all publish actions and
service callout actions are executed outside of the response flow transaction.
Specifically, for JMS, EJB, or transactional Tuxedo types of transports, the response
flow transaction is suspended and the service is invoked without a transaction or in a
separate transaction that is immediately committed.

– Proxy service responses executed in the response flow to a JMS/XA destination are
always performed in the same transaction, regardless of the qualityOfService
element setting.

• If the proxy service inbound transport is transactional Tuxedo, or if you set the "Same
Transaction for Response" option on a proxy service, both the request processing and
response processing are done in this transaction.

Chapter 12
Quality of Service

12-49

Note:

You will encounter a runtime error when the inbound transport is
transactional Tuxedo and the outbound is an asynchronous transport, for
example, JMS/XA.

12.13.1.3 Threading Model
The Service Bus threading model works as follows:

• Proxy service request and response pipelines always execute in separate threads.

• When invoking an external service, threads may be blocking or non-blocking
depending on the pipeline action, the Quality of Service option and the transport
used.

Service callouts are always blocking. An HTTP route or publish action is non-
blocking (for request/response or one-way invocation), if the value of the
qualityOfService element is best-effort.

JMS route actions or publish actions are always non-blocking, but the response is
lost if the server restarts after the request is sent because Service Bus has no
persistent message processing state.

Note:

In a request or response flow publish action, responses are always
discarded because publish actions are inherently a one-way message
send.

• When using blocking calls, a work manager having a Min Thread constraint must
be associated with the response to prevent server deadlock. A Min Thread
constraint guarantees a minimum number of threads for processing.

For general information about Work Managers, see "Using Work Managers to
Optimize Scheduled Work" in Administering Server Environments for Oracle
WebLogic Server. For information about Work Managers and threading in Service
Bus, see Work Managers and Threading.

12.13.1.4 Splitting Proxy Services
You may want to split a proxy service in the following situations:

• When HTTP is the inbound and outbound transport for a proxy service, you may
want to incorporate enhanced reliability into the middle of the pipeline. To enable
enhanced reliability in this way, split the proxy service into a front-end HTTP proxy
service and a back-end JMS (one-way or request/response) proxy service with an
HTTP outbound transport. In the event of a failure, the first proxy service must
quickly place the message in the queue for the second proxy service, in order to
avoid loss of messages.

• To disable the direct invocation optimization for a non-JMS transport when a proxy
service, say loanGateway1 invokes another proxy service, say loanGateway2.

Chapter 12
Quality of Service

12-50

Route to the proxy service loanGateway2 from the proxy service loanGateway1 where the
proxy service loanGateway2 uses JMS transport.

• To have an HTTP proxy service publish to a JMS queue but have the publish action
rollback if there is a exception later on in the request processing, split the proxy service
into a front-end HTTP proxy service and a back-end JMS proxy service. The publish
action specifies a qualityOfService element of exactly-once and uses an XA
connection factory.

12.13.2 Outbound Message Retries
In addition to configuring inbound retries for messages using JMS, you can configure
outbound retries and load balancing. Load balancing, failover, and retries work in conjunction
to provide performance and high availability. For each message, the list of URLs you provide
as failover URLs is automatically ordered based on the load balancing algorithm into a
failover sequence. If the retry count is N, the entire sequence is retried N times before
stopping. The system waits for the specified retry interval before commencing subsequent
loops through the sequence. After completing the retry attempts, if there is still an error, the
error handler pipeline for the route node is invoked.

Note:

For HTTP transports, any HTTP status other than 200 or 202 is considered an error
by Service Bus and must be retried. Because of this algorithm, it is possible that
Service Bus retries errors like authentication failure that may never be rectified for
that URL within the time period of interest. On the other hand, if Service Bus also
fails over to a different URL for subsequent attempts to send a given message, the
new URL may not give the error.

For quality of service=exactly-once, failover or retries will not be executed.

12.14 Using the JavaScript Action and JavaScript Expressions
Service Bus provides a JavaScript action, which is used in pipelines. The JavaScript action
allows you to include snippets of JavaScript code to be executed during pipeline processing.

The most common case for using JavaScript is when dealing with JSON objects in REST
services. Rather than converting the payload to XML and using XQuery or XSLT for
manipulation, using JavaScript allows you to manipulate the JSON object directly. The
JavaScript engine used in Service Bus also allows you to easily reference XML elements,
making it easier to handle both JSON and XML-style payloads in JavaScript.

JavaScript is not limited to REST services; you can use JavaScript in any service. You can
also use JavaScript in other areas where an expression is created for evaluation.

Tip:

The JavaScript action is available for any pipeline type, not just Native REST
pipelines.

Chapter 12
Using the JavaScript Action and JavaScript Expressions

12-51

Rhino, an open-source implementation of JavaScript written entirely in Java, is the
JavaScript engine used by Service Bus. See https://developer.mozilla.org/en-US/docs/
Mozilla/Projects/Rhino.

To facilitate JavaScript retrieving variable bindings from the message context and
updating the message context with new variable bindings, Service Bus uses a
JavaScript engine construct that you use to read/update variable values. Before
invoking a script, Service Bus binds a globally scoped object called process, which
you use to read and update variable values. You invoke variables in expressions using
dot (.) notation, like process.body or process.xyz.

The expression process.varName returns one of the following:

• When the variable is JSON, the expression returns a JSON scriptable object

• When the variable is XML, the expression returns an XML or XMLList object in
E4X (JavaScript XML) format

• String

• Boolean

For example, an incoming request payload like the following:

{
 "employees": [
 { "firstName":"John" , "lastName":"Doe" },
 { "firstName":"Anna" , "lastName":"Smith" },
 { "firstName":"Peter" , "lastName":"Jones" }
]
}

Is parsed into a JSON-specific POJO model expected by the JavaScript engine, bound
as a $body variable. Using an expression in a script like the following:

var $body = process.body;
var name = $body.employees[0].firstName + ”
“ + $body.employees[0].lastName

Contains the string John Doe.

If the variable $foo is bound to the following XML:

 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22rdfsyntaxns#"
xmlns="http://purl.org/rss/1.0/">
 <rdf:item value="5"/>
 <rdf:textNode>Hello World</rdf:textNode>
 <item value="10"/>
 <rdf:item>17</rdf:item>
</rdf:RDF>

and the prefixes rdf and rss are defined in the execution scopes, either mapped from
the stage context or explicitly declared in JavaScript snippets in the following manner:

var rdf = new Namespace("http://www.w3.org/1999/02/22-rdf-syntax-ns#");
var rss = new Namespace("http://purl.org/rss/1.0/");

Chapter 12
Using the JavaScript Action and JavaScript Expressions

12-52

https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Rhino
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Rhino

Then the JavaScript expressions in the following example are possible:

process.foo.rdf::item.@value => 5
process.foo.rdf::textNode.text() => “Hello World”
process.foo.rss::item.@value => 10
process.foo.rdf::item[1].text() => 17

The following E4X expression returns the value of the inbound HTTP Content-Type header:

process.inbound.ctx::transport.ctx::request.tp::headers.http::[“Content-
Type”].text()

Note:

The brackets around Content-Type in the example above are present because of
the hyphen in the XML element name. While hyphens are valid in XML elements,
they are not allowed in JavaScript identifier names. Some other headers, such as
SOAPAction, do not need brackets. For instance, http::SOAPAction is valid. For
the same reason, known namespace prefixes with hyphens, such as fn-bea or
soap-env, are bound into the engine with underscores instead, such
asfn_bea::bar.fn_bea::zot.text().

Service Bus automatically declares the identifiers in the example above (ctx, tp, and http) to
their corresponding namespace URIs, much like it does for XQuery and XPath expressions.

As an example, the following E4X expression sets the inbound HTTP response code value:

process.inbound.ctx::transport.ctx::response.http::["http-response-code"] =
202;

12.14.1 JavaScript Action and Message Context Variables
You can consume and update Service Bus message context variables with the JavaScript
action.

The JavaScript action can consume the following types of message context variables:

• XML

• XMLList (for instance, the contents of $body with multiple root elements in a SOAP Doc
Literal style)

• String

• Boolean

• JSON

Chapter 12
Using the JavaScript Action and JavaScript Expressions

12-53

Note:

JavaScript expressions should use the language feature JSON.parse()
to parse text into JSON POJOs.

The JavaScript action can update the following types of message context variables:

• XML

• XMLList

• String

• Boolean

• JSON

12.14.2 Update Context Variables Using JavaScript Expressions
You can use the JavaScript action to update Service Bus message context variables.

To update $body contents to JSON objects, use one of the following expressions:

• process.body = JSON.parse(‘{“example1” : “example2”});

• process.body = { “example1” : “example2” };

Note:

You can create JSON-typed variables in the pipeline using only the following
methods:

• Sending a JSON payload to a Native-REST typed service (in $body)

• Assigning a JSON object to a variable using the JavaScript action

To update $body contents to XML, use an expression like process.body =
<example />;.

To update $body contents to text, use an expression like process.body = “example”;.

To update $body contents to an XML list containing elements like <example1/> and
<example2/>, use an expression like process.body = <> <example1/><example2/>
</>;.

12.14.3 Creating Variables Using JavaScript Expressions
You can create variables using JavaScript expressions in the JavaScript action.

To create a variable in the Service Bus message context, use an expression like the
following:

process.newVar = …;

Chapter 12
Using the JavaScript Action and JavaScript Expressions

12-54

12.14.4 Deleting Variables Using JavaScript Expressions
You can use JavaScript expressions to delete message context variables.

To delete a variable, use the JavaScript delete operator:

delete process.var;

For example, you can delete a JSON element by using the following expression:

delete process.jsonvar2.foo;

You can delete an XML element or attribute from a structure by using the following
expression:

delete process.xmlvar2.(@number='1234').name.first;

12.14.5 About XQuery, XPath, and JSON Variables
JSON variables are bound into the XQuery engine with their string representations.

The following example shows a JSON variable bound to the XQuery engine:

process.foo = { "foo" : "bar" }

When you specify $foo as an input argument to an XQuery resource, the XQuery engine
receives the value "{ "foo" : "bar" }".

Note:

Executing XPath expressions with respect to JSON variables is not supported.
Doing so results in a runtime error.

12.14.6 Streaming $body Variables and the JavaScript Action
Reading and writing streaming $body content using the JavaScript action is not
recommended.

Instead, you should use a pipeline action that uses the streaming XQuery engine to read or
manipulate the XML payload, such as the Assign or Replace actions.

However, if you do decide to query streaming $body content using the JavaScript action, the
contents of $body are fully materialized and bound to the engine with the E4X façade.

Chapter 12
Using the JavaScript Action and JavaScript Expressions

12-55

12.14.7 JavaScript Action and Custom Java Functions
Previous versions of Service Bus support the registration of custom Java functions and
invocation of these custom functions from XQuery and XPath expressions. This
version of Service Bus supports invoking these same functions from JavaScript
expressions.

The following example shows a custom Java function being invoked from a JavaScript
expression.

isAdmin = IsUserInRoleFunction.isUserInRole($body.users[0].userName,
"Admin");

The Service Bus runtime has been enhanced to automatically import the packages of
all registered custom functions. You do not have to use importPackage() constructs in
your expressions to use these functions. Additionally, JavaScript expressions are
executed in the context of a classloader that contains the classes from the custom java
function jars from the Service Bus configuration directories.

12.14.8 Logging and Reporting the Result of JavaScript Expressions
Logging and Reporting the result of a JavaScript expression is supported.

You can log the result of expressions similar to those shown in the following example:

process.myJsonVar.Orders.items[0].name
 or
process.xmlvar2.(@number='1234').name.first
 or
process.myJsonVar.Orders.items[0].name.length() > 56

12.15 Using Work Managers with Service Bus
WebLogic Server helps you optimize the performance of your applications and web
services environment as well as maintain service-level agreements with a feature
called Work Managers.

You create Work Manager resources and configure them by defining work execution
rules. WebLogic Server uses the rules in a Work Manager to help prioritize work and
allocate threads in whatever application or component the Work Manager is placed.

For general information about Work Managers, see "Using Work Managers to
Optimize Scheduled Work" in Administering Server Environments for Oracle WebLogic
Server. For information about Work Managers and threading in Service Bus, see Work
Managers and Threading.

In Service Bus, several transports for proxy and business services provide a
configuration option called "Dispatch Policy”. This option lets you associate a Work
Manager with a service to prioritize service work. This section describes how proxy
and business services use Work Managers.

By configuring the Dispatch Policy of a Service Bus proxy service, the rules of the
Work Manager govern the startup and execution of its request thread. For example,
given a proxy service using a Dispatch Policy with a Max Constraint of 5, the proxy
service has no more than 5 request thread tasks executing simultaneously.

Chapter 12
Using Work Managers with Service Bus

12-56

While the proxy service Dispatch Policy governs the request thread, the business service or
Split-Join Dispatch Policy governs the response thread. The RouteTo action specifies a
business service or Split-Join to route the message to, and the response is subject to any
Dispatch Policy on that business service or Split-Join.

When a RouteTo action specifies a local proxy service, the Dispatch Policy of the original
proxy applies to work done in the local proxy request thread. When the local proxy or chain of
local proxies reaches a RouteTo action that invokes a business service or Split-Join, the
Dispatch Policy of that business service or Split-Join governs the business service, Split-Join,
and all the following response thread.

If an error occurs in the request, the error response is handled in the same thread as the
request thread.

The quality of service (QoS) specified in the outbound metadata can also impact the way
requests are threaded and thus impact what you see when monitoring Work Managers. The
QoS on the RouteTo action defaults to the inbound QoS. For example, some inbound
transactional transports set QoS to "exactly-once," such as JMS/XA, SB, Tuxedo, and WS
(WS-RM). Other inbound transports, such as HTTP, set QoS to “best-effort" by default. The
QoS on the RouteTo action is inherited from the inbound unless overridden by user settings
in the RouteTo action.

When “best-effort" is used, the Route node invokes the business service asynchronously. In
this case, the work thread returns to the pool and does not wait for the response; therefore,
there is not a thread counting against a Work Manager constraint even though there is
pending work due back asynchronously. But if “exactly-once" is selected, the request thread
sends the request, blocks waiting for the response, and counts against the Work Manager
constraints. In this case, the waiting thread applies to the Work Manager assigned to the
proxy service. Once a positive response arrives, a new thread processes the response
pipeline using the Dispatch Policy assigned to the business service or Split-Join.

While using “exactly-once" is more expensive from performance, memory, and threading
standpoints, “exactly-once" is necessary to maintain integrity on transactional inbound and
outbound resources.

For more information on QoS, see Quality of Service.

12.16 Content Types, JMS Type, and Encoding
To support interoperability with heterogeneous endpoints, Service Bus allows you to control
the content type, the JMS type, and the encoding used.

Service Bus does not make assumptions about what the external client or service needs, but
uses the information configured for this purpose in the service definition. Service Bus derives
the content type for outbound messages from the service type and interface. Content type is
a part of the email and HTTP protocols.

If the service type is:

• XML or SOAP with or without a WSDL file, the content type is text/XML.

• Messaging and the interface is MFL or binary, the content type is binary/octet-stream.

• Messaging and the interface is text, the content type is text/plain.

• Messaging and the interface is XML, the content type is text/XML.

• Messaging and the interface is Java, the content type is a Java Object.

Chapter 12
Content Types, JMS Type, and Encoding

12-57

Also, there is a JMS type, which can be byte or text for non-Java-type messages. You
configure the JMS type to use when you define the service in Oracle Service Bus
Console or in Oracle JDeveloper.

You can override the content type in the outbound context variable ($outbound) for
proxy services invoking a service, and in the inbound context variable ($inbound) for a
proxy service response. For more information on $outbound and $inbound context
variables, see Inbound and Outbound Variables.

Encoding is also explicitly configured in the service definition for all outbound
messages. For more information on service definitions, see Creating and Configuring
Proxy Services and Creating and Configuring Business Services.

12.17 Throttling Pattern
In Service Bus, you can restrict the message flow to a business service. This
technique of restricting a message flow to a business service is known as throttling.

For information, see Configuring Business Services for Message Throttlingin
Administering Oracle Service Bus.

12.18 WS-I Compliance
Service Bus provides Web Service Interoperability (WS-I) compliance for SOAP 1.1
services in the runtime environment.

The WS-I basic profile has the following goals:

• Disambiguate the WSDL and SOAP specifications wherever ambiguity exists.

• Define constraints that can be applied when receiving messages or importing
WSDL files so that interoperability is enhanced. When messages are sent,
construct the message so that the constraints are satisfied.

The WS-I basic profile is available at the following URL: http://www.ws-i.org/
Profiles/BasicProfile-1.1.html

When you configure a proxy service or business service based on a WSDL file, you
can use the Oracle Service Bus Console or Oracle JDeveloper to specify whether you
want Service Bus to enforce WS-I compliance for the service. For more information,
see Security and Security Policies for Business Services.

When you configure WS-I compliance for a proxy service, checks are performed on
inbound request messages received by that proxy service. When you configure WS-I
compliance for an invoked service, checks are performed when any proxy receives a
response message from that invoked service. Oracle recommends that you create an
error handler for these errors, since by default, the proxy service SOAP client receives
a system error handler-defined fault.

For messages sent from a proxy service, whether as outbound request or inbound
response, WS-I compliance checks are not explicitly performed because the pipeline
designer is responsible for generating most of the message content. However, the
parts of the message generated by Service Bus should satisfy all the supported WS-I
compliance checks. This includes the following content:

• Service invocation request message.

• System-generated error messages returned by a proxy service.

Chapter 12
Throttling Pattern

12-58

http://www.ws-i.org/Profiles/BasicProfile-1.1.html
http://www.ws-i.org/Profiles/BasicProfile-1.1.html

• HTTP status codes generated by a proxy service.

The Enforce WS-I Compliance check box is displayed as shown in Figure 12-3.

Figure 12-3 Enforce WS-I Compliance Check Box

12.18.1 WS-I Compliance Checks

Note:

WS-I compliance checks require that the system knows what operation is being
invoked on a service. For request messages received by a proxy service, that
means that the context variable $operation should not be null. That depends upon
the operation selection algorithm being configured properly. For response
messages received from invoked services, the operation should be specified in the
action configurations for route, publish, and service callout.

When you configure WS-I compliance checking for a proxy service or a business service,
Service Bus carries out the following checks, shown in Table 12-13.

Table 12-13 Service Bus WS-I Compliance Checks

Check WS-I Basic Profile Details Service Bus Description

3.1.1 SOAP
Envelope Structure

R9980 An Envelope must conform to the
structure specified in SOAP 1.1, Section 4,
"SOAP Envelope" (subject to amendment).

This check applies to request and response
messages. If a response message is
checked and the message does not possess
an outer Envelope tag, a soap:client
error is generated. If the message is an
Envelope tag but possesses a different
namespace, it is handled by the 3.1.2 SOAP
Envelope Namespace.

Chapter 12
WS-I Compliance

12-59

Table 12-13 (Cont.) Service Bus WS-I Compliance Checks

Check WS-I Basic Profile Details Service Bus Description

3.1.2 SOAP
Envelope
Namespace

R1015 A Receiver must generate an error if
they encounter an envelope whose document
element is not soap:Envelope.

This check applies to request and response
messages and is related to the 3.1.1 SOAP
Envelope Structure. If a request message
has a local name of Envelope, but the
namespace is not SOAP 1.1, a
soap:VersionMismatch error is
generated.

3.1.3 SOAP Body
Namespace
Qualification

R1014 The child elements of the soap:body
element in an Envelope must be namespace
qualified.

This check applies to request and response
messages. All request error messages
generate a soap:Client error.

3.1.4 Disallowed
Constructs

R1008 An Envelope must not contain a
Document Type Declaration.

This check applies to request and response
messages. All request error messages
generate a soap:Client error.

3.1.5 SOAP Trailers R1011 An Envelope must not have any child
elements of soap:Envelope following the
soap:body element.

This check applies to request and response
messages. All request error messages
generate a soap:Client error.

3.1.9 SOAP
attributes on SOAP
1.1 elements

R1032 The soap:Envelope, soap:header,
and soap:body elements in an Envelope
must not have attributes in the namespace
http://schemas.xmlsoap.org/soap/
envelope/

This check applies to request and response
messages. Any request error messages
generate a soap:client error.

3.3.2 SOAP Fault
Structure

R1000 When an Envelope is a fault, the
soap:Fault element must not have element
children other than faultcode,
faultstring, faultactor, and detail.

This check only applies to response
messages.

3.3.3 SOAP Fault
Namespace
Qualification

R1001 When an Envelope is a Fault, the
element children of the soap:Fault element
must be unqualified.

This check only applies to response
messages.

3.4.6 HTTP Client
Error Status Codes

R1113 An instance should use a "400 Bad
Request" HTTP status code if a HTTP
request message is malformed.

R1114 An instance should use a "405
Method not Allowed" HTTP status code if a
HTTP request message is malformed.

R1125 An instance must use a 4xx HTTP
status code for a response that indicates a
problem with the format of a request.

Only applies to responses for a proxy
service where you cannot influence the
status code returned due to errors in the
request.

3.4.7 HTTP Server
Error Status Codes

R1126 An instance must return a "500
Internal Server Error" HTTP status
code if the response envelope is a fault.

This check applies differently to request and
response messages. For request messages,
any faults generated have a 500 Internal
Server Error HTTP status code. For
response messages, an error is generated if
fault responses are received that do not
have a 500 Internal Server Error
HTTP status code.

Chapter 12
WS-I Compliance

12-60

Table 12-13 (Cont.) Service Bus WS-I Compliance Checks

Check WS-I Basic Profile Details Service Bus Description

4.7.19 Response
Wrappers

R2729 An envelope described with an rpc-
literal binding that is a response must have a
wrapper element whose name is the
corresponding wsdl:operation name
suffixed with the string Response.

This check only applies to response
messages. Service Bus never generates a
non-fault response from a proxy service.

4.7.20 Part
Accessors

R2735 An envelope described with an rpc-
literal binding must place the part accessor
elements for parameters and return value in
no namespace.

R2755 The part accessor elements in a
message described with an rpc-literal binding
must have a local name of the same value as
the name attribute of the corresponding
wsdl:part element.

This check applies to request and response
messages. Any request error messages
generate a soap:client error.

4.7.22 Required
Headers

R2738 An envelope must include all
soapbind:headers specified on a
wsdl:input or wsdl:output of a
wsdl:operation of a wsdl:binding that
describes it.

This check applies to request and response
messages. Any request error messages
generate a soap:client error.

4.7.25 Describing
SOAPAction

R2744 A HTTP request message must
contain a SOAPAction a HTTP header field
with a quoted value equal to the value of the
soapAction attribute of soap:operation, if
present in the corresponding WSDL
description.

R2745 A HTTP request message must
contain a SOAP action a HTTP header field
with a quoted empty string value, if in the
corresponding WSDL description, the
SOAPAction of soapbind:operation is
either not present, or present with an empty
string as its value.

This check applies to request messages and
a soap:client error is returned.

12.19 Converting Between SOAP 1.1 and SOAP 1.2
Service Bus supports SOAP 1.1 and SOAP 1.2. A SOAP 1.1 proxy service can invoke a
SOAP 1.2 business service or the reverse. However, due to differences between SOAP 1.1
and 1.2, Service Bus cannot automatically convert between the two in every situation. Use
the following guidance to ensure proper conversion between SOAP 1.1 and 1.2.

• Service Bus automatically changes the SOAP namespace before invoking the business
service. If a fault comes back from the business service it is automatically changed to the
SOAP version of the proxy service. It is, however, up to the pipeline actions to map the
SOAP header-related XML attributes (like MustUnderstand) between the two versions. It
is also up to the pipeline actions to change the SOAP encoded namespace for encoded
envelopes.

• Automatic conversion from SOAP 1.1 to SOAP 1.2 works correctly only if the payload
uses doc/ or rpc/literal encoding.

Chapter 12
Converting Between SOAP 1.1 and SOAP 1.2

12-61

• In SOAP 1.1, the encodingStyle attribute is allowed on any element in the
envelope. In SOAP 1.2, the encodingStyle attribute is allowed only on child
elements of the Body. If the encodingStyle attribute in SOAP 1.1 is present outside
of child elements of Body, Header, and Fault detail, automatic conversion from
SOAP 1.1 to SOAP 1.2 can result in an invalid envelope. Perform SOAP
conversion in the proxy service pipeline to ensure a valid envelope.

• If the SOAP 1.1 and SOAP 1.2 services use different encoding styles, such as rpc/
encoded to doc/literal, you must perform SOAP conversion in the proxy service
pipeline.

Chapter 12
Converting Between SOAP 1.1 and SOAP 1.2

12-62

13
Working with Pipelines in Oracle Service Bus
Console

This chapter describes how to create and configure pipelines, or message flows, using the
Oracle Service Bus Console. Sections include adding and configuring pipeline pairs,
conditional branches, stages, operational branches, and route nodes.

• Introduction to the Oracle Service Bus Console Pipeline Designer

• Viewing and Editing Pipelines in the Console

• Cutting, Copying, and Pasting Stages and Route Nodes

• Configuring the Resequencer in the Console

• Creating Variable Structure Mappings

For more detailed information on pipelines and their components, see Modeling Message
Flow in Oracle Service Bus.

13.1 Introduction to the Oracle Service Bus Console Pipeline
Designer

The pipeline designer provides a graphical representation of the message flow as you create
and configure actions.

• Edit Message Flow Page on the Console

• Edit Stage Configuration Page on the Console

13.1.1 Edit Message Flow Page on the Console
Use the Edit Message Flow page to construct a message flow for a pipeline.

The left navigation pane of the Edit Message Flow page shows a tree view of the nodes and
objects in the pipeline. When the details of an object are defined on a separate page, you can
click the name of the object to display the associated page.

The right pane provides a field upon which to construct the pipeline. When a message flow
has not yet been defined, the pane includes a single Pipeline icon that signifies the starting
node for the pipeline. Click the icon to add pipeline pair nodes, route nodes, conditional
branches, operational branches, and error handling for the service.

When you add objects to the page, icons are displayed on the page to represent the objects.
The relationships among the objects are shown with lines and bounding boxes. Click an icon
on the Edit Message Flow page to display a menu of the actions you can perform on that
object. The options available on the menu may differ, depending on context. See Table 13-1
for a complete list of icons and options.

13-1

Table 13-1 Edit Message Flow Page Icons and Options

Icon Description Menu Options

Pipeline

The starting node for the
pipeline.

• Add Pipeline Pair - See How to Add
Pipeline Pairs to Pipelines.

• Add Route - See How to Add Route
Nodes to Pipelines in the Console.

• Add Conditional Branch - See How to
Add Conditional Branches to Pipelines in
the Console.

• Add Operational Branch - See How to
Add Operational Branches to Pipelines in
the Console.

• Add Service Error Handler - See Adding
Pipeline Error Handlers in the Console.

Pipeline Pair
Node

A pipeline pair node consists of
a request pipeline and a
response pipeline.

• Edit Name and Comments
• Add Pipeline Pair - See How to Add

Pipeline Pairs to Pipelines.
• Add Route - See How to Add Route

Nodes to Pipelines in the Console.
• Add Conditional Branch - See How to

Add Conditional Branches to Pipelines in
the Console.

• Add Operational Branch - See How to
Add Operational Branches to Pipelines in
the Console.

• Add REST Branch - See
How to Add REST Branches to Pipelines
in the Console

• Paste Route - This option is available
only if you have cut or copied a route
node and it is on the Clipboard.

Response
Pipeline

See pipeline pair node above. • Add Stage - See How to Add Stages to
Pipelines in the Console.

• Add Pipeline Error Handler - See
Adding Pipeline Error Handlers in the
Console.

Request
Pipeline

See pipeline pair node above. • Add Stage - See How to Add Stages to
Pipelines in the Console.

• Add Pipeline Error Handler - See
Adding Pipeline Error Handlers in the
Console.

Chapter 13
Introduction to the Oracle Service Bus Console Pipeline Designer

13-2

Table 13-1 (Cont.) Edit Message Flow Page Icons and Options

Icon Description Menu Options

Pipeline with
Error Handler

A pipeline with an error handler
defined for it.

• Edit Pipeline Error Handler - See
Adding Pipeline Error Handlers in the
Console.

• Delete Pipeline Error Handler

Route Node

Route node actions define the
handling of messages as they
flow through the route node.

• Edit Route - See How to Add Route
Nodes to Pipelines in the Console.

• Edit Name and Annotation
• Add Route Error Handler - See Adding

Route Node Error Handlers in the
Console.

Route Node
with Error
Handler

A route node with an error
handler defined for it.

• Edit Route Error Handler - See Adding
Route Node Error Handlers in the
Console.

• Delete Route Error Handler

Stage Node

A stage node is a container of
actions.

• Edit Stage - See How to Add Stages to
Pipelines in the Console.

• Edit Name and Annotation
• Add Stage - See How to Add Stages to

Pipelines in the Console.
• Add Stage Error Handler - See Adding

Stage Error Handlers in the Console.

Stage Node
with Error
Handler

A stage node with an error
handler defined for it.

• Edit Stage Error Handler - See Adding
Stage Error Handlers in the Console.

• Delete Stage Error Handler

Conditional
Branch Node

A conditional branch node
allows processing to proceed
down exactly one of several
possible paths.

• Edit Branch - See How to Add
Conditional Branches to Pipelines in the
Console.

• Edit Name and Annotation

Chapter 13
Introduction to the Oracle Service Bus Console Pipeline Designer

13-3

Table 13-1 (Cont.) Edit Message Flow Page Icons and Options

Icon Description Menu Options

Operational
Branch Node

An operational branch node
determines what branch to
follow based on specified
operations.

• Edit Branch - See How to Add
Operational Branches to Pipelines in the
Console.

• Edit Name and Annotation

REST Branch
Node

A REST branch determines
what branch to follow based on
media type consumed, relative
URI, or HTTP Verb.

• Edit Branch - See How to Add REST
Branches to Pipelines in the Console.

• Edit Name and Annotation

Branch Node

A branch node is one of the
alternative nodes defined by a
conditional branch node, an
operational branch node, or a
REST branch node.

• Add Pipeline Pair - See How to Add
Pipeline Pairs to Pipelines.

• Add Route - See How to Add Route
Nodes to Pipelines in the Console.

• Add Conditional Branch - See How to
Add Conditional Branches to Pipelines in
the Console.

• Add Operational Branch - See How to
Add Operational Branches to Pipelines in
the Console.

• Add REST Branch - See
How to Add REST Branches to Pipelines
in the Console

• Paste Route - This option is available
only if you have cut or copied a route
node and it is on the Clipboard.

Error Handler

An error handler provides the
logic for resending errors in the
pipeline.

• Add Service Error Handler - See Adding
Pipeline Error Handlers in the Console.

13.1.2 Edit Stage Configuration Page on the Console
Use the Edit Stage Configuration page to add actions to pipeline stages, error handler
stages, and route nodes in a pipeline.

• When nothing has yet been defined on the Edit Stage Configuration page, the only
object displayed is the Add an Action icon. Click that icon to get started.

• When a stage or a route node has already been configured, the actions and
objects defined for that stage or route node appear on the page. Edit the existing

Chapter 13
Introduction to the Oracle Service Bus Console Pipeline Designer

13-4

actions, as appropriate, or click any of the icons representing actions to add more actions
to the stage.

See Adding and Editing Pipeline Actions in the Console for instructions on working with all
the kinds of actions you can add to a stage.

13.2 Viewing and Editing Pipelines in the Console
The pipeline designer opens in a new browser window when you launch it from the n the
Oracle Service Bus Console.

• How to View and Edit Pipelines in the Console

• How to Add Shared Variables to Pipelines in the Console

• How to Add Pipeline Pairs to Pipelines

• How to Add Conditional Branches to Pipelines in the Console

• How to Add Operational Branches to Pipelines in the Console

• How to Add Stages to Pipelines in the Console

• How to Add Route Nodes to Pipelines in the Console

13.2.1 How to View and Edit Pipelines in the Console
Perform the following steps to access the pipeline designer from the Oracle Service Bus
Console.

To view and edit pipelines in the console:

1. If you have not already done so, click Create to create a new session or click Edit to
enter an existing session.

2. From the top right of the Oracle Service Bus Console window, click the Designer tab.
The Project Navigator appears.

3. Click All Projects, then click the name of your service bus project.

4. Click the pipeline resource for which you wish to edit the pipeline.

5. Click the Open Message Flow icon near the top right corner of the window.

• If no message flow has yet been created for the selected pipeline, the Edit Message
Flow page is displayed with a single icon on the page, the Pipeline icon. This is the
starting node for the pipeline message flow. Click this icon to begin constructing the
message flow.

• If the pipeline already has a message flow, the page contains a graphic
representation of the flow. Click the icons to view or edit the parts of the message
flow.

For information on constructing the message flow, see Working with Pipeline Actions in
Oracle Service Bus Console..

6. Click the Save icon to commit the updates in the current session.

7. To end the session and deploy the configuration to the runtime, click Activate in the top
right corner of the Oracle Service Bus Console window.

Chapter 13
Viewing and Editing Pipelines in the Console

13-5

13.2.2 How to Add Shared Variables to Pipelines in the Console
If two pipelines in a single call chain declare the same shared variable, then they read
and modify the same variable in the scope of the invocation call chain. In other words,
if pipeline P1 declares a shared variable var, and pipeline P1 invokes pipeline P2,
which also declares a shared variable var, then any changes to var in P1 are visible
in P2, and vice versa. A shared variable must be of the String, Boolean, or XML data
type.

When a pipeline receives and processes a message, all invoked pipelines that use a
shared variable, read and write the same value for the variable. A subsequent
message received by the proxy creates a new instance of the shared variable in the
invoked pipelines.

Shared variables work across local proxy invocations and split-join component
invocations. For example, say pipelines P1 and P2 declare a shared variable. Now, if
P1 invokes a local proxy service or split-join component, which in turn invokes P2,
then P1 and P2 continue to share the shared variable.

The following restrictions apply to using shared variables:

• System variables (such
as $body, $attachments, $operation, $inbound, $outbound) cannot be
shared.

• Variables cannot be shared across non-local proxy invocations. For example, say
a pipeline invokes an HTTP proxy service, the shared variable is not propagated
across this call.

• Variables cannot be shared between pipeline and split-join resources.

• Variables with Java and binary content types are not supported. For example, an
XML-typed variable that has <ctx:java-content/> in its XML structure, is not
supported as a shared variable.

Before you begin

These instructions assume you are already editing a pipeline in the Edit Message Flow
page, as explained in Viewing and Editing Pipelines in the Console.

To add a shared variable to a pipeline:

1. Click Expand Shared Variables section to expand the Shared Variables section
at the top left hand corner of the Edit Message Flow page.

2. Enter a name for the shared variable in the Variable field.

3. Click Add to add the shared variable to the pipeline.

13.2.3 How to Add Pipeline Pairs to Pipelines
A pipeline can include zero or more pipeline pair nodes: request and response
pipelines for the pipeline (or for the operations on the service), and error handler
pipelines that can be defined for stages, pipelines, and the service. Pipelines can
include one or more stages, which in turn include actions.

Chapter 13
Viewing and Editing Pipelines in the Console

13-6

Before you begin

These instructions assume you are already editing a pipeline in the Edit Message Flow page,
as explained in Viewing and Editing Pipelines in the Console.

To add a pipeline pair to a pipeline:

1. Click the Pipeline icon, then click Add Pipeline Pair.

2. To change the default name and add a description for the pipeline pair node, do the
following:

a. Click the Pipeline Pair Node icon, then click Edit Name and Comments.

b. Change the name and description, as desired.

c. Click Save.

Note:

When you rename a pipeline or a route node, the number of messages
displayed on the Dashboard page in the Monitoring module may not
correlate with those of other components due to the pipeline counters being
reset to zero. This is because Service Bus treats the rename as a delete
and recreate action. The numbers should correlate again after a time period
equal to the service's monitoring interval has elapsed.

3. To add stages to the pipeline, see How to Add Stages to Pipelines in the Console.

4. To add actions to stages in the pipeline. See Adding and Editing Pipeline Actions in the
Console.

5. Click Save to commit the updates in the current session.

6. To end the session and deploy the configuration to the runtime, click Activate in the top
right corner of the Oracle Service Bus Console window.

13.2.4 How to Add Conditional Branches to Pipelines in the Console
A branch node allows processing to proceed along exactly one of several possible paths.
Branching is driven by an XPath-based switch table. Each branch in the table specifies a
condition (for example, <500) that is evaluated in order down the pipeline against a single
XPath expression (for example, ./ns: PurchaseOrder/ns:totalCost on $body). Whichever
condition is satisfied first determines which branch is followed. If no branch condition is
satisfied, then the default branch is followed. A branch node may have several descendants
in the pipeline: one for each branch, including the default branch.

If the proxy service is not based on a WSDL file and receives multiple document types as
input, consider using a conditional branch node.

Conditional branching is driven by a lookup table with each branch tagged with a simple, but
unique, string value. A variable in the message context is designated as the lookup variable
for that node, and at runtime, its value is used to determine which branch to follow. If no
branch matches the value of the lookup variable, the default branch is followed. You should
design the pipeline in such a way that the value of the lookup variable is set before reaching
the branch node.

Chapter 13
Viewing and Editing Pipelines in the Console

13-7

Before you begin

These instructions assume you are already editing a pipeline in the Edit Message Flow
page, as explained in Viewing and Editing Pipelines in the Console.

To add a conditional branch to a pipeline:

1. Click a Pipeline Pair Node icon or a Branch Node icon, then click Create
Conditional Branch. The conditional branch node is added, and any existing
nodes after the inserted branch node are moved to the default branch of the new
conditional branch node.

2. To change the default name and add a description for the branch node, do the
following:

a. Click the Conditional Branch icon, then click Edit Name and Comments.

b. Change the name and description, as desired.

c. Click Save.

3. To add branch definitions, click the Conditional Branch icon, then click Edit
Branch. The Edit Branch Node page is displayed.

4. Do the following:

a. In the Selected Path field, click Edit to add an XPath expression for
specifying the path. See Creating and Editing Inline XQuery and XPath
Expressions.

b. In the Variable field, enter a context variable.

c. From the Operator field, select a comparison operator.

d. In the Value field, enter a value for the branch.

e. In the Label field, enter a label for the branch.

5. Optionally, under Options:

• Click Add a New Branch to add a new branch definition to this branch node.

• Click Delete this Branch to delete a branch definition.

• Click Move Branch Up or click Move Branch Down to change the positions
of branch definitions. This option displays only when more than one branch
definition exists.

6. Click Save to commit the updates in the current session.

7. On the Edit Message Flow page, continue to construct the pipeline, as described
in Viewing and Editing Pipelines in the Console.

8. Click Save to commit the updates in the current session.

9. To end the session and deploy the configuration to the runtime, click Activate in
the top left corner of the Oracle Service Bus Console window.

13.2.5 How to Add Operational Branches to Pipelines in the Console
When pipelines define Web Services Description Language (WSDL)-based proxy
services, operation-specific processing is required. Instead of configuring a branching
node based on operations manually, Service Bus provides a minimal configuration
branching node that automatically branches based on operations. In other words,

Chapter 13
Viewing and Editing Pipelines in the Console

13-8

when you create an operational branch node in a pipeline, you can quickly build your
branching logic based on the operations defined in the WSDL file because the Oracle Service
Bus Console presents those operations in the branch node configuration page.

A branch node allows processing to proceed along exactly one of several possible paths.
Branching is driven by an XPath-based switch table. Each branch in the table specifies a
condition (for example, <500) that is evaluated in order down the pipeline against a single
XPath expression (for example, ./ns: PurchaseOrder/ns:totalCost on $body). Whichever
condition is satisfied first determines which branch is followed. If no branch condition is
satisfied, then the default branch is followed. A branch node may have several descendants
in the pipeline: one for each branch, including the default branch.

Before you begin

These instructions assume you are already editing a pipeline in the Edit Message Flow page,
as explained in Viewing and Editing Pipelines in the Console.

To add an operation branch to a pipeline:

1. Click a Pipeline Pair Node icon or a Branch Node icon, then click Create Operational
Branch. The operational branch node is added, and any existing nodes after the inserted
branch node are moved to the default branch of the new operational branch node.

2. To change the default name and add a description for the branch node, do the following:

a. Click the Operational Branch icon, then click Edit Name and Comments.

b. Change the name and description, as desired.

c. Click Save.

3. To add branch definitions, click the Operational Branch icon, then click Edit Branch.
The Edit Branch Node page is displayed.

4. In the Operation Branch Definitions panel, select a service operation.

5. Optionally, under Options:

• Click Add a New Branch to add a new branch definition to this branch node.

• Click Delete this Branch to delete a branch definition.

• Click Move Branch Up or click Move Branch Down to change the positions of
branch definitions. This option displays only when more than one branch definition
exists.

6. Click Save.

7. On the Edit Message Flow page, continue to construct the pipeline, as described in
Viewing and Editing Pipelines in the Console.

8. Click Save to commit the updates in the current session.

9. To end the session and deploy the configuration to the runtime, click Activate in the top
left corner of the Oracle Service Bus Console window.

13.2.6 How to Add REST Branches to Pipelines in the Console

These instructions assume you are already editing a pipeline in the Edit Message Flow page,
as explained in Viewing and Editing Pipelines in the Console.

To add a REST branch to a pipeline:

Chapter 13
Viewing and Editing Pipelines in the Console

13-9

1. Click a Pipeline Pair Node icon or a Branch Node icon, then click Create REST
Branch. The REST branch node is added, and any existing nodes after the
inserted branch node are moved to the default branch of the new REST branch
node.

2. To change the default name and add a description for the branch node, do the
following:

a. Click the REST Branch icon, then click Edit Name and Comments.

b. Change the name and description, as desired.

c. Click Save.

3. To add branch definitions, click the REST Branch icon, then click Edit Branch.
The Edit Branch Node page is displayed.

4. In the Label field, enter a label for the branch.

Note:

If the REST branch label contains a parameterized path expression,
such as /name/{PlaceName}/zip/{ZipCode}, as part of the execution of
REST branch, message context variables PlaceName and ZipCode are
automatically defined with the values of the actual path segments at
runtime, for example, Pittsburgh and 15217. The values of these
parameters are extracted from inbound HTTP relative path metadata.

The scope of the variables is all of the actions nested in the
corresponding branch

5. Configure at least one of the following branch properties:

• Media Types: Enter the name of a media type sent by the client request
consumed by this branch, such as application/xml or application/json.
You can enter multiple, comma-separated media types in this field.

Note:

Wildcards on type/subtype are supported. For instance,
application/xml, examples/*, and */xml are supported. Partial
wildcards, such as examples/*+xml, are not supported.

• Path: Enter a relative URI patch for client requests consumed by this branch,
such as /dogs/{id}.

• Verb: Select the HTTP Verb for client requests consumed by this branch.

6. Optionally, under Options:

• Click Add a New Branch to add a new branch definition to this branch node.

• Click Delete this Branch to delete a branch definition.

• Click Move Branch Up or click Move Branch Down to change the positions
of branch definitions. This option displays only when more than one branch
definition exists.

Chapter 13
Viewing and Editing Pipelines in the Console

13-10

7. Click Save.

8. On the Edit Message Flow page, continue to construct the pipeline, as described in
Viewing and Editing Pipelines in the Console.

9. Click Save to commit the updates in the current session.

10. To end the session and deploy the configuration to the runtime, click Activate in the top
left corner of the Oracle Service Bus Console window.

13.2.7 How to Add Stages to Pipelines in the Console
Before you begin

These instructions assume you are already editing a pipeline in the Edit Message Flow page,
as explained in Viewing and Editing Pipelines in the Console.

To add a stage to a pipeline:

1. If necessary, click the plus sign to the left of the Pipeline Pair Node icon to expand it. A
pipeline pair contains a Request Pipeline and a Response Pipeline.

2. Click the pipeline to which you want to add the stage, then click Add Stage.

3. To change the default name and add a description for the stage, do the following:

a. Click the Stage icon, then click Edit Name and Comments.

b. Change the name and description, as desired.

c. Click Save.

4. To add actions to the stage, click the Stage icon, then click Edit Stage. See Adding and
Editing Pipeline Actions in the Console.

5. To add error handling to the stage, click the Stage icon, then click Add Stage Error
Handler. See Adding Error Handlers in the Console. The Edit Message Flow page is
displayed.

6. Continue to construct the pipeline, as described in Viewing and Editing Pipelines in the
Console.

7. Click Save to commit the updates in the current session.

8. To end the session and deploy the configuration to the runtime, click Activate in the top
right corner of the Oracle Service Bus Console window.

13.2.8 How to Add Route Nodes to Pipelines in the Console
Before you begin

These instructions assume you are already editing a pipeline in the Edit Message Flow page,
as explained in Viewing and Editing Pipelines in the Console.

To add a route node to a pipeline:

1. Click the Pipeline Pair Node icon of a pipeline pair, then click Add Route.

2. To change the default name and add a description for the route node, click the Route
Node icon, then click Edit Name and Comments. Change the name and description, as
desired, then click Save.

Chapter 13
Viewing and Editing Pipelines in the Console

13-11

Note:

When you rename a pipeline or a route node, the number of messages
displayed on the Dashboard page in the Monitoring module may not
correlate with those of other components due to the pipeline counters
being reset to zero. This is because Service Bus treats the rename as a
delete and re-create action. The numbers should correlate again after a
time period equal to the service's monitoring interval has elapsed.

3. To add actions to the route node, click the Route Node icon, then click Edit
Route. The Edit Message Flow page is displayed. See the following sections for
information about the actions you can add to route nodes:

• Adding If-Then Actions in the Console

• Adding Dynamic Routing to Route Nodes in the Console

• Adding Routing Actions to Route Nodes in the Console

• Adding Routing Tables to Route Nodes in the Console

• Adding Error Handlers in the Console

4. On the Edit Message Flow page, continue to construct the pipeline, as described
in Viewing and Editing Pipelines in the Console.

5. Click Save to commit the updates in the current session.

6. To end the session and deploy the configuration to the runtime, click Activate in
the top right corner of the Oracle Service Bus Console window.

13.3 Cutting, Copying, and Pasting Stages and Route
Nodes

You can cut, copy, and paste stages and route nodes.

• To cut a stage or a route node, click its icon and select Cut or Copy.

• To paste a stage that you cut or copied from a different pipeline pair within the
message flow of this pipeline or from the message flow of a different pipeline, do
one of the following:

– Click the Request Pipeline or Response Pipeline icon, then click Paste
Stage.

– Click a Stage icon in a pipeline, then click Paste.

• To paste a route node that you cut or copied from another pipeline, click the
Pipeline Pair Node icon for the pipeline pair, then click Paste Route.

13.4 Configuring the Resequencer in the Console
The resequencer in Service Bus rearranges a stream of related but out-of-sequence
messages into a sequential order.

When incoming messages arrive, they can be in a random order. The resequencer
orders the messages based on sequential or chronological information, and then

Chapter 13
Cutting, Copying, and Pasting Stages and Route Nodes

13-12

sends the messages to the target services in an orderly manner. The sequencing is
performed based on the sequencing strategy selected.

You can configure the resequencer inside a pipeline component. Pipelines with the following
service types are supported:

• WSDL: Resequencing is available for operations with only request type.

• Message Type: The request message type must be XML, and the response message
type must be None.

Note:

The resequencer does not support Any XML and Any SOAP service types. For
WSDL-based services, the WSDL file must be one-way; that is, it cannot contain
output elements. For information about using generated WSDL files with
resequencing pipelines, see How to Export a WSDL File in the Console.

13.4.1 How to Configure Resequencing in a Pipeline in the Console
This section describes how to configure the resequencer in a pipeline using Oracle Service
Bus Console.

To enable resequencing in a pipeline component:

1. If you have not already done so, click Create to create a new session or click Edit to
enter an existing session.

2. From the top right of the Oracle Service Bus Console window, click the Designer tab.
The Project Navigator appears.

3. Click All Projects, then click the name of your service bus project.

4. Click the pipeline resource for which you wish to configure the resequencer. The Pipeline
Definition page appears.

5. Click the Resequencer tab.

6. Select Enable Resequencing to enable resequencing for the pipeline. Figure 13-1
shows the Enable Resequencing option on the Pipeline Definition Resequencing page.

Figure 13-1 Enabling the Resequencer in Oracle Service Bus Console

7. Select the Resequence Level. Choose Pipeline to configure resequencing at the
component level. Choose Operations to configure resequencing at the operation level.

Chapter 13
Configuring the Resequencer in the Console

13-13

See How to Select the Resequence Level in the Console for more information on
resequence levels.

If you select Operations, you get the option to configure resequencing for each
operation separately.

8. Select the Resequence Mode. If you are configuring resequencing at the
Operations level, then you can select a Resequence Mode corresponding to
each operation. See How to Configure the Resequencing Mode in the Console for
more information on the various resequencing options.

Depending on the Resequence Mode you select, you get options corresponding
to that mode. For example, selecting the Standard mode requires you to select
values for Group Expression, Id Expression, and so on. Figure 13-2 shows the
options displayed for the Standard mode.

Figure 13-2 Configuration Options Displayed for Standard Mode
Resequencing

9. Select a Dispatch Policy, which specifies the Work Manager to use. The default
Work Manager is used if no other Work Manager exists.

10. Click the Save icon to commit your changes.

13.4.2 How to Select the Resequence Level in the Console
You can define resequencing either at the pipeline level or the operation level. The
Resequence Level can have the following values:

• Pipeline: A common configuration specified at the component level is used to
resequence all messages. If a component has multiple operations, then messages
for each operation are sequenced separately using the common component
configuration.

Component-level resequencing is allowed only when all the operations of the
pipeline component support request one-way messages. If only a subset of
operations support request one-way messages, then you can individually specify
operation-level resequencing for these operations.

• Operation: For a WSDL-based pipeline, resequencing can be configured at the
operation level. Each operation can have a different resequencer configuration.

Chapter 13
Configuring the Resequencer in the Console

13-14

Only operations supporting request one-way messages can be resequenced. Non-WSDL
pipelines cannot have resequencer configured at the operation level.

13.4.3 How to Configure the Resequencing Mode in the Console
This section provides instructions on how to configure various resequencing modes. See
"Resequencing Order" in Developing SOA Applications with Oracle SOA Suite to learn about
the various resequencing modes. By default, the group ID has a character limit of 1000; the
ID has a character limit of 100.

13.4.3.1 Configuring a Standard Resequencer
To configure a standard resequencer:

1. In the Pipeline Definition Resequencing page, select Standard from the Resequence
Mode drop-down list. If you are configuring resequencing at the operation level, select
Standard from the Resequence Mode drop-down list for the operation.

The fields related to standard resequencing configuration appear on the page. See
Figure 13-2 for more details.

2. Fill in the fields listed in Table 13-2.

Table 13-2 Standard Resequencing Options

Field Name Description Default
Value

Mandatory

Group
Expression

An XQuery expression that points to the field in the
incoming message on which grouping is done. If you do
not enter a value, then all messages are put in one
default group.

Click the Expression Builder icon on the right to invoke
the XQuery/XSLT Expression Editor.

N/A N

ID Expression An XQuery expression that points to the field in the
incoming message on which resequencing is done.

Click the Expression Builder icon on the right to invoke
the XQuery/XSLT Expression Editor.

N/A Y

Start The starting number of the ID sequence. 1 N

Increment The increment of the ID sequence. 1 N

Timeout The time period in seconds to wait for an expected
message. The resequencer locks the group as timed-
out if a time out occurs.

The default value of 0 means that the timeout never
happens for a group by default.

0 N

Chapter 13
Configuring the Resequencer in the Console

13-15

Note:

In the standard resequencer use cases in which the time interval between
the right message sequences vary significantly, configuring the right timeout
value may not be always feasible. Configuring a lower resequencer time out
value may result in that group getting timed out and the resequencer not
processing subsequent messages. You can set the value to "0" in such
situations. Configuring these system properties could also improve the
overall performance of the resequencer in such cases.

13.4.3.2 Configuring a FIFO Resequencer
To configure a FIFO resequencer:

1. In the Pipeline Definition Resequencing page, select FIFO from the Resequence
Mode drop-down list. If you are configuring resequencing at the operation level,
select FIFO from the Resequence Mode drop-down list for the operation.

The fields related to FIFO resequencing configuration appear on the page.

2. In the Group Expression field, enter an XQuery expression pointing to the field in
the incoming message on which grouping is performed.

Click the Expression Builder icon on the right to invoke the XQuery/XSLT
Expression Editor.

13.4.3.3 Configuring a Best Effort Resequencer
To configure a best effort resequencer:

1. In the Pipeline Definition Resequencing page, select Best Effort from the
Resequence Mode drop-down list. If you are configuring resequencing at the
operation level, select Best Effort from the Resequence Mode drop-down list for
the operation.

The fields related to Best Effort resequencing configuration appear on the page.

2. Fill in the fields listed in Table 13-3 to configure the best effort resequencer.

Table 13-3 Best Effort Resequencing Options

Field Name Description Default
Value

Mandatory

Group
Expression

An XQuery expression that points to the field in
the incoming message on which grouping is
performed.If no value is entered here, then all
messages are considered to be in one default
group.

Click the Expression Builder icon on the right to
invoke the XQuery/XSLT Expression Editor.

N/A N

Chapter 13
Configuring the Resequencer in the Console

13-16

Table 13-3 (Cont.) Best Effort Resequencing Options

Field Name Description Default
Value

Mandatory

ID
Expression

An XQuery expression that points to the field in
the incoming message that contains the ID on
which resequencing is performed.

Click the Expression Builder icon on the right to
invoke the XQuery/XSLT Expression Editor.

N/A Y

Data Type The data type of the sequence ID. The ordering
process is based on the data type. Supported
values are Date/Time and Numeric.

Numeric Y

Max Rows Number of in-sequence messages that the
resequencer should pick from the data store at a
time. This must be a positive integer value.

You must specify Max Rows or Time Window
(explained below), but not both.

5 N

Time
Window

The length of time in minutes to wait after a
message arrives before selecting messages from
the data store for resequencing. The default
value of 0 means no wait.

You must specify a Time Window or Max Rows
(described above), but not both.

0 N

13.5 Creating Variable Structure Mappings
These sections describe how to create several types of variable structure mappings.

• Sample WSDL Document

• Creating the Resources You Need for the Examples

• Example 1: Selecting a Predefined Variable Structure

• Example 2: Mapping a Variable to a Type

• Example 3: Mapping a Variable to an Element

• Example 4: Mapping a Variable to a Child Element

• Example 5: Mapping a Variable to a Business Service

• Example 6: Mapping a Child Element to Another Child Element

13.5.1 Sample WSDL Document
This sample WSDL document is used in most of the examples in this section. You need to
save this WSDL document as a resource in your configuration. For more information, see
Creating the Resources You Need for the Examples.

Example - Sample WSDL Document

<definitions
 name="samplewsdl"
 targetNamespace="http://example.org"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:s0="http://www.oracle.com"

Chapter 13
Creating Variable Structure Mappings

13-17

 xmlns:s1="http://example.org"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/">
<types>
 <xs:schema
 attributeFormDefault="unqualified"
 elementFormDefault="qualified"
 targetNamespace="http://www.oracle.com"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="PO" type="s0:POType"/>
 <xs:complexType name="POType">
 <xs:all>
 <xs:element name="id" type="xs:string"/>
 <xs:element name="name" type="xs:string"/>
 </xs:all>
 </xs:complexType>
 <xs:element name="Invoice" type="s0:InvoiceType"/>
 <xs:complexType name="InvoiceType">
 <xs:all>
 <xs:element name="id" type="xs:string"/>
 <xs:element name="name" type="xs:string"/>
 </xs:all>
 </xs:complexType>
</xs:schema>
</types>
<message name="POTypeMsg">
 <part name="PO" type="s0:POType"/>
</message>
<message name="InvoiceTypeMsg">
 <part name="InvReturn" type="s0:InvoiceType"/>
</message>

<portType name="POPortType">
 <operation name="GetInvoiceType">
 <input message="s1:POTypeMsg"/>
 <output message="s1:InvoiceTypeMsg"/>
 </operation>
</portType>
<binding name="POBinding" type="s1:POPortType">
<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="GetInvoiceType">
 <soap:operation soapAction="http://example.com/GetInvoiceType"/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
</binding>
</definitions>

13.5.2 Creating the Resources You Need for the Examples
To make use of the examples that follow, save the sample WSDL document as a
resource in your configuration and create the sample business service and proxy
service that use the sample WSDL document.

The instructions that follow tell how to accomplish the tasks in the Oracle Service Bus
Console:

Chapter 13
Creating Variable Structure Mappings

13-18

• Save the WSDL File as a Resource

• Create a Proxy Service and Pipeline

• Build a Message Flow for the Sample Pipeline

• Create a Business Service

13.5.2.1 Save the WSDL File as a Resource
Perform the following steps:

1. If you have not already done so, click Create to create a new session or click Edit to
enter an existing session.

2. From the top right of the Oracle Service Bus Console window, click the Designer tab.
The Project Navigator appears.

3. Expand the All Projects node by clicking the Expand (arrow) icon before it.

4. Right-click the project name to which you wish to add the WSDL file. From the context
menu, click Create, and then click Resource.

5. From the Resource Gallery, click Interfaces, and then click WSDL. The Create WSDL
dialog appears.

6. In the Resource Name field, enter SampleWSDL. This is a required field.

7. In the Description field, enter a description for the WSDL resource. This is optional.

8. Click Choose File and select the WSDL sample file.

9. Click Create to create the WSDL resource.

13.5.2.2 Create a Proxy Service and Pipeline
Perform the following steps to create a proxy service and pipeline that use the sample WSDL
document:

1. In the Project Navigator, select the project to which you want to add a pipeline, and then
click the down arrow next to the Create icon, and then click Resource.

2. Click Services, click Pipeline, and then click OK.

The Create Pipeline dialog appears.

3. In the Pipeline Name field of the General section, enter PipelinewithSampleWSDL. This
field is mandatory.

Optionally, specify a Description for the pipeline.

4. Under Service Type, select WSDL Based Service.

5. Click the Browse icon and select SampleWSDL from the list of WSDL files. You may need
to click Search to search for the WSDL file.

6. Select Expose as Proxy Service to create a proxy service corresponding to the pipeline.

7. In the Name field, enter ProxywithSampleWSDL.

8. Click Create to create the pipeline and proxy service. The pipeline is created and opened
up for editing.

Chapter 13
Creating Variable Structure Mappings

13-19

13.5.2.3 Build a Message Flow for the Sample Pipeline
Perform the following steps:

1. In the Project Navigator, click the pipeline PipelinewithSampleWSDL to open it.

2. Click the Open Message Flow icon, in the top right corner, to start editing the
message flow for the pipeline. The Edit Message Flow page appears.

3. In the Edit Message Flow page, click the PipelinewithSampleWSDL icon, then
click Add Pipeline Pair. PipelinePairNode1 is displayed, which includes request
and response pipelines.

4. Click the Request Pipeline icon, then click Add Stage. The Stage Stage1 is
displayed.

5. Click Save. The basic message flow is created for the PipelinewithSampleWSDL
pipeline.

13.5.2.4 Create a Business Service
Perform the following steps to create a business services that uses the sample WSDL
document:

1. In the Project Navigator, select the project to which you want to add the business
service.

2. From the Create drop-down list, select Resource.

3. Ensure that Services is selected, and then click Business Service. Ensure that
Web Service is selected, click SOAP, and then click OK.

The Create Business Service wizard appears.

4. In the Resource Name field, enter BusinesswithSampleWSDL. This is a required
field.

5. Under Service Definition, select WSDL Based Service.

6. Click the Browse icon, next to the Name field, and select SampleWSDL from the list
of WSDL files. You may need to click Search to search for the WSDL file.

7. Click Next. Click Create. The business service is created.

You are now ready to use the examples—continue in Example 1: Selecting a
Predefined Variable Structure.

13.5.3 Example 1: Selecting a Predefined Variable Structure
In this example, you select a predefined variable structure using the proxy service
ProxyWithSampleWSDL, which has a service type WSDL Web Service that uses the
binding POBinding from SampleWSDL.

The pipeline message flow needs to know the structure of the message in order to
manipulate it. To achieve this, Service Bus automatically provides a predefined
structure that maps the body variable to the SOAP body structure as defined by the
WSDL file of the proxy service for all the messages in the interface. This predefined
structure mapping is labeled body.

Chapter 13
Creating Variable Structure Mappings

13-20

Note:

This predefined structure is also supported for messaging services with a typed
interface.

To select a predefined variable structure:

In the Variable Structures panel on the XQuery Expression Editor page, select body from the
list of built-in structures.

The variable structure body is displayed in Figure 13-3.

Figure 13-3 Variable Structures—body

13.5.4 Example 2: Mapping a Variable to a Type
Suppose the proxy service ProxyWithSampleWSDL invokes a service callout to the business
service BusinessWithSampleWSDL, which also has a service type WSDL Web Service that
uses the binding POBinding from SampleWSDL. The operation GetInvoiceType is invoked.

In this example, the pipeline needs to know the structure of the response parameter in order
to manipulate it. To achieve this, you can create a new variable structure that maps the
response parameter variable to the type InvoiceType.

To map a variable to a type:

1. In the Variable Structures panel, click Add New Structure. Additional fields are displayed
in Figure 13-4.

Chapter 13
Creating Variable Structure Mappings

13-21

Figure 13-4 Variable Structures—Add a New Structure

2. Select the XML Type.

3. In the Structure Label field, enter InvoiceType as the display name for the
variable structure you want to create. This display name enables you to give a
meaningful name to the structure so you can recognize it at design time but it has
no impact at runtime.

4. In the Structure Path field, enter $InvoiceType as the path of the variable at
runtime.

5. To select the type InvoiceType, do the following:

a. Under the Type field, select the appropriate radio button, then select WSDL
Type from the list.

b. Click Browse. The WSDL Browser is displayed.

c. In the WSDL Browser, select SampleWSDL, then select InvoiceType under
Types in the Select WSDL Definitions pane.

d. Click Submit. InvoiceType is displayed under your selection WSDL Type.

6. Click Add. The new variable structure InvoiceType is included under XML Type in
the list of variable structures.

The variable structure InvoiceType is displayed in Figure 13-5.

Chapter 13
Creating Variable Structure Mappings

13-22

Figure 13-5 Variable Structures—InvoiceType

13.5.5 Example 3: Mapping a Variable to an Element
Suppose a temporary variable has the element Invoice described in the SampleWSDL WSDL
file. In this example, the ProxyWithSampleWSDL pipeline needs to access this variable. To
achieve this, you can create a new variable structure that maps the variable to the element
Invoice.

To map a variable to an element:

1. In the Variable Structures panel, click Add New Structure.

2. Make sure you select the XML Type.

3. In the Structure Label field, enter Invoice as the meaningful display name for the
variable structure you want to create.

4. In the Structure Path field, enter $Invoice as the path of the variable structure at
runtime.

5. To select the element Invoice, do the following:

a. For the Type field, make sure you select the appropriate radio button.Then select
WSDL Element.

b. Click Browse.

c. In the WSDL Browser, select SampleWSDL, then select Invoice under Elements in
the Select WSDL Definitions pane.

d. Click Submit. Invoice is displayed under your selection WSDL Element.

6. Click Add. The new variable structure Invoice is included under XML Type in the list of
variable structures.

The variable structure Invoice is displayed in Figure 13-6.

Chapter 13
Creating Variable Structure Mappings

13-23

Figure 13-6 Variable Structures—Invoice

13.5.6 Example 4: Mapping a Variable to a Child Element
The ProxyWithSampleWSDL proxy service routes to the document style Any SOAP
business service that returns the Purchase Order in the SOAP body. In this example, the
ProxyWithSampleWSDL pipeline must then manipulate the response. To achieve this,
you can create a new structure that maps the body variable to the PO element, and
specify the PO element as a child element of the variable. You need to specify it as a
child element because the body variable contains the SOAP Body element and the PO
element is a child of the Body element.

To map a variable to a child element:

1. In the Variable Structures panel, click Add New Structure.

2. Make sure you select the XML Type.

3. In the Structure Label field, enter body to PO as the meaningful display name for
the variable structure you want to create.

4. In the Structure Path field, enter $body as the path of the variable structure at
runtime.

5. To select the PO element:

a. Under the Type field, make sure you select the appropriate radio button, and
then select WSDL Element.

b. Click Browse.

c. In the WSDL Browser, select SampleWSDL, then select PO under Elements in
the Select WSDL Definitions pane.

d. Click Submit.

6. Select the Set as child check box to set the PO element as a child of the body to
PO variable structure.

7. Click Add. The new variable structure body to PO is included under XML Type in
the list of variable structures.

The variable structure body to PO is displayed in Figure 13-7.

Chapter 13
Creating Variable Structure Mappings

13-24

Figure 13-7 Variable Structures—body to PO

13.5.7 Example 5: Mapping a Variable to a Business Service
The ProxyWithSampleWSDL proxy service routes the message to the
BusinessWithSampleWSDL business service, which also has a service type WSDL Web
Service that uses the binding POBinding from SampleWSDL. In this example, the pipeline must
then manipulate the response. To achieve this, you can define a new structure that maps the
body variable to the BusinessWithSampleWSDL business service. This results in a map of the
body variable to the SOAP body for all the messages in the WSDL interface of the service.

Note:

This mapping is also supported for messaging services with a typed interface.

To map a variable to a business service:

1. In the Variable Structures panel, click Add New Structure.

2. Select Service Interface.

3. In the Structure Label field, enter BusinessService as the meaningful display name for
the variable structure.

4. In the Structure Path field, $body is already set as the default. This is the path of the
variable structure at runtime.

5. To select the business service, do the following:

a. Under the Service field, click Browse. The Service Browser is displayed.

b. In the Service Browser, select the BusinessWithSampleWSDL business service, then
click Submit. The business service is displayed under the Service field.

c. In the Operation field, select All.

6. Click Add. The new variable structure BusinessService is included under Service
Interface in the list of variable structures.

The variable structure BusinessService is displayed in Figure 13-8.

Chapter 13
Creating Variable Structure Mappings

13-25

Figure 13-8 Variable Structures—Business Service

13.5.8 Example 6: Mapping a Child Element to Another Child Element
Modify the SampleWSDL so that the ProxyWithSampleWSDL proxy service receives a
single attachment. The attachment is a Purchase Order. In this example, the pipeline
must then manipulate the Purchase Order. To achieve this, you can define a new
structure that maps the body element in $attachments to the PO element, which is
specified as a child element. The body element is specified as a variable path of the
form:

$attachments/ctx:attachment/ctx:body

You can select and copy the body element from the predefined attachments
structure, paste this element as the variable path to be mapped in the new mapping
definition.

To map a child element to another child element:

1. In the Variable Structures panel, select attachments from the list of built-in
structures.

The variable structure attachments is displayed in Figure 13-9.

Chapter 13
Creating Variable Structure Mappings

13-26

Figure 13-9 Variable Structures—attachments

2. Select the body child element in the attachments structure. The variable path of the body
element is displayed in the Property Inspector on the right side of the page:

$attachments/ctx:attachment/ctx:body

3. Copy the variable path of the body element.

4. In the Variable Structures panel, click Add New Structure.

5. Select the XML Type.

6. In the Structure Label field, enter PO attachment as the meaningful display name for this
variable structure.

7. In the Structure Path field, paste the variable path of the body element:

$attachments/ctx:attachment/ctx:body

This is the path of the variable structure at runtime.

8. To select the PO element:

a. Under the Type field, make sure the appropriate radio button is selected, then select
WSDL Element.

b. Click Browse.

c. In the WSDL Browser, select SampleWSDL, then select PO under Elements in the
Select WSDL Definitions pane.

d. Click Submit.

9. Select the Set as child check box to set the PO element as a child of the body element.

10. Click Add. The new variable structure PO attachment is included under XML Type in the
list of variable structures.

11. If there are multiple attachments, add an index to the reference when you use fields from
this structured variable in your XQueries. For example, if you drag the PO field to the
XQuery field, but as PO will be the second attachment, change the inserted value from

$attachments/ctx:attachment/ctx:body/oracle:PO/oracle:id

to

$attachments/ctx:attachment[2]/ctx:body/oracle:PO/oracle:id

Chapter 13
Creating Variable Structure Mappings

13-27

14
Working with Pipeline Actions in Oracle
Service Bus Console

This chapter describes how to add different types of actions to pipelines, using the Oracle
Service Bus Console, such as route, publish, service callout, transport headers, conditional
actions, error actions, and message transformation actions.

Actions are the elements of pipeline stages, error handler stages, route nodes, and branch
nodes that determine how messages are to be defined as they flow through a pipeline.

This chapter includes the following sections:

• Adding and Editing Pipeline Actions in the Console

• Adding Publish Actions in the Console

• Adding Publish Table Actions in the Console

• Adding Dynamic Publish Actions in the Console

• Adding Routing Options Actions in the Console

• Adding Service Callout Actions in the Console

• Adding Transport Header Actions in the Console

• Adding Dynamic Routing to Route Nodes in the Console

• Adding Routing Actions to Route Nodes in the Console

• Adding Routing Tables to Route Nodes in the Console

• Adding For-Each Actions in the Console

• Adding If-Then Actions in the Console

• Adding Raise Error Actions in the Console

• Adding Reply Actions in the Console

• Adding Resume Actions in the Console

• Adding Skip Actions in the Console

• Adding Assign Actions in the Console

• Adding Delete Actions in the Console

• Adding Insert Actions

• Adding Java Callout Actions in the Console

• Adding JavaScript Actions in the Console

• Adding MFL Translate Actions in the Console

• Adding nXSD Translate Actions

• Adding Rename Actions in the Console

• Adding Replace Actions in the Console

14-1

• Adding Validate Actions in the Console

• Adding Alert Actions in the Console

• Adding Log Actions in the Console

• Adding Report Actions in the Console

• Adding Error Handlers in the Console

• Disabling an Action or a Stage in the Console

14.1 Adding and Editing Pipeline Actions in the Console
Actions are the elements of pipeline stages, error handler stages, route nodes, and
branch nodes that determine how messages are to be defined as they flow through a
proxy service.

These instructions assume that you are already editing a pipeline in the Edit Message
Flow page, as explained in Viewing and Editing Pipelines in the Console.

They also assume that you have already added a pipeline stage, a route node, and/or
an error handler stage. See:

• How to Add Pipeline Pairs to Pipelines

• How to Add Stages to Pipelines in the Console

• Adding Pipeline Error Handlers in the Console

To add an action to a pipeline:

1. Select the component to which you want to add an action. For example, click the
Stage icon, then click Edit Stage, or click the Route Node icon, then click Edit
Route.

2. Depending on whether actions have already been added to the stage or to the
route node, do one of the following:

• If no actions have yet been added, the Edit Stage Configuration page displays
only the Add an Action icon. Click that icon, then select an action type.

• If one or more actions have already been added, the Edit Stage Configuration
page displays one or more icons representing those actions, for example, a
Publish icon or a Routing icon. Click the appropriate icon, click Add an
Action, then select an action type.

• Some actions, such as request and response actions in publish actions,
include an Add an Action link where an action is appropriate. Click that icon,
then select an action type.

There are no restrictions on what actions can be chained together in a pipeline.

Table 14-1 through Table 14-4 list the actions you can configure for pipelines.

Chapter 14
Adding and Editing Pipeline Actions in the Console

14-2

Table 14-1 Pipeline - Communication Actions

Action Description More Information

Dynamic Publish

Publish a message to a service identified
by an XQuery expression

Adding Dynamic Publish
Actions in the Console

Publish

Publish a message to a statically
specified service.

Adding Publish Actions in
the Console

Publish Table

Publish a message to zero or more
statically specified services. Switch-style
condition logic is used to determine at
runtime which services will be used for
the publish.

Adding Publish Table
Actions in the Console

Routing Options

Modify any or all of the following
properties in the outbound request: URI,
Quality of Service, Mode, Retry
parameters, Message Priority.

Adding Routing Options
Actions in the Console

Service Callout

Configure a synchronous (blocking)
callout to a Service Bus-registered proxy
or business service.

Adding Service Callout
Actions in the Console

Transport Headers

Set the transport header values in
messages

Adding Transport Header
Actions in the Console

Dynamic Routing

Assign a route for a message based on
routing information available in an XQuery
resource.

Adding Dynamic Routing
to Route Nodes in the
Console

Chapter 14
Adding and Editing Pipeline Actions in the Console

14-3

Table 14-1 (Cont.) Pipeline - Communication Actions

Action Description More Information

Routing

Identify a target service for the message
and configure how the message is routed
to that service:

Adding Routing Actions to
Route Nodes in the
Console

Routing Table

Assign a set of routes wrapped in a
switch-style condition table.Different
routes are selected based on the results
of a single XQuery expression.

Adding Routing Tables to
Route Nodes in the
Console

Table 14-2 Pipeline - Flow Control Actions

Action Description More Information

For each

Iterate over a sequence of values and
execute a block of actions

Adding For-Each
Actions in the Console

If...then...

Perform an action or set of actions
conditionally, based on the Boolean
result of an XQuery expression.

Adding If-Then Actions
in the Console

Raise error

Raise an exception with a specified
error code (a string) and description.

Adding Raise Error
Actions in the Console

Reply

Specify that an immediate reply is sent
to the invoker.

Adding Reply Actions in
the Console

Chapter 14
Adding and Editing Pipeline Actions in the Console

14-4

Table 14-2 (Cont.) Pipeline - Flow Control Actions

Action Description More Information

Resume

Resume pipeline after an error handler
has handled an error.

Adding Resume Actions
in the Console

Skip

Specify that at runtime, the execution
of the current stage is skipped and the
processing proceeds to the next stage
in the pipeline.

Adding Skip Actions in
the Console

Table 14-3 Pipeline - Message Processing Actions

Action Description More Information

Assign

Assign the result of an XQuery expression
to a context variable.

Adding Assign Actions in
the Console

Delete

Delete a context variable or a set of nodes
specified by an XPath expression.

Adding Delete Actions in
the Console

Insert

Insert the result of an XQuery expression
at an identified place relative to nodes
selected by an XPath expression.

Adding Insert Actions

Java callout

Invoke a Java method from the pipeline. Adding Java Callout
Actions in the Console

Chapter 14
Adding and Editing Pipeline Actions in the Console

14-5

Table 14-3 (Cont.) Pipeline - Message Processing Actions

Action Description More Information

JavaScript

Manipulate an XML or JSON payload
using a JavaScript expression.

Adding JavaScript Actions
in the Console

MFL transform

Convert non-XML to XML or XML to non-
XML in the pipeline.

Adding MFL Translate
Actions in the Console

nXSD translate

Convert native data format (nXSD) to
XML or XML to native data format (nXSD)
in the pipeline.

Adding nXSD Translate
Actions

Rename

Rename elements selected by an XPath
expression without modifying the contents
of the element.

Adding Rename Actions in
the Console

Replace

Replace a node or the contents of a node
specified by an XPath expression.

Adding Replace Actions in
the Console

Validate

Validate elements selected by an XPath
expression against an XML schema
element or a WSDL resource.

Adding Validate Actions in
the Console

Chapter 14
Adding and Editing Pipeline Actions in the Console

14-6

Table 14-4 Pipeline - Reporting Actions

Action Description More Information

Alert

Send an alert notification based on
pipeline message context.

Adding Alert Actions in the
Console

Log

Construct a message to be logged. Adding Log Actions in the
Console

Report

Enable message reporting for a proxy
service.

Adding Report Actions in
the Console

3. When you have finished adding actions, you can further configure the actions in stage or
route node, as described in Table 14-5.

Table 14-5 Edit Stage Configuration Tasks

To... Complete This Step...

Delete an action Click the appropriate icon, then click Delete this Action.

Move an action down (demote) Click the appropriate icon, then click Move Action Down.
The action is moved below the next action contained in this
stage.

This option is displayed only when a stage contains two or
more actions.

Move an action up (promote) Click the appropriate icon, then click Move Action Up. The
action is moved above the previous action contained in this
stage.

This option is displayed only when the stage contains two or
more actions.

Cut an action Click the appropriate icon, then click Cut.

Copy an action Click the appropriate icon, then click Copy.

Chapter 14
Adding and Editing Pipeline Actions in the Console

14-7

Table 14-5 (Cont.) Edit Stage Configuration Tasks

To... Complete This Step...

Paste an action that you have cut or
copied

Click the appropriate icon, then click Paste Action.

You can copy and paste actions across stages. However, if
the action isAssign, Replace or Insert, note the following:

• All variable-related and user-defined namespaces from
the source (copied) stage are added as user-defined
namespaces in the target (pasted) stage.

• Duplicate namespaces (identical namespaces in both
source and target stage) are not copied.

• Conflicting namespaces (namespace declarations that
use the same prefix but different URIs) are copied. You
can save the configuration, but you cannot activate it
until the conflicting namespace declarations in stage B
are removed.

Validate a stage In the Edit Stage Configuration page, click Validate to
validate all the actions configured in that stage. Only actions
that are enabled are validated.

The Validate button is not available if the stage is disabled.

4. Click Save to commit the updates in the current session.

5. On the Edit Message Flow page, continue to construct the pipeline, as described
in Viewing and Editing Pipelines in the Console.

6. Click Save to commit the updates in the current session.

7. To end the session and deploy the configuration to the runtime, click Activate in
the top right corner of the Oracle Service Bus Console.

14.2 Adding Publish Actions in the Console
Use a publish action to identify a statically specified target service for a message and
to configure how the message is packaged and sent to that service.

For more information on publish behavior, see Performing Transformations in
Pipelines.

To add a publish action:

1. Navigate to where you want to add the action, as described in Adding and Editing
Pipeline Actions in the Console.

2. Select Add an Action > Communication > Publish.

3. Click Service. The Select Service page is displayed.

4. Select a service from the list, then click Submit. This service is the target service
for the message.

5. If the service has operations defined, you can specify an operation to be invoked
by selecting it from the Operation list.

6. To make the outbound operation the same as the inbound operation, select the
Use inbound operation for outbound check box.

7. To configure how the message is packaged and sent to the service, in the
Request Actions field, click Add an Action. Select an action to associate with the

Chapter 14
Adding Publish Actions in the Console

14-8

service. You can add more than one action. See Adding and Editing Pipeline Actions in
the Console.

8. Click Save to commit the updates in the current session.

14.3 Adding Publish Table Actions in the Console
Use a publish table action to publish a message to zero or more statically specified services.

Switch-style condition logic is used to determine at runtime which services are used for the
publish.

For more information on publish behavior, see Performing Transformations in Pipelines.

To add a publish table action:

1. Navigate to where you want to add the action, as described in Adding and Editing
Pipeline Actions in the Console.

2. Select Add an Action > Communication > Publish Table.

3. Click Expression. The XQuery Expression Editor page is displayed. Create an XQuery
expression, which at runtime returns the value upon which the routing decision is made.
See Creating and Editing Inline XQuery and XPath Expressions.

4. From the Operator list, select a comparison operator. Then, in the adjacent field, enter a
value against which the value returned from the XQuery expression is evaluated.

5. Click Service to select a service to which messages are to be published if the expression
evaluates true for the value you specified. The Select Service page appears.

6. Select a service from the list, then click Submit. This service is the target service for the
message.

7. If the service has operations defined, you can specify the operation to be invoked by
selecting it from the invoking list.

8. If you want the outbound operation to be the same as the inbound operation, select the
Use inbound operation for outbound check box.

9. In the Request Actions field, to configure how the message is packaged and sent to the
service, click Add an Action. Then select one or more actions that you want to associate
with the service. To learn more about the type of action you want to add, see Adding and
Editing Pipeline Actions in the Console.

10. To insert a new case, click the Case icon, then select Insert New Case.

11. Repeat steps 4–8 for the new case.

12. Add more cases as dictated by your business logic.

13. Click the Case icon of the last case you define in the sequence, then select Insert
Default Case to add a default case at the end.

14. Configure the default case—the configuration of this case specifies the routing behavior
when none of the preceding cases are satisfied.

15. Click Save to commit the updates in the current session.

Chapter 14
Adding Publish Table Actions in the Console

14-9

14.4 Adding Dynamic Publish Actions in the Console
Use a dynamic publish action to publish a message to a service specified by an
XQuery expression.

For more information on publish behavior, see Performing Transformations in
Pipelines.

To add a dynamic publish action:

1. Navigate to where you want to add the action, as described in Adding and Editing
Pipeline Actions in the Console.

2. Click the appropriate icon, then select Add an Action > Communication >
Dynamic Publish.

3. Click Expression.

4. In the XQuery Expression Editor, enter an XQuery expression or select an XQuery
resource that provides a result similar to:

<ctx:route>
 <ctx:service isProxy="false">project/folder/businessservicename</
ctx:service>
 <ctx:operation>foo</ctx:operation>
</ctx:route>

Note:

If a proxy service is being invoked, set isProxy to true. If a business
service is being invoked, set isProxy to false.

The element operation is optional.

Alternatively, the following code routes to a pipeline:

<ctx:route>
 <ctx:pipeline>project/folder/pipeline</ctx:pipeline>
</ctx:route>

Alternatively, the following code routes to a split join:

<ctx:route>
 <ctx:splitjoin>project/folder/splitjoin</ctx:splitjoin>
</ctx:route>

5. Click Save.

6. In the Request Actions field, click Add an Action to add an action, then select an
action that you want to associate with the service. You can add more than one
action. To learn more about the type of actions you can add, see the table of
actions in Adding and Editing Pipeline Actions in the Console.

7. Click Save to commit the updates in the current session.

Chapter 14
Adding Dynamic Publish Actions in the Console

14-10

14.5 Adding Routing Options Actions in the Console
Use the routing options action to modify any or all of the following properties for the outbound
request in $outbound: URI, Quality of Service, Mode, Retry parameters.

Although these properties can be modified using assign, insert, replace, or delete actions
on $outbound, using routing options provides a simpler way to perform this task, without
requiring knowledge of XPath, XQuery, or the structure of the $outbound context variable.

The routing options action can only be used where the context variable $outbound is valid. It
can be added to the following actions:

• Publish

• Dynamic Publish

• Publish Table

• Service Callout

• Routing

• Dynamic Routing

• Routing Table

For more information on routing, see Modeling Message Flow in Oracle Service Bus.

To configure a routing options action:

1. Navigate to where you want to add the action, as described in Adding and Editing
Pipeline Actions in the Console.

2. Click the appropriate icon, then select Add an Action > Communication > Routing
Options.

3. Complete any or all of the following steps:

• To set the URI for the outbound message: Select URI, and click the XQuery
Expression Editor. Enter an expression that returns a URI. This overrides the URI
for the invoked service.

Note:

When routing to another proxy service, the URI override has no effect.

• To set the Quality of Service element: Select Quality of Service, and select the
Quality of Service option from the list. This overrides the default that is auto
computed.

• To set the Mode: Select Mode, and select either request, or request-response from
the list.

Chapter 14
Adding Routing Options Actions in the Console

14-11

Note:

This is normally already automatically set, based on the interface of
the service invoked. However, in some cases like Any Soap or Any
XML services, this is not so.

• To set the Retry Interval: Select Retry Interval, and specify the number of
seconds between retries. This overrides the default configured with the
invoked service.

• To set the Retry Count: Select Retry Count, and specify the number of retries
the system must attempt before discontinuing the action. This overrides the
default configured with the invoked service.

• To set the Message Priority: Select Priority, and click the XQuery Expression
Editor. Enter an expression that returns a positive integer.

4. Click Save to commit the updates in the current session.

14.6 Adding Service Callout Actions in the Console
Use a service callout action to configure a synchronous (blocking) callout to a Service
Bus-registered proxy or business service.

For more information on service callout actions, see Constructing Service Callout
Messages.

To add a service callout action:

1. Navigate to where you want to add the action, as described in Adding and Editing
Pipeline Actions in the Console.

2. Click the appropriate icon, then select Add an Action > Communication >
Service Callout.

3. Click Service. The Service Browser is displayed.

4. Select a service from the list of registered proxy or business services, then click
Submit.

5. If the service you chose in step 3, above, is WSDL-based and has operations that
can be invoked on the service, those operations are listed in the invoking
Operation list. Select an operation to be invoked on the service.

Note:

Selecting an operation, which Service Bus requires for many reasons,
does not guarantee that only the selected operation is invoked. For
example, if you select OperationA, but a message also contains an
invocation for Operation B, then OperationB will be invoked as well.

6. Specify how you want to configure the request and response messages by
selecting one of the following options:

• Select Configure SOAP Body to configure the SOAP Body. Selecting this
option allows you to use $body directly.

Chapter 14
Adding Service Callout Actions in the Console

14-12

Note:

This option supports SOAP-RPC encoded, which is not supported when
configuring payload parameters or document.

• Select Configure Payload Parameters or Configure Payload Document to
configure the payload.

7. Subsequent configuration options depend on the kind of service you selected and on the
kind of configuration options you chose for that service.

Table 14-6 provides instructions for each option.

Table 14-6 Service Callout Configuration Options

For These Options... Follow These Steps...

SOAP Request Body and
SOAP Response Body

To configure these options,

• In the SOAP Request Body field, enter the name of a
variable to hold the XML of the SOAP Body element for the
callout request.

• In the SOAP Response Body field, enter the name of a
variable to which the XML of the SOAP Body element on the
response will be bound.

Request Attachments Variable
and Response Attachments
Variable

To configure these options (optional),

• In the Request Attachments Variable field, enter the name
of a variable to hold the XML corresponding to the outbound
request attachments.

• In the Response Attachments Variable field, enter the
name of a variable to hold the XML corresponding to the
outbound response attachments.

SOAP Request Header and
SOAP Response Header

To configure these options,

• In the SOAP Request Header field, enter the name of a
variable to hold the XML of the SOAP Header element for
the callout request

You must wrap the input document for the SOAP Request
Header with <soap-env:Header>...</soap-
env:Header>.

• In the SOAP Response Header field, enter the name of a
variable to which the XML of the SOAP Headers on the
response, if any, will be bound.

Chapter 14
Adding Service Callout Actions in the Console

14-13

Table 14-6 (Cont.) Service Callout Configuration Options

For These Options... Follow These Steps...

Request Parameters and
Response Parameters

To configure options,

• In the Request Parameters fields, enter names for the
variables that will be evaluated at runtime to provide values
for the request parameters.

You must provide only the core payload documents in the
input variable—the SOAP package is created for you by
Service Bus. In other words, do not wrap the input document
with <soap-env:Body>...</soap-env:Body>.

For example, when creating a body input variable that is
used for this request parameter, you would define that
variable's contents using the XPath statement body/* (to
remove the wrapper soap-env:Body), not $body (which
results in keeping the soap-env:Body wrapper).

• In the Response Parameters fields, enter the names of the
variables to which the responses will be assigned at runtime.

Request Document and
Response Document

To configure these options,

• In the Request Document Variable field, enter the name of
a variable to assign a request document to.

For SOAP Document-type services, the variable is evaluated
at runtime to form the body of the SOAP message sent to
the service. For Any XML services, the variable is evaluated
at runtime to form the body of the XML message sent to the
service.

For SOAP Document-type services and for Any XML
services, you provide only the core payload documents in
the input variable—the SOAP package is created for you by
Service Bus. In other words, do not wrap the input document
with <soap-env:Body>...</soap-env:Body>.

For example, when creating a body input variable that is
used for this request parameter, you would define that
variable's contents using the XPath statement body/* (to
remove the wrapper soap-env:Body), not $body (which
results in keeping the soap-env:Body wrapper).

For Messaging services, the variable is evaluated to form
the body of the message, based on the type of data
expected by the service. The following restrictions apply to
variables used with Messaging services:

- For services that expect binary data, the variables must
have a ctx:binary-content element.

- For services that expect MFL data, the variable must have
the XML equivalent.

- For services that expect text data, the variable is a string.
• In the Response Document Variable field, enter the name

of the variable to which a response document will be
assigned at runtime.

8. Optionally, add one or more transport headers. For more information, see Adding
Transport Header Actions in the Console.

Chapter 14
Adding Service Callout Actions in the Console

14-14

Note:

In addition to the transport headers you specify, headers are added by the
Service Bus binding layer. For more information, see Configuring Transport
Headers in Pipelines.

9. Click Save to commit the updates in the current session.

14.7 Adding Transport Header Actions in the Console
Use a transport header action to set the header values in messages.

To add a transport header action:

1. Navigate to where you want to add the action, as described in Adding and Editing
Pipeline Actions in the Console.

2. Click the appropriate icon, then select Add an Action > Communication > Transport
Headers.

3. From the Set Transport Headers for list, select one of the following, to specify to the
runtime which of the message context locations are to be modified:

• Outbound Request - Select this option to set header values for outbound requests
(the messages sent out by a proxy service in route, publish, or service callout
actions). This header element is located in the message context as follows:

$outbound/ctx:transport/ctx:request/tp:headers

• Inbound Response - Select this option to set header values for inbound responses
(the response messages a proxy service sends back to clients). This header element
is located in the message context as follows:

$inbound/ctx:transport/ctx:response/tp:headers

4. Optionally, select Pass all Headers through Pipeline to pass all headers through from
the inbound message to the outbound message or vice versa. Every header in the source
set of headers will be copied to the target header set, overwriting any existing values in
the target header set.

For information about using this option in conjunction with the header-specific pass
through option, see Configuring Transport Headers in Pipelines.

5. Complete the following steps for each Header you want to add:

a. In the Transport Headers table, click Add Header to display fields for configuring the
header.

b. Specify a header by doing either of the following:

• From the list in the Name column, select a header name. The list contains all of
the predefined header names for the target transport (for example, Content-Type
for HTTP transports, JMSCorrelationID for JMS transports, and so on).

• Enter a header name in the Other field. If that header name is not one of the
predefined headers for this service's transport, it becomes a user-header, as
defined by the transport specification.

c. Select one of the options in the Action column to specify how to set the headers
value:

Chapter 14
Adding Transport Header Actions in the Console

14-15

Set Header to Expression

Selecting this option allows you to use an XQuery or XSLT expression to set
the value of the header. The expression can be simple (for example, "text/
xml") or a complex XQuery or XSLT expression.

Because the Service Bus transport layer defines the XML representation of all
headers as string values, the result of any expression is converted to a string
before the header value is set. Expressions that return nothing result in the
header value being set to the empty string. You cannot delete a header using
an expression.

Caution:

Not all of the header settings you can specify in this action are
honored at runtime.For information about which of the headers for a
given transport you can set and which of those set are honored at
runtime, see Configuring Transport Headers in Pipelines.

Delete Header

Specifies that the header is removed from the request or response metadata.

Copy Header from Inbound Request (if you are setting transport headers for
the Outbound Request)

or

Copy Header from Outbound Response (if you are setting transport
headers for the Inbound Response)

Specifies that this header is copied directly from the corresponding header of
the same name from the inbound message to the outbound message and vice
versa. For example, if you want to set the SOAPAction header for an outbound
request, selecting Copy Header from Inbound Request causes the runtime
to copy the value from the SOAPAction request header of $inbound. In the
case of inbound response headers, the source of the header to copy is the
response headers of $outbound.

If the Copy Header option is selected for a header that does not exist in the
source, this option is ignored and no action is performed on the target for this
header.

For information about using this option in conjunction with the global Pass all
Headers through Pipeline option, see Configuring Transport Headers in
Pipelines.

6. To add additional Headers to the table, click the Header icon, then click Add
Header.

The table is expanded to include an additional row, which includes a new set of
options that you can use to configure another transport header. You can add as
many headers as necessary to this table. You do not have to order the headers in
the table, because the runtime declares namespaces and places header elements
in their proper order when generating the corresponding XML.

7. Click Save to commit the updates in the current session.

Chapter 14
Adding Transport Header Actions in the Console

14-16

14.7.1 Setting Cookies in Outbound HTTP Transport Headers
In an HTTP pipeline you can set cookies on the transport header in the following ways:

• Setting a Cookie as a Complex XML Expression

• Setting a Cookie with a String Expression

14.7.1.1 Setting a Cookie as a Complex XML Expression
To set a cookie using a complex XML expression, which is the Service Bus default format,
configure the value of the HTTP Cookie header in the outbound request using the following
expression syntax:

<cookie-values xmlns="http://www.bea.com/wli/sb/transports/http">
 <value>{fn:concat("cookie_name", "=", "cookie_value")}</value>
</cookie-values>

14.7.1.2 Setting a Cookie with a String Expression
To set the Cookie header with a string in the outbound request, you must add the following
option to your domain startWebLogic command:

-Dcom.bea.osb.http.cookieAsNoComplexElement=true

After you restart the server with this option, you can set an HTTP Cookie header with a string
expression. For example:

$cookie_name = "cookie_value"

14.8 Adding Dynamic Routing to Route Nodes in the Console
Assign a route for a message based on routing information available in an XQuery resource.

This is a terminal action, which means you cannot add another action after this one.
However, this action can contain request and response actions. For more information on
dynamic routing, see Using Dynamic Routing.

These instructions assume you are already editing a pipeline in the Edit Message Flow page,
as explained in Viewing and Editing Pipelines in the Console.

To add dynamic routing to a route node:

1. Navigate to where you want to add the action, as described in Adding and Editing
Pipeline Actions in the Console.

2. Click the Route Node icon, then click Edit Route. The Edit Stage Configuration page is
displayed.

3. Click the Add an Action icon, then select Communication > Dynamic Routing.

4. Click Expression. The XQuery Expression Editor is displayed.

5. In the XQuery Expression Editor, enter an XQuery expression, the result of which is
similar to:

<ctx:route>
 <ctx:service isProxy='true'>{$service}</ctx:service>

Chapter 14
Adding Dynamic Routing to Route Nodes in the Console

14-17

 <ctx:operation>{$operation}</ctx:operation>
</ctx:route>

Note:

If a proxy service is being invoked, set isProxy to true. If a business
service is being invoked, set isProxy to false.

• The service name is the fully qualified service name.

• The operation element is optional.

Alternatively, the following code routes to a pipeline:

<ctx:route>
 <ctx:pipeline>project/folder/pipeline</ctx:pipeline>
</ctx:route>

Alternatively, the following code routes to a split join:

<ctx:route>
 <ctx:splitjoin>project/folder/splitjoin</ctx:splitjoin>
</ctx:route>

6. Click Save.

7. In the Request Actions field, click Add an Action to add an action, then select an
action that you want to associate with the service. You can add more than one
action. To learn more about the type of actions you want to add, see the table of
actions in Adding and Editing Pipeline Actions in the Console.

8. In the Response Actions field, click Add an Action to add an action, then select
an action that you want to associate with the service. You can add more than one
action. To learn more about the type of actions you want to add, see the table of
actions in Adding and Editing Pipeline Actions in the Console.

9. Click Save.

10. On the Edit Message Flow page, continue to construct the pipeline, as described
in Viewing and Editing Pipelines in the Console.

11. Click Save to commit the updates in the current session.

12. To end the session and deploy the configuration to the runtime, click Activate in
the top right corner of the Oracle Service Bus Console.

14.9 Adding Routing Actions to Route Nodes in the Console
Identify a target service for the message and configure how the message is routed to
that service.

This is a terminal action, which means you cannot add another action after this one.
However, this action can contain request and response actions. For more information
on routing, see Modeling Message Flow in Oracle Service Bus.

These instructions assume you are already editing a pipeline in the Edit Message Flow
page, as explained in Viewing and Editing Pipelines in the Console.

To add a routing action to a route node:

Chapter 14
Adding Routing Actions to Route Nodes in the Console

14-18

1. Navigate to where you want to add the action, as described in Adding and Editing
Pipeline Actions in the Console.

2. Click the Route Node icon, then click Edit Route. The Edit Stage Configuration page is
displayed.

3. Click the Add an Action icon, then select Communication > Routing.

4. Click Service. The Service Browser is displayed.

5. Select a service from the list, then click Submit. The service is displayed instead of the
default link.

6. If you want the outbound operation to be the same as the inbound operation, select the
Use inbound operation for outbound check box.

7. In the Request Actions field, click Add an Action to add an action, then select an action
that you want to associate with the service. You can add more than one action. To learn
more about the type of actions you can add, see the table of actions in Adding and
Editing Pipeline Actions in the Console.

8. In the Response Actions field, click Add an Action to add an action, then select an
action that you want to associate with the service. You can add more than one action. To
learn more about the type of actions you can add, see the table of actions in Adding and
Editing Pipeline Actions in the Console.

9. Click Save.

10. On the Edit Message Flow page, continue to construct the pipeline, as described in
Viewing and Editing Pipelines in the Console.

11. Click Save to commit the updates in the current session.

12. To end the session and deploy the configuration to the runtime, click Activate under
Change Center.

14.10 Adding Routing Tables to Route Nodes in the Console
A routing table is a set of routes wrapped in a switch-style condition table. It is a short-hand
construct that allows different routes to be selected based upon the results of a single XQuery
expression.

You can nest multiple levels in the stage editor. Identify target services for messages and
configure how the messages are routed to these services.

This is a terminal action, which means you cannot add another action after this one.
However, this action can contain request and response actions. For more information on
routing, see Modeling Message Flow in Oracle Service Bus.

These instructions assume you are already editing a pipeline in the Edit Message Flow page,
as explained in Viewing and Editing Pipelines in the Console.

To add a routing table to a route node:

1. Navigate to where you want to add the action, as described in Adding and Editing
Pipeline Actions in the Console.

2. Click the Route Node icon, then click Edit Route. The Edit Stage Configuration page is
displayed.

3. Click the Add an Action icon, then select Communication > Routing Table. The routing
table action is displayed.

Chapter 14
Adding Routing Tables to Route Nodes in the Console

14-19

4. From the Operator list, select a comparison operator, then enter a value
expression in the adjacent field.

5. Click Service. The Select Service page is displayed.

6. Select a service from the list, then click Submit.

7. If you want to invoke an operation on the service, select an operation from the
Operation list

8. If you want the outbound operation to be the same as the inbound operation,
select the Use inbound operation for outbound check box.

9. In the Request Actions field, click Add an Action to add an action, then select an
action that you want to associate with the service. You can add more than one
action.

10. In the Response Actions field, click Add an Action to add an action, then select
an action that you want to associate with the service. You can add more than one
action.

To learn more about the types of request and response actions you can add, see
Adding and Editing Pipeline Actions in the Console.

11. To insert a new case, click the Case icon, then select Insert New Case.

12. Repeat steps 2-7 for the new case. You can click the Case icon, then select Insert
Default Case to add a default case at the end whose routes are selected if none
of the preceding cases is satisfied.

13. Click Save.

14. On the Edit Message Flow page, continue to construct the pipeline, as described
in Viewing and Editing Pipelines in the Console.

15. Click Save to commit the updates in the current session.

16. To end the session and deploy the configuration to the runtime, click Activate
under Change Center.

14.11 Adding For-Each Actions in the Console
Use the for-each action to iterate over a sequence of values and execute a block of
actions.

These instructions assume you are already editing a pipeline in the Edit Message Flow
page, as explained in Viewing and Editing Pipelines in the Console.

To add a for-each action:

1. Navigate to where you want to add the action, as described in Adding and Editing
Pipeline Actions in the Console.

2. Click the appropriate icon, then select Add an Action > Flow Control > For
Each.

3. Enter variable names in the variable fields, click XPath to open the XPath editor
to create an XPath expression, and configure the actions in the Do () loop.

4. Click Save to commit the updates in the current session.

Chapter 14
Adding For-Each Actions in the Console

14-20

14.12 Adding If-Then Actions in the Console
Use an if-then action to perform an action or set of actions conditionally, based on the
Boolean result of an XQuery expression.

These instructions assume you are already editing a pipeline in the Edit Message Flow page,
as explained in Viewing and Editing Pipelines in the Console.

To add an if-then action:

1. Navigate to where you want to add the action, as described in Adding and Editing
Pipeline Actions in the Console.

2. Click the appropriate icon, then select Add an Action > Flow Control > If...Then...

3. Click Condition to display the XQuery Condition Editor page.

The condition you create is used as the test that is executed before the then() clause is
entered, per standard if-then logic. See Creating and Editing Inline XQuery and XPath
Expressions.

4. When you finish editing the XQuery condition, click Add an Action, then select an action
that you want to associate with the condition. To learn more about the type of action you
want to add, see Adding and Editing Pipeline Actions in the Console.

In the route node, you can select only the routing, dynamic routing, or routing table
actions. However, these actions can contain request and response actions inside of
them.

5. As your logic requires, click the If...Then... icon, then click Add else-if Condition or Add
else Condition to add else-if conditions or else conditions. Click Add an Action to
associate actions with these conditions.

Condition actions can be nested.

6. Click Save to commit the updates in the current session.

14.13 Adding Raise Error Actions in the Console
Use the raise error action to raise an exception with a specified error code (a string) and
description.

These instructions assume you are already editing a pipeline in the Edit Message Flow page,
as explained in Viewing and Editing Pipelines in the Console.

To add a raise error action:

1. Navigate to where you want to add the action, as described in Adding and Editing
Pipeline Actions in the Console.

2. Click the appropriate icon, then select Add an Action > Flow Control > Raise Error.

3. In the error code field, enter the error code you want to raise.

4. In the error message field, enter a description of the error code.

5. Click Save to commit the updates in the current session.

Chapter 14
Adding If-Then Actions in the Console

14-21

14.13.1 Transactions
If a service is transactional, a triggered Raise Error action aborts the transaction in the
request (asynchronous) or in either the request or response (synchronous). For
example, you may introspect messages and determine conditions under which a Raise
Error action should occur even if no SOAP fault occurs, and Raise Error causes the
transaction to be aborted.

14.14 Adding Reply Actions in the Console
Use the reply action to specify that an immediate reply be sent to the invoker. The
reply action can be used in the request, response or error pipeline.

You can configure it to result in a reply with success or failure. In the case of reply with
failure where the inbound transport is HTTP, the reply action specifies that an
immediate reply is sent to the invoker.

These instructions assume you are already editing a pipeline in the Edit Message Flow
page, as explained in Viewing and Editing Pipelines in the Console.

To add a reply action:

1. Navigate to where you want to add the action, as described in Adding and Editing
Pipeline Actions in the Console.

2. Click the appropriate icon, then select Add an Action > Flow Control > Reply.

3. Select With Success to reply that the message was successful, or select With
Failure to reply that the message has a fault.

Reply With Failure will cause a transaction, if started by Service Bus, to be
aborted.

4. Click Save to commit the updates in the current session.

14.15 Adding Resume Actions in the Console
Use the resume action to resume message flow after an error is handled by an error
handler. This action has no parameters and can only be used in error pipelines.

These instructions assume you are already editing a pipeline in the Edit Message Flow
page, as explained in Viewing and Editing Pipelines in the Console.

To add a resume action:

1. Navigate to where you want to add the action, as described in Adding and Editing
Pipeline Actions in the Console.

2. Click the appropriate icon, then select Add an Action > Flow Control > Resume.

When you complete the configuration of this action, continue by configuring other
actions or by saving your configuration, as described in Adding and Editing Pipeline
Actions in the Console.

Chapter 14
Adding Reply Actions in the Console

14-22

14.16 Adding Skip Actions in the Console
Use the skip action to specify that at runtime, the execution of actions of this stage is skipped
and the processing proceeds to the next stage in the pipeline.

Note:

If the action has a service callout or dynamic route in it, any skip action used in the
service callout's or dynamic route's respective request or response actions skips
only its remaining actions. The skip step does not have any impact on the caller
stage's processing.

This action has no parameters and can be used in the request, response, or error pipelines.

These instructions assume you are already editing a pipeline in the Edit Message Flow page,
as explained in Viewing and Editing Pipelines in the Console.

To add a skip action:

1. Navigate to where you want to add the action, as described in Adding and Editing
Pipeline Actions in the Console.

2. Click the appropriate icon, then select Add an Action > Flow Control > Skip.

14.17 Adding Assign Actions in the Console
Use the assign action to assign the result of an XQuery expression to a context variable.

These instructions assume you are already editing a pipeline in the Edit Message Flow page,
as explained in Viewing and Editing Pipelines in the Console.

To add an assign action:

1. Navigate to where you want to add the action, as described in Adding and Editing
Pipeline Actions in the Console.

2. Click the appropriate icon, then select Add an Action > Message Processing > Assign.

3. Click Expression. The XQuery Expression Editor page is displayed. The XQuery
expression is used to create the data that will be assigned to the named variable. See
Creating and Editing Inline XQuery and XPath Expressions.

4. When you finish editing the expression, enter a context variable in the variable field. To
learn more about context variables, see Inbound and Outbound Variables and
Constructing Messages to Dispatch.

5. Click Save to commit the updates in the current session.

14.18 Adding Delete Actions in the Console
Use the delete action to delete a context variable or a set of nodes specified by an XPath
expression. The delete action is one of a set of update actions.

These instructions assume you are already editing a pipeline in the Edit Message Flow page,
as explained in Viewing and Editing Pipelines in the Console.

Chapter 14
Adding Skip Actions in the Console

14-23

To add a delete action:

1. Navigate to where you want to add the action, as described in Adding and Editing
Pipeline Actions in the Console.

2. To delete a context variable, select the Variable option, then enter the name of a
context variable in the Variable field.

Alternatively, to delete all nodes selected by an XPath expression, select the
XPath radio button, then click XPath. The XPath Expression Editor page is
displayed. See Creating and Editing Inline XQuery and XPath Expressions. After
you save the expression, enter a context variable in the variable field.

14.19 Adding Insert Actions
Use the insert action to insert the result of an XQuery expression at an identified place
relative to nodes selected by an XPath expression. The insert action is one of a set of
update actions.

These instructions assume you are already editing a pipeline in the Edit Message Flow
page, as explained in Viewing and Editing Pipelines in the Console.

To add an insert action:

1. Navigate to where you want to add the action, as described in Adding and Editing
Pipeline Actions in the Console.

2. Click the appropriate icon, then select Add an Action > Message Processing >
Insert.

3. Click Expression to edit an XQuery expression. The XQuery expression is used
to create the data that will be inserted at a specified location in a named variable.
The XQuery Expression Editor page is displayed. See Creating and Editing Inline
XQuery and XPath Expressions.

4. When you finish editing the expression, select the relative location from the list.
The relative location is used to control where the insert is performed relative to the
result of the XPath expression:

• Before: As sibling before each element or attribute selected by the XPath
expression

• After: As sibling after each element or attribute selected by the XPath
expression

• As first child of: As first child of each element identified by the XPath
expression. An error occurs if the result of the XPath returns attributes.

• As last child of: As last child of each element identified by the XPath
expression. An error occurs if the XPath returns attributes.

5. Click XPath. The XPath Expression Editor page is displayed. See Creating and
Editing Inline XQuery and XPath Expressions.

Valid configurations include those in which:

• XQuery and XPath expressions both return elements.

• The XQuery and XPath expressions both return attributes—in which case, the
XQuery expression must return attributes.

6. When you finish editing the XPath expression, enter a context variable in the in
variable field. The XPath evaluates the contents of this variable.

Chapter 14
Adding Insert Actions

14-24

7. Click Save to commit the updates in the current session.

14.20 Adding Java Callout Actions in the Console
Use the Java callout action to invoke a Java method, or EJB business service, from within the
pipeline.

These instructions assume you are already editing a pipeline in the Edit Message Flow page,
as explained in Viewing and Editing Pipelines in the Console.

To add a Java callout action:

1. Navigate to where you want to add the action, as described in Adding and Editing
Pipeline Actions in the Console.

2. Click the appropriate icon, then select Add an Action > Message Processing > Java
Callout.

3. Click Method. The Select a JAR page is displayed. Select a JAR resource from the list.
The Select a Class and Method page is displayed.

4. From the list of Java classes listed, click the + beside the appropriate class, to display a
list of methods. Select a method and click Submit. The Java callout action is displayed
on the Edit Stage page, as follows:

• Method is replaced by the name of the Java method you selected in steps 2 and 3.
This name is a link to the Select a Class and Method page. You can click this link to
change your selection of Java method.

The method must be a static method.

• Parameters: An Expression link to the XQuery Expression Editor page is provided
for each argument the Java method requires. A label for each link indicates the data
type for the argument, which will be one of the following:

– Java.lang.String

– Primitive types, and their corresponding class types (for example, int versus
java.lang.Integer)

– java.lang.BigDecimal, and java.lang.BigInteger (these types are used in
financial calculations where round-off errors or overflows are not tolerable)

– only org.apache.xbeans.XmlObject and no typed xml beans.

– byte[]

– java.lang.String[] (INPUT ONLY)

– XmlObject[] (INPUT ONLY)

– javax.activation.DataSource

• Result: A Result field in which you enter the variable to which the result is to be
assigned. The label for the field indicates the data type of the result.

Note:

If the result is a byte array (the only possible array returned), the binary-
content XML element is returned.

Chapter 14
Adding Java Callout Actions in the Console

14-25

• Return Parameter as Reference: This option makes the return value of a
Java Callout invocation a <java-content ref="jcid"> reference element
regardless of its actual type, where jcid is the key to the object in the pipeline
object repository. In the Result value field, enter the name of the variable to
contain the java-content reference. This option lets you work with a referenced
object in the pipeline in addition to the pipeline XML for providing passthrough,
performing message enrichment with Java Callout and inline actions, or
performing message transformation between Java and non-Java transports.
For more information, see Sending and Receiving Java Objects in Messages.

• Attach a Service Account: A Service Account link allows you to specify an
optional Service Account if there is a security context for this Java method. To
learn more about security contexts and service accounts, see Working with
Service Accounts.

In the case of fixed and mapped service accounts, the userid/password from
the service account is authenticated in the local system and the security
context propagated to the Java callout. In the case of passthru, the security
context is propagated to the Java callout. This context is the message level
context if defined (with WS-Security). Else it is the transport level context.

5. Under Parameters, click Expression. The XQuery Expression Editor page is
displayed. Use the XQuery Expression Editor to provide the arguments required
by the Java method. See Creating and Editing Inline XQuery and XPath
Expressions.

If the type of the input value you enter does not match the declared input argument
type, Service Bus tries to automatically typecast input values to the declared type
of the input argument. For example a string value of "123" will be converted to
integer 123 if the declared type of the input argument is java primitive int.

6. In the Result field, assign a variable for the result returned by the Java method.

7. If there is a security context for the Java method, select the check box and click
Service Account. The Select Service Account page is displayed. Select the
required service account from the list, and click Submit.

8. Click Save to commit the updates in the current session.

14.21 Adding JavaScript Actions in the Console
Use a JavaScript action to manipulate the contents of an XML or JSON payload using
JavaScript expressions.

These instructions assume you are already editing a pipeline in the Edit Message Flow
page, as explained in Viewing and Editing Pipelines in the Console.

To add a JavaScript action:

1. Navigate to where you want to add the action, as described in Adding and Editing
Pipeline Actions in the Console.

2. Click the appropriate icon, then select Add an Action > Message Processing >
JavaScript.

3. Provide the JavaScript expression in one of the following ways:

• To

• To use a JavaScript expression from a JavaScript resource that has already
been uploaded to the Service Bus Console, select the With Resource option,

Chapter 14
Adding JavaScript Actions in the Console

14-26

and then click Resource. Use the Select JavaScript dialog to search for and select a
JavaScript resource.

4. Select one of the following Timeout options:

• System Default: JavaScript processing times out when the system default
JavaScript timeout is reached.

• Seconds field: provide a timeout value (in seconds) at which JavaScript processing
times out.

• None: JavaScript processing does not time out.

5. Click Validate to validate the JavaScript expression.

6. Click Save.

14.22 Adding MFL Translate Actions in the Console
Use the MFL (Message Format Language) translate action to convert message content from
XML to non-XML, or the reverse, in the message pipeline.

An MFL is a specialized XML document used to describe the layout of binary data. It is an
Oracle proprietary language used to define rules to translate formatted binary data into XML
data, or the reverse. See Defining Data Structures with Message Format Language.

These instructions assume you are already editing a pipeline in the Edit Message Flow page,
as explained in Viewing and Editing Pipelines in the Console.

To add an MFL translate action:

1. Navigate to where you want to add the action, as described in Adding and Editing
Pipeline Actions in the Console.

2. Click the appropriate icon, then select Add an Action > Message Processing > MFL
Translate.

3. From the Apply MFL Translation list, select XML to Non-XML or Non-XML to XML,
according to your requirement.

4. Click Expression. Using the XQuery Expression Editor, specify the variable on which the
MFL translation action is to be performed. This input must be text or binary when
translating to XML, and must be XML when translating to non-XML. Binary content in the
message context is represented by the binary-content XML element. This XML should be
the result of the XQuery expression when the input needs to be binary. See Creating and
Editing Inline XQuery and XPath Expressions.

5. Select one of the following options:

• MFL Resource: click the resource link. The Select MFL page is displayed. Select
the static MFL resource that will perform the MFL translate action.

• MFL Resource from: click the Expression link. The XQuery Expression Editor page
is displayed. Using the XQuery Expression Editor, create or edit an XQuery
expression to dynamically specify an MFL resource that will perform the translate
action, in the format project/folder/MFLresourcename. See Creating and Editing
Inline XQuery and XPath Expressions.

6. In the Assign to Variable field, enter the name of the variable to which the result of this
translate action is to be assigned. The result will be a binary-content XML element.

7. Click Save to commit the updates in the current session.

Chapter 14
Adding MFL Translate Actions in the Console

14-27

14.23 Adding nXSD Translate Actions
Use the nXSD translate action to convert message content from XML to native format
data, or the reverse, in the message pipeline.

See "Native Format Builder Wizard" in Understanding Technology Adapters for
information on creating native schemas used for translation.

The nXSD Translate Action supports XML to JSON and JSON to XML translations if
the associated XSD resource contains the relevant annotations, as shown in the
following example:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns="http://
example.com/RestService_Operation1_request"
 targetNamespace="http://example.com/RestService_Operation1_request"
elementFormDefault="qualified"
xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd" nxsd:version="JSON"
nxsd:encoding="US-ASCII">
 <xsd:element name="Root-Element">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="country" type="xsd:string"/>
 <xsd:element name="circuit" type="xsd:string"/>
 <xsd:element name="date" type="xsd:date"/>
…

The nXSD Translate action is enhanced in this version of Service Bus to enforce
schema ordering when converting from JSON to XML.

Dynamic nXSD Reference

For dynamic NXSD schema configuration, at design time you specify the Xquery
expression for computing the nxsd and scheme element QName details. At runtime,
the Xquery expression results in an xml document containing the NXSD schema
reference name and the schema element name.

The syntax for identifying the NXSD schema reference and XML element name is as
follows:

<xs:schema targetNamespace="http://www.bea.com/wli/sb/context"
 xmlns:tns="http://www.bea.com/wli/sb/context"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">

 <!-- ============================ -->

 <xs:element name="nxsdTranslation" type="tns:NXSDTranslationType"/>

 <xs:complexType name="TranslationQNameType">
 <xs:sequence>
 <xs:element name="namespaceURI" type="xs:anyURI"
minOccurs="0"/>
 <xs:element name="localname" type="xs:NCName"/>

Chapter 14
Adding nXSD Translate Actions

14-28

 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="NXSDTranslationType">
 <xs:sequence>
 <!-- Name is '/' separated string that starts with project name
and ends with resource name -->
 <xs:element name="schema" type="xs:string"/>
 <xs:element name="schemaElement"
type="tns:TranslationQNameType"/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

Below is an example of a full XML snippet:

<nxsdtranslation xmlns="http://www.bea.com/wli/sb/context">
 <schema>default/MySchema</schema>
 <schemaElement>
 <namespaceURI>http://openuri.org</namespaceURI>
 <localname>MyType</localname>
 </ schemaElement>
</nxsdtranslation>

The sample xquery below can generate an XML snippet in that format:

declare variable $children:= ("default/MySchema","http://
openuri.org","MyType");

 declare function local:message ($number as xs:integer) as item() {
 $children[$number]
 };

<nxsdtranslation xlmns="http://www.bea.com/wli/sb/context">
 <schema>{ local:message(1) }</schema>
 <schemaElement>
 <namespaceURI>{ local:message(2) }</namespaceURI>
 <localname>{ local:message(3) }</localname>
 </schemaElement>
</nxsdtranslation>

These instructions assume you are already editing a pipeline in the Edit Message Flow page,
as explained in Viewing and Editing Pipelines in the Console.

To add an nXSD translate action:

1. Navigate to where you want to add the action, as described in Adding and Editing
Pipeline Actions in the Console.

2. Click the appropriate icon, then select Add an Action > Message Processing > nXSD
Translate.

3. From the Apply nXSD Translation list, select XML to Native or Native to XML,
according to your requirement.

Chapter 14
Adding nXSD Translate Actions

14-29

4. Click Expression. Using the XQuery/XSLT Expression Editor, specify the variable
on which the nXSD translation action is to be performed. This input would be
native format when translating to XML, and XML when translating to native data
format. See Creating and Editing Inline XQuery and XPath Expressions.

5. Select one of the following options:

• nXSD Resource: click the resource link. The Select a XML Schema page
appears. Select the schema (.xsd) file corresponding to the native schema.

• nXSD Resource from: click the Expression link. The XQuery Expression
Editor page is displayed. Using the XQuery Expression Editor, create or edit
an XQuery expression to dynamically specify a native schema. See Creating
and Editing Inline XQuery and XPath Expressions.

6. In the Assign output to field, select variable, and enter the name of the variable
to which the result of this translate action is to be assigned. You can alternatively
assign the output to content of $body.

7. (Optional) If you are translating from Native format (like JSON) to XML, select the
Enforce Schema Order option. When selected, this reorders JSON payloads to
match the order of elements in the XML schema.

8. Click Save to commit the updates in the current session.

14.24 Adding Rename Actions in the Console
Use the rename action to rename elements selected by an XPath expression without
modifying the contents of the element. The rename action is one of a set of update
actions.

These instructions assume you are already editing a pipeline in the Edit Message Flow
page, as explained in Viewing and Editing Pipelines in the Console.

To add a rename action:

1. Navigate to where you want to add the action, as described in Adding and Editing
Pipeline Actions in the Console.

2. Click the appropriate icon, then select Add an Action > Message Processing >
Rename.

3. Click XPath. The XPath Expression Editor page is displayed. The XPath
expression is used to specify the data (in the named variable) that will be
renamed. See Creating and Editing Inline XQuery and XPath Expressions.

4. In variable field, enter the context variable that holds the element you want to
rename.

5. Do one of the following:

• To rename selected elements using a localname, select the first localname
option, then enter a local name in the localname field.

• To rename selected elements using a namespace, select the first namespace
option, then enter a namespace in the namespace field.

• To rename selected elements using a local name and namespace, select the
localname and namespace radio button, then enter a local name and
namespace in the localname and namespace fields.

6. Click Save to commit the updates in the current session.

Chapter 14
Adding Rename Actions in the Console

14-30

14.25 Adding Replace Actions in the Console
Use a replace action to replace a node or the contents of a node specified by an XPath
expression.

The node or its contents are replaced with the value returned by an XQuery expression. A
replace action can be used to replace simple values, elements and even attributes. An
XQuery expression that returns nothing is equivalent to deleting the identified nodes or
making them empty, depending upon whether the action is replacing entire nodes or just
node contents. The replace action is one of a set of update actions.

These instructions assume you are already editing a pipeline in the Edit Message Flow page,
as explained in Viewing and Editing Pipelines in the Console.

To add a replace action:

1. Navigate to where you want to add the action, as described in Adding and Editing
Pipeline Actions in the Console.

2. Click the appropriate icon, then select Add an Action > Message Processing >
Replace.

3. Click XPath. The XPath Expression Editor page is displayed. The XPath expression is
used to specify the data (in the named variable) that will be replaced. See Creating and
Editing Inline XQuery and XPath Expressions.

4. When you finish editing the XPath expression, enter a context variable in the in variable
field.

5. Click Expression. The XQuery Expression Editor page is displayed. The XQuery
expression is used to create the data that replaces the data specified by the XPath in the
named variable.See Creating and Editing Inline XQuery and XPath Expressions.

6. When you finish editing the XQuery expression, select one of the options:

• Replace entire node—to specify that the nodes selected by the XPath expression
you defined are replaced along with all of its contents

• Replace node contents—to specify that the node is not replaced; only the contents
are replaced.

Note:

Selecting the Replace node contents option and leaving the XPath field
blank is more efficient than selecting the Replace entire node option and
setting the XPath to ./*

7. Click Save to commit the updates in the current session.

Chapter 14
Adding Replace Actions in the Console

14-31

14.26 Adding Validate Actions in the Console
Use a validate action to validate elements selected by an XPath expression against an
XML schema element or a WSDL resource.

You can validate global elements only; Service Bus does not support validation against
local elements. You can also choose to dynamically select the XML schema element
or WSDL resource, at runtime, based on the result of an XQuery expression.

These instructions assume you are already editing a pipeline in the Edit Message Flow
page, as explained in Viewing and Editing Pipelines in the Console.

To add a validate action:

1. Navigate to where you want to add the action, as described in Adding and Editing
Pipeline Actions in the Console.

2. Click the appropriate icon, then select Add an Action > Message Processing >
Validate.

3. Click XPath. to construct an XPath expression that specifies the elements to be
validated. See Creating and Editing Inline XQuery and XPath Expressions. When
you are finished constructing the expression in the XPath Expression Editor, click
Save to insert the expression on the Edit Stage Configuration page.

4. In the in variable field, enter the name of the variable to hold the element to be
validated.

5. Select one of the following options:

• Against Resource: click the resource link, then select WSDL or Schema.
From the WSDL Browser or XML Schema Browser, do the following:

a. Select the WSDL file or XML schema

b. Select the WSDL file or XML schema type or element

c. Click Submit.

• Against Resource from Expression: click the Expression link. The XQuery
Expression Editor page is displayed. Using the XQuery Expression Editor,
create or edit an XQuery expression to dynamically specify a WSDL file or
schema resource. See Creating and Editing Inline XQuery and XPath
Expressions.

The following is an example of dynamically specifying a WSDL resource:

<validate xmlns="http://www.bea.com/wli/sb/context">
 <wsdl>default/MyWSDL</wsdl>
 <schemaType>
 <namespaceURI>http://openuri.org</namespaceURI>
 <localname>MyType</localname>
 </schemaType>
</validate>

The following is an example of dynamically specifying a schema resource:

<validate xmlns="http://www.bea.com/wli/sb/context">
 <schema>{dvm:lookup('SBProject/dvm/DVM_Validation',
'operation', $operationName, 'validationSchema','default')}</schema>
 <schemaElement>
.........<namespaceURI>"http://www.example.com/date</namespace>

Chapter 14
Adding Validate Actions in the Console

14-32

 <localname>{dvm:lookup('SBProject/dvm/DVM_Validation',
'operation', $operationName, 'validationElement','default')}</localname>
 </schemaElement>
</validate>

Note that the schema or WSDL selected has to be a resource and so must have
been imported into OSB as a Schema/WSDL resource. You cannot point directly to a
file or URL. The XML fragment that is required is created via an xquery expression,
letting you enter any kind of xquery expression to create that XML. In the examples
above, the XML provided is a constant XML, illustrating what kind of XML is
expected.

For example, the name of the WSDL could be coming in a variable and you extract
that name to find the resource name. Another example is to have one xquery module
resource with a function that can do a lookup of the XML fragment given one or
multiple keys. In this case, in the validate expression you can evaluate the keys
required and make a call to that xquery module function. This allows you to
externalize and manage all those dynamic entries in that one xquery module along
with the lookup algorithm.

6. To save the result of this validation (a boolean result), select Save result of validation in
variable and enter the name of the variable in which you want to save the result.

Alternatively, to raise an error if the element fails validation against the WSDL file or XML
schema element, select Raise Error on validation failure.

7. Click Save to commit the updates in the current session.

14.27 Adding Alert Actions in the Console
Use the alert action to generate alerts based on message context in a pipeline, to send to an
alert destination.

Unlike SLA alerts, notifications generated by the alert action are primarily intended for
business purposes, or to report errors, and not for monitoring system health. Alert
destinations should be configured and chosen with this in mind. To learn more about alert
destinations, see Working with Alert Destinations.

If pipeline alerting is not enabled for the service or at the domain level, the configured alert
action is bypassed during message processing.

These instructions assume you are already editing a pipeline in the Edit Message Flow page,
as explained in Viewing and Editing Pipelines in the Console.

To add an alert action:

1. Navigate to where you want to add the action, as described in Adding and Editing
Pipeline Actions in the Console.

2. Click the appropriate icon, then select Add an Action > Reporting > Alert.

3. Click Destination. The Select Alert Destination page is displayed. Select the required
alert destination from the list and click Submit.

By default, the alert will always go to the Administration Console.

4. Click Expression. The XQuery Expression Editor page is displayed. You specify the
message context to be added to the alert message through XQuery expressions on
context variables. See Creating and Editing Inline XQuery and XPath Expressions.

Chapter 14
Adding Alert Actions in the Console

14-33

5. In the alert summary field, enter a short description of the alert. This will be the
subject line in the case of an Email notification, and can contain no more than 80
characters. If no description is provided, a predefined subject line that reads,
"Oracle Service Bus Alert", will be used instead.

6. In the severity level list, select a severity level for this alert from among: Normal,
Warning, Minor, Major, Critical, and Fatal.

7. Click Save to commit the updates in the current session.

14.28 Adding Log Actions in the Console
Use the log action to construct a message to be logged and to define a set of
attributes with which the message is logged.

These instructions assume you are already editing a pipeline in the Edit Message Flow
page, as explained in Viewing and Editing Pipelines in the Console.

Note:

To see log data in the log file or standard out (server console), WebLogic
Server logging must be set to the following severity levels:

• Minimum severity to log: Info

• Log file: Info

• Standard out: Info

For information on setting log severity levels, see "Using Log Severity
Levels" in Configuring Log Files and Filtering Log Messages for Oracle
WebLogic Server.

To add a log action:

1. Be sure Logging is enabled globally. For more information, see "Configuring
Operational Settings at the Global Level" in Administering Oracle Service Bus.

2. Navigate to where you want to add the action, as described in Adding and Editing
Pipeline Actions in the Console.

3. Click the appropriate icon, then select Add an Action > Reporting > Log.

4. Click Expression. The XQuery Expression Editor page is displayed. You specify
the message context to be logged through XQuery expressions on context
variables. See Creating and Editing Inline XQuery and XPath Expressions.

5. In the Annotation field, enter notes for this log action. These notes are logged
along with the result of the previously defined expression.

6. In the severity level list, select one of the options.

Chapter 14
Adding Log Actions in the Console

14-34

Table 14-7 Log Action Severity Levels

Severity Level Typical Usage

Info Used for reporting normal operations; a low-level informational
message.

Warning A suspicious operation or configuration has occurred but it might not
affect normal operation.

Error A user error has occurred. The system or application can handle the
error with no interruption and limited degradation of service.

Debug While your application is under development, you might find it useful
to create and use messages that provide verbose descriptions of low-
level activity within the application.

Make sure the Log severity level on the proxy service's operational settings is the same
as the log action severity level. For information on proxy service operational settings, see
"Available Operational Settings" in Administering Oracle Service Bus.

7. Click Save to commit the updates in the current session.

14.29 Adding Report Actions in the Console
Use the report action to enable message reporting for a proxy service.

These instructions assume you are already editing a pipeline in the Edit Message Flow page,
as explained in Viewing and Editing Pipelines in the Console.

To add a report action:

1. Navigate to where you want to add the action, as described in Adding and Editing
Pipeline Actions in the Console.

2. Click the appropriate icon, then select Add an Action > Reporting > Report.

3. Click Expression. The XQuery Expression Editor page is displayed. See Creating and
Editing Inline XQuery and XPath Expressions. The XQuery expression is used to create
the data that will be reported to the Service Bus dashboard.

4. When you finish editing the XQuery expression, click Add a Key. Two fields are
displayed: a Key Name field and a Key Value field, which includes an XPath link that you
can click to edit an XPath expression and an in variable field in which you can enter a
context variable.

You use key value pairs to extract key identifiers from any message context variable or
message payload, and ignore the rest of the message. The keys are a convenient way to
identify a message. They are displayed as report indexes in the Reporting module. See
"Working with Message Reports" in Administering Oracle Service Bus

a. Enter a key name in the Key Name field.

b. Click XPath. The Edit an XPath Expression page is displayed. See Creating and
Editing Inline XQuery and XPath Expressions.

c. Enter a context variable in the in variable field.

d. To add more key values, click the Key icon, then select Add a Key. To delete a key,
click the Key icon, then select Delete this Key.

Chapter 14
Adding Report Actions in the Console

14-35

For example, consider a report action configured on an error handler in a stage. The
action reports the contents of the fault context variable in the event of an error. The
report action is configured as follows:

• Key name = errorCode

• Key value = ./ctx:errorCode in variable fault

Each time this action is executed at runtime, a message is reported through the
Reporting Data Stream. The following table shows the results after the report action is
executed twice.

Report Index DB TimeStamp Inbound Service Error Code

errorCode=OSB-38250
5

04/26/07 9:45 AM MortgageBroker/ProxySvcs/
loanGateway3

OSB-382505

errorCode=OSB-38250
5

04/26/07 9:45 AM OSB-382505

14.30 Adding Error Handlers in the Console
You can configure error handling at the message flow, pipeline, route node, and stage
level.

Configure error handlers on the Edit Error Handler page. You must always add at least
one stage to the page to specify how the error handler will work.

Note:

You cannot create an error handler within an error handler.

14.30.1 Adding Pipeline Error Handlers in the Console
Before you begin

These instructions assume you are already editing a pipeline in the Edit Message Flow
page, as explained in Viewing and Editing Pipelines in the Console.

The instructions also assume you have created a pipeline pair node, as explained in
How to Add Pipeline Pairs to Pipelines.

To add a pipeline error handler:

1. Navigate to the pipeline pair node containing the pipeline to which you want to add
an error handler. If the pipeline pair is not already expanded, click the plus sign
next to the icon to display the pipelines.

2. Click the Request Pipeline icon or the Response Pipeline icon, then click Add
Pipeline Error Handler. The Edit Error Handler page is displayed.

3. Click the Error Handler icon, then click Add Stage.

4. Click the Stage icon, click Edit Stage. The Edit Stage Configuration page is
displayed.

Chapter 14
Adding Error Handlers in the Console

14-36

5. Click Add an Action, then select the action you want to add.

An error handler is a pipeline and is therefore configured like any other pipeline. For
example, you can use the Publish action to send error notifications to other services, use
the Assign action to modify the context variables, and so on. To learn more about the
type of action you want to add, see the appropriate procedure in Adding and Editing
Pipeline Actions in the Console. There is no restriction on what actions may be chained
together.

Three commonly-used error actions are Raise Error, Reply, and Resume.

Note:

You cannot create an error handler within an error handler.

6. Add other actions and make other edits on the Edit Stage Configuration page, as desired.

7. On the Edit Stage Configuration page, click Save to commit the updates in the current
session.

8. On the Edit Error Handler page, click Save to commit the updates in the current session.

14.30.2 Adding Stage Error Handlers in the Console
Before you begin

These instructions assume you are already editing a pipeline in the Edit Message Flow page,
as explained in Viewing and Editing Pipelines in the Console. The instructions also assume
you have added a stage to a pipeline, as explained in How to Add Stages to Pipelines in the
Console.

To add a stage error handler:

1. Navigate to the stage to which you want to add error handling.

2. Click the Stage icon, then click Add Stage Error Handler. The Edit Error Handler page
is displayed.

3. Click the Error Handler icon, then click Add Stage.

4. Click the Stage icon, then click Edit Stage. The Edit Stage Configuration page is
displayed.

5. Click Add an Action, then select the action you want to add.

An error handler is a pipeline and is therefore configured like any other pipeline. For
example, you can use the Publish action to send error notifications to other services, use
the Assign action to modify the context variables, and so on. To learn more about the
type of action you want to add, see the appropriate procedure in Adding and Editing
Pipeline Actions in the Console. There is no restriction on what actions may be chained
together.

Three commonly-used error actions are Raise Error, Reply, and Resume.

Chapter 14
Adding Error Handlers in the Console

14-37

Note:

You cannot create an error handler within an error handler.

6. Add other actions and make other edits on the Edit Stage Configuration page, as
desired.

7. Click Save to commit the updates in the current session.

14.30.3 Adding Route Node Error Handlers in the Console
Before you begin

These instructions assume you are already editing a pipeline in the Edit Message Flow
page, as explained in Viewing and Editing Pipelines in the Console.

The instructions also assume you have created a route node, as explained in How to
Add Route Nodes to Pipelines in the Console.

To add a route note error handler:

1. Click the Route Node icon, then click Add Error Handler. The Edit Error Handler
page is displayed.

2. Click the Error Handler icon, then click Add Stage.

3. Click the Stage icon, then click Edit Stage. The Edit Stage Configuration page is
displayed.

4. Click Add an Action, then select the action you want to add.

Since an error handler is another pipeline, it is configured like any other pipeline.
For example, the Publish action may be used to send error notifications to other
services, the Assign action may be used to modify the context variables, and so
on. To learn more about the type of action you want to add, see the appropriate
procedure in Adding and Editing Pipeline Actions in the Console. There is no
restriction on what actions may be chained together.

Three commonly-used error actions are Raise Error, Reply, and Resume.

Note:

You cannot create an error handler within an error handler.

5. Add other actions and make other edits on the Edit Stage Configuration page, as
desired.

6. On the Edit Stage Configuration page, click Save to commit the updates in the
current session.

7. On the Edit Error Handler page, click Save to commit the updates in the current
session.

Chapter 14
Adding Error Handlers in the Console

14-38

14.30.4 Editing Error Handlers in the Console
Before you begin

These instructions assume you are already editing a pipeline in the Edit Message Flow page,
as explained in Viewing and Editing Pipelines in the Console.

To view and change an error handler:

Do one of the following:

Table 14-8 Viewing and Changing the Error Handler

To... Complete This Step...

View and change the pipeline error
handler

Click the appropriate Request Pipeline icon or the Response
Pipeline icon, then click Edit Pipeline Error Handler. The Edit
Error Handler page is displayed. See Adding Pipeline Error
Handlers in the Console.

View and change the route node
error handler

Click the appropriate Route Node icon, then click Edit Route
Error Handler. The Edit Error Handler page is displayed. See
Adding Route Node Error Handlers in the Console.

View and change the stage error
handler

Click the appropriate Stage icon, then click Edit Stage Error
Handler. The Edit Error Handler page is displayed. See Adding
Stage Error Handlers in the Console.

14.31 Disabling an Action or a Stage in the Console
You can choose to disable an action or a stage in a pipeline. A disabled action or stage is
skipped from the pipeline execution.

When you disable an action or a stage, all the nested actions, if any, are disabled
automatically. A disabled stage or action is not validated at design time.

Note:

If a disabled stage has an error handler, then the error handler is also disabled.

You can still edit the configuration of a disabled action or stage. Refactoring also takes place
for disabled actions and stages. This means that if there is a call to a service in the disabled
action or stage, and the service gets renamed, then the service callout is automatically
updated.

You can re-enable a disabled stage or action at any time, and the action or stage is no longer
skipped in the pipeline.

Chapter 14
Disabling an Action or a Stage in the Console

14-39

14.31.1 Disabling an Action on the Pipeline
Before you begin:

These instructions assume you are already editing a pipeline in the Edit Message Flow
page, as explained in Viewing and Editing Pipelines in the Console.

To disable an action in the pipeline:

1. Navigate to the action that you wish to edit, as described in Adding and Editing
Pipeline Actions in the Console.

2. Click the appropriate action icon, then select Disable this Action.

The action icon is dimmed, and a Disabled icon appears next to the action.

3. Click Save to save the changes.

14.31.2 Re-Enabling an Action in the Pipeline
Before you begin:

These instructions assume you are already editing a pipeline in the Edit Message Flow
page, as explained in Viewing and Editing Pipelines in the Console.

To re-enable an action in the pipeline:

1. Navigate to the action that you wish to edit, as described in Adding and Editing
Pipeline Actions in the Console.

2. Click the disabled action icon, then select Enable this Action.

The dimmed action icon returns to normal, and the action is enabled.

3. Click Save to save the changes.

14.31.3 Disabling a Stage in the Pipeline
Before you begin:

These instructions assume you are already editing a pipeline in the Edit Message Flow
page, as explained in Viewing and Editing Pipelines in the Console.

To disable a stage in the pipeline:

1. On the Edit Message Flow page, click the stage icon that you wish to disable.

2. Select Disable Stage from the context menu that appears.

The stage icon is dimmed, and a Disabled icon appears next to the stage.

3. Click Save to save the changes.

14.31.4 Re-Enabling a Stage in the Pipeline
Before you begin:

These instructions assume you are already editing a pipeline in the Edit Message Flow
page, as explained in Viewing and Editing Pipelines in the Console.

Chapter 14
Disabling an Action or a Stage in the Console

14-40

To re-enable a stage in the pipeline:

1. On the Edit Message Flow page, click the disabled stage icon.

2. Select Enable Stage from the context menu that appears.

The dimmed stage icon returns to normal, and the stage is enabled.

3. Click Save to save the changes.

Chapter 14
Disabling an Action or a Stage in the Console

14-41

15
Working With Expression Editors in Oracle
Service Bus Console

This chapter describes how to use XQuery and XPath expressions in pipelines, or message
flows.

In the pipeline, you can assign XQuery expressions to message context variables, assign if-
then actions based on the Boolean result of an XQuery expression, insert the result of an
XQuery expression at an identified place relative to an XPath expression, specify the
message context that you want to log through XQuery expressions on context variables, and
so on.

The XQuery Expression Editor, the XQuery Condition Editor, and the XPath Expression
Editor are available in the appropriate context in message flows to construct the kind of
expression called for in the context.

This chapter contains the following sections:

• Creating and Editing Inline XQuery and XPath Expressions

• Understanding XQuery Editor Layouts and Tasks

• Building Expressions in the Editor Workspace Text Fields

• Creating Namespaces to Use in Inline Expressions

• Creating Variable Structures in the XQuery Editors

• Creating Custom XPath Functions in the XQuery Editors

• Binding External XQuery Resources to Inline XQueries

• Binding External XSLT Resources to Inline XQueries

• Binding Dynamic XQuery Expressions to Inline XQueries

• Binding Dynamic XSLT Expressions to Inline XQueries

• Entering XQuery Comparison Expressions Using the Builder Option

• Entering Unary Expressions Using the Builder Option

15.1 Creating and Editing Inline XQuery and XPath Expressions
When you add actions to stages or route nodes on the Edit Stage Configuration page, a
skeleton structure is displayed on the page that prompts for configuration details.

Figure 15-1 shows an example.

Figure 15-1 Example of Action Configuration Skeleton

15-1

Whenever it is appropriate for the context, the skeleton provides links for accessing
the XQuery editors, where you can construct expressions that will be executed inline,
as required by the context in the action.

These instructions assume you are creating or editing an action in the Edit Stage
Configuration page of a pipeline stage, an error handler stage, or a route node. See
Viewing and Editing Pipelines in the Console. and Adding and Editing Pipeline Actions
in the Console.

To create or modify an inline expression:

1. On the Edit Stage Configuration page, locate the place in the action where you
want to add or edit the expression.

2. Click the expression link to open the editor that is appropriate for the context.
When an expression has not yet been defined, the link tells what kind of
expression you can use in that position:

• Click Expression to create an XQuery expression.You can also import an
XQuery or XSLT resource created outside Service Bus, then bind it to the
inline XQuery.

• Click Condition to create an XQuery conditional expression for an if-then
action.

• Click XPath to create an XPath expression for a message context variable.

When an expression has already been defined in a position, the Expression,
Condition, or XPath link is replaced by a link that shows expression itself, for
example true() icon, or a fragment of the expression it is too long to fit, for
example $body/urn:POSta... icon. Click the expression (or expression fragment)
to open the expression in the appropriate editor.

3. Build the expression, as described in the following topics:

• Building Expressions in the Editor Workspace Text Fields

• Creating Namespaces to Use in Inline Expressions

• Creating Variable Structures in the XQuery Editors

• Creating Custom XPath Functions in the XQuery Editors

• Binding External XQuery Resources to Inline XQueries

• Binding External XSLT Resources to Inline XQueries

• Binding Dynamic XQuery Expressions to Inline XQueries

• Entering XQuery Comparison Expressions Using the Builder Option

• Entering Unary Expressions Using the Builder Option

4. Optionally, do either or both of the following:

• Click Validate to validate the expression.

• Click Test to test the expression. See XQuery Transformation Testing
Prerequisites and Guidelines.

5. Click Save to close the editor and insert the expression in the action.

Chapter 15
Creating and Editing Inline XQuery and XPath Expressions

15-2

15.2 Understanding XQuery Editor Layouts and Tasks
The XQuery Expression Editor, the XQuery Condition Editor, and the XPath Expression
Editor are each composed of palettes, a workspace, and a property inspector.

For more information, follow the links below.

• Palettes

• Workspace

• Property Inspector

15.2.1 Palettes
The left panel of the each editor contains the palettes listed below. In any of the editors, click
the name of a palette to display it. Each palette contains entities that you can insert into
expressions in the editors.

• The Namespace Definitions palette lists default Service Bus namespaces, variable
namespaces, and user-defined namespaces. You can define new namespaces, which
are then added to the list of user-defined namespaces.

For more information, see:

– Building Expressions in the Editor Workspace Text Fields

– Creating Namespaces to Use in Inline Expressions

• The XQuery Functions palette lists a set of standard XQuery functions.When you insert a
function into an expression, placeholders are used for parameter values you must supply.

For more information, see:

– Building Expressions in the Editor Workspace Text Fields

– Creating Custom XPath Functions in the XQuery Editors

– Binding External XQuery Resources to Inline XQueries

• The Variable Structures palette provides a set of tools for inserting variables and paths to
the variables, using XPath expressions.

Variable structures are graphical representations of variables or variable paths that are
displayed in the editor. They can help you visualize the variable structure, and you can
use them to construct inline XQuery expressions that reference the content of the
variable.

Note:

Variable structures do not create variables. Variables are created at runtime as
the target of the Assign action in the stage.

Service Bus provides several predefined message context variables (attachments, body,
header, outbound, and inbound), whose contents you can display as variable structures.
You can also define your own variable structures.

For more information, see

Chapter 15
Understanding XQuery Editor Layouts and Tasks

15-3

– Building Expressions in the Editor Workspace Text Fields

– Creating Variable Structures in the XQuery Editors

15.2.2 Workspace
The right side of the page provides a workspace for constructing the XQuery
expression, XQuery condition, or XPath. The workspace is different in the three
editors.

15.2.3 Property Inspector
In all three editors, the Property Inspector is displayed on the bottom right of the page.
When you select an item from one of the palettes to add to the expression, that item
appears in the Property Inspector. You can then paste the item into the workspace.
See Building Expressions in the Editor Workspace Text Fields.

15.3 Building Expressions in the Editor Workspace Text
Fields

The XQuery Expression Editor, the XQuery Condition Editor, and the XPath
Expression Editor all provide text fields in which you can build expressions by typing
directly or by pasting items from the palettes.

These instructions assume you are creating or editing an expression in the XQuery
Expression Editor, XQuery Condition Editor, or XPath Expression Editor, as described
in Creating and Editing Inline XQuery and XPath Expressions.

To build an expression in a text field:

1. Display the panel containing the text field. Depending on the editor, do one of the
following:

• In the XQuery Expression Editor, select XQuery Text (located under the
workspace button bar), if it is not already selected.

• In the XQuery Condition Editor, select Text (located under the workspace
button bar), if it is not already selected.

• In the XPath Expression Editor, you do not have to select anything, because
there are no options for selecting other tools.

Note:

Selecting any of the above links displays a text field where you can
create a complete expression appropriate for the context. However,
the tools and techniques described in this topic can be used
wherever text fields are provided in the editors, for example when
binding variables from imported resources to the inline expression,
as described in Binding External XQuery Resources to Inline
XQueries and Binding External XSLT Resources to Inline XQueries.

Chapter 15
Building Expressions in the Editor Workspace Text Fields

15-4

2. If desired, type or paste an expression or expression fragment into the field. If you create
the complete expression this way, skip to step 7, below. Otherwise, proceed to the next
step.

3. Select the palette containing the item(s) you want to add to the expression, and locate
the item you want to add, as described in Table 15-1, below.

Table 15-1 Palettes

Palette Description and Use

Namespace Definitions Lists default Service Bus namespaces, variable namespaces,
and user-defined namespaces. Namespace abbreviations are
listed when defined.

Scroll through the lists to find the desired namespace.

You can also define a namespace. See Creating Namespaces to
Use in Inline Expressions .

XQuery Functions Contains a set of standard XQuery functions, organized
alphabetically and by type, including any custom functions you
have developed. To expand or collapse nodes in the tree, click
the plus sign (+) or minus sign (-).

See also:

• Transforming Data with XQuery.

Variable Structures Displays variables and their contents as trees, which can help
you to visualize.

You can view a variable structure and its contents.

• Select the name of the structure from the list at the top of
the palette. The list displays Built-in message context
variables (attachments, body, header, outbound, and
inbound), as well as any user-defined structures,
organized by type (XML Type, Service Interface, and Simple
Type).

• To expand or collapse nodes in the tree, click the plus sign
(+) or minus sign (-).

You can also define your own variable structures. See Creating
Variable Structures in the XQuery Editors.

Variable structures do not create variables. Variables are
created at runtime as the target of the Assign action in the
stage.

When you insert an item from the a variable structure tree into
the text field, it is inserted as an XPath expression that
describes the path.

See also Transforming Data with XQuery.

4. Paste the desired item into the text field using any of the methods shown below in
Table 15-2:

Chapter 15
Building Expressions in the Editor Workspace Text Fields

15-5

Table 15-2 Ways to Paste Items Into the Editor Text Fields

From this palette... Do this...

Namespace Definitions
palette

Use standard mouse or keyboard select, copy, and paste a
namespace, for example:

a. Select the entire namespace string (or its abbreviation,
if one exists) by dragging the mouse pointer over the
string.

b. Press Ctrl-C to copy the string.

c. Click the location in the text field where you want to
insert the namespace.

d. Press Ctrl-V to paste the string.

XQuery Functions palette or
Variable Structures palette

Drag an item from the palette to the text field.

Note: Dragging from the palette to the workspace is
supported only in Internet Explorer.

XQuery Functions palette or
Variable Structures palette

a. Click an item in the palette. The item is displayed in the
Property Inspector pane:

Functions are displayed with placeholders for any
values you have to supply.

Variables and their attributes are displayed as XPath
expressions.

b. Click in the text field where you want to insert the item

c. Click Copy Property to paste the item into the location
selected in the text field.

XQuery Functions palette or
Variable Structures palette

a. Click an item in the palette. The item is displayed in the
Property Inspector pane.

b. Select and copy the item in the Property Inspector,
using standard keyboard or mouse actions.

c. Select a location in the text field, and paste the item
into the text field, using standard keyboard or mouse
actions.

5. Continue to drag and drop functions to build the desired expression.

6. Edit the expression in the text field, as needed.

7. Optionally, do either or both of the following:

• Click Validate. A message is displayed if the expression is validated
successfully.

• Click Test to test the expression. See XQuery Transformation Testing
Prerequisites and Guidelines.

8. Click Save to close the editor and insert the expression in the action.

Chapter 15
Building Expressions in the Editor Workspace Text Fields

15-6

15.4 Creating Namespaces to Use in Inline Expressions
The Namespace Definitions palette includes a list of default namespaces, but you can also
define new ones.

These instructions assume you are creating or editing an expression in the XQuery
Expression Editor, XQuery Condition Editor, or XPath Expression Editor, as described in
Creating and Editing Inline XQuery and XPath Expressions.

To create and use a namespace in an inline expression:

1. Select Namespace Definitions. The Namespace Definitions palette includes a list of
default namespaces, plus lists of variable namespaces and user defined namespaces, if
any exist.

2. To define and add a user namespace,

a. Click Add Namespace.

b. In the Prefix field, enter a unique identifier for the namespace. You cannot use the
same prefix more than once.

c. In the URI field, enter a URL for this namespace in the format http://url/.../ or
enter a URN in the format uddi:server:.

d. Click Add to add the namespace to the User Defined Namespaces list.

e. Copy and paste the user-defined namespace into the XQuery expression, XQuery
condition, or XPath, as described in Creating and Editing Inline XQuery and XPath
Expressions.

Continue as described in Creating and Editing Inline XQuery and XPath Expressions.

15.5 Creating Variable Structures in the XQuery Editors
The Variable Structures palette in the XQuery and XPath editors displays graphical
representations of the contents of variables.

It includes by default the built-in message context variables attachments, body, header,
outbound, and inbound.

Each variable structure mapping entry has a label and maps a variable or variable path to
one or more structures. The scope of these mappings is a stage or a route node.

You can also declare your own variable structures, based on:

• XML types, including:

– Schema elements

– WSDL elements

– Schema types

– WSDL types

– MFLs

• Service interfaces

• Simple types (string or any XML)

Chapter 15
Creating Namespaces to Use in Inline Expressions

15-7

You can use this feature directly for all user-defined variables, as well
as $inbound, $outbound, and $fault. However, you cannot use it directly to access
XML attachments in $attachments, headers in $header, or documents and RPC
parameters in $body, with one exception— you can use it directly to access documents
and parameters in $body for request messages received by a WSDL proxy service.

These instructions assume you are creating or editing an expression in the XQuery
Expression Editor, XQuery Condition Editor, or XPath Expression Editor, as described
in Creating and Editing Inline XQuery and XPath Expressions.

To create a variable structure:

1. Select Variable Structures.

2. In the Variable Structures palette, click Add New Structure.

3. Continue with any of the tasks listed in Table 15-3.

Table 15-3 Create a New Variable Structure

To... Complete these steps...

Create a variable
structure that maps a
variable to an XML
Schema type

1. Select XML Type at the top of the Variable Structures palette, if
it is not already selected.

2. In the Structure Label field, enter a display name for the
variable you want to create. This display name enables you to
give a meaningful name to the structure so you can recognize it
at design time but it has no impact at runtime.

3. In the Structure Path field, enter the path of the variable
structure at runtime. The path must begin with $.

4. Under the Type field, select the appropriate radio button, then
select Schema Type.

5. Click Browse. The XML Schema Browser is displayed. Select
an XML Schema from the list, select an XML Schema type
from the Definitions pane, then click Submit.

6. Click Add to create the variable structure.

Create a variable
structure that maps a
variable to a WSDL type

1. Select XML Type at the top of the Variable Structures palette, if
it is not already selected.

2. In the Structure Label field, enter a display name for the
variable you want to create. This display name enables you to
give a meaningful name to the structure so you can recognize it
at design time but it has no impact at runtime.

3. In the Structure Path field, enter the path of the variable
structure at runtime.

4. Under the Type field, select the appropriate radio button, then
select WSDL Type.

5. Click Browse. The WSDL Browser is displayed. Select a
WSDL file from the list of WSDL files, select a WSDL type from
the Definitions pane, then click Submit.

6. Click Add to create the variable structure.

Chapter 15
Creating Variable Structures in the XQuery Editors

15-8

Table 15-3 (Cont.) Create a New Variable Structure

To... Complete these steps...

Create a variable
structure that maps a
variable to an XML
Schema element

1. At the top of the Variable Structures palette, select XML Type,
if it is not already selected.

2. In the Structure Label field, enter a display name for the
variable you want to create. This display name enables you to
give a meaningful name to the structure so you can recognize it
at design time but it has no impact at runtime.

3. In the Structure Path field, enter the path of the variable
structure at runtime.

4. Under the Type field, select the appropriate radio button, then
select Schema Element.

5. Click Browse. The XML Schema Browser is displayed. Select
an XML Schema from the list, select an XML Schema type
from the Definitions pane, then click Submit.

6. Click Add to create the variable structure.

Create a variable
structure that maps a
variable to a WSDL
element

1. At the top of the Variable Structures palette, select XML Type,
if it is not already selected.

2. In the Structure Label field, enter a display name for the
variable you want to create. This display name enables you to
give a meaningful name to the structure so you can recognize it
at design time but it has no impact at runtime.

3. In the Structure Path field, enter the path of the variable
structure at runtime.

4. Under the Type field, select the appropriate radio button, then
select WSDL Element.

5. Click Browse. The WSDL Browser is displayed. Select a
WSDL file from the list of WSDL files, select a WSDL element
from the Definitions pane, then click Submit.

6. Click Add to create the variable structure.

Chapter 15
Creating Variable Structures in the XQuery Editors

15-9

Table 15-3 (Cont.) Create a New Variable Structure

To... Complete these steps...

Create a variable
structure that maps a
variable to a child
element

1. At the top of the Variable Structures palette, select XML Type,
if it is not already selected.

2. In the Structure Label field, enter a display name for the
variable you want to create. This display name enables you to
give a meaningful name to the structure so you can recognize it
at design time but it has no impact at runtime.

3. In the Structure Path field, enter the path of the variable
structure at runtime.

4. Under the Type field, select the type of variable you want to
create:

To create an XML Schema element or WSDL element variable,
select the radio button associated with this option, then select
Schema Element or WSDL Element.

To create an MFL variable, select the radio button associated
with this option, then select MFL.

5. For the XML Schema, WSDL file, or MFL file, click Browse to
select an object from the list that the browser displays, then
click Submit. For example, select an MFL from a list of MFLs,
then click Submit.

6. Select the Set as child check box to set the element as a child
of the structure being created.

7. Click Add to create the variable structure.

Create a variable
structure that uses an
MFL resource

1. At the top of the Variable Structures palette, select XML Type,
if it is not already selected.

2. In the Structure Label field, enter a display name for the
variable you want to create. This display name enables you to
give a meaningful name to the structure so you can recognize it
at design time but it has no impact at runtime.

3. In the Structure Path field, enter the path of the variable
structure at runtime.

4. Under the Type field, select the appropriate radio button, then
click Browse. The MFL Browser is displayed.

5. Select an MFL from the list of MFLs, then click Submit.

6. Click Add to create the variable structure.

Chapter 15
Creating Variable Structures in the XQuery Editors

15-10

Table 15-3 (Cont.) Create a New Variable Structure

To... Complete these steps...

Create a Service
Interface variable
structure

1. At the top of the Variable Structures palette, select Service
Interface.

2. In the Structure Label field, enter a display name for the
variable you want to create. This display name enables you to
give a meaningful name to the structure so you can recognize it
at design time but it has no impact at runtime.

3. In the Structure Path field, the default is already set as $body.
You cannot change this field.

4. In the WSDL Based Service field, select the Service Browser
icon, select a service from the list of services the Service
Browser displays, then click Submit.

The service you selected is displayed in the WSDL Based Service
field.

1. In the Operation field, select an operation or select None to
not include an operation.

2. Click Add to create the variable.

Create a Simple variable
structure

1. At the top of the Variable Structures palette, select Simple
Type.

2. In the Structure Label field, enter a display name for the
variable you want to create. This display name enables you to
give a meaningful name to the structure so you can recognize it
at design time but it has no impact at runtime.

3. In the Structure Name field, enter a name for the variable
structure you want to create.

4. Under the Type field, select String or Any XML.

5. Click Add to create the variable.

After you finish:

Continue as described in Creating and Editing Inline XQuery and XPath Expressions.

15.6 Creating Custom XPath Functions in the XQuery Editors
Creating custom XQuery functions is a development process that requires writing Java code.

For more information, see Creating Custom XPath Functions.

15.7 Binding External XQuery Resources to Inline XQueries
You can bind XQuery resources to inline XQuery expressions, so they will be executed inline
as part of an action.

These instructions assume you are creating or editing an expression in the XQuery/XSLT
Expression Editor, XQuery Condition Editor, or XPath Expression Editor, as described in
Creating and Editing Inline XQuery and XPath Expressions.

Chapter 15
Creating Custom XPath Functions in the XQuery Editors

15-11

To bind an XQuery Resource to an inline expression:

1. Click Variable Structures.

2. In the workspace (under the button bar), select XQuery Resources.

3. In the 1. Select an XQuery resource to execute box, click Browse.

4. In the XQuery Browser, select the radio button associated with the XQuery you
want to use, then click Submit.

5. In the 2. Bind Variables box, define the input parameters for the transformation.
For each variable listed under Variable Name enter an XQuery expression to be
mapped to it. You must define a mapping for each parameter. For example, if an
XQuery transformation has two input parameters named one and two, the
Variable Name field has two labels—one and two. A text box, into which the
XQuery expression is entered, is associated with each label.

The following XQuery expressions are examples of valid input to this field:

$body/*[1]
$body/po:PurchaseOrder

Note:

The following variable name is not a valid entry for this field and results
in an exception: body.

6. After you finish, continue with any of the following tasks.

• Click Validate. A message is displayed if the expression is validated
successfully.

• Click Test. See XQuery Transformation Testing Prerequisites and Guidelines.

• Save or discard your changes.

15.8 Binding External XSLT Resources to Inline XQueries
The XQuery/XSLT Expression Editor page allows you to select an XSLT resource for
execution.

To learn more about this editor, see Creating and Editing Inline XQuery and XPath
Expressions.

To Select an XSLT Resource for Execution

1. Select the XSLT Resources option.

2. Under the Select the XSLT resource to execute field, select the XSLT Browser
icon.

3. In the XSLT Browser, select the radio button associated with the XSLT you want to
execute, then click Submit.

4. Under the Bind Variables field, a label and a corresponding text box is displayed
for each input parameter of the transformation. Each label corresponds to the
name of a parameter, and each text box is for defining an XQuery expression to be
mapped to the parameter. You must define a mapping for each parameter. For
example, if an XSL transformation has two input parameters named one and two,

Chapter 15
Binding External XSLT Resources to Inline XQueries

15-12

the Variable Mapping field has two labels—one and two—with a text box associated
with each into which the XQuery expression is entered. In addition to the mapping for any
input variables, you must also specify an XQuery expression for the Input Document to
the transformation. The mapping is specified in the text box with the label Input
Document.

The following XQuery expressions are examples of valid input to this field:

$body/*[1]
$body/po:PurchaseOrder

Note:

The following variable name is not a valid entry for this field and results in an
exception: body.

5. Continue with any of the following tasks:

• Creating Namespaces to Use in Inline Expressions

• Creating Variable Structures in the XQuery Editors

• Building Expressions in the Editor Workspace Text Fields

• Binding External XQuery Resources to Inline XQueries

• Click Validate. A message is displayed if the expression is validated successfully.

• Click Test. See XQuery Transformation Testing Prerequisites and Guidelines.

15.9 Binding Dynamic XQuery Expressions to Inline XQueries
The XQuery/XSLT Expression Editor page allows you to specify a dynamic XQuery
expression that evaluates at runtime to the name of a pre-registered XQuery resource.

To learn more about this editor, see Creating and Editing Inline XQuery and XPath
Expressions.

To define a dynamic XQuery expression

1. Select the Dynamic XQuery option.

2. In the Enter Expression for XQuery Resource area, enter the XQuery expression that will
evaluate at runtime to the name of a pre-registered XQuery resource.

The following shows the syntax for the XQuery resource (representing the full name of
the resource):

Project/folder1/folder2/XQueryResourceName

3. In the Bind Variables using XQuery Template or Custom Variables area, define the input
parameters for the transformation.

• Click Browse in the Select XQuery Template field to select an existing registered
resource to serve as a template for the shape of the query (the number and names of
the variables). After selecting a template, the variables appear in the Bind Variables
area. Note that the template is not persisted with the configuration. Instead, the
template serves as a quick start to help you specify the variables for the query.

• Type a variable name in the Add Custom Variable field, and click Add. For each
variable listed under Variable Name, enter an XQuery expression to be mapped to it.

Chapter 15
Binding Dynamic XQuery Expressions to Inline XQueries

15-13

You must define a mapping for each parameter. For example, if an XQuery
transformation has two input parameters named one and two, the Variable
Name field has two labels—one and two. A text box, into which the XQuery
expression is entered, is associated with each label.

The following XQuery expressions are examples of valid input to the variable
fields:

$body/*[1]
$body/po:PurchaseOrder

4. After you finish, continue with any of the following tasks.

• Click Validate. A message is displayed if the expression is validated
successfully.

• Click Test. See XQuery Transformation Testing Prerequisites and Guidelines.

• Save or discard your changes.

15.10 Binding Dynamic XSLT Expressions to Inline
XQueries

The XQuery/XSLT Expression Editor page allows you to specify a dynamic XPath/
XQuery expression that evaluates at runtime to the name of a pre-registered XSLT
resource.

To learn more about this editor, see Creating and Editing Inline XQuery and XPath
Expressions.

To define a dynamic XSLT expression

1. Select the Dynamic XSLT option.

2. In the Enter Expression for XSLT Resource area, enter the XPath/XQuery
expression that will evaluate at runtime to the name of a pre-registered XSLT
resource. For example: $body/*:name/text()

The following shows the syntax for the XSLT resource (representing the full name
of the resource):

Project/folder1/folder2/myXSLResourceName

3. In the Bind Input area, enter an inline XQuery/XPath expression to select the XML
input document. For example: $body/message.

4. In the Bind Variables using XSLT Template or Custom Variables area, define the
input parameters for the transformation.

• Click Browse in the Select XSLT Template field to select an existing
registered XSLT resource to serve as a template for the shape of the query
(the number and names of the variables). After selecting a template, the
variables appear in the Bind Variables area. Note that the template is not
persisted with the configuration. Instead, the template serves as a quick start
to help you specify the variables for the query.

• To add a variable manually, type a variable name in the Add Custom Variable
field, and click Add.

• For each variable listed under Variable Name, enter an XQuery/XPath
expression to be mapped to it. You must define a mapping for each parameter.

Chapter 15
Binding Dynamic XSLT Expressions to Inline XQueries

15-14

For example, if an XQuery transformation has two input parameters named one and
two, the Variable Name field has two labels—one and two. A text box, into which
the XQuery expression is entered, is associated with each label.

The following XQuery expressions are examples of valid input to the variable fields:

$body/*[1]
$body/po:PurchaseOrder

5. After you finish, continue with any of the following tasks.

• Click Validate. A message is displayed if the expression is validated successfully.

• Click Test. See XQuery Transformation Testing Prerequisites and Guidelines.

• Save or discard your changes.

15.11 Entering XQuery Comparison Expressions Using the
Builder Option

You can create comparison expressions in the XQuery Condition Editor.

These instructions assume you are creating or editing an XQuery conditional expression in
the XQuery Condition Editor, as described in Creating and Editing Inline XQuery and XPath
Expressions.

To enter an XQuery comparison expression:

1. In the XQuery Condition Editor, select Builder (located under the workspace button bar),
if it is not already selected. option.

2. In the Expression Builder box, select Comparison Expression if it is not already
selected.

3. In the Operand field, enter a context variable, namespace definition, or XQuery function.

To build the operand, you can paste XQuery functions from the XQuery Functions palette
and namespaces from the Namespace Definitions palette. See Building Expressions in
the Editor Workspace Text Fields.

4. From the Operator list, select a comparison operator.

5. In the Value field, enter text or enter a context variable.

You must enter text in quotations—for example, "true" is valid; true is not.

6. Click Add. The text you entered is displayed in the Expressions pane.

7. Repeat steps 3-6 to build additional conditions. Each condition is added to the end of the
list of conditions.

Consider the following when using multiple conditions:

• When you build additional expressions, make sure to select the And or the Or
options in the Conjunction field.

• You can select a condition and click the Up arrow to move it up in the list of
conditions or click the Down arrow to move it down the list of conditions. You can
also click the Edit icon to update a condition, or click the Delete icon to delete it.

• Unary expressions may be intermixed with Comparison expressions in the overall
definition of a condition.

8. Optionally, do either or both of the following:

Chapter 15
Entering XQuery Comparison Expressions Using the Builder Option

15-15

• Click Validate. A message is displayed if the expression is validated
successfully.

• Click Test to test the expression. See XQuery Transformation Testing
Prerequisites and Guidelines.

9. Click Save to close the editor and insert the expression in the action.

Continue configuring the action, as described in Adding and Editing Pipeline Actions in
the Console.

15.12 Entering Unary Expressions Using the Builder Option
You can create a unary expression using the XQuery Condition Editor.

These instructions assume you are creating or editing an XQuery conditional
expression in the XQuery Condition Editor, as described in Creating and Editing Inline
XQuery and XPath Expressions.

To enter an XQuery comparison expression:

1. In the XQuery Condition Editor, select Builder (located under the workspace
button bar), if it is not already selected. option.

2. In the Expression Builder box, select Unary Expression if it is not already
selected.

3. Select the Not check box to make this a negative expression, or leave it blank.

4. Enter a context variable, namespace definition or XQuery function in the
Expression field.

To build the expression, you can paste XQuery functions from the XQuery
Functions palette and namespaces from the Namespace Definitions palette. See
Building Expressions in the Editor Workspace Text Fields.

5. Click Add to add the text to the Expressions pane.

6. Repeat steps 3-5 to build additional conditions. Each condition is added to the end
of the list of conditions.

Consider the following when building unary expressions.

• When you build additional expressions, make sure to select the And or the Or
options in the Conjunction field.

• You can select a condition and click the Up arrow to move it up in the list of
conditions, click the Down arrow to move it down the list of conditions, click
the Edit icon to update it, or click the Delete icon to delete it.

• Unary expressions may be intermixed with Comparison expressions in the
overall definition of a condition.

7. Optionally, do either or both of the following:

• Click Validate. A message is displayed if the expression is validated
successfully.

• Click Test to test the expression. See XQuery Transformation Testing
Prerequisites and Guidelines.

8. Click Save to close the editor and insert the expression in the action.

Chapter 15
Entering Unary Expressions Using the Builder Option

15-16

16
Working with Pipelines in Oracle JDeveloper

This chapter describes how to create and configure pipelines, or message flows, using
Oracle JDeveloper. Sections include adding and configuring pipeline pairs, conditional
branches, stages, operational branches, route nodes, and error handlers.

For more detailed information on message flows, see Modeling Message Flow in Oracle
Service Bus.

This chapter includes the following sections:

• Adding a Pipeline Component in JDeveloper

• Viewing and Editing Pipelines in JDeveloper

• Adding Shared Variables to Pipelines in JDeveloper

• Adding Pipeline Pair Nodes to Pipelines in JDeveloper

• Adding Conditional Branches to Pipelines in JDeveloper

• Adding Operational Branches to Pipelines in JDeveloper

• Adding REST Branches to Pipelines in JDeveloper

• Adding Stages to Pipelines in JDeveloper

• Adding Route Nodes to Pipelines in JDeveloper

• Cutting, Copying, and Pasting Stages and Route Nodes in JDeveloper

• Configuring the Resequencer in JDeveloper

16.1 Adding a Pipeline Component in JDeveloper
Add a pipeline to define the message flow and any data transformation or validation for the
project.

You can also define errors and reporting in a pipeline. When you create a new pipeline, you
have the option to generate a proxy service from the pipeline configuration.

16.1.1 How to Add a Pipeline in JDeveloper
You can use the Service Bus Overview Editor in Oracle JDeveloper to add a pipeline
component to the service bus project.

To add a pipeline:

1. Make sure you have the Service Bus project open in Oracle JDeveloper.

2. Double-click the project icon in the Application Navigator to open the Service Bus
Overview Editor. For more information about the Service Bus Overview Editor, see
Introduction to the Service Bus Overview Editor.

16-1

Note:

You can also right-click the project folder in the Application Navigator and
select New > Pipeline from the context menu that appears. Next,
continue from Step 5 to configure the pipeline.

3. From the Components window, select Service Bus.

4. From the Resources list, drag a Pipeline into the Pipelines/Split Joins lane in the
designer.

The Create Pipeline Service wizard appears.

5. Configure the settings for the pipeline.

For help with the configuration fields, click Help or press F1.

6. To generate a proxy service to associate with the pipeline, click Expose as a
Proxy Service on the Type page of the wizard. Select a transport for the proxy
service and, optionally, modify the name.

7. On the last page of the wizard, click Finish.

The pipeline file is added to the project, and the pipeline appears in the Pipelines/
Split Joins section of the designer. If you exposed the pipeline as a proxy service,
the proxy service also appears in the Proxy Services swim lane, and the
components are automatically wired.

8. To define the message flow in the pipeline, see Viewing and Editing Pipelines in
JDeveloper

9. Click Save All in the JDeveloper toolbar.

16.2 Viewing and Editing Pipelines in JDeveloper
The message flow corresponding to a proxy service is handled by a pipeline.

This section describes how to view and pipelines using the Pipeline Editor.

16.2.1 How to View and Edit a Pipeline in JDeveloper
Use the Pipeline Editor in Oracle JDeveloper to view and edit the message flow for the
pipeline.

To view and edit a pipeline:

1. Make sure you have the Service Bus project open in Oracle JDeveloper.

2. Use one of the following methods to edit the message flow for a pipeline:

• In Application Navigator, locate the pipeline node. Right-click the pipeline node
and select Open. You can alternatively double-click the pipeline node to open
it.

• In Application Navigator, click the project node (or overview.xml) to open the
Overview Editor.

In the Overview Editor, double-click the pipeline component to open the
Pipeline Editor.

Chapter 16
Viewing and Editing Pipelines in JDeveloper

16-2

The Pipeline Editor appears. Ensure that the Design tab is selected at the bottom left
corner of the editor.

If no message flow has yet been created for the selected pipeline, the Pipeline Editor
Design view shows a single icon on the page, the pipeline icon. This is the starting node
for the message flow.

3. Use one of the following methods to add a pipeline component (node):

• Right-click the start node to get options for pipeline components that you can add.
Figure 16-1 shows the options available for the start node. You can add nodes like
the Route node, PipelinePair node, and Conditional Branch.

Figure 16-1 Right-Clicking a Node to Add a Pipeline Component

• Alternatively, select the pipeline component to add from the Components window,
and drag the component to the Pipeline Editor window. Yellow circles appear
indicating valid places to drop the component in the pipeline. Drag the component to
a yellow circle. The yellow circle turns green. Release the component to add it.
Figure 16-2 shows a Pipeline Pair node being added to a start node.

Figure 16-2 Adding a Pipeline Pair to the Start Node

When you add components to the editor, icons are displayed on the editor to represent
the components. The relationships among the components are shown with lines and
bounding boxes.

Figure 16-3 shows a pipeline where a Pipeline Pair node has been added to the flow. The
Pipeline Pair comprises of a Request Pipeline and a Response Pipeline. The Request
and Response pipelines have stages that can contain action nodes.

Chapter 16
Viewing and Editing Pipelines in JDeveloper

16-3

Figure 16-3 Pipeline with a Pipeline Pair Node

4. Continue to build the pipeline by adding more components to the editor. For
example, to add a communication action to the stage node, you can drag the
communication action from the Components window to the stage node in the
editor. Alternatively, you can right-click the Stage node to get options for pipeline
components that you can add to the Stage node. The options available for each
component may differ, depending on context.

5. Click Save in the Oracle JDeveloper toolbar.

16.3 Adding Shared Variables to Pipelines in JDeveloper
If two pipelines in a single call chain declare the same shared variable, then they read
and modify the same variable.

In other words, if pipeline P1 declares a shared variable var, and pipeline P2 also
declares a shared variable var, then any changes to var in P1 are visible in P2, and
vice versa. A shared variable must be of the String, Boolean, or XML data type.

When a proxy service receives and processes a message, all invoked pipelines that
use a shared variable, read and write the same value for the variable. A subsequent
message received by the proxy creates a new instance of the shared variable in the
invoked pipelines.

Shared variables work across local proxy invocations and split-join component
invocations. For example, say pipelines P1 and P2 declare a shared variable. Now, if
P1 invokes a local proxy service or split-join component, which in turn invokes P2,
then P1 and P2 continue to share the shared variable.

The following restrictions apply to using shared variables:

• System variables (such
as $body, $attachments, $operation, $inbound, $outbound) cannot be
shared.

• Variables cannot be shared across non-local proxy invocations. For example, say
a pipeline invokes an HTTP proxy service, the shared variable is not propagated
across this call.

Chapter 16
Adding Shared Variables to Pipelines in JDeveloper

16-4

• Variables cannot be shared between pipeline and split-join resources.

• Variables with Java and binary content types are not supported. For example, an XML-
typed variable that has <ctx:java-content/> in its XML structure, is not supported as a
shared variable.

16.3.1 How to Add a Shared Variable to a Pipeline in JDeveloper
Use the Pipeline Editor to add a shared variable to the message flow for the pipeline.

To add a shared variable to a pipeline

1. In the Pipeline Editor, right-click the start node.

2. Select Add Shared Variable from the context menu that appears.

3. Enter a name for the shared variable in the Enter Shared Variable Name field.

4. Click OK to add the shared variable to the pipeline.

16.4 Adding Pipeline Pair Nodes to Pipelines in JDeveloper
Pipelines can include zero or more pipeline pair nodes.

These nodes are request and response pipelines for the proxy service (or for the operations
on the service), and error handler pipelines that can be defined for stages, pipelines, and
proxy services. Pipelines can include one or more stages, which in turn include actions.

16.4.1 How to Add a Pipeline Pair Node to a Pipeline in JDeveloper
Use the Pipeline Editor to add a pipeline pair to the message flow for the pipeline.

To add a pipeline pair to a pipeline:

1. In the Pipeline Editor, right-click the start node icon.

2. Select Insert Into > PipelinePairNode from the context menu that appears. The pipeline
pair node is inserted.

Note:

You can alternatively choose to drag a Pipeline Pair component from the
Components window to the appropriate location in the Pipeline Editor. The
Pipeline Pair component can be found under the Nodes section of the Message
Flow category.

3. To change the default name and add a description for the pipeline pair node, do the
following:

a. Click the Pipeline Pair Node to select it. The Properties window displays the
properties for the selected component.

Chapter 16
Adding Pipeline Pair Nodes to Pipelines in JDeveloper

16-5

Note:

If the Properties window is not visible, select Properties from the
Window main menu.

b. In the Properties window, change the name and description, as desired.

c. Click Save in the Oracle JDeveloper toolbar.

4. To add stages to the pipeline, see Adding Stages to Pipelines in JDeveloper.

5. To add actions to stages in the pipeline. See Adding and Editing Actions in
Pipelines in JDeveloper.

6. On the Pipeline Editor, continue to construct the pipeline, as described in Viewing
and Editing Pipelines in JDeveloper.

7. Click Save in the Oracle JDeveloper toolbar.

16.5 Adding Conditional Branches to Pipelines in
JDeveloper

A branch node allows processing to proceed along exactly one of several possible
paths.

Branching is driven by an XPath-based switch table. Each branch in the table specifies
a condition (for example, <500) that is evaluated in order down the pipeline against a
single XPath expression (for example, ./ns: PurchaseOrder/ns:totalCost
on $body). Whichever condition is satisfied first determines which branch is followed. If
no branch condition is satisfied, then the default branch is followed. A branch node
may have several descendants in the pipeline: one for each branch, including the
default branch.

If the proxy service is not based on a WSDL file and receives multiple document types
as input, you can consider using a conditional branch node.

Conditional branching is driven by a lookup table with each branch tagged with a
simple, but unique, string value. A variable in the message context is designated as
the lookup variable for that node, and at runtime, its value is used to determine which
branch to follow. If no branch matches the value of the lookup variable, the default
branch is followed. You should design the proxy service in such a way that the value of
the lookup variable is set before reaching the branch node.

16.5.1 How to Add a Conditional Branch to a Pipeline in JDeveloper
Use the Pipeline Editor to add a conditional branch to the message flow for the
pipeline.

To add a conditional branch to a pipeline:

1. In the Pipeline Editor, right-click the start node icon) or a Branch Node icon.

2. Select Insert Into > Conditional Branch from the context menu that appears.The
conditional branch node is added, and any existing nodes after the inserted branch
node are moved to the default branch of the new conditional branch node.

Chapter 16
Adding Conditional Branches to Pipelines in JDeveloper

16-6

Note:

You can alternatively choose to drag a Conditional Branch component from
the Components window to the appropriate location in the Pipeline Editor. The
Conditional Branch component can be found under the Nodes section of the
Message Flow category.

3. To change the properties for the conditional branch node, do the following:

a. Click the Conditional Branch node to select it. The Properties window displays the
properties for the selected component.

Note:

If the Properties window is not visible, select Properties from the Window
main menu.

b. Under the General section, change the name and description, as desired.

c. Under the Condition section, specify an XPath expression to use as the condition.
You can invoke the XPath Expression Builder by clicking the fx icon.

d. Click Save in the Oracle JDeveloper toolbar.

4. To change the properties for a branch, do the following:

a. Click the branch node to select it. The Properties window displays the properties for
the selected component.

Note:

If the Properties window is not visible, select Properties from the Window
main menu.

b. Under Name, specify a name for the branch.

c. Under Value, specify an operator and an XPath expression to use as the value. You
can invoke the XPath Expression Builder by clicking the fx icon.

d. Click Save in the Oracle JDeveloper toolbar.

5. Optionally:

• Click the Add New Branch icon to add a new branch node.

• Right-click a branch, and select Delete to delete the branch.

6. Click Save in the Oracle JDeveloper toolbar.

7. On the Pipeline Editor, continue to construct the pipeline, as described in Viewing and
Editing Pipelines in JDeveloper.

8. Click Save in the Oracle JDeveloper toolbar.

Chapter 16
Adding Conditional Branches to Pipelines in JDeveloper

16-7

16.6 Adding Operational Branches to Pipelines in
JDeveloper

When pipelines define Web Services Description Language (WSDL)-based proxy
services, operation-specific processing is required. Instead of configuring a branching
node based on operations manually, Service Bus provides a minimal configuration
branching node that automatically branches based on operations.

In other words, when you create an operational branch node in a pipeline, you can
quickly build your branching logic based on the operations defined in the WSDL file
because the Oracle Service Bus Console presents those operations in the branch
node configuration page.

A branch node allows processing to proceed along exactly one of several possible
paths. Branching is driven by an XPath-based switch table. Each branch in the table
specifies a condition (for example, <500) that is evaluated in order down the pipeline
against a single XPath expression (for example, ./ns: PurchaseOrder/ns:totalCost
on $body). Whichever condition is satisfied first determines which branch is followed. If
no branch condition is satisfied, then the default branch is followed. A branch node
may have several descendants in the pipeline: one for each branch, including the
default branch.

16.6.1 How to Add an Operational Branch to a Pipeline in JDeveloper
Use the Pipeline Editor to add an operational branch to the message flow for the
pipeline.

To add an operational branch to a pipeline:

1. In the Pipeline Editor, right-click the start node or a Branch Node icon.

2. Select Insert Into > Operational Branch from the context menu that appears.
The operational branch node is added, and any existing nodes after the inserted
branch node are moved to the default branch of the new operational branch node.

Note:

You can alternatively choose to drag an Operational Branch component
from the Components window to the appropriate location in the Pipeline
Editor. The Operational Branch component can be found under the
Nodes section of the Message Flow category.

3. To change the properties for the operational branch node, do the following:

a. Click the operational branch node to select it. The Properties window displays
the properties for the selected component.

Chapter 16
Adding Operational Branches to Pipelines in JDeveloper

16-8

Note:

If the Properties window is not visible, select Properties from the Window
main menu.

b. Change the name and description, as desired.

c. Click Save in the Oracle JDeveloper toolbar.

4. To change the properties for a branch, do the following:

a. Click the branch node to select it. The Properties window displays the properties for
the selected component.

Note:

If the Properties window is not visible, select Properties from the Window
main menu.

b. Select the Operation represented by the branch.

c. Click Save in the Oracle JDeveloper toolbar.

5. Optionally:

• Click the Add New Branch icon to add a new branch node.

• Right-click a branch, and select Delete to delete the branch.

6. On the Pipeline Editor, continue to construct the pipeline, as described in Viewing and
Editing Pipelines in JDeveloper.

7. Click Save in the Oracle JDeveloper toolbar.

16.7 Adding REST Branches to Pipelines in JDeveloper
When pipelines define native, untyped (no WADL at design time), REST-based proxy
services, client request-specific processing is required. Instead of configuring a branching
node based on these requests manually, Service Bus provides a minimal configuration
branching node that automatically branches based on media type consumed, relative URI,
HTTP Verb, or a combination of these criteria. When you create a REST branch node in a
pipeline, you can quickly build your branching logic based on these criteria.
You can configure the following options to filter client requests:

• Consumes Media Types: a list of media types sent by a client that are allowed for this
branch, such as application/json.

• Path: a single URI pattern (relative URI path) allowed for this branch. For example, /
dogs/{id} is a valid path.

• Verb: a single HTTP Verb (GET, PUT, POST, or DELETE) allowed for this branch.

Chapter 16
Adding REST Branches to Pipelines in JDeveloper

16-9

Note:

If the REST branch label contains a parameterized path expression, such
as /name/{PlaceName}/zip/{ZipCode}, as part of the execution of REST
branch, message context variables PlaceName and ZipCode are automatically
defined with the values of the actual path segments at runtime, for example,
Pittsburgh and 15217. The values of these parameters are extracted from
inbound HTTP relative path metadata.

The scope of the variables is all of the actions nested in the corresponding
branch

REST Branches can be used only in pipelines for native, untyped REST services;
other service types are not supported.

16.7.1 How to Add a REST Branch to a Pipeline in JDeveloper
Use the Pipeline Editor to add a REST branch to the message flow for the pipeline.

To add a REST branch to a pipeline:

1. In the Pipeline Editor, right-click the start node or a Branch Node icon.

2. Select Insert Into > REST Branch from the context menu that appears. The
REST branch node is added, and any existing nodes after the inserted branch
node are moved to the default branch of the new REST branch node.

Note:

You can alternatively choose to drag a REST Branch component from
the Components window to the appropriate location in the Pipeline
Editor. The REST Branch component can be found under the Nodes
section of the Message Flow category.

3. To change the properties for the REST branch node, do the following:

a. Click the REST branch node to select it. The Properties window is displayed.

Note:

If the Properties window is not visible, select Properties from the
Window menu.

b. From the General tab, change the name , as desired.

c. Click Save in the Oracle JDeveloper toolbar.

4. From the Branch tab of the Properties window, configure at least one of the
following branch properties:

• Consumes: Media Types: Click the Add (+) icon. Enter the name of a media
type sent by the client request consumed by this branch, such as

Chapter 16
Adding REST Branches to Pipelines in JDeveloper

16-10

application/xml or application/json. You can enter multiple media types by
clicking the Add (+) icon to add additional rows. Click the Delete (X) icon to remove a
selected row.

Note:

Wildcards on type/subtype are supported. For instance, application/xml,
examples/*, and */xml are supported. Partial wildcards, such as examples/
*+xml, are not supported.

• Path: Enter a relative URI patch for client requests consumed by this branch, such
as /dogs/{id}.

• Verb: Select the HTTP Verb for client requests consumed by this branch.

5. Optionally:

a. Click the Add New Branch icon to add a new branch node.

b. Right-click a branch, and select Delete to delete the branch.

6. On the Pipeline Editor, continue to construct the pipeline, as described in Viewing and
Editing Pipelines in JDeveloper

7. Click Save in the Oracle JDeveloper toolbar.

16.8 Adding Stages to Pipelines in JDeveloper
Use the Pipeline Editor to add a stage to the message flow for the pipeline.

Request pipelines, response pipelines, and error handlers can contain stages, where you
configure actions to manipulate messages passing through the pipeline.

16.8.1 How to Add a Stage to a Pipeline in JDeveloper
To add a stage to a pipeline:

1. In the Pipeline Editor, right-click a Request Pipeline icon or Response Pipeline icon in a
pipeline pair node.

2. Select Insert Into > Stage from the context menu that appears. A stage node is added.

Note:

You can alternatively choose to drag a Stage component from the Components
window to the appropriate location in the Pipeline Editor. The Stage component
can be found under the Nodes section of the Message Flow category.

3. To change the default name and add a description for the stage, do the following:

a. Click the stage node to select it. The Properties window displays the properties for
the selected component.

Chapter 16
Adding Stages to Pipelines in JDeveloper

16-11

Note:

If the Properties window is not visible, select Properties from the
Window main menu.

b. Edit the Name and Description fields for the selected stage node.

c. Click Save in the Oracle JDeveloper toolbar.

4. To add actions to the stage, right-click the Stage icon, then click Insert Into >
ActionName from the context menu that appears. See Adding and Editing Actions
in Pipelines in JDeveloper.

5. To add error handling to the stage, right-click the Stage icon, then click Add Stage
Error Handler from the context menu that appears. See Adding Error Handlers in
JDeveloper.

6. Continue to construct the pipeline, as described in Viewing and Editing Pipelines in
JDeveloper.

7. Click Save in the Oracle JDeveloper toolbar.

16.9 Adding Route Nodes to Pipelines in JDeveloper
A route node performs request/response communication with another service. It
represents the boundary between request and response processing for the proxy
service.

When the route node dispatches a request message, the request processing is
considered complete. When the route node receives a response message, the
response processing begins. The route node supports conditional routing as well as
request and response transformations.

Because a route node represents the boundary between request and response
processing, it cannot have any descendants in the pipeline.

16.9.1 How to Add a Route Node to a Pipeline in JDeveloper
Use the Pipeline Editor to add a route node to the message flow for the pipeline.

To add a route node to a pipeline:

1. In the Pipeline Editor, right-click the start node or a Branch Node icon.

2. Select Insert Into > Route from the context menu. A route note is added.

Note:

You can alternatively choose to drag a Route component from the
Components window to the appropriate location in the Pipeline Editor.
The Route component can be found under the Nodes section of the
Message Flow category.

Chapter 16
Adding Route Nodes to Pipelines in JDeveloper

16-12

3. To add actions to the route node, right-click the Route Node icon, then select the
appropriate option from the context menu. See the following sections for information
about the actions you can add to route nodes:

• Adding If Then Actions in JDeveloper

• Adding Dynamic Routing to Route Nodes in JDeveloper

• Adding Routing Actions to Route Nodes in JDeveloper

• Adding Routing Tables to Route Nodes in JDeveloper

• Adding Error Handlers in JDeveloper

4. In the Pipeline Editor, continue to construct the pipeline, as described in Viewing and
Editing Pipelines in JDeveloper.

5. Click Save in the Oracle JDeveloper toolbar.

16.10 Cutting, Copying, and Pasting Stages and Route Nodes in
JDeveloper

You can cut, copy, and paste stages and route nodes in the Pipeline Editor.

• To cut a stage or a route node, right-click its icon and select Cut or Copy.

• To paste a stage that you cut or copied from a different pipeline pair within the message
flow of the pipeline or from the message flow of a different pipeline, do one of the
following:

– Right-click the target Request Pipeline or Response Pipeline icon, then click
Paste.

– Right-click an existing Stage icon in a pipeline, then click Paste.

• To paste a route node that you cut or copied from the message flow of another pipeline,
click the target Branch Node icon, then click Paste Route.

16.11 Adding and Searching for Pipeline Node Descriptions
You can add descriptions to pipeline nodes. These descriptions can help you locate the node
where an error occurred during pipeline execution.

If comment logging is enabled, the description appears in the diagnostic log file if an error
occurs. You can then search for the description in the Pipeline editor to locate the node where
the error occurred. You can enable comment logging on the Global Settings page for Oracle
Service Bus. See Operational Settings at the Global Level in Administering Oracle Service
Bus for more information.

You enter the description in the Pipeline editor in JDeveloper. You can add a description when
you create the node, or you can add it later.

16.11.1 How to Add and Search for Pipeline Node Descriptions in
JDeveloper

By default, all descriptions show in a single line. If a description is too long for a single line,
then an elipse (...) appears in the field. Double clicking the description opens it to show three
lines of text and a vertical scroll bar.

Chapter 16
Cutting, Copying, and Pasting Stages and Route Nodes in JDeveloper

16-13

Note:

You can use double-byte characters, such as Japanese or Chinese, in the
description. You can also search on these characters.

The table in the property inspector pane is shown in a hierarchy, to the fifth level by
default. You can manually expand the tree further as desired. Search results are
shown in a flat table.

To add and search for pipeline node descriptions:

1. Make sure you have the Service Bus project open in Oracle JDeveloper.

2. Use one of the following methods to open the Pipeline Editor:

• In Application Navigator, locate the pipeline node. Right-click the pipeline node
and select Open. You can alternatively double-click the pipeline node to open
it.

• In Application Navigator, click the project node (or overview.xml) to open the
Overview Editor.

In the Overview Editor, double-click the pipeline component to open the
Pipeline Editor.

The Pipeline Editor appears. Ensure that the Design tab is selected at the bottom
left corner of the editor.

3. To display the property inspector, click anywhere in the pipeline editor view or click
a specific node.

4. To add a description to a node:

• In the pipeline editor, select the node to which you want to add a description.
In the property inspector pane, click the Properties tab.

• Enter a description in the Description field.

• Click Save in the Oracle JDeveloper toolbar.

5. To edit a description:

• In the property inspector pane, select the node and click Goto Selected
Node.

• Edit the description as desired, and click Save in the Oracle JDeveloper
toolbar.

6. To search for a description:

• Enter search text in the Filter the table by description field and press Enter.

• Click Goto Selected Node to display the node in the pipeline editor.

• Click Clear Filter to display all the nodes in the property inspector.

16.12 Configuring the Resequencer in JDeveloper
The resequencer in Service Bus rearranges a stream of related but out-of-sequence
messages into a sequential order.

Chapter 16
Configuring the Resequencer in JDeveloper

16-14

When incoming messages arrive, they may be in a random order. The resequencer orders
the messages based on sequential or chronological information, and then sends the
messages to the target services in an orderly manner. The sequencing is performed based
on the sequencing strategy selected.

You can configure the resequencer inside a pipeline component. Pipelines with the following
service types are supported:

• WSDL: Resequencing is available for operations with only request type.

• Message Type: The request message type should be XML, and the response message
type should be None.

Note:

The resequencer does not support Any XML and Any SOAP service types. For
WSDL-based services, the WSDL file must be one-way; that is, it cannot contain
output elements. For information about using generated WSDL files with
resequencing pipelines, see How to Generate a WSDL File from a Service in
JDeveloper.

16.12.1 How to Configure Resequencing in a Pipeline in JDeveloper
This section describes how to configure the resequencer in a pipeline using JDeveloper.

To enable resequencing in a pipeline:

1. Make sure you have the Service Bus project open in JDeveloper.

2. Use one of the following methods to edit the pipeline configuration:

• In Application Navigator, locate the pipeline node. Right-click the pipeline node and
select Open. You can alternatively double-click the pipeline node to open it.

• In Application Navigator, click the project node (or overview.xml) to open the
Overview Editor.

In the Overview Editor, double-click the pipeline component to open the Pipeline
Editor.

The Pipeline Editor appears. Select the Configuration tab from the bottom left corner of
the editor.

3. Select Resequencer from the left pane in the editor. The Resequencer Configuration
page appears. Figure 16-4 shows the Resequencer Configuration page.

Chapter 16
Configuring the Resequencer in JDeveloper

16-15

Figure 16-4 Resequencer Configuration Page

4. Select Enable Resequencer to enable resequencing for the pipeline.

5. Select the Resequence Level. Choose Pipeline to configure resequencing at the
component level. Choose Operations to configure resequencing at the operation
level. See Selecting the Resequence Level in JDeveloper for more information on
resequence levels.

If you select Operations, you get the option to configure resequencing for each
operation separately.

6. Select the Resequence mode. If you are configuring resequencing at the
Operations level, then you can select a Resequence Mode corresponding to
each operation. See How to Configure the Resequencing Mode in JDeveloper for
more information on the various resequencing options.

Depending on the Resequence mode you select, you get options corresponding
to that mode. For example, selecting the Standard mode requires you to select
values for Group, Id, and so on. Figure 16-5 shows the resequencer configuration
options that appear when you select the Standard mode.

Figure 16-5 Resequencer Options for the Standard Resequence Mode

7. Enter a Dispatch Policy, which specifies the Work Manager to use. The default
Work Manager is used if no other Work Manager exists.

Chapter 16
Configuring the Resequencer in JDeveloper

16-16

8. Click Save in the JDeveloper toolbar.

16.12.2 Selecting the Resequence Level in JDeveloper
You can define resequencing either at the pipeline level or the operation level. The
Resequence Level can have the following values:

• Pipeline: A common configuration specified at the component level is used to
resequence all messages. If a component has multiple operations, then messages for
each operation are sequenced separately using the common component configuration.

Component-level resequencing is allowed only when all the operations of the pipeline
component support request one-way messages. If only a subset of operations support
request one-way messages, then you can individually specify operation-level
resequencing for these operations.

• Operations: For a WSDL-based pipeline, resequencing can be configured at the
operation level. Each operation can have a different resequencer configuration. Only
operations supporting request one-way messages can be resequenced. Non-WSDL
pipelines cannot have resequencer configured at the operation level.

16.12.3 How to Configure the Resequencing Mode in JDeveloper
This section provides instructions on how to configure various resequencing modes. See
"Resequencing Order" in Developing SOA Applications with Oracle SOA Suite to learn about
the various resequencing modes. By default, the group ID has a character limit of 1000; the
ID has a character limit of 100.

16.12.3.1 Configuring a Standard Resequencer
To configure a standard resequencer:

1. In the Resequencer Configuration page, select Standard from the Resequence drop-
down list. If you are configuring resequencing at the operation level, select Standard
from the Resequence Mode drop-down list for the operation.

The Resequencer Options or Operation Details area is populated with fields related to
standard resequencing. See Figure 16-5 for more details.

2. Fill in the fields listed in Table 16-1.

Table 16-1 Standard Resequencing Options

Field Name Description Default
Value

Mandatory

Group An XQuery expression that points to the field in the
incoming message on which grouping is done. If you do
not enter a value, then all messages are put in one
default group.

Click the Expression Builder icon on the right to invoke
the XQuery Expression Builder.

N/A N

ID An XQuery expression that points to the field in the
incoming message on which resequencing is done.

Click the Expression Builder icon on the right to invoke
the XQuery Expression Builder.

N/A Y

Chapter 16
Configuring the Resequencer in JDeveloper

16-17

Table 16-1 (Cont.) Standard Resequencing Options

Field Name Description Default
Value

Mandatory

Start The starting number of the ID sequence. 1 N

Increment The increment of the ID sequence. 1 N

Timeout The time period in seconds to wait for an expected
message. The resequencer locks the group as timed-
out if a time out occurs.

The default value of 0 means that the timeout never
happens for a group by default.

0 N

Note:

In the standard resequencer use cases in which the time interval between
the right message sequences vary significantly, configuring the right timeout
value may not be always feasible. Configuring a lower resequencer time out
value may result in that group getting timed out and the resequencer not
processing subsequent messages. You can set the value to "0" in such
situations. Configuring these system properties could also improve the
overall performance of the resequencer in such cases.

16.12.3.2 Configuring a FIFO Resequencer
To configure a FIFO resequencer:

1. In the Resequencer Configuration page, select FIFO from the Resequence drop-
down list. If you are configuring resequencing at the operation level, select FIFO
from the Resequence Mode drop-down list for the operation.

The Resequencer Options or Operation Detail area is populated with fields related
to FIFO resequencing.

2. In the Group field, enter an XQuery expression pointing to the field in the incoming
message on which grouping is performed.

Click the Expression Builder icon on the right to invoke the XQuery Expression
Builder

16.12.3.3 Configuring a Best Effort Resequencer
To configure a best effort resequencer:

1. In the Resequencer Configuration page, select Best Effort from the Resequence
drop-down list. If you are configuring resequencing at the operation level, select
Best Effort from the Resequence Mode drop-down list for the operation.

The Resequencer Options or Operation Detail area is populated with fields related
to Best Effort resequencing.

2. Fill in the fields listed in Table 16-2 to configure the best effort resequencer.

Chapter 16
Configuring the Resequencer in JDeveloper

16-18

Table 16-2 Best Effort Resequencing Options

Field Name Description Default Value Mandatory

Group An XQuery expression that points to the field
in the incoming message on which grouping
is performed.If no value is entered here,
then all messages are considered to be in
one default group.

Click the Expression Builder icon on the
right to invoke the XQuery Expression
Builder.

N/A N

ID An XQuery expression that points to the field
in the incoming message that contains the
ID on which resequencing is performed.

Click the Expression Builder icon on the
right to invoke the XQuery Expression
Builder.

N/A Y

Datatype The data type of the sequence ID. The
ordering process is based on the data type.
Supported values are Date/Time and
Numeric.

Numeric Y

Max Rows Number of in-sequence messages that the
resequencer should pick from the data store
at a time. This must be a positive integer
value.

You must specify Max Rows or Time
Window (explained below), but not both.

5 N

Time Window
(sec)

The length of time in seconds to wait after a
message arrives before selecting messages
from the data store for resequencing. The
default value of 0 means no wait.

You must specify a Time Window or Max
Rows (described above), but not both.

0 N

Chapter 16
Configuring the Resequencer in JDeveloper

16-19

17
Working with Pipeline Actions in Oracle
JDeveloper

This section describes how to add different types of actions to message flows using Oracle
JDeveloper.

Actions are the elements of pipeline stages, error handler stages, route nodes, and branch
nodes that define how messages are to be defined as they flow through a pipeline. Use the
Pipeline Editor, in Oracle JDeveloper, to add actions such as route, publish, service callout,
transport headers, conditional actions, error actions, and message transformation actions.

This chapter includes the following sections:

• Adding and Editing Actions in Pipelines in JDeveloper

• Adding Publish Actions in JDeveloper

• Adding Publish Table Actions in JDeveloper

• Adding Dynamic Publish Actions in JDeveloper

• Adding Routing Options Actions in JDeveloper

• Adding Service Callout Actions in JDeveloper

• Adding Transport Header Actions in JDeveloper

• Adding Dynamic Routing to Route Nodes in JDeveloper

• Adding Routing Actions to Route Nodes in JDeveloper

• Adding Routing Tables to Route Nodes in JDeveloper

• Adding For Each Actions in JDeveloper

• Adding If Then Actions in JDeveloper

• Adding Raise Error Actions in JDeveloper

• Adding Reply Actions in JDeveloper

• Adding Resume Actions in JDeveloper

• Adding Skip Actions in JDeveloper

• Adding Assign Actions in JDeveloper

• Adding Delete Actions in JDeveloper

• Adding Insert Actions in JDeveloper

• Adding Java Callout Actions in JDeveloper

• Adding JavaScript Actions in JDeveloper

• Adding MFL Translate Actions in JDeveloper

• Adding nXSD Translate Actions in JDeveloper

• Adding Rename Actions in JDeveloper

17-1

• Adding Replace Actions in JDeveloper

• Adding Validate Actions in JDeveloper

• Adding Alert Actions in JDeveloper

• Adding Log Actions in JDeveloper

• Adding Report Actions in JDeveloper

• Adding Error Handlers in JDeveloper

• Disabling an Action or a Stage in JDeveloper

17.1 Adding and Editing Actions in Pipelines in JDeveloper
Actions are the elements of pipeline stages, error handler stages, route nodes, and
branch nodes that define how messages are to be defined as they flow through a
pipeline.

These instructions assume you are already editing a pipeline in the Pipeline Editor, as
explained in Viewing and Editing Pipelines in JDeveloper.

They also assume you have already added a pipeline stage, a route node, or an error
handler stage. See:

• Adding Pipeline Pair Nodes to Pipelines in JDeveloper

• Adding Stages to Pipelines in JDeveloper

• Adding Error Handlers in JDeveloper

To add an action to a pipeline:

1. In the Pipeline Editor, right-click the component icon to which you wish to add the
action. For example, right-click a Stage to add an action.

2. Select Insert Into > Action Name from the context menu that appears. The
available action names depends on the context.

Note:

You can alternatively choose to drag an Action component from the
Components window to the appropriate location in the Pipeline Editor.

As you drag a component to the editor window, yellow circles appear to
indicate the valid places where you can drop the component. When you
drag the component to one of the yellow circles, the circle changes to
green indicating that you can drop the component there.

Table 17-1 through Table 17-4 list the actions you can configure for pipelines.

Chapter 17
Adding and Editing Actions in Pipelines in JDeveloper

17-2

Table 17-1 Pipeline - Communication Actions

Action Description More Information

Publish

Publish a message to a statically
specified service.

Adding Publish Actions in
JDeveloper

Publish Table

Publish a message to zero or more
statically specified services. Switch-style
condition logic is used to determine at
runtime which services will be used for
the publish.

Adding Publish Table
Actions in JDeveloper

Dynamic Publish

Publish a message to a service identified
by an XQuery expression

Adding Dynamic Publish
Actions in JDeveloper

Routing Options

Modify any or all of the following
properties in the outbound request: URI,
Quality of Service, Mode, Retry
parameters, Message Priority.

Adding Routing Options
Actions in JDeveloper

Service Callout

Configure a synchronous (blocking)
callout to a Service Bus-registered proxy
or business service.

Adding Service Callout
Actions in JDeveloper

Transport Headers

Set the transport header values in
messages

Adding Transport Header
Actions in JDeveloper

Dynamic Routing

Assign a route for a message based on
routing information available in an XQuery
resource.

Adding Dynamic Routing
to Route Nodes in
JDeveloper

Chapter 17
Adding and Editing Actions in Pipelines in JDeveloper

17-3

Table 17-1 (Cont.) Pipeline - Communication Actions

Action Description More Information

Routing

Identify a target service for the message
and configure how the message is routed
to that service:

Adding Routing Actions to
Route Nodes in
JDeveloper

Routing Table

Assign a set of routes wrapped in a
switch-style condition table.Different
routes are selected based upon the
results of a single XQuery expression.

Adding Routing Tables to
Route Nodes in
JDeveloper

Table 17-2 Pipeline - Flow Control Actions

Action Description More Information

For each

Iterate over a sequence of values and
execute a block of actions

Adding For Each
Actions in JDeveloper

If...then...

Perform an action or set of actions
conditionally, based on the Boolean
result of an XQuery expression.

Adding If Then Actions
in JDeveloper

Raise error

Raise an exception with a specified
error code (a string) and description.

Adding Raise Error
Actions in JDeveloper

Reply

Specify that an immediate reply be
sent to the invoker.

Adding Reply Actions in
JDeveloper

Chapter 17
Adding and Editing Actions in Pipelines in JDeveloper

17-4

Table 17-2 (Cont.) Pipeline - Flow Control Actions

Action Description More Information

Resume

Resume message flow after an error is
handled by an error handler.

Adding Resume Actions
in JDeveloper

Skip

Specify that at runtime, the execution
of the current stage is skipped and the
processing proceeds to the next stage
in the message flow.

Adding Skip Actions in
JDeveloper

Table 17-3 Pipeline - Message Processing Actions

Action Description More Information

Assign

Assign the result of an XQuery expression
to a context variable.

Adding Assign Actions in
JDeveloper

Delete

Delete a context variable or a set of nodes
specified by an XPath expression.

Adding Delete Actions in
JDeveloper

Insert

Insert the result of an XQuery expression
at an identified place relative to nodes
selected by an XPath expression.

Adding Insert Actions in
JDeveloper

Java callout

Invoke a Java method from the pipeline. Adding Java Callout
Actions in JDeveloper

Chapter 17
Adding and Editing Actions in Pipelines in JDeveloper

17-5

Table 17-3 (Cont.) Pipeline - Message Processing Actions

Action Description More Information

JavaScript

Manipulate an XML or JSON payload
using a JavaScript expression.

Adding JavaScript Actions
in JDeveloper

MFL transform

Convert non-XML to XML or XML to non-
XML in the pipeline.

Adding MFL Translate
Actions in JDeveloper

nXSD translate

Convert native data format (nXSD) to
XML or XML to native data format (nXSD)
in the pipeline.

Adding nXSD Translate
Actions in JDeveloper

Rename

Rename elements selected by an XPath
expression without modifying the contents
of the element.

Adding Rename Actions in
JDeveloper

Replace

Replace a node or the contents of a node
specified by an XPath expression.

Adding Replace Actions in
JDeveloper

Validate

Validate elements selected by an XPath
expression against an XML schema
element or a WSDL resource.

Adding Validate Actions in
JDeveloper

Chapter 17
Adding and Editing Actions in Pipelines in JDeveloper

17-6

Table 17-4 Pipeline - Reporting Actions

Action Description More Information

Alert

Send an alert notification based on
pipeline message context.

Adding Alert Actions in
JDeveloper

Log

Construct a message to be logged. Adding Log Actions in
JDeveloper

Report

Enable message reporting for a pipeline. Adding Report Actions in
JDeveloper

3. Use the following steps to modify the properties for an Action:

a. Click the Action to select it. The Properties window displays the properties for the
selected component.

Note:

If the Properties window is not visible, select Properties from the Window
main menu.

b. In the Properties window, change the properties, as desired.

c. Click Save in the Oracle JDeveloper toolbar.

4. When you have finished adding actions, you can further configure the actions in stage or
route node, as described in Table 17-5.

Table 17-5 Edit Stage Configuration Tasks

To... Complete This Step...

Delete an action Right-click the action in the Pipeline Editor. Select Delete
from the context menu that appears.

Move an action In the Pipeline Editor, click the action icon, and hold the
mouse button to drag it. Yellow circles appear to indicate the
valid places where you can drop the action.

When you drag the action to a yellow circle, it turns green to
indicate a valid drop. Release the mouse button to drop the
action item on a green circle.

Chapter 17
Adding and Editing Actions in Pipelines in JDeveloper

17-7

Table 17-5 (Cont.) Edit Stage Configuration Tasks

To... Complete This Step...

Cut an action Right-click the action in the Pipeline Editor. Select Cut from
the context menu that appears.

Copy an action Right-click the action in the Pipeline Editor. Select Copy
from the context menu that appears

Paste an action that you have cut or
copied

In the Pipeline Editor, right-click the component where you
wish to paste the action. Select Paste from the context
menu.

You can copy and paste actions across stages. However, in
the case of Assign, Replace or Insert actions, note the
following:

• All variable-related and user-defined namespaces from
the source (copied) stage are added as user-defined
namespaces in the target (pasted) stage.

• Duplicate namespaces (identical namespaces in both
source and target stage) are not copied.

• Conflicting namespaces (namespace declarations that
use the same prefix but different URIs) are copied.
Users will be able to save the configuration, but will not
be able activate it until the conflicting namespace
declarations in stage B are removed.

5. Click Save in the Oracle JDeveloper toolbar.

6. In the Pipeline Editor, continue to construct the pipeline, as described in Viewing
and Editing Pipelines in the Console.

7. Click Save in the Oracle JDeveloper toolbar.

17.2 Adding Publish Actions in JDeveloper
Use a publish action to identify a statically specified target service for a message and
to configure how the message is packaged and sent to that service.

For more information on publish behavior, see Performing Transformations in
Pipelines.

These instructions assume you are already editing a pipeline in the Pipeline Editor, as
explained in Viewing and Editing Pipelines in the Console.

They also assume you have already added a pipeline stage, a route node, or an error
handler stage. See:

• Adding Pipeline Pair Nodes to Pipelines in JDeveloper

• Adding Stages to Pipelines in JDeveloper

• Adding Error Handlers in JDeveloper

To add a Publish action to a pipeline:

1. Use one of the following methods to add a Publish action to the pipeline:

• In the Pipeline Editor, right-click the component icon where you wish to add
the Publish action. For example, right-click a Stage to add a Publish action to
it.

Chapter 17
Adding Publish Actions in JDeveloper

17-8

Select Insert Into > Publish from the context menu that appears.

• Drag the Publish component from the Components window to the appropriate
location in the Pipeline Editor. To find the Publish component, select the Message
Flow category in the Components window. Next, look under the Communication
section for the Publish icon.

As you drag the Publish component to the editor window, yellow circles appear to
indicate the valid places where you can drop the Publish component. When you drag
the Publish component to one of the yellow circles, the circle changes to green
indicating that you can drop the Publish component there. Release the mouse button
to drop the component.

2. Use the following steps to set the Properties for the Publish action:

a. Click the Publish node to select it. The Properties window displays the properties for
the selected node.

Note:

If the Properties window is not visible, select Properties from the Window
main menu.

b. In the Properties window, click the Search icon next to Service to specify a target
service for the message.

c. If the service has operations specified, you can specify an operation to be invoked by
selecting it from the Operation list.

d. Click the General tab on the left side of the Properties window.

e. Under Description, enter an optional description for the action.

3. Click Save in the Oracle JDeveloper toolbar.

17.3 Adding Publish Table Actions in JDeveloper
Use a publish table action to publish a message to zero or more statically specified services.
Switch-style condition logic is used to determine at runtime which services will be used for the
publish.

For more information on publish behavior, see Performing Transformations in Pipelines.

To add Publish Table actions:

1. Use one of the following methods to add a Publish Table action to the pipeline:

• In the Pipeline Editor, right-click the component icon where you wish to add the
Publish action. For example, right-click a Stage to add a Publish action to it.

Select Insert Into > Publish Table from the context menu that appears.

• Drag the Publish Table component from the Components window to the appropriate
location in the Pipeline Editor. To find the Publish component, select the Message
Flow category in the Components window. Next, look under the Communication
section for the Publish Table icon.

As you drag the Publish Table component to the editor window, yellow circles appear
to indicate the valid places where you can drop the Publish Table component. When

Chapter 17
Adding Publish Table Actions in JDeveloper

17-9

you drag the Publish Table component to one of the yellow circles, the circle
changes to green indicating that you can drop the Publish Table component
there. Release the mouse button to drop the component.

2. Use the following steps to set the Properties for the Publish Table action:

a. In the Pipeline Editor, click the Publish Table node to select it. The Properties
window displays the properties for the selected node.

Note:

If the Properties window is not visible, select Properties from the
Window main menu.

b. In the Properties window, click the fx icon next to Value to specify an XQuery
expression. At runtime, the XQuery expression returns the value upon which
the routing decision is made.

c. Under Description, specify an optional description for the Publish Table
action.

3. Click a Case construct in the Publish Table node to select it. The Properties
window displays the properties for the selected node.

4. In the Properties window, select an operator, and a value for the XQuery
expression in the Value field.

5. Configure the Publish action corresponding to the Case. See Adding Publish
Actions in JDeveloper. for more information on configuring Publish actions.

6. Optionally add more cases by clicking the Add Case icon. Repeat steps 3 to 5 for
each new case that you add.

7. Configure the Publish action corresponding to the Default case. See Adding
Publish Actions in JDeveloper. for more information on configuring Publish actions.

8. Click Save in the Oracle JDeveloper toolbar.

17.4 Adding Dynamic Publish Actions in JDeveloper
Use a dynamic publish action to publish a message to a service specified by an
XQuery expression.

For more information on publish behavior, see Performing Transformations in
Pipelines.

To add Dynamic Publish actions:

1. Use one of the following methods to add a Dynamic Publish action to the pipeline:

• In the Pipeline Editor, right-click the component icon where you wish to add
the Dynamic Publish action. For example, right-click a Stage to add a Dynamic
Publish action to it.

Select Insert Into > Dynamic Publish from the context menu that appears.

• Drag the Dynamic Publish component from the Components window to the
appropriate location in the Pipeline Editor. To find the Dynamic Publish

Chapter 17
Adding Dynamic Publish Actions in JDeveloper

17-10

component, select the Message Flow category in the Components window. Next,
look under the Communication section for the Publish icon.

As you drag the Dynamic Publish component to the editor window, yellow circles
appear to indicate the valid places where you can drop the Dynamic Publish
component. When you drag the Dynamic Publish component to one of the yellow
circles, the circle changes to green indicating that you can drop the Dynamic Publish
component there. Release the mouse button to drop the component.

2. Use the following steps to set the Properties for the Dynamic Publish action:

a. In the Pipeline Editor, click the Dynamic Publish node to select it. The Properties
window displays the properties for the selected node.

Note:

If the Properties window is not visible, select Properties from the Window
main menu.

b. In the Properties window, click the fx icon next to Service to specify an XQuery
expression. When complete, the XQuery expression should provide a result similar
to:

<ctx:route>
<ctx:service isProxy="false">project/folder/businessservicename</ctx:service>
<ctx:operation>foo</ctx:operation>
</ctx:route>

Note:

If a proxy service is being invoked, set isProxy to true. If a business service
is being invoked, set isProxy to false.

The element operation is optional.

c. Click the General tab on the left side of the Properties window.

d. Under Description, specify an optional description for the Dynamic Publish action.

3. Click Save in the Oracle JDeveloper toolbar.

17.5 Adding Routing Options Actions in JDeveloper
Use the Routing Options action to modify any or all of the following properties for the
outbound request in $outbound: URI, Quality of Service, Mode, Retry parameters.

Although these properties can be modified using Assign, Insert, Replace, or Delete actions
on $outbound, using Routing options provides a simpler way to perform this task, without
requiring knowledge of XPath, XQuery, or the structure of the $outbound context variable.

The Routing Options action can only be used where the context variable $outbound is valid. It
can be added to the following actions:

• Publish

• Dynamic Publish

Chapter 17
Adding Routing Options Actions in JDeveloper

17-11

• Publish Table

• Service Callout

• Routing

• Dynamic Routing

• Routing Table

For more information on routing, see Modeling Message Flow in Oracle Service Bus.

To add a Routing Options action:

1. Use one of the following methods to add a Routing Options action to the pipeline:

• In the Pipeline Editor, right-click the component icon where you wish to add
the Routing Options action. For example, right-click Request Action in a
Publish node to add a Routing Options action to it.

Select Insert Into > Routing Options from the context menu that appears.

• Drag the Routing Options component from the Components window to the
appropriate location in the Pipeline Editor. To find the Routing Options
component, select the Message Flow category in the Components window.
Next, look under the Communication section for the Routing Options icon.

As you drag the Routing Options component to the editor window, yellow
circles appear to indicate the valid places where you can drop the Routing
Options component. When you drag the Routing Options component to one of
the yellow circles, the circle changes to green indicating that you can drop the
Routing Options component there. Release the mouse button to drop the
component.

2. Use the following steps to set the Properties for the Routing Options action:

a. In the Pipeline Editor, click the Routing Options node to select it. The
Properties window displays the properties for the selected node.

Note:

If the Properties window is not visible, select Properties from the
Window main menu.

b. In the Properties window, set any or all of the following:

URI: Click the fx icon to invoke the XQuery Expression Builder. Enter an
expression that returns a URI. This overrides the URI for the invoked service.

QoS: Select the Quality of Service option from the list. This overrides the
default that is auto computed.

Mode: Select between One-way or Request-Response.

Retry Interval: Specify the number of seconds between retries. This overrides
the default configured with the invoked service.

Retry Count: Specify the number of retries the system must attempt before
discontinuing the action. This overrides the default configured with the invoked
service.

Chapter 17
Adding Routing Options Actions in JDeveloper

17-12

Priority: Click the fx icon to launch the XQuery Expression Builder. Enter an
expression that returns a positive integer.

Description: Specify an optional description for the Dynamic Publish action.

3. Click Save in the Oracle JDeveloper toolbar.

17.6 Adding Service Callout Actions in JDeveloper
Use a service callout action to configure a synchronous (blocking) callout to a Service Bus-
registered proxy or business service.

For more information on service callout actions, see Constructing Service Callout Messages.

To add a Service Callout action:

1. Use one of the following methods to add a Service Callout action to the pipeline:

• In the Pipeline Editor, right-click the component icon where you wish to add the
Service Callout action. For example, right-click a Stage node to add a Service Callout
action to it.

Select Insert Into > Service Callout from the context menu that appears.

• Drag the Service Callout component from the Components window to the
appropriate location in the Pipeline Editor. To find the Service Callout component,
select the Message Flow category in the Components window. Next, look under the
Communication section for the Service Callout icon.

As you drag the Service Callout component to the editor window, yellow circles
appear to indicate the valid places where you can drop the Service Callout
component. When you drag the Service Callout component to one of the yellow
circles, the circle changes to green indicating that you can drop the Service Callout
component there. Release the mouse button to drop the component.

2. Use the following steps to set the Properties for the Service Callout action:

a. In the Pipeline Editor, click the Service Callout node to select it. The Properties
window displays the properties for the selected node.

Note:

If the Properties window is not visible, select Properties from the Window
main menu.

b. Click the Search icon next to Service to specify a business or proxy service.

c. If the service you chose in the preceding step is a WSDL-based service and has
operations that can be invoked on the service, select the operation from the
Operation field.

d. Under Configuration, specify how you want to configure the request and response
messages by selecting one of the following options:

Select Configure Body to configure the SOAP Body. Selecting this option allows you
to use $body directly.

Select Configure Payload Document to configure the payload.

Chapter 17
Adding Service Callout Actions in JDeveloper

17-13

e. Depending on the kind of service you selected, and on the kind of
configuration options you chose for that service, select values for the Request
and Response variables that appear.

f. Specify an optional Description for the Service Callout action.

3. Click Save in the Oracle JDeveloper toolbar.

17.7 Adding Transport Header Actions in JDeveloper
Use a transport header action to set the header values in messages.

To add a Transport Header action:

1. Use one of the following methods to add a Transport Header action to the pipeline:

• In the Pipeline Editor, right-click the component icon where you wish to add
the Transport Header action. For example, right-click a Stage node icon to add
a Transport Header action to it.

Select Insert Into > Transport Header from the context menu that appears.

• Drag the Transport Header component from the Components window to the
appropriate location in the Pipeline Editor. To find the Transport Header
component, select the Message Flow category in the Components window.
Next, look under the Communication section for the Transport header icon.

