
Oracle® Fusion Middleware
Administering Oracle HTTP Server

12c (12.2.1.4.0)
E96370-11
November 2023

Oracle Fusion Middleware Administering Oracle HTTP Server, 12c (12.2.1.4.0)

E96370-11

Copyright © 2015, 2023, Oracle and/or its affiliates.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xiii

Documentation Accessibility xiii

Diversity and Inclusion xiii

Related Documents xiv

Conventions xiv

Part I Understanding Oracle HTTP Server

1 Introduction to Oracle HTTP Server

What is Oracle HTTP Server? 1-2

Accessibility Tips for Oracle HTTP Server 1-3

Oracle HTTP Server Topologies 1-3

Key Features of Oracle HTTP Server 1-5

Restricted-JRF Mode 1-5

Oracle WebLogic Server Proxy Plug-In (mod_wl_ohs) 1-6

CGI and Fast CGI Protocol (mod_proxy_fcgi) 1-6

Security Features 1-6

Oracle Secure Sockets Layer (mod_ossl) 1-7

Security: Encryption with Secure Sockets Layer 1-7

Security: Single Sign-On with WebGate 1-7

URL Rewriting and Proxy Server Capabilities 1-8

Domain Types 1-8

WebLogic Server Domain (Full-JRF Mode) 1-8

WebLogic Server Domain (Restricted-JRF Mode) 1-9

Standalone Domain 1-9

Understanding Oracle HTTP Server Directory Structure 1-10

Understanding Configuration Files 1-10

Staging and Run-time Configuration Directories 1-10

Oracle HTTP Server Configuration Files 1-11

Modifying an Oracle HTTP Server Configuration File 1-12

iii

Upgrading from Earlier Releases of Oracle HTTP Server 1-12

Oracle HTTP Server Support 1-12

2 Understanding Oracle HTTP Server Modules

Oracle-Developed Modules for Oracle HTTP Server 2-1

mod_certheaders Module—Enables Reverse Proxies 2-2

mod_context Module—Creates or Propagates ECIDs 2-2

mod_dms Module—Enables Access to DMS Data 2-2

mod_odl Module—Enables Access to ODL 2-2

mod_ora_audit—Supports Authentication and Authorization Auditing 2-3

mod_ossl Module—Enables Cryptography (SSL) 2-3

mod_webgate Module—Enables Single Sign-on 2-4

mod_wl_ohs Module—Proxies Requests to Oracle WebLogic Server 2-4

Apache HTTP Server and Third-party Modules in Oracle HTTP Server 2-5

3 Understanding Oracle HTTP Server Management Tools

Administering Oracle HTTP Server Using Fusion Middleware Control 3-2

Accessing Fusion Middleware Control 3-2

Accessing the Oracle HTTP Server Home Page 3-3

About the Oracle HTTP Server Home Page 3-3

Editing Configuration Files Using Fusion Middleware Control 3-3

Administering Oracle HTTP Server Using WLST 3-4

Oracle HTTP Server-Specific WLST Commands 3-4

Using WLST in a Standalone Environment 3-4

Part II Managing Oracle HTTP Server

4 Running Oracle HTTP Server

Before You Begin 4-1

Creating an Oracle HTTP Server Instance 4-2

Creating an Oracle HTTP Server Instance in a WebLogic Server Domain 4-3

Creating an Instance by Using WLST 4-3

Associating Oracle HTTP Server Instances With a Keystore Using WLST 4-4

Creating an Instance by Using Fusion Middleware Control 4-5

About Instance Provisioning 4-5

Creating an Oracle HTTP Server Instance in a Standalone Domain 4-6

Performing Basic Oracle HTTP Server Tasks 4-6

Understanding the PID File 4-6

iv

Starting Oracle HTTP Server Instances 4-7

Starting Oracle HTTP Server Instances Using Fusion Middleware Control 4-7

Starting Oracle HTTP Server Instances Using WLST 4-8

Starting Oracle HTTP Server Instances from the Command Line 4-8

Starting Oracle HTTP Server Instances on a Privileged Port (UNIX Only) 4-9

Starting Oracle HTTP Server Instances as a Different User (UNIX Only) 4-10

Stopping Oracle HTTP Server Instances 4-11

Stopping Oracle HTTP Server Instances Using Fusion Middleware Control 4-11