As you drag the Transport Header component to the editor window, yellow
circles appear to indicate the valid places where you can drop the Transport
Header component. When you drag the Transport Header component to one
of the yellow circles, the circle changes to green indicating that you can drop
the Transport Header component there. Release the mouse button to drop
the component.

2. Use the following steps to set the Properties for the Transport Header action:

a. In the Pipeline Editor, click the Transport Header node to select it. The
Properties window displays the properties for the selected node.

Note:

If the Properties window is not visible, select Properties from the
Window main menu.

b. For the Direction list, select one of the following:

Outbound Request: Select this option to set header values for outbound
requests (the messages sent out by a pipeline in route, publish, or service
callout actions). This header element is located in the message context as
follows:

$outbound/ctx:transport/ctx:request/tp:headers

Inbound Response: Select this option to set header values for inbound
responses (the response messages a proxy service sends back to clients).
This header element is located in the message context as follows:

$inbound/ctx:transport/ctx:response/tp:headers

Chapter 17
Adding Transport Header Actions in JDeveloper

17-14

c. Optionally select Copy Headers to copy the header from inbound message to
outbound message and vice versa.

d. Under Headers, select a Protocol, and click the Add Header icon, identified by the
green plus (+) sign, to add a header. Select an Action, specify a Name for the
Header, and any Value that may be required.

The Set Action enables you to use an XQuery or XSLT expression to set the value of
the header. The Copy Action copies the header value from the inbound request if
setting value for the outbound request. The Copy Action copies the header value
from the outbound response if setting value for the inbound response. The Delete
action removes the header from the request or response metadata.

e. Repeat the preceding step to add any additional headers.

f. To delete a header, you can select the row, and click the Delete Header icon,
identified by the red X sign.

g. Specify an optional Description for the Transport Callout action.

3. Click Save in the Oracle JDeveloper toolbar.

17.8 Adding Dynamic Routing to Route Nodes in JDeveloper
Assign a route for a message based on routing information available in an XQuery resource.

This is a terminal action, which means you cannot add another action after this one.
However, this action can contain request and response actions. For more information on
routing, see Modeling Message Flow in Oracle Service Bus.

To add dynamic routing to a route node:

1. Use one of the following methods to add a Dynamic Routing action to the pipeline:

• In the Pipeline Editor, right-click the component icon where you wish to add the
Dynamic Routing action. For example, right-click a Route node icon to add a
Dynamic Routing action to it.

Select Insert Into > Dynamic Routing from the context menu that appears.

• Drag the Dynamic Routing component from the Components window to the
appropriate location in the Pipeline Editor. To find the Dynamic Routing component,
select the Message Flow category in the Components window. Next, look under the
Route section for the Dynamic Routing icon.

As you drag the Dynamic Routing component to the editor window, yellow circles
appear to indicate the valid places where you can drop the component. When you
drag the Dynamic Routing component to one of the yellow circles, the circle
changes to green indicating that you can drop the component there. Release the
mouse button to drop the component.

2. Use the following steps to set the Properties for the Dynamic Routing action:

a. In the Pipeline Editor, click the Dynamic Routing node to select it. The Properties
window displays the properties for the selected node.

Chapter 17
Adding Dynamic Routing to Route Nodes in JDeveloper

17-15

Note:

If the Properties window is not visible, select Properties from the
Window main menu.

b. Under Service, click the fx icon to specify an XQuery expression. The result of
the XQuery expression should be similar to:

<ctx:route>
 <ctx:service isProxy='true'>{$service}</ctx:service>
 <ctx:operation>{$operation}</ctx:operation>
</ctx:route>

Note:

If a proxy service is being invoked, set isProxy to true. If a business
service is being invoked, set isProxy to false.

• The service name is the fully qualified service name.

• The operation element is optional.

c. Specify an optional Description for the Dynamic Routing action.

d. Proceed to add actions to the Request Action and Response Action
branches.

3. Click Save in the Oracle JDeveloper toolbar.

17.9 Adding Routing Actions to Route Nodes in JDeveloper
Identify a target service for the message and configure how the message is routed to
that service.

This is a terminal action, which means you cannot add another action after this one.
However, this action can contain request and response actions. For more information
on routing, see Modeling Message Flow in Oracle Service Bus.

To add a Routing action to a route node:

1. Use one of the following methods to add a Routing action to the pipeline:

• In the Pipeline Editor, right-click the component icon where you wish to add
the Routing action. For example, right-click a Route node icon to add a
Routing action to it.

Select Insert Into > Routing from the context menu that appears.

• Drag the Routing component from the Components window to the appropriate
location in the Pipeline Editor. To find the Routing component, select the
Message Flow category in the Components window. Next, look under the
Route section for the Routing icon.

As you drag the Routing component to the editor window, yellow circles
appear to indicate the valid places where you can drop the component. When
you drag the Routing component to one of the yellow circles, the circle

Chapter 17
Adding Routing Actions to Route Nodes in JDeveloper

17-16

changes to green indicating that you can drop the component there. Release the
mouse button to drop the component.

2. Use the following steps to set the Properties for the Routing action:

a. In the Pipeline Editor, click the Routing node to select it. The Properties window
displays the properties for the selected node.

Note:

If the Properties window is not visible, select Properties from the Window
main menu.

b. Click the Search icon to the right of the Service field to specify a service. The
Resource Chooser dialog appears.

c. Select a service from the resources, and click OK.

d. If you selected a WSDL-based service, then select an Operation corresponding to
the service.

e. Specify an optional Description for the Routing action.

f. Proceed to add actions to the Request Action and Response Action branches.

3. Click Save in the Oracle JDeveloper toolbar.

17.10 Adding Routing Tables to Route Nodes in JDeveloper
A routing table is a set of routes wrapped in a switch-style condition table. It is a short-hand
construct that allows different routes to be selected based upon the results of a single XQuery
expression.

You can nest multiple levels in the stage editor. Identify target services for messages and
configure how the messages are routed to these services.

This is a terminal action, which means you cannot add another action after this one.
However, this action can contain request and response actions. For more information on
routing, see Modeling Message Flow in Oracle Service Bus.

To add a routing table to a route node:

1. Use one of the following methods to add a Routing Table action to the pipeline:

• In the Pipeline Editor, right-click the component icon where you wish to add the
Routing Table action. For example, right-click a Route node to add a Routing Table
action to it.

Select Insert Into > Routing Table from the context menu that appears.

• Drag the Routing Table component from the Components window to the appropriate
location in the Pipeline Editor. To find the Routing Table component, select the
Message Flow category in the Components window. Next, look under the Route
section for the Routing Table icon.

As you drag the Routing Table component to the editor window, yellow circles
appear to indicate the valid places where you can drop the component. When you
drag the Routing Table component to one of the yellow circles, the circle changes to

Chapter 17
Adding Routing Tables to Route Nodes in JDeveloper

17-17

green indicating that you can drop the component there. Release the mouse
button to drop the component.

2. Use the following steps to set the Properties for the Routing Table action:

a. In the Pipeline Editor, click the Routing Table node to select it. The Properties
window displays the properties for the selected node.

Note:

If the Properties window is not visible, select Properties from the
Window main menu.

b. In the Properties window, click the fx icon next to Value to specify an XQuery
expression. At runtime, the XQuery expression returns the value upon which
the routing decision is made.

c. Under Description, specify an optional description for the Routing Table
action.

3. Click a Case construct in the Routing Table node to select it. The Properties
window displays the properties for the selected node.

4. In the Properties window, select an operator, and a value for the XQuery
expression in the Value field.

5. Configure the Routing action corresponding to the Case. See Adding Routing
Actions to Route Nodes in JDeveloper. for more information on configuring
Routing actions.

6. Optionally add more cases by clicking the Add Case icon. Repeat steps 3 to 5 for
each new case that you add.

7. Configure the Routing action corresponding to the Default case. See Adding
Routing Actions to Route Nodes in JDeveloper. for more information on
configuring Routing actions.

8. Click Save in the Oracle JDeveloper toolbar.

17.11 Adding For Each Actions in JDeveloper
Use the for each action to iterate over a sequence of values and execute a block of
actions.

To add a For Each action:

1. Use one of the following methods to add a For Each action to the pipeline:

• In the Pipeline Editor, right-click the component icon where you wish to add
the Routing Table action. For example, right-click a Stage node to add a For
Each action to it.

Select Insert Into > For Each from the context menu that appears.

• Drag the For Each component from the Components window to the
appropriate location in the Pipeline Editor. To find the For Each component,
select the Message Flow category in the Components window. Next, look
under the Flow Control section for the For Each icon.

Chapter 17
Adding For Each Actions in JDeveloper

17-18

As you drag the For Each component to the editor window, yellow circles appear to
indicate the valid places where you can drop the component. When you drag the For
Each component to one of the yellow circles, the circle changes to green indicating
that you can drop the component there. Release the mouse button to drop the
component.

2. Use the following steps to set the Properties for the Routing Table action:

a. In the Pipeline Editor, click the For Each node to select it. The Properties window
displays the properties for the selected node.

Note:

If the Properties window is not visible, select Properties from the Window
main menu.

b. Enter a value for For Each Value. Click fx to specify an XPath expression.

c. Enter values for Value Variable, Index Variable, and Count Variable.

d. Under Description, specify an optional description for the For Each action.

3. Click Save in the Oracle JDeveloper toolbar.

17.12 Adding If Then Actions in JDeveloper
Use an If Then action to perform an action or set of actions conditionally, based on the
Boolean result of an XQuery expression.

To add an If Then action:

1. Use one of the following methods to add an If Then action to the pipeline:

• In the Pipeline Editor, right-click the component icon where you wish to add the If
Then action. For example, right-click a Stage node to add an If Then action to it.

Select Insert Into > If Then from the context menu that appears.

• Drag the If Then component from the Components window to the appropriate
location in the Pipeline Editor. To find the If Then component, select the Message
Flow category in the Components window. Next, look under the Flow Control section
for the If Then icon.

As you drag the If Then component to the editor window, yellow circles appear to
indicate the valid places where you can drop the component. When you drag the If
Then component to one of the yellow circles, the circle changes to green indicating
that you can drop the component there. Release the mouse button to drop the
component.

2. Use the following steps to set the Properties for the If Then action:

a. In the Pipeline Editor, click the If Then node to select it. The Properties window
displays the properties for the selected node.

Chapter 17
Adding If Then Actions in JDeveloper

17-19

Note:

If the Properties window is not visible, select Properties from the
Window main menu.

b. Specify an optional Description for the If Then action.

3. Select the If: <condition> branch in the If Then node by clicking on it.

4. In the Properties window, click fx to specify an expression for the If condition.

5. Drag actions, corresponding to the condition returning true, from the Components
window to the branch.

6. Optionally add more If conditions by clicking on the Add Condition icon in the If
Then node.

7. Repeat steps 3 to 5 for each additional condition that you add.

8. Click Save in the Oracle JDeveloper toolbar.

17.13 Adding Raise Error Actions in JDeveloper
Use the raise error action to raise an exception with a specified error code (a string)
and description.

To add a Raise Error action:

1. Use one of the following methods to add a raise error action to the pipeline:

• In the Pipeline Editor, right-click the component icon where you wish to add
the raise error action. For example, right-click a Stage node to add a raise
error action to it.

Select Insert Into > Raise Error from the context menu that appears.

• Drag the Raise Error component from the Components window to the
appropriate location in the Pipeline Editor. To find the Raise Error component,
select the Message Flow category in the Components window. Next, look
under the Flow Control section for the Raise Error icon.

As you drag the Raise Error component to the editor window, yellow circles
appear to indicate the valid places where you can drop the component. When
you drag the Raise Error component to one of the yellow circles, the circle
changes to green indicating that you can drop the component there. Release
the mouse button to drop the component.

2. Use the following steps to set the Properties for the raise error action:

a. In the Pipeline Editor, click the Raise Error node to select it. The Properties
window displays the properties for the selected node.

Note:

If the Properties window is not visible, select Properties from the
Window main menu.

Chapter 17
Adding Raise Error Actions in JDeveloper

17-20

b. In the Properties window, enter the error Code that you want to raise.

c. Enter a description of the error code in the Message field.

d. Specify an optional Description for the raise error action.

3. Click Save in the Oracle JDeveloper toolbar.

17.14 Adding Reply Actions in JDeveloper
Use the reply action to specify that an immediate reply be sent to the invoker.

The reply action can be used in the request, response, or error pipeline. You can configure it
to result in a reply with success or failure. In the case of reply with failure where the inbound
transport is HTTP, the reply action specifies that an immediate reply is sent to the invoker.

To add a Reply action:

1. Use one of the following methods to add a reply action to the pipeline:

• In the Pipeline Editor, right-click the component icon where you wish to add the reply
action. For example, right-click a Stage node to add a reply action to it.

Select Insert Into > Reply from the context menu that appears.

• Drag the Reply component from the Components window to the appropriate location
in the Pipeline Editor. To find the Reply component, select the Message Flow
category in the Components window. Next, look under the Flow Control section for
the Reply icon.

As you drag the Reply component to the editor window, yellow circles appear to
indicate the valid places where you can drop the component. When you drag the
Reply component to one of the yellow circles, the circle changes to green indicating
that you can drop the component there. Release the mouse button to drop the
component.

2. Use the following steps to set the Properties for the reply action:

a. In the Pipeline Editor, click the Reply node to select it. The Properties window
displays the properties for the selected node.

Note:

If the Properties window is not visible, select Properties from the Window
main menu.

b. Under Option, select With Success to reply that the message was successful.
Alternatively, select With Failure to reply that the message has a fault.

c. Specify an optional Description for the reply action.

3. Click Save in the Oracle JDeveloper toolbar.

17.15 Adding Resume Actions in JDeveloper
Use the resume action to resume message flow after an error is handled by an error handler.
This action has no parameters and can only be used in error pipelines.

To add a Resume action:

Chapter 17
Adding Reply Actions in JDeveloper

17-21

1. Use one of the following methods to add a resume action to the pipeline:

• In the Pipeline Editor, right-click the component icon where you wish to add
the resume action. For example, right-click a Stage node, in an error handler,
to add a resume action to it.

Select Insert Into > Resume from the context menu that appears.

• Drag the Resume component from the Components window to the
appropriate location in the Pipeline Editor. To find the Resume component,
select the Message Flow category in the Components window. Next, look
under the Flow Control section for the Resume icon.

As you drag the Resume component to the editor window, yellow circles
appear to indicate the valid places where you can drop the component. When
you drag the Resume component to one of the yellow circles, the circle
changes to green indicating that you can drop the component there. Release
the mouse button to drop the component.

2. Use the following steps to set the Properties for the reply action:

a. In the Pipeline Editor, click the Resume node to select it. The Properties
window displays the properties for the selected node.

Note:

If the Properties window is not visible, select Properties from the
Window main menu.

b. Specify an optional Description for the resume action.

3. Click Save in the Oracle JDeveloper toolbar.

17.16 Adding Skip Actions in JDeveloper
Use the skip action to specify that at runtime, the execution of this stage is skipped
and the processing proceeds to the next stage in the message flow. This action has no
parameters and can be used in the request, response or error pipelines.

To add a Skip action:

1. Use one of the following methods to add a skip action to the pipeline:

• In the Pipeline Editor, right-click the component icon where you wish to add
the skip action. For example, right-click a Stage node to add a skip action to it.

Select Insert Into > Skip from the context menu that appears.

• Drag the Skip component from the Components window to the appropriate
location in the Pipeline Editor. To find the Skip component, select the Message
Flow category in the Components window. Next, look under the Flow Control
section for the Skip icon.

As you drag the Skip component to the editor window, yellow circles appear to
indicate the valid places where you can drop the component. When you drag
the Skip component to one of the yellow circles, the circle changes to green
indicating that you can drop the component there. Release the mouse button
to drop the component.

Chapter 17
Adding Skip Actions in JDeveloper

17-22

2. Use the following steps to set the Properties for the skip action:

a. In the Pipeline Editor, click the Skip node to select it. The Properties window displays
the properties for the selected node.

Note:

If the Properties window is not visible, select Properties from the Window
main menu.

b. Specify an optional Description for the skip action.

3. Click Save in the Oracle JDeveloper toolbar.

17.17 Adding Assign Actions in JDeveloper
Use the assign action to assign the result of an XQuery expression to a context variable.

To add an Assign action:

1. Use one of the following methods to add an assign action to the pipeline:

• In the Pipeline Editor, right-click the component icon where you wish to add the
assign action. For example, right-click a Stage node to add an assign action to it.

Select Insert Into > Assign from the context menu that appears.

• Drag the Assign component from the Components window to the appropriate
location in the Pipeline Editor. To find the Assign component, select the Message
Flow category in the Components window. Next, look under the Message Processing
section for the Assign icon.

As you drag the Assign component to the editor window, yellow circles appear to
indicate the valid places where you can drop the component. When you drag the
Assign component to one of the yellow circles, the circle changes to green indicating
that you can drop the component there. Release the mouse button to drop the
component.

2. Use the following steps to set the Properties for the assign action:

a. In the Pipeline Editor, click the Assign node to select it. The Properties window
displays the properties for the selected node.

Note:

If the Properties window is not visible, select Properties from the Window
main menu.

b. Click the fx icon to the right of the Value field to specify an XQuery expression. The
XQuery expression specifies the value to be assigned to the named variable.

c. Enter a context variable in the Variable field.

d. Specify an optional Description for the assign action.

3. Click Save in the Oracle JDeveloper toolbar.

Chapter 17
Adding Assign Actions in JDeveloper

17-23

17.18 Adding Delete Actions in JDeveloper
Use the delete action to delete a context variable or a set of nodes specified by an
XPath expression.The delete action is one of a set of update actions.

To add a Delete action:

1. Use one of the following methods to add a delete action to the pipeline:

• In the Pipeline Editor, right-click the component icon where you wish to add
the delete action. For example, right-click a Stage node to add a delete action
to it.

Select Insert Into > Delete from the context menu that appears.

• Drag the Delete component from the Components window to the appropriate
location in the Pipeline Editor. To find the Delete component, select the
Message Flow category in the Components window. Next, look under the
Message Processing section for the Delete icon.

As you drag the Delete component to the editor window, yellow circles appear
to indicate the valid places where you can drop the component. When you
drag the Delete component to one of the yellow circles, the circle changes to
green indicating that you can drop the component there. Release the mouse
button to drop the component.

2. Use the following steps to set the Properties for the delete action:

a. In the Pipeline Editor, click the Delete node to select it. The Properties window
displays the properties for the selected node.

Note:

If the Properties window is not visible, select Properties from the
Window main menu.

b. Under Location, specify the context variable.

c. Click the fx icon to specify an XPath expression. All nodes selected by the
XPath expression are deleted.

d. Under the General section, specify an optional Description for the delete
action.

3. Click Save in the Oracle JDeveloper toolbar.

17.19 Adding Insert Actions in JDeveloper
Use the insert action to insert the result of an XQuery expression at an identified place
relative to nodes selected by an XPath expression. The insert action is one of a set of
update actions.

To add an Insert action:

1. Use one of the following methods to add an insert action to the pipeline:

Chapter 17
Adding Delete Actions in JDeveloper

17-24

• In the Pipeline Editor, right-click the component icon where you wish to add the insert
action. For example, right-click a Stage node to add an insert action to it.

Select Insert Into > Insert from the context menu that appears.

• Drag the Insert component from the Components window to the appropriate location
in the Pipeline Editor. To find the Insert component, select the Message Flow
category in the Components window. Next, look under the Message Processing
section for the Insert icon.

As you drag the Insert component to the editor window, yellow circles appear to
indicate the valid places where you can drop the component. When you drag the
Insert component to one of the yellow circles, the circle changes to green indicating
that you can drop the component there. Release the mouse button to drop the
component.

2. Use the following steps to set the Properties for the insert action:

a. In the Pipeline Editor, click the Insert node to select it. The Properties window
displays the properties for the selected node.

Note:

If the Properties window is not visible, select Properties from the Window
main menu.

b. Click the fx icon to the right of the Value field to specify an XQuery expression. The
XQuery expression is used to create the data that is inserted at a specified location in
a named variable.

c. Under Position, select the relative location from the list. The relative location is used
to control where the insert is performed relative to the result of the XPath expression.
Select from the following:

Before: As sibling before each element or attribute selected by the XPath
expression.

After: As sibling after each element or attribute selected by the XPath expression.

As first child of: As first child of each element identified by the XPath expression. An
error occurs if the result of the XPath returns attributes.

As last child of: As last child of each element identified by the XPath expression. An
error occurs if the XPath returns attributes.

d. Under Location, specify the context variable. The XPath evaluates the contents of
this variable.

e. Click the fx icon to specify an XPath expression. Valid configurations include those in
which:

- Both the XQuery and XPath expressions return elements.

- Both the XQuery and XPath expressions return attributes.

3. Click Save in the Oracle JDeveloper toolbar.

Chapter 17
Adding Insert Actions in JDeveloper

17-25

17.20 Adding Java Callout Actions in JDeveloper
Use the Java callout action to invoke a Java method, or EJB business service, from
within the pipeline.

To add a Java Callout action:

1. Use one of the following methods to add a Java callout action to the pipeline:

• In the Pipeline Editor, right-click the component icon where you wish to add
the Java callout action. For example, right-click a Stage node to add a Java
callout action to it.

Select Insert Into > Java Callout from the context menu that appears.

• Drag the Java Callout component from the Components window to the
appropriate location in the Pipeline Editor. To find the Java Callout
component, select the Message Flow category in the Components window.
Next, look under the Message Processing section for the Java Callout icon.

As you drag the Java Callout component to the editor window, yellow circles
appear to indicate the valid places where you can drop the component. When
you drag the Java Callout component to one of the yellow circles, the circle
changes to green indicating that you can drop the component there. Release
the mouse button to drop the component.

2. Use the following steps to set the Properties for the Java callout action:

a. In the Pipeline Editor, click the Java Callout node to select it. The Properties
window displays the properties for the selected node.

Note:

If the Properties window is not visible, select Properties from the
Window main menu.

b. Click the Search icon to the right of the Method field to specify a Java archive
(jar). Select a Java class and method corresponding to the selected jar file.
The method must be a static method.

The Arguments section is populated with the method arguments. An XQuery
expression must be specified for each argument.

c. Click the fx icon under the Value column for an argument to specify an XQuery
expression for it.

If the type of the input value you enter does not match the declared input
argument type, Service Bus tries to automatically typecast input values to the
declared type of the input argument. For example a string value of "123" will
be converted to integer 123 if the declared type of the input argument is java
primitive int.

d. Repeat the preceding step for each argument in the selected method.

e. Under the Return section, specify a Variable to which the result is to be
assigned.

Chapter 17
Adding Java Callout Actions in JDeveloper

17-26

f. Optionally, select As Reference to return the result as a reference. This option
makes the return value of a Java Callout invocation a <java-content ref="jcid">
reference element regardless of its actual type, where jcid is the key to the object in
the pipeline object repository.

g. Optionally, click the Search icon to the right of Service Account to specify a service
account if there is a security context for the selected Java method.

3. Click Save in the Oracle JDeveloper toolbar.

17.21 Adding JavaScript Actions in JDeveloper
Use a JavaScript action to manipulate the contents of an XML or JSON payload using
JavaScript expressions.

To add a JavaScript action:

1. Use one of the following methods to add a Java callout action to the pipeline:

• In the Pipeline Editor, right-click the component icon where you wish to add the
JavaScript action. For example, right-click a Stage node to add a JavaScript action to
it.

Select Insert Into > JavaScript from the context menu that appears.

• Drag the JavaScript component from the Components window to the appropriate
location in the Pipeline Editor. To find the JavaScript component, select the
Message Flow category in the Components window. Next, look under the Message
Processing section for the JavaScript icon.

As you drag the JavaScript component to the editor window, yellow circles appear to
indicate the valid places where you can drop the component. When you drag the
JavaScript component to one of the yellow circles, the circle changes to green
indicating that you can drop the component there. Release the mouse button to drop
the component.

2. In the Pipeline Editor, click the JavaScript node to select it. The Properties window
displays the properties for the selected node.

Note:

If the Properties window is not visible, select Properties from the Window main
menu.

3. Set the JavaScript expression the action uses in one of the following ways:

a. To build a JavaScript expression, from the Value field, click the fx icon to launch the
JavaScript Expression Builder.

b. To select a JavaScript resource that contains a JavaScript expression, from the
Value field, click the arrow next to the fx icon, and then select JavaScript Resource.
From the JavaScript Resource Builder dialog, click the Search icon. Use the Select
JavaScript window to navigate to and select the JavaScript resource you want to use,
and then click OK. Click OK again to close the JavaScript Resource Builder dialog.

4. (Optional) Enter a timeout value (in seconds) into the Timeout field. An error is returned
and JavaScript processing terminates if this timeout threshold is met before processing
completes.

Chapter 17
Adding JavaScript Actions in JDeveloper

17-27

Note:

A value in this field overrides the default JavaScript timeout setting for
the server configured in Oracle Enterprise Manager.

5. Click Save in the JDeveloper toolbar.

17.22 Adding MFL Translate Actions in JDeveloper
Use the MFL (Message Format Language) translate action to convert message
content from XML to non-XML, or the reverse, in the message pipeline.

An MFL is a specialized XML document used to describe the layout of binary data. It is
an Oracle proprietary language used to define rules to transform formatted binary data
into XML data, or the reverse. See Defining Data Structures with Message Format
Language.

To add an MFL Transform action:

1. Use one of the following methods to add an MFL translate action to the pipeline:

• In the Pipeline Editor, right-click the component icon where you wish to add
the MFL translate action. For example, right-click a Stage node to add an MFL
translate action to it.

Select Insert Into > MFL Translate from the context menu that appears.

• Drag the MFL Translate component from the Components window to the
appropriate location in the Pipeline Editor. To find the MFL Translate
component, select the Message Flow category in the Components window.
Next, look under the Message Processing section for the MFL Translate icon.

As you drag the MFL Translate component to the editor window, yellow circles
appear to indicate the valid places where you can drop the component. When
you drag the MFL Translate component to one of the yellow circles, the circle
changes to green indicating that you can drop the component there. Release
the mouse button to drop the component.

2. Use the following steps to set the Properties for the MFL translate action:

a. In the Pipeline Editor, click the MFL Translate node to select it. The Properties
window displays the properties for the selected node.

Note:

If the Properties window is not visible, select Properties from the
Window main menu.

b. Under Translate, select whether you are translating from XML to Native or
vice versa.

c. Click the fx icon to the right of the Input field to specify an input variable using
an XQuery expression.

The input must be text or binary when transforming to XML, and must be XML
when transforming to non-XML. Binary content in the message context is

Chapter 17
Adding MFL Translate Actions in JDeveloper

17-28

represented by the binary-content XML element. This XML should be the result of the
XQuery expression when the input needs to be binary.

d. Under MFL, select Static to specify a static MFL resource. Alternatively select
Dynamic to select a dynamic MFL resource.

e. If you selected Static in the preceding step, click the Search icon to select an MFL
resource to perform the MFL translation.

If you selected Dynamic in the preceding step, click the fx icon to specify an XQuery
expression that dynamically selects the MFL resource to perform the translation.

f. Specify the Output variable to which the result of the translate is assigned.

g. Specify an optional Description for the MFL translate action.

3. Click Save in the Oracle JDeveloper toolbar.

17.23 Adding nXSD Translate Actions in JDeveloper
Use the nXSD translate action to convert message content from XML to native format data,
or the reverse, in the message pipeline.

See "Native Format Builder Wizard" in Understanding Technology Adapters for information on
creating native schemas used for translation.

The nXSD Translate Action supports XML to JSON and JSON to XML translations if the
associated XSD resource contains the relevant annotations, as shown in the following
example:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns="http://
example.com/RestService_Operation1_request"
 targetNamespace="http://example.com/RestService_Operation1_request"
elementFormDefault="qualified"
xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd" nxsd:version="JSON"
nxsd:encoding="US-ASCII">
 <xsd:element name="Root-Element">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="country" type="xsd:string"/>
 <xsd:element name="circuit" type="xsd:string"/>
 <xsd:element name="date" type="xsd:date"/>
…

The nXSD Translate action is enhanced in this version of Service Bus to enforce schema
ordering when converting from JSON to XML.

To add an nXSD translate action:

1. Use one of the following methods to add an nXSD translate action to the pipeline:

• In the Pipeline Editor, right-click the component icon where you wish to add the nXSD
translate action. For example, right-click a Stage node to add an nXSD translate
action to it.

Select Insert Into > nXSD Translate from the context menu that appears.

• Drag the nXSD Translate component from the Components window to the
appropriate location in the Pipeline Editor. To find the nXSD Translate component,

Chapter 17
Adding nXSD Translate Actions in JDeveloper

17-29

select the Message Flow category in the Components window. Next, look
under the Message Processing section for the nXSD Translate icon.

As you drag the nXSD Translate component to the editor window, yellow
circles appear to indicate the valid places where you can drop the component.
When you drag the nXSD Translate component to one of the yellow circles,
the circle changes to green indicating that you can drop the component there.
Release the mouse button to drop the component.

2. Use the following steps to set the Properties for the nXSD translate action:

a. In the Pipeline Editor, click the nXSD Translate node to select it. The
Properties window displays the properties for the selected node.

Note:

If the Properties window is not visible, select Properties from the
Window main menu.

b. Under Translate, select whether you are translating from XML to Native or
vice versa.

c. Click the fx icon to the right of the Input field to specify an input variable using
an XQuery expression.

The input must be native format when transforming to XML, and XML when
transforming to native data format.

d. Under nXSD Schema, select Static to specify a static XML schema (.xsd).
Alternatively select Dynamic to dynamically specify a schema.

e. If you selected Static in the preceding step, click the Search icon to select the
schema (.xsd) file corresponding to the native schema.

If you selected Dynamic in the preceding step, click the fx icon to specify an
XQuery expression that dynamically selects a native schema.

f. Specify the Output variable to which the result of the translate is assigned.
You can alternatively choose Content of $body as the output.

g. (Optional) If you are translating from Native format (like JSON) to XML, select
the Enforce Schema Ordering option. When selected, this reorders JSON
payloads to match the order of elements in the XML schema.

h. Specify an optional Description for the nXSD translate action.

3. Click Save in the Oracle JDeveloper toolbar.

17.24 Adding Rename Actions in JDeveloper
Use the rename action to rename elements selected by an XPath expression without
modifying the contents of the element. The rename action is one of a set of update
actions.

To add a rename action:

1. Use one of the following methods to add a rename action to the pipeline:

Chapter 17
Adding Rename Actions in JDeveloper

17-30

• In the Pipeline Editor, right-click the component icon where you wish to add the
rename action. For example, right-click a Stage node to add a rename action to it.

Select Insert Into > Rename from the context menu that appears.

• Drag the Rename component from the Components window to the appropriate
location in the Pipeline Editor. To find the Rename component, select the Message
Flow category in the Components window. Next, look under the Message Processing
section for the Rename icon.

As you drag the Rename component to the editor window, yellow circles appear to
indicate the valid places where you can drop the component. When you drag the
Rename component to one of the yellow circles, the circle changes to green
indicating that you can drop the component there. Release the mouse button to drop
the component.

2. Use the following steps to set the Properties for the rename action:

a. In the Pipeline Editor, click the Rename node to select it. The Properties window
displays the properties for the selected node.

Note:

If the Properties window is not visible, select Properties from the Window
main menu.

b. Under Location, specify the context variable that holds the element that you wish to
rename.

c. Click the fx icon to specify an XPath expression that is used to specify the data, in
the named variable, that is to be renamed.

d. Enter a Local Name and Namespace for the renamed element. At least one of these
attributes is required.

e. Under the General section, specify an optional Description for the rename action.

3. Click Save in the Oracle JDeveloper toolbar.

17.25 Adding Replace Actions in JDeveloper
Use a replace action to replace a node or the contents of a node specified by an XPath
expression. The node or its contents are replaced with the value returned by an XQuery
expression.

A replace action can be used to replace simple values, elements and even attributes. An
XQuery expression that returns nothing is equivalent to deleting the identified nodes or
making them empty, depending upon whether the action is replacing entire nodes or just
node contents. The replace action is one of a set of update actions.

To add a Replace action:

1. Use one of the following methods to add a replace action to the pipeline:

• In the Pipeline Editor, right-click the component icon where you wish to add the
replace action. For example, right-click a Stage node to add a replace action to it.

Select Insert Into > Replace from the context menu that appears.

Chapter 17
Adding Replace Actions in JDeveloper

17-31

• Drag the Replace component from the Components window to the appropriate
location in the Pipeline Editor. To find the Replace component, select the
Message Flow category in the Components window. Next, look under the
Message Processing section for the Replace icon.

As you drag the Replace component to the editor window, yellow circles
appear to indicate the valid places where you can drop the component. When
you drag the Replace component to one of the yellow circles, the circle
changes to green indicating that you can drop the component there. Release
the mouse button to drop the component.

2. Use the following steps to set the Properties for the replace action:

a. In the Pipeline Editor, click the Replace node to select it. The Properties
window displays the properties for the selected node.

Note:

If the Properties window is not visible, select Properties from the
Window main menu.

b. Under Location, specify the context variable that holds the element that you
wish to replace.

c. Click the fx icon to specify an XPath expression that is used to specify the
data, in the named variable, that is to be replaced.

d. Click the fx icon to the right of the Value field to specify an XQuery
expression. The XQuery expression is used to create the data that replaces
the data specified by the XPath in the named variable.

e. Under Replace, choose one of the following options:

Replace entire node: The nodes selected by the XPath expression are
replaced along with all of the contents.

Replace node contents: The node is not replaced; only the node contents
are replaced.

Note:

Selecting the Replace node contents option and leaving the XPath
blank is more efficient than selecting the Replace entire node
option and setting the XPath to ./*

f. Under the General section, specify an optional Description for the rename
action.

3. Click Save in the Oracle JDeveloper toolbar.

Chapter 17
Adding Replace Actions in JDeveloper

17-32

17.26 Adding Validate Actions in JDeveloper
Use a validate action to validate elements selected by an XPath expression against an XML
schema element or a WSDL resource. You can validate global elements only; Service Bus
does not support validation against local elements.

You can also choose to dynamically select the XML schema element or WSDL resource, at
runtime, based on the result of an XQuery expression.

To add a Validate action:

1. Use one of the following methods to add a validate action to the pipeline:

• In the Pipeline Editor, right-click the component icon where you wish to add the
validate action. For example, right-click a Stage node to add a validate action to it.

Select Insert Into > Validate from the context menu that appears.

• Drag the Validate component from the Components window to the appropriate
location in the Pipeline Editor. To find the Validate component, select the Message
Flow category in the Components window. Next, look under the Message Processing
section for the Validate icon.

As you drag the Validate component to the editor window, yellow circles appear to
indicate the valid places where you can drop the component. When you drag the
Validate component to one of the yellow circles, the circle changes to green
indicating that you can drop the component there. Release the mouse button to drop
the component.

2. Use the following steps to set the Properties for the validate action:

a. In the Pipeline Editor, click the Validate node to select it. The Properties window
displays the properties for the selected node.

Note:

If the Properties window is not visible, select Properties from the Window
main menu.

b. Under Location, specify the context variable that holds the element that you wish to
validate.

c. Click the fx icon to specify an XPath expression that is used to specify the data, in
the named variable, that is to be validated.

d. Under Schema, select Static to specify a schema or WSDL file to validate against.
Alternatively, select Dynamic to dynamically specify the schema or WSDL file at
runtime.

e. If you selected Static in the preceding step, then click the Search icon to specify an
element contained in an XML schema (.xsd) or WSDL file.

If you selected Dynamic in the preceding step, then click the fx icon to specify an
XQuery expression. The XQuery expression dynamically specifies a WSDL or
schema resource.

Here's an example of dynamically specifying a WSDL resource:

Chapter 17
Adding Validate Actions in JDeveloper

17-33

<validate xmlns="http://www.bea.com/wli/sb/context">
 <wsdl>default/MyWSDL</wsdl>
 <schemaType>
 <namespaceURI>http://openuri.org</namespaceURI>
 <localname>MyType</localname>
 </schemaType>
</validate>

The following is an example of dynamically specifying a schema resource:

<validate xmlns="http://www.bea.com/wli/sb/context">
 <schema>default/MySchema</schema>
 <schemaElement>
 <localname>MyElementType</localname>
 </schemaElement>
</validate>

f. Under Action, select Save Variable to specify a variable that holds the
validation result. Alternatively, select Raise an Error to raise an error if the
element fails validation against the WSDL or XML schema element.

g. Under the General section, specify an optional Description for the validate
action.

3. Click Save in the Oracle JDeveloper toolbar.

17.27 Adding Alert Actions in JDeveloper
Use the alert action to generate alerts based on message context in a pipeline, to send
to an alert destination.

Unlike SLA alerts, notifications generated by the alert action are primarily intended for
business purposes, or to report errors, and not for monitoring system health. Alert
destinations should be configured and chosen with this in mind. To learn more about
alert destinations, see Working with Alert Destinations.

If pipeline alerting is not enabled for the service or at the domain level, the configured
alert action is bypassed during message processing.

To add an Alert action:

1. Use one of the following methods to add an alert action to the pipeline:

• In the Pipeline Editor, right-click the component icon where you wish to add
the alert action. For example, right-click a Stage node to add an alert action to
it.

Select Insert Into > Alert from the context menu that appears.

• Drag the Alert component from the Components window to the appropriate
location in the Pipeline Editor. To find the Alert component, select the
Message Flow category in the Components window. Next, look under the
Reporting section for the Alert icon.

As you drag the Alert component to the editor window, yellow circles appear
to indicate the valid places where you can drop the component. When you
drag the Alert component to one of the yellow circles, the circle changes to
green indicating that you can drop the component there. Release the mouse
button to drop the component.

2. Use the following steps to set the Properties for the alert action:

Chapter 17
Adding Alert Actions in JDeveloper

17-34

a. In the Pipeline Editor, click the Alert node to select it. The Properties window displays
the properties for the selected node.

Note:

If the Properties window is not visible, select Properties from the Window
main menu.

b. Click the fx icon to the right of the Content field to specify an XQuery expression.
The XQuery expression is used to specify the message context to be added to the
alert message.

c. Enter a short description of the alert in the Summary field.

This becomes the subject line in the case of an Email notification, and can contain no
more than 80 characters. If no description is provided, a predefined subject line that
reads, "Oracle Service Bus Alert", is used instead.

d. Select the Severity level of the alert.

e. Click the Search icon to the right of the Destination field to select the alert
destination.

By default, the alert goes to the Administration Console.

f. Under the General section, specify an optional Description for the alert action.

3. Click Save in the Oracle JDeveloper toolbar.

17.28 Adding Log Actions in JDeveloper
Use the log action to construct a message to be logged and to define a set of attributes with
which the message is logged.

To see log data in the log file or standard out (server console), WebLogic Server logging must
be set to the following severity levels:

• Minimum severity to log: Info

• Log file: Info

• Standard out: Info

For information on setting log severity levels, see "Using Log Severity Levels" in Configuring
Log Files and Filtering Log Messages for Oracle WebLogic Server.

To add a Log action:

1. Be sure Logging is enabled globally. For more information, see "Configuring Operational
Settings at the Global Level" in Administering Oracle Service Bus.

2. Use one of the following methods to add a log action to the pipeline:

• In the Pipeline Editor, right-click the component icon where you wish to add the log
action. For example, right-click a Stage node to add a log action to it.

Select Insert Into > Log from the context menu that appears.

• Drag the Log component from the Components window to the appropriate location in
the Pipeline Editor. To find the Log component, select the Message Flow category in
the Components window. Next, look under the Reporting section for the Log icon.

Chapter 17
Adding Log Actions in JDeveloper

17-35

As you drag the Log component to the editor window, yellow circles appear to
indicate the valid places where you can drop the component. When you drag
the Log component to one of the yellow circles, the circle changes to green
indicating that you can drop the component there. Release the mouse button
to drop the component.

3. Use the following steps to set the Properties for the log action:

a. In the Pipeline Editor, click the Log node to select it. The Properties window
displays the properties for the selected node.

Note:

If the Properties window is not visible, select Properties from the
Window main menu.

b. Click the fx icon to the right of the Content field to specify an XQuery
expression. The XQuery expression is used to specify the message context to
be logged.

c. Enter a short description of the alert in the Summary field. This description is
logged along with the result of the previously defined expression.

d. Select the Severity level of the log. Table 17-6 describes the options available.

Table 17-6 Log Action Severity Levels

Severity Level Typical Usage

Info Used for reporting normal operations; a low-level
informational message.

Warning A suspicious operation or configuration has occurred but it
might not affect normal operation.

Error A user error has occurred. The system or application can
handle the error with no interruption and limited degradation
of service.

Debug While your application is under development, you might find it
useful to create and use messages that provide verbose
descriptions of low-level activity within the application.

e. Under the General section, specify an optional Description for the log action.

4. Click Save in the Oracle JDeveloper toolbar.

17.29 Adding Report Actions in JDeveloper
Use the report action to enable message reporting for a pipeline.

To add a Report action:

1. Use one of the following methods to add a report action to the pipeline:

• In the Pipeline Editor, right-click the component icon where you wish to add
the report action. For example, right-click a Stage node to add a report action
to it.

Chapter 17
Adding Report Actions in JDeveloper

17-36

Select Insert Into > Report from the context menu that appears.

• Drag the Report component from the Components window to the appropriate
location in the Pipeline Editor. To find the Report component, select the Message
Flow category in the Components window. Next, look under the Reporting section for
the Report icon.

As you drag the Report component to the editor window, yellow circles appear to
indicate the valid places where you can drop the component. When you drag the
Report component to one of the yellow circles, the circle changes to green indicating
that you can drop the component there. Release the mouse button to drop the
component.

2. Use the following steps to set the Properties for the report action:

a. In the Pipeline Editor, click the Report node to select it. The Properties window
displays the properties for the selected node.

Note:

If the Properties window is not visible, select Properties from the Window
main menu.

b. Click the fx icon to the right of the Content field to specify an XQuery expression.
The XQuery expression is used to create the data that is reported to the Service Bus
dashboard.

c. Under Search Keys, click the Add Key icon, identified by the green plus (+) sign, to
add a search key. The Key field is used to specify a key name. The Variable field and
XPath field together specify the key value. The Variable field specifies the context
variable and the XPath field specifies an XPath expression.

You use key value pairs to extract key identifiers from any message context variable
or message payload, and ignore the rest of the message. The keys are a convenient
way to identify a message. They are displayed as report indexes in the Reporting
module. See and "Working with Message Reports" in Administering Oracle Service
Bus.

For example, consider a report action configured on an error handler in a stage. The
action reports the contents of the fault context variable in the event of an error. The
report action is configured as follows:

- Key name = errorCode

- Key value = ./ctx:errorCode in variable fault

Each time this action is executed at runtime, a message is reported through the
Reporting Data Stream. The following table shows the results after the report action
is executed twice.

Report Index DB TimeStamp Inbound Service Error Code

errorCode=OSB-38250
5

04/26/07 9:45 AM MortgageBroker/ProxySvcs/
loanGateway3

OSB-382505

errorCode=OSB-38250
5

04/26/07 9:45 AM OSB-382505

Chapter 17
Adding Report Actions in JDeveloper

17-37

d. You can choose to add more keys by repeating the preceding step. To delete a
key, click the Delete Key icon, identified by the red X sign.

e. Under the General section, specify an optional Description for the report
action.

3. Click Save in the Oracle JDeveloper toolbar.

17.30 Adding Error Handlers in JDeveloper
Implementing error handlers in JDeveloper is very similar to using the Oracle Service
Bus Console.

The primary difference is the drag and drop feature of the pipeline designer, and the
properties window that appears for each pipeline action.

17.30.1 How to Add Error Handlers in Pipelines in JDeveloper
Use an error handler to specify what should happen if an error occurs in a specific
location in the pipeline. You can configure error handling at the pipeline, pipeline pair,
route node, and stage level.

Before you begin

Display the message flow for the desired pipeline.

To add an error handler to a pipeline:

1. Use one of the following methods to add an error handler to the pipeline:

• In the Pipeline Editor, right-click the component icon where you wish to add
the error handler. You can add an error handler for the following:

– To add an error handler at the pipeline level, right-click the start node.
Select Add Error Handler from the context menu.

– To add an error handler for a request or response pipeline, right-click the
Request Pipeline or the Response Pipeline. Select Add Error Handler
from the context menu.

– To add an error handler for a stage node, right-click the Stage node.
Select Add Error Handler from the context menu.

– To add an error handler for a route node, right-click the Route node.
Select Add Error Handler from the context menu.

• Drag the Error Handler component from the Components window to the
appropriate location in the Pipeline Editor. To find the Error Handler
component, select the Message Flow category in the Components window.
Next, look under the Nodes section for the Error Handler icon.

As you drag the Error Handler component to the editor window, yellow circles
appear to indicate the valid places where you can drop the component. When
you drag the Error Handler component to one of the yellow circles, the circle
changes to green indicating that you can drop the component there. Release
the mouse button to drop the component.

Chapter 17
Adding Error Handlers in JDeveloper

17-38

Note:

You cannot create an error handler within an error handler.

2. To change the default name and add a description for the error handler stage, do the
following:

a. Click the error handler stage node to select it. The Properties window displays the
properties for the selected component.

Note:

If the Properties window is not visible, select Properties from the Window
main menu.

b. Edit the Name and Description fields for the selected stage node.

c. Click Save in the Oracle JDeveloper toolbar.

3. To add actions to the error handler stage, see Adding and Editing Actions in Pipelines in
JDeveloper.

4. To add more stages to the error handler, see Adding Error Handlers in JDeveloper.

5. On the Pipeline Editor, continue to construct the pipeline, as described in Viewing and
Editing Pipelines in JDeveloper.

6. Click Save in the Oracle JDeveloper toolbar.

17.31 Disabling an Action or a Stage in JDeveloper
You can choose to disable an action or a stage in a pipeline. A disabled action or stage is
skipped from the message flow execution. A disabled stage or action is not validated at
design time.

When you disable an action or a stage, all the nested actions, if any, are implicitly disabled.
This means that the nested actions are also skipped from the message flow execution. If you
wish to disable the nested actions from design time validation, you need to individually
disable these actions.

Note:

If a disabled stage has an error handler, then the error handler is also disabled.

You can still edit the configuration of a disabled action or stage. Refactoring also takes place
for disabled actions and stages. This means that if there is a call to a service in the disabled
action or stage, and the service gets renamed, then the service callout is automatically
updated.

Chapter 17
Disabling an Action or a Stage in JDeveloper

17-39

17.31.1 Disabling an Action or Stage
To disable an action or stage:

1. In the Pipeline Editor, right-click the stage or action icon that you wish to disable.

2. Select Disable from the context menu that appears.

The action or stage is disabled, and the Disabled icon appears next to it.

3. Click Save in the Oracle JDeveloper toolbar.

You can re-enable a disabled stage or action at any time, and the action or stage is no
longer skipped in the message flow.

17.31.2 Re-Enable an Action or Stage
To re-enable an action or stage:

1. In the Pipeline Editor, right-click the disabled stage or action icon.

2. Select Enable from the context menu that appears.

The Disabled icon next to the stage or action disappears, and the stage or action
is enabled.

3. Click Save in the Oracle JDeveloper toolbar.

Chapter 17
Disabling an Action or a Stage in JDeveloper

17-40

18
Working with Pipeline Templates

This chapter describes designing prototype message flows using pipeline templates. It also
describes how to use Oracle JDeveloper to design and configure pipeline templates and
concrete pipelines.

Note:

You cannot create a pipeline template in Oracle Service Bus Console. However,
you can see existing template resources in the Project Navigator and view template
properties like binding type and message handling options. You can also delete a
template, rename a template, and move the template into a different folder or
project.

Use pipeline templates to design prototype message flows for proxy services. A pipeline
template defines the general shape or pattern of the message flow. Concrete pipelines can
then be generated out of the pipeline template. All concrete pipelines use the message flow
defined by the pipeline template with designated places where custom logic can be inserted.

The following sections describe working with pipeline templates in Oracle JDeveloper:

• Adding a Pipeline Template

• Editing a Pipeline Template

• Adding Placeholder Blocks to a Pipeline Template Message Flow

• Locking an Action in a Pipeline Template

• Creating a Concrete Pipeline from a Pipeline Template

• Editing the Message Flow for a Concrete Pipeline

• Converting a Concrete Pipeline in to a Regular Pipeline

18.1 Adding a Pipeline Template
Use pipeline templates to design prototype message flows for proxy services.

A pipeline template defines the general shape or pattern of the message flow.

18.1.1 How to Add a Pipeline Template
You can add a pipeline template to an open Service Bus project in Oracle JDeveloper.

To add a pipeline template:

1. Make sure you have the Service Bus project open in Oracle JDeveloper.

2. Use one of the following methods to add a new pipeline template:

18-1

• In the Application Navigator, right-click the Service Bus project icon and select
New > Pipeline Template from the context menu.

• From the File menu, select New > Pipeline Template.

The Create Pipeline Template wizard appears.

3. Under Service Name, enter a name for the pipeline template.

4. Click the Browse icon to the right of the Location field to specify a directory for
the pipeline template. The default directory is the Service Bus project folder.

5. Optionally, enter a Description for the pipeline template.

6. If you wish to use an existing pipeline to define the template, select From
Pipeline. Click the Browse icon to select a pipeline file.

7. Click Next. The Service Type page appears.

8. Select a Service Type for the pipeline template. All concrete pipelines created from
this template would use the same service type.

Select Any if you wish to have the option of selecting the service type when
creating a concrete pipeline.

9. Click Finish to create the pipeline template. The pipeline template (.ptx) opens in
the Template Designer. The pipeline template also appears in the Application
Navigator.

10. In the Template Designer, select the Configuration tab at the bottom left. The
Configuration tab is used to specify message handling configuration settings and
other general settings.

11. Click General to specify an optional Description for the pipeline template.

18.2 Editing a Pipeline Template
After creating a pipeline template, you can edit it using the Template Designer.

You can specify settings like message handling configuration settings for the template,
and edit the message flow for the template.

18.2.1 How to Edit a Pipeline Template
Use the Template Designer to configure the settings and message flow for a pipeline
template.

To edit a pipeline template:

1. In the Application Navigator, double-click the pipeline template to open it in the
Template Designer.

2. Click the Configuration tab at the bottom left to specify General configuration
settings, like Description, and message handling settings, like content streaming
and transaction settings. Press F1 to get help related to the settings.

3. Click the Design tab at the bottom left to edit the message flow for the pipeline
template.

If no message flow has yet been created for the pipeline template, the Template
Designer Design view shows a single icon on the page, the Proxy Service icon.
This is the starting node for the message flow.

Chapter 18
Editing a Pipeline Template

18-2

4. Use one of the following methods to add a message flow component (node) to the
message flow:

• Right-click the start node (proxy service icon) to get options for message flow
components that you can add.

Figure 18-1 shows the options available for the start node. You can add nodes like
the PipelinePair node and Conditional Branch. You can also add template
placeholders like Nodes, Route, and Conditional Template. Template placeholders
are placeholders for actual nodes that you can add when creating concrete pipelines.

Figure 18-1 Right-Clicking a Node to Add a Message Flow Component

• Alternatively, select the message flow component to add from the Components
window, and drag the component to the Template Designer window. Yellow circles
appear indicating valid places to drop the component in the message flow. Drag the
component to a yellow circle. The yellow circle turns green. Release the component
to add it. Figure 18-2 shows a Pipeline Pair node being added to a start node.

Figure 18-2 Adding a Pipeline Pair to the Start Node

When you add components to the Template Designer, corresponding icons are displayed
on the Template Designer to represent the components. The relationships among the
components are shown with lines and bounding boxes.

Figure 18-3 shows a message flow where a Pipeline Pair node has been added to the
flow. The Pipeline Pair comprises of a Request Pipeline and a Response Pipeline. The
Request and Response pipelines have stages that can contain action nodes.

Chapter 18
Editing a Pipeline Template

18-3

Figure 18-3 Message Flow with a Pipeline Pair Node

5. Continue to build the message flow by adding more components. For example, to
add an Actions placeholder to the stage node, you can drag the Actions
component from the Components window to the stage node in the editor.
Alternatively, you can right-click the Stage node to get options for message flow
components that you can add to the Stage node. The options available for each
component may differ, depending on context.

6. Click Save in the Oracle JDeveloper toolbar.

18.2.1.1 How to View External Services
The external services listed in the Start Node are those invoked outside the context of
the pipeline. They are specified in an Invoke Service node but are listed here for
convenience.

To view external services:

To view external services, click the left-arrow button on the Start Node. The External
Services box appears to the left of the Start Node. Hover your mouse over an external
service to view the complete path of the service resource.

18.2.1.2 How to View Shared Variables
The shared variables listed in the Start Node are the variables that the pipeline can
share with other pipelines in the same call chain.

Note:

If two pipelines in a single call chain declare the same shared variable, then
they read and modify the same variable in the scope of the invocation call
chain. In other words, if pipeline P1 declares a shared variable var, and
pipeline P1 invokes pipeline P2, which also declares a shared variable var,
then any changes to var in P1 are visible in P2, and vice versa. A shared
variable must be of the String, Boolean, or XML data type.

To view external services:

Chapter 18
Editing a Pipeline Template

18-4

To view shared variables, click the left-arrow button on the Start Node. The Shared Variables
box appears to the left of the Start Node. You can right-click the Shared Variables box to get
a context menu. The context menu enables you to perform tasks like add or delete shared
variables.

18.3 Adding Placeholder Blocks to a Pipeline Template
Message Flow

When a pipeline template defines a template placeholder of a particular type, a concrete
pipeline can add zero or more nodes of the same type to the template placeholder.

For example, the actions template placeholder can contain zero or more action nodes in the
concrete pipeline.

Template placeholders can be of the following types:

• Nodes: A nodes template placeholder can contain the following nodes:

– Concrete pipeline pair nodes that contain stages/actions

– Conditional branch nodes

– Operational branch nodes

– REST branch nodes

– Route node

For example, a node placeholder block may contain a pipeline pair node followed by a
route node in the concrete pipeline.

• Stages: A stages template placeholder can contain zero or more stages in the concrete
pipeline. Each stage can in turn contain actions.

• Actions: An actions template placeholder can contain zero or more actions in the
concrete pipeline.

• Route: A route template placeholder is a placeholder for routing actions in the concrete
pipeline.

• Conditional: A conditional template placeholder enables you to specify a conditional
branch node for the concrete pipeline.

• Operational: An operational template placeholder enables you to specify an operational
branch node for the concrete pipeline when using WSDL SOAP binding.

• REST: A REST template placeholder enables you to specify a REST branch node for the
concrete pipeline when using the REST binding.

18.4 Locking an Action in a Pipeline Template
If you have specified all required properties for an action added to a pipeline template
message flow, and you wish all concrete pipelines to use the same values for the properties,
then you can lock the action in the pipeline template message flow.

A locked action cannot be edited in the concrete pipeline. You must make sure that you have
specified all the required properties, and any optional properties, in the pipeline template.

Chapter 18
Adding Placeholder Blocks to a Pipeline Template Message Flow

18-5

18.4.1 How to Lock an Action in a Pipeline Template
You can lock an action from the Properties window in Template Designer.

Before you begin:

Make sure you are editing the message flow in the Template Designer, as described in
Editing a Pipeline Template

To lock an action:

1. Select the action in the Template Designer. The properties for the action appear in
the Properties window.

2. Make sure you have specified all the required properties specific to the selected
action.

3. In the Properties window, click the Lock icon to lock the action.

Figure 18-4 Locking an Action in a Pipeline Template

18.5 Creating a Concrete Pipeline from a Pipeline Template
Concrete pipelines implement the message flow pattern defined by the pipeline
template.

You can customize the message flow for the concrete pipeline at designated places.

18.5.1 How to Create a Concrete Pipeline
You can use the pipeline creation wizard to create a concrete pipeline based on a
pipeline template.

To create a concrete pipeline:

1. Make sure that the service bus project is open in Oracle JDeveloper.

2. Use one of the following methods to create a new pipeline:

• Under the File menu, click New > Pipeline. The Create Pipeline Service
wizard appears.

• In Application Navigator, right-click the service bus project icon. Select New >
Pipeline. The Create Pipeline Service wizard appears.

• In Application Navigator, right-click the pipeline template from which you wish
to create the new pipeline. Select Service Bus > Generate Pipeline.

Chapter 18
Creating a Concrete Pipeline from a Pipeline Template

18-6

The Create Pipeline Service wizard appears. The name of the pipeline template is
already populated in the From Template field.

3. Under Service Name, enter a name for the new concrete pipeline.

4. Click the Browse icon to the right of the Location field to select the location for the
concrete pipeline resource. The default location is the service bus project folder.

5. Specify an optional Description for the concrete pipeline.

6. If not already selected, select From Template to specify the pipeline template. Click the
Browse icon to the right of the From Template field to select the pipeline template. Select
the pipeline template file and click OK.

7. Click Next.

8. Select the Service Type for the concrete pipeline. The options available depend on the
service type specified for the underlying template.

9. Click Finish to create the concrete pipeline.

18.6 Editing the Message Flow for a Concrete Pipeline
The concrete pipeline inherits its message flow form the pipeline template. You can complete
the message flow in the Pipeline Editor.

You can add nodes and actions to template placeholders in the message flow. In addition,
you can edit or complete the properties for other unlocked actions defined in the pipeline
template. You cannot edit locked actions in the concrete pipeline.

18.6.1 How to Edit the Message Flow for a Concrete Pipeline
Use the Pipeline Editor to edit the message flow for a concrete pipeline. You can add nodes
and actions to template placeholders, and edit other unlocked actions defined in the pipeline
template.

To edit the message flow for a concrete pipeline:

1. Make sure you have the Service Bus project open in Oracle JDeveloper.

2. Use one of the following methods to edit the message flow for a pipeline:

• In Application Navigator, locate the pipeline node. Right-click the pipeline node and
select Open. You can alternatively double-click the pipeline node to open it.

• In Application Navigator, click the project node (or overview.xml) to open the
Overview Editor.

In the Overview Editor, double-click the pipeline component to open the Pipeline
Editor.

The Pipeline Editor appears. Ensure that the Design tab is selected at the bottom left
corner of the editor.

The Pipeline Editor shows the message flow designed in the pipeline template.

3. To edit the property for an unlocked action:

a. Select the action in the Pipeline Editor message flow by clicking on it. The Properties
window displays the properties for the selected action.

Chapter 18
Editing the Message Flow for a Concrete Pipeline

18-7

Note:

If the Properties window is not visible, select Properties from the
Window main menu.

b. Edit the properties in the Properties window.

4. Use one of the following methods to edit a template placeholder:

• Right-click the template placeholder icon to get options for message flow
components that you can add. Click Insert Into from the context menu that
appears.

Figure 18-5 shows the options available for the actions template placeholder.

Figure 18-5 Adding a Node to a Template Placeholder

• Drag the desired component from the Components window to the template
placeholder in the Pipeline Editor.

As you drag the component to the editor window, yellow circles appear to
indicate the valid places where you can drop the component. When you drag
the component to one of the yellow circles, the circle changes to green
indicating that you can drop the component there. Release the mouse button
to drop the component.

5. Continue to build the message flow by editing more actions, or dropping more
nodes into template placeholders.

Chapter 18
Editing the Message Flow for a Concrete Pipeline

18-8

6. Click Save in the Oracle JDeveloper toolbar.

18.7 Converting a Concrete Pipeline in to a Regular Pipeline
If you no longer need a concrete pipeline to be associated with a pipeline template, you can
break the template link to convert the pipeline in to a regular pipeline.

The regular pipeline can be edited without the restrictions applicable to concrete pipelines.

18.7.1 How to Break a Template Link for a Concrete Pipeline
You can use the Configuration tab of the Pipeline Editor to break its link with the associated
template.

To break the template link for a concrete pipeline:

1. Make sure you have the Service Bus project open in Oracle JDeveloper.

2. Use one of the following methods to open the Pipeline Editor:

• In Application Navigator, locate the concrete pipeline node. Right-click the pipeline
node and select Open. You can alternatively double-click the pipeline node to open it.

• In Application Navigator, click the project node (or overview.xml) to open the
Overview Editor.

In the Overview Editor, double-click the concrete pipeline component to open the
Pipeline Editor.

The Pipeline Editor appears. Ensure that the Configuration tab is selected at the bottom
left corner of the editor.

3. Click General to display the General Configuration page.

4. Under Template, click the Break Template Link icon. Figure 18-6 shows the Break
Template Link icon.

Figure 18-6 Breaking a Template Link

Chapter 18
Converting a Concrete Pipeline in to a Regular Pipeline

18-9

Part IV
Transforming Data

This part describes tools you can use to map, transform, and translate the data in messages
processed by Service Bus.

This part contains the following chapters:

• Transforming Data with XQuery

• Transforming Data with XSLT

• Mapping Data with Cross-References

• Mapping Data with Domain Value Maps

• Defining Data Structures with Message Format Language

• Using Java Callouts and POJOs

19
Transforming Data with XQuery

This chapter describes how to create, locate, edit, and delete XQuery Transformation
resources using the Oracle Service Bus Console.

XQuery transformation maps can describe XML-to-XML, XML to non-XML, and non-XML to
XML mappings.

This chapter includes the following topics:

• Introduction to XQuery Transformations

• XQuery Editors and Mappers

• Creating XQuery Maps in JDeveloper

• Testing Service Bus Projects Converted from XQuery 2004 to XQuery 1.0 in JDeveloper

• Working with XQuery Resources in the Oracle Service Bus Console

• Service Bus XQuery Functions

19.1 Introduction to XQuery Transformations
XQuery helps in querying XML data from XML documents. XQuery uses and extends XPath
to help navigate and extract elements and attributes from an XML document.

Service Bus uses XQuery to implement its business logic. Service Bus makes use of XQuery
resources for various activities, like transformations, data selection, condition evaluation, and
data manipulation. Service Bus fully supports XQuery 1.0. This includes optional features
such as modules. The older XQuery 2004 is also supported.

XQuery transformation maps describe the mapping between two data types. XQuery maps
describe mappings between XML documents with different schemas. Using XQuery, Service
Bus can process XML documents and transform document data from one XML schema to
another, enabling data interchange among applications that use different schemas. You can
perform complex data manipulation and transformation using XQuery. For example, you can
map an incoming purchase order schema to an outgoing invoice schema.

You use XQuery expressions to create the data content for the message context variables (or
part of a message context variable) during the execution of the message flow. You can use
the Test Console directly in the XQuery Expression Editor to test the definition of the
expression. Similarly, you use XQuery conditions to evaluate Boolean conditions in the
message flow. You can use the Test Console directly in the XQuery Condition Editor to test
the definition of the condition.

19.2 XQuery Editors and Mappers
JDeveloper provides both an Expression Builder, where you can script transformations using
XQuery, and an XQuery Mapper, where you can create complex mappings.

19-1

The Oracle Service Bus Console provides an editor for scripting transformations using
XQuery. The editor provides options to define an XQuery expression or to define an
expression that evaluates at runtime to the name of an existing XQuery resource.

For both JDeveloper and the console, you access the editors from an action in either a
pipeline or split-join.

19.2.1 JDeveloper Editors and Mappers
The XQuery mapper in JDeveloper is a graphical tool that lets you define mappings
between schema root elements, WSDL message parts, or WSDL messages. Schema
root elements can come from XSD schema files or WSDL files, but only those WSDL
messages that contain a single message part can be mapped directly. Once you
create an XSLT mapping in JDeveloper, you can upload the .xsl file generated by the
mapper to an XSLT resource in the Oracle Service Bus Console.

JDeveloper also includes a variety of Expression Builders, where you can create
expressions that specify an existing XSLT resource to use. For more information about
the mapper and editors in JDeveloper, see the following topics:

• "Creating Transformations with the XQuery Mapper" in Developing SOA
Applications with Oracle SOA Suite

• "Building XPath Expressions in the Expression Builder in Oracle JDeveloper" in
Developing SOA Applications with Oracle SOA Suite

19.2.2 Oracle Service Bus Console Editors
In the Oracle Service Bus Console, the XQuery/XSLT Expression Editor lets you
create expressions that specify an existing XQuery resource to use.

Before you can reference an XQuery resource, you need to create the resource in the
console and upload an existing XQuery transformation file (.xqy) to the resource. This
feature allows you to create complex mappings in JDeveloper that you can them
import and use in the console. You can reuse an XQuery transformation in multiple
pipelines and split-joins.

For information about the XQuery/XSLT Editor in the Oracle Service Bus Console, see
Working With Expression Editors in Oracle Service Bus Console.

19.3 Creating XQuery Maps in JDeveloper
You can create XQuery maps in a Service Bus project in JDeveloper, and then use
them in XQuery expressions in pipelines and split-joins to map objects between
external systems.

When you create an XQuery mapping, you need to select the source XML schema
elements or XML files to use for the source and target mappings.

19.3.1 How to Create XQuery Mappings in JDeveloper
See "Creating an XQuery Map File" in Developing SOA Applications with Oracle SOA
Suite for details on creating an XQuery map.

See "Using the XQuery Mapper" in Developing SOA Applications with Oracle SOA
Suite for details on using the XQuery mapper to build your XQuery.

Chapter 19
Creating XQuery Maps in JDeveloper

19-2

19.4 Testing Service Bus Projects Converted from XQuery 2004
to XQuery 1.0 in JDeveloper

When converting a Service Bus project from XQuery 2004 to XQuery 1.0, all 2004 XQueries
will be switched to run against the XQuery 1.0 engine. After converting from XQuery 2004 to
XQuery 1.0, the XQuery Mapper tab in JDeveloper displays, but doesn’t display actual
mapping.

To test converted XQueries in JDeveloper:

1. Restart JDeveloper.

2. Ensure that the XQuery file that you want to test is open.

3. Click the XQuery Source tab to enter Source view.

4. Right click the source, and then select Run XQuery.

When testing converted XQueries:

• Ensure that you make the namespace declaration correctly. This can be done in two
ways:

– Using an import statement from the XQuery specification:

import schema namespace ns0="http://www.example.com/custele"
at "../TestInputSchemas/customerEle.xsd";

– Using Oracle’s annotation mechanism:

xquery version "1.0"; (:: OracleAnnotationVersion "1.0" ::)
declare namespace ns0="http://www.example.com/custele";
(:: import schema at "../TestInputSchemas/customerEle.xsd"::)

• Ensure that you declare variables as schema-elements so that they are recognized by
the JDeveloper mapper mechanism. For example:

declare function local:AttributeToElement($customerOut as element()
(::schema-element(ns0:customerOut)::))
 as element() (::schema-element (ns1:customer)::)

19.5 Working with XQuery Resources in the Oracle Service Bus
Console

You can add XQuery resources to your Service Bus project. XQuery files, created using
JDeveloper or other editors, can be imported into your project as resources.

• How to Create an XQuery Resource in the Console

• How to Edit an XQuery Resource in the Console

• How to Delete an XQuery Resource in the Console

• How to Upgrade Your XQuery Resources to use XQuery 1.0

Chapter 19
Testing Service Bus Projects Converted from XQuery 2004 to XQuery 1.0 in JDeveloper

19-3

19.5.1 How to Create an XQuery Resource in the Console
Use the Oracle Service Bus Console to add XQuery resources to your Service Bus
project. You can either import an XQuery file created in an editor like JDeveloper, or
create a resource and edit the code inline.

To create an XQuery Resource in the console:

1. In the Project Navigator, right-click the project or folder to contain the XQuery
resource, point to Create, and select Resource Click Transformations, click
XQuery, and then click OK.

The Create XQuery dialog appears.

2. Do one of the following:

• To create the resource from an existing XQuery file, click Choose File next to
the File Upload field and then navigate to and select the file to use.

The Resource Name field is automatically populated with the file name minus
the file extension. You can change this name.

• To create an XQuery from scratch, enter a unique name for the XQuery
resource.

3. Optionally, enter a brief Description of the resource.

4. Click Create.

The XQuery resource opens in the XQuery Definition Editor.

5. To modify the XQuery, do the following:

a. Click Edit XQuery Contents in the toolbar.

The View/Edit Source dialog appears.

b. To browse to and select a new XQuery file to upload, click Choose File.

c. To modify the contents of the file, update the code directly in the Contents
section of the dialog.

d. Click Save. The XQuery is validated upon save.

6. In the XQuery Definition Editor toolbar, click Save.

7. To end the session and deploy the configuration to the runtime, click Activate.

19.5.2 How to Edit an XQuery Resource in the Console
Use the Oracle Service Bus Console to edit XQuery resources in your Service Bus
project. You can either import an updated XQuery file created in an editor like
JDeveloper, or edit the code inline.

To edit an XQuery Resource in the console:

1. In the Project Navigator, expand the project and folders containing the XQuery
resource to edit.

2. Right-click the XQuery resource name, and select Open.

3. To edit the XQuery source, click Edit XQuery contents in the toolbar.

The View/Edit Source dialog appears.

Chapter 19
Working with XQuery Resources in the Oracle Service Bus Console

19-4

4. To browse to and select a new XQuery file to upload, click Choose File.

5. To modify the contents of the file, update the code directly in the Contents section of the
dialog.

6. Click Save.

7. In the XQuery Definition Editor toolbar, click Save.

8. To end the session and deploy the configuration to the runtime, click Activate.

19.5.3 How to Delete an XQuery Resource in the Console
You can use the Oracle Service Bus Console to delete an XQuery resource from your Service
Bus project. If the resource has any references, remove them before deleting it. Open the
XQuery resource in the XQuery Definition Editor and click the Tools icon in the upper right,
and then select References to find out whether there are any references.

To delete an XQuery resource in the console:

1. In the Application Navigator or Project Navigator, expand the project and folders
containing the XQuery resource to delete.

2. Right-click the name of the XQuery resource, and select Delete. A confirmation dialog
appears.

3. Click Yes to delete the resource.

4. Click Activate to end the session and deploy the configuration to the runtime.

19.5.4 How to Upgrade Your XQuery Resources to use XQuery 1.0
Service Bus supports XQuery 1.0. The older XQuery 2004 is also supported. Any new
XQuery resource created in Service Bus uses the XQuery 1.0 version, by default.

If you have upgraded from a pre-12g Service Bus project, all XQuery resources in the project
are configured to use the XQuery 2004 version. The following line is present as the first line
in all XQuery files:

xquery version "2004-draft";

You can choose to upgrade all XQuery 2004 resources in your project to use XQuery 1.0.
The XQuery converter performs basic translation of XQuery 2004 files to XQuery 1.0. You
need to manually verify and correct syntax errors that cannot be handled by the converter.

To upgrade the XQuery resources in a project:

1. In the Application Navigator or Project Navigator, right-click the project to upgrade.

2. Select Convert to XQ 1.0 from the context menu that appears. A confirmation dialog
appears.

3. Select Yes to convert all resources to use the XQuery 1.0 engine.

You can use the Test Console to test your XQuery resources. To use the test console,
open the project by clicking the project name in the Project Navigator. Click the Launch
Test Console icon, under the Actions column, corresponding to the XQuery resource
that you wish to test.

Chapter 19
Working with XQuery Resources in the Oracle Service Bus Console

19-5

19.5.4.1 Syntax Errors After Xquery Update to V1.0
Versions of Xquery prior to 1.0 supported an optional indicator language extension.
This non-standard language extension is not supported in the 1.0 query processor, but
the (#ora-ext:if-exists-content#) pragma has been added to replace it.

Example 1

<address?>{ $customer/address }</address>

becomes

(#ora-ext:if-exists-content#) { <address>{ $customer/address }</address> }

Example 2

becomes

{ (#ora-ext:if-exists-content#) { attribute alt
{$description} } }

19.6 Service Bus XQuery Functions
Service Bus supports these XQuery functions.

• The standard XQuery functions described in the W3C specification:

http://www.w3.org/TR/xpath-functions/

• Oracle function extensions and language keywords provided as part of the Oracle
XQuery engine—with a small number of exceptions, as described in Supported
Function Extensions from Oracle.

• Service Bus-specific function extensions. See Function Extensions from Service
Bus.

Note:

All of the Oracle function extensions use the following function prefix fn-
bea: In other words, the full XQuery notation for an extended function is
of this format:

fn-bea: function_name.

19.6.1 Supported Function Extensions from Oracle
For descriptions of all Oracle function extensions, see Service Bus XQuery Functions.

Service Bus supports all Oracle function extensions to XQuery except for the following:

• fn-bea:is-access-allowed

• fn-bea:is-user-in-group

Chapter 19
Service Bus XQuery Functions

19-6

http://www.w3.org/TR/xpath-functions/

• fn-bea:is-user-in-role

• fn-bea:userid

• fn-bea:async

• fn-bea:timeout

• fn-bea:get-property

• fn-bea:execute-sql()

Oracle recommends that you do not use the following functions in Service Bus. They are
better covered by other language features:

• fn-bea:if-then-else

• fn-bea:QName-from-string

• fn-bea:sql-like

19.6.2 Function Extensions from Service Bus
Service Bus provides the following XQuery functions:

• fn-bea:lookupBasicCredentials

• fn-bea:isUserInGroup

• fn-bea:isUserInRole

• fn-bea: uuid

• fn-bea:execute-sql()

• fn-bea:serialize()

• fn-bea:binary-to-text

• fn-bea:binary-to-xml

19.6.2.1 fn-bea:lookupBasicCredentials
The fn-bea:lookupBasicCredentials function returns the user name and unencrypted
password from a specified service account. You can specify any type of service account
(static, pass-through, or user-mapping). See Working with Service Accounts.

Use the fn-bea:lookupBasicCredentials function as part of a larger set of XQuery functions
that you use to encode a user name and password in a custom transport header or in an
application-specific location within the SOAP envelope. You do not need to use this function if
you only need user names and passwords to be located in HTTP Authentication headers or
as WS-Security user name tokens. Service Bus already retrieves user names and passwords
from service accounts and encodes them in HTTP Authentication headers or as WS-Security
user name tokens when required.

The function has the following signature:

fn-bea:lookupBasicCredentials($service-account as xs:string) as
UsernamePasswordCredential

where $service-account is the path and name of a service account in the following form:

project-name[/folder[...]]/service-account-name

Chapter 19
Service Bus XQuery Functions

19-7

The return value is an XML element of this form:

<UsernamePasswordCredential
 xmlns="http://www.bea.com/wli/sb/services/security/config">
 <username>name</username>
 <password>unencrypted-password</password>
</UsernamePasswordCredential>

You can store the returned element in a user-defined variable and retrieve the user
name and password values from this variable when you need them.

For example, your Service Bus project is named myProject. You create a static service
account named myServiceAccount in a folder named myFolder1/myFolder2. In the
service account, you save the user name of pat with a password of patspassword.

To get the user name and password from your service account, invoke the following
function:

fn-bea:lookupBasicCredentials(myProject/myFolder1/myFolder2/
myServiceAccount)

The function returns the following element:

<UsernamePasswordCredential
 xmlns="http://www.bea.com/wli/sb/services/security/config">
 <username>pat</username>
 <password>patspassword</password>
</UsernamePasswordCredential>

19.6.2.2 fn-bea:isUserInGroup
Returns whether or not a given user belongs to a given group (true or false). For
example:

fn-bea:isUserInGroup($user-name as xs:string, $group-name as xs:string)

19.6.2.3 fn-bea:isUserInRole
Returns whether or not a given user belongs to a given role (true or false). For
example:

fn-bea:isUserInRole($user-name as xs:string, $role-name as xs:string)

19.6.2.4 fn-bea: uuid
The function fn-bea:uuid returns a universally unique identifier. The function has the
following signature:

fn-bea:uuid() as xs:string

You can use this function in the proxy pipeline to generate a unique identifier. You can
insert the generated unique identifier into an XML document as an element. You
cannot generate a unique identifier to the system variable. You can use this to modify
a message payload.

For example, suppose you want to generate a unique identifier to add to a message
for tracking purposes. You could use this function to generate a unique identifier. The
function returns a string that you can add it to the SOAP header.

Chapter 19
Service Bus XQuery Functions

19-8

19.6.2.5 fn-bea:execute-sql()
The fn-bea:execute-sql() function provides low-level database access from XQuery within
Service Bus message flows--see Accessing Databases Using XQuery. The query returns a
sequence of flat row elements with typed data.

The function has the following signature:

fn-bea:execute-sql($datasource as xs:string, $rowElemName as xs:QName,
$sql as xs:string, $param1, ..., $paramk) as element()*

where

• $datasource is the JNDI name of the datasource

• $rowElemName is the name of the row element—specify $rowElemName as whatever
QName you want each element of the resulting element sequence to have

• $sql is the SQL statement

• $param1, ..., $paramk are 1 to k parameters

• element()* represents the sequence of elements returned

The return value is a sequence of flat row elements with typed data and automatically
translates values between SQL/JDBC and XQuery data models. Data Type mappings that
the XQuery engine generates or supports for the supported databases can be found in the
XQuery-SQL Mapping Reference.

When you execute the fn-bea:execute-sql() function from a Service Bus message flow,
you can store the returned element in a user-defined variable.

Use the following examples to understand the use of the fn-bea:execute sql() function in
Service Bus:

• Example 1: Retrieving the URI from a Database for Dynamic Routing

• Example 2: Getting XMLType Data from a Database

19.6.2.5.1 Example 1: Retrieving the URI from a Database for Dynamic Routing
Service Bus proxy services support specification of the URI to which messages are to be
routed at runtime (dynamically)—see Using Dynamic Routing. The following is an example
use of the fn-bea:execute-sql() function to retrieve the URI from a database in a dynamic
routing scenario.

Example - Get the URI for a Business Service from a Database

<ctx:route><ctx:service>
{
 fn-bea:execute-sql(
 'ds.myJDBCDataSource',
 xs:QName('customer'),
 'SELECT targetService FROM DISPATCH_MAPPING WHERE customer_priority=?',
 xs:string($body/m:Request/m:customer_pri/text())
)/TARGETSERVICE/text()
}
</ctx:service></ctx:route>

In the example:

Chapter 19
Service Bus XQuery Functions

19-9

• ds.myJDBCDataSource is the JNDI name to the data source

• xs:string($body/m:Request/m:customer_pri/text()) interrogates the request
message and populates customer_priority=? with the value of customer_pri in
the message

• /TARGETSERVICE/text() is the path applied to the result of the SQL statement,
which results in the string (CDATA) contents of that element being returned

• <ctx:route><ctx:service> ... </ctx:service></ctx:route> are required
elements of the XQuery statement for a dynamic routing scenario

• The following is the table definition for DISPATCH_MAPPING:

create table DISPATCH_MAPPING
(
 customer_priority varchar2(256),
 targetService varchar2(256),
 soapPayload varchar2(1024)
);

The DISPATCH_MAPPING table is populated as shown in the following example:

Example - DISPATCH_MAPPING Table

 INSERT INTO DISPATCH_MAPPING (customer_priority, targetService, soapPayload)
 VALUES ('0001', 'system/UCGetURI4DynamicRouting_proxy1', '<something/>');
 INSERT INTO DISPATCH_MAPPING (customer_priority, targetService, soapPayload)
 VALUES ('0002', 'system/UCGetURI4DynamicRouting_proxy2', '<something/>');

Note:

The third column in the table (soapPayload) is not used in this scenario.

Executing the fn-bea:execute-sql for Example 3

If the XQuery in the Get the URI for a Business Service from a Database example is
executed as a result of a proxy service receiving the request message in the following
example (note that the value of <customer_pri> in the request message is 0001), the
URI returned for the dynamic route scenario is

system/UCGetURI4DynamicRouting_proxy1

Example Request Message $body

<m:Request xmlns:m="http://www.bea.com/alsb/example">
<m:customer_pri>0001</m:customer_pri>
</m:Request>

19.6.2.5.2 Example 2: Getting XMLType Data from a Database
Data Type mappings that the XQuery engine generates or supports for the supported
databases can be found in the XQuery-SQL Mapping Reference. Note that the
XMLType column type in SQL is not supported. However, you can access the data in an
XMLType column by using the getStringVal() method of the XMLType object to convert
it to a String value.

Chapter 19
Service Bus XQuery Functions

19-10

The following scenario outlines a procedure you can use to select data from an XMLType
column in an Oracle database.

1. Use an assign action in a proxy service message flow to assign the results of the
following XQuery to a variable ($result).

Example - Get XMLType Data from a Database

fn-bea:execute-sql(
 'ds.myJDBCDataSource',
 'Rec',
 'SELECT a.purchase_order.getStringVal() purchase_order from datatypes a'
)

where:

• ds.myJDBCDataSource is the JNDI name to the data source

• Rec is the $rowElemName—therefore, Rec is the QName given to each element of the
resulting element sequence

• select a.purchase_order.getStringVal() ... is the SQL statement that uses the
getStringVal() method of the XMLType object to convert it to a String value

• datatypes is the table from which the value of the XML is read (the datatypes table
in this case contains one row)

Note:

The following is the table definition for the dataty.pes table:

create table datatypes
(
 purchase_order xmltype
);

2. Use a replace action to replace the node contents of $body with the results of the fn-
bea:execute-sql() query (assigned to $result in the preceding step):

Replace [node contents] of [undefined XPath] in [body] with
[$result/purchase_order/text()]

The following listing shows $body after the replacement.

Note:

The datatypes table contains one row (with the purchase order data); the row
contains the XML represented in the following example.

Example - $body After XML Content is Replaced with Result of fn-bea:execute-sql()

<soap-env:Body>
 <openuri:orders xmlns:openuri="http://openuri.com/">
 <openuri:order>
 <openuri:customerID>123</openuri:customerID>
 <openuri:orderID>123A</openuri:orderID>
 </openuri:order>

Chapter 19
Service Bus XQuery Functions

19-11

 <openuri:order>
 <openuri:customerID>345</openuri:customerID>
 <openuri:orderID>345B</openuri:orderID>
 </openuri:order>
 <openuri:order>
 <openuri:customerID>789</openuri:customerID>
 <openuri:orderID>789C</openuri:orderID>
 </openuri:order>
 </openuri:orders>
</soap-env:Body>

19.6.2.6 fn-bea:serialize()
You can use the fn-bea:serialize() function if you need to represent an XML
document as a string instead of as an XML element. For example, you may want to
exchange an XML document through an EJB interface and the EJB method takes
String as argument. The function has the following signature:

fn-bea:serialize($input as item()) as xs:string

19.6.2.7 fn-bea:binary-to-text
The fn-bea:binary-to-text function converts binary-content to text.

This function has the following signature: fn-bea:binary-to-text($arg0-
anyType, $arg1-string)

19.6.2.8 fn-bea:binary-to-xml
The fn-bea:binary-to-xml function converts-binary content to inline XML.

This function has the following signature: fn-bea:binary-to-xml($arg-anyType)

19.6.3 Creating and Using Custom XPath Functions
You can create and use your own custom XPath functions in both inline XQuery
expressions and in XQuery resources. For more information, see Creating Custom
XPath Functions.

Chapter 19
Service Bus XQuery Functions

19-12

20
Transforming Data with XSLT

This chapter provides an overview of eXtensible Stylesheet Language Transformation (XSLT)
and how it is used in Service Bus services to map XML input to XML output. It also describes
how to create XSLT maps in Service Bus projects.

This chapter includes the following sections:

• Introduction to XSLT

• XSLT Editors and Mappers

• Creating XSLT Mappings in JDeveloper

• Working with XSLT Resources in the Oracle Service Bus Console

• How to Open the XSLT Mapper from the Service Bus Console

• How to Delete an XSLT Resource

For more in-depth information about the XSLT mapper in JDeveloper, see Creating
Transformations with the XSLT Map Editorin Developing SOA Applications with Oracle SOA
Suite.

20.1 Introduction to XSLT
Transformation maps describe the mapping between two data types. eXtensible Stylesheet
Language Transformation (XSLT) maps describe mappings between XML documents with
different schemas.

Using XSLT, Service Bus can process XML documents and transform document data from
one XML schema to another, enabling data interchange among applications that use different
schemas. You can perform complex data manipulation and transformation using XSLT. For
example, you can map an incoming purchase order schema to an outgoing invoice schema.

20.2 XSLT Editors and Mappers
JDeveloper provides both an Expression Builder, where you can script transformations using
XQuery, and an XSLT Mapper, where you can create complex mappings. The Oracle Service
Bus Console provides an editor for scripting transformations using XQuery and an XSLT
Mapper, where you can create complex mappings.

These editors provide options to define an XQuery expression, to specify an XSLT resource
to execute, or to define an expression that evaluates at runtime to the name of an existing
XSLT resource. For both JDeveloper and the console, you access the editors from an action
in either a pipeline or split-join.

20.2.1 JDeveloper Editors and Mappers
The XSLT mapper in JDeveloper is a graphical tool that lets you define mappings between
schema root elements, WSDL message parts, or WSDL messages. Schema root elements
can come from XSD schema files or WSDL files, but only those WSDL messages that

20-1

contain a single message part can be mapped directly. Once you create an XSLT
mapping in JDeveloper, you can upload the .xsl file generated by the mapper to an
XSLT resource in the Oracle Service Bus Console.

JDeveloper also includes a variety of Expression Builders, where you can create
expressions that specify an existing XSLT resource to use. For more information about
the mapper and editors in JDeveloper, see the following topics:

• "Creating Transformation with the XSLT Map Editor" in Developing SOA
Applications with Oracle SOA Suite

• "Building XPath Expressions in the Expression Builder in Oracle JDeveloper" in
Developing SOA Applications with Oracle SOA Suite

20.2.2 Oracle Service Bus Console Editors and Mappers
In the Oracle Service Bus Console, the XQuery/XSLT Expression Editor lets you
create expressions that specify an existing XSLT resource to use. Before you can
reference an XSLT resource, you need to create the resource in the console and either
upload an existing XSL transformation to the resource or create a XSL transformation
using the new web-based XSLT Mapper included with Service Bus. This feature allows
you to create complex mappings using JDeveloper to import into the console or using
the Service Bus console directly. You can reuse an XSL transformation in multiple
pipelines and split-joins.

For information about the XQuery/XSLT Editor in the Oracle Service Bus Console, see
Working With Expression Editors in Oracle Service Bus Console.

20.3 Creating XSLT Mappings in JDeveloper
You can create XSLT mappings in a Service Bus project in JDeveloper, and then use
them in XQuery expressions in pipelines and split-joins to map objects between
external systems.

When you create an XSLT mapping, you need to select the source XML schema
elements or XML files to use for the source and target mappings.

20.3.1 How to Create XSLT Mappings in JDeveloper
To create an XSLT mapping in JDeveloper:

1. In the Application Navigator in JDeveloper, right-click the Service Bus project or
folder in which you want to create the mapping.

2. In the menu that appears, point to New and select XSL Map.

The Create XSL Map File dialog appears.

3. In the File Name field, enter a unique name for the XSLT map file.

4. Optionally enter a new directory location and a brief description for the cross
reference.

The location must be within the directory structure of the current application.

5. To define the source schema, do the following:

a. Select Use Source Schema.

b. Click Browse next to the Primary Source field.

Chapter 20
Creating XSLT Mappings in JDeveloper

20-2

c. On the Select Schema dialog, select whether to use an XML schema or to generate
the source directly from an XML file.

d. Click Browse in the section you chose above to navigate to and select the XML
schema element or file to use.

You can select an XML schema element from the current application. You can select
an XML file from the file system.

e. When you have selected the schema element or file, click OK on the Select Schema
dialog.

f. To select additional sources to use as parameters, click Add Schema above the
Additional Sources table.

6. To define the target schema, select Use target schema, and repeat the above steps on
the Select Schema dialog to select the XML components to use.

7. Click OK on the Create XSL Map File dialog.

The XSLT Mapper appears with the source and target structures displayed.

8. To define the mapping logic, see "Editing an XSLT Map in Map Mode" in Developing SOA
Applications with Oracle SOA Suite.

20.4 Working with XSLT Resources in the Oracle Service Bus
Console

In the Oracle Service Bus Console, XSLT maps are stored in XSLT resources, which can be
reused in any pipelines and split-joins in the current session. You can upload existing XSLT
maps into the XSLT resources, and use a text editor to edit them.

• How to Create XSLT Resources in the Console

• How to Edit XSLT Resources in the Console

20.4.1 How to Create XSLT Resources in the Console
If you are using the Oracle Service Bus Console, you can add XSL transformations that you
first create in JDeveloper and that you then import into a Service Bus project or upload into
an XSL transformation resource. For information on importing, see Importing and Exporting
Resources and Configurations . You can also use the XSLT Mapper included with the console
to create a new mapping. Use the procedure below to create a new XSLT resource, into
which you can import an existing mapping or create a new mapping using the console.

Before you Begin

• If you want to upload an existing XSL transformation map created in JDeveloper, create
the XSL transformation mapping file as described in Creating XSLT Mappings in
JDeveloper.

• If you want to create a new mapping, ensure that the source and target schemas are
already accessible from the Service Bus console. See How to Create XML Schemas for
more information.

To create an XSLT resource in the console:

Chapter 20
Working with XSLT Resources in the Oracle Service Bus Console

20-3

1. In the Project Navigator, right-click the project or folder to contain the new XSL
transformation, point to Create, and select Resource. From the Resource Gallery,
point to Transformations, select XSLT, and then click OK.

The Create Schema dialog appears.

2. Do one of the following:

• To create the resource from an existing XSL mapping file, click Browse next to
the File Upload field and then navigate to and select the file you created in
JDeveloper. Deselect the Generate Mapping option.

The Resource Name field is automatically populated with the file name minus
the file extension. You can change this name.

• To create a new XSL transformation, enter a unique name for the
transformation resource. Ensure that the Generate Mapping option is
selected.

3. Optionally, enter a brief description of the resource.

4. Click Create.

5. If you are creating a new mapping, enter the following information on the Select
Source and Target dialog:

a. Search for and select the source and target schemas using the Search icons
in the Source Schema and Target Schema fields. These schemas must
already be accessible from the Service Bus console. See How to Create XML
Schemas for more information.

b. Select the source root element for the mapping from the Source Root
Element list. This list is populated after the Source Schema is selected.

c. Select the target root element for the mapping from the Target Root Element
list. This list is populated after the Target Schema is selected.

d. Click OK.

The XSLT parameters, if defined, appear in the XSLT Definition Editor.

6. To modify the schema, do the following:

a. Click Edit Source in the toolbar.

The Edit Source dialog appears.

b. To browse to and select a new mapping file to upload, click Browse.

c. To modify the contents of the file, update the code directly in the Contents
section of the dialog.

d. Click Save.

7. If you are creating a new mapping, see How to Open the XSLT Mapper from the
Service Bus Console for information about using the mapper.

8. In the XSLT Definition Editor toolbar, click Save.

9. To end the session and deploy the configuration to the runtime, click Activate.

Chapter 20
Working with XSLT Resources in the Oracle Service Bus Console

20-4

20.4.2 How to Edit XSLT Resources and Upload XSL Transformations in
the Console

The Oracle Service Bus Console lets you edit an XSLT resource directly or update the
contents by uploading a new or updated file.

To edit an XSL transformation in the console:

1. In the Project Navigator, expand the project and folders containing the XSL
transformation to edit.

2. Right-click the XSL transformation name, and select Open.

3. Click Edit Source in the toolbar.

The Edit Source dialog appears.

4. To browse to and select a new XSL transformation file to upload, click Browse.

5. To modify the contents of the file, update the code directly in the Contents section of the
dialog.

6. Click Save.

7. In the XSLT Definition Editor toolbar, click Save.

8. To end the session and deploy the configuration to the runtime, click Activate.

20.5 How to Open the XSLT Mapper from the Service Bus
Console

You access the XSLT mapper from the XSLT Definition Editor.

To open the XSLT Mapper from the Service Bus console, click the Tools icon, and then click
Launch Mapper, as shown in the following image.

Chapter 20
How to Open the XSLT Mapper from the Service Bus Console

20-5

Note:

You can only edit the mapping when a session is being edited. If you launch
the mapper without an active session, the mapper will launch in read only
mode. Changes to the mapping cannot be made in read only mode.

The XSLT Mapper launches in a new window.

20.6 How to Delete an XSLT Resource
If any resources reference the XSLT resource you want to delete, remove those
references before deleting the resource.

In the Oracle Service Bus Console, open the XSLT resource in the XSLT Definition
Editor and click the Tools icon in the upper right, and then select References to find
out whether it has any references. In JDeveloper, right-click the XSLT resource and
select Explore Dependencies.

You can delete the transformation even if it is referenced by other resources, though
this might result in conflicts due to unresolved references to the deleted resource.

To delete an XSLT resource:

1. In the Application Navigator or Project Navigator, expand the project and folders
containing the XSL transformation to delete.

2. Right-click the name of the transformation, and select Delete.

3. If you are using JDeveloper, a confirmation dialog displays the number of
references for the transformation. Click Show Usages to view information about
the references, and then click Yes to confirm that you want to delete the resource.

4. If you are using the Oracle Service Bus Console, click Activate to end the session
and deploy the configuration to the runtime.

Chapter 20
How to Delete an XSLT Resource

20-6

21
Mapping Data with Cross-References

This chapter provides an overview of cross references and how they are used in Service Bus
services to map identifiers for like objects between external systems. It also describes how to
create cross references in Service Bus projects.

This chapter includes the following sections:

• Introduction to Cross References

• Creating Cross Reference Tables in JDeveloper

• Working with Cross Reference Resources in the Oracle Service Bus Console

• Deleting a Cross Reference Resource

• Populating Cross Reference Tables in Oracle Service Bus

For more in-depth information about cross references, see "Working with Cross References"
in Developing SOA Applications with Oracle SOA Suite.

21.1 Introduction to Cross References
Cross reference tables map identifiers that represent equivalent objects across multiple
applications, associating like objects created in different external applications.

For example, you can use cross references to map customer identifiers for records that were
created in multiple customer management systems. Cross references are similar to domain
value maps (DVMs), but cross references can be updated during runtime, allowing you to
dynamically integrate values between systems. Cross reference data updated at runtime is
persisted in the database.

Cross references can be used across Oracle SOA Suite components. In Service Bus, you
can create cross reference tables in both JDeveloper and the Oracle Service Bus Console.

21.1.1 Cross Reference Database Tables
All cross reference mappings are stored in the form of tables. When you create a cross
reference table in a Service Bus project in JDeveloper, you only define the metadata for the
table (that is, the keys and not the values). All cross reference tables are stored in the
database, by default in the XREF_DATA table. Cross reference tables can either be custom or
generic (the default). Generic tables are all stored in a single database table that is created
during installation (XREF_DATA); custom tables are each stored in individual database tables
that you create. Service Bus uses the standard SOA Suite data source, jdbc/SOADataSource,
to access the database tables. You can create your own data source with the following
requirements:

• The data source must be named jdbc/xref, otherwise the runtime will use the default
schema.

• The data source must be XA enabled.

21-1

For instructions on creating a custom database table, see "How to Create Custom
Database Tables" in Developing SOA Applications with Oracle SOA Suite.

21.1.2 Cross Reference Functions
In the Service Bus message flow, you can reference cross reference tables from
XQuery expressions and XSLT transformations using a set of XRef functions to
lookup, populate, and update cross reference entries at runtime based on information
in incoming messages. Use these functions to populate the values for the keys you
defined when you first created the cross reference table.

You can access the XRef functions in JDeveloper from the XSLT mapper, the XQuery
mapper, and the expression editors. In the Oracle Service Bus Console, the functions
are available from the expression and condition editors. For information about the
Service Bus XRef functions, see Cross-Reference Functions.

21.1.3 Managing Cross Reference Data at Runtime
Fusion Middleware Control provides features to help you manage cross reference data
in the runtime. For information and instructions, see "Managing Cross References" in
Administering Oracle SOA Suite and Oracle Business Process Management Suite.

21.2 Creating Cross Reference Tables in JDeveloper
You can create cross reference tables in a Service Bus project in JDeveloper, and then
use them in XQuery expressions in pipelines and split-joins to map objects between
external systems.

When you create a cross reference table, you only need to specify a name for the
table and the names of the end systems that are sharing the data. You do not need to
specify the values for each system in the design time.

21.2.1 How to Create Cross Reference Tables in JDeveloper
To create cross reference tables in JDeveloper:

1. In the Application Navigator in JDeveloper, right-click the Service Bus project or
folder in which you want to create the cross reference.

2. In the menu that appears, point to New and select Cross Reference(XREF).

The Create Cross Reference(XREF) File dialog appears.

3. In the File Name field, enter a unique name for the cross reference file.

Two cross reference tables cannot have same name in the cross reference
repository. The file name is the name of the cross reference table with an
extension of .xref.

4. Optionally enter a new directory location and a brief description for the cross
reference.

The location must be within the directory structure of the current application.

5. In the End System fields, enter the names for up to two end systems.

Chapter 21
Creating Cross Reference Tables in JDeveloper

21-2

The end systems map to the cross reference columns in a cross reference table. You can
add more system names once you create the cross reference table. Each name must be
unique within a table.

6. Click OK.

The Cross Reference Editor appears with the new cross reference table displayed.

7. To add new end systems to the cross reference table, click Add above the End Systems
table, double-click in the newly added row, and enter the end system name.

8. To create a custom database table for this cross referencing mapping, see How to Create
Custom Database Tables in Developing SOA Applications with Oracle SOA Suite.

21.3 Working with Cross Reference Resources in the Oracle
Service Bus Console

If you are using the Oracle Service Bus Console, you can create new cross reference tables
or you can upload cross reference tables that you first created in JDeveloper into a cross
reference (XRef) resource.

• How to Create Cross Reference (XRef) Resources in the Console

• How to Edit Cross Reference Resources in the Console

• How to Create a Custom Database Table in the Console

21.3.1 How to Create Cross Reference (XRef) Resources in the Console
When you create a cross reference table, you only need to specify a name for the table and
the names of the end systems that are sharing the data. You do not need to specify the
values for each system in the design time.

Before you Begin

If you are uploading a cross reference file already created in JDeveloper, as described in
Creating Cross Reference Tables in JDeveloper, make sure the file is available on your
system.

To create a cross reference resource in the console:

1. In the Project Navigator, right-click the project or folder to contain the new cross
reference mapping, point to Create, and select Resource. Click Miscellaneous, click
Cross Reference (XRef), and then click OK.

The Create Cross Reference (XRef) dialog appears.

2. Do one of the following:

• To upload an existing cross reference table, click Browse next to the File Upload
field and then navigate to and select the file you created in JDeveloper.

The Resource Name field is automatically populated with the file name minus the file
extension. You can change this name.

• To create a new cross reference table, enter a unique name for the cross reference
resource.

3. Optionally, enter a brief description of the resource.

4. Click Create.

Chapter 21
Working with Cross Reference Resources in the Oracle Service Bus Console

21-3

The new cross reference table appears on the Cross Reference (XREF) Definition
Editor.

5. In the Cross Reference (XREF) Definition Editor toolbar, click Save.

6. To end the session and deploy the configuration to the runtime, click Activate.

21.3.2 How to Edit Cross Reference Resources in the Console
If you are using the Oracle Service Bus Console, use the following procedure to edit
cross reference resources.

To edit a cross reference resource in the console:

1. In the Project Navigator, expand the project and folders containing the cross
reference to edit.

2. Right-click the cross reference name, and select Open.

3. To modify the source file, do the following:

a. Click Edit Source in the toolbar.

The Edit Source dialog appears.

b. To browse to and select a new cross reference file to upload, click Browse.

c. To modify the contents of the file, update the code directly in the Contents
section of the dialog.

d. Click Save.

4. To add end systems to the cross reference table, click Add above the End System
table and enter the name of the system in the new row that appears.

5. In the Cross Reference (XREF) Definition Editor toolbar, click Save.

6. To end the session and deploy the configuration to the runtime, click Activate.

21.3.3 How to Create a Custom Database Table in the Console
As mentioned previously, all the runtime data is stored in the XREF_DATA table by
default. If you want to create custom database tables, then perform the following
steps.

Note:

When you create a cross reference table in JDeveloper, you can run the
custom database creation script directly from the Cross Reference Editor. If
you use the Oracle Service Bus Console, you create the custom database
table manually. For more information, see "How to Create Custom Database
Tables" in Developing SOA Applications with Oracle SOA Suite.

To create a custom database table in the console:

1. On the Cross Reference (XRef) Definition Editor, select Enable Optimization.

2. In the Table Name field, enter a custom name for the database table.

Chapter 21
Working with Cross Reference Resources in the Oracle Service Bus Console

21-4

This custom database table name must be prefixed with xref_, and cannot be XREF_DATA
or XREF_DELETED_DATA.

3. Click Save.

4. Create the custom table in the soainfra schema of the Oracle Fusion Middleware
database using the following syntax:

CREATE TABLE TABLE_NAME (
 ROW_ID VARCHAR2(48) NOT NULL,
 SYSTEM1 VARCHAR2(100),
 SYSTEM2 VARCHAR2(100),
 SYSTEM3 VARCHAR2(100),
 LAST_MODIFIED TIMESTAMP NOT NULL
);

Where TABLE_NAME is the name you specified in step 2 for the custom table, and SYSTEM1,
SYSTEM2, and SYSTEM3 are the names of the end systems being cross referenced.

21.4 Deleting a Cross Reference Resource
If any resources reference the resource you want to delete, remove those references before
deleting the resource.

You can delete the resource even if it is referenced by other resources, though this might
result in conflicts due to unresolved references to the deleted resource.

21.4.1 How to Delete a Cross Reference Resource
Before deleting a cross reference, check for references and dependencies. In the Oracle
Service Bus Console, open the cross reference resource in the Cross Reference (XREF)
Definition Editor and click the Tools icon in the upper right, and then select References to
find out whether there are any references. In JDeveloper, right-click the XQuery resource and
select Explore Dependencies.

To delete a cross reference resource:

1. In the Application Navigator or Project Navigator, expand the project and folders
containing the resource to delete.

2. Right-click the name of the resource, and select Delete.

3. If you are using JDeveloper, a confirmation dialog displays the number of references for
the transformation. Click Show Usages to view information about the references, and
then click Yes to confirm that you want to delete the resource.

4. If you are using the Oracle Service Bus Console, click Activate to end the session and
deploy the configuration to the runtime.

21.5 Populating Cross Reference Tables in Oracle Service Bus
Before using a cross reference to look up a particular value, you must populate it at runtime.
Use the cross reference XPath functions provided with Service Bus to populate the cross-
reference tables.

The XPath functions let you populate a cross reference column, perform lookups, and delete
a column value. These XPath functions can be used in the Expression Builder to create an

Chapter 21
Deleting a Cross Reference Resource

21-5

expression or in the XSLT Mapper to create transformations. You can access the
Expression Builder dialog through several pipeline activities and split-join operations.

For information about the XRef functions provided with Service Bus, see Cross-
Reference Functions. For general information and instructions on using functions in
the Oracle Service Bus Console expression and condition editors, see Building
Expressions in the Editor Workspace Text Fields.

For information, examples, and instructions on managing cross reference data in
JDeveloper, see the following topics in Developing SOA Applications with Oracle SOA
Suite. The information in these topics is also helpful when working in the Oracle
Service Bus Console.

• Populating Cross Reference Tables

• Looking Up Cross Reference Tables

• Deleting a Cross Reference Table Value

Chapter 21
Populating Cross Reference Tables in Oracle Service Bus

21-6

22
Mapping Data with Domain Value Maps

This chapter provides an overview of domain value maps and how they are used in Service
Bus services to associate terms used by different domains to describe like objects. It also
describes how to create domain value maps in Service Bus projects.

This chapter includes the following sections:

• Introduction to Domain Value Maps

• Creating Domain Value Maps in JDeveloper

• Working with DVM Resources in the Oracle Service Bus Console

• Deleting a Domain Value Map

• Using Domain Value Maps in Expressions and Conditions

For more in-depth information about domain value maps, see "Working with Domain Value
Maps" in Developing SOA Applications with Oracle SOA Suite.

22.1 Introduction to Domain Value Maps
A domain value map associates values used by one domain for a specific field to the values
used by other domains for the same field, providing the capability to map values across
vocabularies or systems.

For example, you can map country codes, city codes, currency codes, and so on. You might
have several domain value maps for one Service Bus project, depending on the number of
fields that require mapping. Domain value maps are similar to cross references, but they are
based on a static definition. You create and populate domain value maps in the design time,
and deploy them to the runtime. Domain value map data is not changed by runtime activities
as it is for cross references, but rather the domain value maps are used for lookups only.

Domain value maps can be used across Oracle SOA Suite components. In Service Bus, you
can create domain value maps in both JDeveloper and the Oracle Service Bus Console.

22.1.1 Domain Value Map Functions
In the Service Bus message flow, you can reference domain value maps from XQuery
expressions and XSLT transformations using a set of DVM functions to lookup values at
runtime based on information in incoming messages. Use these functions so Service Bus
knows how to map data coming in from one system to data being sent to another system.

You can access the DVM functions in JDeveloper from the XSLT mapper, the XQuery
mapper, and the expression editors. In the Oracle Service Bus Console, the functions are
available from the expression and condition editors. For information about the Service Bus
DVM functions, see Domain Value Map Functions.

22-1

22.2 Creating Domain Value Maps in JDeveloper
You can create domain value maps in a Service Bus project in JDeveloper, and then
use them in XQuery expressions in pipelines and split-joins to map objects between
external systems.

Since a domain value map typically defines the mapping for only one field, a pipeline
or split-join can reference multiple domain value maps.

22.2.1 How to Create a Domain Value Map in JDeveloper
Create and configure domain value maps using the Create Domain Value Map(DVM)
File dialog in JDeveloper. This dialog lets you define two domains, each with one
value. Upon completion, the Domain Value Map Editor appears so you can define
additional domains and corresponding values.

When you create a domain value map, you can specify a name for up to two domains
whose values are being mapped, along with the value for each domain. Once you
create the map, you can add more domains and values.

To create a domain value map in JDeveloper:

1. In the Application Navigator, right-click the project in which you want to create a
domain value map, point to New, and select Domain Value Map(DVM).

The Create Domain Value Map(DVM) File dialog appears.

2. In the File Name field, enter a unique and descriptive name for the domain value
map file. The file name must have an extension of .dvm.

3. Optionally enter a new directory location and a brief description for the cross
reference.

The location must be within the directory structure of the current application.

4. In the Domain Name fields, enter a name for up to two domains.

These are the column names for the domain value map, and each represents the
same field in different domains.

Note:

Domain names must be of the type NCName (non-colonized name),
which is a valid XML element name with no colons. Each domain name
must be unique in a domain value map. You can add more domains later.

5. In the Domain Value field, enter the value corresponding to each domain.

6. Click OK.

The Domain Value Map Editor appears with the new domain value map displayed.

7. To add new domains to the domain value map, see "How to Add Domains to a
Domain Value Map" in Developing SOA Applications with Oracle SOA Suite.

8. To add new values to the domain value map, see "How to Add Domain Values to a
Domain Value Map" in Developing SOA Applications with Oracle SOA Suite.

Chapter 22
Creating Domain Value Maps in JDeveloper

22-2

22.3 Working with DVM Resources in the Oracle Service Bus
Console

If you are using the Oracle Service Bus Console, you can create new domain value maps or
you can upload domain value maps that you first created in JDeveloper into a DVM resource.

• How to Create DVM Resources in the Console

• How to Add Domains to a Domain Value Map

• How to Add Domain Values to a Domain Value Map

• How to Edit a Domain Value Map in the Console

22.3.1 How to Create DVM Resources in the Console
When you create a DVM, you define the names of up to two end systems that are sharing the
data along with the corresponding values for the field covered by the domain value map. After
you create the map, you can define additional domains and values in the DVM Definition
Editor.

Before you Begin

If you are uploading a domain value map file already created in JDeveloper, as described in
Creating Domain Value Maps in JDeveloper, make sure the file is available on your system.

To create a DVM resource in the console:

1. In the Project Navigator, right-click the project or folder to contain the new domain value
map, point to Create, and select Resource Click Miscellaneous, click DVM, and then
click OK.

The Create DVM dialog appears.

2. Do one of the following:

• To upload an existing domain value map file, click Browse next to the File Upload
field and then navigate to and select the file you created in JDeveloper.

The Resource Name field is automatically populated with the file name minus the file
extension. You can change this name.

• To create a new domain value map, enter a unique name for the DVM resource.

3. Optionally, enter a brief description of the resource.

4. Click Create.

The new domain value map appears on the DVM Definition Editor.

5. In the DVM Definition Editor toolbar, click Save.

6. Configure domains and values by performing the following steps:

• How to Add Domains to a Domain Value Map.

• How to Add Domain Values to a Domain Value Map.

Chapter 22
Working with DVM Resources in the Oracle Service Bus Console

22-3

22.3.2 How to Add Domains to a Domain Value Map
You can define additional domains to map, which are represented as columns in the
domain value map. Each new domain can contain values that are either to be included
in the lookups at runtime or to be used only to qualify the mapping. Domain names
must be of the type NCName (non-colonized name), which is a valid XML element
name with no colons.

To add a domain to a domain value map:

1. If the DVM resource is not open, locate the DVM resource in the Project Navigator
and click its name.

2. In the Map Table, click Add and then select Add Domain.

The Add Domain dialog appears.

3. In the Name field, enter a name for the domain.

4. To set this column as a qualifier column, select Enable a Qualifier for lookup.

Tip:

For more information about qualifier domains and qualifier order, see
"Qualifier Domains" and "Qualifier Hierarchies" in Developing SOA
Applications with Oracle SOA Suite.

5. In the Lookup Order field, enter a number indicating the priority of the qualifier
domain.

This field is enabled only if you selected Enable a Qualifier for lookup.

6. Click Add.

7. To define a value for the new domain, continue to How to Add Domain Values to a
Domain Value Map.

22.3.3 How to Add Domain Values to a Domain Value Map
Domain values are displayed in rows in the domain value map, with each row
containing the value to be mapped for each domain. You can add as many domain
values as required to fully define the mapping between domains.

To add domain values to a domain value map:

1. If the DVM resource is not open, locate the DVM resource in the Project Navigator
and click its name.

2. In the Map Table, click Add and then select Add Domain Values.

A new row appears beneath the existing rows in the Map Table.

3. In the new row, enter the values for each domain.

4. Repeat the above steps to create any additional values.

5. In the DVM Definition Editor toolbar, click Save.

6. To end the session and deploy the configuration to the runtime, click Activate.

Chapter 22
Working with DVM Resources in the Oracle Service Bus Console

22-4

22.3.4 How to Edit a Domain Value Map in the Console
If you are using the Oracle Service Bus Console, use the following procedure to modify an
existing domain value map.

To edit a domain value map in the console:

1. In the Project Navigator, expand the project and folders containing the domain value map
to edit.

2. Click the DVM resource name.

3. To modify the source file, do the following:

a. Click Edit Source in the toolbar.

The Edit Source dialog appears.

b. To browse to and select a new cross reference file to upload, click Browse.

c. To modify the contents of the file, update the code directly in the Contents section of
the dialog.

d. Click Save.

4. To add domains to the map, see How to Add Domains to a Domain Value Map.

5. To add domain values, see How to Add Domain Values to a Domain Value Map.

6. To edit a domain, select the domain in the Map Table and click Edit. In the Update
Domain dialog, make any of the changes describe in How to Add Domains to a Domain
Value Map.

7. To change a value, double-click the value name in the Map Table and enter the new
value.

8. In the DVM Definition Editor toolbar, click Save.

9. To end the session and deploy the configuration to the runtime, click Activate.

22.4 Deleting a Domain Value Map
If any resources reference the resource you want to delete, remove those references before
deleting the resource.

You can delete the resource even if it is referenced by other resources, though this might
result in conflicts due to unresolved references to the deleted resource.

22.4.1 How to Delete a Domain Value Map
Before deleting a domain value map, check for resources or dependencies. In the Oracle
Service Bus Console, open the DVM in the DVM Definition Editor and click the Tools icon in
the upper right, and then select References to find out whether any services are using it. In
JDeveloper, right-click the DVM and select Explore Dependencies.

To delete a DVM resource:

1. In the Application Navigator or Project Navigator, expand the project and folders
containing the resource to delete.

2. Right-click the name of the resource, and select Delete.

Chapter 22
Deleting a Domain Value Map

22-5

3. If you are using JDeveloper, a confirmation dialog displays the number of
references for the transformation. Click Show Usages to view information about
the references, and then click Yes to confirm that you want to delete the resource.

4. If you are using the Oracle Service Bus Console, click Activate to end the session
and deploy the configuration to the runtime.

22.5 Using Domain Value Maps in Expressions and
Conditions

Use the DVM XPath functions provided with Service Bus to define the domain value
lookups that will occur during runtime.

The XPath functions provide a variety of ways to perform a lookup for either a single
value or multiple values. These XPath functions can be used in the Expression Builder
to create an expression or in the XSLT Mapper to create transformations. You can
access the Expression Builder dialog through several pipeline activities and split-join
operations.

For information about the DVM functions provided with Service Bus, see Domain Value
Map Functions. For general information and instructions on using functions in the
Oracle Service Bus Console expression and condition editors, see Building
Expressions in the Editor Workspace Text Fields.

For information, examples, and instructions on using DVM functions in JDeveloper,
see Using Domain Value Map Functionsin Developing SOA Applications with Oracle
SOA Suite. This information is also helpful when working in the Oracle Service Bus
Console.

Chapter 22
Using Domain Value Maps in Expressions and Conditions

22-6

23
Defining Data Structures with Message
Format Language

This chapter provides instructions for defining MFL structures in JDeveloper, which can then
be used in XQuery Mapper tools to automatically transform data between XML and non-XML
formats. This chapter also describes how to add MFL resources to projects in the Oracle
Service Bus Console.

This chapter includes the following topics:

• Introduction to the Format Builder

• Working with MFL Resources in the Oracle Service Bus Console

• Creating the MFL Message Structure

• Configuring the MFL Message Structure

• Importing and Converting Metadata

• Deleting MFL Resources

• Testing Format Definitions

• Using the Palette

• Format Builder Supported Data Types

• Format Builder Field Reference

23.1 Introduction to the Format Builder
The Format Builder tool helps you create descriptions of non-XML data records, letting you to
describe the layout and hierarchy of the non-XML data so that it can be transformed to or
from XML.

With Format Builder, you can describe sequences of bytes as fields. Each field description
includes the type of data (floating point, string, and so on), the size of the data, and the name
of the field. Format Builder allows you to further define groupings of fields (Groups), repetition
of fields and groups, and aggregation.

23.1.1 About MFL Files
The descriptions you create in Format Builder are saved in an XML grammar called Message
Format Language (MFL). MFL documents are used at runtime to transform an instance of a
non-XML data record to an instance of an XML document (or vice-versa). A Message Format
Language (MFL) document is a specialized XML document used to describe the layout of
binary data. It is an Oracle proprietary language you can use to define rules that transform
formatted binary data into XML data. An MFL document conforms to the mfl.dtd, which
includes elements and attributes that describe each field of data, as well as groupings of
fields (groups), repetition, and aggregation.

23-1

When you create business services or proxy services of Messaging Service type, you
can select MFL types as the request message type or the response message type of
the service.

23.1.2 Valid Names for Formats, Fields, and Groups
Message formats, fields, and groups are identified by a name. This name is used as
the XML tag when non-XML data is transformed to XML. Therefore the name must
conform to the XML rules for a name.

The format guidelines for a name are as follows:

• Must start with a letter or underscore.

• Can contain letters, digits, colon, the period character, the hyphen character, or the
underscore character.

The following are valid name examples:

MyField
MyField1
MyField_again
MyField-again

The following are invalid name examples:

1MyField - may not start with a digit

My>Field - the greater-than sign (>) is an illegal character

My Field - a space is not permitted

My/Field - the back slash (/), which is an illegal character

My\Field - the forward slash (\), which is an illegal character

My:Field - a semi-colon (;), which is an illegal character

23.1.3 Supported Character Delimiters
You can specify delimiters in Format Builder by entering the correct syntax. For
example, to specify a tab character as the delimiter ('\u009'), enter the construct \t to
match it.

Table 23-1 Character Delimiters

Construct Matches

x
The character x

\\
The backlash

\0n
The character with octal value 0n (<= n <= 7)

\0nn
The character with octal value 0nn (0 <= n <= 7)

Chapter 23
Introduction to the Format Builder

23-2

Table 23-1 (Cont.) Character Delimiters

Construct Matches

\0mnn
The character with octal value 0mnn (0 <= m <= 3, 0 <= n <= 7)

\xhh
The character with hexadecimal value 0xhh

\uhhhh
The character with hexadecimal value 0xhhhh

\xff
The end-of-file (EOF) character

\t
The tab character ('\u0009')

\n
The newline (line feed) character ('\u000A')

\r
The carriage-return character ('\u000D')

\f
The form-feed character ('\u000C')

\a
The alert (bell) character ('\u0007')

\e
The escape character ('\u001B')

\cx
The control character corresponding to x

For more information, see http://docs.oracle.com/javase/6/docs/api/java/util/regex/
Pattern.html.

23.2 Working with MFL Resources in the Oracle Service Bus
Console

When you use the Format Builder in JDeveloper to define the hierarchy of a binary record,
the layout of fields, and the grouping of fields and groups, the information is saved as an MFL
document that can then be used to perform runtime translations.

An MFL document can also be used in Format Builder to generate the corresponding DTD
that describes its content model.

23.2.1 How to Create MFL Resources in the Console
You define the message format using the Format Builder in JDeveloper. If you are using the
Oracle Service Bus Console, you can create MFL resources to upload the MFL files that you
already created in JDeveloper. You can also import the MFL resources into the console. For
more information, see Importing and Exporting Resources and Configurations . Use the
procedure below to upload an MFL file into an MFL resource.

Chapter 23
Working with MFL Resources in the Oracle Service Bus Console

23-3

http://docs.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html
http://docs.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html

Before you Begin

Create the MFL file in the Format Builder in JDeveloper, as described in Creating the
MFL Message Structure.

To add an MFL resource in the console:

1. In the Project Navigator, right-click the project or folder to contain the new MFL file,
point to Create, and select Resources. Click Transformations, click MFL, and
then click OK.

The Create MFL dialog appears.

2. Click Browse next to the File Upload field and then navigate to and select the
MFL file you created in JDeveloper.

The Resource Name field is automatically populated with the file name minus the
file extension. You can change this name.

3. Optionally, enter a brief description of the resource.

4. Click Create.

The text of the MFL file appear in the MFL Definition Editor.

5. To modify the schema, do the following:

a. Click Edit Source in the toolbar.

The Edit Source dialog appears.

b. To browse to and select a new MFL file to upload, click Browse.

c. To modify the contents of the file, update the code directly in the Contents
section of the dialog.

d. Click Save.

6. In the MFL Definition Editor toolbar, click Save.

7. To end the session and deploy the configuration to the runtime, click Activate.

23.2.2 How to Edit MFL Resources in the Console
The recommended way to modify an MFL file is to use the Format Builder in
JDeveloper. For more information about working with the Format Builder, see Creating
the MFL Message Structure..

If you are using the Oracle Service Bus Console, you can upload the updated file from
JDeveloper, or you can modify the code directly in the console (not recommended).

To update an MFL resource in the console:

1. In the Project Navigator, expand the project and folders containing the MFL
resource to edit.

2. Right-click the resource name, and select Open.

3. Click Edit Source in the toolbar.

The Edit Source dialog appears.

4. To browse to and select a new or updated MFL file to upload, click Browse.

Chapter 23
Working with MFL Resources in the Oracle Service Bus Console

23-4

5. To modify the contents of the file, update the code directly in the Contents section of the
dialog.

6. Click Save.

7. In the MFL Definition Editor toolbar, click Save.

8. To end the session and deploy the configuration to the runtime, click Activate.

23.3 Creating the MFL Message Structure
An MFL message structure can contain one or more fields, groups of fields, references and
comments.

• Using Drag and Drop in the Format Builder

• How to Create an MFL File in JDeveloper

• How to Create a Group

• How to Create a Field

• How to Reference Groups or Fields

• How to Add a Comment

23.3.1 Using Drag and Drop in the Format Builder
You can use the drag and drop feature of the Format Builder to copy or move the items in the
tree view. To move an item, simply drag and drop the item to its new location. To copy an
item, press and hold the CTRL key while you drag and drop the item.

23.3.2 How to Create an MFL File in JDeveloper
Creating an MFL file automatically generates the root node of the message format file with
the same name that you give to the MFL file. The root node name must comply with XML
element naming conventions because it becomes the root element in the transformed XML
document.

To create an MFL file in JDeveloper:

1. In the Application Navigator, right-click the project or folder to contain the new MFL
resource, point to New, and select MFL.

The Create MFL dialog appears.

2. Enter a name and, optionally, a brief description of the resource.

3. Click Finish.

The Format Builder appears.

4. Define the message format using any of the following instructions.

23.3.3 How to Create a Group
Groups define fields that are related in some way (for example, the fields PAYDATE, HOURS, and
RATE could be part of the PAYINFO group). You can create a group as a child of the message
format item, as a child of another group, or as a sibling of a group or field.

To create a group:

Chapter 23
Creating the MFL Message Structure

23-5

1. Select a node in the tree view in the left pane.

2. Choose Insert > Group > As Child if you want to create the group as the child of
the message format or another group. Choose Insert > Group > As Sibling if you
want to create the group as the sibling of another group or a field. The Group
Details window displays in the right pane.

3. Enter data in the fields as appropriate.

For additional information and instructions, see Configuring the MFL Message
Structure and Group Configuration Window.

4. Click Apply to save your changes to the message format file, or click Reset to
discard your changes to the detail window and reset all fields to the last saved
value.

23.3.4 How to Create a Field
Fields are a sequence of bytes that have some meaning to an application. (For
example, the field EMPNAME contains an employee name.) You can create a field as a
child of the message format item, as a child of a group, or as a sibling of a group or
another field.

To create a field:

1. Select a node in the tree view in the left pane.

2. Choose Insert > Field > As Child if you want to create the field as the child of the
message format or group. Choose Insert > Field > As Sibling if you want to
create the group as the sibling of another group or a field. The Field Details
window displays in the right pane.

3. Enter data in the fields as appropriate.

For additional information and instructions, see Configuring the MFL Message
Structure and Field Configuration Window.

4. Click Apply to save your changes to the message format file, or click Reset to
discard your changes to the detail window and reset all fields to the last saved
value.

23.3.5 How to Reference Groups or Fields
References indicate that the description of the field or group format has been
previously defined and you want to reuse this description without re-entering the data.
Reference fields or groups have the same format as the original field or group, but you
can change only the optional setting and the occurrence setting for the reference field
or group. For example, if you have a "bill to" address and a "ship to" address in your
data and the format for the address is the same, you only need to define the address
format once. You can create the "bill to" address definition and create a reference for
the "ship to" address.

Chapter 23
Creating the MFL Message Structure

23-6

Note:

References are named exactly the same as the original item. For example, the "bill
to" address definition and the "ship to" address definition would be named the
same. If you want to reuse a group definition, create a generic group and embed it
within a specific group. For example, in the previous example, you can create an
address group within a bill_to group and reference address within a ship_to group.

To reference a group or field:

1. Select a field or group in the tree pane.

2. Choose Edit > Copy.

3. Choose the proper sibling in the tree.

4. Choose Edit > Paste > As Reference.

5. Enter data in the fields as appropriate.

For additional information and instructions, see Configuring the MFL Message Structure
and Format Builder Reference Configuration Window.

6. Click Apply to save your changes to the message format file, or click Reset to discard
your changes to the detail window and reset all fields to the last saved value.

23.3.6 How to Add a Comment
Comments contain notes about the message format or the data transformed by the message
format. Comments are included in the message format definition for informational purposes
only. You can create a comment as a child or sibling of any message format, group, or field.

To add a comment:

1. Select an item in the tree view in the left pane.

2. Choose Insert > Comment > As Child if you want to create the comment as the child of
the selected item. Choose Insert > Comment > As Sibling if you want to create the
comment as the sibling of the selected item. The Comment Details window displays in
the right pane.

3. Enter the comment text.

4. Click Apply to save your changes to the message format file, or click Reset to discard
your changes to the detail window and reset all fields to the last saved value.

23.4 Configuring the MFL Message Structure
Once you create a field, group, or reference, you can configure certain attributes, such as
whether a node is repeating and how often, or whether a node is fixed length or delimited.

• How to Make a Node Recurring

• How to Define Delimiters

Chapter 23
Configuring the MFL Message Structure

23-7

23.4.1 How to Make a Node Recurring
A node can recur a fixed number of times, a number of times specified in the
message, or an unlimited number of times.

To make a node recurring:

1. Double-click the group, field, or reference you want to make recurring in the tree
view in the left pane.

2. In the occurrence section, do any of the following:

• To specify a delimiter the indicates recurrence, select Repeat Delimiter and
enter the delimiter value in the associated field.

• To specify a field in the message that will indicate the number of time to
repeat, select Repeat Field and then select the name of the field from the list
of available options.

• To configure a specific number of times the node repeats, select Repeat
Number and enter the number in the associated field.

• If the node can repeat unlimited number of times, select Unlimited.

3. Click Apply to save your changes to the message format file, or click Reset to
discard your changes to the detail window and reset all fields to the last saved
value.

23.4.2 How to Define Delimiters
Variable-sized data types can have their termination point specified by a delimiter. A
delimiter is a character that marks the end of the field. The field data continues until
the delimiter character is encountered. You can specify a delimiter either by reference
or by value.

23.4.2.1 Specifying a Delimiter by Reference
To specify a delimiter by reference:

1. Select the group or field in the tree view in the left pane.

2. In the Termination section, select Delimiter.

The Attributes section appears.

3. Click Ref Fields.

The Select Reference Fields dialog appears.

Chapter 23
Configuring the MFL Message Structure

23-8

Figure 23-1 Select Reference Fields

4. Select any reference fields in the left pane, and click the right-arrow button to move them
into the selected fields pane on the right.

5. Click OK.

6. In the Values field, enter a default delimiter in case the reference field does not exist in
the message.

7. Click Apply to save your changes to the message format file, or click Reset to discard
your changes to the detail window and reset all fields to the last saved value.

23.4.2.2 Specifying a Delimiter by Value
To specify a delimiter by value:

1. Select the group or field in the tree view in the left pane.

2. In the Termination section, select Delimiter.

The Attributes section appears.

3. In the Values field, enter the delimiter or delimiters separated by the specified separator
character.

For example, in the following list, the delimiter can be a comma, tilde, or semi-colon. The
separator is a pipe (|).

,|~|;

4. If the field is optional, select the Optional check box. To ensure that the binary data
contain the delimiter even if the field is not present, clear the check box.

5. Click Apply to save your changes to the message format file, or click Reset to discard
your changes to the detail window and reset all fields to the last saved value.

23.5 Importing and Converting Metadata
Format Builder can import COBOL copybooks and gXML guideline files, and convert a C
structure definition into MFL Message Definition.

• How to Convert a Guideline XML File

Chapter 23
Importing and Converting Metadata

23-9

• How to Convert an XML Schema

• How to Convert a COBOL Copybook

• How to Convert C Structures

• How to Convert an FML Field Table Class

23.5.1 How to Convert a Guideline XML File
Format Builder lets you import a guideline XML (gXML) file and convert it into a
message definition, which you can modify and customize to suit your needs. gXML is
an open specification designed to facilitate exchange of e-commerce guidelines for
business documents (like purchase orders, invoices and so on) using XML. gXML
version 0.71 is supported in this release.

To convert a gXML file:

1. Choose Tools > Import > EDI Importer.

The EDI Importer dialog appears.

2. Enter the gXML file path and name, or click Browse to navigate to and select the
file to use.

3. Click OK.

23.5.2 How to Convert an XML Schema
Format Builder lets you import an XML Schema representing the desired XML
representation of your non-XML document. This can provide you with a jump-start on
specifying the format of your non-XML document.

To convert an XML schema:

1. Choose Tools > Import > XML Schema Importer.

The XML Schema Importer dialog appears.

2. Enter the XML schema file path and name, or click Browse to navigate to and
select the file to use.

3. In the Root Element field, select the element from the XML schema to use as the
root node for the MFL file.

4. In the MFL Field Delimiter Default field, enter the default value for the delimiter.

5. Click OK.

23.5.3 How to Convert a COBOL Copybook
Format Builder lets you import a COBOL copybook into Format Builder and create a
message definition to transform the COBOL data. When importing a copybook,
comments are used to document the imported copybook and the Groups and Fields it
contains.

To convert a COBOL Copybook:

1. Choose Tools > Import > COBOL Copybook Importer.

The COBOL Copybook Importer dialog appears.

Chapter 23
Importing and Converting Metadata

23-10

2. Enter the COBOL Copybook file path and name, or click Browse to navigate to and
select the file to use.

3. Select one of the following:

• Big Endian: Sets the byte order to Big Endian.

Note: This option is used for IBM 370, Motorola, and most RISC designs (IBM
mainframes and most Unix platforms).

• Little Endian: Sets the byte order to Little Endian.

Note: This option is used for Intel, VAX, and Unisys processors (Windows, VMS,
Digital, Unix, and Unisys).

4. Select the character set from the following options:

• EBCDIC

• US-ASCII

Note: The above two values are attributes of the originating host machine.

• Other (if you select this option, you must select the character set from the list of
available options.

Once you have imported a copybook, you can work with it as you would any message
format definition. If an error or unsupported data type is encountered in the copybook, a
warning message informs you of the error. You can choose to display the error or save
the error to a log file for future reference.

23.5.4 How to Convert C Structures
Format Builder includes a C structure importer utility that converts a C structure definition into
an MFL Message Definition by generating MFL or C Code output.

When defining a conversion to MFL, you must provide some profile configuration data to
generate the MFL directly. You can do this by creating a new hardware profile, or specifying
an existing profile. If the generation is successful, the main Format Builder window appears
with the MFL object listed in the navigation tree. The MFL object has the same name as the
input file used in the parse operation. If errors are detected during the generation process,
the MFL Generation Errors dialog displays providing you the opportunity to view or file the
error log. Once you have determined what errors were generated, you can return to the C
Structure Importer and repeat the prior steps.

To convert a C Structure:

1. From the Format Builder main window, choose Tools > Import > C Struct Importer.

The C Structure Importer dialog appears.

2. Enter the path and name of the file to import, or click Browse to navigate to and select a
file.

3. Click Parse.

The Structure field is populated with the list of structures found in the file you selected.

4. Select the structure you want to convert.

5. To generate MFL data, do the following:

a. Under Output, select the MFL option.

b. In the Structure field, select the desired structure from the list of available options.

Chapter 23
Importing and Converting Metadata

23-11

c. In the Name field, select an existing hardware profile, or click New to create a
new profile. On the dialog that appears, specify a name and description,
modify the primitive data types and byte order, and click OK.

Click Edit to open the hardware profile editor if you need to view or edit the
profile parameters.

d. Click OK to generate the MFL file.

e. Click Display Error Log to view any errors encountered, click Save Error Log
to save the error log to the location of your choice, or click Cancel to dismiss
the MFL Generation Errors dialog box.

6. To generate C code, do the following:

a. Under Output, select the C Code option.

b. Enter a file name in either the MFL Gen or Data Gen field, or click Browse to
select a file.

c. Click OK.

You will be warned about overwriting existing files and notified about the
success or failure of the code generation.

d. Copy the generated source code to the platform in question and compile and
execute it.

Note:

You must copy the input file containing the structure declarations as
well. Both programs, when compiled, take an argument of the output
file name.

e. Copy the generated MFL or data back to the platform running Format Builder.

23.5.5 How to Convert an FML Field Table Class
The FML Field Table Class Importer facilitates the integration of WebLogic Tuxedo
Connector and business process management (BPM) functionality. Tuxedo application
buffers are translated to and from XML by the FML to XML Translator that is a feature
of WebLogic Tuxedo Connector. The integration of Tuxedo with BPM functionality
requires the creation of the XML that is passed between the WebLogic Tuxedo
Connector Translator and the process engine. To create the necessary XML, use the
FML Field Table Class Importer and the XML generation feature of Format Tester.

Before You Begin

1. Move the field tables associated with the FML buffer from the Tuxedo system to
the WebLogic Server/WebLogic Tuxedo Connector environment.

2. Use the weblogic/wtc/jatmi/mkfldclass utility to build Java source code
representing the field tables. For information about FML field table administration,
see the WebLogic Server documentation.

3. Compile the source code. The resulting class files are called fldtbl classes
because they implement the FldTbl interface. These class must be packaged in a
JAR file that can be selected from the FML Field Table Class Importer dialog.

Chapter 23
Importing and Converting Metadata

23-12

Note:

Because most users perform these steps when configuring WebLogic Tuxedo
Connector, these class files may already exist. If you create Java classes using
WebLogic Tuxedo Connector, you can place the .class files in the \ext directory.
You can then populate the Available Fields list automatically from the FML Field
Table Class Importer dialog box.

To create an XML document with the FML Field Table Class Importer:

1. Choose Tools > Import > EDI Importer.

The FML Field Table Class Importer dialog appears.

2. Click Select to select the JAR file containing the fldtbl classes.

The fldtbl classes are displayed in the Classes list. If the selected JAR file contains no
fldtbl classes, an error message appears and the Fld Table Jar File and Classes fields
are cleared.

3. In the Classes section, select one or more fldtbl class names from the list of available
classes.

4. In the Available Fields list, select the fields from the list of options and then click Add.

This list does not allow duplicate names. Even if the name of a field appears in different
field tables, it is included only once in the list.

5. To remove any fields added in error to the Selected Fields list, select the fields and click
Remove.

6. Click OK.

7. Enter data in the fields as described in the following table:

8. Edit the created MFL document to specify the order and number of occurrences of the
fields in the XML document to be passed to the WebLogic Tuxedo Connector FML/XML
Translator from business process management (BMP).

9. Choose Tools > Test to display the Format Tester tool.

10. From the Format Tester menu bar, choose Generate > XML to create an XML document
that conforms to the MFL document in Format Builder.

11. Edit the data content of the fields in the XML document as desired.

12. From the Format Tester menu bar, choose File > Save XML to save the XML document
in a file with a specified name and location.

The created XML can be imported and used in business process management functions by
using the XML instance editor. For information about importing XML, see the BPM
documentation.

23.6 Deleting MFL Resources
If any resources reference the MFL file you want to delete, remove those references before
deleting the file.

You can delete the MFL resource even if it is referenced by other resources, though this
might result in conflicts due to unresolved references to the deleted resource.

Chapter 23
Deleting MFL Resources

23-13

23.6.1 How to Delete an MFL Resource
Before deleting an MFL resource, check for any references or dependencies. In the
Oracle Service Bus Console, open the MFL file in the MFL Definition Editor and click
the Tools icon in the upper right, and then select References to find out whether any
services are using it. In JDeveloper, right-click the MFL file and select Explore
Dependencies.

To delete an MFL resource:

1. In the Application Navigator or Project Navigator, expand the project and folders
containing the XSL transformation to delete.

2. Right-click the name of the MFL file, and select Delete.

3. If you are using JDeveloper, a confirmation dialog displays the number of
references for the MFL resource. Click Show Usages to view information about
the references, and then click Yes to confirm that you want to delete the resource.

4. If you are using the Oracle Service Bus Console, click Activate to end the session
and deploy the configuration to the runtime.

23.7 Testing Format Definitions
Once you have built a format definition, you can test it using Format Tester.

Format Tester parses and reformats data as a validation test and generates sample
non-XML or XML data. This sample data can be edited, searched, and debugged to
product the expected results.

23.7.1 How to Start Format Tester
Format Tester is launched from the Format Builder and opens in a separate window.

To start Format Tester:

1. In Format Builder, open a message format document (MFL file).

Note:

To run Format Tester, you must have a message format document open
in Format Builder.

2. From the Format Builder menu bar, choose Tools > Test.

3. The Format Tester dialog box appears.

Format Tester uses the currently loaded message definition document.

23.7.2 How to Test Using the Non-XML Window
The Non-XML data display panel acts as a hexadecimal editor or a text editor,
depending on which tab is selected.

Chapter 23
Testing Format Definitions

23-14

The hexadecimal editor panel displays data offsets, the hex value of individual bytes, and the
corresponding text. The corresponding text can be optionally displayed as ASCII or EBCDIC
characters. The editor allows for editing of the hex byte or the text value. If a hex data value
is modified, the corresponding text value is updated, and vice versa.

23.7.2.1 Using the Data Offset Feature
The data offset feature of the hexadecimal editor allows you to display your data offsets as
Hexadecimal or Decimal.

To change your data offsets:

Choose Display > Hex. The following two data offset options display.

• Offsets as Hexadecimal

• Offsets as Decimal

Click the display option that best suits your needs. The data offset panel of the Non-XML
window dynamically changes to reflect your choice.

23.7.2.2 Using the Text Feature
To use the Text feature, select the Text tab from within the Non-XML window to view all
printable characters, such as carriage returns. The Text window shows these as text with line
breaks.

23.7.3 How to Test Using the XML Window
The XML data panel displays XML data that has been converted or transformed from the
contents of the Non-XML panel. The contents of the XML panel can be cleared or edited to
suit your needs.

You can also use this window to enter or generate the XML data to be transformed into non-
XML format.

23.7.4 How to Test Using the Debug Window
The Debug window displays the actions that take place during the transformation operation,
any errors that are encountered, and field and group values and delimiters. To determine the
location of the error, determine the last field that parsed successfully and examine the
specification of the next field on the tree pane of Format Builder.

When you open the Format Tester, only the Non-XML and XML windows are visible. To open
the Debug window, choose Display > Debug to toggle the Debug window on and off. The
Debug window opens below the Non-XML and XML windows.

Note:

Debug output is restricted to the most recent 64 KB of messages. Full debug
information can be captured to a file. See Using the Debug Log for more
information.

Chapter 23
Testing Format Definitions

23-15

23.7.5 How to Debug Format Definitions
The following topics discuss the various Format Tester utilities you can use to debug
and correct your data.

• Searching for Values

• Searching for Offsets

• Using the Debug Log

23.7.5.1 Searching for Values
The Find feature allows you to search for hex or text values in the Non-XML data. The
following fields are available from the Find dialog.

To search for values:

1. From within the Format Tester, choose File > Open Non-XML to open the non-
XML data file you want to search.

2. Choose Edit > Find.

The Find dialog appears.

3. Enter data in the fields as appropriate. See Table 23-2.

Table 23-2 Find Options

Field Description

Value Enter the value you want to find.

Text Select this option if you want to find a text value.

Hex Select this option if you want to find a hex value.

Forwards Select this option if you want to search from the selected
location to the end of the document.

Backwards Select this option if you want to search from the selected
location to the beginning of the document.

Beginning of File Select this option if you want to start the search at the
beginning of the file.

Current Position Select this option if you want to start the search at the current
cursor location.

End of File Select the option if you want to start the search at the end of
the file.

OK Button Begins the search operation.

Cancel Button Closes the Find dialog without performing a search.

4. Click OK to begin the Search operation.

23.7.5.2 Searching for Offsets
The Goto feature allows you to move the cursor in the Non-XML editor to a byte offset
you specify. The following fields are available from the Goto dialog.

Chapter 23
Testing Format Definitions

23-16

To move to a specified offset:

1. From within the Format Tester, choose File > Open Non-XML to open the non-XML data
file you want to search.

2. Choose Edit > Go To.

The Goto dialog appears.

3. Enter data in the fields as appropriate. See Table 23-2.

Table 23-3 Goto Options

Field Description

Offset Enter the offset value you want to find.

Dec Select this option if you want to go to a decimal value.

Hex Select this option if you want to go to a hex value.

Forwards Select this option if you want to search from the selected location to
the end of the document.

Backwards Select this option if you want to search from the selected location to
the beginning of the document.

Beginning of File Select this option if you want to start the search at the beginning of
the file.

Current Position Select this option if you want to start the search at the current cursor
location.

End of File Select the option if you want to start the search at the end of the file.

OK Button Begins the search operation.

Cancel Button Closes the Goto dialog without performing a search.

4. Click OK to begin the Search operation.

23.7.5.3 Using the Debug Log
The debug log allows you to save your debug information to a text file.

To use the debug log:

• Select File > Debug Log.

A dialog appears, where you can enter a new path and file name or choose an existing
file in which to save the debug information.

Note:

If you select an existing file, the new debug information is appended to the end of
the file.

23.7.6 Format Tester Command Reference
This section describes the commands available from the Format Tester main menu.

Chapter 23
Testing Format Definitions

23-17

• File Menu

• Edit Menu

• Display Menu

• Generate Menu

• Transform Menu

23.7.6.1 File Menu
The following commands are available from the File menu.

Element Description

Open Non-XML Lets you select a non-XML file to be displayed in the Non-XML window.

Note: The default file extension for non-XML files is.DATA.

Open XML Lets you select a file to be displayed in the XML section of the Format Tester
window.

Note: The default file extension for XML files is.XML

Save Non-XML Saves the contents of the Non-XML window.

Save XML Saves the contents of the XML window.

Debug Log Saves the debug information in a text file.

Close Closes the Format Tester window.

23.7.6.2 Edit Menu
The following commands are available from the Edit menu.

Element Description

Cut Removes the currently selected text and places it on the clipboard for
pasting into another location.

Copy Copies the currently selected text and places it on the clipboard for pasting
into another location.

Paste Inserts the cut or copied text at the cursor location.

Find Lets you to search for a hex or text value in the non-XML data.

Find Next Continues your search to the next instance of the specified value.

Go To Lets you move the cursor in the Non-XML editor to a specified byte offset.

23.7.6.3 Display Menu
The following commands are available from the Display menu.

Element Description

XML Lets the XML data panel be hidden or shown. If hidden, the non-XML data
window expands to fill the width of the tester. The To XML button remains,
but the splitter disappears.

Debug Lets the Debug output window be hidden or shown.

Clear > Non-XML Resets the contents of the Non-XML data window to be empty.

Chapter 23
Testing Format Definitions

23-18

Element Description

Clear > XML Resets the contents of the XML window to be empty.

Hex > Offsets as
Hexadecimal

Displays the offset values as hexadecimal. Selecting this option turns off the
Offsets as Decimal display.

Hex > Offsets as
Decimal

Displays the offset values as decimal. Selecting this option turns off the
Offset as Hexadecimal display.

23.7.6.4 Generate Menu
The following commands are available from the Generate menu.

Element Description

Non-XML Generates non-XML data to match the current format specification.

XML Generates XML data to match the current format specification.

Prompt while
generating data

Select this option if you want to be prompted during the generation process to
determine if optional fields or groups should be generated, determine which
choice of children should be generated, and determine how many times a
repeating group should repeat.

23.7.6.5 Transform Menu
The following commands are available from the Transform menu.

Element Description

Non-XML to XML Converts the contents of the Non-XML window to XML.

XML to Non-XML Converts the contents of the XML window to non-XML data.

23.8 Using the Palette
The Format Builder palette allows you to store commonly used message format items and
insert them into your message format definitions.

These items are stored in an XML document, and you can use the standard Windows drag
and drop feature to copy items from the palette into your message format definition.

The palette contains some common date formats, literals, and strings. You can use these
items in the message formats you create, as well as adding your own items to the palette.

23.8.1 How to Display the Palette Window
To turn the palette display on or off, choose View > Show palette. If the palette is not
currently displayed, it opens in a separate window next to the Format Builder window. If the
palette is currently displayed, its window closes.

23.8.2 How to Add Items to the Palette
You cannot add nodes to the palette that depend on the existence of another node to the
palette. For example, you cannot add Field or Group References, and you cannot add items

Chapter 23
Using the Palette

23-19

that have a Repeat Field specified. You can add comments, but this is not
recommended since comments do not have unique names and therefore are
indistinguishable on the palette.

To add items to the palette:

1. From the navigation tree, choose the item you want to add to the palette.

2. Click and hold the left mouse button and drag the item into the palette window.

3. When the item is placed in the position you want it (as a sibling of the selected
item), release the mouse button. The item is copied from the navigation tree to the
palette window.

23.8.3 How to Add Palette Items to a Message Format
To copy items from the palette to a message format:

1. From the palette window, choose the item you want to add to your message
format.

2. Click and hold the left mouse button and drag the item into the left pane of the
Format Builder window.

3. When the item is placed in the position you want it (as the child or sibling of the
desired item), release the mouse button. The item is copied from the palette to the
message format.

23.9 Format Builder Supported Data Types
This section provides information about MFL data types, COBOL Copybook Importer
data types, and unsupported C language features.

• MFL Data Types

• COBOL Copybook Importer Data Types

• Unsupported C Language Features

23.9.1 MFL Data Types
Table 23-4 lists the MFL data types that data transformer supports. These are
metadata data types used in non-XML to XML or XML to non-XML conversions, and
are specified in the "type" attribute of a Field Format element.

Table 23-4 Supported MFL Data Types

Data Type Description

Binary (Base64
encoding)

Any character value accepted. Requires a length, length field,
delimiter, or a delimiter field. Resulting XML data for this field is
encoded using base-64.

Binary (Hex encoding) Any character value accepted. Requires a length, length field,
delimiter, or a delimiter field. Resulting XML data for this field is
encoded using base-16.

Date: DD-MMM-YY A string defining a date;for example, for example, 22-JAN-00.

Date: DD-MMM-YYYY A string defining a date; for example,; for example, 22-JAN-2000.

Chapter 23
Format Builder Supported Data Types

23-20

Table 23-4 (Cont.) Supported MFL Data Types

Data Type Description

Date: DD/MM/YY A string defining a date; for example, 22/01/00.

Date: DD/MM/YYYY A string defining a date; for example, 22/01/2000.

Date: DDMMMYY A string defining a date; for example, 22JAN00.

Date: DDMMMYYYY A string defining a date; for example, 22JAN2000.

Date: MM/DD/YY A string defining a date; for example, 01/22/00.

Date: MM/DD/YYYY A string defining a date; for example, 01/22/2000.

Date: MMDDYY A six digit numeric string defining a date; for example, 012200.

Date: MMDDYYYY An eight digit numeric string defining a date; for example, 01222000.

Date: MMM-YY A string defining a date; for example, JAN-00.

Date: MMM-YYYY A string defining a date; for example, JAN-2000.

Date: MMMDDYYYY A string defining a date; for example, JAN222000.

Date: MMMYY A string defining a date; for example, JAN00.

Date: MMMYYYY A string defining a date; for example, JAN2000.

Date: Wed Nov 15
10:55:37 CST 2000

The default date format of the Java platform; for example, 'WED NOV
15 10:55:37 CST 2000'

Date: YY-MM-DD A string defining a date; for example, 00-01-22. (The string: 00-01-22
defines the date January 22, 2000.)

Date: YY/MM/DD A string defining a date; for example, 00/01/22. (The string: 00/01/22
defines the date January 22, 2000.)

Date: YYMMDD A string defining a date; for example, 000122. (The string: 000122
defines the date January 22, 2000.)

Date: YYYY-MM-DD A string defining a date; for example, 2000-01-22. (The string:
2000-01-22 defines the date January 22, 2000.)

Date: YYYY/MM/DD A string defining a date; for example, 2000/01/22. (The string:
2000/01/22 defines the date January 22, 2000.)

Date: YYYYMMDD An eight byte numeric string of the format YYYYMMDD. A base data
of String or EBCDIC may be specified to indicate the character
encoding.

DateTime: DD/MM/YY
hh:mm

A string defining a date and time; for example, 22/01/00 12:24.

DateTime: DD/MM/YY
hh:mm AM

A string defining a date and time; for example, 22/01/00 12:24 AM.

DateTime: DD/MM/YY
hh:mm:ss

A string defining a date and time; for example, 22/01/00 12:24:00.

DateTime: DD/MM/YY
hh:mm:ss AM

A string defining a date and time; for example, 22/01/00 12:24:00
AM.

DateTime: MM/DD/YY
hh:mm

A string defining a date and time; for example, 01/22/00 12:24.

DateTime: MM/DD/YY
hh:mi AM

A string defining a date and time; for example, 01/22/00 12:24 AM.

DateTime: MM/DD/YY
hh:mm:ss

A string defining a date and time; for example, 01/22/00 12:24:00.

Chapter 23
Format Builder Supported Data Types

23-21

Table 23-4 (Cont.) Supported MFL Data Types

Data Type Description

DateTime: MM/DD/YY
hh:mm:ss AM

A string defining a date and time; for example, 01/22/00 12:24:00
AM.

DateTime:
MMDDYYhhmm

A string of numeric digits defining a date and time; for example,
0122001224.

DateTime:
YYYYMMDDhhmmss

A fourteen byte numeric string of the format YYYYMMDDHHMISS. A
Base data type may be specified.

DateTime:
MMDDYYhhmmss

A string of numeric digits defining a date and time; for example,
012200122400.

EBCDIC A string of characters in IBM Extended Binary Coded Decimal
Interchange Code. Requires a length, length field, delimiter, or a
delimiter field.

Filler A sequence of bytes that is not transformed to XML. This field of data
is skipped over when transforming non-XML data to XML. When
transforming XML to non-XML data, this field is written to the binary
output stream as a sequence of spaces.

FloatingPoint: 4 bytes,
Big-Endian

A four byte big endian floating point number that conforms to the
IEEE Standard 754.

FloatingPoint, 4 bytes,
Little-Endian

A four byte little endian floating point number that conforms to the
IEEE Standard 754.

FloatingPoint: 8 bytes,
Big-Endian

A eight byte big endian floating point number that conforms to the
IEEE Standard 754.

FloatingPoint: 8 bytes,
Little-Endian

A eight byte little endian floating point number that conforms to the
IEEE Standard 754.

Integer: Signed, 1 byte A one byte signed integer; for example, '56' is 0x38.

Integer: Unsigned, 1
byte

A one byte unsigned integer; for example, '128' is 0x80.

Integer: Signed, 2 byte,
Big-Endian

A signed two-byte integer in big endian format; for example, '4660' is
0x1234.

Integer: Signed, 4 byte,
Big-Endian

A signed four-byte integer in big endian format; for example, '4660' is
0x00001234.

Integer: Signed, 8 bytes,
Big-Endian

A signed eight-byte integer in big endian format; for example, '4660'
is 0x0000000000001234.

Integer: Unsigned, 2
byte, Big-Endian

An unsigned two-byte integer in big endian format; for example,
'65000' is 0xFDE8.

Integer: Unsigned, 4
byte, Big-Endian

An unsigned four-byte integer in big endian format; for example,
'65000' is 0x0000FDE8.

Integer: Unsigned, 8
bytes, Big-Endian

A unsigned eight-byte integer in big endian format; for example,
'65000' is 0x000000000000FDE8.

Integer: Signed, 2 bytes,
Little-Endian

A signed two-byte integer in little endian format; for example, '4660' is
0x3412.

Integer: Signed, 4 bytes,
Little-Endian

A signed four-byte integer in little endian format; for example, '4660'
is 0x34120000.

Integer: Signed, 8 bytes,
Little-Endian

A signed eight-byte integer in little endian format; for example, '4660'
is 0x3412000000000000.

Chapter 23
Format Builder Supported Data Types

23-22

Table 23-4 (Cont.) Supported MFL Data Types

Data Type Description

Integer: Unsigned, 2
bytes, Little-Endian

An unsigned two-byte integer in little endian format; for
example,'65000' is 0xE8FD.

Integer: Unsigned, 4
bytes, Little-Endian

An unsigned four-byte integer in little endian format; for example,
'65000' is 0xE8FD0000.

Integer: Unsigned, 8
bytes, Little-Endian

A unsigned eight-byte integer in little endian format; for example,
'65000' is 0xE8FD000000000000.

Literal A literal value determined by the contents of the value attribute.
When non-XML data is transformed to XML, the presence of the
specified literal in the non-XML data is verified by WLXT. The literal is
read, but is not transformed to the XML data. When XML data is
transformed to a non-XML format, and a literal is defined as part of
the non-XML format, WLXT writes the literal in the resulting Non-
XML byte stream.

Numeric A string of characters containing only digits; for example, '0' through
'9'. Requires a length, length field, delimiter, or a delimiter field.

Packed Decimal: Signed IBM signed packed format. Requires a length, length field, delimiter,
or a delimiter field to be specified. The length or length field should
specify the size of this field in bytes.

Packed Decimal:
Unsigned

IBM unsigned packed format. Requires a length, length field,
delimiter, or a delimiter field to be specified. The length or length field
should specify the size of this field in bytes.

String A string of characters. Requires a length, a length field, a delimiter, or
a delimiter field. If no length, length field, or delimiter is defined for a
data type String, a delimiter of "\x00" (a NUL character) will be
assumed.

String: NUL terminated A string of characters, optionally NUL (\x00) terminated, residing
within a fixed length field. This field type requires a length attribute or
length field which determines the amount of data read for the field.
This data is then examined for a NUL delimiter. If a delimiter is found,
data following the delimiter is discarded. If a NUL delimiter does not
exist, the fixed length data is used as the value of the field.

Time: hhmmss A string defining a time; for example, 122400.

Time: hh:mm AM A string defining a time; for example, 12:24 AM.

Time: hh:mm A string defining a time; for example, 12:24.

Time: hh:mm:ss AM A string defining a time; for example, 12:24:00 AM.

Time: hh:mm:ss A string defining a time; for example, 12:24:00.

Zoned Decimal: Leading
sign

Signed zoned decimal format (US-ASCII or EBCDIC) where the sign
indicator is in the first nibble. Requires a length, length field, delimiter,
or a delimiter field to be specified. The length or length field should
specify the size of this field in bytes.

Note: This data type is supported with US-ASCII data only with
Message Format Language Version 2.02

Chapter 23
Format Builder Supported Data Types

23-23

Table 23-4 (Cont.) Supported MFL Data Types

Data Type Description

Zoned Decimal: Leading
separate sign

Signed zoned decimal format (US-ASCII or EBCDIC) where the sign
indicator is in the first byte. The first byte only contains the sign
indicator and is separated from the numeric value. Requires a length,
length field, delimiter, or a delimiter field to be specified. The length
or length field should specify the size of this field in bytes.

Note: This data type is supported with US-ASCII data only with
Message Format Language Version 2.02.

Zoned Decimal: Signed Signed zoned decimal format (US-ASCII or EBCDIC). Requires a
length, length field, delimiter, or a delimiter field to be specified. The
length or length field should specify the size of this field in bytes.

Note: This data type is supported with US-ASCII data only with
Message Format Language Version 2.02.

Zoned Decimal: Trailing
separate sign

Signed zoned decimal format (US-ASCII or EBCDIC) where the sign
indicator is in the last byte. The last byte only contains the sign
indicator and is separated from the numeric value. Requires a length,
length field, delimiter, or a delimiter field to be specified. The length
or length field should specify the size of this field in bytes.

Note: This data type is supported with US-ASCII data only with
Message Format Language Version 2.02.

Zoned Decimal:
Unsigned

Unsigned zoned decimal format (US-ASCII or EBCDIC). Requires a
length, length field, delimiter, or a delimiter field to be specified. The
length or length field should specify the size of this field in bytes.

Note: This data type is supported with US-ASCII data only with
Message Format Language Version 2.02.

23.9.2 COBOL Copybook Importer Data Types
The Format Builder tool provides a utility for the conversion of COBOL copybooks into
MFL files. Table 23-5 lists the COBOL data types that can be converted to metadata
data types and the support provided by the Importer. Support for these data types is
limited. For example, the following formats are converted to an unsigned 4-byte integer
type:

05 pic 9(5) comp-5
05 pic 9(5) comp-x

Additionally, the following generate errors:

05 pic X(5) comp-5
05 pic X(5) comp-x

In these samples, pic9(5) could be substituted for pic x(5).

The following values are defined as follows:

• Supported: The data type will be correctly parsed by the importer and converted to
a message format field or group.

• Unsupported: The data type is not supported and the importer reports an error
when the copybook is imported.

Chapter 23
Format Builder Supported Data Types

23-24

• Ignored: The data type is parsed and a comment is added to the message format. No
corresponding field or group is created.

Table 23-5 COBOL Data Types

COBOL Type Support

BLANK WHEN ZERO (zoned) supported

COMP-1, COMP-2 (float) supported

COMP-3, PACKED-DECIMAL supported

COMP, COMP-4, BINARY (integer) supported

COMP, COMP-4, BINARY (fixed) supported

COMP-5, COMP-X supported

DISPLAY (alphanumeric) supported

DISPLAY numeric (zoned) supported

edited alphanumeric supported

edited float numeric supported

edited numeric supported

group record supported

INDEX supported

JUSTIFIED RIGHT ignored

OCCURS (fixed array) supported

OCCURS DEPENDING (variable-length) supported

OCCURS INDEXED BY ignored

OCCURS KEY IS ignored

POINTER supported

PROCEDURE-POINTER supported

REDEFINES supported

SIGN IS LEADING SEPARATE (zoned) supported

SIGN IS TRAILING (zoned) supported

SIGN IS TRAILING SEPARATE (zoned) supported

SIGN IS LEADING (zoned) supported

SYNCHRONIZED ignored

66 RENAMES not supported

66 RENAMES THRU not supported

77 level supported

88 level (condition) ignored

Some vendor-specific extensions are not recognized by the importer, however, any copybook
statement that conforms to ANSI standard COBOL will be parsed correctly by the Importer.
The Importer's default data model, which is based on the IBM mainframe model, can be
changed in Format Builder to compensate for character set and data "endianness."

When importing copybooks, the importer may identify fields generically that, upon visual
inspection, could easily be identified by a more specific data type. For this reason, the

Chapter 23
Format Builder Supported Data Types

23-25

copybook importer creates comments for each field found in the copybook. This
information is useful in assisting you in editing the MFL data to better represent the
original copybook.

For example, this original copybook entry:

05 birth-date picxx/xx/xx

results in s field of type EBCDIC with a length of 8. Closer inspection indicates that this
is intended to be a date format and could be defined as a field of type Date: MM/DD/YY
or a field of type Data: DD/MM/YY.

23.9.3 Unsupported C Language Features
The Format Builder provides a utility for the conversion of C structures into MFL files.
This section lists the C Language constructs that cannot be converted to metadata
data types. (This conversion occurs at design time.) The C struct Importer utility does
not parse files containing anonymous unions, bit fields, or in-line assembler code. The
following samples of unsupported features are taken from the preprocessor output of a
hello.c file that contained a #include <windows.h> statement:

• Anonymous unions

#line 353 "e:\\program files\\microsoft visual studio\\vc98\\include\
\winnt.h"
typedef union_LARGE_INTEGER{
 struct {
 DWORD LowPart;
 LONG HighPart;
 };
 struct {
 DWORD LowPart;
 LONG HighPart;
 } u;
#line 363 "e:\\program files\\microsoft visual studio\\vc98\\include\
\winnt.h"
 LONGLONG QuadPart;
} LARGE_INTEGER

• Bit fields

typedef struct_LDT_ENTRY {
 WORD LimitLow;
 WORD BaseLow;
 union {
 struct {
 BYTE BaseMid;
 BYTE Flags1;
 BYTE Flags2;
 BYTE BaseHi;
 } Bytes;
 struct
 DWORD BaseMid : 8;
 DWORD Type : 5;
 DWORD Dpl : 2;
 DWORD Pres : 1;
 DWORD LimitHi : 4;
 DWORD Sys : 1;
 DWORD Reserved_0 : 1;
 DWORD Default_Big : 1;

Chapter 23
Format Builder Supported Data Types

23-26

 DWORD Granularity : 1;
 DWORD BaseHi : 8;
 } Bits;
 } HighWord;
} LDT_ENTRY, *PLDT_ENTRY;

• Inline assembler code

_inline ULONGLONG
_stdcall
Int64ShrlMod32(
 ULONGLONG Value,
 DWORD ShiftCount
)
{
 _asm {
 mov ecx, ShiftCount
 mov eax, dword ptr [Value]
 mov edx, dword ptr [Value+4]
 shrd eax, edx, cl
 shr edx, cl
 }
}

23.10 Format Builder Field Reference
This section describes the Format Builder windows and each of the properties displayed on
the Format Builder windows.

• Format Builder Window

• Format Builder Tool Bar

• Format Builder Tree Pane

• Field Configuration Window

• Group Configuration Window

• Format Builder Reference Configuration Window

23.10.1 Format Builder Window
The main window of the Format Builder is split into two panes. The left pane shows the
structural information for the data format. The right pane shows the detail for the item
selected in the left pane.

23.10.2 Format Builder Tool Bar
Use the following Menu bar options to create and configure the structure of the MFL file. The
menus that are available depend on what is selected in the left pane.

Element Description

New Creates a new message format

Open Opens an existing message format.

Save Saves the current message format

Chapter 23
Format Builder Field Reference

23-27

Element Description

Cut Removes the item currently selected in the left-hand pane, and its child objects,
from the tree.

Note: This action is not available if the message format (root) item is selected.

Copy Makes a copy of the item currently selected in the left-hand pane for insertion
elsewhere in the tree.

Note: This action is not available if the message format (root) item is selected.

Paste as Sibling Inserts the cut or copied item as a sibling object of the selected item.

Paste as
Reference

Inserts a reference to the cut or copied item as a sibling object of the selected
item.

Undo Reverses the previous action. The tool tip changes to indicate the action that can
be undone. For example, if you change the name of the field to Field1 and click
Apply, the tool tip reads "Redo Apply Field Field1".

Note: Format Builder supports multi-level undoing and redoing.

Redo Reverses the effects of an Undo command. The tool tip changes to indicate the
action that can be redone. For example, if you change the name of a field to Field1
and click Undo, the tool tip to read "Redo Apply Field Field1".

Note: Format Builder support multi-level undoing and redoing.

Insert Field Inserts a field as a sibling of the item selected in the tree pane.

Insert Group Inserts a group as a sibling of the item selected in the tree pane.

Insert Comment Inserts a comment as a sibling of the item selected in the tree pane.

Move Up Moves the selected item up one position under its parent.

Move Down Moves the selected item down one position under its parent.

Promote item Promotes the selected item to the next highest level in the tree. For example,
Field1 is the child object of Group1. Select Field1 and click Promote to make it a
sibling of Group1.

Demote item Demotes the selected item to the next lower level in the tree. For example, Group1
is the sibling of Field1. Field1 immediately follows Group1 in the tree. Select Field1
and click Demote to make it a child of Group1.

Expand All Expands all items in the tree pane to show child items.

Collapse All Collapses the tree pane to show first level items only.

Format Tester Opens the Format Tester window.

23.10.3 Format Builder Tree Pane
The Tree Pane represents hierarchical and structural information about the format of
the non-XML data in a tree. The root node of the tree corresponds to the MFL
document being created or edited, and you can create groups and fields under the root
node. Following are the different types of elements you can create in the tree pane.

Message formats, fields, and groups are identified by a name, which is used as the
XML tag when non-XML data is transformed to XML. Therefore the name must
conform to the XML rules for a name.

Follow these guidelines when naming the nodes in your format tree:

• Names must start with a letter or underscore.

Chapter 23
Format Builder Field Reference

23-28

• Names can contain letters, digits, colon, the period character, the hyphen character, or
the underscore character.

Element Description

Message Format The top level, or root, element.

Group A collection of fields, comments, and other groups or references that are related in
some way. For example, the fields PAYDATE, HOURS, and RATE could be part of the
PAYINFO group. This defines the formatting for all items contained in the group.

Optional Group A group that may or may not be included in the message format. This type of
group is represented by a dotted line around its icon.

Repeating Group A group that has one or more occurrences. This type of group is represented by a
cascading icon.

Optional
Repeating Group

A group that may or may not be included, but if included, occurs more than once.

Group Reference An indicator that another instance of the group exists in the data. Reference
groups have the same format as the original group, but you can change the
optional setting and the occurrence setting for the reference group.

Group Choice An indicator that only one of the items in the group will be included in the message
format. This type of group is represented by a dot inside the icon.

Field A sequence of bytes that have some meaning to an application. For example, the
field EMPNAME might contain an employee name. Defines the formatting for the
field.

Optional Field A field that may or may not be included in the message format.

Repeating Field A field that has one or more occurrences.

Field Reference An indicator that another instance of the field exists in the data. Reference fields
have the same format as the original field, but you can change the optional setting
and the occurrence setting for the reference field.

Optional
Repeating Field

A field that may or may not be included, but, if included, occurs more than once in
the message format.

Comment An indicator that contains notes about the message format or the data
transformed by the message format.

Collapse A minus sign next to an object indicates that it can be collapsed.

Expand A plus sign next to an object indicates that it can be expanded to show more
objects.

23.10.4 Field Configuration Window
The Field Configuration window defines the fields contained in the message format. These
fields are a sequence of bytes that have a meaning in terms of an application. For example,
the field EMPNAME means employee name.

Table 23-6 Format Builder Field Description Properties

Element Description

Name The name of the field. This name must comply with XML element
naming conventions.

Chapter 23
Format Builder Field Reference

23-29

Table 23-6 (Cont.) Format Builder Field Description Properties

Element Description

Optional Select this check box to make the field optional. Selecting this means
that the data for the field may be present in the input.

If this option is selected for a file, then you can set the Field is
Tagged option from the Field Attributes pane. In addition to it, enter
a unique value for each optional field in a group in the Field Is
Tagged text box. Multiple groups can use the same tag value, but the
tag value for each optional field in a group must be unique

Type Select the data type of the field from the list of available options. The
default type is String.

Note: The Field Type that is selected dictates the Field Data Options
that appear on the rest of the dialog

Select one of the options in Table 23-7 to indicate how often this field appears in the
message format.

Table 23-7 Format Builder Field Occurrence Properties

Element Description

Once Select this option if the field appears only once.

Note: Unless a field is defined as optional, the field occurs at
least once.

Repeat Delimiter Select this option if the field repeats until the specified delimiter
is encountered. Enter the delimiter in the associated field.

Repeat Field Select this option if the value of the repeat field at runtime is the
number of times the field repeats. Select the repeat field name
from the list of available options.

Repeat Number Select this option if the field repeats a specified number of times.
Enter the number of recurrences in the associated field.

Unlimited Select this option if the field repeats an unlimited number of
times.

Table 23-8 Format Builder Field Attributes

Element Description

Field is Tagged Select this option if the field is a tagged field. Being tagged
means that a literal precedes the data, indicating that the data is
present. For example: SUP:ACME INC, SUP: is a tag. ACME
INC is the field data.

If you have selected the Field is Tagged option, enter the tag in
the text box to the right of the check box.

Field Default Value Select this option if the field has a default value. Then, enter the
default value in the text box to the right of the check box.

Data Base Type An indicator that determines the type of characters that make up
the data if the field is a date or time field. Whether this field
appears is based on the data type selected in the Type field in
the Field Description section.

Chapter 23
Format Builder Field Reference

23-30

Table 23-8 (Cont.) Format Builder Field Attributes

Element Description

Year Cutoff If the field is a date field that has a 2-digit year, the year cutoff
allows the 2-digit year to be converted to a 4-digit year. If the 2-
digit year is greater than or equal to the year cutoff value, a '19'
prefix will be added to the year value. Otherwise a '20' prefix will
be used.

Whether this field appears is based on the data type selected in
the Type field in the Field Description section.

Code Page The code page encodes the String field data. Whether this field
appears is based on the data type selected in the Type field in
the Field Description section.

Value The value that appears in a literal field. Whether this field
appears is based on the data type selected in the Type field in
the Field Description section.

Table 23-9 Format Builder Field Termination Properties Defined by Length

Element Description

Length Tab

Value Enter the number of bytes in the length field if the length field is a
variable length.

Variable-sized data types can be assigned a fixed length, eliminating
the need to use a delimiter to specify the termination point of the field.

String Length in Characters Select this check box if string is multi-byte encoded to calculate the
length in number of characters instead of bytes. By default, the string
length is in bytes.

Trim Tab

Trim Trailing Select this option to trim data from the trailing edge of the field data.
Enter the data to be trimmed in the field next to this option.

Trim Leading Select this option to trim data from the leading edge of the field data.
Enter the data to be trimmed in the field next to this option.

Pad Tab

Pad Value Select this option if the data is shorter than the specified length, and
enter the necessary value add to the data until it is of correct length.
Select Trailing to append padding at the end of a field. Select
Leading to append padding at the beginning of a field.

Table 23-10 Format Builder Field Termination Properties Defined by Imbedded Length

Element Description

Description Tab

Type Select the type of the imbedded length from the list of options.

Chapter 23
Format Builder Field Reference

23-31

Table 23-10 (Cont.) Format Builder Field Termination Properties Defined by Imbedded
Length

Element Description

Length Select the this option to specify the number of bytes, and then enter
the number in the corresponding field.

Variable-sized data types can have their termination point specified by
an imbedded length. An imbedded length precedes the data field and
indicates how many bytes the data contains. This option is only
available for certain data types selected for the imbedded length.

Delimiter Select the this option to specify a delimiter, and then enter the
delimiter value in the corresponding field. This option is only available
for certain data types selected for the imbedded length.

Tag/Length Order Tab

Length Occurs Before Tag
Field

Select this option to specify that the length field occurs before the tag
field when both are present. The default is tag before length.

Trim Tab

Trim Trailing Select this option to trim data from the trailing edge of the field data.
Enter the data to be trimmed in the field next to this option.

Trim Leading Select this option to trim data from the leading edge of the field data.
Enter the data to be trimmed in the field next to this option.

Table 23-11 Format Builder Field Termination Properties Defined by Delimiter

Element Description

Delimiter Tab Variable-sized data types can have their termination point
specified by a delimiter, which you can specify or which can be
specified by a field containing the character. A delimiter is a
character that marks the end of the field. The field data
continues until the delimiter character is encountered.

Ref Fields Click this button to specify a field that contains the delimiter
character that indicates the termination point. On the dialog that
appears, select the reference fields and click the right-arrow
button. Click OK.

Values Enter a default delimiter character to use when the delimiter field
is not present. You must supply a default value.

Trim Tab

Trim Trailing Select this option to trim data from the trailing edge of the field
data. Enter the data to be trimmed in the field next to this option.

Trim Leading Select this option to trim data from the leading edge of the field
data. Enter the data to be trimmed in the field next to this option.

The following fields only appear if you select Literal in the Type field in the Field
Description section.

Chapter 23
Format Builder Field Reference

23-32

Table 23-12 Format Builder Field Properties for Literal Data Types

Element Description

Value An indicator that specifies the literal value. A literal value can be
defined as a single value or it can be defined a list of values separated
by the literal separator. When the Value is a list of values, the data for
the literal field in the binary data will be one of values in the list.

Literal Separator Supports enumeration of literal values. For literal type Field in MFL
definition, a literal separator can be specified when multiple choices of
value is needed for the Field.

For example, segment terminators that are supported by both
EDIFACT and X12 EDI standards are: \r\n\, \r, \n, ', and ~.
However, you can use Format Builder to support any other custom
terminator. You can append the custom terminator to the existing list
of literal values and use comma (,) as literal separator to separate
multiple custom values.

In the MFL file, you should see the following structure,

<FieldFormat name='ISA_Terminator' type='Literal'
value='\r\n,\r,\n,~,|' literalSeparator=','/>

23.10.5 Group Configuration Window
The Group Configuration window defines the groups contained in the message format.
Groups are collections of fields, comments, and other groups or references that are related in
some way. For example, the fields PAYDATE, HOURS, and RATE could be part of the PAYINFO
group.

Table 23-13 Format Builder Group Description Properties

Element Description

Name The name of the group. This name must comply with XML element
naming conventions.

Optional Select Optional if the group is optional

Choice of Children Select Choice of Children if only one of the items in the group will be
included in the message format.

Select one of the options in Table 23-14 to indicate how often this group appears in the
message format.

Table 23-14 Format Builder Group Occurrence Properties

Element Description

Once Select this option if the group appears only once.

Note: Unless a group is defined as optional, it occurs at least once.

Repeat Delimiter Select this option if the group repeats until the specified delimiter is
encountered. Enter the delimiter in the associated field.

Chapter 23
Format Builder Field Reference

23-33

Table 23-14 (Cont.) Format Builder Group Occurrence Properties

Element Description

Repeat Field Select this option if the value of the repeat field at runtime is the
number of times the group repeats. Select the repeat field name from
the list of available options.

Repeat Number Select this option if the group repeats a specified number of times.
Enter the number of recurrences in the associated field.

Unlimited Select this option if the group repeats an unlimited number of times.

Table 23-15 Format Builder Group Attributes

Element Description

Group is Tagged Select this option if this is a tagged group. If tagged, a literal
precedes the data, indicating that the data is present.

If you selected the Group is Tagged option, enter the tag in the
text box to the right of the check box.

Table 23-16 Format Builder Group Delimiter Properties

Element Description

None Select this option if the group has no delimiter

Delimited Select this option if the end of the group is marked with a
delimiter, which specifies the termination point for the group. A
delimiter is a string of characters that marks the end of the group
of fields. The group continues until the delimiter characters are
encountered.

If you select this option, enter the delimiter in the Value field.

Note: Normally, groups are not delimited. They are usually
parsed by content (the group ends when all child objects have
been parsed).

Delimiter Field Select this option if the group's termination point is specified by a
field that contains a delimiter character string. If you select this
option, select the Field that contains the delimiter character
string, and enter a default delimiter character to use if the above
field is not present in the data. This value is required.

Delimiter is Shared Select this option if the delimiter marks both the end of the group
of data, and the end of the last field of the group. The delimiter is
shared among the group, and by the last field of the group, to
delimit the end of the data.

Delimiter Is Not Optional Select this option to indicate that the binary data contains the
delimiter even if the group is not present.

23.10.6 Format Builder Reference Configuration Window
Use the Reference Configuration window to indicate the existence of another field or
group format within the data. Reference fields or groups have the same format as the
original field or group, but you can change the optional setting and the occurrence
setting for the reference field or group. For example, if you have a "bill to" address and

Chapter 23
Format Builder Field Reference

23-34

a "ship to" address in your data, you only need to define the address format once. You can
create the "bill to" address definition and create a reference for the "ship to" address.

References are given the same name as the original item. For example, the "bill to" address
definition and the "ship to" address definition would be named the same.

Table 23-17 Format Builder Reference Description Properties

Element Description

Name The name signifies the name for the original field or group for which
you created this reference. This name must comply with XML element
naming conventions.

Optional Select Optional if the reference field or group is optional.

Table 23-18 Format Builder Reference Occurrence Properties

Element Description

Once Select this option if the reference appears only once.

Note: Unless a reference is defined as optional, it occurs at least
once.

Repeat Delimiter Select this option if the reference repeats until the specified delimiter
is encountered. Enter the delimiter in the associated field.

Repeat Field Select this option if the value of the repeat field at runtime is the
number of times the reference repeats. Select the repeat field name
from the list of available options.

Repeat Number Select this option if the reference repeats a specified number of times.
Enter the number of recurrences in the associated field.

Unlimited Select this option if the reference repeats an unlimited number of
times.

Chapter 23
Format Builder Field Reference

23-35

24
Using Java Callouts and POJOs

This chapter describes how to extend the capabilities of Service Bus by invoking custom Java
code from within pipelines and split-joins. Service Bus pipelines and split-joins each have a
Java callout action that allows you to call a Plain Old Java Object (POJO) external to the
pipeline or split-join.

This chapter includes the following sections:

• Introduction to Java Callouts

• Working with Streaming Content

• Best Practices for Java Callouts and POJOs

For information about configuring a Java callout to a POJO, see Adding Java Callout Actions
in the Console.

24.1 Introduction to Java Callouts
The Java callout action lets you access the methods in a Java archive (JAR) file to add
processing logic to your pipelines and split-joins.

When you configure the callout, you can specify arguments for the method and you can
optionally specify a service account for security. The parameters can be mapped to message
context variables.Static methods can be accessed from any POJO.

You can also use Java callouts to create Java objects to store in the pipeline and to pass
Java objects as parameters to other Java callouts.

Tip:

JSON-typed variables are passed in to java.lang.String-typed arguments with
their stringified representation.

24.1.1 Java Callout Usage Guidelines
The scenarios in which you can use Java callouts in Service Bus include the following:

• Performing custom validations, such as validating against a DTD, or doing cross-field
semantic validation in Java.

• Performing custom transformations, such as converting a binary document to
base64Binary (or vice versa) or using a custom Java transformation class.

• Performing custom authentication and authorizations. Examples include scenarios in
which a custom token in a message needs to be authenticated and authorized. However,
the authenticated user's identity cannot be propagated by Service Bus to the services or
POJOs subsequently invoked by the pipeline or split-join.

24-1

• Performing lookups for message enrichment. For example, a file or Java table can
be used to look up any piece of data that can enrich a message.

• Accessing binary data. You can use a Java callout to a POJO to sniff the first few
bytes of a binary document to deduce the MFL type. The MFL type returned is
used for a subsequent NonXML-to-XML transformation using the MFL Transform
action.

• Implementing custom routing rules or rules engines.

• Creating a Java object and storing it in the pipeline.

• Passing a Java object as a parameter to another Java callout.

• Invoking a remote EJB operation or service with a POJO using a JEJB proxy
service.

The input and return types for Java callouts are not restricted. For more information
about storing and passing Java objects in the pipeline, see Java Content in the Body
Variable.

24.1.2 Java Callouts or EJBs
Enterprise JavaBeans (EJBs) also provide a Java exit mechanism. The use of EJBs is
recommended over Java callouts in the following cases:

• When you already have an EJB implementation. The JEJB transport lets you
invoke EJBs with EJB calls through Service Bus, letting you leverage Service Bus
functionality such as message routing, UDDI integration, alerts, per-operation
monitoring, reporting, and result caching.

• When you require read access to a JDBC database. Although POJOs can be used
for this purpose, EJBs were specifically designed for this and provide better
support for managing and connecting to JDBC resources.

• When you require write access to a JDBC database or other J2EE transactional
resource. EJBs were specifically designed for transactional business logic and
they provide better support for proper handling of failures. However, transaction
and security context propagation is supported with POJOs, and the JEJB transport
provides error handling in transaction contexts.

For outbound messaging, Oracle recommends that you write a custom transport
instead of using POJOs or EJBs.

24.2 Working with Streaming Content
You can work with streaming content using Java callouts.

Streaming content can pass binary-content as an input argument to callout methods
and accept streaming content results from Java callout methods.

24.2.1 Passing Streaming Content to a Java Callout
You can pass binary-content as an input argument to a Java callout method in a
streaming fashion. Service Bus handles this by checking the Java type of the input
argument. If the argument is of type javax.activation.DataSource, the system
creates a wrapper DataSource object and gets the InputStream from the

Chapter 24
Working with Streaming Content

24-2

corresponding source by invoking the Source.getInputStream() method. You can call this
method as many times as you need in your Java callout code.

In addition, the getContentType() method returns the application/octet-stream unless the
binary content is a paged MIME attachment, in which case the value of the Content-Type
header of the corresponding MIME part is used, if present.

Similarly, the getName() method returns the string value of the binary-content reference
attribute unless the binary content is a paged MIME attachment, in which case the value of
the Content-ID header of the corresponding MIME part is used, if available. The
getOutputStream() method throws the UnsupportedOperationException, as required.

After completing, the result is passed to the Java callout method argument. Note that to
properly interpret the binary octets in the input stream, the Java callout method might also
require the value of the Content-Transfer-Encoding header (for example, to determine
whether the encoding is binary, 7bit, 8bit, and so on). You can pass this parameter as a
separate argument, as shown in the following:

$attachments/*:attachment[1]/*:Content-Transfer-Encoding/text()

Note that if the input argument is not a DataSource, Service Bus converts the argument to a
byte[] array.

24.2.2 Streaming Content Results from a Java Callout
You can get streaming content results from a Java callout method. Service Bus handles this
by checking the Java type of the result and then adding the new source to the source
repository, setting the appropriate context variable value to the corresponding ctx:binary-
content XML element.

Note:

To return the contents of a file from a Java callout method, you can use an instance
of javax.activation.FileDataSource.

Whenever the pipeline or split-joins needs the binary contents of the source, it looks up the
DataSource object corresponding to the ctx:binary-content element in the repository and
invokes the DataSource.getInputStream() method to retrieve the binary octets.

Note that the getInputStream() method might be called multiple times during message
processing, for example to accommodate outbound message retries in the transport layer.

24.3 Best Practices for Java Callouts and POJOs
In general, Oracle recommends that the JARs are small and simple; any large bodies of code
that a JAR invokes or large frameworks that are used are best included in the system
classpath. If you make a change to the system classpath, you must reboot the server.

POJOs are registered as JAR resources in Service Bus. For information about JAR
resources, see Working with JAR Files.

Oracle recommends that you put dependent and overlapping classes in the same JAR
resource. If they are naturally distinct, put them in different JAR resources. Any change to a

Chapter 24
Best Practices for Java Callouts and POJOs

24-3

JAR resource causes all the services that reference it to be redeployed. This can be
time consuming for your Service Bus system. The same class can be located in
multiple JAR resources without causing conflicts. The JAR files are dynamically class
loaded when they are first referenced.

A single POJO can be invoked by one or more services. All the threads in the service
invoke the same POJO, so the POJO must be thread safe. A class or method on a
POJO can be synchronized, in which case it serializes access across all threads in all
of the invoking services. Any finer-grained concurrency (for example, to control access
to a database read results cache and implement stale cache entry handling) must be
implemented by the POJO code.

It is generally a bad practice for POJOs to create threads.

Chapter 24
Best Practices for Java Callouts and POJOs

24-4

Part V
Working with JCA Adapters, Transports, and
Bindings

This part provides information and configuration details for all transports provided by Service
Bus.

This part contains the following chapters:

• Using the JCA Transport and JCA Adapters

• Creating REST Services with Oracle Service Bus

• Using the DSP Transport

• Using the EJB Transport

• Using HTTP and Poller Transports

• Using the JEJB Transport

• Using the JMS Transport

• Using the Local Transport

• Using the MQ Transport

• Using the Oracle BPEL Process Manager Transport

• Using the SB Transport

• Using the SOA-DIRECT Transport

• Using the Tuxedo Transport

• Using the WS Transport

25
Using the JCA Transport and JCA Adapters

This chapter describes the Oracle JCA adapter framework and provides guidance on using
specific adapters with Service Bus. It also describes how to use and configure the Oracle
JCA adapter in Service Bus services.

This chapter includes the following sections:

• Introduction to the JCA Transport

• JCA Adapter Configuration Recommendations for Service Bus

• Working with JCA Binding Resources

• Working with JavaScript Resources

• JCA Transport Configuration Reference

25.1 Introduction to the JCA Transport
Service Bus provides a J2EE Connector Architecture (JCA) transport that interacts with back-
end Enterprise Information Systems (EIS), letting these systems participate in the Service
Bus integration environment. The JCA transport provides native connectivity between Service
Bus and external systems, letting those systems interact in the service bus layer and
leverage the capabilities and features of Service Bus.
For a list of adapters the JCA transport supports, see Supported JCA Adapters.

In JCA proxy or business services, the JCA transport works in conjunction with a built-in JCA
adapter framework and JCA-compliant adapters to interact with EIS systems, as shown in
Figure 25-1. Solid arrows signify request, dotted arrows signify response.

Figure 25-1 Service Bus Services Interacting With an EIS

JCA proxy services listen for inbound requests from supported JCA adapters, and JCA
business services invoke EIS endpoints through supported adapters.

25-1

25.1.1 Supported JCA Adapters
With JCA adapters, you can integrate proxy and business services with technologies
like databases, file systems, FTP servers, messaging systems, email, LDAP,
Coherence cache, cloud services, and Oracle E-Business Suite. Dragging a JCA
adapter into a swimlane of the Service Bus Overview Editor invokes the Adapter
Configuration Wizard, where you can define the configuration properties for the
adapter. The following sections give an overview of the JCA adapters supported by
Service Bus.

Note:

Oracle Service Bus Console does not support creating or editing Cloud
adapters. You can import and activate the project; however, editing or
modeling of cloud adapters is not supported.

25.1.1.1 AQ Adapter
The AQ adapter lets Service Bus business and proxy services interact with a single
consumer or multi-consumer queue. Oracle Streams AQ provides a flexible
mechanism for bidirectional, asynchronous communication between participating
applications. Advanced queues are an Oracle database feature, and are therefore
scalable and reliable. Multiple queues can also service a single application, partitioning
messages in a variety of ways and providing another level of scalability through load
balancing.

For more information, see "Oracle JCA Adapter for AQ" in Understanding Technology
Adapters.

25.1.1.2 Oracle BAM 11g Adapter
The Oracle BAM 11g adapter integrates Service Bus business and proxy services with
Oracle BAM Server 11g. Dragging an Oracle BAM adapter into a swimlane of the
Service Bus Overview Editor invokes the Adapter Configuration Wizard, where you
can configure the adapter properties.

For more information, see " Oracle Fusion Middleware Integration with Adapters" in
Understanding Technology Adapters.

25.1.1.3 Coherence Adapter
The Oracle Coherence adapter integrates Service Bus business services with Oracle
Coherence. A Coherence cache is a collection of data objects that serves as an
intermediary between the database and client applications. Database data can be
loaded into a cache and made available to different applications. A Coherence cache
reduces load on the database and provides faster access to database data. Objects in
the cache can be either XML or Plain Old Java Objects (POJOs). The Coherence
adapter enables you to perform the following operations against a Coherence cache.

• Add an item

• Obtain an item

Chapter 25
Introduction to the JCA Transport

25-2

• Remove an item

• Query for an item

For more information, see "Oracle JCA Adapter for Coherence" in Understanding Technology
Adapters.

25.1.1.4 Database Adapter
The database adapter lets Service Bus business and proxy services communicate with
Oracle databases or third-party databases through JDBC.

For more information, see "Oracle JCA Adapter for Database" in Understanding Technology
Adapters.

25.1.1.5 File Adapter
The file adapter lets Service Bus business and proxy services exchange (read and write) files
on local file systems. The file contents can be in both XML and non-XML data formats.

For more information, see "Oracle JCA Adapter for Files/FTP" in Understanding Technology
Adapters.

25.1.1.6 FTP Adapter
The FTP adapter lets Service Bus business and proxy services exchange (read and write)
files on remote file systems through use of the file transfer protocol (FTP). The file contents
can be in both XML and non-XML data formats.

For more information, see "Oracle JCA Adapter for Files/FTP" in Understanding Technology
Adapters.

25.1.1.7 JDE World Adapter
The JDE World adapter integrates Service Bus business services with the JDE World
System, an ERP (Enterprise Resource Planning) product running on IBM minicomputers. The
JDE World Adapter uses a new JDBC-driver based connection to the IBM system and lets
Service Bus interact with JDE World system as a typical database.

For more information, see "Oracle JCA Adapter for JDE Edwards World" in Understanding
Technology Adapters and the Integration Adapters Documentation page on Oracle
Technology Network.

25.1.1.8 JMS Adapter
The JMS adapter lets Service Bus business and proxy services interact with a Java
Messaging System (JMS). The JMS architecture uses one client interface to many
messaging servers. The JMS model has two messaging domains:

• Point-to-point: Messages are exchanged through a queue and each message is delivered
to only one receiver.

• Publish-subscribe: Messages are sent to a topic and can be read by many subscribed
clients.

For more information, see "Oracle JCA Adapter for JMS" in Understanding Technology
Adapters.

Chapter 25
Introduction to the JCA Transport

25-3

http://www.oracle.com/technetwork/middleware/adapters/documentation/index.html

25.1.1.9 LDAP Adapter
The LDAP adapter lets Service Bus business and proxy services interact with an
LDAP directory. The LDAP adapter defines both asynchronous and synchronous
interfaces to send requests to and receive responses from LDAP directory servers.
The LDAP adapter enables processes to search, compare, and modify LDAP
directories using the LDAP protocol.

For more information, see "Oracle JCA Adapter for LDAP" in Understanding
Technology Adapters.

25.1.1.10 MQ Series Adapter
The MQ Series adapter provides message exchange capabilities between Service Bus
business and proxy services and the WebSphere MQ queuing systems. The
Messaging and Queuing Series (MQ Series) is a set of products and standards
developed by IBM. The MQ Series provides a queuing infrastructure that provides
guaranteed message delivery, security, and priority-based messaging.

For more information, see "Oracle JCA Adapter for MQ Series" in Understanding
Technology Adapters.

25.1.1.11 MSMQ Adapter
The MSMQ adapter provides message exchange capabilities between Service Bus
business and proxy services and Microsoft Message Queueing (MSMQ). MSMQ is a
message infrastructure and a development platform for creating distributed, loosely-
coupled messaging applications for the Microsoft Windows operating system.

For more information, see "Oracle JCA Adapter for Microsoft Messaging Queue" in
Understanding Technology Adapters.

25.1.1.12 Oracle E-Business Suite Adapter
The Oracle E-Business Suite adapter lets Service Bus business and proxy services
interact with Oracle E-Business Suite. The adapter supports all modules of Oracle E-
Business Suite in Release 12 and Release 11i, including selecting custom integration
interface types based on the version of Oracle E-Business Suite.

For more information, see Oracle E-Business Suite Adapter User's Guide.

25.1.1.13 Salesforce Cloud Adapter
The Salesforce Cloud Adapter lets Service Bus business services interact with
Salesforce services. It enables integration with Enterprise, Unlimited, or Developer
Editions of Salesforce, and lets you connect a variety of systems to Salesforce,
leveraging the SOAP API of Salesforce.

For more information, see the Integration Adapters Documentation page on Oracle
Technology Network.

Chapter 25
Introduction to the JCA Transport

25-4

http://www.oracle.com/technetwork/middleware/adapters/documentation/index.html

25.1.1.14 SAP Adapter
The SAP adapter is a packaged-application adapter that lets Service Bus business and proxy
services integrate with SAP applications.

For more information, see "Packaged Application Adapters" in Understanding Technology
Adapters and the Integration Adapters Documentation page on Oracle Technology
Network.

25.1.1.15 Socket Adapter
The socket adapter lets you create a client or a server socket and establish a connection.
With this adapter, you can model standard or nonstandard protocols for communication over
TCP/IP sockets. The transported data can be text or binary in format.

For more information, see "Oracle JCA Adapter for Sockets" in Understanding Technology
Adapters.

25.1.1.16 Third Party Adapter
The third party adapter lets Service Bus business and proxy services integrate third-party
adapters such as PeopleSoft, SAP, and others. These third-party adapters produce artifacts
(WSDL and JCA files) that can configure a JCA adapter.

For more information, see Packaged-Application Adapters in Understanding Technology
Adapters.

25.1.1.17 User Messaging Service Adapter
The Oracle User Messaging Service supports messaging channels such as email, secure
messaging service (SMS), instant messaging, and voice. The Oracle User Messaging
Service provides a messaging proxy between Service Bus business and proxy services and
the external world. The Oracle User Messaging Service provides two-way messaging
(inbound and outbound).

For more information, see "Oracle JCA Adapter for UMS" in Understanding Technology
Adapters.

25.1.2 Oracle JCA Adapter Limitations
Following are limitations when using some JCA adapters with Service Bus.

• Limitations that Apply to All JCA Adapters

• Oracle JCA Adapters for Files/FTP Limitations

25.1.2.1 Limitations that Apply to All JCA Adapters
The JCA transport does not support the "singleton" endpoint property for an active/passive
topology.

Chapter 25
Introduction to the JCA Transport

25-5

http://www.oracle.com/technetwork/middleware/adapters/documentation/index.html

25.1.2.2 Oracle JCA Adapters for Files/FTP Limitations
For Oracle JCA Adapter for Files/FTP, the JCA transport does not support the
following: pre- and post-processing of files, using a re-entrant valve for processing ZIP
files, and file chunked read.

25.1.3 JCA Adapter Framework
The JCA transport uses the Service Bus JCA adapter framework to interact with JCA-
compliant adapters that in turn provide connectivity to external EIS services. The JCA
adapter framework abstracts the complexity of interacting with those adapters, letting
you focus on proxy and business service development.

For inbound interactions, the JCA proxy service registers a listener with the associated
JCA adapter endpoint. When an event occurs in the EIS system where a message is
sent to the JCA proxy, the JCA adapter framework invokes the proxy service with a
request-only or request-response pattern. On outbound interactions, when a client
invokes an EIS service through Service Bus, the JCA business service invokes the
JCA adapter endpoint through the JCA adapter framework.

No configuration of the JCA adapter framework is necessary. It is deployed and
functions automatically as you create JCA proxy and business services and deploy
your adapters.

25.1.4 JCA Transport Messaging
The JCA transport supports request-only and synchronous request/response
messaging patterns using SOAP 1.1. The JCA transport is transactional. If a JCA
proxy service is invoked in an EIS transaction, or if a JCA business service is invoked
in a transaction, the transport propagates the transaction.

25.1.5 Security for JCA Transports
When a service uses the JCA transport, A JNDI service account is used during both
endpoint validation and runtime. During endpoint validation, if a static service account
is associated with the endpoint, JNDI lookup against the adapter connection factory is
performed using the subject in the static service account. If the service does not use a
service account, an anonymous subject is used.

At runtime, a JCA proxy service supports only static service accounts. If a static
service account is configured on the service, the subject in the service account is used
to perform the JNDI lookup against the adapter connection factory. Otherwise, an
anonymous subject is used. JCA business services support static, pass through, and
mapping service accounts at runtime. If a service account is configured on a JCA
business service, the JNDI lookup against the adapter connection factory and the
subsequent outbound invocation is performed using the subject in the service account.
If the service does not use a service account, an anonymous subject is used.

Oracle adapters that connect to an EIS database (such as Oracle Adapters for
Database, AQ, and Oracle E-Business Suite) connect using the JDBC datasource
associated with the adapter-managed connection factory. Other Oracle adapters, such
as the Oracle JCA Adapter for Files, support Oracle WebLogic Server container-
managed and application-managed sign-on for outbound connections. For more

Chapter 25
Introduction to the JCA Transport

25-6

information, see "Securing Enterprise Information System Credentials" in Understanding
Technology Adapters.

The JCA transport can also be used with Oracle Web Services Manager (OWSM) policies.
For more information, see "Which OWSM Policies Are Supported for JCA Adapters?" in
Securing Web Services and Managing Policies with Oracle Web Services Manager.

25.1.5.1 Proxy Services
On inbound requests the JCA adapter framework, which invokes a JCA proxy service, always
invokes the proxy service as anonymous.

25.1.5.2 Business Services
Depending on which type of JNDI service account is used in a JCA business service, the
outbound service endpoint is invoked with a subject in the following ways:

• No service account is used. Instead, an anonymous subject is used to invoke outbound
JCA endpoint.

• A pass-through service account is used. The subject associated with the inbound request
is used to invoke the outbound JCA endpoint.

• A static service account is used. The subject associated with the static user name and
password in the service account is used to invoke the outbound JCA endpoint.

• A mapping service account is used. The subject associated with the mapped user name
and password in the service account is used to invoke the outbound JCA endpoint.

25.1.6 Logging
The JCA transport logs messages using the Oracle WebLogic Server NonCatalog logger.
JCA adapter framework logs are redirected to the Oracle WebLogic Server log.

Debug log records generated by the JCA transport, JCA adapter framework, and JCA
adapters (except the Oracle BAM Adapter) are redirected to the Oracle WebLogic Server log
only if the oracle.osb.debug.jca-framework-adapter logger is configured for debugging.
JCA framework and adapter messages are logged with the tag
JCA_FRAMEWORK_AND_ADAPTER. For more information, see "Configuring and
Monitoring Log Files" in Administering Oracle Service Bus.

25.1.6.1 Oracle BAM Adapter Logging
To enable debug-level logging for Oracle BAM Adapter batch processing using RMI- and
SOAP-based connection pools, add the following logger entries to domain_home/config/
fmwconfig/servers/server_name/logging.xml:

• For RMI/EJB – <logger name="oracle.bam.adc.api.batching.BatchProcessor"
level="FINER"/>

• For SOAP – <logger name="oracle.bam.adapter.adc.soap.SOAPBatchProcessor"
level="FINER"/>

Chapter 25
Introduction to the JCA Transport

25-7

25.1.7 JCA Transport Error Handling
When the JCA framework and adapters throw an exception from an EIS, a JCA
business service propagates that exception to the SOAP fault inside a jca-runtime-
fault-detail element. This fault structure is defined in the JCA transport schema.

You can access the EIS fault details in one or more of the following sub-elements:

• eis-error-code (string): Captures the EIS error code propagated by the JCA
framework and adapter, if available.

• eis-error-message (string): Captures the EIS error message propagated by the
JCA framework and adapter, if available.

• exception (string): Captures the JCA framework and adapter stack trace.

Application errors cannot be retried with the JCA transport, and the transport has no
control of this option. Set this option to No.

25.1.8 URI Rewriting with JCA Transports
The JCA transport supports URI rewriting in a pipeline.

25.1.9 JCA Transport Message Encoding
For inbound requests and outbound responses, the JCA adapter framework sends
messages to JCA proxy services with UTF-8 encoding.

25.1.10 Rejected Messages
The JCA adapter framework automatically logs rejected messages (messages with
data errors) to a /domain/jca/read/rejectedMessages directory for each adapter. For
more information, see "Handling Rejected Messages" in Understanding Technology
Adapters.

25.2 JCA Adapter Configuration Recommendations for
Service Bus

The JCA transport is compatible with all JCA adapters, each of which can be
configured through a set of endpoint properties, activation or interaction specification
properties, or connection properties.

Any runtime or binding properties defined for the JCA adapter itself are not propagated
to the transport configuration in the proxy or business service. You need to manually
configure those properties. For more information, see JCA Transport Endpoint
Properties.

The following topics provide configuration recommendations specific to Service Bus.

25.2.1 Configuring the JCA Adapter Connections
The Oracle JCA adapters are deployed automatically in a Service Bus domain. You
must manually install and deploy other supported third-party resource adapters in the

Chapter 25
JCA Adapter Configuration Recommendations for Service Bus

25-8

Oracle WebLogic Server Administration Console. In order to use the deployed Oracle
Adapters, you must create a data source and connection pool for each adapter in Oracle
WebLogic Server. For information and instructions on creating the required data source and
connection pool, see "Adding an Adapter Connection Factory" in Understanding Technology
Adapters. Additional information about data sources is provided in that guide for each type of
adapter.

25.2.2 Configuring JCA Adapters that Poll a Database
By default, the Oracle adapters that poll a database use one thread to poll the database
(NumberOfThreads=1 property in the activation spec). Because the adapter never releases
that thread, which is by design, you may see a stuck thread stack trace in the server log. If
you set the NumberOfThreads to more than one, you may see stack traces for all of those
threads. You can ignore stuck thread stack traces.

To prevent stuck thread stack traces from appearing for the adapter, configure a Work
Manager that includes the following setting:

<ignore-stuck-threads>true</ignore-stuck-threads>

In the JCA proxy service, configure the transport's Dispatch Policy to use the Work Manager
you created.

For information about Work Managers, see the following topics:

• Using Work Managers with Service Bus

• "Using Work Managers to Optimize Scheduled Work" in Administering Server
Environments for Oracle WebLogic Server

25.2.3 Configuring the Oracle JCA Adapter for Database
Only one proxy service can poll a specific Oracle Database table. For the Oracle JCA
Adapter for Database data source, set the following options:

Option Setting

Initial Capacity 0

Test Connections on Reserve selected

Test Frequency 5

Test Table Name SQL SELECT 1 FROM DUAL

Seconds to Trust an Idle Pool Connection 0

Connection Creation Retry Frequency 10

25.2.3.1 Configuring the Oracle JCA Adapter for Database to Poll from a Single
Server

If you have a cluster of multiple managed servers on which a series of database adapters are
deployed, then the queries to retrieve data are executed concurrently on every server, each
requiring its own JDBC connection. However, only one managed server actually processes
the retrieved data. If a timed query with a lock does not return within the specified timeout, it
could result in too many opened connections.

Chapter 25
JCA Adapter Configuration Recommendations for Service Bus

25-9

The database adapter can be configured to work in active-passive mode using the
same configuration, resulting in only a single managed server being active at any point
in time. If the active server fails, the service migrates to one of the other available
servers in the cluster.

On the Proxy Service Definition screen, there is a Poll from Single Server option. If
this option is enabled, the adapter works in active-passive mode, and polls from a
single server. If this option is disabled, as it is by default, then the adapter polls from all
managed servers in the cluster.

For more information about the Proxy Service Definition screen and configuring the
transport, see How to Configure a Proxy Service Transport.

Migrating the Database Adapter Service

The database adapter is deployed as a singleton service within the Weblogic cluster
when the Poll from Single Server option is enabled. When the adapter service fails or
becomes unavailable due to server failure or any other reason, it is deactivated at the
managed server instance and activated on one of the available nodes in the cluster.
The process of migrating these services to another server is handled using the
singleton master. The singleton master function is based on the lease competition and
ensures exclusive ownership of a cluster-wide singleton entity. Within a cluster, there is
only a single owner of a lease. Each server in a cluster continuously attempts to
register the singleton master lease. If the server currently hosting the singleton master
fails, the next server in the queue takes over the lease and begins hosting the
singleton master.

The service migration option requires configuring a cluster leasing strategy to either
database or consensus leasing. The Consensus leasing maintains the leasing
information in-memory, whereas the Database leasing uses a database to store
leasing information. In both cases, a node manager must be running on every machine
hosting managed servers within the cluster.

Note:

If the server is configured for consensus leasing and all managed servers are
started simultaneously, and if the member discovery timeout is less than the
managed server starting time, the poller is started in multiple servers. This
causes IO issues. To avoid this issue, increase the member discovery
timeout to more than the managed server starting time, so that only one
poller starts at any one time.

To configure leasing, change the Migration Basis value in the Migration page on the
cluster Configuration tab.

For more information about migrating the service and database leasing, see
Determining Which Type of Leasing to Use and Automatic Migration of User-Defined
Singleton Services in Administering Clusters for Oracle WebLogic Server.

25.2.4 Configuring the Oracle JCA Adapter for AQ
For the Oracle JCA Adapter for AQ data source, select the Test Connections on
Reserve option.

Chapter 25
JCA Adapter Configuration Recommendations for Service Bus

25-10

25.2.5 Configuring the Oracle JCA Adapter for Coherence
If the objects in the Coherence cache are Plain Old Java Objects (POJOs), the adapter
configuration includes specifying the archive resource that stores the POJO JAR files. You
can create this resource in the Service Bus project before you can create the Coherence
adapter and its associated business service. The configuration wizard also gives you the
option to search the file system for a JAR file to upload, and lets you import the file and
create the archive resource in the Service Bus project. For more information about creating
archive resources, see Working with JAR Files.

25.2.6 Configuring the Salesforce Cloud Adapter
In addition to a dependency on the standard WSDL file, the Salesforce adapter has a
dependency on an enterprise WSDL file, which you generate directly from Salesforce. This
file is associated with the JCA resource in addition to the standard JCA WSDL file, and is
referenced in the proxy or business service's non-managed connection property as the value
for the targetWSDLURL property.

25.3 Working with JCA Binding Resources
Using Oracle JDeveloper and other supported JCA development environments, you can
create and configure a JCA adapter and create the JCA adapter resources (.jca files and
WSDL files) used for the back-end integration.

In the Oracle Service Bus Console, you cannot create and configure a JCA adapter, but you
can upload an adapter you created in JDeveloper into a JCA binding resource. Once you
create the JCA binding resource, you can generate proxy and business services that use the
Service Bus JCA transport to communicate with the EIS applications through the JCA
adapter.

Once you create a JCA adapter in JDeveloper, you can import it into a JCA binding resource
in the Oracle Service Bus Console if that is your development environment.

25.3.1 How to Create a JCA Adapter in JDeveloper
The Service Bus Overview Editor provides a simple drag-and-drop method of creating JCA
adapters in Service Bus projects in JDeveloper. You can drag any supported JCA adapter
from the Component window onto the canvas, which launches the configuration wizard for
that adapter. Completing the wizard creates the JCA file and proxy or business service, and
adds all the required files to the Service Bus project.

Note:

When you create a business or proxy service in JDeveloper by creating a JCA
adapter directly in the overview, the JCA transport is still the intermediary between
the service and the adapter.

For more information, see Adding Service Bus Components in this guide and Introduction to
Oracle JCA Adapters in Understanding Technology Adapters

Chapter 25
Working with JCA Binding Resources

25-11

25.3.2 How to Import JCA Adapters in the Oracle Service Bus Console
The easiest way to create JCA binding resources in the Oracle Service Bus Console is
by bulk importing the JCA resources you created in JDeveloper, including the JCA file,
associated WSDL file, and TopLink mapping file). With a bulk import, Service Bus
automatically creates JCA bindings out of JCA files, WSDL resources out of WSDL
files, and XML document resources out of mapping files. Service Bus maintains the
dependencies among the files. For more information on importing, see Importing and
Exporting Resources and Configurations .

Once you import your JCA resources, you can generate proxy or business services
out of them, as described in How to Generate a Proxy Service from a JCA Binding
Resource and How to Generate a Business Service from a JCA Binding Resource.

25.3.3 How to Create a JCA Binding Resource in the Oracle Service
Bus Console

If you do not bulk import your JCA resources into the Oracle Service Bus Console, you
can manually create JCA binding resources and upload the JCA file to the console. A
JCA file and WSDL file are required to create a JCA proxy or business service in the
Oracle Service Bus Console. This section describes the process for creating a JCA
binding resource. For information about creating a WSDL resource, see How to Create
a WSDL Resource in the Console.

To create a JCA binding resource in the console:

1. In Oracle JDeveloper, create and configure a JCA adapter. You can do this directly
in a Service Bus project using the Service Bus Overview Editor.

For more information, see Adding Service Bus Components.

2. In the Oracle Service Bus Console, upload any JCA dependencies for the JCA
adapter you created in Oracle JDeveloper, such as the WSDL and XML resources.

3. In the Project Navigator, right-click the project or folder to contain the new JCA
binding resource, point to Create, and select Resource Click Interfaces, click
JCA Binding, and then click OK.

4. Do one of the following:

• To upload a JCA file when you create the resource, click Browse next to the
File Upload field and then navigate to and select the JCA file to use.

The Resource Name field is automatically populated with the file name minus
the file extension. You can change this name and optionally enter a
description. JCA binding names must be unique.

• To create a JCA binding resource and upload the JCA file at a later time, enter
a name and optional description for the resource.

5. Click Create.

The JCA Binding Definition Editor appears.

6. In the JCA Binding Definition Editor toolbar, click Save.

7. To end the session and deploy the configuration to the runtime, click Activate.

Chapter 25
Working with JCA Binding Resources

25-12

After you add JCA binding resources and its dependencies, you can generate proxy and
business services from JCA bindings. For more information, see How to Generate a Proxy
Service from a JCA Binding Resource and How to Generate a Business Service from a JCA
Binding Resource.

25.3.4 How to Edit JCA Binding Resources in the Console
If you are using the Oracle Service Bus Console, use the following procedure to edit JCA
bindings.

For information about modifying JCA adapters in JDeveloper, see How to Edit Components
from the Service Bus Overview Editor.

To edit a JCA binding in the console:

1. In the Project Navigator, expand the project and folders containing the JCA binding to
edit.

2. Right-click the JCA binding name, and select Open.

3. To search for and select a new WSDL file to reference, click the Choose a WSDL icon in
the WSDL Dependency section.

4. To modify the contents of the JCA file or upload a new JCA file, do the following:

a. Click Edit Source in the toolbar.

The Edit Source dialog appears.

b. To browse to and select a new JCA file to upload, click Browse.

c. To modify the contents of the file, update the code directly in the Contents section of
the dialog.

d. Click Save.

5. In the JCA Binding Definition Editor toolbar, click Save.

6. To end the session and deploy the configuration to the runtime, click Activate.

25.3.5 How to Delete JCA Binding Resources
If any business service or proxy service is based on the JCA binding resource, remove the
JCA binding resource from the business service or proxy service before deleting the JCA
binding resource itself. In the Oracle Service Bus Console, open the JCA binding in the JCA
Binding Definition Editor and click the Tools icon in the upper right, and then select
References to find out if it has any references. In JDeveloper, right-click the JCA file and
select Explore Dependencies.

To delete a JCA binding resource:

1. In the Application Navigator or Project Navigator, expand the project and folders
containing the JCA binding to delete.

2. Right-click the name of the JCA binding, and select Delete.

The JCA binding resource is deleted. A Deletion Warning icon appears when other
resources reference this resource. You can delete the resource with a warning
confirmation. This might result in conflicts due to unresolved references to the deleted
resource.

Chapter 25
Working with JCA Binding Resources

25-13

3. If you are using the Oracle Service Bus Console, click Activate to end the session
and deploy the configuration to the runtime.

25.3.6 Using Custom JCA Adapters
You can create and use custom JCA adapters in Service Bus projects. You can only
create a custom adapter in JDeveloper. Once you create the adapter, you can either
use it in JDeveloper or you can import the adapter's associated file into the Oracle
Service Bus Console as described in How to Create a JCA Binding Resource in the
Oracle Service Bus Console. You can then use the adapter in conjunction with the JCA
transport like you would any other JCA adapter.

Note:

Unlike some supported Oracle SOA Suite adapters that include dependency
resources such as TopLink XML mapping files or XSLT files, Service Bus
does not support the use of dependency resources with custom adapters.

25.3.6.1 About the Custom Adapter Registration File
All custom adapters need to be registered in the OSBSupportedAdapters.xml file,
located in the Service Bus home directory in OSB_ORACLE_HOME/config/adapter. This
file simply lists the names of all the custom JCA adapters for Service Bus. If you have
not previously registered a custom JCA adapter, you may need to create the
registration file. Below is a sample file you can use to create your own registration file.

<jca:osb-supported-adapters
 xmlns:jca="http://www.bea.com/wli/sb/transports/jca">
 <jca:adapter-type>CUSTOM_ADAPTER</jca:adapter-type>
 <jca:adapter-type>SAMPLE_ADAPTER</jca:adapter-type>
 <jca:adapter-type>MY_ADAPTER</jca:adapter-type>
</jca:osb-supported-adapters>

The value for the adapter-type element comes from the adapter JCA file. It is the
same as the value of the adapter attribute in the adapter-config element with the
following changes:

• Convert all letters to capital letters.

• Convert all single spaces to an underscore; for example, My Adapter would be
MY_ADAPTER.

• Convert consecutive spaces to a single underscore; for example, My Adapter
would also be MY_ADAPTER.

For example, given the following in the adapter JCA file:

<adapter-config name="custom-adapter-endpoint" adapter="My Adapter"
 wsdlLocation="custom-adapter-endpoint.wsdl"
 xmlns="http://platform.integration.oracle/blocks/adapter/fw/metadata">
. . .
</adapter-config>

The entry in OSBSupportedAdapters.xml would be:

<jca:adapter-type>MY_ADAPTER</jca:adapter-type>

Chapter 25
Working with JCA Binding Resources

25-14

25.3.6.2 Registering and Using a Custom JCA Adapter with Service Bus
To register and use a custom JCA adapter with Service Bus:

1. In JDeveloper, create a custom JCA adapter.

You can do this using the Service Bus Overview Editor, as described in Adding Service
Bus Components. For more information about configuring a custom adapter, see
Creating a Custom Adapter in Understanding Technology Adapters.

2. Do one of the following, using the sample registration file in About the Custom Adapter
Registration File as a basis:

• If the custom adapter registration file, OSB_ORACLE_HOME/config/adapter/
OSBSupportedAdapters.xml, already exists, add your custom adapter to the list of
supported adapter types.

• If the custom adapter registration file does not exist, create the file. Replace the
sample adapter type names with the actual names from your adapter JCA file.

3. If you are using the Oracle Service Bus Console for development, import the new custom
adapter JCA resources into the console. For information and instructions, see Working
with JCA Binding Resources.

4. On the JCA transport configuration page of the business or proxy service, configure the
endpoint properties, dynamic endpoint properties, and activation or interaction spec
properties. For information about the properties that are available for each adapter, see
Oracle JCA Adapter Properties in Understanding Technology Adapters.

Note:

• You can use the JCA file to generate a proxy or business service, or you
can configure JCA proxy or business services to use your custom adapter.
For information on generating a service from a JCA file, see Creating and
Configuring Business Services or Creating and Configuring Proxy Services.

• The JCA transport supports normalized message properties for custom
adapters, as described in JCA Transport Headers and Normalized Message
Properties.

25.4 Working with JavaScript Resources
If you are working in JDeveloper, you can add JavaScript to your projects using standard
JDeveloper features.

For more information, see Developing Applications with Script Languagesin Developing
Applications with Oracle JDeveloper.

The JCA Adapter for Sockets provides support for handling a handshake using custom
JavaScript in addition to using XSLT and custom Java code. JavaScript is a light-weight
scripting language used to add interactive features to HTML pages.

Chapter 25
Working with JavaScript Resources

25-15

25.4.1 How to Create JavaScript Resources
In the Oracle Service Bus Console, you create a JavaScript resource and upload an
existing JavaScript file into the resource.

To create a JavaScript resource in the Oracle Service Bus Console:

1. In Oracle JDeveloper or other editor, create and define the JavaScript file.

2. In the Project Navigator of the Oracle Service Bus Console, right-click the project
or folder to contain the new JavaScript resource, point to Create, and select
Resource Click Miscellaneous, click JavaScript, and then click OK.

3. Do one of the following:

• To upload a JavaScript file when you create the resource, click Browse next to
the File Upload field and then navigate to and select the file to use.

The Resource Name field is automatically populated with the file name minus
the file extension. You can change this name and optionally enter a
description. JavaScript resource names must be unique.

• To create a JavaScript resource and upload the actual file at a later time, enter
a name and optional description for the resource.

4. Click Create.

The JavaScript Definition Editor appears.

5. In the JavaScript Definition Editor toolbar, click Save.

6. To end the session and deploy the configuration to the runtime, click Activate.

25.4.2 How to Edit JavaScript Resources
If you are using JDeveloper, you can edit the JavaScript file using the standard editors
in the IDE. If you are using the Oracle Service Bus Console, use the following
procedure to edit JavaScript resources.

To edit a JavaScript resource in the Oracle Service Bus Console:

1. In the Project Navigator, expand the project and folders containing the JavaScript
resource to edit.

2. Right-click the JavaScript resource name, and select Open.

3. To modify the contents of the JavaScript resource or upload a new JavaScript
resource, do the following:

a. Click Edit Source in the toolbar.

The Edit Source dialog appears.

b. To browse to and select a new JCA file to upload, click Browse.

c. To modify the contents of the file, update the code directly in the Contents
section of the dialog.

d. Click Save.

4. In the JavaScript Definition Editor toolbar, click Save.

5. To end the session and deploy the configuration to the runtime, click Activate.

Chapter 25
Working with JavaScript Resources

25-16

25.4.3 How to Delete JavaScript Resources
If the JavaScript resource is associated with a JCA adapter, remove the resource from the
adapter before deleting the JavaScript resource itself. In the Oracle Service Bus Console,
open the JavaScript resource in the JavaScript Definition Editor and click the Tools icon in
the upper right, and then select References to find out if it has any references. In
JDeveloper, right-click the JavaScript file and select Explore Dependencies.

To delete a javaScript resource:

1. In the Application Navigator or Project Navigator, expand the project and folders
containing the JavaScript resource to delete.

2. Right-click the name of the resource to delete, and select Delete.

The javaScript resource is deleted. A Deletion Warning icon appears when other
resources reference this resource. You can delete the resource with a warning
confirmation. This might result in conflicts due to unresolved references to the deleted
resource.

3. If you are using the Oracle Service Bus Console, click Activate to end the session and
deploy the configuration to the runtime.

25.5 JCA Transport Configuration Reference
This section provides descriptions for JCA transport-specific configuration options.

• JCA Transport Endpoint URIs

• JCA Transport Headers and Normalized Message Properties

• JCA Transport Endpoint Properties

• JCA Transport Environment Variables

• Configuring Proxy and Business Services to Use the JCA Transport

• Proxy Service Operation Configuration

Note:

Note that runtime and binding properties defined in the JCA adapter file are not
propagated to the proxy or business service configuration. You need to configure
those properties manually by modifying the endpoint, spec, and connection
properties described in the following sections.

For descriptions of general business and proxy service configuration options, see
the following topics:

• Creating and Configuring Proxy Services

• Creating and Configuring Business Services

25.5.1 JCA Transport Endpoint URIs
Use the following endpoint URI format for JCA services:

Chapter 25
JCA Transport Configuration Reference

25-17

jca://resource_adapter_jndi

where resource_adapter_jndi is the value of the location attribute in the
connection-factory element in the JCA file. This value matches the adapter
connection factory JNDI.

25.5.1.1 Endpoint Redeployment
JCA service endpoints are dependent on WSDL files, service accounts, JCA
resources, XML schemas, and XML resources (TopLink mapping files). When any of
those resource types is updated and saved for a service, the JCA service endpoint is
automatically deleted, recreated, and redeployed. For a JCA proxy service, a new
adapter listener is also initialized to listen for inbound requests.

JCA endpoint redeployment has a potential impact on services at runtime, depending
on whether or not you select the Always use configuration from JCA file option for
a service as described in Table 25-2. For example, after a JCA endpoint is redeployed:

• If Always use configuration from JCA file is selected, the updated JCA file is
used to connect and interact with the resource adapter at runtime.

• If Always use configuration from JCA file is not selected, existing service
configuration overrides are used to interact with the resource adapter at runtime
instead of corresponding JCA file properties that may have been updated.

25.5.2 JCA Transport Headers and Normalized Message Properties
Oracle JCA adapters transmit header information through normalized message
properties (with the exception of the Oracle JCA Adapter for AQ's payload header).
Service Bus supports the JCA adapter normalized message properties. On inbound
messages from Oracle JCA adapters, the Service Bus JCA transport automatically
maps normalized message properties to transport headers as key value pairs. On
outbound messages to JCA adapters, the JCA transport automatically converts
transport headers to normalized message properties.

You can select each normalized message property from a list of options when creating
an XQuery expression.

Note:

You cannot map normalized message properties to SOAP message headers
in Service Bus.

The following sections list the predefined transport headers in Service Bus that support
normalized message properties. Service Bus maps all other normalized message
properties to user-defined transport headers.

Service Bus transport headers are predefined in the $inbound and $outbound request
variables. For lists and descriptions of the normalized message properties, see the
following topics in Understanding Technology Adapters:

• JCA Properties for Oracle AQ Adapter: Normalized Properties

• Coherence Adapter Normalized Properties

Chapter 25
JCA Transport Configuration Reference

25-18

• JCA Properties for Oracle Database Adapter: Normalized Properties

• JCA Properties for Oracle File Adapter: Normalized Properties

• JCA Properties for Oracle FTP Adapter: Normalized Properties

• JCA Properties for Oracle JMS Adapter: Normalized Properties

• JCA Properties for Oracle MQ Adapter: Normalized Properties and RFH Version 2
(RFH2) Headers

• MSMQ Adapter Normalized Properties

• UMS Adapter Message Headers

25.5.3 JCA Transport Endpoint Properties
The JCA transport supports a number of service endpoint properties you can set in the JCA
proxy or business service configuration, as described in Configuring Proxy and Business
Services to Use the JCA Transport. For more information about endpoint properties, see
Oracle JCA Adapter Properties in Understanding Technology Adapters.

Caution:

Even though these properties may be defined in the JCA adapter file, they also
need to be defined for the business or proxy service.

25.5.3.1 Standard Endpoint Properties
A standard set of endpoint properties applies to most JCA adapters. When you configure a
JCA-based proxy or business service, you can select these properties from a list of options
and configure their value. Table 25-1 lists and describes the endpoint properties you can
select for a JCA transport.

Table 25-1 JCA Transport Endpoint Properties

Property Name Description

jca.retry.count Indicates the maximum number of retries before rejection.

jca.retry.interval Indicates the time interval between retries (measured in seconds).

jca.retry.backoff Indicates the retry interval growth factor (positive integer).

jca.retry.maxInterval Indicates the maximum value of retry interval; that is, a cap if backoff
is greater than 1.

jca.retry.maxPeriod Indicates the maximum total retry period for outbound JCA adapters.
Retries do not occur longer than the value specified in this property.

activationInstances Increases the number of polling (worker) threads for an inbound JCA
resource adapter. It is only meant to help increase concurrency for
adapters that do not natively support multithreading. Since most of the
adapters included with Oracle Fusion Middleware natively support
multithreading, this setting is mostly useful to third party (custom) JCA
adapters, which do not natively support multithreading. Set this
property to the number of threads required for a particular JCA
adapter.

Chapter 25
JCA Transport Configuration Reference

25-19

Table 25-1 (Cont.) JCA Transport Endpoint Properties

Property Name Description

payloadSizeThreshold Specifies the payload size threshold in the adapter layer. The
messages that have sizes beyond the configured threshold limit are
rejected. If this property is not configured, it does not impose any
restriction on the size of messages.

rejectUncorrelatedMessages Specifies whether to reject messages that cannot be correlated.
When native correlation is used to correlate an inbound asynchronous
message with a previous outbound message, the JCA framework
normally tries to post the message to the service, whether the
inbound message can be correlated or not. By setting this property to
true, the JCA framework rejects a message that cannot be correlated
(when native correlation is active).

UseWorkManager Specifies a custom work manager to use for starting polling (worker)
threads instead of using the standard work manager used by default.
Use this property to configure an inbound JCA endpoint to use a
specific WebLogic Work Manager. The work manager is only used to
start the JCA service for which this property is defined. The value for
this property is just the name of the work manager. If the JNDI lookup
fails, the default Service Bus work manager is used.

25.5.3.2 Dynamic Endpoint Properties
Most JCA adapters support a large set of endpoint properties that are unique to the
type of system being integrated. When you configure a JCA-based proxy or business
service, you can select these properties from a list of options and configure their value.
For lists and descriptions of the normalized message properties, see the following
topics in Understanding Technology Adapters:

• Binding Properties for all Oracle JCA Adapters

• Binding Properties for Oracle AQ Adapter

• Oracle JCA Adapter for Database

• Binding Properties for Oracle File and FTP Adapters

• Binding Properties Specific to Oracle FTP Adapter

• Binding Properties for Oracle JMS Adapter

• Binding Properties for Oracle MQ Series Adapter

• MSMQ Adapter Binding Properties

• UMS Adapter Message Headers

25.5.3.3 JCA Adapter Properties
For information about JCA adapter properties, see Oracle JCA Adapter Properties in
Understanding Technology Adapters.

If you are configuring newly created adapters in Reference Configuration mode, you
can modify JCA Adapter endpoint properties directly in the Adapter Configuration
Wizard. See JCA Endpoint Properties in the Adapter Configuration Wizard.

Chapter 25
JCA Transport Configuration Reference

25-20

25.5.3.4 Activation and Interaction Specification Properties
Activation specification properties are specific to proxy services and interaction specification
properties are specific to business services in Service Bus. You cannot add or remove these
properties; you can only change their values. The properties that appear on the Transport
configuration page vary depending on how you defined the adapter properties when creating
the adapter in the Adapter Configuration Wizard.

Updating these properties require the adapter endpoint to be recycled. These types of
properties have various dependencies on each other. For lists and descriptions of the
activation and interaction specification properties, see the following topics in Understanding
Technology Adapters:

• Properties for all Oracle JCA Adapters

• JCA Properties for Oracle AQ Adapter

• Coherence Adapter JCA Properties

• Oracle JCA Adapter for Database

• JCA Properties for Oracle File and FTP Adapters

• JCA Properties Specific to Oracle FTP Adapter

• JCA Properties for Oracle JMS Adapter

• LDAP Adapter Connection Properties

• JCA Properties for Oracle MQ Series Adapter

• MSMQ Adapter JCA Properties

• JCA Properties for Oracle Socket Adapter

• UMS Adapter Activation Spec Properties

• UMS Adapter Interaction Specification Properties

25.5.4 JCA Transport Environment Variables
The JCA transport declares the following environment variable values, which can be
maintained when moving a Service Bus configuration among different deployment
environments.

For descriptions of these values, see Configuring Proxy and Business Services to Use the
JCA Transport. For more information about environment variables, see "Customizing Oracle
Service Bus Environments" in Administering Oracle Service Bus.

• Work Manager

• JCA Always Use JCA File Flag

• JCA Connection Mode

• JCA Overwrite Connection Authentication Flag

25.5.5 Configuring Proxy and Business Services to Use the JCA Transport
Table 25-2 describes the options available on the JCA transport configuration page in either
JDeveloper or the Oracle Service Bus Console.

Chapter 25
JCA Transport Configuration Reference

25-21

Table 25-2 JCA Transport Properties

Option Description

JCA File Click Browse to select a JCA resource. The JCA resource defines
different aspects of the service, such as details about the adapter
used, a binding to the WSDL and TopLink mapping files, and the
activation/interaction spec properties required by the service.

Once you select a valid JCA resource, the remaining transport
configuration fields become available.

Adapter Name Displays the name of the adapter that the JCA service will use.

Adapter Type Displays the adapter type.

Dispatch Policy Select the instance of WebLogic Server Work Manager that you want
to use for the dispatch policy for this endpoint. The default Work
Manager is used if no other Work Manager exists.

For information about Work Managers, see the following topics:

• Using Work Managers with Service Bus
• Using Work Managers to Optimize Scheduled Work in

Administering Server Environments for Oracle WebLogic Server

.

JNDI Service Account Click Browse and select a JNDIservice account, which is used for
JNDI context security to access the EIS adapter managed connection
factory. If no service account is specified, an anonymous subject is
used.

For JCA business services, there is no restriction on the type of JNDI
service account that can be configured, such as static or pass-
through, but the runtime must be able to access a user name and
password. JCA proxy services can use only static JNDI service
accounts.

For more information on JNDI service accounts, see Security for JCA
Transports.

EndPoint Properties Click the Add icon to select endpoint properties from the available list
and assign a value to each property. This field lets you assign values
to endpoint properties, such as the number of retries for the type of
adapter the service uses.

For links to information about supported endpoint properties, see JCA
Transport Endpoint Properties.

Dynamic EndPoint
Properties

Click the Add icon to define dynamic properties for the endpoint and
assign a value to each property. Enter a name/value pair for each
dynamic endpoint property you want to provide. The endpoint
property key matches the query parameter name.

This option lets you pass request parameters to JCA-compliant
services. For example, you can use a dynamic endpoint property to
pass database query parameters to the Oracle JCA Adapter for
Database.

For more information on querying with parameters, see Oracle JCA
Adapter for Database in Understanding Technology Adapters. For
links to information about supported endpoint properties, see JCA
Transport Endpoint Properties.

Chapter 25
JCA Transport Configuration Reference

25-22

Table 25-2 (Cont.) JCA Transport Properties

Option Description

Always use
configuration from JCA
file

Select this option to specify whether Activation Spec Properties
(proxy services) and Interaction Spec Properties (business services)
are always used from the JCA file.

If you select this option (default), the JCA transport interacts with the
JCA framework using the activation or interaction spec properties in
the JCA file. If you clear this option, you can override the activation
and interaction spec Properties.

For the redeployment impact of using this option, see Endpoint
Redeployment.

Operation Name Displays a read-only name of the selected WSDL operation. Each
operation can have its own activation or interaction spec properties.

Activation/Interaction
Spec Properties

For business services, this field displays the outbound interaction
spec properties for the JCA inbound operation shown in the
Operation Name field. For proxy services, this field displays the
activation spec properties for the JCA inbound operation shown in the
Operation Name field. You can override the activation or interaction
spec properties if you clear Always use configuration from JCA
file.

Note: For Oracle Adapter Suite adapters, activation/interaction spec
properties are read-only. The Oracle Adapter Suite adapters store
their own configurations, which you must change in the Oracle
Adapter Suite management tools.

Connection Mode Select from one of the following options to specify how the service
connects to the associated JCA adapter.

Managed: Recommended for production. The JCA transport
connects to the JCA adapter through the JCA adapter-managed
connection factory configured in WebLogic Server. For authentication,
specify a JNDI service account. If no JNDI service account is
specified, an anonymous subject is used.

Non-Managed: The JCA transport connects to the JCA adapter
through the JCA adapter framework, which acts as a container for the
JCA adapter. For authentication, specify a JNDI service account. If no
JNDI service account is specified, an anonymous subject is used. You
can edit the connection factory properties for overrides.

Notes: These options are only available for certain adapters, such as
legacy and Cloud adapters. If you want to change from non-managed
mode to managed mode, deselect the Overwrite Connection
Authentication Properties option before changing modes.

Overwrite Connection
Authentication
Properties

Select this option to specify that the user name and password in the
adapter connection factory be overwritten by the Connection
Authentication Service Account credentials. If no service account
is specified, an anonymous subject is used.

This option is available only if the connection factory properties
contain user name and password properties, the connection mode is
Non-Managed, and Always use configuration from JCA file is not
selected.

Chapter 25
JCA Transport Configuration Reference

25-23

Table 25-2 (Cont.) JCA Transport Properties

Option Description

Connection
Authentication Service
Account

Browse to and select the service account to use for authentication if
you selected Overwrite Connection Authentication Properties
above (you must specify a service account if you selected Overwrite
Connection Authentication Properties). For proxy services, only
static service accounts are available.

Connection Factory
Properties

Enter any connection factory override values.

Notes: You can override property values if you deselect Always use
configuration from JCA file and the connection mode is non-
managed. In production environments, use managed mode so the
JCA transport connects to the adapter connection factory configured
in WebLogic Server.

For more information on endpoint and activation and interaction spec properties, see
Adapter Framework in Understanding Technology Adapters.

25.5.6 Proxy Service Operation Configuration
JCA WSDL files support document literal binding only. The only algorithm for
Operation configuration in JCA proxy services is SOAPAction Header. Service Bus
effective WSDL files always contain SOAPAction. The value of the SOAPAction field is
the operation name.

Chapter 25
JCA Transport Configuration Reference

25-24

26
Creating REST Services with Oracle Service
Bus

This chapter describes how to integrate Representational State Transfer (REST) operations
as binding components in Service Bus projects. It also describes Web Application Definition
Language (WADL) documents, which are the WSDL equivalent for RESTful services.

You can create REST proxy and business services from JDeveloper and the Service Bus
console.

This chapter includes the following sections:

• Oracle Service Bus and REST

• WADL Documents for REST Services in Service Bus

• Creating WADL Documents

• Modifying WADL Documents

• Creating REST Services

• Accessing WADL Documents in a Web Browser

26.1 Oracle Service Bus and REST
REST is an architecture for designing network applications. REST provides a lightweight
alternative to traditional WSDL-based web services.

RESTful applications use HTTP requests to post data (create and update), get data (for
example, make queries), and delete data.

26.1.1 REST Features in Service Bus
Service Bus provides the following REST support:

• REST support in proxy and business services and pipelines

• Integration with external REST APIs

• XML, JavaScript Object Notation (JSON), with translation to and from XML, and URL-
encoded data

• JDeveloper wizard for modeling REST interfaces and WSDL mappings

• Automatic creation of a WADL file based on an underlying WSDL (SOAP to REST) or by
designing the API in the REST binding wizard.

• Ability to browse and consume Oracle REST endpoints from within JDeveloper

• Oracle Web Services Manager (OWSM) policy and OAuth 2 policy support for REST
security

26-1

While Service Bus does not follow the Hypermedia as the Engine of Application State
(HATEOAS) approach, it does support certain HATEOAS features by defining the
actions in the pipeline. This includes the following capabilities:

• Setting the HTTP link header in a REST proxy service response.

• Reading the value of the HTTP link header in a REST business service response.

• Overriding the endpoint URI for a REST business service request.

When you create a REST proxy service, it can be invoked from standalone REST
clients. The REST business services you create can be invoked as WSDL-based
services.

Note:

Service Bus does not support MIME attachments with REST, though you can
return payload that contains links to attachment content.

26.1.2 REST Implementation in Service Bus
Service Bus supports REST natively. REST proxy services do not have to convert
REST-native payloads to SOAP; these payloads are handled natively by REST-based
pipelines, without the need to be converted to or from XML.

Note:

For native REST services, Service Bus does not automatically translate
inbound responses based on the client’s HTTP Accept header. When using
the REST binding, the return payload is based on the user's Accept header,
unless only one type of payload is selected in the REST binding. For
example, a JSON payload in $body is sent out as is (JSON) regardless of the
value of the inbound request’s Accept Value header. You should use the nXSD
Translate action in the pipeline to provide manual translation, as needed.

When you connect a business service to the REST API and call the service using
REST option, you receive both static and dynamic data. However, when you call the
service using the SOAP option, you do not receive the data for dynamic fields. There
are two issues:

• The schema is static and predefined. Dynamic fields and elements do not work.

• Field names cannot start with numbers. This is a restriction, per xs:NCName, where
NCName stands for non-colonized name. NCName is defined as an XML Schema
regular expression [\i-[:]][\c-[:]]*.

Consider the following example of JSON:

{"result" : {
 "application" : {
 "subjectIndicator" : true,
 "requestingIndicator" : true

Chapter 26
Oracle Service Bus and REST

26-2

 },
 "members" : {
 "973641968973565128" : {
 },
 "1006328483025309076" : {
 },
 "1006328483025309876" : {
 }
 }
}}

The result with <application>…</application> data is present. However, you receive an
empty <members/> element. Even though there are values in the members element, the
returned value is empty.

The following native REST service types are available in Service Bus:

• Untyped REST proxy and business services: services for which method (operation)
information may not be known at design time.

• Typed REST proxy and business services: services for which method (operation)
information is known at design time; method information is defined in WADL files for
these services. You can provide a WADL file, or you can use the wizard to define the
service’s methods and create a WADL file when you create the service. 12.1.3 REST
WADL files are supported. SOA extensions, which were defined to map REST operations
with WSDL, will be ignored. However, Service Bus checks any WADL used by a REST
service for both syntax and semantics to make sure it conforms to the rules.

• REST-based pipelines: pipelines that can be invoked by native REST proxy services. As
with native REST proxy and business services, REST-based pipelines can be typed or
untyped. The new REST branch node can be used in untyped REST-based pipelines or
pipeline templates. See REST Branching for more information.

Note:

You cannot create a Native REST pipeline with a reference to a 12.1.3-style
WADL. The WADL reference must be a native REST WADL.

Note that Service Bus also supports the REST service implementation from the 12.1.3
release. These services, with WSDL-based internal interfaces, can still be created using
JDeveloper. See How to Create WSDL-Based REST Services for Service Bus Using
JDeveloper for more information. You can also create typed REST business services based
on elements from a SOAP XML schema using the Service Bus Console.

26.1.3 Service Type Compatability of Native REST Services
Service types able to invoke or be invoked by Native REST services are described below.

• Untyped REST proxy services can invoke only other native REST services (a pipeline or
business service).

• Typed Native REST proxy services can invoke untyped native REST services or typed
REST services (pipelines or business services) with the same WADL reference.

Chapter 26
Oracle Service Bus and REST

26-3

Note:

No component (proxy, pipeline, or split join) is able to invoke native
REST proxy services except Local transport proxy services.

• Native REST business services can be invoked by any pipeline.

26.1.4 Payloads Supported by Native REST Services
Native REST services can send and receive payloads of the following types: JSON,
XML, Form URL-encoded, Text, and Opaque.

Payloads larger than 10 megabytes are rejected. Large attachments are not rejected.

Note:

Note that the SOAP to REST case is not considered Native REST. Services
of this type support payloads of only the application/xml or application/
json types.

JSON

Payloads with Content-Type application/json are considered JSON payloads and
parsed accordingly into a JSON native data model. If you were to log $body, the
character data of JSON payload is wrapped with soap:Body tag, as shown in the
following example:

$body = <soap-env:Body><![CDATA[{ “foo1” : “foo2”}]]><soap-env:Body>

This is not to say that a JSON payload is represented as character data internally in
Service Bus, but only for the purpose of logging it is represented as character data.
This is somewhat similar to the model for representation of payload with Messaging/
Text service type. When a JSON payload needs to be manipulated by JavaScript or
action (see below), the JSON native object will be wrapped in a scriptable façade
required by the JavaScript.

JSON payloads are parsed and fully materialized into JSON data model objects
regardless of whether a pipeline is marked for Content streaming or not.

XML, Text, and Form URL-Encoded

The native REST service type defined above will be able to receive and send payload
with Content-Type.

• text/xml or application/xml – this is considered an XML payload.

• text/plain, application/textor x-www-form-urlencoded – these are considered
Text payloads.

Chapter 26
Oracle Service Bus and REST

26-4

XML payloads in native REST binding are modeled exactly like anyXML or Messaging/XML
content is modeled; the contents of $body contains inline payload XML.

Text payloads in Native REST binding are modeled exactly like Messaging/Text is modeled;
the contents of $body contains inline payload character data.

When the pipeline has content streaming enabled, Text and XML content will be handled
without full materialization, the same way that anyXML and Messaging services are handled.

Opaque (Binary)

Any Content-Type value received by the REST service other than the following is considered
an opaque (or binary) payload:

• application/json

• application/xml

• text/xml

• text/plain

• application/text

• application/x-www-form-urlencoded

The purpose of opaque payloads is to be able to send a binary message, such as an image
file, as a response from a REST proxy or as a request to a REST business service, or to
receive a binary message as a response to a REST business service or request to a REST
proxy. Opaque payload contents are stored in the binary repository. $body contains a
reference to it using the <ctx:binary-content> element.

If you use custom media types, such as example/bookmarks+xml, you can use custom XPath
functions or the Java Callout Action to covert binary to Text, XML, or JSON text.

When the pipeline has content streaming enabled, opaque payloads are processed in a
streaming fashion, just as they are for a Messaging/Binary service type.

26.1.5 Response and Failure Codes for Native REST Services
You can configure a single default value for a successful response and single default value
for a failure response. A status code is considered successful if it falls within the range of 200
to 300.

In the Native REST proxy service runtime, when an HTTP status code is not set in the
inbound response metadata, the default successful status code, as defined in the WADL for
the corresponding REST operation, is sent as the success response code. If the HTTP status
code set in inbound response metadata then that status code is returned.

Similarly, in case of failure, when an HTTP status code is not set in inbound response
metadata, the default failure status code, as defined in the WADL for the corresponding
REST operation, is sent back to client.

For business services there are no status codes defined in the WADL created by the REST
Wizard. If an existing WADL contains status codes, they are ignored by runtime. This is so
that any response code can be consumed from a business service invocation.

Chapter 26
Oracle Service Bus and REST

26-5

26.1.6 Unhandled Errors and Native REST Services
When an unhandled error occurs, Native REST services return a payload back to the
caller according to the already defined schema in Errors.xsd:

 <element name="RestError" type="err:RestErrorType"/>
 <complexType name="RestErrorType">
 <sequence>
 <element name="errorMessage" minOccurs="0" type="string" />
 <element name="errorCode" minOccurs="0" type="string" />
 </sequence>
 </complexType>

If the value of incoming HTTP Accept Header is application/json or null, the above
payload is returned in JSON format, as shown in the following example:

 {
 "errorMessage" : "XPath can only be executed against XML or MFL
content",
 "errorCode" : "OSB-395357"
 }

If the value of the HTTP Accept Header is application/xml, it will be returned in XML
format. If the HTTP Accept Header value is anything other than application/json,
application/xml, or null, no payload is returned. Error responses are returned with
an HTTP status code of 500.

26.1.7 REST Security
REST services in Service Bus can be secured using Oracle Web Services Manager
(OWSM) policies. For more information, see "Which OWSM Policies Are Supported for
RESTful Web Services and Clients?" in Securing Web Services and Managing Policies
with Oracle Web Services Manager.

Services with REST endpoints can also be secured using OAuth. See Securing
Services with REST Endpoints Using OAuth.

Native REST proxy services support transport-level authentication mechanisms
already supported by any HTTP proxy service, such as Basic Authentication and SSL.
However, message-level security is not supported.

26.2 WADL Documents for REST Services in Service Bus
When you create a proxy or business service based on the REST binding, JDeveloper
automatically generates the required WADL document.

The WADL file generated by the Create REST Binding wizard is based either on an
existing WSDL file or a WSDL file that you create through the REST Binding wizard. It
defines the structure of the service. In the runtime, Service Bus uses WADL
documents to compute the relevant WSDL operation and to transform the message
payload. The payload is translated from a REST media type, such as JSON, XML, or
URL-encoded, into the format expected by the pipeline, and then translated back to

Chapter 26
WADL Documents for REST Services in Service Bus

26-6

the REST media type expected by the service. Only SOAP document-style WSDL files with
operations that define a single part by an element are supported for REST services.

WADL files are saved in JDeveloper with an extension of .wadl. You can use the standard
JDeveloper XML Editor to edit the WADL files you create through the REST binding wizard. A
WADL file can have dependencies on one or more XML schemas.

26.2.1 WADL Documents in the Design Time and Runtime
In the design time, Service Bus uses WADL documents to define the structures for new
services. In the runtime, Service Bus uses WADL documents to compute the relevant WSDL
operation and to transform the message payload. The payload must be translated from a
REST media type, such as JSON, XML, or URL-encoded, into the format expected by the
pipeline. It then must be translated back to the REST media type expected by the service.

26.2.2 Media Type Representations Supported by Typed Native REST
Services

WADLs corresponding to Native REST services do not have associated type/schema
information (i.e. shape of the messages) for any media type. The following list of distinct
cases are supported in WADLs for this service type: JSON, XML, Text, Form URL-encoded,
and Opaque (Binary).

JSON

JSON-based representation is defined by the media type application/json. It has the
following representation in the WADL:

<representation mediaType=”application/json”>

At runtime, this is treated as a JSON payload, which is described in Payloads Supported by
Native REST Services.

XML

The corresponding WADL representation element will have the following format:

<representation mediaType=”application/xml”> or <representation
mediaType="text/xml">

The Element attribute points to the XML element. The XML schema is part of <grammars> in
WADL.

At runtime, this is treated as an XML payload, which is described in Payloads Supported by
Native REST Services.

Text

Text based representation is defined by the media type application/text. It has the
following representation:

<representation mediaType=”application/text”> or <representation
mediaType=”text/plain”>

Chapter 26
WADL Documents for REST Services in Service Bus

26-7

At runtime, this is treated as a Text payload, as described in Payloads Supported by
Native REST Services.

Form URL-Encoded

URL encoded representations are defined by the following representation:

<representation mediaType="application/x-www-form-urlencoded">

At runtime, this is treated as a Text payload, as described in Payloads Supported by
Native REST Services.

Opaque (Binary)

Binary based representations (i.e. anything other than those listed in this section) are
defined by the mediaType */*. It has the following representation:

<representation mediaType=”*/*”>
At runtime, this is treated as an Opaque payload, as described in Payloads Supported
by Native REST Services.

26.2.3 Query Operations with WADL

Note:

The text in the first paragraph applies only to WADLs used by WSDL-based
REST services, like the ones used by Service Bus 12.1.3.

When configuring query-style operation parameters, you can configure expressions
based on either payload or properties. Payload-based expressions, such
as $msg.parameters/tns:symbol, specify values of elements or attributes of the
corresponding abstract request message part. Property-based expressions, such
as $property.PropertyName specify values of request metadata of the $inbound
variable at runtime.

For proxy services, or inbound requests, you can query the $inbound variable in the
pipeline to retrieve the values of named user-metadata elements. As an example,
for $property.PropertyName, you can query the value of $inbound/ctx:transport/
ctx:request/tp:user-metadata[@name = 'PropertyName']/@value. For business
services, or outbound requests, you can assign values of parts of the $outbound
variable in the pipeline to the corresponding request parameters.

If the inbound is WSDL-based, there is no user-metadata in $inbound. However,
the $outbound user-metadata still needs to be set up. In that case, transfer from
inbound $body to $outbound user-metadata via a pipeline action

Chapter 26
WADL Documents for REST Services in Service Bus

26-8

26.2.4 Query and Template Parameters
Query parameters are available in $inbound HTTP-specific metadata.

For inbound requests, values of template parameters are made available in the request
metadata. Consider the following example:

<param name="param1" style="template" type="xsd:string"/>

At runtime, the value of the param1 template parameter is used to create the request
metadata , as shown in the following example:

$inbound = …
 <ctx:transport>
 <ctx:request>
 <headers …>
 <ctx:user-metadata name=”param1” value=”1234” />
 </ctx:request>
 </ctx:transport>

For outbound requests, the runtime looks inside $outbound metadata for template parameter
values for the corresponding WADL resource/method. For example, if the WADL resource is
defined as:

<resource path="/containers/{container}">
The runtime expects $outbound to contain a user-metadata element with name container
and uses its value.

Additional information:

• For template and query parameters in the WADL file there is no soa:expression WADL
attribute as there was in Service Bus 12.1.3.

• The name of the runtime property for template (path) parameters is just the parameter
name.

26.2.5 Resource Method Identification
To be able to identify the resource and method, WADL has been extended to have a method
identifier (name) which is unique across all resources defined in a WADL interface.

The REST Wizard UI generates a default method name which you may change. The method
name is unique. A custom attribute soa:name stores this information on the method element.
In this example:

<method name="POST" soa:name="create_order">

create_order is the unique method identifier.

In the Service Bus runtime, this unique identifier is mapped to the $operation system
variable.

Chapter 26
WADL Documents for REST Services in Service Bus

26-9

26.2.6 WADL Restrictions for WSDL-based REST Services
Only SOAP document-style WSDL documents with operations where a single part is
defined by an element are supported for WSDL-based REST services. SOAP RPC-
style and generic XML-style WSDL documents are not supported. This is enforced
during design-time validation. For each operation or method, only element types are
supported for representation. Schema types cannot be used.

26.2.7 Effective WADL Documents
As with WSDL-based services, Service Bus uses effective WADL documents in the
runtime instead of the actual .wadl files you create when you develop Service Bus
RESTful services. The effective WADL document represents a service's WADL
properties as configured in Service Bus and also includes additional properties
configured outside of the source WADL document. The effective and design-time
WADL documents differ in the following ways:

• The effective WADL document includes base URI information that contains the
service endpoint URL.

• The effective WADL document does not include the SOA extension attributes.

For more information about the difference between the design-time files and the
effective files, see About Effective WSDL Documents and Generated WSDL
Documents.

26.3 Creating WADL Documents
If you are using the Oracle Service Bus Console, you can create WADL documents by
importing them or by creating a WADL resource and uploading an existing WADL file
to the new resource

When you create a business or proxy service based on the REST binding in
JDeveloper, the Create REST Binding wizard automatically generates the WADL file
for the service. For more information and instructions, see Creating REST Services.

26.3.1 How to Create a WADL Resource in the Oracle Service Bus
Console

This section describes uploading an existing WADL file to a new WADL resource. For
more information on importing resources, see Importing and Exporting Resources and
Configurations .

To create a WADL resource in the console:

1. If you have not already done so, click Create to create a new session or click Edit
to enter an existing session.

2. In the Project Navigator, right-click the project or folder to contain the new WADL
document, point to Create, and select Resource. Click Interfaces, click WADL,
and then click OK.

The Create WADL dialog appears.

3. Do one of the following:

Chapter 26
Creating WADL Documents

26-10

• To create the resource from an existing WADL file, click Browse next to the File
Upload field and then navigate to and select the WADL file to use.

The Resource Name field is automatically populated with the file name minus the file
extension. You can change this name.

• To create a new WADL file, or to upload the WADL file at a later time, enter a unique
name for the WADL resource.

4. Optionally, enter a brief description of the resource.

5. Click Create.

The WADL elements, if defined, appear in the WADL Definition Editor.

6. To modify the WADL file content, do the following:

a. Click Edit Source in the toolbar.

The Edit Source dialog appears.

b. To browse to and select a new WADL file to upload, click Browse.

c. To modify the contents of the file, update the code directly in the Contents section of
the dialog.

d. Click Save.

7. In the WADL Definition Editor toolbar, click Save.

If there are any unresolved references for the new WADL document, a Conflict icon
appears next to the editor's title bar. Use the previous and next arrow buttons to scroll
through any errors.

8. To end the session and deploy the configuration to the runtime, click Activate.

26.4 Modifying WADL Documents
Once you create a WADL document in a Service Bus project, you can edit or remove the
document as needed.

• How to Edit a WADL Document

• How to Delete a WADL Document

26.4.1 How to Edit a WADL Document
WADL documents are a standard feature in JDeveloper. You can display a WADL document
in a standard editor, and modify the source code directly.

If you are using the Oracle Service Bus Console, use the following procedure to edit WADL
documents. You can edit the code directly or upload an updated WADL file to the resource.

To edit a WADL document in the console:

1. If you have not already done so, click Create to create a new session or click Edit to
enter an existing session.

2. In the Project Navigator, click the WADL resource to edit.

The WADL Definition Editor appears.

3. Click Edit Source in the toolbar.

The Edit Source dialog appears.

Chapter 26
Modifying WADL Documents

26-11

4. To browse to and select a new WADL file to upload, click Browse.

5. To modify the contents of the file, update the code directly in the Contents section
of the dialog.

6. Click Save.

7. To end the session and deploy the configuration to the runtime, click Activate.

26.4.2 How to Delete a WADL Document
If any resources reference the WADL document you want to delete, remove those
references before deleting the WADL resource. In the Oracle Service Bus Console,
open the WADL document in the WADL Definition Editor and click the Tools icon in
the upper right, and then select References to find out if it has any references. In
JDeveloper, right-click the WADL document and select Explore Dependencies.

To delete a WADL document:

1. In the Application Navigator or Project Navigator, expand the project and folders
containing the WADL document to delete.

2. Right-click the name of the WADL document, and select Delete.

The WADL resource is deleted. A Deletion Warning icon appears when other
resources reference this resource. You can delete the resource with a warning
confirmation. This might result in conflicts due to unresolved references to the
deleted resource.

3. If you are using JDeveloper, a confirmation dialog displays the number of
references for the WADL document. Click Show Usages to view information about
the references, and then click Yes to confirm that you want to delete the resource.

4. If you are using the Oracle Service Bus Console, click Activate to end the session
and deploy the configuration to the runtime.

26.5 Creating REST Services Using JDeveloper
You can create REST business and proxy services using JDeveloper. You can create
new services using the Create REST Binding wizard in the Service Bus Overview
Editor, you can expose existing WSDL services as REST, including pipelines and split-
joins, or you can create REST services using the Create Proxy Service or Create
Business Service wizards.
You can also create REST services from artifacts stored in the Oracle Metadata
Services (MDS) repository, as described in Consuming Artifacts Stored in the MDS
Repository.

You can also create REST proxy and business services from the Service Bus Console,
or you can import the projects or resources containing the resources created in
JDeveloper to the Console using a configuration JAR file.

A REST proxy service can call any of the following:

• A WSDL-based proxy service, pipeline, split-join or business service with the same
WSDL binding.

• Any SOAP 1.1 or 1.2 binding-type proxy service, pipeline, or business service. The
SOAP version must be the same as the invoking proxy service.

• A REST business service with the same WADL reference and WSDL binding.

Chapter 26
Creating REST Services Using JDeveloper

26-12

• Any other REST-based business service or proxy service.

A REST proxy service can be invoked by REST and HTTP transport business services.

For more information about REST services and the REST Binding, see "Integrating REST
Operations in SOA Composite Applications" in Developing SOA Applications with Oracle
SOA Suite.

Note:

Once a REST binding has been created, do not modify the fault schema. For more
information about the fault binding, see "What You May Need to Know About REST
Fault Binding" in Developing SOA Applications with Oracle SOA Suite.

26.5.1 Creating Native REST Services
You can create Native REST services using JDeveloper and the Service Bus console.

Refer to the following topics to create Native REST proxy services:

• How to Create a Proxy Service Using the Service Bus Console

• How to Create a Proxy Service Using JDeveloper

• How to Create a Typed REST Proxy Service Using the Service Bus Console

Refer to the following topics to create Native REST business services:

• How to Create a SOAP Business Service Using the Service Bus Console

• How to Create a Business Service Using JDeveloper

• How to Create a Typed REST Business Service Specifying WADL Details Using the
Service Bus Console

26.5.2 How to Create WSDL-Based REST Services for Service Bus Using
JDeveloper

When you use a REST binding to create a proxy or business service, Service Bus generates
the required WADL file along with an HTTP-typed proxy or business service. The REST
binding can be based on a WSDL document. This maps the REST resources/verbs to
internal WSDL operations and XML schemas, with incoming payloads translated to XML.
Depending on how you configure the REST binding, a proxy service can be based on an
existing WSDL file or you can create the WSDL file when you generate the proxy service.

See How to Create Typed REST Services for Service Bus Using JDeveloper to create a
native typed REST service instead.

To create a WSDL-based REST proxy or business service in JDeveloper:

1. From the Components window, select Service Bus and drag a REST Binding into the
Proxy Services or External Services lane in the designer.

Chapter 26
Creating REST Services Using JDeveloper

26-13

Tip:

You can also right-click in a swimlane and select REST from the menu
that appears.

The Create REST Binding wizard appears.

2. Enter a name for the REST service.

Tip:

For help with the configuration fields, click Help or press F1. Help is
available for all dialogs you work with in this process.

3. Leave the Type field at the default value, which is selected depending on whether
you are creating a proxy service (Service) or business service (Reference).

4. Select the Service will invoke components using WSDL interfaces option.

5. (Optional) Select the Enforce XML Schema Ordering option to reorder JSON
payloads to match the order of the elements in the XML schema. This includes
inbound request payloads and responses from outbound requests.

6. If you are creating a REST business service, enter the Base URI. This is the
endpoint URI for the business service.

7. In the Resources section, do the following:

a. Double-click the default path entry of /.

The Update REST Resource dialog appears.

b. In the Relative Path field, specify the resource path, and click OK.

c. To define additional resources to assign to individual operations, click the Add
icon in the Resources section and repeat the above step.

8. Do one of the following to add and define operation bindings:

• To manually create and define operation bindings, select Add operation
binding to manually create and define a new REST operation. You can add
multiple bindings. For more information, see How to Create or Configure a
REST Operation

• (Business services only) From the Configuration Shortcut section, click Add,
and then select Add operations based on WADL service to launch the
Select WADL dialog and select an existing WADL file containing the
operations to implement. You can browse for a WADL file in the file system,
applications, an MDS repository, and so on.

• (Proxy services only) From the Configuration Shortcut section, click Add,
and then, select REST enable component or reference to launch the
Resource Chooser and select a Service Bus component in the current
application from which to generate REST operations.

• (Proxy services only) From the Configuration Shortcut section, click Add,
and then, select REST enable external web service to launch the WSDL
Chooser and select a WSDL file from which to generate REST operations. You

Chapter 26
Creating REST Services Using JDeveloper

26-14

can browse for a WSDL file in the file system, applications, an MDS repository, a
UDDI registry and so on.

The operations appear in the Operation Bindings table.

9. To configure any of the bindings, do the following:

a. Double-click a binding.

The REST Operation binding dialog appears.

b. Configure the binding as described in How to Create or Configure a REST Operation.

10. Click OK on the Create REST Binding wizard.

An HTTP proxy or business service is added to the Proxy Services or External Services
lane and the file is added to the project. The associated WADL file is added to the project.
Both the service and the WADL file are named the same as the name you specified for
the REST service in step 2.

11. To configure the new business service, see Configuring Business Services. To configure
the new proxy service, see Configuring Proxy Services.

12. Click Save All in the JDeveloper toolbar.

26.5.3 How to Create Typed REST Services for Service Bus Using
JDeveloper

When you use a REST binding to create a proxy or business service, Service Bus generates
the required WADL file along with an HTTP-typed proxy or business service. Depending on
how you configure the REST binding, a proxy service can be based on an existing WADL file
or you can create the WADL file when you generate the proxy service.

If you want to create a WSDL-based REST service (those used in Service Bus 12.1.3)
instead, see How to Create WSDL-Based REST Services for Service Bus Using JDeveloper.

To create a native typed REST proxy or business service in JDeveloper:

1. From the Components window, select Service Bus and drag a REST Binding into the
Proxy Services or External Services lane in the designer.

Tip:

You can also right-click in a swimlane and select REST from the menu that
appears.

The Create REST Binding wizard appears.

2. Enter a name for the REST service.

Tip:

For help with the configuration fields, click Help or press F1. Help is available
for all dialogs you work with in this process.

Chapter 26
Creating REST Services Using JDeveloper

26-15

3. Leave the Type field at the default value, which is selected depending on whether
you are creating a proxy service (Service) or business service (Reference). Click
Next.

4. If you are creating a REST business service, enter the Base URI. This is the
endpoint URI for the business service.

5. In the Resources section, do the following:

a. Double-click the default path entry of /.

The Update REST Resource dialog appears.

b. In the Relative Path field, specify the resource path, and click OK.

c. To define additional resources to assign to individual operations, click the Add
icon in the Resources section and repeat the above step.

6. Do one of the following to add and define methods:

• To manually create and define REST methods, from the Methods section,
click the Add icon. For more information, see How to Create or Configure a
REST Method in JDeveloper.

• From the Configuration Shortcut section, click Add, and then select Add
resources and methods from a WADL Service to launch the WADL
Chooser dialog and select an existing WADL file containing the methods to
add. You can browse for a WADL file in the file system, applications, an MDS
repository, and so on.

The methods appear in the Methods table.

7. To configure any of the methods, do the following:

a. Double-click a method.

The REST Method Definition dialog appears.

b. Configure the method as described in How to Create or Configure a REST
Method in JDeveloper.

8. Click OK on the Create REST Binding wizard.

An HTTP proxy or business service is added to the Proxy Services or External
Services lane and the file is added to the project. The associated WADL file is
added to the project. Both the service and the WADL file are named the same as
the name you specified for the REST service in step 2.

9. To configure the new business service, see Configuring Business Services. To
configure the new proxy service, see Configuring Proxy Services.

10. Click Save All in the JDeveloper toolbar.

26.5.4 How to Create or Configure a REST Operation in JDeveloper
You can manually create REST operations and manually modify those operations or
the ones you generated from existing service components or web services. Both
processes use the REST Operation Binding dialog. These instructions pick up from
step step 8 in How to Create WSDL-Based REST Services for Service Bus Using
JDeveloper.

Chapter 26
Creating REST Services Using JDeveloper

26-16

Note:

Depending on how you created the operation and whether you are creating or
updating the operation, some of the fields described below might not be editable.

To create or configure a REST operation:

1. On the Create REST Service dialog, double-click an operation to edit.

The REST Operation Binding dialog appears.

2. If you are creating a new operation, enter a name and an optional description for the
operation.

3. From the Resource list, select a new resource if needed.

4. From the HTTP Verb list, select the HTTP method to use.

5. To define the schema for the request, do one of the following:

• Click Browse for Schema File to navigate to and select an XML schema type for the
operation.

• Click Define Schema for Native Format to launch the Native Format Builder to
define a custom translation.

The Element field and the URI parameters are updated based on your selection.

6. Do any of the following in the URI Parameters section:

• To view the URL that invokes the operation during runtime in the Sample URL page,
click Generate URL for operation.

• To change a parameter's style, double-click in the Style column for a parameter and
select query or template from the Style list.

• To change a parameter's type, double-click in the Type column for a parameter and
select a new type from the Type list.

• To enter a default value for a parameter, double-click in the Default Value column for
the parameter you want to update, and enter the value to use in the Default Value
field.

• To launch the Expression Builder for adding or updating an XPath expression
function, double-click in the Expression column for the parameter you want to
update and then click the Expression Builder icon, next to the Expression field.
Use the Expression Builder to define the XPath expression to use.

• To manually add a parameter, click Add parameter and enter the values in the new
row that appears.

• To remove a parameter, select the row and click Delete parameter.

7. Click the Response tab to configure the response.

8. In the HTTP Statuses field, enter the HTTP status codes returned for a successful
operation, separated by spaces.

9. In the Payload field, select the type of payload for the response.

10. To generate a sample payload that you can then save to a file, click Generate Sample
Payload.

Chapter 26
Creating REST Services Using JDeveloper

26-17

11. To define the schema for the response, do one of the following:

• Click Browse for Schema File to navigate to and select an XML schema type
for the operation.

• Click Define Schema for Native Format to launch the Native Format Builder
to define a custom translation.

The Element field and the fault bindings are updated based on your selection.

12. To manually add a fault binding, click Add fault binding. On the REST Fault
Binding dialog, do the following:

a. Enter a name for the fault.

b. Enter a space-separated list of HTTP statuses returned for the fault.

c. Select the type of payload for the fault. To generate a sample payload for the
fault, click Generate Sample Payload.

d. Select a schema and element that defines the fault.

e. Click OK.

13. To update a fault's HTTP statuses or payload type, double-click it in the fault
binding table and update the information on the REST Fault Binding dialog.

14. On the REST Operation Binding dialog, click OK.

26.5.5 How to Create or Configure a REST Method in JDeveloper
You can manually create REST methods and modify these methods or the ones you
generated from an existing WADL. Both processes use the REST Method Definition
dialog. These instructions pick up from step step 6in How to Create Typed REST
Services for Service Bus Using JDeveloper.

Note:

Depending on how you created the method and whether you are creating or
updating the method, some of the fields described below might not be
editable.

To create or configure a REST method:

1. On the Create REST Service dialog, double-click a method to edit.

The REST Method Definition dialog appears.

2. If you are creating a new method, enter a name and an optional description.

3. From the Resource list, select a new resource if needed.

4. From the HTTP Verb list, select the HTTP method to use.

5. Do any of the following in the URI Parameters section:

• To view the URL that invokes the method during runtime in the Sample URL
page, click Generate sample URL for method.

• To change a parameter's style, double-click in the Style column for a
parameter and select query or template from the Style list.

Chapter 26
Creating REST Services Using JDeveloper

26-18

• To change a parameter's type, double-click in the Type column for a parameter and
select a new type from the Type list.

• To enter a default value for a parameter, double-click in the Default Value column for
the parameter you want to update, and enter the value to use in the Default Value
field.

• To manually add a parameter, click Add parameter and enter the values in the new
row that appears.

• To remove a parameter, select the row and click Delete parameter.

6. Click the Response tab to configure the response.

7. In the HTTP Status fields, enter the HTTP status codes returned for a successful and a
failed method.

8. In the Payload fields, select the type(s) of payload for the responses.

9. On the REST Method Definition dialog, click OK.

26.5.6 How to Expose an HTTP Proxy or Business Service as REST
In JDeveloper, you can expose an existing WSDL-based proxy service, pipeline, split-join, or
business service as a REST service, which generates a proxy service and the associated
WADL document. You can also expose a REST-based business service. The generated
proxy service is automatically wired to the service from which it was created.

To expose a Service Bus service as REST:

1. In the Application Navigator, locate the proxy service, pipeline, split-join, or business
service you want to expose as a REST service.

2. Right-click the service, point to Service Bus, and then select Expose As REST.

The Create REST Binding wizard appears.

3. Optionally, modify the name of the REST service.

Tip:

The Type field cannot be modified. Because you are exposing a service, the
default is Service (proxy service).

For help with the configuration fields, click Help or press F1. Help is available
for all dialogs you work with in this process.

4. To specify that JSON payloads be reordered to match the order of elements in the XML
schema, select Enforce XMLSchema Ordering.

5. To enter a new resource path, click the Add icon in the Resources section.

6. If necessary, double-click in the HTTP Verb column of the Operation Bindings section to
configure the methods.

7. Click OK.

8. If the Localize Files dialog appears, clear the check box if you do not want to maintain the
original directory structure, and click OK.

9. Do one of the following:

Chapter 26
Creating REST Services Using JDeveloper

26-19

• Continue configuring the business service, as described in Configuring
Business Services.

• Continue configuring the proxy service, as described in Configuring Proxy
Services.

10. Click Save All in the JDeveloper toolbar.

26.5.7 What You May Need to Know About Configuring URI
Parameters for REST

When you create a REST binding for 12.1.3-style WSDL-based REST services, you
can use XPath expressions to define the value for the URI parameters for the
operation. When you configure query-style operation parameters, the expression can
either be based on payload or on a property. Expressions based on the payload, such
as $msg.parameters/tns:symbol, specify values of elements or attributes of the
corresponding abstract request message part. Expressions based on a property, such
as $property.SomeProperty, specify values of request metadata of the $inbound
variable at runtime.

For inbound requests, you can query the $inbound variable in the pipeline to get the
values of named metadata elements. For outbound requests, you can assign the
appropriate values of parts of the $outbound variable in the pipeline to corresponding
request parameters.

26.6 Accessing WADL Documents in a Web Browser
You can view both the design-time and the effective WADL documents through a web
browser.

Accessing the files through a browser window displays the contents of the file in XML
format. Service Bus also provides a human readable interface to make viewing the
contents easier.

26.6.1 Viewing WADL Documents in XML Format
Do any of the following to view Service Bus WADL documents in a web browser.

• To view the service effective WADL, enter the fixed HTTP URL in a web browser
using the following syntax:

http://host:port/sbresource?PROXY/project_path/proxy_service_name

or

http://host:port/sbresource?BIZ/project_path/business_service_name

This works for all services for which Service Bus can generate service effective
WADL documents. While there is also a WSDL document associated with this
service, the above syntax displays only the service effective WADL document.

• To view the design-time WADL document, enter the fixed HTTP URL in a web
browser using the following syntax:

http://host:port/sbresource?WADL/project_path/wadl_name

Chapter 26
Accessing WADL Documents in a Web Browser

26-20

26.6.2 Viewing WADL Documents in a Readable Format
You can view both design-time and service effective WADL documents in a browser using a
format that is easier to read. To view the WADL document, open a web browser and enter the
URL to the service as described below.

• To view the service effective WADL document, use the following syntax:

http://host:port/sbresource?PROXY/project_path/proxy_service_name&HTML=true

or

http://host:port/sbresource?BIZ/project_path/business_service_name&HTML=true

While there is also a WSDL document associated with this service, the above syntax
displays only the service effective WADL document.

• To view the design-time WADL document, use the following syntax:

http://host:port/sbresource?WADL/project_path/wadl_name&HTML=true

The WADL content appears in the browser in a format similar to the image below.

Figure 26-1 Readable Interface for WADL Documents

Chapter 26
Accessing WADL Documents in a Web Browser

26-21

27
Using the DSP Transport

This chapter provides an overview of the DSP (Oracle Data Service Integrator) transport and
describes how to use and configure it in your services.

This chapter includes the following sections:

• Introduction to the DSP Transport

• Enabling Data Services for Service Bus

• Using the DSP Transport

• DSP Transport Configuration Reference

For information on supported Service Bus interoperability with Oracle Data Service Integrator,
see "Interoperability Scenarios and Considerations" in Administering Oracle Service Bus. For
information about the Oracle Data Service Integrator, see Developing Applications with Data
Service Integrator.

27.1 Introduction to the DSP Transport
Oracle Data Service Integrator can be accessed by Service Bus through the DSP transport,
allowing Service Bus to make full use of data services.

This approach also allows a more efficient and flexible approach to accessing data services
compared to exposing such services as web services.

27.2 Enabling Data Services for Service Bus
Do these steps to make an Oracle Data Service Integrator data service to a Service Bus
client.

• Generate a WSDL file for the data service and import the new WSDL file into Service
Bus.

• Create and configure a business service based on the WSDL file.

• Create and configure a proxy service based on the business service.

• Create and configure a pipeline to route and transform messages between the proxy and
business service.

Once these tasks are complete, you can invoke data services through Service Bus.

27.3 Using the DSP Transport
This section takes you through a sample project that illustrates the use of a data service in
Service Bus.

To follow the steps in this sample, you must be using the sample WebLogic domain. For more
information, see Sample Applications and Code Examples in Understanding Oracle
WebLogic Server.

27-1

• Generate the WSDL File in Oracle Data Service Integrator

• Create the Service Bus Project

27.3.1 Generate the WSDL File in Oracle Data Service Integrator
Perform the following steps in Oracle Data Service Integrator.

• Step 1. Start Your Server

• Step 2. Generate a WSDL File from the Data Service

• Step 3: Obtain the Web Service Address

27.3.1.1 Step 1. Start Your Server
Start the Oracle Data Service Integrator server if it is not already running. This
scenario uses the sample RetailDataspace provided with Oracle Data Service
Integrator on the sample domain.

27.3.1.2 Step 2. Generate a WSDL File from the Data Service
You can generate the WSDL file from your data service using Data Services Studio.
You can also export the WSDL file using the Oracle Data Service Integrator Console,
or view and copy the WSDL definition from an existing web service map file.

27.3.1.3 Step 3: Obtain the Web Service Address
Use the following steps to obtain the URL address of the WSDL file.

1. Right-click the WS file (example: OrderService.ws).

2. Select Test Web Service.

3. When the Test Client opens, save the URL address.

Below is the address for the OrderService example:

http://localhost:7001/RetailDataspace/RetailApplication/OrderManagement/
OrderService.ws?WSDL

27.3.2 Create the Service Bus Project
Perform the following steps in the Oracle Service Bus Console or in JDeveloper.

• Step 4: Import the Data Service WSDL File into Service Bus

• Step 5: Create the Business Service

• Step 6: Create the Proxy Service

• Step 7: Create a Pipeline

• Step 8: Test Your Setup

27.3.2.1 Step 4: Import the Data Service WSDL File into Service Bus
Service Bus lets you import a WSDL file generated in Oracle Data Service Integrator
into Service Bus using the Oracle Service Bus Console or JDeveloper. This scenario

Chapter 27
Using the DSP Transport

27-2

uses the Service Bus example server and the Default project. The default user name is
weblogic; you defined the password when you created the example server.

Create a new Service Bus project, and import the WSDL file and associated files into the new
project. For more information about importing, see Importing and Exporting Resources and
Configurations .

27.3.2.2 Step 5: Create the Business Service
Create a business service from the WSDL file imported from Oracle Data Service Integrator.
Use the following guidelines to configure the business service:

• For the business service transport, select dsp.

• For the service type, select WSDL, browse to and select the imported WSDL file, and
then select the appropriate port or binding; for example, OrderServiceSoapBinding.

• For the endpoint URI, enter the URI to the Oracle Data Service Integrator project; for
example, t3://localhost:7001/RetailDataspace.

On the Transport Details page of the Business Service Definition Editor, configure the
transport settings. For more information, see Table 27-1 or the online help for the transport
detail page. For more information on creating business services, see Creating and
Configuring Business Services.

27.3.2.3 Step 6: Create the Proxy Service
Generate a proxy service from the business service, as described in How to Generate a
Proxy Service from an Existing Service in JDeveloper. You can only generate a proxy service
from a business service using JDeveloper. Alternatively, you can create a proxy service in the
console without generating it from the business service.

In practice you would most likely identify the encryption key, digital signature key, and SSL
client authentication key. However, for the example, none of these need to be identified. The
DSP transport uses the character set provided by the proxy service. Therefore if the default
character set needs to be changed prior to invoking a data service transport, the conversion
encoding needs to be handled within the proxy service itself.

27.3.2.4 Step 7: Create a Pipeline
Create a pipeline to perform any data transformations and to route the data from the proxy
service to the business service. For more information, see Working with Pipelines in Oracle
Service Bus Console or Working with Pipelines in Oracle JDeveloper .

27.3.2.5 Step 8: Test Your Setup
Use the following steps to test access to the Oracle Data Service Integrator data service
through the proxy service generated above.

1. Either deploy the project in JDeveloper or activate the session in the Oracle Service Bus
Console.

2. Launch the test console for the proxy service you created. For more information, see
Accessing the Test Console.

3. From the Available Operations list, select your data service operation (for example,
getOrderByCustID).

Chapter 27
Using the DSP Transport

27-3

4. In the Payload field, enter the information needed by the data service. For
example:

<ord:getOrderByCustID
 xmlns:ord="ld:RetailApplication/OrderManagement/OrderService.ws">
 <ord:custID>CUSTOMER3</ord:custID>
</ord:getOrderByCustID>

5. Click Execute. The data appears in the response document, as shown in
Figure 27-1.

Chapter 27
Using the DSP Transport

27-4

Figure 27-1 Request and Response from the Service Bus Test Console

Chapter 27
Using the DSP Transport

27-5

27.4 DSP Transport Configuration Reference
This section provides descriptions for DSP transport-specific properties for business
services.

• DSP Transport Endpoint URIs

• Configuring Business Services to Use the DSP Transport

27.4.1 DSP Transport Endpoint URIs
When you create business services that use the DSP transport, enter the endpoint
URI for the business service in the following format:

t3://dsp-ip-address:port/dsp-app-name

For example:

t3://localhost:7001/RetailDataspace

27.4.2 Configuring Business Services to Use the DSP Transport
The following table describes the properties you use to configure a DSP-based
business service. For more information, see Creating and Configuring Business
Services.

Table 27-1 DSP Transport Configuration Properties for Business Services

Property Description

Debug Level Enter one of the following options to specify how to handle debug
information:

• 0: No debug information
• 1: Output information on the request message
• 3: Output information on the request and the response message

Service Account Enter a service account that will be used for authentication to access the
service. If no service account is specified, an anonymous subject is used.

For more information, see Working with Service Accounts..

Dispatch Policy Select the instance of WebLogic Server Work Manager that you want to
use to post the reply message for response processing. The default Work
Manager is used if no other Work Manager exists.

For information about Work Managers, see:

• Using Work Managers with Service Bus
• "Using Work Managers to Optimize Scheduled Work" in Administering

Server Environments for Oracle WebLogic Server

Chapter 27
DSP Transport Configuration Reference

27-6

28
Using the EJB Transport

This chapter provides an overview of the EJB transport and describes how to use and
configure it in your services. Using the EJB transport, Service Bus supports native RMI
invocation of EJB 2.1 or EJB 3.0 stateless session beans deployed on supported platforms. It
allows transactional and secure communications. You can also leverage the EJB transport to
expose an EJB as a web service through Service Bus.
This chapter includes the following sections:

• Introduction to the EJB Transport

• Prerequisites for Creating Services that Invoke EJBs

• Invoking EJB Business Services

• Exposing EJBs as Web Services

• Advanced EJB Transport Topics

• Troubleshooting EJB Transports

• EJB Transport Configuration Reference

28.1 Introduction to the EJB Transport
In Service Bus, you can use business services configured with the EJB transport for publish,
service callout, and service invocations. You cannot create proxy services that use the EJB
transport.

The EJB transport provides the following capabilities:

• Transactional Integrity: EJB business services can be called in the context of a global
transaction. The EJB transport can also suspend or start a global transaction before
invoking an EJB.

• Security Propagation: The security context established from a Service Bus client is
propagated to the other external system. For example, an incoming SOAP over HTTP
request to Service Bus that requires authentication is authenticated by Service Bus and
the authenticated subject can then be propagated to the EJB server. For more
information on security propagation, see Important Information Regarding Cross-Domain
Security Support in Administering Security for Oracle WebLogic Server.

• HTTP Tunneling and Encrypted Communication: You can access EJBs that are
behind a firewall with HTTP tunneling. For additional security, use SSL to encrypt all of
the communications with the EJB Server.

• JNDI Provider: EJB transport leverages the JNDI provider (a Service Bus resource). The
JNDI provider defines communication protocols and security credentials for accessing
remote servers. A JNDI provider can be reused by multiple EJB business services. This
provides a centralized way for administrators to manage remote EJB server
configurations.

For information about JNDI provider resources, see Working with JNDI Provider
Resources.

28-1

• High Performance Caching: The EJB transport is built on high performance
cache. This allows the reuse of established connections and minimizes EJB stubs
lookups.

• Failover and Load Balancing: The EJB transport can take advantage of
scenarios in which the same EJB is deployed in multiple domains or on a cluster
for load balancing or failover or both.

• Advanced XML to Java Binding Capabilities: The EJB transport leverages the
Oracle WebLogic Server JAX-WS stack to perform Java to XML bindings. The
JAX-WS stack is a high performance engine that supports advanced Java objects
such as XML Beans. If the Java type is not recognized by the stack, an extension
mechanism is provided to facilitate support of these Java types. For information
about this extension mechanism (using the converter classes), see Supported
Types and Converter Classes.

• Intelligent Retries: The EJB transport makes retry decisions based on the nature
of the failure that can occur during the invocation of an EJB.

28.2 Prerequisites for Creating Services that Invoke EJBs
Before you can configure a business service to use the EJB transport, you must create
a JNDI provider resource and a client JAR resource. This section outlines the steps
required to design and configure an EJB transport business service in Service Bus.

• Registering a JNDI Provider Resource

• Registering an EJB Client or Converter JAR Resource

28.2.1 Registering a JNDI Provider Resource
A JNDI provider resource allows you to specify the communication protocols and
security credentials used to retrieve EJB stubs bound in the JNDI tree of remote
Oracle WebLogic Server domains. Typically, the target EJB is not located in the same
domain as Service Bus. In this case, you must register a JNDI provider resource.
When the EJB is located in the same domain, you can define a provider to specify
credentials and take advantage of stubs caching, although it is optional in this case.

The JNDI provider has a high performance caching mechanism for remote
connections and EJB stubs. The preferred communication protocol from Service Bus
to an Oracle WebLogic Server domain is t3 or t3s. If messages need to go through a
firewall, you can use HTTP tunneling.

Note:

Although it is possible to use an Oracle WebLogic Server foreign JNDI
provider, Oracle recommends that you do not.

The transport does not support two-way SSL or client certificate to look-up
JNDI tree or access a method on an EJB.

For information about registering and configuring a JNDI provider resource in Service
Bus, see Working with JNDI Provider Resources.

Chapter 28
Prerequisites for Creating Services that Invoke EJBs

28-2

28.2.2 Registering an EJB Client or Converter JAR Resource
In order to be used by Service Bus services, a client JAR file must be registered as a
resource in Service Bus. It becomes a part of the Service Bus configuration and can be
exported from and imported into a project. An EJB client JAR file must contain the interfaces
and classes needed by Service Bus to access an EJB. This includes the remote and home
interfaces (EJB 2.1) or business interfaces (EJB 3.0) and any dependent types to which the
client is exposed, such as method parameter types or application exceptions.

Beginning in Service Bus 12.2.1, the EJB transport uses the JAX-WS stack. The JAX-WS
stack supports mapping Java classes to XML and back for most Java types. The converter
classes may not be required for most cases. The converter classes supported in this release
are mostly to ensure backward compatibility with business services created for previous
versions of Service Bus.

If your business service requires converter classes, you can register a JAR file containing the
converter classes as a Service Bus resource and subsequently use these classes to help
map parameter and return value types to Java classes that can be mapped to XML.
Alternatively, you can package these converter classes in the EJB client JAR. For information
about converter classes, see Custom Converter Classes.

Consider the following guidelines when using EJB client JARs:

• Adding home and remote interfaces in the system classpath is bad practice and is not
supported by Service Bus.

• Oracle recommends that you keep the client JAR file size small, include a single home
interface per JAR file, and not register the entire ejb-jar file.

• Service Bus supports client-jar files compiled with JDK 1.4 or later.

28.2.2.1 Adding a Client or Converter JAR File
In order to use complex type inheritance by extension in your Service Bus EJB
implementation, you need to create and use converter classes, as described in Supported
Types and Converter Classes. For information about registering and configuring a client or
converter JAR resource in Service Bus, see Working with JAR Files.

28.2.2.2 Create a Service Account (Optional)
If the EJB methods are protected, you can specify the credentials you want to use for the
invocations using a service account. Those credentials are often different than the credentials
used by the JNDI provider. For information about adding and using service accounts, see
Working with Service Accounts.

28.2.2.3 Locate an EJB in the JNDI Tree
If you do not know the JNDI name for an EJB, you can browse the EJB Server JNDI tree. For
information about browsing the JNDI tree using the Oracle WebLogic Server Administration
Console, see View objects in the JNDI tree in the Oracle WebLogic Server Administration
Console Online Help.

Chapter 28
Prerequisites for Creating Services that Invoke EJBs

28-3

28.3 Invoking EJB Business Services
An EJB business service can be used as a SOAP XML business service. You can
publish to, route to, or callout to an EJB business service.

If you need transaction support, set the quality of service to Exactly-Once. For more
information, see Advanced EJB Transport Topics.

You can also use the Test Console to validate your configuration and to help you to
determine the shape of the XML request.

28.4 Exposing EJBs as Web Services
You can leverage the EJB transport to easily expose EJBs as web services.

You cannot create a proxy service from an existing EJB business service. You must
first get the WSDL file generated from the EJB business service, and then create the
proxy service based on that WSDL file. To do so, complete the following steps.

1. Create an EJB business service pointing to the EJB you want to expose.

2. From the service details page, get the WSDL file for the EJB business service.

The WSDL file is contained in a JAR file. You can obtain the WSDL file only if
there is no pending session.

3. Extract the WSDL file from the JAR file and register it as a WSDL resource.

If the configuration of the business service changes, a new WSDL file is
generated. If that happens, you must get the new WSDL file and re-register it as a
WSDL resource.

4. Create a SOAP XML proxy service based on the WSDL file.

5. Create and edit a pipeline to route the proxy service to the EJB business service.

28.5 Advanced EJB Transport Topics
This section includes information about the EJB transport that will help you understand
how EJB business services behave at runtime depending on the design time
configuration.

• EJB Transport Transactions

• EJB Transport Retries and Failover

• EJB Transport Error Handling

• Supported Types and Converter Classes

• Business Exception Classes

28.5.1 EJB Transport Transactions
The EJB transport can create, suspend, and propagate transactions. The transactions
between Service Bus and the EJB server are XA transactions. If you use transactions
with HTTP tunneling or have a dedicated communication channel, you must set the

Chapter 28
Invoking EJB Business Services

28-4

security interoperability mode for the transaction manager to performance. For information
about setting the security interoperability mode and other transaction configurations, see
"Configuring Transactions" in Developing JTA Applications for Oracle WebLogic Server.

For the deployment descriptors to be set appropriately for XA-capable resources, you must
set the XA attribute on the referenced connection factory before creating a proxy service.

To determine the behavior of the EJB business service, considerations include whether the
pipeline has a transactional context, and what quality of service (QoS) settings are specified
in the pipeline when invoking the service:

• QoS Best-Effort: If Best-Effort QoS is specified in the pipeline, no transaction is
propagated to the EJB, and any ongoing transaction is suspended before invocation and
resumed after invocation.

• QoS Exactly-Once: If Exactly-Once QoS is specified in the pipeline and the EJB does
not support transactions (that is, the Supports Transaction option on the EJB transport
configuration page is not checked), no transaction is propagated to the EJB. As in the
case of Best-Effort, any ongoing transaction is suspended before invocation and resumed
afterwards.

If the EJB supports transactions (that is, the Supports Transaction option on the EJB
transport configuration page is checked), the EJB is invoked in the context of a
transaction, and any ongoing transaction is propagated to the EJB. If no transaction is
present, a transaction is created before invocation and committed afterwards.

For more information about QoS in Service Bus services, see Quality of Service.

28.5.2 EJB Transport Retries and Failover
Assuming that an EJB business service is configured for retries or failovers, the EJB
transport distinguishes the following types of exceptions:

• Runtime exceptions or remote exceptions: These are typically unexpected fatal errors or
communication exceptions.

• Exception raised by the JAX-WS engine: These are exceptions that occur during the XML
to Java conversion.

• EJB checked exceptions: These are exceptions declared in the EJB method signature
specific to the EJB implementation. They are also called business exceptions.

Retries and failover are based on the type of errors and also in the QoS, as described below.

QoS Best-Effort

• If a runtime or remote exception is thrown, the EJB transport attempts retries or failovers.

• If an exception occurs in the JAX-WS engine, an error is raised to the pipeline and no
retries or failover attempts are made.

• If an EJB checked exception is thrown, an error is raised to the pipeline and no retries or
failover attempts are made.

QoS Exactly-Once

• If a runtime or remote exception is thrown and the ongoing transaction has been set as
rollback only (likely by the EJB container), the EJB container has been reached and a
fatal error occurred either within the EJB container or the EJB. In this case, no retries or
failover attempts are made and an error is raised to the pipeline.

Chapter 28
Advanced EJB Transport Topics

28-5

• If a runtime or remote exception is thrown but the ongoing transaction has not
been set as rollback only, an error occurred before the invocation of the EJB
container and the EJB transport will attempt retries or failovers. Note that in this
case, the EJB transport still respects the exactly-once semantic.

• If an exception occurs in the JAX-WS engine, the EJB transport sets the ongoing
transaction to rollback only and an error is raised to the pipeline; no retries or
failover attempts are made.

• If an EJB Checked Exception is thrown, an error is raised to the pipeline and no
retries or failover attempts are made.

See EJB Transport Transactions for other repercussions of QoS specifications for an
EJB business service.

28.5.3 EJB Transport Error Handling
When throwing a checked exception, according to the EJB specifications, the ongoing
transaction can be specified as rollback only. If the ongoing transaction is set as
rollback only by the EJB developer, the transaction is eventually rolled back by its
creator (most likely the proxy service).

If the ongoing transaction is not set to rollback only, and a checked exception is raised,
it is important to catch EJB checked exceptions in the pipeline with an error handler. If
those exceptions are not caught, the pipeline errors are propagated back to the proxy
service. The proxy service, in turn, is likely to rollback the ongoing transaction
(depending of the transport implementation). This may not be the intended result.

For example, assume you have an EJB with the following method:

public void withdrawFunds(float amount) throws RemoteException,
InsufficientFundsException {‚Ä¶}

Also assume that when an InsufficientFundsException exception is thrown, the EJB
does not set the current transaction as rollback only. In most scenarios, it is wrong to
allow the proxy service to roll back the transaction; you may need to configure an error
handler in the pipeline to catch the error and avoid this scenario.

28.5.4 Supported Types and Converter Classes
The EJB transport is responsible for the conversion between XML and Java. The
conversion is performed by the Oracle WebLogic Server JAX-WS engine. The EJB
transport natively supports the following types:

• Primitive types

• XmlObject (Apache version only)

• Schema generated XMLBeans (Apache version only, XMLBeans extending from
org.apache.xmlbeans.XmlObject)

• JavaBean classes

For the full list of natively supported types, see "Using JAXB Data Binding" in
Developing JAX-WS Web Services for Oracle WebLogic Server.

An EJB method can use parameters and return types that are either not supported by
the JAX-WS engine (an error is reported at design time) or that do not map directly to
XML (errors occur at runtime). The most commonly used unsupported types include
the following:

Chapter 28
Advanced EJB Transport Topics

28-6

• "Object", "Object[]"

• Java Collections, as they are not strongly typed (for example, List or Set)

• Java classes that do not follow the JavaBean pattern (for example, Map)

You can write a custom converter class that converts those types into types more suitable for
conversion between XML and Java.

28.5.4.1 About XMLBean Support
The EJB transport supports session beans with input argument or return type of XMLBean
type (org.apache.xmlbeans.*).

Beginning 12.2.1, the EJB transport uses the JAX-WS stack, which uses JAXB as the default
binding mechanism. JAXB does not understand XMLBean types. The EJB transport relies on
a plugin module in order to support XMLBean types.

The following are limitations of the XMLBean plugin:

1. XMLBeans extending from org.apache.xmlbeans.XmlObject are supported using the
plugin module.

2. XMLBean objects extending from com.bea.xml.* are not supported.

3. Using XMLBeans along with user-defined Java objects is not supported. If an EJB
contains both Java objects and Xmlbeans as inputs arguments or return types, the EJB
transport returns a runtime error.

28.5.4.2 About User-defined Java Datatypes and JAX-WS
JAX-WS mandates that user defined java objects used as input argument or method return
type in EJB methods should have default constructor, which is a constructor that takes no
parameters.

This means the user-defined Java types that worked in previous versions of Service Bus
(even if they did not have the default constructor) need to be modified to include the default
constructor. See Programming the User-Defined Java Data Type for more information.

28.5.4.3 Custom Converter Classes
Service Bus generates an intermediate web service that precisely matches the EJB structure.
Since not all EJBs and their data types can be mapped to web service data types, you can
create a converter class to change the shape of the intermediate web service and enable the
internal transformation of the SOAP data types into the required EJB types on the Service
Bus side. A converter class is a Java class that implements and conforms to the contract
defined by the com.bea.wli.sb.transports.ejb.ITypeConverter Java interface of the
Service Bus public API.

The JAX-WS specification requires certain criteria of EJB parameters and return types for
wrapping them into a web service layer, with specific requirements for data types. For more
information, see "Programming the JWS File" in Developing JAX-WS Web Services for
Oracle WebLogic Server. Converter classes let you customize the Service Bus EJB wrapper
in a way that exposes data types over the web service layer, which can then be turned into
the data types required by the EJB. The wrapper implementation is based on the provided
EJB client classes, must match the EJB interface precisely, and is accessible through a web
service layer (created using WebLogic Servers's JWS toolset).

Chapter 28
Advanced EJB Transport Topics

28-7

28.5.4.4 Using a Converter Class for an EJB Business Service
To use a converter class for an EJB business service:

1. Create a converter class by implementing and compiling the interface.

2. Add the converter class to the client JAR file or to a converter class JAR file (see
Adding a Client or Converter JAR File).

3. When configuring the methods for the EJB business service, navigate to one of
the parameters or return types and select the desired converter.

For more information, see EJB Transport Configuration Reference. When you
configure the business service, the Transport Details page displays a list of the
available converters that can be applied to a particular parameter or return type.

28.5.5 Business Exception Classes
Business exception classes thrown by an EJB method must comply with JAX-WS 2.2
Specification Section 3.7 to ensure proper mapping of the exception class details into
the WSDL type definition for the fault element. All private, non-transient fields with
corresponding getter methods in the exception class get mapped to the exception type
definition in the WSDL file.

See Creating and Using a Custom Exception in Developing JAX-WS Web Services for
Oracle WebLogic Server for additional information.

28.6 Troubleshooting EJB Transports
The information in this section is provided to help you troubleshoot problems when
designing or running an EJB business service.

In addition, you can enable debugging, as described in Debugging Oracle Service Bus
Applications .

• WSDL Backwards Compatibility

• Temp Directories

• Deployed Application

• EJB Transport Errors

28.6.1 WSDL Backward Compatibility
In previous versions of Service Bus, the EJB transport used JAX-RPC as the
underlying stack. As this version uses JAX-WS, you may encounter compatibility
issues with WSDLs; JAX-RPC and JAX-WS are two different implementations and are
not cross-compatible.

The WSDLs generated by JAX-RPC and JAX-WS differ while using arrays as method
input/return type. JAX-RPC uses a wrapper to represent the array values, but JAX-WS
does not.

The WSDLs generated by JAX-RPC and JAX-WS are as follows:

Chapter 28
Troubleshooting EJB Transports

28-8

JAX-WS Generated WSDL

<xs:complexType name="ArrayOfJavaLangstring_literal">
 <xs:sequence>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="JavaLangstring"
nillable="true" type="xs:string"/>
 </xs:sequence>
</xs:complexType>
<xs:element name="ArrayOfJavaLangstring_literal"
type="open:ArrayOfJavaLangstring_literal" xmlns:open="http://
www.openuri.org/"/>
<xs:element name="returnNames">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="arg0" type="open:ArrayOfJavaLangstring_literal"
xmlns:open="http://www.openuri.org/"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

JAX-WS Generated WSDL

<xsd:complexType name="returnNames">
 <xsd:sequence>
 <xsd:element form="qualified" maxOccurs="unbounded" name="arg0"
nillable="true" type="xsd:string"/>
 </xsd:sequence>
</xsd:complexType>

The WebLogic Server implementation of JAX-RPC wraps the repeated element in a wrapper:

<foo>
 <param1>
 <JavaLangstring>arrayItemOfp1</JavaLangstring>
 <JavaLangstring>arrayItemOfp1</JavaLangstring>
 <JavaLangstring>arrayItemOfp1</JavaLangstring>
 </param1>
</foo>

JAX-WS uses inline repeated elements for arrays:

<foo>
 <param1>arrayItemOfp1</param1>
 <param1>arrayItemOfp1</param1>
 <param1>arrayItemOfp1</param1>
</foo>

A stateless session bean which has the business method String[] returnNames(String[]
names) would expect the following request and response payloads with JAX-RPC (previous
versions of Service Bus) and JAX-WS (Service Bus 12.2.1) generated WSDLs:

Chapter 28
Troubleshooting EJB Transports

28-9

JAX-RPC Request

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/
envelope/">
<soap:Header xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
</soap:Header>
<soapenv:Body>
 <open:returnNames xmlns:open="http://www.openuri.org/">
 <open:arg0>
 <open:JavaLangstring>John</open:JavaLangstring>
 <open:JavaLangstring>Eric</open:JavaLangstring>
 <open:JavaLangstring>Mark</open:JavaLangstring>
 </open:arg0>
 </open:returnNames>
</soapenv:Body>
</soapenv:Envelope>

JAX-RPC Response

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">
<env:Header/>
<env:Body>
 <m:returnNamesResponse xmlns:m="http://www.openuri.org/">
 <m:return>
 <m:JavaLangstring>John</m:JavaLangstring>
 <m:JavaLangstring>Eric</m:JavaLangstring>
 <m:JavaLangstring>Mark</m:JavaLangstring>
 </m:return>
 </m:returnNamesResponse>
</env:Body>
</env:Envelope>

JAX-WS Request

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/
envelope/">
<soap:Header xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
</soap:Header>
<soapenv:Body>
 <open:returnNames xmlns:open="http://www.openuri.org/">
 <open:arg0>John</open:arg0>
 <open:arg0>Eric</open:arg0>
 <open:arg0>Mark</open:arg0>
 </open:returnNames>
</soapenv:Body>
</soapenv:Envelope>

JAX-WS Response

<S:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
<S:Header/>

Chapter 28
Troubleshooting EJB Transports

28-10

<S:Body>
 <ns0:returnNamesResponse xmlns:ns0="http://www.openuri.org/">
 <ns0:return>John</ns0:return>
 <ns0:return>Eric</ns0:return>
 <ns0:return>Mark</ns0:return>
 </ns0:returnNamesResponse>
</S:Body>
</S:Envelope>

Due to the difference in generated WSDLs, any XPath functions applied on the request
payload may result in different behavior. Modify your XPath functions to account for this
difference.

28.6.2 Temp Directories
During design time, the EJB transport generates files in a subfolder in the temp directory. It is
safe to delete those folders and files, and sometimes may be useful to check them to
determine what went wrong during activation.

28.6.3 Deployed Application
When an EJB business service is created and activated, an application is deployed on the
Service Bus server. You can use the Oracle WebLogic Server Administration Console and
Fusion Middleware Control to monitor and tune this application.

28.6.4 EJB Transport Errors
The following information may help in the event that you need to troubleshoot a problem with
an EJB business service:

• The following error when creating a business service is due to a Windows operating
system limitation. Paths containing more than 255 characters are not supported.

The system cannot find the path specified):Probably the string length of the path
of the file being extracted was too long

You can try to reduce the path length by creating a shorter path to the Service Bus
domain, or you can use the following option to override the Oracle WebLogic Server temp
directory when starting the server:

-Dweblogic.j2ee.application.tmpDir=$desired_short_dir

• If you get an XML marshalling error when invoking an EJB business service and you
believe the request to be valid against the service WSDL document, you probably need
to write a converter class. For information, see Custom Converter Classes.

• If the EJB interfaces and stubs are changed on the remote server, the first time you try to
invoke the new EJB, an error is thrown. Those changes on the remote server are not
visible to Service Bus, so it tries to invoke the cached EJB stubs, which are no longer
valid. However, when the invocation error occurs, the transport assumes that those stubs
are now invalid, and removes them from the cache. In this way, the error is prevented on
subsequent attempts to invoke the EJB. To avoid this first-time error, you can reset the
JNDI provider in the Oracle Service Bus Console.

Chapter 28
Troubleshooting EJB Transports

28-11

28.7 EJB Transport Configuration Reference
An EJB business service is a transport-typed service, which means the type of the
transport is determined by the configuration of the service. The type of an EJB
business service is equivalent to a SOAP XML service.

In other words, you can use an EJB business service like any other SOAP XML
business service. Service Bus generates a WSDL file when you save the EJB
transport configuration. The generated WSDL file is based on the interface of the EJB.
The EJB transport configuration page provides configuration options for you to control
the interface of the service and the WSDL file that is generated.

28.7.1 EJB Endpoint URI Format
Use the following URI pattern for the EJB transport endpoint URIs in business
services:

ejb:jndi_provider_name:ejb_jndi_name

where jndi_provider_name is the name of the Service Bus JNDI provider resource.

If the EJB is deployed locally, the JNDI provider name is not required. In this case, use
the following URI format:

ejb::ejb_jndi_name

For EJB 3.0 business services on Oracle WebLogic Server, ejb_jndi_name takes the
form of mappedName#BusinessInterface.

If your EJBs are running on IBM WebSphere, ejb_jndi_name must be in one of the
following formats:

cell/nodes/node_name/servers/server_name/ejb_jndi_name

or

cell/clusters/cluster_name/ejb_jndi_name

For more information, refer to the IBM WebSphere documentation.

28.7.2 Configuring Business Services to Use the EJB Transport
The following table describes the properties you use to configure an EJB transport for
a business service. For more information, see Creating and Configuring Business
Services.

Table 28-1 EJB Transport Properties for Business Services

Properties Description

Pass Caller's
Subject

Select this check box to have Service Bus pass the authenticated subject
from the proxy service when invoking the EJB and no service accounts are
configured. This is an alternative to using a service account, and the
Service Account field is disabled when this option is selected.

Chapter 28
EJB Transport Configuration Reference

28-12

Table 28-1 (Cont.) EJB Transport Properties for Business Services

Properties Description

Service Account Enter a service account that will be used for authentication to access the
service. If no service account is specified, an anonymous subject is used.
This option is not available if you select the Pass Caller's Subject option.

For more information, see Working with Service Accounts.

Supports
Transaction

Select this check box to specify that the EJB supports transactions.

EJB 3.0 Select this check box if the interface uses EJB version 3.0.

Client Jar Click Browse to select an EJB client JAR resource from the list of available
resources.

Converter Jar Click Browse to select an EJB converter class JAR resource from the list of
available options. This field appears after you select the client JAR file
above.

For more information, see Adding a Client or Converter JAR File and
Custom Converter Classes.

Home Interface Select the required EJBHome interface from the options populated by the
JAR file. This field is available for EJB 2.1 only.

The JNDI name in this URI sample must be associated with the EJBHome
interface you select here. If the EJB is not of the required type or an
EJBHome interface is not specified in the client JAR file, Service Bus
displays a warning.

Remote Interface Displays the remote interface, and is automatically populated depending on
the configuration of the Home Interface. This for EJB 2.1 only.

Business
Interface

Select the business interface in the client JAR that you want to invoke. This
field is available for EJB 3.0 only.

Target
Namespace

Displays the namespace determined from information picked up from the
JAR file. This field only appears when you select EJB 3.0 and specify a
client JAR file.

Style Select Document Wrapped or RPC according to your requirements. If two
or more methods of your stateless session EJB have the same number and
data type of parameters, and you want the operations to be document-
oriented, specify that they be document-wrapped.

The style is important because when routing or publishing to the
EJB, $body must have content that matches the style. Also when calling
out to an EJB, the style affects the parameter contents, especially for
document wrapped. Secondly one usage pattern is to define an EJB
business service and then create a proxy service with the same WSDL file
that routes to the EJB. In this case, be careful with the WSDL style because
the client tool that invokes the proxy might have style limitations.

Even though the RPC style is supported with JAX-WS, Document
Wrapped is recommended for new EJB endpoints. Existing EJB business
services can still use the RPC style.

Encoding Specify the encoding of the SOAP message, either Encoded or Literal.

Chapter 28
EJB Transport Configuration Reference

28-13

Table 28-1 (Cont.) EJB Transport Properties for Business Services

Properties Description

Methods Configure the methods of the EJB remote or business interface you
selected. Select the required methods (you can select multiple methods).
Expand the method to configure, and then edit the default parameter values
and select a converter if provided (or required).

You can change the default operation name for each method. By default,
the operation name is the method name. If an EJB contains methods with
same name, you must change the operation names so they are unique;
WSDL files require unique operation names.

You can select methods to include or exclude. You must exclude the
methods with parameters or return types that are not supported by the JAX-
WS stack or you must associate such arguments with converter classes.

Note: If the credentials or transaction settings are different between the
methods for an EJB, you can customize the methods for a specific business
service, and create a business service per method. This gives you fine-
grained control over transactions and credentials.

Exceptions Displays any business exceptions thrown by a method. If an EJB method
throws an exception that has data types not supported by Java Web
Services (JWS), such as an ArrayList, use the Exceptions field to select a
converter class that converts the exception to a type supported by JWS.

Your converter class must implement
com.bea.wli.sb.transports.ejb.ITypeConverter. Converter
classes can only be configured for checked exceptions and not for runtime
exceptions. Package the converter class and the converted exception class
in the client or converter JAR file.

Chapter 28
EJB Transport Configuration Reference

28-14

29
Using HTTP and Poller Transports

This chapter provides an overview of the HTTP(S) and poller transports (Email, File, FTP, and
SFTP) and describes how to use and configure them in your services.

The HTTP transport section also provides information on using REST with Service Bus, but
you can also use a REST binding, as described in Creating REST Services with Oracle
Service Bus .

This document includes the following sections:

• Using the HTTP Transport

• Using the Email Transport

• Using the File Transport

• Using the FTP Transport

• Using the SFTP Transport

29.1 Introduction to Poller Transports
You can use different types of transports to configure proxy services or business services in
Service Bus. The transport protocol you select depends on the service type, the type of
authentication required, the service type of the invoking service, and so on. Poll-based
transports have transport pollers pinned to a Managed Server. These transports poll a source
directory or email server for new messages. They use the JMS framework to ensure that
messages are processed at least once. Email, File, FTP, and SFTP are poll-based transports.

By default, poller transports use WebLogic Server JMS, but you can configure a clustered
domain to use Oracle Advanced Queueing (AQ) JMS when you create or extend the domain.
Running the Repository Creation Utility (RCU) creates all the required Service Bus queues
and queue tables. The Sort by Arrival feature is not supported for poll-based transports with
AQ JMS.

For information about configuring your environment to use Oracle AQ, see Using Oracle
Advanced Queueing JMSin Administering Oracle Service Bus.

29.2 Using the HTTP Transport
The HTTP transport lets you send messages between clients and service providers through
Service Bus using the HTTP(S) protocol.

The HTTP transport also provides support for working with Representational State Transfer
(REST) environments, as described in REST Support.

29.2.1 HTTP Session Stickiness
Service Bus supports HTTP session stickiness, or session affinity, for business services in
load balancing, which means that the same server handles all requests for a specific session.

29-1

Service Bus maintains stickiness by mapping the session to a specific entry in a
service URI table. In a sticky session, the URI entry that handles the first request has
the session; when subsequent messages in the session arrive at the load balancer,
they are routed through the same service URI entry that handled the first request.

In a standard load-balancing environment, Service Bus can balance the load across
multiple servers, so if messages in a session need to be handled by the same server
in a cluster, you need to configure the business services for session stickiness.

Note:

in the Oracle Service Bus Console, you can configure sticky sessions at
runtime without needing to restart the service.

Service Bus does not support the following scenarios for sticky sessions:

• Multiple business services with session stickiness in a single message flow.

• Multiple business services with session stickiness in the same pipeline.

• Split-join services that point to business services with session stickiness.

• Dynamic routing to different business services with session stickiness.

Note also that throttling does not work for business services configured for session
stickiness.

29.2.2 Retrieving the HTTP Authorization Header in a Proxy Service
Service Bus does not pass the HTTP Authorization header from the request to the
pipeline because it opens a security vulnerability. You could inadvertently create a log
action that writes the user name and unencrypted password to a log file.

If your design pattern requires the HTTP Authorization header to be in the pipeline, do
the following:

1. In the startup command for Service Bus, set the following system property to true:

com.bea.wli.sb.transports.http.GetHttpAuthorizationHeaderAllowed

2. On the Transport page of the service's definition editor in JDeveloper or the Oracle
Service Bus Console, select Get All Headers or select User-specified Headers
and specify Authorization.

3. Restart Service Bus.

29.2.3 Compressed HTTP Request and Response Payload Support
The HTTP transport now supports gzip and deflate compression for use with
compressed HTTP request and response payloads. Compression is supported for
inbound and outbound payloads.

29.2.3.1 Accept-Encoding
The client specifies the encodings it supports within the Accept-Encoding header. This
header can contain several encoding types as a comma separated list. Service Bus

Chapter 29
Using the HTTP Transport

29-2

checks for the presence of an acceptable encoding according to RFC 2616, which specifies
an Accept-Encoding string specifying algorithm and priorities.

The absence of a supported algorithm causes Service Bus to assume identity, which means
no payload manipulation.

If the Accept-Encoding header can’t be parsed (for example, if an invalid format results in a
technical error), an HTTP 406 – NOT ACCEPTABLE error is returned and the request is
rejected.

A priority value of q=0 will switch off a certain algorithm. It is applied to all algorithms except
for identity, which Service Bus always defaults to if no other values are accepted.

If both the gzip and deflate compression algorithms are present in the Accept-Encoding
header and have the same priority, gzip compression takes precedence.

The following table contains valid combinations of Accept-Encodings and the encoding
Service Bus uses for each combination.

Table 29-1 Accept-Encoding Processing

Accept-Encoding Header Values Service Bus Encoding Decision

gzip;q=1.0, deflate;q=0.5 Gzip

x-gzip,gzip;q=0.25,deflate;q=1.0 Deflate

Gzip Gzip

gzip;q=0.0,deflate Deflate

Deflate Deflate

deflate;q=1.0 Deflate

gzip,deflate Gzip

x-gzip Identity

* Gzip

gzip;q=0.0,deflate,*;q=1.0 Deflate

gzip;q=0.0,* Deflate

gzip;q=0.0,deflate;q=0.0,* Identity

deflate;q=0.25,*;q=1.0 gzip

In outbound requesst, when compression support is switched on in the business service,
Service Bus always sends an Accept-Encoding header of gzip,deflate.

29.2.3.2 Content-Encoding
Content-Encoding indicates to a receiver how the payload has been manipulated

Nesting of several compressions to a single message payload is not supported. Content-
Encoding may either contain gzip OR deflate.

For an inbound request or outbound response Service Bus parses this header and apply the
correct decompression algorithm prior to moving the payload to the pipeline. If Service Bus is
configured to send inbound responses and outbound requests with compression it will set the
Content-Encoding to the applied compression algorithm.

Chapter 29
Using the HTTP Transport

29-3

29.2.3.3 Content-Length
Content-Length is required especially by HTTP 1.0 clients which do not understand
chunked HTTP transfer.

(Optional) Enter reference information in this section.

According to the specification, the Content-Length header must be set before any data
is committed to the stream. In case data exceeds the specified Content-Length, the
response is committed to the client and the message is broken. Consequently, the
Content-Length must be known before writing any data to the stream. This requires
that the complete message is buffered while compressing to determine the final length
of the compressed data.

Proxy and business service configurations have an option to switch on buffering for
inbound responses and outbound requests. In buffered mode, the message will be
sent with a Content-Length header. This is not a default option;. it is meant for HTTP
1.0 recipient support only.

29.2.3.4 Transfer-Encoding
The Transfer-Encoding header indicates what kind of manipulation has been
performed on a particular message (in the order they have been applied). This is
additional information for network components to guarantee safe message transfer.

This is additional information for network components to guarantee safe message
transfer. HTTP 1.0 implementations may not understand this header. The gzip or
deflate settings should only be added if the header was already present before the
compression happened and applies only to inbound responses and outbound
requests.

Note:

chunked must be the last encoding applied to a message.

The Transfer-Encoding header is currently omitted for outbound requests.

29.2.3.5 ETag
The ETag header indicates manipulations of payloads to content-caches/proxies.

It is possible that a cache or proxy expects a compressed payload, but the calling
client doesn’t. Service Bus ensures that this header is properly maintained for inbound
responses. It is not manipulated for outbound requests. Service Bus does not require
this header as intermediate party.

29.2.3.6 Sample Requests and Responses
Refer to the following sample inbound and outbound requests and responses.

Chapter 29
Using the HTTP Transport

29-4

Example 29-1 Sample Inbound Request

GET /mySampleApp/myProxy HTTP/1.1
Host: www.example.com
Accept-Encoding: gzip, deflate[, compress, exi, bzip2, …]

Example 29-2 Sample Inbound Response

HTTP/1.1 200 OK
Date: Mon, 23 Sep 2013 13:14:34 GMT
Server: WLS 10.3.6 (Unix) (Red-Hat/Linux)
Content-Length: 438
Content-Type: text/xml; charset=UTF-8
Content-Encoding: gzip
Transfer-Encoding: [if present already, append gzip or deflate, otherwise
omit – ALWAYS append chunked as last value]
[gzip payload]

Example 29-3 Sample Outbound Request

POST /myExternalWebApp/some.html HTTP/1.1
Host: www.example.com
Accept-Encoding: gzip
Content-Encoding: gzip
Transfer-Encoding: [if present already, append gzip, otherwise omit. ALWAYS
append chunked as last value]
[gzip payload]

Example 29-4 Sample Outbound Response

HTTP/1.1 200 OK
Date: mon, 15 Sep 2013 22:38:34 GMT
Server: Apache/1.3.3.7 (Unix) (Red-Hat/Linux)
Last-Modified: Wed, 08 Jan 2003 23:11:55 GMT
Etag: "3f80f-1b6-3e1cb03b"
Accept-Ranges: bytes
Content-Length: 438
Connection: close
Content-Type: text/html; charset=UTF-8
Content-Encoding: gzip

29.2.4 HTTP Transport WS-RM Support
Service Bus 12.2.1 supports Web Services Reliable Messaging (WS-Reliable Messaging or
WS-RM) for HTTP transport services of WSDL type.

Attaching the oracle/reliable_messaging_policy and oracle/
reliable_messaging_internal_api_policy OWSM policies enables WS-RM for a proxy or
business service. See WS-ReliableMessaging Support Using OWSM Policies for additional
information.

Chapter 29
Using the HTTP Transport

29-5

29.2.5 HTTP Transport Configuration Reference
This section provides information about endpoint URI formats and configuring the
HTTP transport in proxy and business services.

• HTTP Transport Endpoint URIs

• Configuring Proxy Services to Use the HTTP Transport

• Configuring Business Services to Use the HTTP Transport

29.2.5.1 HTTP Transport Endpoint URIs
You can select the HTTP transport protocol when you configure any type of proxy or
business service. Use the following endpoint URI formats:

• Proxy Services: /service_name

• Business Services: http://host:port/service_name

where:

• host is the name of the system that hosts the service.

• port is the port number at which the connection is made.

• service_name is a target service.

Note:

You must specify the following endpoint URI when you configure a
business service based on HTTPS.

https://host:port/someService

29.2.5.2 Configuring Proxy Services to Use the HTTP Transport
The following table describes the properties you use to configure an HTTP transport
for a proxy service. For more information, see Creating and Configuring Proxy
Services.

Table 29-2 HTTP Transport Properties for Proxy Services

Property Description

HTTPS Required Select this check box for inbound HTTPS endpoints. The HTTPS
protocol uses SSL to secure communication. SSL can be used to
encrypt communication, ensure message integrity, and to require
strong server and client authentication

To learn more, see Configuring Transport-Level Security for
HTTPS.

Chapter 29
Using the HTTP Transport

29-6

Table 29-2 (Cont.) HTTP Transport Properties for Proxy Services

Property Description

Authentication Select one of the following authentication methods:

• None: Specifies that authentication is not required. Select this
option if you will specify an OWSM policy for the proxy
service.

• Basic: Specifies that basic authentication is required to
access this service. Basic authentication instructs Oracle
WebLogic Server to authenticate the client using a user name
and password against the authentication providers configured
in the security realm, such as a Lightweight Directory Access
Protocol (LDAP) directory service and Windows Active
Directory. The client must send its user name and password
on the HTTP request header. Basic authentication is strongly
discouraged over HTTP because the password is sent in
clear text. However, it is safe to send passwords over HTTPS
because HTTPS provides an encrypted channel.

Warning: By default, all users (authorized and anonymous)
can access a proxy service. To limit the users who can
access a proxy service, create a transport-level authorization
policy. See Configuring Transport-Level Security.

• Client Certificate: Specifies encrypted communication and
strong client authentication (two-way SSL). To learn more,
see Configuring Transport-Level Security for HTTPS..

• Custom Authentication: Specifies that an authentication
token is contained in an HTTP header. The client's identity is
established through the use of this client-supplied token. You
must configure an identity assertion provider that maps the
token to a Service Bus user.

The custom authentication token can be of any active token
type supported by a configured WebLogic Server Identity
Assertion provider.

Dispatch Policy Select the instance of WebLogic Server Work Manager that you
want to use for the dispatch policy for this endpoint. The default
Work Manager is used if no other Work Manager exists.

For information about Work Managers, see:

• Using Work Managers with Service Bus
• "Using Work Managers to Optimize Scheduled Work" in

Administering Server Environments for Oracle WebLogic
Server

Request Encoding Specify the character set encoding for the request message.

• For HTTP inbound transports: If the character set encoding
parameter of the Content-Type header is not specified in
Client Request, enter a character set encoding parameter. If
you do not enter a value, the field defaults to ISO-8859-1.

• For HTTP outbound transports: If you have not configured a
request encoding, the Service Bus runtime determines the
most appropriate encoding while it makes a request to the
business service. In the case of a non-pass-through scenario,
the default character encoding is UTF-8 at runtime. However
if it is a pass-through scenario, the runtime will pass through
the encoding received with the outbound response.

Response Encoding Specify the character set encoding for the response message.

Chapter 29
Using the HTTP Transport

29-7

Table 29-2 (Cont.) HTTP Transport Properties for Proxy Services

Property Description

Supports Compression Select this option to enable compression support. The request
payload is unzipped if a Content-Encoding header containing
gzip or deflate is present. Nested compression is not
supported. A proxy configured for compression support stills
understands uncompressed requests and can send
uncompressed responses.

If this option is not selected, when the client sends compressed
data, the proxy service is unable to understand the data and
rejects the request. In case the client sends an Accept-
Encoding header that contains gzip or deflate, it will be
ignored. The response will be sent uncompressed.

Enable Compression Buffer Select this option to enable compression buffering. When enabled,
the entire message will be written to an in-memory buffer in
compressed format to determine the Content-Length of the
compressed data. The Content-Length header will be set on
the response object prior to sending any data to the client. This
setting doesn't affect request processing; it only applies to
inbound response data handling. Inbound requests are always
streamed directly.

Authentication Header Enter the HTTP header (any header except Authorization)
from which Service Bus will extract the token. This field is
available only if you selected the Custom Authentication check
box.

For example, client-xyz-token.

Authentication Token Type Select an authentication token type. Only the active token types
configured for an Identity Assertion provider are available. This
field is available only if you selected the Custom Authentication
check box.

Access metadata with URL If checked, the metadata in the WSDL file can be accessed with a
URL in this format: http://<host>:<port>/helloworld/
proxy/helloworld?wsdl. If not checked, the WSDL file cannot
be accessed with a URL.

29.2.5.3 Configuring Business Services to Use the HTTP Transport
The following table describes the properties you use to configure an HTTP transport
for a business service. For more information, see Creating and Configuring Business
Services.

Table 29-3 HTTP Transport Properties for Business Services

Property Description

Read Timeout Enter the read timeout interval in seconds. If the timeout expires
before data is available on the connection, a connection error
occurs.

A zero (0) value indicates no timeout.

Chapter 29
Using the HTTP Transport

29-8

Table 29-3 (Cont.) HTTP Transport Properties for Business Services

Property Description

Connection Timeout Enter the connection timeout interval in seconds. If the timeout
expires before the connection can be established, Service Bus
raises a connection error.

A zero (0) value indicates no timeout.

HTTP Request Method Select one of the following HTTP methods to use in requests:

• POST: Use POST to pass all its data, of unlimited length,
directly over the socket connection as part of its HTTP
request body. The exchange is invisible to the client, and the
URL does not change. For REST-based requests, POST tells
the transport to perform a create/replace operation or perform
an action with the request.

• GET: Use GET to include as part of the request some of its
own information that better describes what to get. This
information is passed as a sequence of characters appended
to the request URL in a query string. You can use GET in a
business service with an XML service type or a messaging
service type when the Request Message Type is set to
"None." For REST-based requests, GET retrieves a
representation of a remote resource.

• PUT: Use PUT to tell the transport to perform a create/
replace operation with a REST-based request, such as
uploading a file to a known location. You can use PUT in a
business service with an XML or messaging service type.

• HEAD: Use HEAD to tell the transport to get header
information for a remote resource rather than getting a full
representation of the resource in a REST-based request. You
can use HEAD in a business service with an XML service
type or a messaging service type when the Request Message
Type is set to "None."

• DELETE: Use DELETE to tell the transport to perform a
delete operation with a REST-based request. You can use
DELETE in a business service with an XML or messaging
service type.

Note: If a method is already set in the $outbound/transport/
request/http:http-method variable, that value takes
precedence over any method you select for HTTP Request
Method.

Chapter 29
Using the HTTP Transport

29-9

Table 29-3 (Cont.) HTTP Transport Properties for Business Services

Property Description

Authentication Select one of the following types of HTTP authentication:

• None: Authentication is not required to access this service.
• Basic: Basic authentication is required to access this service.

Basic authentication instructs WebLogic Server to
authenticate the client using a user name and password
against the authentication providers configured in the security
realm, such as a Lightweight Directory Access Protocol
(LDAP) directory service and Windows Active Directory. The
client must send its user name and password on the HTTP
request header.

Basic authentication is strongly discouraged over HTTP
because the password is sent in clear text. However, it is safe
to send passwords over HTTPS because HTTPS provides an
encrypted channel.

Warning: By default, all users (authorized and anonymous)
can access a business service. To limit the users who can
access a business service, create a transport-level
authorization policy. See Configuring Transport-Level
Security.

• Client Certificate: Specifies encrypted communication and
strong client authentication (two-way SSL). To learn more,
see Configuring Transport-Level Security for HTTPS.

• Custom Authentication: Specifies that a custom Java class
defines authentication. You must specify the authentication
class in the HTTP Custom Authentication Class Name field
in the advanced settings (described below).

Service Account Enter a service account that will be used for authentication to
access the service. This is a required field if you select basic
authentication. It is optional if you select custom authentication.

For more information, see Working with Service Accounts.

Dispatch Policy Select the instance of WebLogic Server Work Manager that you
want to use for the dispatch policy for this endpoint. The default
Work Manager is used if no other Work Manager exists.

For information about Work Managers, see:

• Using Work Managers with Service Bus
• "Using Work Managers to Optimize Scheduled Work" in

Administering Server Environments for Oracle WebLogic
Server

Request Encoding Accept the default iso-8859-1 as the character set encoding for
requests in HTTP transports, or enter a different character set
encoding.

Response Encoding Accept the default iso-8859-1 as the character set encoding for
responses in HTTP transports, or enter a different character set
encoding.

Chapter 29
Using the HTTP Transport

29-10

Table 29-3 (Cont.) HTTP Transport Properties for Business Services

Property Description

Supports Compression Select this option to enable compression support. If enabled, you
can select an outbound request compression algorithm with the
Request Compression Algorithm setting. Outbound responses
with either gzip or deflate compression will automatically be
supported according to the outbound response's Content-
Encoding header.

If this option is not selected, uncompressed payloads are sent. No
headers are added. Receiving a compressed outbound response
will lead to an error.

Request Algorithm
Compression

When Supports Compression is selected, three options for
handling compression for outbound requests are available:

• None: does not compress an outbound request, however
compressed outbound responses are understood

• Gzip: gzip compresses outbound payloads
• Deflate: deflate compresses outbound payloads
The Accept-Encoding header will be set to "gzip, deflate".
Outbound responses containing a Content-Encoding header
with any of these two compression algorithms will be understood.

Enable Compression Buffer Select this option to enable compression buffering. When enabled,
the entire message will be written to an in-memory buffer in
compressed format to determine the Content-Length of the
compressed data. The Content-Length header will be set on
the response object prior to sending any data to the recipient.

This setting doesn't affect request processing; it only applies to
inbound response data handling. Inbound requests are always
streamed directly.

This option is disabled if one of the following conditions is true:

• The Supports Compression setting is deselected
• The Supports Compression setting is selected and None is

selected in the Request Compression Algorithm list
Note: this setting is incompatible with the Use Chunked
Streaming Mode setting. Only one or the other can be selected.

HTTP Custom
Authentication Class Name

Enter the name of the Java class used for custom authentication.
This field is only available if you selected Custom Authentication
for the authentication type. For information about creating the
custom authentication class, see How to Create a Custom
Authentication Class for Outbound.

Proxy Server Enter a proxy server resource or click Browse to choose an entry
from the list of configured proxy server resources.

Follow HTTP redirects Select this check box to specify that HTTP redirects (which are
requests with a response code 3xx) should be automatically
followed. A redirect occurs when you send an outbound request to
the URL of a business service, and that service returns a
response code (for example, 302) that says the URL is no longer
valid and this request needs to be sent to another URL. If you
select the Follow HTTP Redirects check box, Service Bus
automatically resends the request to the new URL without any
action on your part. Deselect this check box if you do not want the
HTTP redirects to be automatically followed.

Chapter 29
Using the HTTP Transport

29-11

Table 29-3 (Cont.) HTTP Transport Properties for Business Services

Property Description

Use Chunked Streaming
Mode

Select this option if you want to use HTTP chunked transfer
encoding to send messages.

Note: Do not use chunked streaming with the Follow HTTP
Redirects option. Redirection and authentication cannot be
handled automatically in chunked mode.

Session Stickiness Select this option if you want to use session stickiness (also
known as session affinity) for HTTP requests for the business
service. For more information, see HTTP Session Stickiness..

Sticky sessionID Name Enter a unique identifying name for the session if Session
Stickiness is enabled.

29.2.6 REST Support
The HTTP transport provides support for working with REST environments through
Service Bus, whether you have REST clients that need to interact with non-REST
service providers, non-REST clients that need to interact with REST-based service
providers, or REST-to-REST services you want to expose through Service Bus.

In a REST pattern, you invoke HTTP methods (such as GET, PUT, HEAD, POST, and
DELETE) on resources that are located at specific URLs. For example, when a user
updates his own profile information in a web application that uses REST, a POST
action updates the user information in the database through the service's REST API.

While Service Bus incorporates the REST binding, as described in Creating REST
Services with Oracle Service Bus . Service Bus also provides the following placeholder
variables for handling REST-based requests for inbound and outbound communication
using the HTTP transport:

• $inbound or $outbound/transport/request/http:http-method: For handling
HTTP methods such as GET, PUT, HEAD, POST, and DELETE.

• $inbound or $outbound/transport/request/http:parameters: For handling a
query string in a URL. The parameters metadata contains one or more parameter
elements that store name-value pairs. The name-value pairs are URLDecoded
values in the query string. For example, in the URL http://localhost:7021/
myproxy/weather?operation=temperature&pincode=94065, the query string is
stored as the following query parameters:

<http:query-parameters>
 <http:parameter name="operation" value="temperature"/>
 <http:parameter name="pincode" value="94065"/>
</http:query-parameters>

• $inbound or $outbound/transport/request/http:relative-URI: For handling
relative portions of a REST resource URL (relative to the proxy service URI). For
example, in the URL http://localhost:7021/myproxy/weather, /weather is a
relative URL to http://localhost:7021/myproxy.

Chapter 29
Using the HTTP Transport

29-12

29.2.6.1 REST in Proxy Services
With a proxy service, you have the flexibility to interact with REST patterns, whether you are
receiving REST-based requests or generating REST-based actions.

For example, to develop REST-based applications and invoke services in a non-REST
service provider, you can send REST operations through a proxy service and transform those
operations into a format the service provider understands; or you could transform a non-
REST request into a resource URL and invoke an operation in a REST-based service
provider. You can also use Service Bus as an intermediary for monitoring, auditing, and
reporting on REST-to-REST implementations.

For working samples that use REST with Service Bus, see the Oracle Service Bus Samples
repository, accessible from http://www.oracle.com/technetwork/middleware/service-
bus/learnmore/index.html.

29.2.6.1.1 XQuery Examples
Following are XQuery examples of URI parsing using HTTP variables in a proxy service. URI
parsing lets you transform messages between REST and non-REST environments.

Relative-URI

A proxy service has a URI of http://localhost:7001/weather, and you want to capture the
relative URI parts of a request. You create the following XQuery:

<relative-URI>
{
for $c in
fn:tokenize($inbound/ctx:transport/ctx:request/http:relative-URI, "/")
where fn:string-length($c) != 0
return
<part>
{$c}
</part>
}
</relative-URI>

If a request comes with the URI of http://localhost:7001/weather/temperature/35457,
the relative URI is /temperature/35457, and the XQuery output is as follows:

<relative-URI>
 <part>temperature</part>
 <part>35457</part>
</relative-URI>

Query-String Parameters

A proxy service has a URI of http://localhost:7001/weather, and you want to capture the
URL query string parameters. You create the following XQuery:

<query-parameters>
{
return
<param name="$inbound/ctx:transport/ctx:request/http:parameters/param/name"
value="$inbound/ctx:transport/ctx:request/http:parameters/param/value"></param>
}
</query-parameters>

Chapter 29
Using the HTTP Transport

29-13

http://www.oracle.com/technetwork/middleware/service-bus/learnmore/index.html
http://www.oracle.com/technetwork/middleware/service-bus/learnmore/index.html

If a request comes with a URI of http://server:7001/weather?
operation=temperature&pincode=35457, the query string is
operation=temperature&pincode=35457, which are stored as individual parameters in
the http:parameters metadata. The XQuery output is:

<query-parameters>
 <param name='operation' value='temperature'/>
 <param name='pincode' value='35457'/>
</query-parameters>

29.2.6.1.2 Headers
If your service requires specific headers to handle HTTP/REST methods, create user-
defined HTTP header variables in your pipeline.

29.2.6.2 REST in Business Services
With a business service, you can invoke REST-based services. For REST operations,
the HTTP transport uses the value in the $outbound/transport/request/http:http-
method variable. If that variable does not supply an HTTP method, the HTTP transport
lets you select one of the following HTTP request methods in the transport
configuration: POST, PUT, HEAD, GET, AND DELETE.

Note:

If the business service uses a WSDL service type, only the POST method is
available.

Using the $outbound/transport/request-http/http-method variable, you can also
supply your own methods. For example, you can use COPY, MOVE, and LOCK for
WebDAV environments (Web-based Distributed Authoring and Versioning).

Use the following guidelines for setting $outbound variables:

• The transport does not provide runtime validation for custom methods or for
manually set supported methods that do not comply with the constraints described
in this section.

• Since $outbound is only available in a routing node, you cannot specify a method
name at runtime for publish and service callout actions.

• If the $outbound query string parameters are set, the business service uses
outbound request encoding for building the query string from raw bytes and URL
encoding for parameter name-value pairs retrieved from the parameters metadata
element.

• If the $outbound relative URI is set, the business service uses that value to
generate the URI, which is relative to the business service URI.

For example, in a business service with a URI of

http://service.com/purchaseOrder

with the following HTTP variables

Chapter 29
Using the HTTP Transport

29-14

$outbound/transport/request-http/relative-URI: "/PO12367" and
$outbound/transport/request-http/parameters/parameter: "item=NO1"
$outbound/transport/request-http/parameters/parameter: "color=black"

the final resolved URI is

http://service.com/purchaseOrder/PO12367?item=NO1&color=black

29.2.7 Response Codes and Error Handling for HTTP Business Services
Service Bus aligns with the HTTP 1.1 specification for handling all response codes in range
200-500. Table 29-4 describes how Service Bus handles the different response code levels.

HTTP business services must be of the following types to receive response payloads
containing errors 300 and greater:

• WSDL

• Any SOAP

• Messaging, with the following conditions:

– The response message type must be MFL or XML (determined to be of type XML or
SOAP). HTTP business services with response types that Service Bus determines to
be other than XML or SOAP do not receive HTTP response payloads.

– The Content-Type HTTP header in the response payload is text/xml, application/
any_string+xml, or multipart/related.

Table 29-4 Response Code Handling for HTTP Business Services

Response Status
Codes

Description

100s 100-level status codes indicate a provisional response consisting of only the
Status-Line and optional headers, terminated by an empty line. The response
behavior for 100-level codes is already handled by the internal
HttpURLConnection Java class, so Service Bus does not handle these.

200s 200-level status codes indicate a successful operation. Service Bus returns
these as the response payload to HTTP business services regardless of the
business service type.

300s 300-level status codes are errors which indicate that further action needs to be
taken by the caller in order to fulfill the request. Service Bus returns these as
the response payload to HTTP business services with supported message
response types.

In the response pipeline, you can take appropriate action to handle 300-level
codes.

To handle 300-level response codes that indicate the need for a redirect, set
the "Follow HTTP Redirects" option on the HTTP business service transport
configuration.

400s 400-level status codes indicate a client error. Service Bus returns these as the
response payload to HTTP business services with supported message
response types.

In the response pipeline, you can take appropriate action to handle 400-level
codes.

Chapter 29
Using the HTTP Transport

29-15

Table 29-4 (Cont.) Response Code Handling for HTTP Business Services

Response Status
Codes

Description

500s 500-level status codes indicate a server error. Service Bus returns these as the
response payload to HTTP business services with supported message
response types.

In the response pipeline, you can take appropriate action to handle 400-level
codes.

29.2.8 Large Payload Rejection with the HTTP Transport
Payloads over the default of 10MB and attachments over 1 GB are rejected for
inbound messages under the HTTP transport in a Reference Configuration domain.

The rejection limit is for the payload controlled by the -Dsoa.payload.threshold.kb
parameter and for the attachment by the -Dsoa.attachment.threshold.kb parameter.
If either threshold is exceeded, the message is rejected.

29.3 Using the Email Transport
You can use the email transport with services that have a Messaging or Any XML
service type.

The following topics describe how to configure proxy services and business service
using the email transport. The email transport supports one-way messaging for
services with the Messaging service type. When you create a Messaging type proxy
service or business service using the email transport you must set the response type
to none in the service configuration.

29.3.1 Email Transport Configuration Reference
This section provides information about endpoint URI formats and configuring the
email transport in proxy and business services.

• Email Transport Endpoint URIs

• Configuring Proxy Services to Use the Email Transport

• Configuring Business Services to Use the Email Transport

29.3.1.1 Email Transport Endpoint URIs
When you configure a proxy service using the email transport, specify the endpoint
URI in the following format:

mailfrom:mailserver-host:port

where mailserver-host is the name of the server hosting the mail service and port is
the port number used by that server.

When you configure a business service using the email transport, you can specify one
or more endpoint URIs in the following formats, which lets you send email messages
to multiple recipients in multiple domains:

Chapter 29
Using the Email Transport

29-16

mailto:name@domain_name.com

mailto:name@domain_name.com?smtp=smtp_server_resource

mailto:name@domain_name.com?mailsession=jndi_mail_session

For example:

mailto:user1@example1.com

mailto:user2@example2.com?smtp=exampleSMTP

mailto:user3@example3.com?mailsession=my.mail.Session

29.3.1.2 Configuring Proxy Services to Use the Email Transport
The following table describes the properties you use to configure an email transport for a
proxy service. For more information, see Creating and Configuring Proxy Services.

Table 29-5 Email Transport Properties for Proxy Services

Property Description

SSL Required Select this option to communicate using Secure Sockets Layer. The
default SSL port numbers are:

• POP3(S): 995
• IMAP: 993
Note: The email server certificate must be present in the Service Bus
truststore in order for SSL to work. The Email Transport supports one-
way SSL communication.

Service Account Enter a service account that will be used for authentication to access
the email account. The service account consists of a user name and
password combination required to access the email account.

For more information, see Working with Service Accounts.

Managed Server Select the Managed Server to act as the polling server. All of the
Managed Servers can process the message, but only one can poll for
the message.

This field is available only in a clustered domain.

Polling Interval Enter an interval in seconds between attempts to poll for new
messages to process. The default value is 60.

Email Protocol Select POP3 or IMAP as the email protocol to use to connect to the
email server.

Read Limit Specify the maximum number of messages to read for each polling
sweep. Enter 0 to specify no limit. The default value is 10.

Pass By Reference Select this check box to stage the file in the archive directory and pass
it as a reference in the headers.

By default when you create a new service, the Pass By Reference
option is selected and you must specify the archive directory location.

Pass Attachments by
Reference

Select this check box to stage the attachments in the archive directory
and pass them as a reference in the headers.

By default, when the Pass By Reference option is selected, the Pass
Attachments By Reference option is implicitly true and you must
specify the archive directory location.

Chapter 29
Using the Email Transport

29-17

Table 29-5 (Cont.) Email Transport Properties for Proxy Services

Property Description

Post Read Action Select what happens to a message after it has been read:

• Archive: The message is archived. If you select this option, specify
an archive directory where Service Bus will archive the messages.

• Delete: The message is deleted.
• Move: The message is moved. If you select this option, specify an

IMAP move folder to which Service Bus will move the message.
Move is only available with the IMAP protocol.

Attachments Select how attachments are handled:

• Archive: Attachments are saved to the archive directory.
• Ignore: Attachments are ignored.
Note: If attachments are archived, the attachment files are passed as a
reference in the message headers irrespective of the settings for the
Pass By Reference parameter.

IMAP Move Folder Enter the folder to which the message is moved if the Post Read
Action field is set to Move.

You must configure this field if Post Read Action is set to move.

Download Directory Enter a temporary location for downloading emails.

Archive Directory Specify the path to the archive location if the Post Read Action field is
set to Archive.

This field is required if the Pass By Reference or Pass Attachments
By Reference option is selected. It is active only when Post Read
Action property is set to archive.

Error Directory Enter the file system directory path to write the message and any
attachments if there is a problem.

Request Encoding Accept the default ISO-8859-1 as the character set encoding for
requests in email transports, or enter a different character set encoding.

29.3.1.3 Configuring Business Services to Use the Email Transport
The following table describes the properties you use to configure an email transport for
a business service. For more information, see Creating and Configuring Business
Services.

Table 29-6 Email Transport Properties for Business Services

Property Description

SSL Required Select this option to communicate using Secure Sockets Layer.
The Email Transport supports one-way SSL communication. The
default SMTP port number when using SSL is 465.

Note: The email server certificate must be present in the Service
Bus truststore in order for SSL/TLS to work.

Chapter 29
Using the Email Transport

29-18

Table 29-6 (Cont.) Email Transport Properties for Business Services

Property Description

SMTP Server Select the default SMTP server to use for endpoint URI entries of
name@domain_name.com. If you provide SMTP server
parameters in the endpoint URI, those server resources are used
instead of this SMTP server setting.

Do not select an SMTP server if you use the Mail Session option.

You must first create the SMTP server resource. For more
information, see How to Create SMTP Server Resources.

Mail Session Enter the JNDI name of the configured mail session to use for
endpoint URI entries of name@domain_name.com. If you provide
JNDI mail session parameters in the endpoint URI, those mail
sessions are used instead of this Mail Session setting.

Do not enter a Mail Session if you use the SMTP server option.

From Name Enter a display name for the originating email account for this
service. You must first configure mail sessions in the Oracle
WebLogic Server Administration Console.

From Address Enter the originating email account for this service. You need to
create a Mail Session in Oracle WebLogic Server Administration
Console. You must also set the Mail Session parameter or the
SMTP server parameter.

Reply To Name Enter a display name for the reply to email account. This is the
name from which the reply should be sent.

Reply To Address Enter an email address to send replies to.

Connection Timeout Enter the timeout interval, in milliseconds, before the connection is
dropped. If you enter 0, there is no timeout.

Socket I/O Timeout Enter the socket I/O timeout interval in milliseconds. If this value is
zero (0), there is no timeout.

Request Encoding Accept the default ISO-8859-1 as the character set encoding for
requests in email transports, or enter a different character set
encoding.

29.4 Using the File Transport
Use the File transport to poll messages from files on a shared file system located in the
directory you specify.

Once a file is read, Service Bus can either delete or archive the file depending on how you
configure the transport. To ensure that no programs can access a file while Service Bus is
writing it to the remote location, a File transport business service temporarily appends ".a" to
the file name until the file is completely written.

The File transport supports the Messaging and Any XML service types. For the Messaging
service type, the supported message types for the request are binary, text, MFL, and XML.
The response message type must be None because the File transport supports only one-way
messaging.

Chapter 29
Using the File Transport

29-19

29.4.1 File Transport Configuration Reference
This section provides information about endpoint URI formats and configuring the File
transport in proxy and business services.

• File Transport Endpoint URIs

• Configuring Proxy Services to Use the File Transport

• Special Considerations for NFS File Systems

• Configuring Business Services to Use the File Transport

29.4.1.1 File Transport Endpoint URIs
For both proxy services and business services using the File transport, enter the
endpoint URI in the following format:

file:///<root-dir/dir1>

where root-dir/dir1 is the absolute path to the directory where a proxy service polls
for files or where a business service writes files.

29.4.1.2 Configuring Proxy Services to Use the File Transport
The following table describes the properties you use to configure a File transport for a
proxy service. For more information, see Creating and Configuring Proxy Services.

Table 29-7 File Transport Properties for Proxy Services

Property Description

File Mask Specify the files that the proxy service should poll. If the URI is a
directory and you specify *.*, the service polls for all the files in
the directory. You can use the wildcard characters * and ? in the
file mask. Regular expressions are not supported.

Managed Server Select the Managed Server to act as the polling server. All of the
Managed Servers can process the message, but only one can poll
for the message.

This field is available only in a clustered domain.

Polling Interval Specify an interval in seconds between polling attempts for new
files to process. The default value is 60.

Note: In order to verify that a file is not being modified when it is
picked up for processing, the transport polls for files once and
then polls again 5 seconds later and compares the file size. This
might result in a delay of 5 seconds over the polling interval set
here. Make sure to set this value high enough to give your system
enough time to complete processing and unlock the file.

Read Limit Specify the number of files to be read in each poll. The default
value is 10. If 0 is specified, all the files are read.

Chapter 29
Using the File Transport

29-20

Table 29-7 (Cont.) File Transport Properties for Proxy Services

Property Description

Sort By Arrival Specify the sequence of events raised in the order of the arrival of
files. The default value for this parameter is False.

When this option is selected for a proxy service that is executed in
a clustered environment, messages are always sent to the same
server. In other words, load balancing across servers is ignored
when this option is selected.

Scan Subdirectories Select this check box to recursively scan all the subdirectories in
the polling directory.

Pass By Reference Select this check box to stage the file in the archive directory and
pass it as a reference in the headers. If you select this option, you
must specify an archive directory as well.

Post Read Action Select what happens to a message after it has been read:

• Archive: The message is archived. If you select this option,
you must specify an archive directory as well.

• Delete: The message is deleted.

Stage Directory Enter an intermediate directory to temporarily stage the files while
processing them.

This is mandatory regardless of the options you selected above.
Do not put the stage directory inside of the polling directory (the
directory identified in the URL of the file transport proxy service).

Archive Directory Specify the path to the archive location if the Post Read Action
option is set to Archive. The Archive Directory field is also a
required field if you selected the Pass By Reference field.

Note: You must not put the archive directory inside the polling
directory

Error Directory Enter the directory in which the contents of the file will be stored in
case of an error.

This is mandatory regardless of the options you selected above.
Do not put the error directory inside of the polling directory.

Request Encoding Accept the default utf-8 as the character set encoding for
requests in file transports, or enter a different character set
encoding.

29.4.1.3 Special Considerations for NFS File Systems
When the File transport polls for files, it first gets the list of files in the directory and their
sizes. It then polls again after either 5 seconds or the polling interval, whichever is smaller.
The transport gets the list of files again, and compares the file sizes to the first list. It
processes only those files whose size remained constant throughout the interval. The
standard NFS file system does not support the file locking mechanism required for this
process. There are a few options you can use to address this.

• Use extra signaling, such as file renaming after the file is transferred, in combination with
a special file name mask.

• To enable file growth protection on NFS, use the noac NFS mount option. This prevents
caching of the files, making sure that the ls command is the actual file size, not the end-
result claimed file size.

Chapter 29
Using the File Transport

29-21

• Use NFS version 4 or later, which introduced additional file locking features.

• If you are using NetApp filer storage, use Mixed Qtree security on the volume,
which makes the file locking mechanism usable for CIFS to NFS.

29.4.1.4 Configuring Business Services to Use the File Transport
The following table describes the properties you use to configure a File transport for a
business service. For more information, see Creating and Configuring Business
Services.

Table 29-8 File Transport Properties for Business Services

Property Description

Prefix Enter a prefix that the transport prepends to the file name on the
remote server.

Do not enter an asterisk (*) in this field; this character causes a
runtime exception. Do not use any characters that are invalid for
the target operating system.

Suffix Enter a suffix that the transport appends to the file name on the
remote server. This is a required field.

Do not enter an asterisk (*) in this field; this character causes a
runtime exception. Do not use any characters that are invalid for
the target operating system.

Request Encoding Accept the default utf-8 as the character set encoding for
requests in File transports, or enter a different character set
encoding.

29.5 Using the FTP Transport
Use the FTP transport to poll messages from files on a remote file system located in
the directory you specify.

Once a file is read, Service Bus can either delete or archive the file depending on how
you configure the transport. To ensure that no programs can access a file while
Service Bus is writing it to the remote location, an FTP transport business service
temporarily appends ".a" to the file name until the file is completely written.

The FTP transport supports the Messaging and Any XML service types. For the
Messaging service type, the supported message types for the request are binary, text,
MFL, and XML. The response message type must be None because the FTP
transport supports only one-way messaging.

29.5.1 FTP Transport Configuration Reference
This section provides information about endpoint URI formats and configuring the FTP
transport in proxy and business services.

• FTP Transport Endpoint URIs

• Configuring Proxy Services to Use the FTP Transport

• Configuring Business Services to Use the FTP Transport

Chapter 29
Using the FTP Transport

29-22

29.5.1.1 FTP Transport Endpoint URIs
For both proxy and business services using the FTP transport, enter the URI in the following
format:

ftp://<hostname:port/directory>

where

• hostname is the name of the FTP server on which the source or destination directory is
located.

• port is the port number at which the FTP connection is made.

• directory is the destination directory on the FTP server. For proxy services, this is the
location the service polls for new files. For business services, this is the location where
files are written.

The directory is relative to the working directory of the FTP session. For example, if the
working directory is /home/my_ftp/ and the proxy service endpoint URI is ftp://
ftp_server:21/documents, the service polls for files in /home/my_ftp/documents. Using
the same working directory, if the business service endpoint URI is ftp://
fpt_server:21/output, files are written to /home/my_ftp/output.

29.5.1.2 Configuring Proxy Services to Use the FTP Transport
The following table describes the properties you use to configure an FTP transport for a proxy
service. For more information, see Creating and Configuring Proxy Services.

Table 29-9 FTP Transport Properties for Proxy Services

Property Description

User Authentication Select one of the following types of user authentication:

• anonymous: This option does not require any login credentials to
log in to the FTP server, but you optionally supply your email ID for
identification.

• external user: This option references a service account resource,
which contains your user name and password for the FTP server.
You must select the service account to use if you select this option.

Identity (email ID) Enter the mail ID for the anonymous user.

This field is available only if the User Authentication option is set to
anonymous.

Service Account Enter a service account that will be used for authentication to access
the FTP server. This field is only available and is required when the
User Authentication option is set to external user. You must have
already created the service account resource in Service Bus.

For more information, see Working with Service Accounts.

Pass By Reference Select this check box to stage the file in the archive directory and pass
it as a reference in the headers. If you select this option, you must
specify an archive directory below.

Chapter 29
Using the FTP Transport

29-23

Table 29-9 (Cont.) FTP Transport Properties for Proxy Services

Property Description

Remote Streaming Select this check box to stream the FTP files directly from the remote
server at the time of processing. When you select this option, the
archive directory is the remote directory on the remote FTP server
machine. Therefore, you should specify the archive directory as relative
to the FTP user directory

File Mask Enter the regular expression for the files to be polled by the proxy
service. If the URI is a directory and the file mask is *.*, the service
polls all files in the directory.

Managed Server Select the Managed Server to act as the polling server. All of the
Managed Servers can process the message, but only one can poll for
the message.

This field is available only in a clustered domain.

Polling Interval Enter the interval (in seconds) at which the service polls for files to
process. The default value is 60.

Note: In order to verify that a file is not being modified when it is picked
up for processing, the transport polls for files once and then polls again
5 seconds later and compares the file size. This might result in a delay
of 5 seconds over the polling interval set here. Make sure to set this
value high enough to give your system enough time to complete
processing and unlock the file.

Read Limit Specify the maximum number of messages to read per polling sweep.
Enter 0 to specify no limit. The default is 10.

Post Read Actions Select what happens to a message after it has been read.

• Archive: The message is archived. If you select this option, you
must also specify an archive directory below.

• Delete: The message is deleted.

Transfer Mode Select binary or ASCII as the file transfer mode. By default the transfer
is binary.

Archive Directory Specify the path to the archive location if the Post Read Action option
is set to Archive. This field is also required if the Pass By Reference
option is selected.

Note: The Archive, Download, and Error directories are absolute paths,
and they are automatically created. If you specify a relative path, the
files are created relative to the Java process that starts the WebLogic
Server.

Download Directory Enter the directory on your local machine where files are downloaded
during the file transfer.

Note: The Archive, Download, and Error directories are absolute paths,
and they are automatically created. If you specify a relative path, the
files are created relative to the Java process that starts the WebLogic
Server.

Error Directory Enter the location where the contents of the file is stored in case of a
error.

Note: The Archive, Download, and Error directories are absolute paths,
and they are automatically created. If you specify a relative path, the
files are created relative to the Java process that starts the WebLogic
Server.

Chapter 29
Using the FTP Transport

29-24

Table 29-9 (Cont.) FTP Transport Properties for Proxy Services

Property Description

Request Encoding Specify the type of encoding to read the request message. The default
encoding is utf-8.

Scan Subdirectories Select this check box to recursively scan all directories when polling for
files.

Sort By Arrival Select this check box to deliver events in the order of arrival.

Timeout Enter the socket timeout interval, in seconds, before the connection is
dropped. If you enter 0, there is no timeout.

Retry Count Specify the number of retries for FTP connection failures.

29.5.1.3 Configuring Business Services to Use the FTP Transport
The following table describes the properties you use to configure an FTP transport for a
business service. For more information, see Creating and Configuring Business Services.

Table 29-10 FTP Transport Properties for Business Service

Property Description

User Authentication Select one of the following types of user authentication:

• anonymous: This option does not require any login credentials to
log in to the FTP server, but you optionally supply your email ID for
identification.

• external user: This option references a service account resource,
which contains your user name and password for the FTP server.
You must select the service account to use if you select this option.

Identity (Email id) Enter the mail ID for the anonymous user.

This field is available only if the User Authentication option is set to
anonymous.

Service Account Enter a service account that will be used for authentication to access
the service. This field is only available and is required when the User
Authentication option is set to external user. You must have already
created the service account resource in Service Bus.

For more information, see Working with Service Accounts.

Timeout Enter the socket timeout interval, in seconds, before the connection is
dropped. The default is 60 seconds.

Prefix for destination File
Name

Enter an optional prefix that the transport prepends to the file name on
the remote server.

Do not enter an asterisk (*) in this field. This character causes a
runtime exception.

Suffix for the destination File
Name

Enter an optional suffix that the transport appends to the file name on
the remote server.

Do not enter an asterisk (*) in this field. This character causes a
runtime exception.

Transfer Mode Select ASCII or binary as the file transfer mode.

Request Encoding Accept the default UTF-8 as the character set encoding for requests in
ftp transports, or enter a different character set encoding.

Chapter 29
Using the FTP Transport

29-25

29.6 Using the SFTP Transport
The SFTP transport is a poll-based transport that allows you to transfer files securely
over the SSH File Transfer Protocol (SFTP) using SSH version 2.

It polls a specified directory at regular intervals based on a predefined polling interval.
After authentication, a connection is established between Service Bus services and
the SFTP server, enabling file transfer. The SFTP transport supports one-way inbound
and outbound connectivity.

To ensure that no programs can access a file while Service Bus is writing it to the
remote location, an SFTP transport business service temporarily appends ".a" to the
file name until the file is completely written.

Note:

The SFTP transport may not correctly handle file names in multi-byte
character sets.

The SFTP transport supports only Messaging and Any XML service types. For the
Messaging service type, the supported message types for the request are binary, text,
MFL, and XML. The response message type must be None because the SFTP
transport supports only one-way messaging.

29.6.1 SFTP Transport Features
The SFTP transport provides the following features:

• The SFTP transport is available for the following service types: Any XML and
Messaging (with request message type specified). For more information about
configuring service types, see Proxy Service Definitions and Business Service
Definitions.

• The SFTP transport supports processing of large messages. When you configure
a proxy service, you can enable content streaming and specify whether large
messages must be buffered in memory or in a disk file. For more information, see
Streaming Body Content.

• The SFTP transport allows you to select a cipher suite and security algorithms to
use, or you can allow Service Bus to find a suitable match.

• For inbound message transfer, the QoS is set to exactly-once, which ensures that
every message is processed at least once. For outbound message processing, the
QoS is best-effort.

Note:

For messages that are not transferred, you must create the error-
handling logic (including any retry logic) in the pipeline error handler.

Chapter 29
Using the SFTP Transport

29-26

For more information about QoS in Service Bus messaging, see Quality of Service.

• The SFTP transport now supports FIPS (Federal Information Processing Standards)
compliance.

See About FIPS Compliance for the SFTP Transport for more information.

29.6.2 General Principles of SFTP Authentication
The following principles are applicable to the SFTP authentication process for both proxy and
business services:

• Connection: The Service Bus proxy or business service always acts as the SFTP client
and connects to the SFTP server.

• Authentication by the SFTP server: Server authentication works in one of the following
ways:

– For public key and host-based authentication, the SFTP server authenticates the
connection with the public key of the Service Bus service.

– For user name and password authentication, the SFTP server authenticates the
connection with the user name and password.

• Authentication by the SFTP client: The Service Bus service always authenticates the
SFTP server with the public-key/host/IP combination defined in the known_hosts file. For
more information, see Creating the Known Hosts File.

• Connection establishment: The connection is established only when both the server and
client authentications are successful.

• File transfer:

– If the client is a proxy service, the file (message) is downloaded from the SFTP
server.

– If the client is a business service, the file (message) is uploaded to the SFTP server.

29.6.3 SFTP Transport Runtime Behavior
Transferring files using the SFTP transport involves the following steps:

1. The proxy service polls the input directory at regular intervals.

A new connection is created for each poll cycle.

2. If the proxy service finds a file in the input directory, it renames the file with a .stage
extension. This renaming ensures that the service does not pick up the same files during
the next polling cycle.

The .stage file exists in the input directory until it is delivered.

Note:

If the file cannot be retrieved from the input directory (due to network failure, for
example), the .stage file is processed during a clean-up cycle. The clean-up
cycle is performed every 15 minutes or after 15 polling cycles, whichever
occurs later. If a .stage file exists during two consecutive clean-up cycles, it is
processed again.

Chapter 29
Using the SFTP Transport

29-27

3. A JMS task is created for the message and added to the domain-wide JMS queue.

4. A domain-wide MDB receives the task and processes the message.

The task uses a pooled connection for processing the message. If a connection is
not available in the pool, a new connection is created.

5. The message is delivered to the pipeline and the .stage file is deleted.

6. If an SFTP business service is configured, the service puts the message in the
outbound directory through a pooled connection.

If the message is not delivered, the transport attempts to transfer it again and repeats
the process up to a predefined number of attempts. If the message cannot be
delivered, it is moved to the error directory.

29.6.4 Enabling SFTP Authentication
The SFTP transport supports the following authentication methods:

• User name and password authentication

• Host-based authentication

• Public key authentication

Service Bus services authenticate the SFTP server based on the server details
defined in a known_hosts file. To enable server authentication, you must create a
known_hosts file on the client machine.

29.6.4.1 Creating the Known Hosts File
The known_hosts file must exist in the server on which the Service Bus proxy services
(inbound requests) or business services (outbound requests) run. The file must
contain the host name, IP address, and public key of the remote SFTP servers to
which the proxy service or business service can connect.

To create the known hosts file:

1. Create a known_hosts file and enter information in the following format:

Hostname,IP algorithm publickey

where:

• Hostname is the host name of the SFTP server. The hostname is optional.

• IP is the IP address of the SFTP server.

If you use an IPv6 address, do not use a double colon to represent multiple
zeros. Write out all zeros. For example, use this format ":0:0:0:" instead of this
format "::".

• algorithm can be either DSA or RSA, based on the SFTP server
configuration. Enter ssh-rsa or ssh-dss depending on the algorithm that is
supported.

• publickey is the public key of the SFTP server. It must be in the Open SSH
public key format.

Example - Known Hosts File

Chapter 29
Using the SFTP Transport

29-28

getafix,172.22.52.130 ssh-rsa

AAAAB3NzaC1yc2EAAAABIwAAAIEAtR+M3Z9HFxnKZTx66fZdnQqAHQcF1vQe1+EjJ/HWYtg

Anqsn0hMJzqWMatb/u9yFwUpZBirjm3g2I9Qd8VocmeHwoGPhDGfQ5LQ/PPo3esE+CGwdnC

OyRCktNHeuKxo4kiCCJ/bph5dRpghCQIvsQvRE3sks+XwQ7Wuswz8pv58=

The known_hosts file can contain multiple entries, but each entry must be on a separate
line.

2. Move the known_hosts file to the DOMAIN_HOME/config/osb/transports/sftp directory.

The directory /transports/sftp is not created automatically. You must create it
manually.

29.6.4.2 Enabling User Name and Password Authentication
User name and password authentication is the simplest and quickest method of
authentication. It is based on the credentials of the user.

To enable user name and password authentication for a service:

1. Create a static service account by using the user credentials on the SFTP server. For
more information, see Working with Service Accounts.

2. Create a known_hosts file. For more information, see Creating the Known Hosts File.

29.6.4.3 Enabling Host-Based Authentication
Host-based authentication uses a private host key. This method can be used when all the
users share a private host.

For host-based authentication, Open SSH compares the host name provided by the client
against a reverse lookup on the client IP address. Because of scenarios where the request
comes from a multi-homed machine or through NAT gateway, host names may not match,
resulting in authentication failure. To work around such scenarios, turn off the DNS check by
setting the HostbasedUsesNameFromPacketOnly property to "yes" in /etc/ssh/sshd_config.
This work around does not subvert security, because the real security is in the public key
matching between the known_hosts file and the SFTP server.

To enable host-based authentication for a service:

1. Configure a service key provider with an SSL client authentication key. For more
information, see Working with Service Key Providers.

Note:

You can extract the public key from the key store that was used while creating
the service key provider. The public key must be in the Open SSH format.

2. Create a known_hosts file. For more information, see Creating the Known Hosts File.

3. Configure the SFTP server to accept requests from Service Bus, which is a client to the
SFTP server.

For example, for an SFTP server on Linux, do the following:

Chapter 29
Using the SFTP Transport

29-29

• Edit the /etc/ssh/shosts.equiv file and add the host name or IP address of
the machine on which the Service Bus domain runs.

• Edit the /etc/ssh/ssh_known_hosts file and add the host name or IP address
of the machine on which the Service Bus domain runs, followed by a space
and the public key.

29.6.4.4 Enabling Public Key Authentication
Public key authentication is performed using your own private key. This method can be
used when each user has a private key.

To enable public key authentication:

1. Configure a service key provider with SSL client authentication key. For more
information, see Working with Service Key Providers.

2. Configure the SFTP server to accept requests from Service Bus (SFTP client).

For example, for an SFTP server on Linux, extract the public key from the key
store and enter the key in the $HOME/.ssh/authorized_keys file on the SFTP
server. Ensure that the path and file exist.

3. Create a known_hosts file. For more information, see Creating the Known Hosts
File.

29.6.5 About FIPS Compliance for the SFTP Transport
The SFTP transport now supports FIPS (Federal Information Processing Standards)
compliance.

FIPS-140–2 validated cryptography algorithms are available for use with the SFTP
transport. When FIPS compliance is enabled, the following Public Key Algorithms and
Key Exchange Algorithms are supported:

• Public Key Algorithm: ssh-rsa (Service Bus runtime default with FIPS
Compliance enabled)

• Key Exchange Algorithm: diffie-hellman-group14-sha1 (Service Bus runtime
default wit FIPS Compliance enabled)

All other Public Key Algorithms and Key Exchange Algorithms are not supported and
are not selectable.

29.6.5.1 Enabling FIPS Compliance
You can enable FIPS Compliance for proxy or business services using the SFTP
transport. You can complete this task using JDeveloper or the Service Bus console.

To enable FIPS compliance for a proxy or business service:

1. From the proxy or business service’s Transport Detail page, select Enable FIPS
Compliance.

2. Select a supported algorithm from the Preferred Public Key Algorithm list.
Unsupported algorithms do not appear in the list.

3. Select a supported algorithm from the Preferred Key Exchange Algorithm list.
Unsupported algorithms do not appear in the list.

Chapter 29
Using the SFTP Transport

29-30

29.6.5.2 FIPS Compliance Upgrade Considerations
FIPS compliance is disabled by default. When upgrading clients, the existing SFTP Transport
configurations will show FIPS Compliance as disabled.

When enabling FIPS Compliance, you must select the Preferred Cipher from the list of FIPS
compliant ciphers. The following ciphers are FIPS-compliant:

• aes128-cbc

• aes128-ctr

• arcfour

• arcfour128

• blowfish-cbc

• 3des-cbc

• 3des-ctr

29.6.6 Handling SFTP Transport Communication Errors
You can configure the SFTP transport-based business services to handle communications
errors, which can occur when a connection or user authentication fails while connecting to the
remote SFTP server. When you configure the business service, you can enable the business
service endpoint URIs to be taken offline after a specified retry interval.

For more information, see "Managing and Monitoring Endpoint URIs for Business Services" in
Administering Oracle Service Bus.

29.6.7 Troubleshooting the SFTP Transport
Most of the errors occur while configuring an SFTP proxy or business service. Below are
some tips to help you understand and solve the errors.

• Make sure that you have an appropriately configured known_hosts file in place.

• For public key authentication, store the public key file on the server. For more
information, see the documentation accompanying your SFTP server.

• A Connection refused error message indicates that the SFTP server is not available on
the configured host and port.

• An Authentication failed error message indicates that the user name or password is
not valid, or that the public key is not configured correctly.

• A Connection did not complete error message is displayed after the actual error that
caused the connection failure (for example: Key not found).

• A Key not found for IP, host error message indicates that the known_hosts file does
not contain an entry that corresponds to the specified IP-host combination. If the entry
exists, then try with another algorithm key; for example, if the earlier attempt was with an
RSA key, try again with a DSA key.

Chapter 29
Using the SFTP Transport

29-31

29.6.8 Importing SFTP Transport Services
This section provides information about importing Service Bus resources from
configuration JAR files and UDDI registries.

• Importing Resources Used by the SFTP Transport

• Importing and Publishing Services: UDDI Registries

29.6.8.1 Importing Resources Used by the SFTP Transport
When you import a resource that already exists in an Service Bus domain, you can
preserve the existing security and policy configuration details of the resource by
selecting the Preserve Security and Policy Configuration option. The following
SFTP service-specific details are preserved when you import a resource:

• Client authentication method

• Reference to the service account (for services associated with user name and
password authentication)

• Reference to the service key provider (for services associated with host-based or
public key authentication)

• User name (for services associated with host-based or public key authentication)

For more information about importing resources, see Importing and Exporting
Resources and Configurations .

29.6.8.2 Importing and Publishing Services: UDDI Registries
When an SFTP service is published to the UDDI registry, Authentication mode,
Request encoding, Sort by arrival, and File mask are the properties that are
published. After the service is imported, the default value of the load balancing
algorithm is round-robin.

Table 29-11 lists the properties that are imported from the registry when an SFTP
service is imported from the UDDI registry.

Table 29-11 Properties Imported from UDDI Registry

Property Description

Prefix for destination file
name

The prefix for the name of the file that is stored on the remote
server.

The default value is " " (null).

Suffix for destination file
name

The suffix for the name of the file that is stored on the remote server.

The default value is " " (null).

Chapter 29
Using the SFTP Transport

29-32

Table 29-11 (Cont.) Properties Imported from UDDI Registry

Property Description

Authentication mode The authentication method that is imported from the registry.

When an SFTP business service with user authentication is
imported from an UDDI registry to Service Bus, a conflict is
generated.

• For user name and password authentication, you must create a
service account and associate it with the service.

• For host-based or public key authentication, you must create a
service key provider and associate it with the service.

For more information, see Working with UDDI Registries.

29.6.9 SFTP Transport Configuration Reference
This section provides information about endpoint URI formats, environment values, and
configuring the SFTP transport in proxy and business services.

• SFTP Transport Endpoint URIs

• Configuring Proxy Services to Use the SFTP Transport

• Configuring Transport Headers in the Pipeline

• Configuring Transports Headers and Metadata in the Test Console

• Configuring Business Services to Use the SFTP Transport

• SFTP Transport Environment Values

29.6.9.1 SFTP Transport Endpoint URIs
For both business and proxy services using the SFTP transport, enter the endpoint URI in the
following format:

sftp://hostname:port/directory

where:

• hostname is the host name or IP address of the SFTP server.

• port is the port on which SFTP server is listening. The default port for SFTP is 22.

• directory is the location where a business service writes outbound messages, or where
a proxy service polls for files at regular intervals.

The directory is relative to the SFTP session's working directory. For example, if the
working directory is home/my_sftp/ and you want the SFTP proxy service to read files
from home/my_sftp/documents, the URI would be similar to sftp://sftp_server:22/
documents. Using the same working directory for a business service, if the URI is sftp://
sftp_server:22/output, the business service writes files to home/my_sftp/output, x

29.6.9.2 Configuring Proxy Services to Use the SFTP Transport
The following table describes the properties you use to configure an SFTP transport for a
proxy service. For more information, see Creating and Configuring Proxy Services.

Chapter 29
Using the SFTP Transport

29-33

Table 29-12 SFTP Transport Properties for Proxy Services

Property Description

User Authentication Select the required authentication method from the following:

• Username Password Authentication: Specifies that a static
service account is associated with this authentication method and
the client is authenticated using the credentials provided in the
service account.

• Host-Based Authentication: Specifies that a user name and
service key provider are required. Any user connecting from a
known host is authenticated using the private key of the host.

• Public Key Authentication: Specifies that a user name and
service key provider are required. Users have their own private
keys.

Note: The service does not use the service key provider to authenticate
any credentials from the SFTP server. It uses only the known_hosts
file to authenticate the SFTP server, as described in Configuring
Transport-Level Security for SFTP Transport.. The proxy service is
authenticated by the SFTP server based on the specified user
authentication method.

Service Account Enter a service account that will be used for authentication to access
the service. For information about using service accounts, see Working
with Service Accounts.

Service Key Provider Enter a service key provider to use for authentication.

This field is available only for the public key and host-based
authentication methods. For more information, see Working with Service
Key Providers.

Username Enter the user name to log in to the SFTP server. This value is required
only when you select either the host-based or public key authentication
method.

• In host-based authentication, the user name is required for polling
the home directory of the user on the SFTP server.

• In public key authentication, the user name is required for polling
the home directory of the user and for identifying the location of the
public key on the SFTP server.

Pass By Reference Select this option to stage the file in the archive directory and pass it as
a reference in the headers.

Note: This option is available only when remote streaming is disabled.

Remote Streaming Select this option to stream the SFTP files directly from the remote
server at the time of processing. When you select this option, the
archive directory is the remote directory on the SFTP server machine.
Therefore, you must specify the archive directory relative to the SFTP
user directory.

File Mask Enter a regular expression to select the files that you want to pick from
the directory. Use the file mask for transferring files of specific types.
The default value is *.*, which selects all files.

File Mask is a
Regular Expression

Select this option to use regular expressions (regex) in the File Mask
field.

Tmp File Suffix Enter a suffix to append to the temp file used during the transfer. The
default value is _tmp.

Chapter 29
Using the SFTP Transport

29-34

Table 29-12 (Cont.) SFTP Transport Properties for Proxy Services

Property Description

Managed Server Select the Managed Server to act as the polling server. All of the
Managed Servers can process the message, but only one can poll for
the message.

This field is available only in a clustered domain.

Polling Interval Enter the interval (in seconds) at which the input directory is polled for
messages to process. Polling involves the creation of an SFTP
connection. The default value is 60. Avoid setting a low polling interval,
which can cause polling to occur too frequently.

Note: In order to verify that a file is not being modified when it is picked
up for processing, the transport polls for files once and then polls again
5 seconds later and compares the file size. This might result in a delay
of 5 seconds over the polling interval set here. Make sure to set this
value high enough to give your system enough time to complete
processing and unlock the file.

Read Limit Specify the maximum number of messages to read per polling sweep. If
numerous files exist in the poll directory, you can limit the number of
concurrent transfers by the value you specify here.

If you do not want to specify a limit, enter 0 (zero). The default value is
10.

Note: In some cases, the SFTP server might limit the number of
concurrent connections; make sure that the read limit you define is
lower than the server-defined limit.

Post Read Action Select what happens to the message after is has been read.

• Archive: The message is archived in the specified directory. If you
select this option, you must specify an archive directory below.

• Delete: The message is deleted.

Archive Directory Specify the path to the archive location if the Post Read Action option
is set to Archive. This field is required if the Pass By Reference option
is selected. When files are archived after reading, the files are moved
(from either the download directory or the remote location) to the
archive directory after they are read.

If remote streaming is enabled, the archive directory is with respect to
the SFTP server. If remote streaming is disabled, the archive directory
is available on the Service Bus machine.

Note: The archive, download, and error directories are absolute paths,
and they are automatically created. If you specify a relative path, the
files are created relative to the Java process that starts the WebLogic
Server.

Download Directory Enter the directory on your local machine where files are downloaded
during the file transfer. If remote streaming is enabled, this option is
disabled.

Note: The archive, download, and error directories are absolute paths,
and they are automatically created. If you specify a relative path, the
files are created relative to the Java process that starts the WebLogic
Server.

Chapter 29
Using the SFTP Transport

29-35

Table 29-12 (Cont.) SFTP Transport Properties for Proxy Services

Property Description

Error Directory Enter the location where messages are posted if there is a problem.

If remote streaming is enabled, the error directory is with respect to the
SFTP server. If remote streaming is disabled, the error directory is
available on the Service Bus machine.

Note: The Archive, Download, and Error directories are absolute paths,
and they are automatically created. If you specify a relative path, the
files are created relative to the Java process that starts the WebLogic
Server.

Request encoding Accept the default value (UTF-8) as the character set encoding for
requests in the SFTP transports.

Scan Subdirectories Select this option if you want all subdirectories within the directory that
is specified in the endpoint URI to be scanned recursively.

Note: Scanning subdirectories requires additional processing overhead,
so use this option judiciously.

Sort By Arrival Select this option to deliver events in the order of arrival. This ensures
that message delivery is not random, but based on the time at which the
file is downloaded to the destination directory.

Timeout Enter the socket timeout interval, in seconds, after which the connection
must be dropped. If you do not want the connection to time out, enter 0.
The default value is 60.

Retry Count Specify the number of retries for SFTP connection failures. Use this
setting to enable multiple attempts in case of errors such as network
failure. The default value is 3.

Enable FIPS
Compliance

Enables FIPS (Federal Information Processing Standards) compliance
for SFTP connections. When enabled, FIPS-compatible Public Key and
Key Exchange algorithms are enabled and selectable in the Preferred
Public Key Algorithm and Preferred Key Exchange Algorithm lists.
Incompatible algorithms are disabled and not selectable.

Preferred Cipher
Suite

Select the cipher suite to use when communicating with the server from
the list of available options. The cipher suite you use determines
authentication and encryption settings for the network connection.

If you use the default value, Use Runtime Default, the list of supported
cipher suites is sent to the server and each is tried until a match is
found.

Preferred Data
Integrity Algorithm

Select the bulk-hashing algorithm for data integrity checks from the list
of available options.

If you use the default value, Use Runtime Default, Service Bus sends
the preferred algorithm, hmac-sha1. If that is not supported by the
server, the list of supported algorithms is sent to the server and each is
tried until a match is found.

Chapter 29
Using the SFTP Transport

29-36

Table 29-12 (Cont.) SFTP Transport Properties for Proxy Services

Property Description

Preferred Public Key
Algorithm

Select the asymmetric key algorithm for public-key cryptography from
the list of available options.

If you use the default value, Use Runtime Default, Service Bus sends
the preferred algorithm, ssh-dss. If that is not supported by the server,
the list of supported algorithms is sent to the server and each is tried
until a match is found.

If the Enable FIPS Compliance option is selected, the runtime default
changes. If you use the default value, Use Runtime Default, Oracle
Service Bus sends the preferred algorithm, ssh-rsa. If that is not
supported by the server, the list of supported algorithms is sent to the
server and each is tried until a match is found.

Preferred Key
Exchange Algorithm

Select the default key exchange protocol for negotiating the session key
for encrypting the message.

If you use the default value, Use Runtime Default, Service Bus sends
the preferred algorithm, diffie-hellman-group1-sha1. If that is not
supported by the server, the list of supported algorithms is sent to the
server and each is tried until a match is found.

If the Enable FIPS Compliance option is selected, the runtime default
changes. If you use the default value, Use Runtime Default, Oracle
Service Bus sends the preferred algorithm, diffie-hellman-
group14-sha1. If that is not supported by the server, the list of
supported algorithms is sent to the server and each is tried until a
match is found.

Preferred
Compression
Algorithm

Select whether to compress in-flight data using zlib. Select zlib or
zlib@openssh.com to compress data; otherwise select None. The
default is None.

29.6.9.2.1 Configuring Transport Headers and Metadata
When you configure a proxy service, you can use a Transport Header action in the pipeline to
set the header values in messages. The following table lists the transport header and
metadata related to the SFTP transport.

Table 29-13 Transport Headers and Metadata

Header /
Metadata

Description

FileName This value is used as the file name in the destination directory.

isFilePath This is a metadata field. The possible values are true and false.

• True: FileName is interpreted as the absolute path of the file.
• False: FileName is interpreted as the name of the file.

filePath This is a response metadata field that indicates the absolute path at which the file
specified in the FileName header is written.

Chapter 29
Using the SFTP Transport

29-37

29.6.9.3 Configuring Transport Headers in the Pipeline
You can configure the transport headers only for outbound requests in the pipeline.
Use a transport header action to set the header values in messages. For more
information, see Adding Transport Header Actions in the Console.

29.6.9.4 Configuring Transports Headers and Metadata in the Test Console
You can configure the FileName transport header and the isFilePath metadata values
in the Test Console when you test the SFTP transport-based services during
development. For more information, see Using the Test Console.

29.6.9.5 Configuring Business Services to Use the SFTP Transport
The following table describes the properties you use to configure an SFTP transport
for a business service. For more information, see Creating and Configuring Business
Services.

Table 29-14 SFTP Transport Properties for Business Services

Property Description

User Authentication Select the required authentication method from the following:

• Username Password Authentication: Specifies that a static
service account is associated with this authentication method
and the client is authenticated using the provided credentials.

• Host Based Authentication: Specifies that a user name and
service key provider is required to use this authentication
method. Any user connecting from a known host is
authenticated using the private key of the host.

• Public Key Authentication: Specifies that a user name and
service key provider is required to use this authentication
method. Every user has their own private key.

Note: The Service Bus service does not use the service key
provider to authenticate any credentials from the SFTP server. It
uses only the known_hosts file to authenticate the SFTP server, as
described in Configuring Transport-Level Security for SFTP
Transport.

Service Account Enter the service account that will be used for authentication to
access the server. For information about using service accounts,
see Working with Service Accounts.

Service Key Provider Enter a service key provider to use for authentication.

This field is available only for the public key and host-based
authentication methods. For more information, see Working with
Service Key Providers.

Username Enter the user name. This value is required only when you select
either the host-based or public key authentication method.

• In host-based authentication, the user name is required for
polling the home directory of the user on the SFTP server.

• In public key authentication, the user name is required for
polling the home directory of the user and for identifying the
location of the public key on the SFTP server.

Chapter 29
Using the SFTP Transport

29-38

Table 29-14 (Cont.) SFTP Transport Properties for Business Services

Property Description

Timeout Enter the socket timeout interval, in seconds, before the connection
is dropped. If you enter 0, there is no timeout. The default value is
60.

Prefix for destination File
Name

Enter an optional prefix that the transport prepends to the file name
on the remote server.

Do not enter * in this field. This character causes a runtime
exception.

Suffix for the destination
File Name

Enter an optional suffix that the transport appends to the file name
on the remote server.

Do not enter * in this field. This character causes a runtime
exception.

Tmp File Suffix Enter a suffix to append to the temp file used during the transfer.
The default value is _tmp.

Owner File Permissions If applicable, set the explicit file permission settings for UNIX/Linux
type FTP servers. This setting is ignored by server types that don’t
support chmod.

Group File Permissions If applicable, set the explicit file permission settings for UNIX/Linux
type FTP servers. This setting is ignored by server types that don’t
support chmod.

Other File Permissions If applicable, set the explicit file permission settings for UNIX/Linux
type FTP servers. This setting is ignored by server types that don’t
support chmod.

Request encoding Accept the default UTF-8 as the character set encoding for requests
in SFTP transports.

Enable FIPS Compliance Enables FIPS (Federal Information Processing Standards)
compliance for SFTP connections. When enabled, FIPS-compatible
Public Key and Key Exchange algorithms are enabled and
selectable in the Preferred Public Key Algorithm and Preferred
Key Exchange Algorithm lists. Incompatible algorithms are
disabled and not selectable.

Preferred Cipher Suite Select the cipher suite to use when communicating with the server.
The cipher suite you use determines authentication and encryption
settings for the network connection.

If you use the default value, Use Runtime Default, the list of
supported cipher suites is sent to the server and each is tried until a
match is found.

Preferred Data Integrity
Algorithm

Select the bulk-hashing algorithm for data integrity checks from the
list of available options.

If you use the default value, Use Runtime Default, Service Bus
sends the preferred algorithm, hmac-sha1. If that is not supported
by the server, the list of supported algorithms is sent to the server
and each is tried until a match is found.

Chapter 29
Using the SFTP Transport

29-39

Table 29-14 (Cont.) SFTP Transport Properties for Business Services

Property Description

Preferred Public Key
Algorithm

Select the asymmetric key algorithm for public-key cryptography
from the list of available options.

If you use the default value, Use Runtime Default, Service Bus
sends the preferred algorithm, ssh-dss. If that is not supported by
the server, the list of supported algorithms is sent to the server and
each is tried until a match is found.

If the Enable FIPS Compliance option is selected, the runtime
default changes. If you use the default value, Use Runtime Default,
Oracle Service Bus sends the preferred algorithm, ssh-rsa. If that
is not supported by the server, the list of supported algorithms is
sent to the server and each is tried until a match is found.

Preferred Key Exchange
Algorithm

Select the default key exchange protocol for negotiating the session
key for encrypting the message.

If you use the default value, Use Runtime Default, Service Bus
sends the preferred algorithm, diffie-hellman-group1-sha1. If
that is not supported by the server, the list of supported algorithms
is sent to the server and each is tried until a match is found.

If the Enable FIPS Compliance option is selected, the runtime
default changes. If you use the default value, Use Runtime Default,
Oracle Service Bus sends the preferred algorithm, diffie-
hellman-group14-sha1. If that is not supported by the server, the
list of supported algorithms is sent to the server and each is tried
until a match is found.

Preferred Compression
Algorithm

Select whether to compress in-flight data using zlib. Select zlib or
zlib@openssh.com to compress data; otherwise select None. The
default is None.

29.6.9.6 SFTP Transport Environment Values
Environment values are predefined fields in the configuration data that are domain-
specific. Their values are likely to change when you move the configuration from one
domain to another (for example, from test to production). The following table lists the
environment values associated with the SFTP transport.

Table 29-15 SFTP Transport Environment Values

Environment Value Description

SFTP Archive Directory The archive directory for a SFTP proxy service. If direct-streaming
is on, the archive directory is present on the remote SFTP server;
otherwise, it is present locally.

SFTP Download Directory The download directory for a SFTP proxy service.

SFTP Error Directory The error directory for a SFTP proxy service. If direct-streaming is
on, the error directory is present on the remote SFTP server;
otherwise, it is present locally.

Managed Server for
Polling

The managed server for polling in a clustered domain.

SFTP Preferred Cipher
Suite

The cipher suite to use for authentication and encryption in SFTP
proxy and business services.

Chapter 29
Using the SFTP Transport

29-40

Table 29-15 (Cont.) SFTP Transport Environment Values

Environment Value Description

SFTP Preferred
Compression Algorithm

The compression library to use to compress in-flight data in SFTP
proxy and business services.

SFTP Preferred Data
Integrity Algorithm

The bulk-hashing algorithm to use integrity checks in SFTP proxy
and business services.

SFTP Preferred Key
Exchange Algorithm

The default key exchange protocol for negotiating the session key
for encrypting the message in SFTP proxy and business services.

SFTP Preferred Public
Key Algorithm

The asymmetric key algorithm for public-key cryptography in SFTP
proxy and business services.

For more information about environment variables and the SFTP variables, see:

• Customizing Oracle Service Bus Environments in Administering Oracle Service Bus

• Configuring Proxy Services to Use the SFTP Transport

• Configuring Business Services to Use the SFTP Transport

Chapter 29
Using the SFTP Transport

29-41

30
Using the JEJB Transport

This chapter provides an overview of the JEJB transport and describes how to use the
transport to handle Plain Old Java Objects (POJOs) in Service Bus.

This chapter includes the following sections:

• Introduction to the JEJB Transport

• Prerequisites for Creating JEJB Services

• Use Cases

• UDDI Integration

• JEJB Transport Configuration Reference

30.1 Introduction to the JEJB Transport
The JEJB transport lets you pass Plain Old Java Objects (POJOs) through Service Bus.

For example, you can use an EJB to invoke a remote EJB operation or a non-EJB service, or
you can invoke an EJB operation with a non-EJB request. Use case details are described in
Use Cases.

To a J2EE client, a JEJB proxy service looks like a stateless session bean. A JEJB proxy
service, on receiving the method arguments, passes their XML representation in the
pipeline $body variable. POJO arguments are represented as the XML fragment, which
contains the location of the actual POJO stored in the object repository within the pipeline.
XML arguments can either be passed by value or by reference (referencing the actual object
stored in the object repository). Primitive types are always passed by value.

For more information on POJOs in pipelines, see Java Content in the Body Variable and
Using Java Callouts and POJOs..

The JEJB transport is always synchronous, so the messaging pattern is always request-
response. For deployment, Service Bus automatically packages JEJB proxy services as
enterprise archives (EARs).

30.1.1 Differences Between the JEJB Transport and the EJB Transport
The EJB transport, available only for business services, invokes remote EJBs through the
Java Web Services (JWS) framework. The JEJB transport, which lets you invoke remote
EJBs and external services with POJOs, passes POJOs directly through Service Bus to the
target EJB methods using an RMI serialization/deserialization cycle. The EJB transport
provides a "Support Transaction" flag, but all proxy services provide transactional support,
making the transaction option unnecessary for JEJB business services.

30.1.2 JEJB Transport WSDL Generation
For proxy and business services, the JEJB transport generates a Document-style WSDL file
with Literal encoding that is used solely for describing the message passed to the pipeline.

30-1

The WSDL format lets you leverage Service Bus WSDL features such as per-
operation monitoring. The message structure defined in the WSDL file may differ from
the actual pipeline message at runtime if you inline your POJO arguments in the
message using the Pass XMLBeans by value option, described in Table 30-1.

Following is the behavior of the pipeline message format for XMLBeans parameter
types:

Proxy Services

• Request Parameters: Request parameters in the pipeline message refer to an
inline XML object if Pass XMLBeans by value is true; otherwise the reference is to
java-content ref.

• Response Parameter: The response may refer to an inline XML object or the
java-content ref, as the response may come in either form from the business
service.

Business Services

• Response Parameter: Return parameters in the pipeline message refer to an
inline XML object if Pass XMLBeans by value is true; otherwise the reference is to
java-content ref.

• Request Parameters: Request method parameters in the pipeline message may
refer to an inline XML object or the java-content ref, as the request may come
in either form from the proxy service.

30.1.3 JEJB Transport Error Handling
This section describes how the JEJB transport handles errors.

• Exception Propagation in the Response

• Application and Connection Errors

30.1.3.1 Exception Propagation in the Response
The JEJB transport stores request exceptions in the object repository and propagates
them to the JEJB proxy service through the $fault variable. The $fault variable
would contain the location of the exception instance within the <java-exception>
<java-content ref="jcid"/> </java-exception> element, where jcid is the
reference to the exception instance stored in the object repository.

To propagate the user exception to the client, the JEJB proxy service expects the
response in one of the following formats. In all cases, jcid is a reference to the error
in the object repository.

• env:Envelope/env:Fault/detail/mc:java-exception

<detail>
 <mc:java-exception>
 <mc:java-content ref="jcid"/>
 </mc:java-exception>
 ...
</detail>

• env:Envelope/env:Fault/detail/mc:fault/mc:java-exception

Chapter 30
Introduction to the JEJB Transport

30-2

<detail>
 <mc:fault xmlns:mc="http://www.bea.com/wli/sb/context">
 <mc:java-exception>
 <mc:java-content ref="jcid"/>
 </mc:java-exception>
 ...
 </mc:fault>
</detail>

• env:Envelope/ env:Fault/detail/mc:fault/mc:details/con1:ReceivedFaultDetail/
con1:detail/mc:java-exception

<con:details>
 <con1:ReceivedFaultDetail
 xmlns:con1="http://www.bea.com/wli/sb/stages/transform/config">
 <con1:faultcode>soapenv:Server</con1:faultcode>
 <con1:faultstring>checkExceptionConversion</con1:faultstring>
 <con1:detail>
 <mc:java-exception>
 <mc:java-content ref="jcid"/>
 </mc:java-exception>
 </con1:detail>
 </con1:ReceivedFaultDetail>
</con:details>

If you want to raise your own exceptions to return to the caller, raise them in a Java Callout in
the pipeline.

If you configure a Java Callout or Service Callout in an error handler for "Reply with Failure,"
format the $body so that it conforms to one of the previously described fault structures.

30.1.3.2 Application and Connection Errors
This section describes the conditions under which the JEJB transport throws application and
communication errors, which are subject to the retry configuration of a service.

• Connection Errors

• Application Errors

30.1.3.2.1 Connection Errors
The JEJB transport throws connection errors in the following situations:

• NamingExceptions looking up the EJBs raised during the remote call.

• A runtime or remote exception is thrown, but the ongoing transaction has not been set as
rollback-only, signifying that the error occurred before the invocation of the EJB container.

30.1.3.2.1.1 Application Errors

The JEJB transport throws application errors in the following situations:

• A runtime or remote exception is thrown and the ongoing transaction has been set as
rollback-only (likely by the EJB container), signifying the EJB container has been reached
and a fatal error either occurred within the container or within the EJB itself.

• Business exceptions defined in the EJB business interface.

• An exception caused by a faulty encoding of the parameters in XML.

Chapter 30
Introduction to the JEJB Transport

30-3

30.2 Prerequisites for Creating JEJB Services
This section provides information you need to know before you create JEJB proxy and
business services.

• Creating and Packaging Your Client EJB JAR File

• Registering a JNDI Provider Resource (Business Services)

30.2.1 Creating and Packaging Your Client EJB JAR File
When you use JEJB services, you need to create and package POJOs to represent
EJB invocations and operations for the JEJB proxy and business services. Use the
following guidelines.

• Define an interface of type java.io.Serializable and include any necessary
helper classes, such as business exceptions. The interface does not need to
extend any class as long as the interface is valid for one of the RMI protocols
described in JEJB Transport Endpoint URI, or is valid for JMS messages if you are
using JMS to invoke EJBs.

Though not required, you can make the interface a remote interface as defined by
the EJB 2.1 specification or annotate methods with the javax.ejb.Remote
annotation to designate it as an EJB 3.0 business interface. For a simple POJO
interface (no EJB remote interface) or an interface annotated with
javax.ejb.Remote, the JEJB transport provider generates the 3.0 EJB interface
out of the JEJB proxy service. For a remote interface, the JEJB transport provider
generates the 2.1 EJB interface out of the JEJB proxy service.

• The objects received as arguments must be passable to any required classes in a
Java Callout archive resource.

• An array of any type is considered a POJO.

• To avoid unnecessary serialization/deserialization cycles, do not duplicate the JAR
files uploaded as Service Bus archive resources to support Java callouts. Package
all archive resource classes in a single JAR file so multiple Java callouts do not
serialize/deserialize the objects.

• Package your interface and dependent classes in a single client JAR file and
import it into Service Bus. While this is the client JAR file you will select when
configuring a service, it is not technically a fully expanded EJB client JAR file
because it contains no stubs. The actual bean (hence WebLogic Server stub
generation) does not exist until a JEJB proxy service is created and activated.

30.2.2 Registering a JNDI Provider Resource (Business Services)
A JNDI provider resource allows you to specify the communication protocols and
security credentials used to retrieve EJB stubs bound in the JNDI tree of remote
Oracle WebLogic Server domains. Typically, the target EJB is not located in the same
domain as Service Bus. In this case, you must register a JNDI provider resource.
When the EJB is located in the same domain, you can define a provider to specify
credentials and take advantage of stubs caching, though doing so is optional.

The JNDI provider has a high performance caching mechanism for remote
connections and EJB stubs. The preferred communication protocol from Service Bus

Chapter 30
Prerequisites for Creating JEJB Services

30-4

to an Oracle WebLogic Server domain is t3 or t3s. If messages need to go through a firewall,
you can use HTTP tunneling.

Note:

Although it is possible to use a WebLogic Server Foreign JNDI provider, Oracle
recommends that you do not.

The transport does not support two-way SSL or client certificate to look-up the JNDI
tree or access a method on an EJB.

For information about registering and configuring a JNDI provider resource in Service Bus,
see Working with JNDI Provider Resources.

30.3 Use Cases
These are the supported use cases for using the JEJB transport in proxy and business
services.

Each use case provides implementation guidelines for you to use in conjunction with the
general service configuration, as described in JEJB Transport Configuration Reference.

• EJB Invoking an External Service

• Non-EJB Client Invoking an EJB

• EJB Invoking EJB

30.3.1 EJB Invoking an External Service
You can invoke an external service with an EJB through Service Bus, as illustrated by
Figure 30-1.

Figure 30-1 An EJB Invoking an External Service

Chapter 30
Use Cases

30-5

In Figure 30-1, the JEJB proxy service serves as a stateless session bean to the EJB
client interface. The JEJB transport provider for the proxy service generates a
stateless session EJB from the remote/business interface in the client JAR and the
pipeline, then deploys it as an EAR at the JNDI address specified in the endpoint URI.

Note:

Be sure to install policies that protect the JNDI entries from being modified.

The EJB makes a call to a remote interface provided by the proxy service EJB client
JAR, passing transaction and security details to the proxy service as well.

The EJB client interface is a POJO with method arguments that the JEJB transport
provider represents as a WSDL file and passes into the proxy service $body variable
as XML. You can introspect the $body content to transform the message into the
required format to pass to the business service and invoke the external service. The
actual POJO is stored in the object repository, and the XML in the $body references it
with a <java-content ref=""> element.

In the response, provide a Java callout that converts the response to an EJB return
format that is passed to the calling EJB method. View the proxy service's generated
WSDL file to see the expected message format.

Note:

In the proxy service pipeline, you can pass POJO arguments to Java callouts
to a business service or to another proxy service using, for example, a
service callout or a publish action.

30.3.2 Non-EJB Client Invoking an EJB
You can invoke an EJB with a non-EJB client through Service Bus, as illustrated in
Figure 30-2.

Figure 30-2 A Non-EJB Client Invoking an EJB

Chapter 30
Use Cases

30-6

In Figure 30-2, a non-EJB client makes a call to a proxy service configured with a transport
that matches the request; for example, a JMS proxy service making an invocation with a JMS
topic or queue.

You configure a Java callout in the request, which converts the request into an XML
representation of an EJB call in the $body variable. Put operations in the $operation variable.
View the business service's generated WSDL file to see the expected message format. The
JEJB business service uses its generated WSDL file to map the incoming message to the
EJB remote interface and invoke the remote EJB method directly.

30.3.3 EJB Invoking EJB
You can invoke an EJB with an EJB through Service Bus, as illustrated in Figure 30-3.

Figure 30-3 An EJB Invoking an EJB

In Figure 30-3, the EJB call is passed through the proxy and business services to invoke
another EJB method. Rather than making a direct RMI call outside of Service Bus, this
architecture lets you leverage Service Bus features such as message routing, UDDI
integration, alerts, monitoring, reporting, and result caching.

The JEJB transport provider for the proxy service generates a stateless session EJB from the
remote/business interface in the client JAR file and the pipeline, and then deploys it as an
EAR file at the JNDI address specified in the endpoint URI.

At runtime the JEJB proxy service receives a POJO as method argument, stores it in the
object repository, and generates an XML representation of the POJO in the proxy
service $body variable according to the generated proxy service WSDL file. The proxy service
passes the message to the business service, and the business service uses its generated
WSDL file to map the message to the remote interface and invoke the remote method
directly.

30.4 UDDI Integration
You can publish and import JEJB proxy service properties to and from UDDI registries.

• UDDI Publish

• UDDI Import

Chapter 30
UDDI Integration

30-7

30.4.1 UDDI Publish
JEJB proxy services publish the following properties to a UDDI registry:

• URI

• EJB Spec Version

• Client JAR

• Home Interface (for EJB 2.1 only)

• Remote Interface (the Business Interface for EJB 3.0)

• Method names. The following are not included: operation aliases, parameters, and
return details. Method names are passed in one property with all the method
signatures appended. Method signatures are separated by the pound (#)
character.

30.4.2 UDDI Import
This section describes how the JEJB transport handles service import from a UDDI
registry.

• URI: The JEJB transport provider attempts to match the host and port information
from the URI property in the UDDI registry with a JNDI provider resource
registered on the server.

If the transport provider cannot find a JNDI provider, the import fails. However, if
no JNDI provider is found but the host and port match the localhost IP and listen
port, the resulting business service will be local (no JNDI provider).

• Client JAR: The transport provider downloads the client JAR files and, if the
manifest classpath exists in the JAR files, creates the corresponding JAR
resources in the matching directory structure. The first URI in the list is the root
client JAR file. If no manifest classpath exists in the JAR files, you must manually
add the resource JAR files as dependencies to the root JAR file. If a resource in
the imported client JAR file has the same name as another resource in the
domain, the imported resource overwrites the existing resource.

Make sure that the client JAR file you are importing does not already exist in your
domain.

• Method Names: Methods included in the corresponding property are
automatically selected in the endpoint configuration. All the other methods are
marked as excluded.

30.5 JEJB Transport Configuration Reference
This section provides information about endpoint URI formats, environment values,
and configuring the JEJB transport in proxy and business services.

• JEJB Transport Endpoint URI

• Configuring Proxy Services to Use the JEJB Transport

• Configuring Business Services

• JEJB Transport Environment Values

Chapter 30
JEJB Transport Configuration Reference

30-8

30.5.1 JEJB Transport Endpoint URI
The format for the endpoint URIs depend on whether you are configuring a proxy service or a
business service.

Note:

JEJB services do not support co-located calls.

• Proxy Service JEJB Endpoint URI

• Business Service JEJB Endpoint URI

30.5.1.1 Proxy Service JEJB Endpoint URI
The URI configured for a JEJB proxy service becomes the global JNDI name for locating the
stateless session bean generated by the JEJB transport from the remote/business interface
in the client JAR. The URL format is ejb_jndi_name.

Note:

For EJB 3.0, ejb_jndi_name is the mappedName attribute of the
@javax.ejb.Stateless annotation in the generated bean. The lookup JNDI name
for the generated EJB service is suffixed with #interface_class, which is the fully
qualified name of the business interface.

You can access the JEJB proxy service as:

• EJB 2.1: protocol://host:port/ejb_jndi_name

• EJB 3.0: protocol://host:port/ejb_jndi_name#interface_class

The protocol can be one of the following RMI protocols:

• iiop/iiops: For generic, server-agnostic use.

• t3/t3s: For use with Oracle WebLogic Server.

• http/https: For tunneling and use with Oracle WebLogic Server.

For example:

• EJB 2.1: t3://localhost:7001/osb.jejb.myJejbProxy

• EJB 3.0: t3://localhost:7001/osb.jejb.myJejbProxy#com.example.MyEjb3

30.5.1.2 Business Service JEJB Endpoint URI
Use the following endpoint URI format for a JEJB business service:

jejb:jndi_provider_name:ejb_jndi_name

Chapter 30
JEJB Transport Configuration Reference

30-9

The jndi_provider_name is the remote JNDI context, and the ejb_jndi_name is the
remote EJB's JNDI name.

For example:

• EJB 2.1: jejb:myProvider:osb.jejb.myJejbBiz21

• EJB 3.0: jejb:myProvider:myBiz31#osb.jejb.myJejbBiz

where #osb.jejb.myJejbBiz is the fully qualified business interface.

If your EJBs are running on IBM WebSphere, ejb_jndi_name must be in the on of
following formats:

• cell/nodes/node_name/servers/server_name/ejb_jndi_name

or

• cell/clusters/cluster_name/ejb_jndi_name

For more information, refer to the IBM WebSphere documentation.

30.5.2 Configuring Proxy Services to Use the JEJB Transport
The following table describes the properties you use to configure a JEJB transport for
a proxy service. For instructions on creating a proxy service, see Creating and
Configuring Proxy Services.

Table 30-1 JEJB Transport Properties for Proxy Services

Property Description

Dispatch Policy Select the instance of WebLogic Server Work Manager that you
want to use for the dispatch policy for this endpoint. The default
Work Manager is used if no other Work Manager exists.

For information about Work Managers, see:

• Using Work Managers with Service Bus
• "Using Work Managers to Optimize Scheduled Work" in

Administering Server Environments for Oracle WebLogic
Server

EJB Spec Version Select the EJB version of the remote EJB interface.

Pass XMLBeans by value Select this option if you want the transport to generate an
"inlined" XML representation of POJO arguments (an
XMLObject) whose parameters you can access and manipulate
with XQuery expressions.

Note: Type information is not available inline for XMLObjects
passed by value. If you use this option, you cannot pass the
typed XMLObject as the argument in a Java Callout in a proxy
service pipeline.

Do not select this option if you want to pass the POJO by
reference, which also results in better performance.

For more information, see JEJB Transport WSDL Generation.

Chapter 30
JEJB Transport Configuration Reference

30-10

Table 30-1 (Cont.) JEJB Transport Properties for Proxy Services

Property Description

Transaction Attribute Select one of the following options for handling transactions:

• Supports: The transport accepts an incoming transaction.
Quality of service is exactly-once if the operation is invoked
in a transaction and best-effort if the operation is invoked
outside of a transaction.

• Required: The transport accepts an incoming transaction. If
no ongoing transaction exists, the transport starts one.
Quality of service is exactly-once.

• RequiresNew: The transport always starts a new
transaction, suspending an ongoing transaction. Quality of
service is exactly-once.

• Mandatory: The transport invokes the method in the
existing transaction. Quality of service is exactly-once.

• NotSupported: The transport suspends an existing
transaction and resumes it on invocation. Quality of service
is best-effort.

• Never: The transport does not invoke the method in a
transaction. Quality of service is best-effort.

Remote Client Timeout Specify the length of time in seconds that a remote RMI client
will wait before timing out.

Client JAR Click Browse and select an EJB client JAR resource from the list
displayed. The client JAR contains the remote or business
interface for the remote EJB. The client JAR is registered as a
generic archive resource.

Home Interface For EJB 2.1 only, select the required EJBHome interface from
the options populated by the client JAR.

Remote Interface For EJB 2.1 only, this field is automatically populated based on
the configuration of the home interface.

Business Interface For EJB 3.0 only, select the business interface from the client
JAR file that you want to invoke.

Target Namespace The target namespace of the generated WSDL file. This field is
automatically populated by information picked up from the JAR.

Methods Select the required methods from the list of available methods.
The available methods depend on the JAR file being used. By
default, all methods are selected. Expand a method to edit the
default parameter values.

You can change the default operation name for a given method.
By default, the operation name is the method name. If an EJB
contains methods with same name (overloaded), you must
change the operation names so that they are unique. WSDL files
require unique operation names.

30.5.3 Configuring Business Services
The following table describes the properties you use to configure a JEJB transport for a
business service. For more information, see Creating and Configuring Business Services.

Chapter 30
JEJB Transport Configuration Reference

30-11

Table 30-2 JEJB Transport Configuration for Business Services

Option Description

Dispatch Policy Select the instance of WebLogic Server Work Manager that you
want to use for the dispatch policy for this endpoint. The default
Work Manager is used if no other Work Manager exists.

For information about Work Managers, see:

• Using Work Managers with Service Bus
• "Using Work Managers to Optimize Scheduled Work" in

Administering Server Environments for Oracle WebLogic
Server

EJB Spec Version Select the EJB version of the remote EJB interface.

Pass XMLBeans by value Select this option if you want the transport to generate an
"inlined" XML representation of POJO arguments (an
XMLObject) whose parameters you can access and manipulate
with XQuery expressions.

Note: Type information is not available inline for XMLObjects
passed by value. If you use this option, you cannot pass the
typed XMLObject as the argument in a Java Callout in a proxy
service pipeline.

Do not select this option if you want to pass the POJO by
reference, which also results in better performance.

Do not select this option if you want to pass the POJO by
reference, which also results in better performance.

For more information, see JEJB Transport WSDL Generation.

Pass Caller's Subject Select this option as an alternative to selecting a service
account. When you select this option, Service Bus passes the
authenticated subject from the proxy service when invoking the
EJB.

Service Account Enter a service account that will be used for authentication to
access the service. If no service account is specified, an
anonymous subject is used. This field is required if you selected
Basic authentication.

For more information, see Working with Service Accounts.

Client JAR Click Browse and select an EJB client JAR resource from the list
displayed. The client JAR contains the remote or business
interface for the remote EJB. The Client JAR is registered as a
generic Archive Resource.

Home Interface For EJB 2.1 only, select the required EJBHome interface from
the options populated by the client JAR.

Remote Interface For EJB 2.1 only, this field is automatically populated based on
the configuration of the home interface.

Business Interface For EJB 3.0 only, select the business interface from the client
JAR file that you want to invoke.

Target Namespace The target namespace of the generated WSDL file. This field is
automatically populated by information picked up from the JAR.

Chapter 30
JEJB Transport Configuration Reference

30-12

Table 30-2 (Cont.) JEJB Transport Configuration for Business Services

Option Description

Methods Select the required methods from the list of available methods.
The available methods depend on the JAR file being used. By
default, all methods are selected. Expand a method to edit the
default parameter values.

You can change the default operation name for a given method.
By default, the operation name is the method name. If an EJB
contains methods with same name (overloaded), you must
change the operation names so that they are unique. WSDL files
require unique operation names.

30.5.4 JEJB Transport Environment Values
The JEJB transport stores the following environment values for JEJB services:

• Service URI

• Work Manager

• UDDI Auto Publish (Proxy Services)

• Service Account (Business Services)

These values correspond to transport properties in business and proxy services. For more
information, see JEJB Transport Configuration Reference.

Chapter 30
JEJB Transport Configuration Reference

30-13

31
Using the JMS Transport

This chapter provides an overview of the JMS transport and describes how to use and
configure it in your Service Bus services. It also describes features and concepts related to
interoperability between Service Bus and WebLogic JMS and between Service Bus and
WebSphere MQ.

This chapter includes the following sections:

• Introduction to the JMS Transport

• Using SOAP Over JMS Transport

• Naming Guidelines for Domains, Servers, and URIs

• JMS Client ID in Proxy Services

• JMS Transport Error Handling

• WSDL-Defined SOAP Fault Messages

• Message ID and Correlation ID Patterns for JMS Request/Response

• JMS Transport Configuration Reference

31.1 Introduction to the JMS Transport
The JMS transport lets you send and receive messages from JMS queues and topics of a
JMS service.

You enqueue messages when you configure a business service to use the JMS transport,
and you read (or poll) messages when you configure a proxy service to use the JMS
transport. The JMS queues or topics can reside in a local WebLogic Server or on a remote
server.

JMS is a standard API for accessing enterprise messaging systems. For an overview and
features of WebLogic JMS, see Overview of JMS and WebLogic Server in Administering JMS
Resources for Oracle WebLogic Server.

31.1.1 JMS Content Type for Services
To support interoperability with heterogeneous endpoints, Service Bus allows you to control
the content type used, the JMS type used, and the encoding used when configuring message
flows. The JMS type can be byte or text for non-Java-type messages. For more information,
see Content Types, JMS Type, and Encoding.

31.1.2 JMS Transport Security
The JMS transport supports one-way SSL, but not two-way SSL.

31-1

31.1.3 Asynchronous Request-Response Messaging
Messaging can be one-way, synchronous request-response, or asynchronous request-
response. However, messaging over JMS is only one-way or is asynchronous request-
response. Asynchronous request-response messaging using JMS is an alternative to
messaging using HTTP or HTTP(S).

Using asynchronous request-response messaging has the following advantages:

• The request thread does not get blocked while waiting for the response. This
removes a thread management issue that can occur when numerous blocking
request-response invocations are made. However, HTTP and HTTP(S) support a
nonblocking mode of operation.

• The messaging is more reliable than HTTP because it can be:

– Persisted on disk

– Queued when the service is not available

– Re-delivered if the server has an error or fails when the message is being
processed

– Transactional

For IBM WebSphere MQ, asynchronous request-response messages may be the best
approach for interacting with some mainframes. The asynchronous service must echo
the correlation ID or the message ID depending on the JMS request-response pattern
that you use. The format of either ID used by Service Bus is compatible with IBM
WebSphere MQ and with target services that use MQ native interfaces. For more
information, see Message ID and Correlation ID Patterns for JMS Request/Response.

Asynchronous request-response messages are handled by the outbound and inbound
transports. That is, the message flow, except for the $outbound and $inbound transport
specific data, does not distinguish between JMS request-response and HTTP request-
response.

Service Bus supports bridging between synchronous and asynchronous request and
response. For example, a proxy service can be invoked using HTTP, and the proxy
service routes to a JMS request-response business service. This is called
synchronous-to-asynchronous service switching.

31.1.4 Sending and Receiving Java Objects in Messages
You can directly send Java Objects using the JMS transport. To enable Java Object
support in the request or response, create a proxy or business service of type
Messaging Service, and select Java on the Messaging page for the request or
response, depending on whether you are sending or receiving the Java Objects
through Service Bus.

Dequeuing a Java object message from the JMS destination involves de-serializing
the Java object. For this to work, you must package the Java classes for the Java
objects that are to be dequeued into a JAR file and import the JAR into your Service
Bus project. Then, in the JMS transport-specific configuration page for a service,
select the JAR in the Client Jar field. The Client Jar field is available in JMS proxy
services when you select Java as the message type for the request, and in business
services when you select Java as the message type for the response.

Chapter 31
Introduction to the JMS Transport

31-2

Java Objects in Service Bus are stored in the pipeline object repository and referenced in the
SOAP body by a <java-content ref="jcid" /> element and attribute, where jcid is the key
to the object in the object repository. If a Java Object is null, the object is represented in the
pipeline as ref="jcid:null".

Only one Java Object is allowed in each message. For Java-type message types, Service
Bus does not support large messages (content streaming) or testing Java-type services in the
Test Console.

31.1.5 Required JMS Resources
In addition to configuring JMS file stores in the Oracle Fusion Middleware Configuration
Wizard, proxy services and business services that use JMS require configuration of the
following resources:

• JMS connection factories. You must configure XA or non-XA JMS connection factories for
all business services and proxy services implemented using JMS.

• JMS queues/topics. Service Bus automatically configures JMS queues for proxy services
that are implemented using JMS. You must configure JMS queues/topics for all business
services using JMS and for any proxy services that are implemented using non- JMS.

If you want to concentrate all Service Bus JMS resources in a single JMS module, use the
Oracle WebLogic Server Administration Console to create a new JMS module containing the
destination to be used for the proxy services' endpoint. For more information about
configuring JMS resources, see "Methods for Configuring JMS Resources" in the
Administering JMS Resources for Oracle WebLogic Server.

31.1.6 Large Payload Rejection with JMS Transport
Payloads over the default of 10MB are rejected for inbound messages under the JMS
transport in a Reference Configuration domain.

If the threshold is exceeded in a Reference Configuration domain, the transport dequeues
and redirects the message to the preconfigured dead letter queue
ha_jms_dead_letter_queue.

The rejection limit is controlled by the -Dsoa.payload.threshold.kb parameter. The default
is 10MB.

The JMS messages in the dead letter queue contain the proxy name and the URL as a key
value pair in the JMS header. You can use this information to submit the rejected messages
to the respective proxy again by applying the filter criteria if needed. To remove the rejected
messages from the dead letter queue, a cleanup script, soaJMSCleanup.py, is available
in $ORACLE_HOME/soa/common/tools/refconfig.

31.1.7 Platform Interoperability
The following sections provide information and links for interoperability with different JMS
platforms.

• Interoperability with WebLogic JMS

• Interoperability with WebSphere MQ

• Interoperability with Tibco EMS

Chapter 31
Introduction to the JMS Transport

31-3

31.1.7.1 Interoperability with WebLogic JMS
For information about WebLogic Server JMS, see the following topics:

• "Managing Your Applications" in Developing JMS Applications for Oracle
WebLogic Server

• Configure JMS Servers in the Oracle WebLogic Server Administration Console
Online Help.

Note:

Service Bus supports the MQ Extended Transactional Client, which is
vital for remote transactional support configuration.

31.1.7.2 Interoperability with WebSphere MQ
Service Bus connects to WebSphere MQ through the WebSphere MQ JMS interface,
so Service Bus is a WebSphere MQ JMS client. WebSphere MQ can interface with
Service Bus in the following ways:

• Service Bus acts as the front-end of WebSphere MQ to accept service requests
from other applications and converts them to WebSphere MQ requests.

• WebSphere MQ sends messages to other applications through Service Bus.

For more information, see Using the WebSphere MQ JMS Interface.

31.1.7.3 Interoperability with Tibco EMS
When using Tibco Enterprise Messaging Service (EMS) as a messaging provider, you
must modify setDomainEnv.cmd/sh so EXT_PRE_CLASSPATH references the Tibco
EMS client JAR files.

31.2 Using SOAP Over JMS Transport
You can use JMS for SOAP transport instead of HTTP, because SOAP is transport-
agnostic.

Service Bus supports SOAP messages with JMS request-response, and supports
interoperability with WebLogic Server SOAP-based clients and services. JMS is also
an approach for reliable messaging.

31.2.1 Interoperating with WebLogic Server
When you configure JMS resources in WebLogic Server, you use the following SOAP-
JMS URI format in WebLogic Server:

jms://host:port/contextURI/serviceName?URI=destJndiName

When you configure the service in Service Bus, the URI must have the following
format:

Chapter 31
Using SOAP Over JMS Transport

31-4

jms://host:port/connection_factory/jndi_destination

Both formats use the same jndi_destination. The jndi_destination must be the JNDI
name of an existing QueueConnectionFactory in the target WebLogic Server. For more
information, see "WebLogic Server Messaging" in Understanding Oracle WebLogic Server.
This document provides an overview of JMS and links to more information.

Note:

While WebLogic Server allows forward slashes in JNDI names, such as "myqueues/
myqueue", JNDI names with forward slashes interfere with the URI format required
by Service Bus, and you cannot use those names. To work around this issue, define
a JMS foreign server and reference that foreign server in the URI. For more
information, see Configure Foreign Servers in the Oracle WebLogic Server
Administration Console Online Help.

When you invoke WebLogic Server services from Service Bus, you must set the URI as a
JMS property with the value as /contextURI/serviceName in the pipeline on the outbound
variable ($outbound) before a request is sent to the business service. Use the Transport
Headers action to set this property. For information about setting $outbound, see Inbound and
Outbound Variables.

When a WebLogic Server web services client invokes a Service Bus proxy service, the URI
property is ignored. However, it can be passed through to an invoked service using the pass
through options of the Transport Headers action. For more information, see Adding Transport
Header Actions in the Console.

Service Bus can only invoke Oracle WebLogic request-response services running on version
9.2 or later. However, it can also invoke one-way JMS services.

31.2.2 Configuring the Response Queues for Cross-Domain JMS Calls
When you configure the response queue for cross-domain JMS calls, make sure that there is
a separate response queue corresponding to each requesting Managed Server.

For example, two Service Bus clustered domains (domain A and domain B) are
communicating with a WebLogic Server domain that has two Managed Servers. Domain A
has three Managed Servers and domain B has four Managed Servers. You need to configure
seven distinct queues to serve as response queues (3 + 4 = 7) on the WebLogic Server
domain for sending responses back to domain A and domain B. These seven queues could
be distributed queues (with members on both the Managed Servers of the WebLogic Server
domain).

Note:

When the JMS requests come from multiple proxy services hosted by different
remote domains, you must configure the back-end domain hosting the JMS
business service with the separate sets of response queues corresponding to each
requesting domain.

Chapter 31
Using SOAP Over JMS Transport

31-5

31.3 Naming Guidelines for Domains, Servers, and URIs
If you are working with more than one domain, make sure that your configuration
conforms to these requirements.

• WebLogic Server instances and domain names are unique.

• WebLogic JMS server names are unique across domains.

• If a JMS file store is being used for persistent messages, the JMS file store name
must be unique across domains.

31.3.1 JMS Server Names
Note the following rules for JMS Server names:

• You cannot have duplicate JMS server names within the same domain. If you do,
when messages are sent to a destination at a particular JMS server,Service Bus
cannot determine the server to which the message should be sent.

• If you use Store and Forward (SAF), duplicate JMS Server names in different
domains do not pose a problem.

• In the case of cross-domain communication, duplicate JMS server names can be a
problem when you use the ReplyTo function. The ReplyTo message sent from a
given domain is returned to the JMS server on the same domain that received the
message instead of being returned to the domain that sent the original message.

For more information on how to configure and manage WebLogic JMS:

• "Managing Your Applications" in Developing JMS Applications for Oracle
WebLogic Server

• Configure JMS Servers in the Oracle WebLogic Server Administration Console
Online Help.

31.3.2 JNDI Names and Service Bus
While Oracle WebLogic Server allows forward slashes in JNDI names, such as
"myqueues/myqueue", JNDI names with forward slashes interfere with the endpoint
URI format required by Service Bus, and you cannot use those names. To work
around this issue, define a JMS foreign server and reference that foreign server in the
endpoint URI. For more information, see Configure Foreign Servers in the Oracle
WebLogic Server Administration Console Online Help.

31.4 JMS Client ID in Proxy Services
The JMS client ID in a proxy service is the jms-client-id descriptor value, which is
used to generate subscriber names and the client ID value for the topic's subscribers.

When you configure a JMS proxy service with a topic destination, you can specify the
JMS client ID to use when generating subscriber names and the subscriber client ID.
This makes it easier to identify the subscriber and its corresponding proxy service
when monitoring and managing the service and topic at runtime. Note that this is only
effective for durable subscriptions.

Chapter 31
Naming Guidelines for Domains, Servers, and URIs

31-6

31.4.1 About the Client ID and Subscriber Name
A subscription for a topic destination can be identified by the client ID and subscriber name.
These values are generated for different TopicMessagesDistribution configurations using
the following descriptors.

• jms-client-id: The value configured for the JMS Client ID property on a JMS proxy
service targeted to a topic destination.

• ejb-name: The name of the MDB generated by Service Bus for the proxy service. This is
a unique ID value.

• DomainName: The name of the Service Bus domain.

• ServerName: The name of the runtime Service Bus server.

• UniqueKey: The unique key generated by WebLogic Server when the generate-unique-
client-id descriptor is set to true. The generate-unique-client-id descriptor is always
set to true for MDBs deployed by JMS proxy services.

The following table shows how the subscriber client ID and name are generated for different
distribution modes.

Topic Messages
Distribution

Subscriber Client ID Subscriber Name

One Copy Per
Application

jms-client-id ejb-name

One Copy Per Server {jms-client-id}_{DomainName}_{ServerName} ejb-name

Compatibility {jms-client-
id}_{DomainName}_{ServerName}_{UniqueKey}

Same as client ID

Additional descriptors affect the subscriber client ID. The distributed-destination-
connection descriptor is always set to local, and the generate-unique-client-id descriptor
is always set the true. For more information, see "Topic Subscription Identifiers" in
Programming Message-Driven Beans for Oracle WebLogic Server.

31.4.2 Recommended Usage
It is not recommended to use the Topic Messages Distribution mode of Compatibility.
Instead, use either One Copy Per Application or One Copy Per Server for better scalability
(depending on your requirements). Compatibility mode is provided primarily for backward
compatibility, and is typically used for durable subscriptions where cleanup activity might be
done on topic subscribers related to a specific proxy service.

31.5 JMS Transport Error Handling
Configure JMS-transport business services to handle application and communications errors
as described in this section.

• Application Errors

• Communication Errors

• Pipeline Exceptions with Java Objects

Chapter 31
JMS Transport Error Handling

31-7

31.5.1 Application Errors
You can specify whether or not to retry business service endpoint URIs when
application errors occur. For more information, see "Managing and Monitoring
Endpoint URIs for Business Services" in Administering Oracle Service Bus.

An application error occurs when for a JMS business service configured with request/
response, the
System.getProperty("com.bea.wli.sb.transports.jms.ErrorPropertyName",
"SERVER_ERROR") property is true in the response message. In this scenario, the JMS
transport provider calls the error method with the TRANSPORT_ERROR_APPLICATION error
code.

31.5.2 Communication Errors
You can configure business service URIs to be taken offline when such communication
errors occur. When you configure the operational settings for the business service, you
can enable the business service endpoint URIs to be taken offline after the specified
retry interval. For more information, see "Managing and Monitoring Endpoint URIs for
Business Services" in Administering Oracle Service Bus.

Connection errors occur when any JMS exceptions or naming exceptions occur during
any of the following activities:

• Looking up a JMS connection factory.

• Creating a JMS connection from a JMS connection factory.

• Creating a JMS session using a connection object.

• Looking up of a JMS destination.

• Creating a sender from the session object.

• Sending a JMS message using the sender and destination object.

31.5.3 Pipeline Exceptions with Java Objects
After an exception occurs in a JMS proxy service, such as while routing a Java Object
message to a business service or to a Java Callout, the message payload must be
properly formed so that the proxy service can access the exception instance and
return it to the calling client. Make sure the payload conforms to the following format:

<soap:Body xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <ctx:java-content ref="key1"
 xmlns:ctx="http://www.bea.com/wli/sb/context" />
</soap:Body>

where key1 is the key to the Java Object in the object repository. If the payload is not
in this format, the pipeline passes a null payload to the inbound JMS transport.

Using an Error Handler

You can catch pipeline errors involving Java Objects using an error handler.
The $fault variable in the error handler contains the reference to the exception
instance ("java-exception" element).

Chapter 31
JMS Transport Error Handling

31-8

In situations where the $fault variable does not contain a reference to the exception
instance, you can use a Java Callout within the error handler that uses the available $fault
information to generate an exception instance in the previously described $body payload
format. You must use a Reply with Failure action so that the $body is made available as the
payload to the inbound JMS transport.

31.6 WSDL-Defined SOAP Fault Messages
When consuming a WSDL file that explicitly defines a fault, the WebLogic clientgen tool
generates a subclass of java.lang.Exception for the XML fault type.

When the WebLogic Server JAX-RPC stack inspects a SOAP response message and
determines that the response message contains a SOAP fault, it tries to map the fault to a
clientgen-generated exception Java class.

For example, if a WSDL file contains the definitions shown in the following listing, the
clientgen tool generates a Java class com.bea.test.TheFaultType that extends
java.lang.Exception. A JAX-RPC client can catch com.bea.test.TheFaultType when
invoking the related method of the service stub.

Example - Sample WSDL Definitions

<definitions ... xmlns:s0="http://www.oracle.com/test/">
 ...
 <types>
 <xsd:schema targetNamespace="http://www.oracle.com/test/">
 ...
 <xsd:complexType name="theFaultType">
 <xsd:sequence>
 <xsd:element name="ID" type="xsd:int" />
 <xsd:element name="message" type="xsd:string" />
 </xsd:sequence>
 </xsd:complexType>
 <xsd:element name="theFault" type="theFaultType" />
 </xsd:schema>
 </types>
 ...
 <message name="theFaultMessage">
 <part element="s0:theFaultPart" name="theFault" />
 </message>
 ...
 <binding ...>
 <operation ...>
 <soap:operation soapAction="..." style="document" />
 <input ...>
 ...
 </input>
 <output ...>
 ...
 </output>
 <fault ...>
 <soap:fault name="theFaultPart" use="literal" />
 </fault>
 </operation>
 </binding>
 ...
</definitions>

Chapter 31
WSDL-Defined SOAP Fault Messages

31-9

The SOAP message must contain a fault of the correct format so the JAX-RPC stack
throws the correct exception. See Adding a Fault in a SOAP Message if the Fault is
Constructed from inside a Service Bus Pipeline for details.

31.6.1 Adding a Fault in a SOAP Message if the Fault is Constructed
from inside a Service Bus Pipeline

The SOAP message must contain a fault of the correct format so the JAX-RPC stack
throws the correct exception.

If the fault is constructed from inside a Service Bus pipeline, you must do the following:

1. Replace the node for the $body variable with the following sample SOAP:

Example - Sample SOAP

<soap-env:Body>
 <soap-env:Fault>
 <faultcode
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">soap:Server</
faultcode>
 <faultstring>Some literal string</faultstring>
 <detail>
 <test:theFault>
 <test:ID>Any user defined code</test:Id>
 <test:message>A specific literal message</test:message>
 </test:theFault>
 </detail>
 </soap-env:Fault>
</soap-env:Body>

where:

• soap-env is the system prefix for the namespace http://
schemas.xmlsoap.org/soap/envelope/

• test is the prefix for the namespace http://www.oracle.com/test/

If the prefix test is not already known to Service Bus, you must declare it.

2. Configure a reply action with failure.

For information about configuring reply actions, see Adding Reply Actions in the
Console.

The clientgen tool is used to generate the client-side artifacts, such as the JAX-RPC
stubs, needed to invoke a web service. See "Ant Task Reference" in WebLogic Web
Services Reference for Oracle WebLogic Server.

31.7 Message ID and Correlation ID Patterns for JMS
Request/Response

This section describes the Message ID and Correlation ID patterns supported in
Service Bus for JMS request-response. It also describes how Service Bus uses these
patterns to interoperate with Java API for Remote Procedure Call (JAX-RPC) web
services. Examples are also provided.

• Overview of JMS Request-Response and Design Patterns

Chapter 31
Message ID and Correlation ID Patterns for JMS Request/Response

31-10

• JMS Message ID Pattern

• JMS Correlation ID Pattern

• Comparison of Message ID and Correlation ID Patterns

• Interoperating with JAX-RPC Over JMS

• JMS Message ID Pattern Examples

31.7.1 Overview of JMS Request-Response and Design Patterns
Messaging provides high-speed, asynchronous, program-to-program communication with
guaranteed delivery and is often implemented as a layer of software called Message Oriented
Middleware (MOM). In enterprise computing, messaging makes communication between
processes reliable, even when the processes and the connection between them are not so
reliable. Processes may need to communicate for the following reasons:

• One process has data that needs to be transmitted to another process.

• One process needs to remotely invoke a procedure in another process.

Asynchronous request-response messaging is the best approach to interacting with some
mainframes if you are using IBM WebSphere MQ.

In cluster domains and request-response scenarios, JMS Transport deploys the MDBs to
individual managed servers of the cluster. But in dynamic cluster domains, because a
dynamic server cannot be individually targeted for any application, JMS Transport can only
deploy the MDBs to a configured managed server for a request-response scenario. For more
information about this limitation of dynamic clusters, see Limitations and Considerations
When Using Dynamic Clusters in the Oracle Fusion Middleware Administering Clusters for
Oracle WebLogic Server guide.

31.7.1.1 Patterns for Messaging
Messaging patterns describe the format of messages that flow between parts of a system
built with a MOM. There are several types of messages as described below:

• A Command Message enables procedure call semantics to be executed in a messaging
system.

• A Document Message enables a messaging system to transport information, such as the
information that should be returned to a sender as a result of a command message.

• An Event Message uses messaging to perform event notification.

• A Reply Message handles the semantics of remote procedure call results, that require
the ability to handle both successful and unsuccessful outcomes.

• A Reply Specifier enables a program making a request to identify the channel through
which a reply should be sent.

• A Correlation Identifier enables a requesting program to associate a specific response
with its request. When the data to be conveyed spans several messages, a Sequence
Identifier enables the receiver to accurately reconstruct the original data.

• Message Expiration enables a sender to set a deadline by which the message should
either be delivered or ignored.

• Message Throttle enables a receiver to control the rate at which it receives messages.

Chapter 31
Message ID and Correlation ID Patterns for JMS Request/Response

31-11

In the case of Service Bus, each reply message should contain a unique identifier
called the correlation ID, which correlates the request message and its reply.

When the caller creates a request message, it assigns a unique identifier to the
request that is different from those for all other currently outstanding requests (for
example, requests that do not yet have replies). When the receiver processes the
request, it saves the identifier and adds the request's identifier to the reply. When the
caller processes the reply, it uses the request identifier to correlate the request with the
reply. This is called a correlation identifier because of the way the caller uses the
identifier to correlate each reply with the request.

A correlation ID is usually put in the header of a message. The ID is not a part of the
command or data the caller is trying to communicate to the receiver. The receiver
saves the ID from the request and adds it to the reply for the caller's benefit. Since the
message body is the content being transmitted between the two systems and the ID is
not a part of that, the ID is added to the header. In the request message, the ID can be
stored as a correlation ID property or simply a message ID property. When used as a
correlation ID, this can cause confusion about which message is the request and
which is the reply. If a request has a message ID but no correlation ID, then a reply
has a correlation ID that is the same as the request's message ID. The correlation ID
format used internally by Service Bus is compatible with WebSphere MQ and works
with target services that are using MQ native interfaces.

The outbound transport handles asynchronous request-response messages. That is,
the pipeline, except for the $outbound transport specific data, does not distinguish
between JMS request-response and HTTP request-response.

When you define a JMS request-response business or proxy service, you must first
choose a design pattern. To do this, select the Is Response Required option for a
JMS proxy service or a Response Queues option for a JMS business service, then
select one of the following correlation patterns on the JMS Transport Configuration
page:

• JMS Correlation ID (this is the default pattern)

• JMS Message ID

Note:

JMS request-response messaging does not have reliable responses
because the mapping of the correlationID to the proxy service is stored in
memory. If there is a failure or system restart between sending the request
and receiving the response, the response is discarded.

To work around that situation, instead of using JMS request-response, use
two one-way JMS proxy services: one for delivering the message and a
second for delivering the response.

The following sections discuss these patterns. To compare the two patterns, see
Comparison of Message ID and Correlation ID Patterns.

Chapter 31
Message ID and Correlation ID Patterns for JMS Request/Response

31-12

31.7.2 JMS Message ID Pattern
When you create a business service using the JMS Message ID pattern, you can configure
the responses to go to a single URI, or, for failover support, you can configure a response
queue for each request URI on each Managed Server in the Service Bus cluster. These
queues must be collocated with the request queues for the service. The proxy service uses
this information to set the JMSReplyTo property when invoking the business service so the
response is processed by the Managed Server that issued the request.

When you define a proxy service using the JMS Message ID pattern, you do not need to
define the Response URI because the proxy service replies to the queue specified in the
JMSReplyTo property. However, you can enter the JNDI name of the JMS connection factory
for the response message. The JMSReplyTo property is accessible through the transport
metadata, as described in Access to the JMSReplyTo Property.

Note:

By default, the connection factory of the request message is used. This is useful
when you use a non-XA connection factory for JMS responses, but have an XA
connection factory for the request.

For the deployment descriptors to be set appropriately for XA-capable resources,
you must set the XA attribute on the referenced connection factory before creating a
proxy service.

The invoked service must copy the message ID from the request (the value of the JMS
header field JMSMessageID) to the correlation ID of the response (setting the JMS header field
JMSCorrelationID). In addition, the invoked service must reply to the queue specified in the
JMSReplyTo header field. If you choose the JMS Message ID Pattern, the response arrives at
the appropriate managed node.

Note:

The JMS Message ID correlation pattern is not supported when a proxy service
invokes another proxy service.

31.7.2.1 Access to the JMSReplyTo Property
For JMS proxy services, the JMSReplyTo property in the incoming message is stored as a
Java object in a JMS transport metadata element, also named JMSReplyTo. The value of the
metadata element in the outbound request can be passed to the business service, supporting
dynamic "reply to" destinations. In the pipeline, you can pass this value to a Java callout
action for transformation. If a JMS proxy service invokes a JMS business service directly, with
no pipeline, the JMS transport metadata is passed automatically to the business service. If
the proxy service does invoke a pipeline, you need to configure the pipeline to copy the
header from the inbound message and to set it in the outbound request header.

Note that in the first case, where the JMS business service is invoked directly with no
pipeline, the consumer listening on this queue reads the JMSReplyTo header and also sends

Chapter 31
Message ID and Correlation ID Patterns for JMS Request/Response

31-13

the message to the destination in the header. This means that two messages are
written to the queue. To avoid this, use a pipeline between the services.

For request-response proxy services, the JMSReplyTo metadata element is only set
when the correlation pattern is Message ID. When the pattern is Correlation ID, the
proxy service determines the JMSReplyTo value from the transport configuration, so it
is not set in the metadata element.

Note:

The JMSReplyTo metadata element does not appear in the Test Console
because the element contains a java-content representation of a Java
object.

31.7.2.2 JMS Message ID Pattern in a Cluster
A JMS proxy service using this pattern can be used in a cluster without further
configuration. A JMS business service is available in a cluster. However, when a
Managed Server is added to the cluster, all the business services become invalid. To
correct this, ensure that the number of response queues equals the number of
Managed Servers that specify the JMS Message ID correlation pattern in the Service
Bus cluster.

31.7.3 JMS Correlation ID Pattern
When you design a business service in Java, make sure that you set the value of JMS
Correlation ID on the response to the value of JMS Correlation ID on the request
before sending the JMS response to a queue. You can obtain the JMS Correlation ID
when you receive a message using the following method:

String getJMSCorrelationID()

The above method returns correlation ID values as Strings that provide specific
message IDs or application-specific values.

To set the JMS Correlation ID when you send a message:

void setJMSCorrelationID(String correlationID)

31.7.4 Comparison of Message ID and Correlation ID Patterns
The JMS request-response patterns differ in the following ways:

• The method by which the response is correlated with the request

• The choice of the response queue

The differences between these two patterns are summarized in Table 31-1.

Chapter 31
Message ID and Correlation ID Patterns for JMS Request/Response

31-14

Table 31-1 Differences Between Message ID and Correlation ID Patterns

JMS Pattern Name Response Queue CorrelationID

Correlation ID Pattern All responses go to the same fixed
queue(s).

The server copies the request
Correlation ID to the response
Correlation ID.

Message ID Pattern The responses dynamically go to
the queue indicated by the
JMSReplyTo property.

The server copies the request
Message ID to the response
Correlation ID.

When the Correlation ID pattern is used, the service that is invoked replies to the queue that
corresponds to the request URI. The response always arrives on the same queue and the
client has no control over the queue to which the response arrives. For example, if 10 clients
send a message to request URI "A", they all get the response to the queue that corresponds
with request URI "A". Therefore, clients must filter the messages in the response queue to
select the ones that pertain to them. Filtering criteria are configured in the request message
Correlation ID property, and the server is configured to echo this to the response Correlation
ID property.

In the case of Message ID pattern, the client's JMSReplyTo property tells the server where the
response should be sent. This queue is specific to the client's server, so responses to
different clients will go to different queues. The server sets the JMS Correlation ID of the
response to the JMS Message ID of the request.

Correlation by MessageID is commonly used by many IBM MQ applications as well as JMS
applications and is the standard method to correlate request and response.

If you have multiple Oracle WebLogic client domains invoking a target Oracle WebLogic
domain using JMS request-response with the Message ID pattern, you can set up both the
request and response queues as SAF queues. However, this is not possible with the
Correlation ID pattern that uses a single queue for all the responses for a given request URI.

The Correlation ID pattern has two major advantages:

• The response queue configuration is simple and it need not change every time a new
Managed Server is added to the cluster.

• Correlation ID can also be used in cases where a proxy service in the domain needs to
invoke another proxy service in the same domain.

31.7.5 Interoperating with JAX-RPC Over JMS
The Service Bus development environment lets you create JAX-RPC web services that use
the JMS transport, in addition to HTTP-HTTPS. These JMS transport JAX-RPC web services
use a JMS queue as the mechanism for retrieving and returning values associated with
operations. You can use the JMS Message ID pattern to invoke a JMS transport JAX-RPC
web service.

You can also invoke a JMS request-response proxy service from a JAX-RPC static stub,
which the Oracle WebLogic clientgen Ant task generates.

31.7.5.1 Invoking a JAX-RPC Web Service Using the JMS Message ID Pattern
To invoke a JMS transport JAX-RPC web service using the JMS Message ID pattern,
complete the following steps:

Chapter 31
Message ID and Correlation ID Patterns for JMS Request/Response

31-15

1. Create a JMS Request-Response business service that uses the JMS Message ID
pattern to invoke the JMS transport JAX-RPC web service. For more information,
see the online help provided with Service Bus.

This business service uses JMS transport. The JMS queue JNDI name portion of
the endpoint URI must be the same as the queue attribute specified in the
@WLJmsTransport annotation of the JMS transport JAX-RPC web service. For
example:

jms://localhost:7001/AJMSConnectionFactoryJNDIName/
JmsTransportServiceRequestQueue

The JNDI name of the JMS queue (or queues) assigned to the Destination field
must be associated with a JMS server targeted at the WebLogic Server name that
is displayed in the Target field.

Note:

While WebLogic Server allows forward slashes in JNDI names, such as
"myqueues/myqueue", JNDI names with forward slashes interfere with
the URI format required by Service Bus, and you cannot use those
names. To work around this issue, define a JMS foreign server and
reference that foreign server in the URI. For more information, see
Configure Foreign Servers in the Oracle WebLogic Server Administration
Console Online Help.

2. Create a proxy service that contains a Routing (or Service Callout) action to the
JMS Request/Response business service that you created in step 1.

The Request Actions area of the Routing action must contain a Set Transport
Headers action for the outbound request. When you configure the Transport
Headers action, you must add two JMS headers for the outbound request action.
For detailed instructions about how to configure a Transport Headers action, see
Adding Transport Header Actions in the Console.

In brief:

a. Configure a Transport Headers Action by selecting Other in the Add Header
field and entering a URI in the field provided.

b. Select Set Header to <Expression> and create the expression by entering a
concatenation of the values specified for the contextPath and serviceUri
attributes (in the @WLJmsTransport annotation of the JMS transport JAX-RPC
web service), preceded by a forward-slash. For example, you have the
following @WLJmsTransport annotation:

@WLJmsTransport(
contextPath="transports",
serviceUri="JmsTransportService",
portName="JmsTransportPort",
queue="JmsTransportServiceRequestQueue"
)

You would enter the following expression in the XQuery Text input area when
you configure the Transport Headers:

/transports/JmsTransportService

Chapter 31
Message ID and Correlation ID Patterns for JMS Request/Response

31-16

c. To specify the second JMS Header, select Other in the Add Header field again, and
enter _wls_mimehdrContent_Type in the associated field.

d. Select Set Header to <Expression> and enter text/xml; charset=UTF-8 in the
XQuery Text input area.

31.7.5.2 Invoking a JMS Request-Response Proxy Service from a JAX-RPC Client
For a scenario in which a JAX-RPC WebLogic Server client invokes a proxy service, set the
_wls_mimehdrContent_Type JMS header for the proxy service's inbound response and specify
the header when you issue the response to the incoming JMS Message ID Pattern request.

For example, for the scenario in which you have a JAX-RPC client calling a proxy service,
which subsequently calls a WebLogic Server web service, the route node configuration is as
follows:

For the Request Pipeline

1. Set the transport header for web service context URI (for example: interop/
AllocJmsDocLit).

2. Set the transport header for _wls_mimehdrContent_Type with text/xml; charset=UTF-8.

3. Select Outbound request from the Set Transport headers menu items.

4. Enable Pass all Headers through pipeline.

For the Response Pipeline

1. Add an empty transport header and select Inbound response from the Set Transport
headers menu.

2. Enable Pass all Headers through pipeline.

Note:

For instructions on configuring a Transport Headers action, see Adding
Transport Header Actions in the Console.

31.7.6 JMS Message ID Pattern Examples
The following examples describe the different methods by which the JMS Message ID pattern
can be used.

• MQ Service Using a JMS Message ID to Correlate the Request-Response Message

• JAX-RPC Client with a Proxy Service

• Service Bus as a Client of a WebLogic Server JAX-RPC Service

31.7.6.1 MQ Service Using a JMS Message ID to Correlate the Request-Response
Message

In Figure 31-1, the server that hosts the MQ service in the request-response communication
echoes the request message ID to the response correlation ID, and sends the response to
the replyTo queue. The response travels back and is correlated using the JMS MessageID.

Chapter 31
Message ID and Correlation ID Patterns for JMS Request/Response

31-17

The Service Bus replyTo destination is set, one per Service Bus node in a cluster,
when the business service is configured. A JMS or MQ native client can also invoke a
JMS request-reply proxy service using the JMS Message ID pattern. The client needs
to set the replyTo property to the queue where it expects the response.

The key to supporting this use case is that JMS Message ID is expected to correlate
the request-response message. You also need to create as many MQ series outbound
response queues as there are cluster servers.

Note:

The request and response are under different transactions. For any issues in
the request or response, the transaction is rolled back.

Figure 31-1 MQ Service Using a JMS Message ID for Correlation

31.7.6.2 JAX-RPC Client with a Proxy Service
Figure 31-2 represents a JAX-RPC client sending a message to a Service Bus proxy
service, that is, the JAX-RPC inbound case. The JAX-RPC stack employs a temporary
queue to receive the response. The JMS transport honors this temporary queue during
runtime.

Figure 31-2 JAX-RPC Client with Service Bus Proxy Service

Chapter 31
Message ID and Correlation ID Patterns for JMS Request/Response

31-18

31.7.6.3 Service Bus as a Client of a WebLogic Server JAX-RPC Service
Figure 31-3 represents the JAX-RPC outbound case or the interoperability of a WebLogic
Server JAX-RPC request/response service with a Service Bus proxy service.