Stopping Oracle HTTP Server Instances Using WLST 4-12

Stopping Oracle HTTP Server Instances from the Command Line 4-12

About Using the WLST Commands 4-13

Restarting Oracle HTTP Server Instances 4-13

Restarting Oracle HTTP Server Instances Using Fusion Middleware Control 4-13

Restarting Oracle HTTP Server Instances Using WLST 4-14

Restarting Oracle HTTP Server Instances from Command Line 4-14

Checking the Status of a Running Oracle HTTP Server Instance 4-15

Checking Server Status by Using Fusion Middleware Control 4-15

Checking Server Status Using WLST 4-15

Deleting an Oracle HTTP Server Instance 4-16

Deleting an Oracle HTTP Server Instance in a WebLogic Server Domain 4-17

Deleting an Oracle HTTP Server Instance from a Standalone Domain 4-18

Changing the Default Node Manager Port Number 4-19

Changing the Default Node Manager Port Using WLST 4-20

Changing the Default Node Manager Port Using Oracle WebLogic Server
Administration Console 4-20

Updating the Node Manager Username and Password in a Standalone Domain 4-20

Remotely Administering Oracle HTTP Server 4-21

Setting Up a Remote Environment 4-21

Host Requirements for a Remote Environment 4-22

Task 1: Set Up an Expanded Domain on host1 4-22

Task 2: Pack the Domain on host1 4-23

Task 3: Unpack the Domain on host2 4-23

Task 4: Run Oracle HTTP Server Remotely 4-23

Configuring SSL for Admin Port 4-24

Performing Server-Side Configuration 4-24

Creating a Wallet 4-25

Enabling SSL for Oracle HTTP Server Admin Host 4-29

Ensuring that the Host Name Verification Succeeds 4-30

Performing Client-Side Configuration 4-32

v

5 Working with Oracle HTTP Server

About Editing Configuration Files 5-1

Editing a Configuration File for a Standalone Domain 5-2

Editing a Configuration File for a WebLogic Server Domain 5-2

Specifying Server Properties 5-2

Specifying Server Properties by Using Fusion Middleware Control 5-3

Specify Server Properties by Editing the httpd.conf File 5-3

Configuring Oracle HTTP Server Instances 5-4

Secure Sockets Layer Configuration 5-5

Configuring Secure Sockets Layer in Standalone Mode 5-6

Configure SSL 5-6

Specify SSLVerifyClient on the Server Side 5-8

Enable SSL Between Oracle HTTP Server and Oracle WebLogic Server 5-11

Using SAN Certificates with Oracle HTTP Server 5-11

Exporting the Keystore to an Oracle HTTP Server Instance Using WLST 5-12

Configuring MIME Settings Using Fusion Middleware Control 5-13

Configuring MIME Types 5-13

Configuring MIME Encoding 5-14

Configuring MIME Languages 5-14

About Configuring mod_proxy_fcgi 5-15

About Configuring the Oracle WebLogic Server Proxy Plug-In (mod_wl_ohs) 5-15

Configuring SSL for mod_wl_ohs 5-15

Removing Access to Unneeded Content 5-15

Edit the cgi-bin Section 5-16

Edit the Fancy Indexing Section 5-16

Edit the Product Documentation Section 5-18

Using the apxs Command to Install Extension Modules 5-18

Disabling the Options Method 5-19

Updating Oracle HTTP Server Component Configurations on a Shared File System 5-20

Configuring the mod_security Module 5-21

Configuring mod_security in the httpd.conf File 5-22

Configuring mod_security in a mod_security.conf File 5-23

Configuring SecRemoteRules in the mod_security.conf File 5-23

Sample mod_security.conf File 5-24

6 Configuring High Availability for Web Tier Components

Oracle HTTP Server Single-Instance Characteristics 6-2

Oracle HTTP Server and Domains 6-2

Oracle HTTP Server Startup and Shutdown Lifecycle 6-3

Starting and Stopping Oracle HTTP Server 6-3

vi

Oracle HTTP Server High Availability Architecture and Failover Considerations 6-4