Figure 31-3 Service Bus as a Client of a WebLogic Server JAX-RPC Service

Note:

When a proxy service in one WebLogic Server domain needs to send a message to
a proxy service in a second domain, the message must first be routed to a pass-
through business service in domain 1. JMS Store and Forward between domain 1
and domain 2 forwards the inbound request message to the proxy service in
domain 2. When you use JMS request/response, you can choose to forward the
inbound response message from domain 2 to domain 1 using JMS Store and
Forward as well. In the latter case, exported inbound request and imported inbound
response queues must be configured in domain 2 for the proxy service in domain 2.
Pay close attention to the JMS Store and Forward configuration.

31.8 JMS Transport Configuration Reference
You can select JMS as the transport protocol for proxy and business services of any service
type. This section describes the properties you can configure for the JMS transport for
business and proxy services.

For information about error handling for business services, see JMS Transport Error
Handling.

When you configure a proxy service, you can use a Transport Header action to set the
header values in messages. For more information, see JMS Transport Headers.

• JMS Transport Endpoint URIs

• Configuring Proxy Services to Use the JMS Transport

• JMS Transport Headers

• Configuring Business Services to Use the JMS Transport

Chapter 31
JMS Transport Configuration Reference

31-19

31.8.1 JMS Transport Endpoint URIs
Enter the endpoint URI for the JMS transport in the following format:

jms://host:port[,host:port]*/connection_factory/jndi_destination

where

• host is the name of the system that hosts the service.

• port is the port number at which the connection is made.

• [,host:port]* indicates that you can configure multiple hosts with corresponding
ports.

• connection_factory is the name of the JNDI Connection Factory. For more
information on how to define a connection factory queue, see Configure resources
for JMS system modules in the Oracle WebLogic Server Administration Console
Online Help.

• jndi_destination is the name of the JNDI destination.

To target a JMS destination to multiple servers, use the following format for the URI:

jms://host1:port,host2:port/connection_factory/jndi_destination

where connection_factory is the name of the connection factory queue. For more
information on how to define a connection factory queue, see Configure resources for
JMS system modules in the Oracle WebLogic Server Administration Console Online
Help.

Note:

While WebLogic Server allows forward slashes in JNDI names, such as
"myqueues/myqueue", JNDI names with forward slashes interfere with the
URI format required by Service Bus, and you cannot use those names. To
work around this issue, define a JMS foreign server and reference that
foreign server in the URI. For more information, see Configure foreign
servers in the Oracle WebLogic Server Administration Console Online Help.

31.8.2 Configuring Proxy Services to Use the JMS Transport
The following table describes the properties you use to configure a JMS-based proxy
service. For more information, see Creating and Configuring Proxy Services.

Table 31-2 JMS Transport Properties for Proxy Services

Property Description

Destination Type Select one of the following:

• Queue (for a point-to-point destination)
• Topic (for a publish/subscribe destination)

Chapter 31
JMS Transport Configuration Reference

31-20

Table 31-2 (Cont.) JMS Transport Properties for Proxy Services

Property Description

Is Response Required Select this option to specify that a response is expected after an
outbound message is sent.

This option is available only when the Destination Type is Queue.

Response Pattern Select one of the following to specify the design pattern for the
response:

• JMSMessageID: For JAX-RPC services running on WebLogic
Server.

• JMSCorrelationID: For all other services. When you select this
option, you must also enter a Response URI.

This option is available only when the Is Response Required
check box is selected.

Response Message Type Select one of the following types for the response messages:

• Bytes (for a stream of uninterpreted bytes)
• Text (for text messages)
This option is disabled if you select a Message Type of Java for the
response. It is available only when the Is Response Required
check box is selected.

Client Jar Select the client JAR to be used for dequeueing messages that
contain Java Objects. Selecting the client JAR ensures it is on the
classpath. This option is available when the service is a Messaging
Service with a request type of Java.

For more information, see Sending and Receiving Java Objects in
Messages.

Dispatch Policy Select the instance of WebLogic Server Work Manager that you
want to use for the dispatch policy for this endpoint. The default
Work Manager is used if no other Work Manager exists.

For information about Work Managers, see:

• Using Work Managers with Service Bus
• "Using Work Managers to Optimize Scheduled Work" in

Administering Server Environments for Oracle WebLogic
Server

Request Encoding Enter the character set for encoding requests. The default is UTF-8.

Response Encoding Enter the character set for encoding responses. The default is
UTF-8.

This option is available only when the Is Response Required
check box is selected.

Client Response Timeout Enter the number of seconds to wait for a server response before
dropping the connection. This only applies if the client is another
proxy service in the same domain.

This option is available only when the Is Response Required
check box is selected.

Chapter 31
JMS Transport Configuration Reference

31-21

Table 31-2 (Cont.) JMS Transport Properties for Proxy Services

Property Description

Response URI Enter a response URI in one of the formats described below. This
option is available only when JMSCorrelationID is selected for the
Response Pattern.

jms://host:port/connection_factory/jndi_destination

To target multiple servers, use the following format:

jms://host1:port,host2:port/connection_factory/
jndi_destination

You can also omit the host and port in the response URI. For
example:

jms:///connection_factory/jndi_destination

When you omit host and port, the connection factory/destination
lookup occurs on the local server. This is useful, for example, if the
request URI goes to a foreign connection factory/destination, but
you want the response sent to the local server.

Note: While WebLogic Server allows forward slashes in JNDI
names, such as "myqueues/myqueue", JNDI names with forward
slashes interfere with the URI format required by Service Bus, and
you cannot use those names. To work around this issue, define a
JMS foreign server and reference that foreign server in the URI. For
more information, see Configure Foreign Servers in Oracle
WebLogic Server Administration Console Online Help.

Response Connection
Factory

Enter a response connection factory URI. This option is available
only when JMSMessageID is selected for the Response Pattern.

If a connection factory is not specified, the connection factory for
the request is used for the response.

JMS Service Account Select a service account to use for the JMS resource managed by
the JMS server. A service account is an alias resource for a user ID
and password, used for both the request and response. The same
service account is used for both JMS and JNDI purposes.

For more information, see Working with Service Accounts.

Use SSL Select this check box only if the requests are made over a TLS/SSL
connection.

TLS/SSL (Secure Sockets Layer) provides secure connections by
allowing two applications connecting over a network to authenticate
the other's identity and by encrypting the data exchanged between
the applications. Authentication allows a server, and optionally a
client, to verify the identity of the application on the other end of a
network connection. Additionally, if the administrator has restricted
access to individual JMS destinations (queues or topics) by setting
access control on the JNDI entry for the destination, the service
must authenticate when looking up the entry in the JNDI tree.

Note: The JMS transport does not support two-way SSL.

Message Selector Enter a message selector expression. Only messages with
properties matching the expression are processed.

Chapter 31
JMS Transport Configuration Reference

31-22

Table 31-2 (Cont.) JMS Transport Properties for Proxy Services

Property Description

Client ID For topics only, enter the client ID to use for the subscriber. If no
value is entered, a client ID is automatically generated. Assigning a
custom ID helps you identify this component when monitoring the
service. Note that this is only effective for durable subscribers.

The JMS Client ID is one of several MDB descriptors that are used
to generate subscriber names and the ClientID value for the topic's
subscribers. Defining a JMS client ID makes it easier to identify and
view subscribers for a specific topic by looking at the subscriber
name or client ID.

For more information, see JMS Client ID in Proxy Services.

Durable Subscription Select this check box if the subscription is durable or leave it empty
if the subscription is not durable. If a subscription is durable, it
receives all messages published on a topic, even if the subscription
was inactive at the time the messages were published.

This option is available only if Topic is selected for the Destination
Type.

Retry Non XA
Connection

Select this check box to retry non-XA connections using the given
retry count and interval specified below. If this check box is not
selected, Service Bus only retries XA connections and the retry
count and interval only apply only to XA connections.

This check box only applies to JMS proxy services that have a non-
XA connection factory in the service URI.

Retry Count Enter the number of delivery retries a message can have before it is
moved to the error destination. This field only applies to WebLogic
Server JMS destinations.

Retry Interval Enter the amount of time, in milliseconds, before rolled back or
recovered messages are redelivered. This field only applies to
WebLogic Server JMS destinations.

Error Destination Enter the name of the target destination for messages that have
reached their redelivery limit. This field only applies to WebLogic
Server JMS destinations.

Expiration Policy Select a policy that defines how to process an expired message
encountered on a destination. You can specify to either discard or
redirect the message. Redirecting a message moves it to the error
destination specified above.

This field only applies to WebLogic Server JMS destinations.

Is XA Required Select this check box if your connection factory is XA.

This option takes into account when the remote connection factory
is unavailable. If your connection factory is available and this option
is enabled, make sure that the connection factory is defined as
transactional.

Transaction Timeout Enter the amount of time in seconds for the JMS proxy service to
wait for a transaction to be processed. This option only applies to
services using an XA connection factory. The default is 600
seconds.

No MDB on Response
Queue

Select this option if you do not want to generate a default message-
driven bean (MDB) on the inbound response queue. Use this option
to improve performance. When this option is selected, a proxy to
proxy routing format is not supported.

Chapter 31
JMS Transport Configuration Reference

31-23

Table 31-2 (Cont.) JMS Transport Properties for Proxy Services

Property Description

JNDI Timeout The JNDI connection timeout (in seconds) used while looking up
the destination or connection factory in the JNDI tree.

Topic Messages
Distribution

Select one of the following properties to determine how message-
driven beans handle incoming JMS messages and high-availability
and failover:

• One Copy Per Application: Select this option to provide high
availability and scalability when the JMS proxy service is
deployed to a cluster. This ensures that an inbound JMS
message is processed on only one of the available servers in a
cluster. This is the default value.

• One Copy Per Server: Select this option if you want inbound
JMS messages published to a topic to be received by the proxy
service on every member of the cluster.

• Compatibility: Select this option if you want inbound JMS
messages to be processed on a specific Managed Server or all
Managed Servers in a cluster. If you select this property, select
a Target server.

This option is available when you select Topic for the Destination
Type.

Note: When using compatibility mode in a cluster, you might receive
duplicate messages. To prevent this, use one of the other options.

The "One Copy" options override the Subscription Sharing Policy
and Client ID Policy configured on the JMS Connection Factory.

Target Select the target server that will handle incoming JMS messages. If
you select one of the "One Copy" options for Topic Messages
Distribution, this field displays the name of the cluster. This option
is available only in a Service Bus cluster when you select
Compatibility for the Topic Messages Distribution option.

If you do not set a target, the JMS proxy service instance reading
messages off the Topic on each Managed Server in the cluster gets
a copy of the message.

31.8.3 JMS Transport Headers
The various headers related to the JMS transport are listed in Table 31-3. All the
headers except the Unit of Order header are common to both outbound requests and
inbound response.

Table 31-3 JMS Transport Headers

Header Description

JMSCorrelation ID An identifier used to link one message with another. For example to
link a request message with a response message.

JMSDeliveryMode The delivery mode specified when the message was sent.

JMSExpiration The expiration time of the message, which is an absolute value that
indicates the specific date and time the message should expire. You
can use an XQuery expression to calculate the precise expiration date
and time for each message.

Chapter 31
JMS Transport Configuration Reference

31-24

Table 31-3 (Cont.) JMS Transport Headers

Header Description

JMSMessageID A value that uniquely identifies the message sent by a provider.

JMSPriority The processing priority of the message. When a message is sent, this
field is ignored. After the send operation is complete, the field holds the
value that is specified by the method sending the message.

JMSType The message type identifier that is specified by a client when a
message is sent.

JMSXAppID This is one of the JMS defined properties that specifies the identity of
the application that sends the message. This is set by the JMS
provider

JMSXGroupID This one of the properties defined by JMS that specifies the group id of
the message group to which the message belongs. This is set by the
client

JMSXGroupSeq This one of the properties defined by JMS that specifies the sequence
of the message inside the message group.

JMS_IBM_Format The nature of the application data. For more information, refer to the
IBM WebSphere documentation.

JMS_IBM_Report_Ex
ception

Request exception reports. This also specifies how much of the
application data from the message must be retained in the report
message. For more information, refer to the IBM WebSphere
documentation.

JMS_IBM_Report_Ex
piration

Request expiration reports. This also specifies how much of the
application data from the message must be retained in the report
message. For more information, refer to the IBM WebSphere
documentation.

JMS_IBM_Report_CO
A

Request a confirm on arrival reports. This also specifies how much of
the application data from the message must be retained in the report
message. For more information, refer to the IBM WebSphere
documentation.

JMS_IBM_Report_CO
D

Request a confirm on delivery reports. This also specifies how much of
the application data from the message must be retained in the report
message. For more information, refer to the IBM WebSphere
documentation.

JMS_IBM_Report_PA
N

Request a positive action notification reports. For more information,
refer to the IBM WebSphere documentation.

JMS_IBM_Report_NA
N

Request a positive action notification reports. For more information,
see For more information, refer to the IBM WebSphere documentation.

JMS_IBM_Report_Pa
ss_Msg_ID

Request that the message identifier of any report or reply message is
the same as that of the original message. For more information, refer
to the IBM WebSphere documentation.

JMS_IBM_Report_Pa
ss_Correl_ID

Request that the correlation identifier of any report or reply message is
the same as that of the original message. For more information, refer
to the IBM WebSphere documentation.

JMS_IBM_Report_Dis
card_Msg

Request that the message is discarded if it cannot be delivered to its
intended destination. For more information, refer to the IBM
WebSphere documentation.

JMS_IBM_MsgType The type of a message. For more information, refer to the IBM
WebSphere documentation.

Chapter 31
JMS Transport Configuration Reference

31-25

Table 31-3 (Cont.) JMS Transport Headers

Header Description

JMS_IBM_Feedback An indicator of the nature of a report message. For more information,
refer to the IBM WebSphere documentation.

JMS_IBM_Last_Msg_I
n_Group

An indicator of whether the message is the last message in a message
group. For more information, refer to the IBM WebSphere
documentation.

JMS_BEA_UnitOfOrd
er

This header is valid for the request and response.

31.8.3.1 Configuring Transport Headers
You can configure the transport headers for both inbound and outbound requests in
the pipeline. Use a Transport Header action to set the header values in messages. For
information about adding transport header actions, see Adding Transport Header
Actions in the Console. For information about the transport headers related to the JMS
transport, see JMS Transport Headers.

Note:

For information about the limitations for JMS transport headers, see How the
Runtime Uses the Transport Settings in the Test Console. Also see
Table 12-8.

31.8.4 Configuring Business Services to Use the JMS Transport
When you register a JMS business service, you must manually edit the URI from the
WSDL file when adding it to the service definition. The URI format is as follows:

jms://host:port/connection_factory/jndi_destination

Note:

To configure a JMS request-response application with response correlation
by JMS ID for a business service, you must:

• Create uniform distributed queues and local queues targeted to one
chosen JMS server.

• Disable the default targeting for the UDQ that deploys the UDQ on the
cluster and creates the member queues on all JMS.

The following table describes the properties you use to configure a JMS-based
business service. For more information, see Creating and Configuring Business
Services

Chapter 31
JMS Transport Configuration Reference

31-26

Table 31-4 JMS Transport Properties for Business Services

Property Description

Destination Type Select one of the following JMS destination types:

• Queue (for a point-to-point destination)
• Topic (for a publish/subscribe destination)

Message Type Select one of the following message types:

• Bytes (for a stream of uninterpreted bytes)
• Text (for text messages)
This option is disabled if you select a message type of Java for the
response.

Response Queues Select one of the following options to specify how to handle responses:

• None: No response is expected. Select this option for one-way
operations.

• One for all Request URIs: Lets you enter a single URI to handle the
response, as well as set other response configuration details such as
encoding and timeout, and optionally select a JMS Service Account
for passing JMS/JNDI credentials.

• One per Request URI: This option provides response failover, letting
you enter a response URI or destination for each request URI. You
can optionally select a service account for JMS/JNDI credentials on
each request/response pairing.

This option is available only when the Destination Type is Queue.

Response Pattern Select one of the following to specify the design pattern for the response:

• Select JMSCorrelationID for all services other than JAX-RPC
services running on WebLogic Server.

• Select JMSMessageID for JAX-RPC services running on WebLogic
Server.

This option is available only when you select a response option in the
Response Queue field. For more information, see Message ID and
Correlation ID Patterns for JMS Request/Response.

Dispatch Policy Select the instance of WebLogic Server Work Manager that you want to
use for the dispatch policy for this endpoint. The default Work Manager is
used if no other Work Manager exists.

For example, if the business service has a JMS transport protocol, the
business service endpoint is an MDB (message-driven bean) JAR file
that you can associate with the specific dispatch policy.

For information about Work Managers, see:

• Using Work Managers with Service Bus
• "Using Work Managers to Optimize Scheduled Work" in

Administering Server Environments for Oracle WebLogic Server

Request Encoding Enter the character set for encoding requests. The default is UTF-8.

Response Encoding Enter the character set for encoding responses. The default is UTF-8.

This option is available only when one of the response options is selected
in the Response Queues field.

Response Timeout Enter the amount of time, in seconds, to wait for the response before
dropping the connection. The default, zero (0), means the response never
times out.

This option is available only when one of the response options is selected
in the Response Queues field.

Chapter 31
JMS Transport Configuration Reference

31-27

Table 31-4 (Cont.) JMS Transport Properties for Business Services

Property Description

Client Jar Select the client JAR to be used for dequeueing messages that contain
Java Objects. Selecting the client JAR ensures it is on the classpath. This
option is available when the service is a Messaging Service with a
response type of Java.

For more information, see Sending and Receiving Java Objects in
Messages.

Response URI Enter a response URI in one of the formats described below. This option
is available when you select the One for all Request URIs response
option and the JMSCorrelationID response pattern.

jms://host:port/connection_factory/jndi_destination

To target multiple servers, use the following format:

jms://host1:port,host2:port/connection_factory/
jndi_destination

You can also omit the host and port in the response URI. For example:

jms:///connection_factory/jndi_destination

When you omit host and port, the connection factory/destination lookup
occurs on the local server. This is useful, for example, if the request URI
goes to a foreign connection factory/destination, but you want the
response sent to the local server.

Note: While WebLogic Server allows forward slashes in JNDI names,
such as "myqueues/myqueue", JNDI names with forward slashes
interfere with the URI format required by Service Bus, and you cannot
use those names. To work around this issue, define a JMS foreign server
and reference that foreign server in the URI. For more information, see
Configure Foreign Servers in Oracle WebLogic Server Administration
Console Online Help.

Request Responses Enter a Response URI for each request URI entered on the generic
Transport page. Use the formatting and guidelines described for the
Response URI field, above.

For each URI, you can select an optional service account for JMS/JNDI
credentials that the service uses for both the request and response
queues.

This option is available when you select the One per Request URI
response option for the JMSCorrelationID pattern to provide response
failover.

Target - Responses Enter the name of the Target server that is to receive responses, and
enter a Response URI, as described in the Response URI field.

This option is available when you select the One for all Request URIs
response option for the JMSMessageID pattern.

Chapter 31
JMS Transport Configuration Reference

31-28

Table 31-4 (Cont.) JMS Transport Properties for Business Services

Property Description

Request Connections Enter a JMS Connection Factory name for each request URI, identified
sequentially by number in the Seq. No field. If you do not enter a name,
the JMS transport uses the connection factory from the request URI.

You can select an optional service account for JMS/JNDI credentials that
the service uses for both the request and response queues.

This option is available when you select the One per Request URI
response option for the JMSMessageID pattern to provide response
failover.

Target - Destinations Enter the destination queue on each target server that receives
responses for each request URI on each target. Each Target server in the
list (determined by the servers in the current domain, such as Managed
Servers in a cluster) lists the request URIs by Seq.No, which correspond
to those in the Request Connections field.

This option is available when you select the One per Request URI
response option for the JMSMessageID pattern to provide response
failover. Use this field in conjunction with Request Connections.

Note: Because the Service Bus development environment supports only
a one-server environment, only one Target is listed. To configure this field
in a multi-server environment, deploy this service to the runtime
environment and complete the service configuration in the Oracle Service
Bus Console.

JMS Service Account Enter a service account to use for the JMS resource managed by the
JMS server. A service account is an alias resource for a user ID and
password, used for both the request and response. The same service
account is used for both JMS and JNDI purposes.

This option is available when you use the None or One for all Request
URIs option in the Response Queues field. This field is mutually
exclusive with the Pass Caller's Subject option. Use one or the other for
JMS/JNDI authentication.

For more information, see Working with Service Accounts.

Use SSL Select this check box only if the requests are made over a TLS/SSL
connection.

TLS/SSL (Secure Sockets Layer) provides secure connections by
allowing two applications connecting over a network to authenticate the
other's identity and by encrypting the data exchanged between the
applications. Authentication allows a server, and optionally a client, to
verify the identity of the application on the other end of a network
connection. Additionally, if the administrator has restricted access to
individual JMS destinations (queues or topics) by setting access control
on the JNDI entry for the destination, the service must authenticate when
looking up the entry in the JNDI tree. Authenticate using a Service
Account or the Pass Caller's Subject option.

Note: The JMS transport does not support two-way SSL

Expiration The time interval in milliseconds after which the message expires. Default
value is 0, which means that the message never expires.

Enable Message
Persistence

Select this check box for guaranteed message delivery. Clear this check
box to improve throughput if an occasional lost message is tolerable. The
JMS message delivery mode lets you balance reliability with throughput.

Chapter 31
JMS Transport Configuration Reference

31-29

Table 31-4 (Cont.) JMS Transport Properties for Business Services

Property Description

Unit of Order Enter a message unit-of-order, which enables message producers to
group messages into a single unit with respect to the processing order.
This single unit-of-order requires that all messages in that unit be
processed sequentially in the order they were created.

For more information about using unit-of-order, see "Using Message Unit-
of-Order" in Developing JMS Applications for Oracle WebLogic Server.

Pass Caller's Subject Select this check box to have Service Bus pass the authenticated subject
when sending a message.

When you enable this field and the business service targets JMS
resources in a different domain, enable global trust on both domains. See
"Configuring Security for a WebLogic Domain" in Administering Security
for Oracle WebLogic Server.

This field is mutually exclusive with the Service Account option. Use one
or the other for JMS/JNDI authentication.

JNDI Timeout Enter the period (in seconds) to use when looking up the destination or
connection factory in the JNDI tree before the JNDI connection times out.

The default, zero (0), means the connection never times out.

Chapter 31
JMS Transport Configuration Reference

31-30

32
Using the Local Transport

This chapter provides an overview of the Local transport and describes how to use and
configure it in your proxy services.

This chapter includes the following sections:

• Introduction to the Local Transport

• Using Local Transport Proxy Services

• Propagating SOAP Faults Between Proxy Services

• Using OWSM Security with Local Proxy Services

32.1 Introduction to the Local Transport
In a Service Bus project, proxy service logic is exposed to the client, but there may be cases
where you do not want that logic exposed. In this case, you can design the logic behind a
local transport proxy service, and then invoke that proxy service from other Service Bus
projects.

For example, if you have several services that invoke a back-end service, you can create a
separate project with a local proxy service to define all the back-end (unexposed) logic. You
can then invoke that local proxy service from other Service Bus projects, keeping certain
processing logic private from all clients.

Local proxy services are also the only way to call pipelines contained in other projects. When
the pipelines are all in the same Service Bus project, one pipeline can call another pipeline
directly. However, a pipeline cannot call a pipeline in a different project directly. To achieve
this, you need to use a local proxy service between the pipelines. The local transport
provides the following capabilities:

• Efficient and secure communication.

• Propagation of transactions and transactional behavior.

• Propagation of security context so the identity can be propagated end-to-end. The
security context propagation also allows the client of the first proxy service in a chain of
services to be authorized by the proxy services that are subsequently invoked in the
chain, supporting fine-grained access control.

32.1.1 Features and Characteristics of Local Transport Proxy Services
Local transport-based proxy services can only be invoked by other proxy services or
pipelines, and not by other clients. The invocation is optimized by Service Bus. Local proxy
services do not have a URI; however, there are no constraints on the service and interface
types supported by local transport proxy services. The one exception is that SAML is only
supported in a pass through scenario.

If the quality of service (QoS) for the invoking service is defined as Exactly Once, the
transaction of that service is propagated to the local transport proxy service. In other words,

32-1

the invoked local transport proxy service inherits the transactional behavior of the
invoking service.

A proxy service can authenticate at the transport level or the message level. If it is
enabled, the effective client is the message-level authenticated client. If the message-
level authenticated client is not enabled, then the transport-level authenticated client is
the effective client (if that is enabled). If neither the message-level nor the transport-
level authenticated client is enabled, the anonymous client becomes the effective
client.

When a proxy service invokes a local transport proxy service, the effective client of the
invoking service becomes the transport-level client of the invoked local proxy service.
A local transport proxy service can authorize this client for access with an access
control policy. In this way, it is possible to propagate the client of the first service to the
subsequent proxy services in the overall end-to-end message flow.

Local transport proxy services support user-defined transport headers. Consider a
scenario in which a proxy service uses the HTTP transport. It routes through a pipeline
to a local proxy service, and the pipeline passes headers to the local proxy service
using a transport header action. In this scenario, if the HTTP proxy service received
the Content-Type header, that header is available as a user header in the local
transport and is therefore accessible through the standard user header, instead of as a
typed transport header.

32.2 Using Local Transport Proxy Services
Local transport proxy services are useful when you have portions of the message flow
you want to keep private and other portions you want to expose.

For example, you could have projects that define back-end processing and call those
projects from projects that define front-end logic such as alerting and fault handling.
Using local proxy services for the back-end projects keeps them private.

The pipelines in the front-end projects route messages to the local transport proxy
service. You can call the same local proxy service from multiple pipelines and from
multiple projects. The following figure illustrates a local proxy service invoked by a
project with an HTTP proxy service and by a project with a JMS proxy service.

Chapter 32
Using Local Transport Proxy Services

32-2

Figure 32-1 Using a Local Transport Proxy Service

32.2.1 Changes from Previous Usage
In previous versions of Service Bus, the local transport could be used in cases where an Any
SOAP or XML type proxy service acted as a front-end to different enterprise systems. This
front-end proxy service was a generic router to the appropriate local transport. In the current
Service Bus version, with the ability to create pipelines separately from the proxy service, this
usage of the local transport is obsolete. You can replace the local proxy services with
pipelines, as illustrated in Figure 32-2 and Figure 32-3.

As with the previous version, you can use dynamic routing to abstract the routing rules at
runtime and route messages to the local transport proxy services. For an example of how
dynamic routing is used, see Using Dynamic Routing.

The following figure illustrates how the local transport would be used in this scenario in
release 11g.

Figure 32-2 Accessing Multiple Business Services in Previous Versions

Chapter 32
Using Local Transport Proxy Services

32-3

In the current release, the above 11g scenario would be updated to include pipelines
instead of local proxy services, as shown below.

Figure 32-3 Updated Method to Access Multiple Business Services

32.3 Propagating SOAP Faults Between Proxy Services
When chaining local proxy services, SOAP faults in the $fault variable are not
automatically propagated from one proxy service through the pipeline to another proxy
service.

Consider the following example:

Client > Proxy1 > Pipeline > Proxy2 > Business Service > Back-end Service

If a SOAP fault occurs in the back-end service, it is propagated to the $fault variable
in Proxy2. However, the SOAP fault value in Proxy2 is not automatically propagated to
the $fault variable in Proxy1 and is therefore not returned to the client.

To propagate the SOAP fault from one proxy to another:

1. In the pipeline, add an error handler that contains a Reply with Failure action.
This returns the SOAP message with fault information contained in the $body
variable. For more information, see Adding Reply Actions in the Console.

2. In the pipeline, transform the $body variable as necessary to return the desired
SOAP error details to the client.

For more information on how Service Bus handles SOAP faults, see Generating the
Error Message, Reporting, and Replying.

32.4 Using OWSM Security with Local Proxy Services
You can attach Oracle Web Services Manager (OWSM) service policies to local proxy
services with a WSDL service type, which lets you apply specific security controls to
messages arriving at each local proxy.

This section describes how Service Bus processes polices at runtime when a proxy
service forwards messages with security headers through a pipeline to local proxy

Chapter 32
Propagating SOAP Faults Between Proxy Services

32-4

services. Message forwarding occurs through actions such as route, service callout, and
publish.

Proxy services do not perform outbound WS-Security processing when forwarding messages
to other proxy services. The diagrams in this section illustrate this behavior, showing WS-
Security configurations in different proxy-to-proxy scenarios. Use these scenarios to
understand the behavior so that you can successfully use OWSM service policies on local
proxy services that receive messages from other proxy services.

Figure 32-4 shows a client with a client policy sending a message to a front-end proxy that
could have any of the following characteristics:

• The front-end proxy could be active and contain an OWSM policy that performs inbound
processing on all WS-Security headers in a request or only a subset of those headers.
For example, it might process the authentication policy but not the message protection
policy when the request contains both authentication and message protection headers.
The proxy could also contain a non-security policy such as an OWSM log policy.

• The front-end proxy could be passive and contain an OWSM policy.

• The front-end proxy could contain no OWSM policy.

In each of these cases, the front-end proxy service encounters at least one security header in
the message. The proxy service passes this message without performing outbound WS-
Security processing to the pipelines, which in turn pass the message to the local proxy
services. The local proxy services may or may not contain OWSM policies.

In Figure 32-4, local proxy service 2 receives the message without throwing an exception,
because the message contains the expected security headers. Even if the front-end proxy
service contains a policy that performs partial security processing (for example,
authentication processing but no message protection processing), the forwarded message
would still contain security headers.

Figure 32-4 Front-end Proxy as Security Pass-through to Local Proxies

Figure 32-5 shows a client with a client policy sending a message to a front-end proxy
service. The front-end proxy service is active and contains an OWSM service policy that
processes all WS-Security headers in the message. The inbound service policy is processed,
which strips the message of its security headers. Because the front-end proxy service
forwards the message to other proxies, no outbound WS-Security processing is performed,
and the message without security headers is forwarded to the local proxy services. One local

Chapter 32
Using OWSM Security with Local Proxy Services

32-5

proxy service contains an OWSM service policy that expects security headers, and an
exception is thrown when the message arrives without those headers. The other local
proxy contains an OWSM non-security policy where no enforcement occurs, so the
message without security headers passes through successfully.

Figure 32-5 Front-end Proxy Processes All Security Headers Before Forwarding to Local
Proxies

Chapter 32
Using OWSM Security with Local Proxy Services

32-6

33
Using the MQ Transport

This chapter provides an overview of the MQ transport and describes how to use and
configure it in your services. The MQ transport provides access to IBM WebSphere MQ and
supports both inbound and outbound connectivity.

This chapter includes the following sections:

• Introduction to the MQ Transport

• Setting Up the Environment for the MQ Transport

• Working with MQ Connections

• MQ Transport Error Handling

• Using the WebSphere JMS MQ Interface

• MQ Transport Configuration Reference

• MQ Transport Headers

33.1 Introduction to the MQ Transport
The MQ transport provides native connectivity between Service Bus components and IBM
WebSphere MQ.

MQ proxy services can receive messages from WebSphere MQ and MQ business services
can route messages to WebSphere MQ.

To learn more about WebSphere MQ fundamentals, Refer to the IBM WebSphere MQ
documentation.

33.1.1 MQ Transport Features
The MQ transport provides Service Bus with the following features:

• Inbound and outbound connectivity. MQ proxy services can receive messages from
WebSphere MQ and MQ business services can route messages to WebSphere MQ.

• Access to WebSphere MQ. For more information, see How to Add MQ Client Libraries to
Your Environment.

• Sending and receiving messages of Any XML, Binary, XML, Text and MFL types.

• Processing of all the MQ message descriptor (MQMD) headers. A message descriptor is
an attribute representing a property of the message that is either being sent or received.
For a list of MQ headers that can be configured, see MQ Transport Headers.

• TCP/IP and bindings mode for connecting to queue managers. TCP/IP mode connects to
remote WebSphere MQ servers; bindings mode connects to a local WebSphere MQ.

• One-way and two-way SSL on inbound and outbound transport (only when a TCP/IP
connection is used).

33-1

33.1.2 MQ Transport Advantages
Using the MQ transport has the following advantages over using the WebSphere MQ
JMS interface:

• Faster connection to WebSphere MQ through the MQ transport than through the
WebSphere MQ JMS interface.

• Ability to read and generate MQ messages. Using the JMS interface, it is not
possible to set certain headers.

• Support for sending and receiving MQ receipt messages.

• Explicit binding of MQ Connection Factory and MQ Queue to WebLogic's JNDI is
not required.

• Configuration of resources, like a JMS provider, outside of Service Bus is not
required.

• Performance improvement because messages are sent directly using the transport
instead of channeling them through the JMS transport.

33.1.3 Messaging Patterns
The MQ transport supports one-way and request-response messaging patterns for
both inbound and outbound connectivity. The default pattern is one-way messaging. A
proxy or business service supports request-response messaging when you set the Is
Response Required option while configuring the service.

The inbound and outbound transports support the asynchronous request-response
pattern using messageID or correlationID for correlation between the request and the
response. You can set the response correlation pattern during service configuration.
For more information, see "CorrelationID" and "MessageID" in MQ Transport Headers.

The outbound transport provides an option to auto-generate the correlation ID and
messageID or to use the one specified by you in the pipeline. Select the Auto-
generate Correlation Value option to indicate that the correlation ID and message
ID should be auto-generated by the transport. When this option is not selected,
Service Bus uses the value specified by you in the pipeline. If you use dynamic
queues in your MQ implementation, you can use dynamic queues for response
correlation in the outbound transport.

If the correlation value (messageID / correlationID) is not auto-generated and if the
Managed Server goes down, the remaining response messages may never get
removed when the server is restarted. Oracle recommends that the Expiry header on
the request is configured to a finite value and that the Report header contains the
MQC.MQRO_PASS_DISCARD_AND_EXPIRY option. The
MQC.MQRO_PASS_DISCARD_AND_EXPIRY option serves as a directive to the receiving
client that the message descriptor of the reply should inherit the Expiry header value
of the request message. This ensures that the response messages are removed by
the MQ server after the configured expiry period has elapsed. When the correlation
value is automatically generated, the Service Bus server is responsible for cleaning up
any remaining response messages.

The MQ transport supports local transactions but not remote transactions.

Chapter 33
Introduction to the MQ Transport

33-2

For more information about configuring Is Response Required, Response Correlation
Pattern, Auto Generate Correlation Value for a service, see Configuring Proxy Services
to Use the MQ Transport and Configuring Business Services to Use the MQ Transport.

33.1.4 MQ Connection Resources
MQ connections are sharable resources that can be reused across multiple MQ proxy and
business services. MQ connection resources provide the connection parameters required for
connecting to an MQ queue manager. You must create and configure an MQ connection
resource in order to create an MQ-based proxy or business service. For more information,
see Working with MQ Connections.

33.1.5 Quality of Service
When the inbound transport is MQ and the Quality of Service (QoS) on the outbound
transport is exactly-once, the resulting QoS is at-least-once. By default, the QoS on the
outbound transport is exactly-once.

Note:

You must create error handling logic (including any retry logic) in the pipeline error
handler. For information about configuring error handling, see Adding Error
Handlers in JDeveloper and Adding Error Handlers in the Console.

When the outbound is request-response, the QoS is at-least-once only if the outbound
transport is configured to support exactly-once QoS. For more information about QoS in
Service Bus messaging, see Quality of Service..

33.1.6 Multi-instance Queue Manager Support
The MQ Transport has been updated with Multi-instance Queue Manager support.

Introduced in IBM MQ 7, this feature allows the Queue Manager to use two hosts: the primary
and a warn standby. If the primary host fails, the multi-instance queue manager restarts
automatically on the standby server. The MQ transport tries to connect to Queue Manager on
message arrival. At that moment, if the primary MQ instance is down, it checks for the next
available instance and makes a fresh connection to the standby instance. As the storage is
shared between the primary and all standby servers, messages are moved to the new, active
instance. After the primary MQ server fails over to standby server, the standby server
assumes the role of primary server.

See How to Create MQ Connections to create an MQ connection with Multi-instance Queue
Manager support enabled.

33.1.7 MQ Clusters and the MQ Transport
Cluster support in WebSphere MQ is store-and-forward messaging and not load-balancing
and fail over. The cluster queues in WebSphere MQ are created locally on one of the queue
managers and shared with other cluster members that act as remote forwarders to the
shared queue. Requests from the MQ transport are load balanced by sending messages
using the load balancing algorithm to the members of the cluster. However, the transport

Chapter 33
Introduction to the MQ Transport

33-3

receives messages by accessing only the MQ server node that holds the reference to
the local queue.

33.1.8 Limitations of the MQ Transport
The following are the limitations of the MQ transport:

• You cannot call a request-response proxy service based on MQ proxy service:

– From a proxy service that has been configured with a route action or dynamic
routing and routing table actions).

Using the service callout action.

• You cannot call a proxy service with a service callout where the target is a request-
response proxy service based on MQ transport.

• You cannot use an indirect call to a request-response MQ proxy service in the
Service Bus Test Console.

33.1.9 Large Payload Rejection with the MQ Transport
Large messages over the default of 10 MB will be rejected for both inbound and
outbound responses in a Reference Configuration domain. The default is valid for both
XA and non-XA configurations.

If the threshold is exceeded in a Reference Configuration domain, the large payload is
processed as follows:

• Inbound: If the dead-letter queue is configured in the proxy service, the message
is rejected and redirected to the given queue. If the dead-letter queue is not
configured, the message is rejected and saved to disk in the $DOMAIN_HOME/mq/
rejectedMessages/ folder.

• Outbound response: The message is rejected and saved to disk in
the $DOMAIN_HOME/mq/rejectedMessages/ folder.

The rejection limit is controlled by the -Dsoa.payload.threshold.kb parameter. The
default is 10 MB.

33.2 Setting Up the Environment for the MQ Transport
Service Bus is a client for IBM WebSphere MQ, and although Service Bus supports
runtime server compatibility for supported versions of WebSphere MQ, these MQ
libraries are not installed with Service Bus.

The following libraries must be added to the domain library directory:

• com.ibm.mq.commonservices.jar

• com.ibm.mq.jar

• com.ibm.mq.pcf.jar

• com.ibm.mq.headers.jar

• com.ibm.mq.jmqi.jar

• com.ibm.mqjms.jar

Chapter 33
Setting Up the Environment for the MQ Transport

33-4

Note:

If you upgrade from MQ 7.5 to MQ8 or MQ9, you must add the compatible client
libraries to the domain library.

For WebSphere MQ version support with Service Bus, see Interoperability Scenarios and
Considerationsin Administering Oracle Service Bus. For information about the system
requirements for WebSphere MQ, see http://www-306.ibm.com/software/
integration/wmq/requirements/index.html.

33.2.1 How to Add MQ Client Libraries to Your Environment
1. Stop the domain server.

2. From your WebSphere MQ installation, copy the com.ibm.mq.jar file to the Service Bus
domain at DOMAIN_HOME/lib directory.

3. Restart the domain server.

33.2.2 How to Configure Environment Variables
If you use the bindings mode to connect to an MQ Queue Manager located on the same
machine as Service Bus, add <MQ_install_directory>/bin and <MQ_install_directory>/
java/lib to the PATH environment variable.

33.3 Working with MQ Connections
Before you can configure a proxy or business service to use the MQ transport, you need to
create an MQ connection resource that defines the connection to the MQ server. MQ
connections are sharable resources that can be reused across multiple MQ proxy and
business services.

MQ proxy and business services must connect to an MQ queue manager before accessing
an MQ queue. MQ connection resources provide the connection parameters required for
connecting to an MQ queue manager.

Each MQ Connection resource has a connection pool. Every business or proxy service that
uses the same MQ connection resource to get a connection to a queue manager uses the
same connection pool that was created for that resource. Thus, multiple business services
and proxy services can use the same queue manager and share a connection pool.

Some best practices to consider when using MQ connections:

• A minimum of two different queue manager connections are needed for a global
transaction.

• With a large payload under an XA transaction, the MQ transport may have XA Exceptions
with error code 106 or and MQ exception with error code 2102. If MQ messages are
persistent, then increase the queue manager primary and secondary logs to a higher
value.

Chapter 33
Working with MQ Connections

33-5

http://www-306.ibm.com/software/integration/wmq/requirements/index.html
http://www-306.ibm.com/software/integration/wmq/requirements/index.html

33.3.1 How to Create MQ Connections
The option to create an MQ connection in Oracle Service Bus Console is only
available after the MQ client library is added to the domain. In JDeveloper, you can
create the connection without the libraries, but you need to libraries for the runtime.

Before you begin:

Follow the instructions under "Setting Up the Environment for the MQ Transport" to
make the MQ client library available.

Make sure you have created any of the following resources you will need to create the
MQ connection:

• Service account

• Service key provider

To create an MQ connection:

1. Do one of the following:

• For JDeveloper: In the Application Navigator, right-click the project or folder to
contain the new MQ connection, point to New, and select MQ Connection.

• For Oracle Service Bus Console: In the Project Navigator, right-click the
project or folder to contain the new MQ connection, point to Create, and select
Resources. Click Miscellaneous, click MQ Connection, and then click OK.

2. Enter a unique name for this MQ connection, and an optional description.

The endpoint URI cannot contain spaces, so do not create MQ Connection
resources, projects, or folders with spaces in the names.

3. Click Create or Finish.

The MQ Connection Definition Editor appears.

4. In the Connection Type field, select one of the following modes for connecting to
the MQ queue manager:

• mqTcpModeType: Use TCP/IP to connect to a queue manager that does not
reside on the same machine as Service Bus.

• mqBindingModeType: Use the bindings mode to connect to a queue
manager that is located on the same machine as Service Bus.

The fields on the editor change based on your selection.

5. Configure the following information about the MQ server:

• Multi-instance Queue Manager Enabled: Select to enable multi-instance
Queue Manager support. This is used for TCP mode connections only.

• MQ Connection List: This field accepts a list of comma-separated MQ
connections in the following format: host1:port1,host2:port2. This field is
available only when the Multi-instance Queue Manager Enabled option is
selected.

• MQ Host Name: The host name of the MQ queue manager. This is used for
TCP mode connections only. This field is available only when the Multi-
instance Queue Manager Enabled option is not selected.

Chapter 33
Working with MQ Connections

33-6

• MQ Port Number: The port number of the MQ queue manager listener. This is used
for TCP mode connections only. This field is available only when the Multi-instance
Queue Manager Enabled option is not selected.

• MQ Queue Manager Name: Enter the name of the MQ queue manager to which to
connect.

• MQ Queue Manager Channel Name: Enter the name of the queue manager server
connection channel. This is used for TCP mode connections only.

• XA Enabled: Select this option to enable XA support for the connection.

• Queue Manager CCSID: The coded character set identifier (CCSID) to be used
when establishing a connection. This is used for TCP mode connections only, and is
mainly for internationalization support.

6. To configure SSL support for TCP mode connections, do the following:

a. Select the SSL Required check box to use SSL for sending messages. This enables
service-side SSL authentication.

b. In the Cipher Suite field, select the cipher suite algorithm to be used by SSL.

The Cipher Suite algorithm is used to encrypt and decrypt message communications
between the server and client.

c. To enable both client-side and server-side SSL authentication, select the 2-way SSL
Required check box.

d. If you selected 2-way SSL, for the Reference to the Service Key Provider field,
click the Browse icon to locate and select the service key provider to use.

7. For the Reference to the Static Service Account field, click the Browse icon to locate
and select the service account to use.

8. In the MQ Version field, select the version of MQ server you are using.

9. To configure the MQ connection, do the following:

a. In the MQ Connection Pool Size field, enter the number of connections maintained
by the connection pool.

b. In the MQ Connection Timeout field, enter the time interval in seconds after which
unused connections are destroyed. The default is 1800 seconds.

c. In the MQ Connection Max Wait field, enter the maximum amount of time (in
milliseconds) to wait for a connection to become available.

If a connection is not made within that time interval, Service Bus throws an exception.
The default is 3000 milliseconds

d. If the transactions handled by this connection are distributed (XA) transactions, select
XA Enabled.

Note that the queue must be configured for persistence. If you are using version 5.3
or 6.0 (both deprecated), add the com.ibm.mqetclient.jar file to your classpath.

10. In the toolbar, click Save.

11. If you are using the Oracle Service Bus Console, click Activate to end the session and
deploy the configuration to the runtime.

33.3.2 How to Edit MQ Connections
Once you create an MQ connection, you can reconfigure its information.

Chapter 33
Working with MQ Connections

33-7

To edit an MQ connection:

1. In the Application Navigator or Project Navigator, expand the project and folders
containing the MQ connection to edit.

2. Right-click the MQ connection name, and select Open.

3. Modify any of the fields described in How to Create MQ Connections. The online
help provides more detailed descriptions.

Note:

If the MQ client library is version 8 or version 9, a change in XA
functionality for any activated MQ connection that is associated with a
running MQ service is not allowed. You must create a new MQ
connection and associate the MQ service to it.

4. When you are done making changes, click Save in the toolbar.

5. If you are using the Oracle Service Bus Console, click Activate to end the session
and deploy the configuration to the runtime.

33.3.3 How to Delete MQ Connections
Before you delete an MQ connection, make sure it is not currently being used by an
MQ transport. If it is being used, remove it from the proxy or business service
configuration before deleting it. You can delete the MQ connection even if it is
referenced by other resources, though this might result in conflicts due to unresolved
references to the deleted resource.

You can check for references and dependencies in both the console and JDeveloper.
In the Oracle Service Bus Console, open the MQ connection in the MQ Connection
Definition Editor and click the Tools icon in the upper right, and then select
References to find out whether any services are using it. In JDeveloper, right-click the
MQ connection and select Explore Dependencies.

To delete an MQ connection:

1. In the Application Navigator or Project Navigator, expand the project and folders
containing the MQ connection to delete.

2. Right-click the name of the MQ connection, and select Delete.

3. If you are using JDeveloper, a confirmation dialog displays the number of
references for the MQ connection. Click Show Usages to view information about
the references, and then click Yes to confirm that you want to delete the resource.

4. If you are using the Oracle Service Bus Console, click Activate to end the session
and deploy the configuration to the runtime.

33.3.4 How to Monitor an MQ Connection Pool
The MQ Transport connection pool has several parameters that you can configure to
tune the pool performance. To determine the optimal pool settings, you can monitor
the pool statistics.

Chapter 33
Working with MQ Connections

33-8

You can enable a JMX MBean interface to monitor the following statistics for a connection
pool:

• ConnectionsInUseCount: Connections in use

• ConnectionsInUseHighCount: Connections in use high

• ConnectionUnavailableCount: Connection unavailable

• MaxConnections: Max Connections

• MaxIdleConnections: Max Idle Connections

• PooledConnectionsCount: Pooled Connection

• PooledConnectionsHighCount: Pooled Connections high

• ResourceName: Resource name

• WaitingForConnectionCount: Waiting for connection

• WaitingForConnectionHighCount: Waiting for connection high

To enable the monitoring feature for MQ Connection resources using
MQConnectionResourceRuntimeMBean:

• Turn on the following flag in setDomainEnv.sh:

"-Dalsb.transports.mq.connectionStatsEnabled=true"

You can then monitor the status of the MQ connections through the EM Console or a WLST
scripting tool.

33.3.5 Improve Activation Performance
You can enable a system variable to improve activation performance.

In the setDomainEnv.sh file, enable the variable with this statement.

-Doracle.osb.mq.connection.xa.check.cache=on

If the MQ client library version is 8 or above, then be aware that a change in XA functionality
for any activated MQ connection associated with a running MQ service is not allowed. You
must create a new MQ connection and associate the MQ service to it. By default, there is a
UI validation if the MQ client library version in 8 or version 9 for any change in XA
functionality in MQ Connection.

33.4 MQ Transport Error Handling
You can configure MQ-transport business services to handle application and communications
errors as described in this section.

• Application errors: You can specify whether or not to retry business service endpoint
URIs when application errors occur. For more information, see the online help provided
for the Business Service Definition Editor for the Retry Application Errors field.

• Communication errors: You can configure business service URIs to be taken offline
when communication errors occur. For more information, see Managing and Monitoring
Endpoint URIs for Business Servicesin Administering Oracle Service Bus.

Chapter 33
MQ Transport Error Handling

33-9

33.5 Using the WebSphere JMS MQ Interface
These sections outline how Service Bus connects to WebSphere MQ and presents an
overview of some message types used in communication between WebSphere MQ
and Service Bus.

• Using the WebSphere MQ JMS Interface

• MQ Messaging Types

• Tuning WebSphere MQ

33.5.1 Using the WebSphere MQ JMS Interface
Service Bus connects to WebSphere MQ through the WebSphere MQ JMS interface.
That is, Service Bus is a WebSphere MQ JMS client. The foreign JMS server in Oracle
WebLogic Server specifies the initial context factory, connection factory, and queue to
the WebSphere MQ server. For more information, see "Configuring Foreign Server
Resources to Access Third-Party JMS Providers" in Administering JMS Resources for
Oracle WebLogic Server.

WebSphere MQ JMS supports two transport types:

• BINDINGS

• CLIENT

If the WebSphere MQ JMS client is running on the same physical machine as the
queue manager, set the transport type to BINDINGS. Otherwise, you can use only the
CLIENT type.

WebSphere MQ can interface with Service Bus in two ways:

• Service Bus acts as the front-end of WebSphere MQ to accept service requests
from other applications and converts them to WebSphere MQ requests. See
Figure 33-1.

• WebSphere MQ sends messages to other applications through Service Bus. See
Figure 33-2.

Figure 33-1 Service Bus Front End

Figure 33-2 Messages Sent Through Service Bus

Chapter 33
Using the WebSphere JMS MQ Interface

33-10

33.5.2 MQ Messaging Types
Service Bus supports the following messaging types:

• Non-Persistent Messaging

• Non-XA Persistent Messaging

• XA Messaging

33.5.2.1 Non-Persistent Messaging
If you choose to accept an unreliable delivery, such as some missing requests, you can use
non-persistent messages where appropriate. WebSphere MQ logging and WebLogic JMS
message persistence are only performed for persistent messages; therefore, the use of non-
persistent messages eliminates any related I/O activity.

Note:

Non-persistent message throughput is usually limited by the processor speed of the
machine. However, in case of a shortage of physical memory, the server system
may consume CPU cycles on a paging I/O.

Note:

If the MQ client library is version 8 or version 9, and you want non-persistent
messages to persist or be rolled back for any issue, you can set an environmental
variable in bin/setDomainEnv.sh as follows:

EXTRA_JAVA_PROPERTIES="${EXTRA_JAVA_PROPERTIES}
-Doracle.osb.mq.persistence.override=off"
export EXTRA_JAVA_PROPERTIES

Setting this variable tells Oracle Service Bus not to override the persistence value of
the message and to always send the default JMS persistence value as 1
(persistent). Therefore, for any issue in message deilvery, an exception is thrown
and the message is rolled back.

33.5.2.2 Non-XA Persistent Messaging
WebSphere MQ persistent message throughput is usually limited by the queue manager and
the I/O latency writing to the log.

33.5.2.3 XA Messaging
To enable support for transactional (XA) access to queues, use one of the following transport
types:

Chapter 33
Using the WebSphere JMS MQ Interface

33-11

• BINDINGS to access the queue manager when Service Bus is co-located with IBM
WebSphere MQ

• CLIENT when Service Bus and IBM WebSphere MQ are on different machines.
However, with CLIENT, you need a special version of the IBM WebSphere MQ
client that supports XA transactions, called the WebSphere MQ Extended
Transaction Client.

Tip:

For the deployment descriptors to be set appropriately for XA capable
resources (JMS, TUXEDO, EJB), you must set the XA attribute on the
referenced connection factory before creating a proxy service.

33.5.3 Tuning WebSphere MQ
The following guidelines help you tune WebSphere MQ when you are working with
Service Bus. For information specific to WebSphere MQ, see the relevant WebSphere
MQ documentation.

• Use the BINDINGS transport type if Service Bus and the queue manager are
deployed on the same machine.

• If you need XA for only a small section of application requests, create a separate
connection object and disable XA.

• Distribute active logs across many volumes. If your system is required to handle
high persistent message throughput, you must place the log files on a fast Direct
Access Storage Device (DASD) with a minimum of contention from other data set
usage. Ideally, you can allocate each of the active logs on separate, low-usage
volumes.

• To reduce buffer overflow, tune the buffer pools and pagesets. Buffer overflow
results in flushing of the hard disk.

• To avoid broken Service Bus JMS connections to MQ queues, increase the
number of active channels to more than 100. By default, the number of active
channels is 10.

33.6 MQ Transport Configuration Reference
Use the MQ transport in proxy services to retrieve messages from WebSphere MQ.
Use the MQ transport in business services to send messages to WebSphere MQ.

This section describes how to add WebSphere MQ to your Service Bus environment,
characteristics of the Service Bus MQ transport, and how to configure MQ proxy and
business services.

• MQ Transport Endpoint URIs

• Configuring Proxy Services to Use the MQ Transport

• Configuring Business Services to Use the MQ Transport

• MQ Transport Environment Values

Chapter 33
MQ Transport Configuration Reference

33-12

33.6.1 MQ Transport Endpoint URIs
When you create an MQ proxy or business service, specify the endpoint URI in the in the
following format:

mq://local-queue-name?conn=mq-connection-resource-ref

where:

• local-queue-name is the name of the local queue configured on the MQ server.

• mq-connection-resource-ref points to the location of the MQ connection resource.

For example, if you create an MQ connection resource named mqConnection in the
defaultMQ folder and the queue name is testQueue, the URI would be mq://testQueue?
conn=defaultMQ/mqConnection.

Note:

The Endpoint URI cannot contain spaces, so do not create MQ Connection
resources, projects, or folders with spaces in the names.

Note:

All endpoint URIs must be either XA or non-XA. A combination of both is not
allowed.

33.6.2 Configuring Proxy Services to Use the MQ Transport
Before you can configure a proxy service for the MQ Transport, you need to create the MQ
Connection, as noted in How to Create MQ Connections. During service configuration, select
either Message or Any XML as the service type. For more information, see Creating and
Configuring Proxy Services.

Note:

A new validation has been added and this may cause the auto-generated pipeline
to fail if a request only proxy service has been updated to request-response. You
may need to update the configuration in the respective sbconfig.jar file accordingly.

The following table describes the properties you use to configure an MQ transport for a proxy
service.

Chapter 33
MQ Transport Configuration Reference

33-13

Table 33-1 MQ Transport Properties for Proxy Services

Property Description

Is Response Required Select this option to specify that a response is expected after an
outbound message is sent.

Response Correlation
Pattern

Select either MessageID or CorrelationID to specify which ID the
response correlation pattern should be based on.

This option is available only when the Is Response Required check
box is selected.

MQ Response URI Enter the destination to which the response should be published. Enter
a response URI in the same format as the endpoint URI:

mq://local-queue-name?conn=mq-connection-resource-ref

Where:

• local-queue-name is the name of the MQ queue where
responses will be sent.

• mq-connection-resource-ref is the path (project/folder) and
name of the MQ connection resource; for example, default/
my_MQconnection.

This option is available only when the Is Response Required check
box is selected.

Note:

If the MQ client library version is 8 or
version 9 with XA support and a
response is required, then the endpoint
URI and the response URI should both
be either XA or non-XA. A combination of
both is not allowed.

Response Message
Type

Select the message type for the response from one of the following:

• Bytes (for a stream of uninterpreted bytes)
• Text (for text messages)
This option is available only when the Is Response Required check
box is selected.

Transaction Timeout Enter the amount of time in seconds to wait before timing out an XA
transaction initiated by the proxy service. This property only applies to
services using an MQ connection resource that is configured for XA
transactions (that is, the XA Enabled option is selected for the MQ
connection resource).

The default is 300 seconds.

Polling Interval Enter an interval in milliseconds to wait between polling for messages.
The default is 1000.

Chapter 33
MQ Transport Configuration Reference

33-14

Table 33-1 (Cont.) MQ Transport Properties for Proxy Services

Property Description

Poller Dispatch Policy Select the instance of WebLogic Server Work Manager that you want
to use for the dispatch policy for the poller threads. The default Work
Manager is used if no other Work Manager exists.

For information about Work Managers, see:

• Using Work Managers with Service Bus
• "Using Work Managers to Optimize Scheduled Work" in

Administering Server Environments for Oracle WebLogic Server

Backout Threshold Enter a value representing the number of times the pipeline should
retry a message before redirecting the message to the queue specified
in the Dead Letter URI field.

If you do not specify a value for this field, the message is redirected to
the dead letter queue without attempting any retries.

MQ Dead Letter URI Enter the URI of the dead letter queue to which request messages
should be redirected after attempting the number of retries specified in
the Backout Threshold field.

If you do not specify a value for this field, the message is returned to
the queue and ignored by the MQ transport for each poll after retrying
the number of times specified in the Backout Threshold field. The
dead letter URI uses the same format as the endpoint URI.

Chapter 33
MQ Transport Configuration Reference

33-15

Table 33-1 (Cont.) MQ Transport Properties for Proxy Services

Property Description

Endpoint URI 'GET'
options

Note:

This option is not available when the MQ
library is version 8 or version 9 with XA
support.

Enter the MQ GET message options from among the following:

• MQC.MQGMO_ACCEPT_TRUNCATED_MSG
• MQC.MQGMO_ALL_MSGS_AVAILABLE
• MQC.MQGMO_BROWSE_FIRST
• MQC.MQGMO_BROWSE_NEXT
• MQC.MQGMO_COMPLETE_MSG
• MQC.MQGMO_CONVERT
• MQC.MQGMO_FAIL_IF_QUIESCING
• MQC.MQGMO_LOCK
• MQC.MQGMO_LOGICAL_ORDER
• MQC.MQGMO_MARK_BROWSE_CO_OP
• MQC.MQGMO_MARK_SKIP_BACKOUT
• MQC.MQGMO_NO_SYNCPOINT
• MQC.MQGMO_NONE
• MQC.MQGMO_NO_WAIT
• MQC.MQGMO_SYNCPOINT
• MQC.MQGMO_SYNCPOINT_IF_PERSISTENT
• MQC.MQGMO_UNLOCK
• MQC.MQGMO_UNMARK_BROWSE_CO_OP
• MQC.MQGMO_UNMARK_BROWSE_HANDLE
• MQC.MQGMO_UNMARKED_BROWSE_MSG
• MQC.MQGMO_VERSION_1
• MQC.MQGMO_VERSION_2
• MQC.MQGMO_VERSION_3
• MQC.MQGMO_WAIT
You can use either "|" or "+" to separate multiple options. For example,
you can specify the following:

MQC.MQGMO_ACCEPT_TRUNCATED_MSG | MQC.MQGMO_LOCK

The MQ GET message options are applied when reading a message
from the inbound queue.

For information about how the MQ transport handles RFH2 headers,
see About RFH2 Headers.

Process RFH2
Headers

Select this option to parse WebSphere MQ RFH2 headers from a
message payload and automatically generate an RFH2Headers
transport header containing the RFH2 data. If you do not select this
option, the payload is passed through as received.

For information about how the MQ transport handles RFH2 headers,
see About RFH2 Headers".

Ignore Reply-To
Headers

Select this option to ignore the reply-to headers that specify the queue
manager.

Chapter 33
MQ Transport Configuration Reference

33-16

Table 33-1 (Cont.) MQ Transport Properties for Proxy Services

Property Description

Dynamic Reply-To
Headers

Select this option to use the reply-to headers from the request
message in the response message as well.

When this property is set to true and the Ignore Reply-To Headers
property is set to false, if the static reply-to queue manager (defined in
proxy service's response URI) is not the same as the queue manager
specified in the request message, the message is sent to the queue
manager specified in the request message.

Worker Thread
Dispatch Policy

Select the instance of WebLogic Server Work Manager that you want
to use for the dispatch policy for this endpoint. The default Work
Manager is used if no other Work Manager exists.

For information about Work Managers, see:

• Using Work Managers with Service Bus
• "Using Work Managers to Optimize Scheduled Work" in

Administering Server Environments for Oracle WebLogic Server

33.6.3 Configuring Business Services to Use the MQ Transport
Before you can configure a business service for the MQ Transport, you need to create the
MQ Connection, as noted in How to Create MQ Connections. During service configuration,
select either Message or Any XML as the service type. For more information, see Creating
and Configuring Business Services.

Note:

A new validation has been added and this may cause the auto-generated pipeline
to fail if a request only proxy service has been updated to request-response. You
may need to update the configuration in the respective sbconfig.jar file accordingly.

The following table describes the properties you use to configure an MQ transport for a proxy
service.

Table 33-2 MQ Transport Properties for Business Services

Option To create or edit...

Message Type Select one of the following message types for the messages processed by
the service:

• Bytes (for a stream of uninterpreted bytes)
• Text (for text messages)

Is Response Required Select this option to specify that a response is expected after an outbound
message is sent.

Chapter 33
MQ Transport Configuration Reference

33-17

Table 33-2 (Cont.) MQ Transport Properties for Business Services

Option To create or edit...

Response Correlation
Pattern

Specify one of the following options to base the response correlation pattern
should on:

• MessageID
• CorrelationID
• Dynamic Queue – Select this option if your WebSphere MQ

implementation uses dynamic queues for response correlation. The MQ
transport supports only temporary dynamic queues.

This option is available only when the Is Response Required check box is
selected.

Auto-generate
Correlation Value

Select this check box to automatically generate a CorrelationID or
MessageID.

This option is available only when the Is Response Required check box is
selected.

Model Queue Enter the name of the model queue used to generate the dynamic queue (for
Dynamic Queue Response Correlation Pattern only).

MQ Response URI Enter the destination to which the response should be published. Enter the
response URI in the same format as the endpoint URI:

mq://local-queue-name?conn=mq-connection-resource

If you are using dynamic queues, enter the URI in the following format:

mq://dynamic_queue_prefix?conn=mq-connection-resource

The dynamic_queue_prefix, which is limited to 32 characters, is used to
create the dynamic queue on the MQ server. The queue name becomes the
prefix plus a unique ID. For example, if the dynamic_queue_prefix is
example, the dynamic queue would be named something like
example123129083821.

You can also use an asterisk (*) as a wildcard in the dynamic queue
response URI. For example:

mq://dynamic_queue_prefix*
mq://*

If you do not provide a dynamic_queue_name in the URI, the transport uses
the dynamic queue name generated by the MQ server. If you do not provide
an explicit mq_connection_resource in the URI (best practice), the
transport uses the mq_connection_resource from the endpoint URI.

This option is available only when the Is Response Required option is
selected.

Note:

If the MQ library is version 8 or version 9 with
XA support, and a response is required, then
the endpoint URI and the response URI should
both be either XA or non-XA. A combination of
both is not allowed.

Chapter 33
MQ Transport Configuration Reference

33-18

Table 33-2 (Cont.) MQ Transport Properties for Business Services

Option To create or edit...

Response Timeout Enter the number of seconds to wait for a response before dropping the
connection. The default is 300.

This option is available only when the Is Response Required check box is
selected.

Polling Interval Enter an interval, in milliseconds, to wait between polling for messages. The
default is 1000.

This option is available only when the Is Response Required check box is
selected.

Poller Dispatch Policy Select the instance of WebLogic Server Work Manager that you want to use
for the dispatch policy for the poller threads. The default Work Manager is
used if no other Work Manager exists.

For information about Work Managers, see:

• Using Work Managers with Service Bus
• "Using Work Managers to Optimize Scheduled Work" in Administering

Server Environments for Oracle WebLogic Server

Dynamic Queue Pooling Select this option to specify that the server use pooled connections to
dynamic queues (for the dynamic queue response correlation pattern only).If
you want to use a separate connection pool for dynamic queues, consider
configuring a dedicated MQ connection resource for the dynamic queues.

Do not select this option if you want to create a new dynamic queue instance
on each request (and destroy the queue after the response).

Note:

This option is not available when the MQ
library is version 8 or version 9 with XA
support. Dynamic queue pooling is not
allowed. The user is validated if response
pooling is checked with MQ XA Response URI/
Endpoint URI.

Chapter 33
MQ Transport Configuration Reference

33-19

Table 33-2 (Cont.) MQ Transport Properties for Business Services

Option To create or edit...

Endpoint URI 'PUT'
options

Note:

This option is not available when the MQ
library is version 8 or version 9 with XA
support.

Enter the MQ PUT message options from among the following:

• MQC.MQPMO_ALTERNATE_USER_AUTHORITY
• MQC.MQPMO_DEFAULT_CONTEXT
• MQC.MQPMO_FAIL_IF_QUIESCING
• MQC.MQPMO_LOGICAL_ORDER
• MQC.MQPMO_NEW_CORREL_ID
• MQC.MQPMO_NEW_MSG_ID
• MQC.MQPMO_NO_CONTEXT
• MQC.MQPMO_NO_SYNCPOINT
• MQC.MQPMO_NONE
• MQC.MQPMO_PASS_ALL_CONTEXT
• MQC.MQPMO_PASS_IDENTITY_CONTEXT
• MQC.MQPMO_RESOLVE_LOCAL_Q
• MQC.MQPMO_SET_ALL_CONTEXT
• MQC.MQPMO_SET_IDENTITY_CONTEXT
• MQC.MQPMO_SYNCPOINT
• MQC.MQPMO_VERSION_1
• MQC.MQPMO_VERSION_2
You can use either "|" or "+" to separate multiple options. For example, you
can specify the following:

MQC.MQPMO_LOGICAL_ORDER | MQC.MQPMO_NEW_MSG_ID

The MQ PUT message options are applied when the message is placed in
the outbound queue.

Endpoint URI ‘GET’
options

Not supported when MQ transport is configured for a business service.

MQ Unrecognized
Response URI

Enter the URI representing the queue to which unrecognized response
messages should be sent. Note that this setting is enabled only when the
Auto-generate Correlation Value check box is selected.

If you do not specify a value for this field, unrecognized response messages
are deleted.

Chapter 33
MQ Transport Configuration Reference

33-20

Table 33-2 (Cont.) MQ Transport Properties for Business Services

Option To create or edit...

Process RFH2 Headers Select this option to parse WebSphere MQ RFH2 headers from a message
payload and automatically generate an RFH2Headers transport header
containing the RFH2 data. If you do not select this option, the payload is
passed through as received.

Note:

When the MQ library is version 8 or version 9
with XA support, ECIDContext is only added to
RF2 messages if this option is selected and
DMS is enabled.

For information about how the MQ transport handles RFH2 headers, see
About RFH2 Headers.

Worker Thread Dispatch
Policy

Select the instance of WebLogic Server Work Manager that you want to use
for the dispatch policy for the worker threads. The default Work Manager is
used if no other Work Manager exists.

For information about Work Managers, see:

• Using Work Managers with Service Bus
• "Using Work Managers to Optimize Scheduled Work" in Administering

Server Environments for Oracle WebLogic Server

33.6.4 MQ Transport Environment Values
Environment values are certain predefined fields in the configuration data whose values are
very likely to change when you move your configuration from one domain to another (for
example, from test to production). For information about updating environment values, see
"Customizing Oracle Service Bus Environments" in Administering Oracle Service Bus.

The following table describes the environment values supported by the MQ transport and MQ
connection resources. The values you specify for these variables override the properties
configured for specific MQ proxy and business services. Services based on the MQ transport
also support the Work Manager environment value.

Table 33-3 MQ Transport and Connection Resource Environment Values

Value Description

MQ Connection Pool Size The number of connections maintained by the MQ connection
pool.

MQ Connection Timeout The time interval in seconds after which unused connections are
destroyed.

MQ Dead Letter URI The URI of the dead letter queue to which request messages
should be redirected after attempting the specified number of
retries.

MQ Host Name The host name of the MQ queue manager, for TCP mode
connections only.

Chapter 33
MQ Transport Configuration Reference

33-21

Table 33-3 (Cont.) MQ Transport and Connection Resource Environment Values

Value Description

MQ Port Number The port number of the MQ queue manager, for TCP mode
connections only.

MQ Queue Manager Channel
Name

The name of the queue manager server connection channel, for
TCP mode connections only.

MQ Queue Manager Name The name of the MQ queue manager to which to connect.

MQ Response URI The URI of the destination to which the response should be
published when a response is required.

MQ Unrecognized Response URI The URI representing the queue to which unrecognized
response messages should be sent when the correlation value is
automatically generated.

MQ Version The version of WebSphere MQ being used.

MQ XA Enabled An indicator of whether transactions handled by this connection
are distributed (XA) transactions.

33.7 MQ Transport Headers
This section lists the headers used by the MQ transport. Most of the headers are
common to both outbound requests and inbound response.

The Reply To Queue Name, Reply To Queue Manager Name, User ID and Version
headers can be edited only for the inbound response.

When you configure a pipeline, you can use a Transport Header action to set the
header values in messages.

Table 33-4 MQ Transport Headers

Header Description Inbound
Response /
Outbound
Request

Accounting Token Accounting token is part of the identity context of the message.

Inbound Transport Action: No explicit processing is done by the
transport. The header is copied to the transport header in the pipeline.

Outbound Transport Action: No explicit processing is done by the
transport. If the corresponding transport header is set in the pipeline, it is
copied to the request message.

Both

Application ID Data Application ID data is part of the identity context of the message. This
value can be used to provide additional information about the message or
its originator.

Inbound Transport Action: No explicit processing is done by the
transport. The header is copied to the transport header in the pipeline.

Outbound Transport Action: No explicit processing is done by the
transport. If the corresponding transport header is set in the pipeline, it is
copied to the request message.

Both

Chapter 33
MQ Transport Headers

33-22

Table 33-4 (Cont.) MQ Transport Headers

Header Description Inbound
Response /
Outbound
Request

Application Origin
Data

Data about the originating application. This value can be used by the
application to provide additional information about the origin of the
message.

Inbound Transport Action: No explicit processing is done by the
transport. The header is copied to the transport header in the pipeline.

Outbound Transport Action: No explicit processing is done by the
transport. If the corresponding transport header is set in the pipeline, it is
copied to the request message.

Both

Backout Count The number of times the message was returned by the MQ Queue, as
part of a unit of work, and subsequently backed out.

Inbound Transport Action: No explicit processing is done by the
transport. The header is copied to the transport header in the pipeline.

Outbound Transport Action: No explicit processing is done by the
transport. If the corresponding transport header is set in the pipeline, it is
copied to the request message.

Both

Character Set The coded character set identifier of character data in the application
message data.

Inbound Transport Action: This field is used by the inbound transport to
convert data in a specific representation. For request-response
messaging, the characterSet header from the request message is copied
to the response. When this header is not configured on the incoming
request, default value of the MQC.MQCCSI_Q_MGR field is assumed.

Outbound Transport Action: This header can be set in the pipeline for
the outbound transport. If this header value is not set, the default
MQC.MQCCSI_Q_MGR value is assumed.

Both

Correlation ID The correlation-id of the message that should be retrieved.

Inbound Transport Action: For correlationID-based response
correlation pattern, the correlationID from the request is echoed on the
response. The user can override the correlationID in the response
pipeline.

Outbound Transport Action: When the Auto-generate correlationID
option is selected during service configuration, the outbound transport
will automatically generate a correlationID and overwrite the correlationID
from the transport header. If this value is not specified, the correlationID
specified in the pipeline is used.

For one-way messaging, the correlationID specified in the pipeline is
used in the (outbound) request.

Both

Encoding The representation used for numeric values in the application message
data.

Inbound Transport Action: The inbound transport uses this header to
interpret the incoming message data. If this header is not configured in
the response pipeline, the default value of MQC.MQENC_NATIVE is used.

Outbound Transport Action: If this header is not set in the pipeline for
the outbound transport, the default value of MQC.MQENC_NATIVE is used.

Both

Chapter 33
MQ Transport Headers

33-23

Table 33-4 (Cont.) MQ Transport Headers

Header Description Inbound
Response /
Outbound
Request

Expiry The expiry time (in tenths of a second) is set by the application that puts
the message. After a message's expiry time has elapsed, it is eligible to
be discarded by the queue manager.

Inbound Transport Action: For request-response messaging, the
inbound transport copies the expiry header of the request to the
response.

Outbound Transport Action: If the corresponding transport header is
set in the pipeline, it is copied to the outbound request message.

Note: The report header will always contain the
MQC.MQRO_PASS_DISCARD_AND_EXPIRY option (in addition to others).
This option is a directive to the receiving client that the expiry time of the
original message should be copied to the report or reply message.

Both

Feedback The nature of the feedback report. This value is used with a message of
type MQC.MQMT_REPORT to indicate the nature of the report.

Inbound Transport Action: No explicit processing is done by the
transport. The header is copied to the transport header in the pipeline.

Outbound Transport Action: No explicit processing is done by the
transport. If the corresponding transport header is set in the pipeline, it is
copied to the request message.

Both

Format Format name of the message data. The format name is used by the
sender of the message to indicate the nature of the data in the message
to the receiver.

Inbound Transport Action: When the field is set to
MQC.MQFMT_MD_EXTENSION, the inbound transport will read the
extended MQMD object.

Outbound Transport Action: No explicit processing is done by the
transport. If the corresponding transport header is set in the pipeline, it is
copied to the request message.

Both

Group ID The value that identifies the message group to which the physical
message belongs.

Inbound Transport Action: No explicit processing is done by the
transport. The header is copied to the transport header in the pipeline.

Outbound Transport Action: No explicit processing is done by the
transport. If the corresponding transport header is set in the pipeline, it is
copied to the request message.

Both

Offset In a segmented message, offset of data in the physical message from the
start of the logical message.

Inbound Transport Action: No explicit processing is done by the
transport. The header is copied to the transport header in the pipeline.

Outbound Transport Action: No explicit processing is done by the
transport. If the corresponding transport header is set in the pipeline, it is
copied to the request message.

Both

Chapter 33
MQ Transport Headers

33-24

Table 33-4 (Cont.) MQ Transport Headers

Header Description Inbound
Response /
Outbound
Request

Original Length Original length of a segmented message.

Inbound Transport Action: No explicit processing is done by the
transport. The header is copied to the transport header in the pipeline.

Outbound Transport Action: No explicit processing is done by the
transport. If the corresponding transport header is set in the pipeline, it is
copied to the request message.

Both

Message Flags Flags that control the segmentation and status of a message.

Inbound Transport Action: No explicit processing is done by the
transport. The header is copied to the transport header in the pipeline.

Outbound Transport Action: No explicit processing is done by the
transport. If the corresponding transport header is set in the pipeline, it is
copied to the request message.

Both

Message ID ID of the message to be retrieved.

Inbound Transport Action: If messageID is not specified in the
response pipeline, the messageID header is set to MQC.MQMI_NONE.

For messageID-based correlation, the inbound transport copies the
messageID from the request to the correlationID header of the response.
MessageID-based correlation is assumed when the report header
contains the MQC.MQRO_COPY_MSG_ID_TO_CORREL_ID option.

Outbound Transport Action: When the Auto-generate messageID
option is specified during service configuration, the outbound transport
automatically generates the messageID and overwrites the messageID
from the transport header. If this value is not specified, the messageID
transport header is used.

For one-way messaging, the messageID specified in the pipeline is used
in the outbound request. If this value is not specified, the messageID is
automatically generated by the transport.

Both

Message
Sequence Number

Sequence number of a logical message within group.

Inbound Transport Action: No explicit processing is done by the
transport. The header is copied to the transport header in the pipeline.

Outbound Transport Action: No explicit processing is done by the
transport. If the corresponding transport header is set in the pipeline, it is
copied to the request message.

Both

Message Type Message type of the message.

Inbound Transport Action: The inbound transport reads and processes
messages of any type including MQC.MQMT_REQUEST,
MQC.MQMT_DATAGRAM, MQC.MQMT_REPLY and MQC.MQMT_REPORT. The
inbound transport does not generate report messages.

Outbound Transport Action: The outbound transport generates
messages of any type including MQC.MQMT_DATAGRAM,
MQC.MQMT_REQUEST, MQC.MQMT_REPLY and MQC.MQMT_REPORT. When
the messageType header is not configured in the pipeline, the transport
generates messages of type MQC.MQMT_DATAGRAM when the messaging
pattern is one-way and MQC.MQMT_REQUEST when the messaging pattern
is request-reply.

Both

Chapter 33
MQ Transport Headers

33-25

Table 33-4 (Cont.) MQ Transport Headers

Header Description Inbound
Response /
Outbound
Request

Persistence The message persistence.

Inbound Transport Action: No explicit processing is done by the
transport. The header is copied to the transport header in the pipeline.

Outbound Transport Action: No explicit processing is done by the
transport. If the corresponding transport header is set in the pipeline, it is
copied to the request message.

Both

Priority Priority of the message

Inbound Transport Action: No explicit processing is done by the
transport. The header is copied to the transport header in the pipeline.

Outbound Transport Action: No explicit processing is done by the
transport. If the corresponding transport header is set in the pipeline, it is
copied to the request message.

Both

Put Application
Name

The name of the application that put the message.

Inbound Transport Action: No explicit processing is done by the
transport. The header is copied to the transport header in the pipeline.

Outbound Transport Action: No explicit processing is done by the
transport. If the corresponding transport header is set in the pipeline, it is
copied to the request message.

Both

Put Application
Type

The type of the application that put the message.

Inbound Transport Action: No explicit processing is done by the
transport. The header is copied to the transport header in the pipeline.

Outbound Transport Action: No explicit processing is done by the
transport. If the corresponding transport header is set in the pipeline, it is
copied to the request message.

Both

Put Date Time The time and date when the message was put. This is specified in simple
date format (yyyy-MM-dd HH:mm:ss.SSS). For example: 2014-03-18
05:17:20.123.

Inbound Transport Action: No explicit processing is done by the
transport. The header is copied to the transport header in the pipeline.

Outbound Transport Action: No explicit processing is done by the
transport. If the corresponding transport header is set in the pipeline, it is
copied to the request message.

Both

Reply To Queue
Name

The name of the queue to which a reply should be sent.

The application that issued the get request for the message can send
MQC.MQFMT_REPLY and MQC.MQFMT_REPORT messages to this queue.

Inbound Transport Action: The inbound transport uses the
replyToQueueName as the response queue name when this field is set.
If this values is not set, the queue name is derived from the default
destination URI.

Outbound Transport Action: In request/response message pattern,
replyToQueueName set in the message flow is ignored. In one way
message pattern, replyToQueueName set in the message flow is used in
the outbound messages.

Inbound
Response

Chapter 33
MQ Transport Headers

33-26

Table 33-4 (Cont.) MQ Transport Headers

Header Description Inbound
Response /
Outbound
Request

Reply To Queue
Manager Name

The name of the queue manager to which reply or report messages can
be sent.

Inbound Transport Action: In request/response message pattern, if the
inbound message replyToQueueManager header value does not match
the configured value for the queue manager in the response URI, the
response message is dropped and a transport error is logged. To
override this logic, set the Dynamic Reply-To Headers property to true
and the Ignore Reply-To Headers property to false in the proxy service.
Then, if the headers values do not match, the message is sent to the
queue manager specified in the request message.

Outbound Transport Action: In request/response message pattern,
replyToQueueManager set in the message flow is ignored. In one way
message pattern, replyToQueueManager set in the message flow is
used in the outbound messages.

Inbound
Response

Report A report is a message about another message. This field enables the
application sending the original message to specify which report
messages are required, whether the application message data is to be
included in them, and also how the message and correlation ID in the
report or reply are to be set. It comprises one or more constants from the
MQC class combined by means of the '+' or '|' operators.

Inbound Transport Action: No explicit processing is done by the
transport. The header is copied to the transport header in the pipeline.
For request-response messaging, this header can be configured in the
response pipeline.

Outbound Transport Action: The transport always sets a combination
of the following options in the report field.

Set MQC.MQRO_COPY_MSG_ID_TO_CORREL_ID if messageID-based
correlation pattern is used and MQC.MQRO_PASS_CORREL_ID if
correlationID-based correlation pattern is used. Always set
MQC.MQRO_PASS_DISCARD_AND_EXPIRY.

Note: These options are set in addition to the options specified on the
corresponding transport header in the pipeline.

Both

User ID It is part of the identity of the message and identifies the user who
originated the message.

Inbound Transport Action: No explicit processing is done by the
transport. The header is copied to the transport header in the pipeline.

Outbound Transport Action: No explicit processing is done by the
transport. If the corresponding transport header is set in the pipeline, it is
copied to the request message.

Inbound
Response

Version The version number of the message descriptor.

Inbound Transport Action: The inbound transport supports both version
1 and version 2 message descriptors.

Outbound Transport Action: By default, the outbound transport
generates version 2 headers. However, this field can be overridden in the
pipeline.

Inbound
Response

Chapter 33
MQ Transport Headers

33-27

Table 33-4 (Cont.) MQ Transport Headers

Header Description Inbound
Response /
Outbound
Request

RFH2Headers The RFH2 headers in the payload when the Process RFH2 Headers
option is set in the transport configuration. The RFH2Headers header is
a String.

Inbound Transport Action: RFH2 headers are extracted from the MQ
payload to construct the corresponding transport metadata header.

Outbound Transport Action: RFH2Headers data are parsed to extract
the RFH2 headers, which are inserted (along with the content length for
each header) into the outbound MQ payload.

Both

33.7.1 Configuring Transport Headers
You can configure the transport headers for both inbound and outbound requests in
the pipeline using a Transport Header action to set the header values in messages.
For more information, see Adding Transport Header Actions in the Console.

When the transport header is explicitly set in the pipeline, this value overrides the
header value except in the following scenarios:

• For the outbound request-response pattern, when the Auto-generate
Correlation Value option is selected for a outbound request with a request-
response message pattern, the correlation ID is always generated even if this
value is set in the message flow.

• When the report header is set in the message flow, the combination of multiple
directives associated with the report header are merged with the default directives.

• When the replyToQueueManagerName or replyToQueueName headers are set in the
message flow for an outbound request with a request/response message pattern,
these values are ignored. Instead, these transport header values are derived from
the response URI configured for the business service.

• For the inbound response, when the value in the replyToQueueManagerName
header does not match the queue manager name specified in the response URI,
an error message is generated and the response message is not sent.

• The replyToQueueName set in the inbound request header overrides the value
configured in the reply to URI for the proxy service.

• For a one-way business service, when the message type header is configured to
be of type request in the message flow, the replyToQueueName header must be
specified. If this value is not specified, an error is generated on the MQ server and
the message is rolled back.

33.7.2 About RFH2 Headers
RFH2Header headers can contain multiple <RFH2Header> blocks, each of which can
contain multiple folders. The MQ transport consolidates the blocks into a single RFH2
header containing a linear list of folders.

For example, the following blocks are consolidated into a single RFH2 header:

Chapter 33
MQ Transport Headers

33-28

<RFH2Header>
 <mcd><Msd>jms_bytes</Msd></mcd>
</RFH2Header>
<RFH2Header>
 <usr><clientId>DASHBOARD</clientId></usr>
</RFH2Header>

Chapter 33
MQ Transport Headers

33-29

34
Using the Oracle BPEL Process Manager
Transport

This chapter provides an overview of the BPEL transport and describes how to use and
configure it in your services. The BPEL transport lets you bring Oracle BPEL Process
Manager (Oracle BPEL PM) into your service oriented architecture (SOA) environment using
Service Bus.

Note:

The BPEL transport (bpel-10g in the user interface) is for messaging with only
Oracle SOA Suite 10g Release 3. Service Bus provides the SOA-DIRECT transport
for use with SOA Suite 11g and later. For more information, see Using the SOA-
DIRECT Transport.

This chapter contains the following sections:

• Introduction to the BPEL Transport

• BPEL Transport Simple Use Cases (Synchronous)

• Advanced Use Cases (Asynchronous)

• BPEL Transport Configuration Reference

• BPEL Transport Security

• BPEL Transport Error Handling

• WS-Addressing Reference

• Examples of XML Messaging with the BPEL Transport

34.1 Introduction to the BPEL Transport
Service Bus provides support for communication with Oracle BPEL Process Manager, letting
you include BPEL processes in your service oriented architecture (SOA).

With Service Bus's native BPEL transport for Oracle BPEL PM, you can expose BPEL
processes as web services in the service bus layer, letting other services invoke BPEL
processes. Likewise, Oracle BPEL PM can call services in the service bus layer for use in its
own processes.

The built-in integration between Service Bus and Oracle BPEL Process Manager is enabled
at the Service Bus API level. This chapter focuses on this type of integration, but you are not
limited to only these solutions. You can also use other standard communication protocols
provided with Service Bus, such as HTTP, JMS, and File.

For detailed information on Oracle BPEL Process Manager, go to http://www.oracle.com/
technetwork/middleware/bpel/overview/index.html.

34-1

http://www.oracle.com/technetwork/middleware/bpel/overview/index.html
http://www.oracle.com/technetwork/middleware/bpel/overview/index.html

34.1.1 SOAP Support with the BPEL Transport
Communication between Oracle BPEL Process Manager and Service Bus is done
over SOAP only. Service Bus and Oracle BPEL PM do not provide full support for
SOAP RPC encoding. The BPEL transport accepts SOAP RPC encoding bindings, but
some encoding mechanisms, such as multiRef, might cause runtime failures.

The BPEL transport supports the following features:

• SOAP 1.1. SOAP 1.2 is supported only from Service Bus to Oracle BPEL PM
using synchronous communication.

• SOAP headers

The BPEL transport has the following restrictions:

• No attachments

• No WS-Security or WS-RM

34.1.2 Transaction Propagation in the BPEL Transport
Oracle BPEL PM supports transaction propagation through its API, and the BPEL
transport is transactional to support transaction propagation when Oracle BPEL PM is
deployed on Oracle WebLogic Server. For example, if a process begins in a service
outside of Oracle BPEL PM, Service Bus can propagate the transaction to Oracle
BPEL PM through the BPEL transport to complete the transaction.

Transaction propagation is also supported from Oracle BPEL PM to Service Bus using
an SB transport-based proxy service.

Note:

Transaction propagation is not yet supported for Oracle servers OC4J and
Oracle AS and not yet certified on IBM WebSphere.

34.1.3 SSL Support in the BPEL Transport
Calls from Service Bus to Oracle BPEL PM are made using RMI, so the BPEL
transport supports security at the call level through one-way SSL. For more
information, see BPEL Transport Endpoint URI.

34.1.4 BPEL Transport Environment Values
The BPEL transport declares the environment variables listed in the following table,
each of which corresponds to a property you specify when you configure a BPEL
transport. You can update the values for environment variables when moving Service
Bus projects among different deployment environments without having to update the
transport configuration itself. For more information about environment values, see
"Customizing Oracle Service Bus Environments" in Administering Oracle Service Bus.

Chapter 34
Introduction to the BPEL Transport

34-2

Table 34-1 BPEL Transport Environment Variables

Environment Variable Description

Dispatch Policy Select the instance of WebLogic Server Work Manager that you
want to use for the dispatch policy for this endpoint. The default
Work Manager is used if no other Work Manager exists.

For information about Work Managers, see:

• Using Work Managers with Service Bus
• "Using Work Managers to Optimize Scheduled Work" in

Administering Server Environments for Oracle WebLogic
Server

Service Account A Service Bus service account resource to use for JNDI context
security to access the Oracle BPEL Process Manager delivery
service.

Endpoint URI The URI of the service.

34.2 BPEL Transport Simple Use Cases (Synchronous)
This section describes the most common use cases for communicating to and from Oracle
BPEL Process Manager through Service Bus. These represent simple synchronous one-way
or request/response communication.

• Synchronous: Invoking Processes in Oracle BPEL Process Manager

• Synchronous: Calling External Services from Oracle BPEL Process Manager

• Associating Messages with the Correct Conversation

34.2.1 Synchronous: Invoking Processes in Oracle BPEL Process
Manager

Figure 34-1 illustrates a synchronous communication pattern between a client and Oracle
BPEL Process Manager through Service Bus.

Figure 34-1 Invoking Oracle BPEL Processes Synchronously Through Service Bus

34.2.1.1 Creating and Configuring the Services
Use the following guidelines to invoke Oracle BPEL Process Manager processes from a
client:

• Create a Service Bus business service that represents the BPEL process you want to
invoke.

Chapter 34
BPEL Transport Simple Use Cases (Synchronous)

34-3

– Create a WSDL-based business service. Generate the WSDL file from Oracle
BPEL Process Manager.

– Select the bpel-10g transport in the business service configuration.

– Set the endpoint URI as described in Table 34-2.

– Configure the remainder of the business service. See BPEL Transport
Configuration Reference.

• Create a proxy service in Service Bus that accepts messages from the client.

• Create a pipeline in Service Bus that invokes the business service from the proxy
service.

To ensure that messages are associated with the correct conversation, see
Associating Messages with the Correct Conversation.

34.2.2 Synchronous: Calling External Services from Oracle BPEL
Process Manager

Figure 34-2 illustrates a synchronous communication pattern between Oracle BPEL
Process Manager and a service provider through Service Bus.

Figure 34-2 Oracle BPEL Processes Invoking a Service Synchronously Through Service Bus

34.2.2.1 Creating and Configuring the Services
Use the following guidelines to invoke an external service from Oracle BPEL Process
Manager:

• Create a business service in Service Bus that represents the external service you
want to invoke.

• Create a proxy service and its associated pipeline in Service Bus that invokes the
business service.

– You must create the proxy service with a SOAP WSDL file to invoke the
business service. When defining your proxy service, select the WSDL service
type, and select the desired port or binding.

– Select the SB transport in the proxy service configuration.

– To invoke the proxy service from Oracle BPEL Process Manager, export the
proxy service's effective WSDL file and import it into your Oracle BPEL
Process Manager development environment. Invoke the proxy service from
Oracle BPEL Process Manager as you normally would.

For configuration information, see the online help provided with Service Bus.

Chapter 34
BPEL Transport Simple Use Cases (Synchronous)

34-4

To ensure that messages are associated with the correct conversation, see Associating
Messages with the Correct Conversation.

34.2.3 Associating Messages with the Correct Conversation
When using stateful services, the messages sent synchronously between Service Bus and
Oracle BPEL Process Manager are known as a conversation. Oracle BPEL Process Manager
supports the following mechanisms for ensuring that messages are correctly associated with
each other as part of a conversation. These mechanisms are independent of each other, and
you may choose to use both to ensure correct association.

• BPEL Correlation: BPEL correlation is part of the BPEL specification. When a WSDL-
based business service in Service Bus sends a message to a BPEL process, the BPEL
engine examines the message to find the target BPEL process instance.

• Opaque Correlation using WS-Addressing: When a conversation is initiated by a client
through Service Bus to a BPEL process, the BPEL engine looks in the WS-Addressing
SOAP header for the "messageID" value to use as the ID for the new conversation. The
conversation ID is carried through the conversation as the "RelatesTo" value.

For more information on WS-Addressing, see MessageID / RelatesTo in the WS-
Addressing reference. For an example of conversation ID setting, see Conversation ID
Examples.

34.3 Advanced Use Cases (Asynchronous)
This section describes more advanced use cases for communicating to and from Oracle
BPEL Process Manager through Service Bus using asynchronous communication.

• Asynchronous: Invoking Processes in Oracle BPEL Process Manager

• Asynchronous: Calling Service Providers from Oracle BPEL Process Manager

34.3.1 Asynchronous: Invoking Processes in Oracle BPEL Process
Manager

Figure 34-3 illustrates an asynchronous communication pattern between Oracle BPEL
Process Manager and a service provider through Service Bus.

Figure 34-3 Invoking Oracle BPEL Processes Asynchronously Through Service Bus

Chapter 34
Advanced Use Cases (Asynchronous)

34-5

In an asynchronous message exchange, a callback is sent on a different connection
than the request.

34.3.1.1 Creating and Configuring the Services
Use the following guidelines to invoke Oracle BPEL Process Manager processes
asynchronously from a client through Service Bus:

Create two proxy services in Service Bus with their associated pipelines. One that
invokes the business service and another that handles the callback.

• Request Proxy Service and Pipeline: Since the callback will be sent on a
different connection in asynchronous communication, you must establish the
callback address in the request proxy. This callback address will be passed to the
callback proxy and callback business services so that the message is sent back to
the correct client.

As part of the business service configuration, you select a callback proxy. At
runtime, the BPEL transport uses this proxy as the callback proxy. For approaches
to setting a callback address if you do not select a callback proxy in the business
service, see WS-Addressing Reference and Asynchronous BPEL to BPEL
Through Service Bus Example.

• Callback Proxy Service and Pipeline: Configure the proxy to use the WSDL
SOAP or Any SOAP service type and the SB or HTTP transport. Use the SB
transport if you want transaction propagation from Oracle BPEL Process Manager
to Service Bus.

If you select this proxy service as the business service's callback proxy, the BPEL
transport provides the correct callback URI at runtime.

Create two business services in Service Bus: one that makes the request to the Oracle
BPEL Process Manager process you want to interact with and another that handles
the callback.

• Request Business Service: Create a WSDL-based business service. Generate
the WSDL file from Oracle BPEL Process Manager. Select the WSDL service type,
and select the appropriate binding or port in the WSDL file.

– Select the bpel-10g transport in the business service configuration.

– Set the role to Asynchronous Client.

– Specify the endpoint URI, described in Table 34-2.

– Use the Callback Proxy field on the BPEL transport configuration page to
select the callback proxy you created.

• Callback Business Service: Configure the business process you need to handle
the callback.

See the online help provided with Service Bus for configuration information not
covered in this guide.

34.3.2 Asynchronous: Calling Service Providers from Oracle BPEL
Process Manager

This section describes the steps and configuration needed for Oracle BPEL Process
Manager to make service calls through Service Bus.

Chapter 34
Advanced Use Cases (Asynchronous)

34-6

Figure 34-4 illustrates an asynchronous communication pattern between Oracle BPEL
Process Manager and a service provider through Service Bus.

Figure 34-4 Oracle BPEL Processes Invoking a Service Asynchronously Through Service Bus

In an asynchronous message exchange, a callback is sent on a different connection than the
request.

34.3.2.1 Creating and Configuring the Services
Use the following guidelines to invoke an external service asynchronously from Oracle BPEL
Process Manager through Service Bus.

Create two proxy services and their associated pipelines in Service Bus: one for the request
that invokes the business service and another that handles the callback.

• Request Proxy Service and Pipeline: Configure the proxy service to use the SB
transport. Since the callback will be sent on a different connection in asynchronous
communication, you must establish a callback address so the message is sent back to
the correct client.

For information on setting a callback address, see ReplyTo of the WS-Addressing
reference and Asynchronous BPEL to BPEL Through Service Bus Example.

• Callback Proxy Service and Pipeline: Configure the proxy service to pass the callback
address to the business service. The callback URI is provided in the request. Use URI
rewriting to extract the callback URI and forward it to the business service.

For proxy configuration details, see Creating and Configuring Proxy Services and Using
the SB Transport.

Create two business services in Service Bus: a request business service that invokes the
external service and a callback business service.

• Request Business Service: Configure the business service to invoke the external
service.

• Callback Business Service: The callback business service receives the callback
address from the callback proxy. The URI rewriting performed by the callback proxy
service determines which BPEL process to send the response to.

– Create a WSDL-based business service. Generate the WSDL file from Oracle BPEL
Process Manager. Select the WSDL service type and select the appropriate binding
or port in the WSDL file.

Chapter 34
Advanced Use Cases (Asynchronous)

34-7

– Select the bpel-10g transport in the business service configuration.

– Set the Endpoint URI to bpel://callback, as described in Table 34-2. The
callback URI is provided by the callback proxy service.

Note:

If the callback address is always known, for example when the client
and BPEL service are linked together because of a trading partner
agreement, you can provide the exact callback address in the
callback business service instead of using bpel://callback.

– Set the role to Service Callback on the bpel-10g transport configuration page,
as described in Table 34-3.

– Configure the remainder of the business service. See the online help provided
with Service Bus for configuration information not covered in this document.

34.4 BPEL Transport Security
Security in Oracle BPEL Process Manager is handled at the EJB level. The BPEL
transport supports a JNDI service account option used for the creation of the JNDI
context and the EJB lookup.

This process is described in Table 34-3. The BPEL transport gets the user name and
password from the service account. If the service account is not configured, an
anonymous subject is assumed.

The BPEL transport also supports security at the call level by letting you indicate one-
way SSL in the protocol portion of the URI from Service Bus to Oracle BPEL Process
Manager. For more information, see BPEL Transport Endpoint URI.

34.4.1 Using SSL from Oracle Service Bus to Oracle Servers
To use SSL from Service Bus to OC4J and Oracle AS servers (using the ormis and
opmns protocols), you must configure SSL on your Service Bus server by adding the
following properties to your domain's setDomainEnv script:

-Djavax.net.ssl.trustStorePassword=passphrase
-Djavax.net.ssl.trustStore=file path to a keystore of trust certificate

34.5 BPEL Transport Error Handling
The BPEL transport handles Oracle BPEL Process Manager exceptions in different
ways.

• Application Errors

• Connection Errors

• Other Errors

Chapter 34
BPEL Transport Security

34-8

34.5.1 Application Errors
If a BPEL process replies with a fault, the BPEL transport intercepts the fault message at the
API and translates it into a SOAP fault. The transport's automated application error-handling
functionality lets you decide whether or not to automatically retry application errors—in this
case BPEL faults—when they occur. For example, you may determine that application errors
will always fail until the problem is fixed. Use the Retry Application Errors option on the
transport configuration page to turn application retries on and off.

34.5.2 Connection Errors
Oracle BPEL Process Manager can throw the following non-fault exceptions, which the BPEL
transport automatically categorizes as TransportException connection errors:

• NamingException

• RemoteException

The transport's automated connection error-handling functionality lets you determine if and
how often connection errors are retried. Use the Retry Count and the Retry Iteration
Interval options on the transport configuration page to control the number of retries and the
number of seconds to wait between retries on connection errors. Setting Retry Iteration
Interval to zero (0) means connection errors are not retried.

34.5.3 Other Errors
Other non-application and non-connection exceptions are re-thrown as generic
TransportException errors.

34.6 WS-Addressing Reference
This section describes specific WS-Addressing properties that the BPEL transport uses to
communicate with Oracle BPEL Process Manager.

This section also describes ways to provide callback addresses in asynchronous
communication, as described in the Advanced Use Cases (Asynchronous) guidelines.

See Examples of XML Messaging with the BPEL Transport for WS-Addressing examples.

• ReplyTo

• MessageID / RelatesTo

34.6.1 ReplyTo
In asynchronous communication, a service callback is sent on a different connection than the
request. As a service developer, you must supply the correct callback address in an
asynchronous exchange so that the callback is sent to the correct client.

34.6.1.1 Calling a BPEL Process Asynchronously Through Service Bus
The BPEL transport provides a built-in mechanism for providing the correct callback address.
When you create a BPEL business service in Service Bus, you can select a callback proxy to

Chapter 34
WS-Addressing Reference

34-9

handle the callback, and the BPEL transport automatically sets the correct callback
address. You do not need to manually use "ReplyTo."

For more information, see Asynchronous: Invoking Processes in Oracle BPEL Process
Manager.

34.6.1.2 BPEL Processes Calling External Services Through Service Bus
When calling an external service from Oracle BPEL Process Manager through Service
Bus, you must manually set a callback address. To do this using WS-Addressing, in
the request proxy service set the callback address as the "ReplyTo" value. The BPEL
transport in the business service uses that URI as the callback address.

For more information, see Asynchronous: Calling Service Providers from Oracle BPEL
Process Manager.

34.6.2 MessageID / RelatesTo
"MessageID" and "RelatesTo" are used to store the conversation ID in conversations
between Service Bus and Oracle BPEL Process Manager, making sure related
messages remain in the same conversation. The BPEL transport does not let you
specify whether a given operation is a start or continue operation. Instead, the BPEL
transport looks for the "MessageID" and "RelatesTo" properties and sets them
accordingly.

The following describes how the BPEL transport uses "MessageID" and "RelatesTo" in
synchronous and asynchronous conversations:

• Synchronous conversation: In the initial request, the "MessageID" determines
the conversation ID. In the remaining communication, the BPEL transport provides
the conversation ID as the RelatesTo value.

If there is no value assigned to "MessageID" or "RelatesTo," the transport
assumes either no conversation is occurring or that Oracle BPEL Process
Manager is handling the correlation.

• Asynchronous callbacks: In the initial request, the "MessageID" determines the
conversation ID. In the remaining communication, the BPEL transport provides the
conversation ID as the "RelatesTo" value in the callback.

If there is no value assigned to "MessageID" or "RelatesTo," the transport
assumes either no conversation is occurring or that Oracle BPEL Process
Manager is handling the correlation.

For more implementation on establishing a conversation ID to make sure messages
participate in the correct conversation, see Associating Messages with the Correct
Conversation and the Conversation ID Examples.

34.7 Examples of XML Messaging with the BPEL Transport
This section provides examples of XML messaging issues between Service Bus and
Oracle BPEL Process Manager.

• Conversation ID Examples

• Asynchronous BPEL to BPEL Through Service Bus Example

Chapter 34
Examples of XML Messaging with the BPEL Transport

34-10

34.7.1 Conversation ID Examples
This section provides different examples of establishing a conversation ID among messages
in a conversation between Service Bus and Oracle BPEL Process Manager.

In Figure 34-5, a client is synchronously invoking a process in Oracle BPEL Process
Manager. The business service (BS1) uses the BPEL transport to invoke a process. The
pipeline (PP1) handles any necessary conversation ID mapping and passes the messages
from the proxy service (PS1) to the business service.

Figure 34-5 Operations in a Synchronous Exchange Through Service Bus

34.7.1.1 Port and Message Definitions
The examples in this section use the following port and message definitions defined in the
WSDL file.

<wsdl:types>
 <xsd:schema
 targetNamespace="http://www.sample.org/spec/samples/types"
 elementFormDefault="qualified">
 <xsd:complexType name="ValueHolder">
 <xsd:all>
 <xsd:any minOccurs="1"/>
 </xsd:all>
 </xsd:complexType>
 </xsd:schema>
</wsdl:types>
<message name="create"/>
<message name="putRequest">
 <part name="key" type="xsd:string"/>
 <part name="value" type="types:ValueHolder"/>
</message>
<message name="putResponse">
 <part name="value" type="types:ValueHolder"/>
</message>
...
<message name="dispose"/>
<portType name="ServiceMap">
 <operation name="create">
 <input message="tns:create"/>
 </operation>
 <operation name="put">
 <input message="tns:putRequest"/>
 <output message="tns:putResponse"/>
 </operation>
 ...
 <operation name="dispose">

Chapter 34
Examples of XML Messaging with the BPEL Transport

34-11

 <input message="tns:dispose"/>
 </operation>
</portType>

34.7.1.2 WS-Addressing that Sets the Conversation ID
This example shows how WS-Addressing is used to set the conversation ID among
messages in a conversation. Figure 34-5 shows communication pattern.

Create Operation

<soap:Envelope>
 <soap:Header>
 <wsa03:MessageID>uuid:123456789</wsa03:MessageID>
 </soap:Header>
 <soap:Body>
 <create/>
 </soap:Body>
</soap:Envelope>

Put Operation

<soap:Envelope>
 <soap:Header>
 <wsa03:MessageID>uuid:111111111</wsa03:MessageID>
 <wsa03:RelatesTo>uuid:123456789</wsa03:RelatesTo>
 </soap:Header>
 <soap:Body>
 <put>
 <key>key</key>
 <value>
 <PO/>
 </value>
 </put>
 </soap:Body>
</soap:Envelope>
<soap:Envelope>
 <soap:Body>
 <putResponse>
 <value/>
 </putResponse>
 </soap:Body>
</soap:Envelope>

The <put> operation also has a MessageID, but it is ignored because the RelatesTo
has a value that provides the conversation ID.

34.7.1.3 Message Payload Data that Sets the Conversation ID
This example shows how message payload data can be used to set the conversation
ID among messages in a conversation. In these examples, the proxy service maps the
ID to the MessageID / RelatesTo SOAP headers. Figure 34-5 shows communication
pattern.

Create Operation

Client to proxy service

<soap:Envelope>
 <soap:Body>

Chapter 34
Examples of XML Messaging with the BPEL Transport

34-12

 <create/>
 </soap:Body>
</soap:Envelope>
<soap:Envelope>
 <soap:Body>
 <createResponse>
 <mapID>uuid:123456789</mapID>
 </createResponse>
 </soap:Body>
</soap:Envelope>

Proxy service to BPEL process (using a business service)

<soap:Envelope>
 <soap:Header>
 <wsa03:MessageID>uuid:123456789</wsa03:MessageID>
 </soap:Header>
 <soap:Body>
 <create/>
 </soap:Body>
</soap:Envelope>

Not shown: The ID was generated in the request of the proxy service pipeline and inserted
as a <wsa03:MessageID> before invoking the process. On the process side, the create
operation is one-way, so a SOAP response must be created before replying to the client. The
response sends back the ID that was generated by the proxy service.

Put Operation

Client to proxy service

<soap:Envelope>
 <soap:Body>
 <put>
 <mapID>uuid:123456789</mapID>
 <key>key</key>
 <value>
 <PO/>
 </value>
 </put>
 </soap:Body>
</soap:Envelope>
<soap:Envelope>
 <soap:Body>
 <putResponse>
 <value/>
 </putResponse>
 </soap:Body>
</soap:Envelope>

Proxy service to BPEL process (using a business service)

<soap:Envelope>
 <soap:Header>
 <wsa03:RelatesTo>uuid:123456789</wsa03:RelatesTo>
 </soap:Header>
 <soap:Body>
 <put>
 <key>key</key>
 <value>
 <PO/>
 </value>

Chapter 34
Examples of XML Messaging with the BPEL Transport

34-13

 </put>
 </soap:Body>
</soap:Envelope>
<soap:Envelope>
 <soap:Body>
 <putResponse>
 <value/>
 </putResponse>
 </soap:Body>
</soap:Envelope>

Dispose Operation

Client to proxy service

<soap:Envelope>
 <soap:Body>
 <dispose>
 <mapID>uuid:123456789</mapID>
 </dispose>
 </soap:Body>
</soap:Envelope>

Proxy service to BPEL process (using a business service)

<soap:Envelope>
 <soap:Header>
 <wsa03:RelatesTo>uuid:123456789</wsa03:RelatesTo>
 </soap:Header>
 <soap:Body>
 <dispose/>
 </soap:Body>
</soap:Envelope>

34.7.1.4 Transformation Examples
In these examples, the client uses a more recent version of the WS-Addressing spec
(wsa04 prefix). The proxy service is responsible for transforming the SOAP headers to
use the wsa03 prefix. The proxy service developer configures the transformation.
Figure 34-5 shows communication pattern.

Create Operation

Client to proxy service

<soap:Envelope>
 <soap:Header>
 <wsa04:MessageID>uuid:123456789</wsa04:MessageID>
 </soap:Header>
 <soap:Body>
 <create/>
 </soap:Body>
</soap:Envelope>

Proxy service to BPEL process (using a business service)

<soap:Envelope>
 <soap:Header>
 <wsa03:MessageID>uuid:123456789</wsa03:MessageID>
 </soap:Header>
 <soap:Body>

Chapter 34
Examples of XML Messaging with the BPEL Transport

34-14

 <create/>
 </soap:Body>
</soap:Envelope>

Put Operation

Client to proxy service

<soap:Envelope>
 <soap:Header>
 <wsa04:MessageID>uuid:111111111</wsa04:MessageID>
 <wsa04:RelatesTo>uuid:123456789</wsa04:RelatesTo>
 </soap:Header>
 <soap:Body>
 <put>
 <key>key</key>
 <value>
 <PO/>
 </value>
 </put>
 </soap:Body>
</soap:Envelope>
<soap:Envelope>
 <soap:Body>
 <putResponse>
 <value/>
 </putResponse>
 </soap:Body>
</soap:Envelope>

Proxy service to BPEL process (using a business service)

<soap:Envelope>
 <soap:Header>
 <wsa03:MessageID>uuid:111111111</wsa03:MessageID>
 <wsa03:RelatesTo>uuid:123456789</wsa03:RelatesTo>
 </soap:Header>
 <soap:Body>
 <put>
 <key>key</key>
 <value>
 <PO/>
 </value>
 </put>
 </soap:Body>
</soap:Envelope>
<soap:Envelope>
 <soap:Body>
 <putResponse>
 <value/>
 </putResponse>
 </soap:Body>
</soap:Envelope>

34.7.2 Asynchronous BPEL to BPEL Through Service Bus Example
The following example shows the SOAP headers involved in one BPEL process invoking
another BPEL process asynchronously through Service Bus. In Figure 34-6, PP1 and PP2
are pipelines that perform transformations and pass messages from PS1 and PS2 proxy

Chapter 34
Examples of XML Messaging with the BPEL Transport

34-15

services to BS1 and BS2 business services. The business services are required to
make calls to BPEL processes using the BPEL transport.

Figure 34-6 One BPEL Process Invoking Another BPEL Process Through
Service Bus

Refer to Figure 34-6 for the following SOAP header examples.

34.7.2.1 Port and Message Definitions
<message name="LoanServiceRequestMessage">
 <part name="payload" element="types:loanApplication"/>
</message>
<message name="LoanServiceResultMessage">
 <part name="payload" element="types:loanOffer"/>
</message>
<portType name="LoanService">
 <operation name="initiate">
 <input message="tns:LoanServiceRequestMessage"/>
 </operation>
</portType>
<portType name="LoanServiceCallback">
 <operation name="onResult">
 <input message="tns:LoanServiceResultMessage"/>
 </operation>
</portType>

34.7.2.2 BP1 to P1 – Initiate operation
<soap:Envelope>
 <soap:Header>
 <wsa03:ReplyTo>
 <wsa03:Address>ormi://serverB:7001/default/AmericanLoanClient/1.0/
service/LoanServiceRequester
 </wsa03:Address>
 </wsa03:ReplyTo>
 <MessageID>AmericanLoanClient~1.0/60007</MessageID>
 </soap:Header>
 <soap:Body >
 <loanApplication>
 ...
 </loanApplication>
 </soap:Body>
</soap:Envelope>

Chapter 34
Examples of XML Messaging with the BPEL Transport

34-16

34.7.2.3 P1/B1 to BP2
<soap:Envelope>
 <soap:Header>
 <wsa03:ReplyTo>
 <wsa03:Address>http://serverB:7001/P2</wsa03:Address>
 <wsa03:ReferenceProperties>
 <osb:Callback>
 <osb:Address>
ormi//localhost/default/AmericanLoanClient/1.0/service/LoanServiceRequester
 </osb:Address>
 </osb:Callback>
 </wsa03:ReferenceProperties>
 </wsa03:ReplyTo>
 <MessageID>AmericanLoanClient~1.0/60007</MessageID>
 </soap:Header>
 <soap:Body >
 <loanApplication>
 ...
 </loanApplication>
 </soap:Body>
</soap:Envelope>

The ReplyTo callback address is set by B1, which gets the value from the Callback Proxy
field in the BPEL transport configuration, as described in Table 34-2. B1's callback proxy is
P2.

You must wrap the original replyTo information and send it as reference properties so that it is
echoed back in the onResult callback message (to follow).

Note:

This sample uses osb:Callback and osb:Address for illustration purpose only. There
is no standard or Service Bus standard elements defined for WS-Addressing
support.

34.7.2.4 BP2 to P2 – onResult operation
<soap:Envelope>
 <soap:Header>
 <wsa03:RelatesTo>AmericanLoanClient~1.0/60007</wsa03:RelatesTo>
 <osb:Callback>
 <osb:Address>ormi//localhost/default/AmericanLoanClient/1.0/service/
LoanServiceRequester
 </osb:Address>
 </osb:Callback>
 </soap:Header>
 <soap:Body >
 <loanOffer>
 ...
 </loanOffer>
 </soap:Body>
</soap:Envelope>

Chapter 34
Examples of XML Messaging with the BPEL Transport

34-17

The reference property osb:Callback is sent back as a SOAP header by the Oracle
BPEL Process Manager engine.

34.7.2.5 P2/B2 to BP1 – onResult operation
<soap:Envelope>
 <soap:Header>
 <wsa03:RelatesTo>AmericanLoanClient~1.0/60007</wsa03:RelatesTo>
 </soap:Header>
 <soap:Body >
 <loanOffer>
 ...
 </loanOffer>
 </soap:Body>
</soap:Envelope>

Proxy service P2 removes the temporary osb:Callback header; but prior to deleting
this header, the replyTo address value is copied to the $outbound variable so that the
BPEL transport in business service B2 can send the callback message to the correct
BPEL process.

34.8 BPEL Transport Configuration Reference
This section provides descriptions for BPEL transport-specific properties for business
and proxy services.

• BPEL Transport Endpoint URI

• Configuring Business Services to Use the BPEL Transport

34.8.1 BPEL Transport Endpoint URI
Table 34-2 describes the URI formats for the BPEL transport, which you configure on
the main Transport page of the business service in either JDeveloper or the Oracle
Service Bus Console.

Chapter 34
BPEL Transport Configuration Reference

34-18

Table 34-2 Specifying an Endpoint URI

Transport Role Endpoint URI Format

Synchronous Client or
Asynchronous Client
role

For the following endpoint URI format, optional elements are shown in square brackets.

protocol://host[:port][/protocol-path]/domain/process[/version[/
partnerlink/role

Following are descriptions of the other endpoint URI elements:

• protocol: Use one of the following RMI / JNDI protocols.

iiop / iiops: For generic, server-agnostic use.

t3 / t3s: For use with Oracle WebLogic Server.

http / https: For tunneling and use with Oracle WebLogic Server.

ormi / ormis: For stand-alone deployment on OC4J (Oracle Container for JEE).
• port: Optional. For the ormi and opmn protocols only, if the server is configured to

use the default port.
• protocol-path: Optional. For use only with the opmn and opmns protocols. The

protocol-path is the server instance in a cluster.
• version: Optional. The version of the process to invoke.
• partnerlink/role: Optional. Include this option for a full path description when you

specify version.
For a cluster, you can also use the following URI format for targeting specific nodes in
the cluster:

protocol://host1:port1,host2:port2/<remainder_of_URI>

Service Callback If the callback address is always known, for example when the client and BPEL service
are linked together because of a trading partner agreement, you can provide the exact
callback address for the Endpoint URI instead of using the following format:

bpel://callback

34.8.2 Configuring Business Services to Use the BPEL Transport
Table 34-3 describes the options available on the BPEL transport configuration page of the
business service in both JDeveloper and the Oracle Service Bus Console. For more
information, see Creating and Configuring Business Services.

Chapter 34
BPEL Transport Configuration Reference

34-19

Table 34-3 BPEL Transport Properties for Business Services

Property Description

Role Select one of the following roles for the business service. The BPEL
transport is used to send request messages from Service Bus to Oracle
BPEL PM. Each role requires specific configuration. The business
service can serve one of the following roles:

• Synchronous Client: Select this role for synchronous
communication with a Service Bus client. The only required location
information is the BPEL address. This address is captured statically
as the endpoint URI or dynamically through URI rewriting.

• Asynchronous Client: Select this role for asynchronous
communication with a Service Bus client. In this case, a callback
from Oracle BPEL Process Manager to Service Bus is sent on a
different connection than the request, and you must configure
Service Bus to provide the correct callback address in the Callback
Proxy field. For more information, see the guidelines in Advanced
Use Cases (Asynchronous).

• Service Callback: Select this role if the business service is
designed to be a service callback to Oracle BPEL Process Manager
(where Oracle BPEL Process Manager is calling an external service
asynchronously through Service Bus). The callback address is
known only at runtime. Use an Endpoint URI of bpel://callback.

If you configure the business service with the marker URI, configure
your pipeline logic to dynamically set the URI on $outbound. For
example, you could use the TransportHeader action to do this.

Note: A Service Callback business service does not support load
balancing or failover.

For instructions on using Service Callback, see "Service Callback" in
Table 34-2 and Asynchronous: Calling Service Providers from Oracle
BPEL Process Manager.

Callback Proxy For asynchronous clients only, enter the proxy service to use to route
callbacks to the Service Bus client that made the request. The proxy
service must be either an SB or HTTP proxy service with a service type
of Any SOAP. For more information, see the guidelines in Advanced
Use Cases (Asynchronous).

This field is available only for the Asynchronous Client role.

Service Account Enter a service account that will be used for JNDI context security to
access the Oracle BPEL Process Manager delivery service. If no service
account is specified, an anonymous subject is used. There is no
restriction on the type of service account that can be configured, such
as static or pass-through, but the runtime must be able to access a user
name and password.

For more information, see Working with Service Accounts.

Chapter 34
BPEL Transport Configuration Reference

34-20

Table 34-3 (Cont.) BPEL Transport Properties for Business Services

Property Description

Suspend Transaction Select this option to make the business service non-transactional even if
the business service is invoked by a transaction.

If you do not select Suspend Transaction, the following rules apply:

• If the protocol indicates a protocol supported by WebLogic Server
(t3, iiop, http), the transaction is propagated.

• If the protocol indicates an OC4J server (ormi, opmn), the BPEL
transport throws an exception, since OC4J does not support
transaction propagation.

The BPEL transport ignores the Suspend Transaction setting in the
following situations:

• The business service is called with quality of service (QoS) "best-
effort." The BPEL transport automatically suspends any transaction
that does not support QoS.

• The business service is called with QoS set to "exactly-once" and
there is no transaction.

For a description of transaction propagation, see Transaction
Propagation in the BPEL Transport.

Dispatch Policy Select the instance of WebLogic Server Work Manager that you want to
use for the dispatch policy for this endpoint. The default Work Manager
is used if no other Work Manager exists.

For information about Work Managers, see:

• Using Work Managers with Service Bus
• "Using Work Managers to Optimize Scheduled Work" in

Administering Server Environments for Oracle WebLogic Server

Chapter 34
BPEL Transport Configuration Reference

34-21

35
Using the SB Transport

This chapter provides an overview of the SB transport and describes how to use and
configure it in your services. The SB transports integrates Oracle products with Service Bus
using RMI

This chapter includes the following sections:

• Introduction to the SB Transport

• SB Transport Error Handling

• UDDI and the SB Transport

• SB Transport Configuration Reference

35.1 Introduction to the SB Transport
The SB transport allows Oracle products to synchronously invoke an Service Bus proxy
service using RMI.

The inbound transport allows clients to access SB proxy services using RMI. The outbound
transport allows the invocation of SB proxy services using RMI. By default, accessing all
services using T3 protocol, IIOP, HTTP, T3s, IIOPS, or HTTPS depends on the configuration
of the target server. For more information, see Configure Default Network Connections in the
Oracle WebLogic Server Administration Console Online Help.

35.1.1 SB Transport Features
The SB transport supports the following:

• Propagation of the transaction context. The transaction that originated in the client
Service Bus servers can optionally be propagated to the SB proxy service.

• Propagation of the security context. By default, the security context associated with the
SB client thread is used to invoke the SB proxy services. This may require enabling
domain trust between domains. See "Important Information Regarding Cross-Domain
Security Support" in Administering Security for Oracle WebLogic Server.

• Invocation of SB proxy services, with custom identities, by the outbound endpoint using a
service account.

• Specification of time out value for non-transactional invocations. The client request
returns when Service Bus does not respond to the request within the specified interval.

• Association of a dispatch-policy for both request and response connections. For more
information, see "Using Work Managers to Optimize Scheduled Work" in Administering
Server Environments for Oracle WebLogic Server.

• Optimization of RMI call and call-by-reference when routing to a SB business service
without a JNDI provider.

• The following service types:

– WSDL service

35-1

– Any SOAP service

– Any XML service

• The following messaging patterns:

– Request (one-way) and request-response for the inbound transport.

For a Service Bus client, the messaging pattern is inherited from the pipeline
of the SB outbound transport by default.

For a non-Service Bus client the default messaging pattern is request-
response.

– Request and request-response for the outbound transport environment values.
For more information on the environment values the SB supports, see SB
Transport Environment Values.

• The following default values for the Quality of Service (QoS):

– Exactly-Once for non-Service Bus clients.

– Best-Effort for Service Bus clients.

You can also set the QoS of a service using routing options in the pipeline. For
more information, see Quality of Service..

35.2 SB Transport Error Handling
You can configure business service URIs to be taken offline when communication
errors occur. When you configure the operational settings for the business service, you
can enable the business service endpoint URIs to be taken offline after the specified
retry interval.

For more information, see Monitoring and Managing Endpoint URIs for Business
Servicesin Administering Oracle Service Bus.

When a connection error occurs while invoking a SB proxy service, the SB transport
provider generates the BEA-380002 error code. A connection error can occur due to
any of the following reasons:

• The target proxy service does not exist.

• The JNDI provider settings are incorrect.

• Any remote or naming exception occurs during RMI invocation.

A naming exception of the type javax.naming.NamingSecurityException typically
occurs when the identity used during the invocation is not recognized by the target
server. When this occurs, the request returns a generic runtime error, which is not
treated as a connection error.

• An external service returns a SOAP payload with a fault code.

When there is an error handler in place to handle the fault code, the transaction is
not marked for rollback. If there is no error handler, the transaction is marked for
rollback.

When an error occurs and there is an error handler in place that catches the fault and
sends back a fault response (using the With Error option for the Reply action), the
error is considered an application error and the transaction is not marked for rollback.
In all other error cases, the transaction is marked for rollback.

SOAP faults returned by SB proxy servers are treated as application errors.

Chapter 35
SB Transport Error Handling

35-2

35.3 UDDI and the SB Transport
You can import and publish services to the UDDI registry.

For more information, see Working with UDDI Registries..

• Publishing a Service

• Importing a Service

35.3.1 Publishing a Service
When you publish a proxy service to a UDDI registry, the URI associated with the published
service has the following format:

sb://host:port/service_name

where host:port refers to the host name and listening port of the server hosting the proxy
service that is being published.

If the Use SSL option is enabled for the proxy service that is being published, the URI
associated with the published service has the following format:

sbs://host:port/service_name

If the proxy service that is being published is running on a cluster, host:port is the Cluster
Address setting in the Cluster section of the config.xml file. This value can either be a single
host name and port number that is used to connect to any WebLogic Server in the cluster or it
can be a comma-separated list of the host name and listener ports of the Managed Servers in
the Service Bus cluster. For more information, see "WebLogic JNDI" in Developing JNDI
Applications for Oracle WebLogic Server.

For more information, see Publishing Proxy Services to a UDDI Registry..

35.3.2 Importing a Service
When you import a service from the UDDI registry, the SB transport provider matches the
sbscheme and host:port information from the service URI property with a JNDI provider
registered on the Service Bus server using the appropriate protocol based on sbscheme.
Sbscheme is the URI scheme of the SB transport-based service and can be either sb or sbs.

If sbscheme is sb, the transport provider looks for the JNDI provider using T3, T3S, IIOP,
IIOPS, HTTP, or HTTPS protocol (in this order). If sbscheme is sbs, the transport provider
looks for the JNDI provider using T3S protocol, IIOPS, then HTTPS (in this order). The JNDI
provider that matches the service URI property is used to generate the endpoint URI of the
business service that is imported to Service Bus.

If there is no matching JNDI provider, the import fails unless the imported URI is a local URI
and the scheme is not sb, the default context is used. This implies that there is no JNDI
provider specified for the service and it is considered co-located with the server.

For example, if the service URI property value is:

sbs://remote_oracle_service_bus_host:7002/myservice

the generated URI of the business service imported to Service Bus would be:

Chapter 35
UDDI and the SB Transport

35-3

sb://my_jndi_provider/myservice

where, my_jndi_provider is a JNDI provider resource registered on the Service Bus
server with a t3s://remote_oracle_service_bus_host:7002 URL.

For more information, see Working with UDDI Registries.

35.4 SB Transport Configuration Reference
This section describes the environment values and properties you can configure for
business and proxy services using the SB transport.

It also describes the JNDI provider and error handling for the SB transport.

• SB Transport Environment Values

• Configuring Proxy Services to Use the SB Transport

• Configuring Business Services to Use the SB Transport

35.4.1 SB Transport Environment Values
Table 35-1 describes the environment values supported by the SB transport. The
values you specify for these variables override the properties configured for specific
SB-based business or proxy services.

Table 35-1 SB Transport Environment Variables

Environment Value Use this value to …

Timeout (category: operational) Specifies the time out value (in seconds) for the business
service.

Service account (category:
security)

A Service Bus service account resource to use for JNDI
context security to access the Oracle BPEL Process
Manager delivery service. Use this to update the user
credentials associated with an SB-based business service.

Use SSL (category: security) Specifies whether to expose the service through a secure
protocol for a proxy server. For more information, see
Configuring Proxy Services to Use the SB Transport.

35.4.2 Configuring Proxy Services to Use the SB Transport
A Service Bus client connects with the Service Bus server using the JNDI context and
the proxy service URI. The security context of the client is used to invoke the proxy
service. The default QoS is Exactly-once. Optionally, the client can change the QoS,
set a request time out value, and specify a desired messaging pattern. The message
is received by the inbound SB transport and processed through the pipeline.

Table 35-2 describes the properties you use to configure an SB-based proxy service.
Specify the endpoint URL for the endpoint as the proxy service name. For instructions
on creating a proxy service, see Creating and Configuring Proxy Services.

Chapter 35
SB Transport Configuration Reference

35-4

Table 35-2 SB Transport Properties for Proxy Services

Property Description

Dispatch Policy Select the instance of WebLogic Server Work Manager that you want to use for
the dispatch policy for this endpoint. The default Work Manager is used if no
other Work Manager exists.

For information about Work Managers, see:

• Using Work Managers with Service Bus
• "Using Work Managers to Optimize Scheduled Work" in Administering

Server Environments for Oracle WebLogic Server

Use SSL Select this option to expose the service through a secure protocol. Although this
implies that the client should use the SSL protocol to access the SB proxy
service, this does not prevent the client from accessing the service through
unsecure protocols. In addition, the endpoint URI associated with the service
would be sbs instead of sb for the following:

• When you export a secure service through UDDI and preserve security and
policy configuration details during import.

• In the effective WSDL file.
Note: A proxy service is not bound to any particular protocol. It is the
responsibility of the Oracle WebLogic Server administrator to enable SSL, IIOP,
or HTTP tunneling whenever it is necessary.

This flag only affects the URI scheme of the service when it is exported or the
JNDI provider selection for the business service URI when it is imported from
UDDI. It does not prevent a client from accessing the service using a non-
secured protocol.

35.4.3 Configuring Business Services to Use the SB Transport
SB business services can send messages only to SB proxy services. A JNDI provider, which
is specified in the endpoint URI of the business service, performs a JNDI lookup on the
remote Service Bus server. The client user credentials or the user credentials defined in the
service account associated with the business service are used to invoke the proxy service.
Optionally, a time out value and a custom dispatch policy can be associated with the business
service. The QoS of the service can also be set by using the routing options.

Specify the endpoint URI for the service using the following format:

sb://jndi_provider_name/service_name

Where:

• jndi_provider_name is the name of the JNDI provider, which points to the corresponding
Service Bus JNDI provider resource. This is optional. When omitted, the default context is
used. This implies that the service and the Service Bus server are located on the same
machine. When the call is co-located, serialization is skipped during service invocation.
For more information, see JNDI Providers.

• service name is a target service and corresponds to the remote proxy service URI.

The following table describes the properties you use to configure an SB-based business
service. For more information, see Creating and Configuring Business Services.

Chapter 35
SB Transport Configuration Reference

35-5

Table 35-3 SB Transport Properties for Business Services

Property Description

Dispatch Policy Select the instance of WebLogic Server Work Manager that you want to
use for the dispatch policy for this endpoint. The default Work Manager is
used if no other Work Manager exists.

For information about Work Managers, see:

• Using Work Managers with Service Bus
• "Using Work Managers to Optimize Scheduled Work" in

Administering Server Environments for Oracle WebLogic Server

Time out Enter the duration, in seconds, after which the business service times out
and returns a runtime error.

The specified time out value is not applied when:

• QoS of the service endpoint is Exactly-Once.
• The specified value is a negative value.
• The time out value is overridden in the optional Timeout custom

header of the outbound request in the message flow. For information,
see Adding Transport Header Actions in the Console.

Service Account Specify the user credentials that should be used for invoking the remote
proxy service. If no service account is specified, the user credentials of
the inbound proxy service (the inbound client) of this business service are
used for security context propagation. For more information, see Working
with Service Accounts.

35.4.3.1 JNDI Providers
A JNDI provider points to the Service Bus server where the service is deployed to
retrieve the RMI stubs corresponding to the SB proxy service. The JNDI provider has a
high performance caching mechanism for remote connections and EJB stubs. T3,
IIOP, HTTP, T3s, IIOPS, or HTTPS transport protocols can be used by JNDI provider.
The preferred communication protocol from Service Bus to an Oracle WebLogic
Server domain is T3 or T3S. If messages need to go through a fire wall, you can use
HTTP tunneling by using an HTTP provider url in the context and by enabling HTTP
tunneling on the Oracle WebLogic Server server.

Note:

It is the responsibility of the administrator to ensure that the protocol
supported by the JNDI provider is on the remote Service Bus server.

When you create a business service, you can associate it with a JNDI provider. For
more information, see Working with JNDI Provider Resources.

Chapter 35
SB Transport Configuration Reference

35-6

36
Using the SOA-DIRECT Transport

This chapter provides an overview of the SOA-DIRECT transport and describes how to use
and configure it in your services. The SOA-DIRECT transport lets you invoke Oracle SOA
Suite service components, such as BPEL processes, human tasks, rules, and Oracle
Mediator components.

Note:

The SOA-DIRECT transport is for communicating with Oracle SOA Suite 11g and
later service components. Service Bus also provides a bpel-10g transport to
communicate with Oracle SOA Suite 10g Release 3. For information on that
transport, see Using the Oracle BPEL Process Manager Transport .

This chapter includes the following sections:

• Introduction to the SOA-DIRECT Transport

• Using SOA Suite Services with Service Bus

• SOA-DIRECT Transport Configuration Reference

• WS-Addressing Reference

• XML Messaging Examples

36.1 Introduction to the SOA-DIRECT Transport
The SOA-DIRECT transport provides native connectivity between Service Bus and Oracle
SOA Suite service components. Oracle SOA Suite provides a "direct binding" framework that
lets you expose Oracle SOA Suite service components in a composite application.

The SOA-DIRECT transport interacts with those exposed services through the SOA direct
binding framework, letting those service components interact in the service bus layer and
leverage the capabilities and features of Service Bus.

For more information on SOA binding components, see Getting Started with Binding
Components and Using the Direct Binding Invocation API in the Developing SOA
Applications with Oracle SOA Suite.

36.1.1 SOA-DIRECT Transport Features
The SOA-DIRECT transport supports the following features:

• Invocation of any SOA binding component services through Java remote method
invocation (RMI)

• WS-Addressing, including optional auto-generation of ReplyTo properties for
asynchronous callbacks

36-1

• Identity propagation

• Transaction propagation

• Attachments

• Optimized RMI transport for invoking SOA services

• High availability and clustering support

• Failover and load balancing (not available for services in the Service Callback role

• Connection and application retries on errors

36.1.2 Service Binding Types
The SOA-Direct transport supports WSDL type services with SOAP 1.1, SOAP 1.2, or,
alternatively, XML bindings. The SOA direct binding framework only exposes direct
binding services as WSDL with SOAP 1.1 and SOAP 1.2 bindings, not XML. However,
if you want to use an XML binding, you must manually customize the imported SOA
service WSDL files for the direct binding services. An XML binding has no effect on the
message payload, since messages between the SOA-DIRECT transport and SOA
binding components are always abstract (no binding).

36.1.3 WS-Addressing for the SOA-DIRECT Transport
The SOA-DIRECT transport uses only WS-Addressing for message correlation in
synchronous and asynchronous communications. The transport automatically
generates the following WS-Addressing properties in the SOAP header when you
configure a callback proxy in the business service configuration:

• ReplyTo: For setting the callback address and connection information in
asynchronous callbacks.

• ReferenceParameters: Contains the callback properties for ReplyTo, including
JNDI and connection factory properties, for the following supported WS-
Addressing versions:

– http://www.w3.org/2005/08/addressing

– http://schemas.xmlsoap.org/ws/2004/08/addressing

• ReferenceProperties: Contains the callback properties for ReplyTo, including
JNDI and connection factory properties, for the following supported WS-
Addressing version: http://schemas.xmlsoap.org/ws/2003/03/addressing.

For ReplyTo and ReferenceParameters examples, see WS-Addressing Reference. For
all other WS-Addressing properties, you must add or transform them in Service Bus
pipelines if they are not available or suitable for pass-through to the SOA-DIRECT
business service. If you use correlation and callback mechanisms other than WS-
Addressing, you must transform messages in pipelines to support WS-Addressing
between Service Bus and SOA framework service components.

For WS-Addressing examples with the SOA-DIRECT transport, see WS-Addressing
Reference and XML Messaging Examples.

36.1.4 SOA-DIRECT Transport Security
The SOA-DIRECT transport supports one-way SSL. To use SSL, enable SSL in the
domain, use the secure protocol in the endpoint URI, such as HTTPS, IIOPS, or T3S,

Chapter 36
Introduction to the SOA-DIRECT Transport

36-2

and reference the secure port in the URI. For more information on the SOA-DIRECT URI, see
SOA-DIRECT Endpoint URIs.

You can provide identity propagation with the SOA-DIRECT transport by passing the caller's
subject through the service or with a service account bound to the service. Because the SOA-
DIRECT transport deals with only normalized, abstract messages, the transport does not
support WS-Security. For more information on security settings, see Configuring Business
Services to Use the SOA-DIRECT Transport.

36.1.5 SOA-DIRECT Transport Error Handling
The SOA-DIRECT transport recognizes connection and application errors, letting you
configure the appropriate retry settings in the transport configuration. The transport throws
generic errors for errors that are neither connection nor application related.

• Connection Errors

• Application Errors

• Generic Errors

36.1.5.1 Connection Errors
The SOA-DIRECT transport raises connection errors in the following situations:

• The target service does not exist.

• A naming exception occurs during the RMI lookup or invocation (with the exception of
javax.naming.NamingSecurityException, which is a generic error).

• A remote exception occurs during the RMI lookup or invocation.

36.1.5.2 Application Errors
The SOA-DIRECT transport raises application errors when the outbound business service
receives a SOAP fault. You can deselect Retry Application Errors on the service configuration
page to prevent retries on application errors—errors that are likely to keep failing despite
retries.

36.1.5.3 Generic Errors
The SOA-DIRECT transport raises a generic error in the following situations:

• All errors other than connection and application errors.

• A javax.naming.NamingSecurityException, which is thrown during the JNDI lookup, is
not considered a connection error as are other naming exceptions.

36.2 Using SOA Suite Services with Service Bus
This section describes synchronous and asynchronous communication patterns between
Service Bus and Oracle SOA Suite composites.

• Simple Use Cases – Synchronous

• Advanced Use Cases – Asynchronous

Chapter 36
Using SOA Suite Services with Service Bus

36-3

36.2.1 Simple Use Cases – Synchronous
This section describes the simple, most common use cases for communicating
natively to and from SOA composites through Service Bus: synchronous
communication.

• Transactional Boundaries

• Synchronous Invocation of a SOA Composite

• Synchronous Invocation from a SOA Composite

• Associating Messages with the Correct Conversation

36.2.1.1 Transactional Boundaries
When synchronous BPEL components use the direct binding to interact with proxy
services, the Service Bus and BPEL components share the same transactional context
by participating in the same global transaction. The pipeline can perform any back-end
activity within the same transactional context initiated by the BPEL component. In
order to guarantee data consistency, everything that was done in that transaction must
be rolled back if something fails to maintain state during processing. Note that the
direct binding is typically used because transaction or security propagation is needed.

Service Bus direct binding failures are thrown back to the BPEL component as system
faults, because Service Bus always marks the transaction for rollback in case of
processing failure within the request pipeline. Therefore, any fault thrown from the
Service Bus direct binding is a rollback fault and is interpreted as system fault on the
SOA Suite side.

For more information about this behavior, see "BPELCaller Calls BPELCallee That
Has bpel.config.transaction Set to required" in Developing SOA Applications with
Oracle SOA Suite. This section explains transactional behavior between BPEL
components with synchronous interfaces.

36.2.1.2 Synchronous Invocation of a SOA Composite
The SOA-DIRECT transport can invoke any component in a SOA composite that is
exposed as a direct binding service. Figure 36-1 illustrates a synchronous
communication pattern between a client and an Oracle SOA service component
through Service Bus using a SOA-DIRECT business service and direct binding
service.

Figure 36-1 Client Invoking a SOA Binding Service Synchronously

Chapter 36
Using SOA Suite Services with Service Bus

36-4

Use the following guidelines to invoke an Oracle SOA direct binding service from a client
through Service Bus:

• Create a SOA-DIRECT business service in Service Bus that represents the SOA service
component you want to invoke.

– In Service Bus, create a WSDL resource based on the corresponding Oracle SOA
direct binding service WSDL file.

You can locate the SOA direct binding service WSDL file in JDeveloper using the
SOA Resource Browser, as described in "Developing SOA Composite Applications
with Oracle SOA Suite" in the Developing SOA Applications with Oracle SOA Suite.

– Create a new business service with a soa-direct transport type and a WSDL service
type.

– Select the WSDL resource you created, and choose the appropriate port or binding.

Note:

If you select the port, the transport type and URI will be automatically
propagated in the next configuration page.

– Set the endpoint URI as described in SOA-DIRECT Endpoint URIs.

– Configure the remainder of the business service, described in Configuring Business
Services to Use the SOA-DIRECT Transport.

• Create a proxy service in Service Bus that invokes the business service. Choose the
transport type that is used by the client. For proxy configuration information, see the
online help provided with Service Bus.

If you are using stateful services to ensure that messages are associated with the correct
conversation, see Associating Messages with the Correct Conversation.

36.2.1.3 Synchronous Invocation from a SOA Composite
A SOA composite can invoke any Service Bus SB WSDL-based proxy service. To invoke an
SB proxy service, the SOA service component must use a direct binding reference of target
type Oracle Service Bus. For more information on target types, see How to Create an
Outbound Direct Binding Reference in Developing SOA Applications with Oracle SOA Suite.

Figure 36-2 illustrates a synchronous communication pattern between an Oracle SOA service
component and an external service through Service Bus.

Figure 36-2 SOA Binding Service Invoking an External Service Synchronously

Chapter 36
Using SOA Suite Services with Service Bus

36-5

Use the following guidelines to invoke an external service from a SOA composite using
direct binding references:

• Create a business service in Service Bus that represents the external service you
want to invoke. Choose the transport type that is supported by this service. For
business service configuration information, see the online help provided with
Service Bus.

• Create an SB proxy service in Service Bus that invokes the business service.

– Create a WSDL resource to be used by the proxy service that invokes the
business service.

– Create a new proxy service with an sb transport type and a WSDL service
type.

– Select the WSDL file for the proxy service, and select the desired port or
binding.

– Configure the remainder of the proxy service. For more information, see Using
the SB Transport.

Note:

Use the SB proxy service effective WSDL file and port type to define the
direct binding reference that invokes Service Bus. You can import this
WSDL file into an Oracle SOA Suite project.

If you are using stateful services, ensure that messages are associated with the
correct conversation. See Associating Messages with the Correct Conversation.

36.2.1.4 Associating Messages with the Correct Conversation
When using stateful services, the messages sent synchronously between Service Bus
and Oracle SOA composites are known as a conversation. To ensure that messages
are correctly associated with each other as part of a conversation, the SOA-DIRECT
transport provides built-in support for WS-Addressing.

For more information on WS-Addressing, see MessageID / RelatesTo Headers. For an
example of conversation ID setting, see Conversation ID Examples.

36.2.2 Advanced Use Cases – Asynchronous
This section describes asynchronous communications between a SOA composite and
Service Bus using the SOA-DIRECT transport.

Note:

Only the following SOA service components currently support asynchronous
conversations using WS-Addressing: BPEL Process, Mediator, and Human
Task.

• Asynchronous Invocation of a SOA Composite

Chapter 36
Using SOA Suite Services with Service Bus

36-6

• Asynchronous Invocation from a SOA Composite

36.2.2.1 Asynchronous Invocation of a SOA Composite
The SOA-DIRECT transport can invoke asynchronous SOA service components that are
exposed as direct binding services. Figure 36-3 illustrates an asynchronous communication
pattern between a client and an Oracle SOA composite through Service Bus using a direct
binding service, the SOA-DIRECT transport, and the SB transport.

Figure 36-3 Client Invoking a SOA Binding Service Asynchronously

Use the following guidelines to invoke the SOA direct binding service asynchronously from a
client through Service Bus:

• On the inbound client side, create the Service Bus artifacts to interact with the client: a
request proxy service that invokes the outbound SOA-DIRECT business service, and a
callback business service that handles the callback to the client. Use the transport type
used by the client.

– Request Proxy Service

Configure the proxy service that receives the client request. This proxy service
invokes the outbound request SOA-DIRECT business service.

Since the callback is sent to a different connection, Service Bus must be able to
remember the original callback location when calling back the client. When using
WS-Addressing, the callback address is sent to the request proxy service in the
ReplyTo address header. Before invoking the SOA-DIRECT business service, the
request proxy service can pass this address as a referenceParameter property inside
the ReplyTo header. Following the WS-Addressing specification, the
referenceParameter property is inserted in the SOAP header block of the callback.
The callback SB proxy can then extract this callback address and set the callback
business service URI.

For information on setting a callback address, see ReplyTo Header and
Asynchronous Composite to Composite Communication Through Service Bus.

Chapter 36
Using SOA Suite Services with Service Bus

36-7

– Callback Business Service

Configure the business service you need to handle the callback. This business
service is invoked by the outbound callback SB proxy service.

For service and transport configuration guidance, see the online help provided
with Service Bus.

• On the Service Bus outbound side, create the artifacts to interact with the SOA
composite. This includes a request SOA-DIRECT business service that makes the
request to the Oracle SOA direct binding service exposing the asynchronous
service component you want to invoke, and a callback SB proxy service that
handles the callback from the direct binding service and invokes the inbound
callback business service.

– Request SOA-DIRECT Business Service

* In Service Bus, create a WSDL resource based on the corresponding
Oracle SOA direct binding service WSDL file.

You can locate the SOA direct binding service WSDL file in JDeveloper
using the SOA Resource Browser, as described in "Developing SOA
Composite Applications with Oracle SOA Suite" in the $operation.

* Create a new business service with a soa-direct transport type and a
WSDL service type.

* For the WSDL file, browse to the WSDL resource you created and select
the appropriate port or binding for the direct binding service.

If you select the port, the transport type and URI are automatically
propagated in the next configuration page.

* Set the endpoint URI, described in SOA-DIRECT Endpoint URIs.

* On the transport configuration page, set the Role to Asynchronous
Client.

* Optionally use the Callback Proxy option to select the SB callback proxy
service you created.

When you select a callback proxy, the SOA-DIRECT transport
automatically generates the WS-Addressing headers to tell the SOA direct
binding service that it expects the asynchronous callback response to be
sent to the specified callback proxy.

For approaches to setting a callback address if you do not select a
callback proxy in the SOA-DIRECT business service, see WS-Addressing
Reference and Asynchronous Composite to Composite Communication
Through Service Bus.

* Configure the remainder of the business service. For more information,
see SOA-DIRECT Transport Configuration Reference.

* Invoke this business service from the request proxy service.

• Callback SB Proxy Service

– Create a new proxy service with an sb transport type and a WSDL service
type.

– Browse to the WSDL file corresponding to direct binding service's WSDL file,
and select the appropriate port or binding.

Chapter 36
Using SOA Suite Services with Service Bus

36-8

– Complete the proxy service configuration. For more information, see Configuring
Proxy Services to Use the SB Transport.

36.2.2.2 Asynchronous Invocation from a SOA Composite
An asynchronous SOA service component in a SOA composite can invoke external services
through Service Bus. To do so, the SOA service component must use a direct binding
reference of Target Type of "Oracle Service Bus." (For more information on target types, see
How to Create an Outbound Direct Binding Reference in Developing SOA Applications with
Oracle SOA Suite.

Figure 36-4 illustrates an asynchronous communication pattern between an Oracle SOA
service component and an external service through Service Bus using a direct binding
reference, the SB transport, and the SOA-DIRECT transport.

Figure 36-4 SOA Binding Service Invoking an External Service Asynchronously

Use the following guidelines to invoke an external service asynchronously from an Oracle
SOA direct binding reference through Service Bus.

• In Service Bus, on the inbound side, create the artifacts to interact with the SOA
composite: a request SB proxy service that receives the SOA direct binding reference
request and a callback SOA-DIRECT business service that handles the callback to the
SOA direct binding reference.

– Request SB Proxy Service

* Create a WSDL resource representing the interface used to interact with the
direct binding reference.

* Create a new proxy service with an sb transport type and a WSDL service type.

* For the WSDL file, browse to the WSDL file you created and select the
appropriate port or binding.

* Complete proxy service configuration. For more information, see Configuring
Proxy Services to Use the SB Transport.

Chapter 36
Using SOA Suite Services with Service Bus

36-9

Since the callback is sent to a different connection, Service Bus must be
able to remember the original callback location when calling back the
client. When using WS-Addressing, the callback address is sent to the
request proxy service in the ReplyTo address header. Before invoking the
external service, the request proxy service passes this address as a
referenceParameter property inside the ReplyTo header. Following the
WS-Addressing specification, the referenceParameter property is inserted
in the SOAP header block of the callback. The callback proxy service can
then extract this callback address and set the callback business service
URI.

For information on setting a callback address, see ReplyTo Header and
Asynchronous Composite to Composite Communication Through Service
Bus.

– Callback Business Service

* Create a new business service with a soa-direct transport type and a
WSDL service type.

* For the WSDL file, browse to the WSDL file representing the callback
interface with the direct binding reference, and select the appropriate port
or binding.

* Set the service URI to "callback," as described in SOA-DIRECT Endpoint
URIs.

In general, the callback URI is dynamically set in the invoking proxy using
URI rewriting. However, if the callback address is always known, you can
provide the exact callback address instead of "callback."

* Set the role to Service Callback on the SOA-DIRECT transport
configuration page.

* Configure the remainder of the business service, as described in
Configuring Business Services to Use the SOA-DIRECT Transport.

• On the Service Bus outbound side, create the artifacts to interact with the external
service: a request business service that makes the request to the external service
and a callback proxy service that handles the callback from this service.

– Request Business Service

Configure the business service to invoke the external service. This business
service will be invoked by the request SB proxy service. Choose the transport
type that is supported by this service. For business service configuration
information, see the online help provided with Service Bus.

– Callback Proxy Service

Configure the proxy service to pass the callback address to the business
service. The callback URI is provided in the request. Use URI rewriting to
extract the callback URI and forward it to the SOA-DIRECT business service.
Choose the transport type that is supported by this service. For proxy service
configuration information, see the online help provided with Service Bus.

For information on setting the callback addresses using WS-Addressing, see
WS-Addressing Reference.

Chapter 36
Using SOA Suite Services with Service Bus

36-10

36.3 SOA-DIRECT Transport Configuration Reference
This section describes the endpoint URL format and configuration options for the SOA-
DIRECT transport.

• SOA-DIRECT Endpoint URIs

• Configuring Business Services to Use the SOA-DIRECT Transport

• SOA-DIRECT Transport Environment Values

36.3.1 SOA-DIRECT Endpoint URIs
When specifying the endpoint URI for a SOA-DIRECT server, you need to follow a specific
formatting pattern, depending on the type of role the service plays.

For SOA-DIRECT business services in the Service Callback role handling the inbound
request, the actual URI is specified dynamically at runtime in the pipeline. Enter the following
for the endpoint URI:

callback

Alternatively, if the callback address is always known, you can provide the exact callback
address.

For all other SOA-DIRECT business service roles, use the following format. Optional
elements are in brackets [].

protocol://authority]/default/compositeName[!versionNumber[*label]]/serviceName

where:

• protocol is the RMI or JNDI protocol to use. Use one of the following:

– iiop / iiops: For generic, server-agnostic use.

– t3 / t3s: For use with WebLogic Server.

– http / https: For tunneling and use with WebLogic Server.

For HTTP(S) protocols, enable HTTP tunneling on the server. For SSL protocols,
enable SSL on the server.

The protocol and authority are optional when the SOA services are co-located on the
same server as Service Bus.

• authority: The IP address or host name and the port of the SOA server or cluster
hosting the SOA service components.

The protocol and authority are optional when the SOA services are co-located on the
same server as Service Bus.

• default: This domain name value is always "default."

• compositeName: The name of the composite application where the binding component
service is defined.

• !versionNumber: The composite application version number. This is optional. If you do
not specify a version, the current version is used.

• *label: Used with !versionNumber, this is the label hash used in the SOA service WSDL
file. This is optional.

Chapter 36
SOA-DIRECT Transport Configuration Reference

36-11

• serviceName: The name of the SOA binding component service.

While you can specify more than one URI on a service for load balancing and failover,
only one URI is allowed for services in the Service Callback role, described in
Table 36-1. Therefore, load balancing and failover are not available for services in the
Service Callback role.

36.3.1.1 Endpoint URI Format in a Cluster
When operating in a cluster, the SOA-DIRECT transport uses a different format fort the
endpoint URI. Use the following format for the endpoint URI in a cluster:

t3://example_managed1:port1,example_managed2:port2/service_path

where t3://example_managed1:port1,example_managed2:port2 is the JNDI provider
URL.

36.3.1.2 Endpoint URI Examples
Following are some endpoint URI examples for the SOA-DIRECT transport:

• t3s://example:7002/default/compositeApp/1.0/myService

Points to a service deployed on a single node.

• /default/compositeApp!1.0/myService

Points to a service co-located on the same server as Service Bus.

• t3://soaserver.example.com:7001/default/VacationRequest!1.0/
directclient

Points to a service deployed on a single node using a version number. This is the
format in SOA binding component service WSDL files.

• t3://example_managed1:8001,example_managed2:8002/default/myComposite/
myService

Points to a clustered SOA framework environment identified by "myService."
Because no specific version is specified, the most recent version of the service is
used.

36.3.2 Configuring Business Services to Use the SOA-DIRECT
Transport

Table 36-1 describes the properties you use to configure a SOA-DIRECT transport for
a business service. For more information, see Creating and Configuring Business
Services.

Table 36-1 SOA-DIRECT Transport Properties for Business Services

Property Description

JNDI Service Account Enter the static service account that defines security credentials
for the JNDI lookup of the target SOA service. If you do not
specify a service account, an anonymous subject is used. You
can select from a list of defined service accounts.

For more information, see Working with Service Accounts.

Chapter 36
SOA-DIRECT Transport Configuration Reference

36-12

Table 36-1 (Cont.) SOA-DIRECT Transport Properties for Business Services

Property Description

Role Select one of the following options to identify the communication
pattern the service uses:

• Synchronous Client (default): In this role the Callback
Proxy option is disabled because there is no asynchronous
callback. The WS-Addressing Version option is also
disabled.

• Asynchronous Client: In this role you can identify a
Callback Proxy, and you must select a WS-Addressing
Version.Asynchronous callback is usually required. The
asynchronous option is enabled only when the WSDL
service is of type SOAP.

• Service Callback: This role is for returning the
asynchronous callback to an SOA service after an external
service invocation.

There is no load balancing or failover for Callback services.

Callback Proxy Specify the proxy service that receives callbacks. This option is
enabled only for the Asynchronous Client role.

When you select a callback proxy, if no WS-Addressing is
provided by the request or the proxy service pipeline, Service
Bus automatically populates the ReplyTo property in the SOAP
header. You must select a WSDL proxy service that uses the SB
transport (for RMI), and the callback proxy service must
understand WS-Addressing.

WS-Addressing properties that are sent in the request or set in
the proxy service pipeline are used instead of the callback proxy
you set in this option.

If you do not specify a Callback Proxy, and the request does not
contain ReplyTo properties, you must provide ReplyTo properties
in the SOAP header through the proxy service pipeline.

Fault Proxy This option is not currently supported. You must configure your
callback services to handle faults in an asynchronous pattern.

WS-Addressing Version Specify the default WS-Addressing version to use when no WS-
Addressing is provided in the request or the proxy service
pipeline. This option is enabled only for the Asynchronous Client
role.

WS-Addressing properties that are sent in the request or set in
the pipeline are used instead of the WS-Addressing version you
set in this option. For WS-Addressing version mismatches
between environments, perform any necessary transformations
in the pipeline. For more information, see Transformation
Examples.

Dispatch Policy Select the instance of WebLogic Server Work Manager that you
want to use for the dispatch policy for this endpoint. The default
Work Manager is used if no other Work Manager exists.

For information about Work Managers, see:

• Using Work Managers with Service Bus
• "Using Work Managers to Optimize Scheduled Work" in

Administering Server Environments for Oracle WebLogic
Server

Chapter 36
SOA-DIRECT Transport Configuration Reference

36-13

Table 36-1 (Cont.) SOA-DIRECT Transport Properties for Business Services

Property Description

Pass Caller's Subject Select this option to have Service Bus pass the authenticated
subject from the proxy service when invoking the SOA service.
The Invocation Service Account option, an alternative to Pass
Caller's Subject, is disabled when you select this option.

Note: Make sure that domain trust is enabled between client and
target server if they are in different domains. For more
information, see "Important Information Regarding Cross-
Domain Security Support" in Administering Security for Oracle
WebLogic Server.

Invocation Service Account Specify custom security credentials by selecting a service
account for RMI invocation. You can specify any type of service
account (pass through, static, or mapping). If you do not specify
a service account, an anonymous subject is used. This is an
alternative to the Pass caller's subject option.

For more information, see Working with Service Accounts.

36.3.3 SOA-DIRECT Transport Environment Values
Table 36-2 describes the environment values supported by the SOA-DIRECT
transport. The values you specify for these variables override the properties configured
for specific SOA-DIRECT business services.

Table 36-2 SOA-DIRECT Transport Environment Values

Environment Value Description

JNDI Service Account (security
category)

The static service account that defines security credentials
for the JNDI lookup of the target SOA service. If you do not
specify a service account, an anonymous subject is used.

For more information about service accounts, see Working
with Service Accounts.

Pass Caller's Subject (security
category)

When this is enabled, Service Bus passes the authenticated
subject from the proxy service when invoking the SOA
service. The Invocation Service Account variable below is
an alternative to Pass Caller's Subject.

Invocation Service Account
(security category)

The service account for RMI invocation using custom
security credentials. You can specify any type of service
account (pass through, static, or mapping). If you do not
specify a service account, an anonymous subject is used.
This is an alternative to Pass Caller's Subject.

Work Manager (environment
category)

The instance of WebLogic Server Work Manager that you
want to use for the dispatch policy for this endpoint. The
default Work Manager is used if no other Work Manager
exists.

For information about Work Managers, see:

• Using Work Managers with Service Bus
• "Using Work Managers to Optimize Scheduled Work" in

Administering Server Environments for Oracle
WebLogic Server

Chapter 36
SOA-DIRECT Transport Configuration Reference

36-14

For information on these values, see Configuring Business Services to Use the SOA-DIRECT
Transport.

36.4 WS-Addressing Reference
This section describes specific WS-Addressing properties that the SOA-DIRECT transport
uses to communicate natively with an Oracle SOA composite.

It also describes ways to provide callback addresses in asynchronous communication, as
described in Advanced Use Cases – Asynchronous.

See XML Messaging Examples for WS-Addressing examples.

• ReplyTo Header

• MessageID / RelatesTo Headers

36.4.1 ReplyTo Header
In an asynchronous communication, a service callback is sent on a different connection than
the request. As a service developer, you must supply the correct callback address in an
asynchronous exchange so that the callback is sent to the correct client. When using the
SOA-DIRECT transport with WS-Addressing correlation, the callback address is specified in
the "ReplyTo" WS-Addressing header.

36.4.1.1 Calling a SOA Composite Asynchronously
The SOA-DIRECT business service can optionally generate the ReplyTo header. In the
business service configuration, if you select a Callback Proxy to handle the callback, the
SOA-DIRECT transport sets the correct callback address corresponding to this callback
proxy in the ReplyTo header. Note that this header is generated only if the incoming message
does not already contain a ReplyTo header.

For more information, see Asynchronous Invocation of a SOA Composite.

36.4.1.2 Calling Back to a SOA Composite Asynchronously
When calling an external service from an Oracle SOA composite through Service Bus, you
must manually set a callback address. To do this, set the callback address as the ReplyTo
value in the proxy service that invokes the callback SOA-DIRECT business service.

For more information, see Asynchronous Invocation from a SOA Composite.

36.4.2 MessageID / RelatesTo Headers
MessageID and RelatesTo WS-Addressing headers are used to store the conversation ID in
conversations between Service Bus and Oracle SOA service components, ensuring related
messages remain in the same conversation.

Unlike ReplyTo, the SOA-DIRECT transport does not provide built-in support for the
MessageID or RelatesTo headers. Instead, you must set the correct values for those headers
in the pipeline that invokes a SOA-DIRECT business service.

The requirements for using MessageID and RelatesTo headers are slightly different in
synchronous and asynchronous conversations, as described below:

Chapter 36
WS-Addressing Reference

36-15

• Synchronous conversation: The MessageID header value determines the
conversation ID in the initial request. Then, for subsequent requests within the
same conversation, the conversation ID must be provided in the RelatesTo header.

• Asynchronous callbacks - The MessageID header value determines the
conversation ID in the initial request. Then, for the callback, the conversation ID
must be provided in the RelatesTo header.

For more implementation on establishing a conversation ID to make sure messages
participate in the correct conversation, see Associating Messages with the Correct
Conversation and the Conversation ID Examples.

36.5 XML Messaging Examples
These examples are of XML messaging between Service Bus and Oracle SOA service
Components.

• Conversation ID Examples

• Asynchronous Composite to Composite Communication Through Service Bus

36.5.1 Conversation ID Examples
This section provides examples of establishing a conversation ID among messages in
a conversation between Service Bus and Oracle SOA composites. In Figure 36-5, a
client synchronously invokes a BPEL Process component in an Oracle SOA
composite. The business service (B1) uses the SOA-DIRECT transport to invoke a
process. The pipeline called by the proxy service (P1) handles any necessary
conversation ID mapping. The SOA composite exposes the BPEL Process as a direct
binding service.

Figure 36-5 Operations in a Synchronous Exchange Through Service Bus

36.5.1.1 Port and Message Definitions
The examples in this section use the following port and message definitions defined in
the WSDL file.

<wsdl:types>
 <xsd:schema
 targetNamespace="http://www.sample.org/spec/samples/types"
 elementFormDefault="qualified">
 <xsd:complexType name="ValueHolder">
 <xsd:all>
 <xsd:any minOccurs="1"/>

Chapter 36
XML Messaging Examples

36-16

 </xsd:all>
 </xsd:complexType>
 </xsd:schema>
</wsdl:types>
<message name="create"/>
<message name="putRequest">
 <part name="key" type="xsd:string"/>
 <part name="value" type="types:ValueHolder"/>
</message>
<message name="putResponse">
 <part name="value" type="types:ValueHolder"/>
</message>
...
<message name="dispose"/>
<portType name="ServiceMap">
 <operation name="create">
 <input message="tns:create"/>
 </operation>
 <operation name="put">
 <input message="tns:putRequest"/>
 <output message="tns:putResponse"/>
 </operation>
 ...
 <operation name="dispose">
 <input message="tns:dispose"/>
 </operation>
</portType>

36.5.1.2 WS-Addressing that Sets the Conversation ID
This example shows how WS-Addressing is used to set the conversation ID among
messages in a conversation.

Figure 36-5 shows the communication pattern.

Create Operation

<soap:Envelope>
 <soap:Header>
 <wsa03:MessageID>uuid:123456789</wsa03:MessageID>
 </soap:Header>
 <soap:Body>
 <create/>
 </soap:Body>
</soap:Envelope>

Put Operation

<soap:Envelope>
 <soap:Header>
 <wsa03:MessageID>uuid:111111111</wsa03:MessageID>
 <wsa03:RelatesTo>uuid:123456789</wsa03:RelatesTo>
 </soap:Header>
 <soap:Body>
 <put>
 <key>key</key>
 <value>
 <PO/>
 </value>
 </put>
 </soap:Body>

Chapter 36
XML Messaging Examples

36-17

</soap:Envelope>
<soap:Envelope>
 <soap:Body>
 <putResponse>
 <value/>
 </putResponse>
 </soap:Body>
</soap:Envelope>

The <put> operation also has a MessageID, but it is ignored because the RelatesTo
has a value that provides the conversation ID.

36.5.1.3 Message Payload Data that Sets the Conversation ID
This example shows how message payload data can be used to set the conversation
ID among messages in a conversation.

In these examples, the proxy service maps the ID to the MessageID / RelatesTo SOAP
headers.

Figure 36-5 shows the communication pattern.

Create Operation

Client to proxy service

<soap:Envelope>
 <soap:Body>
 <create/>
 </soap:Body>
</soap:Envelope>
<soap:Envelope>
 <soap:Body>
 <createResponse>
 <mapID>uuid:123456789</mapID>
 </createResponse>
 </soap:Body>
</soap:Envelope>

Proxy service to SOA composite (using a SOA-DIRECT business service)

<soap:Envelope>
 <soap:Header>
 <wsa03:MessageID>uuid:123456789</wsa03:MessageID>
 </soap:Header>
 <soap:Body>
 <create/>
 </soap:Body>
</soap:Envelope>

Not shown: The ID was generated in the request of the pipeline and inserted as a
<wsa03:MessageID> before invoking the process. On the process side, the Create
operation is one-way, so a SOAP response must be created before replying to the
client. The response sends back the ID that was generated by the proxy service.

Put Operation

Client to proxy service

<soap:Envelope>
 <soap:Body>

Chapter 36
XML Messaging Examples

36-18

 <put>
 <mapID>uuid:123456789</mapID>
 <key>key</key>
 <value>
 <PO/>
 </value>
 </put>
 </soap:Body>
</soap:Envelope>
<soap:Envelope>
 <soap:Body>
 <putResponse>
 <value/>
 </putResponse>
 </soap:Body>
</soap:Envelope>

Proxy service to SOA composite (using a SOA-DIRECT business service)

<soap:Envelope>
 <soap:Header>
 <wsa03:RelatesTo>uuid:123456789</wsa03:RelatesTo>
 </soap:Header>
 <soap:Body>
 <put>
 <key>key</key>
 <value>
 <PO/>
 </value>
 </put>
 </soap:Body>
</soap:Envelope>
<soap:Envelope>
 <soap:Body>
 <putResponse>
 <value/>
 </putResponse>
 </soap:Body>
</soap:Envelope>

Dispose Operation

Client to proxy service

<soap:Envelope>
 <soap:Body>
 <dispose>
 <mapID>uuid:123456789</mapID>
 </dispose>
 </soap:Body>
</soap:Envelope>

Proxy service to SOA composite (using a SOA-DIRECT business service)

<soap:Envelope>
 <soap:Header>
 <wsa03:RelatesTo>uuid:123456789</wsa03:RelatesTo>
 </soap:Header>
 <soap:Body>
 <dispose/>
 </soap:Body>
</soap:Envelope>

Chapter 36
XML Messaging Examples

36-19

36.5.1.4 Transformation Examples
In these examples, the client uses a more recent version of the WS-Addressing spec
(wsa04 prefix). The proxy service is responsible for transforming the SOAP headers to
use the wsa03 prefix. The proxy service developer configures the transformation.

Figure 36-5 shows communication pattern.

Create Operation

Client to proxy service

<soap:Envelope>
 <soap:Header>
 <wsa04:MessageID>uuid:123456789</wsa04:MessageID>
 </soap:Header>
 <soap:Body>
 <create/>
 </soap:Body>
</soap:Envelope>

Proxy service to SOA composite (using a SOA-DIRECT business service)

<soap:Envelope>
 <soap:Header>
 <wsa03:MessageID>uuid:123456789</wsa03:MessageID>
 </soap:Header>
 <soap:Body>
 <create/>
 </soap:Body>
</soap:Envelope>

Put Operation

Client to proxy service

<soap:Envelope>
 <soap:Header>
 <wsa04:MessageID>uuid:111111111</wsa04:MessageID>
 <wsa04:RelatesTo>uuid:123456789</wsa04:RelatesTo>
 </soap:Header>
 <soap:Body>
 <put>
 <key>key</key>
 <value>
 <PO/>
 </value>
 </put>
 </soap:Body>
</soap:Envelope>
<soap:Envelope>
 <soap:Body>
 <putResponse>
 <value/>
 </putResponse>
 </soap:Body>
</soap:Envelope>

Proxy service to SOA composite (using a SOA-DIRECT business service)

Chapter 36
XML Messaging Examples

36-20

<soap:Envelope>
 <soap:Header>
 <wsa03:MessageID>uuid:111111111</wsa03:MessageID>
 <wsa03:RelatesTo>uuid:123456789</wsa03:RelatesTo>
 </soap:Header>
 <soap:Body>
 <put>
 <key>key</key>
 <value>
 <PO/>
 </value>
 </put>
 </soap:Body>
</soap:Envelope>
<soap:Envelope>
 <soap:Body>
 <putResponse>
 <value/>
 </putResponse>
 </soap:Body>
</soap:Envelope>

36.5.2 Asynchronous Composite to Composite Communication Through
Service Bus

The following example shows the SOAP headers involved in a SOA composite invoking
another SOA composite asynchronously through Service Bus. The first SOA composite uses
a BPEL Process exposed as a direct binding reference to invoke Service Bus. The second
SOA composite uses a BPEL process exposed as a direct binding service to receive
requests from Service Bus.

In Figure 36-6, P1 and P2 are proxy services with pipelines that pass messages (and perform
transformations) to B1 and B2 business services, which are required to make calls to SOA
composites using the SOA-DIRECT transport.

Figure 36-6 SOA Composite Invoking an SOA Composite Through Service Bus

Refer to Figure 36-6 for the following SOAP header examples.

36.5.2.1 Port and Message Definitions
<message name="LoanServiceRequestMessage">
 <part name="payload" element="types:loanApplication"/>
</message>

Chapter 36
XML Messaging Examples

36-21

<message name="LoanServiceResultMessage">
 <part name="payload" element="types:loanOffer"/>
</message>
<portType name="LoanService">
 <operation name="initiate">
 <input message="tns:LoanServiceRequestMessage"/>
 </operation>
</portType>
<portType name="LoanServiceCallback">
 <operation name="onResult">
 <input message="tns:LoanServiceResultMessage"/>
 </operation>
</portType>

36.5.2.2 BP1 to P1 – Initiate operation
<soap:Envelope>
 <soap:Header>
 <wsa03:ReplyTo>
 <wsa03:Address>
 t3://soaserver:8001/default/AmericanLoanClient/
LoanserviceRequester
 </wsa03:Address>
 </wsa03:ReplyTo>
 <MessageID>AmericanLoanClient~1.0/60007</MessageID>
 </soap:Header>
 <soap:Body >
 <loanApplication>
 ...
 </loanApplication>
 </soap:Body>
</soap:Envelope>

36.5.2.3 P1/B1 to BP2
<soap:Envelope>
 <soap:Header>
 <wsa03:ReplyTo>
 <wsa03:Address>http://serverB:7001/P2</wsa03:Address>
 <wsa03:referenceParameters>
 <osb:Callback>
 <osb:Address>
 t3://soaserver:8001/default/AmericanLoanClient/
LoanserviceRequesterRef#LoanserviceRequesterBpel
 </osb:Address>
 </osb:Callback>
 </wsa03:referenceParameters>
 </wsa03:ReplyTo>
 <MessageID>AmericanLoanClient~1.0/60007</MessageID>
 </soap:Header>
 <soap:Body >
 <loanApplication>
 ...
 </loanApplication>
 </soap:Body>
</soap:Envelope>

The ReplyTo callback address is set by B1, which gets the value from the Callback
Proxy field in the SOA-DIRECT transport configuration, as described in Configuring
Business Services to Use the SOA-DIRECT Transport. B1's callback proxy is P2.

Chapter 36
XML Messaging Examples

36-22

You must wrap the original replyTo information and send it as reference properties so that it is
echoed back in the onResult callback message (to follow).

Note:

This sample uses osb:Callback and osb:Address for illustration purpose only.
There is no standard or Service Bus standard elements defined for WS-Addressing
support.

36.5.2.4 BP2 to P2 – onResult operation
<soap:Envelope>
 <soap:Header>
 <wsa03:RelatesTo>AmericanLoanClient~1.0/60007</wsa03:RelatesTo>
 <osb:Callback>
 <osb:Address>
 t3://soaserver:8001/default/AmericanLoanClient/
LoanserviceRequesterRef#LoanserviceRequesterBpel
 </osb:Address>
 </osb:Callback>
 </soap:Header>
 <soap:Body >
 <loanOffer>
 ...
 </loanOffer>
 </soap:Body>
</soap:Envelope>

The reference property osb:Callback is sent back as a SOAP header by the Oracle BPEL
Process Manager engine.

36.5.2.5 P2/B2 to BP1 – onResult operation
<soap:Envelope>
 <soap:Header>
 <wsa03:RelatesTo>AmericanLoanClient~1.0/60007</wsa03:RelatesTo>
 </soap:Header>
 <soap:Body >
 <loanOffer>
 ...
 </loanOffer>
 </soap:Body>
</soap:Envelope>

The pipeline in P2 removes the temporary osb:Callback header; but prior to deleting this
header, the replyTo address value is copied to the $outbound variable so the SOA-DIRECT
transport in business service B2 can send the callback message to the correct SOA service
component.

Chapter 36
XML Messaging Examples

36-23

37
Using the Tuxedo Transport

This chapter provides an overview of the Tuxedo transport and describes how to use and
configure it in your services. The Tuxedo transport lets you bring Tuxedo services into the
Service Bus environment.

This chapter includes the following sections:

• Introduction to the Tuxedo Transport

• Configuring Oracle Tuxedo Connector

• Using Tuxedo Services from Service Bus

• Using Service Bus from Tuxedo

• Tuxedo Transport Buffer Transformation

• Tuxedo Transport Transaction Processing

37.1 Introduction to the Tuxedo Transport
Service Bus and Oracle Tuxedo can work together to use the services that each product
offers. The Tuxedo transport provides secure, guaranteed, high performance, bi-directional
access to a Tuxedo domain from Service Bus. The Tuxedo transport lets Tuxedo domains
call services, as well as have services called, in a Tuxedo domain.
Services can either be outbound or inbound.

• When Service Bus uses services offered by Tuxedo, the Tuxedo transport facilitates
access to those Tuxedo services. The term outbound refers to this business service
scenario.

• When Tuxedo uses services offered by Service Bus, Tuxedo services can call Service
Bus services as though they were another Tuxedo application. The term inbound refers to
this proxy service scenario.

You configure the Tuxedo transport in either JDeveloper or the Oracle Service Bus Console.
Specific parameters provide definitions for both proxy and business services. A basic
WebLogic Tuxedo Connector (WTC) configuration with one local access point and one
remote access point is required to enable configuration of the Tuxedo transport. Support for
transactional and security contexts are available as well.

The following diagram summarizes the message handling processes.

37-1

Figure 37-1 WTC Message Handling

37.1.1 Capabilities of the Tuxedo Transport
The following capabilities are available in the native Tuxedo transport in Service Bus.

• First-class tier transport

The native Tuxedo transport is fully integrated into Service Bus. You can configure,
manage, and monitor both Tuxedo proxy services and Tuxedo businesses
services.

• Bi-directional access

Service Bus is an intermediary between SOAP, JMS, or other services and
Tuxedo. The Tuxedo transport provides access to Tuxedo ATMI services as
business services in Service Bus and allows Service Bus proxy services to be
seen by Tuxedo as another ATMI service.

• Buffer transformation

You can transform XML messages to Tuxedo buffer types and Tuxedo buffer types
to XML. All standard Tuxedo buffer types are supported; transformation is
automatic and transparent. For more information, see Tuxedo Transport Buffer
Transformation.

Chapter 37
Introduction to the Tuxedo Transport

37-2

• Transactional integrity

The Tuxedo transport provides transactional integrity for inbound and outbound
messages. You can call Tuxedo services in the context of a global transaction allowing
Exactly Once quality of service (QoS). A Tuxedo application can start a transaction and
call a Service Bus service, and the XA transaction context is carried through to Service
Bus through the pipeline and finally to the destination transport. For more information,
see Tuxedo Transport Transaction Processing.

Note:

Tuxedo Transport supports XA global transactions, but to start a global
transaction, you must configure the transactional service with QoS set to
Exactly-once. If the QoS is set to Best-effort, Tuxedo does not see any commit.
It is thenin limbo until it is resolved by re-booting. which reads the TLOG and
then makes the decision to commit or rollback.

• Service Accounts

You can use service accounts with Tuxedo transport. Use “pass through” to use the
sender’s credentials for business service invocation. Use static credentials to specify a
username/password combination. You can also use credential mapping. Usernames/
passwords must be known to the local Service Bus environment.

• Security propagation

The security context established at the beginning of the pipeline, from either a Tuxedo
client or a Service Bus client, is propagated to the other system. This means that an
incoming SOAP over HTTP request to Service Bus that requires authentication is
authenticated by Service Bus. As with transactions, this support is fully bi-directional, so a
client authenticated to Tuxedo can make requests to Service Bus services without
requiring authentication a second time.

• Encrypted network links

You can encrypt the connections between Service Bus and Tuxedo through WTC
configuration to ensure the security and privacy of communications between the two
systems.

• Load balancing

A single network connection is the only requirement to connect Service Bus to a Tuxedo
domain. However, it might be necessary to support multiple connections in case of a
machine or network failure. You can make multiple connections to a single domain or
multiple domains for purposes of load balancing.

37.2 Configuring Oracle Tuxedo Connector
The Tuxedo transport enables access to Tuxedo services using WebLogic Tuxedo Connector
(WTC). To use the Tuxedo transport, you must configure a basic WTC server including one
local access point and one remote access point.

The following sections describe how to configure WTC:

• Before You Begin

• Configuring Oracle Tuxedo Connector

Chapter 37
Configuring Oracle Tuxedo Connector

37-3

For information about WTC security, see "How to Configure Oracle WebLogic Tuxedo
Connector to Provide Security between Oracle Tuxedo and Oracle WebLogic Server"
in the Administering WebLogic Tuxedo Connector for Oracle WebLogic Server.

37.2.1 Before You Begin
Gather the following information about the Tuxedo application that Service Bus will
use:

• The ID of the Tuxedo local access point.

• The network address of the Tuxedo local access point.

• The name of the exported Tuxedo service.

• Whether the service needs XML-to-FML and FML-to-XML conversion or VIEW-to-
XML or XML-to-VIEW conversion.

The example described in the following sections assumes the use of FML/FML32
buffer types.

• The ID of the access point that the Tuxedo domain gateway will use to refer to this
Oracle Tuxedo Connector instance. This is referred to as the remote access point
ID.)

• The network address that the Tuxedo domain gateway has defined for this Oracle
Tuxedo Connector local access point.This is referred to as the remote network
address.)

37.2.2 Configuring Oracle Tuxedo Connector
When you create or import Tuxedo business and proxy services in Service Bus, the
service configuration includes WebLogic Tuxedo Connector configurations that appear
as WebLogic Tuxedo Connector resources in the Oracle WebLogic Server
Administration Console. Service Bus needs to keep the WebLogic Tuxedo Connector
resources it uses in sync. Modifications to those WebLogic Tuxedo Connector
resources in the Oracle WebLogic Server Administration Console can cause those
resources to become out of sync with Service Bus, and a re-import of those services
into Service Bus results in service activation failure.

Use the following guidelines for using and configuring WebLogic Tuxedo Connector
resources in Service Bus:

• Do not modify WebLogic Tuxedo Connector resources in the Oracle WebLogic
Server Console that you use in Service Bus proxy and business services. Modify
the WebLogic Tuxedo Connector configuration in your Service Bus service
configurations.

• If the WebLogic Tuxedo Connector configurations do become out of sync between
your Tuxedo services in Service Bus and the Oracle WebLogic Server Console,
the easiest way to get back in sync is to delete the WebLogic Tuxedo Connector
resources in the Oracle WebLogic Server Console and re-configure or re-import
the Tuxedo services in Service Bus.

37.3 Using Tuxedo Services from Service Bus
These sections describe how to use Tuxedo services from Service Bus.

Chapter 37
Using Tuxedo Services from Service Bus

37-4

• Configuring a Tuxedo-Based Business Service

• Load Balancing and Failover for Tuxedo-Based Business Services

• Error Handling for Tuxedo-Based Business Services

• Testing Your Configuration

37.3.1 Configuring a Tuxedo-Based Business Service
To use Tuxedo services from Service Bus, create a new business service that uses the
Tuxedo transport in either JDeveloper or the Oracle Service Bus Console. For more
information about creating and configuring business services, see Creating and Configuring
Business Services. For information about the business service properties specific to the
Tuxedo transport, see Configuring Business Services to Use the Tuxedo Transport.

When you create the business service, select tuxedo for the transport and select either Any
XML Service or Messaging Service as the service type.

Note:

When editing the Transport tab of a Tuxedo transport business service in the
Service Bus console, you may have to save and close the tab to propagate the
changes you have made. For example, when adding an endpoint URI, you should
save and close the tab, and then reopen the tab, to display the added endpoint URI
on the Transport Details tab.

37.3.1.1 Business Service Endpoint URIs for Tuxedo Transports
When you create a Tuxedo-based business service, you specify the endpoint URIs for the
service. Use the following URI format for outbound calls to Tuxedo services:

tuxedo:resourcename[/remotename]

Where:

• resourcename corresponds to a WTC Import service name.

• remotename corresponds to the service name exported by the remote Tuxedo domain.
This is optional.

Use the following URI format for outbound calls to Tuxedo resources of type /Q:

tuxedo-queue:sendQspace/sendQname[/[rcvQspace:]/rcvQname][/failureQname]

Where:

• tuxedo-queue indicates that /Q calls will be made.

• sendQspace corresponds to the unique name of the queue space in the Tuxedo domain.

• sendQname corresponds to the queue name in the queue space in which requests will be
stored.

• rcvQspace corresponds to the unique name of the queue space in the Tuxedo domain
from which replies will be received. This is optional. If it is not specified, the sendQspace
value is used.

Chapter 37
Using Tuxedo Services from Service Bus

37-5

• rcvQname corresponds to the name of the queue in the Tuxedo domain from which
replies will be received. This is optional.

Note:

The rcvQspace and rcvQname properties are optional. If you specify
neither value, the runtime returns immediately and does not expect a
response. In this case, the Response Required option on the Tuxedo
Transport Detail page is unavailable.

If you specify either value and do not select the Response Required
option, the values you specified are ignored.

• failureQname corresponds to the name of the queue in the Tuxedo domain where
error messages will be stored. This value is also optional. If you specify neither
rcvQspace nor rcvQname, but specify failureQname, the URI format is tuxedo-
queue:sendQspace/sendQname//failureQname.

Note:

When a response is expected, it occurs in the same thread that sends
the request.

The Tuxedo transport uses the resource name and remote name from the URI to
dynamically create a WTC Import service. If you specify more than one URI, you must
have unique resource names for each endpoint. If no remote name is specified, its
value is the value of the resource name. If no remote name is entered or if the remote
and resource name are the same, only one URI is allowed. This allows already defined
WTC Import services to use WTC load balancing and failover.

Note:

If you configure two identical URIs, an error appears notifying you that the
service name already exists.

37.3.2 Load Balancing and Failover for Tuxedo-Based Business
Services

When specifying a business service and defining the endpoint URIs, you can use the
Service Bus load balancing and failover capabilities by entering a remote name that is
different from the resource name. In this case, you can define multiple service names
and associate them to a service that is replicated across multiple remote domains. The
resource name must be unique, but remote names do not have the same restriction.

Chapter 37
Using Tuxedo Services from Service Bus

37-6

37.3.3 Error Handling for Tuxedo-Based Business Services
You can configure Tuxedo-based business services to handle application and communication
errors as follows:

• Application Errors: Specify whether to retry business service endpoint URIs when
application errors occur. For more information, see Business Service Transport Protocol
Configuration.

• Communication Errors: Specify whether business service URIs are taken offline when
communication errors occur. For more information, see "Configuring Service Bus to Take
Unresponsive Endpoint URIs Offline" in Administering Oracle Service Bus.

Table 37-1 describes the following Tuxedo exceptions and the type of Service Bus error they
denote.

Table 37-1 Tuxedo Exceptions

Exception Description

TPESVCFAIL The service failed—an application error

TPENOENT The requested entity does not exist—a communication error

TPEPERM A permissions error has occurred—a communication error

37.3.4 Testing Your Configuration
Once you have configured Service Bus to work with Tuxedo, you can test the configuration
using the Test Console in the Oracle Service Bus Console.

The following list of tasks summarizes the process of testing outbound usage of Tuxedo by
Service Bus.

1. Build and start the Tuxedo servers.

2. Set up a Tuxedo service to call the Service Bus proxy service associated with the
business service you just created.

3. In the Oracle Service Bus Console, click Activate to enable the Test Console.

4. Open the business service in its editor and click the Launch Test Console icon in the
upper right corner.

5. Enter a payload in the Test Console. For more information, see Business Service
Testing..

6. Click Execute.

A response page displays the results of the service request.

37.4 Using Service Bus from Tuxedo
These sections describe how to use Service Bus services from Tuxedo.

• Configuring a Tuxedo-Based Proxy Service

• Testing Your Configuration

Chapter 37
Using Service Bus from Tuxedo

37-7

37.4.1 Configuring a Tuxedo-Based Proxy Service
To use Service Bus services from Tuxedo, configure a new proxy service in
JDeveloper or the Oracle Service Bus Console. For more information about creating
and configuring proxy services, see Creating and Configuring Proxy Services. For
information about the proxy service properties specific to the Tuxedo transport, see
Configuring Proxy Services to Use the Tuxedo Transport.

When you create the proxy service, select tuxedo for the transport and select either
Any XML Service or Messaging Service as the service type. The endpoint URI is a
service name that corresponds to the endpoint URI on the Tuxedo server where the
service was deployed.

37.4.2 Testing Your Configuration
Once you have configured Tuxedo to work with Service Bus, you can test the service
to verify that it is working correctly. If you are using XML-to-FML32 and FML32-to-XML
conversions, test this configuration using the ud32 Tuxedo client program included with
Tuxedo. If you are using FML conversions, you can use the ud client. ud32 reads input
consisting of the text representation of FML buffers.

If you are not using XML-to-FML and FML-to-XML conversions, you must develop a
test client program in Tuxedo to test this configuration.

37.5 Tuxedo Transport Buffer Transformation
Service Bus and Tuxedo can interoperate to use the services that each product offers,
which includes buffer transformation. The Service Bus service type and the Tuxedo
buffer type determine how transformation occurs.

The Tuxedo transport supports Any XML Service and Messaging Service service types
in Service Bus.

• Any XML Services (Non SOAP): The messages to XML-based services are XML,
but can be of any Tuxedo buffer type allowed by the service configuration.

• Messaging Services: Messaging services are those that can receive messages
of one data type and respond with messages of a different data type. The
supported data types include XML, MFL, text, and untyped binary.

The following sections explain how the Tuxedo transport handles buffer
transformation.

• Buffer Transformation with the Any XML Service Type

• Buffer Transformation with the Messaging Service Type

37.5.1 Buffer Transformation with the Any XML Service Type
Table 37-2 shows the behavior of the Tuxedo transport depending on the Tuxedo
buffer type when the service type is Any XML Service. For Any XML Service, the
payload must be a well-formed XML document.

Chapter 37
Tuxedo Transport Buffer Transformation

37-8

Table 37-2 Buffer Transformation for Any XML Service

Tuxedo Buffer Type Tuxedo Transport Behavior

STRING Passes the buffer as is.

CARRAY

X_OCTET

Passes the buffer as is.

FML/FML32 Converts the buffer to and from XML using the configured field classes.

XML Passes the buffer as is.

Note: The Tuxedo application should not send NULL bytes when the
Tuxedo buffer is XML.

VIEW/VIEW32

X_C_TYPE

X_COMMON

Converts the buffer to and from XML using the configured view classes.

MBSTRING Passes the buffer as is.

Note: Encoding is determined by the encoding element of the MetaData
of the message sent or received.

37.5.2 Buffer Transformation with the Messaging Service Type
Table 37-3 shows the behavior of the Tuxedo transport depending on the Tuxedo buffer type
when the service type is Messaging Service. If None is specified in the subtype, the Tuxedo
transport should not receive any buffer.

Table 37-3 Buffer Transformation for Messaging Service

Tuxedo Buffer Type Binary Messaging
Type

Text Messaging
Type

MFL Messaging
Type

XML Messaging
Type

STRING Passed as is Passed as is Passed as is,
assuming the buffer
is in a suitable format.
If not, the transport
returns an error.

XML

CARRAY Passed as is Not supported Passed as is,
assuming the buffer
is in a suitable format.
If not, the transport
returns an error.

XML

FML/FML32 Passed as is Not supported Not supported XML

XML Passed as is Passed as is Not supported XML

VIEW/VIEW32 Passed as is Not supported Not supported XML

MBSTRING Passed as is Passed as is Passed as is,
assuming the buffer
is in a suitable format.
If not, the transport
returns an error.

XML

The Tuxedo transport handles the buffer manipulation the same way as if the service was
Any XML service type.

Chapter 37
Tuxedo Transport Buffer Transformation

37-9

37.6 Tuxedo Transport Transaction Processing
Service Bus and Tuxedo can interoperate to use the services that each product offers,
which often includes transaction processing. Tuxedo transport takes advantage of
transactions or starts transactions in Service Bus.

The exception to this transaction support is when the inbound transport is Tuxedo with
a transactional message and the outbound is request/response XA-JMS. In this case,
Service Bus detects this exception and it results in a TPESYSTEM error.

The Tuxedo transport transactional behavior is driven by the Quality of Service (QoS)
setting available at the message context level. For more information, see Quality of
Service..

The following sections explain how the Tuxedo transport handles transactions.

• Buffer Transformation with the Any XML Service Type

• Outbound Tuxedo Service Transaction Processing

37.6.1 Inbound Tuxedo Service Transaction Processing
When a transactional context is received, the message going into the pipeline sets the
QoS to Exactly Once, otherwise QoS is set to Best Effort. When a
TransportException is caught before the reply is sent back to the client, the request
aborts by throwing a TPESYSTEM exception and a transaction rollback results.

37.6.2 Outbound Tuxedo Service Transaction Processing
When the thread calling the business service has a transactional context, the Tuxedo
transport behaves in the following manner:

• If QoS is set to Exactly Once, the Tuxedo transport automatically forwards the
transactional context to the remote domain unless the endpoint is configured to
suspend the transaction.

• If QoS is set to Best Effort, the Tuxedo transport suspends the transaction before
making the call and resumes it after the call. This is equivalent to making an ATMI
call with TPNOTRAN flag set.

For more information about Exactly Once and Best Effort, see Delivery Guarantees.

When the thread calling the business service has no transaction associated, the
Tuxedo call occurs non-transactionally, regardless of the QoS setting. In this case, it
will correspond to a tpcall() or tpacall() with the TPNOTRAN flag set.

37.7 Tuxedo Transport Configuration Reference
This section lists and describes the properties you can configure when using the
Tuxedo transport with proxy and business services.

• Configuring Proxy Services to Use the Tuxedo Transport

• Configuring Business Services to Use the Tuxedo Transport

Chapter 37
Tuxedo Transport Transaction Processing

37-10

37.7.1 Configuring Proxy Services to Use the Tuxedo Transport
The Transport Detail page of the Proxy Service Definition Editor provides the properties listed
in the following table for you to configure the transport.

Table 37-4 Tuxedo Transport Properties for Proxy Services

Option To create or edit...

Field Table
Classes

Enter the name of the class or classes describing the FML/FML32 buffer received.
These are used for the FML/FML32-to-XML conversion routines to map field
names to element names. This is a space separated list of fully qualified class
names.

View Classes Enter the name of the class or classes describing the VIEW/VIEW32 buffer
received or sent. These are used for the VIEW-to-XML or VIEW32-to-XML
conversion routines to map field names to element names. This is a list of fully
qualified class names separated by spaces.

X_C_TYPE and X_COMMON Tuxedo buffer types are handled in the same manner
as VIEW/VIEW32 buffers.

If an incoming request contains a VIEW, then the corresponding VIEW class
should be specified in the Service Bus CLASSPATH.

Classes Jar Select a JAR resource that contains a JAR file with the FML/FML32 or VIEW/
VIEW32 classes necessary for this endpoint operation. If you are working in the
Oracle Service Bus Console, you must create the JAR resource in the console
before you can select it. For more information, see How to Add JAR Files.

Local Access Point Select a local access point from the list that is associated with the export. The list
contains local access points configured in WebLogic Tuxedo Connector (WTC). A
proxy service cannot be created if there is not an associated local access point.

If no local access points exist or to create a new one, select New. Enter the
corresponding Local Access Point Name and Local Network Address in the
adjacent fields. Upon validation of the endpoint, the access point is added to the
WTC configuration for each WTC server. If no WTC server exists, one is created.

You can enter an existing access point name after selecting the New option. This
causes the existing information to be updated with the new parameters. You can
change only the host name and port number.

Remote Access
Point

Select a remote access point from the list to be associated with the newly created
local access point. To create a new access point, select New. Enter the
corresponding Access Point Name and Network Address in the adjacent fields.
This field appears only when you select New in the Local Access Point field.

You can enter an existing access point name after selecting the New option. This
causes the existing information to be updated with the new parameters. You can
change only the host name and port number.

The remote access point is also the authentication principal for the WTC
connection for inbound requests. Optionally, you can create a user with the same
access point ID in the default security realm to allow incoming calls. To do so,
select Yes from the Create User? list. The password is randomly generated using
a temporary variable to avoid security issues.

Reply Buffer Type Select the type of buffer that the remote Tuxedo client will receive.

This option is available only if the Response Required? field is selected.

Reply Buffer
Subtype

Enter the buffer subtype with which to associate the reply buffer.

This option is available only when the Response Required? option is selected
and the Reply Buffer Type value is VIEW or VIEW32.

Chapter 37
Tuxedo Transport Configuration Reference

37-11

Table 37-4 (Cont.) Tuxedo Transport Properties for Proxy Services

Option To create or edit...

Response
Required?

Select this check box if this service is expected to send a response. By default,
this option is selected.

This option is cleared and the unavailable if the service type is Messaging
Service and the response message type is None.

Request Encoding Specify a character set encoding for requests in Tuxedo transports.

Response
Encoding

Specify a character set encoding for responses in Tuxedo transports.

Transformation
Style

Specify the way you want FML/FML32 buffers to be represented in an XML
document. Select one of the following:

• None: The order of fields may not be respected. This is the default selection.
• Ordered: The fields are presented with all their occurrences in the correct

order.
• Ordered and Grouped: If the fields are logically structured as records, the

fields are ordered by occurrence and grouped by record.

37.7.2 Configuring Business Services to Use the Tuxedo Transport
The Transport Detail page of the Business Service Definition Editor provides the
properties listed in the following table for you to configure the transport.

Table 37-5 Tuxedo Transport Properties for Business Services

Property Description

Field table
Classes

Enter the name of the classes describing the FML/FML32 buffer received.
These are used for the FML/FML32-to-XML conversion routines to map
field names to element names. This is a space separated list of fully
qualified class names.

View Classes Enter the name of the class or classes describing the VIEW/VIEW32 buffer
received or sent. These are used for the VIEW-to-XML or VIEW32-to-XML
conversion routines to map field names to element names. This is a space
separated list of fully qualified class names.

Classes Jar Select a JAR Resource that contains a JAR file with the FML/FML32 or
VIEW/VIEW32 classes necessary for this endpoint operation.

If you are working in the Oracle Service Bus Console, you must create the
JAR resource in the console before you can select it. For more information,
see How to Add JAR Files.

Chapter 37
Tuxedo Transport Configuration Reference

37-12

Table 37-5 (Cont.) Tuxedo Transport Properties for Business Services

Property Description

Remote Access
Point(s)

Select a remote access point from the list of available options. The list
contains remote access points configured in WTC. A business service
cannot be created if there is no associated remote access point.

If no remote access points exist or to create a new one, select New. Enter
the corresponding Access Point Name and Network Address in the
adjacent fields. Upon validation of the endpoint, the access point is added
to the WTC configuration for each WTC server. If no WTC server exists,
one is created.

You can enter an existing access point name after selecting the New
option. This causes the existing information to be updated with the new
parameters. You can change only the host name and port number.

If more than one URI is specified, there is one remote access point field per
URI and the URI displays for informative purposes. If more than one URI
exists, each requires a different remote access point. If the URI specified
already corresponds to an existing WTC resource, the corresponding
remote access point displays, but cannot be modified.

Local Access
Point(s)

Select a local access point to be associated with the newly created remote
access point. To create a new access point, select New. Enter the
corresponding Local Access Point Name and Local Network Address in
the adjacent fields.

This field appears only when you select New in the Remote Access Point
field.

Note: Access points are not deleted by the transport when the endpoints
are removed, since they may be used by multiple endpoints. To remove
access points, use the Oracle WebLogic Server Administration Console.

Request Buffer
Type

Select the type of buffer that the remote Tuxedo service will receive.

Request Buffer
Subtype

Enter the buffer subtype with which to associate the request buffer. This
option is enabled if the previous Request Buffer Type value is VIEW or
VIEW32.

Response
Required?

Select this check box to indicate a bidirectional call. If this is not selected,
the underlying tpcall is invoked with TPNOREPLY flag, and a null response
is posted asynchronously.

Suspend
Transaction?

Select this check box to suspend the transaction, if it exists. This is useful
when the remote service does not support transactions.

When making calls to Tuxedo resources of the type /Q, use the Suspend
Transaction option whether or not you expect a reply. A successful return
from a one-way call means that a message has been successfully queued.

Note: Tuxedo transports to /Q mode endpoints are considered
asynchronous transactional if the Suspend Transaction option is not
selected. This prevents deadlocks. In /Q mode, when an endpoint expects a
reply, multiple threads on multiple Managed Servers may reply using the
same destination. Therefore, when a reply is expected, a unique correlation
ID is sent along with the request. The dequeue operation then waits for the
message containing that correlation ID. Correlation IDs are composed in
the same manner as those used by JMS transports in similar situations.

Request
Encoding

Specify a character set encoding for requests.

Chapter 37
Tuxedo Transport Configuration Reference

37-13

Table 37-5 (Cont.) Tuxedo Transport Properties for Business Services

Property Description

Response
Encoding

Specify a character set encoding for responses.

Timeout Specify the maximum amount of time (in seconds) that the transport
runtime waits for replies. This must be an integer greater than or equal to 0.
If this is not specified or is set to zero (default), replies will time out at
BLOCKTIME, the maximum number of seconds that the local Tuxedo
access point allows for a blocking call. At runtime, replies exceeding the
timeout value are ignored and an error message with a TPETIME exception
is returned.

This field is only available for request/response services, and not for m/Q or
one-way endpoints. If the outbound call is part of a transaction, the timeout
value is ignored.

Note: The WTC BLOCKTIME value takes precedence if it is less than the
timeout value.

Transformation
Style

Select one of the following methods of ordering or grouping elements when
FML or FML32 buffers are transformed into XML:

• None: (default) The order of fields may not be respected.
• Ordered: The fields are presented with all their occurrences in the

correct order.
• Ordered and Grouped: If the fields are logically structured as records,

the fields are ordered by occurrence and grouped by record.

Dispatch Policy Select the instance of WebLogic Server Work Manager that you want to
use for the dispatch policy for this endpoint. The default Work Manager is
used if no other Work Manager exists. Service Bus uses this Work Manager
to asynchronously post a null reply in the case of a one-way invocation.

For information about Work Managers, see:

• Using Work Managers with Service Bus
• "Using Work Managers to Optimize Scheduled Work" in Administering

Server Environments for Oracle WebLogic Server

Chapter 37
Tuxedo Transport Configuration Reference

37-14

38
Using the WS Transport

This chapter provides an overview of the WS transport and describes how to use and
configure it in your services. The WS transport makes Web Services Reliable Messaging
(WSRM) available in Service Bus.

This chapter includes the following sections:

• Introduction to the WS Transport

• Authentication and Authorization of Services

• Using the WS Transport

• WS Transport Configuration Reference

38.1 Introduction to the WS Transport
The WS transport implements both inbound and outbound requests for services derived from
SOAP 1.1 and SOAP 1.2 based WSDL documents with Web Services Reliable Messaging
(WSRM) policy.

However, the WSRM policy can be a part of the WSDL file or can be attached to the service.
In addition, security policies can also be declared in the WSDL file or can be associated with
a WSDL-based service. When you configure WSDL-based services with WSRM policies in
Service Bus, you must choose the WS transport for the service. Service Bus checks for the
WSRM policy when you save the service configuration and throws a validation error if WSRM
policies are not declared for the WSDL file associated with the service.

38.1.1 Web Services Reliable Messaging
The Web Services Reliable Messaging is also known as WS-Reliable Messaging or just
WSRM. The specification describes a protocol that allows messages to be delivered reliably
between distributed applications even if a software, system, or network failure occurs. WS-
ReliableMessaging is a specification co-developed by IBM, Oracle, Microsoft and TIBCO
Systems. This specification is not the same as WS-Reliability (WSR), which is a competing
specification developed by OASIS.

Service Bus supports the specification submitted in February 2005. For more information
about the specification, see Web Services Reliable Messaging Protocol (WS-
ReliableMessaging) at http://schemas.xmlsoap.org/ws/2005/02/rm/.

38.1.2 WS Transport Features
Below are the key features of the WS transport:

• One-way and request/response message patterns. For more information, see Messaging
Patterns.

• Exactly-once transfer between WS transport and other transports (JMS, SB, and Tuxedo
transports) that support XA transactions.

38-1

http://schemas.xmlsoap.org/ws/2005/02/rm/

• HTTPS with basic authentication, and with client certificate authentication (two-
way SSL) but without client authentication,. For more information, see
Authentication and Authorization of Services .

• Retaining WSRM security configuration while importing resources. For more
information, see Importing and Exporting Resources.

• Assignment of transport-level access control policy to a WS proxy service. Only an
administrator can assign this policy. For more information, see How To Configure
Transport-Level Access Policies.

• WS-Addressing specification submitted in August 2004. For more information, see
Web Services Addressing (WS-Addressing) at http://www.w3.org/
Submission/ws-addressing/.

• WS-I Basic Profile compliance. For more information, see Web Services
Interoperability.

• Quality of Service (QoS) in Service Bus for WS proxy service is always set to
Exactly Once. For more information, see Quality of Service.

You can set the QoS in the RM policy file using the <beapolicy:QOS> element.
This element has one attribute, QOS, which can take any of the following values:

– AtMostOnce

– AtLeastOnce

– ExactlyOnce

– InOrder

Note:

QoS for the WS transport is different from QoS for Service Bus.

• You can associate only SOAP 1.1 and SOAP 1.2 based WSDL files with WSRM
policy with a proxy or business service. For more information, see Configuring
Proxy Services to Use the WS Transport and Configuring Business Services to
Use the WS Transport .

38.1.3 Messaging Patterns
WSRM supports both one-way and request/response messaging patterns. The WS
transport does not support reliable response. While the request is always reliable, the
response is not sent reliably.

For business services, sending a request to an external web service is asynchronous.
Successful invocation implies that the message is given to the RM layer successfully
and it will be delivered reliably. However, successful invocation does not mean that the
message is sent to the endpoint and has successfully invoked the web service.

For the request/response messaging pattern, the response is received from the
external web service for a request. In this case, the request and response paths have
two different transactions and run in two different threads. The response pipeline is
executed evenly for one-way messaging message pattern. For the one-way pattern,
response pipeline invocation means that the message reliably reached the target
destination and the web service invocation is complete.

Chapter 38
Introduction to the WS Transport

38-2

http://www.w3.org/Submission/ws-addressing/
http://www.w3.org/Submission/ws-addressing/

38.1.4 WS-Policies in the WS Transport
A proxy service or business service that uses the WS transport must have a WS-Policy with
RM assertions. This also implies that services that use any other transport must not have any
WS-Policy with RM assertions. WS-Policy with RM assertions and WSSP v1.2 transport-level
security assertions are supported for the WS transport.

However, WSSP v1.2 message-level security assertions and 9.X Oracle proprietary security
assertions are not supported. RM assertions should only be bound at the service level and
not at the operation or operation request/response levels.

Note:

You must use only one RM assertion for a WS-Policy.

38.1.4.1 WS-Policy Configurations
WS-Policies can be configured in any one of the following two ways:

• WS-Policy configuration is specified as part of the WSDL file associated with the service.
The policies specified in the WSDL file may be included in the WSDL file or referred in
the WSDL file.

• WS-Policy is assigned to the service when configuring the service.

Note:

You can use only one of these methods to associate a security policy with the
service. If you configure a policy directly in the Service Bus service, any policies
defined in the WSDL file are ignored.

38.1.5 Streaming Content for Large Messages
The WS transport does not have streaming support for large messages because the
underlying infrastructure (WLS JAX-RPC stack) uses a fully materialized payload. However,
when you configure a proxy service for large message processing, the message is fully
materialized into a Java object by the WS transport using the streaming optimization in
Service Bus. During the proxy service configuration, you can specify if you want to stream
content for large message processing by buffering content either in memory or to disk. For
more information, see Streaming Body Content.

38.1.6 Web Services Interoperability
The WS transport supports web services interoperability through WS-I Basic Profile.
Currently, Service Bus proxy services do not follow all the WS-I Basic Profile restrictions.
However, any services configured to use this transport strictly follow the WS-I Basic Profile
specification. WS proxy services do not have a WS-I Compliance check in the service
configuration and always follow WS-I Basic Profile. This is valid for SOAP1.1 WSDL bindings
as WS-I Basic Profile applies only to SOAP 1.1.

Chapter 38
Introduction to the WS Transport

38-3

38.2 Authentication and Authorization of Services
This section provides information about how WS proxy and business services are
authenticated and authorized.

• Proxy Service Authentication

• Proxy Service Authorization

• Business Service Authentication

38.2.1 Proxy Service Authentication
WS proxy services support both basic and client certificate (two-way SSL)
authentication. When basic authentication is specified in the WS-Policy, all HTTP
requests, including RM protocol messages to the WS proxy service must have a valid
user name and password.

Proxy service authentication is supported as follows:

• Outbound client certificate authentication using SSL key-pair assigned to the
service key provider referenced by the proxy service.

• User name and password identity propagation through a WS proxy service (with
basic authentication) to any other outbound transport, or outbound WSS user
name token.

• Credential mapping between WS proxy service (with basic or two-way SSL
authentication) and any other transport.

• Sending asynchronous responses from WS proxy service to a RM client through
HTTP or HTTPS. The default protocol used by proxy and business services is
HTTP.

• Asynchronous responses from a WS proxy service to an RM client connect to the
AcksTo or ReplyTo endpoint references specified by the RM client. The RM client
can use either HTTP or HTTPS URL. If the RM client uses HTTPS, the RM client
can request a client certificate during the SSL handshake. The WS transport uses
the SSL key-pair of the service key provider upon request.

38.2.2 Proxy Service Authorization
Administrators can assign a transport-level access control policy to a WS proxy
service. As with all transports, this policy is enforced after the inbound transport
provider passes the request message to the Service Bus binding layer before invoking
the request pipeline. For more information, see How To Configure Transport-Level
Access Policies.

38.2.3 Business Service Authentication
WS business services support basic authentication and client certificate
authentication. Outbound basic authentication is supported by means of a service
account. User name and password identity propagation and credential mapping are
provided by the service account. However, a static account can also be used for
authentication. The service account can be static, pass-through, or mapped. Pass-
through authentication allows passing a user name and password from the client

Chapter 38
Authentication and Authorization of Services

38-4

request to the back-end RM service. Mapped service accounts allow credential mapping.
Static service accounts are used when fixed credentials are required.

WS business services also support SSL client certificate authentication (two-way SSL). The
key-pair (private key and certificate) used for outbound two-way SSL is not configured on the
WS business service, but on the service key provider referenced by the proxy service.

Routing a single message to a WS business service may involve multiple HTTP/S requests
from the Service Bus server and back-end service. All such messages are subject to the
authentication method configured in the WS business service. In other words, if the service is
configured for basic authentication, all messages sent from Service Bus include the HTTP
Authorization header with the user name and password, and, if the message is configured for
client certificate authentication, Service Bus uses the key-pair to authenticate all messages.

38.3 Using the WS Transport
The WS transport reliably delivers messages in a distributed network.

The WSRM functionality is available as a transport only for SOAP 1.1 and SOAP 1.2 based
WSDL files with WSRM policy. Ensure that the services are associated with a SOAP 1.l or 1.2
WSDL files with RM-policy or that an RM-policy is attached to the services. You can configure
the WS-Policy in a WSDL file or assign it to a service. For more information, see Configuring
WS Policies.

Prior to configuring proxy and business services to use the WS transport, ensure that the
required WSDL files are available in your Service Bus domain. For more information, see
Importing the WSDL Document into the Oracle Service Bus Console, Configuring Proxy
Services to Use the WS Transport, and Configuring Business Services to Use the WS
Transport .

You can optionally configure an error queue for services so Service Bus delivers failed
messages into the queue. This can be a distributed queue. This queue is not created
automatically, so you must create it prior to configuring the services. For more information,
see Configuring an Error Queue.

38.3.1 Importing the WSDL Document into the Oracle Service Bus Console
In order to create a service based on a WSDL file with WSRM policies in the Oracle Service
Bus Console, you need to import the WSDL file or create the WSDL resource and the content
of the file in an editor. For more information, see Working with WSDL Documents in the
Oracle Service Bus Console and Importing and Exporting Resources and Configurations .

38.3.2 Configuring WS Policies
The WS transport can be used only with SOAP WSDL files that have a WSRM policy. You
can configure a WS-Policy in a WSDL file or assign a WS-Policy to a service in the
JDeveloper or the Oracle Service Bus Console. For more information, see WS-Policies in the
WS Transport.

When no RM police assertions are specified for the WSDL file associated with a service, a
validation message appears when you activate the session. To resolve this conflict, you need
to update the WSDL file or attach the policy to the service. For more information, see
Attaching WS Policies to a Service and Securing Oracle Service Bus Proxy and Business
Services with WS-Policy.

Chapter 38
Using the WS Transport

38-5

38.3.3 Attaching WS Policies to a Service
You can attach policies to a proxy or business service on the service's definition editor
in either JDeveloper or the Oracle Service Bus Console. When you attach a WS-Policy
to a service, any policies defined in the WSDL file associated with the service are
ignored. For information about attaching policies, see Securing Business and Proxy
Services.

38.3.4 Configuring an Error Queue
By default, undelivered messages are discarded after the specified number of retries.
To save these messages, you can configure error queues for business services.
Service Bus delivers any messages that fail in the pipeline into these queues. For
errors, you must configure a JMS queue. Oracle recommends that you configure a
error queue locally instead of a remote queue.

For business services, when a response timeout occurs, the response pipeline is
invoked with an error. If the sequence expiration interval is reached, the message is
placed in an error queue configured for the business service and the response pipeline
is invoked with an error. However, if the response timeout has already occurred, the
message is placed in the error queue, but the response pipeline is not invoked.

Note:

For both one-way and request-response services, putting failed messages in
the error queue is only a best effort.

38.3.5 Routing the WS Transport Through an HTTP Proxy Server
When an HTTP proxy server is configured, WS business services send outbound
messages using the HTTP proxy server. For information about specifying the HTTP
proxy server details in your client application, see "Using a Proxy Server When
Invoking a Web Service" in "Invoking Web Services" in Developing JAX-RPC Web
Services for Oracle WebLogic Server.

38.3.6 WS Transport Error Handling
You can configure WS transport-based business services to handle application errors
by specifying whether or not to retry business service endpoint URIs when application
errors occur. An application error occurs when a WS-based business service receives
a SOAP fault as a response and the BEA-380001 or OSB-380001 error code is
generated.

When a response timeout or sequence timeout occurs for a request to a business
service, the Service Bus server tries to send the message to the next URI based on
the load balancing algorithm. This behavior does not depend on the Retry
Application Errors option.

Chapter 38
Using the WS Transport

38-6

38.3.7 Importing and Exporting Resources
When a resource exists in a Service Bus domain, you can preserve the security and policy
configuration details while importing that resource to Service Bus by selecting the Preserve
Security and Policy Configuration option. When you select this option, the values in the
existing resource are preserved when you import them, even if the security and policy
configurations have been updated in the resource.

For information about importing resources, see Importing and Exporting Resources and
Configurations .

38.3.8 Importing and Publishing Services Using UDDI Registries
When a proxy service is published to an UDDI registry, the service is converted into WS
business service with the WSDL file. If present, the authentication configuration is also
exported to UDDI.

When a WSDL-based business service with WSRM policy is imported from an UDDI registry
to Service Bus, the service is imported as a WS business service that is automatically
configured to use the WS transport. For more information, see WS-Policies in the WS
Transport.

For more information, see Working with UDDI Registries..

38.4 WS Transport Configuration Reference
This section describes the endpoint URL format and configuration options for the WS
transport.

• Endpoint URIs for the WS Transport

• Configuring Business Services to Use the WS Transport

• Configuring Proxy Services to Use the WS Transport

38.4.1 Endpoint URIs for the WS Transport
Endpoint configuration for a proxy service that uses the WS transport is similar to that of
HTTP proxy service configuration. Specify the URI in the following format making sure that
the context path is unique for proxy services that use either HTTP or the WS transport.

/contextPath

Endpoint configuration for a business service using the WS transport is also similar to that for
HTTP. Specify the URI in one of the following formats:

http://host:port number/name
https://host:port number/name

38.4.2 Configuring Business Services to Use the WS Transport
Business services using the WS transport must be associated with WS-Policy with RM
assertions. For more information, see WS-Policies in the WS Transport. A business service
acts as a client for invoking an external reliable web service. It sends a request to the service

Chapter 38
WS Transport Configuration Reference

38-7

and the response is received by an application deployed by Service Bus, which
invokes the response path.

The following table describes the properties you use to configure a WS-based
business service. For more information, see Creating and Configuring Business
Services.

Table 38-1 WS Transport Properties for Business Services

Property Description

Response Timeout Enter the number of seconds to wait for a response before timing
out. Leaving this field blank indicates that there is no response
timeout. The business service will wait for the duration of the
sequence timeout configured in the RM policy. If the response does
not come in the defined interval after sending a request, response
pipeline is invoked with an error saying that service is timed out.

If you enter a zero (0) value, there is no timeout, and the service will
never time out.

Service Account Specify the service account that defines the credentials to use when
there is an HTTP basic authentication policy on this service.

For more information, see Working with Service Accounts.

Note: This is only applicable if the WS business service has a WS-
Policy that requires basic authentication

Queue Error Messages Select this check box to enable sending error messages to the
configured error queue.

Error Queue URI Enter the URI of JMS queue for storing error messages using the
following format:

jms://host:port/connFactoryJndiName/queueJndiName

This option is available only when the Queue Error Messages
check box is selected.

Note: While WebLogic Server allows forward slashes in JNDI
names, such as "myqueues/myqueue", JNDI names with forward
slashes interfere with the URI format required by Service Bus, and
you cannot use those names. To work around this issue, define a
JMS foreign server and reference that foreign server in the URI. For
more information, see Configure Foreign Servers in the Oracle
WebLogic Server Administration Console Online Help.

JMS Error Queue Service
Account

Specify the service account that defines the credentials to use for
JNDI lookups and sending error messages to the error queue. This
option is available only when the Queue Error Messages check
box is selected.

For more information, see "Working with Service Accounts" in
Developing Services with Oracle Service Bus.

Use SSL for Error Queue Select the check box to use SSL for connecting to the error queue.

This option is available only when the Queue Error Messages
check box is selected.

Send Error Message as
Binary

Select this option to send error messages as binary messages
instead of soapInvokeState objects.

For more information about configuring business services using the WS transport, the
online help provided with Service Bus.

Chapter 38
WS Transport Configuration Reference

38-8

38.4.3 Configuring Proxy Services to Use the WS Transport
Proxy services using the WS transport must be associated with WS-Policy with RM
assertions. For more information, see WS-Policies in the WS Transport.

A proxy service receives the requests from clients and passes it to the pipeline after the
processing related to WSRM is done. The proxy service could also send the response back
to the client after receiving it from the response pipeline. A proxy service using the WS
transport can be invoked from any other proxy service and it follows the same behavior as
when it is invoked by an external client. When an HTTP proxy server is configured, WS proxy
services send asynchronous messages using the HTTP proxy server.

Proxy services based on WSDL with SOAP 1.2 binding support SOAP 1.2 messages only
and throw a fault with version mismatch error for SOAP 1.1 messages. Similarly, proxy
services based on WSDL with SOAP 1.1 binding support SOAP 1.1 messages only and
throw a fault with version mismatch error for SOAP 1.2 messages.

The following table describes the properties you use to configure a WS-based proxy service.
For more information, see Creating and Configuring Proxy Services.

Table 38-2 WS Transport Properties for Proxy Services

Property Description

Dispatch Policy Select the instance of WebLogic Server Work Manager that you want to
use for the dispatch policy for this endpoint. The default Work Manager is
used if no other Work Manager exists.

For information about Work Managers, see:

• Using Work Managers with Service Bus
• "Using Work Managers to Optimize Scheduled Work" in

Administering Server Environments for Oracle WebLogic Server

Retry Count Specify the number of times the WSRM layer tries to deliver a message
to the Service Bus message flow. The default is 3.

If an unhandled exception occurs in the request flow of a proxy, the
incoming WS Transport message is redelivered to the message flow up
to the number of times specified by this value. This is important for
reliably processing the WS transport messages.

Note: When the message delivery fails, the current transaction is rolled
back, but the message is not removed from the queue. The server tries to
send the message until the message is successfully delivered or the retry
limit is reached. When the retry limit is reached, that message is removed
from the queue or moved to an error queue. The error queue can be a
distributed queue and can be created from the Oracle WebLogic Server
Administration Console. For more information, see Configuring an Error
Queue.

Retry Delay Specify the duration in seconds that the server should wait before
retrying to deliver the message. The default is 5 seconds.

For more information about configuring proxy services using the WS transport, see the online
help provided with Service Bus.

Chapter 38
WS Transport Configuration Reference

38-9

Part VI
Creating Custom Transport Providers

This part describes the Service Bus Transport SDK, which is for experienced Java
developers who want to design, create, and deploy a new custom transport provider in
Service Bus. The Transport SDK documentation assumes you have solid knowledge of web
services technologies, Service Bus, the transport protocol that you want to use with Service
Bus, and WebLogic Server.
This part contains the following chapters:

• Learning About Custom Transport Providers

• Developing Custom Transport Providers

• Developing Custom Transport Providers for JDeveloper

• Packaging and Deploying a Custom Transport Provider

• Creating a Sample Socket Transport Provider

For additional information about the custom transport provider API and processing, see the
following appendixes:

• Transport SDK Interfaces and Classes

• Transport SDK UML Sequence Diagrams

39
Learning About Custom Transport Providers

This chapter describes the concepts, functionality, and design considerations for developing a
custom transport provider for use with Service Bus services. Careful planning of development
activities can greatly reduce the time and effort you spend developing a custom transport
provider.

This chapter includes the following sections:

• Introduction to Transport Providers

• Introduction to the Transport SDK

• Determining Whether to Develop a Custom Transport Provider

• Transport Provider Components

• The Transaction Model

• Transport SDK Security Model

• Transport SDK and the Threading Model

• Designing for Message Content

39.1 Introduction to Transport Providers
A transport provider implements the interfaces of the Transport Software Development Kit
(SDK) and provides a bridge between Service Bus and mechanisms by which messages are
sent or received.

Such mechanisms can include specific transport protocols, such as HTTP, as well as other
entities, such as a file or an email message. A transport provider manages the life cycle and
runtime behavior of transport endpoints, which are resource where messages originate or are
targeted.

A client sends a message to Service Bus using a specific transport protocol. A transport
provider processes the inbound message, handling communication with the service client
endpoint and acting as the entry point for messages into Service Bus. The binding layer
packs and unpacks messages, handles message security, and hands messages off to the
pipeline. For an illustration of the basic flow of messages through Service Bus, see
Figure 1-3.

Tip:

For more information about Service Bus message brokering and the role of the
transport layer, see Learning About Oracle Service Bus . For more detailed
sequence diagrams that describe the message flow through Service Bus, see
Transport SDK UML Sequence Diagrams.

39-1

By default, Service Bus includes transport providers that support several commonly
used transport protocols, such as HTTP, JMS, File, FTP, and others. These native
providers let you configure proxy and business services that require these common
transport protocols.

Tip:

For information about using and configuring native transport providers, see
Working with JCA Adapters, Transports, and Bindings .

39.2 Introduction to the Transport SDK
Service Bus processes messages independently of how they flow into or out of the
system. The Transport SDK provides a layer of abstraction between Service Bus and
components that deal with the flow of data in and out of Service Bus. This layer of
abstraction allows you to design and develop new transport providers to handle unique
transport protocols.
The SDK abstracts the following from the rest of Service Bus:

• Handling specific transport bindings.

• Deploying service endpoints on the transport bindings. An endpoint is either
capable of transmitting or receiving a message.

• Collecting monitoring information.

• Managing endpoints (such as performing suspend and resume operations and
setting connection properties).

• Enforcing Service Level Agreement (SLA) behavior (such as timing out
connections).

39.2.1 Transport SDK Features
This section describes the primary features of the Transport SDK.

• Handling Inbound and Outbound Messages

• Deploying Transport-Related Artifacts

• Processing Messages Asynchronously

39.2.1.1 Handling Inbound and Outbound Messages
A transport provider developed with the Transport SDK handles inbound and outbound
messages as follows:

• Inbound messages typically come into Service Bus from an outside source, such
as an HTTP client. The Transport SDK packages the payload and transport level
headers, if any, into a generic data structure. The Transport SDK then passes the
message, in its generic format, to the Service Bus pipeline.

• Outbound messages originate from Service Bus business services and go to an
externally managed endpoint, such as a web service or JMS queue. The Transport
SDK receives a generic data structure from the Service Bus pipeline, converts it to

Chapter 39
Introduction to the Transport SDK

39-2

the corresponding transport-specific headers and payload, and sends it out to an external
system.

The Transport SDK handles outbound and inbound messages independently. An inbound
message can be bound to one transport protocol and bound to a different transport protocol
on the outbound endpoint.

39.2.1.2 Deploying Transport-Related Artifacts
Certain transports include artifacts that need to be deployed to Oracle WebLogic Server. For
instance, a JMS proxy service is implemented as a message-driven bean. This artifact, an
EAR file, must be deployed when the new JMS proxy service is registered. Similarly, the EJB
transport provider employs an EAR file that must be deployed when a new EJB business
service is registered. Other kinds of artifacts might require deployment, such as a JMS
transport, which might create queues and topics as part of the service registration. The SDK
allows you to support these artifacts and lets you participate in the Oracle WebLogic Server
deployment cycle. If the deployment of one of these artifacts fails, the Service Bus session is
notified and the deployment is canceled. This feature of the SDK allows for the atomic
creation of services. If one part fails, the session reverts to its previous state.

Note:

To participate in Oracle WebLogic Server deployment cycle, the transport provider
must implement the TransportWLSArtifactDeployer interface. The primary benefit
of this technique is atomic Oracle WebLogic Server deployment, which can be
rolled back if needed. For more information on this interface, see Summary of
General Interfaces, and When to Implement TransportWLSArtifactDeployer.

39.2.1.3 Processing Messages Asynchronously
The server has a limited number of threads to work with when processing messages, so
asynchrony is important. This feature allows Service Bus to scale to handle large numbers of
messages. After a request is processed, the thread is released. When the business service
receives a response (or is finished with the request if it is a one-way message), it notifies
Service Bus asynchronously through a callback.

For additional information, see Support for Synchronous Transactions and Transport SDK
and the Threading Model.

39.2.2 Transport Provider Modes
With the Transport SDK, you can implement inbound property modes and outbound property
modes. These connection and endpoint modes are specified in the transport provider's XML
schema definition (XSD) file. For more information about this file, see Step 3. Create an XML
Schema File for Transport-Specific Artifacts. This schema is available to the Service Bus
pipeline for filtering and routing purposes.

39.2.3 Related Features
This section lists related features that are provided by the transport manager. The transport
manager provides the main point of centralization for managing different transport providers,

Chapter 39
Introduction to the Transport SDK

39-3

endpoint registration, control, processing of inbound and outbound messages, and
other functions. These features do not require specific support by a transport provider.

• Load Balancing

• Monitoring and Metrics

39.2.3.1 Load Balancing
The Transport SDK supports load balancing and failover for outbound messages. The
following load balancing options are supported:

• None: For each outbound request, the transport provider cycles through the URIs
in the list in which they were entered and attempts to send a message to each URI
until a successful send is completed.

• Round Robin: Similar to None, but in this case, the transport provider keeps track
of the last URI that was tried. Each time a message is sent, the provider starts
from the last position in the list.

• Random: The transport provider tries random URIs from the list in which they
were entered.

• Weighted Random: Each URI is associated with a weight. An algorithm is used to
pick a URI based on this weight.

39.2.3.2 Monitoring and Metrics
The transport manager handles monitoring metrics such as response-time, message-
count, error-count, failover-count, throttling-time, and cache-hit-count.

39.3 Determining Whether to Develop a Custom Transport
Provider

This section explains the basic use cases for writing a custom transport provider.

In some cases, it is appropriate to choose an alternative approach.

• When to Use the Transport SDK

• When Alternative Approaches are Recommended

39.3.1 When to Use the Transport SDK
One of the prime use cases for the Transport SDK is to support a specialized transport
that you already employ for communication between your internal applications. Such a
transport may have its own concept of setup handshake, header fields, metadata, or
transport-level security. Using the Transport SDK, you can create a transport
implementation for Service Bus that allows you to configure individual endpoints,
which can be inbound, outbound or both. With a custom transport implementation, you
can map the metadata and header fields of the specialized transport to context
variables available in a proxy service pipeline.

Use the Transport SDK when the transport provider needs to be seamlessly integrated
into all aspects of Service Bus for reliability, security, performance, management, user

Chapter 39
Determining Whether to Develop a Custom Transport Provider

39-4

interface, and the use of the UDDI registry. Some cases where it is appropriate to use the
Transport SDK to develop a custom transport include the following:

• Using a proprietary transport that requires custom interfaces and supports an
organization's existing applications.

• Using a CORBA or IIOP protocol for communicating with CORBA applications.

• Using other legacy systems, such as IMS and Mainframe.

• Using variations on existing transports.

• Using industry-specific transports, such as LLP, AS3, and ACCORD.

Alternatively, you can use the Transport SDK to support a specialized protocol over one of
the existing transports provided with Service Bus. Examples of this could include supporting
any of the following:

• Messages consisting of parsed or binary XML over HTTP.

• WS-RM or other new web service standards over HTTP.

• Request-response messaging over JMS, but with a different response pattern than either
of the two patterns supported by the Service Bus JMS transport (for example, a response
queue defined in the message context).

39.3.2 When Alternative Approaches are Recommended
Creating a new Service Bus transport provider using the Transport SDK can be a significant
effort. The Transport SDK provides a rich, full featured environment so a custom transport
can have all of the usefulness and capabilities of the transports that come natively with
Service Bus. But such richness brings with it some complexity. For certain cases, you might
want to consider easier alternatives.

If you need an extension merely to support a different format message sent or received over
an existing protocol, it may be possible to use the existing transport and use a Java Callout to
convert the message. For example, suppose you have a specialized binary format (such as
ASN.1 or a serialized Java object) being sent over the standard JMS protocol. In this case,
you might consider defining the service using the standard JMS transport with the service
type being a messaging service with binary input/output messages. Then, if the contents of
the message are needed in the pipeline, a Java Callout action can be used to convert the
message to or from XML. For information on using Java Callouts, see Using Java Callouts
and POJOs..

Below are some additional cases where it is best not to use the Transport SDK to develop a
custom transport provider:

• When combining existing Oracle solutions with Service Bus satisfies the transport
requirement; for example, Oracle WebLogic Server, Oracle WebLogic Integration, Oracle
Data Service Integrator, Oracle Business Process Management, Oracle Tuxedo, and
Oracle WebLogic Portal.

• When service enablement tools provide a simpler and more standards-based mechanism
to implement SOA practices.

• When alternative connectivity solutions (certified with Service Bus) also address the
requirement; for example: iWay adapters and Cyclone B2B.

• When EJBs can be used instead as a means to abstract some type of simple Java
functionality.

Chapter 39
Determining Whether to Develop a Custom Transport Provider

39-5

39.4 Transport Provider Components
In general, a custom transport provider consists of a design-time part and a runtime
part. The design-time part is concerned with registering endpoints with the transport
provider. This configuration behavior is provided by the implementation of the UI
interfaces. The runtime part implements the mechanism of sending and receiving
messages.

When you develop a new custom transport provider, you need to implement a number
of interfaces provided by the SDK. This section includes UML diagrams that model the
organization of the design-time and runtime parts of the SDK.

Tip:

In Service Bus, implementations of the TransportProvider interface
represent the central point for management of transport protocol-specific
configuration and runtime properties. A single instance of a
TransportProvider object exists for every supported protocol. For example,
there are single instances of HTTP transport provider, JMS transport
provider, and others.

For a list of the required interfaces, see Developing Custom Transport Providers.
Transport SDK Interfaces and Classes. provides a summary of the interfaces and
classes provided by the Transport SDK. The Java API Reference for Oracle Service
Bus provides detailed descriptions.

39.4.1 Design-Time Component
The design-time part of a custom transport provider consists of the user interface
configuration. This configuration is called by the Oracle Service Bus Console or IDE
when a new business or proxy service is being registered. Figure 39-1 shows a UML
diagram that depicts the structure of the design time part of a transport provider. Some
of the interfaces described in the diagram include:

• TransportManager: A transport provider communicates with the transport
manager through this interface. The implementation is not public.

• TransportProvider: Third parties must implement this interface. The
TransportProvider keeps track of TransportEndpoint objects and also manages
the life cycle of the endpoints. For example, you can suspend a transport endpoint
managed through the TransportProvider interface.

• TransportUIBinding: This interface helps the Oracle Service Bus Console render
the transport specific pages.

Chapter 39
Transport Provider Components

39-6

Figure 39-1 Design Time UML Diagram

Note:

Each transport endpoint has a configuration that consists of some properties that
are generic to all endpoints of any transport provider, such as a URI, and some
properties that are specific to endpoints of that provider only. Figure 39-2 shows the
relationship between the shared endpoint configuration properties and transport
provider specific configuration properties. For more information, see Overview of
Transport Endpoint Properties.

Chapter 39
Transport Provider Components

39-7

Figure 39-2 EndPointConfiguration Properties

39.4.2 Runtime Component
The runtime part of a custom transport provider receives messages and delivers them
to the Service Bus runtime. It also delivers outbound messages from the Service Bus
runtime to external services.

In the runtime framework, the transport provider calls the transport manager to
acknowledge that an inbound message has been received. The transport message
context contains the header and body of the inbound message. For the outbound
message, there is a TransportSendListener and TransportSender. The transport
provider retrieves the header and body from the message.

Figure 39-1 shows a UML diagram that depicts the structure of the runtime part of a
transport provider.

Chapter 39
Transport Provider Components

39-8

Figure 39-3 Runtime UML Diagram

39.5 The Transaction Model
Before you develop a new transport provider using the Transport SDK, it is important to
consider the transaction model for your message endpoints. This section discusses the
transaction model used by Service Bus and how that model relates to the Transport SDK.

• Overview of Transport Endpoint Properties

• Support for Synchronous Transactions

39.5.1 Overview of Transport Endpoint Properties
A transport endpoint is a Service Bus resource, such as a JMS proxy service, where
messages are originated or targeted. In Service Bus, transport endpoints are managed by
protocol-specific transport providers, plug-in objects that manage the life cycle and runtime
behavior of transport endpoints.

To understand the transactional model of Service Bus, it is useful to review some of the
properties of service transport endpoints.

Chapter 39
The Transaction Model

39-9

39.5.1.1 Transactional vs. Non-Transactional Endpoints
A given endpoint may or may not be transactional. A transactional endpoint has
potential to start or enlist in a global transaction context when processing a message.
The following examples illustrate how transactional properties vary depending on the
endpoint:

• A JMS proxy service that uses the XA connection factory is a transactional
endpoint. When the message is received, the container ensures that a transaction
is started so the message is processed in the context of a transaction.

• A Tuxedo proxy service may or may not be a transactional endpoint. A Tuxedo
proxy service is only transactional if a transaction was started by the Tuxedo client
application before the message is received.

• While an HTTP proxy service will not typically have an associated transaction
when invoked by an HTTP client, you can set an option in the HTTP proxy service
configuration that starts a transaction and executes the message flow in the
context of that transaction.

39.5.1.2 Supported Message Patterns
A given endpoint can use one of the following message patterns:

• One Way: No responses are expected. An example of a one-way endpoint is a
JMS proxy service that does not expect a response.

• Synchronous: A request or response is implied. In this case, the response
message is paired with the request message implicitly because no other traffic can
occur on the transport channel from the time the request is issued until the time
the response is received. In most cases, a synchronous message implies blocking
calls for outbound requests. An EJB endpoint is synchronous. An HTTP endpoint
is also synchronous: a new request cannot be sent until a response is received.

• Asynchronous: A request and response is implied. The response is correlated to
a request through a transport-specific mechanism, such as a JMS transport and
correlation through a JMSCorrelationID message property. For example, a JMS
business service endpoint with request and response is asynchronous.

39.5.2 Support for Synchronous Transactions
All Service Bus proxy services support transaction propagation, can start a transaction
if none already exists, and can optionally ensure that the response occurs in the
context of the transaction, even if the outbound business service is asynchronous. In
essence this transforms an asynchronous pattern effectively into a synchronous
pattern. Outbound business services can provide additional transaction support, such
as suspending an existing transaction.

Synchronous transactional transports support the following use cases:

• Use Case 1 (Response Pipeline Processing)

• Use Case 2 (Service Callout Processing)

• Use Case 3 (Suspending Transactions)

• Use Case 4 (Multiple URIs)

Chapter 39
The Transaction Model

39-10

39.5.2.1 Use Case 1 (Response Pipeline Processing)
Response pipeline processing is included in an incoming transaction when the inbound
transport supports synchronous transactions or when you configure a proxy service to
propagate a transaction to the response. Service Bus supports this case when the inbound
transport is paired with any other outbound transport, with one exception, as described in the
following paragraph.

A deadlock situation occurs when the inbound transport is synchronous transactional and the
outbound transport is asynchronous transactional. The deadlock occurs because the
outbound request is not available to be received by the business service until after the
transaction commits, but the transaction was started externally and does not commit until
Service Bus gets the response and returns. The transport manager recognizes this situation
and avoids the deadlock by throwing a runtime error. For example, if a synchronous
transactional inbound endpoint is used, such as a Tuxedo proxy service, and the outbound
endpoint is asynchronous transactional, such as a JMS business service, the outbound
request does not commit the transaction until the response is received. It cannot be received
until the external entity receives the request and processes it.

Also in this case, the Publish action performed in the response pipeline is part of the
transaction just like publish actions in the request pipeline are part of the transaction.

Note:

There are several actions that can potentially participate in a transaction (in either
the request or response pipeline). These include Publish, Service Callout, and
Report actions.

For example, if an inbound Tuxedo transport is synchronous transactional, it can be
committed only after the request and response pipeline have been completed. In this case,
the transport manager transfers the transaction context from the inbound to the outbound
thread. When the response thread is finished, the transaction control and outcome are
returned to the invoking client.

39.5.2.2 Use Case 2 (Service Callout Processing)
Service Callout pipeline actions allow you to make a callout from the pipeline to another
service. If a Service Callout action is made to a synchronous transactional transport, Exactly
Once and Best Effort quality of service are supported. Exactly Once means that messages
are delivered from inbound to outbound exactly once, assuming a terminating error does not
occur before the outbound message send is initiated. Best Effort means that each dispatch
defines its own transactional context (if the transport is transactional). When Best Effort is
specified, there is no reliable messaging and no elimination of duplicate messages; however,
performance is optimized. For more information, see Working with TransportOptions.

Callouts to synchronous transactional transports are optionally part of an existing transaction.
For example, while the request pipeline is executing during a global transaction, Service
Callouts are permitted to participate in the transaction. For example, if there is a callout to an
EJB service, the service can participate in that transaction if it wants to by setting its quality of
service value to Exactly Once.

For more information on Service Callouts, see Adding Service Callout Actions in the Console.

Chapter 39
The Transaction Model

39-11

39.5.2.3 Use Case 3 (Suspending Transactions)
Before calling the transport provider to send an outbound request, the transport
framework will suspend a transaction if the following conditions apply:

• The outbound service endpoint is transactional.

• There is a global XA transaction in progress.

• The quality of service is set to Best Effort.

The suspended transaction resumes after the "send" operation is complete.

39.5.2.4 Use Case 4 (Multiple URIs)
If a given outbound service endpoint has multiple URIs associated with it, and is
transactional, failover only occurs while the transaction, if any, is not marked for
rollback. For example, if a URI is called, and the service returns an error, a failover is
normally triggered. In this event, the transport framework detects that the transaction
has been marked for rollback; therefore, the framework does not perform a failover to
a different URI.

39.6 Transport SDK Security Model
The Transport SDK allows customers and third-parties to plug in new transports to
Service Bus. Within the Service Bus security model, transport providers are
considered trusted code. It is critical that transport provider implementations are
carefully designed to avoid potential security threats by creating security holes.
Although this document does not contain specific guidelines on how to develop secure
transport providers, this section discusses certain security goals of the Transport SDK.

39.6.1 Inbound Request Authentication
Transport providers are free to implement whatever inbound authentication
mechanisms are appropriate to that transport. For example: the HTTP transport
provider supports these authentication methods:

• HTTP basic authentication

• Custom authentication tokens carried in HTTP headers

The HTTPS transport provider supports SSL client authentication, in addition to the
ones listed above. Both HTTP and HTTPS transport providers also support
anonymous client requests.

The transport provider is responsible for implementing any applicable transport level
authentication schemes. If the transport provider authenticates the client it must make
the client Subject object available to Service Bus by calling
TransportManager.receiveMessage() within the scope of
weblogic.security.Security.runAs(subject). For information on this method, see
the Java API Reference for Oracle Service Bus.

Chapter 39
Transport SDK Security Model

39-12

Note:

For information on the Java class Subject, see http://docs.oracle.com/
javase/7/docs/api/javax/security/auth/Subject.html.

The proxy services uses this Subject in the following ways:

• During access control to the proxy service

• To populate the message context variable $inbound/ctx:security/
ctx:transportClient/*

• As the input for identity propagation and credential mapping (unless there is also
message-level client authentication)

If the transport provider does not support authentication, or if it supports anonymous
requests, it must make sure the anonymous subject is on the thread before dispatching the
request. Typically the transport provider will already be running as anonymous, but if this is
not the case, then the provider must make the following calls:

Subject anonymous = SubjectUtils.getAnonymousUser()
Security.runAs(anonymous, action)

The transport provider is also responsible for providing any Oracle Service Bus Console
configuration pages required to configure inbound client authentication. The transport
provider must clearly document its inbound authentication model.

39.6.2 Outbound Request Authentication
Transport providers are free to implement whatever outbound authentication schemes are
appropriate to that transport. The Transport SDK includes methods to facilitate outbound user
name and password authentication, (two-way) SSL client authentication, and JAAS Subject
authentication.

39.6.2.1 Outbound User Name and Password Authentication
Outbound user name and password authentication can be implemented by leveraging
Service Bus service accounts. Service accounts are first-class, top-level Service Bus
resources.You create and manage service accounts in the Oracle Service Bus Console or in
JDeveloper. Transport providers are free to design their transport-specific configuration to
include references to service accounts. That way the transport provider can make use of the
credential management mechanisms provided by the service accounts.

Transport providers are not concerned with the details of service account configuration. There
are three types of service accounts:

• Static: A static service account is configured with a fixed user name and password.

• Mapped: A mapped service account contains a list of remote-users and remote-
passwords, along with a map from local-users to remote-users. Mapped service accounts
can optionally map the anonymous subject to a given remote user.

• Pass-through: A pass-through service account indicates that the user name and
password of the Service Bus client must be sent to the back-end.

Chapter 39
Transport SDK Security Model

39-13

http://docs.oracle.com/javase/7/docs/api/javax/security/auth/Subject.html
http://docs.oracle.com/javase/7/docs/api/javax/security/auth/Subject.html

An outbound endpoint can have a reference to a service account. The reference to the
service account must be stored in the transport-specific endpoint configuration. When
a proxy service routes a message to this outbound endpoint, the transport provider
passes the service account reference to
CredentialCallback.getUsernamePasswordCredential(ref). Service Bus returns the
user name and password according to the service account configuration. This has the
advantage of separating identity propagation and credential mapping configuration
from the transport-specific details, simplifying the Transport SDK. It also allows sharing
this configuration. Any number of endpoints can reference the same service account.

Note:

The CredentialCallback object is made available to the transport provider
by calling TransportSender.getCredentialCallback().

CredentialCallback.getUsernamePasswordCredential() returns a
weblogic.security.UsernameAndPassword instance. This is a simple class that has
methods to get the user name and password. The user name and password returned
depends on the type of service account. If the service account is of type static, the
fixed user name and password is returned. If it is mapped, the client subject is used to
look up the remote user name and password. If it is pass-through, the client's user
name and password is returned.

Note:

A mapped service account throws a CredentialNotFoundException if one of
the following occurs:

• There is no map for the inbound client.

• The inbound security context is anonymous and there is no anonymous
map.

39.6.2.2 Outbound SSL Client Authentication (Two-Way SSL)
Service Bus supports outbound SSL client authentication. In this case, the proxy
service making the outbound SSL request must be configured with a PKI key-pair for
SSL. This is done with a reference to a proxy service provider, and the details are out
of the scope of this document. To obtain the key-pair for SSL client authentication, the
transport provider must call CredentialCallback.getKeyPair(). The HTTPS transport
provider is an example of this.

39.6.2.3 Outbound JAAS Subject Authentication
Some transport providers send a serialized JAAS Subject on the wire as an
authentication token. To obtain the inbound subject the transport provider must call
CredentialCallback.getSubject().

Chapter 39
Transport SDK Security Model

39-14

Note:

The return value may be the anonymous subject.

39.6.3 Link-Level or Connection-Level Credentials
Some transports require credentials to connect to services. For example, FTP endpoints may
be required to authenticate to the FTP server. Transport providers can make use of static
service accounts to retrieve a user name and password for establishing the connection. Note
that mapped or pass-through service accounts cannot be used in this case because these
connections are not made on behalf of a particular client request. If a transport provider
decides to follow this approach, the endpoint must be configured with a reference to a service
account. At runtime, the provider must call
TransportManagerHelper.getUsernamePassword(), passing the reference to the static
service account.

39.6.4 Uniform Access Control to Proxy Services
Service Bus enforces access control to proxy services for every inbound request. Transport
providers are not required to enforce access control or to provide interfaces to manage the
access control policy.

The access control policy covers the majority of the use cases; however, a transport provider
can implement its own access control mechanisms in addition to the access control check
done by Service Bus if they are needed for reasons specific to the transport provider. If that is
the case, contact your Oracle representative. In general Oracle recommends transport
providers let Service Bus handle access control.

When access is denied, TransportManager.receiveMessage() throws an
AccessNotAllowedException wrapped inside a TransportException. Transport providers are
responsible for checking the root-cause of the TransportException. A transport provider may
do special error handling when the root cause is an AccessNotAllowedException. For
example, the HTTP/S transport provider returns an HTTP 403 (forbidden) error code in this
case.

Note:

Service Bus makes the request headers available to the authorization providers for
making access control decisions.

39.6.5 Identity Propagation and Credential Mapping
As explained in Outbound Request Authentication , Service Bus provides three types of
service accounts. A transport provider can make use of service accounts to get access to the
user name and password for outbound authentication. A service account hides all of the
details of identity propagation and credential mapping from Service Bus transport providers.

Chapter 39
Transport SDK Security Model

39-15

39.7 Transport SDK and the Threading Model
This section provides an illustration for a hypothetical transport endpoint processing a
single inbound message.

A front end artifact, such as a servlet, is responsible for getting the inbound message.
A request can be routed to an outbound endpoint and sent asynchronously. At this
point, the thread is released. At some later point, a response is sent back to Service
Bus (using a callback). The response is received, packaged, and handed to the
Service Bus pipeline. Later, the pipeline notifies the inbound endpoint that the
response is ready to be sent to the client. This processing is scalable because a
thread is only tied up as long as it is needed.

Figure 39-4 Sample Service Bus Threading Model

39.7.1 Inbound Request Message Thread
During inbound request message processing, the following actions occur in the same
thread:

1. An inbound message is received by the front end artifact of the transport endpoint.
This front end artifact could be something like an HTTP servlet or JMS message-
driven bean instance.

2. The message is packaged into a TransportMessageContext object by the
transport endpoint implementation and is passed to the Service Bus runtime. For
more information on the TransportMessageContext interface, see Metadata and
Header Representation for Request and Response Messages.

3. The pipeline performs the configured request pipeline actions.

4. While processing the inbound message in the pipeline, in the same (request)
thread, Service Bus runtime calls on the registered outbound transport endpoint,
which may or may not be managed by the same provider, to deliver an outbound
message to an external service.

Chapter 39
Transport SDK and the Threading Model

39-16

5. At some later point, the external service asynchronously calls on the outbound endpoint
to deliver the response message. The outbound endpoint must have been registered
previously with a transport specific callback object.

Note:

At this point, the initial request thread is released and placed back into the
Oracle WebLogic Server thread pool for use by another request.

39.7.2 Outbound Response Message Thread
During outbound response message processing, the following actions occur in the same
thread:

1. The response message is packaged into a TransportMessageContext object and
delivered back to the Service Bus runtime for response processing. This processing
occurs in a different thread than the request thread. This new thread is called the
response thread.

2. After the response message is processed, Service Bus runtime calls on the
InboundTransportMessageContext object to notify it to send the response back to the
original caller. For more information on the InboundTransportMessageContext interface,
see Metadata and Header Representation for Request and Response Messages.

If the transport provider does not have a native implementation of an asynchronous (non-
blocking) outbound call, it still needs to deliver the response back to the Service Bus
runtime on a separate thread than that on which the inbound request message was
received. To do this, it can execute the call in a blocking fashion in the request thread and
then use a Transport SDK helper method to deliver the response back to the Service Bus
runtime.

For example, the EJB transport provider does not have an asynchronous (non-blocking)
outbound call. The underlying API is a blocking API. To work around this, the provider
makes its blocking call, then schedules the response for processing with
TransportManagerHelper.schedule(). For more information on the EJB transport
provider, see Using the EJB Transport.

39.7.3 Support for Asynchrony
By design, the transport subsystem interacts asynchronously with Service Bus. This is
because asynchronous behavior is more scalable, and therefore, more desirable than
synchronous behavior. Rather than create two separate APIs, one for asynchronous and one
for synchronous interaction, the Service Bus runtime expects asynchronous interaction. It is
up to the transport developer to work around this by a method such as posting a blocking call
and posting the response in a callback. In any case, the response must be executed in a
different thread from the request.

39.7.4 Publish and Service Callout Threading
The transport subsystem behaves the same way for Service Bus Publish and Service Callout
actions, which can occur in the middle of the request or response pipeline processing. These
actions occur outside the scope of the transport subsystem and in the scope of a Service Bus

Chapter 39
Transport SDK and the Threading Model

39-17

pipeline. Therefore, some differences exist between the threading behavior of Publish
and Service Callout actions and transport providers.

Note the following cases:

• Service Callout: The pipeline processor blocks the thread until the response
arrives asynchronously. The blocked thread then resumes execution of the
pipeline. The purpose is to bind variables that can later be used in pipeline actions
to perform business logic. Therefore, these actions must block so that the
business logic can be performed before the response comes back.

• Publish: The pipeline processor may or may not block the thread until the
response arrives asynchronously. This thread then continues execution of the rest
of the request or response pipeline processing.

Tip:

A Service Callout action allows you to configure a synchronous
(blocking) call to a proxy or business service that is already registered
with Service Bus. Use a Publish action to identify a target service for a
message and configure how the message is packaged and sent to that
service. For more information on Service Callout and Publish actions,
see Adding Service Callout Actions in the Console and Adding Publish
Actions in the Console.

39.8 Designing for Message Content
Transport providers have their own native representation of message content.

For example, the HTTP transport uses java.io.InputStream, JMS has Message
objects of various types, Tuxedo has buffers, and the Oracle WebLogic Server Web
Services stack uses SAAJ. However, within the runtime of a proxy service, the native
representation of content is the Message Context. While Service Bus supports some
common conversion scenarios, such as InputStream to and from Message Context,
this conversion between transport representation and the Message Context is
ultimately the transport provider's responsibility.

In general, the Transport SDK is not concerned with converting directly between two
different transport representations of content. However, if two transports use
compatible representations and the content does not require re-encoding, the SDK
may allow the source content to be passed-through directly (for example, passing a
FileInputStream from an inbound File transport to an outbound HTTP transport).
However, if the source content requires any sort of processing, it makes more sense to
unmarshal the source content into the Message Context first and then use the
standard mechanisms to generate content for the outgoing transport.

39.8.1 Sources and Transformers
Content is represented as an instance of the Source interface. Transport SDK
interfaces that deal with message content, such as TransportSender and
TransportMessageContext, all use the Source interface when passing message
payloads. The requirements on a Source are minimal. A Source must support push-
and pull-based conversions to byte-based streams using the two methods defined in

Chapter 39
Designing for Message Content

39-18

the base Source interface. A Source may or may not take into account various transformation
options, such as character-set encoding, during serialization, as specified by the
TransformOptions parameter.

While all Source objects must implement the base serialization interface, the underlying
representation of the Source object's content is implementation specific. This allows for
Source objects based on InputStreams, JMS Message objects, Strings, or whatever
representation is most natural to a particular transport. Typically, Source implementations
allow direct access to the underlying content, in addition to the base serialization methods.
For example, StringSource, which internally uses a String object to store its content offers a
getString() method to get at the internal data. The ultimate consumer of a Source can then
extract the underlying content by calling these source-specific APIs and potentially avoid any
serialization overheads.

Sources may also be transformed into other types of sources using a Transformer object. If a
Source consumer, such as a transport provider, is given a Source instance that it does not
recognize, it can often transform it into a Source instance that it does recognize. The
underlying content can then be extracted from that known Source using the source-specific
APIs. However, often a transport provider simply serializes the content and send it using the
base serialization methods. For more information, see Source and Transformer Classes and
Interfaces.

39.8.2 Sources and the MessageContext Object
Sources are the common content representation between the transport layer and the binding
layer. The binding layer is the entity responsible for converting content between the Source
representation used by the transport layer and the Message Context used by the pipeline
runtime. How that conversion happens depends upon the type of service (its binding type)
and the presence of attachments. While not strictly part of the Transport SDK, any transport
provider that defines its own Source objects should be familiar with this conversion process.

When attachments are not present, the incoming Source represents just the core message
content. The MessageContext is initialized by converting the received Source to a specific
type of Source and then extracting the underlying content. For example, for XML-based
services, the incoming Source is converted to an XmlObjectSource. The XmlObject is then
extracted from the XmlObjectSource and used as the payload inside the $body context
variable. SOAP services are similarly converted to XmlObjectSource except that the
extracted XmlObject must be a SOAP Envelope so that the <SOAP:Header> and <SOAP:Body>
elements can be extracted to initialize the $header and $body context variables.

Below are the canonical Source types used for the set of defined service-types:

• SOAP: XmlObjectSource

• XML: XmlObjectSource

• TEXT: StringSource

• MFL: MFLSource

For binary services, no Source conversion is done. Instead, the Source is registered with a
SourceRepository and the resulting <binary-content/> XML is used as the payload
inside $body.

When attachments are present, the incoming Source is first converted to a
MessageContextSource. From the MessageContextSource, two untyped Source objects are
obtained, one representing the attachments and one representing the core message. The
Source for the core message is handled as described previously. The Source representing

Chapter 39
Designing for Message Content

39-19

attachments is converted to an AttachmentsSource. From the AttachmentsSource,
XML is obtained and is used to initialize the $attachments context variable and a
SourceRepository containing the registered Sources that represent any binary
attachment content. This entire process is illustrated in Figure 39-5.

Figure 39-5 Flow of Attachments

A similar conversion occurs when creating a Source from data in the MessageContext
to be passed to the transport layer. The core message is represented by a Source
instance that can be converted to the canonical Source for the service type. In most
cases, the Source is already an instance of the canonical Source, but not always.
When attachments are present, the Source delivered to the transport layer will be a
source that can be converted to an instance of MessageContextSource. If the transport
provider supports Content-Type as a pre-defined transport header, then the delivered
Source will likely be an instance of MessageContextSource. Otherwise, the delivered
Source is likely an instance of MimeSource, but this can also be converted to a
MessageContextSource.

The reason for this difference is that transports that natively support Content-Type as
a transport header require that the top-level MIME headers appear in the transport
headers rather than in the payload. Examples of this are HTTP and email. Transports
that do not natively support Content-Type must have these top-level MIME headers as

Chapter 39
Designing for Message Content

39-20

part of the payload, as the Content-Type header is critical for decoding a multipart MIME
package.

39.8.3 Built-In Transformations
Table 39-1 shows sources and lists the source types to which they can be converted by built-
in transformers. For example, there is a built-in transformer that handles converting a
StringSource into an XmlObjectSource; however, there is no transformer that can convert a
StringSource into an MFLSource. Typically, these transformers take advantage of their
knowledge of the internal data representation used by both Source types.

Table 39-1 Built-In Transformations

Public Source Can Be Transformed To

Source • StreamSource
• ByteArraySource
• StringSource
• XmlObjectSource
• DOMSource
• MFLSource
• SAAJSource

StreamSource StreamSource

ByteArraySource ByteArraySource

StringSource • StringSource
• XmlObjectSource
• DOMSource

XmlObjectSource • StringSource
• XmlObjectSource
• DOMSource
• MFLSource

DOMSource • StringSource
• XmlObjectSource
• DOMSource
• MFLSource

MFLSource • XmlObjectSource
• DOMSource
• MFLSource

MimeSource • MimeSource
• SAAJSource
• MessageContextSource

SAAJSource • MimeSource
• SAAJSource
• MessageContextSource

MessageContextSource • MimeSource
• SAAJSource
• MessageContextSource

These generic transformations are done without any knowledge of the initial Source type but
instead rely on the base serialization methods that are implemented by all Sources:
getInputStream() and writeTo(). So, although it is ultimately possible to convert an

Chapter 39
Designing for Message Content

39-21

XmlObjectSource to a ByteArraySource, it is not done using any special knowledge of
the internal details of XmlObjectSource.

Note:

Many custom sources implemented by transports can be handled by these
generic transformations, especially if the underlying data is an unstructured
collection of bytes. For example, the File Transport uses a custom source
that pulls its content directly from a file on disk. However, that data is just a
set of bytes without structure, so there is no need to provide custom
transformations to, for example, XmlObjectSource. The generic
transformation can handle this custom FileSource using just the base
serialization methods that all Sources must implement.

For more information, see Source and Transformer Classes and Interfaces.

Chapter 39
Designing for Message Content

39-22

40
Developing Custom Transport Providers

This chapter describes the basic steps involved in developing a custom transport provider.
The Transport SDK provides a layer of abstraction between transport protocols and the
Service Bus runtime system. This layer of abstraction makes it possible to develop and plug
in new transport providers to Service Bus. The Transport SDK interfaces provide this bridge
between transport protocols, such as HTTP, and the Service Bus runtime.

Tip:

Before beginning this chapter, be sure to review Learning About Custom Transport
Providers..

This chapter includes the following sections:

• Development Road Map

• Before You Begin

• Basic Development Steps

• Important Development Topics

• Creating Help for Custom Transports

40.1 Development Road Map
The process of designing and building a custom transport provider is complex. This section
offers a recommended path to follow as you develop your transport provider.

Development of a custom transport provider breaks down into three basic stages: Planning,
developing, and packaging and deploying.

• Planning

• Developing

• Packaging and Deploying

40.1.1 Planning
Perform the following planning steps before developing a custom transport provider.

1. Decide if you really need to develop a custom transport provider. See Determining
Whether to Develop a Custom Transport Provider

2. Run and study the example socket transport provider. The source code for this provider is
installed with Service Bus and is publicly available for you to examine and reuse. See
Creating a Sample Socket Transport Provider.

40-1

3. Review Learning About Custom Transport Providers. This chapter discusses the
architecture of a transport provider and many aspects of transporter provider
design, such as the security model and the threading model employed by transport
providers.

4. Review Before You Begin.

40.1.2 Developing
Custom transport development steps include creating required artifacts, such as XML
schema files, configuration components, and user interfaces. Basic Development
Steps describes steps you need to take to develop a transport provider. Before
developing your custom transport, review Important Development Topics, which
discusses several topics that you might need to refer to during the development cycle,
such as message and error handling and transforming messages.

40.1.3 Packaging and Deploying
For detailed information on packaging and deploying a transport provider, see
Packaging and Deploying a Custom Transport Provider.

40.2 Before You Begin
There are several design considerations to take into account before you begin to
develop a custom transport provider.

These considerations include the following:

• Determine whether you really need to develop a custom transport provider. See
Determining Whether to Develop a Custom Transport Provider.

• Determine whether your message endpoints are transactional or non-
transactional. See Transactional vs. Non-Transactional Endpoints.

• Determine whether your message endpoints are one way, synchronous, or
asynchronous. See Supported Message Patterns and Support for Synchronous
Transactions .

• Determine the security requirements for outgoing and incoming messages. See
Transport SDK Security Model .

• Understand the threading model used by Service Bus. See Transport SDK and the
Threading Model.

• Determine whether your transport provider should support synchronous or
asynchronous outbound calls. See Support for Asynchrony.

• Review the interfaces and classes provided with the Transport SDK, and become
familiar with how they fit into the design-time and runtime parts of a transport
provider. See Transport SDK Interfaces and Classes.

• Understand how to package and deploy a custom transport provider. See
Packaging and Deploying a Custom Transport Provider.

• Review the flow of method calls through the transport framework. See Transport
SDK UML Sequence Diagrams.

Chapter 40
Before You Begin

40-2

40.3 Basic Development Steps
These are the basic steps to follow when developing a custom transport provider.

Step1. Review the Transport Framework Components

Step 2. Create a Directory Structure for Your Transport Project

Step 3. Create an XML Schema File for Transport-Specific Artifacts

Step 4. Define Transport-Specific Artifacts

Step 5. Define the TransportProviderConfiguration XMLBean

Step 6. Implement the Transport Provider User Interface

Step 7. Implement the Runtime Interfaces

Step 8. Package and Deploy the Transport Provider

40.3.1 Step1. Review the Transport Framework Components
Figure 40-1 illustrates the components that you must implement and configure to create a
custom transport provider. The transport manager controls and manages the registration of
transport providers and handles communication with Service Bus. A transport provider
manages the life cycle and runtime behavior of transport endpoints (resources where
messages originate or are targeted). You use the Transport SDK to develop custom transport
providers.

Figure 40-1 Transport Subsystem Overview

The parts of the transport subsystem that you must implement and configure include the
following:

Chapter 40
Basic Development Steps

40-3

• Transport UI bindings: The user interface component for the transport provider.
Related interfaces are summarized in User Interface Configuration.

• Transport endpoint: Responsible for sending and accepting messages. Related
interfaces are summarized in General Classes and Interfaces.

• Endpoint configuration: Stores endpoint configurations. Related interfaces are
listed in Schema-Generated Interfaces.

• Transport message context: Contains metadata for request and response
headers and other parts of the message (inbound and outbound). For additional
information, see Source and Transformer Classes and Interfaces and Metadata
and Header Representation for Request and Response Messages.

• WLS artifact deployer: (optional) Deploys artifacts, such as servlets that receive
and send messages.

• Transport sender: Retrieves metadata for the outbound message and the
payload. Related interfaces are summarized in Summary of General Interfaces.

• Transport listener: Allows the outbound endpoint to post the result of an
outbound request to the rest of Service Bus. See also Metadata and Header
Representation for Request and Response Messages.

• Request/Response Metadata: Related interfaces are summarized in Metadata
and Header Representation for Request and Response Messages.

40.3.2 Step 2. Create a Directory Structure for Your Transport Project
Before developing a new transport provider, take time to set up an appropriate
directory structure for your project. The recommended approach is to copy the
directory structure used for the sample socket transport provider. For a detailed
description of this structure, see Sample Location and Directory Structure .

40.3.3 Step 3. Create an XML Schema File for Transport-Specific
Artifacts

Create an XML schema (XSD) file for transport-specific definitions. You can base this
file on the schema file developed for the sample socket transport provider:
OSB_ORACLE_HOME/samples/servicebus/sample-transport/schemas/
SocketTransport.xsd

Note:

The SocketTransport.xsd file imports the file TransportCommon.xsd. This
file is the base schema definition file for service endpoint configurations. This
file is located in OSB_ORACLE_HOME/lib/modules/
oracle.servicebus.kernel-api.jar. You might want to review the contents
of this file before continuing.

Chapter 40
Basic Development Steps

40-4

40.3.4 Step 4. Define Transport-Specific Artifacts
Define XML schemas for the following transport-specific artifacts in the XML schema file
described in the previous section, Step 3. Create an XML Schema File for Transport-Specific
Artifacts.

• EndpointConfiguration

• RequestMetaDataXML

• ResponseMetaDataXML

Each of these schema definitions is converted into a corresponding Java file and compiled.
Once you build the sample socket transport provider, you can find examples of these
converted Java source files in OSB_ORACLE_HOME/samples/servicebus/sample-transport/
build/classes/com/bea/alsb/transports/sock/impl. Only simple XML types are
supported when defining metadata and headers specific to the transport provider. For
example, complex types with nested elements are not supported. Furthermore, there can be
at most one header with a given name.

40.3.4.1 EndPointConfiguration
EndPointConfiguration is the base type for endpoint configuration, and describes the
complete set of parameters necessary for the deployment and operation of an inbound or
outbound endpoint. This configuration consists of generic and provider-specific parts. For
more information on the EndPointConfiguration schema definition, refer to the
documentation elements in the TransportCommon.xsd file.

You need to specify a provider-specific endpoint configuration in the schema file. The
following example shows an excerpt from the SocketTransport.xsd.

Example - Sample SocketEndPointConfiguration Definition

<xs:complexType name="SocketEndpointConfiguration">
 <xs:annotation>
 <xs:documentation>
 SocketTransport - specific configuration
 </xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:choice>
 <xs:element name="outbound-properties"
 type="SocketOutboundPropertiesType"/>
 <xs:element name="inbound-properties"
 type="SocketInboundPropertiesType"/>
 </xs:choice>
 <xs:element name="request-response" type="xs:boolean">
 <xs:annotation>
 <xs:documentation>
 Whether the message pattern is synchronous
 request-response or one-way.
 </xs:documentation>
 </xs:annotation>
 </xs:element>
...

Chapter 40
Basic Development Steps

40-5

40.3.4.2 RequestMetaDataXML
Each transport provider must store metadata (message headers) in a Plain Old Java
Object (POJO) and pass that to the pipeline. Examples of information that might be
transmitted in the metadata are the Content-Type header, security information, or
locale information. A RequestMetaData POJO is a generic object that extends the
RequestMetaData abstract class and describes the message metadata of the incoming
or outgoing request. The transport provider must deliver the message metadata to the
Service Bus runtime in a RequestMetaData POJO. For additional information, see
Request and Response Metadata Handling.

RequestMetaDataXML is an XML representation of the same RequestMetaData POJO.
This XML representation uses Apache XML bean technology. It is only needed by the
Service Bus runtime when processing of the message involves any actions in the
pipeline that need an XML representation of the metadata, such as setting the entire
metadata to a specified XML fragment on the outbound request.

You must specify request metadata configuration in the schema file. The following
example shows an excerpt from the SocketTransport.xsd.

Example - Sample SocketRequestMetaDataXML Definition

<xs:complexType name="SocketRequestMetaDataXML">
 <xs:annotation>
 <xs:documentation/>
 </xs:annotation>
 <xs:complexContent>
 <xs:extension base="ts:RequestMetaDataXML">
 <xs:sequence>
 <xs:element name="client-host"
 type="xs:string" minOccurs="0">
 <xs:annotation>
 <xs:documentation>
 Client host name
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="client-port" type="xs:int" minOccurs="0">
 <xs:annotation>
 <xs:documentation>Client port</xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

40.3.4.3 RequestHeadersXML
RequestHeadersXML is the base type for a set of inbound or outbound request headers.
You need to specify the RequestHeadersXML configuration in the schema file. The
following example shows an excerpt from the SocketTransport.xsd.

Example - Sample SocketRequestHeadersXML Definition

<xs:complexType name="SocketRequestHeadersXML">
 <xs:annotation>
 <xs:documentation/>

Chapter 40
Basic Development Steps

40-6

 </xs:annotation>
 <xs:complexContent>
 <xs:extension base="ts:RequestHeadersXML">
 <xs:sequence>
 <xs:element name="message-count" type="xs:long" minOccurs="0">
 <xs:annotation>
 <xs:documentation>
 Number of messages passed till now.
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

40.3.4.4 ResponseMetaDataXML
ResponseMetaDataXML is the base type for metadata for a response to an inbound or
outbound message. You need to specify the ResponseMetaDataXML configuration in the
schema file. The following example shows an excerpt from the SocketTransport.xsd.

Example - Sample SocketResponseMetaDataXML Definition

<xs:complexType name="SocketResponseMetaDataXML">
 <xs:complexContent>
 <xs:extension base="ts:ResponseMetaDataXML">
 <xs:sequence>
 <xs:element name="service-endpoint-host"
 type="xs:string" minOccurs="0">
 <xs:annotation>
 <xs:documentation>
 Host name of the service endpoint connection.
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="service-endpoint-ip"
 type="xs:string" minOccurs="0">
 <xs:annotation>
 <xs:documentation>
 IP address of the service endpoint connection.
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

40.3.4.5 ResponseHeadersXML
ResponseHeadersXML is the base type for a set of response headers. You need to specify the
ResponseHeadersXML configuration in the schema file. The following example shows an
excerpt from the SocketTransport.xsd.

Example - Sample SocketResponseHeadersXML Definition

<xs:complexType name="SocketResponseHeadersXML">
 <xs:annotation>
 <xs:documentation/>

Chapter 40
Basic Development Steps

40-7

 </xs:annotation>
 <xs:complexContent>
 <xs:extension base="ts:ResponseHeadersXML"/>
 </xs:complexContent>
 </xs:complexType>

40.3.5 Step 5. Define the TransportProviderConfiguration XMLBean
To configure the TransportProviderConfiguration XML bean, edit the transport
provider configuration file. This XML file is located in the resources directory in the
sample-transport directory. Configure the file according to the following guidelines:

• If proxy services can use your transport, set the inbound-direction-supported
element to true.

• If business services use your transport, set the outbound-direction-supported
element to true.

• If your transport is self-described, include an element self-described with the
value set to true. A self-described transport is one whose services are responsible
for describing their shape (schema or WSDL file) based on their endpoint
configuration.

• If you want to publish a tModel for your transport to a UDDI registry, include an
element UDDI. See About Publishing Proxy Services to a UDDI Registry for more
info.

Tip:

The schema for TransportProviderConfiguration is defined in
TransportCommon.xsd, which is located in OSB_ORACLE_HOME/lib/
servicebus-schemas.jar. Refer to the schema file for more information.

40.3.6 Step 6. Implement the Transport Provider User Interface
When you add a business or proxy service using the Oracle Service Bus Console, you
select a transport provider in the service creation wizard. The wizard includes the
transport providers that are provided with Service Bus and any custom transport
providers that were developed with the Transport SDK. When you configure a
business or proxy service, properties specific to the transport being used appear in the
editor. These are all part of the user interface you need to develop for the custom
transport provider.

This section discusses the Transport SDK API components that bind your custom
transport provider to the Oracle Service Bus Console user interface. You must
implement these APIs to connect your provider to the user interface.

Tip:

This section assumes that you are familiar with the service creation wizards
and the service definition editors. See Creating a Socket Transport Sample
Project, for a detailed, illustrated example.

Chapter 40
Basic Development Steps

40-8

Transport Configuration Processing Flow

1. When users create a new service, they must select an appropriate transport provider on
the service creation wizard. They then also select a service type, such as SOAP, WSDL-
based, XML, or messaging. To validate the selection, the wizard calls the following
method of the TransportUIBinding interface:

public boolean isServiceTypeSupported(BindingTypeInfo binding)

This method determines if the transport provider is suitable for the selected service type.

2. Users then enter an endpoint URI. To validate this URI, the wizard calls the following
method of the TransportUIBinding interface:

public TransportUIError[] validateMainForm(TransportEditField[] fields)

3. Once you create a service, the console displays the service definition editor, which
includes a transport-specific configuration page. To render this page, the editor calls the
following method of the TransportUIBinding interface:

public TransportEditField[] getEditPage(EndPointConfiguration config,
BindingTypeInfo binding) throws TransportException

The Transport SDK offers a set of TransportUIObjects that represent fields on the
configuration page. For example, you can add text boxes, check boxes, and other types
of UI elements. Use the TransportUIFactory to create them, and then use the same
factory to specify additional properties and obtain TransportEditField objects that can
be displayed on the service definition editors.

Tip:

You can associate events with most of the UI fields. An event acts like a
callback mechanism for the TransportUIBinding class and lets you refresh,
validate, and update the configuration page. When an event is triggered, the
wizard calls the following method:

updateEditPage(TransportEditField[] fields, String name) throws TransportException

4. When users complete the transport configuration, the editor calls the validation method:

TransportUIError[] validateProviderSpecificForm(TransportEditField[] fields)

5. After the service is saved, the transport manager calls the following method of the
TransportProvider class:

void validateEndPointConfiguration(TransportValidationContext context)

If no error is reported, a new endpoint is created. The transport manager then calls the
following method:

TransportEndPoint createEndPoint(EndPointOperations.Create context) throws
TransportException

If this method returns successfully, the new service is listed and the underlying transport
configuration is associated with an endpoint on the TransportProvider.

Chapter 40
Basic Development Steps

40-9

Note:

The endpoint configuration is saved in the Service Bus session and does
not need to be persisted or recovered in case of a server restart by the
transport provider.

6. Once the session is activated, you must deploy the endpoint to start processing
requests. To learn more about deploying an endpoint and processing requests,
see When to Implement TransportWLSArtifactDeployer and Deploying to a
Cluster..

Tip:

For the sample socket transport provider, you can find the
implementations of these interfaces in the sample-transport/src
directory.

40.3.7 Step 7. Implement the Runtime Interfaces
A new custom transport provider must implement certain runtime interfaces. For a
summary of the Transport SDK interfaces and related classes, see Transport SDK
Interfaces and Classes. For detailed information on interfaces and classes, see the
Java API Reference for Oracle Service Bus.

Tip:

For the sample socket transport provider, you can find the implementations
of these interfaces in the sample-transport/src directory.

You must implement the following interfaces when developing a custom transport
provider:

• TransportProvider

• TransportWLSArtifactDeployer

• TransportEndPoint

• InboundTransportMessageContext

• OutboundTransportMessageContext

• Transformer

Chapter 40
Basic Development Steps

40-10

Note:

– Only implement the TransportWLSArtifactDeployer interface if the
transport provider needs to deploy WebLogic Server-related artifacts, such
as EAR, WAR, and JAR files, that go into a WebLogic Server change list at
the time of endpoint creation. For more information, see When to
Implement TransportWLSArtifactDeployer.

– Only implement the Transformer interface if the transport provider needs to
work with non-standard payload bindings, for example, anything other than
Stream, DOM, SAX, or XMLBean. For more information, see Transforming
Messages .

40.3.8 Step 8. Package and Deploy the Transport Provider
For information about this process, see Packaging and Deploying a Custom Transport
Provider.

40.4 Important Development Topics
This section discusses several topics that you should consider when developing a custom
transport provider, including message and error handling, message transformation, transport
options, environment values, UDDI registries, and so on.

• Handling Messages

• Transforming Messages

• Working with TransportOptions

• Handling Errors

• Defining Custom Environment Value Types

• Publishing Proxy Services to a UDDI Registry

• When to Implement TransportWLSArtifactDeployer

40.4.1 Handling Messages
The Transport SDK features a flexible representation of message payloads. All Transport
SDK APIs dealing with payload use the Source interface to represent message content.

The Source-derived message types provided with the Transport SDK include:

• StreamSource

• ByteArraySource

• StringSource

• XmlObjectSource

• DOMSource

• MFLSource

• SAAJSource

Chapter 40
Important Development Topics

40-11

• MimeSource

Note:

StreamSource is a single use source; that is, it implements the marker
interface SingleUseSource. With the other Sources, you can get the
input stream from the source multiple times. Each time the Source object
gets the input stream from the beginning. With a SingleUseSource, you
can only get the input stream once. Once the input is consumed, it is
gone (for example, a stream from a network socket); however, Service
Bus buffers the input from a SingleUseSource, essentially keeping a
copy of all of its data.

If you implement a Source class for your transport provider, you need to
determine whether you can re-get the input stream from the beginning. If
the nature of the input stream is that it can only be consumed once, your
Source class should implement the marker interface SingleUseStream.

The Transport SDK provides a set of transformers to convert between source objects.
You can implement new transformations, as needed, as long as they support
transformations to and from a set of canonical representations. For more information,
see Transforming Messages and Designing for Message Content .

40.4.1.1 Sending and Receiving Message Data
When implementing inbound endpoints to deliver the inbound message to the Service
Bus runtime, you need to call TransportManager.receiveMessage(). The transport
provider is free to expose the incoming message payload in either one of the standard
source-derived objects, such as stream, DOM or SAX, or a custom one.

If Service Bus needs to send a response message back to the client that sent the
request, it will call methods setResponseMetaData() and setResponsePayload()
followed by close() on InboundTransportMessageContext to indicate that the
response is ready to be sent back. When the Service Bus runtime calls the inbound
transport message context close() method, this is done from a different thread than
that on which the inbound request message was received. The transport provider
should be aware of this because it may affect the semantics of transactions. Also, the
transport provider cannot attempt to access the response payload or metadata until
close() has been called.

40.4.1.2 Request and Response Metadata Handling
Each transport provider must store metadata and headers in a Plain Old Java Object
(POJO) and pass that to the pipeline. There are some cases where Service Bus
requires an XMLBean. In these cases, you need to implement a conversion from
POJO to XMLBean using the API.

You must provide the following methods to convert from a POJO to XML:

RequestHeaders.toXML()

RequestMetaData<T>.toXML()

ResponseHeaders.toXML()

Chapter 40
Important Development Topics

40-12

ResponseMetaData<T>.toXML()

For the reverse direction (XML to POJO) you need to implement:

TransportEndPoint.createRequestMetaData(RequestMetaDataXML)

InboundTransportMessageContext.createResponseMetaData(ResponseMetaDataXML)

40.4.1.3 Character Set Encoding
Each transport provider is responsible for specifying the character set encoding of the
incoming message payload to Service Bus. For outgoing messages (outbound request and
inbound response), the transport provider is responsible for telling Service Bus what
character set encoding to use for the outgoing payload. The character-set encoding is
specified in request and response metadata.

In virtually every case, the character-set encoding that the transport is responsible for
inserting into the metadata is exactly the encoding that is statically specified in the service
configuration. One of the few exceptions to this is HTTP transport, which inspects Content-
Type for any "charset" parameters and overrides any encoding configured in the service. This
is necessary in order to conform to HTTP specifications. Other transport protocols may need
to handle similar issues.

Tip:

In general, the encoding for a service is fixed. If someone sends a UTF-16 encoded
message to a proxy that is specified to be SHIFT_JIS, then that is generally
considered to be an error. Transport providers should not need to inspect the
message simply to determine encoding.

For outgoing messages, the transport provider tells Service Bus what encoding it requires for
the outbound request, and Service Bus performs the conversion if necessary.

Transports should always rely on this encoding for outgoing messages and should not
assume that it is the same as the encoding specified in the service configuration. If there is a
discrepancy, the transport can choose to allow it, but others could consider it an error and
throw an exception. Also the transport has the additional option of leaving the encoding
element blank. That leaves the pipeline free to specify the encoding (for example, using pass-
through).

40.4.1.4 Co-Located Calls
If a given transport provider supports proxy service endpoints, you can configure the request
pipeline such that there is a routing step that routes to that provider's proxy service.
Furthermore there could be a Publish or a Service Callout action that sends a message to a
proxy service instead of a business service. This use case is referred to as co-located calls.

The transport provider needs to be aware of co-located calls, and handle them accordingly.
Depending on the nature of the proxy service endpoint implementation, the transport provider
may choose to optimize the invocation such that this call bypasses the entire transport
communication stack and any inbound authentication and authorization, and instead is a
direct call that effectively calls TransportManager.receiveMessage() immediately.

Chapter 40
Important Development Topics

40-13

Tip:

Service Bus has implemented this optimization with the HTTP, File, Email
and FTP transport providers. The JMS provider does not use this
optimization due to the desire to separate the transactional semantics of
send operation versus receive operations.

If you want to use this optimization in a custom transport provider, you need to extend
the CoLocatedMessageContext class and call its send() method when
TransportProvider.sendMessageAsync() is invoked.

40.4.1.5 Returning Outbound Responses to the Service Bus Runtime
When the Service Bus runtime sends a message to an outbound endpoint and there is
a response message to be returned, the transport provider must return this response
asynchronously. That means TransportSendListener.onReceiveResponse() or
TransportSendListener.onError() methods need to be called from a different thread
than the one on which TransportProvider.sendMessageAsync() was called.

If the transport provider has a built-in mechanism by which the response arrives
asynchronously, such as responses to JMS requests or HTTP requests when the
async response option is used, it happens naturally. However, if the transport provider
has no built-in mechanism for retrieving responses asynchronously, it can execute the
outbound request in a blocking fashion and then schedule a new worker thread using
the TransportManagerHelper.schedule() method, in which the response is posted to
the TransportSendListener.

40.4.2 Transforming Messages
When Service Bus needs to set either the request payload to an outbound message or
the response payload to an inbound message, it asks the transport provider to do so
through an object derived from the Source interface. The transport provider then needs
to decide what representation the underlying transport layer requires and use the
Transformer.transform() method to translate the Source object into the desired
source.

Tip:

For more information on message transformation, see Designing for
Message Content . For a list of built-in transformations, see Built-In
Transformations and Source and Transformer Classes and Interfaces.

A custom transport provider can support new kinds of transformations. Suppose a
transport provider needs to work with a DOM object in order to send the outbound
message. When called with setRequestPayload(Source src), the transport provider
needs to call the method:

TransportManagerHelper.getTransportManager().getTransformer().
transform(src, DOMSource.class, transformOptions)

Chapter 40
Important Development Topics

40-14

The return value of the method gives a DOMSource, which can then be used to retrieve the
DOM node.

Note:

If the transport provider requires a stream, there is a shortcut: each Source object
supports transformation to stream natively.

You can add new transformations to a custom transport provider. For example, suppose you
want to add a new kind of Source-derived class, called XYZSource. For performance reasons,
transport providers are encouraged to provide conversions from XYZSource to one of the two
canonical Source objects, XmlObjectSource and StreamSource when applicable. Without
such transformation, generic transformers are used, which rely on the StreamSource
representation of XYZSource. Of course, if XYZSource is a simple byte-based Source with no
internal structure, then relying on the generic transformers is usually sufficient. Note that any
custom transformer that is registered with TransportManager is assumed to be thread-safe
and stateless.

To support attachments, the transport provider has the following three options:

• The Source returned by TransportMessageContext must be an instance of
MessageContextSource. A limitation of this option is that MessageContextSource requires
that the content has already been partitioned into a core-message Source and an
attachments Source.

• The Source is an instance of MimeSource and the Headers objects contain a multipart
Content-Type header.

• The Content-Type is a pre-defined header for the transport provider with the specific
value multipart/related. Both HTTP and email transports rely on this third option for
supporting attachments.

40.4.3 Working with TransportOptions
A TransportOptions object is used to supply options for sending or receiving a message. A
TransportOptions object is passed from the transport provider to the transport manager on
inbound messages. On outbound messages, a TransportOptions object is passed from the
Service Bus runtime to the transport manager, and finally to the transport provider.

40.4.3.1 Inbound Processing
The transport provider supplies the following parameters to
TransportManager.receiveMessage():

• QOS: Specifies exactly-once or best-effort quality of service. Exactly-once quality of
service is specified when the incoming message is transactional.

• Throw On Error: If this flag is set, an exception is thrown to the callee of method
TransportManager.receiveMessage() when an error occurs during the Service Bus
pipeline processing. The options for throwing the exception include: throw the exception
back to the inbound message or create a response message from the error and notify the
inbound message with the response message. Typically, you set Throw On Error to true
when QOS is exactly-once (for transactional messages).

Chapter 40
Important Development Topics

40-15

For example, JMS/XA sets this flag to true to throw the exception in the same
request thread, so it can mark the exception for rollback. HTTP sets the flag to
false, because there is no retry mechanism. The error is converted to a status
code and a response message is returned.

• Any transport-specific opaque data: Opaque data can be any data that is set by
the transport provider and passed through the pipeline to the outbound call. This
technique optimizes performance when the same transport is used on inbound
and outbound. The opaque data is passed directly through the pipeline from the
inbound transport to the outbound transport. For example, the HTTP transport
provider can pass the user name and password directly from the inbound to the
outbound to efficiently support identity pass-through propagation.

40.4.3.2 Outbound Processing
For outbound processing, the Service Bus runtime supplies parameters to the
transport manager, which uses some of the parameters internally and propagates
some parameters to TransportProvider.sendMessageAsync(). These parameters
include the following:

• QOS: Specifies whether or not exactly-once quality of service can be achieved.
For example, for HTTP, if quality of service is set to exactly once, the HTTP call is
blocking. If it is set to best effort, it is a non-blocking HTTP call.

• Mode: Specifies one-way or request response. For more information, see
Transport Provider Modes.

• URI, Retry Interval, and Count: The transport provider uses the URI to initialize
the outbound transport connection. For example, the HTTP transport provider
uses the URI when instantiating a new HttpURLConnection. The transport provider
is not required to use retry interval and count.

• OperationName: The transport provider can use OperationName if it needs to
know what outbound web service is being used. The transport manager uses this
parameter to keep track of monitoring statistics.

• Any transport-specific opaque data: An example of transport-specific opaque
data is the value of the Authorization header for HTTP.

40.4.3.3 Request Mode
The request mode is defined as an enumeration with two values: REQUEST_ONLY (also
called one-way) and REQUEST_RESPONSE. These modes are interpreted as follows for
requests and responses:

• On outbound requests, the pipeline indicates the mode through TransportOptions
and the transport provider must honor the mode.

• On inbound requests, the pipeline knows the mode and closes the inbound
request and does not send a response if it computes the mode REQUEST_ONLY.

• If a response is sent by the pipeline, then there is a response even if the response
is empty.

• For transports that are inherently one-way, the transport must not specify response
metadata.

Chapter 40
Important Development Topics

40-16

40.4.4 Handling Errors
There are three different use cases to consider with respect to the effect runtime exceptions
have on the transactional model. The use cases are:

• The exception occurs somewhere in the request pipeline but before the outbound call to
the business service.

• The exception occurs during the business service call.

• The exception occurs sometime after the business service call in the response pipeline.

40.4.4.1 Case 1: The Exception Occurs Before the Outbound Call
In this case, the exception occurs somewhere in the request pipeline but before the outbound
call to the business service, as shown in Figure 40-2. For example, executing a specific
XQuery against the contents of the request message raises an exception.

If there is a user-configured error handler configured for the request pipeline, the error is
handled according to the user configuration. Otherwise, the proxy service either catches an
exception when calling TransportManager.receiveMessage() or is notified in the
InboundTransportMessageContext.close() method of the error through response metadata,
based on the transport options passed as an argument to the receiveMessage() call. If the
proxy service indicates that the exception should be thrown, surround receiveMessage() with
a try/catch clause and mark the transaction for rollback.

Figure 40-2 Error Case 1

40.4.4.2 Case 2: The Exception Occurs During the Outbound Call
In this case, exception occurs during the business service call, as shown in Figure 40-3. The
outbound transport provider does one of the following:

• Throws an exception from TransportProvider.sendMessageAsync(). For example, the
outbound provider throws an exception if there was an error while establishing a socket
connection to external service. This situation could occur if the business service cannot
be called because of an incorrect URL, a faulty connection, or other reasons. In these
cases, the transport provider must raise an exception.

• Notifies the listener through TransportSendListener.onError(). For example, if the
business service was called, but the call resulted in an error (such as a SOAP fault), the
transport provider needs to call TransportSendListener.onError() instead of raising an
exception.

Chapter 40
Important Development Topics

40-17

In the first instance, the exception handling is the same as that described in Case 1:
The Exception Occurs Before the Outbound Call. In the second instance, if there is an
error handler configured for the response pipeline, the error is handled according to
the user configuration. Otherwise, the exception is propagated back to the proxy
service endpoint in InboundTransportMessageContext.close() through the response
metadata.

Figure 40-3 Error Case 2

40.4.4.3 Case 3: The Exception Occurs After the Outbound Call
In this case, the exception occurs sometime after the business service call in the
response pipeline, as shown in Figure 40-4. Again, in the absence of a user-defined
error handler for the response pipeline, the proxy service endpoint is notified of the
error with the InboundTransportMessageContext.close() method with appropriate
response metadata. If the inbound transport endpoint is a synchronous transactional
endpoint, it is guaranteed that the transaction that was active at the time request was
received is still active and it may be rolled back. If the inbound endpoint is not
transactional or not synchronous, there is not an inbound transactional context to roll
back, so some other action might need to be performed.

Figure 40-4 Error Case 3

Chapter 40
Important Development Topics

40-18

40.4.4.4 Catching Application Errors
When business services try to access an external service and an error occurs in the external
service application, such as a SOAP fault, subsequent retries by the services are likely to
produce errors until the application is fixed. Service Bus lets you identify application errors,
giving you the option of preventing retries on application errors when your transport is used.

This section describes how to catch application errors in your transport and configure your
transport to prevent application error retries.

40.4.4.4.1 Identifying Application Errors

In your transport provider code you must identify the conditions under which an application
error occurs. For example, in the HTTP transport, an application error is one in which the
HTTP response has a 500 status code, has a non-empty payload, and has a content type
that is consistent with the service type, such as XML for SOAP. When an error meets the
application error conditions you define, return a TRANSPORT_ERROR_APPLICATION type
using one of the following methods:

• Errors in the request: Throw a TransportException with the error code
TRANSPORT_ERROR_APPLICATION in TransportProvider.sendMessageAsync().

• Errors in the response: Schedule TransportSendListener.onError() with the error
code TRANSPORT_ERROR_APPLICATION.

The Transport SDK can then identify application errors when they occur and handle them
accordingly. The Transport SDK also sends application errors to the pipeline $fault variable.

40.4.4.4.2 Configuring Application Error Retries

In your <Transport>Config.xml file, enter the following element as a child of the
<ProviderConfiguration> element, according to the TransportCommon.xsd schema located
in /OSB_ORACLE_HOME/lib/modules/oracle.servicebus.kernel-api.jar:

<declare-application-errors>true</declare-application-errors>

This entry provides an option to retry application errors on the business service's main
transport configuration page when a user selects your transport. If you do not provide this
element, the default value is false, application errors are not caught, and no option is
provided to retry application errors.

40.4.4.5 Catching Connection Errors
Service Bus lets you identify connection errors in your transport, which trigger the Transport
SDK to take inaccessible endpoint URIs offline automatically. For example, in a cluster with
Service Bus running on Managed Servers, a Managed Server that experiences a connection
error on a service request can automatically mark the endpoint URI as offline.

You can re-enable endpoint URIs in the following ways:

• On configuring the business service, you can set a retry count and retry iteration interval
to determine the frequency and number of retries after connection errors. A successful
connection to the service after a retry automatically reactivates the endpoint URI.

Chapter 40
Important Development Topics

40-19

A retry iteration interval of zero (0) takes the endpoint URI offline indefinitely and
requires you to manually re-enable the endpoint URI.

• You can manually re-enable offline endpoint URIs from Fusion Middleware Control
on the Dashboard for the business service.

The automated connection error functionality does not apply to the following situations:

• If a service pipeline dynamically sets an endpoint URI in $outbound/
ctx:transport/ctx:uri, the Transport SDK cannot take the URI offline, because
the endpoint URI is not defined in the service configuration.

• The Transport SDK does not persist connection status. After a server restart, all
endpoint URIs are considered online.

For more information, see "Managing and Monitoring Endpoint URIs for Business
Services" in Administering Oracle Service Bus.

40.4.4.5.1 Identifying Connection Errors

Once caught, a connection error triggers the Transport SDK to take the affected
endpoint URI offline automatically. In your transport provider code, you must identify
the conditions under which a connection error occurs. For example, in the Service Bus
HTTP transport, a connection error is one in which the HTTP response has a 404
status code or there is an IOException when a connection is attempted on the
endpoint URI.

When an exception meets the connection error conditions you define, return a
TRANSPORT_ERROR_CONNECTION type using one of the following methods:

• Errors in the request: Throw a TransportException with the error code
TRANSPORT_ERROR_CONNECTION in
TransportProvider.sendMessageAsync().

• Errors in the response: Schedule TransportSendListener.onError() with the
error code TRANSPORT_ERROR_CONNECTION.

The Transport SDK can then identify connection errors when they occur and handle
them accordingly. The Transport SDK also sends connection errors to the
pipeline $fault variable and adds them to the response.

40.4.5 Defining Custom Environment Value Types
You can define custom environment value types to use in your transport
implementation. When you use the TransportProvider.getEnvValues() method to
return environment values for an endpoint, you can declare environment values of
these custom types.

When your transport is used, custom environment value types can be used in the
same ways that standard environment value types are used in Service Bus, such as
for customization, find and replace, and preservation of values on configuration import.
For example, you may want to be able to define and preserve references to a service
account or a JMS queue in your transport configuration. Environment value types can
be any of the following categories: environment, operational, and security.

Add custom variables to your <Transport>Config.xml file. The schema that
determines the XML structure is TransportCommon.xsd, located in located in /
OSB_ORACLE_HOME/lib/servicebus-schemas.jar.

Chapter 40
Important Development Topics

40-20

Following is an example of a custom security variable in the JMS transport's JmsConfig.xml:

<env-value-type>
 <name>JMS Service Accounts</name>
 <localized-display-name>
 <localizer-class>com.bea.wli.sb.transports.messages.
 TransportsTextLocalizer</localizer-class>
 <message-id>JMS_SERVICE_ACCOUNTS</message-id>
 </localized-display-name>
 <localized-description>
 <localizer-class>com.bea.wli.sb.transports.messages.
 TransportsTextLocalizer</localizer-class>
 <message-id>JMS_SERVICE_ACCOUNTS</message-id>
 </localized-description>
 <simple-value>true</simple-value>
 <category>security</category>
</env-value-type>

Following are descriptions of key elements for custom environment value types:

• name: The variable name used by the Transport SDK.

• display-name: The name for the variable that appears in the Service Bus user interface.
Following is the localization alternative:

– localized-display-name: Alternative, localized version of display-name.

– localizer-class: The localization properties text file containing the localized display-
name. The .properties extension is not required.

– message-id: The property in the localization properties file that provides the value of
the display name.

• description: Description of the environment value type. For localization, use the
localized-description element instead with the localizer-class and message-id child
elements as described in display-name.

• simple-value: If the environment value type is of the category "environment," simple-
value determines whether or not this type is searchable with find and replace functionality
in Service Bus (value of true or false).

• category: The category of the environment value type: environment, security, or
operational. When the category is security or operational, you can decide whether or not
to preserve the environment value type during configuration import. When the category is
environment, the environment value type is available for find and replace.

40.4.6 Publishing Proxy Services to a UDDI Registry
Universal Description, Discovery, and Integration (UDDI) is a standard mechanism for
describing and locating web services across the internet. You might want to publish proxy
services based on a custom transport provider to a UDDI registry. This allows proxy services
to be imported into another Service Bus server in a different domain from the one hosting the
business service.

To publish a proxy service, the transport provider needs to define a tModel that represents
the transport type in the UDDI section of TransportProviderConfiguration XML schema
definition. This tModel must contain a CategoryBag with a keyedReference whose tModelKey
is set to the UDDI Types Category System and whose keyValue is transport. You are
required to provide only the UDDI V3 tModel key for this tModel. If UDDI already defines a
tModel for this transport type, you should copy and paste the definition into the UDDI section.

Chapter 40
Important Development Topics

40-21

For more information on the schema-generated interfaces, see Schema-Generated
Interfaces.

The following example provides an example of such a tModel.

Example tModel

<?xml version="1.0" encoding="UTF-8"?>
<ProviderConfiguration xmlns="http://www.bea.com/wli/sb/transports">
 . . .
 . . .
 <UDDI>
 <TModelDefinition>
 <tModel tModelKey="uddi:bea.uddi.org:transport:socket">
 <name>uddi-org:socket</name>
 <description>Socket transport based webservice</description>
 <overviewDoc>
 <overviewURL useType="text">
 http://www.bea.com/wli/sb/UDDIMapping#socket
 </overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference keyName="uddi-org:types:transport"
 keyValue="transport"
 tModelKey="uddi:uddi.org:categorization:types"/>
 </categoryBag>
 </tModel>
 </TModelDefinition>
 </UDDI>
</ProviderConfiguration>

If UDDI does not already define a tModel for this transport type, Service Bus can
publish the tModel you define here to configured registries. When a UDDI registry is
configured for Service Bus, the Load tModels into Registry option can be specified.
That option causes all of the tModels of Service Bus, including the tModels for custom
transport providers, to be published to the UDDI registry. After deploying your transport
provider, you can update your UDDI registry configuration to publish your tModel.

During UDDI export,
TransportProvider.getBusinessServicePropertiesForProxy(Ref) is called and the
resulting map is published to the UDDI registry. The provider is responsible for making
sure to preserve all important properties of the business service in the map so that
during the UDDI import process the business service definition can be correctly
constructed without loss of information.

During UDDI import, TransportProvider.getProviderSpecificConfiguration(Map)
is called and the result is an XmlObject that conforms to the provider-specific endpoint
configuration schema, which goes into the service definition.

40.4.7 When to Implement TransportWLSArtifactDeployer
Two sets of transport provider interfaces are provided that deal with individual service
registration. TransportProvider has methods like create, update, delete, suspend,
and resume, and TransportWLSArtifactDeployer has the same methods. This
section discusses these two implementations and explains when you need to
implement TransportWLSArtifactDeployer.

Only implement TransportWLSArtifactDeployer if your provider needs to make
changes to Oracle WebLogic Server artifacts in the Service Bus domain. The methods

Chapter 40
Important Development Topics

40-22

in TransportWLSArtifactDeployer are only called on an Admin Server. In this case, changes
are made through the DomainMBean argument that is passed in, and then the changes are
propagated to the entire cluster.

The TransportProvider methods are called on all servers (Administration and Managed
Servers) in the domain. Because you cannot make changes to Service Bus domain artifacts
on a Managed Server, the purpose of the method calls on TransportProvider is to update its
internal data structures only.

When a given Transport provider implements the TransportWLSArtifactDeployer interface,
the methods on TransportWLSArtifactDeployer are called before the corresponding
methods on TransportProvider. For example, TransportWLSArtifactDeployer.onCreate()
is called before TransportProvider.createEndPoint(). For more information about
TransportWLSArtifactDeployer, see Summary of General Interfaces.

40.5 Creating Help for Custom Transports
You can provide online help for your custom transports for both JDeveloper and Oracle
Service Bus Console. Both provide their own integrated help system.

In JDeveloper, you need to incorporate the help into the existing help system. The Oracle
Service Bus Console displays custom transport help stand-alone in its own browser window.
Custom transport help is displayed when you click the Help icon on the transport
configuration page of the service definition editor. Providing help is optional, but it can be
extremely useful in guiding service creators through the transport configuration process.

Chapter 40
Creating Help for Custom Transports

40-23

Figure 40-5 Custom Transport Help from the Service Bus Console

40.5.1 About Custom Transport Online Help
You have a lot of flexibility in deciding what type of help content to provide, from a
simple page of text with no graphics to multiple pages with many graphics, PDF files,
embedded video and so on. For example, you could create a single HTML file and
reference it from the help link; or you could create separate help files that describe the
transport configuration fields for business services and proxy services and also
provide a high-level overview. You can create separate help topics for Oracle Service
Bus Console and JDeveloper or use the same ones.

Service Bus provides a sample help implementation in its sample socket transport,
located at OSB_ORACLE_HOME/samples/servicebus/sample-transport. The sample
transport is a good reference implementation for developing your own custom
transports and help.

40.5.2 How to Provide Custom Transport Help in the Console
This section shows you how to provide help for your custom transport at runtime in the
Oracle Service Bus Console. Service Bus displays custom transport help as a stand-
alone help page in a browser.

Chapter 40
Creating Help for Custom Transports

40-24

Figure 40-6 provides a high-level view of the console help framework for custom transports.

Figure 40-6 Oracle Service Bus Console Help Framework

By implementing a specific Service Bus interface, you use the getHelpPage() method to
launch a single HTML page when the user clicks the Help icon for the custom transport
configuration page in the console. The HTML file can contain the following:

• Text, inline CSS definitions, inline JavaScript functions

• References to graphics and other resources, as long as those resources are hosted in a
web application or an external web site

In most situations, you should be able to provide all the help for your custom transport with
text and inline formatting.

However, if you want to provide full-featured web-based help that includes graphics and other
external resources, those resources must be hosted in a web application or an external web
site. You must either reference those external resources in the HTML file or provide a link
from the HTML file to an external location. For example, the sample socket transport help
provides a link from the starting HTML file to a help topic with graphics that is running in a
custom web application. Using an embedded JavaScript call, you could also set up your
HTML file to automatically redirect to the expanded help URL you want.

Perform the following tasks to implement online help in the console:

• Implement the CustomHelpProvider Interface

• Create an HTML File to Launch

• Create a Simple Web Application to Display Expanded Help (Optional)

When you are done creating your help files, package the files as described in Packaging Help
for the Transport Plug-in.

40.5.2.1 Implement the CustomHelpProvider Interface
To develop the configuration user interface for your custom transport, you implement the
TransportUIBinding interface in a custom class. To provide help for your transport
configuration user interface in the Oracle Service Bus Console, you must also implement the
CustomHelpProvider interface. CustomHelpProvider contains the getHelpPage() method

Chapter 40
Creating Help for Custom Transports

40-25

you need to launch help for your transport configuration page in the Oracle Service
Bus Console.

The sample socket transport implements CustomHelpProvider in its
SocketTransportUIBinding class (located at OSB_ORACLE_HOME/samples/servicebus/
sample-transport/src/com/bea/alsb/transports/sock).

The following example contains snippets that illustrate the implementation of
CustomHelpProvider.

Example - Implementing CustomHelpProvider to provide console online help

public class SocketTransportUIBinding
 implements TransportUIBinding, CustomHelpProvider {
 ...
 public Reader getHelpPage() {
 String helpFile = "help/en/contexts_socketTransport.html";
 ClassLoader clLoader = Thread.currentThread().getContextClassLoader();
 InputStream is = clLoader.getResourceAsStream(helpFile);
 InputStreamReader helpReader = null;
 if(is!=null)
 helpReader = new InputStreamReader(is);
 else
 SocketTransportUtil.logger
 .warning(SocketTransportUtil.formatText(uiContext.getLocale(),
"800138"));
 return helpReader;
 }
}

In the previous example, getHelpPage() returns a Reader stream that the Oracle
Service Bus Console uses to send the HTML page to the browser. The helpFile path
is relative to the root within the transport JAR.

If you are providing help in multiple languages, use TransportUIContext.getLocale()
to help provide the appropriate path to the localized content; in this case, providing the
locale value for /help/<locale>/<localized>.html.

40.5.2.2 Create an HTML File to Launch
You can create an HTML file for the getHelpPage() method to launch, as illustrated by
help/en/contexts_socketTransport.html in the example in Implement the
CustomHelpProvider Interface. If you want to keep your help implementation simple,
create the HTML file to use text, inline CSS definitions, and inline JavaScript functions.
If you do this, you do not need to create a separate web application to host graphics or
other external resources.

However, if you want to provide more expanded help with graphics and other
resources, reference those external resources in your HTML file, such as

img src="/help_socket/help/en/wwimages/addProject.gif"

or

a href="http://www.yoursite.com"

You can also set the HTML file up to automatically redirect to the expanded help with
an embedded JavaScript call, as shown in the following example, which redirects from

Chapter 40
Creating Help for Custom Transports

40-26

the sample socket transport HTML page to the expanded help_socket web application help
content.

Example - JavaScript function that provides a redirect

<script language="JavaScript" type="text/javascript">
<!-- Begin
window.location="/help_socket/help/en/example.html";
// End -->
</script>

The sample socket transport HTML file provides a link to its expanded help. The HTML file,
contexts_socketTransport.html, is located at OSB_ORACLE_HOME/samples/servicebus/
sample-transport/resources/help/en/.

40.5.2.3 Create a Simple Web Application to Display Expanded Help (Optional)
If you want to go beyond a basic text HTML file for your transport help, you can provide
expanded help with graphics and other resources in various ways:

• Link from the self-contained HTML file to an existing URL; for example, if you have an
existing web site that contains your transport documentation. All that is required is that
you provide a link to the URL from the self-contained HTML file. You can also insert
references to graphics and other resources hosted on an external site.

• Create a web application for the expanded help, bundle it with your transport, and link to
it or reference graphics and other resources from the HTML file. This topic provides
instructions on creating a web application that is bundled in your transport EAR to display
your expanded transport help.

Create the files described in META-INF/application.xml and WEB-INF/web.xml for your web
application.

40.5.2.3.1 META-INF/application.xml

In application.xml, give your web application a context root that is used for the web
application's root URL. The following example shows the context root for the sample socket
transport web application.

Example - application.xml for the sample socket transport Web application

<application>
 <display-name>Socket Transport</display-name>
 <description>Socket Transport</description>
 <module>
 <web>
 <web-uri>webapp</web-uri>
 <context-root>help_socket</context-root>
 </web>
 </module>
</application>

The sample socket transport application.xml file is located at OSB_ORACLE_HOME/samples/
servicebus/sample-transport/META-INF/.

This entry maps the file system directory /webapp to an alias web application root URL:

http://server:port/help_socket/

Chapter 40
Creating Help for Custom Transports

40-27

With your help files inside the web application in a directory such as /help/en/, the full
URL to your expanded help would be:

http://server:port/help_socket/help/en/index.html

But your internal links to it only need to be

/help_socket/help/en/index.html

where index.html is the landing HTML page.

40.5.2.3.2 WEB-INF/web.xml

In web.xml, enter a display name and description for the web application. This is
standard deployment descriptor information. The following example shows the name
and description of the sample socket transport web application.

Example - web.xml for the sample socket transport Web application

<web-app>
 <display-name>Sample Socket Transport Help WebApp</display-name>
 <description>
 This webapp implements the help webapp for the socket transport.
 </description>
</web-app>

The sample socket transport web.xml file is located at OSB_ORACLE_HOME/samples/
servicebus/sample-transport/webapp/WEB-INF/.

40.5.2.3.3 Help Content and Resources

Create and package your expanded help files inside the web application directory. In
the sample socket transport, the help files are stored in OSB_ORACLE_HOME/samples/
servicebus/sample-transport/resources/help/en.

Note:

The reason the socket transport help files are not stored in the /webapp
directory is because the help directory contains help files and resources for
both JDeveloper and the Oracle Service Bus Console. When the sample
socket ANT build creates the transport JAR and transport EAR, it packages
the help in different ways. For the transport EAR build, it moves the help files
under the /webapp directory.

40.5.3 How to Provide Custom Transport Help in JDeveloper
If you make your custom transport available for service configuration in JDeveloper,
you can incorporate a help topic for the page that appears in the service definition
editor. You do this by adding your help files to the existing help JAR file.

To provide online help in JDeveloper:

Chapter 40
Creating Help for Custom Transports

40-28

1. Create your help topics. For more information, see About Custom Transport Online Help
and How to Provide Custom Transport Help in the Console.

2. Package all the help files. See Packaging Help for the Transport Plug-in.

3. Navigate to MW_HOME/osb/plugins/jdeveloper/doc/studio_doc.

4. Make a backup copy of osbjh.jar.

5. Extract the files from osbjh.jar into a temporary directory.

6. Copy the sample transport help files you created to the temporary directory, maintaining
the structure of your help file system. You can copy your files into a subdirectory or at the
same level as the existing f1*.html files.

7. In the temporary directory, open map.xml, and add a mapID entry for each help topic to
make available.

The map ID includes the target (ID) and URL (relative path and file name) for each help
topic, along with a description. Below is an example for the sample sockets transport
provider.

 <mapID target="contexts_socketTransport" url="example.html" />
 <!-- "Sample Sockets Transport Configuration"-->

8. Save and close the map file, and then JAR all the help files into a new osbjh.jar file.

9. Replace the old osbjh.jar file in MW_HOME/osb/plugins/jdeveloper/doc/studio_doc.
with the new osbjh.jar file you just created.

40.5.4 Packaging Help for the Transport Plug-in
Your transport plug-in should contain the following:

• A transport JAR file containing your transport classes and supporting files. The JAR file
includes help resources in a /help/en directory.

• A transport EAR file that contains your runtime components, including the help system in
a /webapp/help/en directory.

Notice that with the /en directory the help is packaged to support localization. To provide
localization, you must create a plug-in for each locale. For more information about packaging
the transport and help, see Packaging and Deploying a Custom Transport Provider.

Chapter 40
Creating Help for Custom Transports

40-29

41
Developing Custom Transport Providers for
JDeveloper

This chapter describes the best practices, design considerations, and packaging to develop
custom Service Bus transports for use in JDeveloper. The Transport SDK interface provides a
bridge between transport protocols and the Service Bus runtime.

Tip:

Before you begin this chapter, review Learning About Custom Transport Providers.

This chapter includes the following sections:

• Introduction

• Services Runtime and Services Configuration

• Packaging Transports for JDeveloper

• Custom Transport Provider Reference for Offline Tools

41.1 Introduction
Service Bus transports were originally designed to be deployed on Service Bus servers and
configured through the Oracle Service Bus Console. With design environments like
JDeveloper, some modifications to the SDK are necessary to ensure transport design-time
features can be used on platforms other than the Oracle Service Bus Console.
The sample socket transport installed along with Service Bus was ported to JDeveloper and
can be considered a best practice for JDeveloper integration. The sample socket resources
are located at OSB_ORACLE_HOME/samples/servicebus/sample-transport. The Java source
files are in the /src subdirectory. The sample also contains a build script that automatically
packages the sample socket transport for both JDeveloper integration and Oracle Service
Bus Console deployment. For information on building and deploying the sample socket
transport, see Creating a Sample Socket Transport Provider.

41.2 Services Runtime and Services Configuration
When you develop a transport, distinguish the runtime aspects from the configuration
aspects.

The runtime aspects include proxy or business service deployment and service runtime
invocation. The configuration aspects include proxy or service configuration and validation.
The runtime aspects do not need to change since they are always exercised in the context of
a running Service Bus server. However, the configuration aspects are dependent on the
design environment.

Developers should consider three different deployment modes:

41-1

1. Online mode: The services using the custom transport are configured with the
Oracle Service Bus Console on a running Service Bus server.

2. Offline mode: The services using the custom transport are configured with a
design environment running outside the Service Bus server. No remote server is
available.

3. Offline mode with remote server: The services using the custom transport are
configured with a design environment running outside the Service Bus server.
However, a remote server is available and can be used for both validation and
configuration purposes.

Transports running in JDeveloper must support offline mode and, optionally, offline
mode with a remote server.

41.2.1 Offline Methods
When you deploy a transport in offline mode, the configuration framework creates a
single session for all the resource configurations. This session is never activated.
Since proxy or business services can only be deployed on a running Service Bus
server, there is no need to activate the session. However, it is still important to detect
conflicts and configuration errors, and the validation methods are still exercised.

Following is a list of the minimum set of classes and methods defined by the Transport
SDK that must be implemented in offline mode. The exceptions were removed from
the methods signature for better readability.

Note:

You do not need to completely re-implement your transport for offline mode.
In most cases your transport will only need a few changes to existing
methods to support both online and offline modes.

Classes and Methods You Must Implement for Offline Mode

• public interface TransportProvider, specifically the following methods:

– String getId()

– void validateEndPointConfiguration(TransportValidationContext
context)

– SchemaType getEndPointConfigurationSchemaType()

– SchemaType getRequestMetaDataSchemaType()

– SchemaType getRequestHeadersSchemaType()

– SchemaType getResponseMetaDataSchemaType()

– SchemaType getResponseHeadersSchemaType()

– TransportProviderConfiguration getProviderConfiguration()

– TransportUIBinding getUIBinding(TransportUIContext context)

– void shutdown()

Chapter 41
Services Runtime and Services Configuration

41-2

– Collection<NonQualifiedEnvValue> getEnvValues(Ref ref,
EndPointConfiguration epConfig)

– void setEnvValues(Ref ref, EndPointConfiguration epConfig,
Collection<NonQualifiedEnvValue> envValues)

– Collection<Ref> getExternalReferences(EndPointConfiguration epConfig)

– void setExternalReferences(Map<Ref, Ref> mapRefs, EndPointConfiguration
epConfig)

– Map<String, String> getBusinessServicePropertiesForProxy(Ref ref)

– XmlObject getProviderSpecificConfiguration(Ref ref, Map<String, String>
props)

• public interface TransportProviderFactory

This interface registers transports in offline mode. For more information, see Packaging
and Deploying a Custom Transport Provider.

• public interface TransportUIBinding

Implement all the methods in this interface and define the user interface used to
configure a proxy or business service.

Helper Classes

• public class TransportManagerHelper

This class, which is typically used by TransportProvider developers, provides a boolean
isOffline() method to help the provider implementor determine whether the code is
running offline or not. Some of the methods that are not valid in offline mode will throw
exceptions, which are described below. Other methods are meant only for runtime or
deployment, such as public isAdmin().

The following methods are also available when working in offline mode with remote
server:

– public Set<String> getDispatchPolicies(JMXConnector connector)

– public DomainRuntimeServiceMBean
getDomainRuntimeServiceMBean(JMXConnector connector)

See Working Offline with a Remote Server for more information.

Do not invoke the following methods in offline mode:

– public static boolean isAdmin()

This method throws a java.lang.IllegalStateException message.

– public static boolean clusterExists()

This method always returns false.

Note:

The preferred method for checking runtime status is to use
isRuntimeEnabled() in conjunction with getRuntimeServers().

Chapter 41
Services Runtime and Services Configuration

41-3

41.2.2 Restrictions when Working Offline
When you work offline, none of WebLogic Server services running on the server are
available. Do not use these services inside the methods described in Offline Methods.

Following are examples of restrictions for working offline:

• The Oracle WebLogic Server MBeans are not available.

• The server Java properties are not available.

• You cannot access the JNDI tree directly. However, if JNDI properties are defined
in the service configuration, you can attempt to use them.

• You can not determine if the service is going to run in a cluster or a standalone
server.

• You do not have access to the Oracle WebLogic Server security infrastructure.

• You do not have access to any static singleton service located on the server.

Because some of the services are not available, it is necessary to evaluate how the
transport user interface is affected. In general, the user interface should be more
flexible to let users manually configure values instead of trying to retrieve values from
the server environment.

For example, some transports retrieve the list of available Work Manager (dispatch
policy) items by using the TransportManagerHelper and letting the user pick one
through a list. However, in offline mode, the MBeans are not available so the list
cannot be populated. The transport provider has two choices:

1. Let the user type the correct Work Manager name. In that case, the user interface
must be changed to be a text box and not a list when working offline.

2. Another less flexible option is to populate the list with just the default Work
Manager. When the service is pushed to a running Service Bus server, the Work
Manager name can be switched using an environment value substitution.

41.2.3 Working Offline with a Remote Server
When you work offline, a remote server might be available. For instance, when you
configure a service in JDeveloper, you can associate a remote Service Bus server to
the current project. The transport provider can take advantage of the remote server by
accessing the Oracle WebLogic Server MBeans and retrieving information. This mode
is similar to working online; however, some restrictions still apply since the code is not
running on the server and only the MBeans are available.

When you work offline with a remote server, the following restrictions apply:

• The server Java properties are not available.

• You cannot use many of TransportManagerHelper methods as described in Offline
Methods.

• You cannot access the JNDI tree directly. However if JNDI properties are defined
in the service configuration, you can attempt to use them.

• You do not have access to any static singleton service located on the server.

Chapter 41
Services Runtime and Services Configuration

41-4

To access the MBeans, the framework provides an instance of JMXConnector when it
requests the TransportUI object, or when it asks the provider to validate a configuration. The
JMXConnector is available in the TransportUIContext or the TransportValidationContext:

JMXConnector connector =
(JMXConnector)uiContext.get(TransportValidationContext.JMXCONNECTOR);

For more information, see the sample transport in Custom Transport Provider Reference for
Offline Tools.

If the connector is not present, a remote server is not available. This connector object can
then be used to access the MBeans. Helper methods have been added to the
TransportManagerHelper to retrieve the list of WorkManager and WebLogic Server domain
MBean.

Note:

This behavior is generalized for both online and offline modes. The public static
Set<String> getDispatchPolicies() method defined in the
TransactionManagerHelper will be deprecated and must be replaced by the same
method with JMXConnector as a parameter. If you do not replace it, the following
error appears: com.bea.wli.sb.transports.TransportException.

41.2.4 Bootstrapping Transports in Offline Mode
In online mode, transports must be packaged as EAR files and deployed on a Service Bus
server. When the EAR is loaded at startup, the transport registers a callback on a startup
event and registers an instance of the TransportProvider to the TransportManager.

In offline mode, the SDK provides an interface called
com.bea.wli.sb.transports.TransportProviderFactory that registers transports. A
transport developer must implement this interface and must make the default constructor
public. The interface is provided in Custom Transport Provider Reference for Offline Tools, as
well as a sample implementation.

If the TransportProvideFactory is instantiated, you can assume the transport needs to work
in offline mode (with or without a remote server).

Note:

You can set a boolean operator in the TransportManagerHelper when the
constructor is invoked to determine if the transport is running in offline mode. This
information can also be passed in the TransportUIContext and the
TransportValidationContext. Your engineering department can assist you in
making this decision.

41.3 Packaging Transports for JDeveloper
To use your custom transport provider in JDeveloper, you must add the JAR file you
generated when you created the transport provider to your Service Bus installation.

Chapter 41
Packaging Transports for JDeveloper

41-5

Packaging your custom transport as a JDeveloper plug-in, in conjunction with your
transport user interface implementation, lets service developers select and configure
your transport in the development environment.

In offline mode, you can use transports in different design environments, including
JDeveloper. In general, transports simply need to be available to external design time
environments as a self-contained JAR file. A self-contained JAR file includes the
transport config.xml file, the header, metadata schemas, XBeans classes,
TransportProviderFactory implementation, and the compiled transport classes.

Figure 41-1 shows the service editor in JDeveloper—after a service has been created
—with a configuration page for the sample socket transport.

Figure 41-1 Transport Configuration Page in JDeveloper

For information about packaging and deploying the custom transport provider, see
Packaging and Deploying a Custom Transport Provider.

Note:

Your implementation of the TransportUIBinding interface determines the
user interface for selecting and configuring your transport, both in
JDeveloper and in the Oracle Service Bus Console.

41.4 Custom Transport Provider Reference for Offline Tools
This section provides reference information that you might need to know when
developing a custom transport provider for offline use in JDeveloper.

• Working in Different Modes

• TransportProviderFactory

Chapter 41
Custom Transport Provider Reference for Offline Tools

41-6

• TransportManagerHelper Methods

41.4.1 Working in Different Modes
Dispatch policies are used by most transports and allow service throttling. This code
distinguishes the three modes described in Services Runtime and Services Configuration:

• Online mode

• Offline mode

• Offline mode with remote server

The connection to the remote server is retrieved from the context, as shown in the following
example.

Example - Connection to the Remote Server

/**
 * Builds the dispatch policies in the ui object.
 *
 * @param curDispatchPolicy
 * @return TransportEditField containing existing dispatch policies.
 */
 public TransportEditField getDispatchPolicyEditField(StringcurDispatchPolicy {
 TransportUIFactory.TransportUIObject uiObject = null;
 Set<String> wmSet = null;

 if (SocketTransportManagerHelper.isOffline())
 { // if on JDeveloper try to get the MBeans from the UIContext
 JMXConnector connector =
 (JMXConnector)uiContext.get(TransportValidationContext.JMXCONNECTOR);
 if (connector != null) {
 try {
 wmSet = TransportManagerHelper.getDispatchPolicies(connector);
 } catch (Exception ex) {
 wmSet = null;
 }
 }
 } else { // if running on the server use the helper to get the policies
 try {
 wmSet = TransportManagerHelper.getDispatchPolicies();
 } catch (TransportException transexcept) {
 SocketTransportUtil.logger.error(SocketTransportMessagesLogger.noDispatchPolicies(),
 transexcept);
 }
 }

 if (wmSet == null) // if JMXConnector not available or impossible to connect provide a simple
 edit field
 {
 uiObject = TransportUIFactory.createTextBox(curDispatchPolicy);
 } else // create a drop down list
 { // adding default work manager to the list.
 wmSet.add(DEFAULT_WORK_MANAGER);
 String[] values = wmSet.toArray(new String[wmSet.size()]);
 uiObject = TransportUIFactory.createSelectObject(values,values,curDispatchPolicy,
 TransportUIFactory.SelectObject.DISPLAY_LIST,false);
 }
 return TransportUIFactory.createEditField(DISPATCH_POLICY,
 TextMessages.getMessage(TextMessages.DISPATCH_POLICY,locale),

Chapter 41
Custom Transport Provider Reference for Offline Tools

41-7

 TextMessages.getMessage(TextMessages.DISPATCH_POLICY_INFO,locale), uiObject);
 }

41.4.2 TransportProviderFactory
TransportProviderFactory lets you provide design-time functionality in JDeveloper. It
includes methods for registering the custom transport provider and retrieves the ID you
define for the provider. For information about the methods provided in this interface,
see the Java API Reference for Oracle Service Bus.

The following sample shows how the sample socket transport implements this
interface.

Example - Example of the Socket Transport Implementing the Interface

package com.bea.alsb.transports.sock;

import com.bea.wli.sb.transports.TransportManager;
import com.bea.wli.sb.transports.TransportException;
import com.bea.wli.sb.transports.TransportProviderFactory;

public class SocketTransportProviderFactory implements TransportProviderFactory
 {

 public void registerProvider(TransportManager tm) throws TransportException
 {
 SocketTransportProvider instance = SocketTransportProvider.getInstance();
 tm.registerProvider(instance, null);
 }

 public String getId() {
 return SocketTransportProvider.ID;
 }
 }

41.4.3 TransportManagerHelper Methods
The TransportManagerHelper class provides methods to retrieve the Work Managers
(dispatch policies), among others. For a complete list of methods provided in this
interface, see the Java API Reference for Oracle Service Bus.

Chapter 41
Custom Transport Provider Reference for Offline Tools

41-8

42
Packaging and Deploying a Custom Transport
Provider

This chapter describes how to package and deploy a custom transport provider for use with
Service Bus.

This chapter includes the following sections:

• Packaging the Transport Provider

• Deploying the Transport Provider

• Undeploying a Transport Provider

• Deploying to a Cluster

42.1 Packaging and Deployment Overview
Each custom transport provider requires two files: an EAR file and a JAR file. A third file, a
transport plug-in, is required in order to use the custom transport provider in JDeveloper.

You must package your custom transport provider as a self-contained JAR file, which defines
the transport, and an EAR file, which can be deployed on the WebLogic Server. The EAR file
can include the JAR file, or you can make the JAR file a library on which the EAR file
depends. Using the latter method means you only need to maintain one copy of the JAR file.

To make the transport available to Service Bus, install the EAR file and, optionally, the JAR
file, in /MW_HOME/osb/lib/transports. Typically, both the EAR file and the JAR file are
placed in this directory for Service Bus transports, but it is not required that the JAR file be
placed there. The plug-in file you create, which makes the custom transport provider
available to offline tools, points to the JAR file.

To make the transport available to the Oracle Service Bus Console and runtime, deploy the
EAR file to the server with the Service Bus Kernel EAR file and other Service Bus related
applications. The sample socket transport provider example illustrates how a transport
provider is organized and deployed. For more information, see Creating a Sample Socket
Transport Provider.

42.1.1 Custom Transport Provider Components
Each transport provider consists of two distinct components:

• Configuration: The configuration part of a transport provider is used by the Oracle
Service Bus Console to register endpoints with the transport provider. This configuration
behavior is provided by the implementation of the user interfaces. For more information,
see User Interface Configuration.

• Runtime: The runtime part of a transport provider implements the business logic of
sending and receiving messages.

42-1

A best practice is to package the transport provider so the configuration and runtime
parts are placed in separate deployment units. This practice makes cluster deployment
simpler. For more information, see Deploying to a Cluster and Transport Provider
Components .

42.1.2 Custom Transport Provider Resources
Your transport JAR file must include the following resources:

• A MANIFEST.MF file that contains key information about your transport plug-in. Use
the sample socket transport MANIFEST.MF for reference.

• A TransportConfig.xml file, which configures the transport provider. Use the
sample socket transport plug-in as a reference. See Step 5. Define the
TransportProviderConfiguration XMLBean.

• The compiled Java classes containing your transport implementation.

• The compiled XML bean generated classes.

• (Optional) Resources for providing online help.

42.2 Packaging the Transport Provider
This section describes the structure of the JAR and EAR files for your custom
transport providers.

To see an example of any of the files listed in this section, build the sample socket
transport provider, as described in Building and Deploying the Sample . You can then
view all the packaged artifacts. You can also review the sample build.xml file to see
an example of how to compile and deploy the custom transport provider.

42.2.1 Transport JAR File Packaging
You package your transport provider as a JAR file, which makes the transport portable.
Use the following guidance for packaging your transport provider:

• To construct the plug-in JAR, append "transport" to the name of the custom
transport to create the JAR file name. For example, the sample socket transport
JAR file is named sock_transport.jar.

• Package the file with the following directory structure, as illustrated in Figure 42-1:

– /com (transport classes and resources)

– /help

If you are providing help for your transport, include a /help directory for your
help resources, as described in Creating Help for Custom Transports.

– /META-INF/MANIFEST.MF

– /schemaorg_apache_xmlbeans (XML bean classes and resources)

– TransportConfig.xml (the XMLBean transport provider configuration; see
Step 5. Define the TransportProviderConfiguration XMLBean)

The following figure shows the sample socket transport provider JAR directory.

Chapter 42
Packaging the Transport Provider

42-2

Figure 42-1 Plug-In Packaging

To see an example of plug-in packaging, build the sample socket transport, as described in
Creating a Sample Socket Transport Provider. View the generated sock_transport.jar and
sock_transport.ear.

42.2.2 Transport EAR File Packaging
You package the runtime components of the custom transport provider in an EAR file, which
can then be deployed to the WebLogic Server. This file can either contain the JAR file or can
depend on the JAR file as a library. A typical packaging structure for the EAR file would
include the following:

• APP-INF/lib/name-transport.jar

• META-INF/MANIFEST.FM and additional schema files

• Any additional web application files, such as packaged help files

42.2.3 Transport Plug-in Registration for JDeveloper
In order for JDeveloper to pick up the new transport, you need to create a plug-in file that
describes the transport provider implementation, transport ID, help ID (if any), and additional
libraries that are required for the transport. You do not need to create this file if you do not
plan to use the transport in JDeveloper. The naming convention for a plug-in file is
transport-transport_name.xml.

Use the following format to create the plug-in registration file:

<plugin xmlns="http://www.bea.com/alsb/offline/extensions">
 <transport
 class="transport_provider_class"
 id="transport_id"
 helpId="ID_to_access_help"/>
 <libraries>
 <library name='name_and_path_for_transport_jar'/>
 </libraries>
</plugin>

The following example shows the sample plug-in file provided with the sample socket
transport provider installed with Service Bus.

Example - Sample Socket Transport Provider Plug-in File

<plugin xmlns="http://www.bea.com/alsb/offline/extensions">
 <transport
 class="com.bea.alsb.transports.sock.SocketTransportProviderFactory"

Chapter 42
Packaging the Transport Provider

42-3

 id="socket"
 helpId="contexts_socketTransport"/>
 <libraries>
 <library name='lib/transports/sock_transport.jar'/>
 </libraries><
</plugin>

42.3 Transport Plug-in Installation
Once you create your transport provider EAR file, JAR file, and optional plug-in for
JDeveloper, you need to add the files to the JDeveloper installation so they can be
picked up by JDeveloper.

• Copy the generated EAR and JAR files to /MW_HOME/osb/lib/transports.

• Copy the plug-in registration file to /MW_HOME/osb/config/plugins.

42.4 Deploying the Transport Provider
After you create a deployable EAR file for your transport provider, you need to deploy
it to the Service Bus domain.

You can deploy the EAR file by whichever of the following methods you prefer:

• Programmatically (using WebLogic Deployment Manager JSR-88 API)

• Using the Oracle WebLogic Server Administration Console

• Adding an entry similar to the following example to the Service Bus domain
config.xml file

Example - Application Deployment Entry

<app-deployment>
 <name>My Transport Provider</name>
 <target>AdminServer, myCluster</target>
 <module-type>ear</module-type>
 <source-path>MW_HOME/osb/lib/transports/mytransport.ear</source-path>
 <deployment-order>6</deployment-order>
</app-deployment>

Note:

The deployment order of your transport provider EAR file should be high
enough so that the entire Service Bus Kernel EAR is deployed before the
transport provider.

42.4.1 Transport Registration
On server restart, you need to ensure that your deployed transport can immediately
begin to handle service requests. To ensure immediate transport availability, extend
the weblogic.application.ApplicationLifecycleListener class and use the
preStart() method to register your transport using
TransportManager.registerProvider().

Chapter 42
Transport Plug-in Installation

42-4

For an example implementation, see the ApplicationListener class provided wiht the
sample socket transport, located at OSB_ORACLE_HOME/samples/servicebus/sample-
transport/src/com/bea/alsb/transports/sock. When extending
ApplicationLifecycleListener, be sure to register your extending class in META-INF/
weblogic-application.xml. The sample socket transport provides the following entry for its
ApplicationListener class in OSB_ORACLE_HOME/samples/servicebus/sample-transport/
META-INF/weblogic-application.xml:

<weblogic-application>
 <listener>
 <!-- This class gives callbacks for the deployment lifecycle and socket
 transport is registered with ALSB whenever the application is started.
 -->
 <listener-class>com.bea.alsb.transports.sock.ApplicationListener
 </listener-class>
 </listener>
</weblogic-application>

42.5 Undeploying a Transport Provider
Once a transport provider has been registered with Service Bus, the undeployment or
unregistration of the transport provider is not supported.

42.6 Deploying to a Cluster
Your transport provider must be deployed on all the servers and clusters where Service Bus
is deployed.

This means that if Service Bus is deployed only on the Admin Server (which it always is), you
must deploy the transport provider on the Admin Server. If Service Bus is deployed in an
admin + Managed Server topology, you must deploy the transport provider on the Admin
Server and that particular Managed Server. If Service Bus is deployed in a cluster, you must
deploy your transport provider on the Admin Server and the cluster. Note that Service Bus is
always deployed on the Admin Server regardless of the domain topology.

The application code inside your transport provider EAR file needs to be aware dynamically
of where the transport is being deployed (such as the Admin Server or a Managed Server)
and exhibit only configuration behavior on the Admin Server and only runtime behavior on the
Managed Server.

For example, in the initialization pseudo code in some_transport.ear, you can use this logic
to decide whether or not to activate the configuration or runtime portion of the provider:

protected SomeTransportProvider() throws TransportException {
 . . . some other initialization code . . .
 if (!isRuntimeEnabled)
 _engine = new RuntimeEngine(. . .);
}

In this case, creating an instance of the RuntimeEngine class is runtime behavior and only
needs to happen on a managed node in a multi-server domain or on the administration node
in a single server domain.

Furthermore, in a cluster environment, TransportProvider.createEndPoint() and
deleteEndPoint() are called on an Admin Server as well as Managed Servers in the cluster
(with the exception of WLS HTTP router/front-end host). Some transport providers can

Chapter 42
Undeploying a Transport Provider

42-5

choose not to do anything other than registering the fact that there is an endpoint with
the given configuration, such as HTTP. In general the transport provider needs to
examine whether createEndPoint() or deleteEndPoint() is called on the
administration or Managed Server to decide the appropriate behavior.

Chapter 42
Deploying to a Cluster

42-6

43
Creating a Sample Socket Transport Provider

This chapter describes how to build and run the sample socket transport provider. This
sample and its source code are installed with Service Bus. The sample serves as an example
implementation of a custom transport provider.

This chapter includes the following sections:

• Sample Socket Transport Provider Design

• Sample Location and Directory Structure

• Building and Deploying the Sample

• Creating a Socket Transport Sample Project

• Testing the Socket Transport Provider

43.1 Sample Socket Transport Provider Design
The primary purpose of the sample socket transport provider is to serve as an example
transport provider implementation.

This publicly available sample demonstrates the implementation and configuration details of
the Transport SDK.

43.1.1 Concepts Illustrated by the Sample
The sample transport is designed to send and receive streamed data to and from a
configured TCP socket in Service Bus. The sample transport illustrates the following
Transport SDK concepts:

• Implementing the set of Transport SDK APIs that are required to build a custom transport.

• Performing transport endpoint validations, such as checking that no socket endpoint is
listening on the configured address.

• Implementing several UI configuration options, including socket properties and message
patterns.

• Implementing a one-way or synchronous request-response message pattern.

• Using POJOs (Plain Old Java Objects) for metadata and headers of endpoint requests
and responses.

• Using streaming in Service Bus pipelines.

43.1.2 Basic Architecture of the Sample
Figure 43-1 shows the basic architecture of the sample socket transport provider. Any client
can connect to the server socket. Data is received at the server socket and passes through
the pipeline. The response comes back through the outbound transport. The response is
finally sent back to the inbound transport and back to the client.

43-1

Figure 43-1 Sample Socket Transport Architecture

43.1.3 Configuration Properties
Figure 43-2 illustrates the configuration properties for the transport endpoint. These
properties are configured in the schema file, SocketTransport.xsd. For the location of
this file, see Sample Location and Directory Structure .. This file allows you to extend
the basic set of properties defined in the common schema provided with the SDK.
Refer to the SocketTransport.xsd file for information on each of the properties.

Tip:

For more information about these configuration properties, see Step 4.
Define Transport-Specific Artifacts .

Chapter 43
Sample Socket Transport Provider Design

43-2

Figure 43-2 SocketEndpointConfiguration Properties

Also in the SocketTransport.xsd file are the request and response header and metadata
properties, as illustrated in Figure 43-3. Refer to the SocketTransport.xsd file for more
information about these properties.

Figure 43-3 Request and Response Header and Metadata Configurations

Chapter 43
Sample Socket Transport Provider Design

43-3

43.2 Sample Location and Directory Structure
This section briefly describes some of the key folders in the sample project. You can
use this directory structure as a model for developing your custom transport provider.

To get the sample-transport, download the SOA QuickStart and install SOA Suite. It
comes with JDev and the oracle.osb.samples_template.jar file. To install it, set
QS_TEMPLATES=%ORACLE_HOME%
\osb\common\templates\wls\oracle.osb.samples_template.jar, and then run
qs_config.cmd from %ORACLE_HOME\oracle_common\common\bin>qs_config.cmd.

After you have created a sample domain, examples and the sample socket transport
should be in the Oracle_Home\user_projects\applications\[Sample_Domain]folder.

Table 43-1 lists and briefly describes key sample-transport directories.

Table 43-1 Key Sample Transport Provider Directories

Directory Description

build This directory is created when you build the sample socket transport. It
contains the built and packaged transport for use in Service Bus.

l10n This directory contains these internationalization files. There is one of each
file for each supported locale.

SocketTransportMessages.xml: The configuration file for messages
that are displayed on the Oracle Service Bus Console.

SocketTransportTextMessages.xml: The configuration file for custom
transport field names and their descriptions.

META-INF This directory contains these application deployment descriptor files:

application.xml: J2EE application descriptor file

weblogic-application.xml: WebLogic application descriptor file

offline This directory contains one file, transport-socket.xml, which specifies
the fully-qualified class name and the name and location of its library JAR
file.

resources This directory contains the socket transport provider configuration file used
by the Transport SDK, which is named SocketConfig.xml. It also
includes sample help files for the transport.

schemas This directory contains the relevant schemas defined for this transport, in
this case, SocketTransport.xsd. This file describes the socket endpoint
request and response metadata and headers.

src This directory contains the source tree of the sample transport.

test This directory includes a testing utility for the sample transport provider,
along with the source tree for the test server and client.

webapp This directory contains the deployment descriptors required for the sample
transport help web application.

The following Ant build files are also located in the sample-transport directory:

• build.properties – Properties file for Ant.

• build.xml – An Ant build file with different targets for compile, build, stage, and
deploy.

Chapter 43
Sample Location and Directory Structure

43-4

43.3 Building and Deploying the Sample
Perform the steps provided in this section in the order given to build and deploy the sample
transport provider.

• How to Set Up the Environment

• How to Build the Sample Transport Provider

• How to Deploy the Sample Transport Provider

• Registering the Sample Transport Provider With JDeveloper

43.3.1 How to Set Up the Environment
A script is provided in the Service Bus domain to configure the environment for building the
sample.

To set up the environment:

1. Create a new domain or use one of the preconfigured domains installed with Service
Bus.

2. Set the domain environment by running the following script:

DOMAIN_HOME/bin/setDomainEnv.cmd (or setDomainEnv.sh on a UNIX system)

43.3.2 How to Build the Sample Transport Provider
Once you set the environment configuration, you can build the transport using the Ant build
files provided in the sample-transport directory.

To build the sample transport provider:

1. In a command window, navigate to OSB_ORACLE_HOME/samples/servicebus/sample-
transport.

2. Run the following command:

ant build

This command compiles the source files in OSB_ORACLE_HOME/samples/servicebus/
sample-transport/build.

3. After the transport builds successfully, run the following command:

ant stage

This copies sock_transport.ear and sock_transport.jar to OSB_ORACLE_HOME/lib/
transports and copies transport-socket.xml to OSB_ORACLE_HOME/config/plugins.

43.3.3 How to Deploy the Sample Transport Provider
The sockets sample also provides automated scripts for you to deploy the sample transport
provider to the WebLogic Server. Once the sample is built and staged successfully, you can
run the deploy command.

To deploy the sample transport provider:

Chapter 43
Building and Deploying the Sample

43-5

1. Set the following variables in sample-transport/build.properties:

wls.hostname

wls.port

wls.username

wls.password

wls.server.name

2. Deploy the transport provider on the server by running the following command:

ant deploy

43.3.4 Registering the Sample Transport Provider With JDeveloper
If you want to be able to create or import projects in JDeveloper using the sample
socket transport provider, you need to modify the transport registration file.

To register the sample transport provider with JDeveloper:

1. Navigate to /MW_HOME/osb/config/plugins.

2. Open transport-socket.xml in an XML or text editor.

3. In the transport element, add the following attributes:

id='socket'
helpId="contexts_socketTransport"

The final file should look like this:

<plugin xmlns="http://www.bea.com/alsb/offline/extensions">

 <transport
 class="com.bea.alsb.transports.sock.SocketTransportProviderFactory"
 id="socket"
 helpId="contexts_socketTransport"/>

 <libraries>
 <library name='lib/transports/sock_transport.jar'/>
 </libraries>

</plugin>

4. Save and close the file.

5. Restart JDeveloper if it is running.

43.4 Creating a Socket Transport Sample Project
The sample consists of a test server and a test client. The client sends a message to
the server. You configure Service Bus to receive and process the message.

Perform the tasks in this section in the order given. These instructions are for creating
the sample project in the Oracle Service Bus Console, but you can do this in
JDeveloper as well.

• Creating the Project

Chapter 43
Creating a Socket Transport Sample Project

43-6

• Creating the Business Service

• Creating the Proxy Service

• Creating the Pipeline

• Connecting the Proxy Service and Pipeline

43.4.1 Creating the Project
The first step to creating the sample is to create the actual project that will contain the Service
Bus resources.

To create the project:

1. Start the Oracle Service Bus Console and either create a new session or edit an existing
one.

2. In the Project Navigator, right-click All Projects, point to Create, and select Project.

3. On the Create a New Project dialog, enter SocketTest in the Resource Name field.

4. Click Create.

The new project appears in the Project Definition Editor.

43.4.2 Creating the Business Service
In the sample project, you create a business service to talk to the server.

To create the business service:

1. In the Project Navigator, right-click the SocketTest project, point to Create, and select
Resource. Click Business Service, click Technology, and then click socket.

The Create Business Service wizard appears.

Figure 43-4 Create Business Service Wizard

2. In the Resource Name field, enter SocketBS.

3. In the Transport field, select socket. Click Next.

Chapter 43
Creating a Socket Transport Sample Project

43-7

4. For the Service Type, select Any XML Service, and click Next.

5. In the Endpoint URI field, change the default URI to tcp://localhost:7031.

6. Click Create.

The business service appears in the Business Service Definition Editor. You can
click the different subtabs to view the configuration.

7. Click Save.

43.4.3 Creating the Proxy Service
In this section, you create a proxy service to accept messages from the client.

To create the proxy service:

1. In the Project Navigator, right-click the SocketTest project, point to Create, and
select Resource. Click Proxy Service, click Technology, and then click socket.

The Create Proxy Service wizard appears.

Figure 43-5 Create Proxy Service Wizard

2. In the Resource Name field, enter SocketProxy.

3. In the Transport field, select socket. Click Next.

4. For the Service Type, select Any XML Service, and click Next.

5. In the Endpoint URI field, change the default URI to 7032.

6. Click Create.

The proxy service appears in the Proxy Service Definition Editor. You can click the
different subtabs to view the configuration.

7. Click Save.

43.4.4 Creating the Pipeline
Now that the business and proxy services are defined, you can create a pipeline to
route incoming messages to the business service.

Chapter 43
Creating a Socket Transport Sample Project

43-8

To create the pipeline:

1. In the Project Navigator, right-click the SocketTest project, point to Create, and select
Resource. Click Pipeline, and then click OK.

The Create Pipeline dialog appears.

2. In the Pipeline Name field, enter SocketPipeline.

3. For the Service Type, select Any XML Service.

4. Deselect Expose as Proxy Service.

Figure 43-6 Create Pipeline Dialog

5. Click Create.

The pipeline appears in the Pipeline Definition Editor. You can click the different subtabs
to view the configuration.

6. Click the Open Message Flow icon in upper right section of the editor.

Chapter 43
Creating a Socket Transport Sample Project

43-9

Figure 43-7

The Edit Message Flow window appears.

7. Click the SocketPipeline icon and select Add Route from the menu..

Figure 43-8 Editing the Message Flow

8. Click the RouteNode1 icon and select Edit Route.

9. In the Edit Stage Configuration window, click Add an Action and select
Communication > Routing.

Figure 43-9 Adding an Action

Chapter 43
Creating a Socket Transport Sample Project

43-10

10. Next to Route to, select <Service>.

11. In the Select Service window, select SocketBS from the list, and click Submit.

12. In the Edit Stage Configuration window, click Save.

13. Optionally, click the RouteNode1 icon, change the name to SocketBS, and then click
Save.

14. Click Save again.

You are returned to the Pipeline Definition Editor.

43.4.5 Connecting the Proxy Service and Pipeline
In this section, you configure the proxy service to send messages to the pipeline you created.

To connect the proxy service and pipeline:

1. In the Project Navigator, click the SocketProxy proxy service.

The Proxy Service Definition Editor appears.

2. On the General subtab of the Configuration tab, click Choose a Service Resource by
the Target Name field.

3. On the Search and Select dialog, enter SocketPipeline in the Name field and click
Search.

4. Select the pipeline in the results list, and then click OK.

5. Click Save.

6. Click Activate to deploy the new resources to the WebLogic Server.

43.5 Testing the Socket Transport Provider
You can test the socket transport provider using the client and server tools provided with the
sample files, and you can test project components using the Test Console in the Oracle
Service Bus Console.

• Using the Sample Server and Client for Testing

• Using the Test Console

43.5.1 Using the Sample Server and Client for Testing
The sample project includes a simple socket server and a client to test the socket transport
provider. First you need to start the sample server and client, and then you can work with the
Test Console to test the transport provider.

43.5.1.1 Starting the Sample External Service
Run the following command from the sample-transport directory to start the test server,
which is a server socket that listens on a specified port and receives and sends the
messages.

java -classpath .\test\build\test-client.jar -Dfile-encoding=utf-8
-Drequest-encoding=utf-8 com.bea.alsb.transports.sample.test.TestServer 7031
<message-file-location>

Chapter 43
Testing the Socket Transport Provider

43-11

7031 is the port number in the business service endpoint URI, where ServerSocket is
listening. The file and request encoding indicate the encoding of the request and
response. message-file-location is the path and name of the message file to send
as a response to the business service.

If the server is started successfully, a message appears indicating that it is started and
listening on a socket. If you specify a file to process, the text of the file appears in the
command window.

43.5.1.2 Starting the Sample Initiating Service
Run the following command to start the initiating socket service, which is a client to the
configured socket proxy service. It sends a message and receives the response from
Service Bus.

java -classpath .\test\build\test-client.jar -Dfile-encoding=utf-8
-Dresponse-encoding=utf-8 com.bea.alsb.transports.sample.test.TestClient
<host-name> <port> <thread-ct> <message-file-location>

where:

• host-name is the host name on which the Service Bus server is located.

• port is the port number at which the proxy service is listening (7032, in our
example).

• thread-ct is the number of clients that can send a message to Service Bus.

• message-file-location (optional) is the location of the message file to send as a
response to the business service.

• file-encoding is an optional argument specifying the encoding of the file. The
default is utf-8.

• response-encoding is the encoding of the response received from the socket
proxy service. The default is utf-8.

43.5.2 Using the Test Console
In this section you test the transport provider using the Oracle Service Bus Console.

To test using the Test Console:

1. Start the test server, as explained previously in Starting the Sample External
Service .

2. In the Project Navigator, click SocketPipeline to open it in the Pipeline Definition
Editor.

3. In the upper right portion of the editor, click the Launch Test Console icon.

The Test Console appears in a new browser window.

4. In the Test Console, enter any valid XML stanza in the text area, or use the
Browse button to select a valid XML file on the local system.

Chapter 43
Testing the Socket Transport Provider

43-12

Figure 43-10 Testing the Sample Transport Provider in the Test Console

5. Click Execute. If the test is successful, information similar that shown in Figure 43-11
appears in the Test Console. In addition, the XML text input into the Test Console is
echoed in the server console.

Figure 43-11 Successful Sample Transport Provider Test

6. Close the Test Console.

Chapter 43
Testing the Socket Transport Provider

43-13

Part VII
Sharing Artifacts and Services

There are several methods by which you can share Service Bus projects and resources
across Service Bus servers, instances, and applications. You can also access Oracle SOA
Suite artifacts using common repositories. The import and export features provided by
Service Bus let you create Service Bus projects and then share those projects or just
individual resources with other Service Bus instances and servers. In addition, Oracle SOA
Suite and Service Bus share common repositories that allow you to share deployed artifacts
between projects and applications. UDDI registries are another way to share services.
This part contains the following chapters:

• Importing and Exporting Resources and Configurations

• Sharing Data Using the Metadata Services Repository

• Working with UDDI Registries

44
Importing and Exporting Resources and
Configurations

Service Bus provides multiple ways to import and export resources from JDeveloper or the
Oracle Service Bus Console, and to export resources from a command line. You can also
import and export from Fusion Middleware Control Console. This chapter describes how to
import and export resources using JDeveloper and the Oracle Service Bus Console, and how
to export using a command line.

This chapter includes the following sections:

• About Importing and Exporting Resources

• Importing and Exporting Resources in JDeveloper

• Importing and Exporting Resources in the Oracle Service Bus Console

• Exporting a Service Bus Configuration Offline

For information about importing and exporting projects using Fusion Middleware Control, see
"Importing and Exporting Oracle Service Bus Resources" in Administering Oracle Service
Bus.

44.1 About Importing and Exporting Resources
Service Bus provides import and export features to help you move your Service Bus projects
and resources between domains and between development tools.

For example, when you move from development to testing, you can export projects from the
development environment and import them into the testing environment. When shared
resources change in a production environment, the resources can be updated for each server
using the export and import features. These processes support an orderly promotion of
resource configurations from staging and test environments into production environments.

You can also export and import resources to move them between JDeveloper and the Oracle
Service Bus Console. For example, you create certain artifacts, such as JCA adapter files
and WADL files, in JDeveloper. To use those artifacts in projects in the Oracle Service Bus
Console, exporting them from JDeveloper and importing them to the console maintains any
references between those artifacts.

You can use existing source code control systems in conjunction with the configuration JAR
files to provide version and change management for Service Bus configurations.

44.1.1 About Exporting Resources
You can export entire Service Bus projects or just individual resources. The export process
creates a configuration JAR file that you can then import into a different instance of
JDeveloper, the Oracle Service Bus Console, or Fusion Middleware Control. When you
export at the project level, you can select one or more projects in the current instance to
export. The Export Service Bus Resources wizard displays the projects, folders, and
resources in a tree view, but component selection is only at the project level. When you

44-1

export at the resources level, you can expand the projects to view and select individual
resources to export. To avoid validation errors, you can also choose to automatically
include any dependencies on the resources you select for export.

In the Oracle Service Bus Console, you can export projects and resources whether
you are working within a session or outside of a session. If you export within a session,
the resources are session resources and the configuration may be incomplete or have
conflicts. If you export outside of a session, the resources you can export are the
activated resources.

Service Bus cannot export the users, groups, or roles that you create for the console;
nor can it export credential maps or other security-provider data that you create in the
WebLogic Server Administration Console. Instead, use the WebLogic Server
Administration Console to export this data. See "Migrating Security Data" in
Administering Security for Oracle WebLogic Server.

44.1.1.1 Data Encryption During Export
When you export Service Bus projects or resources to a configuration JAR file, you
can encrypt the user name and password data in service account, service key
provider, UDDI registry, JNDI provider, and SMTP server resources. When you then
import this JAR file, Service Bus will not import the resources with an encrypted user
name and password data unless you specify the correct passphrase. You can import
all of the other non-encrypted resources in the JAR file without specifying the
passphrase.

For each service account, Service Bus exports the user name and password or the
local-user to remote-user map (depending on which data was stored in the service
account). For each service key provider, Service Bus exports the alias to key-pair
binding from the PKI credential mapping provider; it does not export private keys,
certificates, or other data from the key stores. Key store data must be exported using
tools that the key store vendor provides.

44.1.2 About Importing Resources
You can import complete Service Bus projects or just specific resources contained in
configuration JAR files and resource JAR files that were previously exported from
another Service Bus domain. You can choose to import only a subset of the exported
data. If the resource already exists in the importing system, it will be updated.
Otherwise, it will be created. Resources are only scheduled for deletion when the JAR
being imported is a full project JAR and there are resources located in the same
project in the importing system that are not present in the imported JAR file. It will not
delete resources which are located in other projects.

Service Bus gives you the option toService Bus import resources at the resource level
even though they were exported at the project level. For example, even if system
resources were exported in a full project JAR file, you can deselect them when
importing. You cannot export users, groups, roles, or certificates when you export a
configuration. Therefore, you must create these objects again when you import an
exported configuration.

44.1.2.1 Improving Import Performance
When you import a Service Bus project, several validations are performed against the
imported resources. Depending on the size of the configuration JAR file being

Chapter 44
About Importing and Exporting Resources

44-2

imported, this can slow down the import process. By default, Service Bus processes four
validation threads in parallel during import. To improve performance, you can control how
many threads can be used for validation by adding the following argument to the Java options
in the Service Bus server start scripts (substitute the maximum number of threads to use for
no_of_threads).

-Doracle.osb.config.parallelism=no_of_threads

This sets the number of threads for the Oracle Service Bus Console and for Fusion
Middleware Control. To set this value for JDeveloper, add the argument to the jdev.conf file,
located in MW_HOME/jdeveloper/jdev/bin.

44.1.2.2 Importing Service Accounts or Service Key Providers
If the JAR file being imported was created by AquaLogic Service Bus 3.0 or later and
contains service accounts or service key providers, you can import these resources along
with the user names, passwords, local-user to remote-user mappings, and alias to key-pair
bindings that they contain.

For each service key provider, Service Bus imports the alias to key-pair binding into the PKI
credential mapping provider. If this data was encrypted during export, you must supply the
password that was used to encrypt the data. If you do not know the password, you can import
all other non-encrypted resources.

If you import a service account or service key provider and a corresponding resource of the
same name already exists in your domain, the imported resource will overwrite the one
already in your domain, even if the one already in your domain has been modified during the
current session, unless you specify to preserve security settings during import. For more
information, see Preserving Security Configuration During Import.

44.1.2.3 Preserving Operational Settings During Import
There are two types of operational values: global operational settings and operational
settings for individual components. Global operational settings are imported like any other
resource, though you can preserve operational settings in the importing domain and prevent
them from being overwritten during import by selecting Preserve Operational Values during
the import. If Preserve Operational Values is not specified, the values from the JAR file
being imported are set in the domain.

44.1.2.4 Preserving Security Configuration During Import
You can export and import Service Bus resources without losing any associated security
configuration data. The import and export wizards let you specify whether to preserve the
existing security configuration on the importing system or to overwrite the existing
configuration with that of the resources you are importing. This is only an issue when the
resources being imported already exist on the importing system and are updating those
existing resources.

For example, you might want to configure your credentials in a staging area, export a project
that contains these credentials, and then import the project in your production environment.
When you export the project, the security configuration is included in the Service Bus
configuration JAR file. When you then import the project on your target system, security
handling depends on whether the imported resources already exist on the target system:

• When the resources you import are new, that is they exist in the JAR file and not the
target system, the resources use the security configuration from the JAR file.

Chapter 44
About Importing and Exporting Resources

44-3

• When the resources you import exist both on the import target server and in the
JAR file, the resources use the security configuration you specify. You can
preserve the existing security configuration on the target system or overwrite it
with the configuration in the JAR file.

The options you select during import allow you to decide which aspects of the security
configuration for the resources on the importing system are preserved during import.
These options work the same way when importing JAR files created by both project-
level exports and for individual resource exports. The security options during import
include the following:

• Preserve Security and Policy Configuration

• Preserve Credentials

• Preserve Access Control Policies

Note that when you import services configured to use WebLogic Server (WLS)
policies, you will be unable to edit those policies because support for WLS policy is
deprecated. You should reconfigure those services with Oracle Web Services Manager
policies.

44.1.2.4.1 Preserve Security and Policy Configuration

Selecting Preserve Security and Policy Configuration preserves the following
configuration parameters of the resources on the importing system. The configuration
of the resources being imported is not preserved.

• Proxy service security and policy configuration:

– A reference to the service key provider.

– The set of policies that are bound directly to the service through the Policies
tab. If the service uses WSDL-based policies, the policies are not preserved
because the WSDL document itself might be updated and the service must
reflect the WSDL document.

– The state of the Process WS-Security Header option.

– Message-level custom authentication configuration.

• Proxy service transport-specific security configuration:

– For HTTP, the HTTPS flag and the authentication mode (anonymous, basic,
client certificate, or custom token).

– For JMS, the JMS and JNDI service accounts.

– For email and FTP, the service account reference.

– For SFTP, the authentication configuration.

• Business service security and policy configuration:

– WS-Policy bindings.

– The Pass Caller's Subject setting.

– A reference to the service account for outbound WS-Security.

• Business service transport-specific security configuration:

– For HTTP, the authentication mode (anonymous, basic, or client certificate)
and the service account reference.

Chapter 44
About Importing and Exporting Resources

44-4

– For JMS, references to the JMS and JNDI service accounts.

– For FTP, EJB, Tuxedo, and DSP, the service account reference.

– For SFTP, the authentication configuration.

44.1.2.4.2 Preserve Credentials

Selecting Preserve Credentials preserves the following credentials for the resources on the
importing system. The configuration of the resources being imported is not preserved.

• PKI credentials in service key providers.

A PKI credential mapping provider maps service key providers to key-pairs that can be
used for digital signatures and encryption and for outbound SSL authentication.

• User name and passwords in service accounts.

• User name and password in SMTP server, JNDI provider, and UDDI registries.

44.1.2.4.3 Preserve Access Control

Selecting Preserve Access Control Policies preserves all access control policies for the
proxy services on the importing system during the import process. The access control
policies of the proxy services being imported are not preserved.

44.1.2.5 Customizing Environment Values After an Import
Using the customization feature, imported resources can be tailored for the new domain
before activating them. Configuration files let you globally change environment-specific
attributes for resources using the import functionality along with the find and replace feature.
This is not meant to replace a more careful tuning of configuration that may be required by
complex deployment scenarios.

In addition to service endpoint URIs, directory names, and security configuration, your
Service Bus configuration may contain other settings that must be updated to operate
correctly in the new environment. Items that commonly require update include the following:

• Service references to other Service Bus resources.

• JMS queues and connection factories in proxy or business service URLs.

• Routing destinations in pipelines.

• Endpoint URIs for business and proxy services.

• Load balancing settings for business services.

• Directory names in the transport configuration for certain polling proxy and business
services.

For information about configuration files, see "Customizing Oracle Service Bus
Environments" in Administering Oracle Service Bus.

44.2 Importing and Exporting Resources in JDeveloper
Service Bus lets you import from and export to a variety of sources. You can export Service
Bus resources to a configuration JAR file for later import, and you can export resources
directly to a running WebLogic Server.

Chapter 44
Importing and Exporting Resources in JDeveloper

44-5

You can import resources from a configuration JAR file that was previously exported
from a Service Bus instance, from a ZIP file contains Service Bus resources, or from a
URL where Service Bus resources are located. You can also access resources in a
UDDI registry, which is described in Working with UDDI Registries.

Caution:

Before performing an export, be sure to save all the resources you want to
export. Before performing an import, be sure to save all the files in the
application to which you are importing.

44.2.1 How to Export Resources to a Configuration JAR File in Oracle
JDeveloper

When you export Service Bus resources to a file from JDeveloper, Service Bus
generates a JAR file that can later be imported into a different Service Bus instance.
When you export complete projects, the overview file, servicebus.sboverview, is not
included in the export, but it is regenerated when the project is imported again.

To export resources to a configuration JAR file in JDeveloper:

1. With a Service Bus application open, right-click in the Application Navigator and
select Export.

2. On the Export dialog, select Service Bus Resources, and click OK.

The Export Service Bus Resources wizard appears.

3. On the Type page, select Configuration JAR, and click Next.

A list of resources included in the selected source appears.

4. In the Export Level field, select the project to export complete projects, or select
resource to export individual resources.

5. Expand the list of resources, and make sure only the ones you want to export are
selected.

6. For a resource-level export, select Include Dependencies to export any additional
resources referenced by the selected resources. Clear the check box to only
export the resources you select.

7. Enter the path and file name for the configuration JAR file that will be generated.

8. To encrypt sensitive data in the exported resources, select Protect Sensitive Data
and then enter the password to unlock the file in the Passphrase and Confirm
Passphrase fields.

For more information, see Data Encryption During Export.

9. Click Finish.

Service Bus generates the configuration JAR file in the location you specified.

Chapter 44
Importing and Exporting Resources in JDeveloper

44-6

44.2.2 How to Export Resources to a Server in Oracle JDeveloper
When you export Service Bus resources directly to a server, Service Bus does not generate a
configuration JAR file that you can later import. Rather it exports the resources and then
imports them directly into the WebLogic server you specify.

Service Bus and JDeveloper now support deploying directly to Oracle Cloud servers.

Before exporting to a server, the server must have an application connection defined in
JDeveloper. Otherwise, you will be unable to select it from the list. To create an application
server connection, see How to Create an Application Server Connection.

To export resources to a server in JDeveloper:

1. With a Service Bus application open, right-click in the Application Navigator and select
Export.

2. On the Export dialog, select Service Bus Resources, and click OK.

The Export Service Bus Resources wizard appears.

3. On the Type page, select Server.

4. Click Next.

A list of resources included in the selected source appears.

5. In the Export Level field, select the project to export complete projects, or select
resource to export individual resources.

6. Expand the list of resources, and make sure only the ones you want to export are
selected.

7. For a resource-level export, select Include Dependencies to export any additional
resources referenced by the selected resources. Clear the check box to only export the
selected resources.

8. In the Server field, select the application server connection for the server to which you
want to export the resources.

Tip:

If the server you are connecting to is not running, click Start Server at the
bottom of the window to start it.

9. In the Session field, enter the name of the session with which you want to associate the
imported resources.

10. If you are deploying to an Oracle Cloud server, ensure that the Export to Cloud Server
option is selected.

11. Click Next.

12. Do the following if you are exporting to a non-cloud server:

a. Expand the list of resources, and make sure only the ones you want to import are
selected.

b. To automatically import any dependent resources, select Include Dependencies.

Chapter 44
Importing and Exporting Resources in JDeveloper

44-7

Note:

If you are exporting to an Oracle Cloud server, the list of resources is not
displayed. You can skip this step.

13. Select any of the environment or security settings you want to preserve from the
imported resources.

For information about these settings see Preserving Security Configuration During
Import and the online help provided with JDeveloper.

14. Do the following to configure the session:

a. To create and activate the session in the Oracle Service Bus Console, select
Activate session after publish and enter a description for the session.

b. To discard the session if conflicts result from the import or the session is
unable to be activated, select Discard session if activation fails.

Note:

The session is always discarded if activation fails when deploying to
an Oracle Cloud server.

15. To specify a configuration file to use to update environmental values, click Browse
next to the Deployment customization file field, and navigate to and select the
file to use.

16. Click Finish.

The selected resources are published to the specified server.

44.2.3 How to Import Resources in JDeveloper
You can import Service Bus from a variety of sources, including a previously exported
configuration JAR file, an archived ZIP file, and a URL. When you import resources
from a URL, you can browse multiple sources for the resource, including the file
system, MDS repository, the current application, application server, project libraries,
UDDI registries, and WSIL sources. The available sources vary based on the type of
resource you are importing.

If you import a new Service Bus project, Service Bus generates the project overview
file and adds all derivable Service Bus resources to the diagram in the Service Bus
Overview Editor. If your import updates an existing Service Bus project, the overview
diagram is also updated with any new resources or updated wiring. Any system
resources included in the imported file are added to the Service Bus System
Resources folder in the Application Resources panel. System resources are located
in the System folder in the application folder.

Chapter 44
Importing and Exporting Resources in JDeveloper

44-8

Caution:

When you import an archived ZIP file, the file extension for any XQuery resources
in the ZIP file must be .xqy and not .xquery, which was the default extension in
previous versions. The extension is updated automatically when you import a
configuration JAR file.

To import resources in JDeveloper:

1. With a Service Bus application open, right-click in the Application Navigator and select
Import.

2. On the Import dialog, select Service Bus Resources, and click OK.

The Import Service Bus Resources wizard appears.

3. On the Type page, select one of the following sources to import:

• Configuration JAR

• Resources from URL

• Zipped Resources

4. Click Next.

The options that appear on the Source page vary depending on your previous selection.

5. Do one of the following:

• If you selected Configuration JAR, browse to and select the name of the Service
Bus JAR file to import.

• If you selected Resources from URL, select the resource type from the list of
options, browse to and select the resource URL, and specify the resource name.

• If you selected Zipped Resources, browse to and select the name of the ZIP file
containing the resources to import.

6. Click Next.

A list of resources included in the selected source appears, along with the type of
operation (create, update, or delete) to be performed on each.

7. Expand the list of resources, and make sure only the ones you want to import are
selected.

Caution:

Review all resources that are marked for deletion, and be sure you want to
delete them. If you do not want them to be deleted, clear their check boxes.

8. If you are importing a configuration JAR file, do any of the following:

• To automatically import any dependent resources, select Include Dependencies.

• If the imported source is password protected, enter the password in the Passphrase
field.

Chapter 44
Importing and Exporting Resources in JDeveloper

44-9

• Select any of the environment or security settings you want to preserve from
the imported resources.

For information about these settings see Preserving Security Configuration
During Import and the online help provided with JDeveloper

9. Click Finish.

The selected resources are imported and appear in the Application Navigator.

44.3 Importing and Exporting Resources in the Oracle
Service Bus Console

The Service Bus import feature lets you import from a configuration JAR file that was
previously exported from a Service Bus instance, from a ZIP file containing Service
Bus resources, or from a URL where Service Bus resources are located.

You can also import from and publish to a UDDI registry, which is described in Working
with UDDI Registries..

Caution:

Before performing an export, be sure to save all the resources you want to
export. Before performing an import, be sure to save all the files in the
application to which you are importing.

44.3.1 How to Export Resources to a Configuration JAR File in the
Console

When you export Service Bus resources from the Oracle Service Bus Console,
Service Bus generates a JAR file that can later be imported into a different Service
Bus instance.

To export resources to a configuration JAR file in the console:

1. In the Project Navigator, do any of the following:

• To select all projects to export, click Export in the Resources toolbar or right-
click All Projects and select Export.

• To select a specific project to export, select that project and then right-click it.
Select Export from the menu that appears.

The Export Resources dialog appears with list of resources available to export.

2. Under Export Contents, select Projects to export complete projects, or select
Resources to export individual resources.

3. Expand the list of resources, and make sure only the ones you want to export are
selected.

4. For a resource-level export, select Include Resource Dependencies to export
any additional resources referenced by the selected resources. Clear the check
box to only export the resources you select.

Chapter 44
Importing and Exporting Resources in the Oracle Service Bus Console

44-10

5. To encrypt sensitive data in the exported resources, select Protect Sensitive Data and
then enter the password to unlock the file in the Passphrase and Confirm Passphrase
fields.

For more information, see Data Encryption During Export.

6. Click Export.

7. On the File Download dialog, click Save, specify a location and filename for the
configuration JAR file and click Save again.

Service Bus generates the configuration JAR file in the location you specified.

44.3.2 How to Import Resources from a Configuration JAR File in the
Console

Note:

When you import a configuration JAR file containing XQuery resources from
previous versions, the file extension of the resources is automatically updated
from .xquery to .xqy. The default extension in previous versions was .xquery.

To import resources from a JAR file in the console:

1. Do one of the following:

• In the Project Navigator, right-click All Projects, point to Import, and then select
Config Jar.

• Click the Import icon in the Resources toolbar.

2. On the Import Config JAR wizard, browse to and select the JAR file to import.

3. Click Next.

A list of resources included in the selected source appears, along with the type of
operation (create, update, or delete) to be performed on each.

4. Expand the list of resources, and select the ones you want to import. By default, all
resources are selected.

Caution:

Review all resources that are marked for deletion, and be sure you want to
delete them. If you do not want them to be deleted, clear their check boxes.

5. To automatically import any dependent resources, select Include Dependencies.

6. If the imported source is password protected, enter the password in the Passphrase
field.

7. Select any of the advanced settings you want to preserve from the imported resources.
You can preserve any of the following:

• Security and policy values

Chapter 44
Importing and Exporting Resources in the Oracle Service Bus Console

44-11

• Credentials

• Access control policies

• Environmental variable values

• Operational settings

For more information, see Preserving Security Configuration During Import or the
online help provided with the console.

8. Click Import.

The selected resources appear in the Project Navigator. The Import Config JAR
wizard displays a summary of the import along with any errors in the imported
resources.

9. To view any resources that were deleted during the import process, click the
Deleted Resources tab.

10. To import another JAR file, click Import Another and repeat the above steps.
Otherwise, click Close.

44.3.2.1 Importing New Version of Projects in the Console
When you import a new version of an existing project after making changes to the
endpoint URI of a business service, that has OWSM policy attached to it, WLS OWSM
webservice layer validation fails with a Null Pointer Exception. This occurs because,
the OLD URI is retained by OWSM layer.

To update this URI:

1. From Advanced Setting unselect Environment Variable Values.

2. After importing, ensure that the Endpoint URI for business service points to the
new location.

3. Detach the OWSM policy and reattach so that the policy set updates the value of
the Endpoint URI.

a. Detach a policy, save the business service, activate the session and click
submit.

b. Create a session, attach the relevant OWSM policy, save an activate the
session.

For information attaching and detaching policies, see Attaching and Configuring
Policies in the Oracle Service Bus Console

44.3.3 How to Import Resources from a ZIP File in the Console
When you import a ZIP file, each file in the ZIP file is a possible resource and Service
Bus identifies the type of resource in each file by its file extension. Each resource has
a default extension in Service Bus, but if you have additional extensions to describe
those resources, you can define those extension mappings when you import the ZIP
file. An extension can only be associated with one file type.

During the import process, Service Bus scans the contents of the ZIP file and tries to
associate a resource type with each file. A file without an extension or one that does
not have an extension defined in the map is considered unknown and is automatically
excluded from the load. For known files, the name of the resource is the name of the

Chapter 44
Importing and Exporting Resources in the Oracle Service Bus Console

44-12

file without its extension. The folder structure of the Zip file is recreated in the target project or
folder.

Resources like WSDL documents or XML Schemas can define full trees of dependent
resources. The bulk load feature lets you upload a set of resources at once so you do not
need to resolve the dependencies manually.

Caution:

When you import an archived ZIP file, the file extension for any XQuery resources
in the ZIP file must be .xqy and not .xquery, which was the default extension in
previous versions.

To import resources from a ZIP file in the console:

1. In the Project Navigator, right-click the project or folder into which you want to import
resources, point to Import, and then select Zip File.

2. On the Import from a ZIP File wizard, browse to and select the ZIP file to import.

3. In the Extension Mappings table, review the mapping of resource types to file extensions.
Change or add file extensions, according to your needs. Separate multiple extensions
with commas.

4. Click Next.

A list of resources included in the selected source appears, along with the type of
operation (create, update, or delete) to be performed on each.

5. Expand the list of resources, and select the ones you want to import. By default, all
resources are selected.

6. Click Import.

The selected resources appear in the Project Navigator. The Import from a ZIP File
wizard displays a summary of the import along with any errors in the imported resources.

7. To import another ZIP file, click Import Another and repeat the above steps. Otherwise,
click Close.

44.3.4 How to Import Resources from a URL in the Console
You can perform a bulk import of resources available at a URL or on the file system. Bulk
import lets you import a root resource, such as a WSDL document, along with its dependents,
such as other WSDL documents and schemas. The dependency map is resolved
automatically.

A Warning icon next to file name indicates that the resource type is unknown. (A file without
an extension or one that does not have an extension defined in the map is considered
unknown.) Files of unknown file types cannot be imported.

To import resources from a URL in the console:

1. In the Project Navigator, right-click the project or folder into which you want to import
resources, point to Import, and then select From URL.

2. On the Import from URL wizard, enter the following information:

• Resource Type: Select the type of resource to import from the list of options.

Chapter 44
Importing and Exporting Resources in the Oracle Service Bus Console

44-13

• URL Source: Enter the URL or local path to the resource to import. To specify
a local resource, use the file protocol. For example:

file:///c:/osbresources/ForeachAction.jar

• Resource Name: Enter the name of the resource to import.

3. Click Next.

A list of resources identified in the URL appears.

4. Expand the list of resources, and select the ones you want to import. By default, all
resources are selected.

5. Click Import.

The selected resources appear in the Project Navigator. The Import from URL
wizard displays a summary of the import along with any errors in the imported
resources.

6. To import more resources from a URL, click Import Another and repeat the above
steps. Otherwise, click Close.

44.4 Exporting a Service Bus Configuration Offline
This section describes how to export a Service Bus configuration when you are not
connected to a server.

You can export complete projects or individual resources into a configuration JAR file
that can then be imported into a new Service Bus environment or instance.

• About the Export Process

• Preparing to Export a Service Bus Configuration

• Exporting a Service Bus Configuration Offline

• Export Settings File Format, Samples, and Schema

44.4.1 About the Export Process
You can export a Service Bus configuration in offline mode using a command line, Ant
task, or the WebLogic Scripting Tool (WLST). All methods use an export settings file to
define how the export is executed and which files, folders, projects, or system
resources to include in the generated configuration JAR file.

The export tool runs in two phases, load and export, and each phase is configured in
an export settings file. During the load phase, the export tool traverses the file system,
identifies the files to read, converts the file content into the corresponding resource,
and imports the file into the configuration framework.

For the load phase, you can configure the following:

• Directory structure: There is no dependency on the JDeveloper work directory
structure; you can specify project root directories, directories where system
resources are located, and specific folders and files to include.

• File extensions: In Service Bus, each resource type uses a specific file extension,
such as .proxy for proxy services, .xsl and .xslt for XSLT resources, and so on.
Each extension can map to only one Service Bus resource type, but a resource
type can map to multiple file extensions. Each Service Bus resource has one

Chapter 44
Exporting a Service Bus Configuration Offline

44-14

default extension that cannot be changed, but you can also specify custom file
extensions for a resource. In order for the export tool to recognize files with custom
extensions, you need to define file extension mappings in the export settings file.

• Inclusion and exclusion rules: When you specify a project or system resources folder,
all Service Bus files are included in the export. You can use include and exclude
statements for finer control over which files are included. For example, certain versioning
systems create additional system folders and files within the project folders. These files
might be recognized as Service Bus resources and included in the exported JAR file
unless they are specifically excluded from the export.

The Service Bus configuration can be exported at the project level and at the resource level,
and you can define multiple configuration exports in one export settings file. For the export
phase, you can configure the following:

• Project-level export: At the project level, you specify the names of the projects to
include as well as whether to include system resources. If no project names are provided,
all projects added during the load phase are included in the generated export file.

Note:

Do not export at the project level if detailed inclusions have been defined for the
load phase; this could result in deleting all resources that were not included.

• Resource-level export: At the resource level, you specify the resources to export using
inclusion and exclusion rules as described above. You can also specify whether to
include dependencies. If no resources are specified in the export settings file, all
resources are exported.

• Multiple configuration JAR files: You can define multiple configjar elements in the
export settings file, each of which defines the export to a specific file. You can also
specify whether to overwrite existing files of the same name.

44.4.2 Preparing to Export a Service Bus Configuration
Perform the following steps before you export a Service Bus configuration in offline mode:

• Before You Begin

• Creating the Export Settings File

• Configuring the Environment

44.4.2.1 Before You Begin
Before you begin exporting resources, verify that you have the following installed:

• Service Bus 12.2.1

• Java 1.8.x

When you export the configuration, note the following:

• The resource JAR names in your scripts contain the correct version numbers.

• You may see exception stack traces in the output or the workspace log file if JDeveloper
work files are read-only.

Chapter 44
Exporting a Service Bus Configuration Offline

44-15

• An exit value of 0 means the export succeeded.

Note:

If you have developed a custom transport, you need to create an offline
transport plug-in file and save it to OSB_ORACLE_HOME/config/plugins in your
Service Bus installation.

44.4.2.2 Creating the Export Settings File
Rather than using command line arguments when performing an offline export, the
export tool refers to a settings file that you create. This file is in XML format and
contains all of the required information for the export tool to be able to find and load
files and then create the configuration JAR file. For information about the file format
and schema definition, as well as examples of usage, see Export Settings File Format,
Samples, and Schema.

44.4.2.3 Configuring the Environment
Before performing the export, you need run the setenv.* file to set the environment
variables used by the tool. You can customize this file before running it by modifying
the JVM heap size, adding JAR files to the CLASSPATH, or adding system properties.
If you have JAR resources that are included in the export and that require custom JAR
files, make sure to add the custom JAR files to the setenv.* file.

Once you have customized the file, navigate to OSB_ORACLE_HOME/tools/configjar
and run the following command:

For Windows:

setenv.bat

For UNIX or Linux:

source setenv.sh

44.4.3 Exporting a Service Bus Configuration Offline
The following sections describe scripting and command-line options for performing an
offline export of a Service Bus configuration:

• Exporting a Configuration Offline Using a Command Line

• Exporting a Configuration Offline Using Ant

• Exporting a Configuration Offline Using WLST

44.4.3.1 Exporting a Configuration Offline Using a Command Line
Exporting from the command line generates a Service Bus configuration JAR file from
the folders and files you specify in the export settings file.

Syntax

Use the following syntax for Windows:

Chapter 44
Exporting a Service Bus Configuration Offline

44-16

configjar.bat -settingsfile <FILE_NAME> [-debug -help]

Use the following syntax for UNIX or Linux:

./configjar.sh -settingsfile <FILE_NAME> [-debug -help]

Parameters

The following parameters can be used at the command line:

• -settingsfile FILE_NAME: Enter the path and filename of the export settings file. This
parameter is required.

• -debug: Include this optional parameter in the command to enable debug logging of the
export process. If this flag is not included, debug logging is not performed.

• -help: Include this optional parameter in the command to view usage information.

44.4.3.2 Exporting a Configuration Offline Using Ant
You can export a Service Bus configuration in offline mode using an Apache Ant build file.
Exporting using Ant generates the configuration JAR file from the folders and files you
specified in the export settings file.

Sample Build File

Below is a sample Ant build file:

<project name="ConfigExport" basedir=".">
 <target name="run">
 <ant antfile="configjar-ant.xml" target="run">
 <property name="settingsFile" value="/osb/config/exportProps1.xml"/>
 </ant>
 <ant antfile="configjar-ant.xml" target="run">
 <property name="settingsFile" value="/osb/config/exportProps2.xml"/>
 </ant>
 </target>
</project>

Note:

This is only a sample script. You can use it as a basis for your own script, but be
sure to check paths and file names against your current installation for accuracy.

Parameters

For Ant, the following parameters are supported:

• settingsFile: The path and filename of the export settings file. This parameter is
required

• debug: Set this parameter to true to enable debug logging of the export process;
otherwise set it to false. This parameter is optional and set to false by default.

• failonerror: Set this parameter to true if you want the task to fail when the export tool
fails. If you set it to false, the task does not fail even if the export tool fails. This
parameter is optional and set to true by default.

Chapter 44
Exporting a Service Bus Configuration Offline

44-17

• errorProperty: If specified, this parameter is set to true if execution fails. This
parameter is optional and is not specified by default.

44.4.3.3 Exporting a Configuration Offline Using WLST
You can export a Service Bus configuration file in offline mode using the WebLogic
Scripting Tool (WLST). Exporting using WSLT generates a Service Bus configuration
JAR file from the folders and files you specified in the export settings file.

Sample WLST Script

Below is a sample WLST script:

from com.bea.alsb.tools.configjar import ConfigJar

args = []
args.append('-settings')
args.append('/osb/config/exportProps2.xml')
ConfigJar.main(args)

Parameters

The following parameters can be used:

• -settingsfile FILE_NAME: Enter the path and filename of the export settings file.
If you use a relative path, the path resolves from the directory where the export
tool resides (OSB_ORACLE_HOME/tools/configjar). This parameter is required.

• -debug: Include this optional parameter in the command to enable debug logging
of the export process. If this flag is not included, debug logging is not performed.

• -help: Include this optional parameter in the command to view usage information.

44.4.4 Export Settings File Format, Samples, and Schema
By configuring the export settings, you can specify the files and folders to be included
in the configuration JAR file that is exported. You can do this at the project and
resource level, and you can use a series of exclusion and inclusion rules for a finer
level of control. The included files and folders make up the content set for the export.

44.4.4.1 Export Settings File Format
The export settings file contains two main sections: source and configjar. The source
element defines the files to be picked up by the export tool, and the configjar
element defines which of the files that were picked up will be included in the generated
configuration JAR file.

In the source element, you specify the project root directories for the projects to
export, the location of the system resources to export, and specific files to include or
exclude. You can also map custom file extensions to Service Bus resource types so
the export tool can recognize them as valid Service Bus components.

Chapter 44
Exporting a Service Bus Configuration Offline

44-18

Note:

If you specify relative directories for the project root or resource folders, the path is
resolved relative to the directory in which the export settings file is located.

In the configjar element, you name the generated JAR file and specify rules at the project
and resource level, including whether to include system resources at the project level and
whether to include dependencies at the resource level. You can define multiple configjar
elements; a JAR file is generated for each configjar element you define.

For guidance and restrictions on naming configuration JAR files, see Naming Guidelines for
Service Bus Components.

44.4.4.2 Validation
The same naming validation rules that are applied in Service Bus are also applied to the files
to be included in the content set. Any files or folders that do not conform to these rules are
excluded from the content set.

• Folders and files must have valid names.

• File extension must map to a Service Bus resource.

Two different files cannot map to the same instance of com.bea.wli.config.Ref (see the
Java API Reference for Oracle Service Bus for more information).

44.4.4.3 Inclusion and Exclusion Rules
When you use inclusion and exclusion rules, a file must match at least one of the inclusion
rules and none of the exclusion rules to be included in the content set. For a file to be
excluded, it must match at least one of the exclusion rules or none of the inclusion rules. If no
inclusion or exclusion rules are defined, all files are automatically included.

The inclusion and exclusion rules are based on a simple pattern.

• The pattern is applied on the file sub-path starting with the project name. It is not applied
on the full file path.

• An asterisk (*) is a wildcard representing any character. It can be used as part of a file or
directory name.

• When a double asterisk (**) is used alone, it matches zero or more directories and files.

44.4.4.4 Export Settings File Samples
This section provides sample export settings files that show ways to export Service Bus
configurations using a variety of rule combinations for the load and export phases.

Example - Exporting from a Non-JDeveloper File Structure

The following sample illustrates how to package a project and its associated system
resources from a structure like Maven. This sample outputs two configuration JAR files. The
first is a project-level configuration with no system resources, and the second is a resource-
level configuration with JNDI and SMTP resources.

Chapter 44
Exporting a Service Bus Configuration Offline

44-19

<configjarSettings xmlns="http://www.bea.com/alsb/tools/configjar/config">
 <source>
 <project dir="/scratch/modulePO/src/main/resources/PO"/>
 <system dir="/scratch/modulePO/src/main/system"/>
 </source>
 <configjar jar="/scratch/modulePO/sbconfig-po.jar">
 <projectLevel includeSystem="false"/>
 </configjar>
 <configjar jar="/scratch/modulePO/sbconfig-po-system.jar">
 <resourceLevel>
 <resources>
 <include name="**/*.jndi"/>
 <include name="**/*.smtp"/>
 </resources>
 </resourceLevel>
 </configjar>
</configjarSettings>

Example - Exporting at the Project Level

The following sample illustrates how to package system resources from different
locations and export them by project. You can delete any unneeded resources when
you import the configuration.

<configjarSettings xmlns="http://www.bea.com/alsb/tools/configjar/config">
 <source>
 <system dir="/scratch/moduleX/src/main/system"/>
 <system dir="/scratch/moduleY/src/main/system"/>
 <system dir="/scratch/moduleZ/src/main/system"/>
 </source>
 <configjar jar="/scratch/sbconfig-systems.jar">
 <projectLevel includeSystem="true"/>
 </configjar>
</configjarSettings>

Example - Excluding File Extensions in the Load Phase

This sample illustrates how to package all non-service resources into a configuration
JAR file by defining exclusion rules in the source element. Compare this with the next
example, "Excluding File Extensions in the Export Phase". Note that excluding files
during the load phase is the recommended method for performance reasons.

<configjarSettings xmlns="http://www.bea.com/alsb/tools/configjar/config">
 <source>
 <project dir="/scratch/jdeveloper/mywork/projectX"/>
 <project dir="/scratch/jdeveloper/mywork/projectY"/>
 <fileset>
 <exclude name="**/*.proxy"/>
 <exclude name="**/*.biz"/>
 <exclude name="**/*.flow"/>
 </fileset>
 </source>
 <configjar jar="/scratch/jdeveloper/mywork/sbconfig-resources.jar">
 <resourceLevel/>
 </configjar>
</configjarSettings>

Example - Excluding File Extensions in the Export Phase

The following sample illustrates how to package all non-service resources into a
configuration JAR file by defining exclusion rules in the configjar element.

Chapter 44
Exporting a Service Bus Configuration Offline

44-20

<configjarSettings xmlns="http://www.bea.com/alsb/tools/configjar/config">
 <source>
 <project dir="/scratch/jdeveloper/mywork/projectX"/>
 <project dir="/scratch/jdeveloper/mywork/projectY"/>
 </source>
 <configjar jar="/scratch/jdeveloper/mywork/sbconfig-resources.jar">
 <resourceLevel>
 <fileset>
 <exclude name="**/*.proxy"/>
 <exclude name="**/*.biz"/>
 <exclude name="**/*.flow"/>
 </fileset>
 </resourceLevel>
 </configjar>
</configjarSettings>

Example - Mapping File Extensions

The following example illustrates how to map additional file extensions to specific Service
Bus resource types, in this case to XQuery and XML types.

 <configjarSettings xmlns="http://www.bea.com/alsb/tools/configjar/config">
 <source>
 <project dir="/scratch/jdeveloper/mywork/projectX"/>
 <project dir="/scratch/jdeveloper/mywork/projectY"/>
 <extensionMapping>
 <mapping type="Xquery" extensions="xquery,xq,xqy"/>
 <mapping type="XML" extensions="toplink"/>
 </extensionMapping>
 </source>
 <configjar jar="/scratch/jdeveloper/mywork/sbconfig.jar">
 <resourceLevel/>
 </configjar>
</configjarSettings>

Note:

When mapping file extensions, the type attribute must match a Service Bus
resource type defined in com.bea.wli.config.Ref. For more information, see the
Java API Reference for Oracle Service Bus.

44.4.4.5 Export Settings File Schema Definition
Below is the schema definition for the export settings XML file. Note that some of the text has
been wrapped for readability.

<?xml version="1.0"?>
<xs:schema targetNamespace="http://www.bea.com/alsb/tools/configjar/config"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://www.bea.com/alsb/tools/configjar/config">
<xs:element name="configjarSettings" type="tns:configjarSettings"/>
<xs:complexType name="configjarSettings">
 <xs:sequence>
 <xs:element name="source" type="tns:source" />
 <xs:element name="configjar" type="tns:configjar" maxOccurs="unbounded"/>

Chapter 44
Exporting a Service Bus Configuration Offline

44-21

 </xs:sequence>
</xs:complexType>
<xs:complexType name="source">
 <xs:sequence>
 <xs:choice minOccurs="1" maxOccurs="unbounded">
 <xs:element name="project">
 <xs:complexType>
 <xs:attribute name="dir" type="xs:string" use="required"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="system">
 <xs:complexType>
 <xs:attribute name="dir" type="xs:string" use="required"/>
 </xs:complexType>
 </xs:element>
 </xs:choice>
 <xs:element name="extensionMapping" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="mapping" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:attribute name="type" type="xs:string" use="required"/>
 <xs:attribute name="extensions" type="xs:string"
 use="required"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="fileset" type="tns:contentSet" minOccurs="0"/>
 </xs:sequence>
</xs:complexType>
<xs:complexType name="configjar">
 <xs:sequence>
 <xs:choice minOccurs="1" maxOccurs="1">
 <xs:element name="projectLevel" type="tns:projectLevel"/>
 <xs:element name="resourceLevel" type="tns:resourceLevel"/>
 </xs:choice>
 </xs:sequence>
 <xs:attribute name="jar" type="xs:string" use="required"/>
 <xs:attribute name="overwrite" type="xs:boolean" use="optional"
default="true"/>
</xs:complexType>
<xs:complexType name="projectLevel">
 <xs:sequence>
 <xs:element name="project" type="xs:string" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="includeSystem" type="xs:boolean" use="optional"
 default="false"/>
</xs:complexType>
<xs:complexType name="resourceLevel">
 <xs:sequence>
 <xs:element name="resources" type="tns:contentSet" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="includeDependencies" type="xs:boolean" use="optional"
 default="true"/>
</xs:complexType>
<xs:complexType name="contentSet">
 <xs:sequence>
 <xs:element name="include" type="tns:contentSetPattern" minOccurs="0"

Chapter 44
Exporting a Service Bus Configuration Offline

44-22

 maxOccurs="unbounded"/>
 <xs:element name="exclude" type="tns:contentSetPattern" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
</xs:complexType>
<xs:complexType name="contentSetPattern">
 <xs:attribute name="name" type="xs:string" use="required"/>
</xs:complexType>
</xs:schema>

Chapter 44
Exporting a Service Bus Configuration Offline

44-23

45
Sharing Data Using the Metadata Services
Repository

When using JDeveloper, you can leverage a common Metadata Services (MDS) repository to
store and share the artifacts generated for Service Bus and SOA Suite applications. Use this
repository to create a backup of the artifacts you create and to share deployed artifacts
across multiple servers, instances, applications, and products.

This chapter includes the following sections:

• Service Bus and the MDS Repository

• Managing the MDS Repository

• Sharing Artifacts Using the MDS Repository

• Consuming Artifacts Stored in the MDS Repository

For more information about the MDS Repository, see "Managing Shared Data with the
Design-Time MDS Repository" in Developing SOA Applications with Oracle SOA Suite.

You can also share artifacts using UDDI registries. For more information, see Working with
UDDI Registries.

45.1 Service Bus and the MDS Repository
An MDS Repository stores information about Oracle Fusion Middleware components. The
repository can be either file-based or database-based, but several design-time activities can
only be performed against a file-based repository.

For complete information about repository types, see Managing the Metadata Repository in
Administering Oracle Fusion Middleware.

A file-based, design-time MDS Repository and connection is automatically included when you
create a Service Bus application in JDeveloper. You can modify this connection to point to a
different existing repository, or you can create new connections to point to different
repositories. Sharing operations are done against the design-time repository, and cannot be
done against a database-backed MDS Repository.

The Resources window in JDeveloper lets you browse the folders and artifacts stored in the
MDS Repository. You can also create and delete folders; add, import, and delete Service Bus
and SOA Suite artifacts, and generate Service Bus business services from WSDL files stored
in the repository. The Resources window lets you export artifacts from the repository and
import artifacts into the repository, both in the form of JAR files. The following figure shows
Service Bus components in the MDS Repository in the Resources window.

45-1

Figure 45-1 Service Bus Artifacts in the MDS Repository

For more information about the MDS repository, see Introduction to Design-Time MDS
Repository Managementin Developing SOA Applications with Oracle SOA Suite.

45.2 Managing the MDS Repository
You can perform general management tasks on the MDS Repository, including
seeding the repository with source data, transferring the contents of one repository to
another, creating and deleting folders, and importing and exporting artifacts.

The following topics in Developing SOA Applications with Oracle SOA Suite provide
information to help you manage the repository:

• Populating the Default SOA-MDS Connection with Source Data

• Creating and Deleting Subfolders Under the /apps Folder

• Exporting the Selected Contents of the /apps Folder to a JAR File

• Importing the Contents of the JAR File into the /apps Folder

• Transferring the Selected Contents of the /apps Folder to Another MDS Repository

45.3 Sharing Artifacts Using the MDS Repository
You can share the following Service Bus artifact types with the design-time MDS
Repository: WSDL, WADL, JCA, JAR, cross-reference, domain value map, WS policy,
XSD, XML, XSLT, MFL, and XQuery files.

These files can then be shared with other Service Bus applications and, for many of
these artifact types, with SOA Suite applications.

45.3.1 How to Publish Service Bus Artifacts to the MDS Repository
Project components are published to the MDS repository using the SOA-MDS Transfer
wizard, accessed by right-clicking any component that can be shared. These
component can then be shared with other Service Bus and SOA Suite applications.

Chapter 45
Managing the MDS Repository

45-2

Before You Begin

Before you can work with artifacts in the MDS repository, you need to create a connection to
the repository from JDeveloper. For instructions, see How to Create a SOA-MDS Connection.

To publish Service Bus artifacts to the MDS Repository:

1. Make sure the component to import is not open in any JDeveloper editors. Also close any
files on which the component depends, such as XML schema files.

2. In the JDeveloper Application Navigator, display the component you want to publish to
the MDS Repository.

3. Right-click the component, point to Service Bus, and select Publish to SOA
Designtime Repository.

The SOA-MDS Transfer wizard appears, listing the component to be published.

4. Click Next.

5. On the Choose Target window, expand the folders to the location where you want to
publish the Service Bus component.

Figure 45-2 SOA-MDS Transfer Wizard - Choose Target Window

6. To add a new folder, do the following:

a. Select the folder in which you want to create the new folder.

b. Click the Create Folder icon.

c. Enter a name for the new folder and click OK.

The new folder appears in the tree.

Chapter 45
Sharing Artifacts Using the MDS Repository

45-3

7. To search for a component or folder that exists in the MDS Repository, enter the
full or partial name in the search field. The results appear below your input.

Figure 45-3 SOA-MDS Transfer Wizard - Search Targets

8. Select the folder to which you want to publish the selected component, and click
Next.

9. On the Dependencies window, verify the files to copy to the MDS Repository.

This window displays the file you selected to copy along with any files on which
that file depends.

Chapter 45
Sharing Artifacts Using the MDS Repository

45-4

Figure 45-4 SOA-MDS Transfer Wizard - Dependencies Window

10. To overwrite existing files in the MDS Repository, select Overwrite if document exists
in the target MDS repository.

11. Click Finish.

12. On the confirmation dialog, click OK.

You can now view the files you copied in the SOA-MDS connection in the JDeveloper
Resources window.

45.4 Consuming Artifacts Stored in the MDS Repository
When a Service Bus application consumes an artifact stored in the MDS Repository, it does
not refer to the files in the repository like a SOA Suite applications does. Instead, the files are
imported into the Service Bus application.

You can consume artifacts stored in the MDS Repository directly from the Resources window
in JDeveloper or by adding an artifact (such as a WSDL file) using the Select dialog. The
Select dialog is accessed from the wizards and editors you use to create and configure
components, such as business and proxy services.

45.4.1 How to Consume MDS Repository Artifacts Using the Resource
Browser

The Resource Browser is most commonly launched in Service Bus when you are selecting a
WSDL file on which to base a pipeline, split-jon, proxy service, or business service. It also
appears when you import a WSDL or XML file on the Type Chooser dialog, or when you
import an XSLT or XQuery map into a pipeline action.

Chapter 45
Consuming Artifacts Stored in the MDS Repository

45-5

Before You Begin

Before you can work with artifacts in the MDS repository, you need to create a
connection to the repository from JDeveloper. For instructions, see How to Create a
SOA-MDS Connection.

To consume artifacts using the Resource Browser:

1. When you reach a point in creating or configuring a Service Bus component where
you need to select a file from the MDS Repository, click the icon that lets you
select an existing file.

For example, when creating a proxy service based on a WSDL document, click
Select WSDL to the right of the field.

Figure 45-5 Select WSDL Icon on the Create Pipeline Service Wizard

2. In the upper portion of the Resource Browser, select SOA-MDS.

Figure 45-6 Resource Browser

Chapter 45
Consuming Artifacts Stored in the MDS Repository

45-6

3. In the lower portion of the Resource Browser, expand the folders to select the file you
want to use and then click OK.

The Import Service Bus Resources wizard appears (because Service Bus copies instead
of references repository files).

4. Verify the information for the source file and make any necessary changes. Click Next.

5. On the Configuration window, make sure the artifacts you want to import are all selected.
Click Finish.

The file and its dependencies are imported into the current project, and the file
information is populated into the appropriate fields.

6. Continue creating or configuring the Service Bus component.

45.4.2 How to Add MDS Repository Artifacts to a Service Bus Project
Service Bus can only consume supported resource types from the MDS Repository. Any
resource recognized as a Service Bus resource can be imported to a Service Bus project.
When you import an artifact, Service Bus launches the Import Service Bus Resources wizard
to add the resources to the selected project.

Before You Begin

Before you can work with artifacts in the MDS repository, you need to create a connection to
the repository from JDeveloper. For instructions, see How to Create a SOA-MDS Connection.

To add repository artifacts to a Service Bus project:

1. If the Resources window is not visible in JDeveloper, click the Window menu and select
Resources.

2. In the Resources window, expand SOA-MDS and the repository name (the default name
is SOA_DesignTimeRepository).

3. Expand the folders until you locate the artifact you want to add to your project.

Tip:

Alternatively, enter a full or partial name in the Search field on the Resources
window and press Enter to search for the artifact.

4. Right-click the artifact, point to Service Bus, and select Import Resource.

The Import Service Bus Resources wizard appears.

5. Verify the information for the source file and make any necessary changes to the name
and location for the imported file. Click Next.

6. On the Configuration window, make sure the artifacts you want to import are all selected.
Click Finish.

The new resource is added to the location you specified and is available for use in
Service Bus projects.

Chapter 45
Consuming Artifacts Stored in the MDS Repository

45-7

45.4.3 How to Create a Business Service from a WSDL File in the
MDS Repository

You can generate a Service Bus business service from a WSDL document in the MDS
Repository. When you select this option, the Create Business Service wizard appears
so you can further define the business service. When the business service is
generated, the WSDL file is imported to the Service Bus project, along with any
dependencies like XML schema files.

Before You Begin

Before you can work with artifacts in the MDS repository, you need to create a
connection to the repository from JDeveloper. For instructions, see How to Create a
SOA-MDS Connection.

To create a business service from a WSDL file in the MDS Repository:

1. If the Resources window is not visible in JDeveloper, click the Window menu and
select Resources.

2. In the Resources window, expand SOA-MDS and the repository name (the default
name is SOA_DesignTimeRepository).

3. Expand the folders until you locate the WSDL file you want to use for the business
service.

Tip:

Alternatively, enter a full or partial name in the Search field on the
Resources window and press Enter to search for the WSDL file.

4. Right-click the WSDL file, point to Service Bus, and select Generate Business
Service.

The Create Business Service wizard appears.

5. Click Browse next to the Service Artifacts Folder field, and browse to and select
the project or folder to which you want to add the WSDL file. Click Select.

6. On the Create Business Service wizard, click Next.

7. On the Create Service window, accept the default values or make any of the
following changes:

• Modify the default name assigned to the service.

• Add a description for the business service.

• Select a different port from the WSDL document.

8. Click Next.

9. On the Transport window, accept the default values or make any of the following
changes:

• Select a new transport protocol.

• Modify the endpoint URI.

Chapter 45
Consuming Artifacts Stored in the MDS Repository

45-8

10. Click Finish.

The new resources are added to the locations you specified.

11. Continue configuring the business service, as described in Configuring Business
Services.

45.4.4 How to Create a Business Service from a WADL File in the MDS
Repository

You can generate a Service Bus business service from a WADL document in the MDS
Repository. When you select this option, the Create REST Binding wizard appears so you
can configure the REST service. The business service and WSDL file are generated, and the
WADL file is imported to the Service Bus project, along with any dependencies, such as XML
schema files.

Before You Begin

Before you can work with artifacts in the MDS repository, you need to create a connection to
the repository from JDeveloper. For instructions, see How to Create a SOA-MDS Connection.

To create a business service from a WADL file in the MDS Repository:

1. In the Application Navigator in JDeveloper, open the application to which you want to add
the REST business service, and select the project or folder in which it will be located.

2. If the Resources window is not visible, click the Window menu and select Resources.

3. In the Resources window, expand SOA-MDS and the repository name (the default name
is SOA_DesignTimeRepository).

4. Expand the folders until you locate the WADL file you want to use for the business
service.

Tip:

Alternatively, enter a full or partial name in the Search field on the Resources
window and press Enter to search for the WADL file.

5. Right-click the WADL file, point to Service Bus, and select Generate Business Service.

The Create REST Binding wizard appears.

6. Enter a name for the REST binding.

7. Enter the Base URI, which is the endpoint URI for the business service.

8. To specify that JSON payloads be reordered to match the order of elements in the XML
schema, select Enforce XMLSchema Ordering.

9. The remaining configuration is based on the selected WADL file. Click OK.

The Import Service Bus Resources wizard appears, if there are resources to import.

10. Optionally, specify a new name and import location for the resource to import.

11. Click Next.

12. Review the summary of resources to import, and click Finish.

Chapter 45
Consuming Artifacts Stored in the MDS Repository

45-9

The WADL file, WSDL file, and any dependent resources are added to the
Resources folder of the selected project. The business service is added to the
project.

13. Continue configuring the business service, as described in Configuring Business
Services.

45.4.5 How to Expose a WSDL File in the MDS Repository as a REST
Service

You can generate REST business and proxy services from a WSDL document in the
MDS Repository. When you select this option, the Create Business Service wizard
appears, followed by the Create REST Binding wizard. The Service Bus services are
generated, and the WSDL and WADL files are imported to the Service Bus project,
along with any dependencies, such as XML schema files.

Before You Begin

Before you can work with artifacts in the MDS repository, you need to create a
connection to the repository from JDeveloper. For instructions, see How to Create a
SOA-MDS Connection.

To expose a WSDL file in the MDS Repository as a REST service:

1. In the Application Navigator in JDeveloper, open the application to which you want
to add the REST services, and select the project or folder where they will be
located.

2. If the Resources window is not visible, click the Window menu and select
Resources.

3. In the Resources window, expand SOA-MDS and the repository name (the default
name is SOA_DesignTimeRepository).

4. Expand the folders until you locate the WSDL file you want to expose as a REST
service.

Tip:

Alternatively, enter a full or partial name in the Search field on the
Resources window and press Enter to search for the WSDL file.

5. Right-click the WSDL file, point to Service Bus, and select Expose as REST.

The Create Business Service wizard appears.

6. Click Browse next to the Service Artifacts Folder field, and browse to and select
the project or folder to which you want to add the resources and service. Click
Select.

7. On the Create Business Service wizard, click Next.

8. On the Create Service window, accept the default values or make any of the
following changes, and then click Next:

• Modify the default name assigned to the service.

• Add a description for the business service.

Chapter 45
Consuming Artifacts Stored in the MDS Repository

45-10

• Select a different port from the WSDL document.

9. On the Transport window, accept the default values or make any of the following
changes:

• Select a new transport protocol.

• Modify the endpoint URI.

10. Click Finish.

The Create REST Binding wizard appears.

11. Optionally, enter a new name and description for the REST service.

12. To specify that JSON payloads be reordered to match the order of elements in the XML
schema, select Enforce XMLSchema Ordering.

13. To enter a new resource path, click the Add icon in the Resources section.

14. If necessary, double-click in the HTTP Verb column of the Operation Bindings section to
configure the methods.

15. Click OK.

16. If the Localize Files dialog appears, clear the check box if you do not want to maintain the
original directory structure, and click OK.

17. Continue configuring the business service, as described in Configuring Business
Services.

18. Continue configuring the proxy service, as described in Configuring Proxy Services.

45.4.6 Opening the Project Overview File Through a SOA-MDS
Connection

If you create a SOA-MDS connection in JDeveloper, expand the connection, and attempt to
open the servicebus.sboverview file of a Service Bus project or the overview.xml files of a
SOA composite application from the Resources window, the file may not load correctly. Only
open a these files from the Application Navigator.

For information about the Oracle MDS Repository, see Administering Oracle Fusion
Middleware.

Chapter 45
Consuming Artifacts Stored in the MDS Repository

45-11

46
Working with UDDI Registries

This chapter describes how to use Service Bus with Universal Description, Discovery, and
Integration (UDDI) registries.

This chapter contains the following sections:

• UDDI, UDDI Registries, and Web Services

• Service Bus and UDDI

• Keeping Services Synchronized

• Related References

• Working with UDDI Registry Resources

• Sharing UDDI Registry Services in JDeveloper

• Sharing UDDI Registry Services in the Oracle Service Bus Console

• Sample Business Scenarios for Service Bus and UDDI

• Mapping Service Bus Proxy Services to UDDI Entities

46.1 UDDI, UDDI Registries, and Web Services
UDDI provides a framework in which to classify your business, its services, and the technical
details about the services you want to expose.

The UDDI Project is an industry initiative that aims to enable businesses to find and carry out
transactions with one another quickly, easily, and dynamically. A populated UDDI registry
contains cataloged information about businesses, the services that they offer, and
communication standards and interfaces they use to conduct transactions. A UDDI registry
provides a standards-based foundation infrastructure for locating services, invoking services,
and managing metadata about services (security, transport, or quality of service). The UDDI
registry can store and provide these metadata using arbitrary categorizations. These
categorizations are called taxonomies.

An organization uses UDDI registries to share web services. Using UDDI registries helps
companies organize and catalog web services for sharing and reuse in an enterprise or with
trusted external partners. The UDDI version 3.0 specification is available at: http://
www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3

UDDI registries are based on this specification, which provides details on how to publish and
locate information about web services using UDDI. The specification does not define runtime
aspects of the services (it is only a directory of the services). UDDI provides a framework in
which to classify your business, its services, and the technical details about the services you
want to expose.

Publishing a service to a registry requires knowledge of the service type and the data
structure representing that service in the registry. Certain properties are associated with each
registry entry and these property types are defined when the registry is created. You can
publish your service to a registry and make it available for other organizations to discover and

46-1

http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3
http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3

use. Proxy services developed in Service Bus can be published to a UDDI registry.
Service Bus can interact with any UDDI registry that is compliant with version 3.0.

Figure 46-1 illustrates the integration of Service Bus with a UDDI registry.

Figure 46-1 Oracle Service Bus integration with UDDI

The Service Bus web-based interface makes the registry accessible and easy to use.
In working with UDDI, Service Bus promotes the reuse of standards-based web
services. In this way, Service Bus registry entries can be searched for, discovered, and
used by multiple domains. web services and UDDI are built on a set of standards, so
reuse promotes the use of acceptable, tested web services and application
development standards across the enterprise. The web services and interfaces can be
catalogued by type, function, or classification so that they can be discovered and
managed more easily.

46.1.1 Basic Concepts of the UDDI Specification
UDDI is based upon several established industry standards, including HTTP, XML,
XML Schema Definition (XSD), SOAP, and WSDL. The UDDI specification describes a
registry of web services and its programmatic interfaces. UDDI itself is a set of web
services. The UDDI specification defines services that support the description and
discovery of the following:

• Businesses, organizations, and other web services providers

• The web services they make available

• The technical interfaces that can be used to access and manage those services

46.1.2 Benefits of Using a UDDI Registry with Service Bus
A UDDI registry stores data and metadata about business services. A UDDI registry
offers a standards-based mechanism to classify, catalog, and manage web services so
that they can be discovered and consumed by other applications. UDDI offers several
benefits to IT managers and developers at both design time and runtime, including the
following:

• UDDI improves infrastructure management by publishing information about
services to the registry and categorizing the services for discovery. This ability of

Chapter 46
UDDI, UDDI Registries, and Web Services

46-2

UDDI to categorize a growing portfolio of services makes it easier to manage them and
helps you to understand relationships among components, supports versioning, and
manages dependencies.

• You can import UDDI services from a registry to configure the parameters required to
invoke the web service and the necessary transport and security protocols.

• UDDI promotes the use of standards-based web services and business services
development in business applications and provides a link to a library of resources for web
services developers. This decreases development time and improves productivity. It also
increases the prospect of interoperability between business applications by sharing
standards-based resources.

• UDDI provides a user-friendly interface for searching and discovering web services.

46.1.3 Introduction to UDDI Entities
UDDI uses a specific data model to represent entities that define organizations and
services.Figure 46-2 shows the relationships between different UDDI entities.

Figure 46-2 UDDI Entities Representing Organizations and Services

Table 46-1 provides a high-level overview of UDDI entities.

Table 46-1 High-Level Description of UDDI Entities

UDDI Entity Description

Business Entity An organization or group that owns and provides the services. A
business entity can be described by a set of names, descriptions, contact
details for the service provider, a set of categories that represent the
business entity features, unique identifiers, and discovery URLs.

Chapter 46
UDDI, UDDI Registries, and Web Services

46-3

Table 46-1 (Cont.) High-Level Description of UDDI Entities

UDDI Entity Description

Business Service A description of the functionality or resources provided by a business
entity. A business service is described by a name, a description, and a
set of categories that represent the function of the service. A business
service in a UDDI registry does not necessarily represent a web service.
The UDDI registry can register arbitrary services, for example EJB,
CORBA, and such.

Binding Template The technical details of how to invoke a business service. A business
service can contain one or more binding templates. Binding templates
are described by access points representing service endpoints (the
endpoint URI and protocol specification), tModel instance information,
and categories to reference specific features of the binding template.

tModel A technical specification; typically a specifications pointer, or metadata
about a specification document, describing how services must be
represented in the UDDI registry. The description of a service includes a
name, a description, an overview document (a reference to a document
specifying the purpose of the tModel), a category, and an identifier (to
uniquely identify the tModel).

46.2 Service Bus and UDDI
Service Bus works with any UDDI registry that is compliant with the version 3.0
implementation of UDDI.

Using Service Bus with a UDDI registry, you can do the following:

• Configure Service Bus to work with one or more V3.0-compliant UDDI registries.

• Configure a registry to allow users to publish services and import services.

• Publish information about any proxy service to a registry.

• Search for specific services in a registry or list all services available. You can
search on business entity, service name pattern, or both.

• Import business services from a registry.

46.2.1 UDDI Registry URLs
When you configure a UDDI registry in Service Bus, you specify several API endpoint
URLs for different types of UDDI registry access. These URLs include the following:

• Inquiry URL: The URL of the Inquiry API endpoint used for locating and importing
services.

• Publish URL: The URL of the Publish API endpoint used for publishing services.

• Security URL: The URL of the Security API endpoint used for getting an
authentication token so you can publish to the registry

• Subscription URL: The URL of the Subscription API endpoint used for subscribing
to registry changes, creating a registry subscription, and listening for changes to
imported services.

Chapter 46
Service Bus and UDDI

46-4

46.2.2 UDDI Registry Security Configuration
You can make your UDDI registries available in Service Bus by creating a UDDI registry
resource, which defines the connection information for the UDDI registry. You can then
publish Service Bus proxy services to the registry or import business services from the
registry to be used in a proxy service. You specify the UDDI URLs in the resource, and
optionally specify security information. When publishing services to most registries, the proxy
service configuration must include a valid user name and password for authentication to gain
access to the registry.

You can set up registries with multiple user names and passwords allowing different users to
have different permissions based on the associated service accounts. In Service Bus, user
permissions govern access to the registries, their content, and available functionality.

46.2.3 Authentication Configuration and UDDI Registries
When a proxy service is published to a UDDI registry, the service is converted into a WS
business service with the WSDL document. If present, the authentication configuration is also
exported to UDDI. When a WSDL-based business service with WSRM policy is imported
from an UDDI registry to Service Bus, the service is imported as a WS business service that
is automatically configured to use the WS transport.

Transport-level custom authentication tokens are published to the UDDI. The client-auth
property is present in the instanceParms of the HTTP or HTTPS transport attributes
whenever authentication is configured. As described in Transport Attributes., the possible
values of client-auth are BASIC, CLIENT-CERT and CUSTOM-TOKEN. Whenever the value is
CUSTOM-TOKEN, two additional properties are present: token-header and token-type.

Note:

Service Bus business service definitions do not support custom token
authentication. If you import a service from UDDI that has client-auth equal to
CUSTOM-TOKEN, the service is imported as if it does not have any authentication
configuration.

46.2.4 About Publishing Proxy Services to a UDDI Registry
Use the Oracle Service Bus Console or JDeveloper to publish proxy services to a UDDI
registry and make it available for other organizations to discover and use. All proxy services
developed in Service Bus can be published to a UDDI registry. You can select the business
entity under which you want to publish your service and you can publish a number of services
at a time.

To do this you must have a user account set up in the UDDI registry. You can publish any
proxy service to a UDDI registry and you can select the Business Entity under which a
service is to be published. Business Entity Administration (including creation, removal,
update, and deletion of entities) is done using the management console provided by the
registry vendor. The first time you publish to a registry you must load the tModels to that
registry. You do this when you configure the publishing details in the console or JDeveloper.
For more information on how to publish to a UDDI registry, see Publishing Proxy Services to
a UDDI Registry.

Chapter 46
Service Bus and UDDI

46-5

Note:

An error can occur when you attempt to import a service from a UDDI
registry if that service was originally published to the registry from a Service
Bus cluster in which any of the clustered servers uses the localhost address.
Specifically, when the service being imported references a resource (WSDL
or XSD) which references other resources (WSDL or XSD).

Before you publish services to a UDDI registry from a clustered domain, be
sure that none of the servers in the cluster use localhost in the server
addresses. Instead, use either the machine name or the IP address.

You can publish local proxy services to a UDDI registry in order to associate them with
Service Bus generic proxy services. For example, you might have an any SOAP or
any XML generic proxy service that dynamically routes to multiple local transport proxy
services with concrete WSDL files. Alternatively, you might have a generic proxy
service in Service Bus 1 that dynamically routes to a generic proxy service in Service
Bus 2 where the business service is attached. From the UDDI registry, you can get the
WSDL file of the local proxy service and the URL of the any SOAP or any XML generic
proxy service. Combining the WSDL file and URL creates an effective WSDL file for
sending messages to the local proxy service through the generic proxy service.

46.2.5 About Importing Services from a UDDI Registry
You can import services from a UDDI registry as Service Bus business services. When
importing a WSDL-based service, if multiple UDDI binding templates are encountered,
Service Bus creates a different business service for each binding template.

For information about the security roles required to establish access to UDDI registries
in Service Bus, see "Role-Based Access in Oracle Service Bus" in Administering
Oracle Service Bus. When importing, you select from the list of available registries. In
the Oracle Service Bus Console, you can view the complete list of registries on the
UDDI Folder Definition Editor. When you import from a registry, you discover services
by querying that registry. In JDeveloper, you can view the available registries in the
Resources window and browse through the list to discover a service. Entries in
registries are unique.

You can import the following business services types from a UDDI registry into Service
Bus:

• WSDL over HTTP binding. When multiple UDDI binding templates are present, a
business service is created for each binding template.

• SOAP or XML binding over HTTP.

• Services that are categorized as Service Bus services. These are proxy services
that are published to a UDDI registry. This feature is primarily used in multi-domain
Service Bus deployments where proxy services from one domain need to discover
and route to proxy services in another domain.

Services have documents associated with them, and those documents can include a
number of other documents (schemas, policies, and so on). On import, the UDDI
registry points to the document location based on the inquiry URL of the service. When
a document that includes or references other resources is located, all of the

Chapter 46
Service Bus and UDDI

46-6

referenced information and each included item is added as a separate resource in Service
Bus.

46.2.5.1 About Business Entities and Patterns
Business entity and pattern are the criteria used to search for a service in a registry. Services
published by Service Bus have specific tModel keys identifying the services that you use
when searching for the service in the registry. The business entity is the highest level of
organization in the registry, though you can use other search criteria, such as business,
application type, and so on. If you require authentication, then you need a user name and
password, which you must get from your system administrator.

46.3 Keeping Services Synchronized
You can keep the service definitions in Service Bus automatically synchronized (both ways)
with those in UDDI.

Services can be automatically published to a UDDI registry after they are created or changed
within Service Bus, and business service definitions can be imported from UDDI and
automatically updated when the original service is changed in UDDI. Alternatively, you can
configure the Oracle Service Bus Console or JDeveloper to prompt you for approval for
synchronization when a service changes in the UDDI registry.

46.3.1 Automatic Publishing for Proxy Services
When you configure a proxy service in the Oracle Service Bus Console, you can configure it
to be published automatically to a default UDDI registry. This feature is not available in
JDeveloper. You must first set up a default registry and configure the proxy service to
automatically publish to the default registry. When you activate these changes, the proxy
service is published to the default registry. If the UDDI registry is unavailable, the publish
action is retried. Any further changes to the proxy service resets the retry attempts. When a
proxy service is republished to a UDDI registry, all taxonomies and categorizations, which are
defined in UDDI for the proxy service, are preserved.

For instructions, see How to Specify a Default UDDI Registry Resource and How to
Automatically Publish Proxy Services to a UDDI Registry.

46.3.1.1 Changes to the Default Registry
When you change the default registry, all the proxy services that have auto-publish enabled
are published to the new default registry. Synchronization then takes place with the current
default registry. When a proxy service is not synchronized, the Oracle Service Bus Console
displays an unsynchronized icon.

Note:

When you have a default registry and you import a configuration JAR file that has a
default registry set with the same logical name during the import, it is possible that
the default registry will have an incorrect value for the business entity. This might
result in errors on the Auto Publish Status page if there are any auto-published
proxy services. You can correct this situation by selecting the default registry again.

Chapter 46
Keeping Services Synchronized

46-7

46.3.1.2 Auto-Publish Synchronization Process
When auto-publish is enabled for a proxy service, you can use the Auto Publish Status
page on the Oracle Service Bus Console to view and manage the service
synchronization process. This page displays a list of published proxy services along
with their status. If any errors prevent a service from automatically publishing the
registry, you can retry publishing them from this page.

If a proxy service changes after being published, you can synchronize the changes
using the Admin features in the Oracle Service Bus Console. If auto-publish is
enabled, Service Bus automatically publishes any changes to the service in the
registry. In addition, the Auto Publish Status dialog shows this service and provides
options for publishing the service to the registry.

46.3.2 Automatic Importing of UDDI Services
You can use the auto-import feature to synchronize the business services that were
imported from a UDDI registry with the corresponding services in the registry. For
instructions, see How to Automatically Synchronize Imported Services.

Note:

Auto-import is available only in the Oracle Service Bus Console, and not in
JDeveloper.

When a service is updated, you must re-import the service from the registry to get the
most recent version unless auto-import is enabled in the UDDI registry resource.
When the Enable Auto-Import option is selected, any service that is imported is
automatically kept synchronized with the UDDI registry. Any failure that occurs during
auto-synchronization is reported on the Auto-Import Status page where you can
synchronize it manually.

When auto-import is enabled, you can use the Auto Import Status page to view and
manage the service synchronization process. You can either synchronize a service
with the registry or unlink the service to avoid synchronization on this page.

46.3.2.1 Synchronization of Imported Services
If the services you have imported from a UDDI registry are changed in the registry
change, you can synchronize the services with those in the registry using the Admin
features in the Oracle Service Bus Console. If auto-import is enabled and a business
service is not unlinked from the registry, Service Bus automatically subscribes to any
changes to the service in the registry. The Auto Import Status dialog shows this service
and provides options for synchronizing the service or unlinking it from the registry.
Under certain circumstances, synchronizing the service might result in semantic
validation errors, which could prevent session activation. In that case, unlinking might
be a better choice.

When a service is synchronized, the service is updated only with fields that are
obtained from UDDI. Other fields in the service definition will preserve their values if
modified since last import. This includes policy configurations.

Chapter 46
Keeping Services Synchronized

46-8

Consider a scenario where you publish services from Domain1 to a registry. You then import
these services from the registry into a domain, Domain2 (see Figure 46-3). Then you make
changes to the services in Domain1 and update them in the registry. You can update the
services in Domain2 by synchronizing them with the registry using the auto-import feature.

Figure 46-3 Sample Business Case of Cross-Domain Deployment

46.3.2.2 Unlinking Imported Services
There may be times when you do not want the service in the Oracle Service Bus Console to
be synchronized with the corresponding service in the registry. You can avoid synchronization
by unlinking the service from the registry. See How to Unlink an Imported Service From the
UDDI Registry.

46.4 Related References
This section provides links to documents which provide additional UDDI information.

• Technical Notes can be found at http://www.oasis-open.org/committees/uddi-
spec/doc/tns.htm. The note on Using WSDL in a UDDI Registry is important.

• UDDI product and development tool information is available at the OASIS UDDI Solutions
page at http://uddi.org/solutions.html.

• The UDDI specifications http://www.oasis-open.org/committees/uddi-spec/doc/
tcspecs.htm

The specification defines the following:

– SOAP APIs that applications use to query and to publish information to a UDDI
registry

– XML schema of the registry data model and the SOAP message formats

– WSDL definitions of the SOAP APIs

– UDDI registry definitions (tModels) of various identifier and category systems that
may be used to identify and categorize UDDI registrations

Chapter 46
Related References

46-9

http://www.oasis-open.org/committees/uddi-spec/doc/tns.htm
http://www.oasis-open.org/committees/uddi-spec/doc/tns.htm
http://uddi.org/solutions.html
http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm
http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm

46.5 Working with UDDI Registry Resources
In order to access a UDDI registry in Service Bus, you need to create and configure a
UDDI registry resource, which describes the registry.

Publishing a service to a registry requires knowledge of the service type and the data
structure representing that service in the registry. A registry entry has certain
properties associated with it and these property types are defined when the registry is
created. You can publish your service to a registry and make it available for other
organizations to discover and use. Proxy services developed in Service Bus can be
published to a UDDI registry.

46.5.1 How to View UDDI Registry Resources in the Oracle Service
Bus Console

The Folders Definition Editor for UDDI registries lists all the UDDI registry resources
you have created in the current session. Use this page to quickly find and access the
UDDI registry resources you have defined.

To view UDDI registries in the console:

1. Expand the System project, right-click UDDI, and then select Open.

The Folder Definition Editor appears with a list of existing UDDI registry resources.

2. To locate specific UDDI registry resources, do the following:

• If the query fields are not visible above the UDDI table, click Query by
Example in the table toolbar.

• Enter the name of the UDDI registry resource you want to find above the
Name column, and press Enter.

You can enter wildcard characters (? for a single character; * for multiple
characters) to perform a more general search.

• To view all UDDI registry resources again, clear the query fields and press
Enter.

3. To view the configuration for a UDDI registry, click the resource name in the UDDI
table.

4. To delete a UDDI registry resource, select the name of the resource in the table
and click Delete. See How to Delete a UDDI Registry Resource.

46.5.2 How to Create UDDI Registry Resources
When you create a UDDI registry resource, you specify connection information for the
remote server, including URLs, security credentials, and whether to automatically
synchronize services. After you create a registry, you can then publish Service Bus
proxy services to them or import business services from them to be used in a proxy
service.

To create a UDDI registry resource:

1. Do one of the following:

Chapter 46
Working with UDDI Registry Resources

46-10

• If you are using JDeveloper, expand the Application Resources panel, right-click
Service Bus System Resources, point to New, and then select UDDI Registry.

Note:

To create UDDI registry resources directly in a project, making it a project-
level resource, right-click the project, point to New, and then select UDDI
Registry.

• If you are using Oracle Service Bus Console, expand the System project, right-click
UDDI, point to Create, and then select Create UDDI Registry.

The Create UDDI Registry dialog appears.

2. Enter a name and optional description for the resource, and then click Finish or Create.

The UDDI Registry Definition Editor appears and the new UDDI registry resource
appears in the Systems folder of the Oracle Service Bus Console or in the Service Bus
System Resources folder in the Application Resources panel of JDeveloper.

3. Enter the inquiry, publish, subscription, and security URLs for the UDDI registry.

For more information, see UDDI Registry URLs.

4. To publish the Service Bus tModels to the registry, select Load T-Models into Registry.

This field is only required when publishing proxy services to this registry.

5. To automatically synchronize services with the UDDI registry, select Enable Auto-
Import.

Any service that is imported with this option selected will be kept in synchrony with the
UDDI registry.

Note:

Auto-synchronization is a background process; you cannot reverse it using the
session Undo function. Undoing an auto-synchronization change is not
permanent as the service will be re-synchronized in the next synchronization
cycle. If you want an imported service to stay out of synchrony with the UDDI
registry, you have to detach the service to avoid further updates from the
registry. See How to Unlink an Imported Service From the UDDI Registry.

6. If access to the UDDI registry console requires a user name and password, enter a user
name in the User Name field, and the associated password in the Password and
Confirm New Password fields.

7. Click Save.

8. Test the UDDI URLs by doing one of the following:

a. If you are using JDeveloper, click Test Connection.

b. If you are using the Oracle Service Bus Console, click Test and Validate UDDI
Registry.

9. If you are using the Oracle Service Bus Console, click Activate to end the session and
deploy the configuration to the runtime.

Chapter 46
Working with UDDI Registry Resources

46-11

46.5.3 How to Create a UDDI Registry Resource from a JDeveloper
UDDI Connection

In JDeveloper, you can create a UDDI registry resource from an existing UDDI registry
connection. Conversely, you can also create a UDDI registration connection from a
UDDI registry resource.

To create a UDDI registry resource from a UDDI connection:

1. In the toolbar, click Window and then select Resources to display the Resources
window.

2. Expand IDE Connections and UDDI Registry.

3. Right-click a UDDI connection, point to Service Bus, and select Create Service
Bus UDDI Registry Resource.

The Create UDDI Service dialog appears.

4. Enter a name for the resource, or accept the default, and click Finish.

The UDDI Registry Definition Editor appears with the inquiry URL already
populated, based on the URL specified for the UDDI registry connection.

5. Complete the remaining fields, as described in How to Create UDDI Registry
Resources.

46.5.4 How to Edit a UDDI Registry Resource
Once you create a UDDI registry resource, you can modify its description and most of
the UDDI properties.

To edit a UDDI registry resource:

1. Expand the project and folders containing the resource to edit. This can be any of
the following locations:

• In JDeveloper, the Service Bus System Resources folder in the Application
Resources panel.

• In JDeveloper, the Service Bus project or folder in which the UDDI registry
resource is located in the Application Navigator.

• In Oracle Service Bus Console, the UDDI folder in the System project.

2. Right-click the UDDI registry name, and select Open.

The UDDI Registry Definition Editor appears.

3. Modify any of the fields described in How to Create UDDI Registry Resources. The
online help describes these fields in greater detail.

4. When you are done making changes, click Save.

5. Test the UDDI URLs by doing one of the following:

a. If you are using JDeveloper, click Test Connection.

b. If you are using the Oracle Service Bus Console, click Test and Validate
UDDI Registry.

Chapter 46
Working with UDDI Registry Resources

46-12

6. If you are using the Oracle Service Bus Console, click Activate to end the session and
deploy the configuration to the runtime.

46.5.5 How to Specify a Default UDDI Registry Resource
You can designate one of the UDDI registries that has already been configured and activated
as the default registry for the domain. To use the auto-publish functionality, you must first set
a default registry. For more information, see Automatic Publishing for Proxy Services.

To specify a default UDDI registry resource:

1. Expand the project and folders containing the resource to edit. This can be any of the
following locations:

• In JDeveloper, the Service Bus System Resources folder in the Application
Resources panel.

• In JDeveloper, the Service Bus project or folder in which the UDDI registry resource
is located in the Application Navigator.

• In Oracle Service Bus Console, the UDDI folder in the System project.

2. Right-click the UDDI registry resource, and select UDDI Settings.

The UDDI Settings dialog appears.

3. In the Default UDDI Registry list, select the name of the registry you want to set as the
default registry.

Note:

The list displays all UDDI registries you have created, but you can only select
one that has already been activated.

4. In the Default Business Entity list, select the name of the business entity you want to
set as the default entity. This is optional.

5. Click OK.

6. When you are done making changes, click Save.

7. If you are using the Oracle Service Bus Console, click Activate to end the session and
deploy the configuration to the runtime.

46.5.6 How to Delete a UDDI Registry Resource
When you delete a UDDI registry resource, any references to the resource from other Service
Bus resources are broken. Before deleting the resource, check for dependencies. In the
Oracle Service Bus Console, open the UDDI registry resource in the UDDI Registry Definition
Editor and click the Tools icon in the upper right, and then select References. In JDeveloper,
right-click the UDDI registry and select Explore Dependencies.

To delete a UDDI registry resource:

1. Expand the project and folders containing the resource to edit. This can be any of the
following locations:

• In JDeveloper, the Service Bus System Resources folder in the Application
Resources panel.

Chapter 46
Working with UDDI Registry Resources

46-13

• In JDeveloper, the Service Bus project or folder in which the UDDI registry
resource is located in the Application Navigator.

• In Oracle Service Bus Console, the UDDI folder in the System project.

2. Right-click the UDDI registry resource, and select Delete.

3. If you are using JDeveloper, a confirmation dialog displays the number of
references for the resource. Click Show Usages to view information about the
references, and then click Yes to confirm that you want to delete the resource.

4. If you are using the Oracle Service Bus Console, click Activate to end the session
and deploy the configuration to the runtime.

46.6 Sharing UDDI Registry Services in JDeveloper
In JDeveloper, you can create business services from services located in a UDDI
registry, or you can simply download a service to a Service Bus project.

When working with UDDI registries in JDeveloper, you need to create a JDeveloper
UDDI registry connection and a Service Bus UDDI registry resource. The registry
connection lets you access and browse the registry in the Resources window and in
the various selector dialogs that let you browse to and select artifacts for your projects.
The registry resource specifies the API endpoint URLs and security information for the
registry.

46.6.1 How to Create a UDDI Registry Connection in JDeveloper
You can create a UDDI registry connection using JDeveloper's New Gallery, or you
can create the connection from an existing UDDI registry resource in the Application
Resources panel. The following instructions describe how to create the connection
from the resource.

Before You Begin:

Before you can work with a registry in JDeveloper, you must have an account with that
registry. Service Bus supports interoperability with UDDI registries that are compliant
with the version 3.0 specification.

To create a UDDI connection in JDeveloper:

1. If it does not already exist, create the UDDI registry resource, as described in How
to Create UDDI Registry Resources.

2. In the Application Resources panel, expand Service Bus System Resources.

3. Right-click the UDDI registry resource for which you want to create a connection,
point to Service Bus, and click Create UDDI Connection.

The new connection is created based on the configuration of the UDDI registry
resource.

4. To display the Resources window and access the connection, click Window in the
toolbar and then select Resources. Expand IDE Connections and UDDI
Registry.

5. To modify the connection properties and test the connection, right-click the
connection and select Properties.

Chapter 46
Sharing UDDI Registry Services in JDeveloper

46-14

The Edit UDDI Registry Connection wizard appears, where you can modify the inquiry
endpoint URL and the view, and you can test the connection.

46.6.2 How to Create a Business Service from a UDDI Registry Service
In JDeveloper, you can create business services from services stored in a UDDI registry. You
cannot publish services to the UDDI registry from JDeveloper. When you perform these
steps, the business service is created in the location you specify in the current application.

To create a business service from a UDDI registry service:

1. If the Resources window is not visible, click Window and then select Resources.

2. In the Resources panel, expand IDE Connections and UDDI Registry.

3. Locate the UDDI registry containing the web service you want to access, and browse
through the nodes until you find the service.

Tip:

Alternatively, you can perform a search in the Resources window for the service
to use.

4. Under the service name, expand Binding Templates, until you see the binding you want
to use.

5. Right-click the binding, point to Service Bus, and then select Generate Business
Service.

The Consume Service wizard appears. The service WSDL file and endpoint are
automatically configured based on the service you selected.

6. By the Service Artifacts Folder field, click Browse to navigate through the current
application and select a project or folder in which to create the business service.

For more information at any time, press F1 or click Help from within the Create Business
Services wizard.

7. Click Next.

8. On the Create Service page, enter a name for the business service in the Service Name
field.

9. Optionally add a description and update the location on the file system (this location must
be somewhere within the application folder). The WSDL information is automatically
configured.

10. Click Next.

11. On the Transport page, specify the transport to use for the business service. The
available options vary depending on the type of service selected.

12. Update the endpoint URI if necessary.

13. Click Finish.

The business service is created, and the Business Service Definition Editor appears so
you can finish configuring the service. For more information, see Creating and
Configuring Business Services.

Chapter 46
Sharing UDDI Registry Services in JDeveloper

46-15

46.6.3 How to Download a Service From a UDDI Registry
If you want to use a specific service in a Service Bus project, you can download the
service and any related files to the project.

To download a service from a UDDI registry:

1. If the Resources window is not visible, click Window and then select Resources.

2. In the Resources panel, expand IDE Connections and UDDI Registry.

3. Locate the UDDI registry containing the web service you want to access, and
browse through the nodes until you find the service.

Tip:

Alternatively, you can perform a search in the Resources window for the
service to use.

4. Under the service name, expand Binding Templates, until you see the binding to
use.

5. Right-click the binding, point to Service Bus, and then select Download.

The Import Service Bus Resources wizard appears. The resource type and source
URL are automatically configured based on the service you selected.

6. In the Resource Name field, enter a new name for the service, or accept the
existing name.

For more information at any time, press F1 or click Help from within the Import
Service Bus Resources wizard.

7. By the Import Location field, click Browse to navigate through the current
application and select a project or folder in which to download the service.

8. Click Next.

9. Verify the resources to be downloaded and then click Finish.

The service is added to the project or folder you specified, and the WSDL Editor
appears.

46.7 Sharing UDDI Registry Services in the Oracle Service
Bus Console

The Oracle Service Bus Console provides several options for publishing and importing
from UDDI registries, including manual procedures and automatic processing.

Before you can publish to or import from a registry, you must have an account with that
registry. Service Bus supports interoperability with UDDI registries that are compliant
with the version 3.0 specification.

Chapter 46
Sharing UDDI Registry Services in the Oracle Service Bus Console

46-16

Note:

If you need to unpublish a service from a registry, this is done from the UDDI
registry.

46.7.1 Publishing Proxy Services to a UDDI Registry
You can publish any Service Bus proxy service to a UDDI registry so it is available for other
organizations to discover and use. When you publish a service, you can optionally select the
business entity under which the service is published and you can publish a number of
services at one time. You can only publish from the Oracle Service Bus Console, and not
JDeveloper.

Note:

If the service is not successfully published it can be re-published. To re-publish a
service, select the service on the Auto-Publish Status page and click Publish.

If the Publish to Registry option is enabled, the proxy services are published as
soon as they are created or edited and the session is activated. You can use the
Publish to Registry option with all proxy services, except those using the Local
Transport.

46.7.1.1 How to Automatically Publish Proxy Services to a UDDI Registry
You can automatically publish proxy services to the default UDDI registry that you configure
for a session. In order to enable automatic publishing, you need to enable auto-publishing on
the service and you need to define the default UDDI registry so Service Bus knows which
UDDI registry to publish services to.

To automatically publish a proxy service to a UDDI registry:

1. Specify a default UDDI registry to which proxy services will publish.

For instructions, see How to Specify a Default UDDI Registry Resource.

2. In the Oracle Service Bus Console's Project Navigator, expand the project and folders
containing the proxy service to configure.

3. Right-click the proxy service name, and select Open.

4. Under UDDI on the General page, select Auto Publish to Registry.

Note:

if there is no UDDI section, there is no default UDDI registry specified. For more
information, see How to Specify a Default UDDI Registry Resource.

5. Click Save.

For more information about editing proxy services, see Configuring Proxy Services.

Chapter 46
Sharing UDDI Registry Services in the Oracle Service Bus Console

46-17

6. Click Activate to end the session and deploy the configuration to the runtime.

7. To verify that the proxy service was published, click the Admin tab and click Auto-
Publish Status.

The proxy service should appear in the list of published services.

46.7.1.2 How to Manually Publish a Proxy Service to a UDDI Registry
You can only publish services to a UDDI registry when you are not in a session. Exit
your session to enable UDDI publishing and access the registries list.

To manually publish a proxy service to a UDDI registry:

1. Right-click a folder or project, point to Export, and then select Publish to UDDI.

The Publish to UDDI dialog appears.

2. In the Registry Name field, select the UDDI registry to which the services will be
published.

3. In the Business Entity field, select the business entity in the UDDI registry under
which the services will be classified.

4. In the Proxy Services table, specify which proxy services to export to the registry.

By default, all proxy services in the session are selected. Clear the check boxes
for any services you do not want to export.

5. Click Publish.

The Publish Summary page appears, and indicates whether the services were
published successfully. It also lists any messages generated during the publishing
process.

6. To publish another set of proxy services, click Publish Another. Otherwise, click
Close.

46.7.2 How to Import Resources from a UDDI Registry
You can import the following business service types from a UDDI registry into the
Oracle Service Bus Console:

• WSDL services over HTTP transport.

• Service Bus proxy services that are published to a UDDI registry. This feature is
primarily used in multi-domain Service Bus deployments where proxy services
from one domain need to discover and route to proxy services in another domain.

You can import multiple resources from a UDDI registry at one time.

Before you begin:

In order to access the UDDI registry to import resources from, you must create a UDDI
resource in Service Bus. For more information, see How to Create UDDI Registry
Resources.

To import resources from a UDDI registry in the console:

1. Do one of the following:

• Right-click the folder or project where you want to import the resource, point to
Import, and then select From UDDI.

Chapter 46
Sharing UDDI Registry Services in the Oracle Service Bus Console

46-18

• Right-click All Projects, point to Import, and then select From UDDI. On the
Destination page of the Import from UDDI dialog, select the project or folder where
you want to import the service and then click Next.

The Import from UDDI dialog appears with the Service page displayed.

2. In the Registry Name field, select the UDDI registry from which the services will be
imported.

3. In the Business Entity field, select the business entity in the UDDI registry under which
the services are located. Select All to search all business entities in the registry.

4. In the Service Name field, enter the name of a service to import.

Searches accept wildcard characters ("*" for multiple characters and "%" for a single
character).

5. Click Search.

A list of matching business services appears in the Business Services table. If you are
unable to find a specific service, it may be because you do not have the security
permissions to view its records.

6. In the Business Services table, select the business services to import from the registry.

7. Click Next.

8. If a selected business service has multiple binding templates, the Binding Template page
appears. For each listed service, select one binding template to use to create the
business service.

Note:

If a selected service has multiple binding templates, each binding template
results in a business service. The Binding Template page lets you further
narrow your selection among the binding templates you want to import.

9. Click Next.

The Review page appears, displaying a summary of the resources to be imported. A
warning message is displayed for any resource that cannot be imported.

10. Verify the list of resources selected to be imported, and then click Import.

The selected resources appear in the Project Navigator. The Import from UDDI wizard
displays a summary of the import along with any errors in the imported resources.

11. To import another set of business services, click Import Another. Otherwise, click Close.

The import process can result in dependency issues. To view and resolve any resulting
conflicts, click the Conflicts tab at the bottom of the console.

46.7.3 How to Automatically Synchronize Imported Services
The Auto-Import Status page lets you synchronize changes to a service with those present in
the registry. Any service imported while automatic import is enabled is kept synchronized with
the UDDI registry. Upon any changes to a service in the registry, Service Bus provides
notification of the change on the Auto-Import Status page, which lists all out-of-sync services.

To enable automatic import for a UDDI registry:

Chapter 46
Sharing UDDI Registry Services in the Oracle Service Bus Console

46-19

1. In the Oracle Service Bus Console's Project Navigator, expand the System project
and UDDI folder.

2. Right-click the UDDI registry resource name, and select Open.

3. Select Enable Auto-Import.

4. Click Save.

Any services imported from a UDDI registry are kept synchronized with those in
the UDDI registry. You can view the status of synchronized services on the Auto-
Import Status page.

46.7.4 How to Manually Synchronize an Imported Service
When automatic import is enabled and there are any failures during auto-
synchronization, the errors are reported on the Auto-Import Status page. After fixing
the errors, you can synchronize the services manually.

To synchronize a service with the UDDI registry:

1. In the Oracle Service Bus Console, click the Admin tab and then click Auto-
Import Status.

The Auto-Import Status dialog appears.

2. In the list of services, select the check box next to the service you want to
synchronize to the UDDI registry.

3. Click the Synchronize icon above the table.

46.7.5 How to Unlink an Imported Service From the UDDI Registry
When you do not want the service in the Oracle Service Bus Console synchronized
with the corresponding service in the registry, you can avoid synchronization by
detaching it from the registry.

Unlinking a business service from the UDDI registry cannot be undone. You have to
re-import the service manually to link them back up.

To unlink an imported service from the UDDI registry:

1. In the Oracle Service Bus Console, click the Admin tab and then click Auto-
Import Status.

The Auto-Import Status dialog appears. Services are shown on this page only
when there is a change in the original service in the registry. Not every service is
available on this page.

2. In the list of services, select the check box next to the service you no longer want
to be linked to the UDDI registry.

3. Click the Unlink icon above the table.

4. On the Warning dialog that appears, click OK to unlink the service, or click Cancel
if you no longer want to unlink the service.

5. Click Close on the Auto-Import Status dialog.

Chapter 46
Sharing UDDI Registry Services in the Oracle Service Bus Console

46-20

46.8 Sample Business Scenarios for Service Bus and UDDI
These sections contain two sample business scenarios that highlight the benefit of using
UDDI.

46.8.1 Basic Proxy Service Communication with a UDDI Registry
This scenario illustrated using Service Bus to import services from a registry and then publish
Service Bus proxy services back to the registry. See Figure 46-4.

Figure 46-4 Proxy Service Communication with a UDDI Registry

Service Bus imports business services from a UDDI registry. Proxy services are configured to
communicate with the business services in the pipeline. The proxy services can then be
published back to the registry and made available for use by other domains.

46.8.2 Cross-Domain Deployment in Service Bus
This scenario shows cross-domain deployment using Service Bus. In this scenario, a Service
Bus application in one domain requires access to a Service Bus service in another domain at
runtime. See Figure 46-5.

Figure 46-5 Sample Business Case of Cross-Domain Deployment

Chapter 46
Sample Business Scenarios for Service Bus and UDDI

46-21

An instance of Service Bus is deployed in each of two domains. The Service Bus
proxy service (P1) is configured in domain (D1). The Service Bus proxy service (P2) in
domain (D2) requires access to proxy service (P1). As the domains cannot
communicate directly with each other, P2 in D2 cannot use P1 in D1. The Service Bus
import and export feature does not support runtime discovery of services in different
domains, but publishing the service to a UDDI registry allows the discovery and use of
a service in any domain. Once P1 is made available in the UDDI registry it can be
invoked at runtime (for example, get a stock quote) and imported as a business
service in another Service Bus proxy service.

When importing and exporting from different domains you should have network
connectivity. A proxy service might reference schemas located in the repository of a
different domain, in which case you need HTTP access to the domain to import it using
the URL. In the absence of connectivity an error message is returned.

46.9 Mapping Service Bus Proxy Services to UDDI Entities
Service Bus proxy service attributes must be mapped to the data model supported by
the UDDI registry to allow a proxy service to be published as a UDDI business entity.

Table 46-2 shows the service types, message types, and transports relevant to the
UDDI registry mapping for a proxy service.