Oracle HTTP Server Failure Protection and Expected Behaviors 6-5

Configuring Oracle HTTP Server Instances on Multiple Machines 6-5

Configuring Oracle HTTP Server for High Availability 6-6

Prerequisites to Configure a Highly Available OHS 6-6

Load Balancer Prerequisites 6-7

Configuring Load Balancer Virtual Server Names and Ports 6-7

Managing Load Balancer Port Numbers 6-7

Installing and Validating Oracle HTTP Server on WEBHOST1 6-7

Creating Virtual Host(s) on WEBHOST1 6-8

Configuring mod_wl_ohs.conf 6-8

Configuring mod_wl_conf if you use SSL Termination 6-9

Creating proxy.conf File 6-9

Installing and Validating Oracle HTTP Server on WEBHOST2 6-10

Configuring and Validating an OHS High Availability Deployment 6-10

Configuring Virtual Host(s) on WEBHOST2 6-11

Validating the Oracle HTTP Server Configuration 6-11

7 Managing and Monitoring Server Processes

Oracle HTTP Server Processing Model 7-1

Request Process Model 7-1

Single Unit Process Model 7-2

Monitoring Server Performance 7-2

Oracle HTTP Server Performance Metrics 7-2

Viewing Performance Metrics 7-4

Viewing Server Metrics by Using Fusion Middleware Control 7-4

Viewing Server Metrics Using WLST 7-4

Oracle HTTP Server Performance Directives 7-6

Understanding Performance Directives 7-6

Changing the MPM Type Value in a Standalone Domain 7-7

Changing the MPM Type Value in a WebLogic Server Managed Domain 7-7

Configuring Performance Directives by Using Fusion Middleware Control 7-8

Setting the Request Configuration by Using Fusion Middleware Control 7-8

Setting the Connection Configuration by Using Fusion Middleware Control 7-9

Setting the Process Configuration by Using Fusion Middleware Control 7-9

Understanding Process Security for UNIX 7-10

8 Managing Connectivity

Default Listen Ports 8-1

vii

Defining the Admin Port 8-2

Viewing Port Number Usage 8-2

Viewing Port Number Usage by Using Fusion Middleware Control 8-2

Viewing Port Number Usage Using WLST 8-3

Managing Ports 8-3

Creating Ports Using Fusion Middleware Control 8-4

Editing Ports Using Fusion Middleware Control 8-4

Disabling a Listening Port in a Standalone Environment 8-5

Configuring Virtual Hosts 8-5

Creating Virtual Hosts Using Fusion Middleware Control 8-6

Configuring Virtual Hosts Using Fusion Middleware Control 8-7

9 Managing Oracle HTTP Server Logs

Overview of Server Logs 9-1

About Error Logs 9-2

About Access Logs 9-2

Configuring Log Rotation 9-3

Syntax and Examples for Time- and Size-Based Log Rotation 9-5

Configuring Oracle HTTP Server Logs 9-5

Configuring Error Logs Using Fusion Middleware Control 9-6

Configuring the Error Log Format and Location 9-6

Configuring the Error Log Level 9-7

Configuring Error Log Rotation Policy 9-7

Configuring Access Logs Using Fusion Middleware Control 9-8

Configuring the Access Log Format 9-8

Configuring the Access Log File 9-8

Configuring the Log File Creation Mode (umask) (UNIX/Linux Only) 9-9

Configure umask for an Oracle HTTP Server Instance in a Standalone Domain 9-9

Configure umask for an Oracle HTTP Server Instance in a WebLogic Server
Managed Domain 9-9

Configuring the Log Level Using WLST 9-10

Log Directives for Oracle HTTP Server 9-11

Oracle Diagnostic Logging Directives 9-11

OraLogMode 9-11

OraLogDir 9-12

OraLogSeverity 9-12

OraLogRotationParams 9-12

Apache HTTP Server Log Directives 9-13

ErrorLog 9-13

LogLevel 9-14

LogFormat 9-14

viii

CustomLog 9-14

Viewing Oracle HTTP Server Logs 9-15

Viewing Logs Using Fusion Middleware Control 9-15

Viewing Logs Using WLST 9-15

Viewing Logs in a Text Editor 9-17

Recording ECID Information 9-17

About ECID Information 9-17

Configuring Error Logs for ECID Information 9-17

Configuring Access Logs for ECID Information 9-18

10

Managing Application Security

About Oracle HTTP Server Security 10-2

Classes of Users and Their Privileges 10-2

Authentication, Authorization and Access Control 10-2

Access Control 10-3

User Authentication and Authorization 10-3

Authenticating Users with Apache HTTP Server Modules 10-3

Authenticating Users with WebGate 10-3

Support for FMW Audit Framework 10-4

Managing Audit Policies Using Fusion Middleware Control 10-4

Implementing SSL 10-5

Global Server ID Support 10-5

PKCS #11 Support 10-5

SSL and Logging 10-6

Terminating SSL Requests 10-6

About Terminating SSL at the Load Balancer 10-6

About Terminating SSL at Oracle HTTP Server 10-8

Using mod_security 10-10

Using Trust Flags 10-10

Enabling Perfect Forward Secrecy on Oracle HTTP Server 10-10

A Oracle HTTP Server WLST Custom Commands

Getting Help on Oracle HTTP Server WLST Custom Commands A-1

Using WLST Online Commands A-1

Oracle HTTP Server Commands A-2

ohs_addAdminProperties A-2

ohs_addNMProperties A-3

ohs_createInstance A-4

ohs_deleteInstance A-4

ix

ohs_exportKeyStore A-5

ohs_updateInstances A-5

B Migrating to the mod_proxy_fcgi and mod_authnz_fcgi Modules

Task 1: Replace LoadModule Directives in htttpd.conf File B-2

Task 2: Delete mod_fastcgi Configuration Directives From the htttpd.conf File B-2

Task 3: Configure mod_proxy_fcgi to Act as a Reverse Proxy to an External FastCGI
Server B-2

Task 4: Setup an External FastCGI Server B-3

Task 5: Setup mod_authnz_fcgi to Work with FastCGI Authorizer Applications B-3

C Setting CGIDScriptTimeout When Using mod_cgid

CGIDScriptTimeout Directive C-1

D Frequently Asked Questions

How Do I Create Application-Specific Error Pages? D-2

What Type of Virtual Hosts Are Supported for HTTP and HTTPS? D-2

Can I Use Different Language and Character Set Versions of Document? D-3

Can I Apply Apache HTTP Server Security Patches to Oracle HTTP Server? D-3

Can I Upgrade the Apache HTTP Server Version of Oracle HTTP Server? D-4

Can I Compress Output From Oracle HTTP Server? D-4

How Do I Create a Namespace That Works Through Firewalls and Clusters? D-4

How Can I Enhance Website Security? D-5

Why is REDIRECT_ERROR_NOTES not set for "File Not Found" errors? D-5

How can I hide information about the Web Server Vendor and Version D-5

Can I Start Oracle HTTP Server by Using apachectl or Other Command Line Tool? D-6

How Do I Configure Oracle HTTP Server to Listen at Port 80? D-6

How Do I Terminate Requests Using SSL Within Oracle HTTP Server? D-6

How Do I Configure End-to-End SSL Within Oracle HTTP Server? D-6

Can Oracle HTTP Server Front-End Oracle WebLogic Server? D-7

What is the Difference Between Oracle WebLogic Server Domains and Standalone
Domains? D-7

Can Oracle HTTP Server Cache the Response Data? D-7

How Do I Configure a Virtual Server-Specific Access Log? D-8

How to Enable SSL for Oracle HTTP Server by Using Fusion Middleware Control? D-8

Start Node Manager and Admin Server D-8

Create Keystore D-9

Generate Keypair D-9

Generate CSR for a Certificate D-10

x

Import the Trusted Certificate D-10

Import the Trusted Certificate to WebLogic Domain D-11

Import the User Certificate D-11

Export Keystore to Wallet D-12

Enable SSL D-12

E Troubleshooting Oracle HTTP Server

Oracle HTTP Server Fails to Start Due to Port Conflict E-2

System Overloaded by Number of httpd Processes E-3

Permission Denied When Starting Oracle HTTP Server On a Port Below 1024 E-3

Using Log Files to Locate Errors E-3

Rewrite Log E-4

Script Log E-4

Error Log E-4

Recovering an Oracle HTTP Server Instance on a Remote Host E-4

Oracle HTTP Server Performance Issues E-4

Special Runtime Files Reside on a Network File System E-5

UNIX Sockets on a Network File System E-5

DocumentRoot on a Slow File System E-5

Instances Created on Shared File Systems E-5

Out of DMS Shared Memory E-5

Oracle HTTP Server Fails to Start When mod_security is Enabled on RHEL or Oracle
Linux 7 E-6