Table 46-2 Proxy Service Attributes and Service Types

Service Type Message Content Type Transports

WSDL SOAP or XML (with attachment) HTTP, JMS, Local, SB, WS

Transport Typed SOAP or XML JEJB

Any SOAP Untyped SOAP (with attachment) HTTP, JMS, Local, SB

Any XML Untyped XML (with attachment) Email, File, FTP, HTTP, JMS,
Local, MQ, SB, SFTP, Tuxedo

Messaging Binary, Text, MFL, XML (schema) Email, File, FTP, HTTP, JMS,
Local, MQ, SFTP, Tuxedo

Note:

Optional parts are listed in parentheses. Messaging services can have
different content for requests and responses, or can have no response at all
(one-way messages). Email, File, SFTP, and FTP should be one-way.

Proxy services have attributes in common and also attributes that are specifically
defined by the transport protocols used by the service and the type of service. Each
proxy service can deliver messages of a certain type.

The primary relevant entities in UDDI include the following:

• businessService: Represents the service as a whole and contains high-level
general information about the service.

• bindingTemplate: Contains information for accessing the service.

Chapter 46
Mapping Service Bus Proxy Services to UDDI Entities

46-22

• tModels: Supplies the individual attributes for categorizing and defining the service.

Figure 46-6 shows how WSDL-based services are mapped to UDDI business entities.

Figure 46-6 WSDL Service to UDDI Mapping

The technical note on Using WSDL in a UDDI registry, version 2.0.2, at http://www.oasis-
open.org/committees/uddi-spec/doc/tns.htm, is used as the basis for publishing WSDL-
based proxy services to the UDDI registry. This document is also used as a reference point
for publishing non-WSDL based services. The document and the base UDDI specification
describe the canonical technical models (tModels) used to describe UDDI entities. To publish
Service Bus proxy services as entities in the UDDI registry, you must provide additional
canonical tModels to support some of the constructs specific to Service Bus. Not all attributes
of a proxy service are useful when searching for a service, for example, service type and
transport details. These attributes do not categorize the service. tModels are configuration
details of the service once it has been discovered. These configuration details are mapped to
the business service binding template tmodelinstanceDetails section. Other attributes
specifically identify a service and can be used as the search criteria for the service. These
attributes are mapped using keyed references to tModels with values in the categoryBag of
the binding template.

An example of how Service Bus maps to UDDI is shown in Figure 46-7.

Chapter 46
Mapping Service Bus Proxy Services to UDDI Entities

46-23

http://www.oasis-open.org/committees/uddi-spec/doc/tns.htm
http://www.oasis-open.org/committees/uddi-spec/doc/tns.htm

Figure 46-7 Service Bus to UDDI Mapping

46.9.1 UDDI Mapping Details for a Service Bus Proxy Service
Service Bus high-level proxy service information maps to the business service as
follows:

• The Name and Description map to businessService elements.

• There is a special keyedReferenceGroup for Service Bus properties. An example
of a key is uddi:bea.com:attributes:oracleservicebus.

• Service Bus type (WSDL, SOAP, XML, and Mixed) and instance are mapped to
keyedReferences in the service category. An example of a key is
uddi:bea.com:servicetype.

• A Service Bus instance maps to a keyedReference in the Service Bus
keyedReferenceGroup (Name = "OracleServiceBus", Values = URL of the Service
Bus instance).

This instance serves two purposes:

– To indicate that this service is in fact hosted by a Service Bus server.

– To contain the URL of the Service Bus instance.

The following example shows a mapping of high-level proxy service information to a
business service.

Example - Sample Proxy Service to Business Service Mapping

<keyedReferenceGroup tModelKey="uddi:bea.com:servicebus:properties">
 <keyedReference tModelKey="uddi:bea.com:servicebus:servicetype"
 keyName="Service Type"
 keyValue="SOAP"/>
 <keyedReference tModelKey="uddi:bea.com:servicebus:instance"
 keyName="Service Bus Instance"
 keyValue="http://FOO02.amer.bea.com:7001"/>
</keyedReferenceGroup>

Chapter 46
Mapping Service Bus Proxy Services to UDDI Entities

46-24

Note:

The key for the businessService created when a proxy service is published is a
publisher assigned key name. It is derived from the Service Bus domain name, the
path of the proxy service, and the proxy service name. It takes the following form:

uddi:bea.com:servicebus:<domainname>:<path>:<servicename>

For example, AnonESBan, a Service Bus domain, contains a project named Proxy,
which contains a folder named Accounting, which in turn contains a proxy service
called PayoutProxy. When PayoutProxy is published to UDDI, its businessService is
created with the following key:

uddi:bea.com:servicebus:AnonESB:Proxies:Accounting:PayoutProxy

Service Bus detailed proxy service information maps into the binding template as follows:

• The Endpoint URI maps to the access point.

• The Marker tModel for each transport maps to tModelInstanceDetails.

– Transport tModels for HTTP, JMS, File, FTP, Email. New tModels are packaged with
Service Bus to support JMS and File transports.

– Detailed Service Bus configuration information maps to instanceParms.

• The Marker tModel for each service type maps to the tModelInstanceDetails. This
includes the following:

– Protocol tModels for WSDL, any SOAP, any XML, and Messaging. New tModels are
packaged with Service Bus to support anySOAP, anyXML, and Messaging.

– WSDL maps using WSDL to UDDI technology note.

– Messaging has detailed configuration information that maps to InstanceParms.

The following example shows a detailed information mapping to the binding template.

Example - Sample Detailed Mapping to the Binding Template

<bindingTemplate bindingKey="uddi:" serviceKey="uddi:">
 <accessPoint useType="endPoint">file:///c:/temp/in3</accessPoint>
 <tModelInstanceDetails>
 <tModelInstanceInfo tModelKey="uddi:uddi.org:transport:file">
 <InstanceDetails>
 <InstanceParms><ALSBInstanceParms xmlns="http://www.bea.com/wli/sb/uddi">
 <property name="fileMask" value="*.*"/>
 <property name="sortByArrival" value="false"/> </ALSBInstanceParms>
 </InstanceParms>
 </InstanceDetails>
 </tModelInstanceInfo>
 <tModelInstanceInfo tModelKey="uddi:bea.com:servicebus:protocol:
 messagingservice">
 <InstanceDetails>
 <InstanceParms><ALSBInstanceParms xmlns="http://www.bea.com/wli/sb/uddi">
 <property name="requestType" value="XML"/>
 <property name="RequestSchema" value="http://example.com:7001
 /sbresource?SCHEMA%2FDJS%2FOAGProcessPO"/>
 <property name="RequestSchemaElement"
 value="PROCESS_PO"/>

Chapter 46
Mapping Service Bus Proxy Services to UDDI Entities

46-25

 <property name="responseType" value="None"/></ALSBInstanceParms>
 </InstanceParms>
 </InstanceDetails>
 </tModelInstanceInfo>
</tModelInstanceDetails>
</bindingTemplate>

46.9.2 Transport Attributes
Each of the transport types in the uddi:uddi.org:transport: * group has a different
set of detailed metadata. See Table 46-2. This metadata provides the configuration
details of the transport for the proxy service. It is neither useful for characterizing the
service nor useful in querying the service. However, after the service has been
discovered, this data is needed to access the service. The metadata is represented by
an XML string and is located in the instanceParms field in tModelInstanceInfo.

If you are mapping a proxy service that uses the HTTP transport, and as part of the
HTTP configuration you need to describe some configuration details, including the
required client authorization and the request and response character encoding. The
following example provides an example of what must appear in the bindingTemplate
tModelInstanceDetails.

Example - Example of tModelInstanceDetails

<tModelInstanceDetails>
 <tModelInstanceInfo tModelKey="uddi:uddi.org:transport:http">
 <instanceDetails>
 <instanceParms>
 <ALSBInstanceParms xmlns="http://www.bea.com/wli/sb/uddi">
 <property name="client-auth" value="basic"/>
 <property name="request-encoding" value="iso-8859-1"/>
 <property name="response-encoding" value="utf-8"/>
 <property name="Scheme" value="http"/>
 </ALSBInstanceParms>
 </instanceParms>
 </instanceDetails>
 </tModelInstanceInfo>
</tModelInstanceDetails>

Note:

For each transport, the service endpoint is always stored in the
bindingTemplate accessPoint field.

The client-auth property is present in the instanceParms of the HTTP or HTTPS
transport attributes whenever authentication is configured. The possible values for
client-auth are basic, client-cert, and custom-token. Whenever the value is
custom-token, two additional properties are present: token-header and token-type.

Because Service Bus business service definitions do not support custom token
authentication in this release, if you import a service from UDDI that has a value of
custom-token for client-auth, the service is imported as if it does not have any
authentication configuration.

Chapter 46
Mapping Service Bus Proxy Services to UDDI Entities

46-26

Table 46-3 is organized by transport type and lists the tModelKey and instanceParms used by
each of the transports.

Table 46-3 Transport Attributes

Transport tModelKey InstanceParms

Email1 uddi:uddi.org:transport:smtp • Attachment Supported [Boolean]
• Request Encoding

File uddi:uddi.org:transport:file • File Mask
• Sort by Arrival [Boolean]
• Request Encoding

FTP uddi:uddi.org:transport:ftp • File Mask
• Sort by Arrival [Boolean]
• Transfer Mode [Text, Binary]
• Request Encoding

HTTP uddi:uddi.org:transport:http • Client Authentication [None, Basic,
Client Certificate (HTTP only), and
Custom Token]

• Request Encoding
• Response Encoding

JEJB uddi:uddi.org:transport:jejb • URI
• EJB Spec Version
• Client JAR
• Home Interface (not published for EJB

3.0)
• Remote Interface (business interface

for EJB 3.0)
• Method Names

JMS uddi:uddi.org:transport:jms • Destination Type [Queue, Topic]
• Response Required, Response URI
• Response Message Type [Bytes, Text]
• Request Encoding
• Response Encoding

Local uddi:uddi.org:transport:local None

MQ uddi:bea.org:transport:mq • Response Required
• Response URI
• Response Correlation Pattern

SB uddi:bea.org:transport:sb

The URI scheme is sb when use ssl is
false; sbs when use ssl is true.

None

SFTP uddi:bea.org:transport:sftp • File Mask
• Sort by Arrival [Boolean]
• Request Encoding
• Authentication Mode

Tuxedo uddi:bea.org:transport:tuxedo • Response Required
• Access Point ID
• Buffer Type
• Buffer Subtype
• Classes Jar
• Field Table Classes
• View Classes

Chapter 46
Mapping Service Bus Proxy Services to UDDI Entities

46-27

Table 46-3 (Cont.) Transport Attributes

Transport tModelKey InstanceParms

WS uddi:uddi.org:transport:http

WS uses the HTTP tModelKey

None

1 The accessPoint in the Binding Template for an Email transport uses the standard mailto URL format:
mailto:name@example.com. This is different from the one configured for the proxy service in Service Bus, which is a URL
oriented toward reading email. It is not be possible to derive this mailto URL from the proxy service definition as the server
name is not known. For example, if the proxy service is defined to read from a POP3 server, it might be defined with a URL
such as mailfrom:pop3.bea.com. When publishing such a proxy service, a dummy server is added. In the above example, the
published URL will take the form mailto:some_name@example.com.

46.9.3 Service Type Attributes
Table 46-4 provides a high-level description of each of the service types.

Table 46-4 Service Type Attributes

Service Description

WSDL WSDL-based proxies map to UDDI based on the Using WSDL in a UDDI
Registry, version 2.0.2 technical note at URL: http://www.oasis-
open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-
v202-20040631.htm.

Any SOAP A simple marker protocol in the tModel in the bindingTemplate
tModelInstanceDetails, as well as in the categoryBag, defines the Any
Soap attributes.

Any XML A simple marker protocol tModel within the bindingTemplate
tModelInstanceDetails, as well as in the categoryBag defines the Any
XML attributes.

Messaging
Services

A simple marker protocol tModel in the bindingTemplate
tModelInstanceDetails, defines the messaging services attributes. Unlike
the other service types, messaging services have additional configuration
information associated with them, which provides detail about the request and
response messages. The configuration details are represented as XML data
in the InstanceParms data for the following tModel reference in the
tModelInstanceInfo:

• Input message format (XML, Text, Binary, MFL)
• URL of input message schema in Service Bus (optional, if input message

is XML)
• URL of input message MFL in Service Bus (if input message is MFL)
• Output message format (none, XML, Text, Binary, MFL)
• URL of output message schema in Service Bus (optional, if output

message is XML)
• URL of output message MFL in Service Bus (if output message is MFL)

46.9.4 Canonical tModels Supporting Service Bus Services
The Service Bus to UDDI mapping provides a number of canonical tModels that are
used to represent Service Bus metadata and relationships. These tModels must be

Chapter 46
Mapping Service Bus Proxy Services to UDDI Entities

46-28

http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v202-20040631.htm
http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v202-20040631.htm
http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v202-20040631.htm

registered in the UDDI registry to support this mapping. You can create the tModels in the
UDDI registry under the administrator ID.

Table 46-5 through Table 46-8 provide a summary of the tModels.

Table 46-5 CategorizationGroup tModel Types

Name Description

bea-com:servicebus:properties Describes very specific attributes of a Service Bus service.
In the data model it is used in the business service
categoryBag.

Table 46-6 Categorization tModel Types

Name Value Description

bea-com:servicebus:serviceType WSDL, SOAP,
XML, Messaging
Service

Describes the service type of the Service
Bus service.

bea-com:servicebus:instance URL of Service
Bus
Administration
Console

Describes the service instance in Service
Bus responsible for publishing the service
to UDDI.

Table 46-7 Transport tModel Types

Name Description

uddi-org:jms Describes the type of transport used by the service. A
reference to it is found in the accessPoint attribute of the
business service binding template.

uddi-org:file Describes the type of transport used to invoke the service. A
reference to it is found in the accessPoint attribute of the
business service binding template.

Table 46-8 Protocol tModel Types

Name Description

bea-com:servicebus:anySoap Describes the type of protocol used to access the service. It
designates services that have a SOAP message but not
defined by a WSDL file or schema. The message body
content is determined dynamically by the application.

bea-com:servicebus:anyXML Describes the type of protocol used to access the service. It
designates services having an XML message but not
defined by a WSDL file or schema. The message body
content is determined dynamically by the application.

bea-com:servicebus:messagingService Describes the type of protocol used to access the service. It
designates services where the request message can be
any XML (with or without schema), text, binary, or MFL and
whose response message can be any of the above or none.
The message body content is determined dynamically by
the application.

Chapter 46
Mapping Service Bus Proxy Services to UDDI Entities

46-29

46.9.5 Mapping Example
The following example is a sample of the mapping for a Messaging Service,
configured with JMS transport, the request being XML with a schema and the
response being a text message.

Example - Sample Messaging Service Mapping

<businessService
 serviceKey="uddi:bea.com:servicebus:Domain:Project:JMSMessaging"
 businessKey="uddi:9cb77770-57fe-11da-9fac-6cc880409fac"
 xmlns="urn:uddi-org:api_v3">
 <name>JMSMessagingProxy</name>
 <bindingTemplates>
 <bindingTemplate
 bindingKey="uddi:4c401620-5ac0-11da-9faf-6cc880409fac"
 serviceKey="uddi:bea.com:servicebus:
 Domain:Project:JMSMessaging">
 <accessPoint useType="endPoint">
 jms://example.com:7001/weblogic.jms.XAConnectionFactory/
 ReqQueue
 </accessPoint>
 <tModelInstanceDetails>
 <tModelInstanceInfo tModelKey="uddi:uddi.org:transport:jms">
 <instanceDetails>
 <instanceParms>
 <ALSBInstanceParms
 xmlns="http://www.bea.com/wli/sb/uddi">
 <property name="is-queue" value="true"/>
 <property name="request-encoding"
 value="iso-8859-1"/>
 <property name="response-encoding"
 value="utf-8"/>
 <property name="response-required"
 value="true"/>
 <property name="response-URI"
 value="jms://example.com:7001/
 .jms.XAConnectionFactory/
 RespQueue"/>
 <property name="response-message-type"
 value="Text"/>
 <property name="Scheme" value="jms"/>
 </ALSBInstanceParms>
 </instanceParms>
 </instanceDetails>
 </tModelInstanceInfo>
 <tModelInstanceInfo
 tModelKey="uddi:bea.com:servicebus:
 protocol:messagingservice">
 <instanceDetails>
 <instanceParms>
 <ALSBInstanceParms xmlns=
 "http://www.bea.com/wli/sb/uddi">
 <property name="requestType" value="XML"/>
 <property name="RequestSchema"
 value="http://example.com:7001/
 sbresource?SCHEMA%2FDJS%2FOAGProcessPO"/>
 <property name="RequestSchemaElement"
 value="PROCESS_PO_007"/>

Chapter 46
Mapping Service Bus Proxy Services to UDDI Entities

46-30

 <property name="responseType" value="Text"/>
 </ALSBInstanceParms>
 </instanceParms>
 </instanceDetails>
 </tModelInstanceInfo>
 </tModelInstanceDetails>
 </bindingTemplate>
 </bindingTemplates>
 <categoryBag>
 <keyedReferenceGroup tModelKey="uddi:bea.com:servicebus:properties">
 <keyedReference tModelKey="uddi:bea.com:servicebus:servicetype"
 keyName="Service Type"
 keyValue="Mixed" />
 <keyedReference tModelKey="uddi:bea.com:servicebus:instance"
 keyName="Service Bus Instance"
 keyValue="http://cyberfish.bea.com:7001" />
 </keyedReferenceGroup>
 </categoryBag>
</businessService>

Chapter 46
Mapping Service Bus Proxy Services to UDDI Entities

46-31

Part VIII
Security

The chapters in this part describe how to secure Service Bus and the messages it handles.

• Understanding Oracle Service Bus Security

• Oracle Service Bus Security FAQ

• Securing Business and Proxy Services

• Configuring Message-Level Security for Web Services

• Configuring Transport-Level Security

• Securing Oracle Service Bus with Oracle Web Services Manager

• Securing Oracle Service Bus Proxy and Business Services with WS-Policy

• Using SAML with Oracle Service Bus

• Configuring Custom Authentication

• Defining Message-Level Security with .Net 2.0

Related Information

Service Bus uses the Oracle WebLogic Server security framework as the foundation for
higher level security services, including authentication, identity assertion, authorization, role
mapping, auditing, and credential mapping. In addition to this document, review the Oracle
WebLogic Server security documents.

47
Understanding Oracle Service Bus Security

This chapter provides an overview of the Service Bus security model and its features,
including inbound and outbound security.

Service Bus supports open industry standards for ensuring the integrity and privacy of
communications and to ensure that only authorized users can access resources in a Service
Bus domain. It uses the underlying WebLogic security framework as building blocks for its
security services.

Service Bus uses Oracle Platform Security Services (OPSS) and Oracle Web Services
Manager (OWSM) as the building blocks for higher-level security services including
authentication, identity assertion, authorization, role mapping, auditing, and credential
mapping. In order to configure Service Bus access security, you must first configure Oracle
WebLogic Server security. Service Bus uses OWSM to provide a policy framework to manage
and secure web services consistently across your organization.

Note:

Oracle Web Services Manager (OWSM) is the Web Services security mechanism
used by Oracle Service Bus. All newly created resources, such as business
services and proxy services, use OWSM policies for security. WLS 9 policies are
deprecated, and cannot be used to configure security for a new Service Bus
resource.

However, you can import resources already configured with WLS 9 policies into
your Service Bus project. You cannot edit or modify these WLS 9policies, but you
can replace them with OWSM policies.

This chapter includes the following sections:

• Inbound Security

• Outbound Security

• Options for Identity Propagation

• Administrative Security

• Configuring the Oracle WebLogic Security Framework: Main Steps

• Context Properties Are Passed to Security Providers

• Using Security Providers

47.1 Inbound Security
By default, any anonymous or authenticated user can connect to a proxy service. Inbound
security ensures that Service Bus proxy services handle only the requests that come from

47-1

authorized clients. It can also ensure that no unauthorized user has viewed or modified
the data as it was sent from the client.

Proxy services can have two types of clients: service consumers and other proxy
services. Figure 47-1 illustrates that communication between proxy services and their
clients is secured by inbound security, while communication between proxy services
and business services is secured by outbound security.

Figure 47-1 Inbound and Outbound Security

You set up inbound security when you create proxy services and you can modify it as
your needs change. For outward-facing proxy services (which receive requests from
service consumers), consider setting up strict security requirements such as two-way
SSL over HTTPS.

If a proxy service uses public key infrastructure (PKI) technology for digital signatures,
encryption, or SSL authentication, create a service key provider to provide private keys
paired with certificates. For more information, see Working with Service Key Providers.

For each proxy service, you can configure the following inbound security checks:

• Transport-level security applies security checks as part of establishing a
connection between a client and a proxy service. The security requirements that
you can impose through transport-level security depend on the protocol that you
configure the proxy service to use.

For example, for proxy services that communicate over the HTTP protocol, you
can require that all clients authenticate against a database of users that you create
in Fusion Middleware Control. You then create an access control policy that
specifies conditions under which authenticated users are authorized to access the
proxy service.

Service Bus also supports client-specified custom authentication tokens for
inbound transport-level requests.

For information about configuring transport-level security for each supported
protocol, see Configuring Transport-Level Security.

• Custom Authentication for message-level security. Service Bus supports
client-specified custom authentication credentials for inbound transport-level and
message-level requests. The custom authentication credentials can be in the form
of a custom token, or a user name and password.

For information on configuring custom authentication transport- and message-level
security, see Configuring Custom Authentication.

Chapter 47
Inbound Security

47-2

• Message-level security (for proxy services that are web services) is part of the WS-
Security specification. It applies security checks before processing a SOAP message or
specific parts of a SOAP message.

Part of the configuration for message-level security can be embedded in the WSDL
document and WS-Policy document that are associated with the web service. These
documents specify whether SOAP messages must be digitally signed and encrypted and
which web service operations can be invoked only by authorized users.

Message protection involves encrypting the message for message confidentiality and
signing the message for message integrity. OWSM predefined policies and any policy
you create using one of the message-protection assertion templates provide the options
for message confidentiality, message integrity, or both.

If a proxy service or business service uses a WS-Policy statement to secure access to
one or more of its operations, and if you have configured the service as an active
intermediary (as opposed to a pass-through service), you use the Oracle Service Bus
Console to create a message-level access control policy. The policy specifies conditions
under which users, groups, or security roles are authorized to invoke the protected
operations.

For more information about configuring message-level security, see Configuring
Message-Level Security for Web Services.

47.2 Outbound Security
Outbound security secures communication between a proxy service and a business service.
Most of the tasks that you complete for outbound security are for configuring proxy services
to comply with the transport-level or message-level security requirements that business
services specify.

For example, if a business service requires user name and password tokens, you create a
service account, which either directly contains the user name and password, passes along
the user name and password that was contained in the inbound request, or provides a user
name and password that depend on the user name that was contained in the inbound
request. For more information, see Working with Service Accounts.

If a business service requires the use of PKI technology for digital signatures, or SSL
authentication, you create a service key provider, which provides private keys paired with
certificates. For more information, see Working with Service Key Providers.

47.3 Options for Identity Propagation
A key group of decisions that you must make when designing security for Service Bus is how
to handle (propagate) the identities that clients provide.

You can configure Service Bus to do any of the following:

• Authenticate the credentials that clients provide

• Perform authorization checks

• Pass client credentials to business services unchanged

• Map client credentials to a different set of credentials that a business service can
authenticate and authorize

• Bridge between security technologies

Chapter 47
Outbound Security

47-3

Table 47-1 describes the decisions that affect how Service Bus propagates client
identities to business services.

Table 47-1 Options for Identity Propagation

Decision Description

Which type of credentials do you require
clients to provide?

For transport-level security, Service Bus adapts to
your existing security requirements. Clients of
Service Bus can supply user name and password
tokens, SSL certificates, or any other type of
custom authentication token that is supported by an
Identity Assertion provider that you configure.

For message-level security, Service Bus supports
the Username Token, X.509 Token, any other type
of custom authentication token that is supported by
an Authentication or Identity Assertion provider that
you configure, and SAML Token profiles (see Using
Security Providers).

If you are establishing security requirements for a
new business service that uses Web Services
Security, Oracle recommends that you require
clients to provide SAML tokens. SAML is the
emerging standard for propagating user identities
within web services. See Using SAML with Oracle
Service Bus.

Do you require Service Bus to
authenticate clients or to simply pass the
client-supplied credentials to business
services for authentication?

When you require clients to authenticate with
Service Bus, you add an additional layer of security.
In general, the more security layers you add, the
more secure you make a domain.

To enable Service Bus to authenticate users, you
must create user accounts in Fusion Middleware
Control. If your set of users is very large, you must
consider whether maintaining a large database of
user accounts is worth the effort.

If Service Bus authenticates clients that
provide X.509 tokens or SAML tokens,
which Service Bus user maps to the
tokens?

Oracle recommends that you require clients to
authenticate with Service Bus and that you modify
the default access-control policies to allow
(authorize) only specific, authenticated users
access to your proxy services.

To authenticate and authorize clients who supply
X.509 certificates, SAML tokens, or other types of
credentials other than user names and passwords,
you must configure an Identity Assertion provider
that maps the client's credential to a Service Bus
user. Service Bus will use this user name to
establish a security context for the client.

Chapter 47
Options for Identity Propagation

47-4

Table 47-1 (Cont.) Options for Identity Propagation

Decision Description

If Service Bus authenticates clients that
provide custom authentication tokens,
which Service Bus user maps to the
tokens?

Oracle recommends that you require clients to
authenticate with Service Bus and that you modify
the default access-control policies to authorize only
specific, authenticated users to have access to your
proxy services.

To authenticate and authorize clients who supply
custom authentication tokens other than user
names and passwords, you must configure an
Identity Assertion provider that maps the client's
credential to a Service Bus user. Service Bus will
use this user name to establish a security context
for the client.

If Service Bus authenticates clients that
provide user name and password tokens,
decide whether you want to:

• Pass the client's user name and
password to the business service

• Map the client's user name to a new
user name and password and pass
the new credentials to the business
service

If a custom user name/password token is used, as
described in Understanding Custom Authentication
Tokens, then the user name and password in the
custom token can be used for outbound HTTP basic
or outbound WS-Security Username Token
authentication if a pass-through service account is
used.

If you pass the client-supplied user name and
password to the business service, then clients are
responsible for maintaining the credentials that the
business service requires. If the business service
changes its security requirements, then you must
notify each client to make corresponding changes.

If you expect a business service to change its
requirements frequently, then consider mapping the
credentials that clients supply to the credentials that
the business service requires. The more clients for
a business service, the more work will be required
to maintain this credential mapping.

Table 47-2 describes all combinations of the requirements that you can impose for inbound
and outbound transport-level security.

Chapter 47
Options for Identity Propagation

47-5

Table 47-2 Combinations of Transport-Level Security Requirements

This Inbound
Requirement...

Can Be Used With This
Outbound
Requirement...

How to Configure

Client supplies user name
and password in the HTTP
header and Service Bus
authenticates the client.

Pass the client's
credentials in an HTTP
header.

1. Configure inbound HTTP
security. See Configuring
Inbound HTTP Security: Main
Steps.

Be sure to add the client's user
name to the Service Bus Security
Configuration module.

2. Configure outbound HTTP
security. See Configuring
Outbound HTTP Security: Main
Steps.

Be sure to create a pass-through
service account and attach the
account to the business service.

Same as previous
requirement.

Map the client's
credentials to a different
Service Bus user and
pass the new credentials
in an HTTP header.

1. Configure inbound HTTP
security. See Configuring
Inbound HTTP Security: Main
Steps.

Be sure to add the client's user
name to the Service Bus Security
Configuration module.

2. Configure outbound HTTP
security. See Configuring
Outbound HTTP Security: Main
Steps.

Be sure to create a user-mapping
service account and attach the
account to the business service.

Client supplies user name
and password in the HTTP
header and Service Bus
does not authenticate the
client.

Pass the client's
credentials in an HTTP
header.

1. Configure inbound HTTP
security. See Configuring
Inbound HTTP Security: Main
Steps.

Be sure to configure the proxy
service for HTTP, no
authentication or HTTPS, one-
way SSL, no authentication.

2. Configure outbound HTTP
security. See Configuring
Outbound HTTP Security: Main
Steps.

Be sure to configure the business
service for HTTP basic authentication
or HTTPS, one-way SSL, basic
authentication.

Also create a pass-through service
account and attach the account to the
business service.

Chapter 47
Options for Identity Propagation

47-6

Table 47-2 (Cont.) Combinations of Transport-Level Security Requirements

This Inbound
Requirement...

Can Be Used With This
Outbound
Requirement...

How to Configure

Client supplies custom
authentication token in the
HTTP header. Service Bus
authenticates the client.

Map the client's
credentials to a different
Service Bus user and
pass the new credentials
in an HTTP header.

1. Configure inbound HTTP
security. See Configuring
Inbound HTTP Security: Main
Steps.

Be sure to add the client's user
name to the Service Bus Security
Configuration module.

2. Configure outbound HTTP
security. See Configuring
Outbound HTTP Security: Main
Steps.

Be sure to create a user-mapping
service account and attach the
account to the business service.

Any form of local
authentication (HTTP or
HTTPS basic, HTTPS
client certificate with
credential mapping)

Pass the client's
credentials to an EJB over
RMI. The EJB container
authenticates the user.

Create a pass-through service
account and attach the account to the
business service. See Working with
Service Accounts.

Table 47-3 describes all combinations of the requirements that you can impose for inbound
and outbound message-level security. In some cases, the inbound requirement for transport-
level security affects the requirements that you can impose for outbound message-level
security.

Table 47-3 Combinations of Message-Level Security Requirements

This Inbound Requirement... Can Be Used With This
Outbound
Requirement...

How to Configure

Client supplies user name and
password, or custom
authentication token, in the
HTTP header and Service Bus
authenticates the client.

Pass the client's
credentials in a SOAP
header.

1. Configure inbound HTTP security.
See Configuring Inbound HTTP
Security: Main Steps.

Be sure to create a user account
with the client's user name.

2. Create a pass-through service
account and attach the account to
the business service. See Working
with Service Accounts.

Chapter 47
Options for Identity Propagation

47-7

Table 47-3 (Cont.) Combinations of Message-Level Security Requirements

This Inbound Requirement... Can Be Used With This
Outbound
Requirement...

How to Configure

Same as previous requirement. Map the client's
credentials to a different
Service Bus user and pass
the new credentials in a
SOAP header.

1. Configure inbound HTTP security.
See Configuring Inbound HTTP
Security: Main Steps.

Be sure to create a user account
with the client's user name.

2. Create a user-mapping service
account and attach the account to
the business service. See Working
with Service Accounts.

Same as previous requirement. Map the client credentials
to a SAML token. Service
Bus asserts the user
identity.

1. Configure inbound HTTP security.
See Configuring Inbound HTTP
Security: Main Steps.

Be sure to create a user account
with the client's user name.

2. Configure a SAML credential
mapping provider. See Mapping
Identity to a SAML Token.

Client supplies custom user
name and password, or custom
authentication token, in the
message header or body and
Service Bus authenticates the
client.

Pass the client's
credentials in a SOAP
header.

1. Configure an Authentication or
Identity Assertion provider to handle
the custom token or user name and
password.

Be sure to create a user account
with the client's user name.

2. Create a pass-through service
account and attach the account to
the business service. See Working
with Service Accounts.

Same as previous requirement. Map the client's
credentials to a different
Service Bus user and pass
the new credentials in a
SOAP header.

1. Configure an Authentication or
Identity Assertion provider to handle
the custom token or user name and
password.

Be sure to create a user account
with the client's user name.

2. Create a user-mapping service
account and attach the account to
the business service. See Working
with Service Accounts.

Chapter 47
Options for Identity Propagation

47-8

Table 47-3 (Cont.) Combinations of Message-Level Security Requirements

This Inbound Requirement... Can Be Used With This
Outbound
Requirement...

How to Configure

Same as previous requirement. Map the client credentials
to a SAML token. Service
Bus asserts the user
identity.

1. Configure an Authentication or
Identity Assertion provider to handle
the custom token or user name and
password.

Be sure to create a user account
with the client's user name.

2. Configure a SAML credential
mapping provider. See Mapping
Identity to a SAML Token.

Client supplies user name and
password in the HTTP header
and Service Bus does not
authenticate the client.

Pass the client's
credentials in a SOAP
header.

1. Configure inbound HTTP security.
See Configuring Inbound HTTP
Security: Main Steps.

Be sure to configure the proxy
service for HTTP, no authentication
or HTTPS, one-way SSL, no
authentication.

2. Configure outbound HTTP security.
See Configuring Outbound HTTP
Security: Main Steps.

Be sure to configure the business service
for HTTP basic authentication or HTTPS,
one-way SSL, basic authentication.

Also create a pass-through service
account and attach the account to the
business service.

Client supplies a certificate as
part of HTTPS client certificate
authentication (two-way SSL)
and Service Bus authenticates
the client.

Map the client credentials
to a SAML token. Service
Bus asserts the user
identity.

1. Configure inbound HTTP security.
See Configuring Inbound HTTP
Security: Main Steps.

2. Configure a SAML credential
mapping provider. See Mapping
Identity to a SAML Token.

An active intermediary proxy
service enforces Web-Services
Security with the User Name
Token Profile.

Encode the credentials as
a user name and
password token in the
SOAP message.

Create an active intermediary proxy
service with a WS-Policy statement that
requires passwords (not password
digests). See Creating an Active
Intermediary Proxy Service: Main Steps.

Same as previous requirement. Encode the credentials as
a SAML token in the
SOAP message.

1. Create an active intermediary proxy
service with a WS-Policy statement
that requires passwords. See
Creating an Active Intermediary
Proxy Service: Main Steps.

2. Configure a SAML credential
mapping provider. See Mapping
Identity to a SAML Token.

Chapter 47
Options for Identity Propagation

47-9

Table 47-3 (Cont.) Combinations of Message-Level Security Requirements

This Inbound Requirement... Can Be Used With This
Outbound
Requirement...

How to Configure

An active intermediary proxy
service enforces Web-Services
Security with the X.509 Token
Profile.

Encode the credentials as
a SAML token in the
SOAP message.

1. Create an active intermediary proxy
service with a WS-Policy statement
that requires digital signatures and
optionally requires authentication
with an X.509 token. See Creating
an Active Intermediary Proxy
Service: Main Steps.

2. Configure a SAML credential
mapping provider. See Mapping
Identity to a SAML Token.

An active intermediary proxy
service enforces Web-Services
Security with the SAML Token
Profile.

Generate a new SAML
token in the outbound
SOAP message.

1. Create an active intermediary proxy
service with a WS-Policy statement
that requires a SAML token. See
Authenticating SAML Tokens in
Proxy Service Requests.

2. Configure a SAML credential
mapping provider. See Mapping
Identity to a SAML Token.

A pass-through proxy service,
which can pass user names
and passwords, X.509 tokens,
or SAML tokens.

A business service that
uses either the User Name
Token Profile, the X.509
Token Profile, or the SAML
Token Profile.

1. Create a pass through proxy service.
See Creating an Active Intermediary
Proxy Service: Main Steps.

2. Create a business service that
enforces one of the token profiles.
See Configuring Business Service
Message-Level Security: Main Steps
or Configuring SAML Pass-Through
Identity Propagation.

For inbound Tuxedo requests, you can configure any of the following security
requirements:

• Encode the client's credentials in an outbound call to a Tuxedo service.

• Encode the client's credentials in an outbound SOAP message as either a user
name token or a SAML token.

• Map the client's credentials to a different Service Bus user and pass the new
credentials in an outbound HTTP header.

• Map the client's credentials to a different Service Bus user and pass the new
credentials to an EJB over RMI. The EJB container authenticates the user.

For information about using Tuxedo with Service Bus, see Using the Tuxedo
Transport.

Chapter 47
Options for Identity Propagation

47-10

47.3.1 Using a Service Account with Business Service when Attaching
OWSM Policies

The following out-of-the-box OWSM policies support using service accounts:

• oracle/**_username_token_**_client_policy

• oracle/
wss11_saml_token_identity_switch_with_message_protection_client_policy

• oracle/**_saml*_**_client_policy (The subject.precedence property has to be set to
false)

The following out-of-the-box OWSM policy assertions support service accounts:

• oracle/**_username_token_**_client_template

• oracle/**_saml*_**_client_template (The subject.precedence property has to be set
to false)

47.3.2 Example: Authentication with a User Name Token
Figure 47-2 illustrates how user identities flow through Service Bus when you configure
Service Bus as follows:

• Require clients to provide user names and passwords in their requests

You can require web services clients to provide credentials at the transport level, the
message level, or both. If you require clients to provide credentials at both levels, Service
Bus uses the message-level credentials for identity propagation and credential mapping.

• Authenticate clients

Figure 47-2 How Service Accounts Are Used

The illustration begins with the inbound request and ends with the outbound request:

Chapter 47
Options for Identity Propagation

47-11

1. A client sends a request to a proxy service. The request contains the user name
and password credentials.

Clients can send other types of tokens for authentication, such as an X.509
certificate or a custom authentication token. To authenticate and authorize clients
who supply X.509 certificates, SAML tokens, or other types of credentials other
than user names and passwords, you must configure an Identity Assertion
provider that maps the client's credential to a Service Bus user. Service Bus will
use this user name to establish a security context for the client.

2. The proxy service asks the domain's authentication provider if the user exists in
the domain's authentication provider store.

If the user exists, the proxy service asks the domain's authorization provider to
evaluate the access control policy that you have configured for the proxy service.

3. If the proxy service's access control policy allows the user access, the proxy
service processes the message. As part of generating its outbound request to a
business service, the proxy service asks the business service to supply the user
name and password that the business service requires.

The business service asks its service account for the credentials. Depending on
how the service account is configured, it does one of the following:

• Requires the proxy service to encode a specific (static) user name and
password.

• Requires the proxy service to pass along the user name and password that
the client supplied.

• Maps the user name that was returned from the authentication provider to
some other (remote) user name, then requires the proxy service to encode the
remote user name.

4. The proxy service sends its outbound request with the user name and password
that was returned from the service account.

47.4 Administrative Security
To secure access to administrative functions, such as creating proxy services or
business services, Service Bus provides security roles with pre-defined access
privileges.

See Understanding Oracle Service Bus Application Securityin Administering Oracle
Service Bus for more information on these roles.

A security role is an identity that can be dynamically conferred upon a user or group at
runtime. You cannot change the access privileges for these administrative security
roles, but you can change the conditions under which a user or group is in one of the
roles.

The Service Bus roles have permission to modify only Service Bus resources; they do
not have permission to modify WebLogic Server or other resources on WebLogic
Server. When assigning administrative users to roles, assign at least one user to the
WebLogic Server Admin role. The WebLogic Server security roles are described in
Rolesin Administering Oracle Service Bus.

Chapter 47
Administrative Security

47-12

47.5 Access Control Policies
Access control determines who has access to the resources in Service Bus. An access
control policy specifies conditions under which users, groups, or roles can access a proxy
service.

For example, you can create a policy that always allows users in the GoldCustomer role to
access a proxy service and that allows users in the SilverCustomer role to access the proxy
service only after 12pm on weeknights.

An access control policy is an association between a WebLogic resource and one or more
users, groups, or security roles. A security policy protects the WebLogic resource against
unauthorized access. Access control policies are boolean expressions assigned to specific
resources. When there is an attempt to access the resource, the expression is evaluated.
The expression consists of one or more conditions joined by boolean operators, such as a
role (operator) and access time (8 am to 5 pm). For more information about access control
policies, see Security Fundamentals in Understanding Security for Oracle WebLogic Server.

Service Bus relies on WebLogic Server security realms to protect its resources. Each security
realm consists of a set of configured security providers, users, groups, security roles, and
(access control) security policies. To access any resources belonging to a realm, a user must
be assigned a security role defined in that realm, as described in Configuring Oracle Service
Bus Administrative Securityin Administering Oracle Service Bus. When a user attempts to
access an Service Bus resource, WebLogic Server authenticates and authorizes the user by
checking the security role assigned to the user in the relevant security realm and relevant
security policy.

Note:

Only a WebLogic Server administrator can define security policies or edit security
roles in Fusion Middleware Control.

For all proxy services, you can create a transport-level policy, which applies a security check
when a client attempts to establish a connection with the proxy service. Only requests from
users who are listed in the transport-level policy are allowed to proceed.

For proxy services that are WS-Security active intermediaries, or that implement message-
level custom authentication, you can also create a message-level policy. This type of policy
applies a security check when a client attempts to invoke one of the secured operations. Only
users who are listed in the message-level policy are allowed to invoke the operation.

You can view and configure security for users, groups, and roles in Fusion Middleware
Control.

47.5.1 Configuring Proxy Service Access Control
You can configure transport-level access control for all proxy services. You can also configure
access control at the message-level for any WS-Security active intermediary proxy service, or
for any proxy service that implements message-level custom authentication,. To configure
access control, you must assign an access control policy to the proxy service, either at the
transport-level or message-level (or both).

Chapter 47
Access Control Policies

47-13

The default transport-level and message-level access control policy for all proxy
services is to allow access to all requests. You must assign an access control policy to
the proxy service to protect it.

You configure transport-level and message-level access control policies in the Oracle
Service Bus Console, as described in Configuring Service Bus Client Access Security.

47.5.2 Access Control Policy Management
Access control policies are persisted in authorization providers, and there is a
reference to them in the Service Bus repository.

Access control policies are managed within a Service Bus design session and not
outside the session, as was the case in releases prior to 3.0. Because the changes are
made within a session, you can commit or discard the changes as with other
resources.

Although ACLs can be managed from the Oracle Service Bus Console, you can
change policies outside Service Bus. However, changing policies outside of Service
Bus can make the reference in Service Bus out-of-date and invalid.

Therefore, for consistent management, either completely manage ACLs outside of
Service Bus sessions (using the authorization provider MBeans or third-party
authorization provider tools) or completely manage them from within Service Bus
sessions. Any combination of the two approaches can result in an inconsistent view of
policies.

Service Bus manages access control policy only for proxy services. You must manage
access control policy management for other server resources, such as JMS queues,
JNDI entries, EJBs, applications, WebLogic Server instances, data sources, and so
forth from the Oracle WebLogic Server Administration Console.

Note:

When you clone a service, ACLs are also cloned in the session. If the user
commits the session, ACLs on the service will be committed to the
authorization provider. Therefore, when you clone a service you need to
decide if you want the clone to have the same ACLs as the original. If you do
not want this, then make sure to edit the ACLs of the clone.

47.5.2.1 Deleting a Proxy Service
Deleting a proxy service deletes all of the ACLs referenced by the proxy from the
repository controlled by Service Bus, as well as from the appropriate authorization
provider.

47.5.2.2 Deleting the Access Control Policy Assigned to a Proxy Service
You can also delete the access control policies assigned to a service without deleting
the service. To do this:

1. Create a session.

Chapter 47
Access Control Policies

47-14

2. From the View a Proxy Service > Security tab, use the edit Transport Access Control
option to delete the policies.

3. Commit the session.

47.5.2.3 Moving or Renaming a Proxy Service
Renaming a proxy service correctly moves all of the policies. You need only rename or move
the service in a Service Bus session.

47.5.2.4 Renaming a Proxy Service Operation
When an operation is renamed, the existing operation is transparently deleted and a new
operation is created.

However, when an operation name is changed by changing the WSDL file, Service Bus
considers any policies for the old operation to be invalid, removes the reference from the
Service Bus repository, and deletes the policies from the appropriate authorization provider.

In this case Service Bus does not know that the old operation is renamed to the new
operation, and it does not add anything new for the new operation. That is, Service Bus
considers that there are no policies for this new operation.

You need to add the appropriate policy to the new operation manually. You can do this in the
same session as the rename of operation, after the rename is done.

47.6 Configuring the Oracle WebLogic Security Framework:
Main Steps

Many of the initial configuration tasks for Service Bus security require you to work in the
Oracle WebLogic Server Administration Console to configure the WebLogic security
framework. After these initial tasks, you can complete most security tasks from the Oracle
Service Bus Console.

To configure the WebLogic security framework for Service Bus:

1. If you plan to use SSL as part of transport-level security, do the following:

a. In the Oracle WebLogic Server Administration Console, configure identity and trust.
See Configuring Identity and Trust and Important Information Regarding Cross-
Domain Security Support in Administering Security for Oracle WebLogic Server.

b. In the Oracle WebLogic Server Administration Console, configure SSL. See
Configuring SSL in Administering Security for Oracle WebLogic Server.

Oracle recommends the following for your SSL configuration:

• If you configure two-way SSL, you must choose between two modes: Client
Certificate Requested But Not Enforced or Client Certificates Requested and
Enforced. Oracle recommends that whenever possible you choose Client Certificate
Requested and Enforced. For more information, see Secure Sockets Layer (SSL) in
Understanding Security for Oracle WebLogic Server.

• In a production environment, make sure that Host Name Verification is enabled. See
"Using Host Name Verification" in Configuring SSL in Administering Security for
Oracle WebLogic Server.

Chapter 47
Configuring the Oracle WebLogic Security Framework: Main Steps

47-15

2. In the Oracle WebLogic Server Administration Console, configure authentication
providers, which your proxy services use for inbound security.

Table 47-4 describes the authentication providers that are commonly configured
for Service Bus. For a description of all authentication providers that you can
configure, see Security Providers in Administering Security for Oracle WebLogic
Server.

Table 47-4 Authentication Providers

If You Require Clients to
Provide...

Configure...

Simple user names and
passwords

The WebLogic Authentication provider and use Fusion
Middleware Control to enter the user names and passwords
of the clients that you want to allow access.

Note: As described in Configuring Authentication Providers,
Oracle recommends that you use the default WebLogic
Authentication provider for all WebLogic Server and Service
Bus administrative accounts.

See "Creating Oracle Service Bus Users" in Administering
Oracle Service Bus.

X.509 tokens for inbound
HTTPS and two-way SSL
authentication

All of the following:

• The WebLogic Identity Assertion provider, which can
validate X.509 tokens but does not by default. Make
sure that you enable this provider to support X.509
tokens. In addition, enable this provider to use a user
name mapper. See Identity Assertion and Tokens in
Understanding Security for Oracle WebLogic Server.

• WebLogic CertPath Provider, which completes and
validates certificate chains by using trusted Certificate
Authority based checking.

Custom authentication and
user name/password tokens
for inbound HTTP and
message-level
authentication

An Identity Assertion provider, possibly user-written or from
a third-party, that can validate the token type. Make sure that
you enable this provider to support the token.

X.509 tokens for inbound
Web Services Security
X.509 Token Authentication

If any of your proxy services or business services are web
services that use abstract WS-Policy statements, you must
also configure the following:

In the Web Service Security configuration named
__SERVICE_BUS_INBOUND_WEB_SERVICE_SECURITY_MBEA
N__ add the UseX509ForIdentity property and set it to
true. See Use X.509 Certificates to Establish Identity in the
Oracle WebLogic Server Administration Console Online
Help.

SAML tokens All of the following:

• WebLogic SAML Identity Assertion Provider V2, which
authenticates users based on Security Assertion
Markup Language 1.1 (SAML) assertions.

• WebLogic SAML Credential Mapping Provider V2, which
maps Service Bus users to remote users.

3. If needed, in the Oracle WebLogic Server Administration Console, configure one
or more Identity Assertion providers to handle the token types, such as X.509 or
custom token types, for which you require support. For a description of all Identity

Chapter 47
Configuring the Oracle WebLogic Security Framework: Main Steps

47-16

Assertion providers that you can configure, see Security Providers in Administering
Security for Oracle WebLogic Server.

4. If you plan to create proxy services or business services that require WS-Security digital
signatures on inbound requests, enable the Certificate Registry provider, which is a
Certification Path provider that validates inbound certificates against a list of certificates
that you register.

See Configure Certification Path Providers in the Oracle WebLogic Server Administration
Console Online Help.

5. If you configure message-level security (in inbound requests or outbound requests) to
require user name and password tokens, and if you want messages to provide a
password digest instead of cleartext passwords, do the following:

a. In the Oracle WebLogic Server Administration Console, find the two Web Service
Security configurations that Service Bus provides and set the value of the
UsePasswordDigest property to true.

The Service Bus Web Service Security configurations are named:

__SERVICE_BUS_INBOUND_WEB_SERVICE_SECURITY_MBEAN__ and

__SERVICE_BUS_OUTBOUND_WEB_SERVICE_SECURITY_MBEAN__

For information on setting the values in Web Service Security configurations, see Use
a Password Digest in SOAP Messages in the Oracle WebLogic Server Administration
Console Online Help.

b. For each authentication provider that you configured, in the Oracle WebLogic Server
Administration Console, select the Password Digest Enabled check box.

c. For each Identity Assertion provider that you configured, in the Oracle WebLogic
Server Administration Console set wsse:PasswordDigest as one of the active token
types.

6. If you plan to create a service key provider (which passes key-certificate pairs in
outbound requests), use the Oracle WebLogic Server Administration Console to
configure a PKI credential mapping provider. In any WebLogic Server domain that hosts
Service Bus, you can configure at most one PKI credential mapping provider.

A PKI credential mapping provider maps Service Bus service key providers to key-pairs
that can be used for digital signatures and encryption (for Web Services Security) and for
outbound SSL authentication. For more information, see Configuring a PKI Credential
Mapping Provider in Administering Security for Oracle WebLogic Server.

You store the key-pairs that the PKI credential mapping provider uses in a keystore. You
can store the PKI credential mappings in WebLogic Server's identity keystore or in a
separate keystore. Configure each WebLogic Server instance to have access to its own
copy of each keystore. All entries referred to by the PKI credential mapper must exist in
all keystores (same entry with the same alias). For information about configuring
keystores in WebLogic Server, see Identity and Trust in Understanding Security for
Oracle WebLogic Server.

Chapter 47
Configuring the Oracle WebLogic Security Framework: Main Steps

47-17

Note:

When you create a Service Bus domain, by default the domain contains
a user name/password credential mapping provider, which you can use if
you need credential mapping for user names and passwords. In addition
to this user name/password credential mapping provider, you can add
one PKI credential mapping provider. A Service Bus domain can contain
at most one user name/password credential mapping provider, one PKI
credential mapping provider, and multiple SAML credential mapping
providers.

7. If you want to enable security auditing, do the following:

a. In the Oracle WebLogic Server Administration Console, configure an auditing
provider. See Configuring the WebLogic Auditing Provider in Administering
Security for Oracle WebLogic Server.

b. To enable auditing of events related to WS-Security, when you start each
Service Bus server, include the following Java option in the server's startup
command:

-Dcom.bea.wli.sb.security.AuditWebServiceSecurityErrors=true

Service Bus supports the auditing of security events but it does not support
configuration auditing, which emits log messages and generates audit events
when a user changes the configuration of any resource within a domain or invokes
management operations on any resource within a domain. See Enabling
Configuration Auditing in Administering Security for Oracle WebLogic Server.

8. If you have not already done so, in the Oracle WebLogic Server Administration
Console, activate your changes. If you have made changes that require you to
restart WebLogic Server, the Administration Console will indicate that a restart is
required. If you see such a message, restart all WebLogic Server instances that
host Service Bus so your modifications to the security providers will be in effect for
the remaining configuration steps.

47.7 Context Properties Are Passed to Security Providers
Context properties provide a way (the ContextHandler interface) to pass additional
information to the WebLogic Security Framework so a security provider can obtain
contextual information beyond what is provided by the arguments to a particular
provider method.

A ContextHandler is a high-performing WebLogic class that obtains additional context
and container-specific information.

Service Bus makes use of the ContextHandler interface and passes several context
properties to the security framework for transport-level and message-level
authentication, transport-level and message-level access control, and credential
mapping.

This section describes the situations in which Service Bus-specific context properties
are used.

Chapter 47
Context Properties Are Passed to Security Providers

47-18

47.7.1 Context Properties for HTTP Transport-Level Authentication
When an HTTP proxy service is configured for authentication, the HTTP transport provider
passes a Service Bus implementation of the WebLogic Server ContextHandler. There is no
user configuration required for this feature.

The ContextHandler properties in Table 47-5 are passed at runtime, under the following
conditions:

• To Authentication providers, if the proxy is configured for HTTP basic authentication.

• To Identity Assertion providers, if the proxy is configured for client certificate identity
assertion.

• To Identity Assertion providers, if the proxy is configured for HTTP custom token identity
assertion.

Table 47-5 ContextHandler Properties for HTTP Transport Authentication

Property Name Type Property Value

com.bea.contextelement.
alsb.service-info

com.bea.wli.sb.services
.ServiceInfo

An instance of ServiceInfo that contains
information about the proxy service.

com.bea.contextelement.
alsb.transport.endpoint

com.bea.wli.sb.transpor
ts.TransportEndPoint

This is the HTTP or HTTPS endpoint.

com.bea.contextelement.
alsb.transport.http.htt
p-request

javax.servlet.http.Http
ServletRequest

This is the HttpServletRequest object.

com.bea.contextelement.
alsb.transport.http.htt
p-response

javax.servlet.http.Http
ServletResponse

This is the HttpServletResponse object.

47.7.2 ContextHandler Properties for Access Control and Custom
Authentication

The ContextHandler properties for access control and message-level custom authentication
are passed at runtime, under the following conditions:

• To Authentication providers when performing message-level custom user name/password
authentication.

• To Identity Assertion providers when performing message-level custom token identity
assertion.

• To Authorization providers when performing transport-level or message-level access
control.

Chapter 47
Context Properties Are Passed to Security Providers

47-19

Table 47-6 ContextHandler Properties for Custom Authentication and Access
Control

Property Name Type Property Value

com.bea.contextelement.als
b.router.ProxyService

java.lang.String
The service name (full-name; for
example /myproject/myfolder/
svc-a).

com.bea.contextelement.als
b.router.ServiceUri

java.net.URI
The base URI from which the
message was received.

com.bea.contextelement.als
b.router.inbound.Transport
Provider

java.lang.String
The Id of the transport provider
that received this message.

com.bea.contextelement.als
b.router.inbound.request.M
essageId

java.lang.String
This is the transport provider-
specific message identifier. Ideally
it should uniquely identify the
message among other messages
going through the Service Bus
runtime. However, Service Bus
does not depend on the message
Id being unique. The message Id
is added to the message context
and thus visible in the pipeline.

com.bea.contextelement.als
b.router.inbound.request.C
haracterEncoding

java.lang.String
Character encoding used in the
message payload, or null.

com.bea.contextelement.wli
.Message

java.io.InputStream
The request message as an input
stream.

47.7.3 Additional Transport-Specific Context Properties
In addition to the properties in Table 47-7, other transport-specific properties may be
present. For each transport request-header (see the transport SDK), a property with
the name

com.bea.contextelement.alsb.router.inbound.request.headers.
<provider-id>.<header-name>

is present, where provider-id is the transport provider id, and header-name is one of
the request-headers declared in the provider's schema file. The type and semantics of
these properties are transport-specific. For HTTP proxy services, the message-level
security properties inTable 47-3 are also available.

Chapter 47
Context Properties Are Passed to Security Providers

47-20

Table 47-7 Additional ContextHandler Properties for HTTP Proxy Services

Property Name Type Property Value

com.bea.contextelement.alsb.
router.inbound.request.metad
ata.http.relative-URI

java.lang.String
The relative URI of the request.

com.bea.contextelement.alsb.
router.inbound.request.metad
ata.http.query-string

java.lang.String
The query string that is contained in
the request URL after the path.

com.bea.contextelement.alsb.
router.inbound.request.metad
ata.http.client-host

java.lang.String
The fully qualified name of the client
that sent the request.

com.bea.contextelement.alsb.
router.inbound.request.metad
ata.http.client-address

java.lang.String
The Internet Protocol (IP) address of
the client that sent the request.

47.7.4 Administrator-Supplied Context Properties for Message-Level
Authentication

Both custom user name/password authentication and custom token authentication allow
users (who are in the IntegrationAdmin or IntegrationDeployer roles) to pass additional
context information to the security provider in the Context Properties field on the Security tab.

You can configure additional context properties by entering the Property Name as a literal
string, and the Value Selector as a valid XPath expression. (XPath expressions can also be
literal strings.)

The XPath expression is evaluated at runtime against the same message part that is used for
the custom token or custom user name/password. That is, the Value Selector XPath
expressions are evaluated against the header for SOAP-based proxy services, and against
the body for non-SOAP-based proxy services.

47.7.5 Security Provider Must Have Knowledge of the Property Name
A ContextHandler is essentially a name/value list and, as such, it requires that a security
provider know what names to look for. Therefore, for both transport- and message-level
custom authentication, the XPath expressions are evaluated only if an Authentication
provider or Identity Assertion provider asks for the value of one of these properties.

This means that your configured Authentication or Identity Assertion provider must explicitly
know which property names to request through the
ContextHandler.getValue(propertyName) method. The only way to satisfy this requirement
is for you, or a third party, to write a custom Authentication or Identity Assertion provider.

The following example shows how to get the HttpServletRequest property from a provider
that you write.

Example - Getting the HttpServletRequest Property

Chapter 47
Context Properties Are Passed to Security Providers

47-21

:
Object requestValue =
handler.getValue("com.bea.contextelement.alsb.transport.http.http-request");
if ((requestValue == null) || (!(requestValue instanceof HttpServletRequest)))
return;
HttpServletRequest request = (HttpServletRequest) requestValue;
log.println(" " + HTTP_REQUEST_ELEMENT + " method: " + request.getMethod());
log.println(" " + HTTP_REQUEST_ELEMENT + " URL: " + request.getRequestURL());
log.println(" " + HTTP_REQUEST_ELEMENT + " URI: " + request.getRequestURI());
return;

If the security provider does not need the value of the user-defined property, then the
XPath expression is not evaluated.

47.7.6 WebLogic Server Administrative Channel is Supported
This release of Service Bus can use the WebLogic Server administrative channel.

As described in "Understanding Network Channels" in Administering Server
Environments for Oracle WebLogic Server, a WebLogic Server network channel is a
configurable resource that defines the attributes of a network connection to WebLogic
Server.

You can configure a particular type of network channel, called an administrative
channel, to isolate "administration" and application ("business") traffic in a WebLogic
domain. The administrative channel is a secured channel that accepts only SSL
connections.

In Service Bus, business traffic is comprised of all messages sent to and from Service
Bus proxy services and business services. SSL business traffic must use the default
WebLogic Server secure network channel.

Administration traffic is comprised of all communication with the Oracle WebLogic
Server Administration Console, Oracle Service Bus Console, internal traffic within a
cluster, and traffic between administration scripts and admin or Managed Servers.

When an administrative channel is enabled in a domain, all of the administration traffic
in that domain must go through that channel. Otherwise, the administration traffic also
uses the default WebLogic Server secure network channel.

Using the Administrative Channel: Main Steps describes using the administrative
channel.

47.7.6.1 Using the Administrative Channel: Main Steps
Complete the following steps to use the administrative channel:

1. Close any open browser connections to the Oracle Service Bus Console for the
domain.

As soon as you activate the administrative channel in WebLogic Server, the Oracle
Service Bus Console for the domain becomes unavailable at the current URL. The
Help system also becomes unavailable.

2. Enable the domain-wide administration port in the Oracle WebLogic Server
Administration Console (which configures an administrative channel on your
behalf), or explicitly create an administrative channel. Both of these tasks are
described in "Configuring Network Resources" in Administering Server
Environments for Oracle WebLogic Server.

Chapter 47
Context Properties Are Passed to Security Providers

47-22

The domain-wide administration port control is located on the Domain > Configuration >
General page. The default administration port is 9002.

Be sure to activate the change.

3. Open a browser connection to the new URL for the Oracle Service Bus Console for the
domain.

The URL is https://hostname:9002/servicebus if you enabled the domain-wide
administration port and accepted the default port number.

4. Revise any startup scripts that refer to the old URL. If you are using the Windows
graphical interface to launch the Oracle Service Bus Console for the domain, revise the
shortcut property to reflect the new URL.

47.8 Using Security Providers
This section provides instructions on using security providers with Service Bus.

This section includes the following topics:

• Configuring Authentication Providers

• Using a Custom Authorization Provider to Protect Service Bus Resources

• About Errors When Using Security Provider Policies

47.8.1 Configuring Authentication Providers
Check the provided WebLogic Server authentication providers to see if one meets your
needs. WebLogic Server includes a broad array of Authentication providers, including the
following:

• The WebLogic Authentication provider accesses user and group information in WebLogic
Server's embedded LDAP server. This is the default out-of-the-box authentication
provider. This provider is not optimized for use with very large numbers of users.

• LDAP Authentication providers access external LDAP stores. You can use an LDAP
Authentication provider to access any LDAP server. WebLogic Server provides LDAP
Authentication providers already configured for Open LDAP, Oracle Directory Server
Enterprise Edition, Microsoft Active Directory, and Novell NDS LDAP servers.

• RDBMS Authentication providers access external relational databases. WebLogic Server
provides three RDBMS Authentication providers: SQL Authenticator, Read-only SQL
Authenticator, and Custom RDBMS Authenticator.

• The SAML Authentication provider, which authenticates users based on Security
Assertion Markup Language 1.1 (SAML) assertions.

See "Improving the Performance of WebLogic and LDAP Authentication Providers" in
Administering Security for Oracle WebLogic Server for guidance on improving the
performance of these authentication providers.

As described in "Why Customize the Default Security Configuration" in Administering Security
for Oracle WebLogic Server, you may want to use an Authentication provider that accesses a
database other than WebLogic Server's embedded LDAP server. For example, you might
want to use a different authentication provider for the majority of user accounts, but continue
to use the default authentication provider (embedded LDAP) for Service Bus and WebLogic
Server administrative user accounts.

Chapter 47
Using Security Providers

47-23

Using the WebLogic Authentication provider for all WebLogic Server and Service Bus
administrative user accounts provides reliable access in the event of a network or
database problem. Oracle recommends that you use the default WebLogic
Authentication provider for all WebLogic Server and Service Bus administrative
accounts for this reason.

If one of the bundled Authentication providers meets your needs, see "Configuring
Authentication Providers" in Administering Security for Oracle WebLogic Server for
instructions on how to configure this Authentication provider in the Oracle WebLogic
Server Administration Console.

If none of the Authentication providers included in WebLogic Server suits your needs,
you (or a third-party) must first write a custom Authentication provider and then use the
Oracle WebLogic Server Administration Console to add that provider to the security
realm, as described in the following steps:

Note:

Only a broad overview of the required tasks is included here. You will need to
consult the WebLogic Server documentation to actually complete the tasks.

To add a provider to a security realm:

1. "Create Runtime Classes Using the Appropriate SSPIs" (in Developing Security
Providers for Oracle WebLogic Server).

2. "Generate an MBean Type Using the WebLogic MBeanMaker"

3. "Configure the Custom Authentication Provider Using the Administration Console"

47.8.2 Using a Custom Authorization Provider to Protect Service Bus
Resources

You can use Service Bus resources with custom Authorization providers, but those
providers must understand the type and format of the Service Bus resources.

There are three possible resource objects for Service Bus that an Authorization
provider must be able to detect and handle:

• ALSBProxyServiceResource Object

• ProjectResourceV2 Object

• ConsoleResource Object

These resource objects are described in the sections that follow.

47.8.2.1 WebLogic Authorization Provider Usage Information
This section briefly describes the WebLogic Server authorization provider SSPI. See
"Authorization Providers" in Developing Security Providers for Oracle WebLogic Server
for complete information.

You protect resources by binding access control policies to resources using the Oracle
Service Bus Console, third-party tools or scripts. The WebLogic Server Security

Chapter 47
Using Security Providers

47-24

Service Provider Interface (SSPI) requires containers, such as Service Bus, to implement the
Resource SPI. These implementations represent concrete resources.

The Authorization provider database contains a map from resource to policy. When an
attempt is made to access a resource, the container calls the runtime SSPI to get an access
control decision. The container passes a resource instance indicating which resource is being
accessed.

An Authorization provider has one method, getAccessDecision(). The getAccessDecision()
method obtains the implementation of the AccessDecision SSPI. The AccessDecision SSPI
itself has one method, isAccessAllowed(). isAccessAllowed has five parameters, one of
which is the Resource object for which access is being requested.

isAccessAllowed determines if the requestor should be allowed to access the named
resource. To do this, the Authorization provider must find the right access control policy to
evaluate. The provider must first look for a policy bound to the resource passed in. The
lookup can use either the getId() or toString() method as a lookup key, as described in
"Looking Up WebLogic Resources in a Security Provider's Runtime Class" in Developing
Security Providers for Oracle WebLogic Server. If no policy is found, the Authorization
provider must then get the parent resource and look again. This process is repeated until a
policy is found or the parent is null, in which case no policy is found. When no policy is found,
isAccessAllowed must return false.

This algorithm allows you to create coarse-grained policies that protect all proxy services in a
given project or folder, all resources in a project, or all Service Bus proxy services in a
Service Bus domain. More specific, finer-grained policies take precedence over coarse-
grained policies.

Note:

The Oracle Service Bus Console user interface does not provide pages for
protecting proxy services at the folder, project or domain level.

47.8.2.2 ALSBProxyServiceResource Object
The ALSBProxyServiceResource object is used for transport-level and message-level access
control to Service Bus proxy services. The ALSBProxyServiceResource resource extends
weblogic.security.service.ResourceBase, which itself implements
weblogic.security.spi.Resource.

ALSBProxyServiceResource implements the following methods, as described in
weblogic.security.spi.Resource:

getType() – Returns the type, where type is "<alsb-proxy-service>"

getKeys() – Returns up to four key-value properties: path, proxy, action, and operation.
The properties are defined as follows:

• path is the full-name of the proxy service. For example, path=project/folder1/folder2

• proxy is the name of the proxy service. For example, proxy=myProxy

• action is one of two values, invoke or wss-invoke. For example, action=invoke

The action attribute is used to distinguish between transport-level and message-level
access control. invoke is used for transport-level access control. wss-invoke is used for

Chapter 47
Using Security Providers

47-25

message-level access control; that is, access control on WS-Security active
intermediaries or proxies with custom message-level authentication. The operation
attribute is only allowed when action is wss-invoke.

• operation is the name of the operation to invoke, and is used only when action is
wss-invoke. For example, operation=processPO. The operation attribute is only
allowed when action is wss-invoke.

An ALSBProxyServiceResource has from 1 to 4 keys. The following table explains
how the various combinations protect proxy services. The most specific policies
take precedence.

If the Resource
Contains These Keys

A Policy Bound to the Resource Protects:

path The policy protects all proxy services in the given path

path and proxy The policy protects all access to the given proxy service
(transport-level as well as message-level)

path, proxy, and action If action="invoke":

The policy is the transport-level policy to the given proxy

If action="wss-invoke":

The policy is the message-level policy to the given proxy (for all
operations)

path, proxy,
action="wss-invoke",
and operation

The policy is a message-level policy for the given proxy and
operation

getPath() – Gets the path (project and folders) to the proxy service. This is the path
where the proxy service exists within the Service Bus configuration framework.

getProxyServiceName() – Gets the name of the proxy service. For example,
proxy=myProxy.

getAction() – Gets one of two values, invoke or wss-invoke. For example,
action=invoke.

getOperation() – Gets the name of the operation to invoke, and is used only when
action is wss-invoke. For example, operation=processPO.

makeParent() – Creates a new ALSBProxyServiceResource object that represents the
parent of the current ALSBProxyServiceResource resource. makeParent() uses the
path of the proxy service to create the parent.

47.8.2.2.1 ALSBProxyServiceResource Examples
The following examples show various uses of the ALSBProxyServiceResource object.

• Using ALSBProxyServiceResource for transport-level access control for proxy
project/folder/myProxy:

type=<alsb-proxy-service>, path=project/folder, proxy=myProxy, action=invoke

• Using ALSBProxyServiceResource for message-level access control for operation
processPO on proxy project/folder/myProxy:

type=<alsb-proxy-service>, path=project/folder, proxy=myProxy, action=wss-
invoke, operation=processPO

Chapter 47
Using Security Providers

47-26

• Using the parentage hierarchy for an ALSBProxyServiceResource, from fine-grained to
coarse-grained:

type=<alsb-proxy-service>, path=myProject/f1/f2, proxy=myProxy, action=wss-invoke,
operation=foo
type=<alsb-proxy-service>, path=myProject/f1/f2, proxy=myProxy, action=wss-invoke
type=<alsb-proxy-service>, path=myProject/f1/f2, proxy=myProxy
type=<alsb-proxy-service>, path=myProject/f1/f2
type=<alsb-proxy-service>, path=myProject/f1
type=<alsb-proxy-service>, path=myProject
type=<alsb-project>, project-name=myProject
type=<alsb-proxy-service>

47.8.2.3 ProjectResourceV2 Object
The ProjectResourceV2 is the root resource for all ALSBProxyServiceResource objects in a
given project. ProjectResourceV2 extends ResourceBase.

Setting an access control policy on a ProjectResourceV2 provides a coarse-grained access
control policy for all proxy services in the given project that do not have more specific
policies.

ProjectResourceV2 has the following methods:

getType() – Returns the type, where type is "<alsb-project>".

getKeys() – Returns the key, where key is "project-name".

getName() – Gets the name of the ProjectResourceV2 object.

makeParent() – There is no parent for an ProjectResourceV2 object. This method therefore
returns the object name that was used to create the ProjectResourceV2 object, or null if
ProjectResourceV2 does not exist.

47.8.2.4 ConsoleResource Object
The com.bea.wli.security.resource.ConsoleResource object is used for access control to
the Oracle Service Bus Console. However, we do not recommend that you set access control
policies for ConsoleResource objects using a custom Authorization provider. This is because
these policies are subject to change in future Service Bus releases.

We instead recommended that even if you need to use a custom Authorization provider, you
also continue to use the WebLogic Server XACML Authorization provider to maintain the
policies for the ConsoleResource object. In this case of two Authorization providers, you must
also configure an Adjudication provider.

47.8.3 About Errors When Using Security Provider Policies
If you are using a plug-in security provider with WebLogic Server to store policies for use with
Service Bus, you may encounter an error that says Service Bus cannot determine whether or
not required policies are available.

An error message like that does not necessarily mean the policies do not exist, or that you
have a connection or configuration problem with the security provider. Service Bus uses a
WebLogic Server SSPI to read policies that security providers can implement. However, the
SSPI read functionality is optional. It is possible that a security provider does not allow read
access by not implementing this SSPI. In such a case, Service Bus cannot reliably determine

Chapter 47
Using Security Providers

47-27

whether or not the security provider contains the required policies, even when the
required policies could very well exist in the security provider.

To determine whether or not such a warning indicates a real problem, try creating or
modifying resources in the Oracle Service Bus Console. Also, try securing a proxy
service with an access control policy and test it. For information on configuring an
access control policy on a proxy service, see Configuring Service Bus Client Access
Security.. If you can successfully create or manipulate resources as well as test a
secured proxy service while using the security provider, then the security provider is
configured correctly and you can safely ignore the error message.

Chapter 47
Using Security Providers

47-28

48
Oracle Service Bus Security FAQ

This chapter provides answers to frequently asked questions about Service Bus security.

This chapter includes the following sections:

• How are Service Bus and WebLogic Server Security related?

• What is Transport-Level Security?

• What is Web Services Security?

• What is Web Service Policy?

• What are Web Service Policy assertions?

• Are Access Control Policy and Web Service Policy the same?

• What is Web Services Security Pass-Through?

• What is a Web Services Security Active Intermediary?

• What is outbound Web Services Security?

• What is SAML?

• What is the Certificate Lookup And Validation Framework?

• Does Service Bus support identity propagation in a proxy service?

• Is it possible to customize the format of the subject identity in a SAML assertion?

• Is single sign-on supported in Service Bus?

• Are security errors monitored?

• Can I configure security for MBeans?

48.1 How are Service Bus and WebLogic Server Security
related?

Service Bus leverages the WebLogic Security Framework.

The details of this framework are described in "WebLogic Security Framework" in WebLogic
Security Service Architecture in Understanding Security for Oracle WebLogic Server. Before
configuring security in Service Bus, you must configure an WebLogic Server security realm
and other server configurations (such as SSL) in WebLogic Server, as described in
Configuring the Oracle WebLogic Security Framework: Main Steps..

48.2 What is Transport-Level Security?
Transport-level security refers to the transport protocols that secure the connection over
which messages are transported.

48-1

An example of transport-level security is HTTPS (HTTP over SSL). SSL provides
point-to-point security, but does not protect the message when intermediaries exist in
the message path. For more information, see Configuring Transport-Level Security.

48.3 What is Web Services Security?
Web Services Security (WS-Security) is an OASIS standard that defines interoperable
mechanisms to incorporate message-level security into SOAP messages. WS-Security
supports message integrity and message confidentiality.

It also defines an extensible model for including security tokens in a SOAP envelope
and a model for referencing security tokens from within a SOAP envelope. WS-
Security token profiles specify how specific token types are used within the core WS-
Security specification. Message integrity is achieved through the use of XML digital
signatures; message confidentiality is accomplished through the use of XML
encryption. WS-Security allows you to specify which parts of a SOAP message are
digitally signed or encrypted. Service Bus supports WS-Security over HTTP (including
HTTPS) and JMS.

Note:

Oracle Web Services Manager (OWSM) is the Web Services security
mechanism used by Oracle Service Bus. All newly created resources, such
as business services and proxy services, use OWSM policies for security.
WLS 9 policies are deprecated, and cannot be used to configure security for
a new Service Bus resource.

However, you can import resources already configured with WLS 9 policies
into your Service Bus project. You cannot edit or modify these WLS 9
policies, but you can replace them with OWSM policies.

48.4 What is Web Service Policy?
The Web Services Policy Framework (WS-Policy) provides a general-purpose model
and corresponding syntax to describe and communicate the policies of a web service.

WS-Policy defines a base set of constructs that can be used and extended by other
web service specifications to describe a broad range of service requirements,
preferences, and capabilities. See the note in What is Web Services Security? for
important information about WLS9 web service policies. For more information, see
Securing Oracle Service Bus Proxy and Business Services with WS-Policy.

48.5 What are Web Service Policy assertions?
The Web Services Policy Assertions Language (WS-PolicyAssertions) specifies a set
of common message policy assertions that can be specified within a security policy.
The specification defines general messaging-related assertions for use with WS-
Policy.

Separate specifications describe the syntax and semantics of domain-specific
assertions for security assertions and reliable-messaging assertions. See the note in

Chapter 48
What is Web Services Security?

48-2

What is Web Services Security? for important information about WLS9 web service policies.

48.6 Are Access Control Policy and Web Service Policy the
same?

No, access control policy is a boolean expression that is evaluated to determine which
requests to access a particular resource (such as a proxy service, web application, or EJB)
are granted and which should be denied access.

Typically access control policies are based on the roles of the requestor. WS-Policy is
metadata about a web service that complements the service definition (WSDL). WS-Policy
can be used to express a requirement that all service clients must satisfy, such as, all
requests must be digitally signed by the client.

48.7 What is Web Services Security Pass-Through?
In a WS-Security pass-through scenario, the client applies WS-Security to the request and/or
response messages. The proxy service does not process the security header, instead, it
passes the secured request message untouched to a business service.

Although Service Bus does not apply any WS-Security to the message, it can route the
message based on values in the header. After the business service receives the message, it
processes the security header and acts on the request. The business service must be
configured with WS-Policy security statements. The secured response message is passed
untouched back to the client. For example, the client encrypts and signs the message and
sends it to the proxy service. The proxy service does not decrypt the message or verify the
digital signature, it simply routes the message to the business service. The business service
decrypts the messages and verifies the digital signature, and then processes the request.
The response path is similar. This is sometimes called a passive intermediary.

48.8 What is a Web Services Security Active Intermediary?
In an active intermediary scenario, the client applies WS-Security to the request and/or
response messages. The proxy service processes the security header and enforces the WS-
Security policy.

For example, the client encrypts and signs the message and sends it to the proxy service, the
proxy decrypts the message and verifies the digital signature, then routes the message.
Before the proxy service sends the response back to the client, the proxy signs and encrypts
the message. The client decrypts the message and verifies the proxy's digital signature.

48.9 What is outbound Web Services Security?
Outbound WS-Security refers to security between Service Bus proxy services and business
services. It includes both the request and response between business applications and proxy
services.

For more information, see About Message-Level Security.

Chapter 48
Are Access Control Policy and Web Service Policy the same?

48-3

48.10 What is SAML?
SAML (Security Assertion Markup Language) is an OASIS standards-based extensible
XML framework for exchanging authentication and authorization information.

This framework allows single sign-on capabilities in modern network environments.

48.11 Is it possible to customize the format of the subject
identity in a SAML assertion?

By default, the subject identity within an outbound SAML token is the same as the
inbound user name. The format of the subject identity can be customized by writing a
custom SAML name mapper-provider.

For more information, see Configuring a SAML Credential Mapping Provider in
Administering Security for Oracle WebLogic Server.

48.12 What is the Certificate Lookup And Validation
Framework?

The Certificate Lookup and Validation (CLV) providers complete certificate paths and
validate X509 certificate chains.

The two types of CLV providers are:

CertPath Builder—receives a certificate, a certificate chain, or certificate reference
(the end certificate in a chain or the Subject DN of a certificate) from a web service or
application code. The provider looks up and validates the certificates in the chain.

CertPath Validator—receives a certificate chain from the SSL protocol, a web service,
or application code and performs extra validation, such as revocation checking.

At least one CertPath Builder and one CertPath Validator must be configured in a
security realm. Multiple CertPath Validators can be configured in a security realm. If
multiple providers are configured, a certificate or certificate chain must pass validation
with all the CertPath Validators for the certificate or certificate chain to be valid.
WebLogic Server provides the functionality of the CLV providers in the WebLogic
CertPath provider and the Certificate Registry. For more information see "The
Certificate Lookup and Validation Process" in WebLogic Security Service Architecture
in Understanding Security for Oracle WebLogic Server.

48.13 Does Service Bus support identity propagation in a
proxy service?

Yes, Service Bus supports two methods for propagating identities.

• By generating SAML assertions in conformance with the Web Services Security.

This is done by setting a SAML holder-of-key or sender-vouches WS-Policy on the
business service routed to by the proxy.

Chapter 48
What is SAML?

48-4

• If a business service requires user name and password tokens, you can configure the
business service's service account to pass through the user credentials from the original
client request. See Working with Service Accounts.

48.14 Is single sign-on supported in Service Bus?
Strictly speaking, single sign-on (SSO) is not applicable to Service Bus messaging scenarios
for several reasons.

First, Service Bus is stateless; there is no notion of a session or conversation among multiple
parties. Second, Service Bus clients are typically other enterprise software applications, not
users behind a web browser. Therefore, it is acceptable to require that these clients send
credentials such as user name and password on every request, provided that the
communication is secured by means such as SSL or WS-Security. However, SSO between
the Oracle Service Bus Console and the Oracle WebLogic Server Administration Console is
supported. For more information, see "Single Sign-On" in Security Fundamentals in
Understanding Security for Oracle WebLogic Server.

48.15 Are security errors monitored?
Only WS-Security errors are monitored by the Service Bus monitoring framework. Transport-
level security errors such as SSL handshake errors, transport-level authentication and
transport-level access control are not monitored.

However, it is possible to configure an Auditor provider to audit transport-level authentication
and authorization. For more information, see Monitoring and Managing Security Policies in
Administer Oracle Service Bus.

48.16 Can I configure security for MBeans?
Service Bus includes two managed beans (MBeans) that configure such runtime behavior as
which types of credentials are available to abstract WS-Policy statements.

By default, only users in the Admin and Deployer security roles can modify these MBeans,
however you can change these defaults.

Chapter 48
Is single sign-on supported in Service Bus?

48-5

49
Securing Business and Proxy Services

This chapter describes how to attach policies to business services and proxy services in
Service Bus applications. Policies apply security to the delivery of messages.

This chapter includes the following sections:

• Introduction to Policies

• Security and Security Policies for Business and Proxy Services

• Attaching and Configuring Policies in JDeveloper

• Attaching and Configuring Policies in the Oracle Service Bus Console

• Configuring Service Bus Client Access Security

• Hiding Personally Identifiable Information in Messages

49.1 Introduction to Policies
Oracle Fusion Middleware uses a policy-based model to manage and secure web services
across an organization. Policies apply security to the delivery of messages, and can be
managed by both developers in a design-time environment and system administrators in a
runtime environment.

Policies are comprised of one or more assertions. A policy assertion is the smallest unit of a
policy that performs a specific action. Policy assertions are executed on the request message
and the response message, and the same set of assertions is executed on both types of
messages. The assertions are executed in the order in which they appear in the policy.

Table 49-1 describes the supported policy categories.

Table 49-1 Supported Policy Categories

Category Description

Message Transmission
Optimization Mechanism
(MTOM)

Ensures that attachments are in MTOM format. This format enables binary
data to be sent to and from web services. This reduces the transmission
size on the wire.

Security Implements the WS-Security 1.0 and 1.1 standards. They enforce
authentication and authorization of users. identity propagation, and
message protection (message integrity and message confidentiality).

Management Logs request, response, and fault messages to a message log.
Management policies can also include custom policies.

Personally Identifiable
Information (PII)

Encrypts and decrypts certain fields to protect personally identifiable
information.

49-1

Note:

JDeveloper displays two additional categories of policies, Reliability and
Addressing. Service Bus does not currently support these policies. In the
Oracle Service Bus Console, PII and MTOM policies are grouped in the
Security category.

Within each category there are one or more policy types that you can attach. When
looking at the list of policies, you can click an information icon to see a description of
each policy.

49.2 Security and Security Policies for Business and Proxy
Services

You can secure access to proxy and business services using Oracle Web Services
Manager (OWSM) policies. You can also define transport-level and message-level
security in the proxy service configuration, and transport-level security in the business
service configuration.

For information about OWSM policies, see Securing Oracle Service Bus with Oracle
Web Services Manager.

A service provider is required if the proxy service routes messages to HTTPS services
that require client certificate authentication and may be required in some message-
level security scenarios. A service account can be created to provide authentication
when connecting to a business service. It acts as an alias resource for the required
user name and password pair. WebLogic Server can be used to directly manage
security credentials for a business service requiring credential-level validation.

49.2.1 Security Policies in Service Bus
You can attach OWSM policies to a proxy or business service with a service type of
WSDL Web Service, Messaging Service, Any SOAP Service, or Any XML Service. In
order for OWSM policies to be used with non-SOAP WSDL Web Service, Messaging
Service, or Any XML Service proxy services, the protocol must be HTTP. For WSDL-
based services, OWSM policies are bound by reference and not inlined in the effective
WSDL file. OWSM policies support a variety of industry standards, including WS-
Security 1.1, SAML 2.0, and KerberosToken Profile.

In previous versions, Service Bus accepted security policies from the WSDL file and
from policies predefined in WebLogic Server. These policies are replaced by OWSM
policies in 12c. When you import projects from previous versions that use WSDL-
defined or WLS policies, the policies display as read-only and cannot be modified. The
information appears in the proxy or business service configuration so you can update
the service to OWSM policies.

49.2.2 Policy Overrides
Certain OWSM policies let you configure override values for runtime properties. If you
are configuring a proxy service in the Oracle Service Bus Console with OWSM
policies, policy override options appear below any attached policies that support

Chapter 49
Security and Security Policies for Business and Proxy Services

49-2

overrides. In JDeveloper, the Edit icon brings up a dialog where you can configure overrides.
For more information, see Securing Oracle Service Bus with Oracle Web Services Manager.

49.2.3 Security Settings
Service Bus provides additional security features for business and proxy services, like
specifying custom authentication for access to the service, transport-level security, and, for
proxy services only, message-level security. You can find additional information about the
specific settings in the online help provided for the security and policies pages. For more
information about these options, see the following chapters:

• Configuring Message-Level Security for Web Services

• Configuring Transport-Level Security

• Configuring Custom Authentication

49.2.4 Global Policies
When you apply OWSM policies to a service in JDeveloper or the Oracle Service Bus
Console, you assign them directly to that service. You can also assign policies to multiple
JCA, REST, and SOAP services in a Service Bus project using global policy sets in Fusion
Middleware Control. For more information, see "Global Policies" in Administering Oracle
Service Bus. For information about global policy attachments and policy sets, see "Global
Policy Attachments Using Policy Sets" in Understanding Oracle Web Services Manager.

49.2.5 Service Accounts in Business Services
If any of a business service's WS-Policies specify authentication, you can select a service
account to specify credentials when making an outbound request. A proxy service that routes
to this business service uses this service account to authenticate to the business service.
Service account credentials are suppored for the following OWSM policies:

• oracle/**_username_token_**_client_policy

• oracle/
wss11_saml_token_identity_switch_with_message_protection_client_policy

• oracle/**_saml*_**_client_policy (only by setting the subject.precedence property
to false)

Service account credentials can also be used for the following OWSM policy assertions:

• oracle/**_username_token_**_client_template

• oracle/**_saml*_**_client_template (only by setting subject.precedence property to
false)

Note:

If both a service account and the csf-key override are specified for a business
service, the csf-key credentials take precedence.

Chapter 49
Security and Security Policies for Business and Proxy Services

49-3

49.2.6 Security-Related Validation for Active Proxy Services
When you use the Oracle Service Bus Console to activate a session that contains
changes to an active proxy service, Service Bus validates the changes to ensure that
you have created all of the credentials that the proxy service's static endpoints require.
If a session contains a change to the key-pair bindings of a service key provider,
Service Bus validates the change against all of the proxy services that use the service
key provider. For example, if you remove the encryption key-pair, Service Bus reports
a validation error for any proxy service that references the service key provider and
whose endpoint requires encryption.

The following criteria determine when Service Bus performs this security-related
validation and the actions that it takes during validation:

• If a proxy service specifies a static route and operation, Service Bus determines
which credentials the static route and operation require. If the proxy service is
missing the required credentials, Service Bus will not commit the session until you
add the missing credentials.

• If a proxy service specifies a static route but the operation is passed through from
the inbound request, Service Bus determines which credentials the static route
and each of the route's operations require. If the proxy service is missing the
required credentials, Service Bus issues a validation warning but allows you to
commit the session.

• If a proxy service specifies a dynamic route and operation, Service Bus cannot
validate the security requirements and you risk the possibility of runtime errors. For
information about dynamic routing, see Using Dynamic Routing.

49.3 Attaching and Configuring Policies in JDeveloper
In JDeveloper, you can attach policies for testing security in a design-time
environment.

When your application is ready for deployment to a production environment, you can
attach or detach runtime policies in Oracle Enterprise Manager Fusion Middleware
Control. For more information about runtime management of policies, see Monitoring
and Managing Security Policiesin Administering Oracle Service Bus.

You can only attach OWSM policies to business and proxy services with specific
configurations. Depending on the service type and protocol, some policy options may
not be available. For information about supported configurations, see Security Policies
in Service Bus. For information about when service accounts are used, see Service
Accounts in Business Services.

For services created in previous versions of Service Bus, if the service is created from
a WSDL file that includes WS-Policy attachments, the policies are displayed read-only
on the service's Policies page.

The following image shows the Policies page for business services in JDeveloper. This
image shows all categories, but the actual categories displayed depend on the service
type and protocol of the service.

Chapter 49
Attaching and Configuring Policies in JDeveloper

49-4

Figure 49-1 Policy Configuration Page for Business Services in JDeveloper

49.3.1 How to Attach Oracle Web Services Manager Policies in JDeveloper
When you attach policies to a proxy or business service in JDeveloper, those policies are not
validated until they are deployed to the WebLogic Server. For more information about OWSM,
see Securing Oracle Service Bus with Oracle Web Services Manager.

Note:

If the service was upgraded from a previous version and includes WLS 9 policies,
you can view but not edit those policies. These policies are deprecated. Use the
steps in this section to update the policies in the upgraded services to OWSM
policies.

To attach Oracle Web Services Manager Policies in JDeveloper;

1. In the Application Navigator, locate the business or proxy service you want to edit and
double-click the service's file.

The Business or Proxy Service Definition Editor appears.

Chapter 49
Attaching and Configuring Policies in JDeveloper

49-5

2. Click the Policies tab.

3. On the Policies page, select From OWSM Policy Store in the list of available
policy binding models.

The available categories appear. These depend on the service type of the proxy or
business service.

4. In the category of the policy you want to add, click Add a * Policy.

A dialog appears with a list of policies you can select. The dialog for Security
policies is shown below.

Note:

If there is only one policy available in the chosen category, the Select *
Policies dialog does not appear; instead the available policy is populated
directly into the select policies table.

Figure 49-2 Select Security Policies Dialog in JDeveloper

5. If the Select * Policies dialog appeared, do the following:

a. To view information about a specific policy, click the information icon to the
right of the policy name.

b. Select the policies you want to attach.

Use the Ctrl and Shift keys to select multiple policies.

c. Click OK.

The policy is added to the relevant category on the definition editor.

6. To temporarily disable a policy, select the policy and then click Disable selected
policy above the table containing the policy. To temporarily disable all policies,
click Disable all policies.

7. To re-enable a policy, select the policy and then click Enable selected policy
above the table containing the policy. To re-enable all policies, click Enable all
policies.

Chapter 49
Attaching and Configuring Policies in JDeveloper

49-6

8. To remove a policy added in error, select the policy and then click Remove selected
policies for that category. Click Remove all policies to remove all attached policies.

9. To view a description and additional information for a policy, click Show Details next to
that policy.

10. If you are attaching policies to a business service, optionally browse to and select a
service account from the Service Account field.

11. When you are done configuring policies, click Save.

49.3.2 How to Define Override Values for a Policy in JDeveloper
Your environment may include services that use the same policies. However, each service
might have specific policy requirements, which you can specify using override properties. Not
all policies allow override values.

To define override values for a policy in JDeveloper:

1. Select the policy and then click Edit Config Override Properties.

The Config Override Properties dialog appears.

Figure 49-3 Config Override Properties Dialog for OWSM Policies in JDeveloper

2. In the Override Value column, enter a value to override the default value listed in the
Value column for each property you want to configure.

3. Click OK.

4. When you are done configuring override values, click Save.

49.3.3 How to Configure Custom Authentication for Proxy Services in
JDeveloper

Custom authentication lets you specify custom user name and password combinations or
custom tokens. You may need to specify the custom user name and password or token in
XPath format. The format for both is similar in that you specify XPath expressions that enable
Service Bus to locate the necessary information. The root of these XPath expressions is as
follows:

• Use soap-env:Envelope/soap-env:Header if the service binding is AnySOAP or WSDL-
SOAP.

Chapter 49
Attaching and Configuring Policies in JDeveloper

49-7

• Use soap-env:Body if the service binding is not SOAP based.

All XPath expressions must be in a valid XPath format. The XPath expressions must
use the XPath "declare namespace" syntax to declare any namespaces used, as
follows:

declare namespace
ns='http://webservices.mycompany.com/MyExampleService';)

Note:

Not all fields and tasks described below are available for all service types.
The configuration depends on the service type and policy configuration of the
service.

You can also configure custom authentication for proxy and business
services at the transport level. For more information, see Configuring Custom
Authentication Transport-Level Security.

49.3.3.1 Configuring Proxy Service Custom Authentication in JDeveloper
To configure proxy service custom authentication in JDeveloper:

1. In the Application Navigator, locate the proxy service you want to edit and double-
click the service's file.

The Proxy Service Definition Editor appears.

2. Click the Security tab.

3. Do one of the following:

• To specify the XPaths to the user name and password, select Custom User
Name and Password. Use the Expression Editor to define the XPAth for the
user name and password.

• To specify a token, select Custom Token, select a token type, and then use
the Expression Editor to define the XPath to the token.

Note:

REST proxy services do not currently support message-level custom
token authentication.

4. Optionally, you can specify context properties to pass additional information to the
context provider.

For more information, see Context Properties Are Passed to Security Providers.
For more information about custom authentication, see Configuring Custom
Authentication.

5. When you are done configuring the security settings, click Save.

Chapter 49
Attaching and Configuring Policies in JDeveloper

49-8

49.3.4 How to Specify a Service Key Provider for a Proxy Service in
JDeveloper

A service key provider contains Public Key Infrastructure (PKI) credentials that proxy services
use for decrypting inbound SOAP messages and for outbound authentication and digital
signatures. The service key provider resource used by the proxy service must be created
before you can perform this step. For more information, see Working with Service Key
Providers.

To specify a service key provider for a proxy service in JDeveloper:

1. In the Application Navigator, locate the proxy service you want to edit and double-click
the service's file.

The Proxy Service Definition Editor appears.

2. Click the Security tab.

3. Click the Browse or Search icon next to the Service Key Provider field to locate and
select a service key provider to use.

4. When you are done configuring the security settings, click Save.

49.3.5 How to Specify Web Services Policy Enforcement in JDeveloper
When a proxy service passes through the security header without processing it, it is known
as a passive intermediary. For more information about web services security pass-through,
see What is Web Services Security Pass-Through?

To web services policy enforcement in JDeveloper:

1. In the Application Navigator, locate the proxy service you want to edit and double-click
the service's file.

The Proxy Service Definition Editor appears.

2. Click the Security tab.

3. Do one of the following:

• If the proxy service should not process the security header, select Passive Security
Intermediary.

• If the proxy service should process the security header, clear the Passive Security
Intermediary check box.

4. When you are done configuring the security settings, click Save.

49.4 Attaching and Configuring Policies in the Oracle Service
Bus Console

You can only attach OWSM policies to business and proxy services with specific
configurations. Depending on the service type and protocol, some policy options may not be
available.

For information about supported configurations, see Security Policies in Service Bus.

Chapter 49
Attaching and Configuring Policies in the Oracle Service Bus Console

49-9

For services created in previous versions of Service Bus, if the service is created from
a WSDL file that includes WS-Policy attachments, the policies are displayed read-only
on the service's Policies page.

The following image shows the Policies page for business services in the Oracle
Service Bus Console. This image shows all categories, but the actual categories
displayed depend on the service type and protocol of the service.

Figure 49-4 Policy Configuration Page for Proxy Services in the Oracle Service Bus Console

49.4.1 How to Attach Oracle Web Services Manager Policies in the
Console

For more information about OWSM, see Securing Oracle Service Bus with Oracle Web
Services Manager.

To attach Oracle Web Services Manager policies in the console:

1. If you have not already done so, click Create to create a new session or click Edit
to enter an existing session.

2. In the Project Navigator, locate the business or proxy service and click the service
name.

The Business or Proxy Service Definition Editor appears.

3. Click the Policies tab.

4. On the Policies page, select From OWSM Policy Store in the list of available
policy binding models.

5. In the Service Level Policies table, click Attach Policies.

The Security Policies dialog appears, as shown below.

Chapter 49
Attaching and Configuring Policies in the Oracle Service Bus Console

49-10

Figure 49-5 Security Policies Dialog in the Oracle Service Bus Console

6. Do the following to perform a search for policies to attach:

a. Select a type and enter the name of either the category or the policy to find.

b. Click Search.

c. When you find the policy to attach, select it in the results list and then click Attach.

d. You can attach multiple policies. When you are done, click OK.

7. For business services only: To select a service account that contains credentials for the
business service, click Browse next to the Service Account field, and then browse to
and select the service account to use.

Note:

The service account resource must already be created in Service Bus in order
to select it here.

8. When you are done configuring policies, click Save.

9. To activate the changes in the runtime, click Activate.

Chapter 49
Attaching and Configuring Policies in the Oracle Service Bus Console

49-11

49.4.2 How to Define Override Values for a Policy in the Console
Your environment may include services that use the same policies. However, each
service might have specific policy requirements, which you can specify using override
properties. Not all policies allow override values.

To define override values for a policy in the console:

1. After you attach a policy, the policy appears in the Policy Overrides section if it
allows you to specify override values. Locate the policy you want to configure in
the Policy Overrides table.

Figure 49-6 Policy Overrides Table in the Oracle Service Bus Console

2. In the Override Value column, enter a value to override the default value listed in
the Override Value column for each property you want to configure.

3. When you are done configuring override values, click Save.

4. To activate the changes in the runtime, click Activate.

49.4.3 How to Configure Custom Authentication for a Proxy Service in
the Console

Custom authentication lets you specify custom user name and password combinations
or custom tokens. You may need to specify the custom user name and password or
token in XPath format. The format for both is similar in that you specify XPath
expressions that enable Service Bus to locate the necessary information. The root of
these XPath expressions is as follows:

• Use soap-env:Envelope/soap-env:Header if the service binding is AnySOAP or
WSDL-SOAP.

• Use soap-env:Body if the service binding is not SOAP based.

All XPath expressions must be in a valid XPath format. The XPath expressions must
use the XPath "declare namespace" syntax to declare any namespaces used, as
follows:

Chapter 49
Attaching and Configuring Policies in the Oracle Service Bus Console

49-12

declare namespace
ns='http://webservices.mycompany.com/MyExampleService';)

Note:

Not all fields and tasks described below are available for all service types. The
configuration depends on the service type and policy configuration of the service.

You can also configure custom authentication for proxy and business services at
the transport level. For more information, see Configuring Custom Authentication
Transport-Level Security.

49.4.3.1 Configuring Proxy Server Custom Authentication in the Console
To configure proxy server custom authentication in the console:

1. If you have not already done so, click Create to create a new session or click Edit to
enter an existing session.

2. In the Project Navigator, locate the proxy service you want to edit and click the proxy
service name.

The Proxy Service Definition page appears.

3. Click the Security Settings tab.

4. Do one of the following:

• To specify the XPaths to the user name and password, select Custom User Name
and Password. Use the Expression Editor to define the XPAth for the user name and
password.

• To specify a token, select Custom Token, select a token type, and then use the
Expression Editor to define the XPath to the token.

5. Optionally, you can specify context properties to pass additional information to the
context provider. For more information, see Context Properties Are Passed to Security
Providers. For more information about custom authentication, see Configuring Custom
Authentication.

6. When you are done configuring the security settings, click Save.

7. To activate the changes in the runtime, click Activate.

49.4.4 How to Specify a Service Key Provider for a Proxy Service in the
Console

A service key provider contains Public Key Infrastructure (PKI) credentials that proxy services
use for decrypting inbound SOAP messages and for outbound authentication and digital
signatures. The service key provider resource used by the proxy service must be created
before you can perform this step. For more information, see Working with Service Key
Providers.

To specify a service key provider for a proxy service in the console:

1. If you have not already done so, click Create to create a new session or click Edit to
enter an existing session.

Chapter 49
Attaching and Configuring Policies in the Oracle Service Bus Console

49-13

2. In the Project Navigator, locate the proxy service you want to edit and click the
proxy service name.

The Proxy Service Definition page appears.

3. Click the Security Settings tab.

4. To specify a service key provider, click the Browse or Search icon to locate and
select a service key provider to use.

5. When you are done configuring the security settings, click Save.

6. To activate the changes in the runtime, click Activate.

49.4.5 How to Specify Web Services Policy Enforcement in the
Console

When a proxy service passes through the security header without processing it, it is
known as a passive intermediary. For more information about web services security
pass-through, see What is Web Services Security Pass-Through?

To specify web services policy enforcement in the console:

1. If you have not already done so, click Create to create a new session or click Edit
to enter an existing session.

2. In the Project Navigator, locate the proxy service you want to edit and click the
proxy service name.

The Proxy Service Definition page appears.

3. Click the Security Settings tab.

4. Do one of the following:

• If the proxy service should not process the security header, select Passive
Security Intermediary.

• If the proxy service should process the security header, clear the Passive
Security Intermediary check box.

5. When you are done configuring the security settings, click Save.

6. To activate the changes in the runtime, click Activate.

49.5 Configuring Service Bus Client Access Security
Client access to proxy services is defined directly in the service configuration in the
Oracle Service Bus Console.

When you create or manage a proxy service, you can view and update client access to
the service from the Security Settings page on the Security tab. If both transport
authentication and message-level authentication exist, the message-level subject
identity is propagated.

49.5.1 How To Configure Transport-Level Access Policies
Configure transport-level security policies for a proxy service on the Security Settings
tab of the Proxy Service Definition Editor in the Oracle Service Bus Console. This
page provides access to the policy editor.

Chapter 49
Configuring Service Bus Client Access Security

49-14

When a proxy service is activated, Service Bus generates and deploys a thin web application.
Service Bus relies on WebLogic Server for server-side SSL support, including session
management, client certificate validation and authentication, trust management and server
SSL key/certificate manipulation.

For more information about defining transport-level security for various Service Bus
transports, see Configuring Transport-Level Security.

Before you can configure transport-level access policies. described in Configuring Transport-
Level Access Policies, you must enable HTTP URL links to open the policy editor, as
described in Enabling HTTP URL Links to Open the Policy Editor.

49.5.1.1 Enabling HTTP URL Links to Open the Policy Editor
To enable HTTP URL links to open the policy editor:

1. Log in to Fusion Middleware Control as a user with administrator privileges.

2. In the Target Navigator, expand SOA and click service-bus.

3. In the Service Bus menu, select Security > Application Policies.

4. In the Application Stripe field of the Application Policies page, select
Service_Bus_Console.

The Create button is activated.

5. Click Create above the table.

6. In the Grantee section of the Create Application Grant page, click Add.

7. On the Add Principal dialog, do the following:

a. In the Type field, select Application Role.

b. Click Search.

c. Select the MiddlewareAdministrator role and click OK.

8. In the Permissions section of the Create Application Grant window, click Add.

9. Do the following on the Add Permission dialog:

a. To search by Java class, select Permissions and then select
oracle.soa.osb.console.common.permissions.OSBPermission in the Permission
Class field.

b. Click Search.

c. In the search results list, select AdminOnlyTaskAccess and click Continue.

d. In the Permission Actions field, select update. This also selects All.

e. Click Select.

The new permissions appears in the Permissions table.

10. When you are done granting permissions, click OK on the Create Application Grant
window. After this is done you can complete the next task, configuring transport-level
access policies.

49.5.1.2 Configuring Transport-Level Access Policies
To configure transport-level access policies:

Chapter 49
Configuring Service Bus Client Access Security

49-15

1. Log in to the Oracle Service Bus Console as a user with administrator privileges.
Only users with administrator privileges can modify security configuration data.

2. If you are not in an active session, click Create or Edit to start or restart a session.

3. In the Project Navigator, locate and open the proxy service whose transport-level
access you want to configure.

4. Click the Security Settings tab.

5. Click the link in the Transport Access Control field.

The policy editor appears.

6. In the Authorization Providers field, select an authorization provider. Oracle
recommends that you select the XACMLAuthorizer.

7. Add policy conditions using any of the instructions in How to Add Policy
Conditions.

8. When you have finished entering conditions in the Policy Conditions section, click
Save.

49.5.2 How to Configure Message-Level Access Policies
Configure message-level security policies for a proxy service on the Security Settings
tab of the Proxy Service Definition Editor in the Oracle Service Bus Console. This
page provides access to the policy editor. You can configure access policies at the
operation level as well.

For more information about defining transport-level security, see Configuring Message-
Level Security for Web Services.

To configure message-level access policies:

1. Log in to the Oracle Service Bus Console as a user with administrator privileges.
Only users with administrator privileges can modify security configuration data.

2. If you are not in an active session, click Create or Edit to start or restart a session.

3. In the Project Navigator, locate and open the proxy service whose transport-level
access you want to configure.

4. Click the Security Settings tab.

5. Click a link in the Message Access Control field.

Note:

You can define access control at the message or operation level,
depending on which you select in this field.

The policy editor appears.

6. In the Authorization Providers field, select an authorization provider. Oracle
recommends that you select the XACMLAuthorizer.

Chapter 49
Configuring Service Bus Client Access Security

49-16

Note:

Service Bus has deprecated support for the WebLogic Default Authorization
provider. Instead, Oracle recommends that you use the WebLogic XACML
Authorization provider.

7. Add policy conditions using any of the instructions in How to Add Policy Conditions.

8. When you have finished entering conditions in the Policy Conditions section, click Save.

49.5.3 How to Add Policy Conditions
You can define multiple conditions under which users, groups, or roles can invoke the
secured operations. Conditions can be based on things like groups or roles, the date or time
of access, context elements (for transport-level policies), and so on.

To add policy conditions:

1. Access the policy editor for an access control policy. See How To Configure Transport-
Level Access Policies or How to Configure Message-Level Access Policies.

2. In the policy editor, under Policy Conditions, click Add Condition.

The Choose a Predicate page appears.

3. Select a predicate from the list.

4. Click Next. Depending on what you chose as the condition predicate, perform one of the
steps shown in Table 49-2.

At any time you can click Back to discard your changes and return to the previous page
or click Cancel to discard the changes and return to the Proxy Service Definition Editor.

Table 49-2 Condition Predicate Options

If You Selected... Complete These Steps...

Role For transport-level security, this condition applies only if the proxy
service uses a protocol that enables a client to supply credentials.

a. In the Role Argument Name field, enter the application role to
which you want to grant access.

b. Click Add.

c. Repeat steps 1 and 2 until you have finished adding roles. You
can click Remove to remove the arguments from the list.

d. Click Finish.

Chapter 49
Configuring Service Bus Client Access Security

49-17

Table 49-2 (Cont.) Condition Predicate Options

If You Selected... Complete These Steps...

Group For transport-level security, this condition applies only if the proxy
service uses a protocol that enables a client to supply credentials.

a. In the Group Argument Name field, enter the group to which you
want to grant access.

If you have not already created the group that you entered in this
field, you can do so after you finish creating access control
policies. See "Creating Oracle Service Bus Groups" in
Administering Oracle Service Bus. If you do not create this group,
then no one will be granted access.

b. Click Add.

c. Repeat steps 1 and 2 until you have finished adding arguments.
You can click Remove to remove the arguments from the list.

d. Click Finish.

User For transport-level security, this condition applies only if the proxy
service uses a protocol that enables a client to supply credentials.

a. In the User Argument Name field, enter the user to which you
want to grant access.

If you have not already created the user that you entered in this
field, you can do so after you finish creating access control
policies. See "Creating Oracle Service Bus Users" in
Administering Oracle Service Bus If you do not create this user,
then no one will be granted access.

b. Click Add.

c. Repeat steps 1 and 2 until you have finished adding arguments.
You can click Remove to remove the arguments from the list.

d. Click Finish.

Access occurs on
specified days of the
week

a. In the Day of week field, enter the full name of the day of the
week.

b. In the GMT offset field, enter the time ahead of GMT in the
format GMT+h:mm, or behind GMT in the format GMT-h:mm. For
example, Eastern Standard Time in the USA is GMT-5:00.

c. Click Finish.

Access occurs between
specified hours

a. In the Starting Time field, enter the earliest permissible time in
the format hh:mm:ss AM|PM. For example, enter 12:45:00 AM.

b. In the Ending Time field, enter the latest permissible time in the
format hh:mm:ss AM|PM.

c. In the GMT offset field, enter the time ahead of GMT in the
format GMT+h:mm, or behind GMT in the format GMT-h:mm. For
example, Eastern Standard Time in the USA is GMT-5:00.

d. Click Finish.

Chapter 49
Configuring Service Bus Client Access Security

49-18

Table 49-2 (Cont.) Condition Predicate Options

If You Selected... Complete These Steps...

Access occurs before or
Access occurs after

a. In the Date field, enter a date in the format m/d/yy. For example,
enter 1/1/04. You can add an optional time in the format h:mm:ss
AM|PM. For example, you can enter 1/1/04 12:45:00 AM.

b. In the GMT offset field, enter the time ahead of GMT in the
format GMT+hh:mm, or behind GMT in the format GMT-hh:mm. For
example, Eastern Standard Time in the USA is GMT-5:00.

c. Click Finish.

Access occurs on a
specified day of the
month, Access occurs
before a specified day of
the month, or Access
occurs after a specified
day of the month

a. In the The day of the month field, enter the ordinal number of
the day within the current month with values in the range from -31
to 31. Negative values count back from the end of the month, so
the last day of the month is specified as -1. 0 indicates the day
before the first day of the month.

b. In the GMT offset field, enter the time ahead of GMT in the
format GMT+hh:mm, or behind GMT in the format GMT-hh:mm. For
example, Eastern Standard Time in the USA is GMT-5:00.

c. Click Finish.

Context element defined Note: This applies only to transport-level security. A context element
is a parameter and value pair that a container such as a web
container can optionally provide to a security provider. Context
elements are not available for message-level access control policies.
For possible values, see Context Properties Are Passed to Security
Providers.

a. In the Context element name field, enter the name of the
context element.

b. Click Finish.

Context element's value
equals a string constant

This applies only to transport-level security. See the note for Context
element defined above for information about context elements.

a. In the Context element name field, enter the name of the
context element for which to evaluate the value.

b. In the String Value field, enter the string value that you want to
compare.

c. Click Finish.

Context element's value
is greater than a
numeric constant,
Context element's value
equals a numeric
constant, or Context
element's value is less
than a numeric constant

This applies only to transport-level security. See the note for Context
element defined above for information about context elements.

a. In the Context element name field, enter the name of the
context element for which to evaluate the value.

b. In the Numeric Value field, enter a numeric value.

c. Click Finish.

Deny access to
everyone, Allow access
to everyone or Server is
in development mode

Click Finish.

Chapter 49
Configuring Service Bus Client Access Security

49-19

5. Repeat the above steps to add expressions based on different policy conditions.
When you add multiple conditions, an operator list appears, and you can select to
join the conditions by either AND or OR.

6. Perform any of the following steps to modify the conditions you defined.

• To change the order of the selected expression, select the check box
associated with the condition, then click Move Up and Move Down.

• To group policy conditions, select the check box associated with those
conditions, and then click Combine. This allows you to create conditions such
as Role: Administrator OR (Role: Developer AND Access occurs after:
12/1/13, GMT-5:00).

• To ungroup combined policy conditions, select the check box associated with
those conditions, and then click Uncombine.

• To make a condition negative, select the check box associated with the
condition, then click Negate. For example, NOT Group Operators excludes the
Operators group from the policy.

• To delete a selected expression, select the check box associated with the
condition, then click Remove.

49.6 Hiding Personally Identifiable Information in Messages
You can encrypt and decrypt fields of a message to protect sensitive data (known as
personally identifiable information (PII)) in Service Bus pipelines. This feature provides
for the obfuscation of certain fields (for example, SSNs) to prevent this data from
appearing in administration consoles in clear text.

Messages are encrypted coming into Service Bus through a proxy service and then
decrypted on the way out through a business service. Messages outside Service Bus
can be protected with other message protection policies (WS-Security/SSL).

The following example shows an example of an unencrypted message. The PII fields
are name and driversLicense.

Example - Unencrypted Message

<person>
 <name>John</name>
 <driversLicense>B1234</driversLicense>
 <ssn>123-456-789</ssn>
</person>

The following example shows an example of the encrypted message with the name and
driversLicense fields in encrypted format.

Example - Encrypted Message

<person>
 <name>John</name>
 <driversLicense>encrypted:fdslj[lmsfwer09fsn;keyname=pii-csf-key</
driversLicense>
 <ssn>encrypted:gdf45md%mfsd103k;keyname=pii-csf-key</ssn>
</person>

The encryption format is as follows:

encrypted:<CIPHER_TEXT>;keyname:<CSF_KEY_NAME>

Chapter 49
Hiding Personally Identifiable Information in Messages

49-20

Note:

If both a PII policy and authorization policy are attached to a service, the
authorization policy is executed before the PII policy. This is because the PII policy
may encrypt the field used for authorization.

If the authorization policy is attached to a service and it requires an already-
encrypted field, authorization fails.

49.6.1 How to Hide Personally Identifiable Information
• You must decrypt PIIs when an encrypted message leaves the service. If you attach a PII

policy to a proxy service and do not attach a PII policy to its target service, PIIs in the
outbound message are not decrypted. This is not a recommended practice.

• PIIs encrypted in one Service Bus service cannot be decrypted in another Service Bus
service.

49.6.1.1 Hiding Personally Identifiable Information Using JDeveloper
To hide personally identifiable information using JDeveloper:

1. In the Application Navigator, locate the business or proxy service you want to edit and
double-click the service's file.

The Business or Proxy Service Definition Editor appears.

2. Click the Policies tab.

3. On the Policies page, select From OWSM Policy Store in the list of available policy
binding models.

4. In the category of the policy you want to add, click Add a * Policy.

The policy is added.

5. Select the policy in the Personally Identifiable Information section, and click the Edit icon.

The PII Property Overrides dialog appears with the Select fields from input message(s)
page displayed).

6. In the Select sensitive elements pane, expand the tree list, select a field whose value
you want to hide, and then click the right arrow to move it to XPath Expressions.

Chapter 49
Hiding Personally Identifiable Information in Messages

49-21

Figure 49-7 PII Property Overrides Dialog

7. Repeat the above step for each field to encrypt.

8. Click Next.

The Select fields from output message(s) page appears.

9. Repeat steps 6 through 8 to select fields in the output message.

10. Select the CSF key. The key used for encryption and decryption is based on the
password retrieved from this CSF key.

49.6.1.2 Hiding Personally Identifiable Information Using the Console
To hide personally identifiable information using the console:

1. If you have not already done so, click Create to create a new session or click Edit
to enter an existing session.

2. In the Project Navigator, locate the business or proxy service and click the service
name.

The Business or Proxy Service Definition Editor appears.

3. Click the Policies tab.

4. On the Policies page, select From OWSM Policy Store in the list of available
policy binding models.

5. In the Service Level Policies table, click Attach Policies.

The Security Policies dialog appears.

6. Do the following to select the policy:

a. Perform a search for the oracle/pii_security_policy policy, or look through
the list for the policy.

b. When you find the policy, select it in the results list and then click Attach.

Chapter 49
Hiding Personally Identifiable Information in Messages

49-22

c. Click OK.

7. In the Policy Overrides section, enter the following information:

• response.xpaths: A comma-separated list of XPath expressions identifying the fields
to encrypt in the response.

• response.namespaces: A comma-separated list of namespaces for the response,
where each namespace has a prefix and URI separated by an equals sign.

• reference.priority: An optional property that specifies the priority of the policy
attachment. For more information, see "reference.priority" in Securing Web Services
and Managing Policies with Oracle Web Services Manager.

• request.namespaces: A comma-separated list of namespaces for the request, where
each namespace has a prefix and URI separated by an equals sign.

• csf-key: The name of the CSF key that includes the password information to use to
encrypt and decrypt the field values.

• request.xpaths: A comma-separated list of XPath expressions identifying the fields
to encrypt in the request.

Chapter 49
Hiding Personally Identifiable Information in Messages

49-23

50
Configuring Message-Level Security for Web
Services

This chapter describes how to configure message-level security in Service Bus.

Message-level security applies security checks to a SOAP message after a web services
client establishes a connection with a Service Bus proxy service or business service and
before the proxy service or business service processes the message.

Message-level security is categorized as follows:

• Inbound message-level security applies to messages between clients and Service Bus
proxy services. It applies security to both the request from the client and the response
message back to the client.

You can think of this as proxy service security.

• Outbound message-level security applies to messages between Service Bus proxy
services and SOAP-HTTP or SOAP-JMS business services. It applies security to both
the request and the response.

You can think of this as business service security.

This chapter includes the following sections:

• About Message-Level Security

• Message-Level Access Control Policies for Proxy Services

• Configuring Proxy Service Message-Level Security

• Configuring Business Service Message-Level Security: Main Steps

• Using the Service Identity Certificate Extensions

• Examples of Custom WS-Policy Statements

• Disabling Outbound WS-Security

For instructions on configuring message-level security for proxy services, see Configuring
Service Bus Client Access Security.

Note:

The implementation of message-level security includes proxy services that have
been configured with message-level custom authentication (either custom token or
user name/password).

The message-level security mechanisms described in this section work alone or in
concert with the message-level custom authentication mechanism, which is
described in Configuring Custom Authentication. See Combining WS-Security with
Custom User Name/Password and Tokens for information about using both types of
security.

50-1

50.1 About Message-Level Security
Service Bus supports message-level security for SOAP messages that are sent over
the HTTP (including HTTPS) or JMS protocols. Usually you use message-level
security in addition to the transport-level security that these protocols offer.

You can require web services clients to provide credentials at the transport level, the
message level, or both levels. If you require clients to provide credentials at both
levels, Service Bus uses the message-level credentials for proxy service
authentication and authorization.

To express the message-level security requirements for a proxy service or business
service that is a web service, you use the Web Services Policy (WS-Policy) framework.

With message-level security, a proxy service or business service specifies which of its
operations are secured and which of the following security measures a web services
client must apply to its SOAP messages, which contain requests to invoke operations:

• Authentication

Requires a client to present an identity that can be compared with user accounts in
the domain's authentication provider.

• Message integrity through digital signatures

Establishes the identity of the client that is requesting to invoke an operation and
guarantees that no intermediary has altered the request. Also guarantees that the
return values of the operation are returned to the client without being altered by an
intermediary.

• Message confidentiality through XML encryption

Encrypts the request and the return value in the response and guarantees that no
intermediary has viewed the request or the response.

All of these security measures require a client to encode security tokens in its SOAP
messages, and the proxy service or business service specifies which types of security
tokens it requires to be encoded in the SOAP messages.

50.1.1 Sample Sequence of Actions in Message-Level Security
To send a SOAP message to a proxy service that requires message-level security, the
following actions occur:

1. A web services client generates a SOAP header and adds the header to the
SOAP message envelope. The header includes digital signatures, security tokens,
and other constructs.

2. When the proxy service processes the secured envelope, it decrypts the message,
which removes the security header.

3. The proxy service then verifies that the message conforms to its security
requirements. For example, the proxy service confirms that the required message
parts were signed and/or encrypted and that the required tokens are present with
the required claims.

4. The entire process is repeated in reverse for the response from the proxy service
to the client.

Chapter 50
About Message-Level Security

50-2

50.2 Message-Level Access Control Policies for Proxy Services
While message integrity and message confidentiality guarantee that intermediaries do not
view or modify messages, and while message authentication requires clients to prove that
they are known users, they do nothing to specify which known users are allowed (authorized)
to invoke proxy service operations.

To limit access to authorized users, you use the Oracle Service Bus Console to create
message-level access control policies. These policies allow a proxy service to process only
those SOAP messages from authorized clients.

50.3 Configuring Proxy Service Message-Level Security
You can configure a proxy service to support one of these techniques for inbound message-
level security.

• Active-Intermediary

The proxy service processes the header in the client's SOAP messages and enforces the
message-level access control policy on the messages.

For example, a client encrypts and signs its SOAP message and sends it to a proxy
service. The proxy service decrypts the message and verifies the digital signature, then
routes the message. Before the proxy service sends the response back to the client, the
proxy service signs and encrypts the message. The client then decrypts the message
and verifies the proxy service's digital signature.

• Pass-Through

Instead of processing the header in the client's SOAP messages, the proxy service
passes the message untouched to a business service. Although the proxy service does
not process the secured sections of the SOAP message, it can route the message based
on values in the header. When the business service receives the message, it processes
the security header and acts on the request. Note that the business service must use the
Web Services Policy (WS-Policy) framework to describe which of its operations are
secured with message-level security. The business service sends its response to the
proxy service, and the proxy service passes the response untouched to the client.

For example, the client encrypts and signs the message and sends it to the proxy
service. The proxy service does not decrypt the message or verify the digital signature; it
simply routes the message to the business service. The business service decrypts the
messages and verifies the digital signature, and then processes the request. The
response path is similar.

50.3.1 Creating an Active Intermediary Proxy Service: Main Steps
To create a proxy service to act as an active intermediary:

1. In a text editor or IDE, create a WSDL document to define the proxy service:

• If you plan to bind the policies directly from the Oracle Service Bus Console, the
WSDL file does not need to have policy statements.

• If you want the policy to be WSDL-based, attach one or more Web Services Policy
(WS-Policy) statements to the WSDL document, including one or more of the
predefined policies.

Chapter 50
Message-Level Access Control Policies for Proxy Services

50-3

2. In the Oracle Service Bus Console, import the WSDL document into the Service
Bus WSDL repository and resolve any WSDL dependencies.

For more information about WSDL files, see Working with WSDL Documents.

3. If you have not already configured the WebLogic security framework to support
Service Bus, do one or more of the following depending on whether the WS-Policy
of any of the operations in the proxy service contains security policy assertions
that secure requests from clients to the proxy service:

• If you want operation request policies to require authentication with a WS-
Security X.509 certificate token, configure the Web Service Security
configuration named
__SERVICE_BUS_INBOUND_WEB_SERVICE_SECURITY_MBEAN__. See Configuring
the Oracle WebLogic Security Framework: Main Steps.

• If you want operation request policies to require authentication with a WS-
Security Username/Password token with password digest, make sure to
enable password digests. See Configuring the Oracle WebLogic Security
Framework: Main Steps.

• If you want operation request policies to require the use of SAML tokens, you
must configure a SAML asserting party for this proxy service. See
Authenticating SAML Tokens in Proxy Service Requests.

• If you want operation request policies to require digital signatures, register the
accepted client signature verification certificates in the WebLogic Server
Certificate Registry. See Configuring the Oracle WebLogic Security
Framework: Main Steps.

• If you want operation request policies to require digital encryption, configure a
service key provider that contains an encryption credential. The proxy service
will use this credential to decrypt the encrypted SOAP message. For
information about service key providers, see Working with Service Key
Providers

4. In the Oracle Service Bus Console, do one or more of the following depending
whether the WS-Policy of any of the operations in the proxy service contains
security policy assertions that secure responses from the proxy service to clients:

• If any operation response policy requires digital signatures, configure a service
key provider that contains a digital signature credential. You can create one
service key provider that contains credentials for both encryption and digital
signatures. For information about service key providers, see Working with
Service Key Providers

• If any operation response policy specifies encryption, the client must send its
certificate to the proxy service on the request. The proxy service will use the
client's public key to encrypt its response. The client certificate must not be the
same as the proxy service's encryption certificate.

5. In the Oracle Service Bus Console, create a proxy service from the WSDL file that
you imported. Activate your changes.

6. To attach OWSM policies to the proxy service, see one of the following sections:

• Attaching and Configuring Policies in JDeveloper

• Attaching and Configuring Policies in the Oracle Service Bus Console

7. Edit the proxy service you just created to do the following from the Security tab:

a. Specify the service key provider that you created.

Chapter 50
Configuring Proxy Service Message-Level Security

50-4

b. Optionally, modify the proxy service's default message-level access control policy,
which specifies conditions under which users, groups, or roles can invoke the
secured operations. For more information, see How to Configure Message-Level
Access Policies.

c. Optionally, modify the proxy service's message-level custom authentication settings.

50.3.2 Creating a Pass-Through Proxy Service: Main Steps
To create a pass-through proxy service:

1. Create a business service to which the proxy service will pass the unprocessed SOAP
message. There are two configuration methods:

• The business service is a web service that contains WS-Policy statements.

• The business service directly binds the WS-Policies. The WSDL file on which the
service is based should not have any WS-Policy statements.

See Configuring Business Service Message-Level Security: Main Steps.

2. To attach OWSM policies to the proxy service, see one of the following sections:

• Attaching and Configuring Policies in JDeveloper

• Attaching and Configuring Policies in the Oracle Service Bus Console

3. In the Oracle Service Bus Console, create a proxy service from a WSDL document. You
can use the same WSDL document that you used for the business service that you
created. Activate your changes.

4. If you do not want the proxy service to enforce the security policies associated with it,
select Passive Security Intermediary under Security Settings on the Security tab.

5. Configure the proxy service to route to the business service that you created.

If you route to the business service based on the operation that the client's SOAP
message is requesting to invoke, you must configure the routing so that it specifies an
operation selection algorithm other than the SOAP body algorithm. Make sure the actions
in the proxy service pipeline do not modify the WS-Security header or any parts of the
SOAP envelope that are signed or encrypted. Changes to clear-text message parts
covered by digital signatures almost always break the digital signature because the
signature cannot be verified later.

50.4 Configuring Business Service Message-Level Security:
Main Steps

Outbound message-level security applies to messages between Service Bus proxy services
and SOAP-HTTP or SOAP-JMS business services. It applies security to both the request and
the response.

To configure outbound message-level security for a business service that represents a
SOAP-HTTP or SOAP-JMS web service:

1. In a text editor or IDE, create a WSDL document to define the policy.

2. In the Oracle Service Bus Console, import the web service's WSDL document into the
Service Bus WSDL repository and resolve any WSDL dependencies.

For more information about WSDL files, see Working with WSDL Documents.

Chapter 50
Configuring Business Service Message-Level Security: Main Steps

50-5

3. In the Oracle Service Bus Console, do one or more of the following depending on
whether the WSDL document contains WS-Policy statements that secure requests
from a proxy service to the business service:

• If any operation request policy includes an identity assertion with WS-Security
Username Token as one of the supported token types, configure a service
account for the business service. In the service account, provide the user
name and password that you want the proxy service to send to the business
service. Proxy services that route to this business service will get the user
name and password from this service account. See Working with Service
Accounts and Creating and Configuring Business Services.

• If any operation request policy requires authentication with a WS-Security
Username/Password token with password digest, make sure to enable
password digests. See Configuring the Oracle WebLogic Security Framework:
Main Steps.

• If any operation request policy requires digital signatures, configure a service
key provider that contains a digital signature credential. You can create one
service key provider that contains credentials for both encryption and digital
signatures. For information about service key providers, see Working with
Service Key Providers

4. If any operation response policy in the business service requires encryption (that
is, the business service encrypts the response with the proxy service's encryption
public key), configure a service key provider and assign an encryption credential to
the service key provider.

Caution:

Encrypted back-end response messages: If the response policy of the
business service specifies encryption, the proxy service will send its
encryption certificate to the business service on the request. The
business service will encrypt its response using the proxy service's
public key. The proxy service encryption credential must not be the same
as the business service encryption credential.

5. If any policy in the business service specifies using SAML assertions, configure a
WebLogic SAML Credential Mapping Provider V2 asserting party. For more
information, see Mapping Identity to a SAML Token.

6. Create a business service from the WSDL file that you imported. Activate your
changes.

See Creating and Configuring Business Services.

7. To attach OWSM policies to the business service, see one of the following
sections:

• Attaching and Configuring Policies in JDeveloper

• Attaching and Configuring Policies in the Oracle Service Bus Console

8. Create a proxy service that routes SOAP messages to the business service. You
can use either an active-intermediary proxy service or a pass-through proxy
service.

See Creating an Active Intermediary Proxy Service: Main Steps.

Chapter 50
Configuring Business Service Message-Level Security: Main Steps

50-6

50.5 Using the Service Identity Certificate Extensions
Service Bus supports publishing and consuming certificate ID extensions for WSDL SOAP
proxy and business services attached with OWSM message protection policies.

WSDL SOAP proxy services that implement an OWSM message-protection policy publish the
base64-encoded public certificate for the service in the WSDL file. The certificate is included
for message protection policies regardless of whether the policy encrypts or decrypts data.

50.5.1 Publishing Certificate Identity Extension in a Proxy Service Effective
WSDL

The certificate is based on the encryption key configured for the attached policy. Proxy
service clients can use the certificate embedded in the WSDL file for encryption purposes.

For more information, see Using the Service Identity Certificate Extensions in Securing Web
Services and Managing Policies with Oracle Web Services Manager.

Note:

In prior releases of OWSM, business services and clients of proxy services needed
to store the proxy service's public certificate in their domain-level keystore.

The client then used the keystore.recipient.alias property to identify the
certificate in the keystore.

50.5.2 Consuming Certificate Identity Extension in a Business Service
WSDL SOAP business services that implement an OWSM message-protection policy
consume the certificate ID extension from the WSDL file. If the public key certificate is not
found in the WSDL file, then the keystore.recipient.alias property is used and the
certificate must be in the business service's domain-level keystore.

The hostname verification feature ensures that a certificate retrieved from a WSDL file was
not the subject of a substitution attack or "man in the middle" attack and is indeed the
expected certificate.

To verify the hostname, OWSM validates that the common name (CN) or the subject Group
Base Distinguished Name (DN) in the certificate matches the hostname of the service. This
feature depends upon the subject DN of the certificate.

OWSM provides domain configuration properties that enable you to specify whether to
enforce web service policies by publishing the X509 certificate in the WSDL file and whether
to use the hostname verification feature. For details about setting these properties, see
"Configuring Identity Extension Properties Using Fusion Middleware Control" in Securing
Web Services and Managing Policies with Oracle Web Services Manager.

Chapter 50
Using the Service Identity Certificate Extensions

50-7

50.6 Examples of Custom WS-Policy Statements
These sections provide examples of custom WS-Policy statements written under the
WS-Policy specification using the proprietary Oracle schema for security policy.

• Example: Encrypting Part of the SOAP Body and Header

• Example: Encryption Policy for a Business Service

• Example: Encrypting a Custom SOAP Header

• Example: Signing the Message Body and Headers

• Example: Signing a SOAP Body with SAML Holder-of-Key

• Example: Authenticating, Signing, and Encrypting with SAML Sender Vouches

50.6.1 Example: Encrypting Part of the SOAP Body and Header
If you need to specify that particular parts of the body of a SOAP message are
encrypted or digitally signed, rather than the entire body, you must create a custom
WS-Policy file.

The example is this section is an abstract WS-Policy statement that does the following:

• Requires the message from the client to include a user name and password token
for authentication

• Requires the client to encrypt the user name and password token (which is in the
security header)

• Requires the client to encrypt the /definitions/message/CreditCardNumber
element

This policy cannot be used with a business service because it is abstract: its KeyInfo
element does not contain the certificate used for encryption. Instead, when you
activate a proxy service that uses this WS-Policy statement, Service Bus binds to the
WS-Policy statement the encryption certificate from the service key provider that you
associate with the proxy service. For more information, see Working with Service Key
Providers.

Figure 50-1 Binding a Certificate to an Abstract Policy

Chapter 50
Examples of Custom WS-Policy Statements

50-8

Also in the example:

• The KeyWrappingAlgorithm element specifies that the client must use the RSA 1.5
algorithm to wrap symmetric keys.

• The EncryptionAlgorithm specifies that the client must use the Triple DES (Data
Encryption Standard) algorithm perform encrypt the security header and message body.

Example - Encrypting Part of the SOAP Body and Header

<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:wssp="http://www.bea.com/wls90/security/policy"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
 wssecurity-utility-1.0.xsd"
 xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
 wssecurity-secext-1.0.xsd"
 xmlns:m="http://example.org"
 wsu:Id="encrypt-custom-body-element-and-username-token">
 <!-- Require messages to provide a user name and password token
 for authentication -->
 <wssp:Identity>
 <wssp:SupportedTokens>
 <wssp:SecurityToken IncludeInMessage="true"
 TokenType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-
 wss-username-token-profile-1.0#UsernameToken">
 <wssp:UsePassword Type="http://docs.oasis-open.org/wss/2004/01/
 oasis-200401-wss-username-token-profile-1.0#PasswordText"/>
 </wssp:SecurityToken>
 </wssp:SupportedTokens>
 </wssp:Identity>
 <wssp:Confidentiality>
 <wssp:KeyWrappingAlgorithm
 URI="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>
 <!-- Require the user name and password in the security header
 to be encrypted -->
 <wssp:Target>
 <wssp:EncryptionAlgorithm
 URI="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>
 <wssp:MessageParts
 Dialect="http://www.bea.com/wls90/security/policy/wsee#part">
 wls:SecurityHeader(wsse:UsernameToken)
 </wssp:MessageParts>
 </wssp:Target>
 <!-- Require the /definitions/message/CreditCardNumber element to
 be encrypted -->
 <wssp:Target>
 <wssp:EncryptionAlgorithm
 URI="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>
 <wssp:MessageParts>
 wsp:GetBody(.)/m:CreditCardNumber
 </wssp:MessageParts>
 </wssp:Target>
 <!-- This is an abstract policy because the KeyInfo element is
 empty. The KeyInfo data is bound to the policy at runtime -->
 <wssp:KeyInfo/>
 </wssp:Confidentiality>
</wsp:Policy>

Chapter 50
Examples of Custom WS-Policy Statements

50-9

50.6.2 Example: Encryption Policy for a Business Service
Typically, you would require messages to a business service to be encrypted if the
proxy service that sends messages to the business service is a pass-through proxy
service. That is, the proxy service that receives messages from a client does not
process the SOAP message. Instead, the proxy service routes the message to the
business service, and the business service takes on the responsibility of Web Services
Security. See Configuring Message-Level Security for Web Services.

The example in this section is a WSDL document that contains a concrete policy. Note
the following about this example:

• The policy requires clients to encrypt the message body.

• The KeyInfo element specifies the type of token that a client must provide to is the
parent element that is used to describe and embed the encryption certificate. The
BinarySecurityToken element contains the base-64 encoded encryption
certificate (the value is truncated in the example). If your certificate is in PEM
format, the content of the PEM file (without the PEM prefix and suffix) is the
base-64 encoded representation of the certificate. If your encryption certificate is
stored in a JDK keystore, you can easily export it to a PEM file.

• The policy provides a unique ID and the WSDL file uses a URI fragment to refer to
the ID.

Example - Encrypting the Body with a Concrete Policy Embedded in the WSDL
Document

<definitions name="WssServiceDefinitions"
 targetNamespace="http://com.bea.alsb/tests/wss"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
 wssecurity-utility-1.0.xsd"
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 ...>
 <wsp:UsingPolicy xmlns:n1="http://schemas.xmlsoap.org/wsdl/"
 n1:Required="true"/>
 <!-- The policy provides a unique ID -->
 <wsp:Policy wsu:Id="myEncrypt.xml">
 <wssp:Confidentiality
 xmlns:wssp="http://www.bea.com/wls90/security/policy">
 <wssp:KeyWrappingAlgorithm
 URI="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>
 <!-- Require the user name and password in the security header
 to be encrypted -->
 <wssp:Target>
 <wssp:EncryptionAlgorithm
 URI="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>
 <wssp:MessageParts Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">
 wsp:Body()
 </wssp:MessageParts>
 </wssp:Target>
 <!-- Embed the token type and encryption certificate -->
 <wssp:KeyInfo>
 <wssp:SecurityToken
 TokenType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-
 wss-x509-token-profile-1.0#X509v3"/>
 <wssp:SecurityTokenReference>
 <wssp:Embedded>

Chapter 50
Examples of Custom WS-Policy Statements

50-10

 <wsse:BinarySecurityToken
 EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-
 200401-wss-soap-message-security-1.0#Base64Binary"
 ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-
 200401-wss-x509-token-profile-1.0#X509v3"
 xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-
 200401-wss-wssecurity-secext-1.0.xsd">
 MIICfjCCAeegAwIBAgIQV/PDyj3...
 </wsse:BinarySecurityToken>
 </wssp:Embedded>
 </wssp:SecurityTokenReference>
 </wssp:KeyInfo>
 </wssp:Confidentiality>
 </wsp:Policy>
 <binding name="WssServiceSoapBinding" type="tns:WssService">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="getPurchaseOrder">
 <soap:operation soapAction="" style="document"/>
 <input>
 <soap:body parts="parameters" use="literal"/>
 <!-- Use a URI fragment to refer to the unique policy ID -->
 <wsp:Policy>
 <wsp:PolicyReference URI="#myEncrypt.xml"/>
 </wsp:Policy>
 </input>
 <output>
 <soap:body parts="parameters" use="literal"/>
 </output>
 </operation>
 </binding>
 ...
</definitions>

50.6.3 Example: Encrypting a Custom SOAP Header
The example in this section is an abstract WS-Policy statement that encrypts a custom
header named CreditCardNumber.

If you need to specify that particular parts of the body of a SOAP message are encrypted or
digitally signed, rather than the entire body, you must create a custom WS-Policy file.

This policy cannot be used with a business service because it is abstract: its KeyInfo element
does not contain the certificate used for encryption. Instead, when you activate a proxy
service that uses this WS-Policy statement, Service Bus binds to the WS-Policy statement
the encryption certificate from the service key provider that you associate with the proxy
service.For more information, see Working with Service Key Providers.

Also of note in this example:

• The KeyWrappingAlgorithm element specifies that the client must use the RSA 1.5
algorithm to wrap symmetric keys.

• The EncryptionAlgorithm specifies that the client must use the Triple DES (Data
Encryption Standard) algorithm perform encrypt the security header.

Example - Encrypting a Custom SOAP Header

<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:wssp="http://www.bea.com/wls90/security/policy"

Chapter 50
Examples of Custom WS-Policy Statements

50-11

 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
 wssecurity-utility-1.0.xsd"
 wsu:Id="dig-sig-for-get-header">
 <wssp:Confidentiality>
 <wssp:KeyWrappingAlgorithm
 URI="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>
 <!-- Require the custom CreditCardNumber header to be encrypted -->
 <wssp:Target>
 <wssp:EncryptionAlgorithm
 URI="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>
 <wssp:MessageParts
 Dialect="http://www.w3.org/TR/1999/REC-xpath-19991116">
 wsp:GetHeader(.)/n:CreditCardNumber
 </wssp:MessageParts>
 </wssp:Target>
 <wssp:KeyInfo/>
 </wssp:Confidentiality>
</wsp:Policy>

50.6.4 Example: Signing the Message Body and Headers
The example in this section is a WS-Policy statement that requires a digital signature
to access the following in the SOAP message:

• A custom header named header1

• All system headers

• The timestamp security header

• The message body

Example - Requiring a Signature for SOAP Headers and Body

<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:wssp="http://www.bea.com/wls90/security/policy"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
 wssecurity-utility-1.0.xsd"
 wsu:Id="sign-custom-header-policy">
 <wssp:Integrity>
 <wssp:SignatureAlgorithm
 URI="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
 <wssp:CanonicalizationAlgorithm
 URI="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 <!-- Require the custom header header1 to be signed -->
 <wssp:Target>
 <wssp:DigestAlgorithm URI="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <wssp:MessageParts
 Dialect="http://www.w3.org/TR/1999/REC-xpath-19991116"
 xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
 wssecurity-secext-1.0.xsd"
 xmlns:n="http://example.org">
 wsp:GetHeader(.)/n:header1
 </wssp:MessageParts>
 </wssp:Target>
 <!-- Require the system headers to be signed -->
 <wssp:Target>
 <wssp:DigestAlgorithm URI="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <wssp:MessageParts
 Dialect="http://www.bea.com/wls90/security/policy/wsee#part">
 wls:SystemHeaders()

Chapter 50
Examples of Custom WS-Policy Statements

50-12

 </wssp:MessageParts>
 </wssp:Target>
 <!-- Require the Timestamp header to be signed -->
 <wssp:Target>
 <wssp:DigestAlgorithm URI="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <wssp:MessageParts
 Dialect="http://www.bea.com/wls90/security/policy/wsee#part">
 wls:SecurityHeader(wsu:Timestamp)
 </wssp:MessageParts>
 </wssp:Target>
 <!-- Require the message body to be signed -->
 <wssp:Target>
 <wssp:DigestAlgorithm URI="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <wssp:MessageParts
 Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">
 wsp:Body()
 </wssp:MessageParts>
 </wssp:Target>
 </wssp:Integrity>
<wssp:MessageAge/>
</wsp:Policy>

50.6.5 Example: Signing a SOAP Body with SAML Holder-of-Key
The example in this section is a WS-Policy statement that requires the SAML asserter to use
the holder-of-key method to sign the message body. The purpose of a SAML token with
"holder-of-key" subject confirmation is to allow the subject to use an X.509 certificate that
may not be trusted by the receiver to protect the integrity of the request messages.

For more information about the two SAML confirmation methods (sender-vouches or holder-
of-key), see "SAML Token Profile Support in WebLogic Web Services" in Understanding
Security for Oracle WebLogic Server.

The "Oracle WebLogic Server Security Policy Assertion Reference" in the WebLogic Web
Services Reference for Oracle WebLogic Server describes the policy elements in detail.

Note the following about this example:

• Integrity specifies that part or all of the SOAP message must be digitally signed, as
well as the algorithms and keys that are used to sign the SOAP message.

• SignatureAlgorithm specifies the cryptographic algorithm used to compute the digital
signature.

• CanonicalizationAlgorithm specifies the algorithm used to canonicalize (use in simple
or standard form) the SOAP message elements that are digitally signed. You can specify
only http://www.w3.org/2001/10/xml-exc-cl4n#.

• DigestAlgorithm specifies the digest algorithm that is used when digitally signing the
specified parts of a SOAP message. You can specify only http://www.w3.org/2000/09/
xmldsig#sha1 .

• MessageParts specifies the parts of the SOAP message that should be signed, in this
case the body.

• Dialect identifies the dialect used to identify the parts of the SOAP message that should
be signed.

• SupportedTokens specifies the list of supported security tokens that can be used for
digital signatures.

Chapter 50
Examples of Custom WS-Policy Statements

50-13

• SecurityToken specifies the security token that is supported for digital signatures.

IncludeInMessage specifies whether to include the token in the SOAP message.
Valid values are true or false. The default value of this attribute is true when used
in the <Integrity> assertion.

TokenType specifies the type of security token, in this case to specify a SAML
token.

• Claims specifies additional metadata information that is associated with a
particular type of security token. For SAML tokens, you must define a
<ConfirmationMethod> child element to specify the type of SAML confirmation
(sender-vouches or holder-of-key).

• ConfirmationMethod specifies the type of confirmation method, either sender-
vouches or holder-of-key, that is used when using SAML tokens for identity.

Specify the <ConfirmationMethod> assertion within an <Integrity> assertion.
The reason you put the SAML token in the <Integrity> assertion for this
confirmation method is that the web service runtime must prove the integrity of the
message, which is not required by sender-vouches.

Example - Signing a SOAP Body with SAML Holder-of-Key Method

<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:wssp="http://www.bea.com/wls90/security/policy"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
 wssecurity-utility-1.0.xsd"
 xmlns:wls="http://www.bea.com/wls90/security/policy/wsee#part"
 wsu:Id="saml-holder-of-key-signed">
 <wssp:Integrity>
 <wssp:SignatureAlgorithm
 URI="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
 <wssp:CanonicalizationAlgorithm
 URI="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 <wssp:Target>
 <wssp:DigestAlgorithm URI="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <wssp:MessageParts
 Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">
 wsp:Body()
 </wssp:MessageParts>
 </wssp:Target>
 <wssp:SupportedTokens>
 <wssp:SecurityToken IncludeInMessage="true"
 TokenType="http://docs.oasis-open.org/wss/2004/01/oasis-2004-01-saml-
 token-profile-1.0#SAMLAssertionID">
 <wssp:Claims>
 <wssp:ConfirmationMethod>holder-of-key</wssp:ConfirmationMethod>
 </wssp:Claims>
 </wssp:SecurityToken>
 </wssp:SupportedTokens>
 </wssp:Integrity>
</wsp:Policy>

Chapter 50
Examples of Custom WS-Policy Statements

50-14

50.6.6 Example: Authenticating, Signing, and Encrypting with SAML
Sender Vouches

The example in this section is a WS-Policy statement that requires the SAML asserter to use
the sender-vouches method to sign the message body and headers.

In sender-vouches the asserting party (different from the subject) vouches for the verification
of the subject. The receiver must have a trust relationship with the asserting party.

For more information about the two SAML confirmation methods (sender-vouches or holder-
of-key), see "SAML Token Profile Support in WebLogic Web Services" in Understanding
Security for Oracle WebLogic Server.

The "Oracle Web Services Security Policy Assertion Reference" in the WebLogic Web
Services Reference for Oracle WebLogic Server describes the policy elements in detail.

Note the following about this example:

• Identity specifies the type of security tokens.

• SupportedTokens specifies the list of supported security tokens that can be used for
digital signatures.

• SecurityToken specifies the security token that is supported for digital signatures.

IncludeInMessage is not specified because the value of this attribute is always true when
used in the <Identity> assertion, even if you explicitly set it to false.

TokenType specifies the type of security token to specify a SAML token.

• Claims specifies additional metadata information that is associated with a particular type
of security token. For SAML tokens, you must define a <ConfirmationMethod> child
element to specify the type of SAML confirmation (sender-vouches or holder-of-key).

• ConfirmationMethod specifies the type of confirmation method, either sender-vouches or
holder-of-key, that is used when using SAML tokens for identity.

• Integrity specifies that part or all of the SOAP message must be digitally signed (in this
example both the body and security headers), as well as the algorithms and keys that are
used to sign the SOAP message.

• SignatureAlgorithm specifies the cryptographic algorithm used to compute the digital
signature.

• CanonicalizationAlgorithm specifies the algorithm used to canonicalize (use in simple
or standard form) the SOAP message elements that are digitally signed. You can specify
only http://www.w3.org/2001/10/xml-exc-cl4n#.

• Target encapsulates information about which targets of a SOAP message are to be
encrypted or signed, depending on the parent element. The child elements also depend
on the parent element:

– When used in <Integrity>, you can specify the <DigestAlgorithm>, <Transform>,
and <MessageParts> child elements.

– When used in <Confidentiality>, you can specify the <EncryptionAlgorithm>,
<Transform>, and <MessageParts> child elements.

Chapter 50
Examples of Custom WS-Policy Statements

50-15

• DigestAlgorithm specifies the digest algorithm that is used when digitally signing
the specified parts of a SOAP message. You can specify only http://
www.w3.org/2000/09/xmldsig#sha1.

• MessageParts specifies the parts of the SOAP message that should be signed, in
this case the body and security header.

• Dialect identifies the dialect used to identify the parts of the SOAP message that
should be signed.

• Confidentiality specifies that part or all of the SOAP message must be
encrypted, as well as the algorithms and keys that are used to encrypt the SOAP
message. The example requires that the body and security headers must be
encrypted using triple-DES.

Example - Signing a SOAP Body and Headers with SAML Sender-Vouches
Method

<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:wssp="http://www.bea.com/wls90/security/policy"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
 wssecurity-utility-1.0.xsd"
 xmlns:wls="http://www.bea.com/wls90/security/policy/wsee#part"
 wsu:Id="samlPolicy-sender-vouches-signed-encrypted">
 <wssp:Identity>
 <wssp:SupportedTokens>
 <wssp:SecurityToken
 TokenType="http://docs.oasis-open.org/wss/2004/01/oasis-2004-01-
 saml-token-profile-1.0#SAMLAssertionID">
 <wssp:Claims>
 <wssp:ConfirmationMethod>
 sender-vouches
 </wssp:ConfirmationMethod>
 </wssp:Claims>
 </wssp:SecurityToken>
 </wssp:SupportedTokens>
 </wssp:Identity>
 <wssp:Integrity>
 <wssp:SignatureAlgorithm
 URI="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
 <wssp:CanonicalizationAlgorithm
 URI="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 <wssp:Target>
 <wssp:DigestAlgorithm
 URI="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <wssp:MessageParts
 Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">
 wsp:Body()
 </wssp:MessageParts>
 </wssp:Target>
 <wssp:Target>
 <wssp:DigestAlgorithm
 URI="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <wssp:MessageParts
 Dialect="http://www.bea.com/wls90/security/policy/wsee#part">
 wls:SecurityHeader(Assertion)
 </wssp:MessageParts>
 </wssp:Target>
 </wssp:Integrity>

Chapter 50
Examples of Custom WS-Policy Statements

50-16

 <wssp:Confidentiality>
 <wssp:KeyWrappingAlgorithm
 URI="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>
 <wssp:Target>
 <wssp:EncryptionAlgorithm
 URI="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>
 <wssp:MessageParts
 Dialect="http://www.bea.com/wls90/security/policy/wsee#part">
 wls:SecurityHeader(Assertion)
 </wssp:MessageParts>
 </wssp:Target>
 <wssp:Target>
 <wssp:EncryptionAlgorithm
 URI="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>
 <wssp:MessageParts
 Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">
 wsp:Body()
 </wssp:MessageParts>
 </wssp:Target>
 <wssp:KeyInfo/>
 </wssp:Confidentiality>
</wsp:Policy>

50.7 Disabling Outbound WS-Security
On proxy services that forward to other proxies (such as local proxies) containing Oracle Web
Services Manager service policies, outbound WS-Security processing is disabled. Service
Bus handles that behavior automatically and does not use the doOutboundWss property.

For more information, see Using OWSM Security with Local Proxy Services.

The remainder of this section describes how to disable outbound WS-Security processing for
other design patterns.

Some infrequently used design patterns preempt a proxy service from automatically
generating the outbound WS-Security SOAP envelope and instead use an XQuery
expression to create the envelope. If you use this design pattern, to prevent a proxy service
from automatically generating the outbound WS-Security SOAP envelope, you must create
an action in the proxy service's message flow that sets the value of the ./ctx:security/
ctx:doOutboundWss element in the $outbound message context variable to
xs:boolean("false"). You can create the action in either of the following places:

• In a request stage of a pipeline pair. See How to Add Pipeline Pairs to Pipelines.

• In a request action of a route node. See How to Add Route Nodes to Pipelines in the
Console.

For information about the $outbound message context variable, see Message Context..

Under some circumstances, when you attempt to activate a session in which you have
created or modified a proxy service with outbound message-level security disabled, the
Oracle Service Bus Console reports validation errors (you cannot commit a session that
contains errors). If your session validation reports errors because you have disabled
outbound message-level security, modify the Service Bus startup command so that it sets the
following system property to true:
com.bea.wli.sb.security.wss.LaxOutboundWssValidation

Chapter 50
Disabling Outbound WS-Security

50-17

Then restart Service Bus. With this property set to true, the Oracle Service Bus
Console reports warnings instead of errors (you can commit a session that reports
warning messages).

Future releases of Service Bus will provide an easier way to disable outbound
message-level security.

Chapter 50
Disabling Outbound WS-Security

50-18

51
Configuring Transport-Level Security

This chapter describes how to configure transport-level security for different transports in
Service Bus.

Transport-level security applies security checks as part of establishing a connection between
service consumers, proxy services, and business services. The type of security checks that
Service Bus can apply depends on the protocol that the proxy service or business service
uses to communicate. Some protocols can also encrypt the communication between client
and endpoint to prevent snooping from third parties.

Inbound transport-level security secures the communication between clients and Service
Bus proxy services. Outbound transport security secures all three techniques of sending
outbound requests from Service Bus proxy services: route actions, publish actions, and
callout actions.

This chapter includes the following sections:

• Configuring Transport-Level Security for HTTPS

• Configuring Transport-Level Security for HTTP

• Configuring Transport-Level Security for JMS

• Configuring Transport-Level Security for SFTP Transport

• Email, FTP, and File Transport-Level Security

• Configuring Transport-Level Security for SB Transport

• Configuring Transport-Level Security for WS Transport

• Configuring Transport-Level Security for WebSphere Message Queue Transport

• Transport-Level Security Elements in the Message Context

For instructions on configuring security in business and proxy services, see Securing
Business and Proxy Services.

51.1 Configuring Transport-Level Security for HTTPS
The HTTPS protocol uses SSL to secure communication. SSL can be used to encrypt
communication, ensure message integrity, and to require strong server and client
authentication. Before you can use HTTPS, you must configure SSL in WebLogic Server.

See Configuring the Oracle WebLogic Security Framework: Main Stepsfor more information.

The following sections describe configuring transport-level security for the HTTPS protocol:

• HTTPS Authentication Levels

• Configuring Inbound HTTPS Security: Main Steps

• Configuring Outbound HTTPS Security: Main Steps

51-1

51.1.1 HTTPS Authentication Levels
For each proxy service or business service that communicates over the HTTPS
protocol, you can configure the service to require one of the following levels of
authentication:

• One-way SSL, no authentication

This level enables encrypted communication but does not require clients to
provide credentials. To establish a one-way SSL connection, the client initiates the
connection and Service Bus sends its certificate to the client. In other words, the
client authenticates Service Bus.

• One-way SSL, basic authentication

This level enables encrypted communication and requires clients to supply a user
name and password after the one-way SSL connection is established. The client
supplies a user name and password by encoding it in the HTTP request header
(which is encrypted by SSL). When the proxy service receives the encrypted
request, it passes the credentials to the domain's authentication provider, which
determines whether the client's credentials match a user account that you have
created.

• Two-way SSL, client certificate authentication

This level enables encrypted communication and strong client authentication (two-
way SSL).

To establish a two-way SSL connection, the client initiates the connection and
Service Bus sends its X.509 certificate to the client. Then, the client sends its
certificate to Service Bus and Service Bus authenticates the client.

To get the user name from the client's certificate, you configure an Identity
Assertion provider, which extracts a field in the certificate to use as the client
identity (X.509 token), typically the CN (common name) or E (email) of the
SubjectDistinguishedName in the certificate. After extracting the X.509 token, the
token is compared to the user accounts created in Fusion Middleware Control.

For more information about SSL and Identity Assertion providers, see "Security
Fundamentals" in Understanding Security for Oracle WebLogic Server.

• Transport-Level Custom Credentials.

You can authenticate client requests at the transport-level using custom
authentication tokens. You specify a custom token in an HTTP header. The HTTP-
specific configuration pages of the service definition wizard allows you to configure
client authentication. Custom authentication concepts are described in Configuring
Custom Authentication.

51.1.2 Configuring Inbound HTTPS Security: Main Steps
To configure inbound transport-level security for a proxy service:

1. Make sure that you have configured the WebLogic security framework to support
SSL, an authentication provider, and an Identity Assertion provider, depending on
the HTTPS authentication level that you want to use:

• For no client authentication (anonymous requests), set Client Authentication to
None.

Chapter 51
Configuring Transport-Level Security for HTTPS

51-2

• For basic authentication, set client authentication to basic. See "Creating Oracle
Service Bus Users" in Administering Oracle Service Bus.

• For SSL client authentication, set client authentication to client certificate, configure
the WebLogic Identity Assertion provider and the WebLogic CertPath Provider.

• For custom authentication token, set client authentication to custom authentication.
The custom authentication token can be any active token type previously configured
for an Identity Assertion provider that is carried in an HTTPS header. Custom
authentication concepts are described in Configuring Custom Authentication.

Note:

You must first configure, or create and configure, a WebLogic Server
Identity Assertion provider as described in Configuring Identity Assertion
Providers for Custom Tokens, and add the user names and passwords of
the clients that you want to allow access to Fusion Middleware Control.

See Configuring the Oracle WebLogic Security Framework: Main Steps.

2. When you create a proxy service, on the Transport Configuration page select HTTP.

3. On the HTTP Transport Configuration page, select the "HTTPS required" option.

4. Choose an authentication level, as described in HTTPS Authentication Levels.

5. Make your Dispatch Policy, Request Encoding, and Response Encoding choices, as
described in the online help provided with Service Bus.

6. If the service you are creating is WSDL-based and has operations, make your selections
on the Message Handling Configuration page. Determine whether to enforce WS-I
compliance (for SOAP 1.1 services only) and select the selection algorithm to use to
determine the operation called by this proxy service. This option is available only for
SOAP or XML services defined from a WSDL file.

51.1.3 Configuring Outbound HTTPS Security: Main Steps
In outbound transport-level security, a proxy service is the client that opens a connection with
a business service.

To configure outbound transport-level security:

1. If you are configuring transport-level security for a production environment (as opposed to
a development or testing environment), make sure that Host Name Verification is
enabled. See "Using Host Name Verification" in "Configuring SSL" in Administering
Security for Oracle WebLogic Server.

2. When you create a business service, on the Transport Configuration page, select HTTP.

3. Choose an authentication level, as described in HTTPS Authentication Levels.

If you configured the proxy service such that Service Bus does not authenticate clients,
configure the enterprise system to authenticate clients by selecting an authentication
level of one-way SSL, which is the basic authentication option.

4. The URI determines whether HTTP or HTTPS is used. HTTP business services can
combine HTTP and HTTPS URLs unless the authentication method is client certificate, in
which case all URLs must be HTTPS.

Chapter 51
Configuring Transport-Level Security for HTTPS

51-3

5. If the business service uses HTTPS with basic authentication, create a service
account to provide the user name and password that the business service
requires.

You can add a user name and password directly to the service account, or
configure the service account to pass through the credentials that it received from
its client's request, or you can map a client user name to a Service Bus user. If you
configured the service so that Service Bus does not authenticate clients, create a
service account that passes through the credentials.

6. If the business service uses client certificate authentication, do the following:

a. Create a service key provider to provide the key-pair that proxy services use
for SSL client authentication with the business service. For information about
service key providers, see Working with Service Key Providers.

b. Create a proxy service or edit an existing proxy service so that it specifies the
service key provider.

7. If the business service uses custom authentication, specify a custom Java class
for authentication.

51.2 Configuring Transport-Level Security for HTTP
The HTTP protocol does not encrypt communication between clients and proxy
services or business services, but it does support basic authentication in which clients
send user names and passwords in requests. HTTP also supports custom token
authentication.

Caution:

Unless you have configured strong network security, Oracle recommends
that you do not use basic authentication with HTTP in production
environments because the password is sent in clear text. Instead, use basic
authentication with HTTPS.

The following sections describe configuring transport-level security for the HTTP
protocol:

• Configuring Inbound HTTP Security: Main Steps

• Configuring Outbound HTTP Security: Main Steps

• Using Custom Authentication for Outbound HTTP Security

51.2.1 Configuring Inbound HTTP Security: Main Steps
To configure inbound transport-level security for a proxy service:

1. When you create a proxy service, on the Transport Configuration page select
HTTP. Choose the Client Authentication option None, Basic, or Custom
Authentication. If you choose Custom Authentication, you must also specify the
HTTP header that is to carry the token and the token type.

Chapter 51
Configuring Transport-Level Security for HTTP

51-4

The steps for configuring transport-level custom credentials are described in Modeling
Message Flow in Oracle Service Bus. Custom authentication concepts are described in
Configuring Custom Authentication.

The custom authentication token can be any active token type, previously configured for
an Identity Assertion provider, that is carried in an HTTP header.

Note:

To use custom authentication you must first configure, or create and configure,
a WebLogic Server Identity Assertion provider as described in Configuring
Identity Assertion Providers for Custom Tokens.

If you want Service Bus to authenticate clients (Basic or Custom Authentication)
you must create user accounts for the clients. See "Configuring Oracle Service
Bus Administrative Security" in Administering Oracle Service Bus.

2. Modify the proxy service's default transport-level access control policy, which specifies
conditions under which users, groups, or roles can access a proxy service. See How To
Configure Transport-Level Access Policies..

51.2.2 Configuring Outbound HTTP Security: Main Steps
In outbound transport-level security, a proxy service is the client that opens a connection with
a business service.

To configure outbound transport-level security:

1. When you create a business service, select HTTP on the Transport Configuration page.
Choose the Client Authentication option None, Basic, or Custom Authentication. If you
choose Custom Authentication, you must also specify the HTTP header that is to carry
the token and the token type.

Custom authentication concepts are described in Configuring Custom Authentication.

2. If you selected Basic security, create a service account to provide the user name and
password that the business service requires. This is optional for Custom Authentication.
See Working with Service Accounts.

The custom authentication token can be any active token type, previously configured for
an Identity Assertion provider, that is carried in an HTTP header.

Note:

To use custom authentication for outbound security, you need to implement the
doOutboundAuthentication method of the OutboundAuthentication interface.
See Using Custom Authentication for Outbound HTTP Security for more
information.

If you want Service Bus to authenticate clients (Basic or Custom Authentication)
you must create user accounts for the clients. See "Configuring Oracle Service
Bus Administrative Security" in Administering Oracle Service Bus.

Chapter 51
Configuring Transport-Level Security for HTTP

51-5

You can add a user name and password directly to the service account, or
configure the service account to pass through the credentials that it received from
its client's request, or you can map a client user name to a Service Bus user. If you
configured the service so that Service Bus does not authenticate clients, create a
service account that passes through the credentials.

3. Create a proxy service or edit an existing proxy service so it specifies the service
account.

51.2.3 Using Custom Authentication for Outbound HTTP Security
To use custom authentication on the outbound, you need to implement the
doOutboundAuthentication method of the
com.bea.wli.sb.transports.http.OutboundAuthentication interface. Oracle
Service Busice Bus initializes the HttpUrlConnectionFactory with the connection
parameters before invoking the OutboundAuthentication implementation.

The custom authentication code can use the factory method
HttpUrlConnectionFactory.newConnection() for retrieving a new instance of
HttpURLConnection. The HttpURLConnection instance returned from the factory
method will be configured with the parameters set by Service Bus runtime.

In the final step of the authentication process, the business service payload and user
headers need to be sent to the target service, along with the authentication
parameters. Service Bus handles this automatically. So, the custom authenticator has
to ensure that only the authentication parameters are set for the last Http connection
instance created in the custom authentication code. The following HttpURLConnection
methods which establish the connection to the target service must not be invoked for
the last instance of HttpURLConnection created in the custom authentication code:

• connect

• getResponseCode

• getResponseMessage

• getHeader methods

• getContent

• getInputStream

• getOutputStream

51.3 Configuring Transport-Level Security for JMS
While transport-level security for JMS does not provide end-to-end security for JMS
messaging, it does provide these options.

• The option to use a secure SSL channel for communication between Service Bus
and a JMS server for sending or receiving JMS messages.

Note:

The JMS transport does not support two-way SSL.

Chapter 51
Configuring Transport-Level Security for JMS

51-6

Service Bus can communicate with local JMS servers or foreign JMS servers. The
connection to JMS servers can be secured using the T3S protocol (T3 over SSL). T3 and
T3S are proprietary Oracle protocols.

• The ability to specify the user name and password that Service Bus proxy services use to
authenticate while establishing a connection to a JMS server and/or while looking up JMS
destinations in the JNDI tree.

Note:

JMS administrators use the Oracle WebLogic Server Administration Console to
create access control policies that restrict access to WebLogic JMS servers and
destinations in the JNDI tree. For more information, see Resource Types You
Can Secure with Policies in Securing Resources Using Roles and Policies for
Oracle WebLogic Server and Methods for Configuring JMS System Resources
in Administering JMS Resources for Oracle WebLogic Server.

If a JMS administrator configures or changes an access control policy for a JMS
destination, WebLogic Server can take up to 60 seconds to recognize the
changes.

By default, WebLogic Server JMS checks the policy for each JMS destination
every 60 seconds. To change this behavior, modify the WebLogic Server startup
command so that it sets the following system property to the frequency (in
seconds) that you want WebLogic Server JMS to check access control policies:
weblogic.jms.securityCheckInterval

A value of 0 (zero) for this property ensures that an authorization check is
performed for every send, receive, and getEnumeration action on a JMS
resource.

The following sections describe configuring JMS transport-level security:

• Configuring Inbound JMS Transport-Level Security: Main Steps

• Configuring Outbound JMS Transport-Level Security: Main Steps

51.3.1 Configuring Inbound JMS Transport-Level Security: Main Steps
To configure inbound JMS transport-level security:

1. When you create or edit a JMS proxy service, on the Transport Configuration page, under
Advanced Settings, select the Use SSL check box.

Service Bus configures the JMS proxy service to use the T3S protocol.

2. If the JMS administrator created access control policies that restrict access to a JMS
connection pool, configure the proxy service to authenticate when it connects to the JMS
server:

a. Create a service account to provide the user name and password that the JMS
server requires. See Working with Service Accounts.

The JMS service account for the proxy service is used not only for the JMS object
access, but also for the JNDI lookup.

Chapter 51
Configuring Transport-Level Security for JMS

51-7

You must add a user name and password directly in the service account. JMS
cannot use a service account that passes through the credentials that it
received from its client's request or that maps a client user name to a Service
Bus user.

b. When you create or edit the proxy service, on the JMS Transport page, click
the Browse button next to JMS Service Account. Select the service account
that you created in the previous step.

51.3.2 Configuring Outbound JMS Transport-Level Security: Main
Steps

To configure outbound JMS transport-level security:

1. When you create or edit a JMS business service, on the Transport Configuration
page, under Advanced Settings, select the Use SSL check box.

Service Bus configures the JMS business service to use the T3S protocol.

2. If the JMS administrator created access control policies that restrict access to a
JMS connection pool, configure the business service to authenticate when it
connects to the JMS server:

a. Create a service account to provide the user name and password that the JMS
server requires. See Working with Service Accounts.

The JMS service account for the proxy service is used not only for the JMS
object access, but also for the JNDI lookup.

You must add a user name and password directly in the service account. JMS
cannot use a service account that passes through the credentials that it
received from its client's request or that maps a client user name to a Service
Bus user.

b. When you create or edit the business service, on the JMS Transport page,
click the Browse button next to JMS Service Account. Select the business
account that you created in the previous step.

3. Select the Pass Caller's Subject check box to have Service Bus pass the
authenticated subject when sending a message.

51.4 Configuring Transport-Level Security for SFTP
Transport

Service Bus supports the SFTP transport for inbound and outbound transport-level
security. The SFTP transport uses Secure Shell (SSH) version 2 to transfer files.

See Using the SFTP Transport for more information.

• How Two-Way Authentication is Performed

• Use of the known_hosts File

• SFTP Transport Authentication Process

• Configuring Inbound SFTP Transport-Level Security: Main Steps

• Configuring Outbound SFTP Transport-Level Security: Main Steps

Chapter 51
Configuring Transport-Level Security for SFTP Transport

51-8

• SFTP Security Attributes Preserved During Import

• SFTP Credential Life Cycle

51.4.1 How Two-Way Authentication is Performed
The SFTP authentication is two–way: both the SFTP server and SFTP client (Service Bus
service) authenticate each other through different mechanisms:

• The SFTP server uses the authentication method you specified in the Transport
Configuration page to authenticate the SFTP client (the Service Bus service): Username
Password, Host Based, or Public Key.

• The SFTP client (the Service Bus service) uses a known_hosts file to authenticate the
SFTP server. The known_hosts file on the Service Bus proxy service (inbound requests)
or business service (outbound requests) system must have the hostname, IP address,
and public key of the remote SFTP servers to which the proxy service or business service
can connect. SSH version 2 uses this public key to authenticate the connection.

The SFTP client (the Service Bus service) always uses the known_hosts file to determine
whether to connect to an SFTP server, no matter which of the three authentication methods is
chosen in the Transport Configuration page. That is, in all cases the SFTP server is
authenticated by the Service Bus service using the information present in this file. This
ensures that the Service Bus service is connecting to a known server.

For example, in case of Username Password authentication, the SFTP Client (Service Bus
service) authenticates the SFTP server against the SFTP server's public key in the
known_hosts file. The SFTP server authenticates the client (Service Bus service) with the
user name and password from the service account.

51.4.2 Use of the known_hosts File
No matter which authentication method you choose in the Transport Configuration page, a
known_hosts file on the Service Bus proxy service (inbound requests) or business service
(outbound requests) system must have the hostname, IP address, and public key of the
remote SFTP servers to which the proxy service or business service can connect.

The Service Bus service authenticates the SFTP server with the public-key/host/IP
combination present in the known_hosts file.

Note:

This SSH authentication mechanism is outside of the typical Service Bus service
key provider/PKI credential mapper process.

The known_hosts file requirement must be satisfied during authentication. SFTP servers not
listed in the known_hosts file are not authenticated.

Creating the known_hosts File

1. Use the editor of your choice to create a known_hosts text file.

The format for known_hosts is as follows:

Hostname,IP algorithm public-key

Chapter 51
Configuring Transport-Level Security for SFTP Transport

51-9

where Hostname, IP, and public_key identify the SFTP server.

The algorithms supported are RSA (entered only as ssh-rsa) and DSA (entered
only as ssh-dsa or ssh-dss).

The public key format for this file is "OpenSSH public key format."

For example:

getafix,172.22.52.130 ssh-rsa
AAAAB3NzaC1yc2EAAAABIwAAAIEAtR+M3Z9HFxnKZTx66fZdnQqAHQcF1vQe1+EjJ/
HWYtgAnqsn0hMJzqWMatb/u9yFwUpZBirjm3g2I9Qd8VocmeHwoGPhDGfQ5LQ/
PPo3esE+CGwdnCOyRCktNHeuKxo4kiCCJ/bph5dRpghCQIvsQvRE3sks+XwQ7Wuswz8pv58=

Multiple entries are supported, one entry per line.

2. Move the known_hosts file to the following directory:

MW_HOME/user_projects/domains/osb_domain/osb/transports/sftp

The directories /transports/sftp are not created automatically. You must create
them.

51.4.3 SFTP Transport Authentication Process
The following general principles apply to the SFTP authentication process for both a
proxy service and business service.

• Connection: The Service Bus service (proxy and business) always acts as the
SFTP client and connects to the SFTP server.

• Authentication by the SFTP Server: For Public Key and Host Based
authentication, the SFTP server authenticates the connection with the public key
of the Service Bus service. For Username Password, the SFTP server
authenticates the connection with the user name and password.

• Authentication by the SFTP Client: The Service Bus service always
authenticates the SFTP server with the public-key/host/IP combination present in
the known_hosts file.

• Connection established: If both the server and client authentications are
successful, only then is the connection established and ready for transfer.

• Transfer: The file (message) is downloaded in case of the proxy service and
uploaded in the case of the business service.

The SFTP authentication process for proxy services is described in Inbound One-Way
Download to the Proxy Service. The SFTP authentication process for business
services is described in Outbound One-Way Upload from the Business Service.

51.4.3.1 Inbound One-Way Download to the Proxy Service
Inbound one-way download to the proxy service is described as follows:

1. The proxy service, which is the SFTP client, attempts to connect to the SFTP
server.

2. The proxy service is authenticated by the SFTP server using the authentication
mechanism selected on the Transport Configuration page.

For Host Based and Public Key authentication, the remote SFTP server uses the
host name and public key of the proxy service to authenticate the Service Bus

Chapter 51
Configuring Transport-Level Security for SFTP Transport

51-10

system. For Username Password authentication, the SFTP server uses the user name
and password supplied by the proxy service (using the service account) to authenticate
the Service Bus system.

3. A known_hosts file (on the Service Bus proxy service system) keeps the information of
the remote SFTP servers to which the Service Bus proxy service can connect.

Specifically, this file contains the host name, IP address, and public key of the accepted
remote servers.

SSH version 2 uses this public key to authenticate the connection. SFTP servers not
listed in the known_hosts file are not authenticated.

4. If authentication is successful, the proxy service is the SFTP client connected to the
remote SFTP server.

5. If allowed by the SFTP server, the proxy service (the SFTP client) polls a remote
directory on the SFTP server and downloads any files (messages) present in the remote
directory.

The proxy service configuration determines which remote directory to poll, how often to
poll it, and what to do with any files (messages) that it downloads.

51.4.3.2 Outbound One-Way Upload from the Business Service
Outbound one-way upload from the business service is described as follows:

1. The business service (which is the SFTP client) attempts to connect to the SFTP server.

2. The business service is authenticated by the SFTP server using the authentication
mechanism selected on the Transport Configuration page.

For Host Based and Public Key authentication, the SFTP server uses the host name and
public key of the business service to authenticate the Service Bus system. For Username
Password authentication, the SFTP server uses the user name and password (from the
service account) to authenticate the Service Bus system.

3. A known_hosts file (on the Service Bus business service system) keeps the information
of the SFTP servers to which the Service Bus business service can connect.

Specifically, this file contains the host name, IP address, and public key of the accepted
servers.

SSH version 2 uses this public key to authenticate the connection. SFTP servers not
listed in the known_hosts file are not authenticated.

4. If authentication is successful, the business service is the SFTP client connected to the
remote SFTP server.

5. If allowed by the SFTP server, the business service (the SFTP client) uploads files to the
remote directory on the SFTP server.

The business service configuration determines in which remote directory to upload the
file, how often to retry the upload, and any file prefix or suffix to add to the uploaded file
name.

51.4.4 Configuring Inbound SFTP Transport-Level Security: Main Steps
To configure inbound transport-level security for a proxy service:

1. Create a known_hosts file, as described in Use of the known_hosts File, on the Service
Bus proxy service system.

Chapter 51
Configuring Transport-Level Security for SFTP Transport

51-11

known_hosts keeps the information of the remote SFTP servers to which the
Service Bus proxy service can connect. Specifically, this file contains the host
name, IP address, and public key of the accepted remote servers.

SSH version 2 uses this public key to authenticate the connection. SFTP servers
not listed in the known_hosts file are not authenticated.

2. When you create a proxy service, on the Transport Configuration page select
SFTP.

3. Specify the endpoint URI in sftp://hostname:port/directory format, where:

• hostname is the host name or IP address of the SFTP server.

• port is the port on which SFTP server is listening. Default port for SFTP is 22.

• directory is the location that is periodically polled for files. This directory is
relative to the home directory of the user.

4. On the SFTP Transport Configuration page, select either Username Password,
Host Based, or Public Key authentication.

The authentication choices are summarized here. See Using the SFTP Transport
for complete information.

• Username/Password authentication specifies that a static service account
(using user credentials on the SFTP server) is associated with this
authentication method. The service account provides a user name and
password that the proxy service uses for authentication to the SFTP server.
The SFTP client is authenticated using the provided credentials. Only the
static service account type is supported.

• Host Based Authentication specifies that only connections from identified,
known hosts are allowed. This authentication method requires a user name
and a service key provider.

The SFTP Server authenticates the proxy service with the public key of the
proxy service.

Note:

The Service Bus proxy service does not itself use the service key
provider to authenticate any credentials from the SFTP server. It
uses only the known_hosts file to authenticate the SFTP server.

The public key of the proxy service is present in the key-pair referred by the
service key provider. You need to extract this key when you set up the service
key provider, and then configure the SFTP server to use the public key.

For example, with SFTP server on Linux, you need to:

– Edit the /etc/ssh/shosts.equiv file and add the host name or IP
address of the machine on which Service Bus domain is running.

– Edit the /etc/ssh/ssh_known_hosts file and add the host name or IP
address of the machine on which Service Bus domain is running, followed
by space and the public key.

The user name is used to determine which directory on the SFTP server to
poll.

Chapter 51
Configuring Transport-Level Security for SFTP Transport

51-12

• Public Key specifies a user name and service key provider are required to use this
authentication method. Every user has their own private key.

The SFTP Server authenticates the proxy service with the public key.

Note:

The Service Bus proxy service does not itself use the service key provider
to authenticate any credentials from the SFTP server. It uses only the
known_hosts file to authenticate the SFTP server.

The public key of the proxy service is present in the key-pair referred by the service
key provider. You need to extract this key when you set up the service key provider,
and then configure the SFTP server to use the public key.

For example, to allow access to a system for a given identity with an SFTP server on
Linux, place the public key in a $HOME/.ssh/authorized_keys file on that system. All
keys listed in that file are allowed access.

The user name is used to determine which directory on the SFTP server to poll. It is
also use to identify the location of the public key on the SFTP server.

5. If allowed by the remote SFTP server, the proxy service (SFTP client) polls a remote
directory on the SFTP server and downloads any files present in the remote directory.

The proxy service configuration determines which remote directory to poll, how often to
poll it, and what to do with any files (messages) that it downloads.

The directory to be polled is an absolute path.

51.4.5 Configuring Outbound SFTP Transport-Level Security: Main Steps
To configure outbound transport-level security for a business service:

1. Create a known_hosts file, as described in Use of the known_hosts File, on the Service
Bus business service system.

known_hosts keeps the information of the remote SFTP servers to which the Service Bus
business service can connect. Specifically, this file contains the host name, IP address,
and public key of the accepted remote servers.

SSH version 2 uses this public key to authenticate the connection. SFTP servers not
listed in the known_hosts file are not authenticated.

2. When you create a business service, on the Transport Configuration page select SFTP.

3. Specify the endpoint URI in sftp://hostname:port/directory format, where:

• hostname is the host name or IP address of the SFTP server.

• port is the port on which SFTP server is listening. Default port for SFTP is 22.

• directory is the location to which files are uploaded. This directory is relative to the
home directory of the user.

4. On the SFTP Transport Configuration page, select either Username Password, Host
Based, or Public Key authentication.

The authentication choices are summarized here. See Using the SFTP Transport for
complete information.

Chapter 51
Configuring Transport-Level Security for SFTP Transport

51-13

• Username/Password authentication specifies that a static service account
(using user credentials on the SFTP server) is associated with this
authentication method. The service account provides a user name and
password that the business service uses for authentication to the SFTP server.
The SFTP client is authenticated using the provided credentials. Only the
static service account type is supported.

• Host Based Authentication specifies that only connections from identified,
known hosts are allowed. This authentication method requires a user name
and a service key provider.

The SFTP Server authenticates the business service with the public key of the
business service.

Note:

The Service Bus business service does not itself use the service key
provider to authenticate any credentials from the SFTP server. It
uses only the known_hosts file to authenticate the SFTP server.

The public key of the business service is present in the key-pair referred by
the service key provider. You need to extract this key when you set up the
service key provider, and then configure the SFTP server to use the public
key.

For example, with SFTP server on Linux, you need to:

– Edit the /etc/ssh/shosts.equiv file and add the host name or IP
address of the machine on which Service Bus domain is running.

– Edit the /etc/ssh/ssh_known_hosts file and add the host name or IP
address of the machine on which Service Bus domain is running, followed
by space and the public key.

The user name is used to determine the upload directory on the SFTP server.

• Public Key specifies a user name and service key provider are required to use
this authentication method. Every user has their own private key.

The SFTP Server authenticates the business service with the public key.

Note:

The Service Bus business service does not itself use the service key
provider to authenticate any credentials from the SFTP server. It
uses only the known_hosts file to authenticate the SFTP server.

The public key of the business service is present in the key-pair referred by
the service key provider. You need to extract this key when you set up the
service key provider, and then configure the SFTP server to use the public
key.

Chapter 51
Configuring Transport-Level Security for SFTP Transport

51-14

For example, to allow access to a system for a given identity with an SFTP server on
Linux, place the public key in a $HOME/.ssh/authorized_keys file on that system. All
keys listed in that file are allowed access.

The user name is used to determine the upload directory on the SFTP server and for
identifying the location of the public key on the SFTP server.

5. If allowed by the remote SFTP server, the business service (SFTP client) uploads files to
the remote directory on the SFTP server.

The business service configuration determines in which remote directory to upload the
file, how often to retry the upload, and any file prefix or suffix to add to the uploaded file
name.

The upload directory is an absolute path and is automatically created.

51.4.6 SFTP Security Attributes Preserved During Import
The following security attributes are preserved when the Preserve Security and Policy
Configuration option is selected during import:

• Client authentication method

• Reference to the service account (in case of Username Password authentication)

• Reference to the service key provider (in case of Host Based and Public Key
authentication)

• Username (in case of Host Based and Public Key authentication)

51.4.7 SFTP Credential Life Cycle
Whenever the user name/password or public key credential changes, the SFTP transport
drops all idle connections made with the previous credential and attempts to reconnect. For
active connections, the SFTP transport drops the connection after the current operation is
finished.

51.5 Email, FTP, and File Transport-Level Security
These sections describe the security measures that are available for communication over the
email, FTP, and file protocols.

• Email and FTP Transport-Level Security

• File Transport Security

51.5.1 Email and FTP Transport-Level Security
Email and FTP are not secure protocols. They support weak authentication, typically over
insecure channels. The supported security method for email or FTP transport is the user
name and password needed to connect to the email or FTP server.

To secure email, you must designate a service account as an alias for the user name and
password. The service will use the user name and password to authenticate to the SMTP
server.

Chapter 51
Email, FTP, and File Transport-Level Security

51-15

To secure the FTP transport, select external_user and designate a service account as
an alias for the user name and password. The service will use the user name and
password to authenticate to the FTP server.

For information about how to add security to email and FTP transport, see Creating
and Configuring Business Services

51.5.2 File Transport Security
The supported security method for file transport is the user login to the computer on
which the files are located.

The SFTP transport, described in Configuring Transport-Level Security for SFTP
Transport, is the preferred mechanism to secure FTP.

51.6 Configuring Transport-Level Security for SB Transport
The Service Bus (SB) transport allows client Service Bus servers to invoke a Service
Bus proxy service synchronously using RMI. RMI is the only mechanism by which
client Service Bus servers can access the SB transport.

In this release of Service Bus the associated API is for internal use only and is not
documented.

The SB proxy service is accessed in one of two ways:

• By a client Service Bus server that uses an SB business service to connect to the
Service Bus server of the proxy service by using the JNDI context and the proxy
service URI.

• By products such as Oracle WebLogic Integration and Oracle Data Service
Integrator that use proprietary artifacts to access SB proxy services. These
artifacts are unique to those products and are not described here.

The SB business service can send messages only to SB proxy services. A JNDI
provider, which is specified in the endpoint URI of the business service, is used to do a
JNDI lookup on the remote Service Bus server. Specifically, the JNDI provider points to
the Service Bus server where the service is deployed to retrieve the RMI stubs
corresponding to the SB proxy service.

For example, the endpoint URI you specify in the business service could be sb://
some_secured_jndi_provider/some_remote_sb_proxy.

A secure JNDI provider should have a provider URL with a secure protocol. In the SB
business service case, you can use the HTTPS or t3s protocols.

The service account (of the business service) specifies the user credentials that
should be used for invoking the remote SB proxy service. If no service account is
specified, the user credentials of the inbound proxy service (the inbound client) of this
business service are used for security context propagation.

The SB transport can use SSL to require strong server and client authentication.
Before you can use the SB transport with SSL, you must configure SSL in WebLogic
Server. See Configuring the Oracle WebLogic Security Framework: Main Steps.

Chapter 51
Configuring Transport-Level Security for SB Transport

51-16

Caution:

When set, the Use SSL flag means that request must be sent over an SSL
connection. However, the SB transport does not forbid unsecured connections. The
proxy service will be advertised (through the effective WSDL file or UDDI) with a
secured URI (indicated by sbs), but secured access is not enforced.

The Service Bus server administrator must close all unsecured protocols on the
server (t3, http, and so forth) to strictly enforce secured-client connections.

51.6.1 Configuring SAML Authentication With Service Bus (SB) Transport
If you are using SAML-based authentication with the SB transport, be sure to follow these
configuration requirements:

• On the SB client side, configure a SAML Credential mapper provider and create a SAML
relying party for each SB proxy service you plan to invoke from this client. In the target
URL field enter http://openuri.org/<OSBProxyServiceURI>, where
OSBProxyServiceURI is the service URI of the SB proxy service.

• On the Service Bus side (where the SB proxy service resides), configure a SAML Identity
Assertion provider and create a SAML asserting party. In the target URL field enter the
service URI of the SB proxy service. Do not include the SB protocol or host/port
information. For example, /<OSBProxyServiceURI>.

51.7 Configuring Transport-Level Security for WS Transport
Web Services Reliable Messaging (WS-RM) functionality is available in Service Bus as the
WS transport.

Service Bus supports the specification submitted in February 2005. For more information
about the specification, see Web Services Reliable Messaging Protocol (WS-
ReliableMessaging) at http://schemas.xmlsoap.org/ws/2005/02/rm/.

The WS transport has both proxy service (inbound) and business service (outbound)
components that are based on SOAP1.1- and SOAP1.2-based WSDL files, along with WS-
RM policy. It supports both one-way and request-response patterns, but response is
unreliable.

51.7.1 Reliable Web Services Messaging Defined
WS-RM is a framework in which an application running in one application server can reliably
invoke a web service running on another application server, assuming that both servers
implement the WS-ReliableMessaging specification. "Reliable" is defined as the ability to
guarantee message delivery between the two web services. In particular, the specification
describes an interoperable protocol in which a message sent from a source endpoint (or
client web service) to a destination endpoint (or web service whose operations can be
invoked reliably) is guaranteed either to be delivered, according to one or more delivery
assurances, or to raise an error.

Chapter 51
Configuring Transport-Level Security for WS Transport

51-17

http://schemas.xmlsoap.org/ws/2005/02/rm/

51.7.2 WS Transport Resources Visible in WLS Console
WS proxy services are visible from the Oracle WebLogic Server Administration
Console, but attempts to assign policies from WLS are ignored.

Specifically, administrators can navigate to the Home > Summary of Security
Realms > myrealm > Realm Roles pages in the Oracle WebLogic Server
Administration Console and seemingly edit the security policy for the WS proxy
service.

However, this policy will have no effect and it will not be evaluated at runtime.

The EAR application is auto-generated and deployed by Service Bus when you
activate the session. This is one EAR file for each WS proxy service.

51.7.3 Use of WS-Policy Files for Web Service Reliable Messaging
Configuration

You configure WS transport security through WS-Policy files, either from a WSDL file
or bound directly to the service.

Service Bus use WS-Policy files to enable a destination endpoint to describe and
advertise its WS-RM capabilities and requirements. The WS-Policy specification
provides a general purpose model and syntax to describe and communicate the
policies of a web service.

These WS-Policy files are XML files that describe features such as the version of the
supported WS-ReliableMessaging specification, the source endpoint's retransmission
interval, the destination endpoint's acknowledgment interval, and so on.

WS-Policy with RM assertions and WSSP transport-level security assertions are
supported for the WS transport only.

51.7.3.1 Preconfigured WS-RM Policy Files
Service Bus includes two simple WS-RM WS-Policy files that you can specify if you do
not want to create your own WS-Policy files:

• DefaultReliability.xml – Specifies typical values for the reliable messaging
policy assertions, such as inactivity timeout of 10 minutes, acknowledgment
interval of 200 milliseconds, and base re-transmission interval of 3 seconds.

• LongRunningReliability.xml – Similar to the default reliable messaging WS-
Policy file, except that it specifies a much longer activity timeout interval (24
hours.)

You cannot change these pre-packaged files. If their values do not suit your needs you
must create your own WS-Policy file.

For example, the complete LongRunningReliability.xml file (as extracted from
weblogic.jar) is shown in the following example:

Example - LongRunningReliability.xml File

<?xml version="1.0"?>
<wsp:Policy
 xmlns:wsrm="http://schemas.xmlsoap.org/ws/2005/02/rm/policy"

Chapter 51
Configuring Transport-Level Security for WS Transport

51-18

 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:beapolicy="http://www.bea.com/wsrm/policy"
 >
 <wsrm:RMAssertion >
 <wsrm:InactivityTimeout
 Milliseconds="86400000" />
 <wsrm:BaseRetransmissionInterval
 Milliseconds="3000" />
 <wsrm:ExponentialBackoff />
 <wsrm:AcknowledgementInterval
 Milliseconds="200" />
 <beapolicy:Expires Expires="P1M" optional="true"/>
 </wsrm:RMAssertion>
</wsp:Policy>

51.7.4 RM WS-Policy Required Prior to Activation
A proxy or business service that uses the WS transport must have a WS-Policy with RM
assertions, either from a WSDL file or bound directly to the service. Services that use any
other transport must not have a WS-Policy with RM assertions.

You can bind RM assertions only at the service level and not at the operation or request/
response levels.

51.7.5 Async Responses
WS-RM supports two messaging patterns: one way, and request/response. The WS transport
supports both patterns, but does not support reliable response. That is, the response is not
sent reliably but the request is always reliable.

Async responses from a proxy service using the WS transport to an RM client connect to the
AcksTo or ReplyTo endpoint references specified by the RM client. The RM client is free to
use an HTTP or HTTPS URL. When using HTTPS, the RM client is free to request a client
certificate during the SSL handshake. The WS transport will use the SSL key-pair of the
service key provider upon request.

51.7.6 Proxy Service Authentication
The WS transport supports the following HTTPS security modes using WS-Policy files:

• HTTPS – no client authentication

• HTTPS with basic authentication

• HTTPS with client certificate authentication (2-way SSL)

Table 51-1 shows the preconfigured security policies that implement these modes and
indicates when you might use them.

Table 51-1 WS Transport Authentication Matrix

HTTPS Required Authentication Required Preconfigured Transport Security Policy

Yes None Wssp1.2-Https.xml

Yes Basic Wssp1.2-HttpsBasic.xml

Yes Client certificate Wssp1.2-HttpsClientCert.xml

Chapter 51
Configuring Transport-Level Security for WS Transport

51-19

WS proxy services support both basic and client certificate (2-way SSL)
authentication, as determined by the WSSP 1.2 transport-level security assertions in
the WS-Policy.

Consider the example of the HTTPS token and the Basic256 algorithm as extracted
from the packaged Wssp1.2-Https.xml policy, as shown in the following example.

When basic authentication is specified in the WS-policy, all HTTPS requests (including
RM protocol messages to the WS proxy service) must have a valid user name and
password.

Example - Wssp1.2-Https.xml File (Partial)

:
<sp:TransportBinding>
 <wsp:Policy >
 <sp:TransportToken>
 <wsp:Policy>
 <sp:HttpsToken />
 </wsp:Policy>
 </sp:TransportToken>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic256/>
 </wsp:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp:Policy>
 <sp:Lax/>
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp/>
 </wsp:Policy>
 </sp:TransportBinding>
</wsp:Policy>

Proxy service authentication is supported as follows:

• Outbound client certificate authentication using the SSL key-pair assigned to the
service key provider configured for the proxy service.

If you plan to create a service key provider (which passes key-certificate pairs in
outbound requests), use the Oracle WebLogic Server Administration Console to
configure a PKI credential mapping provider. In any WebLogic Server domain that
hosts Service Bus, you can configure at most one PKI credential mapping
provider.

• Username/password identity propagation through a WS proxy service (with basic
authentication) to any other outbound transport, or outbound WSS user name
token.

If a business service requires user name and password tokens, you can configure
the business service's service account to pass through the user credentials from
the original client request. See Working with Service Accounts.

• Credential mapping between WS proxy service (with basic or 2-way SSL
authentication) and any other transport.

• Sending (non-reliable) asynchronous responses from a WS proxy service to an
RM client using HTTP or HTTPS. The default protocol used by proxy and business
services is HTTP.

Chapter 51
Configuring Transport-Level Security for WS Transport

51-20

Asynchronous responses from a WS proxy service to an RM client connect to the AcksTo
or ReplyTo endpoint references specified by the RM client. The RM client can use either
HTTP or HTTPS URL. If the RM client uses HTTPS, the RM client can request a client
certificate during the SSL handshake. The WS transport uses the SSL key-pair of the
service key provider upon request.

51.7.7 Preserving Security Configuration on Import
If the Preserve Security and Policy Configuration flag is set, the WS transport provider
preserves the following security configuration: The reference to the service account (WS
business services only)

51.7.8 Configuring Inbound and Outbound WS Transport-Level Security
You configure WS transport security through WS-Policy, either from a WSDL file or bound
directly to the service.

51.8 Configuring Transport-Level Security for WebSphere
Message Queue Transport

Service Bus provides support for a native Message Queue (MQ) transport that can send
messages to and from WebSphere MQ. In this context, the MQ transport is a client that
connects to an MQ Server using MQ libraries.

You configure the security-related properties for the transport when you create an MQ
Connection resource. These properties are then used by the MQ proxy or business service.

Note:

Make sure that you add the MQ client libraries to your environment, as described in
How to Add MQ Client Libraries to Your Environment.

The MQ Connection resource has two modes:

binding mode – You use the binding mode to connect to the MQ Queue Manager located on
the same machine as Service Bus. In this mode, the service calls directly into the existing
queue manager API rather than communicating over the network. This mode provides a fast
path to connect to local queue managers.

TCP mode – You use the tcp mode when the MQ Queue Manager is not available on the
same machine as Service Bus.

51.8.1 Configuring Inbound MQ Transport-Level Security: Main Steps
To configure inbound transport-level security for a proxy service:

1. Before you create a proxy service that uses the MQ transport, create an MQ Connection
resource for the transport to use. Choose from the following security configuration
settings:

Chapter 51
Configuring Transport-Level Security for WebSphere Message Queue Transport

51-21

• SSL Required. Select the check box to use HTTPS for sending messages.
Only server-side SSL (server authenticates to client) is supported when the 2-
way SSL Required option is not selected.

• Cipher Suite. This option is available only when the SSL Required check box
is selected. Select the Cipher Suite algorithm to be used by SSL.

A cipher suite is an SSL encryption method that includes the key exchange
algorithm, the symmetric encryption algorithm, and the secure hash algorithm.
A cipher suite is used to protect the integrity of a communication.

The Cipher Suite algorithm is used to encrypt and decrypt message
communications between the WebSphere MQ server and the MQ Transport.

• 2-way SSL Required. This option is available only when the SSL Required
check box is selected. Select the check box to force the use of both client-side
and server-side SSL authentication.

• Reference to the Service Key Provider. If you select 2-way SSL Required, you
must provide a reference to the service key provider for obtaining the
appropriate key manager for client-side SSL.

Enter the path (project/folder) and name of a service key provider, or click
Browse to select one from the Select Service Key Provider page.

• Reference to the Static Service Account. Required for user name and
password authentication. Enter the path (project/folder) and name of a static
service account, or click Browse to select a service account.

2. When you create a proxy service, on the Transport Configuration page select mq.

51.8.2 Configuring Outbound MQ Transport-Level Security: Main
Steps

To configure outbound transport-level security for a business service:

1. Before you create a proxy service that uses the MQ transport, create a MQ
Connection resource for the transport to use. Choose from the following security
configuration settings:

• SSL Required. Select the check box to use HTTPS for sending messages.
Only server-side SSL (server authenticates to client) is supported when the 2-
way SSL Required option is not selected.

• Cipher Suite. This option is available only when the SSL Required check box
is selected. Select the Cipher Suite algorithm to be used by SSL.

A cipher suite is an SSL encryption method that includes the key exchange
algorithm, the symmetric encryption algorithm, and the secure hash algorithm.
A cipher suite is used to protect the integrity of a communication.

The Cipher Suite algorithm is used to encrypt and decrypt message
communications between the WebSphere MQ server and the MQ Transport.

• 2-way SSL Required. This option is available only when the SSL Required
check box is selected. Select the check box to force the use of both client-side
and server-side SSL authentication.

• Reference to the Service Key Provider. If you select 2-way SSL Required, you
must provide a reference to the service key provider for obtaining the
appropriate key manager for client-side SSL.

Chapter 51
Configuring Transport-Level Security for WebSphere Message Queue Transport

51-22

Enter the path (project/folder) and name of a service key provider, or click Browse to
select one from the Select Service Key Provider page.

• Reference to the Static Service Account. Required for user name and password
authentication. Enter the path (project/folder) and name of a static service account, or
click Browse to select a service account.

2. When you create a business service, on the Transport Configuration page select mq.

51.9 Transport-Level Security Elements in the Message Context
If you configure a proxy service to authenticate clients, then you can access the client's
identity and the security groups to which the client belongs from the proxy service's pipeline.

The identity and group information is located in the message context at

$inbound/ctx:security/ctx:transportClient/ctx:username

and

$inbound/ctx:security/ctx:transportClient/ctx:principals/ctx:group

(the message context contains one ctx:group element for each group the user belongs to)

If a proxy service does not authenticate clients, then the value of $inbound/ctx:security/
ctx:transportClient/ctx:username is <anonymous> and there will not be any ctx:group
elements.

For more information, see Inbound and Outbound Variables.

Chapter 51
Transport-Level Security Elements in the Message Context

51-23

52
Securing Oracle Service Bus with Oracle Web
Services Manager

This chapter describes how to use Service Bus in conjunction with Oracle Web Services
Manager (OWSM) to provide a scalable, standards-based, centrally managed approach to
securing your service integration environment with WS-Security policies while leveraging your
existing security providers.

OWSM is a runtime framework for policy creation for security, management, and governance.
You create policies, attach them to services in Service Bus, and enforce those policies at
various points in the messaging life cycle with OWSM agents.

OWSM policies enable WS-AT, WS-RM and WS-Security/WS-SC. WSDL-embedded policies
cannot be used.

Note:

Oracle Web Services Manager (OWSM) is the Web Services security mechanism
used by Service Bus. All newly created resources, such as business services and
proxy services, use OWSM policies for security. WLS 9 policies are deprecated,
and cannot be used to configure security for a new Service Bus resource.

However, you can import resources already configured with WLS 9 policies into
your Service Bus project. You cannot edit or modify these WLS 9policies, but you
can replace them with OWSM policies.

Note:

In a cluster domain, managed servers should have either a listen address or be
assigned to a machine. The WSM-CCW uses this information to build the URL to
connect to WSM-PM (deployed to cluster) from the AdminServer. Otherwise, the
WSM policy attached to the Service Bus service is not imported to the domain or
does not work properly.

This chapter includes the following sections:

• About Oracle Web Services Manager Integration with Oracle Service Bus

• Using Oracle Web Services Manager with Oracle Service Bus

• Securing Services with REST Endpoints Using OAuth

52-1

52.1 About Oracle Web Services Manager Integration with
Oracle Service Bus

OWSM is a component of the Oracle Enterprise Manager Fusion Middleware Control,
a runtime framework that provides centralized management and governance of Oracle
SOA Suite environments and applications.

You create and configure OWSM policies in Oracle Enterprise Manager, and those
policies are persisted in a policy store (a database is recommended). OWSM lets you
define policies against an LDAP directory and generate standard security tokens (such
as SAML tokens) to propagate identities across multiple web services used in a single
transaction.

In Service Bus, when defining a business or proxy service that lets you attach security
policies, you can attach available OWSM policies.

52.1.1 Security Providers
Service Bus and Oracle Web Services Manager (OWSM) use certain services for
authentication and authorization. OWSM uses Java Platform Security (JPS), so
Service Bus uses JPS providers for OWSM policies. Service Bus also uses Common
Security Services (CSS), which is a part of Oracle Platform Security Services (OPSS),
for other aspects of message security.

For more information about Oracle security services, see Introduction to Oracle
Platform Security Services in the Securing Applications with Oracle Platform Security
Services.

The following topics describe which security providers Service Bus and OWSM use for
different security areas.

52.1.1.1 JPS Providers
When using Oracle Web Services Manager policies, the following apply:

• OWSM policies use SAML providers from JPS and not from WebLogic Server. For
information on configuring SAML with OWSM, see "Configuring SAML" in
Securing Web Services and Managing Policies with Oracle Web Services
Manager.

• For authentication, OWSM uses the JPS Login Module, which in turn calls
authentication providers configured on WebLogic Server.

• OWSM and Service Bus support the Java Keystore (JKS) and the Keystore
Service (KSS) provided by Oracle Platform Security Services. For OWSM policies,
a best practice is to configure the keystore on JPS, with both the WebLogic Server
and the JPS keystore referencing the same kind of keystore. For example, if you
use a JKS file keystore, JPS and WebLogic Server should point to the same file. If
you use an KSS keystore, JPS and WebLogic Server should point to the same
KSS configuration.

For information on creating the keystore, see "Configuring Keystores for Message
Protection" in the Securing Web Services and Managing Policies with Oracle Web
Services Manager.

Chapter 52
About Oracle Web Services Manager Integration with Oracle Service Bus

52-2

• A JPS keystore serves as both a keystore and a truststore for OWSM policies.

52.1.1.2 CSS Providers
Service Bus uses the following providers:

• CSS providers to enforce WLS 9 policies

• CSS providers to enforce transport security

• WebLogic Server authorization providers for authorization policies

• Custom WebLogic Server authentication providers and identity asserters for custom
authentication policies

• WebLogic Server credential providers and mappers

• WebLogic Server keystore and truststore for WLS 9 policies

• Authentication and identity assertion through Oracle Web Services Manager agents

52.2 Using Oracle Web Services Manager with Oracle Service
Bus

This section includes topics about how to attach OWSM policies to Service bus services,
deployment considerations, and auditing and monitoring.

• Attaching Oracle Web Services Manager Policies to Oracle Service Bus Services

• Configuring SAML

• Advertising WSDL Files to Support WS Standards

• Deployment Considerations

• Auditing

• Monitoring Statistics

• Predefined Policies and Unsupported Assertions

52.2.1 Attaching Oracle Web Services Manager Policies to Oracle Service
Bus Services

You can attach OWSM policies to the following types of proxy and business services in
Service Bus on the Policies page:

• WSDL

• Any SOAP

• Any XML

• Messaging

• REST

You can attach OWSM policies only at the service level, and you cannot embed them in
service WSDL files. Note that policy support for non-SOAP services is limited.

When attaching policies in the development environment, keep in mind that services in the
development environment can be out of sync with services in the Oracle Service Bus

Chapter 52
Using Oracle Web Services Manager with Oracle Service Bus

52-3

Console, so take care when updating services from JDeveloper to the Console. If you
copy a service to create a same type of service (for example, copy a business service
to create a new business service), be sure to review your OWSM policies in the new
service and make any necessary adjustments.

52.2.1.1 Policy Overrides
After adding OWSM policies to a service, you can provide policy overrides on the
Security page. For the policies used, the user interface displays the override keys
(properties) and their default values. The key names come from the policy binding. If
allowed, a text box appears next to a key's default value where you can provide an
override value. Service Bus does not provide well-known keys for override, such as
sign key alias or CSF key, which points to user credentials in a CSF store. (Service
Bus provides user credentials in the service account.) Override keys you provide are
passed to the Oracle Web Services Manager agent during invocation.

52.2.2 Configuring SAML
For information on configuring SAML for use with Service Bus, see Using SAML with
Oracle Service Bus. For information on configuring SAML with OWSM, see
"Configuring SAML" in the Securing Web Services and Managing Policies with Oracle
Web Services Manager.

52.2.3 Advertising WSDL Files to Support WS Standards
When WSDL files contain embedded Oracle Web Services Manager policies, you can
advertise the policies to be compatible with the following policy standards, supported
by Oracle Service Bus and Oracle SOA Suite:

• WS-Policy 1.2 (default) and 1.5

• WS-Security Policy 1.1 (default), 1.2, and 1.3

Using special query parameters in URLs to access WSDL files embedded with OWSM
policies, Service Bus generates WSDL files that comply with the required standards.
For more information on accessing WSDL files with a URL, see Viewing Service Bus
Resources in a Web Browser.

Note:

This feature is not available in the Service Bus "Export WSDL" or "Generate
WSDL" functionality.

The special query parameters are &wsp (WS-Policy) and &wssp (WS-Security
Policy), and you can use them in conjunction with the WSDL, PROXY, and BIZ URL
patterns for retrieving WSDL files. For example:

• http://localhost:7001/proxy/myProxy?WSDL&wsp=1.5&wssp=1.2

Returns the WSDL file for myProxy, a WSDL-based proxy service, so that the
OWSM policy reference conforms to WS-Policy 1.5 and WS-Security Policy 1.2.

Chapter 52
Using Oracle Web Services Manager with Oracle Service Bus

52-4

Note:

In the previous URL, /proxy/myProxy is the endpoint URI for the proxy service.

• http://localhost:7001/sbresource?PROXY/myProject/myProxy&wsp=1.5&wssp=1.2

Returns the WSDL file for myProxy, a WSDL-based proxy service, so that the OWSM
policy reference conforms to WS-Policy 1.5 and WS-Security Policy 1.2.

• http://localhost:7001/sbresource?BIZ/myProject/myBiz&wsp=1.5&wssp=1.3

Returns the WSDL file for myBiz, a WSDL-based business service, so that the OWSM
policy reference conforms to WS-Policy 1.5 and WS-Security Policy 1.3.

• http://localhost:7001/sbresource?WSDL/proxy/myProxy

Returns the WSDL file for myProxy, a WSDL-based proxy service, so that the OWSM
policy reference conforms to WS-Policy 1.2 and WS-Security Policy 1.1. Because no
query parameters are used, Service Bus uses the defaults.

• http://localhost:7001/proxy/myProxy?WSDL&wssp=1.3

Because WS-Security Policy 1.3 is compatible only with WS-Policy 1.5, this returns the
WSDL file for myProxy so that the OWSM policy reference conforms to WS-Security
Policy 1.3 and WS-Policy 1.5.

• Invalid Values/Combinations

WS-Security Policy 1.2 and 1.3 are compatible only with WS-Policy 1.5. For invalid value
examples, see Table 52-1.

Tip:

In a web browser, try different query parameter versions see how the returned
WSDL changes.

For a quick reference of query parameter combinations, see the following section, WSDL
Query Parameter Reference for WS Policies.

52.2.3.1 WSDL Query Parameter Reference for WS Policies
This section provides a quick reference showing valid and invalid combinations of the &wsp
and &wssp query parameters described in the previous section, Advertising WSDL Files to
Support WS Standards. The examples use ?WSDL to retrieve the WSDL file. You can also
use the ?PROXY and ?BIZ methods of WSDL file retrieval, as described in Viewing Service
Bus Resources in a Web Browser.

As shown in Table 52-1, when one or more parameters is omitted, Service Bus provides the
valid default. For the invalid value exceptions, WS-Security Policy 1.2 and 1.3 are compatible
with only WS-Policy 1.5, and vice versa.

Chapter 52
Using Oracle Web Services Manager with Oracle Service Bus

52-5

Table 52-1 Valid and Invalid Combinations of the &wsp and &wssp Query Parameters

Query Parameter Combinations WS-Policy Version WS-Security Policy Version

...?WSDL 1.2 1.1

...?WSDL&wsp=1.2 1.2 1.1

...?WSDL&wsp=1.5 1.5 1.3

...?WSDL&wssp=1.1 1.2 1.1

...?WSDL&wssp=1.2 1.5 1.2

...?WSDL&wssp=1.3 1.5 1.3

...?WSDL&wsp=1.2&wssp=1.1 1.2 1.1

...?WSDL&wsp=1.5&wssp=1.2 1.5 1.2

...?WSDL&wsp=1.5&wssp=1.3 1.5 1.3

...?WSDL&wsp=1.2&wssp=1.2 Invalid value exception Invalid value exception

...?WSDL&wsp=1.2&wssp=1.3 Invalid value exception Invalid value exception

...?WSDL&wsp=1.5&wssp=1.1 Invalid value exception Invalid value exception

...?WSDL&wsp=3.0&wssp=1.2 Invalid value exception Invalid value exception

...?WSDL&wsp=1.2&wssp=2.0 Invalid value exception Invalid value exception

52.2.4 Deployment Considerations
When you export Service Bus configurations that contain services with OWSM policy
references, the references are maintained. You must ensure that the referenced
policies also exist in the target environment. If the target environment is the IDE,
warnings are displayed saying that policies will be validated on publish.

52.2.5 Auditing
To audit policy events in Oracle Enterprise Manager, you must set up an audit data
repository and set up event collection. For more information, see the following topics in
Administering Web Services:

• "Managing Audit Data Collection and Storage"

• "Viewing Audit Reports" – Pre-defined audit reports for OWSM in Oracle Business
Intelligence Publisher include statistics for Service Bus.

You can audit the following policy-level events:

• Policy creation, deletion, or modification

• Assertion template creation, deletion, or modification

52.2.6 Monitoring Statistics
Fusion Middleware Control lets you monitor and manage policies attached to your
Service Bus services, including their usage and violation metrics. You can also attach
policy sets globally, define policy overrides, and attach and detach policies from your
services. See "Monitoring and Managing Security Policies" in Administering Oracle
Service Bus for details on monitoring and managing these policies.

Chapter 52
Using Oracle Web Services Manager with Oracle Service Bus

52-6

Service Bus collects WS-Security error statistics for OWSM policy enforcement errors as it
does for WLS 9 policies, and those statistics are available in the Service Bus service
monitoring dashboard.

52.2.7 Predefined Policies and Unsupported Assertions
This section lists, and provides links to, the OWSM predefined policies and assertions that
Service Bus supports and does not support. Custom assertions are supported.

Note:

The assertion or policy "enabled/disabled" option in the Oracle Enterprise Manager
Fusion Middleware Control user interface does not determine whether or not an
assertion or policy is supported in Service Bus. Supported policies and assertions
are listed in this section.

• Predefined Policies

• wss_http_token_*_policy Guidelines

• OWSM Authentication Policy Guidelines

• OWSM Policies and SOAP with Attachments (SwA)

• OWSM Policies and MTOM-Formatted Messages

• Unsupported Assertions

52.2.7.1 Predefined Policies
See the following topics for information about which OWSM policies are supported with
Service Bus:

• SOAP Services: See "Determining Which Predefined Policies to Use" in Securing Web
Services and Managing Policies with Oracle Web Services Manager, which provides
information about the predefined policies available in the current release.

• Non-SOAP Services: See Table 52-2, which lists the supported OWSM predefined
policies for business and proxy services that are configured with the WSDL (non-SOAP),
XML, or Messaging service type using the HTTP Transport. User-defined policies are
also supported.

• REST Services: See "Which OWSM Policies Are Supported for RESTful Web Services
and Clients?" in Securing Web Services and Managing Policies with Oracle Web
Services Manager, which lists supported OWSM predefined policies for services
configured with the REST service type.

• JCA Services: See "Which OWSM Policies Are Supported for JCA Adapters?" in
Securing Web Services and Managing Policies with Oracle Web Services Manager.

Chapter 52
Using Oracle Web Services Manager with Oracle Service Bus

52-7

Note:

In the development environment, if you use unsupported seed policies:

• An effective WSDL file generated in the development environment will
skip unsupported policies.

• Validation is performed on service publish.

For more information on the following policies, see "Predefined Policies" in Securing
Web Services and Managing Policies with Oracle Web Services Manager.

Table 52-2 Supported OWSM Predefined Policies for WSDL (non-SOAP), XML, and Messaging
Service Service Types with HTTP Transport

Type Client Policy Service Policy

Authentication
only

oracle/wss_http_token_client_policy

Basic authentication only.

For more information on this policy, see
wss_http_token_*_policy Guidelines and
OWSM Authentication Policy Guidelines.

oracle/wss_http_token_service_policy

Basic authentication only.

For more information on this policy, see
wss_http_token_*_policy Guidelines and
OWSM Authentication Policy Guidelines.

Authentication
and Message
Protection

oracle/wss_http_token_over_ssl_client_policy

For more information on this policy, see
wss_http_token_*_policy Guidelines and
OWSM Authentication Policy Guidelines.

oracle/
wss_http_token_over_ssl_service_policy

For more information on this policy, see
wss_http_token_*_policy Guidelines and
OWSM Authentication Policy Guidelines.

Authorization only N/A oracle/whitelist_authorization_policy

Authorization only N/A oracle/binding_authorization_denyall_policy

Authorization only N/A oracle/binding_authorization_permitall_policy

Reliable
Messaging

N/A oracle/reliable_messaging_policy

Note: This policy is supported only for HTTP
transport services of WSDL service type. You
must also attach oracle/
reliable_messaging_internal_api_policy when
attaching this policy.

Reliable
Messaging

N/A oracle/reliable_messaging_internal_api_policy

Note: This policy is supported only for HTTP
transport services of WSDL service type. You
must also attach oracle/
reliable_messaging_policy when attaching this
policy.

52.2.7.2 wss_http_token_*_policy Guidelines
This section provides guidance on using the wss_http_token policies with Service Bus.

Chapter 52
Using Oracle Web Services Manager with Oracle Service Bus

52-8

Note:

When using the HTTP transport with an OWSM policy, set the Authentication
property for the transport to None. Setting it to any other value conflicts with the
OWSM policy.

When you enable specific options on the policies in OWSM, certain guidelines apply. The
options are:

• Authentication Mode – OWSM and Service Bus support only "Basic" authentication
mode in the policy. Any other mode causes an exception.

• Transport Security – This option indicates that the invocation has to be done on the SSL
channel. At runtime:

– Proxy Services: If you enable this option on the policy, you must enable the HTTPS
Required option on the proxy service containing the policy.

– Business Services: No validation occurs on the business service configuration when
you enable this option on the policy, so be sure that the business service endpoint
addresses use HTTPS. A runtime error is thrown if an endpoint does not use HTTPS.

• Mutual Authentication Required – This option indicates two-way SSL.

– Proxy Services: This option is not supported for use on proxy services. Clear this
option when using the wss_*_over_ssl_* _policy policies provided by OWSM.

– Business Services: Because OWSM ignores this option on outbound messages, this
option has no effect when used with business services.

• Include Timestamp – This option enforces the inclusion of timestamp in the SOAP
header.

– Proxy Services: When you enable this option with proxy services, OWSM ensures
the timestamp is available and valid in the SOAP header.

– Business Services: When you enable this option with business services, OWSM adds
a timestamp to the SOAP header if a timestamp does not already exist.

Note:

When applying wss_http_token policies to proxy and business services that use
non-SOAP service types with the HTTP transport, the Include Timestamp
option in the OWSM policy must be disabled.

52.2.7.3 OWSM Authentication Policy Guidelines
When you use token transport policies on a Service Bus service, such as
wss_http_token_over_ssl_client_policy or wss_username_token_over_ssl_client_policy, the
Authentication property on the service's transport configuration page to None. You can use
either an OWSM token policy or handle authentication through the transport, but not both.

Chapter 52
Using Oracle Web Services Manager with Oracle Service Bus

52-9

52.2.7.4 OWSM Policies and SOAP with Attachments (SwA)
You can attach any of the supported OWSM policies to proxy and business services
that include support for SOAP with Attachments (SwA). In addition to securing the
message body, you can configure message protection policies to include SwA
attachments and MIME headers for message signing or message encryption.

52.2.7.5 OWSM Policies and MTOM-Formatted Messages
You can attach OWSM policies to proxy and business services that include support for
MTOM-formatted SOAP messages and use the HTTP, Local, or SB Transport.
Message processing for all supported policies is the same for SOAP messages in
MTOM format as for any other SOAP message, with the exception of message
protection policies.

For a message protection policy that encrypts any part of the message body, the
<xop:Include> elements of incoming messages are inlined prior to decryption. On
decryption, the <xop:Include> elements are replaced by the base64Binary
representation of the data. The message contents do not change.

Note:

When applying OWSM policies to services that support messages in MTOM
format:

• For proxy services, the incoming message must first be encrypted using
an equivalent client policy.

• Set the Authentication property for the transport to None when
configuring the service. Setting it to any other value conflicts with the
OWSM policy.

52.2.7.6 WS-ReliableMessaging Support Using OWSM Policies
Oracle Service Bus supports WS-ReliableMessaging (WS-RM) with HTTP transport
services of the WSDL service type by attaching the oracle/
reliable_messaging_policy and oracle/
reliable_messaging_internal_api_policy Oracle Web Services Manager policies.

Supported Features

• Supports WS-RM 1.0, 1.1, and 1.2

• Supports one-way WS-RM

• Supports synchronous WS-RM (anonymous ReplyTo)

• Quality of Service (QoS):

– AtLeastOnce

– ExactlyOnce

– AtMostOnce

Chapter 52
Using Oracle Web Services Manager with Oracle Service Bus

52-10

Unsupported Features

• Non-HTTP transport services are not supported.

• Asynchronous WS-RM (non-anonymous ReplyTo) is not supported.

Additional Notes

• Whenever you attach oracle/reliable_messaging_policy to a service, you must also
attach oracle/reliable_messaging_internal_api_policy. An error is thrown if both are
not added.

• In a synchronous WS-RM scenario, response messages don’t need to be sent reliably.
There are scenarios in which a request message is reliably processed by the service, but
the client may not receive a response.

• HTTP proxy services with the WS-RM policies attached invoke HTTP business services
with WS-RM policies attached only:

– when the business service is in a route node of a pipeline which is targeted by the
WS-RM-enabled proxy service

– when the business service is a target service of the proxy service

• WS-AT policy can only be applied on WSDL with SOAP binding or any SOAP based
HTTP proxy/business service.

• WS-AT and WS-RM policies cannot be applied for the same service.

• WS-AT is not supported for one-way WSDL operations. A warning message is shown at
design time for HTTP proxy with WSDL (of SOAP binding) based services containing
one-way operations.

52.2.7.6.1 About Proxy Services Using WS-RM Policies

Attach the oracle/reliable_messaging_ policy and oracle/
reliable_messaging_internal_api_policy OWSM policies to a proxy service to enable WS-RM
for that service. See Attaching Oracle Web Services Manager Policies to Oracle Service Bus
Services for more information.

HTTP proxy services with WS-RM policies attached are:

• Transactional

• Asynchronous

The WS-RM stack initiates a transaction only when the sequence’s QualityOfService is set in
the policy as AtMostOnce or ExactlyOnce. The Quality of Service (QoS) on Routing Options
is set as ExactlyOnce only when the policy contains the sequence QualityofService as
AtMostOnce or ExactlyOnce.

For both one-way and synchronous request messages, the WS-RM stack is notified for
message acknowledgement after the request path processing is successfully completed.
When failures are encountered in the request path, the WS-RM stack is notified of the errors
and the request message is considered not processed. It will be retried according to the retry
configuration on the policy.

52.2.7.6.2 About Business Services Using WS-RM Policies

Chapter 52
Using Oracle Web Services Manager with Oracle Service Bus

52-11

Attach the oracle/reliable_messaging_ policy and oracle/
reliable_messaging_internal_api_policy OWSM policies to a business service to
enable WS-RM for that service. See Attaching Oracle Web Services Manager Policies
to Oracle Service Bus Services for more information.

HTTP business services with WS-RM policies attached are:

• Transactional

• Asynchronous

When a business service with WS-RM policies attached receives a request message
in a transaction, the transaction is suspended before undergoing WS-RM processing.
The transaction is committed only when it receives a successful acknowledgement
from the target service.

Transactions are marked for rollback when:

• the WS-RM stack does not receive any acknowledgment or the message times out
in processing

• it receives a fault related to WS-RM processing from the target service.

When a request message is unable to be processed due to failures in the WS-RM
stack a fault is generated and sent as a response.

52.2.7.6.3 End-to-End Message Reliability
End-to-end message reliability can be achieved using one of the scenarios described
below.