Oracle HTTP Server Fails to Start due to Certificates Signed Using the MD5 Algorithm E-7

Node Manager Logs Don't Show Clear Message When a Component Fails to Start E-7

SSL Handshake Fails Due to Certificate Chain E-8

F Configuration Files

G Property Files

ohs_addAdminProperties G-1

ohs_nm.properties File G-2

ohs.plugins.nodemanager.properties File G-2

Cross-platform Properties G-3

Environment Variable Configuration Properties G-4

Properties Specific to Oracle HTTP Server Instances Running on Linux and UNIX G-6

xi

H Oracle HTTP Server Module Directives

mod_wl_ohs Module H-1

mod_certheaders Module H-1

AddCertHeader Directive H-2

SimulateHttps Directive H-2

mod_ossl Module H-2

SSLCARevocationFile Directive H-4

SSLCARevocationPath Directive H-4

SSLCipherSuite Directive H-4

SSLEngine Directive H-9

SSLFIPS Directive H-9

SSLHonorCipherOrder Directive H-12

SSLInsecureRenegotiation Directive H-12

SSLOptions Directive H-13

SSLProtocol Directive H-14

SSLProxyCipherSuite Directive H-14

SSLProxyEngine Directive H-15

SSLProxyProtocol Directive H-15

SSLProxyWallet Directive H-16

SSLRequire Directive H-16

SSLRequireSSL Directive H-18

SSLSessionCache Directive H-19

SSLProxySessionCache Directive H-19

SSLSessionCacheTimeout Directive H-23

SSLTraceLogLevel Directive H-24

SSLVerifyClient Directive H-24

SSLWallet Directive H-25

xii

Preface

This guide describes how to manage Oracle HTTP Server, including how to start and stop
Oracle HTTP Server, how to manage network components, configure listening ports, and
extend basic functionality using modules.

• Audience

• Documentation Accessibility

• Diversity and Inclusion

• Related Documents

• Conventions

Audience
Administering Oracle HTTP Server is intended for application server administrators, security
managers, and managers of databases used by application servers. This documentation is
based on the assumption that readers are already familiar with Apache HTTP Server.

Unless otherwise mentioned, the information in this document is applicable when Oracle
HTTP Server is installed with Oracle WebLogic Server and Oracle Fusion Middleware
Control. It is assumed that readers are familiar with the key concepts of Oracle Fusion
Middleware as described in the Oracle Fusion Middleware Concepts Guide and the
Administering Oracle Fusion Middleware.

For information about installing Oracle HTTP Server in standalone mode, see Installing and
Configuring Oracle HTTP Server.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Accessible Access to Oracle Support

Oracle customers who have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you
are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and

xiii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

partners, we are working to remove insensitive terms from our products and
documentation. We are also mindful of the necessity to maintain compatibility with our
customers' existing technologies and the need to ensure continuity of service as
Oracle's offerings and industry standards evolve. Because of these technical
constraints, our effort to remove insensitive terms is ongoing and will take time and
external cooperation.

Related Documents
See the following documents in the Oracle Fusion Middleware documentation set:

• Understanding Oracle Fusion Middleware

• Administering Oracle Fusion Middleware

• Tuning Performance

• High Availability Guide

• Using Oracle WebLogic Server Proxy Plug-Ins

• Apache documentation included in this library. See: http://httpd.apache.org/
docs/2.4/

Note:

Readers using this guide in PDF or hard copy formats will be unable to
access third-party documentation, which Oracle provides in HTML format
only. To access the third-party documentation referenced in this guide, use
the HTML version of this guide and click the hyperlinks.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

xiv

http://httpd.apache.org/docs/2.4/
http://httpd.apache.org/docs/2.4/
http://httpd.apache.org/docs/2.4/

Part I
Understanding Oracle HTTP Server

Oracle HTTP Server is the web server component for Oracle Fusion Middleware. It includes
several Oracle-provided and third-party modules to extend its basic functionality. It also
includes Apache HTTP Server.

This part presents introductory and conceptual information about Oracle HTTP Server. It
contains the following chapters:

• Introduction to Oracle HTTP Server

• Understanding Oracle HTTP Server Modules

• Understanding Oracle HTTP Server Management Tools

• Introduction to Oracle HTTP Server
Oracle HTTP Server is the web server component for Oracle Fusion Middleware, and
provides a listener for Oracle WebLogic Server and the framework for hosting static
pages, dynamic pages, and applications over the web.

• Understanding Oracle HTTP Server Modules
Modules extend the basic functionality of Oracle HTTP Server and support integration
between Oracle HTTP Server and other Oracle Fusion Middleware components. Oracle
HTTP Server uses both Oracle developed modules or “plug-ins” and Apache and third
party-developed modules.

• Understanding Oracle HTTP Server Management Tools
Oracle HTTP Server can be managed using tools such as the Configuration Wizard,
Fusion Middleware Control, and WebLogic Scripting tool.

1
Introduction to Oracle HTTP Server

Oracle HTTP Server is the web server component for Oracle Fusion Middleware, and
provides a listener for Oracle WebLogic Server and the framework for hosting static pages,
dynamic pages, and applications over the web.

This chapter introduces the Oracle HTTP Server (OHS). It describes key features of Oracle
HTTP Server, and its place within the Oracle Fusion Middleware Web Tier and also provides
information about the Oracle HTTP Server directory structure, the Oracle HTTP Server
configuration files, and how to obtain Oracle HTTP Server support.

This chapter includes the following sections:

• What is Oracle HTTP Server?

• Oracle HTTP Server Topologies

• Key Features of Oracle HTTP Server

• Domain Types

• Understanding Oracle HTTP Server Directory Structure

• Understanding Configuration Files

• Upgrading from Earlier Releases of Oracle HTTP Server

• Oracle HTTP Server Support

• What is Oracle HTTP Server?

• Accessibility Tips for Oracle HTTP Server

• Oracle HTTP Server Topologies
Oracle HTTP Server leverages the WebLogic Management Framework to provide a
simple, consistent, and distributed environment for administering Oracle HTTP Server,
Oracle WebLogic Server, and other Fusion Middleware components. It acts as the HTTP
front end by hosting the static content from within and by leveraging its built-in Oracle
WebLogic Server Proxy Plug-Ins to route dynamic content requests to Managed Server
instances.

• Key Features of Oracle HTTP Server
Oracle HTTP Server includes a web server proxy plug-in for Oracle WebLogic Server,
components for boosting web application performance, an installation mode that does not
require a database connection, multiple security configuration options, and more.

• Domain Types
You can install Oracle HTTP Server on two types of domains: WebLogic Server domain
and standalone domain. In the WebLogic Server domain, Oracle HTTP Server can be
collocated with Oracle WebLogic Server in full or Restricted-JRF mode. Standalone
domain has restricted functionality.

• Understanding Oracle HTTP Server Directory Structure
When Oracle HTTP Server is installed in a domain, a directory tree is created that
contains the files that are required by Oracle HTTP server to support that domain type.

1-1

• Understanding Configuration Files
Oracle HTTP Server contains several configuration files that are similar to those
used in Apache HTTP Server. Most of these files end with the .conf file type.

• Upgrading from Earlier Releases of Oracle HTTP Server
You can use the Upgrade Assistant to upgrade and configure supported Fusion
Middleware and Oracle HTTP Server domains from an earlier release to 12c
(12.2.1.4.0) and perform a readiness check prior to an upgrade.

• Oracle HTTP Server Support
Oracle provides technical support for Oracle HTTP Server features.

What is Oracle HTTP Server?
Oracle HTTP Server is a web server based on Apache HTTP Server infrastructure and
includes additional modules developed specifically by Oracle. Oracle HTTP Server can
also be a proxy server. The features of single sign-on, clustered deployment, and high
availability enhance the operation of the Oracle HTTP Server.

Oracle HTTP Server has the following components to handle client requests

• HTTP listener, to handle incoming requests and route them to the appropriate
processing utility.

• Modules (mods), to implement and extend the basic functionality of Oracle HTTP
Server. Many of the standard Apache HTTP Server modules are included with
Oracle HTTP Server. Oracle also includes several modules that are specific to
Oracle Fusion Middleware to support integration between Oracle HTTP Server
and other Oracle Fusion Middleware components.