End-to-end reliability is supported for the following scenarios:

• Asynchronous proxy service to WS-RM outbound

• WS-RM inbound to WS-RM outbound is supported with the following configuration:

– WS-RM inbound has a target service of WS-RM outbound

– WS-RM inbound targets to pipeline which routes to WS-RM outbound

52.2.7.6.4 WS-RM Interoperability
The following interactions using Service Bus as an intermediary are supported:

• SOA Suite 12.2.1 / WebLogic Server < --- > Service Bus < ---- > non WS-RM
service

• Non WS-RM client < --- > Service Bus < ---- > Oracle SOA Suite 12.2.1 /
WebLogic Server

• Oracle SOA Suite 12.2.1 / WebLogic Server < --- > Service Bus < ---- > Oracle
SOA Suite 12.2.1 / WebLogic Server

52.2.7.6.5 Tuning the WS-RM Subsystem
You can achieve better performance by configuring properties for the oracle/
reliable_messaging_policy and oracle/reliable_messaging_internal_api_policy OWSM
policies.

Chapter 52
Using Oracle Web Services Manager with Oracle Service Bus

52-12

• Configure an appropriate transactional timeout using the user.transaction.timeout
property in oracle/reliable_messaging_internal_api_policy.

• Configure an interval (in milliseconds)for maintenance tasks for purging data stored in
database tables for orphaned messages using
thesequence.manager.maintenance.period property in oracle/
reliable_messaging_internal_api_policy.

• Specify how many concurrently-active WS-RM sessions (measured based on inbound
WS-RM sequences) the sequence manager dedicated to the WS Endpoint accepts
before starting to refuse new requests for sequence creation using the
max.concurrent.session property in oracle/reliable_messaging_internal_api_policy.

52.2.7.6.5.1 oracle/reliable_messaging_internal_api_policy

The following properties can be configured to tune the performance of services with oracle/
reliable_messaging_policy

Table 52-3 oracle/reliable_messaging_internal_api_policy Properties

Name Description Default Required?

sequence.manager.ma
intenance.period

Specifies the period (in
milliseconds) of a
sequence manager
maintenance task
execution.

60000 Optional

max.concurrent.sess
ion

Specifies how many
concurrently active RM
sessions (measured
based on inbound RM
sequences) the
sequence manager
dedicated to the WS
Endpoint accepts before
starting to refuse new
requests for sequence
creation.

100 Optional

user.transaction.ti
meout

Transactional timeout for
XA transaction started
by proxy service.

The default value of 0
says to use the system
default.

0 Optional

reference.priority See reference.priority in
Securing Web Services
and Managing Policies
with Oracle Web
Services Manager for
information.

None Optional

52.2.7.7 Unsupported Assertions
Table 52-4 lists unsupported OWSM assertions for both SOAP and non-SOAP services,
shows which policies contain the assertions, and describes the affected capabilities and
alternatives to achieve the capabilities.

Chapter 52
Using Oracle Web Services Manager with Oracle Service Bus

52-13

Table 52-4 Unsupported assertions

Unsupported
Assertion

OWSM Policies Containing the
Assertion

Capability Affected and Alternative

binding-permission-
authorization

oracle/
binding_permission_authorization_poli
cy

Permission-based access control to service.

Alternative: Use XACML authorization policies.

OptimizedMimeSeria
lization (MTOM)

oracle/wsmtom_policy MTOM

Alternative: Use MTOM configuration directly on
proxy/business service.

RMAssertion oracle/wsrm10_policy

oracle/wsrm11_policy

WS-RM 1.0/1.1/1.2

Alternative: Use the WS transport directly in
Service Bus for WS-RM 1.0/1.1/1.2; or attach
oracle/reliable_messaging_ policy and oracle/
reliable_messaging_internal_api_policy to HTTP
transport services of the WSDL type.

sca-component-
authorization

oracle/
component_authorization_denyall_poli
cy

oracle/
component_authorization_permitall_po
licy

Role-based access control to deny/permit all to
access the component.

Alternative: Not applicable

sca-component-
permission-
authorization

oracle/
component_permission_authorization_
policy

Permission based Access Control to component

Alternative: Not applicable

UsingAddressing oracle/wsaddr_policy To require WS-Addressing

Alternative: Configure WS-Addressing on business
services that use the SOA-DIRECT transport; or
add WS-Addressing to messages in a Service Bus
pipeline.

52.2.8 Custom Assertions
Oracle Service Bus provides support for the execution of a set of predefined policies
and assertion templates that are delivered by OWSM. When a specific functionality is
not provided with the standard policies available with the product, users can develop
custom assertions.

See "About Custom Assertions" in Developing Extensible Applications for Oracle Web
Services Manager for more information on custom assertions.

See "Creating Custom Assertions" in Developing Extensible Applications for Oracle
Web Services Manager for more information on creating custom assertions.

52.3 Securing Services with REST Endpoints Using OAuth
Starting in Service Bus 12.2.1, you can secure services with REST endpoints by
attaching OAuth OWSM policies.

The topics in this section describe the supported use cases and the steps needed to
configure the OAuth server and OWSM for using OAuth with Service Bus.

Chapter 52
Securing Services with REST Endpoints Using OAuth

52-14

Only OAuth2 is supported with this release of Service Bus.

52.3.1 Supported OAuth Use Cases
Service Bus supports the following 2–Legged OAuth use cases: Client Authentication and
Client + User Authentication.

• Client authentication:

– Client credentials – AppID username and password in Authentication HTTP header
(federated=false) (with and without SSL)

– Client credentials – JWT (JSON Web Token) (federated=true) (with and without
SSL)

Note:

In the case of federated=true, the JWT token is created for the client
credentials. You can change this value in the OWSM OAuth policy.

• Client + User authentication

– Client credentials - AppID username and password in Authentication HTTP header +
User Credentials – JWT (federated=false) (with and without SSL)

– Client Identity – JWT + User Identity – JWT (federated=true) (with and without
SSL)

For additional information about 2–legged OAuth, see Understanding 2-Legged Authorization
in Administering Oracle Access Management.

52.3.2 Configuring Oracle Access Management for Using OAuth with
Service Bus

You must configure OWSM and the OAuth server to secure REST endpoints with OAuth
policies in Service Bus.

Note:

This section documents the steps required to configure a sample OAuth server. The
configuration described in these tasks might not apply to every deployment
scenario. For additional information about configuring an OAuth server, see
Configuring OAuth Services in 12c in Administering Oracle Access Management.

• Configuring the OAuth Server

• Configuring OWSM

Chapter 52
Securing Services with REST Endpoints Using OAuth

52-15

52.3.2.1 Configuring the OAuth Server
You must complete the following tasks to configure the OAuth server:

Note:

This section documents the steps required to configure a sample OAuth
server; the configuration described in these tasks might not apply to every
deployment scenario.

Topics

• Enabling OAuth for Oracle Access Management

• Creating an Authorization REST Callback Plug-in Profile Using the IDM Console

• Creating a Resource Server Profile Using the IDM OAuth Console

• Creating an OAuth OWSM Client Profile

• Updating the OAuth Server Profile Configuration

• Importing and Exporting Certificates

52.3.2.1.1 Enabling OAuth for Oracle Access Management
Before configuring the OAuth server, you have to enable OAuth for Oracle Access
Management. You accomplish this by enabling the Access Manager and Mobile and
Social services in the Oracle Access Management Console.

To enable OAuth, ensure that the Access Manager and Mobile and Social services
are enabled.
After completing this task, perform the task described in Creating an Authorization
REST Callback Plug-In Profile Using the IDM Console.

52.3.2.1.2 Creating an Authorization REST Callback Plug-In Profile Using the IDM Console
Before you perform this task, ensure that you have completed the task described in
Enabling OAuth on IDM.

To create an Authorization REST Callback Plug-In Profile Using the IDM Console:

1. Create the plug-in.

2. Configure the plug-in.

Chapter 52
Securing Services with REST Endpoints Using OAuth

52-16

Option Description

Coarse-Grained (Recommended) Modify the following fields:

• Name: Enter
PermissionRESTPlugin.

• Description: Enter Permission
Authorization REST Coherence
Plugin or another relevant description.

• Implementation Class: Select
oracle.security.idaas.oauth.consent.impl
.CoherenceAuthorizationUserConsentIm
pl.

Fine-Grained Modify the following fields:

• Name: Enter
PermissionRESTPlugin.

• Description: Enter Permission
Authorization REST Coherence
Plugin or another relevant description.

• Implementation Class: Select
oracle.security.idaas.oauth.consent.impl
.CoherenceAuthorizationUserConsentIm
pl.

• Add the attribute
rest.permission.service.endpo
int=http://
example.com:8001/ras/api/
public/auth/
get_permissiontoken to the
attributes table.

After completing this task, perform the task described in Creating a Resource Server Profile
Using the IDM OAuth Console.

52.3.2.1.3 Creating a Resource Server Profile Using the IDM OAuth Console
Before you perform this task, ensure that you have completed the task described in Creating
an Authorization REST Callback Plug-In Profile Using the IDM Console.

To create a resource server profile using the IDM OAuth Console:

1. Create a custom resource server.

The Custom Resource Server Configuration page opens.

2. On the Custom Resource Server Configuration, configure the following properties:

Note:

The values may differ due to your environment’s configuration.

a. In the Name field, enter docServiceInstance1 .

b. From the Authorization & Consent Service Plug-in menu, select
PermissionRESTPlugin.

c. Click Add to add a new scope.

Chapter 52
Securing Services with REST Endpoints Using OAuth

52-17

d. For the Scope Name, enter docServiceInstance1.ALL.

e. For the Scope Description, enter Default Scope.

f. Ensure that the Require User Consent option is not selected.

3. Click Create.

After completing this task, perform the task described in Creating an OAuth OWSM
Client Profile.

52.3.2.1.4 Creating an OAuth OWSM Client Profile
Before you perform this task, ensure that you have completed the task described in
Creating a Resource Server Profile Using the IDM OAuth Console.

To create an OAuth OWSM Client Profile:

1. Create an OAuth Services Web Client.

Tip:

Ensure that you click Create under the OAuth Web Clients heading.

2. On the Web Clients Configuration page, configure the following properties:

Note:

The values may differ due to your environment’s configuration.

a. In the Name field, enter OWSM Client.

b. In the ClientID field, enter OWSMClientId.

c. Enter a value into the Client Secret field.

d. From Allowed Scopes, click Add.

e. Select docServiceInstance1.ALL from the drop-down list.

f. From Grant Types, ensure that the following authorization grant types are
selected: Client Credentials, JWT Bearer, Authorization Code (for 3–
legged OAuth), and Refresh Token (for 3–legged OAuth).

3. Click Create.

After completing this task, perform the task described in Updating the OAuth Server
Profile Configuration.

52.3.2.1.5 Updating the OAuth Server Profile Configuration
Before performing this task, ensure that you have completed the task described in
Creating an OAuth OWSM Client Profile.

To update the OAuth server profile configuration:

1. On the Service Profile Configuration page, configure the following properties in the
Attributes table:

Chapter 52
Securing Services with REST Endpoints Using OAuth

52-18

a. Update the jwt.issuer property: jwt.issuer=www.example.com .

b. Update the jwt.CryptoScheme property: jwt.CryptoScheme=RS256.

c. Add a new property: jwt.trusted.issuer.size=1.

d. Add a new property: jwt.trusted.issue.1=http://www.example.com.

2. Save your changes.

After completing this task, perform the task described in Importing and Exporting Certificates.

52.3.2.1.6 Importing and Exporting Certificates

Before completing this task, ensure that you have completed the task described in Updating
the OAuth Server Profile.

To import and export the required certificates:

1. From the OAuth server, run the following WSLT command to get the password for the
OAuth keystore: listCred(map="oracle.wsm.security",key="keystore-csf-key").

2. From the OAuth configuration location, run the following command to export the OAuth
certificate: keytool -exportcert -keystore default-keystore.jks -alias orakey -
file oauth-key.pem -rfc.

3. From the OWSM configuration location, run the following command to change the alias
name from orakey to owsmkey<unique-ending>: keytool -changealias -alias orakey
-destalias owsmkey<unique-ending> -keystore default-keystore.jks.

4. From the OWSM configuration location, run the following command to export the OWSM
certificate: keytool -exportcert -keystore default-keystore.jks -alias
owsmkey<unique-ending> -file owsmkey<unique-ending>.cer.

5. From the OAuth configuration location, run the following command to import the OWSM
certificate into the OAuth keystore: keytool -importcert -file owsmkey<unique-
ending>.cer -keystore default-keystore.jks -alias owsmkey<unique-ending>.

6. From the OWSM configuration location, run the following command to import the OAuth
certificate into the OWSM keystore: keytool -importcert -file oauth-key.pem -
keystore default-keystore.jks -alias orakey.

After completing this task, perform the task described in Configuring OWSM.

52.3.2.2 Configuring OWSM

Before you perform this task, ensure that you have completed the task described in Importing
and Exporting Certificates

To configure OWSM:

1. Create a user with the same username and password as the Client ID (username) and
Client Secret (password) you configured in Creating an OAuth OWSM Client Profile.

2. Run the following WLST commands on the OWSM server:

deleteCred(map="oracle.wsm.security", key="basic.client.credentials")

createCred(map="oracle.wsm.security", key="basic.client.credentials",
user="OWSMClientId", password="password")

3. Import the OAuth certificate created in Step 2 of Importing and Exporting Certificates into
the OWSM server.

Chapter 52
Securing Services with REST Endpoints Using OAuth

52-19

4. Create a REST proxy service.

5. Create a REST business service.

52.3.3 Attaching OAuth OWSM Policies to Service Bus Services
You attach OAuth OWSM policies to business and proxy services the same way you
attach any OWSM policy to Service Bus services.

See Securing Business and Proxy Services for information about attaching policies to
services using JDeveloper and the Service Bus console.

The oracle/http_jwt_token_service_policy or oracle/
http_jwt_token_over_ssl_service_policy policies can be attached to proxy
services, and the oracle/oauth2_config_client_policy (where you specify the
REST endpoint from which to get the OAuth token) and oracle/
http_oauth2_token_client_policy or oracle/
http_oauth2_token_over_ssl_client_policy policies can be attached to business
services.

Chapter 52
Securing Services with REST Endpoints Using OAuth

52-20

53
Securing Oracle Service Bus Proxy and
Business Services with WS-Policy

This chapter describes how to use WebLogic Server security policies in Service Bus.

Note:

This chapter applies primarily to WLS 9 policies and not Oracle Web Services
Manager (OWSM) policies. WLS policies are deprecated in this release, and are
replaced by OWSM policies. You can import services with WLS9 policies attached,
but you can use only OWSM policies for new services.

To express the message-level security requirements for a proxy service or business service
that is a web service, you use the Web Services Policy (WS-Policy) framework.

The following sections describe configuring WS-Policy for proxy services and business
services:

• About Web Services Policy

• Oracle-Proprietary Security Policy Best Practices

• Policy Subjects and Effective Policy

53.1 About Web Services Policy
Web Services Policy (WS-Policy) is a standards-based framework for defining a web
service's constraints and requirements.

It expresses constraints and requirements in a collection of XML statements called policies,
each of which contains one or more assertions.

In Service Bus, WS-Policy assertions are used to specify a web service's requirements for
digital signatures and encryption, along with the security algorithms and authentication
mechanisms that it requires.

The WS-Policy framework allows other specifications to declare "policy assertions." These
are domain-specific XML elements that appear inside a <policy> element. Policy assertions
specifications describe the syntax and semantics of these domain-specific assertions.

WS-SecurityPolicy is one example of a domain-specific assertion language. The WS-
SecurityPolicy specification defines a set of security policy assertions for use with the WS-
Policy framework.

WS-ReliableMessaging is another example of a domain-specific assertion language; it
defines assertions for declaring reliable-messaging policy.

53-1

53.1.1 Relationship Between WS-Security and WS-Policy
Web Services Security (WS-Security) works in conjunction with the Web Services
Policy Framework (WS-Policy), and it is important that you understand what these
terms mean and how they relate:

• Web Services Security (WS-Security) is an OASIS standard that defines
interoperable mechanisms to incorporate message-level security into SOAP
messages. WS-Security determines "how" message-level security is incorporated
into SOAP messages.

WS-Security supports message integrity and message confidentiality. It also
defines an extensible model for including security tokens in a SOAP envelope and
a model for referencing security tokens from within a SOAP envelope. WS-
Security allows you to specify which parts of a SOAP message are digitally signed
or encrypted.

• The Web Services Policy Framework (WS-Policy) provides a general-purpose
model and corresponding syntax to describe and communicate the policies of a
web service. WS-Policy is an abstract XML framework. The interesting aspects of
a WS-Policy are defined in child elements called policy "assertions."

• WS-SecurityPolicy defines assertions for specifying the security aspects of a WS-
Policy. WS-SecurityPolicy determines "what" message-level security is required of
SOAP messages.

The policies can determine which operations are secured and which security
measures a web services client must apply.

When you configure the WS-Policy of a proxy or business service, if the WS-Policy
contains one or more security policy assertions, then the proxy service or business
service is considered to be WS-Security enabled.

53.1.2 Abstract and Concrete WS-Policy Statements
For security policy assertions written under the WS-Policy specification (using the
proprietary Oracle schema for security policy), the WebLogic Web Services runtime
environment recognizes two types of WS-Policy statements:

• Concrete WS-Policy statements specify the security tokens that are used for
authentication, encryption, and digital signatures. A concrete encryption policy
always has the server's encryption certificate embedded in the form of a base-64
encoded certificate in an X.509 binary security token.

You can create concrete WS-Policy statements if you know at design time the type
of authentication (such as using X.509 or SAML tokens) that you want to require.

• Abstract WS-Policy statements do not specify security tokens. Specifically, this
means the <Identity> and <Integrity> elements (or assertions) of the WS-
Policy files do not contain a <SupportedTokens><SecurityToken> child element,
and the <Confidentiality> element WS-Policy file does not contain a
<KeyInfo><SecurityToken> child element.

The Service Bus runtime environment determines which security token types an
abstract policy will accept.

Chapter 53
About Web Services Policy

53-2

53.2 Oracle-Proprietary Security Policy Best Practices
This section describes best practices you should follow when using security policy assertions
written under the WS-Policy specification, using the proprietary Oracle schema for security
policy.

Note:

Carefully analyze your security requirements before you design your WS-
SecurityPolicy. These best practices may or may not apply to your specific business
security needs.

• Make sure you do not use Identity assertions on an operation's response policy. As a
corollary, do not use the predefined Auth.xml policy in a response policy.

When using WS-Security user name tokens on inbound to an active intermediary proxy
service, if you want to pass the user name/password to a back-end service (user name/
password pass-through), the user name token must include the password in clear-text.

• Whenever using WS-Security user name tokens with clear-text passwords, it is strongly
recommended that you protect the confidentiality of the user name token, either by
encrypting the entire token (with WS-Security) or by sending the message over SSL.

• Whenever using an Identity assertion, you may also want to use an Integrity assertion to
digitally sign the authentication token (user name, X.509 or SAML token) together with
sensitive message content (SOAP body and/or SOAP header parts). The digital signature
protects the integrity of the signed content and binds together the authentication token
and message content. This is important to prevent someone from copying the
authentication token into an arbitrary SOAP envelope, thus forging a message. (You can
also send the message over SSL instead of using an integrity assertion.)

• When using an Integrity assertion, you should also use a MessageAge assertion. You
should also include the signing token (that is, the verification certificate) in the
wsse:Security header and that the digital signature covers the signing token and the
timestamp, in addition to whatever SOAP body and/or SOAP header parts you wish to
sign. The message age assertion guarantees a timestamp will be included in the security
header. The timestamp is used to prevent some replay attacks. The predefined Sign.xml
policy follows this best practice.

• When using timestamps over JMS (MessageAge assertions), make sure you set the age
of the MessageAge assertion appropriately. If the value is too low, the message may
expire while on the queue.

• Whenever an Identity assertion includes X.509 tokens in the supported token list, your
policy must also have an Integrity assertion. The server will not accept X.509 tokens as
proof of authentication unless the token is also used in a digital signature.

If the Identity assertion accepts other token types, you may use the X509AuthConditional
attribute of the Integrity assertion to specify that the digital signature is required only
when the actual authentication token is an X.509 token. Remember that abstract Identity
assertions are pre-processed at deploy time and converted into concrete assertions by
inserting a list of all token types supported by your runtime environment.

• Oracle recommends that you do not use abstract Identity assertions in your policy. It is
preferable instead to directly specify exactly which token types are supported for

Chapter 53
Oracle-Proprietary Security Policy Best Practices

53-3

authentication. Furthermore, Oracle recommends that your Identity assertion
supports only one token type.

Note:

This makes the X509AuthConditional attribute of Integrity assertions
unnecessary, as there is no ambiguity as to which token types are
supported.

As a corollary, Oracle recommends that you do not use the Auth.xml policy file:
use the Sign.xml and Encrypt.xml policies whenever possible.

• Whenever an Service Bus proxy processes digital signatures (on inbound request
messages or back-end response messages), it is strongly recommended that you
configure a certificate registry in your security realm and import your trading
partner certificates in the registry.

53.3 Policy Subjects and Effective Policy
A policy subject is an entity, such as service, endpoint, operation, or message, with
which a policy can be associated.

You can associate a single WS-Policy statement with multiple policy subjects;
conversely, multiple WS-Policy statements can be associated with a single policy
subject. A policy scope is the collection of policy subjects to which a policy applies. For
example, the policy scope implied by a policy attached to wsd:binding/
wsdl:operation/wsdl:input is the input message, the operation, the endpoint, and
the service.

The effective policy for a given policy subject is the merge of all policies whose scopes
contain that policy subject. For example, the effective policy of the input message of a
binding operation is the merge of all policies attached to the following:

• The input message of the binding operation

• The binding operation

• The binding

• The input message of the port-type operation

• The port-type operation

• The port-type

• The service

The Oracle Service Bus Console displays the effective policy (read only) when
configuring a business or proxy service with WS-Policy statements.

Chapter 53
Policy Subjects and Effective Policy

53-4

54
Using SAML with Oracle Service Bus

This chapter describes how to use Security Assertion Markup Language (SAML) policies for
exchanging authentication and authorization information between clients and services in
Service Bus.

You can use SAML with either the WLS 9 policy framework or with Oracle Web Services
Manager. Oracle recommends that you use Oracle Web Services Manager for service
security, as described in Securing Oracle Service Bus with Oracle Web Services Manager.

This chapter includes the following topics:

• Mapping Identity to a SAML Token

• Configuring SAML Pass-Through Identity Propagation

• Authenticating SAML Tokens in Proxy Service Requests

• Configuring SAML Authentication with Service Bus (SB) Transport

• Using SAML Identity Switching

• Troubleshooting SAML with Oracle Service Bus

54.1 Mapping Identity to a SAML Token
If your clients do not provide SAML tokens but your business services require them, you can
configure a proxy service to map the client's identity to a SAML token.

To configure SAML credential mapping:

1. Configure a proxy service to authenticate clients using any of the following techniques:

• HTTP or HTTPS basic (client provides user name and password in the request)

• HTTPS client certificate

• Message-level authentication (using any of the supported token profiles)

If a client request includes a WS-Security security header, you must configure the
proxy service to process this header on the proxy service side of the message. In
Service Bus, you cannot add a SAML header (or any other WS-Security header) to a
SOAP envelope that already contains a WS-Security header, neither can you add
SAML (or other) security tokens to an existing security header.

• Third-party authentication

When the proxy service authenticates the user, the proxy automatically generates a
Subject before forwarding the message to a business service.

2. Configure the business service to include a SAML client policy. The policy generates a
SAML token for the authenticated user in the Subject.

For a list of Oracle Web Services Manager SAML policies supported with Service Bus, see
Predefined Policies and Unsupported Assertions.

54-1

Note:

The procedure in this section assumes a proxy-to-business service
invocation. When your use case involves proxy-to-proxy invocations prior to
the business service invocation, it is helpful to understand how Service Bus
handles security headers. For that information, see Using OWSM Security
with Local Proxy Services.

54.2 Configuring SAML Pass-Through Identity Propagation
If your clients provide SAML tokens to a pass-through proxy service, you can
propagate the client's SAML token to the business service.

This technique requires the business service to be a web service with policy
statements that require authentication using SAML tokens.

To configure SAML pass-through identity propagation:

• Proxy Service – Configure a pass-through proxy service as described in Creating
a Pass-Through Proxy Service: Main Steps.

• Business Service – Configure a SOAP-HTTP or SOAP-JMS business service
with policy statements that require authentication using SAML tokens, as
described in Configuring Business Service Message-Level Security: Main Steps.

54.3 Authenticating SAML Tokens in Proxy Service
Requests

If your clients provide SAML tokens to an active intermediary proxy service, you can
configure the proxy service to assert the client's identity.

To configure a proxy service to use SAML tokens to authenticate clients:

1. When configuring the Identity Assertion provider, note the following requirements:

• The confirmation method from the policy must match the SAML profile in the
SAML asserting party.

• Specify the asserting party target URL to be the relative URL of the proxy
service (omitting the protocol and host information).

• For signed assertions, add the certificate to the Identity Asserter registry.

2. Create an active intermediary proxy service that communicates over the HTTP,
HTTPS, or JMS protocol. The proxy service must be a web service with a policy
statement that requires authentication and accepts SAML tokens.

A proxy service that communicates over the "local" transport type cannot use a
SAML token profile to authenticate.

Chapter 54
Configuring SAML Pass-Through Identity Propagation

54-2

54.4 Configuring SAML Authentication with Service Bus (SB)
Transport

If you are using SAML-based authentication with the SB transport, follow these configuration
requirements.

• On the asserting party, configure the SAML Credential mapper with URI http://
openuri.org/sb_proxy_uri, where sb_proxy_uri is the SB transport service URI.

• When configuring the Identity Assertion provider on the Service Bus side (the relying
party), use the asserting party target URL as the proxy endpoint URI. Do not include the
protocol and host information. For example, /sb_proxy_uri.

54.5 Using SAML Identity Switching
Oracle Web Services Manager provides a
wss11_saml_token_identity_switch_with_message_protection_client_policy that lets you
perform identity switching.

The policy, which you attach to a business service, propagates a different identity than the
one based on the authenticated Subject from the proxy service. For more information about
the policy, see Configuring SAML Web Service Clients for Identity Switching in Securing Web
Services and Managing Policies with Oracle Web Services Manager.

If you set the policy property subject.precedence = false and provide a credential store format
(CSF) key for the identity you want to switch to, the business service ignores the current
subject and creates a SAML token with the credentials in the csf-key.

If you set subject.precedence = true, the current subject is used to create the SAML token.
However, if the subject is anonymous, Oracle Web Services Manager attempts to use the csf-
key to perform the identity switching.

For information on working with CSF, see Developing with the Credential Store Framework in
Securing Applications with Oracle Platform Security Services.

54.5.1 Protecting the Identity-Switching Resource
To prevent malicious access to the identity-switching functionality, you must grant special
permissions to the resources that perform identity switching. For example, in Service Bus,
you give permissions to the project containing the identity-switching business service.

Use Fusion Middleware Control to give the Service Bus project the proper permissions. Using
that topic for guidance, enter the following information in the permissions fields:

• Permission Class: oracle.wsm.security.WSIdentityPermission

• Resource Name: Name (not the path) of the Service Bus project containing the business
service

• Permission Actions: assert

54.6 Troubleshooting SAML with Oracle Service Bus
This section provides answers to some commonly asked troubleshooting questions.

Chapter 54
Configuring SAML Authentication with Service Bus (SB) Transport

54-3

Question: I am trying to propagate my proxy service transport identity to a destination
business service and keep receiving error, Unable to add security token for
identity. What does this mean?

Answer: There are various causes for this error. Generally this means one of the
following problems:

• The SAML Credential Mapper is not configured correctly. Double check that the
configuration is in accordance with the instructions in Configuring SAML in
Securing Web Services and Managing Policies with Oracle Web Services
Manager.

• Another common source of this error is that there is no subject information to
propagate. To generate a SAML token, you must have a transport-level or
message-level subject. Make sure that the client has a subject. This can be done
by inspecting the $security message context variable.

Question: I am trying to propagate my proxy service transport identity to a destination
business service using SAML holder-of-key and keep receiving error, Failure to add
signature. What does this mean?

Answer: There are various causes for this error, but most likely is that the credentials
are not configured for the business service's service key provider. When Service Bus
generates an outbound holder-of-key assertion, it also generates a digital signature
over the message contents, so that the recipient can verify not only that a message is
received from a particular user but that the message has not been tampered with. To
generate the signature, the business service must have a service key provider with a
digital signature credential associated with it.

Question: I am trying to configure an active intermediary proxy service that receives
SAML identity tokens and keep receiving errors that look like: The SAML token is not
valid. How do I fix this?

Answer: This is generally caused by a missing SAML Identity Asserter or SAML
Identity Asserter asserting party configuration for the proxy service. For a proxy
service to receive SAML assertions in active intermediary mode, it must have a SAML
Identity Asserter configured. For more details, see Configuring a SAML Identity
Assertion Provider in Administering Security for Oracle WebLogic Server.

Chapter 54
Troubleshooting SAML with Oracle Service Bus

54-4

55
Configuring Custom Authentication

This chapter describes how to configure custom transport- and message-level authentication
in Service Bus.

This chapter includes the following sections:

• Introduction to Custom Authentication in Oracle Service Bus

• Format of XPath Expressions

• Configuring Identity Assertion Providers for Custom Tokens

• Configuring Custom Authentication Transport-Level Security

• Configuring Message-Level Custom Authentication

For instructions on configuring proxy or business service security, see Securing Business and
Proxy Services.

55.1 Introduction to Custom Authentication in Oracle Service
Bus

Service Bus supports client-specified custom authentication credentials for transport-level
proxy and business service requests, and for message-level proxy service requests.

The custom authentication credentials can be in the form of tokens, or a user name and
password token combination. At the transport level, Service Bus accepts and attempts to
authenticate a custom token passed to a proxy or business service in an HTTP header. At the
message level, Service Bus can get the information from a SOAP header (for SOAP-based
services) or the payload (for non-SOAP services).

You use the Proxy Service Definition Editor to configure a proxy service with the token type
and the mechanism by which the token is passed. For business services, you define a
custom authentication Java class, which you can then reference from the Business Service
Definition Editor.

Note:

The custom authentication mechanisms work alone or in concert with the message-
level security for web services described in Configuring Message-Level Security for
Web Services. See Combining WS-Security with Custom User Name/Password and
Tokens for information about using both types of security.

55.1.1 Understanding Custom Authentication Tokens
An authentication token is some data, represented as a string or XML, that identifies an entity
(user or process), such as an X509 client certificate. Typically, authentication tokens are

55-1

designed to be used within specific security protocols. Some authentication tokens are
cryptographically protected and some are not. Some authentication tokens carry key
material.

In the context of Service Bus, a custom authentication token can be a user name and
password or an opaque Identity Assertion token in a user-defined location in the
request. A user name and password token is allowed in a SOAP header (for SOAP-
based services) or in the payload of some non-SOAP proxy services. An Identity
Assertion token is allowed in an HTTP header, in a SOAP header (for SOAP-based
services), or in the payload of some non-SOAP proxy services. The Service Bus
domain must include an Identity Assertion provider that supports the token type.

Service Bus uses the authenticated user to establish a security context for the client.
The security context established by authenticating a custom token or user name and
password can be used as the basis for outbound credential mapping and access
control. To authenticate and authorize clients who supply tokens for authentication,
you must configure an Identity Assertion provider that maps the client's credential to a
Service Bus user. Service Bus uses this resulting user name to establish a security
context for the client.

55.1.2 Custom Authentication Token Use and Deployment
Custom authentication token support in Service Bus addresses two requirements. For
the first requirement, a proxy service request has a user name and password
somewhere in the message payload, for example in a SOAP header. Service Bus
must get this user name and password and authenticate the user. For the second
requirement, the message contains some kind of authentication token other than a
user name and password, such as a secure-token-xyz token. The token may be in an
HTTP header or in the message payload. Service Bus must get the token and
authenticate it. In either case, a security context is established if authentication
succeeds.

Most security-related configuration is typically done at deployment time, and custom
authentication fits that model. It can be configured directly on the production
environment at deployment time. Alternatively, you can configure authentication during
staging and import it into the production environment.

Custom authentication, which includes both custom tokens and user name and
password tokens, is an integral part of the proxy service definition. When a proxy
service is exported, any configuration of custom tokens is included in the JAR file.
When a new version of the proxy service is imported, the previous configuration is
overwritten with whatever configuration is contained in the JAR file.

Only users in the MiddlewareAdministrator or Developer application role can configure
custom token authentication (or the IntegrationDeployer or IntegrationAdministrator
enterprise role). For information about roles, see "Role-Based Access in Oracle
Service Bus" in Administering Oracle Service Bus.

55.1.3 Understanding Transport-Level Custom Authentication
You can authenticate client requests at the transport-level using custom authentication
tokens, which can be specified in an HTTP header. You configure transport-level
custom authentication on the Transport Details page of the service definition editor.
The options for HTTP and HTTPS services are:

• None

Chapter 55
Introduction to Custom Authentication in Oracle Service Bus

55-2

• Basic

• Custom Authentication

• Client Certificate (HTTPS Only)

These are mutually exclusive options.

If you choose custom authentication for a proxy service, you must also specify the token type
and the name of the HTTP header that is to carry the token. If you choose custom
authentication for a business service, you must also specify the custom authenticator Java
class. The custom authentication token can be any active token type, previously configured
for an Identity Assertion provider, that is carried in an HTTP header.

55.1.3.1 Import/Export and Transport-Level Custom Token Authentication
Transport-level custom authentication tokens are published to the UDDI. The client-auth
property is present in the instanceParms of the HTTP or HTTPS transport attributes
whenever authentication is configured. As described in Transport Attributes., the possible
values of client-auth are BASIC, CLIENT-CERT and CUSTOM-TOKEN. Whenever the value is
CUSTOM-TOKEN, two additional properties are present: token-header and token-type.

55.1.4 Understanding Message-Level Custom Authentication
Service Bus supports client-specified custom authentication credentials for proxy service
message-level requests. The custom authentication credentials can be in the form of a
custom token, or a user name and password. Service Bus accepts and attempts to
authenticate a custom token passed to a proxy service in a SOAP header (for SOAP-based
proxy services), or in the payload (for non-SOAP proxy services). You configure message-
level custom authentication on the Security page (Oracle Service Bus Console) or the
Security Settings page (JDeveloper) of the Proxy Service Definition Editor, which includes
specifying the token type and the mechanism by which the token is passed.

The following proxy service message-level authentication mechanisms are supported:

• For SOAP-based proxy services

– Custom token in a SOAP header

– Username/password in a SOAP header

• For non-SOAP-based proxy services

– Custom token in the payload of any XML-based proxy services

– Username/password in the payload of any XML-based proxy services

Message-level custom tokens and message-level user name and password are supported on
proxy services of the following binding types:

• WSDL-SOAP

• WSDL-XML

• Abstract SOAP

• Abstract XML

• Mixed – XML (in the request)

• Mixed – MFL (in the request)

Chapter 55
Introduction to Custom Authentication in Oracle Service Bus

55-3

55.1.5 Propagating the Identity Obtained From Custom Authentication
Tokens

The security context established using a custom token or custom user name/password
is in no way unique, and you can use it for credential mapping. If you implement both
transport-level authentication and message-level authentication, the message-level
security context is always used for credential mapping and identity propagation.

For example, if the proxy service authenticates the client using a secure-token-xyz
token in a SOAP header, the authenticated subject is used during any mapped service
account lookup. The subject is also used when generating SAML tokens on outbound
messages. Java callouts can also run under the authentication context associated with
a custom token or custom user name/password.

If a custom user name/password is used, the user name/password in the custom token
can be used for outbound HTTP basic or outbound WS-Security Username Token
authentication if a pass-through service account is used.

55.1.6 Combining WS-Security with Custom User Name/Password
and Tokens

You can secure Service Bus proxy services with transport-level security (for example,
HTTPS) or message-level security (for example, WS-Security (WSS) and custom
tokens), or a combination of both. For example, client requests can be authenticated at
the transport level with custom tokens in HTTP headers, and at the message level with
WS-Security tokens, custom tokens, or user name/passwords, except in the WS-
Security header.

There is one restriction. Although it is possible to combine WS-Security and message-
level custom tokens, the WS-Security policy must not require proxy service
authentication based on WS-Security tokens. Message-level custom tokens and WS-
Security proxy service authentication are mutually exclusive.

Consider the following examples:

• You cannot configure a proxy service that expects a custom token of type MyToken
in SOAP header <soap:MyToken> and that has a WS-Security policy that requires
signing or encryption of some message parts (for example, the <soap:MyToken>
header and SOAP body).

• It is not allowable to configure a proxy service that requires a custom token in
header <soap:MyToken> and that also has a WS-Security policy that requires a
SAML token or any other form of authentication.

55.2 Format of XPath Expressions
The configuration for both custom user name/password and custom token
authentication is similar. In both cases, you specify XPath expressions so Service Bus
can locate the necessary information.

The root of these XPath expressions is as follows:

Chapter 55
Format of XPath Expressions

55-4

• Use soap-env:Envelope/soap-env:Header if the service binding is anySOAP or WSDL-
SOAP.

• Use soap-env:Body (specifically, the contents of the $body variable) if the service binding
is not SOAP based.

Note:

All XPath expressions must be in a valid XPath 2.0 format. The XPath
expressions must use the XPath "declare namespace" syntax to declare any
namespaces used, as follows:

declare namespace ns='http://webservices.mycompany.com/MyExampleService';

For example,

declare namespace y="http://foo";./y:my-custom-token/text()

55.3 Configuring Identity Assertion Providers for Custom Tokens
An Identity Assertion provider is a specific form of authentication provider that allows users or
system processes to assert their identity using tokens. A client's identity is established
through the use of client-supplied tokens.

The Identity Assertion provider validates the token. If the token is successfully validated, the
Identity Assertion provider maps the token to an Service Bus user name, and returns the user
name. Identity is said to be "asserted" when the token is mapped to the user name. Service
Bus then uses this user name to establish a security context for the client.

If you want the proxy or business service to consume a custom token, check the provided
WebLogic Server Identity Assertion providers to see if one meets your needs. WebLogic
Server includes a broad array of Identity Assertion providers, including the following:

• The WebLogic Identity Assertion provider validates X.509 and IIOP-CSIv2 tokens and
optionally can use a user name mapper to map that token to a user.

• The SAML Identity Assertion provider, which acts as a consumer of SAML security
assertions.

If you want the service to consume a custom token that is not handled by one of the bundled
Identity Assertion providers, for example a secure-token-xyz token, you (or a third-party)
must first write a WebLogic Server Identity Assertion provider that supports the token type
and use the Oracle WebLogic Server Administration Console to add that provider to the
security realm.

You develop Identity Assertion providers to support the specific types of custom tokens that
you will be using to assert the identities of users. You can develop an Identity Assertion
provider to support multiple token types. While you can have multiple Identity Assertion
providers in a security realm with the ability to validate the same token type, only one Identity
Assertion provider can actually perform this validation.

The Identity Assertion process for a proxy service configured for custom authentication is
shown in Figure 55-1, and works as follows:

1. The proxy service gets the authentication token from the inbound request.

Chapter 55
Configuring Identity Assertion Providers for Custom Tokens

55-5

2. The token is passed to an Identity Assertion provider that is responsible for
validating tokens of that type and that is configured as "active."

3. The Identity Assertion provider validates the token.

4. If the token is successfully validated, the Identity Assertion provider maps the
token to a user name, and returns the user name.

5. Service Bus then continues the authentication process with this user name and, if
successful, obtains the authenticated subject.

6. Service Bus creates the security context. The security context established by
authenticating a custom token or user name and password can be used as the
basis for outbound credential mapping and access control.

See "Identity Assertion and Tokens" in Understanding Security for Oracle WebLogic
Server for additional information.

Figure 55-1 Identity Assertion and Custom Tokens in a Proxy Service

55.3.1 Object Type of Custom Tokens
For transport-level identity assertion, the header value is passed as a
java.lang.String to the Identity Assertion providers. For message-level identity
assertion, the XPath expression is evaluated as follows:

• If the XPath expression returns multiple nodes, an error is raised and identity
assertion is not called.

• If the XPath expression returns an empty result, identity assertion is called with a
null argument.

• If the XPath expression returns a single token of type TEXT or ATTR (See
XmlCursor.TokenType at http://xmlbeans.apache.org/docs/2.0.0/
reference/org/apache/xmlbeans/XmlCursor.TokenType.html), the string value

Chapter 55
Configuring Identity Assertion Providers for Custom Tokens

55-6

http://xmlbeans.apache.org/docs/2.0.0/reference/org/apache/xmlbeans/XmlCursor.TokenType.html
http://xmlbeans.apache.org/docs/2.0.0/reference/org/apache/xmlbeans/XmlCursor.TokenType.html

of the text node or attribute is passed (as returned by XmlCursor.getStringValue()).
Otherwise, a single XmlObject is passed.

55.3.2 Configuring a Custom Token Type in an Identity Assertion Provider
The steps required to complete these tasks are provided in the following WebLogic Server
documents:

• How to Create New Token Types in Developing Security Providers for Oracle WebLogic
Server describes how to create custom token types for an Identity Assertion provider.

• Configure the Custom Identity Assertion Provider using the Administration Console in
Developing Security Providers for Oracle WebLogic Server describes how to configure
Identity Assertion providers in the Oracle WebLogic Server Administration Console.

55.3.2.1 How to Configure a Custom Token Type in an Identity Assertion Provider
For your convenience, the steps for creating custom token types for an Identity Assertion
provider and configuring that provider in the Oracle WebLogic Server Administration Console
are briefly listed here. However, you will need to consult the WebLogic Server documentation
to actually complete the tasks.

To configure a custom token type in an Identity Assertion provider:

1. Create the new token types. See "How to Create New Token Types" in Developing
Security Providers for Oracle WebLogic Server.

2. Create the runtime classes. See "Create Runtime Classes Using the Appropriate SSPIs"
in Developing Security Providers for Oracle WebLogic Server. That section shows the
SampleIdentityAsserterProviderImpl.java class, which is the runtime class for the
sample Identity Assertion provider.

3. Generate the MBean type. See "Generate an MBean Type Using the WebLogic
MBeanMaker in Developing Security Providers for Oracle WebLogic Server.

4. Configure the custom Identity Assertion provider. See "Configure the Custom Identity
Assertion Provider Using the Administration Console" in Developing Security Providers
for Oracle WebLogic Server.

5. Define the active token type. See "Configuring Identity Assertion Providers" in
Administering Security for Oracle WebLogic Server and "How to Make New Token Types
Available for Identity Assertion Provider Configurations" in Developing Security Providers
for Oracle WebLogic Server.

55.3.2.2 Setting the Supported and Active Types in the MBean
When you configure a custom Identity Assertion provider, the Supported Types field displays
a list of the token types that the Identity Assertion provider supports. You enter zero or more
of the supported types in the Active Types field.

The content for the Supported Types field is obtained from the SupportedTypes attribute of
the MBean Definition File (MDF), which you use to generate your custom Identity Assertion
provider's MBean type. An example from the sample Identity Assertion provider is shown in
the following example. For more information about MDFs and MBean types, see "Generate
an MBean Type Using the WebLogic MBeanMaker" in Developing Security Providers for
Oracle WebLogic Server.

Example - SampleIdentityAsserter MDF: SupportedTypes Attribute

Chapter 55
Configuring Identity Assertion Providers for Custom Tokens

55-7

<MBeanType>
...
<MBeanAttribute
Name = "SupportedTypes"
Type = "java.lang.String[]"
Writeable = "false"
Default = "new String[] {"SamplePerimeterAtnToken"}"
/>
...
</MBeanType>

Similarly, the content for the Active Types field is obtained from the ActiveTypes
attribute of the MBean Definition File (MDF). You can default the ActiveTypes attribute
in the MDF so that it does not have to be set manually with the Oracle WebLogic
Server Administration Console. An example from the sample Identity Assertion
provider is shown in the following example.

Example - SampleIdentityAsserter MDF: ActiveTypes Attribute with Default

<MBeanAttribute
Name= "ActiveTypes"
Type= "java.lang.String[]"
Default = "new String[] { "SamplePerimeterAtnToken" }"
/>

While defaulting the ActiveTypes attribute is convenient, you should only do this if no
other Identity Assertion provider will ever validate that token type. Otherwise, it would
be easy to configure an invalid security realm (where more than one Identity Assertion
provider attempts to validate the same token type). Best practice dictates that all
MDFs for Identity Assertion providers turn off the token type by default; then an
administrator can manually make the token type active by configuring the Identity
Assertion provider that validates it.

55.4 Configuring Custom Authentication Transport-Level
Security

Before you can configure your HTTP proxy or business service for transport-level
security, you must configure, or create and configure, an Identity Assertion provider
that understands the token type you plan to use.

• How to Create a Custom Authentication Class for Outbound

• How to Configure Transport-Level Custom Authentication

55.4.1 How to Create a Custom Authentication Class for Outbound
For outbound custom authentication, you need to create a custom Java class that
defines the custom logic. The following interfaces provide the methods you need to
implement custom authentication for business services:

• com.bea.wli.sb.transports.http.OutboundAuthentication

• com.bea.wli.sb.transports.http.HttpUrlConnectionFactory

The custom authenticator must implement the doOutboundAuthentication method of
the OutboundAuthentication interface. The custom authenticator can set the
authentication headers and read the response from the target service for the initial and

Chapter 55
Configuring Custom Authentication Transport-Level Security

55-8

the intermediate transactions. For the final step it is expected that the custom authenticator
sets only the authentication headers and does not establish the connection with the target
service. Service Bus will send the payload along with the authentication headers in the final
step. The custom authenticator should not manipulate the payload.

55.4.2 How to Configure Transport-Level Custom Authentication
The following procedure provides the high-level steps you need to complete to define custom
authentication at the transport level. It includes links more detailed instructions.

To configure transport-level custom authentication:

1. Determine which custom token format to use.

2. Determine if an existing provider meets your needs. For guidance, see "Choosing an
Authentication Provider" in Administering Security for Oracle WebLogic Server.

3. Configure, or create and configure, an Identity Assertion provider that supports the token
format. See the following for instructions:

• To configure an existing Identity Assertion provider, see "Configuring Authentication
Providers" in Administering Security for Oracle WebLogic Server (specifically,
"Configuring Identity Assertion Providers."

• To create custom token types for a provider, see How to Configure a Custom Token
Type in an Identity Assertion Provider.

• To develop a custom provider, see "Identity Assertion Providers" in Developing
Security Providers for Oracle WebLogic Server.

4. The Identity Assertion provider maps the token to a user name. Add the client's user
name in Fusion Middleware Control.

5. For proxy services, do the following on the Transport Details page of the Proxy Service
Definition Editor:

a. By Authentication, select Custom Authentication.

b. In the Authentication Header field under Advanced Options (or Advanced Settings),
enter the message header where Service Bus can find the token.

c. In the Authentication Token Type, enter the token type expected by this endpoint.

6. For business services, create and compile the custom authenticator Java class, and add
the class to the system classpath.

7. For business services, do the following on the Transport Details page of the Business
Service Definition Editor:

a. By Authentication, select Custom Authentication.

b. In the HTTP Custom Authentication Class Name field, enter the name of the Java
class that defines the custom authentication.

8. Save and activate your changes.

55.5 Configuring Message-Level Custom Authentication
Before you can configure custom authentication message-level security for a proxy service,
you must first configure, or create and configure, an authentication provider or Identity
Assertion provider that understands the token type you plan to use.

Chapter 55
Configuring Message-Level Custom Authentication

55-9

The provider you use must also understand any context properties that you want to
provide. If you specify any Context Properties you will probably need to create your
own provider because the provider must know which property names to expect.

55.5.1 How to Configure Message-Level Custom Authentication for
Proxy Services

The following procedure provides the high-level steps you need to complete to define
custom authentication at the transport level. It includes links more detailed instructions.

Note:

The provider you use must also understand any context properties that you
want to provide. If you specify any Context Properties you will probably need
to create your own provider because the provider must know which property
names to expect.

To configure message-level custom authentication:

1. Determine which custom user name/password or token format to use.

2. Determine if an existing provider meets your needs. For guidance, see "Choosing
an Authentication Provider" in Administering Security for Oracle WebLogic Server.

3. Configure, or create and configure, an authentication provider or Identity Assertion
provider that supports the user name/password or token format, respectively. See
the following for instructions:

• To configure an existing authentication or Identity Assertion provider, see
"Configuring Authentication Providers" in Administering Security for Oracle
WebLogic Server.

• To create custom token types for a provider, see How to Configure a Custom
Token Type in an Identity Assertion Provider.

• To develop a custom Identity Assertion provider, see "Identity Assertion
Providers" in Developing Security Providers for Oracle WebLogic Server.

4. Add the client's user name in Fusion Middleware Control.

5. In Service Bus, define the custom token or user name and password in the
security settings for the proxy service. Optionally, specify context properties for the
provider.

For information and instructions, see How to Configure Custom Authentication for
a Proxy Service in the Console or How to Configure Custom Authentication for
Proxy Services in JDeveloper.

Chapter 55
Configuring Message-Level Custom Authentication

55-10

56
Defining Message-Level Security with .Net 2.0

This chapter describes how to configure message-level security between .NET 2.0 and
Service Bus.

The chapter includes the following sections:

• Message-Level Security Between .NET 2.0 and Oracle Service Bus

• What is .NET?

• Message-Level Security Configuration in .NET

• Oracle Service Bus Configuration for Message-Level Security with .NET

56.1 Message-Level Security Between .NET 2.0 and Oracle
Service Bus

You can set up Message-level security between the Microsoft .NET 2.0 framework and
Service Bus.

Message-level security applies security checks to a SOAP message after a web services
client establishes a connection with an Service Bus proxy service or business service and
before the proxy service or business service processes the message.

56.2 What is .NET?
The .NET framework is a software component that you can add to the Microsoft Windows
operating system.

It provides pre-coded solutions to common program requirements, and manages the
execution of programs written specifically for the framework.

56.3 Message-Level Security Configuration in .NET
This section provides the steps that you need to perform for .NET 2.0 and for Service Bus to
configure message-level security.

Caution:

Before you perform these steps, you must follow the steps in Configuring Message-
Level Security for Web Services to configure inbound and outbound messaging for
Service Bus.

To configure message-level security between .NET and Service Bus:

56-1

1. Verify that you completed the steps to configure inbound and outbound messaging
for Service Bus. See the Warning above for instructions.

2. Download Web Service Enhancements (WSE) 3.0 from http://
msdn2.microsoft.com/en-us/webservices and install it. WSE 3.0 is a SOAP
extension managed API (Microsoft.Web.Services3.dll) that is compatible with
the .NET 2.0 framework.

3. After you install WSE 3.0, you must enable the WSE features for your web
application and enable WSE Soap Protocol Factory support. You can enable both
these features using wizards in Visual Studio.

After you enable WSE 3.0, you will notice the following restrictions:

• WSE 3.0 no longer supports WS-Policy and therefore, WS-SecurityPolicy for
configuration purposes, as it did in .NET 1.1 and WSE 2.0. WSE 3.0 supports
only a proprietary policy configuration using the wse3policyCache.config file
(or equivalent .NET code) that provides similar features to those in WSE 2.0.
One consequence of this is that the WSDL files for the .NET web service no
longer contain WS-Policy statements. On the other hand, Service Bus
supports a WebLogic Server-proprietary format that is based on the assertions
described in the December 18, 2002 version of the Web Services Security
Policy Language (WS-SecurityPolicy) specification. In order to consume .NET
WSDL files in Service Bus, you must incorporate the equivalent Service Bus
proprietary version of WS-Policy in the WSDL file.

The WSDL code sample in Sample WSDL File shows how to configure WS-
Policy for message-level identity propagation, confidentiality, and integrity in
Service Bus.

• WSE 3.0 provides policy configuration for a few Turnkey Security Assertions in
the wse3policyCache.config file, which can be selected with a wizard in
Visual Studio. The certificate that maps to providing message-level security
(encryption and signing, for example) is MutualCertificate10. For details on
configuring the MutualCertificate10 Security Assertion, see http://
msdn2.microsoft.com/en-us/library/aa480581.aspx.

• The WSE Soap Protocol Factory does not support security with SOAP 1.2.
The generated client stubs using the Web Reference option in Visual Studio
contain the security-enabled operations only if you select SOAP 1.1. Message-
level security interoperability works only with SOAP 1.1.

• As with .NET 1.1 and WSE 2.0, you must disable automatic signing of WS-
Addressing headers and timestamps that are configured by default. You must
change some of the properties in the wse3policyCache.config file, as shown
in the following example:

Default Config

<protection>
 <request signatureOptions="IncludeAddressing, IncludeTimestamp,
 IncludeSoapBody" encryptBody="true" />
 <response signatureOptions="IncludeAddressing, IncludeTimestamp,
 IncludeSoapBody" encryptBody="true" />
 <fault signatureOptions="IncludeAddressing, IncludeTimestamp,
 IncludeSoapBody" encryptBody="false" />
</protection>

Required Config

Chapter 56
Message-Level Security Configuration in .NET

56-2

http://msdn2.microsoft.com/en-us/webservices
http://msdn2.microsoft.com/en-us/webservices
http://msdn2.microsoft.com/en-us/library/aa480581.aspx
http://msdn2.microsoft.com/en-us/library/aa480581.aspx

<protection>
 <request signatureOptions="IncludeSoapBody" encryptBody="true" />
 <response signatureOptions="IncludeAddressing, IncludeTimestamp,
IncludeSoapBody" encryptBody="true"
 />
 <fault signatureOptions="IncludeSoapBody" encryptBody="false" />
</protection>

• By default, WSE 3.0 expects the key wrapping algorithm to be OAEP. However,
Service Bus uses the RSA15 algorithm. If the configuration remains as OAEP, the
following exception appears: Microsoft.Web.Services3.Security.SecurityFault:
An unsupported signature or encryption algorithm was used
System.Exception: WSE3002: The receiver is expecting the key wrapping
algorithm to be http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p, but the
incoming message usedhttp://www.w3.org/2001/04/xmlenc#rsa-1_5. You can
change the key wrapping algorithm by configuring the security token manager.

To avoid this error, add the following configuration to the web.config file (on the .NET
web service) and the app.config file (on the .NET client side) under the
<microsoft.web.services3> <security> elements:

<binarySecurityTokenManager>
 <add valueType="http://docs.oasis-open.org/wss/2004/01/
 oasis-200401-wss-x509-token-profile-1.0#X509v3";>
 <keyAlgorithm name="RSA15" />
 </add>
</binarySecurityTokenManager>

This configuration forces WSE to use RSA15 instead of OAEP.

• For Username Token Authentication, .NET provides a
usernameForCertificateSecurity turnkey assertion that secures the communication
channel between the client and the service at the message layer using the service's
X.509 certificate. However, this certificate depends on the ability to reference
<EncryptedKey> elements as security tokens, and enables the option for signature
confirmation to correlate a response message with the request that prompted it.

An alternative for Username Token Authentication is the .NET
usernameOverTransportSecurity turnkey assertion, which assumes that
communication between the client and service will be secured at the transport layer.
This approach is WS-Security compatible and supports message-level authentication
over SSL. If you want to combine the usernameOverTransportSecurity turnkey
assertion with other message-level security mechanisms, such as encryption and
signing, you must write custom code in .NET.

56.4 Oracle Service Bus Configuration for Message-Level
Security with .NET

Before you configure Service Bus, these conditions must exist.

• A .NET client invokes an Service Bus proxy with a plain text message (for example,
message-level security does not exist between the .NET client and the Service Bus
proxy).

• Service Bus enforces outbound message-level security on the SOAP request.

Chapter 56
Oracle Service Bus Configuration for Message-Level Security with .NET

56-3

Note:

For cases where the .NET client has message-level security enabled,
you can use Service Bus as a pass-through proxy.

To configure Service Bus for message-level security with .NET:

1. Change the encryption algorithm from tripledes-cbc to aes256-cbc:

<wssp:EncryptionAlgorithm URI="http://www.w3.org/2001/04/xmlenc#aes256-cbc"/>

2. Change the sign.xml policy on the WSDL file. This attribute is on the integrity
assertion element.

<wssp:Integrity SignToken='false' >
...
</wssp:Integrity>

By default this value is true.

3. The .NET web service expects the WS-Addressing <wsa:To> element to contain its
own URL. As the .NET client first invokes the Service Bus proxy, the <wsa:To>
element is originally set to the Service Bus proxy URL. Change this URL to the
URL of the .NET web service in the Service Bus proxy message flow, using a
Replace action as shown in the following example:

Original URL

<wsa:To wsu:Id="To_1mbmRK4w0bo2Dz1z" xmlns:wsu="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-
wssecurity-utility-1.0.xsd";>http://localhost:7001/SecurityALSBProxy<;/
wsa:To>

URL after Replace Action

<wsa:To wsu:Id="To_1mbmRK4w0bo2Dz1z" xmlns:wsu="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-
wssecurity-utility-1.0.xsd";>http://localhost/SimpleSecurity/
SecurityService.asmx<;/wsa:To>

If you do not change this URL, the following error appears:

Microsoft.Web.Services3.Addressing.AddressingFault: Destination Unreachable
System.Exception: WSE846: The header must match the actor URI value of the
web
service. The actor URI value can be explicitly specified using
SoapActorAttribute on the ASMX class. In the absence of the attribute, the
actor URI is assumed to be equal to the HTTP Request Url of the incoming
message. The header received contained
"http://localhost:7001/SecurityALSBProxy"; while the receiver is expecting
"http://localhost/SimpleSecurity/SecurityService.asmx";

4. The .NET client includes its own Timestamp elements to the SOAP header.
Service Bus adds an additional Timestamp header that results in the following
error:

Microsoft.Web.Services3.Security.SecurityFault: An error was discovered
processing the header Microsoft.Web.Services3.Security.Security
FormatException: WSE001: The input was not a valid Security element
because it contains more than one Timestamp child element.

Chapter 56
Oracle Service Bus Configuration for Message-Level Security with .NET

56-4

To solve this issue, use a Delete action to remove the original Timestamp elements that
the .NET client adds in the message flow.

5. Add the CertificateRegistry certification path provider. You add this from the WLS
Administration Console from realm > Providers > Certification Path > New and then
select CertificateRegistry from the list of options.

Activate the change and restart the server.

After you restart the server, edit the CertificateRegistry provider you just created. From
the Management tab add the following three certificates:

• The public certificate of Service Bus

• The public certificate of .NET

• The root agency (issuer of these certificates)

Note:

One way to add the certificates is to import them from a jks store using the
Migration tab. Provide the actual path of the identity store.

6. On the Configuration (Common) tab for the CertificateRegistry provider, select Current
Builder to make it the current builder.

Save these changes. Then, activate and restart the server.

7. The WLS keystore requires these same certificates:

• The public certificate of Service Bus

• The public certificate of .NET

• The root agency (issuer of these certificates)

You configure the identity and trust keystores for a WebLogic Server instance on the
server Configuration: Keystores page. To do this, see Configure Identity and Trust in the
WebLogic Server online help.

56.4.1 Sample WSDL File
The sample WSDL file in this section shows how to configure WS-Policy for message-level
identity propagation, confidentiality, and integrity in Service Bus.

Example - Configuring WS-Policy for Message-Level Security

<?xml version='1.0' encoding='UTF-8'?>
<definitions name="SecureHello WorldServiceDefinitions"targetNamespace=
 "http://www.bea.com"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:s0="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
 wssecurity-utility-1.0.xsd"
xmlns:s1="http://www.bea.com"
xmlns:s2="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">
 <wsp:UsingPolicy xmlns:n1="http://schemas.xmlsoap.org/wsdl/"
 n1:Required="true"/>
 <wsp:Policy s0:Id="Encrypt.xml">
 <wssp:Confidentialityxmlns:wssp="http://www.bea.com/wls90/
 security/policy">

Chapter 56
Oracle Service Bus Configuration for Message-Level Security with .NET

56-5

 <wssp:KeyWrappingAlgorithm URI="http://www.w3.org/2001/04/
 xmlenc#rsa-1_5"/>
 <wssp:Target>
 <wssp:EncryptionAlgorithm URI="http://www.w3.org/2001/
 04/xmlenc#aes256-cbc"/>
 <wssp:MessageParts Dialect="http://schemas.xmlsoap.org
 /2002/12/wsse#part">wsp:Body()
 </wssp:MessageParts>
 </wssp:Target>
 <wssp:KeyInfo>
 <wssp:SecurityToken TokenType="http://docs.oasis-open.
 org/wss/2004/01/oasis-200401-wss-x509-token-
 profile-1.0#X509v3"/>
 <wssp:SecurityTokenReference>
 <wssp:Embedded>
 <wsse:BinarySecurityToken EncodingType="http:
 //docs.oasis-open.org/wss/2004/
 01/oasis-200401-wss-soap-message
 -security-1.0#Base64Binary"
 ValueType="http://docs.oasis-open.org/
 wss/2004/01/oasis-200401-wss-x509
 -token-profile-1.0#X509v3"
 xmlns:wsse="http://docs.oasis-open.org/
 wss/2004/01/oasis-200401-wss-wssecurity-
 secext-1.0.xsd">MIIB7DCCAZYCEN+FHomYRZU
 YPLiIutc0lIIwDQYJKoZIhvcNAQEEBQAweTELMAk
 GA1UEBhMCVVMxEDAOBgNVBAgTB015U3RhdGUxDzA
 NBgNVBAcTBk15VG93bjEXMBUGA1UEChMOTXlPcmd
 hbml6YXRpb24xGTAXBgNVBAsTEEZPUiBURVNUSU5
 HIE9OTFkxEzARBgNVBAMTCkNlcnRHZW5DQUIwHhc
 NMDYwNjA3MDQ0MDM2WhcNMjEwNjA4MDQ0MDM2WjB
 6MQswCQYDVQQGEwJVUzEQMA4GA1UECBYHTXlTdGF
 0ZTEPMA0GA1UEBxYGTXlUb3duMRcwFQYDVQQKFg5
 NeU9yZ2FuaXphdGlvbjEZMBcGA1UECxYQRk9SIFR
 FU1RJTkcgT05MWTEUMBIGA1UEAxYLYmFuZ3BsdHc
 zazIwXDANBgkqhkiG9w0BAQEFAANLADBIAkEAxv2
 nWByAF2Xr9wrb06ydrrcqPt2VQa0xcwfdZZ6oGlj
 1TXq+G5/Q82v7CdxjyWUQBuAzduQx9wFCrAe/aWV
 pgQIDAQABMA0GCSqGSIb3DQEBBAUAA0EARbwfl8w
 X915jL5reY+isriNF0EfUs5ck53WRNowiapJx2ea
 ZE03quksJgeJ0z0HekkR/aTQnkMV1xIt1HxMKRw=
 =</wsse:BinarySecurityToken>
 </wssp:Embedded>
 </wssp:SecurityTokenReference>
 </wssp:KeyInfo>
 </wssp:Confidentiality>
 </wsp:Policy>
 <wsp:Policy s0:Id="Auth.xml">
 <wssp:Identity xmlns:wssp="http://www.bea.com/wls90/security/
 policy">
 <wssp:SupportedTokens>
 <wssp:SecurityToken TokenType="http://docs.oasis-open.
 org/wss/2004/01/oasis-200401-wss-username-token
 -profile-1.0#UsernameToken">
 <wssp:UsePassword Type="http://docs.oasis-open.
 org/wss/2004/01/oasis-200401-wss-username
 -token-profile-1.0#PasswordText"/>
 </wssp:SecurityToken>
 </wssp:SupportedTokens>
 </wssp:Identity>
 </wsp:Policy>

Chapter 56
Oracle Service Bus Configuration for Message-Level Security with .NET

56-6

 <wsp:Policy s0:Id="Sign.xml">
 <wssp:Integrity SignToken='false' xmlns:wls="http://www.bea.com/wls90/
security/
 policy/wsee#part"xmlns:wssp="http://www.bea.com/wls90/
 security/policy" xmlns:wsu="http://docs.oasis-open.org/wss
 /2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">
 <wssp:SignatureAlgorithm URI="http://www.w3.org/2000/09/
 xmldsig#rsa-sha1"/>
 <wssp:CanonicalizationAlgorithm URI="http://www.w3.org/
 2001/10/ xml-exc-c14n#"/>
 <wssp:Target>
 <wssp:DigestAlgorithm URI="http://www.w3.org/2000/09
 /xmldsig#sha1"/>
 <wssp:MessageParts Dialect="http://www.bea.com/wls90/
 security/policy/wsee#part">
 wls:SystemHeaders()
 </wssp:MessageParts>
 </wssp:Target>
 <wssp:Target>
 <wssp:DigestAlgorithm URI="http://www.w3.org/2000/09
 /xmldsig#sha1"/>
 <wssp:MessageParts Dialect="http://www.bea.com/wls90/
 security/policy/wsee#part">
 wls:SecurityHeader(wsu:Timestamp)
 </wssp:MessageParts>
 </wssp:Target>
 <wssp:Target>
 <wssp:DigestAlgorithm URI="http://www.w3.org/2000/09/
 xmldsig#sha1"/>
 <wssp:MessageParts Dialect="http://schemas.xmlsoap.
 org/2002/12/wsse#part">
 wsp:Body()
 </wssp:MessageParts>
 </wssp:Target>
 <wssp:SupportedTokens>
 <wssp:SecurityToken IncludeInMessage="true" TokenType=
 "http://docs.oasis-open.org/wss/2004/01/oasis-
 200401-wss-x509-token-profile-1.0#X509v3">
 <wssp:TokenIssuer>CN=CACERT,OU=FOR TESTING ONLY,
 O=MyOrganization,L=MyTown,ST=MyState,C=US,1.2.
 840.113549.1.9.1=#160f737570706f7274406265612e636
 f6d,CN=Demo Certificate Authority Constraints,OU=
 Security,O=BEA WebLogic,L=San Francisco,ST=
 California,C=US,1.2.840.113549.1.9.1=#16107365637
 572697479406265612e636f6d,CN=Demo Certificate
 Authority Constraints,OU=Security,O=BEA WebLogic,
 L=San Francisco,ST=California,C=US,CN=CertGenCAB,
 OU=FOR TESTING ONLY,O=MyOrganization,L=MyTown,ST=
 MyState,C=US,CN=Equifax Secure eBusiness CA-1,O=
 Equifax Secure Inc.,C=US,CN=VeriSign Class 1
 Public Primary Certification Authority - G3,OU=
 (c)1999 VeriSign\, Inc. - For authorized use only,
 OU=VeriSign Trust Network,O=VeriSign\, Inc.,C=US,
 OU=VeriSign Trust Network,OU=(c) 1998 VeriSign\,
 Inc. - For authorized use only,OU=Class 2 Public
 Primary Certification Authority - G2,O=VeriSign\,
 Inc.,C=US,CN=VeriSign Class 3 Public Primary
 Certification Authority - G3,OU=(c) 1999
 VeriSign\,Inc. - For authorized use only,OU=
 VeriSign Trust Network,O=VeriSign\,Inc.,C=US,CN=
 Entrust.net Client Certification Authority,OU=(c)

Chapter 56
Oracle Service Bus Configuration for Message-Level Security with .NET

56-7

 2000 Entrust.net Limited,OU=www.entrust.net/
 GCCA_CPS incorp. by ref. (limits liab.),O=Entrust
 .net,OU=Go Daddy Class 2 Certification Authority,
 O=The Go Daddy Group\, Inc.,C=US,CN=GTE Cyber
 Trust Global Root,OU=GTE CyberTrust Solutions\,
 Inc., O=GTE Corporation,C=US,CN=Entrust.net
 Secure Server Certification Authority,OU=(c) 2000
 Entrust.net Limited,OU=www.entrust.net/SSL_CPS
 incorp. by ref. (limits liab.),O=Entrust.net,OU=
 Class 1 Public Primary Certification Authority,
 O=VeriSign\, Inc.,C=US,1.2.840.113549.1.9.1=#161
 9706572736f6e616c2d6261736963407468617774652e636
 f6d,CN=Thawte Personal Basic CA,OU=Certification
 Services Division,O=Thawte Consulting,L=Cape
 Town, ST=Western Cape,C=ZA,OU=VeriSign Trust
 Network, OU=(c) 1998 VeriSign\, Inc. - For
 authorized use only,OU=Class 1 Public Primary
 Certification Authority - G2,O=VeriSign\, Inc.,
 C=US,CN=Entrust.net Secure Server Certification
 Authority,OU=(c) 1999 Entrust.net Limited,OU=
 www.entrust.net/CPS incorp. by ref.(limits iab.),
 O=Entrust.net,C=US, 1.2.840.113549.1.9.1=#161c706
 572736f6e616c2d667265656d61696c407468617774652e63
 6f6d,CN=Thawte Personal Freemail CA,OU=
 Certification Services Div,O=Thawte Consulting, L
 =Cape Town,ST=Western Cape,C=ZA,OU=Class 3 Public
 Primary Certification Authority,O=VeriSign\, Inc.
 C=US,CN=GTE CyberTrust Root,O=GTE Corporation,C=
 US,CN=VeriSign Class 2 Public Primary Certificate
 Authority - G3,OU=(c) 1999 VeriSign\, Inc. - For
 authorized use only,OU=VeriSign Trust Network,O=
 VeriSign\,Inc.,C=US,1.2.840.113549.1.9.1=#1617736
 5727665722d6365727473407468617774652e636f6d,CN=
 Thawte Server CA,OU=Certification Services
 Division,O=Thawte Consulting cc,L=Cape Town,ST=
 Western Cape,C=ZA,OU=Equifax Secure Certificate
 Authority,O=Equifax,C=US,1.2.840.113549.1.9.1=#16
 1b706572736f6e616c2d7072656d69756d407468617774652
 e636f6d,CN=Thawte Personal Premium CA,OU=
 Certification Services Division,O=Thawte
 Consulting,L=Cape Town,ST=Western Cape,C=ZA,1.2.
 840.113549.1.9.1=#16197072656d69756d2d73657276657
 2407468617774652e636f6d,CN=Thawte Premium Server
 CA,OU=Certification Services Division,O=Thawte
 Consulting cc,L=Cape Town,ST=Western Cape,C=ZA,
 OU=VeriSign Trust Network,OU=(c) 1998 VeriSign\,
 Inc. - For authorized use only,OU=Class 3 Public
 Primary Certification Authority - G2,O=VeriSign\,
 Inc.,C=US,CN=Entrust.net Certification Authority
 (2048),OU=(c) 1999 Entrust.net Limited,OU=www
 .entrust.net/CPS_2048 incorp. by ref. (limits
 liab.),O=Entrust.net,1.2.840.113549.1.9.1=#1611
 696e666f4076616c69636572742e636f6d,CN=http://www.
 valicert.com/,OU=ValiCert Class 2 Policy
 Validation Authority,O=ValiCert\, Inc.,L=Vali
 cert Validation Network,CN=Baltimore CyberTrust
 Root, OU=CyberTrust,O=Baltimore,C=IE,OU=Secure
 Server Certification Authority,O=RSA Data
 Security\, Inc.,C=US,CN=Entrust.net Client
 Cert Authority,OU=(c) 1999 Entrust.net Limited,
 OU=www.entrust.net/Client_CA_Info/CPS incorp. by

Chapter 56
Oracle Service Bus Configuration for Message-Level Security with .NET

56-8

 ref. limits liab.,O=Entrust.net,C=US,CN=GeoTrust
 Global CA,O=GeoTrust Inc.,C=US,CN=GTE CyberTrust
 Root 5,OU=GTE CyberTrust Solutions\, Inc.,O=GTE
 Corporation,C=US,OU=Starfield Class 2
 Certification Authority,O=Starfield
 Technologies\, Inc.,C=US,CN=Equifax Secure
 Global eBusiness CA-1,O=Equifax Secure Inc.,C=US,
 CN=Baltimore CyberTrust Code Signing Root,OU=
 CyberTrust,O=Baltimore,C=IE,OU=Class 2 Public
 Primary Certification Authority,O=VeriSign\,
 Inc.,C=US,OU=Equifax Secure eBusiness CA-2,O=
 Equifax Secure,C=US,</wssp:TokenIssuer>
 </wssp:SecurityToken>
 </wssp:SupportedTokens>
 </wssp:Integrity>
 <wssp:MessageAge Age="60" xmlns:wssp="http://www.bea.com/wls90/
 security/policy"/>
 </wsp:Policy>
 <types>
 <xs:schema attributeFormDefault="unqualified" elementFormDefault=
 "qualified" targetNamespace="http://www.bea.com" xmlns:s0="
 http://www.bea.com" xmlns:s1="http://schemas.xmlsoap.org
 /wsdl/soap/" xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/
 09/policy" xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="sayHello">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="s" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="sayHelloResponse">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="return" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:schema>
 </types>
 <message name="sayHello">
 <part element="s1:sayHello" name="parameters"/>
 </message>
 <message name="sayHelloResponse">
 <part element="s1:sayHelloResponse" name="parameters"/>
 </message>
 <portType name="SecureHelloWorldPortType" wsp:PolicyURIs="#Sign.xml
 #Auth.xml #Encrypt.xml">
 <operation name="sayHello" parameterOrder="parameters">
 <input message="s1:sayHello"/>
 <output message="s1:sayHelloResponse"/>
 </operation>
 </portType>
 <binding name="SecureHelloWorldServiceSoapBinding" type="s1:
 SecureHelloWorldPortType">
 <s2:binding style="document" transport="http://schemas.
 xmlsoap.org/ soap/http"/>
 <operation name="sayHello">
 <s2:operation soapAction="" style="document"/>
 <input>
 <s2:body parts="parameters" use="literal"/>

Chapter 56
Oracle Service Bus Configuration for Message-Level Security with .NET

56-9

 </input>
 <output>
 <s2:body parts="parameters" use="literal"/>
 </output>
 </operation>
 </binding>
 <service name="SecureHelloWorldService">
 <port binding="s1:SecureHelloWorldServiceSoapBinding"
 name="SecureHelloWorldServicePort">
 <s2:address location="http://localhost:9111/
 SecureHelloWorldService/SecureHelloWorld
 Service"/>
 </port>
 </service>
 </definitions>

Chapter 56
Oracle Service Bus Configuration for Message-Level Security with .NET

56-10

Part IX
Completing Oracle Service Bus Services

This part describes how to use debugging and testing tools to test the Service Bus services
you create, and to then deploy those services.

This part contains the following chapters:

• Debugging Oracle Service Bus Applications

• Using the Test Console

• Deploying Oracle Service Bus Services

• Using the Oracle Service Bus Development Maven Plug-In

57
Debugging Oracle Service Bus Applications

This chapter describes how to debug Service Bus pipelines and split-joins by setting
breakpoints in the message flow and using the JDeveloper debugger. It includes the following
sections:

• Introduction to the Debugger

• Configuring the Project and Debugger

• Accessing the Debugger

• Debugging a Service Bus Application

• Working with the Debugger Windows

57.1 Introduction to the Debugger
JDeveloper provides a comprehensive integration debugger to help you assess and solidify
your Service Bus project components. The debugger reduces the development cycle by
providing troubleshooting capability directly in the development environment.

This capability means you do not need to build a Service Bus application in JDeveloper, run
it, and then return to JDeveloper to fix any issues and repeat these steps. Instead, you can
set breakpoints directly in JDeveloper for troubleshooting on pipelines and split-joins.

The debugger can handle Java callouts and supports multi-threaded debugging on split-joins
that use parallel processing. Note the following guidelines when using the debugger:

• Debugging is limited to design view in JDeveloper.

• You cannot debug most cross-language features, such as a Java callout action, XQuery
transformations, and so on. Support for debugging XSLT maps is new for the 12.2.1
release. See XSLT Editor Debugging Support for more information.

• Only one client at a time can connect to the debugger.

• You can only debug if the server is in development mode.

• The debugger cannot be enabled in production mode or when the server is part of a
cluster or an Administration Server plus one or more Managed Servers in a non-clustered
domain.

• See Introduction to the SOA Debugger in Developing SOA Applications with Oracle SOA
Suite for additional guidelines for using the SOA debugger.

For general information about the debugger windows, see Running and Debugging Java
Projectsin Developing Applications with Oracle JDeveloper.

57.1.1 Debug Servers
You can debug the Service Bus components that are deployed on an integrated or
standalone WebLogic Server. JDeveloper can manage the lifecycle for a local integrated
WebLogic server instance. When you configure a local integrated server, you can select Let
JDeveloper Manage the lifecycle for this server instance. With this configuration,

57-1

JDeveloper starts the server when you select the Run or Debug command. If the
integrated server is not configured to be managed by JDeveloper, you need to
manually start and stop the server; however you can still use the Run command to
deploy the service to be tested to the server. If the integrated server is remote, do not
select Let JDeveloper Manage the lifecycle for this server instance.

When you use a standalone server for debugging, the configuration is the same
whether it is local or remote. You do not need to configure the server in the application
properties. With a standalone server, you cannot use the Run command from the
Application Navigator. Instead, you need to manually deploy the Service Bus
application to the server using the Deploy command, and you need to start the test
console manually.

57.1.2 Local and Remote Debugging
Debugging can be performed on either a local or remote WebLogic server. A local
debugging session is started by setting breakpoints in source files, and then starting
the debugger. When debugging a Service Bus component, you have complete control
over the execution flow and can view and modify values of variables.

Remote debugging requires two JDeveloper processes: a debugger and a debugee.
The debugee is a running server that may or may not be defined in JDeveloper and
may reside on a different platform. A Service Bus application must be deployed on the
debugee server. In order to perform remote debugging, you must configure a run
configuration in the project properties, as described in How to Create Run
Configuration for Remote Debugging.

57.1.3 Debugging With Breakpoints
A breakpoint marks a point in a pipeline or split-join where message processing
pauses. This lets you examine the values of some or all of the message variables. By
setting breakpoints in potential problem areas of your message flow, you can run data
through a message flow until it reaches a location you want to debug. When a
breakpoint is encountered, message processing pauses and the debugger focuses on
the action containing the breakpoint in the source editor. You can then use the
debugger to view the state of your program. Breakpoints are flexible in that they can
be set before you begin debugging or at any time while you are debugging.

Breakpoints can be added to the following nodes on a pipeline:

• Route node

• Route action

• Branch node

• Pipeline pair path (request or response)

• Stage (both in pipeline pairs and error handlers)

• Stage action (both in pipeline pairs and error handlers)

You can add breakpoints to all split-join actions, but toggling a breakpoint on an If node
toggles the breakpoint for the If condition within the If node and not the If node itself.

Chapter 57
Introduction to the Debugger

57-2

57.1.3.1 About Conditional Breakpoints
Conditional breakpoints stop code execution when a specified condition is true. Conditional
breakpoints are supported in this release of Service Bus and JDeveloper. You can add
conditions to any breakpoint used for debugging Service Bus applications.

You can use any valid JavaScript expression that evaluates to either true or false as a
conditional expression in a breakpoint. Execution stops if the expression evaluates as true or
if the expression is invalid or cannot be evaluated to a boolean value. A breakpoint may have
only one active conditional expression.

You can also use pass counts to stop code execution when the breakpoint has been passed
the number of times you specify without triggering. You can use conditional expressions and
pass counts together.

See the following topics for additional information:

• How to Edit Breakpoint Options to edit a breakpoint’s Conditions tab to add a conditional
expression or a pass count

• Conditional Expression Behavior for conditional expressions behavior in JDeveloper

• About Pass Counts for pass count behavior in JDeveloper

• Using a Conditional Expression and a Pass Count Simultaneously for using conditional
expressions and pass counts at the same time

57.1.3.1.1 Conditional Expression Behavior
Follow these guidelines when creating conditional expressions for breakpoints when
debugging Service Bus components in JDeveloper.

The expression may reference only data values in the top-most stack frame. Consider the
example in Figure 57-1:

Chapter 57
Introduction to the Debugger

57-3

Figure 57-1 Data Values in JDeveloper

In this example, any of the following expressions are valid conditional expressions:

$inbound.security.transportClient.username == “fred”

$body.search(“aqz3”)

$messageID.indexOf(“8087”) > -1

Many data values in Service Bus are of an XML type; it is possible that multiple items
with the same name reside under a single parent. Treat this type of structure as an
array in conditional expressions. Consider the structure
of $inbound.security.transportClient.principals in Figure 57-1. There are four
elements in that location. The following conditional expressions can be used to access
a specific element in this group:

$inbound.security.transportClient.principals[0] == “AdminChannelUsers”

$inbound.security.transportClient.principals[3] == “Monitors”

In Figure 57-1, the $outbound variable has a value of null. In this case, null is a
string value. The correct conditional expression representing the null string value
is $outbound == “null”. If there were no value present for the $outbound variable, the
correct conditional expression is $outbound == “”.

Spaces are not allowed as characters in variable names in conditional expressions.
Spaces within variable names must be changed to underscores (_). Using the Java
Repository variable from Figure 57-1 as an example, the variable is referenced in a
conditional expression in the following manner: Java_Repository.jcid:null ==
“ref”, replacing the space in the variable name (Java Repository) with an
underscore (Java_Repository).

Chapter 57
Introduction to the Debugger

57-4

57.1.3.1.2 Conditional Expression Runtime Evaluation Errors
You are notified if a conditional expression fails to evaluate because it is an invalid expression
(logically or syntactically) or if it cannot be evaluated as a boolean value for any reason.

If you do not clear these notifications they are available for the remainder of your JDeveloper
session. In addition to the notification, JDeveloper logs any conditional expression evaluation
errors.

57.1.3.1.3 About Thread Options
Thread options are not supported when debugging Service Bus applications.

57.1.3.1.4 About Pass Counts
A pass count is a value that specifies how many times the breakpoint should be passed over
during execution before stopping. When this value is reached, code execution is stopped at
this breakpoint. Pass counts are supported for breakpoints in this version of Service Bus and
JDeveloper.

When the execution process comes to a breakpoint where Pass Count is set, the debugger
reduces the count value by 1 and compares it to zero. If the result is not zero, execution
continues without stopping at this breakpoint. If the result is zero, execution stops at this
breakpoint. After the pass count has been met, execution will stop at the breakpoint every
time for the remainder of the current process.

Note:

After a pass count reaches zero, execution stops at the breakpoint every time until
the pass count is reset or cleared, as described below.

The pass count is reset in the following cases:

• The debugging session is terminated and restarted.

• You update the value in the Pass Count field on the Edit Breakpoint dialog.

You can clear a pass count from a breakpoint by setting its value to zero from the Edit
Breakpoint dialog.

57.1.3.1.5 Using a Conditional Expression and a Pass Count Simultaneously
You can specify both a conditional expression and a pass count for a breakpoint. With both of
these set, the expression must evaluate as true and the pass count must be reached for
execution to stop at a given breakpoint.

As an example, if the conditional expression evaluates as true, but the pass count is set at
10, execution will not stop at this breakpoint until the pass count condition is also met. When
both a pass count and condition are specified, the pass count is always checked first and
decremented if not already zero. After the pass count is reached, the conditional expression
is evaluated each time the breakpoint is hit.

Chapter 57
Introduction to the Debugger

57-5

57.1.3.2 About Exception Breakpoints
Unlike standard breakpoints, which specify a location at which to halt execution,
exception breakpoints halt execution at the origin of an exception of a specified type.
Exception breakpoints are supported in this release of Service Bus and JDeveloper.
You can create exception breakpoints for pipelines and split-joins.

When an exception breakpoint is triggered, the debugging framework is notified and
provided with the location at which to halt execution. When execution is halted, you
can review the following information:

• The exception type being raised; this is useful you created the exception
breakpoint using a wildcard

• A message about the exception

• The stack trace of the underlying exception thrown by the runtime, if avialable

• The stack frame and the data values when execution was halted.

If multiple enabled exception breakpoints match the raised exception type, the
debugging framework selects the breakpoint that exactly matches the exception (for
instance, an exception breakpoint without a wildcard) or the first breakpoint set with a
wildcard.

Conditional expressions and pass counts are supported for exception breakpoints.
See About Conditional Breakpoints for more information about conditional expressions
and pass counts..

See the following topics for additional information about using exception breakpoints
with Service Bus components:

• How to Set Exception Breakpoints for Service Bus Components

• Pipeline Exception Breakpoints

• Split-Join Exception Breakpoints

57.1.3.2.1 Pipeline Exception Breakpoints
The pipeline runtime throws PipelineException exceptions. PipelineExceptions
contain error codes that you can set (using the Raise Error action) or are set by each
action.

You can choose the following exception types for pipeline exception breakpoints:

• All Pipeline Exceptions: Use this type to halt execution when any pipeline
exceptions are thrown, specifically those without explicit error codes..

• Pipeline Exception:Use this type to halt execution when pipeline exceptions with
an explicit error code is thrown. For example, entering 382510 into the Error
Code field halts execution when a pipeline exception with an error code of 382510
is thrown.

Chapter 57
Introduction to the Debugger

57-6

Tip:

You can enter an asterisk (*) in the Error Code field to catch any pipeline-
specific exceptions.

• System Exceptions:

Use this type for any unexpected exceptions thrown by the runtime.

See How to Set Exception Breakpoints for Service Bus Components for information about
adding pipeline exception breakpoints.

57.1.3.2.2 Split-Join Exception Breakpoints
Split-joins are based on the BPEL language. The BPEL error handling framework uses faults
and fault handlers. Faults are defined by QNames. Split-joins have a set of BPEL language-
defined faults; additionally, you can define your own faults manually or by using WSDL faults.

You can choose the following exception types for split-join exception breakpoints:

• All Split/Join Exceptions: Use this type to halt execution when any split-join exception
is thrown.

• All System Exceptions: Use this exception type to halt execution when any runtime
exception is thrown.

• Spit/Join Exception: Use this type to halt execution when a specific split-join error is
thrown. For example, entering userFault into the Error code field halts execution when
a split-join fault named userFault is thrown.

• System Exception: Use this type to halt execution when a specific runtime error is
thrown.

See How to Set Exception Breakpoints for Service Bus Components for information about
adding split-join exception breakpoints.

57.1.4 JDeveloper Debugging Windows
JDeveloper provides several different debugging windows with the debugger, where you can
view and analyze data as it moves through the debugging process. Service Bus utilizes the
following debugging windows:

• Breakpoints

• Data

• Watches

• Stack

• Threads

• Log

For more information about these windows, see "Using the Debugger Windows" in
Developing Applications with Oracle JDeveloper.

Chapter 57
Introduction to the Debugger

57-7

57.1.5 XSLT Editor Debugging Support
Starting in 12.2.1, JDeveloper has been enhanced to debug XSLT maps using the
SOA Debugger.

You can invoke this feature from Service Bus split-join and pipeline editors and from
the XSLT test tool in JDeveloper. For information on debugging XSLT maps and
setting breakpoints in the XSLT map editor, see Debugging the XSLT Map in
Developing SOA Applications with Oracle SOA Suite.

57.2 Configuring the Project and Debugger
You can configure project and debugger settings to control the debugging process.

Settings that control the way programs are debugged or run are defined in run
configurations. These settings include such things as the target, launch options, and
the behavior of the debugger, logger, and profiler. Service Bus provides a default run
configuration for local debugging and testing, but you can create new configurations. A
project may have several run configurations, each set up for a specific facet of the
project or phase of the development process. A run configuration can be bound to the
project and be available to all who work on the project, or it can be custom
configuration, for your use only.

These steps are optional, and you can perform local debugging using the default
configuration with the integrated server. For more information and instructions, see the
following topics in Developing Applications with Oracle JDeveloper:

• How to Configure a Project for Debugging

• How to Set the Debugger Start Options

• Configuring a Project for Running

57.2.1 How to Create Run Configuration for Remote Debugging
You create a new run configuration by copying an existing configuration, such as the
Default configuration provided with Service Bus. Then you modify the settings for the
new configuration

To create a run configuration for remote debugging:

Tip:

For more information about any of the windows and fields you work with on
the run configuration windows, click Help.

1. From the main menu click Application and select Project Properties.

2. In the navigation pane, select Run/Debug, and then click New on the Run/Debug
page.

3. On the Create Run Configuration dialog, enter a name for the new configuration
and select an existing run configuration to copy the initial properties from.

Chapter 57
Configuring the Project and Debugger

57-8

4. Click OK.

5. In the Run Configurations section of the Run/Debug page, select the configuration you
just created and then click Edit.

The Edit Run Configuration window appears with the Launch Settings page displayed.

6. Select Remote Debugging, and modify any other fields as needed.

7. In the navigation pane, select Remote under Tool Settings > Debugger.

8. In the Protocol field, select Attach to Service Bus.

9. Do one or both of the following:

• To connect a specific server automatically when you select this run configuration,
enter the host name, port number, and a timeout value.

• To display a dialog that lets you enter host information when you select this run
configuration, select Show Dialog Box Before Connecting Debugger.

If you perform both of the above steps, the dialog appears when you select the run
configuration, and is already populated with the connection information you specified
above.

10. Click OK, and then click OK again.

11. Click Save.

57.2.2 How to Choose a Run Configuration for Debugging
A default run configuration is created for each new project, and it uses the integrated
WebLogic server for local debugging. You can select this default or any other configuration
you have created to run a selected project. If you run the debugger from the JDeveloper
toolbar, you can select the run configuration from the list of configuration options available
next to the Debug icon.

To choose a run configuration for debugging:

1. From the main menu click Application and select Project Properties.

2. Select Run/Debug.

3. In the Run Configurations list, select the run configuration you want to use, and then click
OK.

57.3 Accessing the Debugger
There are several ways to start the JDeveloper debugger. The instructions in this section use
the Application Navigator to start the debugger, but you can use any of the these methods to
start the debugger when you are ready.

• Right-click a project or component in the application and select Debug.

• In the JDeveloper toolbar, click the Debug icon. The debug process uses the selected
run configuration. See How to Choose a Run Configuration for Debugging.

• Right-click a pipeline or split-join in the Service Bus Composite Overview Editor and
select Debug.

• Right-click in the editor of an open pipeline or split-join and select Debug.

Chapter 57
Accessing the Debugger

57-9

57.4 Debugging a Service Bus Application
This section describes how to start the debugger, create breakpoints, and debug
Service Bus applications in JDeveloper.

There are ways to debug other than using the Test Console and debugger. You can
also run your service in other ways, such as posting a JMS message or placing an
input file in the directory of a file proxy service.

• How to Set Breakpoints on Service Bus Components

• How to Debug Using Breakpoints

• How to Step Through a Debugging Session

• How to End or Detach from Debugging

57.4.1 How to Set Breakpoints on Service Bus Components
Breakpoints are the intentional pausing locations in a Service Bus application that you
set for debugging purposes. When you run test data using the Test Console, the
process pauses at each breakpoint and does not resume until you tell it to. You can set
breakpoints on pipelines and split-joins.

To set breakpoints on Service Bus components:

1. Open the pipeline or split-join you want to debug in its editor.

2. Expand the actions until you see the node to which you want to add a breakpoint.

3. Right-click the node, and select Toggle Breakpoint.

A red icon appears next to the node to indicate that a breakpoint is set.

4. Repeat the above step for each node to which you want to add a breakpoint.

5. To disable a breakpoint, right-click the node and select Disable Breakpoint.

You can also enable, disable, and remove breakpoints from the Breakpoints view,
as described in How to Remove or Disable Breakpoints and How to Enable a
Disabled Breakpoint.

6. To remove a breakpoint, right-click the node and select Toggle Breakpoint again.

7. Begin debugging, as described in How to Debug Using Breakpoints.

57.4.2 How to Set Exception Breakpoints for Service Bus Components
Exception breakpoints do not halt execution at a set point; you set exception
breakpoints in JDeveloper’s Breakpoints window instead of in a specific location.

To set an exception breakpoint for Service Bus components:

1. In JDeveloper, navigate to the Breakpoints window. If this window is not visible,
from the Window menu, select Breakpoints to open the window.

2. Click the Add Breakpoint icon, and then select Pipeline Exception Breakpoint
or Split/Join Exception Breakpoint to add an exception breakpoint of the
selected type.

Chapter 57
Debugging a Service Bus Application

57-10

3. On the Definition tab, select the exception type used for this breakpoint from the
Exception Type list.

See Pipeline Exception Breakpoints and Split-Join Exception Breakpoints for information
about the exception types available for pipeline and split-join exception breakpoints.

4. If supported by the selected type, enter a specific exception error code into the Error
Code field, or enter an asterisk (*) to halt execution when any exception of the selected
type is thrown.

5. (Optional) Configure the options on the Conditions and Actions tabs, if necessary.

6. Click OK.

The exception breakpoint is created. Exception breakpoints are enabled by default.

57.4.3 How to Debug Using Breakpoints
When you debug a component using a local server, the Test Console is launched so you can
enter the input for the debugging process. You can only test locally when using the integrated
WebLogic server. You specify whether to test locally or remotely in the project's properties.
You can also configure how breakpoints are handled during debugging.

For more information about setting these options, see "How to Configure a Project for
Debugging" and "How to Set the Debugger Start Options" in Developing Applications with
Oracle JDeveloper.

To initiate debugging on components with breakpoints:

1. Define the breakpoints for the component to debug, as described in How to Set
Breakpoints on Service Bus Components..

2. Right-click the pipeline or split-join in the Application Navigator, and select Debug.

The Test Console appears.

Note:

If you do not have a domain running, the Create Default Domain dialog
appears. Enter the connection information for the integrated server and click
OK. This may take several minutes.

3. Enter the test data in the Request Document section, and configure any additional input.

For more information, see Using the Test Console.

4. Click Execute on the Test Console.

The Test Console executes the command, but pauses when it reaches the first
breakpoint and returns to the editor for the pipeline or split-join. The breakpoint icon is
now blue instead of red to indicate where the debugger is stopped.

5. In the Log window at the bottom of JDeveloper, click Data.

In this window, you can view variable values at the current state in processing. For
information about what you can do here, see Working with the Debugger Windows.

6. To continue working through the message processing, perform the steps under How to
Step Through a Debugging Session.

Chapter 57
Debugging a Service Bus Application

57-11

57.4.4 How to Step Through a Debugging Session
The debugging framework lets you debug incrementally by performing step actions to
debug code. You can step over parts of the message flow and begin debugging at a
different location, such as a different breakpoint in the same or a different component.
As you proceed with debugging, additional frames are created for breakpoints and are
displayed in the Stack view.

All of the icons mentioned in the following steps are located in the toolbar to the right
of the Debug icon. Hover over an icon to see its name.

To step through a debugging session:

1. Begin debugging the pipeline or split-join as described in How to Debug Using
Breakpoints.

When the debugger reaches a breakpoint, you can begin to step through.

2. To find the action on which the current breakpoint is stopped, click the Find
Execution Point icon.

The current breakpoint icon is blue instead of red.

3. To step over a breakpoint and move to the next action, click the Step Over icon.

4. To step into the next valid location in the message flow, click the Step Into icon.

5. To step out of a breakpoint frame, click the Step Out icon.

6. If the debugger is paused on a breakpoint, click the Resume icon to resume
processing. The process runs until the next breakpoint is reached.

57.4.5 How to End or Detach from Debugging
To stop debugging, you can either detach or terminate the debugger.

To end or detach from a debugging session:

1. Click the Terminate icon in the tools menu.

The Terminate Debugger Process dialog appears.

2. Select Detach or Terminate.

Both options terminate the debugger connection to the server and the process
continues to run on the server until it completes.

3. If you selected Detach, click the debugger icon in the tools menu to resume
debugging.

57.5 Working with the Debugger Windows
When you start a debugging session, several tabs appear in the Log window that
provide you with additional information and features to help you with the debugging
process.

You can also access these windows from the Window > Debugger menu.

Chapter 57
Working with the Debugger Windows

57-12

57.5.1 How to Edit Breakpoint Options
The Breakpoints window lets you add breakpoints to a group and enable or disable all the
breakpoints in a group. You can also configure logging, sounds, and whether reaching a
breakpoint halts processing. The Breakpoints window is available whether you are inside or
outside a debugging session.

To view and modify the options of a breakpoint:

1. If the Breakpoints window is not open, select Window > Breakpoints from the main
menu.

2. Right-click a breakpoint and select Edit, or select the breakpoint and click the Edit icon
on the Breakpoint toolbar.

The Edit Breakpoint dialog appears with a Definition tab, a Conditions tab, and an Actions
tab.

3. Make any necessary changes to the breakpoint options.

For more information about the Definition and Actions tabs, click Help.

4. To save the changes, click OK.

57.5.2 How to Create a Breakpoint Group
Creating breakpoint groups lets you perform bulk edits to breakpoints. When you create a
group, a new node is added to the Breakpoint window and any breakpoints added to the
group appear under that group node.

57.5.2.1 Creating a Breakpoint Group
To create a breakpoint group:

1. If the Breakpoints window is not open, select Window > Breakpoints from the main
menu.

2. Right-click a breakpoint and select Edit, or select the breakpoint and click the Edit icon
on the Breakpoint toolbar.

The Edit Breakpoint dialog appears with the Definition tab displayed.

3. In the Breakpoint Group Name field, enter a new name for the group.

4. To save the changes, click OK.

The new group is added to the Breakpoint window, and the breakpoint is added to the
group.

57.5.2.2 Adding a Breakpoint to an Existing Group
To add a breakpoint to an existing group:

1. If the Breakpoints window is not open, select Window > Breakpoints from the main
menu.

2. Right-click a breakpoint and select Edit, or select the breakpoint and click the Edit icon
on the Breakpoint toolbar.

The Edit Breakpoint dialog appears with the Definition tab displayed.

Chapter 57
Working with the Debugger Windows

57-13

3. In the Breakpoint Group Name field, select the name of the group to which you
want to add the breakpoint.

4. To save the changes, click OK.

57.5.3 How to Remove or Disable Breakpoints
You can disable or remove individual breakpoints or all breakpoints.

To remove or disable breakpoints:

1. To remove an individual breakpoint, right-click the action associated with the
breakpoint in the pipeline or split-join editor and select Toggle Breakpoint. You
can also select the breakpoint in the Breakpoints window, and click Delete. You
must remove exception breakpoints using the Breakpoints window.

2. To remove all breakpoints, right-click in the Breakpoints window, and select Delete
All.

3. To disable an individual breakpoint, right-click the action associated with the
breakpoint in the pipeline or split-join editor and select Disable Breakpoint. You
can also select the breakpoint in the Breakpoints window, and click Disable. You
must disable exception breakpoints using the Breakpoints window.

4. To disable all breakpoints, right-click in the Breakpoints window, and select
Disable All.

57.5.4 How to Enable a Disabled Breakpoint
If you disable a breakpoint, you can enable it again to include it back in your debug
process.

To enable a breakpoint:

1. To enable an individual breakpoint, right-click the action associated with the
breakpoint in the pipeline or split-join editor and select Enable Breakpoint. You
can also select the breakpoint in the Breakpoints window, and click Enable. You
must enable exception breakpoints using the Breakpoints window.

2. To enable all breakpoints that have been set, right-click in the Breakpoints window,
and select Enable All.

57.5.5 How to View and Modify Variable Values at the Current
Breakpoint

The Data window displays the context variables and their values for the current
breakpoint. You can view request or response data throughout the debugging process,
and modify their values for further debugging. Only simple-type variables values can
be modified.

To view and modify variable values:

1. Begin debugging and when the debugger reaches a breakpoint, click the Data tab
in the Log window.

2. Expand the variables in the Name column to view the values of each variable and
node.

Chapter 57
Working with the Debugger Windows

57-14

3. To modify a variable value, double-click the value and enter the new value in the dialog
that appears.

4. To view the entire string that defines the variable value, right-click the variable and select
View Whole Value.

57.5.6 How to Add a Watch
A watch lets you monitor the changing values of variables or expressions as your program
runs. After you enter a watch expression, the Watches window displays the current value of
the expression. As your program runs, the value of the watch changes as your program
updates the values of the variables in the watch expression.

A watch evaluates an expression according to the current context which is controlled by the
selection in the Stack window. If you move to a new context, the expression is re-evaluated
for the new context. If the execution point moves to a location where any of the variables in
the watch expression are undefined, the entire watch expression becomes undefined. If the
execution point returns to a location where the watch expression can be evaluated, the
Watches window again displays the value of the watch expression.

To add a watch:

1. Begin debugging and when the debugger reaches a breakpoint, click the Data tab in the
Log window.

2. In the Name column, expand the nodes until you see the variable you want to watch.

3. Right-click the variable and select Watch.

The Watch window opens with a new row defining the watch for the selected variable.

Chapter 57
Working with the Debugger Windows

57-15

58
Using the Test Console

This chapter provides guidelines and information on testing services using the Service Bus
Test Console, including how to undeploy the Test Console in production environments.

This chapter contains the following topics:

• Introduction to the Test Console

• Accessing the Test Console

• Testing Proxy Services, Business Services, Pipelines, and Split-Joins

• Testing MFL Transformations

• Testing XSLT Transformations (Resources)

• Testing XQuery Transformations (Resources)

• Testing Inline Expressions

• Testing Services With OWSM Security

• About Security and Transports

• Undeploying the Test Console

• Test Console Page Reference for Services

58.1 Introduction to the Test Console
The Service Bus Test Console is a browser-based test environment you use to validate and
test the design of your system.

The Test Console is an extension of the Oracle Service Bus Console, and can be accessed
from the console, JDeveloper, and Fusion Middleware Control. The Test Console appears as
a tabbed window in JDeveloper or in a web browser, depending on the operating system and
the JDeveloper configuration.

When you test a Service Bus resource, you configure the object of your test, execute the test,
and view the results in the Test Console windows. In some cases, you can trace through the
code and examine the state of the message at specific trace points. Design-time testing helps
isolate design problems before you deploy a configuration to a production environment. The
components you can test using the Test Console include proxy services, business services,
pipelines, split-joins, XQuery resources, XSLT resources, MFL resources, and XQuery/XPath
expressions.

The Test Console can test specific parts of your system in isolation and it can test your
system as a unit. You can use the Test Console in clustered environments. However, Oracle
does not recommend deploying the Test Console in production environments. Only users in
the IntegrationAdmin and IntegrationDeployer roles can use the Test Console. For more
information about roles, see Roles in Administering Oracle Service Bus.

Most services can be tested using the Test Console, however the Test Console cannot invoke
a service that expects a Java object as the message input. For example, messaging services

58-1

that have a message request or response type of Java cannot be tested, and JEJB
operations that expect Java objects cannot be tested.

58.1.1 Proxy Service Testing
When you test a proxy service, the message is sent to the proxy service through the
transport layer. The transport layer performs manipulation of message headers or
metadata as part of the test. The configuration data you enter for the test simulates the
data that is sent to the proxy service from the client. The response from a proxy
service test is the message that is sent to the next component in the system. This
loosely correlates to an indirect call in previous versions of Service Bus.

Use this test approach in conjunction with setting custom (outbound) transport headers
in the Test Console Transport section to accurately simulate the service call. For more
information on transport settings, see Test Console Transport Settings.

Note:

Testing a request/response MQ or JMS proxy service does not work. The
Test Console does not display the response from a call to an MQ or JMS
request/response proxy service using a correlation based on a messageID.
When you test an MQ or JMS request/response proxy service, the response
is retained in the response queue and is not displayed in the Test Console.

58.1.2 Pipeline Testing
When testing pipelines, the input messages are sent directly to the pipeline. Tracing is
turned on by default, allowing you to diagnose and troubleshoot a message flow in the
Test Console. The input data you enter in the Test Console must be that which is
expected by the pipeline from the proxy service that invokes it. In other words, the Test
Console plays the role of the proxy service invoking the pipeline. This loosely
correlates to a direct call in previous versions of Service Bus.

Testing a pipeline tests the internal message flow logic. Use this test approach in
conjunction with setting custom (inbound) transport headers in the Test Console
Transport panel to accurately simulate the service call.

58.1.2.1 Execution Tracing in Pipelines Using the Test Console
Tracing a message through a pipeline involves examining the message context and
outbound communications at various points in the message flow. The points at which
the messages are examined are predefined by Service Bus, which defines tracing for
stages, error handlers, and route nodes. For each stage, the trace includes the
changes that occur to the message context and all the services invoked during the
stage execution.

The following stage information is provided by the trace:

• Initial Message Context: Shows the variables initialized by the proxy service when
it is invoked. To see the value of any variable, click the + sign associated with the
variable name.

Chapter 58
Introduction to the Test Console

58-2

• New variables: The names of all new variables and their values. Expand a variable to
view its value.

• Deleted variables: The names of all deleted variables.

• Changed variables: The names of all variables for which the value changed,
including $header, $body, and $inbound changes as a result of the processing of the
message through the stages. Expand a variable to view the new value.

• Faults: If an error occurs, the contents of the fault context variable ($fault) is shown as
a result of the stage error handler handling the validation error.

• Publish: Every publish call is listed. For each publish call, the trace includes the name of
the service invoked, and the value of the outbound, header, body, and attachment
variables.

• Service callout: Every service callout is listed. For each service callout, the trace includes
the name of the service that is invoked, the value of the outbound variable, the value of
the header, body, and attachment variables for both the request and response
messages.

The trace contains similar information for route nodes as for stages. In the case of route
nodes, the trace contains the following categories of information:

• The trace for service invocations on the request path

• The trace for the routed service

• The trace for the service invocations on the response path

• Changes made to the message context between the entry point of the route node (on the
request path) and the exit point (on the response path)

Note:

To see tracing in the log file or standard out (server console), WebLogic Server
logging must be set to the following severity levels:

• Minimum severity to log: Info

• Log file: Info

• Standard out: Info

For information on setting log severity levels, see "Using Log Severity Levels" in
Configuring Log Files and Filtering Log Messages for Oracle WebLogic Server.

58.1.3 Business Service Testing
The input test data for a business service should be in the form expected by the business
service as it would come from the pipeline, split-join, or proxy service that invokes the
business service. For example, this could be data from a route node or a service callout
action of a pipeline. The Test Console functions in the role of the invoking service when you
use it to test a business service. When testing business services, messages are always
routed through the transport layer.

When you test a business service, ensure that the user name and password you specify in
the Test Console exists in the local Service Bus domain even if the business service being

Chapter 58
Introduction to the Test Console

58-3

tested is in a remote domain. The test service performs a local authentication before
invoking any proxy or business service.

58.1.4 Recommended Approaches to Testing Services
In the scenario depicted in Figure 58-1, a client invokes the proxy service PS1, which
in turn invokes the pipeline P1. The pipeline invokes pipeline P2, then business
service B1, and then local proxy service PS2 before returning a message to the client.
Interfaces are identified by number.

Figure 58-1 Test Scenario Example

There are many valid test strategies for this scenario. Oracle recommends the
following:

• Complete the testing of interfaces other than the initial proxy service first. In the
sample scenario illustrated in Figure 58-1, this means that you complete the
testing of interfaces 1 through 6 first, then test interface 7.

Generally, you want to test in the reverse order of the way a message would flow
through the system. In this way, the message flow logic in the pipelines can be
iteratively changed and tested knowing that the downstream interfaces function
correctly.

• Test the pipeline (P1) to business service (B1) interface (1).

• Validate and test all the XQuery expressions in the pipelines prior to testing the
pipelines themselves. In Figure 58-1, interface 2 and 5 refer to XQuery expression
tests.

• Test the pipeline (P1) to pipeline (P2) interface (3).

• Test the pipeline (P1) to local proxy service (PS2) interface (4).

• Test the initial proxy service (PS1) to pipeline (P1) interface (6).

• Make your final system test simulate the client invoking the proxy service PS1.
This test is represented by interface 7 in Figure 58-1.

Chapter 58
Introduction to the Test Console

58-4

• Save the message state after executing successful interface tests to facilitate future
troubleshooting efforts on the system. Testing interface 6 is in fact a test of the complete
system. Knowing that all other interfaces in the system work correctly can help narrow
the troubleshooting effort when system errors arise.

58.1.5 HTTP Requests
When you test proxy services, the Test Console never sends an HTTP request over the
network, therefore, transport-level access control is not applied. Transport-level access
control is achieved through the web application layer. For information about message
processing in the transport layer, see Message Processing.. For information about transport
settings, see How the Runtime Uses the Transport Settings in the Test Console..

58.2 Accessing the Test Console
There are multiple ways to access the Test Console to test a specific Service Bus service,
from the Oracle Service Bus Console, JDeveloper, or Fusion Middleware Control.

Proxy services, business services, pipelines, and split-joins can only be tested outside a
session. Transformations can be tested from outside or inside a session.

Note:

If you receive an error saying the Test Console service is not running, try setting the
Admin server listen address to a specific valid address, such as localhost. In the
Oracle WebLogic Server Administration Console, go to Environment > Servers >
admin_server_name > Configuration > General to set the Listen Address. Also,
in a cluster, make sure all managed nodes are running.

58.2.1 Prerequisites
The following must be in place before you can use the Test Console:

• Service Bus must be running and, if you are testing a service, the session that contains
the resource you want to test must be activated. Services can only be tested from outside
a session, but transformations can be tested from outside or inside a session.

• Pop-up blockers must be disabled in your browser for XQuery testing to work. If you have
toolbars in the Internet Explorer browser, this may mean disabling pop-up blockers from
under the Options menu as well as for all toolbars that are configured to block them.
XQuery testing is done only in the design-time environment (in an active session).

• If you want the Test Console to generate and send SAML tokens to a proxy service, you
must configure the proxy service to require SAML tokens and to be a relying party. For
more information on creating a SAML relying party, see Create a SAML 1.1 Relying Party
in the Oracle WebLogic Server Administration Console Online Help.

Chapter 58
Accessing the Test Console

58-5

Note:

When creating a SAML relying party:

– Only WSS/Sender-Vouches and WSS/Holder-of-Key SAML profiles
are applicable to a proxy service.

– When you configure the relying party, provide the URI of the proxy
service for the target URL value. To view the URI of the proxy
service, click the open the proxy service in the Oracle Service Bus
Console and click the Transport subtab.

58.2.2 How to Access the Test Console from the Oracle Service Bus
Console

On the Oracle Service Bus Console, you can access the Test Console for a service or
transformation from that component's definition editor or from the Project or Folder
Definition Editor.

58.2.2.1 Accessing the Test Console from a Component's Definition Editor
To access the Test Console from a component's definition editor:

1. In the Oracle Service Bus Console Project Navigator, expand the project and
folders containing the service or transformation you want to test.

2. Click the resource to open it in a definition editor.

3. In the upper right section of the definition editor, click Launch Test Console (the
green arrow icon).

The Test Console appears in a new browser window, ready to test the selected
component.

58.2.2.2 Accessing the Test Console from the Project or Folder Definition Editor
To access the Test Console from the Project or Folder Definition Editor:

1. In the Oracle Service Bus Console Project Navigator, click the name of the project
or folder that contains the component you want to test.

The definition editor for that folder or project appears.

2. Locate the component you want to test in the resources table.

3. In the Actions column, click Launch Test Console (the green arrow icon).

The Test Console appears in a new browser window, ready to test the selected
component.

Chapter 58
Accessing the Test Console

58-6

58.2.3 How to Access the Test Console from Fusion Middleware Control
In Fusion Middleware Control, you can access the Test Console for a service from that
service's Dashboard page. You can only test services from Fusion Middleware Control, and
not transformations.

To access the Test Console from Fusion Middleware Control:

1. In the Fusion Middleware Control target navigator, expand SOA, expand service-bus,
and click the project that contains the component you want to test.

The Service Health page for that project appears.

2. If the services associated with the project do not appear in the Services table, perform a
search for the service to test.

Note:

Only services that have monitoring enabled are displayed on this page.

3. In the Services table, click the name of the service to test.

The Dashboard for the service appears.

4. To the right of the service name, click Launch Test Console (the green arrow icon).

The Test Console appears in a new browser window, ready to test the selected
component.

58.2.4 How to Access the Test Console from JDeveloper
In JDeveloper, you can access the Test Console for a service or transformation from that
service's definition editor or from its context menu. Transformations provide multiple options
for testing, including the Test Console and JDeveloper XSLT tester.

58.2.4.1 Accessing the Test Console from JDeveloper
To access the Test Console for a service from JDeveloper:

1. In JDeveloper expand the Service Bus project containing the service you want to test.

2. Do one of the following:

• Double-click the service to display its editor, and then click the Run icon in the
JDeveloper toolbar.

• Right-click the service and select Run.

The Test Console appears in a new tabbed window, ready to test the selected service.

58.2.4.2 Accessing the Test Console for a Transformation from JDeveloper
To access the Test Console for a transformation from JDeveloper:

1. In JDeveloper expand the Service Bus project containing the transformation you want to
test.

Chapter 58
Accessing the Test Console

58-7

2. Do one of the following:

• Click the transformation to display its editor, and then click the Run icon in the
JDeveloper toolbar.

• Right-click the transformation and select Run.

Note:

Clicking Debug also launches the Test Console, but is typically used
in conjunction with breakpoints so you can step through the
message flow in sections.

3. If a dialog appears, select In Service Bus Test Console as the choice for how the
target should be started.

The Test Console appears in a new tabbed window, ready to test the selected
service.

58.3 Testing Proxy Services, Business Services, Pipelines,
and Split-Joins

When testing Service Bus services, you cannot be in an active session. The Test
Console lets you test input, transport headers, attachments, and certain security
configurations.

For more information about testing services, see Introduction to the Test Console.

Note:

• In a clustered domain, you cannot use the Test Console to test any
configured business service or proxy service which routes to a business
service.

• When the Test Console invokes a proxy with HTTP custom token
authentication, the authentication check is not performed.

58.3.1 How to Test Service Bus Services
When you launch the Test Console for a service, you can configure the test input,
including the operation to test, the message payload, transport headers, and security
information. For pipelines, you can trace message processing through the different
components. The following figure shows an example of a Test Console page.

Chapter 58
Testing Proxy Services, Business Services, Pipelines, and Split-Joins

58-8

Figure 58-2 Pipeline Testing Page on the Test Console

To test a Service Bus service:

1. If applicable, make sure the session in the Oracle Service Bus Console is activated.

2. Locate the proxy service, business service, pipeline, or split-join you want to test, and
launch the Test Console, as described in Accessing the Test Console..

3. For SOAP and XML services, select the WSDL operation you want to test.

4. In the Request Document section, enter the test data to use. This must be the data that
the service expects to receive.

For information about filling in this section, see Request Document Test Console
Properties.

Note:

A secured SOAP message is displayed with extra white spaces. Because white
spaces can affect the semantics of the document, this SOAP message cannot
always be used as the literal data. For example, digital signatures are white
space-sensitive and can become invalid.

5. Configure the remaining sections of the Test Console. For information about the
properties you can set, see Test Console Page Reference for Services.

Chapter 58
Testing Proxy Services, Business Services, Pipelines, and Split-Joins

58-9

6. Click Execute.

The Test Console displays the request message and the service's response
message and metadata. For information about interpreting the test results, see
How to View Service Test Results.

7. To run the test again, click Back. Repeat steps 3 through 6.

58.3.2 How to Test Attachments in Services
You can test message attachments with proxy services, business services, and
pipelines.

To test services with attachments:

1. If applicable, make sure the session in the Oracle Service Bus Console is
activated.

2. Locate the proxy service, business service, or pipeline you want to test, and
launch the Test Console, as described in Accessing the Test Console..

3. For SOAP and XML services, select the WSDL operation you want to test.

4. For pipelines, specify whether to enable tracing. For more information, see How To
Trace Pipeline Processing.

5. In the Request Document section, enter the payload for the test message.

As an example, the following input uses a submitAttachment operation to send a
ZIP file as an attachment in a SOAP message.

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">
 <env:Header/>
 <env:Body>
 <m:submitAttachment xmlns:m="http://www.alsb.com/SOAPwithAttachment/">
 <submitAttachment>
 <fileName>c:\yourfile.zip</fileName>
 </submitAttachment>
 <zipFile href="cid:zipFile"/>
 </m:submitAttachment>
 </env:Body>
</env:Envelope>

For information about filling in this section, see Request Document Test Console
Properties.

6. In the Attachment section of the Test Console, enter values for the attachment
headers, as described in Attachment Test Console Properties. You must select the
file to use as an attachment.

7. Configure the remaining sections of the Test Console. For information about the
properties you can set, see Test Console Page Reference for Services.

8. Click Execute.

To confirm success of the sent attachment, check the server console for a
message similar to the following, which is logged in our example by the
submitAttachment operation:

WS called - received the following properties:
submitAttachment is:
 com.alsb.soapwithattachment.SubmitAttachmentRequestType@e2abb0
zipFile is: javax.activation.DataHandler@175cf0a

Chapter 58
Testing Proxy Services, Business Services, Pipelines, and Split-Joins

58-10

58.3.3 How To Trace Pipeline Processing
When you enable tracing for a pipeline, the test results include the details of the trace. Use
tracing to track problems in the system and to isolate them for correction. The trace
information shows the path taken through the request and response paths in the code. the
following figure shows the results of a pipeline trace.

While viewing the trace you can also view the message flow in the Oracle Service Bus
Console or JDeveloper. This helps you relate the trace to the stages and actions in the
message flow. You can modify the message flow and run the trace again to view the output.

Figure 58-3 Pipeline Invocation Trace

To trace a message through a pipeline:

1. If applicable, make sure the session in the Oracle Service Bus Console is activated.

2. Locate the pipeline you want to test, and launch the Test Console, as described in
Accessing the Test Console..

3. For SOAP and XML services, select the WSDL operation you want to test from the
available options in the Service Operation section.

4. In the Test Configuration section, make sure Include Tracing is selected.

5. In the Request Document section, enter the test data to use. This must be the data that
the pipeline expects to receive.

Chapter 58
Testing Proxy Services, Business Services, Pipelines, and Split-Joins

58-11

For information about filling in this section, see Request Document Test Console
Properties.

6. Configure the remaining sections of the Test Console. For information about the
properties you can set, see Test Console Page Reference for Services.

7. Click Execute.

The Test Console displays the request message and the service's response
message and metadata. For information about interpreting the test results, see
How to View Service Test Results.

8. Scroll down to the Invocation Trace section.

This section displays a representation the message flow. You can trace the
message through the service and view the state of the message at pre-selected
points in the trace. The trace points are automatically set.

9. Click the + plus sign to expand the message flow to view more detail.

58.3.4 How to View Service Test Results
When you test a proxy service, business service, pipeline, or split-join, the Test
Console displays the results in several sections. Table 58-1 describes the testing
results sections.

Table 58-1 Testing Results for Proxy Services

Section Description

Request Document The request message sent to the service by the Test Console.

This section is initially collapsed if the Test Console did not modify
the request message. This section is initially expanded for SOAP
services configured using the Form tab or if WS-Security has been
applied.

If WS-Security has been applied, this section contains two SOAP
messages. The first message is the clear text message; the second
is the secured SOAP message.

Response Document The message response generated by the service. This section also
indicates if any errors occurred.

For a SOAP service with a WS-Security response, this section
contains two SOAP messages. The first SOAP message is the
secured message as received by the client. The second SOAP
message is the corresponding clear text message.

Response Metadata The metadata retuned with the message response.

Invocation Trace Tracing is available only for pipelines, and this section shows the
state of the message as it passes through the system. This is only
performed when you select Include Tracing prior to executing the
test.

58.4 Testing MFL Transformations
A Message Format Language (MFL) document is a specialized XML document used
to describe the layout of binary data.

MFL resources support the following transformations:

Chapter 58
Testing MFL Transformations

58-12

• XML to binary: There is one required input (XML) and one output (binary).

• binary to XML: There is one required input (binary) and one output (XML).

Each transformation accepts only one input and provides a single output. You can test MFL
transformations using the Test Console, accessed from either JDeveloper or the Oracle
Service Bus Console, or using the tester in the Format Builder in JDeveloper.

58.4.1 How to Test MFL Transformations in the Test Console
You can test transformations after activating a session or during a session to ensure that the
resources operate with the expected behavior. If you do not active the session, the testing is
done at design time using your local changes.

In JDeveloper, you can also use the Format Builder's built-in testing tool. For information
about running tests from the Format Builder, see Testing Format Definitions.

To test MFL transformations in the Test Console:

1. To test the runtime, activate the current session. To test the design time, do not activate
the session.

2. Locate the MFL resource you want to test, and launch the Test Console, as described in
Accessing the Test Console..

3. Configure the test data for the MFL resource. For more information, see Table 58-2.

4. Click Execute.

The Test Console displays the results.

5. To retest, click Back. You can close the Test Console, modify, and retest the resource.

Table 58-2 MFL Test Console Properties

Section Description

Supported
transformations

To select a specific transformation to test, select the transformation name.

Input Document • XML Input: Required for XML to binary transformations:

The XML schema for the MFL document can be inferred. A sample XML
document is automatically entered in the text field. The XML input can be
file-based or text-based. Referencing a file for input takes precedence
over textual input. Browse and select the file you want to use in your test.

• Binary Input: Required for binary to XML transformations:

The binary input can be file-based or text-based. Referencing a file for
input takes precedence over textual input. Browse and select the file you
want to use in your test.

58.4.2 MFL Test Console Example
The following example illustrates testing an MFL transformation, and shows the contents of
the MFL file, the test input, and the test results. The Test Console generates a sample XML
document from the MFL file, and you execute the test using the XML input. A successful test
results in the transformation of the message content of the input XML document to binary
format.

Example - Contents of the MFL File

Chapter 58
Testing MFL Transformations

58-13

Below is an example of an MFL file.

<?xml version='1.0' encoding='windows-1252'?>
<!DOCTYPE MessageFormat SYSTEM 'mfl.dtd'>
 <MessageFormat name='StockPrices' version='2.01'>
 <StructFormat name='PriceQuote' repeat='*'>
 <FieldFormat name='StockSymbol' type='String' delim=':'
codepage='windows-1252'/>
 <FieldFormat name='StockPrice' type='String'
delim='|'codepage='windows-1252'/>
 </StructFormat>
 </MessageFormat>

Example - Test Console XML Input

The XML document generated by the Test Console to test the MFL file in the previous
example is shown below.

<StockPrices>
 <PriceQuote>
 <StockSymbol>StockSymbol_31</StockSymbol>
 <StockPrice>StockPrice_17</StockPrice>
 </PriceQuote>
</StockPrices>

Example - MFL Test Console Results

When you click Execute in the Test Console to run this test, the console displays the
following data (the stock symbol and stock price in binary format).

00000000:53 74 6F 63 6B 53 79 6D 62 6F 6C 5F 33 31 3A 53 StockSymbol_31:S
00000010:74 6F 63 6B 50 72 69 63 65 5F 31 37 7C StockPrice_17|...

58.5 Testing XSLT Transformations (Resources)
Extensible Stylesheet Language Transformation (XSLT) describes XML-to-XML
mappings in Service Bus. You can use XSLT transformations in XQuery expressions in
message flows.

To test an XSLT resource, you must supply an input XML document. The Test Console
returns the output XML document. An XSLT transformation can include multiple
parameters to assist with a transformation. All parameters required by the
transformation are displayed on the Test Console. Default values are available but you
can override them. XSLT parameters accept either primitive values or XML document
values. You cannot identify the types of parameters from the XSL transformation.

You can access the Test Console for XSLT transformations from the Oracle Service
Bus Console or from JDeveloper. In JDeveloper, you can also use the XSLT mapper's
built-in tester.

58.5.1 How to Test XSLT Transformations Using the Test Console
XSLT transformations can be tested after activating a session or during a session to
ensure that the resources operate with the expected behavior. You must activate the
session to test the runtime, otherwise the testing is done at design time using your
local changes.

To test an XSLT transformation using the Test Console:

Chapter 58
Testing XSLT Transformations (Resources)

58-14

1. To test the runtime, activate the current session. To test the design time, do not activate
the session.

2. Locate the XSLT resource you want to test, and launch the Test Console, as described in
Accessing the Test Console..

3. Configure the test data for the resource by entering the following information.

• XML Input: The XML input can be file-based or text-based. If you select a file for
input, it takes precedence over textual input. Browse and select the file you want to
use in your test. XML input is required.

• param_name: A named XSLT parameter. There are two types of input: XML and
primitive (String, integer, float, and so on). The default input type is String. Select the
as XML check box associated with the parameter name to identify a parameter of type
XML. For more information about this option, see Testing XQuery Transformations
(Resources).

4. Click Execute.

The Test Console displays the results.

5. To retest, click Back. You can close the Test Console, modify, and retest the resource.

58.5.2 How to Test XSLT Transformations Using the JDeveloper XSLT
Mapper

While you can access the Test Console for XSLT transformations from JDeveloper,
JDeveloper provides its own tester for XSLT transformations that you can access directly
from the XSLT Mapper. Custom XPath functions cannot be tested in the mapper.

For information and instructions about running XSLT transformation tests in JDeveloper, see
"Testing the Map" in Developing SOA Applications with Oracle SOA Suite.

58.6 Testing XQuery Transformations (Resources)
XQuery uses the structure of XML to express queries across different kinds of data, whether
physically stored in XML or viewed as XML. An XQuery transformation can take multiple
inputs and returns one output.

The inputs expected by an XQuery transformation are variable values to bind to each of the
XQuery external variables defined. The value of an XQuery input variable can be a primitive
value (String, integer, date), an XML document, or a sequence of the previous types. The
output value can be a primitive value (String, integer, date), an XML document, or a
sequence of the previous types.

XQuery is a typed language, which means every external variable is given a type. The types
can be categorized into the following groups:

• Simple/primitive type (string, int, float, and so on)

• XML nodes

• Untyped

In the Test Console, all three variables are listed in the Variables section of the Test Console,
and you configure their input when performing the test. By default, XML is selected for the
untyped variable as it is the most typical case.

Chapter 58
Testing XQuery Transformations (Resources)

58-15

58.6.1 XQuery Transformation Testing Prerequisites and Guidelines
You must disable the pop-up blockers in your browser for the XQuery testing to work.
Note that if you have toolbars in the Internet Explorer browser, you may need to
disable pop-up blockers from under the browser Options menu as well as for all
toolbars that are configured to block them.

When performing XQuery testing in the Test Console, use the Back button to execute
a new test. However, if you want to execute a new test after making changes to the
XQuery, you must close and re-open the Test Console for the changes to take effect.

58.6.2 How to Test XQuery Transformations in the Test Console
XQuery maps can describe XML-to-XML, XML to non-XML, and non-XML to XML
mappings. The Test Console does not support sequences on input. You can test
transformations after activating a session or during a session to ensure that the
resources operate with the expected behavior. You must activate the session to test
the runtime, otherwise the testing is done at design time using your local changes.

To test an XQuery transformation using the Test Console:

1. To test the runtime, activate the current session. To test the design time, do not
activate the session.

2. Locate the XQuery resource you want to test, and launch the Test Console, as
described in Accessing the Test Console..

3. Configure the test data for the resource by entering the XQuery input. The input is
based on the external variables, as described below.

• There is one input field named for each of the XQuery external variables.

• A single-line edit box is displayed if the type is a simple type. A multi-line edit
box is displayed if the data is XML.

• A combination input field is used when the variable is not typed. You must
declare the variable type. Select the as XML check box to identify a parameter
of type XML.

• An XML input can be file-based or text-based. Referencing a file for input
takes precedence over textual input. Browse and select the file you want to
use in your test.

• Input in the Test Console is rendered based on the type to make it easier to
understand the type of data you must enter. When untyped, the default type is
XML.

4. Click Execute.

The Test Console displays the results.

5. To retest, click Back. You can close the Test Console, modify, and retest the
resource.

Chapter 58
Testing XQuery Transformations (Resources)

58-16

58.7 Testing Inline Expressions
You can test expressions in a message flow action from the XQuery/XSLT Expression Editor,
the XQuery Condition Editor, and the XPath Expression Editor when you create or modify an
expression or condition in the Oracle Service Bus Console.

You can also access the Test Console from the Expression Builders in JDeveloper. Testing
takes the same form for both the XQuery/XSLT expression and condition editors, but is
slightly different for the XPath Expression Editor.

58.7.1 How to Test XQuery Expressions
You can test XQuery expressions directly from the XQuery/XSLT Expression Editor and the
XQuery Condition Editor.

To test XQuery expressions:

1. Create or update the expression in the pipeline action.

2. Do one of the following:

• In JDeveloper: Click the Test Expression icon.

• In the Oracle Service Bus Console: Click Validate to make sure the expression is
valid, and then click Test.

The Test Console appears, and displays the expression being tested.

3. Configure the test data for the resource by entering the XQuery input in the Data Inputs
section. The input is based on the external variables, as described below.

• There is one input field named for each of the XQuery external variables.

• A single-line edit box is displayed if the type is a simple type. A multi-line edit box is
displayed if the data is XML.

• A combination input field is used when the variable is not typed. You must declare the
variable type. Select the as XML check box to identify a parameter of type XML.

• An XML input can be file-based or text-based. Referencing a file for input takes
precedence over text input. Browse and select the file you want to use in your test.

• Input in the Test Console is rendered based on the type to make it easier to
understand the type of data you must enter. When untyped, the default type is XML.

4. Click Execute.

The Test Console displays the results.

5. To retest, click Back. You can close the Test Console, modify, and retest the resource.

To execute a new test after making changes to the XQuery, you must close and reopen
the Test Console for the changes to take effect.

58.7.2 How to Test XPath Expressions
You use XPath expressions to select a subset of an XML message context variable. You can
use the Test Console in the XPath Expression Editor to test the definition of the XPath
expression. An XPath expression takes a single XML document as input and generates a
sequence of XML documents, primitives types, or both as output.

Chapter 58
Testing Inline Expressions

58-17

To test an XPath expression:

1. Create or update the XPath expression in the message flow action.

2. When you are done defining the expression, click Validate to make sure the
expression is valid.

3. Click Test.

The Test Console appears, and displays the expression being tested.

4. Configure the test data for the resource by entering the XML input in the Data
Inputs section.

• This section contains a single input field corresponding to the XML document
against which this XPath expression is being tested.

• The XML input can be file-based or text-based. Referencing a file for input
takes precedence over textual input. Browse and select the file you want to
use in your test.

5. Click Execute.

The Test Console displays the results.

6. To retest, click Back. You can close the Test Console, modify, and retest the
resource.

To execute a new test after making changes to the XPath expression, you must
close and reopen the Test Console for the changes to take effect.

58.8 Testing Services With OWSM Security
The Test Console supports testing proxy services and business services protected
with OWSM security policies.

When a service has OWSM policies attached, the message exchange between the
Test Console and the service is protected by the mechanisms of the policy. According
to the policy, the test service digitally signs or encrypts the message (more precisely,
parts of the message) and includes any applicable security tokens. You specify the
input to the digital signature and encryption operations in the clear-text SOAP
envelope specified as described in Request Document Test Console Properties.

If you specify a service key provider in the Test Console, all client-side PKI key-pair
credentials required by WS-Security are retrieved from the service key provider. You
use the user name and password fields when an operation's request policy specifies
an Identity Assertion and Username Token as one of the supported token types.

Table 58-3 and Table 58-4 describe security scenarios.

Chapter 58
Testing Services With OWSM Security

58-18

Table 58-3 Digital Signature and Encryption Scenarios

Scenario Is Service Key Provider Required?

The request policy has a
Confidentiality assertion.

No. The test service encrypts the request with the service's
public key. When testing a proxy service, the test service
automatically retrieves the public key from the encryption
certificate assigned to the service key provider of the proxy
service.

When testing a business service, the encryption certificate is
embedded in the WSDL file of the business service. The test
service automatically retrieves this WSDL file from the WSDL
repository and extracts the encryption certificate from the
WSDL file.

The response policy has a
Confidentiality assertion.

Yes. In this scenario, the operation policy requires the client to
send its certificate to the service. The service will use the public
key from this certificate to encrypt the response to the client. A
service key provider must be specified and must have an
associated encryption credential.

If both request and response encryption are supported,
different credentials must be used.

The request policy has an Integrity
assertion.

Yes. The client must sign the request. A service key provider
must be specified and must have an associated digital
signature credential.

Furthermore, if this is a SAML holder-of-key integrity assertion,
a user name and password is needed in addition to the service
key provider.

The response policy has an Integrity
assertion.

No. In this case, the policy specifies that the service must sign
the response. The service signs the response with its private
key. The Test Console simply verifies this signature.

When testing a proxy service, this is the private key associated
to the service key provider's digital signature credential for the
proxy service.

When testing a business service, the service signing key-pair is
configured in a product-specific way on the system hosting the
service.

In the case that the current security realm is configured to do a
Certificate Lookup and Validation, the certificate that maps to
the service key provider must be registered and valid in the
certificate lookup and validation framework.

For more information on Certificate Lookup and Validation, see
''Configuring the Certificate Lookup and Validation Framework"
in Administering Security for Oracle WebLogic Server.

Chapter 58
Testing Services With OWSM Security

58-19

Table 58-4 Identity Policy Scenarios (Assuming that the Policy has an Identity
Assertion)

Supported
Token Types
(From the
Identity
Assertion inside
the request
policy)

Description Comments

UNT The service only
accepts WSS
user name
tokens

You must specify a user name and password in the
Security panel.

X.509 The service only
accepts WSS
X.509 tokens

You must specify a service key provider in the Security
panel and the service key provider must have an
associated WSS X.509 credential.

SAML The service only
accepts WSS
SAML tokens

You must specify a user name and password in the
Security panel or a user name and password in the
Transport panel. If both are specified, the one from the
Security panel is used as the identity in the SAML token.

UNT, X.509 The service
accepts UNT or
X.509 tokens

You must specify a user name and password in the
Security panel or a service key provider in the Security
panel with an associated WSS X.509 credential. If both
are specified, only a UNT token is generated.

UNT, SAML The service
accepts UNT or
SAML tokens

You must specify a user name and password in the
Security panel or a user name and password in the
Transport panel. If both are specified, only a UNT token
is sent.

X.509, SAML The service
accepts X.509 or
SAML tokens

You must specify one of the following:

• user name and password in the Security panel
• user name and password in the Transport panel
• service key provider with an associated WSS X.509

credential

UNT, X.509,
SAML

The service
accepts UNT,
X.509 or SAML
tokens

You must specify one of the following:

• user name and password in the Security panel
• user name and password in the Transport panel
• service key provider with an associated WSS X.509

credential

58.8.1 Limitations for Services and Policies
The following limitations exist for testing proxy services with SAML policies and
business services with SAML holder-of-key policies:

• Testing proxy services with inbound SAML policies is not supported.

• Testing business services with a SAML holder-of-key policy is a special case. The
SAML holder-of-key scenario can be configured in two ways:

– As an integrity policy (this is the recommended approach)

– As an identity policy

Chapter 58
Testing Services With OWSM Security

58-20

In both cases, you must specify a user name and password; the SAML assertion will be
on behalf of this user. If SAML holder-of-key is configured as an integrity policy, you must
also specify a service key provider. The service key provider must have a digital
signature credential assigned to it. This case is special because this is the only case
where a user name and password must be specified even if there is not an identity policy.

Note:

After executing a test in the Test Console, the envelope generated with WSS is
not always a valid envelope; the results page in the Test Console includes white
spaces for improved readability. That is, the secured SOAP message is
displayed with extra white spaces. Because white spaces can affect the
semantics of the document, this SOAP message cannot always be used as the
literal data. For example, digital signatures are white-space sensitive and can
become invalid.

58.9 About Security and Transports
When using the Test Console to test HTTP business services with basic authentication, the
Test Console authenticates the user name and password from the service account of the
business service.

Similarly, when testing JMS, email, or FTP business services that require authentication, the
Test Console authenticates the service account associated with the business service.

When you test proxy services, the Test Console never sends a HTTP request over the
network. Therefore, transport-level access control is not applied.

58.10 Undeploying the Test Console
Oracle recommends that you not use the test framework in production systems. For example,
testing pipelines bypasses some important security steps, including access control.

When you create a Service Bus domain, the Configuration Wizard, by default, includes the
ALSB Test Framework (Test Console) as a target on the Admin Server and any Managed
Servers. The following section describe different options for undeploying the Test Console:

• Untargeting the Test Console Before Domain Creation

• Untargeting the Test Console when the Server is Running

• Untargeting the Test Console when the Server is Not Running

58.10.1 Untargeting the Test Console Before Domain Creation
To untarget the Test Console in the Oracle Fusion Middleware Configuration Wizard before a
domain is created:

1. When creating a Service Bus domain with the Configuration Wizard, select the optional
configuration for Deployments and Services.

2. In the related wizard pages that follow, for each server, select Service Bus Test
Framework in the Targets panel and click the left-facing arrow to move it to the
Deployments panel.

Chapter 58
About Security and Transports

58-21

When the wizard creates the domain, the Test Console
(OSB_ORACLE_HOME\lib\apps\TestFwk.ear) is not deployed.

58.10.2 Untargeting the Test Console when the Server is Running
You can undeploy the Test Console if it has already been deployed to the Service Bus
server and the server is already running.

To undeploy the Test Console on a running Service Bus domain:

1. Start the Oracle WebLogic Server Administration Console and log in.

2. In the left navigation pane under Domain Structure, click Deployments.

The Summary of Deployments page appears.

3. In the Deployments table, click Service Bus Test Framework.

The Overview page for the Service Bus Test Framework appears.

4. Click the Targets tab.

5. Select the check box next to Service Bus Test Framework in the Target
Assignments table to select all the test framework resources.

6. Click Change Targets.

7. On the Target Deployments page, clear the check boxes next to the Admin Server
and all Managed Servers.

8. Click Yes.

A message is displayed indicating that the settings have been successfully
updated.

58.10.3 Untargeting the Test Console when the Server is Not Running
If a Service Bus domain is not running, you can use the WebLogic Scripting Tool
(WLST) to untarget the Test Console from the domain..

To untarget the Test Console using WLST:

1. If you have not already set up your environment to use WLST, see Main Steps for
Using WLST in Interactive or Script Mode in Understanding the WebLogic
Scripting Tool.

2. Run the following command to invoke WLST Offline.

C:>java weblogic.WLST

Note:

You must have your environment set up properly for this command.
Depending on your operating system, run setWLSEnv.cmd or
setWLSEnv.sh from WL_HOME/server/bin.

3. To read the domain that was created using the Configuration Wizard, run the
following command:

wls:/offline>readDomain('C:/oracle/user_projects/domains/domain_name')

Chapter 58
Undeploying the Test Console

58-22

4. To untarget the Service Bus Test Framework application, run the following command:

wls:/offline/domain_name>unassign("AppDeployment", "Service Bus Test Framework",
"Target", "AdminServer", "ManagedServer_1", "ManagedServer_2")

Include the names of all managed servers in the command.

5. To update the domain, run the following command:

wls:/offline/base_domain>updateDomain()

6. To close the domain, run the following command:

wls:/offline/base_domain>closeDomain()

7. Run the following command to exit from the WLST command prompt:

wls:/offline>exit()

58.11 Test Console Page Reference for Services
This section describes each section displayed on the Oracle Service Bus Test Console when
you test a Service Bus service. Not all sections are displayed for all components, and some
sections vary depending on the component being tested.

The Test Console request page includes a combination of the following sections, depending
on the type of service you are testing and the type of messaging it uses:

• Test Configuration Test Console Properties

• Service Operation Test Console Properties

• Request Document Test Console Properties

• Security Test Console Properties

• Authentication Test Console Properties

• Transport Test Console Properties

• Attachment Test Console Properties

58.11.1 Test Configuration Test Console Properties
This section only appears when testing pipelines, and it includes one field: Include Tracing.
Select this check box to include a trace of the state of the message at each stage of
processing.

58.11.2 Service Operation Test Console Properties
This section appears when the proxy service, business service, pipeline, or split-join being
tested is based on a WSDL file with operations and when testing a RESTful proxy or
business service. The fields that appear in this section vary depending on whether the
service is WSDL-based or RESTful, and whether you select the SOAP or REST view for a
RESTful business service.

For RESTful business services, the REST view displays information as a pure REST service.
The SOAP view displays information as the caller (pipeline) would see the data (that is,
wrapped as a WSDL SOAP service). The fields for the SOAP view are the same as those for
a WSDL-based service.

Chapter 58
Test Console Page Reference for Services

58-23

Table 58-5 Test Console Properties- Service Operation

Property Description

Operation Select the WSDL operation to test from the list of operations
associated with the service. This field is available for WSDL-
based services and on the SOAP view for RESTful business
services.

Resource Select an existing URL resource path from the list. A resource is
any source of specific information that can be addressed. This
field is only available when testing RESTful services.

Method Select the REST operation to perform. This field is only available
when testing RESTful services.

Accept Select the accepted media type for the test input from the list of
options. Options vary depending on the service configuration.
This field is only available when testing RESTful services.

58.11.3 Request Document Test Console Properties
The input fields generate the request message that is sent to the proxy service,
business service, pipeline, or split-join. The values you enter in the Request Document
section are service-type specific. The service types and a description of the input
required by each are listed below.

The Invocation Mode option is only displayed when testing any SOAP or any XML
proxy service. Clear the Request/Response check box for one-way service
invocations. Select the check box for request/response invocations.

Table 58-6 Test Console Properties - Request Document

Service Type Description

WSDL If the service is a WSDL-based service with multiple operations
defined, the Test Console generates and provides a sample
document to use when testing the service. Use this sample data
directly, edit it, and then run the test, or provide your own test
data.

Any XML Enter the request input in the form of a payload.The payload is
the content of the message being sent. The content is expected
to be an XML document. You can browse to a file or enter the
message content directly in the text box.

Any SOAP Enter the request input in the form of a payload. The payload is
the content of the message being sent. The content is expected
to be the SOAP envelope. You can browse to a file or enter the
message content in the text box.

Chapter 58
Test Console Page Reference for Services

58-24

Table 58-6 (Cont.) Test Console Properties - Request Document

Service Type Description

Messaging Enter a single input, either file-based or text-based. Messaging
services define several different input types, including Binary,
Java, MFL, XML, and text. For the type none, no input is
required.

Oracle recommends entering binary input from a file. Data
entered in the text area is converted to binary input using the
system encoding.

Data entered from files for text services must be converted to
text. The encoding input field specifies the encoding to apply
during the conversion. The system encoding is used if this field is
not configured. By default, the encoding field is initialized with
the encoding value configured on the proxy service endpoint.

Soap Document For a SOAP document, the SOAP envelope is usually composed
of zero or more headers and one body payload. The Form and
XML tabs provide alternative ways to specify the content.

The Form tab contains a SOAP Header field and a SOAP Body
field. The content of the SOAP Header field is expected to be a
SOAP Header tag (this allows for the definition of more than one
header). The SOAP Body field contains the data that is actually
sent as part of the message. The content is expected to be an
XML document. Both the header and the body are used to
generate the SOAP envelope.

SOAP RPC For SOAP RPC, the SOAP envelope is composed of zero or
more headers, and zero or more arguments. The Form and XML
tabs provide alternative ways to specify the content.

The Form tab contains a single input for SOAP headers, and one
input field for each argument (the name of the input field
corresponds to the name of the argument). The content of the
SOAP Header field is expected to be a SOAP Header tag (this
allows for the definition of more than one header).

The Test Console uses the WSDL file detect the type of each
argument. A single-line input field is used for primitive types; a
multi-line input field is used for XML types. A sample document
is automatically generated to facilitate testing.

The headers and arguments are used by the Test Console to
generate the SOAP envelope.

The XML tab contains a single input field. The content of this
field is expected to be the SOAP envelope being sent. The
payload (XML input) can be file-based or text-based.
Referencing a file for input takes precedence over textual input.
Browse and select the file you want to use in your test.

Chapter 58
Test Console Page Reference for Services

58-25

Table 58-6 (Cont.) Test Console Properties - Request Document

Service Type Description

REST The input for a RESTful service varies depending on the
resource being tested and whether you are using the SOAP view
or the REST view.

In the SOAP view, enter the request input in the form of a
payload. The payload is the content of the message being sent.
Click Browse to navigate to and select a file or enter the
message content in the text box.

In the REST view, the request input can be in the form of REST
parameters or in the form of a payload. If parameter fields are
displayed, enter the input for each parameter. If the Payload field
is displayed, select the media type from the list of options, and
then click Browse to navigate to and select a file or enter the
message content in the text box

58.11.4 Security Test Console Properties
If the service being tested is secured using OWSM policies, the Security panel
appears on the test console. You can modify override values and add or remove
security policies. To test with additional policies, click the Add button and select the
policies to test. For more information, see Securing Oracle Service Bus with Oracle
Web Services Manager.

Table 58-7 Test Console Properties - Security

Property Description

Policy Name Displays the name of the OWSM policies attached to the service
being tested.

Property Displays the name of each available override property for the
listed policies. The available properties vary based on the
policies that are attached.

Default Value Displays the default value, if any, for each override property.

Override Value Enter the value you want to use for the override property when
testing the service.

Actions Click the Delete icon in this column to remove an attached policy
for testing purposes.

58.11.5 Authentication Test Console Properties
If the service being tested routes the message to a business service that expects a
SAML token, this is the identity that will be represented by the token. For more
information, see Using SAML with Oracle Service Bus.

Chapter 58
Test Console Page Reference for Services

58-26

Table 58-8 Test Console Properties - Authentication

Property Description

Username Enter the user name for setting the security context used by the test
service when invoking the service. Do not confuse this field with the
Web Services Security (WSS) user name field. This must be a valid
user name and password in the local security realm. An invalid user
name or invalid password will cause a client-side error on the test
service.

Note: When the Test Console invokes a proxy with HTTP custom
token authentication, the authentication check is not done.

Password Enter password associated with the user name.

Service Key Provider Enter the service key provider to use for authentication. This field is
used when testing an HTTPS business service with client certificate
authentication. The service provider must have an associated SSL
client credential. The test service will use that credential during the
SSL handshake.

58.11.6 Transport Test Console Properties
Use the Transport panel in the Test Console to specify the metadata and transport headers
for messages in your test system. The following sections describe the transport settings and
how they affect processing:

• Test Console Transport Settings

• How the Runtime Uses the Transport Settings in the Test Console

58.11.6.1 Test Console Transport Settings
The Transport section of the Test Console varies depending on the type of transport being
tested.Figure 58-4 shows the Transport section for a WSDL-based proxy service.

Chapter 58
Test Console Page Reference for Services

58-27

Figure 58-4 Transport Panel in the Test Console

By setting the metadata and the transport headers in the pipeline, you influence the
actions of the outbound transport. You can test the metadata, the message, and the
headers so that you can view the pipeline output. The fields that are displayed in the
Transport panel when testing a proxy service represent those headers and metadata
that are available in the pipeline. The Test Console cannot filter the fields it displays
depending on the proxy service. The same set of transport parameters are displayed
for every HTTP-based request.

The Username and Password fields are used to implement basic authentication for
the user that is running the proxy service. The Username and Password fields are not
specifically transport related.

Metadata fields are located below the Username and Password fields and above the
transport header fields. The fields displayed are based on the transport type of the

Chapter 58
Test Console Page Reference for Services

58-28

service. Certain fields are pre-populated depending on the operation selection algorithm you
selected for the service when you defined it. For more information about the selection
algorithms, see Modeling Message Flow in Oracle Service Bus.

Specify the values in the Transport panel fields according to the type of service being tested.
When testing a pipeline or split-join, the test data should represent the message in the state
expected at the point it leaves the caller and enters the service being tested. When testing a
business service, the test data represents the data that is sent from a route node or a service
callout.

The following properties are common for most transport types. For information about specific
headers and metadata and how they are handled by the test framework, see How the
Runtime Uses the Transport Settings in the Test Console..

Table 58-9 Test Console Properties - Transport

Property Description

Username Enter a user name to implement basic authentication for the user that
is running the test. This is not transport-specific.

Password Enter the password for the user name entered above.

Request/Response Clear the Request/Response check box for one-way service
invocations. Select the check box for request/response invocations.
This option is only displayed when testing any SOAP or any XML
proxy service.

Service Key Provider Enter the service key provider to use for authentication. This field is
used when testing an HTTPS business service with client certificate
authentication. The service provider must have an associated SSL
client credential. The test service will use that credential during the
SSL handshake.

58.11.6.2 How the Runtime Uses the Transport Settings in the Test Console
Transport Test Console Properties describes how you configure the values of the transport
headers, transport metadata, and transport-related security data for outbound requests when
you test proxy services or business services in the Test Console. However, some
specifications you can make in the Test Console are not honored at runtime. That is, the
values of certain headers or metadata are overwritten, or ignored by Service Bus at runtime
when the test is executed. The headers and metadata for which there are limitations are
described in Table 58-10.

Chapter 58
Test Console Page Reference for Services

58-29

Table 58-10 Limitations to Transport Header and Metadata Values You Specify in the Test
Console

Transport Service Type Description of Limitation Transport Headers Affected

HTTP(S)

Note: When you
test proxy
services, the Test
Console never
sends a HTTP
request over the
network,
therefore
transport-level
access control is
not applied.

Proxy Services All transport headers and other
fields you set are preserved at
runtime.

All

HTTP(S) Business Services The Service Bus runtime overrides
any values you set for these
parameters.

Content-Length

Content-Type

relative-URI

client-host

client-address

JMS Proxy Services The same limitations apply as those
for a transport header action
configuration.

See the limitations for JMS transport
headers described in Table 12-8.

JMS Business Services The same limitations apply as those
for a transport header action
configuration.

See the limitations for JMS transport
headers described in Table 12-8.

email Proxy Services No limitations. Any transport
headers and other fields you set are
honored at runtime.

None

email Business Services The Service Bus runtime overrides
any values you set for these
parameters

Content-Type

File Proxy Services No limitations. Any transport
headers and other fields you set are
honored at runtime.

For example, FileName (Transport
metadata)—the value you assign is
appended to the output file name.
For example,
1698922710078805308-
b3fc544.1073968e0ab.-7e8e-
{$FileName}.

None

File Business Services No limitations None

FTP Proxy Services No limitations. Any transport
headers and other fields you set are
honored at runtime.

None

FTP Business Services No limitations None

Chapter 58
Test Console Page Reference for Services

58-30

58.11.7 Attachment Test Console Properties
Use the Attachment section of the Test Console to include attachments as part of the test
input. Table 58-11 described the properties in this section.

Table 58-11 Proxy Service Test Console Properties

Property Description

Content-Type Enter globally unique reference that identifies the attachment.

Content-ID Enter the media type and sub-type of the attachment.

Content-Description Enter brief description of the content.

Content-Disposition Specify how the attachment should be handled by the proxy service.

Content-Transfer-Encoding Specify how the attachment is encoded.

File Browse to and select the file to test as an attachment.

Resp. Attach. Display Limit The number of characters of the attachment to include in the display
of the test results.

Chapter 58
Test Console Page Reference for Services

58-31

59
Deploying Oracle Service Bus Services

This chapter provides instructions for deploying Service Bus projects and applications to an
Oracle WebLogic Server. You can deploy Service Bus components from the Oracle Service
Bus Console, JDeveloper, Fusion Middleware Control, and the Service Bus Deployment API.
When you deploy to and from different environments, you can use customization files to
update environment values like endpoint URIs.
This chapter includes the following sections:

• Deployment Overview

• Before You Deploy

• Deploying from the Oracle Service Bus Console

• Deploying from JDeveloper

• Deploying a Service Bus Configuration JAR File in Fusion Middleware Control

• Updating an Online Configuration

• Updating an Online Configuration in a Cluster

59.1 Deployment Overview
Deployment is the process of packaging Service Bus resources and transferring them to a
target application server.

You can deploy resources in multiple ways, including the following:

• Activate the current session in the Oracle Service Bus Console.

• Deploy a project or application using the Deploy command in JDeveloper.

• Export a configuration JAR file to an application server in JDeveloper. You can also
deploy to the integrated application server included with JDeveloper to run, debug, and
test applications and projects.

• Import a configuration JAR file using Fusion Middleware Control.

• Use the Maven plug-in to deploy Service Bus services in a Maven environment. For more
information, see Using the Oracle Service Bus Development Maven Plug-In.

• Use WLST commands to activate sessions and to import configurations and environment
values. For more information, see Using the Oracle Service Bus Deployment APIs in
Administering Oracle Service Bus.

Once you deploy Service Bus resources, you can monitor and manage them in the runtime
using Fusion Middleware Control. For information, see Oracle Service Bus Runtime
Management in Administering Oracle Service Bus.

59.2 Before You Deploy
Regardless of which method you use to deploy Service Bus configurations, review this
information before deploying.

59-1

• Creating a Service Bus Domain Using the Configuration Wizard

• Resolving Conflicts

• Configuring JMS Resources

• Configuring Security

59.2.1 Creating a Service Bus Domain Using the Configuration Wizard
Before you can deploy a Service Bus configuration, you need to have a running
Service Bus domain, to which Service Bus resources will be deployed. The domain
must have the required schemas in a running database. For information on creating a
Service Bus domain with the Oracle Fusion Middleware Configuration Wizard, see
Configuring the Oracle Service Bus Domain in Installing and Configuring Oracle
Service Bus.

59.2.2 Resolving Conflicts
If there are any conflicts in the Service Bus resources being deployed, the deployment
will fail. Before activating resources or exporting them, view and resolve any existing
conflicts as described inViewing and Resolving Conflicts. Deploying from JDeveloper
or activating from the console will fail if there are any conflicts in Service Bus
resources.

59.2.3 Configuring JMS Resources
In addition to configuring JMS file stores in the Oracle Fusion Middleware
Configuration Wizard, proxy services and business services that use JMS require the
following resources:

• JMS connection factories: You must configure XA or non-XA JMS connection
factories for all business services and proxy services implemented using JMS.

• JMS queues/topics: Service Bus automatically configures JMS queues for proxy
services that are implemented using JMS if they queues are on the same local
Service Bus domain. You must configure JMS queues/topics for all business
services using JMS, for proxy services that consume messages from a remote
queue, and for proxy services that are implemented using non-JMS.

To concentrate all Service Bus JMS resources in a single JMS module, use the
WebLogic Server Administration Console to create a new JMS module containing the
destination to be used for the proxy services' endpoint. For more information about
configuring JMS resources, see "Methods for Configuring JMS Resources" in
Administering JMS Resources for Oracle WebLogic Server.

59.2.4 Configuring Security
Service Bus leverages the security features of WebLogic Server to ensure message
confidentiality and integrity (message-level security), secure connections between
clients and WebLogic Server (transport-level security), and authentication and
authorization (access control). For information on how to configure security for Oracle
Service Bus, see Security

Chapter 59
Before You Deploy

59-2

Note:

You must configure security separately for each Service Bus domain. Service Bus
does not export or import security configurations.

59.3 Deploying from the Oracle Service Bus Console
In the Oracle Service Bus Console, you deploy the services you create by activating your
changes to the runtime. Any changes you activate become immediately available in the
runtime environment.

You can also update components that are activated in the runtime using the Oracle Service
Bus Console.

59.3.1 How to Deploy from the Console
Once you have configured your Service Bus domain, secured it, and added any JMS
resources required for its services, you are ready to import the JAR file that contains your
Service Bus configuration. After you import the configuration metadata, you can update
environment-specific information for your domain. All changes to Service Bus configurations
require a session, with the exception of security-related changes.

To deploy the contents of configuration JAR file:

1. Create a session in Service Bus.

See How to Create a Session.

2. Import all or selected objects from a configuration JAR file.

See How to Import Resources from a Configuration JAR File in the Console.

3. Update environment-specific information such as service endpoint URIs and directory
names.

See "Finding and Replacing Environment Values Using the Oracle Service Bus Console"
or "Using Configuration Files to Update Environment Values and Operational Settings" in
Administering Oracle Service Bus.

4. Verify there are no conflicts (indicated by a Conflict icon in the toolbar).

If there are conflicts, resolve them as described in Viewing and Resolving Conflicts.

5. Activate the session.

See How to Activate a Session.

You can also import and update a configuration programmatically using the WebLogic
Scripting Tool (WLST) and the Service Bus deploymentMBean. For more information, see
"Using the Oracle Service Bus Deployment APIs" in Administering Oracle Service Bus.

Chapter 59
Deploying from the Oracle Service Bus Console

59-3

59.4 Deploying Service Bus Applications or Projects in
JDeveloper

The first time you deploy an application or project to the WebLogic Server, the entire
application and all projects are published.

On subsequent deployments of the application, only the resources that were changed
are published to the server. If there are any conflicts in any Service Bus resources in
the application, the deployment will fail.

Note:

Oracle recommends that you deploy Service Bus projects that are developed
in Reference Configuration mode to a server that is in a Reference
Configuration domain. Contact your server administrator to move the server
into a Reference Configuration domain. If the Service Bus project is
developed in Classic mode and the server to which it is deployed is in a
Reference Configuration domain, or vice versa, JDeveloper displays a
Mismatch notification in the Deploy Composite Wizard. You can click OK and
deploy the Service Bus project even when there is a configuration mismatch.
In this case, deployment will proceed as normal and any Reference
Configuration property settings will be ignored by the domain.

Note that the integrated WebLogic server in JDeveloper does not support a Reference
Configuration domain.

59.4.1 How to Create a Connection to the WebLogic Server
In JDeveloper, you must create a connection to the application servers to which
Service Bus applications will be deployed. You only need to perform this task once for
each application server hosting Service Bus services. You can connect to the following
types of servers:

• Standalone Server: A server that is not managed by JDeveloper. Standalone
servers include the domains you create using the configuration wizard and
WebLogic servers in the Oracle Cloud. Only the Deploy command can be used to
deploy to a standalone server, and the server must already be running in order to
deploy to it.

• Integrated Server: A server that can be managed by JDeveloper, and only used
in development and testing. If you opt to allow JDeveloper to manage the lifecycle
of the server when you set up the connection, you can deploy to the server directly
from JDeveloper using the Run command or the Deploy command. If JDeveloper
does not manage the lifecycle, you need to start and stop the server manually. In
that case, the Run command can only be used for deployment if the server is
already running.

To create an application server connection:

1. If the Application Servers navigator is not visible, click the Window main menu,
and select Application Servers.

Chapter 59
Deploying Service Bus Applications or Projects in JDeveloper

59-4

2. In the Application Servers navigator, right-click Application Servers and select New
Application Server.

The Create Application Server Connection wizard appears.

3. Select either Standalone Server or Integrated Server.

4. Click Next.

5. Do one of the following:

• If you selected Standalone Server: Enter a name for the connection. If you are
connecting to an Oracle Cloud server, select Oracle Cloud from the Connection
Type list. Otherwise, leave the connection type at its default value (WebLogic 12.x).

• If you selected Integrated Server: Enter the connection name. If you want to be able
to start the server in Run and Debug mode from JDeveloper, select Let JDeveloper
manage the lifecycle for this Server Instance, and enter the location of the domain
and server instance.

6. Click Next.

7. On the Authentication page, enter the user name and password to connect to the
WebLogic server, and then click Next.

8. On the Configuration page, enter the following information:

Option Description

If creating an Oracle Cloud server connection: Data Center: The data center to use, or if
necessary, enter the short code for a new data
center. For example, in US Commercial 1
[us1] the short code is us1.

Identity Domain: Enter the identity domain for
Oracle Cloud Service instance.

Service Name: Enter the service name for your
Oracle Cloud Service instance.

After you sign up for Oracle Cloud service, you
will receive information about the data center,
the identity domain, and the service name which
you enter here to establish a connection to your
Oracle Cloud service instance.

If creating a non-cloud server connection: WebLogic Hostname (Administration
Server): The name of the server on which the
WebLogic server resides.

WebLogic Hostname (Administration
Server): The name of the server on which the
WebLogic server resides.

SSL Port: The SSL port number used by the
WebLogic server.

To use secure socket layer (SSL), select the
Always use SSL check box.

WebLogic Domain: The name of the WebLogic
server domain.

For additional information about specifying
domains, click Help.

9. Click Next.

10. On the Test page, click Test Connection to verify the server connection.

Chapter 59
Deploying Service Bus Applications or Projects in JDeveloper

59-5

Note:

The test is only successful when performed against a running server.

11. If the connection is successful, click Finish. Otherwise, click Back to make
corrections in the previous dialogs.

Even if the connection test is unsuccessful, a connection is created.

59.4.2 How to Create a Deployment Profile
A deployment profile provides JDeveloper with information about the application server
to which a project or application will be deployed. The type of profile indicates whether
to deploy only the selected project or the entire Service Bus application. Service Bus
attaches a default project deployment profile to each Service Bus project you create,
and a default application deployment profile to each Service Bus application. You can
define additional deployment profiles, each of which deploy to a different application
server.

For additional information about working with deployment profiles, see "How to Create
and Edit Deployment Profiles" in Developing Applications with Oracle JDeveloper.

To create a deployment profile:

1. In the Application Navigator, right-click the Service Bus project.

2. Point to Deploy, and select New Deployment Profile.

The Create Deployment Profile dialog appears.

3. In the Profile Type field, do one of the following:

• To define a profile that deploys just the selected project, select Service Bus
Project.

• To define a profile that deploys all projects in the application that contains the
selected project, select Service Bus Configuration.

4. In the Deployment Profile Name field, enter a unique and identifying name for the
profile.

5. Click OK.

6. Click Save.

59.4.3 How to Customize Your Service Bus Deployment
You can customize Service Bus deployment in JDeveloper.

To customize your Service Bus deployment in JDeveloper:

1. From the Application menu, select Application Properties.

2. Click Service Bus Configuration.

3. Do one of the following:

a. Select Use Custom Settings, and then click the Customize Settings button,
to customize deployment settings that can be used for multiple Service Bus
applications in JDeveloper.

Chapter 59
Deploying Service Bus Applications or Projects in JDeveloper

59-6

b. Select Use Application Settings to customize the deployment settings for the
currently-selected Service Bus application in JDeveloper.

4. Edit the following settings to match your deployment preferences:

Element Description

Preserve Settings Contains options for preserving settings.

Preserve Environment Variable Values Select this option when you want to preserve
the environment variables values in the existing
resources on the importing system.

Preserve Security and Policy Settings Select this option to preserve the importing
system's security configuration (excluding
access control policies) and the references to
the WS-Policies bound directly to the service
(instead of bound to the WSDL document).
When you select this option, the values in the
existing resources are preserved when you
import them, even if the security and policy
configurations have been updated in
JDeveloper.

Preserve Credentials (Username/Password) Select this option to preserve the importing
system's PKI credentials in service key
providers, user name and passwords in service
accounts, and user name and password
credentials in SMTP servers, JNDI providers,
and UDDI registries.

Session Settings Contains options for Service Bus session
settings when publishing artifacts to a Service
Bus deployment.

Discard Session if Activation Fails Select this option if you elected to activate the
session once the import is complete and you
want to discard the session if the session
activation fails. Failure might occur if importing
any of the resources results in a conflict.

Description Enter a brief description for the session.

Deployment Customization File Specify a customization file to include in the
import or click Browse to navigate to and select
a configuration file. For information on
customization, see Using Configuration Files to
Update Environment Values and Operational
Settings in Administering Oracle Service Bus.

Keystore File Click Browse to select a keystore file, used to
configure the service account and service key
provider while working with Service Bus
components in JDeveloper.

Note: This should be the same keystore the
target server points to.

Password Enter the password for the Keystore File.

5. Click OK to save your changes.

Chapter 59
Deploying Service Bus Applications or Projects in JDeveloper

59-7

59.4.4 How to Deploy a Service Bus Project or Application
You can deploy just the selected project to the WebLogic server, or you can deploy the
entire application in which the selected project is located. Project-level deployments
are not incremental and publish the full project and any of its dependencies. When you
deploy a project or application, you select the deployment profile to use for the
process. The profile you use determines whether to deploy just the project or the entire
application. The default profile generated for each project only deploys the project.

Service Bus and JDeveloper now support deploying directly to Oracle Cloud servers.
See How to Create a Connection to the WebLogic Server for more information about
creating connections to Oracle Cloud servers.

Note:

You can also publish to the server using the Run command, which deploys to
the selected server and launches the Service Bus Test Console. Note that
you can only use the Run command for integrated-type servers. For more
information, see Accessing the Test Console.

Before You Begin

Make sure you have a connection to the application server, as described in How to
Create a Connection to the WebLogic Server. If you do not want to use the default
deployment profile, create a new profile, as described in How to Create a Deployment
Profile.

To deploy a project or application:

1. In the JDeveloper Application Navigator, right-click the project to deploy.

2. Point to Deploy and select the name of the deployment profile to use.

Make sure to select the correct profile. To deploy just the project, select a profile
with a type of Service Bus Project. To deploy the entire application, select a
profile configured with a type of Service Bus Configuration. You can view
deployment profile configurations in the project properties.

3. On the Deploy wizard, select Deploy to Service Bus Server, and then click Next.

4. On the Select Server page, select the name of the application server connection
for the server to which you are deploying.

If the server does not exist in the Application Servers list, click Add an
Application Server and complete the Create Application Server Connection
wizard, as described in How to Create a Connection to the WebLogic Server..

5. To overwrite existing deployed artifacts select Overwrite modules of the same
name.

6. Click Next.

7. Review the summary information for the deployment, and then click Finish.

You can view the progress of the deployment in the Deployment - Log window.

Chapter 59
Deploying Service Bus Applications or Projects in JDeveloper

59-8

59.4.5 How to Deploy a Project or Application Using the Previous
Configuration

After you have deployed a project once, you can skip the Deploy wizard in subsequent
deployments if you want to use the same configuration. When you skip the Deploy wizard,
Service Bus uses the same deployment profile and same selections you made on the Deploy
wizard when you deployed the project the previous time.

To deploy using the previous configuration:

1. In the JDeveloper Application Navigator, right-click the project to deploy.

2. Point to Deploy and select Deploy to Service Bus Server.

The project is deployed using the last configuration used to deploy the project. You can
view the progress of the deployment in the Deployment - Log window.

59.4.6 What Happens When You Deploy Using JDeveloper
If deployment is successful, the deployed project appears in the following locations:

• The Resources window under Application Server > server_connection_name >
Service Bus > Service_Bus_server_name.

• The Application Server Navigator under server_connection_name > Service Bus >
Service_Bus_server_name.

You are now ready to monitor your application from Oracle Enterprise Manager Fusion
Middleware Control. For information, see Introduction to the Management and Monitoring
Pages in Administering Oracle Service Bus.

If deployment is unsuccessful, view the messages that appear in the Deployment log window
and take corrective actions.

59.5 Deploying a Service Bus Configuration JAR File in Fusion
Middleware Control

You can deploy Service Bus configuration JAR files by importing the files into Fusion
Middleware Control. Configuration JAR files contain Service Bus resources that were
previously exported from a different Service Bus environment.

The export and import features let you easily move projects and resources between
environments. When you import a JAR file, you can also import a separate configuration file
that updates operational settings and environment values in the imported resources to match
the new environment. For example, a configuration file can update host names and port
numbers, enable or disable monitoring for a service, and so on.

For information about importing resources into Fusion Middleware Control, see "Importing
Oracle Service Bus Resources in Fusion Middleware Control" in Administering Oracle
Service Bus. For information about environment configuration files, see "Using Configuration
Files to Update Environment Values and Operational Settings" in Administering Oracle
Service Bus.

Chapter 59
Deploying a Service Bus Configuration JAR File in Fusion Middleware Control

59-9

59.6 Updating an Online Configuration
Once a configuration is deployed, Service Bus allows you to change the configuration
information for a system dynamically without the need to restart the server for changes
to take affect.

You can change a resource, a project, or a number of resources (related or unrelated)
using procedure outlined in How to Deploy from the Console. In step 2, you can modify
resources directly in the console, or import all or a subset of objects from a
configuration JAR file.

The changes are consolidated and sent to all servers (administration and Managed
Servers, if you are working in a cluster environment). These changes update the
persisted configuration data and also cause other runtime tasks to be performed (such
as creating proxy services and JMS queues, compiling XQueries, and so on).

Figure 59-1 illustrates how the system processes messages in the event that the
configuration is updated while messages are being processed through the system.
Table 59-1 describes the versions for the resources for the sample system illustrated in
Figure 59-1.

Table 59-1 Initial and Updated Configuration for a Sample System

Resource Initial Version Updated Version

Proxy Service X A

MFL Y B

XQuery W C

Figure 59-1 Sample Online Update Scenario

Chapter 59
Updating an Online Configuration

59-10

Note the following characteristics of the message processing illustrated in the preceding
figure:

• Message 1 is already in the system at t1 (the time the configuration is updated)

• Message 1 completes processing by the original (pre-update) resources (X, Y, W)

• Message 2 starts and completes processing with the new configuration (resources A, B,
C)

Service Bus tries to execute messages with the version of the proxy service and artifacts
available when the messages enters the proxy service. This ensures that a message has a
consistent view of the artifacts. If the message processor cannot guarantee this behavior for
a message, it will reject the message rather than process it incorrectly.

59.6.1 What You Need to Know for Successful Online Configuration
Updates

This section describes guidelines to follow and limitations to be aware of when you update a
configuration in a running Service Bus system.

• If you are concerned about message rejection by Service Bus, use the JMS transport
protocol with retries. With retries, any messages that are rejected because the system
cannot guarantee their processing by compatible resources will be retried.

• Update security-related configuration first, and then update the Service Bus resources in
your system. Security configuration changes must be made at the WebLogic Server level
before they are visible to Service Bus, especially for activation purposes. For instance,
you must configure SSL-related options at the domain level (enable SSL port, configure
identity and trust for the domain, etc.) before you can enable a proxy service to use SSL.
To learn about updating security resources, see Overview of Security Management in
Administering Security for Oracle WebLogic Server.

• Updates must be compatible with existing clients using the system. See Changing an
Online Proxy Service.

• If you are updating the configuration to a cluster, it is possible that the updates are done
at different times on different Managed Servers. Consequently, messages could be
processed by different versions of a proxy service, depending on which Managed Server
gets the message to process. This depends on load balancing across Managed Servers.

• During online deployment, Service Bus checks whether the correct versions of
referenced resources are used for message processing. If this is temporarily not true, an
error is returned. However, if the interface artifact of an invoked service changes (for
example, an MFL or WSDL file), the invoking proxy service may not return an error
although it temporarily sees a version of the artifact that does not correlate with the proxy
service version.

59.6.2 Changing an Online Business Service
Enterprise information services (EIS) are sometimes phased out, and new instances
(possibly with new versions of EIS software, new hardware, and so on) are brought online.
When this happens, Service Bus administrators need to gracefully transition to the new EIS
instance by modifying any affected Service Bus business services.

For information about using the Oracle Service Bus Console to change an endpoint URI for a
business service, see How to Configure a Business Service Transport.

Chapter 59
Updating an Online Configuration

59-11

59.6.3 Changing an Online Proxy Service
While the majority of the metadata that defines a proxy service can be deployed
without change in a new environment, there is some information you may need to
update. For example, definitions of proxy services for File, FTP, and email message
types must specify a single Managed Server for deployment of polling runtime
components in a cluster.

As your business requirements change, you may need to make changes to your proxy
services. If the changes you need to make are backward compatible, you can
dynamically make changes online using the Oracle Service Bus Console to create a
new version of the proxy service. Changes are backward compatible if they meet one
of the following criteria:

• The interface of the changed object is unchanged.

• Old and new clients will work with the interface.

If the changes you need to make are not backward compatible, there are two
alternatives to consider that would enable you to make the changes online:

• Create and deploy a new proxy service having a different name and URL from that
of the earlier version. Clients upgrade by accessing the new proxy service. This
enables you to run the old and new versions of a proxy service in parallel, and
supports a gradual migration to the new proxy service.

• Force backwards compatibility by changing the proxy service interface to support
both the new interface and the old interface (for example, using XML schema
choice) and perform different logic in the message flow based on the document
received. Clients continue to access the proxy service by using its original URL.

Service Bus cluster domains have additional system administration requirements for
deployment of proxy services that are not backward compatible. For more information,
see Installing a New Version of a Proxy Service in a Cluster.

59.6.4 Changing an Online Pipeline
Pipelines route messages to named destinations, such as business services, other
proxy services, and so on. Message routing definitions may need to be updated in a
new environment.

59.7 Updating an Online Configuration in a Cluster
Updating Service Bus components in a cluster requires some additional considerations
to those for a non-clustered environment.

For information about performing online updates, see Updating an Online
Configuration.

59.7.1 Changing a Business Service in a Cluster
The procedure for changing a business service is the same in both non-clustered and
cluster environments. However, the procedure for deploying changes to a business
service in a cluster depends on the types of changes made to the business service

Chapter 59
Updating an Online Configuration in a Cluster

59-12

and the nature of any other changes that might be deployed simultaneously. For more
information, see the description of installation strategies in the following section.

For information about changing a business service, see Changing an Online Business
Service.

59.7.2 Installing a New Version of a Proxy Service in a Cluster
You can make changes to proxy services dynamically online, partially offline, or completely
offline. If your changes are backward compatible (that is, you are making no changes to
interfaces), you can make your changes dynamically online using the Oracle Service Bus
Console. Making other types of changes should be done partially or completely offline, which
requires additional system administration steps.

Making changes that include non-backward compatible changes to proxy service interfaces
requires complete offline deployment. To install the new version, follow the procedure below
while all servers are operational:

1. Quiesce all inbound messages.

2. Confirm all asynchronous backlogged messages have been processed.

3. Make the necessary changes in the proxy service, and test to verify the proxy service
operates as required.

4. Resume accepting inbound messages.

For more information about backward compatibility and installation strategies, see Changing
an Online Proxy Service.

Chapter 59
Updating an Online Configuration in a Cluster

59-13

60
Using the Oracle Service Bus Development
Maven Plug-In

This chapter describes how to use the Oracle Service Bus development Maven plug-in to
build and manage Service Bus projects. The Oracle Service Bus development Maven plug-in
lets you package and deploy Service Bus projects in a Maven environment.

This chapter includes the following sections:

• Introduction to the Oracle Service Bus Maven Plug-In

• Installing and Configuring Maven

• Using the Oracle Service Bus Development Maven Plug-In

• Service Bus Development Maven Plug-In Goals

• Oracle Service Bus Development Maven Plug-In POM File Samples

For more information about using Maven with Oracle Fusion Middleware, see Developing
Applications Using Continuous Integration. For information on installing and using Maven to
build applications and projects, see http://maven.apache.org/users/index.html.

60.1 Introduction to the Oracle Service Bus Maven Plug-In
Maven is a build automation tool that lets you create and manage runtime projects.

The Oracle Service Bus development Maven plug-in provides Maven goals specific to the
requirements of Service Bus projects and applications. You can use it to perform tasks such
as packaging Service Bus projects or resources and deploying the package to a running
server.

60.1.1 Maven Lifecycle Phases and Goals
Lifecycle phases give order to goal execution in a Maven POM file. A goal is a specific task,
which can be mapped to one or more phases. The Oracle Service Bus development Maven
plug-in provides goals that are specific to Service Bus projects and that can be used in
conjunction with standard Maven goals to build and manage Service Bus projects and
applications throughout the lifecycle phases.

Service Bus provides two custom goals, package and deploy. For information about the
syntax and parameters for these goals, see Service Bus Development Maven Plug-In Goals.
Table 60-1 lists the phases in the default Maven lifecycles for Service Bus, along with the
goals mapped to each phase. If you map multiple goals to the same lifecycle phase, they are
typically executed in the order you list them.

60-1

http://maven.apache.org/users/index.html

Table 60-1 Maven Lifecycle Phases for Service Bus

Phase Description

package Packages the Service Bus project resources in its distributable
format, sbar (Service Bus archive file). The
com.oracle.servicebus.plugin:oracle-servicebus-
plugin:12.1.3.0.0:package goal is mapped to this phase.

pre-integration-test Processes and deploys the package if necessary into an
environment where integration tests can be run. The
com.oracle.servicebus.plugin:oracle-servicebus-
plugin:12.1.3.0.0:deploy goal is mapped to this phase.

install Installs the package into the local repository, for use as a
dependency in other projects locally. Service Bus uses the
org.apache.maven.plugins:maven-install-
plugin:install goal for this phase.

60.1.2 POM Files and Archetypes
Maven projects are defined by a POM file, which describes the project's artifact, the
plug-ins to use, inheritance, and dependencies on other artifacts (such as system
resources that are required to build Service Bus projects). An archetype is a template
for creating a specific type of project. Service Bus provides two different archetypes,
one for Service Bus projects and one for Service Bus system resources.

The Service Bus project archetype is named
com.oracle.servicebus.archetype:oracle-servicebus-project:12.2.1-0-0. It is
defined by the following archetype coordinates:

<groupId>com.oracle.servicebus.archetype</groupId>
<artifactId>oracle-servicebus-project</artifactId>
<version>12.2.1-0-0</version>
<name>Oracle Service Bus - Project Archetype</name>

The Service Bus system resources archetype is named
com.oracle.servicebus.archetype:oracle-servicebus-system:12.2.1-0-0. It is
defined by the following archetype coordinates:

<groupId>com.oracle.servicebus.archetype</groupId>
<artifactId>oracle-servicebus-system</artifactId>
<version>12.2.1-0-0</version>
<name>Oracle Service Bus - System Resources Archetype</name>

60.2 Installing and Configuring Maven
A distribution of Maven 3.2.5 is included with Oracle Fusion Middleware.

The Maven distribution is in the following location:

Middleware_Home/Oracle_Home/oracle_common/modules/org.apache.maven_3.2.5

For information about installing and configuring Maven for Oracle Fusion Middleware,
see "Installing and Configuring Maven for Build Automation and Dependency
Management" in Developing Applications Using Continuous Integration. Be sure to

Chapter 60
Installing and Configuring Maven

60-2

follow the setup instructions in Section 5.1, "Setting Up the Maven Distribution" and Section
5.2, "Customizing Maven Settings."

The Oracle Service Bus development Maven plug-in is installed in the following location:

Service_Bus_Home/plugins/maven

60.2.1 How to Configure the Oracle Service Bus Development Maven
Plug-In

The oracle-servicebus-plugin plug-in is provided as a pre-built JAR file and accompanying
POM file. You use the Maven synchronization plug-in to populate a local or shared Maven
repository from an Oracle home, which includes the Service Bus plug-in. For more
information and complete instructions for installing and running the synchronization plugin,
see "Populating the Maven Repository Manager" in Developing Applications Using
Continuous Integration. The steps below include links to more specific sections of that guide.

To configure the Oracle Service Bus development Maven plug-in:

1. Navigate to ORACLE_HOME/oracle_common/plugins/maven/com/oracle/maven/oracle-
maven-sync/12.2.1.

2. Run the following command to install the Maven sync plug-in:

mvn install:install-file -DpomFile=oracle-maven-sync-12.2.1.pom -Dfile=oracle-
maven-sync-12.2.1.jar

For more options, see "Installing Oracle Maven Synchronization Plug-In."

3. Run the following command to seed the Oracle Service Bus development Maven plug-in
into the Maven repository:

mvn com.oracle.maven:oracle-maven-sync:push -DoracleHome=ORACLE_HOME

Where ORACLE_HOME is the full path to your Oracle Fusion Middleware installation. For
more options, see "Running the Oracle Maven Synchronization Plug-In."

4. Validate whether you have successfully installed the plug-in using the Maven
help:describe goal.

mvn help:describe -DgroupId=com.oracle.servicebus.plugin
-DartifactId=oracle-servicebus-plugin -Dversion=12.2.1-0-0

The following information confirms the installation of the Service Bus plug-in:

Name: Oracle Service Bus - Plugin
Description: (no description available)
Group Id: com.oracle.servicebus.plugin
Artifact Id: oracle-servicebus-plugin
Version: 12.2.1-0-0
Goal Prefix: servicebus
This plugin has 2 goals:
servicebus:deploy
 Description: (no description available)
servicebus:package
 Description: (no description available)
For more information, run 'mvn help:describe [...] -Ddetail'

Chapter 60
Installing and Configuring Maven

60-3

60.2.2 How to Use Maven Online Help
Maven online help provides you with a list of goals and their associated commands.
Use the describe goal in the help plug-in to access online help. For example, enter
the following command to obtain online help for the package goal:

mvn help:describe -Ddetail -Dcmd=com.oracle.servicebus.plugin:oracle-servicebus-
plugin:package

See the Apache help plug-in describe goal documentation for additional information.

60.3 Using the Oracle Service Bus Development Maven
Plug-In

You invoke Maven goals either through a Maven project POM file or from the
command line. The preferred and recommended way is to use a Maven POM file,
which can be created for both Service Bus projects and applications.

For more information about working with Maven in JDeveloper, see Building and
Running with Apache Maven in Developing Applications with Oracle JDeveloper.

60.3.1 How to Generate a Service Bus Project POM File
When you create a Service Bus project in JDeveloper, a POM file is automatically
created for that project. You can also manually generate a POM file for a Service Bus
project using JDeveloper.

To generate a Service Bus project POM file in JDeveloper:

1. In the Application Navigator, right-click the project, point to New and select From
Gallery.

2. Under the General category on the New Gallery dialog, select Maven.

3. Under Items, select Maven POM for Project and click OK.

4. Enter a name for the POM file and the directory where the POM will be located.

5. Enter a unique group ID, artifact ID and version for the project.

Together, these values form the fully qualified artifact name in the form of
<groupId>:<artifactId>:<version>.

6. Enter a description for the project.

7. In the Packaging field, select sbar.

8. Clear or select Use this POM as the default for the project, depending on your
requirements.

9. Click OK.

Chapter 60
Using the Oracle Service Bus Development Maven Plug-In

60-4

http://maven.apache.org/plugins/maven-help-plugin/describe-mojo.html

60.3.2 How to Generate a Service Bus Project POM File from an
Archetype

You can generate a POM file for a project from the Service Bus project archetype in either
JDeveloper or from a command line. Archetypes are templates for creating Maven projects.

60.3.2.1 Creating a Service Bus Project POM File from an Archetype in JDeveloepr
To generate a Service Bus project POM file from an archetype in JDeveloper:

1. In the Application Navigator, right-click the project, point to New and select From
Gallery.

2. Under the General category on the New Gallery dialog, select Maven.

3. Under Items, select Generate from Archetype and click OK.

The Create Project From Archetype dialog appears.

4. Enter a unique group ID, artifact ID and version for the project.

Together, these values form the fully qualified artifact name in the form of
<groupId>:<artifactId>:<version>.

For more information about the properties on this dialog, see the online help and
Parameters for Generating a POM File . Note that these are not the archetype group and
artifact IDs.

5. Enter the default package name and the directory where you want to store the project.

6. In the Maven Archetype field, click the browse icon to search for and select the oracle-
servicebus-project archetype.

For information about searching for archetypes, see "How to Create Maven Projects
Using Maven Archetypes" in Developing Applications with Oracle JDeveloper.

7. When you are done, click Finish on the Create Project From Archetype dialog.

60.3.2.2 Generating a Service Bus Project POM File from an Archetype Using a
Command Line

To generate a Service Bus project POM file from an archetype using a command line:

1. From the directory for the Service Bus project for which you want to create the POM file,
run the following command:

mvn archetype:generate
 -DarchetypeGroupId=com.oracle.servicebus.archetype
 -DarchetypeArtifactId=oracle-servicebus-project
 -DarchetypeVersion=12.2.1-0-0
 -DarchetypeRepository=Repository_Home
 -DgroupId=Group_ID
 -DartifactId=Artifact_ID
 -Dversion=1.0-SNAPSHOT

Where:

Chapter 60
Using the Oracle Service Bus Development Maven Plug-In

60-5

• Repository_Home is the path to the Maven repository to use. Instead of
entering the path, you can simply enter local, which tells Maven not to look in
any other repository it knows about and is more efficient.

• Group_ID is a unique, identifying name for the project to build.

• Artifact_ID is the name of the subdirectory in the current directory in which
the project artifacts are generated.

For more information about the parameters for this command, see Parameters for
Generating a POM File .

2. When the command line prompts you to confirm the properties configuration, type
Y to confirm or N to cancel. Press Enter.

The POM file is generated in the directory from which you ran the command in the
subdirectory specified by the artifact ID.

60.3.3 How to Generate a Service Bus System Resources POM File
from an Archetype

You can generate a POM file for Service Bus system resources from the Service Bus
system archetype in either JDeveloper or from a command line. Archetypes are
templates for creating Maven projects.

60.3.3.1 Generating a Service Bus System Resources POM File from an
Archetype in JDeveloper

To generate a Service Bus system resources POM file from an archetype in
JDeveloper:

1. In the Application Navigator, right-click the project containing the system
resources, point to New and select From Gallery.

Note:

For Service Bus system resources, the location in JDeveloper might be
in Service Bus System Resources under Application Resources.

2. Under the General category on the New Gallery dialog, select Maven.

3. Under Items, select Generate from Archetype and click OK.

The Create Project From Archetype dialog appears.

4. Enter a unique group ID, artifact ID and version for the project.

Together, these values form the fully qualified artifact name in the form of
<groupId>:<artifactId>:<version>.

For more information about the properties on this dialog, see the online help and
Parameters for Generating a POM File . Note that these are not the archetype
group and artifact IDs.

5. Enter the default package name and the directory where you want to store the
project.

Chapter 60
Using the Oracle Service Bus Development Maven Plug-In

60-6

6. In the Maven Archetype field, click the browse icon to search for and select the oracle-
servicebus-system archetype.

For information about searching for archetypes, see "How to Create Maven Projects
Using Maven Archetypes" in Developing Applications with Oracle JDeveloper.

7. When you are done, click Finish on the Create Project From Archetype dialog.

60.3.3.2 Generating a Service Bus System Resources POM File from a Command
Line

To generate a Service Bus system resources POM file from a command line:

1. From the directory where the Service Bus system resources are located, run the following
command:

mvn archetype:generate
 -DarchetypeGroupId=com.oracle.servicebus.archetype
 -DarchetypeArtifactId=oracle-servicebus-system
 -DarchetypeVersion=12.2.1-0-0
 -DarchetypeRepository=Repository_Home
 -DgroupId=Group_ID
 -DartifactId=Artifact_ID
 -Dversion=1.0-SNAPSHOT

Where:

• Repository_Home is the path to the Maven repository to use. Instead of entering the
path, you can simply enter local, which tells Maven not to look in any other repository
it knows about and is more efficient.

• Group_ID is a unique, identifying name for the project to build.

• Artifact_ID is the name of the subdirectory in the current directory in which the
project artifacts are generated.

For more information about these parameters, see Parameters for Generating a POM
File .

2. When the command line prompts you to confirm the properties configuration, type Y to
confirm or N to cancel. Press Enter.

The POM file is generated in the directory from which you ran the command in the
subdirectory specified by the artifact ID.

60.3.4 Parameters for Generating a POM File
When you generate a POM file from a command line, use the following parameters to
configure the project.

Parameter Description

archetypeGroupId The group ID of the archetype to use. For Service Bus, this is
com.oracle.servicebus.archetype.

archetypeArtifactId The artifact ID of the archetype to use. For a Service Bus project,
this is oracle-servicebus-project. For Service Bus system
resources, this is oracle-servicebus-system.

Chapter 60
Using the Oracle Service Bus Development Maven Plug-In

60-7

Parameter Description

archetypeVersion The version of the archetype to use. The current version is
12.2.1-0-0.

archetypeRepository The Maven repository to use.

groupId The group ID of the project to build.

artifactId The artifact ID of the project to build.

version The version of the project to build.

60.4 Service Bus Development Maven Plug-In Goals
The Oracle Service Bus development Maven plug-in provides two goals specific to
Service Bus, which are described in these sections.

• package: Packages the Service Bus project resources in its distributable format,
sbar (Service Bus archive file).

• deploy: Deploys Service Bus projects and applications to a running server. This
goal supports files in the SBAR format.

60.4.1 package
The Maven plug-in provides the ability to control the building and deployment of a
project as a resource through the POM file (pom.xml). You can achieve this
functionality in two ways: by directly passing the configuration xml or by passing the
list of resources/files needed to include and exclude in pom.xml. The Maven plug-in
parses the configuration xml file to check which files need to be included and excluded
and then adds files as specified in the configuration xml file in the config JAR.

Full Name

com.oracle.servicebus.plugin:oracle-servicebus-plugin:package

Description

The package goal creates a configuration JAR file from the resources associated with
a POM file, and packages the resources into a Service Bus-specific archive file
(.sbar). By default, the Maven plug-in assumes the resources being packaged are
project resources, but a Service Bus application can also include system resources,
which are shared among projects. System resources are packaged differently than
project resources, so when you package system resources, you need to set the
system flag to true.

The Maven plug-in uses the offline export (configuration JAR) tool to package the
Service Bus resources. It places the temporary files created by the export tool in
project/.data/maven/configjar. The settings for the export tool are derived from the
Maven project context. When packaging project resources, Service Bus performs the
export at the project level; when packaging system resources, Service Bus performs
the export at the resource level. It uses the default extension mappings. For more
information, see Exporting a Service Bus Configuration Offline. The export tool writes
information to a log file located at Project_Home/.maven/configjar/configjar.log.

The directories that contain Service Bus resources often contain additional files that
you might want to exclude from the generated package. For example, you can exclude

Chapter 60
Service Bus Development Maven Plug-In Goals

60-8

metadata files used by the versioning system. You can define an exclusion list to make sure
these files are not included when the .sbar file is generated. By default, the following files
and folders are excluded for the project archetype: servicebus.sboverview,
pom.xml, .settings/, and .data/. For the system archetype, pom.xml and .data/ are
excluded.

Validation errors that occur during packaging are not reported, and packaging does not fail if
there are validation errors.

Parameters

Use the following parameters to customize the packaging process.

Table 60-2 Parameters for servicebus:package Goal

Name Type Description

excludes String[] Specifies a list of files to exclude from the project.
Use this parameter to exclude files such as versioning
system files.

exportLevel String[] Mandatory. Specifies the export level as either
RESOURCE or PROJECT. You can specify this value as
an expression but it should not present in pom.xml,
or it will pick its value from the pom.xml instead of the
value passed through the expression.

includes String[] Specifies a list of files to include from the project/
resource. Use this parameter to include specific files/
directory from a directory.

oracleHome java.lang.String Specifies the location of the Oracle Fusion
Middleware home directory. You can specify this value
as an expression.

passphrase java.lang.String Specifies a passphrase for encryption or decryption of
sensitive information in the Service Bus project:

• When a Maven package goal is executed,
the .sbar file is generated with sensitive
information (such as the service account)
encrypted when a passphrase is passed in the
Maven command.

• When a Maven deploy goal is executed to deploy
the generated .sbar file, the sensitive
information is decrypted when the passphrase in
specified.

Note: If the .sbar file is imported into Service Bus
directly using the console (instead of executing a
Maven deploy command), then the passphrase
should be provided in the user interface.

This parameter can be added either as a
configuration parameter in a project POM file as

<passphrase>[passphrase]</passphrase>

or it can be specified in a Maven command line as

-Dpassphrase=passphrase

This parameter is available in 12c (12.2.1.4) only if
you have installed Service Bus patch 32020936 or
later. Sign in to My Oracle Support and search for the
patch number to locate and download the patch.

Chapter 60
Service Bus Development Maven Plug-In Goals

60-9

https://support.oracle.com/

Table 60-2 (Cont.) Parameters for servicebus:package Goal

Name Type Description

resources String[] Specifies the resource which points towards a
configuration file. This configuration file can be used
to specify which files need to be included and
excluded. You can specify this value as an expression
but at the same time this parameter should not be
present in pom.xml, or it will pick its value from the
pom.xml instead of the value passed through the
expression. The value of this parameter can be an
absolute path or a relative path.

skipAll java.lang.boolean If set to true, the .sbar file is neither generated nor
deployed. If set to false, or if this parameter is not
provided, the .sbar file is both generated and
deployed.

This parameter should be added in all places where
Service Bus has given information regarding the
package and deploy goal's parameters for oracle-
servicebus-plugin. To skip project deployment on
a running server, it can be added either as a
configuration parameter in a project POM file as

<skipAll>true</skipAll>

or it can be issued in a Maven command line as

-Dosb.skip.All=true

system java.lang.Boolean Specifies whether the resources being packaged are
system resources, which are shared by multiple
projects within a Service Bus application. The default
value is false. You must set this value to true when
packaging system resources.

weblogicRootDire
ctory

java.lang.String Specifies the path to the JDeveloper bin folder where
the JDeveloper launcher command resides, if the
service account for the Service Bus project is created
using JDeveloper.

This parameter can be added either as a
configuration parameter in a project POM file as

<weblogicRootDirectory>[weblogicRootDirec
tory]</weblogicRootDirectory>

or it can be specified in a Maven command line as

-
DweblogicRootDirectory=weblogicRootDirect
ory

This parameter is available in 12c (12.2.1.4) only if
you have installed Service Bus patch 32020936 or
later. Sign in to My Oracle Support and search for the
patch number to locate and download the patch.

60.4.2 deploy
The Maven plug-in provides the ability to control the import settings so as to not
overwrite all the security configuration. To achieve this functionality, you need to add
Boolean parameters in the Maven plug-in POM file (pom.xml). These parameters are

Chapter 60
Service Bus Development Maven Plug-In Goals

60-10

https://support.oracle.com/

passed to the configuration framework through the Maven plug-in. To maintain backward
compatibility, they are not mandatory and their values are false by default. These
parameters can specify a value as an expression but they should not be present in pom.xml
or the expression value will not be picked.

Full Name

com.oracle.servicebus.plugin:oracle-servicebus-plugin:deploy

Description

The deploy goal deploys Service Bus projects to a running server. This goal supports the
Service Bus deployment format, SBAR. It does not require a local server installation. By
default, deploying projects does not apply any updates to environment values. If you want to
update the environment values, you can create a configuration file with the new environment
values and specify that configuration file when you run deploy.

For each deployment, a new session is created and named in the following format:

Service_Bus_Maven-artifactId-currentTime

The current time extends to milliseconds.

When you package a Service Bus project using Maven, Service Bus generates a
configuration JAR file, which can then be deployed to a running server using the deploy goal.
Service Bus uses the default import plan, which includes dependencies and does not
preserve environment variables, security settings, or credentials.

If any resources fail to import, the information is logged and the goal execution fails. If all
resources import successfully and you specified a configuration file, Service Bus applies the
new environment variables. Once the deployment completes successfully (that is, there are
no conflicts in any of the resources), Service Bus activates the session. In case of any
failures or conflicts, Service Bus does not activate the changes or apply the new environment
variables, but it does retain the session so you can research the failures.

Parameters

Use the following parameters to customize the deployment process. You can specify any of
the parameters using an expression.

Table 60-3 Parameters for servicebus:deploy Goal

Name Type Description

oracleServerUrl java.lang.String Specifies the address and port on which the
Administration Server is listening.

The default value is: t3://localhost:7001

oracleUsername java.lang.String Specifies the administrative user name.

oraclePassword java.lang.String Specifies the administrative password.

Chapter 60
Service Bus Development Maven Plug-In Goals

60-11

Table 60-3 (Cont.) Parameters for servicebus:deploy Goal

Name Type Description

skip java.lang.boolean If this parameter is provided and set to true,
the .sbar file is generated, but not deployed. If
set to false, or if this parameter is not provided,
the .sbar file is both generated and deployed.

This parameter should be added in all places
where Service Bus has given information
regarding the deploy goal's parameters for
oracle-servicebus-plugin. To skip project
deployment on a running server, it can be added
either as a configuration parameter in a project
POM file as

<skip>true</skip>

or it can be issued in a Maven command line as

-Dosb.skip.deploy=true

skipAll java.lang.boolean If this parameter is provided and set to true,
the .sbar file is neither generated nor deployed. If
set to false, or if this parameter is not provided,
the .sbar file is both generated and deployed.

This parameter should be added in all places
where Service Bus has given information
regarding the package and deploy goal's
parameters for oracle-servicebus-plugin. To
skip project deployment on a running server, it can
be added either as a configuration parameter in a
project POM file as

<skipAll>true</skipAll>

or it can be issued in a Maven command line as

-Dosb.skip.All=true

customization java.io.File Specifies the location and name of a Service Bus
configuration file that will update environment
values for the environment in which the Service
Bus archive is being deployed.

preserveExistingEnv
Values

Boolean Controls whether certain environment values
inside of a resource are overwritten or preserved
during an import. If set to true, the existing
environment values are preserved.

preserveExistingOpe
rationalValues

Boolean Controls whether certain operational values of a
resource are overwritten or preserved during
import. If set to true, the existing operational
values are preserved.

preserveExistingSec
urityAndPolicyConfi
g

Boolean Controls whether certain security and policy
configuration of a resource are overwritten or
preserved during import. If set to true, the
existing security and policy configurations are
preserved.

preserveExistingCre
dentials

Boolean Controls whether username/passwords and PKI
credentials of a resource are overwritten or
preserved during import. If set to true, the
existing credentials are preserved.

Chapter 60
Service Bus Development Maven Plug-In Goals

60-12

Table 60-3 (Cont.) Parameters for servicebus:deploy Goal

Name Type Description

preserveExistingAcc
essControlPolicies

Boolean Controls whether access control policies of a
resource are overwritten or preserved during
import. If set to true, the existing access control
policies are preserved.

60.5 Oracle Service Bus Development Maven Plug-In POM File
Samples

Service Bus has three different types of POM files: one for Service Bus applications, one for
Service Bus projects, and one for Service Bus system resources.

Example: Service Bus Application POM File

A Service Bus application POM file is an aggregation file that lists all the projects to compile
in an application, allowing you to run Maven against a single POM file instead of each
individual project POM file. Maven executes the modules in the order in which they are listed
in the application POM file.

<?xml version="1.0" encoding="UTF-8"?>
<project xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd"
 xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <modelVersion>4.0.0</modelVersion>

 <groupId>OrdersAndPayments</groupId>
 <artifactId>OrdersAndPayments</artifactId>
 <version>1.0-SNAPSHOT</version>

 <packaging>pom</packaging>

 <modules>
 <module>System</module>
 <module>Orders</module>
 <module>Payments</module>
 </modules>

</project>

Example: Service Bus Project POM File

A Service Bus project POM file inherits from a parent POM named project-12.2.1 in the
Maven repository. With the inheritance, the project POM file is more streamlined.

Note that System is a reserved project name in Service Bus specifically for system resources.
This should not be used as the artifact ID when using the project archetype.

<project xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd"
 xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <modelVersion>4.0.0</modelVersion>

Chapter 60
Oracle Service Bus Development Maven Plug-In POM File Samples

60-13

 <parent>
 <groupId>com.oracle.servicebus</groupId>
 <artifactId>project</artifactId>
 <version>12.2.1.0.0</version>
 </parent>

 <groupId>OrdersAndPayments</groupId>
 <artifactId>Orders</artifactId>
 <version>1.0-SNAPSHOT</version>

 <packaging>sbar</packaging>

 <dependencies>
 <dependency>
 <groupId>OrdersAndPayments</groupId>
 <artifactId>System</artifactId>
 <version>1.0-SNAPSHOT</version>
 </dependency>
 </dependencies>

</project>

Example: Service Bus System Resources POM File

A Service Bus system resources POM file inherits from a parent POM named
system-12.2.1 in the Maven repository. With the inheritance, the system resources
POM file is more streamlined.

Note that System is a reserved project name in Service Bus specifically for system
resources. The artifact ID must be System when using the system archetype.

<?xml version="1.0" encoding="UTF-8"?>
<project xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd"
 xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <modelVersion>4.0.0</modelVersion>

 <parent>
 <groupId>com.oracle.servicebus</groupId>
 <artifactId>system</artifactId>
 <version>12.2.1.0.0</version>
 </parent>

 <groupId>OrdersAndPayments</groupId>
 <artifactId>System</artifactId>
 <version>1.0</version>

 <packaging>sbar</packaging>

</project>

Chapter 60
Oracle Service Bus Development Maven Plug-In POM File Samples

60-14

Part X
Appendixes

This part contains miscellaneous development information and reference material.

This part contains the following appendixes:

• Message Context

• XPath Extension Functions

• Oracle Service Bus APIs

• Transport SDK Interfaces and Classes

• Transport SDK UML Sequence Diagrams

• XQuery-SQL Mapping Reference

• Work Managers and Threading

A
Message Context

This appendix describes the Service Bus message context model and the predefined context
variables that are used in message flows.

This chapter includes the following sections:

• The Message Context Model

• Predefined Context Variables

• Message-Related Variables

• Inbound and Outbound Variables

• Operation Variable

• Fault Variable

• Initializing Context Variables

• Performing Operations on Context Variables

• Constructing Messages to Dispatch

• Message Context Schema

A.1 The Message Context Model
The Service Bus message context is a set of properties that hold message content as well as
information about messages as they are routed through Service Bus.

These properties are referred to as context variables; for example, service endpoints are
represented by predefined context variables. Service Bus also supports user-defined context
variables.

The message context is defined by an XML schema. You typically use XQuery expressions to
manipulate the context variables in the pipeline service.

A.2 Predefined Context Variables
The predefined context variables can be grouped into the following types: message-related
variables, inbound and outbound variables, the $operation variable, and the fault variable.

Table A-1 describes the predefined context variables.

Note:

The Message Context Schema specifies the element types for the message context
variables.

A-1

For information about the element types in message context variables, see Message
Context Schema.

Table A-1 Predefined Context Variables in Service Bus

Context Variable Description See Also

header For SOAP messages, $header contains the
SOAP header. If the pipeline is SOAP
1.2, $header contains a SOAP 1.2 Header
element.

For message types other than SOAP, $header
contains an empty SOAP header element.

Message-Related
Variables

body This varies depending on the message type,
as described below:

• SOAP messages: The <SOAP:Body>
part extracted from the SOAP envelope. If
the pipeline is SOAP 1.2, the $body
variable contains a SOAP 1.2 Body
element.

• Non-SOAP, non-binary messages: The
entire message content wrapped in a
<SOAP:Body> element.

• Binary messages: A <SOAP:Body>
wrapped reference to an in-memory copy
of the binary message.

• Java objects: A <SOAP:Body> wrapped
reference to an in-memory copy of the
Java object.

Message-Related
Variables

attachments The MIME attachments for a given message. Message-Related
Variables

inbound The inbound transport headers along with
information about the proxy service that
received a message.

Inbound and
Outbound Variables

outbound The outbound transport headers along with
information about the target service to which a
message is to be sent.

Inbound and
Outbound Variables

operation The operation being invoked on a pipeline. Operation Variable

fault Information about errors that have occurred
during the processing of a message.

Fault Variable

messageId The transport provider-specific message
identifier. This ID should uniquely identify the
message among other messages going
through the Service Bus runtime, but it is not
required that this value be unique.

messageID Variable

A.3 Message-Related Variables
Together, the message-related variables $header, $body, and $attachments represent
the canonical format of a message as it flows through Service Bus.

These variables are initialized using the message content received by a pipeline and
are used to construct the outgoing messages that are routed or published to other

Appendix A
Message-Related Variables

A-2

services. If you want to modify a message as part of processing it, you must modify these
variables.

The message payload (that is, a message content exclusive of headers or attachments) is
contained in the $body variable. The decision about which variable's content to include in an
outgoing message is made at the point at which a message is dispatched (published or
routed) from Service Bus. That determination is dependent upon whether the target endpoint
is expecting a SOAP or a non-SOAP message:

• When a SOAP message is expected, the $header and $body variables are combined in a
SOAP envelope to create the message.

• When a non-SOAP message is expected, the contents of the Body element in the $body
variable constitutes the entire message.

• In either case, if the service expects attachments, a MIME package is created from the
resulting message and the $attachments variable.

A.3.1 Header Variable
The $header variable contains SOAP headers associated with a message. The $header
variable points to a <SOAP:Header> element with headers as sub-elements. Note that if the
proxy service is SOAP 1.2, the $header variable contains a SOAP 1.2 Header element. In the
case of non-SOAP messages or SOAP messages with no headers, the <SOAP:Header>
element is empty, with no sub-elements.

A.3.2 Body Variable
The $body variable represents the core message payload and always points to a
<SOAP:Body> element. Note that if the proxy service is SOAP 1.2, $body contains a SOAP 1.2
Body element. The core payload for both SOAP and non-SOAP messages is available in the
same variable and with the same packaging; that is, wrapped in a <SOAP:Body> element:

• In the case of SOAP messages, the SOAP body is extracted from the envelope and
assigned to the $body variable.

• In the case of non-SOAP, non-binary, messages, the full message contents are placed
within a newly created <SOAP:Body> element.

• In the case of binary messages, rather than inserting the message content into the $body
variable, a <binary-content/> reference element is created and inserted into the
<SOAP:Body> element. To learn how binary content is handled, see Binary Content in the
Body and Attachments Variables.

• In the case of Java objects, a <java-content/> reference element is created and
inserted into the <SOAP:Body> element. To learn how Java content is handled, see Java
Content in the Body Variable.

A.3.3 Attachments Variable
The $attachments variable holds the attachments associated with a message. The
attachments variable is defined by an XML schema. It consists of a single root node,
<ctx:attachments>, with a <ctx:attachment> sub-element for each attachment. The sub-
elements contain information about the attachment (derived from MIME headers) as well as
the attachment content and any custom headers for the attachment.

Appendix A
Message-Related Variables

A-3

As with most of the other message-related variables, $attachments is always set, but
if there are no attachments, the $attachments variable consists of an empty
<ctx:attachments> element. The $attachments variable contains the following for
each attachment:

• The attachment, if the attachment is XML.

• A reference XML, if the attachment is binary.

• Text, if the attachment is text.

Note:

The Message Context Schema specifies the element types for the message
context variables.

Each attachment element includes the set of sub-elements described in Table A-2.

Table A-2 Sub-Elements of the Attachments Variable

Elements of the Attachments
Variable

Description

Content-ID A globally-unique reference that identifies the
attachment.The type is string.

Content-Type The media type and sub-type of the attachment. The type
is string.

Content-Transfer-Encoding An indicator of how the attachment is encoded. The type is
string.

Content-Description A textual description of the content. The type is string.

Content-Location A locally-unique URI-based reference that identifies the
attachment. The type is string.

Content-Disposition An indicator of how the attachment should be handled by
the recipient. The type is string.

user-headers A list of custom MIME headers for the attachment. This
element can contain one or more user-header elements
that define each custom header.

user-header A custom MIME header. Specify the header's name in the
name attribute, and the header's value in the value
attribute. The type for both attributes is string.

body Holds the attachment data. The type is anyType.

With the exception of the untyped body element, all other elements contain string
values that are interpreted in the same way as they are interpreted in MIME. For
example, valid values for the Content-Type element include text/xml and text/xml;
charset=utf-8.

The parsing of attachments is not recursive. If an attachment has a Content-Type of
multipart/..., the body element holds the original unpacked MIME content as a
stream of bytes and does not contain attachment sub-elements. Because the MIME
stream may contain binary data, it is represented by a <binary-content> reference

Appendix A
Message-Related Variables

A-4

element. To learn how binary content is handled, see Binary Content in the Body and
Attachments Variables.

Messages whose Content-Type is multipart/form-data are constructed at runtime as
follows:

• Inbound: All parts of a received inbound multipart/form-data type message are
assigned to the $attachments variable. The $body variable is left empty.

• Outbound: The content of an outbound multipart/form-data type message is built from
the content of the $attachments variable. Nothing from $header or $body is included.

Note:

If the inbound message is of a different multipart type than multipart/form-
data (for example, multipart/related) and the outbound message is
multipart/form-data, you must explicitly preserve the headers and content of
the inbound root part, because they will not otherwise be passed through.

Service Bus does not support sending attachments to EJB, Tuxedo, and DSP services.

A.3.4 Message Types and Context Variables
The context variables are wrapper variables that contain the SOAP header elements, the
SOAP body element, and the MIME attachments, respectively. The context gives the
impression that all messages are SOAP messages, and non-SOAP messages are mapped to
this paradigm. The following table lists the mappings for different message types. For
information about Java content, see Java Content in the Body Variable.

Table A-3 Message Mappings

Message Type Mapping

XML The Body element in $body contains the XML document. Attachments
are in $attachments.

binary The Body element in $body contains a reference XML document.
Attachments are in $attachments.

MFL The document is transparently converted from and to XML, and appears
as an XML document in the Body element in $body. Attachments are
in $attachments.

text The Body element in $body contains the text. Attachments are
in $attachments.

File, FTP, and Email In the case of pass-by-reference documents, a reference XML document
in the Body element in $body refers to the URI of the document stored in
the file system by the transport. Attachments are in $attachments.

SOAP The Body element in $body contains the SOAP body. The Header
element in $header contains the SOAP header. Attachments are
in $attachments.

Appendix A
Message-Related Variables

A-5

A.3.5 Binary Content in the Body and Attachments Variables
In the case of both the $body and $attachments variables, text, XML, and MFL content
is placed directly inside an XML element. For binary data, which can contain byte
values that are illegal in XML, Service Bus does not place the binary content in the
XML element. Consequently, the binary content cannot be manipulated, but it is
handled efficiently.

When binary content is received, the Service Bus runtime stores it in an in-memory
hash table and a reference to that content is inserted into the XML (body or
attachments) element. This reference is represented by the following XML snippet:

<binary-content ref="..."/>

where the ref attribute contains a URI or URN that uniquely identifies the binary
content. This XML can be manipulated in a pipeline pair, branch, or route node in the
same way any other content can be manipulated, but only the reference and not the
underlying binary content is affected.

For example:

• Binary content in the $body variable can be copied to an attachment by copying
the reference XML to the body sub-element of an attachment element.

• Binary content in two different attachments can be swapped by swapping the
snippets of reference XML or by swapping the values of the ref attributes.

When messages are dispatched from Service Bus, the URI in the reference XML is
used to restore the relevant binary content in the outgoing message. For information
about how outbound messages are constructed, see Constructing Messages to
Dispatch.

Clients and certain transports, notably email, file, and FTP can use this same
reference XML to implement pass-by-reference. In this case, the transport or client
creates the reference XML rather than the proxy service runtime. Also, the value of the
URI in the ref attribute is specified by the user who creates the reference XML. For
these cases in which the reference XML is not created by the proxy service runtime—
specifically, when the URI is not recognized as one referring to internally managed
binary content—Service Bus does not de-reference the URI, and the content is not
substituted into an outgoing message.

A.3.5.1 Sending SOAP with Attachments to Business Processes
When you send a SOAP with Attachments (SwA) document from Service Bus to a
BPEL business process and use the XPath function
ora:getAttachmentContent('inputVariable','bin','/bin') to retrieve the multipart
attachments in BPEL, make sure to do the following:

• Set the Content-ID attachment variable for the multipart attachments.

• Refer to the attachments in the primary soap envelope using an href attribute.

Note that in some cases, the cid: information might be absent from the href attribute.

Below is an example:

Content-Type: Multipart/Related; boundary=MIME_boundary; type=text/xml;
 start="<rootpart@example.com>"

Appendix A
Message-Related Variables

A-6

Content-Description: This is the optional message description.
--MIME_boundary
Content-Type: text/xml; charset=UTF-8
Content-Transfer-Encoding: 8bit
Content-ID: <rootpart@example.com>

<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body xmlns:types="http://example.com/mimetypes">
 <m:SendClaim xmlns:m="http://example.com/mimewsdl“>
 <ClaimDetail>
 <Name>...</Name>
 <!-- additional claim details -->
 </ClaimDetail>
 <ClaimPhoto href="cid:4d7a5fa2-14af-451c-961b5c3abf786796@example.com"/>
 </m:SendClaim>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

--MIME_boundary
Content-Type: image/jpeg
Content-Transfer-Encoding: binary
Content-ID: <4d7a5fa2-14af-451c-961b5c3abf786796@example.com>

...MIME attachment of binary photograph...
--MIME_boundary—

A.3.6 Java Content in the Body Variable
The Service Bus pipeline supports Java objects as inputs and outputs to Java callout actions.
A POJO returned by a Java callout is cached in the pipeline, and its key is returned wrapped
in an XML message of the form <java-content ref="cid:kkkkeeeeyyyy"/>, where
cid:kkkkeeeeyyyy is a key automatically generated by the producing action and used to
index the object in the pipeline's POJO repository. Any subsequent action then passes that
XML unmodified as an argument.

The content of a POJO variable is not directly accessible by pipeline actions at configuration
time. Rather, the content can be handled in the following ways:

• The content's metadata (that is, its key) can be handled as any other XML, for example in
an XQuery such as $pojo/java-content/@ref. This may be useful for logging or
debugging, but the content of the object cannot be directly accessed.

• The content can be assigned to a new variable that automatically becomes typed (in the
pipeline) as a POJO. The object itself is not touched. The <java-content.../> XML
snippet is copied from the source variable to the target variable.

• The content can be passed to another appropriate action (like Java callout) as a variable
(for example, $pojo). The object itself is not touched. The argument is automatically de-
referenced to the actual object.

The Java object is removed from the pipeline's POJO repository when you delete all variables
holding the object's key (in <java-content />) or when you delete all XPaths pointing to the
<java-content /> snippet.

A.3.7 Streaming Body Content
For processing message content, you can specify that the pipeline streams the content rather
than loading it into memory. When you enable content streaming for a pipeline, you specify

Appendix A
Message-Related Variables

A-7

whether to buffer the streamed content to memory or a disk file as an intermediate
step during the processing of the message. The creation of these temporary files might
affect performance. For information about protecting temporary files, see "Protection of
Temporary Files With Streaming body Content" in Administering Oracle Service Bus.

When you enable the streaming option, content streaming applies only to the $body
variable.

In general, use content streaming:

• When processing large content messages. See the guidelines in Best Practices for
Using Content Streaming.

• In use cases where Service Bus accesses the payload a small number of times.

• For content-based routing without transformations; content streaming results in
better performance due to the benefits from partial parsing.

A.3.7.1 Best Practices for Using Content Streaming
Use the following guidelines and recommendations for enabling streaming content:

• When you enable streaming for large message processing, you cannot use the
insert, replace, rename, for each, validate, and delete actions with respect to
the $body message context variable, because these actions require the input
variable to be fully materialized in memory and full materialization is incompatible
with the content streaming option.

• You can use the results of an XQuery or XSL transformation from a very
large $body with the following pipeline actions:

– Assign, insert, and replace actions: Use the results to update the value of
another context variable (not $body). However, you must ensure that the result
of the expression is small enough to be fully materialized and stored in the
message context.

– Java callouts: Use the results to pass input arguments. All input to Java
callouts is fully materialized, therefore, the results of expressions used as input
must be small enough to be fully materialized.

– MFL transformations: Use the results to transform very large payloads without
first materializing the input as an XML Bean. When using a very large $body
as an input to an MFL transformation, declare a messaging service, binary
message type pipeline. If you declare a messaging service, text message type
pipeline, $body will get fully materialized to obtain an input stream for the
transformation.

– Alert, log, and report actions: Use the results to report the result of an XQuery
or XSL transformation on a very large $body.

– Service callouts

• For XSL transformations, all input is fully materialized in order to perform the
transformation, therefore, you must ensure that the input is small enough so that it
can be fully materialized and processed by the XSLT processor.

• With very large MFL input, you should use an MFL service instead of an MFL
stage action to perform a MFL-to-XML transformation.

• Do not use the Test Console to test pipelines with very large content messages
because the content will be fully materialized, potentially causing an out-of-

Appendix A
Message-Related Variables

A-8

memory exception, and displayed, causing a slowdown in the Test Console window.

• When writing XQueries, use proper indexing to achieve partial parsing.

For example, instead of using $body/*:DateTimeStruct, which would consume the entire
input stream, use one of the following:

($body/*:DateTimeStruct)[1]

or

$body[1]/*:DateTimeStruct[1]

By using indexing, only content up to and including the first DateTimeStruct element will
be parsed.

• Because each variable that is accessed by two or more consumers (expressions) is
materialized, when writing XQueries, avoid statements such as the following:

let $labdata1 := $body/*
return <HEADER>{ $labdata1/HEADER/@*, $labdata1/HEADER/node() }</HEADER>

In this case, $labdata1 is bound to the whole document without the root element so the
XQuery engine runs out of memory when trying to materialize it.

One way of changing this query to avoid excessive materialization would be to move
the /HEADER path expression inside the let clause.

let $labdata1 := $body/*/HEADER
...

In this case, the XQuery engine will only materialize the HEADER element or elements.

• At runtime, processing large messages is subjected to the limitations and restrictions of
the underlying transport; for example, the message size handling limitations of the
transport. Be aware of the JVM and RMI settings that limit the capacity of the transport to
accept large messages.

A.3.8 Streaming Attachments
For processing message attachments, you can specify that Service Bus page MIME
attachments to disk and then stream the contents rather than buffering the attachments in
memory and parsing them into XML. This is particularly advantageous when working with
large attachments. Using this approach, Service Bus buffers only the headers and exposes
the rest of the message payload as a stream from which smaller portions can be read at a
time. Streamed transfers can improve the scalability of a service by eliminating the need for
large memory buffers.

Note:

Service Bus does not support streaming attachments for email or WS transports.

When enabled for pipelines, the setting applies to the handling of inbound request messages.
For HTTP business services, the setting applies in the handling of outbound response
messages. The following actions allow outbound messages to be dispatched and support
streaming attachments:

Appendix A
Message-Related Variables

A-9

• Route, Dynamic Route, and Route Table

• Publish, Dynamic Publish, and Publish Table

When streaming is enabled, all attachments, including binary, text, and XML, are
processed as opaque data, which means you cannot run XQueries or XPath
expressions based on the XML content of the attachment.

A.3.8.1 Inbound Message Handling
When Service Bus receives an inbound message and is configured to stream
attachments, the contents of each MIME attachment is saved to a separate file on
disk. The value of the $attachments variable is then set such that standard MIME
headers for each attachment, including Content-ID, Content-Type, Content-Transfer-
Encoding, Content-Description, Content-Location, and Content-Disposition, when
present, are added under the attachment element.

The body child element then has a single binary-content child element that refers to
the corresponding source in the source repository.

For example, an $attachments variable might appear as follows:

<con:attachments xmlns:con="http://www.oracle.com/wli/sb/context">
 <con:attachment>
 <con:Content-Type>image/jpeg</con:Content-Type>
 <con:Content-ID>
 <1.urn:uuid:BFB7D745CBAF21BA5B12023554608963@apache.org>
 </con:Content-ID>
 <con:Content-Transfer-Encoding>
 binary
 </con:Content-Transfer-Encoding>
 <con:body>
 <con:binary-content ref="cid:23976580:1183dd6aab9:-7fe0"/>
 </con:body>
 </con:attachment>
</con:attachments>

This is done regardless of the attachment content type. This means that text/xml
attachments, for example, are treated identically to image/jpeg attachments, namely
as opaque binary data with a binary content element.

This style of message handling differs from when attachments are not streamed, in
which case certain types, such as text/xml or text/plain are recognized and used to
initialize the body XML element (to contain the XML contents) or the text contents of
the attachment respectively.

A.3.8.2 Outbound Response Message Handling
When Service Bus processes an outbound message and is configured to stream
attachments, the contents of each MIME attachment is saved to a separate file on
disk. Service Bus then initializes the $attachments message context variable in a
manner similar to inbound requests (see Inbound Message Handling).

A.3.9 XOP/MTOM Support
Service Bus enables you to configure pipelines to decode and parse inbound
messages in XOP/MTOM format and to send responses using the XOP/MTOM format,

Appendix A
Message-Related Variables

A-10

when appropriate. Oracle also enables you to configure business services to encode
outbound messages in XOP/MTOM format.

Service Bus supports pipelines with the following binding types to accept and decode
incoming XOP/MTOM payloads:

• Any XML

• Messaging (XML)

• Any SOAP

• WSDL-based

Pipelines of any other service binding type that receive XOP/MTOM payloads treat them the
same as any other MIME multipart request without MTOM-specific handling.

In addition, the following Service Bus transports support XOP/MTOM:

• HTTP/S

• Local

• SB (when applicable, such as with chained Service Bus domains)

Service Bus supports all existing actions that allow outbound messages to be dispatched,
including the following:

• Route, Dynamic Route and Route Table

• Publish, Dynamic Publish and Publish Table

• Service Callout

Service Bus does not support combining MTOM and SOAP with Attachments (SwA).

A.3.9.1 XOP/MTOM in Pipelines
You can enable pipelines to decode and parse inbound messages in XOP/MTOM format and
to send responses using the XOP/MTOM format, when appropriate. When XOP/MTOM
support is enabled, you can further select how to handle binary data in the $body message
context variables from among the following options:

• Include Binary Data by Reference: (Default) See Binary by Reference Option.

• Include Binary Data by Value: See Binary by Value Option.

Note that if XOP/MTOM Support is enabled for a pipeline, it is not required that every inbound
message be in the MTOM format. Instead, this setting specifies that when an MTOM-
formatted message arrives, the pipeline should handle it accordingly. Note also that when
pipelines that are not enabled for XOP/MTOM support receive an MTOM-formatted message,
the service rejects the message and issues a runtime error.

A.3.9.1.1 Binary by Reference Option
Use Include Binary Data by Reference when you need direct access to binary data, for
example to pass data to a Java callout or Message Format Language (MFL) transformation.

When the Binary by Reference option is selected, Service Bus parses the root of the inbound
message checking for the presence of xop:Include tags. These tags, when found, are
converted to ctx:binary-content elements with a reference pointing to the corresponding
source in binary repository. The resulting document is represented by the $body message

Appendix A
Message-Related Variables

A-11

context variable. The $attachments message context variable, in contrast, does not
contain any information (is null).

This means that when pipeline actions access the contents of the $body message
context variable, the actions do not encounter xop:Include elements, but instead work
with ctx:binary-content elements.

When the pipeline needs to send a response back, the binding layer creates an XOP/
MTOM package response by replacing ctx:binary-content references with
xop:Include tags in the root of the message and adding a separate MIME part for
each corresponding binary content reference.

A.3.9.1.2 Binary by Value Option
Use Include Binary Data by Value in the following cases:

• To bridge between MTOM and non-MTOM services. For example, consider an
MTOM-enabled pipeline that receives a request that is then routed to a non-
MTOM-enabled service. You could use this option to comply with existing
standards for sending binary data in XML in Base64-encoded form.

• To validate the contents of the message against an XML schema that requires a
base64binary element to be used in place of binary data.

When the Include Binary Data by Value option is selected, Service Bus parses the root
of the inbound MIME message checking for the presence of xop:Include tags. When
found, the body of the corresponding MIME parts (the binary data) are Base64
encoded and the resulting text replaces the xop:Include tags in the $body message
context variable.

The $attachments message context variable, in contrast, does not contain any
information (is null).

A.3.9.2 XOP/MTOM in Business Services
You can enable business services to encode outbound messages in XOP/MTOM
format. When XOP/MTOM Support is enabled, you can further select how to handle
binary data in the $header and $body message context variables from among the
following options:

• Include Binary Data by Reference: (Default) In an outbound response message,
replace xop:Include elements with ctx:binary-content elements when setting
up the $body message context variable.

• Include Binary Data by Value: In an outbound response message, replace
xop:Include elements with Base64-encoded text versions of corresponding binary
data when setting up the $body message context variable.

Note that if XOP/MTOM support is enabled for a business service, it is not required
that every outbound message be in the MTOM format. Instead, this setting specifies
that the business service is capable of handling an MTOM payload.

A.3.9.2.1 XOP/MTOM in Outbound Messages
When XOP/MTOM support is enabled for a business service, Service Bus examines
the contents of $body message context variable searching for ctx:binary-content
elements. If any are present, Service Bus creates an XOP/MTOM MIME package

Appendix A
Message-Related Variables

A-12

replacing ctx:binary-content with xop:Include elements and with the corresponding MIME
part in the payload.

Service Bus always uses XOP/MTOM when it is enabled and the body has binary content,
regardless of the size of the content (for example, even when it is smaller than 1KB). Since
Service Bus does not support the combination of MTOM and SwA, the system throws a
runtime exception when Service Bus needs to dispatch an outbound request to a business
service and the following conditions are met:

• The business service is XOP/MTOM enabled

• The $attachments message context variable is not null

A.3.9.3 XOP/MTOM Attachments Streaming
With XOP/MTOM enabled on a service, Service Bus automatically modifies elements in
the $header and $body of a message, as described in the previous sections. Because of the
need to modify XOP/MTOM message content, Service Bus does not support streaming the
message $header and $body.

However, there may be situations in which you need to stream the binary attachments of
XOP/MTOM messages directly to disk rather than to the Service Bus heap (the default), such
as when attachments are large and cause out-of-memory errors.

Note:

XOP/MTOM attachments are not sent in the $attachments variable of the message.
They are included or referenced in the message $body as previously described.

To stream XOP/MTOM message attachments directly to disk, use the following settings on
your service configuration:

• Use the XOP/MTOM Include Binary Data by Reference option. This option puts the
binary data directly in the $body, which cannot be streamed for XOP/MTOM support.)

• With Include Binary Data by Reference selected, you can also select the Page
Attachments to Disk option (HTTP transport only). With Page Attachments to Disk
selected, Service Bus generates the XOP/MTOM message to reference the binary
attachment on disk rather than in memory.

Note:

Referencing attachments in memory is recommended for optimum performance, so
use the Page Attachments to Disk option only when you have a specific need for
doing so, such as when sending large attachments whose size could cause out-of-
memory errors.

A.3.10 Custom MIME Headers
Service Bus supports custom MIME headers for both inbound request/outbound response
and outbound request/inbound response message patterns. When an inbound message

Appendix A
Message-Related Variables

A-13

includes a custom header and the message is read in the pipeline, the custom header
information appears in the user-headers element in the XML, as shown in the
example below.

<con:user-headers>
 <con:user-header name="MyCustomHeader" value="Custom Header Value" />
</con:user-headers>

For an outbound request with an inbound response, Service Bus converts any user-
header elements to custom headers in the corresponding MIME part when Service
Bus constructs the outbound request message. user-header elements can be the
result of the (unpacked) inbound request or can be added manually in an explicit
pipeline action, such as insert, replace or assign actions.

A.4 Inbound and Outbound Variables
The $inbound and $outbound context variables contain information about the inbound
and outbound endpoints.

The $inbound variable contains information about the proxy service that received the
request message; the $outbound variable contains information about the target
business service to which a message is sent.

The $outbound variable is set in the route action in route nodes and publish actions.
You can modify $outbound by configuring request and response actions in route nodes
and by configuring request actions in publish actions.

Caution:

Some modifications that you can make for the $inbound and $outbound
context variables are not honored at runtime. That is, the values of certain
headers and metadata can be overwritten or ignored by the Service Bus
runtime. The same limitations are true when you set the transport headers
and metadata using the transport headers and service callout actions, and
when you use the Test Console to test your services.

For information about the headers and metadata for which there are
limitations, see How the Runtime Uses the Transport Settings in the Test
Console. Note also that any modifications you make to $outbound in the
message flow outside of the request or response actions in route nodes and
publish actions are ignored. In other words, those modifications are
overwritten when $outbound is initialized in the route nodes and publish
actions.

You cannot modify the $outbound variable in service callout actions.

The $inbound and $outbound variables have the following characteristics:

• Have the same XML schema. The $inbound and $outbound context variables are
instances of the endpoint element as described in Message Context Schema.

• Contain a single name attribute that identifies the name of the endpoint as it is
registered in the service directory. The name attribute should be considered read-
only for both $inbound and $outbound.

Appendix A
Inbound and Outbound Variables

A-14

Caution:

The read-only rule is not enforced. Changing read-only elements can result in
unpredictable behavior.

• Contain the service, transport and security sub-elements described in Sub-Elements
of the Inbound and Outbound Variables..

A.4.1 Sub-Elements of the Inbound and Outbound Variables
This section describes the sub-elements of the $inbound and $outbound context variables,
including information about whether a given sub-element is initialized at runtime. To learn
about how context variables are initialized, see Initializing Context Variables. The sub-
elements include the following:

• service

• transport

• security

A.4.1.1 service
The service element is read-only for both $inbound and $outbound. Sub-elements include
providerName and operation.

Note:

The Message Context Schema specifies the element types for the message context
variables.

Table A-4 Sub-Elements of the service Element

Sub-Elements Description...

providerName The name of the service key provider. This is initialized based on the
configuration of publish and routing actions.

operation

(outbound only)

The name of the operation to be invoked on the target business service.
This is initialized based on the $inbound and $outbound.

Note: This element is used for the $outbound variable only. In the case of
inbound messages, the name of the operation to be invoked on the proxy
service is specified by the $operation variable.

A.4.1.2 transport
The transport element is read-only on inbound, except for the response element, which you
can modify to set the response transport headers. The sub-elements of the transport
element are described in Table A-5.

Appendix A
Inbound and Outbound Variables

A-15

Note:

The Message Context Schema specifies the element types for the message
context variables.

Table A-5 Sub-Elements of the Transport Element

Sub-Elements Description...

uri The URI of the endpoint:

• When used in the $inbound variable, this is the URI by which
the message arrived.

• When used in the $outbound variable, this is the URI to use
when sending the message. It overrides any URI value
registered in the service directory.

Initialization
The URI element is initialized as described below:

• Always initialized on the $inbound variable.
• Never initialized on the $outbound variable. You can set the

URI on $outbound when you want to override the set of URIs
in the service configuration. URI failover is not supported if this
element is set.

Appendix A
Inbound and Outbound Variables

A-16

Table A-5 (Cont.) Sub-Elements of the Transport Element

Sub-Elements Description...

request Transport-specific metadata about the request (including transport
headers). The value for this element is defined by the transport
protocol (specifically, the RequestMetaData XML defined by the
transport SDK).Therefore, the structure of this element depends on
the transport being used.

This element is read-only in the $inbound variable. You can modify
it for the $outbound variable. Note: The read-only rule is not
enforced. Changing read-only elements can result in unpredictable
behavior.

To learn about the transport-specific types for this element, see the
appropriate transport schema, which are available in the following
directory in your Service Bus installation:

service_bus-home/config/plugins/

Initialization
The URI element is initialized as described below:

• Initialized on the $inbound variable using information from the
request message received by Service Bus.

• On the $outbound variable, the request element is created
with the proper typing. The typing is transport-dependent. The
request element is typically initialized as an empty element,
with the exception of certain important transport headers; for
example, content-type and SOAPAction.

To set a filename for an outbound message using the File transport
protocol, configure $outbound in a route node request action, as
described below:

• If the fileName only is specified, a file of that name is stored at
the location specified by the endpoint URI of the target business
service.

• If isFilePath is set to true, the value of fileName is used as
a relative path appended to the endpoint URI of the target
business service. For example, if the endpoint URI is
file:////service/ob/data, and the fileName header is
set to ./schema/example.xml, and isFilePath is set to
true, the message will be stored at /service/ob/data/
schema/example.xml.

If a file already exists with that name, a new name is generated,
following the format path/filename_random-number.xml, where
random-number is an integer in the range of 0 to 999999.

Appendix A
Inbound and Outbound Variables

A-17

Table A-5 (Cont.) Sub-Elements of the Transport Element

Sub-Elements Description...

response Transport-specific metadata about the response (including transport
headers). The value for this element is defined by the transport
protocol (specifically, the ResponseMetaData XML defined by the
transport SDK).Therefore, the structure of this element depends on
the transport being used.

This element is read-only in the $outbound variable. You can
modify it for the $inbound variable.

To learn about the transport-specific types for this element, see the
appropriate transport schema, which are available in the following
directory in your Service Bus installation:

service_bus-home/config/plugins/

Initialization
The URI element is initialized as described below:

• Initialized on the $outbound variable using information from the
response message received by Service Bus.

• On the $inbound variable, the response element is created
with the proper typing. The typing is transport-dependent. The
response element is typically initialized as an empty element,
with the exception of certain important transport headers; for
example, content-type and SOAPAction.

For a description of the standard HTTP headers, see http://
www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

For a description of the standard JMS headers, see "Value-Added
Public JMS API Extensions" in Developing JMS Applications for
Oracle WebLogic Server.

Note: The following MQ headers do not have equivalents in Oracle
JMS: ApplOriginData, ApplIdentityData, Accounting Token

mode An indicator of whether the communication style is request (one-
way) or request-response (two-way).

Initialization
Initialized on the $inbound and $outbound variables using
information from the service and its operations (if applicable). For
example, if a request-only operation is being invoked, the mode
element is set to request, rather than to request-response.

Appendix A
Inbound and Outbound Variables

A-18

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

Table A-5 (Cont.) Sub-Elements of the Transport Element

Sub-Elements Description...

qualityOfService

This element is read only
for inbound.

You can modify it for the
outbound case— in the
outbound request actions
of a publish or routing
action.

The quality of service expected when sending or receiving a
message. Valid values include best-effort and exactly-once:

• best-effort means that each dispatch defines its own
transactional context (if the transport is transactional).There is
no reliable messaging and no elimination of duplicate
messages; however, performance is optimized.

For the scenario in which a message is dispatched as a result
of a publish action, any dispatch errors are suppressed. For the
scenario in which a message is dispatched from a routing node,
dispatch errors are not suppressed.

• exactly-once means that the dispatch is included as part of the
inbound transactional context (if one exists and if the outbound
transport is transactional) and errors cause processing to abort
and trigger the relevant error handler (in the case of both the
route and publish scenarios). Exactly once reliability means that
messages are delivered from inbound to outbound exactly
once, assuming a terminating error does not occur before the
outbound message send is initiated.

Initialization
The qualityOfService element is initialized on the $inbound
and $outbound variables as described below:

• In the inbound case, the quality of service (QoS) is dictated by
the transport. For example, for the JMS/XA transport, the QoS
is exactly once; for the HTTP transport, the QoS is best effort.

• In the outbound case, the QoS is set differently for publishing
and for routings:

Routing: When messages are routed to another service from a
route node, the QoS is always initialized using the value from
the $inbound context variable. In other words, the outbound
QoS is set to exactly once if (and only if) the inbound QoS is
exactly once. Otherwise, the outbound QoS is set to best effort.

Publishing: When a message is published to another service
as the result of a publish action, the quality of service (QoS) is
always initialized to best effort regardless of the inbound setting.

retryCount

(outbound only)

The number of retries to attempt when sending a message from
Service Bus.

If retryCount is set, the setting overrides any retry count value
configured in the target service configuration.

A.4.1.3 security
The sub elements of the security element are described in Table A-6.

Note:

The Message Context Schema specifies the element types for the message context
variables.

Appendix A
Inbound and Outbound Variables

A-19

Table A-6 Sub-Elements of the Security Element

Sub-Elements Description...

transportClient

inbound only)

Authenticated transport-level user information. The user information
includes a user name and any optional principals. The principals can
themselves include zero or more groups, one for each group the
subject belongs to.

This variable is initialized by Service Bus. The inbound
transportClient element is read-only. Note: The read-only rule is
not enforced. Changing read-only elements can result in
unpredictable behavior. If the subject is anonymous, the user name is
anonymous and there are no groups.

messageLevelClient

inbound only)

Specifies authenticated message-level user information. The user
information includes a user name and any optional principals. The
principals can themselves include zero or more groups, one for each
group the subject belongs to.

This variable is initialized by Service Bus. The inbound
messageLevelClient element is read-only. If the subject is
anonymous, then the user name is anonymous and there are no
groups.

doOutboundWss

(outbound only)

Service Bus sets the value of this element during routing or
publishing. Some infrequently used design patterns set the value to
false to preempt a service from automatically generating the
outbound WS-Security SOAP envelope.

For more information, see under Disabling Outbound WS-Security.

Note: When one proxy service invokes another proxy service (such
as a local proxy) that contains Oracle Web Services Manager service
policies, outbound WS-Security processing does not occur. cService
Bus handles that behavior automatically and does not use the
doOutboundWss property. For more information, see Using OWSM
Security with Local Proxy Services..

A.4.2 Related Topics
Working with Pipeline Actions in Oracle Service Bus Console

How to Add Route Nodes to Pipelines in the Console

For a description of the standard HTTP headers, see http://www.w3.org/Protocols/
rfc2616/rfc2616-sec14.html

For a description of the standard JMS headers, see "Understanding WebLogic JMS" in
Developing JMS Applications for Oracle WebLogic Server.

A.5 Operation Variable
The $operation variable is a read-only variable. It contains a string that identifies the
operation to be invoked on a pipeline.

If no operations are defined, the $operation variable is not set and returns the
equivalent of null.

Service Bus provides the $operation variable as a stand-alone variable, rather than
as a sub-element of the $inbound variable to optimize performance. The computation

Appendix A
Operation Variable

A-20

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

of the operation may be deferred until the $operation variable is explicitly accessed rather
than anytime the $inbound variable is accessed.

A.6 Fault Variable
The fault variable holds information about any error that has occurred during message
processing.

When an error occurs, this variable is populated with information before the appropriate error
handler is invoked. This variable is defined only in error handler pipelines and is not set in
request and response pipelines or in route or branch nodes.

The fault variable includes the sub-elements described in Table A-7.

Note:

The Message Context Schema specifies the element types for the message context
variables.

Table A-7 Sub-Elements of the Fault Variable

Elements of the Fault
Variables

Description

errorCode The error code as a string value.

reason A text description of the error.

details User-defined XML content related to the error. For more information see
Error Codes and Error Details.

location Identifies the node, pipeline and stage in which the error occurred. Also
identifies if the error occurred in an error handler. The sub-elements
include the following:

• node: The name of the pipeline pair, branch, or route node where an
error occurred, in the form of a string.

• pipeline: The name of the pipeline where an error occurred (if
applicable), in the form of a string.

• stage: The name of the stage where an error occurred (if
applicable), in the form of a string.

• error-handler: A boolean indicator of whether an error occurred
from inside an error handler.

java-exception Information about the exception instance references. This can contain
multiple ref elements, each of which define a single instance.

stack-trace Any stack traces to add to the fault.

A.6.1 Error Codes
The contents of the fault variable are modeled after SOAP faults to facilitate fault generation
when replying from a SOAP-based service. The values for error codes generated by Service
Bus correspond to system error codes and are prefixed with an "OSB" string, unless
configured otherwise. The error codes associated with the errors surface inside the element
of the fault context variable. To access the value, use the following XQuery statement:

Appendix A
Fault Variable

A-21

$fault/ctx:errorCode/text()

Service Bus defines generic error codes for the four classes of possible errors. The
format of the generic codes is OSB-xxx000, where xxx represents a generic category
as follows:

• 380 Transport and Proxy

• 382 Pipeline

• 386 Security

• 394 UDDI

This yields the generic codes as follows:

• OSB–380000—OSB–380999

Indicates a transport or proxy service error (for example, failure to dispatch a
message).

• OSB–382000—OSB–382499

Indicates a pipeline runtime error (for example, a stage exception).

• OSB–382500—OSB–382999

Indicates an error in a pipeline action.

• OSB–386000—OSB–386999

Indicates a WS-Security error (for example, authorization failure).

• OSB–394500—OSB–394999

Indicates an error in the UDDI sub system.

Service Bus defines unique codes for specific errors. For example:

• OSB-382030: Indicates a message parsing error (for example, a SOAP service
received a non-SOAP message).

• OSB-382500: Reserved for the case in which a service callout action receives a
SOAP Fault response.

A.6.2 Error Details
The details element of the fault variable displays the type of fault, along with
relevant information to the fault type. It can include any of the following elements
indicating the error type:

• ErrorResponseDetail: Indicates that a service callout action received an error
response from a transport provider.

• InvalidEnvelope: Indicates that a SOAP service received a well-formed XML
document that was not an expected SOAP envelope.

• PayloadDetail: Indicates that an error occurred when parsing all or parts of the
payload as XML.

• ReceivedFaultDetail: Indicates that a service callout action received a SOAP
fault.

• UnrecognizedResponseDetail: Indicates that a service callout action received an
unrecognized response from a transport provider.

Appendix A
Fault Variable

A-22

• ValidatonFailureDetail: Indicates that an error occurred in a validation action.

• WebServiceSecurityFault: Indicates that a Web Services Security processing-related
error occurred.

• StackTrace: The exception stack trace for cases not covered above.

You can view the errors schema file in Errors Schema.

A.6.3 XML Parsing Errors (PayloadDetail)
When an error is an XML parsing error, the malformed XML text is included in the
PayloadDetail element in the error schema, as described in Error Details. Parsing errors are
only detected when parsing inbound request messages to the pipeline and outbound
response messages to the business services. Actions that explicitly change the payload,
such as an assign action, that result in malformed XML are not included in this error detail.

Only the part of the payload that was read by the XML parser is included in the fault
variable, so the PayloadDetail element might not include the entire XML text. By default,
there is no limit to the number of characters that can be included in the error detail. To limit
the size of the XML text included in the payload detail of the fault variable, set the system
property com.bea.wli.sb.FaultPayloadDetailMaxSize to the size of the text you want to
include (in bytes). Setting this property to 0 (zero) disables the feature, which means faults
will not include the PayloadDetail element.

If the pipeline has content streaming enabled, the text placed in the PayloadDetail element
is truncated to either 10KB or to the max size you set, if it is less than 10KB. If the payload
contains binary characters, the payload is base64-encoded and placed in the base64 child
element of the PayloadDetail element (up to the maximum payload detail size).

A.7 messageID Variable
messageID is a transport provider-specific identifier associated with the message.

It can be accessed via the $messageID system variable.

A.8 Initializing Context Variables
The message context and its variables are initialized in the binding layer when a message is
received and before message processi

ng begins. Table A-8 summarizes how context variables are initialized.

Table A-8 Initializing Context Variables

Context Variable How Initialized

outbound Initialized to null because no routing or errors have yet occurred.

fault The $outbound variable is initialized in the route action in route nodes
and publish actions. You can modify $outbound through the request
actions in routing nodes and publish actions (also in the response actions
in routing nodes). For more information, see Inbound and Outbound
Variables.

For information about the initialization of sub-elements of $outbound, see
Sub-Elements of the Inbound and Outbound Variables.

Appendix A
messageID Variable

A-23

Table A-8 (Cont.) Initializing Context Variables

Context Variable How Initialized

inbound Initialized with service, transport and security information that is obtained
from Service Bus metadata about the registered proxy service and
transport-level metadata (transport headers, authenticated user
information, and so on) about the specific incoming request.

For information about the initialization of sub-elements of $inbound, see
Sub-Elements of the Inbound and Outbound Variables.

header

body

attachments

operation

Initialized using the content of the inbound message. How the initialization
is performed depends on the type of service, as described in the
subsequent topics in this section:

• Initializing the Attachments Context Variable
• Initializing the Header and Body Context Variables
The $header, $body, and $attachments variables are re initialized after
routing using the content of the response that is received. If no routing is
performed or if the communication mode is request-only, then these
variables are not re initialized. That is, they are not cleared of any content.

A.8.1 Initializing the Attachments Context Variable
The $attachments context variable is initialized with any MIME attachments that
accompany the message, but does not include the part representing the main
message (whether it is SOAP, XML, MFL, and so on). Each <attachment> element is
initialized using the MIME headers that accompany each part in the MIME package.

The contents of the <body> element in the <attachment> can be one of the following
depending on the attachment's Content-Type:

• XML

• text

• A snippet of reference XML that refers to the attachment content (see Binary
Content in the Body and Attachments Variables.)

A.8.2 Initializing the Header and Body Context Variables
This section describes how the initialization of $header and $body context variables is
performed depending on the type of service: SOAP Services, XML Services (Non
SOAP), Messaging Services.

A.8.2.1 SOAP Services
Messages to SOAP-based services are SOAP messages containing XML that is
contained in a <soap:Envelope> element. In the case that messages include
attachments, the content of the inbound message is a MIME package that includes the
SOAP envelope as one of the parts, typically the first part or one identified by the top-
level Content-Type header. The context variables are initialized as follows:

• $header: Initialized with the <soap:Header> element from the SOAP message

• $body: Initialized with the <soap:Body> element from the SOAP message

Appendix A
Initializing Context Variables

A-24

A.8.2.2 XML Services (Non SOAP)
The messages to XML-based services are XML, but can be of any type allowed by the
service configuration. In the case that messages include attachments, the content of the
inbound messages is a MIME package that includes the primary XML payload as one of the
parts, typically the first part or one identified by the top-level Content-Type header.

The context variables are initialized as follows:

• $header: Initialized with an empty <soap:Header/> element.

• $body: Initialized with a <soap:Body> element that wraps the entire XML payload.

A.8.2.3 Messaging Services
Messaging services are those that can receive messages of one data type and respond with
messages of a different data type. The supported data types include XML, MFL, text, untyped
binary. The context variables are initialized as follows:

• $header: Initialized with an empty <soap:Header/> element.

• $body: Initialized with a <soap:Body> element that wraps the entire payload.

– In the case of XML, MFL, and text content, it is placed directly within the <soap:Body>
element.

– In the case of binary content, a piece of reference XML is created and inserted inside
the <soap:Body> element (see Binary Content in the Body and Attachments
Variables). The binary content cannot be accessed or modified, but the reference
XML can be examined, modified, and replaced with inline content.

A.9 Performing Operations on Context Variables
You interact with and manipulate the message context through actions in the pipeline pair,
branch, or route nodes that define the pipeline.

Most actions expose the XQuery language to do so. Each context variable is represented as
an XQuery variable of the same name. For example, the $header variable is accessible in
XQuery as $header, the $body variable is accessible as $body, and so on. The examples in
this section show the use of XQuery to examine and manipulate context variables.

A.9.1 $body
The $body variable includes the <soap-env:Body>...</soap-env:Body> element. (If the
service is SOAP 1.2, the $body variable contains a SOAP 1.2 Body element.) For example, if
you assign data to the $body context variable using the Assign action, you must wrap it with
the <soap-env:Body> element. In other words, you build the SOAP package by including the
<soap-env:Body> element in the context variable.

There is an exception to this behavior for the case in which you build the Request Document
Variable for the service callout action. Service callout actions work with the core payload
(RPC parameters, documents, and so on) and Service Bus builds the SOAP package around
the core payload. In other words, when you configure the Request Document Variable for a
service callout action, you do not wrap the input document with <soap-env:Body>...</soap-
env:Body>.

Appendix A
Performing Operations on Context Variables

A-25

For information about configuring the service callout action, see Adding Service
Callout Actions in the Console.

A.9.2 $header
The $header variable includes the <soap-env:Header>...</soap-env:Header>
element. (If the proxy service is SOAP 1.2, the $header variable contains a SOAP 1.2
Header element.) For example, if you assign data to the $header context variable
using the Assign action, you must wrap it with the <soap-env:Header> element. In
other words, you build the SOAP package by including the <soap-env:Header>
element in the context variable. This is true for all manipulations of $header, including
the case in which you can set one or more SOAP headers for a service callout
request. For information about configuring SOAP headers for a service callout action,
see Adding Service Callout Actions in the Console.

Extract the WS-Addressing Header—From: $header/wsa:From

Extract the Payload From a Non-SOAP Message: $body/*

Extract the user-header From an Outbound Response Message: $outbound/
ctx:transport/ctx:response/tp:user-header[@name='myheader']/@value

When creating a $body input variable that is used for the request parameter in a
service callout to a SOAP Service, you would define that variable's contents
using $body/* (to remove the wrapper soap-env:Body), not $body (which results in
keeping the soap-env:Body wrapper).

Assign Variable Contents for Request Parameter in a Service Callout: $body/*

A.9.3 Related Topics
For more information about handling context variables using the XQuery and XPath
editors, see:

• Using Variable Structures

• Working With Expression Editors in Oracle Service Bus Console

A.10 Constructing Messages to Dispatch
When Service Bus publishes or routes a message, the content of the message is
constructed using the values of variables in the message context.

For example, transport headers and other transport-specific metadata are taken
from $outbound/transport/request. As is the case with initialization of the context,
the message content for outbound messages is handled differently depending upon
the type of the target service. How the outbound message content is created depends
on the type of the target service, as described in the following topics:

• SOAP Services

• XML Services (Non SOAP)

• Messaging Services

Appendix A
Constructing Messages to Dispatch

A-26

A.10.1 SOAP Services
An outgoing SOAP message is constructed by wrapping the contents of the $header
and $body variables inside a <soap:Envelope> element. If the invoked service is a SOAP 1.2
service, the envelope created is a SOAP 1.2 envelope. If the invoked service is a SOAP 1.1
service, the envelope created is a SOAP 1.1 envelope. If the $body variable contains a piece
of reference XML, it is sent as is; in other words, the referenced content is not substituted into
the message.

If attachments are defined in the $attachments variable, a MIME package is created from the
main message and the attachment data. The handling of the content for each attachment part
is similar to how content is handled for messaging services.

A.10.2 XML Services (Non SOAP)
The messages to XML-based services from Service Bus are constructed from the contents of
the $body variable:

• If the $body variable is empty, then a zero-size message is sent.

• If the $body variable contains multiple XML snippets, then only the first snippet is used in
the outbound message. For example, if <soap:Body> contains <abc/><xyz/>, only <abc/>
is sent.

• If the content of the $body variable is text and not XML, an error is thrown.

• If the $body variable contains a piece of reference XML, it is sent as is; in other words,
the referenced content is not substituted into the message.

• If attachments are defined in the $attachments variable, a MIME package is created from
the XML message and the attachment data. In the case of a null XML message, the
corresponding MIME body part is empty. The handling of the content for each attachment
part is similar to how content is handled for messaging services.

Regardless of any data it contains, the $header variable does not contribute any content to
the outbound message. For examples of how messages are constructed for service callout
actions, see Working with Pipeline Actions in Oracle Service Bus Console.

A.10.3 Messaging Services
The messages to messaging services from Service Bus are constructed from the contents of
the $body variable.

• If the $body variable is empty, then a zero-size message is sent, regardless of the
outgoing message type.

• If the outgoing message type is XML, then the message is constructed in the same way
as it is for XML Services (Non SOAP).

• If the outgoing message type is MFL, then the behavior is similar to that for XML
message types except that the extracted XML is converted to MFL. An error occurs if the
XML > MFL conversion cannot be performed.

• If the target service requires text messages, the contents of the $body variable are
interpreted as text and sent. In this way, it is possible for Service Bus to handle incoming
XML messages that must be delivered to a target service as text. In other words, you do
not need to configure the message flow to handle such messages.

Appendix A
Constructing Messages to Dispatch

A-27

• For target services that expect binary messages, the $body variable must contain
a piece of reference XML—the reference URI references the binary data stored in
the Service Bus in-memory hash table. The referenced content is sent to the target
service.

For cases in which a client, a transport, or the designer of a service specifies the
reference URI, the referenced data is not stored in Service Bus and thus cannot
be de referenced to populate the outbound message. Consequently, the reference
XML is sent in the message.

If the $body variable contains a piece of reference XML, and the target service
requires a message type other than binary, the reference XML inside the $body
variable is treated as content. In other words, it is sent as XML, converted to text,
or converted to MFL. This is true regardless of the URI in the reference XML.

Regardless of any data it contains, the $header variable does not contribute any
content to the outbound message.

For examples of how messages are constructed for service callout actions, see
Working with Pipeline Actions in Oracle Service Bus Console.

A.10.3.1 About Sending Binary Content in Email Messages
For binary messages, Service Bus does not insert the message content into the $body
variable. Instead, a <binary-content/> reference element is created and inserted into
the <SOAP:Body> element (see Message-Related Variables). However, the email
standard does not support sending binary content type as the main part of a message.
If you want to send binary messages by email to a messaging service that accepts text
or XML documents and optional attachments, you can do so as follows:

1. Transfer the binary-content reference XML from $body to $attachments.

2. Replace the content of $body with text or XML wrapped in a <SOAP:Body> element.

For the case in which the outgoing message type is MFL, the contents of $body is
converted from XML to text or binary based on the MFL transformation:

• If the target service expects to receive text message, you can set the content-
type (the default is binary for MFL message type) as text/plain in $outbound

• If the target service expects to receive binary messages, it is not possible to send
MFL content using the email transport.

To learn more about how binary content is handled, see Binary Content in the Body
and Attachments Variables.

A.10.4 Related Topics
Message Context Schema

Adding Service Callout Actions in the Console

Adding Transport Header Actions in the Console

How to Add Route Nodes to Pipelines in the Console

Appendix A
Constructing Messages to Dispatch

A-28

A.11 Message Context Schema
This example shows the message context schema (MessageContext.xsd), which specifies
the types for the message context variables.

When working with the message context variables, you need to reference
MessageContext.xsd which is available in a JAR file, OSB_ORACLE_HOME/lib/servicebus-
schemas.jar, and the transport-specific schemas, which are available at OSB_ORACLE_HOME/
config/plugins/.

Example - MessageContext.xsd

<schema targetNamespace="http://www.bea.com/wli/sb/context"
 xmlns:mc="http://www.bea.com/wli/sb/context"
 xmlns="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">

 <!-- === --
>

 <!-- The context variable 'fault' is an instance of this element -->
 <element name="fault" type="mc:FaultType"/>

 <!-- The context variables 'inbound' and 'outbound' are instances of this
 element -->
 <element name="endpoint" type="mc:EndpointType"/>

 <!-- The three sub-elements within the 'inbound' and 'outbound' variables -->
 <element name="service" type="mc:ServiceType"/>
 <element name="transport" type="mc:TransportType"/>
 <element name="security" type="mc:SecurityType"/>

 <!-- The context variable 'attachments' is an instance of this element -->
 <element name="attachments" type="mc:AttachmentsType"/>

 <!-- Each attachment in the 'attachments' variable is represented by an
 instance of this element -->
 <element name="attachment" type="mc:AttachmentType"/>

 <!-- Used to represent binary payloads and pass-by reference content -->
 <element name="binary-content" type="mc:BinaryContentType"/>

 <!-- Element used to represent POJOs stored in object repository -->
 <element name="java-content" type="mc:JavaContentType"/>

 <!-- === --
>

 <!-- The schema type for -->
 <complexType name="AttachmentsType">
 <sequence>
 <!-- the 'attachments' variable is just a series of attachment
 elements -->
 <element ref="mc:attachment" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </complexType>

Appendix A
Message Context Schema

A-29

 <complexType name="AttachmentType">
 <all>
 <!-- Set of MIME headers associated with attachment -->
 <element name="Content-ID" type="string" minOccurs="0"/>
 <element name="Content-Type" type="string" minOccurs="0"/>
 <element name="Content-Transfer-Encoding" type="string"
 minOccurs="0"/>
 <element name="Content-Description" type="string" minOccurs="0"/>
 <element name="Content-Location" type="string" minOccurs="0"/>
 <element name="Content-Disposition" type="string" minOccurs="0"/>

 <!-- any (custom) headers not specified above will be here -->
 <element name="user-headers" minOccurs="0">
 <complexType>
 <sequence>
 <element name="user-header" maxOccurs="unbounded">
 <complexType>
 <attribute name="name" type="string"/>
 <attribute name="value" type="string"/>
 </complexType>
 </element>
 </sequence>
 </complexType>
 </element>

 <!-- Contains the attachment content itself, either in-lined or as
<binary-content/> -->
 <element name="body" type="anyType"/>
 </all>
 </complexType>

 <complexType name="BinaryContentType">
 <!-- URI reference to the binary or pass-by-reference payload -->
 <attribute name="ref" type="anyURI" use="required"/>
 </complexType>

 <complexType name="JavaContentType">
 <!-- URI reference to POJOs in object repository -->
 <attribute name="ref" type="anyURI" use="required"/>
 </complexType>

 <!--
=== -->

 <complexType name="EndpointType">
 <all>
 <!-- Sub-elements holding service, transport and security details
for
 the endpoint -->
 <element ref="mc:service" minOccurs="0" />
 <element ref="mc:transport" minOccurs="0" />
 <element ref="mc:security" minOccurs="0" />
 </all>

 <!-- Fully-qualified name of the service represented by this endpoint -->
 <attribute name="name" type="string" use="required"/>
 </complexType>

 <!--
=== -->

Appendix A
Message Context Schema

A-30

 <complexType name="ServiceType">
 <all >
 <!-- name of service provider -->
 <element name="providerName" type="string" minOccurs="0"/>

 <!-- the service operation being invoked -->
 <element name="operation" type="string" minOccurs="0"/>
 </all>
 </complexType>

 <!-- === --
>

 <complexType name="TransportType">
 <all>
 <!-- URI of endpoint -->
 <element name="uri" type="anyURI" minOccurs="0" />

 <!-- Transport-specific metadata for request and response (includes
 transport headers) -->
 <element name="request" type="anyType" minOccurs="0"/>
 <element name="response" type="anyType" minOccurs="0" />

 <!-- Indicates one-way (request only) or bi-directional
 (request/response) communication -->
 <element name="mode" type="mc:ModeType" minOccurs="0" />

 <!-- Specifies the quality of service -->
 <element name="qualityOfService" type="mc:QoSType" minOccurs="0" />

 <!-- Retry values (outbound only) -->
 <element name="retryInterval" type="integer" minOccurs="0" />
 <element name="retryCount" type="integer" minOccurs="0" />

 <!-- Throttling priority (outbound only) -->
 <element name="priority" type="positiveInteger" minOccurs="0" />
 </all>
 </complexType>

 <simpleType name="ModeType">
 <restriction base="string">
 <enumeration value="request"/>
 <enumeration value="request-response"/>
 </restriction>
 </simpleType>

 <simpleType name="QoSType">
 <restriction base="string">
 <enumeration value="best-effort"/>
 <enumeration value="exactly-once"/>
 </restriction>
 </simpleType>

 <!-- === --
>

 <complexType name="SecurityType">
 <all>
 <!-- Transport-level client information (inbound only) -->
 <element name="transportClient" type="mc:SubjectType" minOccurs="0"/>

Appendix A
Message Context Schema

A-31

 <!-- Message-level client information (inbound only) -->
 <element name="messageLevelClient" type="mc:SubjectType"
 minOccurs="0"/>

 <!-- Boolean flag used to disable outbound WSS processing (outbound
 only) -->
 <element name="doOutboundWss" type="boolean" minOccurs="0"/>
 </all>
 </complexType>

 <complexType name="SubjectType">
 <sequence>
 <!-- User name associated with this tranport- or message-level
subject -->
 <element name="username" type="string"/>
 <element name="principals" minOccurs="0">
 <complexType>
 <sequence>
 <!-- There is an element for each group this subject
 belongs to, as determined by the authentication
 providers -->
 <element name="group" type="string" minOccurs="0"
 maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 </element>
 <element name="subject-properties" minOccurs="0" maxOccurs="1">
 <complexType>
 <sequence>
 <element name="property" minOccurs="0"
 maxOccurs="unbounded"
 type="mc:SubjectPropertyType"/>
 </sequence>
 </complexType>
 </element>
 </sequence>
 </complexType>

 <complexType name="SubjectPropertyType" mixed="true">
 <sequence>
 <any minOccurs="0" maxOccurs="unbounded" processContents="lax"/>
 </sequence>
 <attribute name="name" type="string" use="required"/>
 <anyAttribute processContents="lax"/>
 </complexType>

 <!--
=== -->

 <complexType name="FaultType">
 <all>
 <!-- A short string identifying the error (e.g. BEA38229) -->
 <element name="errorCode" type="string"/>

 <!-- Descriptive text explaining the reason for the error -->
 <element name="reason" type="string" minOccurs="0" />

 <!-- Any additional details about the error -->
 <element name="details" type="anyType" minOccurs="0" />

Appendix A
Message Context Schema

A-32

 <!-- Information about where the error occured in the proxy -->
 <element name="location" type="mc:LocationType" minOccurs="0" />

 <!-- Information about the exception instance reference stored in the
 object repository -->
 <element name="java-exception" minOccurs="0">
 <complexType>
 <sequence>
 <element ref="mc:java-content" />
 </sequence>
 </complexType>
 </element>
 </all>
 </complexType>

 <simpleType name="PipelinePathType">
 <restriction base="string">
 <enumeration value="request-pipeline"/>
 <enumeration value="response-pipeline"/>
 </restriction>
 </simpleType>

 <complexType name="LocationType">
 <all>
 <!-- Name of the Pipeline/Branch/Route node where error occured -->
 <element name="node" type="string" minOccurs="0" />

 <!-- Name of the Pipeline where error occured (if applicable) -->
 <element name="pipeline" type="string" minOccurs="0" />

 <!-- Name of the Stage where error occured (if applicable) -->
 <element name="stage" type="string" minOccurs="0" />

 <!-- Indicates if error occured from inside an error handler -->
 <element name="error-handler" type="boolean" minOccurs="0" />

 <!-- Indicates whether or not error occured in request or
 response path -->
 <element name="path" type="mc:PipelinePathType" minOccurs="0" />
 </all>
 </complexType>

 <!-- Encapsulates any stack-traces that may be added to a fault <details> -->
 <element name="stack-trace" type="string"/>

</schema>

A.12 Errors Schema
This example shows the error schema (Errors.xsd), which specifies the structure for errors.

This file is available in a JAR file, OSB_ORACLE_HOME/lib/servicebus-schemas.jar.

Example - Errors.xsd

<schema targetNamespace="http://www.bea.com/wli/sb/errors"
 xmlns:err="http://www.bea.com/wli/sb/errors"
 xmlns:tc="http://www.bea.com/wli/sb/transports"
 xmlns="http://www.w3.org/2001/XMLSchema"

Appendix A
Errors Schema

A-33

 elementFormDefault="qualified"
 attributeFormDefault="unqualified">

 <import namespace="http://www.bea.com/wli/sb/transports"
 schemaLocation="TransportCommon.xsd" />

 <element name="InvalidEnvelope">
 <complexType>
 <sequence>
 <element name="localpart" type="NCName"/>
 <element name="namespace" type="anyURI" minOccurs="0"/>
 </sequence>
 </complexType>
 </element>

 <element name="WebServiceSecurityFault">
 <complexType>
 <sequence>
 <element name="faultcode" type="QName"/>
 <element name="faultstring" type="string"/>
 <element name="detail" minOccurs="0">
 <complexType mixed="true">
 <sequence>
 <any namespace="##any" minOccurs="0"
maxOccurs="unbounded" processContents="lax"/>
 </sequence>
 <anyAttribute namespace="##any" processContents="lax"/>
 </complexType>
 </element>
 </sequence>
 </complexType>
 </element>

 <!-- Publish error details -->
 <element name="ErrorResponseDetail" type="err:ErrorResponseDetail"/>
 <complexType name="ErrorResponseDetail">
 <sequence>
 <!-- Response metadata -->
 <element name="response-metadata" type="tc:ResponseMetaDataXML"
minOccurs="0" />
 </sequence>
 </complexType>

 <!-- payload information in $fault details when parsing message into XML
raises an error -->
 <element name="PayloadDetail" type="err:PayloadDetail"/>
 <complexType name="PayloadDetail">
 <choice>
 <element name="text" minOccurs="0" type="string" />
 <element name="base64" minOccurs="0" type="base64Binary" />
 </choice>
 </complexType>

 <!-- REST default (system) faults -->
 <element name="RestError" type="err:RestErrorType"/>
 <complexType name="RestErrorType">
 <sequence>
 <element name="errorMessage" minOccurs="0" type="string" />
 <element name="errorCode" minOccurs="0" type="string" />
 </sequence>
 </complexType>

Appendix A
Errors Schema

A-34

</schema>

Appendix A
Errors Schema

A-35

B
XPath Extension Functions

This appendix describes the XPath extension functions for working with cross references and
domain value maps in Service Bus. It also describes how to create user-defined XPath
extension functions. Oracle provides XPath functions that use the capabilities built into
Service Bus and XPath standards for adding new functions.

This appendix includes the following sections:

• Cross-Reference Functions

• Domain Value Map Functions

• Creating Custom XPath Functions

B.1 Cross-Reference Functions
Using cross references, you can dynamically map values for an entity in one application to
the equivalent values in other applications. This is useful for when you update information for
an object in one application, and that information needs to be propagated to the same object
in other applications. Each application may have its own way of identifying that object.

Cross references are stored in a lookup table, and the cross reference XPath functions let
you monitor and manage the data in the table. Use theses functions to add, update, and
lookup data in the cross reference mapping tables. A global transaction should be available
during these function calls. If the transaction is not available, a new transaction is initiated.

Note:

Most of the cross reference functions take the location and name of the Service Bus
cross reference resource as an argument. Service Bus does not support a direct
reference to resources in the Oracle Metadata Services (MDS) Repository.

For complete information about cross references, see Working with Cross References in
Developing SOA Applications with Oracle SOA Suite. For information about cross references
in Service Bus, see Mapping Data with Cross-References.

B.1.1 lookupPopulatedColumns
This function looks up all the populated columns for a given cross reference table, cross
reference column, and value. It returns a node-set, with each node containing a column name
and the corresponding value. For a more detailed explanation of this function, see "About the
xref:lookupPopulatedColumns Function" in Developing SOA Applications with Oracle SOA
Suite.

Signature

xref:lookupPopulatedColumns(xref-location, column, value, need-exception)

B-1

Arguments

Unless otherwise noted, all argument are String values.

• xref-location: The full path and name of the cross-reference resource.

• column: The name of the reference column.

• value: The value corresponding to the reference column.

• need-exception: A boolean value indicating whether to throw an exception if the
value is not found. When this is set to true, the function throws an exception if the
value is not found. Otherwise, it returns an empty value.

At runtime, an exception can occur for the following reasons:

– The cross reference table with the given name is not found.

– The specified column names are not found.

– The specified reference value is empty.

Property IDs

• namespace-uri: http://www.oracle.com/osb/xpath-functions/xref

• namespace-prefix: xref

Example

xref:lookupPopulatedColumns('/BookSellers/XRefPublishers', 'HARPER', 'H_1500',
true())

B.1.2 lookupXRef
This function looks up a cross reference column for a value that corresponds to a
specific value in a reference column. For a more detailed explanation of this function,
see "About the xref:lookupXRef Function" in Developing SOA Applications with Oracle
SOA Suite.

Signature

xref:lookupXRef(xref-location, ref-column, ref-value, column-name, need-
exception)

Arguments

Unless otherwise noted, all argument are String values.

• xref-location: The full path and name of the cross-reference resource.

• ref-column: The name of the reference column.

• ref-value: The value corresponding to the reference column.

• column-name: The name of the column in which to look up the value.

• need-exception: A boolean value indicating whether to throw an exception if the
value is not found. When this is set to true, the function throws an exception if the
value is not found. Otherwise, it returns an empty value.

At runtime, an exception can occur for the following reasons:

– The cross reference table with the given name is not found.

– The specified column names are not found.

Appendix B
Cross-Reference Functions

B-2

– The specified reference value is empty.

– Multiple values are found.

Property IDs

• namespace-uri: http://www.oracle.com/osb/xpath-functions/xref

• namespace-prefix: xref

Example

xref:lookupXRef('/BookSellers/XRefPublishers', 'HARPER', 'H_1500', 'PENGUIN', false())

B.1.3 lookupXRef1M
This function looks up a cross reference column for multiple values that correspond to a
specific value in a reference column. It returns a node-set containing multiple nodes, and
each node contains a value. For a more detailed explanation of this function, see "About the
xref:lookupXRef1M Function" in Developing SOA Applications with Oracle SOA Suite.

Signature

xref:lookupXRef1M(xref-location, ref-column, ref-value, column-name, need-exception)

Arguments

Unless otherwise noted, all argument are String values.

• xref-location: The full path and name of the cross-reference resource.

• ref-column: The name of the reference column.

• ref-value: The value corresponding to the reference column.

• column-name: The name of the column in which to look up the values.

• need-exception: A boolean value indicating whether to throw an exception if the values
are not found. When this is set to true, the function throws an exception if the values are
not found. Otherwise, it returns an empty value.

At runtime, an exception can occur for the following reasons:

– The cross reference table with the given name is not found.

– The specified column names are not found.

– The specified reference value is empty.

Property IDs

• namespace-uri: http://www.oracle.com/osb/xpath-functions/xref

• namespace-prefix: xref

Example

xref:lookupXRef1M('/BookSellers/XRefPublishers', 'HARPER', 'H_1500', 'PENGUIN', true())

B.1.4 markForDelete
This function deletes a value in a cross reference table. The column value passed to the
function is deleted from the XREF_DATA table and moved to the XREF_DELETED_DATA table. This
function returns true if the deletion is successful. Otherwise, it returns false. If there is only

Appendix B
Cross-Reference Functions

B-3

one value left in the row after the deletion, that value is also deleted since there are no
cross references remaining.

For a more detailed explanation of this function, see "Deleting a Cross Reference
Table Value" in Developing SOA Applications with Oracle SOA Suite.

Signature

xref:markForDelete(xref-location, column, value)

Arguments

Unless otherwise noted, all argument are String values.

• xref-location: The full path and name of the cross-reference resource.

• column: The name of the column that contains the value to be deleted.

• value: The value to be deleted.

Property IDs

• namespace-uri: http://www.oracle.com/osb/xpath-functions/xref

• namespace-prefix: xref

Example

xref:markForDelete('/BookSellers/XRefPublishers', 'HARPER', 'H_1500')

B.1.5 populateLookupXRefRow
This function populates a column or columns in the cross-reference table with a single
value, depending on the mode in which it is run. Use this function to add a new row or
to add a value to a column in an existing row. This function returns a string value,
which is the value being populated. Unlike the populateXRefRow function, the
populateLookupXRefRow function does not throw a unique constraint violation error
when records with the same ID are added simultaneously. Instead, it behaves as a
lookup and returns the existing source value that caused the error and does not stop
the processing flow. Use this function to resolve any concurrency issues that could
arise when using the populateXRefRow function.

For a more detailed explanation of this function, see "About the
xref:populateLookupXRefRow Function" in Developing SOA Applications with Oracle
SOA Suite.

Signature

xref:populateLookupXRefRow(xref-location, ref-column, ref-value, column, value,
mode)

Arguments

All argument are String values.

• xref-location: The full path and name of the cross-reference resource.

• ref-column: The name of the reference column.

• ref-value: The value that corresponds to the reference column.

• column: The name of the column to be populated.

Appendix B
Cross-Reference Functions

B-4

• value: The value to be populated in the above column.

• mode: The XREF population mode. This can be ADD or LINK, and must be entered in all
uppercase letters. For more information about these modes, see
"xref:populateLookupXRefRow Function Results with Different Modes" in Developing
SOA Applications with Oracle SOA Suite.

Property IDs

• namespace-uri: http://www.oracle.com/osb/xpath-functions/xref

• namespace-prefix: xref

Example

xref:populateLookupXRefRow('/BookSellers/XRefPublishers', 'HARPER', 'H_1500',
'PENGUIN', 'PEN_2001', 'ADD')

B.1.6 populateXRefRow
This function populates one or two columns in the cross-reference table with a single value,
depending on the mode in which it is run. Use this function to add a new row, or to update or
add a value in a column in an existing row. This function returns a string value, which is the
value being populated. For a more detailed explanation of this function, see "About the
xref:populateXRefRow Function" in Developing SOA Applications with Oracle SOA Suite.

Note:

If you find you have concurrency issues when using this function, you can also use
the populateLookupXRefRow function, which should only be used in cases where
simultaneous updates are being made that result in unique constraint violations.

Signature

xref:populateXRefRow(xref-location, ref-column, ref-value, column, value, mode)

Arguments

All argument are String values.

• xref-location: The full path and name of the cross-reference resource.

• ref-column: The name of the reference column.

• ref-value: The value that corresponds to the reference column.

• column: The name of the column to be populated.

• value: The value to be populated in the above column.

• mode: The XREF population mode. This can be ADD, LINK, or UPDATE, and must be
entered in all uppercase letters. For more information about these modes, see
"xref:populateXRefRow Function Modes" in Developing SOA Applications with Oracle
SOA Suite.

Property IDs

• namespace-uri: http://www.oracle.com/osb/xpath-functions/xref

Appendix B
Cross-Reference Functions

B-5

• namespace-prefix: xref

Example

xref:populateXRefRow('/BookSellers/XRefPublishers', 'HARPER', 'H_1500',
'PENGUIN', 'PEN_2001', 'ADD'

B.1.7 populateXRefRow1M
This function populates a column or columns in the cross-reference table with multiple
values, depending on the mode in which it is run. Use this function to add a new row or
to add values to a column in an existing row. Two values in one external system can
correspond to a single value in another system. In such a scenario, use this function to
populate a cross reference column with a value. This function returns a string value,
which is the cross reference value being populated.

For a more detailed explanation of this function, see "About the
xref:populateXRefRow1M Function" in Developing SOA Applications with Oracle SOA
Suite.

Signature

xref:populateXRefRow1M(ref-location, ref-column, ref-value, column, value, mode)

Arguments

All argument are String values.

• xref-location: The full path and name of the cross-reference resource.

• ref-column: The name of the reference column.

• ref-value: The value that corresponds to the reference column.

• column: The name of the column to be populated.

• value: The value to be populated in the above column.

• mode: The XREF population mode. This can be ADD or LINK, and must be entered
in all uppercase letters. For more information about these modes, see
"xref:populateXRefRow1M Function Results with Different Modes" in Developing
SOA Applications with Oracle SOA Suite.

Property IDs

• namespace-uri: http://www.oracle.com/osb/xpath-functions/xref

• namespace-prefix: xref

Example

xref:populateXRefRow1M(/BookSellers/XRefPublishers', 'HARPER', 'H_1500',
'PENGUIN', 'PEN_2001', 'LINK'

B.2 Domain Value Map Functions
Using domain value maps, you can map the terms used by different domains to
describe the same entity, so values used by one domain for specific fields map to the
values used by other domains for the same fields.

Appendix B
Domain Value Map Functions

B-6

For example, you can map country or state codes between applications. Domain value maps
are stored in a lookup table, and the domain value map XPath functions let you look up the
data in the table.

For complete information about domain value maps, see Using Domain Value Map Functions
in Developing SOA Applications with Oracle SOA Suite. For information about cross
references in Service Bus, see Mapping Data with Domain Value Maps.

B.2.1 lookup
This function returns a string by looking up the value for the target column in a domain value
map, where the source column contains the given source value.

Signature

dvm:lookup(dvm-location, src-column, src-value, target-column, default-value)

Arguments

All arguments are String values.

• dvm-location: The domain value map URI.

• src-column: The source column name.

• src-value: The source value (an XPath expression bound to the source document of the
XSLT transformation).

• target-column: The target column name.

• default-value: If the value is not found, this default value is returned.

Property IDs

• namespace-uri: http://www.oracle.com/osb/xpath-functions/dvm

• namespace-prefix: dvm

Example

The following example looks for the value in the CityNames table that corresponds to the
value "BO" in the CityCodes table. If no matching value is found, the function returns
"CouldNotBeFound" instead.

dvm:lookup ('/CityMapsDVM/cityMap','CityCodes','BO','CityNames', 'CouldNotBeFound')

B.2.2 lookupValue
This function returns a string by looking up the value for the target column in a domain value
map, where the source column contains the given source value. You can specify a qualifying
column and value to help narrow down this lookup. For a more detailed explanation of this
function, see "Using Domain Value Map Functions" in Developing SOA Applications with
Oracle SOA Suite.

Signature

dvm:lookupValue(dvm-location, src-column, src-value, target-column, default-value,
qualifiers[])

Arguments

All arguments are String values.

Appendix B
Domain Value Map Functions

B-7

• dvm-location: The full path and name of the DVM resource.

• src-column: The source column name.

• src-value: The source value (an XPath expression bound to the source document
of the XSLT transformation).

• target-column: The target column name.

• default-value: If the value is not found, this default value is returned.

• qualifier-column: A column that, along with the qualifier value, helps to narrow
down the lookup. For more information about qualifiers, see "Qualifier Domains" in
Developing SOA Applications with Oracle SOA Suite.

• qualifier-value: A value in the qualifier column.

Property IDs

• namespace-uri: http://www.oracle.com/osb/xpath-functions/dvm

• namespace-prefix: dvm

Example

The following example looks for the value in the CityNames table that corresponds to
the value "BO" in the CityCodes table. The qualifier "Massachusetts" in the State table
helps to narrow down the city name to just that state. If no matching value is found, the
function returns "CouldNotBeFound" instead.

dvm:lookupValue ('/CityMapsDVM/cityMap','CityCodes','BO','CityNames',
'CouldNotBeFound', 'State', 'Massachusetts')

B.2.3 lookupValue1M
This function returns an XML document fragment containing values for multiple target
columns of a domain value map, where the value for the source column is equal to the
source value. When using this function in an expression, if the returned value is
directly assigned to a variable, the first occurrence is assigned to the variable. The
returned value should be iterated to make the proper assignment.

For a more detailed explanation of this function, see "Using Domain Value Map
Functions" in Developing SOA Applications with Oracle SOA Suite.

Signature

dvm:lookupValue1M(dvm-location, src-column, src-value, target-columns[])

Arguments

All arguments are String values.

• dvm-location: The full path and name of the DVM resource.

• src-column: The source column name.

• src-value: The source value (an XPath expression bound to the source document
of the XSLT transformation).

• target-columns: The names of the target columns. At least one column name
should be specified. You can specify multiple target column names, each as a
separate argument.

Property IDs

Appendix B
Domain Value Map Functions

B-8

• namespace-uri: http://www.oracle.com/osb/xpath-functions/dvm

• namespace-prefix: dvm

Example

The following example looks for the values in the CityNames and CityNickNames tables that
correspond to the value "Garden City" in the CityCodes table.

dvm:lookupValue1M ('/CityMapsDVM/cityMap','CityCodes','Garden City','CityNames',
'CityNickName')

B.3 Creating Custom XPath Functions
In addition to the standard XPath functions provided with Service Bus, you can create and
register custom XPath functions to use in your expressions.

Service Bus provides an extensible framework for creating custom XPath functions you can
use in the XQuery expression editors in the development or runtime tooling, such as in
pipelines, split-joins, and XQuery Mapper transformations.

This section includes the following topics:

• Registering Custom Functions with Service Bus

• Creating and Packaging the Custom Function Java Classes

• Using Custom Functions

• Deploying Custom Functions in a Cluster

Note:

Service Bus does not support custom functions that have side effects; for example,
updating a database table or participating in a global transaction. Create custom
functions that contribute only to an XQuery result, and perform side-effect behavior
with other features such as Java Callouts.

B.3.1 Registering Custom Functions with Service Bus
Custom functions are available to all Service Bus projects and services within a WebLogic
Server domain. To register a custom function, you create an XML file with an optional
properties file for localization. The built-in functions that Service Bus provides use this
function framework, so you can use those existing registration resources as a guide. Those
files are located in the following directory:

/service_bus_home/config/xpath-functions

The Service Bus functions file is called osb-built-in.xml. In that file, keys wrapped in %
symbols, such as %OSB_FUNCTIONS%, get their value from the corresponding .properties file.
To extend custom functions to a new domain, you need to copy the registration files (XML
and properties files) to the new domain in the following location:

/domain_home/config/osb/xpath-functions

You might need to create the xpath-functions subdirectory.

Appendix B
Creating Custom XPath Functions

B-9

Below is an outline of the basic structure of a custom function registration file, followed
by descriptions of the elements.

category id
 group id
 function
 name
 comment
 namespaceURI
 className
 method
 isDeterministic
 scope

Elements have an xpf: prefix.

The following table lists and describes each element in the custom registration file.

Table B-1 Custom Function Registration File Properties

Element Description

category The group that physically categorizes your group of functions in
the expression editors, such as "Service Bus Functions." Use the
id attribute to provide the name. If you are using a
corresponding .properties file for localization, enter the key
that contains the text value in the properties file; for example,
%MY_FUNCTIONS%. Category IDs, which include the properties
file key name and the actual name value, must be unique.

group A subcategory for grouping functions in the user interface, such
as "General" or "Accessors." Use the id attribute to provide the
name. The naming guidelines for category ID apply to group ID.
The group element is optional.

name The name of the function as it appears in XQuery expressions.
Function names, which include the namespaceURI and prefix,
must be unique. Service Bus does not support function
overloading with different method arguments. Identical function
names that have different namespaces, and thus different
prefixes, are allowed.

comment A description of the function. While the description does not
appear in the Service Bus user interface, you should provide
guidance that shows how to invoke the function with meaningful
argument names.

namespaceURI The namespace of the function. For example, the Service Bus
functions namespace is http://www.bea.com/xquery/
xquery-functions. Namespaces and namespace prefixes
must be unique. Custom namespaces that you provide appear in
the default namespaces list in the XQuery editor.

className The fully qualified custom Java class that implements the
function.

method The custom Java method that implements the function, preceded
by the return type; for example, boolean
isUserInGroup(java.lang.String, java.lang.String).

If your method uses a single-dimensional array, see Using
Single-Dimensional Arrays for guidance in making the entry in
the XML file.

Appendix B
Creating Custom XPath Functions

B-10

Table B-1 (Cont.) Custom Function Registration File Properties

Element Description

isDeterministic A value of true or false declaring whether or not the function is
deterministic. Deterministic functions always provide the same
results; for example, a function that concatenates Strings. Non-
deterministic functions return unique results; for example, a
function that returns the time of day. Though you can use non-
deterministic functions, the XQuery standard recommends that
functions be deterministic to ensure XQuery engine optimization.

scope The type of Service Bus resource to which the function applies,
such as Pipeline or SplitJoin. You can define multiple scope
elements.

B.3.2 Creating and Packaging the Custom Function Java Classes
Your custom functions do not appear in the expression editor until Service Bus can find your
custom class. Use the following guidelines to create and package the class for a custom
XPath function so Service Bus can locate and use it.

• Creating the Class and Method

• Packaging the Custom Function Class

B.3.2.1 Creating the Class and Method
Use the following guidelines for creating the Java class and method for a custom function.

• class: The class must be public.

• method: The method must be public and static.

• arguments and return values: The following table lists the supported types for method
arguments and return values. If a type is not listed, it is not supported. Inner classes and
multi-dimensional arrays are not supported.

Table B-2 Supported Java Method Types for Custom Functions

Java Type XQuery Type XSLT Type

java.lang.String xs:string string

int, java.lang.Integer xs:int number

boolean, java.lang.Boolean xs:boolean boolean

long, java.lang.Long xs:long number

short, java.lang.Short xs:short number

byte, java.lang.Byte xs:byte number

double, java.lang.Double xs:double number

float, java.lang.Float xs:float number

char, java.lang.Char xs:string object

java.math.BigInteger xs:integer number

java.math.BigDecimal xs:decimal number

Appendix B
Creating Custom XPath Functions

B-11

Table B-2 (Cont.) Supported Java Method Types for Custom Functions

Java Type XQuery Type XSLT Type

java.util.Date xs:datetime See footnote1

java.sql.Date xs:date See footnote

java.sql.Time xs:time See footnote

javax.xml.namespace.QName xs:Qname See footnote

org.apache.xmlbeans.XmlObject element() See footnote

org.w3c.dom.Element element() The XSLT node-set type is not
supported with custom XPath
functions.

1 Converted to a string, then passed back as its original type.

B.3.2.1.1 Using Single-Dimensional Arrays
Single-dimension arrays (using supported Java types) are mapped to corresponding
XQuery types with an asterisk *, which is a wild card to imply the multiple cardinality of
the array. For example:

public static XmlObject[] getArrayOfXmlObjects(XmlObject[] a)

is mapped to

namespace:getArrayOfXmlObjects($arg1 as element()*) as element()*

In function signatures that have single-dimensional array input arguments or return
values, you must use the type encoding described at http://docs.oracle.com/
javase/7/docs/api/java/lang/Class.html#getName%28%29. The following examples
show how to specify single-dimensional array methods in your custom function XML
file using the required array encoding:

Java Method Entry in Custom Function XML File

public static String[]
myUppercaseStringArray(String[] arg)

Ljava.lang.String;
myUppercaseStringArray([Ljava.lang.String;)

public static int[] myAddInts(int[] arg) [I myAddInts([I)

B.3.2.2 Packaging the Custom Function Class
Service Bus must know about your custom function class in order to include your
custom functions in the XQuery editors and let you use those functions. Package your
custom function class in a JAR file, then place the JAR in one of the following
directories:

• service_bus_home/config/xpath-functions/

• domain_home/config/osb/xpath-functions/

where service_bus_home is the location where Service Bus is installed and
domain_home is the directory where the Service Bus domain is installed.

At IDE and server start-up, Service Bus looks for custom function classes in these
directories to find the available custom functions. Be sure to correctly reference your

Appendix B
Creating Custom XPath Functions

B-12

http://docs.oracle.com/javase/7/docs/api/java/lang/Class.html#getName%28%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Class.html#getName%28%29

custom class and method in the custom function XML file, described in Registering Custom
Functions with Service Bus.

After you add new custom functions, you must restart the IDE and any servers that will use
the new functions.

B.3.3 Using Custom Functions
This section describes how to use custom functions in Service Bus XQuery expressions and
resources.

• Custom Functions In Inline XQuery Expressions and XQuery Resources

• Custom Functions In XSLT Resources

B.3.3.1 Custom Functions In Inline XQuery Expressions and XQuery Resources
You can include custom functions in both inline XQuery expressions and in XQuery resources
just as you would use functions provided by Service Bus.

B.3.3.2 Custom Functions In XSLT Resources
The syntax for invoking a custom function from within an XSLT resource varies by the XSLT
engine you use with Service Bus. Given the following custom function code, the Syntax for
Invoking a Custom Function with the Xalan Engine example, shown below, shows the syntax
for invoking a custom function using the Xalan XSLT engine (the default on Microsoft
Windows with the Oracle JDK).

package tests.pipeline;
public class CustomXQFunctions
{
 public static String myUppercaseString(String arg)
 {
 return arg.toUpperCase();
 }
}

Example - Syntax for Invoking a Custom Function with the Xalan Engine

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
 <xsl:param name="arg-string"/>
 <xsl:template name="myUppercaseString"
 xmlns:ns0="xalan://tests.pipeline.CustomXQFunctions">
 <xsl:variable name="upcase" select="ns0:myUppercaseString($arg-string)" />
 <originalInput>
 <xsl:value-of select="$arg-string" />
 </originalInput>
 <result>
 <xsl:value-of select="$upcase" />
 </result>
 </xsl:template>
 <xsl:template match="*">
 <xsl:copy>
 <xsl:call-template name="myUppercaseString"/>
 </xsl:copy>
 </xsl:template>
</xsl:stylesheet>

Appendix B
Creating Custom XPath Functions

B-13

With an input document of <example /> and an input arg-string value of hello, the
transformation becomes:

<example>
 <originalInput>hello</originalInput>
 <result>HELLO</result>
</example>

B.3.4 Deploying Custom Functions in a Cluster
In a multiple-server environment with multiple Oracle Fusion Middleware product
homes, you must manually add all custom function resources to any of those
environments where the custom functions will be used. Clustering does not
automatically distribute custom function resources across Managed Servers.

Appendix B
Creating Custom XPath Functions

B-14

C
Oracle Service Bus APIs

This appendix provides an overview of the Service Bus APIs for updating and customizing
resources, deploying resources, and managing and monitoring those resources in the
runtime. Service Bus exposes APIs to allow customizing resources and to provide external
access to monitoring data and deployment.

This appendix includes the following sections:

• Resource Update and Customization

• Management and Monitoring

• Deployment

Javadoc for the Oracle Service Bus APIs is provided in the Java API Reference for Oracle
Service Bus.

C.1 Resource Update and Customization
Several APIs are exposed to allow customization of service definitions, WSDL documents,
schemas, XQueries, and other design-time resources through programmatic interfaces.

The supporting APIs allow loading ZIP files containing resources, in addition to moving,
renaming, cloning, or deleting resources, folders, and projects. A typical use case is one in
which you have a prototypical proxy service from which you make a number of copies; each
copy can be modified programmatically.

Numerous customization options can be applied during deployment. For example,
environment variables allow you to preserve or tailor settings when moving from one
environment to another.

The available APIs include:

• ProxyServiceConfigurationMBean: Enable and disable proxy services, and enable and
disable monitoring for a proxy service.

• BusinessServiceConfigurationMBean: Enable and disable business services, monitoring
for a business service, throttling, offline URIs, and result caching, as well as detach a
service from a UDDI registry.

• PipelineServiceConfigurationMBean: Enable and disable pipeline and SLA alerts for a
pipeline.

• CommonServiceConfigurationMBean: Enable and disable a business or proxy service,
and enable and disable message tracing.

• FlowServiceConfigurationMBean: Enable and disable SLA alerts and monitoring for a
split join.

• ALSBConfigurationMBean: Manage resources in a Service Bus domain by performing the
following tasks:

– Query, export, and import resources

C-1

– Obtain validation errors

– Get and set environment values

– Modify references inside resources to new references

– Move, rename, clone, and delete resources

• ResultCacheRuntimeMBean: Manage the result cache with methods to delete a
single entry and delete all entries that belong to a specific business service.

• Customization: Customize the Service Bus runtime by performing the following
tasks:

– Find and replace environment values

– Assign environment values

– Map references found in resources to other references

C.2 Management and Monitoring
The JMX Monitoring API in Oracle Service Bus provides external access to monitoring
data.

Java Management Extensions (JMX) technology was used for the implementation.
Service Bus resources within a domain use JMX Managed Beans (MBeans) to expose
their management functions. An MBean is a concrete Java class that is developed
according to JMX specifications.

For more information, see JMX Monitoring APIin Administering Oracle Service Bus.

C.3 Deployment
You can use the Service Bus MBeans in Java programs and WLST scripts to automate
the promotion of Service Bus configurations from development environments through
testing, staging, and finally to production environments.

Numerous customization options can be applied during deployment. For example, an
extended list of environment variables allows you to preserve or tailor settings when
moving from one environment to another.

For information, see Using the Deployment APIsin Administering Oracle Service Bus.

Appendix C
Management and Monitoring

C-2

D
Transport SDK Interfaces and Classes

This appendix lists and summarizes the classes and interfaces provided in the Service Bus
Transport SDK.

For information on which interfaces are required to develop a custom transport provider, see
Developing Custom Transport Providers.

This appendix includes the following sections:

• Introduction

• Schema-Generated Interfaces

• General Classes and Interfaces

• Source and Transformer Classes and Interfaces

• Metadata and Header Representation for Request and Response Messages

• User Interface Configuration

D.1 Introduction
The Transport SDK classes and interfaces discussed in this section are located in
OSB_ORACLE_HOME/lib/modules/oracle.servicebus.kernel-api.jar unless otherwise
noted. OSB_ORACLE_HOME is the location in which you installed Service Bus.

For details on classes and methods, see the Java API Reference for Oracle Service Bus.

D.2 Schema-Generated Interfaces
A number of Transport SDK interfaces are generated from XML Schema by an XML Schema
compiler tool.

The source (XML Schema) for the following interfaces is provided in the file
TransportCommon.xsd. This file is the base schema definition file for service endpoint
configurations. This file is located in OSB_ORACLE_HOME/lib/modules/
oracle.servicebus.kernel-api.jar.

The following interfaces are schema-generated:

• EndPointConfiguration: The base type for endpoint configuration. An endpoint is a
Service Bus resource where messages are originated or targeted.
EndPointConfiguration describes the complete set of parameters necessary for the
deployment and operation of an inbound or outbound endpoint.

• RequestMetaDataXML: The base type for the metadata of an inbound or outbound
request. Metadata is not carried in the payload of the message, but separately and is
used as the context for processing the message. Examples of information that might be
transmitted in the metadata are the Content-Type header, security information, or locale
information.

• RequestHeadersXML: The base type for a set of inbound or outbound request headers.

D-1

• ResponseMetaDataXML: The base type for response metadata for an inbound or
outbound message.

• ResponseHeadersXML: The base type for a set of response headers.

• TransportProviderConfiguration: Allows you to configure (a) whether this
provider generates a service description (for example, WSDL) for its endpoints; (b)
whether this provider supports inbound (proxy) endpoints; or (c) whether this
provider supports outbound (business service) endpoints.

D.3 General Classes and Interfaces
This section summarizes the general Transport SDK classes and interfaces that you
use when developing your own custom transports.

For detailed information on each class and interface listed in this section, refer to the
Java API Reference for Oracle Service Bus.

• Summary of General Classes

• Summary of General Interfaces

D.3.1 Summary of General Classes
class TransportManagerHelper: Helper class that allows the client to execute some
common tasks with respect to the transport subsystem.

class ServiceInfo: Wrapper class that describes information about a service, such as
its transport configuration and its binding type.

class TransportOptions: Supplies options for sending or receiving a message. There
are two styles for using TransportOptions: multiline setup and single-line use.

class EndPointOperations: Describes different types of transport endpoint lifecycle-
related events by which the transport provider is notified. Nested classes include:
CommonOperation, Create, Delete, EndPointOperationTypeEnum, Resume, Suspend,
and Update.

class Ref: Uniquely represents a resource, project or folder that is managed by the
configuration system. This class is located in OSB_ORACLE_HOME/lib/modules/
oracle.servicebus.configfwk.jar.

class TransportValidationContext: Container that supplies information to transport
providers that can be used when implementing validation checks of endpoint
configuration.

class Diagnostics: Contains a collection of Diagnostic entries relevant to a particular
resource. This class is located in OSB_ORACLE_HOME/lib/modules/
oracle.servicebus.configfwk.jar.

class Diagnostic: Represents a particular validation message related to a resource.
Diagnostic objects are generated as a result of validation that is performed when a
resource changes. Such changes in the system trigger validation for the changed
resource, as well as all other resources that (transitively) depend on the changed
resource. This class is located in OSB_ORACLE_HOME/lib/modules/
oracle.servicebus.configfwk.jar.

Appendix D
General Classes and Interfaces

D-2

class NonQualifiedEnvValue: Represents an instance of an environment-dependent value
in configuration data. Environment-dependent values normally change when moving the
configuration from one domain to another. For example the URI of a service could be different
on test domain and production domains. This class is located in OSB_ORACLE_HOME/lib/
modules/oracle.servicebus.configfwk.jar.

D.3.2 Summary of General Interfaces
interface TransportManager: A singleton object that provides the main point of
centralization for managing different transport providers, endpoint registration, control,
processing of inbound and outbound messages, and other points.

interface TransportProvider: Represents the central point for management of transport
protocol-specific configuration and runtime properties. There is a single instance of
TransportProvider for every supported protocol. For example, there is a single instance of
HTTP transport provider, JMS transport provider, and so on.

interface BindingTypeInfo: Describes the binding details of the service. The implementation
is a convenience wrapper class around several internal Service Bus structures. Additional
methods can be added as needed by transport providers.

interface TransportWLSArtifactDeployer: The plug-in interface for modules that need to
deploy, undeploy, or modify Oracle WebLogic Server related artifacts along with a Service
Bus deployment. For example, in certain cases, Oracle WebLogic Server queues need to be
deployed in response to the creation of a service.

Tip:

For more information, see When to Implement TransportWLSArtifactDeployer.

interface SelfDescribedTransportProvider: Extends TransportProvider. The transport
providers that generate a service binding type description from a given transport endpoint
need to implement this interface. An example is the EJB transport provider.

interface SelfDescribedBindingTypeInfo: Extends the BindingTypeInfo interface for
services that are self-described, such as EJB services.

interface WsdlDescription: Describes the WSDL document associated with a registered
Service Bus service.

interface TransportCustomBindingProvider: Represents a class responsible for facilitating
the generation of the extensible elements of SOAP binding or all the elements of custom
Service Bus binding used during the generation of effective WSDL documents for WSDL-
based transports. This includes information such as the transport URI for the <soap:binding>
element and the location attribute for <soap:address>.

interface ServiceTransportSender: Sends outbound messages to a registered service
associated with a transport endpoint. TransportProvider.sendMessageAsync() gets an
instance of ServiceTransportSender from which the provider can retrieve the payload and
metadata for outbound requests. This interface extends TransportSender.

interface CredentialCallback: Transport providers get an instance of this callback interface
from Service Bus. The transport provider can call its methods to fetch a credential used for
outbound authentication.

Appendix D
General Classes and Interfaces

D-3

interface TransportEndPoint: A transport endpoint is an Service Bus entity or
resource where service messages are originated or targeted.

D.4 Source and Transformer Classes and Interfaces
This section provides descriptions of the base Source and Transformer interfaces,
along with several concrete Sources provided with Service Bus and some supporting
classes.

For more information, see Designing for Message Content .

• Summary of Source and Transformer Interfaces

• Summary of Source and Transformer Classes

D.4.1 Summary of Source and Transformer Interfaces
interface Source: Represents source content in some form. Sources may be
transformed into other Sources through a Transformer instance. At minimum, a
Source must natively support conversion to a byte-based stream using the two
methods defined in this interface. Source may or may not take into account various
TransformOptions, such as character-set encoding, during serialization.

interface SingleUseSource: A marker interface indicating that a type of Source can
only be consumed once. It also provides one helper method that can be used to
determine if the Source is still consumable, or valid.

If you create a Source class that implements the Source interface, Service Bus is free
to call the getInputStream() method multiple times, each time retrieving the input
stream from the beginning. If the Source class implements SingleUseSource, Service
Bus calls getInputStream() only once; however, Service Bus buffers the entire
message in memory in this case.

interface Transformer: Transforms one type of Source to another. The instance is
responsible for indicating what types of sources it can convert between. Note that a
transformer is required to support the full cross-product of transformations implied by
the supported input and output sources. In other words, a transformer must support
transforming any supported input source to any supported output source.

D.4.2 Summary of Source and Transformer Classes
class StreamSource: A byte-stream Source whose content comes from an
InputStream. As a byte-stream source, the serialization methods do not heed any
transformation options.

Appendix D
Source and Transformer Classes and Interfaces

D-4

Note:

Because this stream is backed by an InputStream, this is a single-use Source. Both
serialization methods pull from the same underlying InputStream, and once that
content is consumed, it is gone. The push-based writeTo() method results in all
data being consumed immediately, assuming no error occurs. The pull-based
getInputStream() actually gives the underlying InputStream directly to the caller.

class ByteArraySource: A byte-stream Source whose content comes from a byte array. As a
byte-stream source, the serialization methods do not heed any transformation options.

class StringSource: A Source that is backed by a single String. Serialization is simply a
character-set encoded version of the character data.

class XmlObjectSource: Apache XBean Source content is represented as an Apache
XBean. The XBean may be typed and so may be accompanied by a SchemaType object and
an associated ClassLoader. However, both of these are entirely optional and the XBean can
be untyped XML.

class DOMSource: A Source whose content comes from a DOM node. The referenced node
may be a full-fledged org.w3c.dom.Document, but it may also be an internal node in a larger
document.

class MFLSource: Represents MFL content. MFL data is essentially binary data that has
some logical structure imposed on it by an MFL definition. CSV is a simple example of MFL
data, but the structure can be arbitrarily complex. The logical/in-memory representation of the
data is an XML document, but its serialized representation is the raw unstructured binary
data.

class SAAJSource: A Source that is backed by a SAAJ SOAPMessage object. A
SAAJSource is typically converted to and from MessageContextSource and MimeSource.

class MimeSource: A Source representing arbitrary content with headers. Essentially this is
a Source that represents a MIME part. Headers must conform to RFC822 whereas the
Source can be of any type. The serialization format for this Source is a fully-compliant MIME
package. This Source is also aware of Content-Transfer-Encoding, and it will perform the
proper encoding of the underlying content stream if the header is present. Note that this
means that the Source provided to the constructor should be in raw form and not be already
encoded.

class MessageContextSource: A Source that represents all message content. The Source
for the message and attachments are left untyped to allow for deferred processing.
Eventually, however, the attachments source will likely be converted into an object and the
message source will likely be converted to a specific typed source such as an
XmlObjectSource or a StringSource.

Note:

The serialization format of a MessageContextSource is always a MIME multipart/
related package, irrespective of the native serializations of the message and
attachment sources. However, if this serialized object is needed more than once, it
is best to transform the Source into a MimeSource.

Appendix D
Source and Transformer Classes and Interfaces

D-5

class TransformOptions: Represents a set of transformation options. Instances of
this class are used in conjunction with the Transformer class to influence how an input
source is converted to an output source (for example, a change in character-set
encoding from SHIFT_JIS to EUC-JP). This class is also used by the InputStream and
OutputStream methods of the Source interface, since that is effectively also a
transformation between the Source and the byte-level representation in the
InputStream and OutputStream.

class JavaObjectSource: Represents the payload carried by Service Bus transports
that provide a Java messaging type, such as the JMS transport. The objects that make
up this payload are registered in the pipeline Java object repository by the binding
layer, and their contents are visible in message context variables through <ctx:java-
content ref='jcid:xyz' xmlns:ctx="http://www.bea.com/wli/sb/context" />
XML elements. In this example, ref points to the unique ID of the object in the Java
object repository.

class JavaXmlSource: Represents the payload carried by the services that supports
Java objects as the arguments, such as the JEJB transport. JavaXmlSource is made
up of an XML representation that defines the shape of the message body in the
pipeline and a map containing Java objects against unique keys. In the XML
representation, Java object arguments are substituted by <ctx:java-content
ref='jcid:xyz' xmlns:ctx="http://www.bea.com/wli/sb/context" /> elements,
where the ref attribute equals a key in the JavaObjects map that indexes the replaced
Java object. The map contains the objects to be registered in pipeline Java object
repository against the unique IDs in the XML representation.

D.5 Metadata and Header Representation for Request and
Response Messages

This section lists classes and interfaces that deal with request and response message
metadata representation.

For additional information, see Handling Messages and Designing for Message
Content .

• Runtime Representation of Message Contents

• Interfaces

D.5.1 Runtime Representation of Message Contents
abstract class CoLocatedMessageContext: Needs to be extended by a transport
provider that implements optimization for co-located outbound calls to go through a
Java method invocation instead of the transport layer. For an example implementation,
see the class
com.bea.alsb.transports.sock.SocketCoLocatedMessageContext.java, which is
part of the Sample Socket Transport described in Creating a Sample Socket Transport
Provider. For additional information, see Co-Located Calls."

abstract class RequestHeaders: Represents a union of standard and user-defined
headers in a given inbound or outbound request message. The set of standard
headers is specific to each transport provider. This is an abstract class to be extended
by each transport provider to implement its version of request headers.

Appendix D
Metadata and Header Representation for Request and Response Messages

D-6

abstract class RequestMetaData<T extends RequestHeaders>: Represents inbound or
outbound request message metadata information (for example, headers, request character
set encoding, and so on.) Transport providers provide an extension of this class that adds
metadata information applicable to the transport provider. For example, HTTP transport
provider adds get/setQueryString(), get/setClientHost(), and other methods.

abstract class ResponseHeaders: Represents a union of standard and user-defined
headers in a given inbound or outbound response message. The set of standard headers is
specific to each transport provider. This is an abstract class to be extended by each transport
provider to implement their version of response headers.

abstract class ResponseMetaData<T extends ResponseHeaders>: Represents inbound
or outbound response message metadata information (such as headers, request character
set encoding, and so on.) Transport providers provide an extension of this class that adds
metadata information applicable to the transport provider. For example, HTTP transport
provider adds get/setHttpResponseCode() and other methods.

D.5.2 Interfaces
interface TransportMessageContext: Most message-oriented middleware (MOM) products
treat messages as lightweight entities that consist of a header and a payload. The header
contains fields used for message routing and identification; the payload contains the
application data being sent. In general, the transport-level message context consists of a
message ID, RequestMetadata, request payload, ResponseMetaData, response payload and
related properties.

interface InboundTransportMessageContext: Implements the message context abstraction
for incoming messages.

interface OutboundTransportMessageContext: Implements the message context
abstraction for outgoing messages.

interface ServiceTransportSender: Sends outbound messages to a registered service. The
service is associated with a transport endpoint.

interface TransportSendListener: This is the callback object supplied to the outbound
transport allowing it to signal to the system that response processing can proceed. This
callback object should be invoked on a separate thread from the request message.

D.6 User Interface Configuration
Each transport provider can decide on a list of service endpoint specific configuration
properties to persist, so a flexible user interface is required that allows the user to enter
provider-specific configuration properties for each new service endpoint. The set of classes
and interfaces described in this section allow each transport provider to expose its own
properties for the user to enter as part of the service definition editors in the Oracle Service
Bus Console. Use these interfaces and classes to develop the user interface for a new
transport.

• Summary of UI Interfaces

• Summary of UI Classes

Appendix D
User Interface Configuration

D-7

D.6.1 Summary of UI Interfaces
interface TransportProviderFactory: This interface registers the new transport
provider with the transport manager.

interface TransportUIBinding: Represents an object responsible for rendering
provider-specific UI pages used for defining the service, providing a summary, and
validating transport provider specific endpoint configurations.

interface CustomHelpProvider: Lets you provide context-sensitive help for the
functionality you add to the Oracle Service Bus Console, such as custom transports.
For implementation details, see Creating Help for Custom Transports.

D.6.2 Summary of UI Classes
class TransportUIContext: Supplies options for portions of the user interface that are
specific to the transport provider. It is passed by the Oracle Service Bus Console to
each transport provider.

class TransportUIGenericInfo: Holds transport-specific UI information for the
common transport page in the service definition editors.

class TransportUIFactory: Provides factory methods for creating a Transport Edit
Field and different kinds of Transport UI objects associated with the field. Also
provides some helper methods for accessing values in these objects.

class TransportEditField: Represents a single editable UI element in the provider-
specific portion of the Oracle Service Bus Console service definition editors.

class TransportViewField: Represents a single read-only UI element in the provider-
specific portion of the service summary page.

class TransportUIError: Returns validation errors to the Oracle Service Bus Console.

Appendix D
User Interface Configuration

D-8

E
Transport SDK UML Sequence Diagrams

This appendix contains UML sequence diagrams that describe the flow of method calls
through the Service Bus runtime.

This appendix includes the following sections:

• Service Bus Runtime Inbound Messages

• Service Bus Runtime Outbound Messages

• Design Time Service Registration

E.1 Service Bus Runtime Inbound Messages
The sequence diagram in this section describes the flow of inbound messages through
Service Bus at runtime.

First, an inbound artifact, such as an HTTP Servlet, intercepts a client request. The transport
provider creates a data structure called InboundTransportMessageContext. The message
context packages headers from the request into a metadata object, converting the payload
from an HTTP stream into a specific Service Bus source object. The transport provider calls
the transport manager to receive the message. The transport manager preprocesses the
message and passes the message to the Service Bus runtime for processing. The runtime
asks for the message context's service, service version, and other information. It also asks
about the metadata and payload, which are required for processing. The runtime asks the
MessageContext to create the response metadata and the response payload, and then calls
close(). The response is sent back to the client.

E-1

Figure E-1 Inbound Messages at Runtime

E.2 Service Bus Runtime Outbound Messages
The sequence diagram shown in this section describes the flow of outbound
messages through the Service Bus runtime.

The Service Bus runtime routes the message to an external service. The transport
provider creates metadata for the request and creates a TransportSender object,
which includes information about the payload and quality of service and retry
information. Next, the provider calls TransportManager (the central hub for the
transport subsystem) to send the message asynchronously. TransportManager calls
the transport provider to send the message. The transport provider creates an
OutboundTransportMessageContext. The transport provider then asks about the
metadata and payload and other information and takes appropriate action. For
example, for a JMS message, the transport provider uses the JMS API to populate the
headers and the payload and calls the protocol-specific send operation.

When a response comes in, the transport provider calls the TransportSendListener
object. Eventually the transport manager invokes the response pipeline. After pipeline
actions are executed, the outbound endpoint is closed.

Appendix E
Service Bus Runtime Outbound Messages

E-2

Figure E-2 Outbound Messages at Runtime

E.3 Design Time Service Registration
When you create a service, a wizard guides you through a number of Oracle Service Bus
Console pages.

When you select a transport type, the Oracle Service Bus Console calls the transport
manager to retrieve an object for each one of these entries in the list and gets a binding from
each transport provider. This binding answers questions requested by the console, such as
what is or is not supported. This step allows the console page to be populated with
appropriate information. Figure E-3 describes the service creation process. Below are the
basic steps for a transport-based service:

1. Specify the name of the service.

2. Select from a list of transport providers (protocols).

3. Select and optionally configure the service type.

4. Create the service.

5. Review the configuration and save any changes you make. If you created a proxy
service, you must specify a target service, which can be a pipeline or another proxy
service.

Appendix E
Design Time Service Registration

E-3

Figure E-3 Service Registration

Appendix E
Design Time Service Registration

E-4

F
XQuery-SQL Mapping Reference

This chapter provides information about the native RDBMS Data Type support and XQuery
mappings that the Oracle XQuery engine generates or supports.

This chapter includes the following sections:

• Core RDBMS Data Type Mapping:

– IBM DB2/NT 8

– Microsoft SQL Server

– Oracle8i, 8.1.x

– Oracle 9i and Later

– Sybase 12.5.2 (and higher)

• Base (Generic) RDBMS Data Type Mapping

For information about using these mappings in Oracle Service Bus XQueries, see Accessing
Databases Using XQuery.

For complete information about database and JDBC drivers support in Oracle Service Bus,
see Oracle Fusion Middleware Supported System Configurations at:

http://www.oracle.com/technetwork/middleware/ias/downloads/fusion-
certification-100350.html

F.1 IBM DB2/NT 8
This section lists the data type mappings that the XQuery engine generates or supports for
IBM DB2/NT 8.

Table F-1 IBM DB2 Data Type Mappings

DB2 Data Type XQuery Type

BIGINT xs:long

BLOB xs:hexBinary

CHAR xs:string

CHAR() FOR BIT DATA xs:hexBinary

CLOB xs:string

Pushed down in project list only.

DATE xs:date

DOUBLE xs:double

DECIMAL(p,s) (NUMERIC) xs:decimal (if s > 0), xs:integer (if s = 0), where p is precision
(total number of digits, both to the right and left of decimal
point) and s is scale (total number of digits to the right of
decimal point).

F-1

http://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certification-100350.html
http://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certification-100350.html

Table F-1 (Cont.) IBM DB2 Data Type Mappings

DB2 Data Type XQuery Type

INTEGER xs:int

LONG VARCHAR1 xs:string

LONG VARCHAR FOR BIT DATA xs:hexBinary

REAL xs:float

SMALLINT xs:short

TIME xs:time

Accurate to one second.

Values converted to local time zone (timezone information
removed) due to TIME and TIMESTAMP limitations.

TIMESTAMP xs:dateTime

Precision limited to milliseconds.

VARCHAR xs:string

VARCHAR() FOR BIT DATA xs:hexBinary

F.2 Microsoft SQL Server
This section lists the data type mappings that the XQuery engine generates or
supports for Microsoft SQL Server.

Table F-2 SQL Server 2000 Data Type Mapping

SQL Data Type XQuery Type

BIGINT xs:long

BINARY xs:hexBinary

BIT xs:boolean

CHAR xs:string

DATETIME xs:dateTime

Values converted to local time zone (timezone information removed)
and fractional seconds truncated to milliseconds due to DATETIME
limitations.

Fractional-second-precision up to 3 digits (milliseconds). No
timezone.

DECIMAL(p,s)
(NUMERIC)

xs:decimal (if s > 0), xs:integer (if s = 0), where p is precision (total
number of digits, both to the right and left of decimal point) and s is
scale (total number of digits to the right of decimal point).

FLOAT xs:double

IMAGE xs:hexBinary

INTEGER xs:int

MONEY xs:decimal

NCHAR xs:string

NTEXT1 xs:string

Appendix F
Microsoft SQL Server

F-2

Table F-2 (Cont.) SQL Server 2000 Data Type Mapping

SQL Data Type XQuery Type

NVARCHAR xs:string

REAL xs:float

SMALLDATETIME2 xs:dateTime

SMALLINT xs:short

SMALLMONEY xs:decimal

SQL_VARIANT xs:string

TEXT4 xs:string

TIMESTAMP xs:hexBinary

TINYINT xs:short

VARBINARY xs:hexBinary

VARCHAR xs:string

UNIQUIDENTIFIER xs:string

1 Pushed down in project list only.
2 Accuracy of 1 minute.

F.3 Oracle8i, 8.1.x
This section lists the data types that the XQuery engine generates or supports for Oracle
8.1.x (Oracle 8i).

Table F-3 Oracle 8.1.x Data Type Mapping

Oracle 8 Data Type XQuery Type

BFILE not supported

BLOB xs:hexBinary

CHAR xs:string

CLOB xs:string

Pushed down in project list only.

DATE xs:dateTime

Does not support fractional seconds.

FLOAT xs:double

LONG xs:string

Does not support fractional seconds.

LONG RAW xs:hexBinary

NCHAR xs:string

NCLOB xs:string

Does not support fractional seconds.

NUMBER xs:double

Appendix F
Oracle8i, 8.1.x

F-3

Table F-3 (Cont.) Oracle 8.1.x Data Type Mapping

Oracle 8 Data Type XQuery Type

NUMBER(p,s) xs:decimal (if s > 0), xs:integer (if s <=0), where p is precision (total
number of digits, both to the right and left of decimal point) and s is scale
(total number of digits to the right of decimal point).

NVARCHAR2 xs:string

RAW xs:hexBinary

ROWID xs:string

UROWID xs:string

F.4 Oracle 9i and Later
This section lists the data type and other mappings that the XQuery engine generates
or supports for Oracle Database 9i, 10g, 11g, and 12c.

Note that Oracle treats empty strings as NULLs, which deviates from XQuery
semantics and may lead to unexpected results for expressions that are pushed down.

Table F-4 Oracle 9i and later Data Type Mapping

Oracle Data Type XQuery Type

BFILE not supported

BLOB xs:hexBinary

CHAR xs:string

CLOB xs:string

Pushed down in project list only.

DATE xs:dateTime

When SDO stores xs:dateTime value in Oracle DATE type, it is
converted to local time zone and fractional seconds are
truncated due to DATE limitations.

FLOAT xs:double

INTERVAL DAY TO SECOND xdt:dayTimeDuration

INTERVAL YEAR TO MONTH xdt:yearMonthDuration

LONG xs:string

Pushed down in project list only.

LONG RAW xs:hexBinary

NCHAR xs:string

NCLOB xs:string

Pushed down in project list only.

NUMBER xs:double

NUMBER(p,s) xs:decimal (if s > 0), xs:integer (if s <=0)

NVARCHAR2 xs:string

RAW xs:hexBinary

Appendix F
Oracle 9i and Later

F-4

Table F-4 (Cont.) Oracle 9i and later Data Type Mapping

Oracle Data Type XQuery Type

ROWID xs:string

TIMESTAMP xs:dateTime

XQuery engine maps XQuery xs:dateTime to either
TIMESTAMP or TIMESTAMP WITH TIMEZONE data type,
depending on presence of timezone information. Storing
xs:dateTime using SDO may result in loss of precision for
fractional seconds, depending on the SQL type definition.

TIMESTAMP WITH LOCAL
TIMEZONE

xs:dateTime

TIMESTAMP WITH
TIMEZONE

xs:dateTime

VARCHAR2 xs:string

UROWID xs:string

F.5 Sybase 12.5.2 (and higher)
This section lists the data types that the XQuery engine generates or supports for Sybase
12.5.2 and higher.

Note:

Sybase deviates from XQuery semantics (which ignores empty strings) and treats
empty strings as a single-space string.

Table F-5 Sybase 12.5.2 Data Type Mapping

Sybase Data Type XQuery Type

BINARY xs:hexBinary

BIT xs:boolean

CHAR xs:string

DATE xs:date

DATETIME xs:dateTime

Supports fractional seconds up to 3 digits (milliseconds)
precision; no timezone information.

When SDO stores xs:dateTime value in Oracle DATE type, it is
converted to local time zone and fractional seconds are
truncated due to DATE limitations.

DECIMAL(p,s) (NUMERIC) xs:decimal (if s > 0), xs:integer (if s == 0)

Where p is precision (total number of digits, both to the right
and left of decimal point) and s is scale (total number of digits
to the right of decimal point).

DOUBLE PRECISION xs:double

Appendix F
Sybase 12.5.2 (and higher)

F-5

Table F-5 (Cont.) Sybase 12.5.2 Data Type Mapping

Sybase Data Type XQuery Type

FLOAT xs:double

IMAGE xs:hexBinary

INT (INTEGER) xs:int

MONEY xs:decimal

NCHAR xs:string

NVARCHAR xs:string

REAL xs:float

SMALLDATETIME xs:dateTime

Accurate to 1 minute.

SMALLINT xs:short

SMALLMONEY xs:decimal

SYSNAME xs:string

TEXT xs:string

Expressions returning text are pushed down in the project list
only.

TIME xs:time

TINYINT xs:short

VARBINARY xs:hexBinary

VARCHAR xs:string

F.6 Base (Generic) RDBMS Data Type Mapping
When mapping SQL to XQuery data types, the XQuery engine first checks the JDBC
typecode. If the typecode has a corresponding XQuery type, the XQuery engine uses
the matching native type name. If no matching typecode or type name is available, the
column is ignored.

Table F-6 shows this mapping.

Table F-6 RDBMS Data Type Mapping

JDBC Data Type Typecode XQuery Data Type

BIGINT -5 xs:long

BINARY -2 xs:string

BIT -7 xs:boolean

BLOB 2004 xs:hexBinary

BOOLEAN 16 xs:boolean

CHAR 1 xs:string

CLOB 2005 xs:string

Pushed down in project list only.

Appendix F
Base (Generic) RDBMS Data Type Mapping

F-6

Table F-6 (Cont.) RDBMS Data Type Mapping

JDBC Data Type Typecode XQuery Data Type

DATE 91 xs:date

Values converted to local time zone
(timezone information removed) due to
DATE limitations.

DECIMAL (p,s) 3 xs:decimal (if s > 0), xs:integer (if s =0)

Where p is precision (total number of digits,
both to the right and left of decimal point)
and s is scale (total number of digits to the
right of decimal point).

DOUBLE 8 xs:double

FLOAT 6 xs:double

INTEGER 4 xs:int

LONGVARBINARY -4 xs:hexBinary

LONGVARCHAR -1 xs:string

NUMERIC (p,s) 2 xs:decimal (if s > 0), xs:integer (if s =0)

REAL 7 xs:float

SMALLINT 5 xs:short

TIME 92 xs:time

Precision of underlying RDBMS determines
the precision of TIME data type and how
much truncation, if any, will occur in
translating xs:time to TIME.

TIMESTAMP 93 xs:dateTime

Precision of underlying RDBMS determines
the precision of TIME data type and how
much truncation, if any, will occur in
translating xs:time to TIME.

TINYINT -6 xs:short

VARBINARY -3 xs:hexBinary

VARCHAR 12 xs:string

OTHER vendor-specific
JDBC type codes

1111 Oracle Service Bus uses native data type
name to map to an appropriate XQuery data
type.

Appendix F
Base (Generic) RDBMS Data Type Mapping

F-7

G
Work Managers and Threading

This appendix describes the internal threading model used by Oracle Service Bus and its
implications regarding performance and server stability. It focuses on the HTTP transport.

This appendix includes the following sections:

• Key Threading Concepts

• Pipeline Actions

• Work Managers

• Designating Work Managers

G.1 Key Threading Concepts
These concepts are important to consider when assigning Work Managers to services.

• Request and response pipelines always execute in separate threads. While the request
thread originates from the proxy service transport, the response thread originates from
the business service transport.

• When external services are invoked, threads can be blocking or non-blocking, depending
on the pipeline action, the Quality of Service (QoS) configuration, and the transport being
used.

• When using blocking calls, a Work Manager with a minimum thread constraint must be
associated with the response in order to prevent server deadlocks.

Service Bus optimizes invocations between proxy services. When one HTTP proxy service
calls a second HTTP proxy service, the transport layer is bypassed. The request message is
not sent using a network socket, so the transport overhead is eliminated. Instead, the thread
processing the initial proxy service continues to process the request pipeline of the called
service. Similarly, when invoking a business service, the proxy service thread is also used to
send the request. Because the HTTP transport uses the asynchronous capabilities of
WebLogic Server, the response of the business service is processed by a different thread.

For discussions about threading, it is important to remember that Service Bus runs on top of
WebLogic Server. At times, Service Bus depends on Web Logic Server HTTP, JMS, and core
engines for executing different types of requests. In some cases Service Bus hands over part
of the processing to WebLogic Server. WebLogic Server executes it by using threads
available in the WebLogic Server Self-Tuning thread pool. Service Bus documentation does
not cover scenarios in which Service Bus depends on WebLogic Server and its Self-Tuning
thread pool for processing.

As an example, in the case of a service call out, even it is a synchronous call within the
Service Bus layer, responsibility to read the response from the backend lies with WebLogic
Socket Muxer threads. After these Muxer threads get a response from the backend system,
they notify the Service Bus thread, which is blocked and waiting for a response.

It is strongly recommended that you ensure that all Service Bus proxy and business services
are configured to execute using threads from their respective Work Managers . Work
Manager minimum and maximum constraints should be set based on the maximum load.

G-1

This ensures that proxy and business services should not depend on the WebLogic
Server execute thread pool for execution and WebLogic Server has enough free or idle
threads to process any ad-hoc requests from Service Bus without leading to stuck
thread problems.

G.2 Pipeline Actions
This section discusses the pipeline action that specifically affect threading.

The pipeline actions are route actions, publish actions, and service callout actions.

G.2.1 Route Action
By default, the HTTP transport uses asynchronous features of WebLogic Server to
prevent thread blocking while waiting for a business service response. For the
execution of a route action, once the thread finishes sending the request, it returns to
the pool where it is then used to process other work. When a response is returned
from the external service, a second thread is scheduled to process it. This behavior
can be modified by using a route options action and setting the QoS to Exactly Once.

G.2.2 Publish Action
A publish action is a one-way send. It provides the means of invoking an external
service but without receiving a response. This is often used to provide notification of
an event, such as for logging or auditing. By default, no feedback of whether the call
was successful or not is returned to the pipeline thread. For both of the above actions,
setting the QoS to Exactly Once forces the request thread to block until a response is
received. This allows the request thread to notify the caller of an error immediately,
without callback. This behavior is also useful when attempting to throttle the number of
threads simultaneously processing a proxy service.

G.2.3 Service Callout Action
A service callout is implemented as a synchronous blocking call. Its design intention is
to provide the ability to invoke an external service to enrich a request message prior to
routing the request to the target service. While the callout is awaiting a response, the
request pipeline thread blocks until a response thread notifies it that the response is
ready and processing can continue.

G.3 Work Managers
You create and configure Work Managers using the WebLogic Server Administration
Console. This section describes Work Manager concepts that are key to Service Bus
optimization.

WebLogic Server uses a self-tuning thread pool for executing all application-related
work. The pool size is managed by an increment manger which adds or removes
threads to the pool when it deems it necessary. The number of active threads will
never exceed 400. As requests enter the server, a scheduler manages the order in
which the requests are executed. When the number of requests exceeds the number
of available threads, they are queued and then executed as threads return to the pool
and become available. Work Managers indicate the type of work and priority of a
request to the scheduler.

Appendix G
Pipeline Actions

G-2

For more information about Work Managers, see Using Work Managers to Optimize
Scheduled Work in Administering Server Environments for Oracle WebLogic Server.

G.3.1 Work Manager Configuration
Two key properties when configuring a Work Manager are Max Thread Constraints and Min
Thread Constraints. A maximum thread constraint limits the number of concurrent threads
executing a type of request by restricting the scheduler from executing more than the
configured number at one time. However, the thread pool is shared among all Work
Managers, so there is no guarantee the maximum number of threads will be available for
processing at any given time.

A minimum thread constraint guarantees a minimum number of threads for processing. If
sufficient threads are not available in the thread pool to process up to the minimum number,
the scheduler uses standby threads to satisfy the minimum. Standby threads are not counted
as part of the maximum number of 400 threads in the pool. When a thread is executing a
request associated with a Work Manager containing a minimum thread constraint, the Work
Manager first checks the queue for another request associated with the same constraint and
executes it (instead of returning to the free pool). For this reason, use minimum thread
constraints judiciously. Over-use can cause resource starvation of the default Work Manager,
leading to unpredictable results.

G.3.2 Work Manager Priority
By default, Work Managers have equal priority with the scheduler, with a share value of 50.
When the scheduler attempts to execute waiting requests, it ensures that requests
associated with each Work Manager are given an equal number of thread resources
(assuming an equal number of waiting requests).

From within Service Bus, a Work Manager is associated with a service by specifying a
dispatch policy. If you have a simple proxy service that routes to a business service, you can
assign different dispatch policies to each service so the scheduler recognizes that new
requests are different work from responses received. Subsequently, each Work Manager is
scheduled evenly when work requests (either a new incoming request message for a proxy
service or a response message for a business service) are added to the queue. This
becomes vital when a business service is invoked with a blocking call, which is the case with
a service callout.

Once a thread is processing under the designation of a specific Work Manager, it continues to
do so until it is returned to the pool. Therefore, when invoking a business service or a proxy
service from within a pipeline, the currently executing thread continues processing under the
Work Manager of the initial proxy service. The Work Manager specified for the service being
called is ignored in this case.

G.4 Designating Work Managers
The Work Manager (dispatch policy) configuration for a business service should depend on
how the business service is invoked.

If a proxy service invokes the business service using a service callout, a publish action, or
routing with exactly-once QoS (as described in Pipeline Actions), consider using different
Work Managers for the proxy service and the business service instead of using the same for
both. For the business service Work Manager, configure the Min Thread Constraint property
to a small number (1-3) to guarantee an available thread.

Appendix G
Designating Work Managers

G-3

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What's New in This Guide
	Part I Introduction to Oracle Service Bus
	1 About Oracle Service Bus
	1.1 Oracle Service Bus Overview
	1.1.1 Functional Areas
	1.1.2 Adaptive Messaging
	1.1.3 Service Security
	1.1.4 Service Virtualization
	1.1.5 Configuration Framework
	1.1.6 Service Management

	1.2 Service Bus Architectural Concepts
	1.2.1 Message Processing
	1.2.2 Proxy Service Role in Message Processing
	1.2.3 Transport Layer (Inbound)
	1.2.4 Binding Layer
	1.2.5 Pipeline Role in Message Processing
	1.2.6 Transport Layer (Outbound)
	1.2.7 Business Service Role in Message Processing

	1.3 Service Bus Components
	1.3.1 Service Components
	1.3.1.1 Proxy Services
	1.3.1.2 Business Services

	1.3.2 Message Flows
	1.3.2.1 Pipelines
	1.3.2.1.1 How Data Flows Through a Pipeline
	1.3.2.1.2 Message Context

	1.3.2.2 Split-Joins

	1.3.3 Transports, Adapters, and Bindings
	1.3.3.1 Supported Transport Protocols
	1.3.3.2 Service Types

	1.3.4 Transformation Resources
	1.3.4.1 XQuery Mappings
	1.3.4.2 XSLT Mappings
	1.3.4.3 Cross References
	1.3.4.4 Domain Value Maps

	1.3.5 Transport and Adapter Related Resources
	1.3.5.1 JCA Bindings
	1.3.5.2 JAR Files (Archives)
	1.3.5.3 JavaScript Files
	1.3.5.4 MQ Connections

	1.3.6 Schema and Document Resources
	1.3.6.1 XML Schemas
	1.3.6.2 XML Documents
	1.3.6.3 WSDL Documents
	1.3.6.4 WADL Documents
	1.3.6.5 MFL Resources

	1.3.7 Security Resources
	1.3.7.1 Service Key Providers
	1.3.7.2 Service Accounts
	1.3.7.3 WS-Policy Resources

	1.3.8 Alert Destinations
	1.3.9 Throttling Group Resources
	1.3.10 System Resources
	1.3.10.1 JNDI Providers
	1.3.10.2 SMTP Servers
	1.3.10.3 Proxy Servers
	1.3.10.4 UDDI Registries

	1.4 Service Bus Messaging Models
	1.4.1 Message Formats
	1.4.2 Message Context
	1.4.3 Content Types

	1.5 Using Work Managers with Service Bus
	1.6 Service Bus Security
	1.6.1 Service Bus Security Features
	1.6.2 Service Bus Service Security Model
	1.6.3 Oracle Web Services Manager
	1.6.4 Oracle Platform Security Services
	1.6.5 WS-Policies
	1.6.6 Types of Security
	1.6.6.1 Inbound Security
	1.6.6.2 Outbound Security
	1.6.6.3 Identity Propagation
	1.6.6.4 User Management and Administrative Security
	1.6.6.5 Transport-Level Security
	1.6.6.6 Message-Level Security

	1.6.7 Custom Security Credentials

	1.7 Approaches for Designing Service Bus Services
	1.7.1 Service Bus Top-Down Roadmap
	1.7.2 Service Bus Bottom-Up Roadmap

	1.8 Naming Guidelines for Service Bus Components
	1.9 Viewing Service Bus Resources in a Web Browser
	1.9.1 WSDL Documents
	1.9.2 WS Policies
	1.9.3 Message Format Language (MFL) Resources
	1.9.4 Schema Resources
	1.9.5 Notes About Viewing Service Bus Resources in a Web Browser

	1.10 Accessibility Options
	1.10.1 How to Set Accessibility Options in JDeveloper
	1.10.2 How to Set Accessibility Options in the Oracle Service Bus Console
	1.10.3 Notes on Screen Reader Mode

	1.11 Additional Resources

	2 Getting Started with the Oracle Service Bus Console
	2.1 Overview of the Oracle Service Bus Console
	2.1.1 Service Bus Sessions
	2.1.2 Oracle Service Bus Console Layout
	2.1.3 Service Bus Projects and Folders
	2.1.3.1 The System Project
	2.1.3.2 Projects and Folder Names
	2.1.3.3 Qualified Resource Names Using Projects and Folders

	2.1.4 Service Bus Resources
	2.1.5 Oracle Service Bus Console Editors

	2.2 Getting Started
	2.2.1 How to Access the Oracle Service Bus Console
	2.2.2 How to Exit the Oracle Service Bus Console

	2.3 Working with Sessions
	2.3.1 How to Create a Session
	2.3.2 How to Activate a Session
	2.3.3 How to Exit a Session

	2.4 Working with Projects, Folders, and Resources in Oracle Service Bus Console
	2.4.1 How to Locate Services
	2.4.2 Working with the Project and Folder Definition Editors
	2.4.2.1 About Viewing Project, Folder, and Resource Information
	2.4.2.2 Viewing All Projects in the Session
	2.4.2.3 Viewing Folders and Resources in a Project
	2.4.2.4 Viewing the Subfolders and Resources in a Folder
	2.4.2.5 How to Filter Components on the Project and Folder Definition Editors

	2.4.3 Create New Projects and Folders for Resources
	2.4.3.1 Creating a Project in the Project Navigator
	2.4.3.2 Creating a Folder in the Project Navigator

	2.4.4 Creating Resources with the Resource Gallery
	2.4.5 How to Clone Projects, Folders, and Resources
	2.4.5.1 What Happens When You Clone a Project
	2.4.5.2 What Happens When You Clone a Folder

	2.4.6 How to Rename Projects, Folders, and Resources
	2.4.7 How to Move Projects, Folders, and Resources
	2.4.8 How to Delete Projects, Folders, and Resources
	2.4.8.1 Deleting a Service Bus Component using the Project Navigator
	2.4.8.2 Deleting a Service Bus Component Using an Editor

	2.5 Viewing and Resolving Conflicts
	2.5.1 How to View Conflicts and Errors
	2.5.1.1 Viewing All Conflicts and Errors in the Service Bus Console
	2.5.1.2 Viewing Conflicts and Errors for a Deployed Resource

	2.5.2 How to Resolve Conflicts and Errors
	2.5.2.1 Resolving Concurrent Update Conflicts
	2.5.2.2 Resolving Error Conflicts

	2.6 Viewing Historical Data
	2.6.1 How to View the Changes in the Current Session
	2.6.2 How to View the Existing Sessions
	2.6.3 How to View the Changes in an Activated Session
	2.6.4 How to Purge Activated Sessions

	2.7 Undoing Changes and Activations
	2.7.1 How to Undo Specific Changes in the Current Session
	2.7.2 How to Undo a Session Activation

	2.8 Viewing References
	2.8.1 Viewing Resource References

	2.9 Customizing the Appearance of the Oracle Service Bus Console
	2.9.1 How to Customize Table Views
	2.9.1.1 Specifying the Columns to Display
	2.9.1.2 Sorting the Columns in a Table
	2.9.1.3 Reordering Columns in a Table
	2.9.1.4 Viewing a Table in Full-Screen Mode

	3 Getting Started with Oracle Service Bus in JDeveloper
	3.1 JDeveloper Concepts for Service Bus
	3.1.1 Application Navigator
	3.1.2 Service Bus Overview Editor
	3.1.3 Resource Editors
	3.1.4 Components Window
	3.1.5 Resources Window
	3.1.6 Properties Window
	3.1.7 Structure View
	3.1.8 Log Window

	3.2 Managing Service Bus Components in JDeveloper
	3.3 Refactoring Service Bus Projects, Folders, and Resources
	3.3.1 How to Rename a Service Bus Folder or Resource in JDeveloper
	3.3.2 How to Move a Service Bus Folder or Resource in JDeveloper
	3.3.3 How to Delete a Project or Resource
	3.3.3.1 Deleting a Resource
	3.3.3.2 Deleting a Project

	3.3.4 How to Clone a Project or Folder

	4 Setting up the Development Environment for JDeveloper
	4.1 Creating Server Connections in JDeveloper
	4.1.1 How to Create an Application Server Connection
	4.1.2 How to Create a SOA-MDS Connection
	4.1.3 How to Change the MDS Repository Location

	4.2 Creating Connection Factories for Oracle JCA Adapters
	4.3 Disabling the JMS Reporting Provider

	5 Developing Service Bus Applications in JDeveloper
	5.1 Introduction to the Service Bus Overview Editor
	5.1.1 Service Bus Overview Editor Components
	5.1.2 Transports, Adapters, and Bindings
	5.1.3 Project and Overview Diagram Synchronization

	5.2 Creating Service Bus Applications and Projects in JDeveloper
	5.2.1 How to Create a Service Bus Application and Project
	5.2.1.1 Guidelines for Creating Applications and Projects
	5.2.1.2 Creating a Service Bus Application with No Project
	5.2.1.3 Creating a Service Bus Application and Project
	5.2.1.4 Adding a Service Bus Project to a Service Bus Application

	5.2.2 Developing Service Bus Projects in Reference Configuration Mode

	5.3 Adding Service Bus Components
	5.3.1 How to Launch the Service Bus Overview Editor
	5.3.2 How to Add a Pipeline
	5.3.3 How to Add a Split-Join
	5.3.4 How to Create a Proxy Service
	5.3.4.1 Creating a Proxy Service with an Adapter
	5.3.4.2 Creating a Proxy Service with a Transport
	5.3.4.3 Creating a Proxy Service from an Existing Pipeline or Split-Join

	5.3.5 How to Reuse Existing Proxy Services in the Overview
	5.3.6 How to Create a Business Service
	5.3.6.1 Creating a Business Service with an Adapter
	5.3.6.2 Creating a Business Service with a Transport

	5.3.7 How to Reuse Existing Business Services in the Overview
	5.3.8 How to Invoke Deployed Service Bus and SOA Applications
	5.3.9 What You May Need to Know About Adding Components

	5.4 Modifying and Deleting Components in the Service Bus Overview Editor
	5.4.1 How to Edit Components from the Service Bus Overview Editor
	5.4.2 How to Rename Components in the Service Bus Overview Editor
	5.4.3 How to Delete Components in the Service Bus Overview Editor

	5.5 Synchronizing the Overview Diagram
	5.6 Wiring Service Bus Components
	5.6.1 How to Wire Service Bus Components
	5.6.2 How to Delete Wires Between Services

	5.7 Attaching Security Policies to Service Bus Components
	5.8 Testing Service Bus Components in the Overview Editor
	5.8.1 How to Test a Service Bus Component
	5.8.2 How to Debug a Service Bus Component

	5.9 Deploying a Service Bus Application

	Part II Working with Oracle Service Bus Resources
	6 Creating and Configuring Project Resources
	6.1 Introduction to Service Bus Project Resources
	6.1.1 Project Resources and Sessions in the Oracle Service Bus Console

	6.2 Working with Service Accounts
	6.2.1 Service Account Authentication Types
	6.2.1.1 Static
	6.2.1.2 User Name and Password Pass-Through
	6.2.1.3 User Mapping Authentication

	6.2.2 How to Create Service Accounts
	6.2.2.1 Creating a Service Account that Passes Though Authentication Information
	6.2.2.2 Creating a Service Account with a Static Password
	6.2.2.3 Creating a Service Account that Maps Incoming Passwords

	6.2.3 How to Edit Service Accounts
	6.2.4 How to Delete Service Accounts

	6.3 Working with Service Key Providers
	6.3.1 How to Create Service Key Providers
	6.3.2 How to Edit Service Key Providers
	6.3.3 How to Delete Service Key Providers

	6.4 Working with Alert Destinations
	6.4.1 Alert Destination Types
	6.4.1.1 Email
	6.4.1.2 SNMP Traps
	6.4.1.3 Reporting
	6.4.1.4 Alert Logging
	6.4.1.5 JMS

	6.4.2 How To Create Alert Destinations
	6.4.3 How to Define Email Recipients for an Alert Destination
	6.4.4 How to Define JMS Recipients for an Alert Destination
	6.4.5 How to Edit Alert Destinations
	6.4.6 How to Delete Alert Destinations
	6.4.7 Working with SNMP
	6.4.7.1 Guidelines for Working with SNMP Agents for Service Bus
	6.4.7.2 How to Start Listening for Traps

	6.5 Working with XML Schemas
	6.5.1 How to Create XML Schemas
	6.5.2 How to Edit XML Schemas
	6.5.3 How to Delete XML Schemas

	6.6 Working with XML Documents
	6.6.1 How to Create XML Documents
	6.6.2 How to Edit XML Documents
	6.6.3 How to Delete XML Documents

	6.7 Working with JAR Files
	6.7.1 How to Add JAR Files
	6.7.2 How to Update a JAR File
	6.7.3 How to Modify JAR File Dependencies
	6.7.4 How to Delete a JAR File

	7 Creating and Configuring System Resources
	7.1 Working with JNDI Provider Resources
	7.1.1 Classpath Requirements for JBoss Application Server
	7.1.2 About JBoss Initial Context Factory Environment Properties
	7.1.3 How to View JNDI Provider Resources in the Oracle Service Bus Console
	7.1.4 How to Create a JNDI Provider Resource
	7.1.5 How to Edit JNDI Provider Resources
	7.1.6 How to Delete JNDI Provider Resources

	7.2 Working with SMTP Server Resources
	7.2.1 How to View SMTP Server Resources in the Oracle Service Bus Console
	7.2.2 How to Create SMTP Server Resources
	7.2.3 How to Configure a Default SMTP Server
	7.2.4 How to Edit SMTP Server Resources
	7.2.5 How to Delete SMTP Server Resources

	7.3 Working with Proxy Server Resources
	7.3.1 Using Proxy Servers with SSL
	7.3.2 How to View Proxy Server Resources in Oracle Service Bus Console
	7.3.3 How to Create Proxy Server Resources
	7.3.4 How to Edit Proxy Server Resources
	7.3.5 How to Delete Proxy Server Resources

	8 Creating and Configuring Proxy Services
	8.1 Introduction to Proxy Services
	8.1.1 Proxy Service Definitions
	8.1.2 Service Types and Protocols for Proxy Services
	8.1.3 When to Use SOAP or Any XML Service Types
	8.1.4 When to Use the Messaging Service Type
	8.1.5 Binding Definitions and Runtime Variables for Proxy Service Types
	8.1.5.1 WSDL Service Type
	8.1.5.2 Messaging Service Type
	8.1.5.3 Any SOAP Service
	8.1.5.4 Any XML Service

	8.1.6 Proxy Service Transport Protocol Configuration

	8.2 Securing Proxy Services
	8.3 Service Level Agreement Alert Rules
	8.4 Web Services Interoperability Compliance
	8.5 Creating Proxy Services
	8.5.1 How to Create a Proxy Service
	8.5.2 How to Create a Proxy Service Using the Service Bus Console
	8.5.3 How to Create a Typed REST Proxy Service Using the Service Bus Console
	8.5.4 How to Create a Proxy Service Using JDeveloper
	8.5.5 How to Generate a Proxy Service from a JCA Binding Resource
	8.5.5.1 Generating a Proxy Service from a JCA Binding in JDeveloper
	8.5.5.2 Generating a Proxy Service from a JCA Binding in the Console

	8.5.6 How to Generate a Proxy Service from an Existing Service in JDeveloper
	8.5.7 How to Generate a Proxy Service from a WSDL Document in JDeveloper

	8.6 Configuring Proxy Services
	8.6.1 How to Configure General Information for a Proxy Service
	8.6.2 How to Configure a Proxy Service Transport
	8.6.3 How to Configure Proxy Service Message Handling
	8.6.4 How to Configure Security for a Proxy Service
	8.6.5 How to Configure Service Level Agreement Alerts for a Proxy Service

	8.7 Deleting Proxy Services
	8.7.1 How to Delete a Proxy Service

	8.8 Consuming Proxy Services in JDeveloper with WSIL
	8.8.1 How to Consume Service Bus Proxy Services in JDeveloper with WSIL

	9 Creating and Configuring Business Services
	9.1 Introduction to Business Services
	9.1.1 Business Service Definitions
	9.1.2 Service Types and Protocols for Business Services
	9.1.3 Binding Definitions and Runtime Variables for Business Service Types
	9.1.4 Business Service Transport Protocol Configuration
	9.1.4.1 About the Load Balancing Algorithm
	9.1.4.2 About Business Service URI Retries
	9.1.4.3 Suppressing Retries in Case of Application Errors

	9.1.5 Message Handling for Business Services
	9.1.5.1 XOP/MTOM Support
	9.1.5.2 Attachments
	9.1.5.3 Web Services Interoperability Compliance

	9.2 Using Proxy Servers
	9.3 Service Level Agreement Alert Rules
	9.4 Security and Security Policies for Business Services
	9.5 Creating Business Services
	9.5.1 How to Create a SOAP Business Service Using the Service Bus Console
	9.5.2 How to Create a Typed or Untyped REST Business Service Using the Service Bus Console
	9.5.3 How to Create a Typed REST Business Service Specifying WADL Details Using the Service Bus Console
	9.5.4 How to Create a REST Business Service Based on a SOAP Service Using the SOAP to REST Wizard
	9.5.5 How to Create a Business Service That Connects to Oracle Integration Using the Service Bus Console
	9.5.5.1 Consuming an Integration in the Service Bus Console By Browsing
	9.5.5.2 Consuming an Integration in the Service Bus Console Using a Direct Link

	9.5.6 How to Create a Business Service Using JDeveloper
	9.5.7 How to Create a Business Service That Connects to Oracle Integration Using JDeveloper
	9.5.7.1 Create an Oracle Integration Connection
	9.5.7.2 Create a REST Binding
	9.5.7.3 Configure OWSM Policies on the REST Reference
	9.5.7.4 Configure and Deploy the Application

	9.5.8 How to Generate a Business Service from a JCA Binding Resource
	9.5.8.1 Generating a Business Service from a JCA Binding in JDeveloper
	9.5.8.2 Generating a Business Service from a JCA Binding in the Console

	9.5.9 How to Generate a Business Service from a Proxy Service in JDeveloper
	9.5.10 How to Generate a Business Service from a WSDL Document in JDeveloper

	9.6 Configuring Business Services
	9.6.1 How to Configure General Information for a Business Service
	9.6.2 How to Configure a Business Service Transport
	9.6.3 How to Configure Business Service Message Handling
	9.6.4 How to Configure Performance for a Business Service
	9.6.5 How to Configure Security for a Business Service
	9.6.6 How to Configure Service Level Agreement Alerts for a Business Service

	9.7 Deleting a Business Service
	9.8 Improving Performance by Caching Business Service Results
	9.8.1 How Result Caching Works
	9.8.1.1 Flushing Cached Results

	9.8.2 Result Caching Best Practices
	9.8.3 How to Delete Entries in the Result Cache
	9.8.4 Result Cache Metadata
	9.8.4.1 Cache Token
	9.8.4.2 Expiration Time
	9.8.4.3 Request Metadata
	9.8.4.4 Response Metadata

	9.8.5 Testing Result Caching
	9.8.6 How to Configure a Business Service for Result Caching
	9.8.7 Result Caching Advanced Configuration
	9.8.7.1 Working with Unicast and Multicast
	9.8.7.2 How to Disable Coherence for Service Bus
	9.8.7.3 About Out-of-Process Coherence Servers
	9.8.7.4 How to Use an Out-of-Process Coherence Cache Server
	9.8.7.4.1 Creating an Out-of-Process Coherence Cache Server
	9.8.7.4.2 Configuring the Servers for an Out-of-Process Coherence Cache Server

	9.8.7.5 More Information on Configuring and Using Oracle Coherence

	10 Improving Service Performance with Split-Join
	10.1 Introduction to Split-Joins
	10.1.1 Static Split-Joins
	10.1.1.1 Static Split-Join – Sample Scenario

	10.1.2 Dynamic Split-Join
	10.1.2.1 Dynamic Split-Join – Sample Scenario

	10.1.3 Split-Join Operations
	10.1.3.1 Split-Join Communication Operations
	10.1.3.2 Split-Join Flow Control Operations
	10.1.3.3 Split-Join Assign Operations

	10.1.4 Using Split-Join with Content in SOAP Headers
	10.1.5 Transaction Support
	10.1.6 Security with Split-Joins
	10.1.7 Split-Join Resource Type and Environment Variable

	10.2 Service Level Agreement Alert Rules
	10.3 Working with Split-Joins in JDeveloper
	10.3.1 How to Create a Split-Join in JDeveloper
	10.3.2 How to Generate a Split-Join from a WSDL Document in JDeveloper
	10.3.3 How to Display the Components Window and Properties Windows
	10.3.3.1 Displaying the Components Window
	10.3.3.2 Displaying the Properties Window

	10.3.4 How to Configure the Start Node
	10.3.5 How to View External Services
	10.3.6 How to Configure Global and Local Variables
	10.3.6.1 Defining Global and Local Variables
	10.3.6.2 Editing Global or Local Variables

	10.3.7 How to Configure the Receive Operation

	10.4 Adding Communication Operations in JDeveloper
	10.4.1 How to Invoke a Service
	10.4.2 How to Configure a Reply

	10.5 Adding Flow Control Operations in JDeveloper
	10.5.1 How to Create a Container Node
	10.5.2 How to Iterate Through a Variable Number of Requests
	10.5.3 How to Process a Fixed Number of Requests in Parallel
	10.5.4 How to Define If-Else Conditional Logic
	10.5.5 How to Create Error Handlers
	10.5.6 How to Raise an Error
	10.5.7 How to Re-Raise an Error
	10.5.8 How to Repeat an Operation Until it Evaluates to True
	10.5.9 How to Repeat an Operation Until it Evaluates to False
	10.5.10 How to Insert a Pause in Processing

	10.6 Adding Assign Operations in JDeveloper
	10.6.1 About Transformations and Expressions in Assign Operations
	10.6.2 Assign Operation Expression Resolution
	10.6.3 How to Assign a Value to a Variable
	10.6.4 How to Copy a Value from a Source to a Destination Document
	10.6.5 How to Delete a Set of Nodes
	10.6.6 How to Insert the Result of an XQuery Expression
	10.6.7 How to Invoke a Java Method in a Split-Join
	10.6.8 How to Log Split-Join Data
	10.6.9 How to Replace a Node or Its Contents

	10.7 Working with Split-Joins in the Oracle Service Bus Console
	10.7.1 How to Import a Split-Join into the Console
	10.7.2 How to Configure Split-Joins in the Console
	10.7.3 How to Define Service Level Agreement Rules for a Split-Join

	10.8 Static and Dynamic Split-Join Samples
	10.8.1 Designing a Static Split-Join
	10.8.1.1 Creating a New Split-Join
	10.8.1.2 Adding an Assign
	10.8.1.3 Adding a Parallel Node
	10.8.1.4 Adding an Assign for Each Branch
	10.8.1.5 Adding an Invoke Service
	10.8.1.6 Adding an Assign for Each Branch
	10.8.1.7 Exporting and Testing the Split-Join

	10.8.2 Designing a Dynamic Split-Join
	10.8.2.1 Creating a New Split-Join
	10.8.2.2 Adding an Assign
	10.8.2.3 Adding a For Each
	10.8.2.4 Adding an Assign
	10.8.2.5 Adding an Invoke Service
	10.8.2.6 Adding an Assign
	10.8.2.7 Adding an Error Handler
	10.8.2.8 Exporting and Testing the Split-Join

	11 Working with WSDL Documents
	11.1 WSDL Overview
	11.1.1 WSDL Types
	11.1.2 WSDL Messages
	11.1.3 WSDL Port Types
	11.1.4 WSDL Bindings
	11.1.5 WSDL Services and Ports

	11.2 WSDL Documents in Service Bus
	11.2.1 Web Service Types
	11.2.1.1 SOAP Document Wrapped Web Services
	11.2.1.2 SOAP Document Style Web Services
	11.2.1.3 SOAP RPC Web Services

	11.2.2 About Effective WSDL Documents and Generated WSDL Documents
	11.2.2.1 Effective WSDL Documents
	11.2.2.2 Generated WSDL Documents

	11.3 Services Based on WSDL Ports and on WSDL Bindings
	11.3.1 Effective WSDL Documents for Proxy Services
	11.3.2 Effective WSDL Files for Non-Transport-Type Business Services
	11.3.3 Effective WSDL Files for Transport-Type Business Services
	11.3.4 Examples of Proxy Services Based on a Port and on a Binding
	11.3.4.1 A Service Based on a Port
	11.3.4.2 A Service Based on a Binding

	11.4 Importing and Exporting WSDL Resources
	11.5 Working with WSDL Documents in JDeveloper
	11.5.1 How to Create a WSDL Resource in JDeveloper
	11.5.1.1 How to move from SOAP 1.1 version to SOAP 1.2

	11.5.2 How to Generate a WSDL File from a Service in JDeveloper
	11.5.3 How to Edit a WSDL Document in JDeveloper
	11.5.4 How to Delete a WSDL Document in JDeveloper

	11.6 Working with WSDL Documents in the Oracle Service Bus Console
	11.6.1 How to Create a WSDL Resource in the Console
	11.6.2 How to Export a WSDL File in the Console
	11.6.2.1 Exporting a WSDL FIle from a Project or Folder in the Console
	11.6.2.2 Exporting a WSDL File From a Service Definition Editor

	11.6.3 How to Generate a WSDL File from a Service in the Console
	11.6.4 How to Edit a WSDL Document in the Console
	11.6.5 How to Delete a WSDL Document in the Console

	11.7 Viewing Effective WSDL Documents

	Part III Working with Oracle Service Bus Pipelines
	12 Modeling Message Flow in Oracle Service Bus
	12.1 Pipeline Components
	12.1.1 Building a Message Flow
	12.1.2 Message Execution

	12.2 Branching in Pipelines
	12.2.1 Operational Branching
	12.2.2 Conditional Branching
	12.2.3 REST Branching

	12.3 Configuring Actions in Stages and Route Nodes
	12.3.1 Communication Actions
	12.3.2 Flow Control Actions
	12.3.3 Message Processing Actions
	12.3.4 Reporting Actions
	12.3.5 Configuring Transport Headers in Pipelines
	12.3.5.1 Global Pass Through and Header-Specific Copy Options
	12.3.5.2 How the Runtime Uses Transport Headers Settings
	12.3.5.3 Limitations to Transport Header Values you Specify in Transport Header Actions

	12.4 Performing Transformations in Pipelines
	12.4.1 Transformations and Publish Actions
	12.4.1.1 Publish Action Behavior with Quality of Service

	12.4.2 Transformations and Route Nodes

	12.5 Constructing Service Callout Messages
	12.5.1 SOAP Document Style Services
	12.5.2 SOAP RPC Style Services
	12.5.3 XML Services
	12.5.4 Messaging Services

	12.6 Using Attachments with Service Callout Messages
	12.6.1 Example of Using Attachments with SOAP-Document Style Services
	12.6.2 Example of Using Attachments with SOAP RPC Style Service
	12.6.3 MTOM/XOP Support
	12.6.4 Page Attachments to Disk

	12.7 Handling Errors as the Result of a Service Callout
	12.7.1 Transport Errors
	12.7.2 SOAP Faults
	12.7.3 Unexpected Responses

	12.8 Handling Errors in Pipelines
	12.8.1 Generating the Error Message, Reporting, and Replying
	12.8.2 Different Behavior of Security Fault Handling in Service Bus 11g and 12c
	12.8.3 Example of Action Configuration in Error Handlers

	12.9 Using Dynamic Routing
	12.9.1 Implementing Dynamic Routing
	12.9.1.1 Sample XML File
	12.9.1.2 Creating an XQuery Resource From the Sample XML
	12.9.1.3 Creating and Configuring the Pipeline to Implement Dynamic Routing
	12.9.1.4 Guidelines for Implementing Identity-Based Routing

	12.10 Accessing Databases Using XQuery
	12.11 Understanding Message Context
	12.11.1 Message Context Components
	12.11.2 Guidelines for Viewing and Altering Message Context
	12.11.3 Copying JMS Properties From Inbound to Outbound

	12.12 Using Variable Structures
	12.12.1 Using the Inline XQuery Expression Editor
	12.12.1.1 Inline XQueries
	12.12.1.2 Uses of the Inline XQuery Expression Editor
	12.12.1.2.1 Best Practices for Type-Dependent Expressions

	12.13 Quality of Service
	12.13.1 Delivery Guarantees
	12.13.1.1 Overriding the Default Element Attribute
	12.13.1.2 Delivery Guarantee Rules
	12.13.1.3 Threading Model
	12.13.1.4 Splitting Proxy Services

	12.13.2 Outbound Message Retries

	12.14 Using the JavaScript Action and JavaScript Expressions
	12.14.1 JavaScript Action and Message Context Variables
	12.14.2 Update Context Variables Using JavaScript Expressions
	12.14.3 Creating Variables Using JavaScript Expressions
	12.14.4 Deleting Variables Using JavaScript Expressions
	12.14.5 About XQuery, XPath, and JSON Variables
	12.14.6 Streaming ⁠$body Variables and the JavaScript Action
	12.14.7 JavaScript Action and Custom Java Functions
	12.14.8 Logging and Reporting the Result of JavaScript Expressions

	12.15 Using Work Managers with Service Bus
	12.16 Content Types, JMS Type, and Encoding
	12.17 Throttling Pattern
	12.18 WS-I Compliance
	12.18.1 WS-I Compliance Checks

	12.19 Converting Between SOAP 1.1 and SOAP 1.2

	13 Working with Pipelines in Oracle Service Bus Console
	13.1 Introduction to the Oracle Service Bus Console Pipeline Designer
	13.1.1 Edit Message Flow Page on the Console
	13.1.2 Edit Stage Configuration Page on the Console

	13.2 Viewing and Editing Pipelines in the Console
	13.2.1 How to View and Edit Pipelines in the Console
	13.2.2 How to Add Shared Variables to Pipelines in the Console
	13.2.3 How to Add Pipeline Pairs to Pipelines
	13.2.4 How to Add Conditional Branches to Pipelines in the Console
	13.2.5 How to Add Operational Branches to Pipelines in the Console
	13.2.6 How to Add REST Branches to Pipelines in the Console
	13.2.7 How to Add Stages to Pipelines in the Console
	13.2.8 How to Add Route Nodes to Pipelines in the Console

	13.3 Cutting, Copying, and Pasting Stages and Route Nodes
	13.4 Configuring the Resequencer in the Console
	13.4.1 How to Configure Resequencing in a Pipeline in the Console
	13.4.2 How to Select the Resequence Level in the Console
	13.4.3 How to Configure the Resequencing Mode in the Console
	13.4.3.1 Configuring a Standard Resequencer
	13.4.3.2 Configuring a FIFO Resequencer
	13.4.3.3 Configuring a Best Effort Resequencer

	13.5 Creating Variable Structure Mappings
	13.5.1 Sample WSDL Document
	13.5.2 Creating the Resources You Need for the Examples
	13.5.2.1 Save the WSDL File as a Resource
	13.5.2.2 Create a Proxy Service and Pipeline
	13.5.2.3 Build a Message Flow for the Sample Pipeline
	13.5.2.4 Create a Business Service

	13.5.3 Example 1: Selecting a Predefined Variable Structure
	13.5.4 Example 2: Mapping a Variable to a Type
	13.5.5 Example 3: Mapping a Variable to an Element
	13.5.6 Example 4: Mapping a Variable to a Child Element
	13.5.7 Example 5: Mapping a Variable to a Business Service
	13.5.8 Example 6: Mapping a Child Element to Another Child Element

	14 Working with Pipeline Actions in Oracle Service Bus Console
	14.1 Adding and Editing Pipeline Actions in the Console
	14.2 Adding Publish Actions in the Console
	14.3 Adding Publish Table Actions in the Console
	14.4 Adding Dynamic Publish Actions in the Console
	14.5 Adding Routing Options Actions in the Console
	14.6 Adding Service Callout Actions in the Console
	14.7 Adding Transport Header Actions in the Console
	14.7.1 Setting Cookies in Outbound HTTP Transport Headers
	14.7.1.1 Setting a Cookie as a Complex XML Expression
	14.7.1.2 Setting a Cookie with a String Expression

	14.8 Adding Dynamic Routing to Route Nodes in the Console
	14.9 Adding Routing Actions to Route Nodes in the Console
	14.10 Adding Routing Tables to Route Nodes in the Console
	14.11 Adding For-Each Actions in the Console
	14.12 Adding If-Then Actions in the Console
	14.13 Adding Raise Error Actions in the Console
	14.13.1 Transactions

	14.14 Adding Reply Actions in the Console
	14.15 Adding Resume Actions in the Console
	14.16 Adding Skip Actions in the Console
	14.17 Adding Assign Actions in the Console
	14.18 Adding Delete Actions in the Console
	14.19 Adding Insert Actions
	14.20 Adding Java Callout Actions in the Console
	14.21 Adding JavaScript Actions in the Console
	14.22 Adding MFL Translate Actions in the Console
	14.23 Adding nXSD Translate Actions
	14.24 Adding Rename Actions in the Console
	14.25 Adding Replace Actions in the Console
	14.26 Adding Validate Actions in the Console
	14.27 Adding Alert Actions in the Console
	14.28 Adding Log Actions in the Console
	14.29 Adding Report Actions in the Console
	14.30 Adding Error Handlers in the Console
	14.30.1 Adding Pipeline Error Handlers in the Console
	14.30.2 Adding Stage Error Handlers in the Console
	14.30.3 Adding Route Node Error Handlers in the Console
	14.30.4 Editing Error Handlers in the Console

	14.31 Disabling an Action or a Stage in the Console
	14.31.1 Disabling an Action on the Pipeline
	14.31.2 Re-Enabling an Action in the Pipeline
	14.31.3 Disabling a Stage in the Pipeline
	14.31.4 Re-Enabling a Stage in the Pipeline

	15 Working With Expression Editors in Oracle Service Bus Console
	15.1 Creating and Editing Inline XQuery and XPath Expressions
	15.2 Understanding XQuery Editor Layouts and Tasks
	15.2.1 Palettes
	15.2.2 Workspace
	15.2.3 Property Inspector

	15.3 Building Expressions in the Editor Workspace Text Fields
	15.4 Creating Namespaces to Use in Inline Expressions
	15.5 Creating Variable Structures in the XQuery Editors
	15.6 Creating Custom XPath Functions in the XQuery Editors
	15.7 Binding External XQuery Resources to Inline XQueries
	15.8 Binding External XSLT Resources to Inline XQueries
	15.9 Binding Dynamic XQuery Expressions to Inline XQueries
	15.10 Binding Dynamic XSLT Expressions to Inline XQueries
	15.11 Entering XQuery Comparison Expressions Using the Builder Option
	15.12 Entering Unary Expressions Using the Builder Option

	16 Working with Pipelines in Oracle JDeveloper
	16.1 Adding a Pipeline Component in JDeveloper
	16.1.1 How to Add a Pipeline in JDeveloper

	16.2 Viewing and Editing Pipelines in JDeveloper
	16.2.1 How to View and Edit a Pipeline in JDeveloper

	16.3 Adding Shared Variables to Pipelines in JDeveloper
	16.3.1 How to Add a Shared Variable to a Pipeline in JDeveloper

	16.4 Adding Pipeline Pair Nodes to Pipelines in JDeveloper
	16.4.1 How to Add a Pipeline Pair Node to a Pipeline in JDeveloper

	16.5 Adding Conditional Branches to Pipelines in JDeveloper
	16.5.1 How to Add a Conditional Branch to a Pipeline in JDeveloper

	16.6 Adding Operational Branches to Pipelines in JDeveloper
	16.6.1 How to Add an Operational Branch to a Pipeline in JDeveloper

	16.7 Adding REST Branches to Pipelines in JDeveloper
	16.7.1 How to Add a REST Branch to a Pipeline in JDeveloper

	16.8 Adding Stages to Pipelines in JDeveloper
	16.8.1 How to Add a Stage to a Pipeline in JDeveloper

	16.9 Adding Route Nodes to Pipelines in JDeveloper
	16.9.1 How to Add a Route Node to a Pipeline in JDeveloper

	16.10 Cutting, Copying, and Pasting Stages and Route Nodes in JDeveloper
	16.11 Adding and Searching for Pipeline Node Descriptions
	16.11.1 How to Add and Search for Pipeline Node Descriptions in JDeveloper

	16.12 Configuring the Resequencer in JDeveloper
	16.12.1 How to Configure Resequencing in a Pipeline in JDeveloper
	16.12.2 Selecting the Resequence Level in JDeveloper
	16.12.3 How to Configure the Resequencing Mode in JDeveloper
	16.12.3.1 Configuring a Standard Resequencer
	16.12.3.2 Configuring a FIFO Resequencer
	16.12.3.3 Configuring a Best Effort Resequencer

	17 Working with Pipeline Actions in Oracle JDeveloper
	17.1 Adding and Editing Actions in Pipelines in JDeveloper
	17.2 Adding Publish Actions in JDeveloper
	17.3 Adding Publish Table Actions in JDeveloper
	17.4 Adding Dynamic Publish Actions in JDeveloper
	17.5 Adding Routing Options Actions in JDeveloper
	17.6 Adding Service Callout Actions in JDeveloper
	17.7 Adding Transport Header Actions in JDeveloper
	17.8 Adding Dynamic Routing to Route Nodes in JDeveloper
	17.9 Adding Routing Actions to Route Nodes in JDeveloper
	17.10 Adding Routing Tables to Route Nodes in JDeveloper
	17.11 Adding For Each Actions in JDeveloper
	17.12 Adding If Then Actions in JDeveloper
	17.13 Adding Raise Error Actions in JDeveloper
	17.14 Adding Reply Actions in JDeveloper
	17.15 Adding Resume Actions in JDeveloper
	17.16 Adding Skip Actions in JDeveloper
	17.17 Adding Assign Actions in JDeveloper
	17.18 Adding Delete Actions in JDeveloper
	17.19 Adding Insert Actions in JDeveloper
	17.20 Adding Java Callout Actions in JDeveloper
	17.21 Adding JavaScript Actions in JDeveloper
	17.22 Adding MFL Translate Actions in JDeveloper
	17.23 Adding nXSD Translate Actions in JDeveloper
	17.24 Adding Rename Actions in JDeveloper
	17.25 Adding Replace Actions in JDeveloper
	17.26 Adding Validate Actions in JDeveloper
	17.27 Adding Alert Actions in JDeveloper
	17.28 Adding Log Actions in JDeveloper
	17.29 Adding Report Actions in JDeveloper
	17.30 Adding Error Handlers in JDeveloper
	17.30.1 How to Add Error Handlers in Pipelines in JDeveloper

	17.31 Disabling an Action or a Stage in JDeveloper
	17.31.1 Disabling an Action or Stage
	17.31.2 Re-Enable an Action or Stage

	18 Working with Pipeline Templates
	18.1 Adding a Pipeline Template
	18.1.1 How to Add a Pipeline Template

	18.2 Editing a Pipeline Template
	18.2.1 How to Edit a Pipeline Template
	18.2.1.1 How to View External Services
	18.2.1.2 How to View Shared Variables

	18.3 Adding Placeholder Blocks to a Pipeline Template Message Flow
	18.4 Locking an Action in a Pipeline Template
	18.4.1 How to Lock an Action in a Pipeline Template

	18.5 Creating a Concrete Pipeline from a Pipeline Template
	18.5.1 How to Create a Concrete Pipeline

	18.6 Editing the Message Flow for a Concrete Pipeline
	18.6.1 How to Edit the Message Flow for a Concrete Pipeline

	18.7 Converting a Concrete Pipeline in to a Regular Pipeline
	18.7.1 How to Break a Template Link for a Concrete Pipeline

	Part IV Transforming Data
	19 Transforming Data with XQuery
	19.1 Introduction to XQuery Transformations
	19.2 XQuery Editors and Mappers
	19.2.1 JDeveloper Editors and Mappers
	19.2.2 Oracle Service Bus Console Editors

	19.3 Creating XQuery Maps in JDeveloper
	19.3.1 How to Create XQuery Mappings in JDeveloper

	19.4 Testing Service Bus Projects Converted from XQuery 2004 to XQuery 1.0 in JDeveloper
	19.5 Working with XQuery Resources in the Oracle Service Bus Console
	19.5.1 How to Create an XQuery Resource in the Console
	19.5.2 How to Edit an XQuery Resource in the Console
	19.5.3 How to Delete an XQuery Resource in the Console
	19.5.4 How to Upgrade Your XQuery Resources to use XQuery 1.0
	19.5.4.1 Syntax Errors After Xquery Update to V1.0

	19.6 Service Bus XQuery Functions
	19.6.1 Supported Function Extensions from Oracle
	19.6.2 Function Extensions from Service Bus
	19.6.2.1 fn-bea:lookupBasicCredentials
	19.6.2.2 fn-bea:isUserInGroup
	19.6.2.3 fn-bea:isUserInRole
	19.6.2.4 fn-bea: uuid
	19.6.2.5 fn-bea:execute-sql()
	19.6.2.5.1 Example 1: Retrieving the URI from a Database for Dynamic Routing
	19.6.2.5.2 Example 2: Getting XMLType Data from a Database

	19.6.2.6 fn-bea:serialize()
	19.6.2.7 fn-bea:binary-to-text
	19.6.2.8 fn-bea:binary-to-xml

	19.6.3 Creating and Using Custom XPath Functions

	20 Transforming Data with XSLT
	20.1 Introduction to XSLT
	20.2 XSLT Editors and Mappers
	20.2.1 JDeveloper Editors and Mappers
	20.2.2 Oracle Service Bus Console Editors and Mappers

	20.3 Creating XSLT Mappings in JDeveloper
	20.3.1 How to Create XSLT Mappings in JDeveloper

	20.4 Working with XSLT Resources in the Oracle Service Bus Console
	20.4.1 How to Create XSLT Resources in the Console
	20.4.2 How to Edit XSLT Resources and Upload XSL Transformations in the Console

	20.5 How to Open the XSLT Mapper from the Service Bus Console
	20.6 How to Delete an XSLT Resource

	21 Mapping Data with Cross-References
	21.1 Introduction to Cross References
	21.1.1 Cross Reference Database Tables
	21.1.2 Cross Reference Functions
	21.1.3 Managing Cross Reference Data at Runtime

	21.2 Creating Cross Reference Tables in JDeveloper
	21.2.1 How to Create Cross Reference Tables in JDeveloper

	21.3 Working with Cross Reference Resources in the Oracle Service Bus Console
	21.3.1 How to Create Cross Reference (XRef) Resources in the Console
	21.3.2 How to Edit Cross Reference Resources in the Console
	21.3.3 How to Create a Custom Database Table in the Console

	21.4 Deleting a Cross Reference Resource
	21.4.1 How to Delete a Cross Reference Resource

	21.5 Populating Cross Reference Tables in Oracle Service Bus

	22 Mapping Data with Domain Value Maps
	22.1 Introduction to Domain Value Maps
	22.1.1 Domain Value Map Functions

	22.2 Creating Domain Value Maps in JDeveloper
	22.2.1 How to Create a Domain Value Map in JDeveloper

	22.3 Working with DVM Resources in the Oracle Service Bus Console
	22.3.1 How to Create DVM Resources in the Console
	22.3.2 How to Add Domains to a Domain Value Map
	22.3.3 How to Add Domain Values to a Domain Value Map
	22.3.4 How to Edit a Domain Value Map in the Console

	22.4 Deleting a Domain Value Map
	22.4.1 How to Delete a Domain Value Map

	22.5 Using Domain Value Maps in Expressions and Conditions

	23 Defining Data Structures with Message Format Language
	23.1 Introduction to the Format Builder
	23.1.1 About MFL Files
	23.1.2 Valid Names for Formats, Fields, and Groups
	23.1.3 Supported Character Delimiters

	23.2 Working with MFL Resources in the Oracle Service Bus Console
	23.2.1 How to Create MFL Resources in the Console
	23.2.2 How to Edit MFL Resources in the Console

	23.3 Creating the MFL Message Structure
	23.3.1 Using Drag and Drop in the Format Builder
	23.3.2 How to Create an MFL File in JDeveloper
	23.3.3 How to Create a Group
	23.3.4 How to Create a Field
	23.3.5 How to Reference Groups or Fields
	23.3.6 How to Add a Comment

	23.4 Configuring the MFL Message Structure
	23.4.1 How to Make a Node Recurring
	23.4.2 How to Define Delimiters
	23.4.2.1 Specifying a Delimiter by Reference
	23.4.2.2 Specifying a Delimiter by Value

	23.5 Importing and Converting Metadata
	23.5.1 How to Convert a Guideline XML File
	23.5.2 How to Convert an XML Schema
	23.5.3 How to Convert a COBOL Copybook
	23.5.4 How to Convert C Structures
	23.5.5 How to Convert an FML Field Table Class

	23.6 Deleting MFL Resources
	23.6.1 How to Delete an MFL Resource

	23.7 Testing Format Definitions
	23.7.1 How to Start Format Tester
	23.7.2 How to Test Using the Non-XML Window
	23.7.2.1 Using the Data Offset Feature
	23.7.2.2 Using the Text Feature

	23.7.3 How to Test Using the XML Window
	23.7.4 How to Test Using the Debug Window
	23.7.5 How to Debug Format Definitions
	23.7.5.1 Searching for Values
	23.7.5.2 Searching for Offsets
	23.7.5.3 Using the Debug Log

	23.7.6 Format Tester Command Reference
	23.7.6.1 File Menu
	23.7.6.2 Edit Menu
	23.7.6.3 Display Menu
	23.7.6.4 Generate Menu
	23.7.6.5 Transform Menu

	23.8 Using the Palette
	23.8.1 How to Display the Palette Window
	23.8.2 How to Add Items to the Palette
	23.8.3 How to Add Palette Items to a Message Format

	23.9 Format Builder Supported Data Types
	23.9.1 MFL Data Types
	23.9.2 COBOL Copybook Importer Data Types
	23.9.3 Unsupported C Language Features

	23.10 Format Builder Field Reference
	23.10.1 Format Builder Window
	23.10.2 Format Builder Tool Bar
	23.10.3 Format Builder Tree Pane
	23.10.4 Field Configuration Window
	23.10.5 Group Configuration Window
	23.10.6 Format Builder Reference Configuration Window

	24 Using Java Callouts and POJOs
	24.1 Introduction to Java Callouts
	24.1.1 Java Callout Usage Guidelines
	24.1.2 Java Callouts or EJBs

	24.2 Working with Streaming Content
	24.2.1 Passing Streaming Content to a Java Callout
	24.2.2 Streaming Content Results from a Java Callout

	24.3 Best Practices for Java Callouts and POJOs

	Part V Working with JCA Adapters, Transports, and Bindings
	25 Using the JCA Transport and JCA Adapters
	25.1 Introduction to the JCA Transport
	25.1.1 Supported JCA Adapters
	25.1.1.1 AQ Adapter
	25.1.1.2 Oracle BAM 11g Adapter
	25.1.1.3 Coherence Adapter
	25.1.1.4 Database Adapter
	25.1.1.5 File Adapter
	25.1.1.6 FTP Adapter
	25.1.1.7 JDE World Adapter
	25.1.1.8 JMS Adapter
	25.1.1.9 LDAP Adapter
	25.1.1.10 MQ Series Adapter
	25.1.1.11 MSMQ Adapter
	25.1.1.12 Oracle E-Business Suite Adapter
	25.1.1.13 Salesforce Cloud Adapter
	25.1.1.14 SAP Adapter
	25.1.1.15 Socket Adapter
	25.1.1.16 Third Party Adapter
	25.1.1.17 User Messaging Service Adapter

	25.1.2 Oracle JCA Adapter Limitations
	25.1.2.1 Limitations that Apply to All JCA Adapters
	25.1.2.2 Oracle JCA Adapters for Files/FTP Limitations

	25.1.3 JCA Adapter Framework
	25.1.4 JCA Transport Messaging
	25.1.5 Security for JCA Transports
	25.1.5.1 Proxy Services
	25.1.5.2 Business Services

	25.1.6 Logging
	25.1.6.1 Oracle BAM Adapter Logging

	25.1.7 JCA Transport Error Handling
	25.1.8 URI Rewriting with JCA Transports
	25.1.9 JCA Transport Message Encoding
	25.1.10 Rejected Messages

	25.2 JCA Adapter Configuration Recommendations for Service Bus
	25.2.1 Configuring the JCA Adapter Connections
	25.2.2 Configuring JCA Adapters that Poll a Database
	25.2.3 Configuring the Oracle JCA Adapter for Database
	25.2.3.1 Configuring the Oracle JCA Adapter for Database to Poll from a Single Server

	25.2.4 Configuring the Oracle JCA Adapter for AQ
	25.2.5 Configuring the Oracle JCA Adapter for Coherence
	25.2.6 Configuring the Salesforce Cloud Adapter

	25.3 Working with JCA Binding Resources
	25.3.1 How to Create a JCA Adapter in JDeveloper
	25.3.2 How to Import JCA Adapters in the Oracle Service Bus Console
	25.3.3 How to Create a JCA Binding Resource in the Oracle Service Bus Console
	25.3.4 How to Edit JCA Binding Resources in the Console
	25.3.5 How to Delete JCA Binding Resources
	25.3.6 Using Custom JCA Adapters
	25.3.6.1 About the Custom Adapter Registration File
	25.3.6.2 Registering and Using a Custom JCA Adapter with Service Bus

	25.4 Working with JavaScript Resources
	25.4.1 How to Create JavaScript Resources
	25.4.2 How to Edit JavaScript Resources
	25.4.3 How to Delete JavaScript Resources

	25.5 JCA Transport Configuration Reference
	25.5.1 JCA Transport Endpoint URIs
	25.5.1.1 Endpoint Redeployment

	25.5.2 JCA Transport Headers and Normalized Message Properties
	25.5.3 JCA Transport Endpoint Properties
	25.5.3.1 Standard Endpoint Properties
	25.5.3.2 Dynamic Endpoint Properties
	25.5.3.3 JCA Adapter Properties
	25.5.3.4 Activation and Interaction Specification Properties

	25.5.4 JCA Transport Environment Variables
	25.5.5 Configuring Proxy and Business Services to Use the JCA Transport
	25.5.6 Proxy Service Operation Configuration

	26 Creating REST Services with Oracle Service Bus
	26.1 Oracle Service Bus and REST
	26.1.1 REST Features in Service Bus
	26.1.2 REST Implementation in Service Bus
	26.1.3 Service Type Compatability of Native REST Services
	26.1.4 Payloads Supported by Native REST Services
	26.1.5 Response and Failure Codes for Native REST Services
	26.1.6 Unhandled Errors and Native REST Services
	26.1.7 REST Security

	26.2 WADL Documents for REST Services in Service Bus
	26.2.1 WADL Documents in the Design Time and Runtime
	26.2.2 Media Type Representations Supported by Typed Native REST Services
	26.2.3 Query Operations with WADL
	26.2.4 Query and Template Parameters
	26.2.5 Resource Method Identification
	26.2.6 WADL Restrictions for WSDL-based REST Services
	26.2.7 Effective WADL Documents

	26.3 Creating WADL Documents
	26.3.1 How to Create a WADL Resource in the Oracle Service Bus Console

	26.4 Modifying WADL Documents
	26.4.1 How to Edit a WADL Document
	26.4.2 How to Delete a WADL Document

	26.5 Creating REST Services Using JDeveloper
	26.5.1 Creating Native REST Services
	26.5.2 How to Create WSDL-Based REST Services for Service Bus Using JDeveloper
	26.5.3 How to Create Typed REST Services for Service Bus Using JDeveloper
	26.5.4 How to Create or Configure a REST Operation in JDeveloper
	26.5.5 How to Create or Configure a REST Method in JDeveloper
	26.5.6 How to Expose an HTTP Proxy or Business Service as REST
	26.5.7 What You May Need to Know About Configuring URI Parameters for REST

	26.6 Accessing WADL Documents in a Web Browser
	26.6.1 Viewing WADL Documents in XML Format
	26.6.2 Viewing WADL Documents in a Readable Format

	27 Using the DSP Transport
	27.1 Introduction to the DSP Transport
	27.2 Enabling Data Services for Service Bus
	27.3 Using the DSP Transport
	27.3.1 Generate the WSDL File in Oracle Data Service Integrator
	27.3.1.1 Step 1. Start Your Server
	27.3.1.2 Step 2. Generate a WSDL File from the Data Service
	27.3.1.3 Step 3: Obtain the Web Service Address

	27.3.2 Create the Service Bus Project
	27.3.2.1 Step 4: Import the Data Service WSDL File into Service Bus
	27.3.2.2 Step 5: Create the Business Service
	27.3.2.3 Step 6: Create the Proxy Service
	27.3.2.4 Step 7: Create a Pipeline
	27.3.2.5 Step 8: Test Your Setup

	27.4 DSP Transport Configuration Reference
	27.4.1 DSP Transport Endpoint URIs
	27.4.2 Configuring Business Services to Use the DSP Transport

	28 Using the EJB Transport
	28.1 Introduction to the EJB Transport
	28.2 Prerequisites for Creating Services that Invoke EJBs
	28.2.1 Registering a JNDI Provider Resource
	28.2.2 Registering an EJB Client or Converter JAR Resource
	28.2.2.1 Adding a Client or Converter JAR File
	28.2.2.2 Create a Service Account (Optional)
	28.2.2.3 Locate an EJB in the JNDI Tree

	28.3 Invoking EJB Business Services
	28.4 Exposing EJBs as Web Services
	28.5 Advanced EJB Transport Topics
	28.5.1 EJB Transport Transactions
	28.5.2 EJB Transport Retries and Failover
	28.5.3 EJB Transport Error Handling
	28.5.4 Supported Types and Converter Classes
	28.5.4.1 About XMLBean Support
	28.5.4.2 About User-defined Java Datatypes and JAX-WS
	28.5.4.3 Custom Converter Classes
	28.5.4.4 Using a Converter Class for an EJB Business Service

	28.5.5 Business Exception Classes

	28.6 Troubleshooting EJB Transports
	28.6.1 WSDL Backward Compatibility
	28.6.2 Temp Directories
	28.6.3 Deployed Application
	28.6.4 EJB Transport Errors

	28.7 EJB Transport Configuration Reference
	28.7.1 EJB Endpoint URI Format
	28.7.2 Configuring Business Services to Use the EJB Transport

	29 Using HTTP and Poller Transports
	29.1 Introduction to Poller Transports
	29.2 Using the HTTP Transport
	29.2.1 HTTP Session Stickiness
	29.2.2 Retrieving the HTTP Authorization Header in a Proxy Service
	29.2.3 Compressed HTTP Request and Response Payload Support
	29.2.3.1 Accept-Encoding
	29.2.3.2 Content-Encoding
	29.2.3.3 Content-Length
	29.2.3.4 Transfer-Encoding
	29.2.3.5 ETag
	29.2.3.6 Sample Requests and Responses

	29.2.4 HTTP Transport WS-RM Support
	29.2.5 HTTP Transport Configuration Reference
	29.2.5.1 HTTP Transport Endpoint URIs
	29.2.5.2 Configuring Proxy Services to Use the HTTP Transport
	29.2.5.3 Configuring Business Services to Use the HTTP Transport

	29.2.6 REST Support
	29.2.6.1 REST in Proxy Services
	29.2.6.1.1 XQuery Examples
	29.2.6.1.2 Headers

	29.2.6.2 REST in Business Services

	29.2.7 Response Codes and Error Handling for HTTP Business Services
	29.2.8 Large Payload Rejection with the HTTP Transport

	29.3 Using the Email Transport
	29.3.1 Email Transport Configuration Reference
	29.3.1.1 Email Transport Endpoint URIs
	29.3.1.2 Configuring Proxy Services to Use the Email Transport
	29.3.1.3 Configuring Business Services to Use the Email Transport

	29.4 Using the File Transport
	29.4.1 File Transport Configuration Reference
	29.4.1.1 File Transport Endpoint URIs
	29.4.1.2 Configuring Proxy Services to Use the File Transport
	29.4.1.3 Special Considerations for NFS File Systems
	29.4.1.4 Configuring Business Services to Use the File Transport

	29.5 Using the FTP Transport
	29.5.1 FTP Transport Configuration Reference
	29.5.1.1 FTP Transport Endpoint URIs
	29.5.1.2 Configuring Proxy Services to Use the FTP Transport
	29.5.1.3 Configuring Business Services to Use the FTP Transport

	29.6 Using the SFTP Transport
	29.6.1 SFTP Transport Features
	29.6.2 General Principles of SFTP Authentication
	29.6.3 SFTP Transport Runtime Behavior
	29.6.4 Enabling SFTP Authentication
	29.6.4.1 Creating the Known Hosts File
	29.6.4.2 Enabling User Name and Password Authentication
	29.6.4.3 Enabling Host-Based Authentication
	29.6.4.4 Enabling Public Key Authentication

	29.6.5 About FIPS Compliance for the SFTP Transport
	29.6.5.1 Enabling FIPS Compliance
	29.6.5.2 FIPS Compliance Upgrade Considerations

	29.6.6 Handling SFTP Transport Communication Errors
	29.6.7 Troubleshooting the SFTP Transport
	29.6.8 Importing SFTP Transport Services
	29.6.8.1 Importing Resources Used by the SFTP Transport
	29.6.8.2 Importing and Publishing Services: UDDI Registries

	29.6.9 SFTP Transport Configuration Reference
	29.6.9.1 SFTP Transport Endpoint URIs
	29.6.9.2 Configuring Proxy Services to Use the SFTP Transport
	29.6.9.2.1 Configuring Transport Headers and Metadata

	29.6.9.3 Configuring Transport Headers in the Pipeline
	29.6.9.4 Configuring Transports Headers and Metadata in the Test Console
	29.6.9.5 Configuring Business Services to Use the SFTP Transport
	29.6.9.6 SFTP Transport Environment Values

	30 Using the JEJB Transport
	30.1 Introduction to the JEJB Transport
	30.1.1 Differences Between the JEJB Transport and the EJB Transport
	30.1.2 JEJB Transport WSDL Generation
	30.1.3 JEJB Transport Error Handling
	30.1.3.1 Exception Propagation in the Response
	30.1.3.2 Application and Connection Errors
	30.1.3.2.1 Connection Errors
	30.1.3.2.1.1 Application Errors

	30.2 Prerequisites for Creating JEJB Services
	30.2.1 Creating and Packaging Your Client EJB JAR File
	30.2.2 Registering a JNDI Provider Resource (Business Services)

	30.3 Use Cases
	30.3.1 EJB Invoking an External Service
	30.3.2 Non-EJB Client Invoking an EJB
	30.3.3 EJB Invoking EJB

	30.4 UDDI Integration
	30.4.1 UDDI Publish
	30.4.2 UDDI Import

	30.5 JEJB Transport Configuration Reference
	30.5.1 JEJB Transport Endpoint URI
	30.5.1.1 Proxy Service JEJB Endpoint URI
	30.5.1.2 Business Service JEJB Endpoint URI

	30.5.2 Configuring Proxy Services to Use the JEJB Transport
	30.5.3 Configuring Business Services
	30.5.4 JEJB Transport Environment Values

	31 Using the JMS Transport
	31.1 Introduction to the JMS Transport
	31.1.1 JMS Content Type for Services
	31.1.2 JMS Transport Security
	31.1.3 Asynchronous Request-Response Messaging
	31.1.4 Sending and Receiving Java Objects in Messages
	31.1.5 Required JMS Resources
	31.1.6 Large Payload Rejection with JMS Transport
	31.1.7 Platform Interoperability
	31.1.7.1 Interoperability with WebLogic JMS
	31.1.7.2 Interoperability with WebSphere MQ
	31.1.7.3 Interoperability with Tibco EMS

	31.2 Using SOAP Over JMS Transport
	31.2.1 Interoperating with WebLogic Server
	31.2.2 Configuring the Response Queues for Cross-Domain JMS Calls

	31.3 Naming Guidelines for Domains, Servers, and URIs
	31.3.1 JMS Server Names
	31.3.2 JNDI Names and Service Bus

	31.4 JMS Client ID in Proxy Services
	31.4.1 About the Client ID and Subscriber Name
	31.4.2 Recommended Usage

	31.5 JMS Transport Error Handling
	31.5.1 Application Errors
	31.5.2 Communication Errors
	31.5.3 Pipeline Exceptions with Java Objects

	31.6 WSDL-Defined SOAP Fault Messages
	31.6.1 Adding a Fault in a SOAP Message if the Fault is Constructed from inside a Service Bus Pipeline

	31.7 Message ID and Correlation ID Patterns for JMS Request/Response
	31.7.1 Overview of JMS Request-Response and Design Patterns
	31.7.1.1 Patterns for Messaging

	31.7.2 JMS Message ID Pattern
	31.7.2.1 Access to the JMSReplyTo Property
	31.7.2.2 JMS Message ID Pattern in a Cluster

	31.7.3 JMS Correlation ID Pattern
	31.7.4 Comparison of Message ID and Correlation ID Patterns
	31.7.5 Interoperating with JAX-RPC Over JMS
	31.7.5.1 Invoking a JAX-RPC Web Service Using the JMS Message ID Pattern
	31.7.5.2 Invoking a JMS Request-Response Proxy Service from a JAX-RPC Client

	31.7.6 JMS Message ID Pattern Examples
	31.7.6.1 MQ Service Using a JMS Message ID to Correlate the Request-Response Message
	31.7.6.2 JAX-RPC Client with a Proxy Service
	31.7.6.3 Service Bus as a Client of a WebLogic Server JAX-RPC Service

	31.8 JMS Transport Configuration Reference
	31.8.1 JMS Transport Endpoint URIs
	31.8.2 Configuring Proxy Services to Use the JMS Transport
	31.8.3 JMS Transport Headers
	31.8.3.1 Configuring Transport Headers

	31.8.4 Configuring Business Services to Use the JMS Transport

	32 Using the Local Transport
	32.1 Introduction to the Local Transport
	32.1.1 Features and Characteristics of Local Transport Proxy Services

	32.2 Using Local Transport Proxy Services
	32.2.1 Changes from Previous Usage

	32.3 Propagating SOAP Faults Between Proxy Services
	32.4 Using OWSM Security with Local Proxy Services

	33 Using the MQ Transport
	33.1 Introduction to the MQ Transport
	33.1.1 MQ Transport Features
	33.1.2 MQ Transport Advantages
	33.1.3 Messaging Patterns
	33.1.4 MQ Connection Resources
	33.1.5 Quality of Service
	33.1.6 Multi-instance Queue Manager Support
	33.1.7 MQ Clusters and the MQ Transport
	33.1.8 Limitations of the MQ Transport
	33.1.9 Large Payload Rejection with the MQ Transport

	33.2 Setting Up the Environment for the MQ Transport
	33.2.1 How to Add MQ Client Libraries to Your Environment
	33.2.2 How to Configure Environment Variables

	33.3 Working with MQ Connections
	33.3.1 How to Create MQ Connections
	33.3.2 How to Edit MQ Connections
	33.3.3 How to Delete MQ Connections
	33.3.4 How to Monitor an MQ Connection Pool
	33.3.5 Improve Activation Performance

	33.4 MQ Transport Error Handling
	33.5 Using the WebSphere JMS MQ Interface
	33.5.1 Using the WebSphere MQ JMS Interface
	33.5.2 MQ Messaging Types
	33.5.2.1 Non-Persistent Messaging
	33.5.2.2 Non-XA Persistent Messaging
	33.5.2.3 XA Messaging

	33.5.3 Tuning WebSphere MQ

	33.6 MQ Transport Configuration Reference
	33.6.1 MQ Transport Endpoint URIs
	33.6.2 Configuring Proxy Services to Use the MQ Transport
	33.6.3 Configuring Business Services to Use the MQ Transport
	33.6.4 MQ Transport Environment Values

	33.7 MQ Transport Headers
	33.7.1 Configuring Transport Headers
	33.7.2 About RFH2 Headers

	34 Using the Oracle BPEL Process Manager Transport
	34.1 Introduction to the BPEL Transport
	34.1.1 SOAP Support with the BPEL Transport
	34.1.2 Transaction Propagation in the BPEL Transport
	34.1.3 SSL Support in the BPEL Transport
	34.1.4 BPEL Transport Environment Values

	34.2 BPEL Transport Simple Use Cases (Synchronous)
	34.2.1 Synchronous: Invoking Processes in Oracle BPEL Process Manager
	34.2.1.1 Creating and Configuring the Services

	34.2.2 Synchronous: Calling External Services from Oracle BPEL Process Manager
	34.2.2.1 Creating and Configuring the Services

	34.2.3 Associating Messages with the Correct Conversation

	34.3 Advanced Use Cases (Asynchronous)
	34.3.1 Asynchronous: Invoking Processes in Oracle BPEL Process Manager
	34.3.1.1 Creating and Configuring the Services

	34.3.2 Asynchronous: Calling Service Providers from Oracle BPEL Process Manager
	34.3.2.1 Creating and Configuring the Services

	34.4 BPEL Transport Security
	34.4.1 Using SSL from Oracle Service Bus to Oracle Servers

	34.5 BPEL Transport Error Handling
	34.5.1 Application Errors
	34.5.2 Connection Errors
	34.5.3 Other Errors

	34.6 WS-Addressing Reference
	34.6.1 ReplyTo
	34.6.1.1 Calling a BPEL Process Asynchronously Through Service Bus
	34.6.1.2 BPEL Processes Calling External Services Through Service Bus

	34.6.2 MessageID / RelatesTo

	34.7 Examples of XML Messaging with the BPEL Transport
	34.7.1 Conversation ID Examples
	34.7.1.1 Port and Message Definitions
	34.7.1.2 WS-Addressing that Sets the Conversation ID
	34.7.1.3 Message Payload Data that Sets the Conversation ID
	34.7.1.4 Transformation Examples

	34.7.2 Asynchronous BPEL to BPEL Through Service Bus Example
	34.7.2.1 Port and Message Definitions
	34.7.2.2 BP1 to P1 – Initiate operation
	34.7.2.3 P1/B1 to BP2
	34.7.2.4 BP2 to P2 – onResult operation
	34.7.2.5 P2/B2 to BP1 – onResult operation

	34.8 BPEL Transport Configuration Reference
	34.8.1 BPEL Transport Endpoint URI
	34.8.2 Configuring Business Services to Use the BPEL Transport

	35 Using the SB Transport
	35.1 Introduction to the SB Transport
	35.1.1 SB Transport Features

	35.2 SB Transport Error Handling
	35.3 UDDI and the SB Transport
	35.3.1 Publishing a Service
	35.3.2 Importing a Service

	35.4 SB Transport Configuration Reference
	35.4.1 SB Transport Environment Values
	35.4.2 Configuring Proxy Services to Use the SB Transport
	35.4.3 Configuring Business Services to Use the SB Transport
	35.4.3.1 JNDI Providers

	36 Using the SOA-DIRECT Transport
	36.1 Introduction to the SOA-DIRECT Transport
	36.1.1 SOA-DIRECT Transport Features
	36.1.2 Service Binding Types
	36.1.3 WS-Addressing for the SOA-DIRECT Transport
	36.1.4 SOA-DIRECT Transport Security
	36.1.5 SOA-DIRECT Transport Error Handling
	36.1.5.1 Connection Errors
	36.1.5.2 Application Errors
	36.1.5.3 Generic Errors

	36.2 Using SOA Suite Services with Service Bus
	36.2.1 Simple Use Cases – Synchronous
	36.2.1.1 Transactional Boundaries
	36.2.1.2 Synchronous Invocation of a SOA Composite
	36.2.1.3 Synchronous Invocation from a SOA Composite
	36.2.1.4 Associating Messages with the Correct Conversation

	36.2.2 Advanced Use Cases – Asynchronous
	36.2.2.1 Asynchronous Invocation of a SOA Composite
	36.2.2.2 Asynchronous Invocation from a SOA Composite

	36.3 SOA-DIRECT Transport Configuration Reference
	36.3.1 SOA-DIRECT Endpoint URIs
	36.3.1.1 Endpoint URI Format in a Cluster
	36.3.1.2 Endpoint URI Examples

	36.3.2 Configuring Business Services to Use the SOA-DIRECT Transport
	36.3.3 SOA-DIRECT Transport Environment Values

	36.4 WS-Addressing Reference
	36.4.1 ReplyTo Header
	36.4.1.1 Calling a SOA Composite Asynchronously
	36.4.1.2 Calling Back to a SOA Composite Asynchronously

	36.4.2 MessageID / RelatesTo Headers

	36.5 XML Messaging Examples
	36.5.1 Conversation ID Examples
	36.5.1.1 Port and Message Definitions
	36.5.1.2 WS-Addressing that Sets the Conversation ID
	36.5.1.3 Message Payload Data that Sets the Conversation ID
	36.5.1.4 Transformation Examples

	36.5.2 Asynchronous Composite to Composite Communication Through Service Bus
	36.5.2.1 Port and Message Definitions
	36.5.2.2 BP1 to P1 – Initiate operation
	36.5.2.3 P1/B1 to BP2
	36.5.2.4 BP2 to P2 – onResult operation
	36.5.2.5 P2/B2 to BP1 – onResult operation

	37 Using the Tuxedo Transport
	37.1 Introduction to the Tuxedo Transport
	37.1.1 Capabilities of the Tuxedo Transport

	37.2 Configuring Oracle Tuxedo Connector
	37.2.1 Before You Begin
	37.2.2 Configuring Oracle Tuxedo Connector

	37.3 Using Tuxedo Services from Service Bus
	37.3.1 Configuring a Tuxedo-Based Business Service
	37.3.1.1 Business Service Endpoint URIs for Tuxedo Transports

	37.3.2 Load Balancing and Failover for Tuxedo-Based Business Services
	37.3.3 Error Handling for Tuxedo-Based Business Services
	37.3.4 Testing Your Configuration

	37.4 Using Service Bus from Tuxedo
	37.4.1 Configuring a Tuxedo-Based Proxy Service
	37.4.2 Testing Your Configuration

	37.5 Tuxedo Transport Buffer Transformation
	37.5.1 Buffer Transformation with the Any XML Service Type
	37.5.2 Buffer Transformation with the Messaging Service Type

	37.6 Tuxedo Transport Transaction Processing
	37.6.1 Inbound Tuxedo Service Transaction Processing
	37.6.2 Outbound Tuxedo Service Transaction Processing

	37.7 Tuxedo Transport Configuration Reference
	37.7.1 Configuring Proxy Services to Use the Tuxedo Transport
	37.7.2 Configuring Business Services to Use the Tuxedo Transport

	38 Using the WS Transport
	38.1 Introduction to the WS Transport
	38.1.1 Web Services Reliable Messaging
	38.1.2 WS Transport Features
	38.1.3 Messaging Patterns
	38.1.4 WS-Policies in the WS Transport
	38.1.4.1 WS-Policy Configurations

	38.1.5 Streaming Content for Large Messages
	38.1.6 Web Services Interoperability

	38.2 Authentication and Authorization of Services
	38.2.1 Proxy Service Authentication
	38.2.2 Proxy Service Authorization
	38.2.3 Business Service Authentication

	38.3 Using the WS Transport
	38.3.1 Importing the WSDL Document into the Oracle Service Bus Console
	38.3.2 Configuring WS Policies
	38.3.3 Attaching WS Policies to a Service
	38.3.4 Configuring an Error Queue
	38.3.5 Routing the WS Transport Through an HTTP Proxy Server
	38.3.6 WS Transport Error Handling
	38.3.7 Importing and Exporting Resources
	38.3.8 Importing and Publishing Services Using UDDI Registries

	38.4 WS Transport Configuration Reference
	38.4.1 Endpoint URIs for the WS Transport
	38.4.2 Configuring Business Services to Use the WS Transport
	38.4.3 Configuring Proxy Services to Use the WS Transport

	Part VI Creating Custom Transport Providers
	39 Learning About Custom Transport Providers
	39.1 Introduction to Transport Providers
	39.2 Introduction to the Transport SDK
	39.2.1 Transport SDK Features
	39.2.1.1 Handling Inbound and Outbound Messages
	39.2.1.2 Deploying Transport-Related Artifacts
	39.2.1.3 Processing Messages Asynchronously

	39.2.2 Transport Provider Modes
	39.2.3 Related Features
	39.2.3.1 Load Balancing
	39.2.3.2 Monitoring and Metrics

	39.3 Determining Whether to Develop a Custom Transport Provider
	39.3.1 When to Use the Transport SDK
	39.3.2 When Alternative Approaches are Recommended

	39.4 Transport Provider Components
	39.4.1 Design-Time Component
	39.4.2 Runtime Component

	39.5 The Transaction Model
	39.5.1 Overview of Transport Endpoint Properties
	39.5.1.1 Transactional vs. Non-Transactional Endpoints
	39.5.1.2 Supported Message Patterns

	39.5.2 Support for Synchronous Transactions
	39.5.2.1 Use Case 1 (Response Pipeline Processing)
	39.5.2.2 Use Case 2 (Service Callout Processing)
	39.5.2.3 Use Case 3 (Suspending Transactions)
	39.5.2.4 Use Case 4 (Multiple URIs)

	39.6 Transport SDK Security Model
	39.6.1 Inbound Request Authentication
	39.6.2 Outbound Request Authentication
	39.6.2.1 Outbound User Name and Password Authentication
	39.6.2.2 Outbound SSL Client Authentication (Two-Way SSL)
	39.6.2.3 Outbound JAAS Subject Authentication

	39.6.3 Link-Level or Connection-Level Credentials
	39.6.4 Uniform Access Control to Proxy Services
	39.6.5 Identity Propagation and Credential Mapping

	39.7 Transport SDK and the Threading Model
	39.7.1 Inbound Request Message Thread
	39.7.2 Outbound Response Message Thread
	39.7.3 Support for Asynchrony
	39.7.4 Publish and Service Callout Threading

	39.8 Designing for Message Content
	39.8.1 Sources and Transformers
	39.8.2 Sources and the MessageContext Object
	39.8.3 Built-In Transformations

	40 Developing Custom Transport Providers
	40.1 Development Road Map
	40.1.1 Planning
	40.1.2 Developing
	40.1.3 Packaging and Deploying

	40.2 Before You Begin
	40.3 Basic Development Steps
	40.3.1 Step1. Review the Transport Framework Components
	40.3.2 Step 2. Create a Directory Structure for Your Transport Project
	40.3.3 Step 3. Create an XML Schema File for Transport-Specific Artifacts
	40.3.4 Step 4. Define Transport-Specific Artifacts
	40.3.4.1 EndPointConfiguration
	40.3.4.2 RequestMetaDataXML
	40.3.4.3 RequestHeadersXML
	40.3.4.4 ResponseMetaDataXML
	40.3.4.5 ResponseHeadersXML

	40.3.5 Step 5. Define the TransportProviderConfiguration XMLBean
	40.3.6 Step 6. Implement the Transport Provider User Interface
	40.3.7 Step 7. Implement the Runtime Interfaces
	40.3.8 Step 8. Package and Deploy the Transport Provider

	40.4 Important Development Topics
	40.4.1 Handling Messages
	40.4.1.1 Sending and Receiving Message Data
	40.4.1.2 Request and Response Metadata Handling
	40.4.1.3 Character Set Encoding
	40.4.1.4 Co-Located Calls
	40.4.1.5 Returning Outbound Responses to the Service Bus Runtime

	40.4.2 Transforming Messages
	40.4.3 Working with TransportOptions
	40.4.3.1 Inbound Processing
	40.4.3.2 Outbound Processing
	40.4.3.3 Request Mode

	40.4.4 Handling Errors
	40.4.4.1 Case 1: The Exception Occurs Before the Outbound Call
	40.4.4.2 Case 2: The Exception Occurs During the Outbound Call
	40.4.4.3 Case 3: The Exception Occurs After the Outbound Call
	40.4.4.4 Catching Application Errors
	40.4.4.4.1 Identifying Application Errors
	40.4.4.4.2 Configuring Application Error Retries

	40.4.4.5 Catching Connection Errors
	40.4.4.5.1 Identifying Connection Errors

	40.4.5 Defining Custom Environment Value Types
	40.4.6 Publishing Proxy Services to a UDDI Registry
	40.4.7 When to Implement TransportWLSArtifactDeployer

	40.5 Creating Help for Custom Transports
	40.5.1 About Custom Transport Online Help
	40.5.2 How to Provide Custom Transport Help in the Console
	40.5.2.1 Implement the CustomHelpProvider Interface
	40.5.2.2 Create an HTML File to Launch
	40.5.2.3 Create a Simple Web Application to Display Expanded Help (Optional)
	40.5.2.3.1 META-INF/application.xml
	40.5.2.3.2 WEB-INF/web.xml
	40.5.2.3.3 Help Content and Resources

	40.5.3 How to Provide Custom Transport Help in JDeveloper
	40.5.4 Packaging Help for the Transport Plug-in

	41 Developing Custom Transport Providers for JDeveloper
	41.1 Introduction
	41.2 Services Runtime and Services Configuration
	41.2.1 Offline Methods
	41.2.2 Restrictions when Working Offline
	41.2.3 Working Offline with a Remote Server
	41.2.4 Bootstrapping Transports in Offline Mode

	41.3 Packaging Transports for JDeveloper
	41.4 Custom Transport Provider Reference for Offline Tools
	41.4.1 Working in Different Modes
	41.4.2 TransportProviderFactory
	41.4.3 TransportManagerHelper Methods

	42 Packaging and Deploying a Custom Transport Provider
	42.1 Packaging and Deployment Overview
	42.1.1 Custom Transport Provider Components
	42.1.2 Custom Transport Provider Resources

	42.2 Packaging the Transport Provider
	42.2.1 Transport JAR File Packaging
	42.2.2 Transport EAR File Packaging
	42.2.3 Transport Plug-in Registration for JDeveloper

	42.3 Transport Plug-in Installation
	42.4 Deploying the Transport Provider
	42.4.1 Transport Registration

	42.5 Undeploying a Transport Provider
	42.6 Deploying to a Cluster

	43 Creating a Sample Socket Transport Provider
	43.1 Sample Socket Transport Provider Design
	43.1.1 Concepts Illustrated by the Sample
	43.1.2 Basic Architecture of the Sample
	43.1.3 Configuration Properties

	43.2 Sample Location and Directory Structure
	43.3 Building and Deploying the Sample
	43.3.1 How to Set Up the Environment
	43.3.2 How to Build the Sample Transport Provider
	43.3.3 How to Deploy the Sample Transport Provider
	43.3.4 Registering the Sample Transport Provider With JDeveloper

	43.4 Creating a Socket Transport Sample Project
	43.4.1 Creating the Project
	43.4.2 Creating the Business Service
	43.4.3 Creating the Proxy Service
	43.4.4 Creating the Pipeline
	43.4.5 Connecting the Proxy Service and Pipeline

	43.5 Testing the Socket Transport Provider
	43.5.1 Using the Sample Server and Client for Testing
	43.5.1.1 Starting the Sample External Service
	43.5.1.2 Starting the Sample Initiating Service

	43.5.2 Using the Test Console

	Part VII Sharing Artifacts and Services
	44 Importing and Exporting Resources and Configurations
	44.1 About Importing and Exporting Resources
	44.1.1 About Exporting Resources
	44.1.1.1 Data Encryption During Export

	44.1.2 About Importing Resources
	44.1.2.1 Improving Import Performance
	44.1.2.2 Importing Service Accounts or Service Key Providers
	44.1.2.3 Preserving Operational Settings During Import
	44.1.2.4 Preserving Security Configuration During Import
	44.1.2.4.1 Preserve Security and Policy Configuration
	44.1.2.4.2 Preserve Credentials
	44.1.2.4.3 Preserve Access Control

	44.1.2.5 Customizing Environment Values After an Import

	44.2 Importing and Exporting Resources in JDeveloper
	44.2.1 How to Export Resources to a Configuration JAR File in Oracle JDeveloper
	44.2.2 How to Export Resources to a Server in Oracle JDeveloper
	44.2.3 How to Import Resources in JDeveloper

	44.3 Importing and Exporting Resources in the Oracle Service Bus Console
	44.3.1 How to Export Resources to a Configuration JAR File in the Console
	44.3.2 How to Import Resources from a Configuration JAR File in the Console
	44.3.2.1 Importing New Version of Projects in the Console

	44.3.3 How to Import Resources from a ZIP File in the Console
	44.3.4 How to Import Resources from a URL in the Console

	44.4 Exporting a Service Bus Configuration Offline
	44.4.1 About the Export Process
	44.4.2 Preparing to Export a Service Bus Configuration
	44.4.2.1 Before You Begin
	44.4.2.2 Creating the Export Settings File
	44.4.2.3 Configuring the Environment

	44.4.3 Exporting a Service Bus Configuration Offline
	44.4.3.1 Exporting a Configuration Offline Using a Command Line
	44.4.3.2 Exporting a Configuration Offline Using Ant
	44.4.3.3 Exporting a Configuration Offline Using WLST

	44.4.4 Export Settings File Format, Samples, and Schema
	44.4.4.1 Export Settings File Format
	44.4.4.2 Validation
	44.4.4.3 Inclusion and Exclusion Rules
	44.4.4.4 Export Settings File Samples
	44.4.4.5 Export Settings File Schema Definition

	45 Sharing Data Using the Metadata Services Repository
	45.1 Service Bus and the MDS Repository
	45.2 Managing the MDS Repository
	45.3 Sharing Artifacts Using the MDS Repository
	45.3.1 How to Publish Service Bus Artifacts to the MDS Repository

	45.4 Consuming Artifacts Stored in the MDS Repository
	45.4.1 How to Consume MDS Repository Artifacts Using the Resource Browser
	45.4.2 How to Add MDS Repository Artifacts to a Service Bus Project
	45.4.3 How to Create a Business Service from a WSDL File in the MDS Repository
	45.4.4 How to Create a Business Service from a WADL File in the MDS Repository
	45.4.5 How to Expose a WSDL File in the MDS Repository as a REST Service
	45.4.6 Opening the Project Overview File Through a SOA-MDS Connection

	46 Working with UDDI Registries
	46.1 UDDI, UDDI Registries, and Web Services
	46.1.1 Basic Concepts of the UDDI Specification
	46.1.2 Benefits of Using a UDDI Registry with Service Bus
	46.1.3 Introduction to UDDI Entities

	46.2 Service Bus and UDDI
	46.2.1 UDDI Registry URLs
	46.2.2 UDDI Registry Security Configuration
	46.2.3 Authentication Configuration and UDDI Registries
	46.2.4 About Publishing Proxy Services to a UDDI Registry
	46.2.5 About Importing Services from a UDDI Registry
	46.2.5.1 About Business Entities and Patterns

	46.3 Keeping Services Synchronized
	46.3.1 Automatic Publishing for Proxy Services
	46.3.1.1 Changes to the Default Registry
	46.3.1.2 Auto-Publish Synchronization Process

	46.3.2 Automatic Importing of UDDI Services
	46.3.2.1 Synchronization of Imported Services
	46.3.2.2 Unlinking Imported Services

	46.4 Related References
	46.5 Working with UDDI Registry Resources
	46.5.1 How to View UDDI Registry Resources in the Oracle Service Bus Console
	46.5.2 How to Create UDDI Registry Resources
	46.5.3 How to Create a UDDI Registry Resource from a JDeveloper UDDI Connection
	46.5.4 How to Edit a UDDI Registry Resource
	46.5.5 How to Specify a Default UDDI Registry Resource
	46.5.6 How to Delete a UDDI Registry Resource

	46.6 Sharing UDDI Registry Services in JDeveloper
	46.6.1 How to Create a UDDI Registry Connection in JDeveloper
	46.6.2 How to Create a Business Service from a UDDI Registry Service
	46.6.3 How to Download a Service From a UDDI Registry

	46.7 Sharing UDDI Registry Services in the Oracle Service Bus Console
	46.7.1 Publishing Proxy Services to a UDDI Registry
	46.7.1.1 How to Automatically Publish Proxy Services to a UDDI Registry
	46.7.1.2 How to Manually Publish a Proxy Service to a UDDI Registry

	46.7.2 How to Import Resources from a UDDI Registry
	46.7.3 How to Automatically Synchronize Imported Services
	46.7.4 How to Manually Synchronize an Imported Service
	46.7.5 How to Unlink an Imported Service From the UDDI Registry

	46.8 Sample Business Scenarios for Service Bus and UDDI
	46.8.1 Basic Proxy Service Communication with a UDDI Registry
	46.8.2 Cross-Domain Deployment in Service Bus

	46.9 Mapping Service Bus Proxy Services to UDDI Entities
	46.9.1 UDDI Mapping Details for a Service Bus Proxy Service
	46.9.2 Transport Attributes
	46.9.3 Service Type Attributes
	46.9.4 Canonical tModels Supporting Service Bus Services
	46.9.5 Mapping Example

	Part VIII Security
	47 Understanding Oracle Service Bus Security
	47.1 Inbound Security
	47.2 Outbound Security
	47.3 Options for Identity Propagation
	47.3.1 Using a Service Account with Business Service when Attaching OWSM Policies
	47.3.2 Example: Authentication with a User Name Token

	47.4 Administrative Security
	47.5 Access Control Policies
	47.5.1 Configuring Proxy Service Access Control
	47.5.2 Access Control Policy Management
	47.5.2.1 Deleting a Proxy Service
	47.5.2.2 Deleting the Access Control Policy Assigned to a Proxy Service
	47.5.2.3 Moving or Renaming a Proxy Service
	47.5.2.4 Renaming a Proxy Service Operation

	47.6 Configuring the Oracle WebLogic Security Framework: Main Steps
	47.7 Context Properties Are Passed to Security Providers
	47.7.1 Context Properties for HTTP Transport-Level Authentication
	47.7.2 ContextHandler Properties for Access Control and Custom Authentication
	47.7.3 Additional Transport-Specific Context Properties
	47.7.4 Administrator-Supplied Context Properties for Message-Level Authentication
	47.7.5 Security Provider Must Have Knowledge of the Property Name
	47.7.6 WebLogic Server Administrative Channel is Supported
	47.7.6.1 Using the Administrative Channel: Main Steps

	47.8 Using Security Providers
	47.8.1 Configuring Authentication Providers
	47.8.2 Using a Custom Authorization Provider to Protect Service Bus Resources
	47.8.2.1 WebLogic Authorization Provider Usage Information
	47.8.2.2 ALSBProxyServiceResource Object
	47.8.2.2.1 ALSBProxyServiceResource Examples

	47.8.2.3 ProjectResourceV2 Object
	47.8.2.4 ConsoleResource Object

	47.8.3 About Errors When Using Security Provider Policies

	48 Oracle Service Bus Security FAQ
	48.1 How are Service Bus and WebLogic Server Security related?
	48.2 What is Transport-Level Security?
	48.3 What is Web Services Security?
	48.4 What is Web Service Policy?
	48.5 What are Web Service Policy assertions?
	48.6 Are Access Control Policy and Web Service Policy the same?
	48.7 What is Web Services Security Pass-Through?
	48.8 What is a Web Services Security Active Intermediary?
	48.9 What is outbound Web Services Security?
	48.10 What is SAML?
	48.11 Is it possible to customize the format of the subject identity in a SAML assertion?
	48.12 What is the Certificate Lookup And Validation Framework?
	48.13 Does Service Bus support identity propagation in a proxy service?
	48.14 Is single sign-on supported in Service Bus?
	48.15 Are security errors monitored?
	48.16 Can I configure security for MBeans?

	49 Securing Business and Proxy Services
	49.1 Introduction to Policies
	49.2 Security and Security Policies for Business and Proxy Services
	49.2.1 Security Policies in Service Bus
	49.2.2 Policy Overrides
	49.2.3 Security Settings
	49.2.4 Global Policies
	49.2.5 Service Accounts in Business Services
	49.2.6 Security-Related Validation for Active Proxy Services

	49.3 Attaching and Configuring Policies in JDeveloper
	49.3.1 How to Attach Oracle Web Services Manager Policies in JDeveloper
	49.3.2 How to Define Override Values for a Policy in JDeveloper
	49.3.3 How to Configure Custom Authentication for Proxy Services in JDeveloper
	49.3.3.1 Configuring Proxy Service Custom Authentication in JDeveloper

	49.3.4 How to Specify a Service Key Provider for a Proxy Service in JDeveloper
	49.3.5 How to Specify Web Services Policy Enforcement in JDeveloper

	49.4 Attaching and Configuring Policies in the Oracle Service Bus Console
	49.4.1 How to Attach Oracle Web Services Manager Policies in the Console
	49.4.2 How to Define Override Values for a Policy in the Console
	49.4.3 How to Configure Custom Authentication for a Proxy Service in the Console
	49.4.3.1 Configuring Proxy Server Custom Authentication in the Console

	49.4.4 How to Specify a Service Key Provider for a Proxy Service in the Console
	49.4.5 How to Specify Web Services Policy Enforcement in the Console

	49.5 Configuring Service Bus Client Access Security
	49.5.1 How To Configure Transport-Level Access Policies
	49.5.1.1 Enabling HTTP URL Links to Open the Policy Editor
	49.5.1.2 Configuring Transport-Level Access Policies

	49.5.2 How to Configure Message-Level Access Policies
	49.5.3 How to Add Policy Conditions

	49.6 Hiding Personally Identifiable Information in Messages
	49.6.1 How to Hide Personally Identifiable Information
	49.6.1.1 Hiding Personally Identifiable Information Using JDeveloper
	49.6.1.2 Hiding Personally Identifiable Information Using the Console

	50 Configuring Message-Level Security for Web Services
	50.1 About Message-Level Security
	50.1.1 Sample Sequence of Actions in Message-Level Security

	50.2 Message-Level Access Control Policies for Proxy Services
	50.3 Configuring Proxy Service Message-Level Security
	50.3.1 Creating an Active Intermediary Proxy Service: Main Steps
	50.3.2 Creating a Pass-Through Proxy Service: Main Steps

	50.4 Configuring Business Service Message-Level Security: Main Steps
	50.5 Using the Service Identity Certificate Extensions
	50.5.1 Publishing Certificate Identity Extension in a Proxy Service Effective WSDL
	50.5.2 Consuming Certificate Identity Extension in a Business Service

	50.6 Examples of Custom WS-Policy Statements
	50.6.1 Example: Encrypting Part of the SOAP Body and Header
	50.6.2 Example: Encryption Policy for a Business Service
	50.6.3 Example: Encrypting a Custom SOAP Header
	50.6.4 Example: Signing the Message Body and Headers
	50.6.5 Example: Signing a SOAP Body with SAML Holder-of-Key
	50.6.6 Example: Authenticating, Signing, and Encrypting with SAML Sender Vouches

	50.7 Disabling Outbound WS-Security

	51 Configuring Transport-Level Security
	51.1 Configuring Transport-Level Security for HTTPS
	51.1.1 HTTPS Authentication Levels
	51.1.2 Configuring Inbound HTTPS Security: Main Steps
	51.1.3 Configuring Outbound HTTPS Security: Main Steps

	51.2 Configuring Transport-Level Security for HTTP
	51.2.1 Configuring Inbound HTTP Security: Main Steps
	51.2.2 Configuring Outbound HTTP Security: Main Steps
	51.2.3 Using Custom Authentication for Outbound HTTP Security

	51.3 Configuring Transport-Level Security for JMS
	51.3.1 Configuring Inbound JMS Transport-Level Security: Main Steps
	51.3.2 Configuring Outbound JMS Transport-Level Security: Main Steps

	51.4 Configuring Transport-Level Security for SFTP Transport
	51.4.1 How Two-Way Authentication is Performed
	51.4.2 Use of the known_hosts File
	51.4.3 SFTP Transport Authentication Process
	51.4.3.1 Inbound One-Way Download to the Proxy Service
	51.4.3.2 Outbound One-Way Upload from the Business Service

	51.4.4 Configuring Inbound SFTP Transport-Level Security: Main Steps
	51.4.5 Configuring Outbound SFTP Transport-Level Security: Main Steps
	51.4.6 SFTP Security Attributes Preserved During Import
	51.4.7 SFTP Credential Life Cycle

	51.5 Email, FTP, and File Transport-Level Security
	51.5.1 Email and FTP Transport-Level Security
	51.5.2 File Transport Security

	51.6 Configuring Transport-Level Security for SB Transport
	51.6.1 Configuring SAML Authentication With Service Bus (SB) Transport

	51.7 Configuring Transport-Level Security for WS Transport
	51.7.1 Reliable Web Services Messaging Defined
	51.7.2 WS Transport Resources Visible in WLS Console
	51.7.3 Use of WS-Policy Files for Web Service Reliable Messaging Configuration
	51.7.3.1 Preconfigured WS-RM Policy Files

	51.7.4 RM WS-Policy Required Prior to Activation
	51.7.5 Async Responses
	51.7.6 Proxy Service Authentication
	51.7.7 Preserving Security Configuration on Import
	51.7.8 Configuring Inbound and Outbound WS Transport-Level Security

	51.8 Configuring Transport-Level Security for WebSphere Message Queue Transport
	51.8.1 Configuring Inbound MQ Transport-Level Security: Main Steps
	51.8.2 Configuring Outbound MQ Transport-Level Security: Main Steps

	51.9 Transport-Level Security Elements in the Message Context

	52 Securing Oracle Service Bus with Oracle Web Services Manager
	52.1 About Oracle Web Services Manager Integration with Oracle Service Bus
	52.1.1 Security Providers
	52.1.1.1 JPS Providers
	52.1.1.2 CSS Providers

	52.2 Using Oracle Web Services Manager with Oracle Service Bus
	52.2.1 Attaching Oracle Web Services Manager Policies to Oracle Service Bus Services
	52.2.1.1 Policy Overrides

	52.2.2 Configuring SAML
	52.2.3 Advertising WSDL Files to Support WS Standards
	52.2.3.1 WSDL Query Parameter Reference for WS Policies

	52.2.4 Deployment Considerations
	52.2.5 Auditing
	52.2.6 Monitoring Statistics
	52.2.7 Predefined Policies and Unsupported Assertions
	52.2.7.1 Predefined Policies
	52.2.7.2 wss_http_token_*_policy Guidelines
	52.2.7.3 OWSM Authentication Policy Guidelines
	52.2.7.4 OWSM Policies and SOAP with Attachments (SwA)
	52.2.7.5 OWSM Policies and MTOM-Formatted Messages
	52.2.7.6 WS-ReliableMessaging Support Using OWSM Policies
	52.2.7.6.1 About Proxy Services Using WS-RM Policies
	52.2.7.6.2 About Business Services Using WS-RM Policies
	52.2.7.6.3 End-to-End Message Reliability
	52.2.7.6.4 WS-RM Interoperability
	52.2.7.6.5 Tuning the WS-RM Subsystem
	52.2.7.6.5.1 oracle/reliable_messaging_internal_api_policy

	52.2.7.7 Unsupported Assertions

	52.2.8 Custom Assertions

	52.3 Securing Services with REST Endpoints Using OAuth
	52.3.1 Supported OAuth Use Cases
	52.3.2 Configuring Oracle Access Management for Using OAuth with Service Bus
	52.3.2.1 Configuring the OAuth Server
	52.3.2.1.1 Enabling OAuth for Oracle Access Management
	52.3.2.1.2 Creating an Authorization REST Callback Plug-In Profile Using the IDM Console
	52.3.2.1.3 Creating a Resource Server Profile Using the IDM OAuth Console
	52.3.2.1.4 Creating an OAuth OWSM Client Profile
	52.3.2.1.5 Updating the OAuth Server Profile Configuration
	52.3.2.1.6 Importing and Exporting Certificates

	52.3.2.2 Configuring OWSM

	52.3.3 Attaching OAuth OWSM Policies to Service Bus Services

	53 Securing Oracle Service Bus Proxy and Business Services with WS-Policy
	53.1 About Web Services Policy
	53.1.1 Relationship Between WS-Security and WS-Policy
	53.1.2 Abstract and Concrete WS-Policy Statements

	53.2 Oracle-Proprietary Security Policy Best Practices
	53.3 Policy Subjects and Effective Policy

	54 Using SAML with Oracle Service Bus
	54.1 Mapping Identity to a SAML Token
	54.2 Configuring SAML Pass-Through Identity Propagation
	54.3 Authenticating SAML Tokens in Proxy Service Requests
	54.4 Configuring SAML Authentication with Service Bus (SB) Transport
	54.5 Using SAML Identity Switching
	54.5.1 Protecting the Identity-Switching Resource

	54.6 Troubleshooting SAML with Oracle Service Bus

	55 Configuring Custom Authentication
	55.1 Introduction to Custom Authentication in Oracle Service Bus
	55.1.1 Understanding Custom Authentication Tokens
	55.1.2 Custom Authentication Token Use and Deployment
	55.1.3 Understanding Transport-Level Custom Authentication
	55.1.3.1 Import/Export and Transport-Level Custom Token Authentication

	55.1.4 Understanding Message-Level Custom Authentication
	55.1.5 Propagating the Identity Obtained From Custom Authentication Tokens
	55.1.6 Combining WS-Security with Custom User Name/Password and Tokens

	55.2 Format of XPath Expressions
	55.3 Configuring Identity Assertion Providers for Custom Tokens
	55.3.1 Object Type of Custom Tokens
	55.3.2 Configuring a Custom Token Type in an Identity Assertion Provider
	55.3.2.1 How to Configure a Custom Token Type in an Identity Assertion Provider
	55.3.2.2 Setting the Supported and Active Types in the MBean

	55.4 Configuring Custom Authentication Transport-Level Security
	55.4.1 How to Create a Custom Authentication Class for Outbound
	55.4.2 How to Configure Transport-Level Custom Authentication

	55.5 Configuring Message-Level Custom Authentication
	55.5.1 How to Configure Message-Level Custom Authentication for Proxy Services

	56 Defining Message-Level Security with .Net 2.0
	56.1 Message-Level Security Between .NET 2.0 and Oracle Service Bus
	56.2 What is .NET?
	56.3 Message-Level Security Configuration in .NET
	56.4 Oracle Service Bus Configuration for Message-Level Security with .NET
	56.4.1 Sample WSDL File

	Part IX Completing Oracle Service Bus Services
	57 Debugging Oracle Service Bus Applications
	57.1 Introduction to the Debugger
	57.1.1 Debug Servers
	57.1.2 Local and Remote Debugging
	57.1.3 Debugging With Breakpoints
	57.1.3.1 About Conditional Breakpoints
	57.1.3.1.1 Conditional Expression Behavior
	57.1.3.1.2 Conditional Expression Runtime Evaluation Errors
	57.1.3.1.3 About Thread Options
	57.1.3.1.4 About Pass Counts
	57.1.3.1.5 Using a Conditional Expression and a Pass Count Simultaneously

	57.1.3.2 About Exception Breakpoints
	57.1.3.2.1 Pipeline Exception Breakpoints
	57.1.3.2.2 Split-Join Exception Breakpoints

	57.1.4 JDeveloper Debugging Windows
	57.1.5 XSLT Editor Debugging Support

	57.2 Configuring the Project and Debugger
	57.2.1 How to Create Run Configuration for Remote Debugging
	57.2.2 How to Choose a Run Configuration for Debugging

	57.3 Accessing the Debugger
	57.4 Debugging a Service Bus Application
	57.4.1 How to Set Breakpoints on Service Bus Components
	57.4.2 How to Set Exception Breakpoints for Service Bus Components
	57.4.3 How to Debug Using Breakpoints
	57.4.4 How to Step Through a Debugging Session
	57.4.5 How to End or Detach from Debugging

	57.5 Working with the Debugger Windows
	57.5.1 How to Edit Breakpoint Options
	57.5.2 How to Create a Breakpoint Group
	57.5.2.1 Creating a Breakpoint Group
	57.5.2.2 Adding a Breakpoint to an Existing Group

	57.5.3 How to Remove or Disable Breakpoints
	57.5.4 How to Enable a Disabled Breakpoint
	57.5.5 How to View and Modify Variable Values at the Current Breakpoint
	57.5.6 How to Add a Watch

	58 Using the Test Console
	58.1 Introduction to the Test Console
	58.1.1 Proxy Service Testing
	58.1.2 Pipeline Testing
	58.1.2.1 Execution Tracing in Pipelines Using the Test Console

	58.1.3 Business Service Testing
	58.1.4 Recommended Approaches to Testing Services
	58.1.5 HTTP Requests

	58.2 Accessing the Test Console
	58.2.1 Prerequisites
	58.2.2 How to Access the Test Console from the Oracle Service Bus Console
	58.2.2.1 Accessing the Test Console from a Component's Definition Editor
	58.2.2.2 Accessing the Test Console from the Project or Folder Definition Editor

	58.2.3 How to Access the Test Console from Fusion Middleware Control
	58.2.4 How to Access the Test Console from JDeveloper
	58.2.4.1 Accessing the Test Console from JDeveloper
	58.2.4.2 Accessing the Test Console for a Transformation from JDeveloper

	58.3 Testing Proxy Services, Business Services, Pipelines, and Split-Joins
	58.3.1 How to Test Service Bus Services
	58.3.2 How to Test Attachments in Services
	58.3.3 How To Trace Pipeline Processing
	58.3.4 How to View Service Test Results

	58.4 Testing MFL Transformations
	58.4.1 How to Test MFL Transformations in the Test Console
	58.4.2 MFL Test Console Example

	58.5 Testing XSLT Transformations (Resources)
	58.5.1 How to Test XSLT Transformations Using the Test Console
	58.5.2 How to Test XSLT Transformations Using the JDeveloper XSLT Mapper

	58.6 Testing XQuery Transformations (Resources)
	58.6.1 XQuery Transformation Testing Prerequisites and Guidelines
	58.6.2 How to Test XQuery Transformations in the Test Console

	58.7 Testing Inline Expressions
	58.7.1 How to Test XQuery Expressions
	58.7.2 How to Test XPath Expressions

	58.8 Testing Services With OWSM Security
	58.8.1 Limitations for Services and Policies

	58.9 About Security and Transports
	58.10 Undeploying the Test Console
	58.10.1 Untargeting the Test Console Before Domain Creation
	58.10.2 Untargeting the Test Console when the Server is Running
	58.10.3 Untargeting the Test Console when the Server is Not Running

	58.11 Test Console Page Reference for Services
	58.11.1 Test Configuration Test Console Properties
	58.11.2 Service Operation Test Console Properties
	58.11.3 Request Document Test Console Properties
	58.11.4 Security Test Console Properties
	58.11.5 Authentication Test Console Properties
	58.11.6 Transport Test Console Properties
	58.11.6.1 Test Console Transport Settings
	58.11.6.2 How the Runtime Uses the Transport Settings in the Test Console

	58.11.7 Attachment Test Console Properties

	59 Deploying Oracle Service Bus Services
	59.1 Deployment Overview
	59.2 Before You Deploy
	59.2.1 Creating a Service Bus Domain Using the Configuration Wizard
	59.2.2 Resolving Conflicts
	59.2.3 Configuring JMS Resources
	59.2.4 Configuring Security

	59.3 Deploying from the Oracle Service Bus Console
	59.3.1 How to Deploy from the Console

	59.4 Deploying Service Bus Applications or Projects in JDeveloper
	59.4.1 How to Create a Connection to the WebLogic Server
	59.4.2 How to Create a Deployment Profile
	59.4.3 How to Customize Your Service Bus Deployment
	59.4.4 How to Deploy a Service Bus Project or Application
	59.4.5 How to Deploy a Project or Application Using the Previous Configuration
	59.4.6 What Happens When You Deploy Using JDeveloper

	59.5 Deploying a Service Bus Configuration JAR File in Fusion Middleware Control
	59.6 Updating an Online Configuration
	59.6.1 What You Need to Know for Successful Online Configuration Updates
	59.6.2 Changing an Online Business Service
	59.6.3 Changing an Online Proxy Service
	59.6.4 Changing an Online Pipeline

	59.7 Updating an Online Configuration in a Cluster
	59.7.1 Changing a Business Service in a Cluster
	59.7.2 Installing a New Version of a Proxy Service in a Cluster

	60 Using the Oracle Service Bus Development Maven Plug-In
	60.1 Introduction to the Oracle Service Bus Maven Plug-In
	60.1.1 Maven Lifecycle Phases and Goals
	60.1.2 POM Files and Archetypes

	60.2 Installing and Configuring Maven
	60.2.1 How to Configure the Oracle Service Bus Development Maven Plug-In
	60.2.2 How to Use Maven Online Help

	60.3 Using the Oracle Service Bus Development Maven Plug-In
	60.3.1 How to Generate a Service Bus Project POM File
	60.3.2 How to Generate a Service Bus Project POM File from an Archetype
	60.3.2.1 Creating a Service Bus Project POM File from an Archetype in JDeveloepr
	60.3.2.2 Generating a Service Bus Project POM File from an Archetype Using a Command Line

	60.3.3 How to Generate a Service Bus System Resources POM File from an Archetype
	60.3.3.1 Generating a Service Bus System Resources POM File from an Archetype in JDeveloper
	60.3.3.2 Generating a Service Bus System Resources POM File from a Command Line

	60.3.4 Parameters for Generating a POM File

	60.4 Service Bus Development Maven Plug-In Goals
	60.4.1 package
	60.4.2 deploy

	60.5 Oracle Service Bus Development Maven Plug-In POM File Samples

	Part X Appendixes
	A Message Context
	A.1 The Message Context Model
	A.2 Predefined Context Variables
	A.3 Message-Related Variables
	A.3.1 Header Variable
	A.3.2 Body Variable
	A.3.3 Attachments Variable
	A.3.4 Message Types and Context Variables
	A.3.5 Binary Content in the Body and Attachments Variables
	A.3.5.1 Sending SOAP with Attachments to Business Processes

	A.3.6 Java Content in the Body Variable
	A.3.7 Streaming Body Content
	A.3.7.1 Best Practices for Using Content Streaming

	A.3.8 Streaming Attachments
	A.3.8.1 Inbound Message Handling
	A.3.8.2 Outbound Response Message Handling

	A.3.9 XOP/MTOM Support
	A.3.9.1 XOP/MTOM in Pipelines
	A.3.9.1.1 Binary by Reference Option
	A.3.9.1.2 Binary by Value Option

	A.3.9.2 XOP/MTOM in Business Services
	A.3.9.2.1 XOP/MTOM in Outbound Messages

	A.3.9.3 XOP/MTOM Attachments Streaming

	A.3.10 Custom MIME Headers

	A.4 Inbound and Outbound Variables
	A.4.1 Sub-Elements of the Inbound and Outbound Variables
	A.4.1.1 service
	A.4.1.2 transport
	A.4.1.3 security

	A.4.2 Related Topics

	A.5 Operation Variable
	A.6 Fault Variable
	A.6.1 Error Codes
	A.6.2 Error Details
	A.6.3 XML Parsing Errors (PayloadDetail)

	A.7 messageID Variable
	A.8 Initializing Context Variables
	A.8.1 Initializing the Attachments Context Variable
	A.8.2 Initializing the Header and Body Context Variables
	A.8.2.1 SOAP Services
	A.8.2.2 XML Services (Non SOAP)
	A.8.2.3 Messaging Services

	A.9 Performing Operations on Context Variables
	A.9.1 ⁠$body
	A.9.2 ⁠$header
	A.9.3 Related Topics

	A.10 Constructing Messages to Dispatch
	A.10.1 SOAP Services
	A.10.2 XML Services (Non SOAP)
	A.10.3 Messaging Services
	A.10.3.1 About Sending Binary Content in Email Messages

	A.10.4 Related Topics

	A.11 Message Context Schema
	A.12 Errors Schema

	B XPath Extension Functions
	B.1 Cross-Reference Functions
	B.1.1 lookupPopulatedColumns
	B.1.2 lookupXRef
	B.1.3 lookupXRef1M
	B.1.4 markForDelete
	B.1.5 populateLookupXRefRow
	B.1.6 populateXRefRow
	B.1.7 populateXRefRow1M

	B.2 Domain Value Map Functions
	B.2.1 lookup
	B.2.2 lookupValue
	B.2.3 lookupValue1M

	B.3 Creating Custom XPath Functions
	B.3.1 Registering Custom Functions with Service Bus
	B.3.2 Creating and Packaging the Custom Function Java Classes
	B.3.2.1 Creating the Class and Method
	B.3.2.1.1 Using Single-Dimensional Arrays

	B.3.2.2 Packaging the Custom Function Class

	B.3.3 Using Custom Functions
	B.3.3.1 Custom Functions In Inline XQuery Expressions and XQuery Resources
	B.3.3.2 Custom Functions In XSLT Resources

	B.3.4 Deploying Custom Functions in a Cluster

	C Oracle Service Bus APIs
	C.1 Resource Update and Customization
	C.2 Management and Monitoring
	C.3 Deployment

	D Transport SDK Interfaces and Classes
	D.1 Introduction
	D.2 Schema-Generated Interfaces
	D.3 General Classes and Interfaces
	D.3.1 Summary of General Classes
	D.3.2 Summary of General Interfaces

	D.4 Source and Transformer Classes and Interfaces
	D.4.1 Summary of Source and Transformer Interfaces
	D.4.2 Summary of Source and Transformer Classes

	D.5 Metadata and Header Representation for Request and Response Messages
	D.5.1 Runtime Representation of Message Contents
	D.5.2 Interfaces

	D.6 User Interface Configuration
	D.6.1 Summary of UI Interfaces
	D.6.2 Summary of UI Classes

	E Transport SDK UML Sequence Diagrams
	E.1 Service Bus Runtime Inbound Messages
	E.2 Service Bus Runtime Outbound Messages
	E.3 Design Time Service Registration

	F XQuery-SQL Mapping Reference
	F.1 IBM DB2/NT 8
	F.2 Microsoft SQL Server
	F.3 Oracle8i, 8.1.x
	F.4 Oracle 9i and Later
	F.5 Sybase 12.5.2 (and higher)
	F.6 Base (Generic) RDBMS Data Type Mapping

	G Work Managers and Threading
	G.1 Key Threading Concepts
	G.2 Pipeline Actions
	G.2.1 Route Action
	G.2.2 Publish Action
	G.2.3 Service Callout Action

	G.3 Work Managers
	G.3.1 Work Manager Configuration
	G.3.2 Work Manager Priority

	G.4 Designating Work Managers