• Perl interpreter, which allows Oracle HTTP Server to be set up as a reverse proxy
through the fcgi protocol to a persistent Perl runtime environment using
mod_proxy_fcgi.

Although Oracle HTTP Server contains a Perl interpreter, it is internal to the
product. You cannot use this interpreter for hosting Perl under a FastCGI
environment. You must provide your own Perl environment.

• Oracle WebLogic Server Proxy Plug-In, which enables Oracle HTTP Server to
front-end WebLogic Servers and other Fusion Middleware-based applications.

Oracle HTTP Server enables developers to program their site in a variety of languages
and technologies, such as:

• Perl (through mod_proxy_fcgi, CGI and FastCGI)

• C and C++ (through mod_proxy_fcgi, CGI and FastCGI)

• Java, Ruby and Python (through mod_proxy_fcgi, CGI and FastCGI)

Oracle HTTP Server can also be a proxy server, both forward and reverse. A reverse
proxy enables content served by different servers to appear as if coming from one
server.

Note:

For more information about Oracle Fusion Middleware concepts, see
Understanding Oracle Fusion Middleware.

Chapter 1
What is Oracle HTTP Server?

1-2

Accessibility Tips for Oracle HTTP Server
Oracle HTTP Server can be managed using the Oracle Fusion Middlware Control in
collocated mode. Oracle HTTP Server uses Fusion Middleware Control as its graphical user
interface.

See Accessibility Features and Tips for Fusion Middleware Control in Accessibility Guide.

Oracle HTTP Server Topologies
Oracle HTTP Server leverages the WebLogic Management Framework to provide a simple,
consistent, and distributed environment for administering Oracle HTTP Server, Oracle
WebLogic Server, and other Fusion Middleware components. It acts as the HTTP front end
by hosting the static content from within and by leveraging its built-in Oracle WebLogic Server
Proxy Plug-Ins to route dynamic content requests to Managed Server instances.

There are multiple ways of implementing Oracle HTTP Server, depending on your
requirements. Table 1-1 describes the major implementations, or "topologies."

Table 1-1 Oracle HTTP Server Topologies

Topology Description For More Information

Standard
Installation
Topology for
Oracle HTTP
Server in a
Standalone
Domain

This topology is similar to an Oracle
WebLogic Server Domain topology, but does
not provide an administration server or
managed servers. It is useful when you do
not want your Oracle HTTP Server
implementation to front a Fusion Middleware
domain and do not need the management
functionality provided by Fusion Middleware
Control. This topology is depicted in
Figure 1-1.

To obtain this topology, install Oracle HTTP
Server in standalone mode. Can be paired
with Oracle HTTP Server Collocated mode
by using the Pack or UnPack commands.

See Standard Installation Topology for Oracle
HTTP Server in a Standalone Domain in Installing
and Configuring Oracle HTTP Server.

Standard
Installation
Topology for
Oracle HTTP
Server in a
WebLogic
Server Domain
(Restricted-JRF)

This topology is similar to the Full-JRF (Java
Required Files) topology, except that it does
not require a backing database. The
Restricted-JRF mode offers all of the
functionality as the Full-JRF mode, except
cross component wiring is not available.

To obtain this topology, install Oracle HTTP
Server in Collocated mode, then choose the
Oracle HTTP Server Restricted-JRF domain
template for provisioning this domain. This
topology handles most use cases except for
cross-component wiring.

See Standard Installation Topology for Oracle
HTTP Server in a WebLogic Server Domain in
Installing and Configuring Oracle HTTP Server

Chapter 1
Accessibility Tips for Oracle HTTP Server

1-3

Table 1-1 (Cont.) Oracle HTTP Server Topologies

Topology Description For More Information

Standard
Installation
Topology for
Oracle HTTP
Server in a
WebLogic
Server Domain
(Full-JRF)

This topology provides enhanced
management capabilities through the Fusion
Middleware Control and WebLogic
Management Framework. A WebLogic
Server domain can be scaled out to multiple
physical machines and be centrally
managed by the administration server. This
topology is depicted in Figure 1-2.

To obtain this topology, install Oracle HTTP
Server in Collocated mode, then choose the
Oracle HTTP Server Full-JRF domain
template. Note that this topology, requires a
database in back-end and can support
cross-component wiring.

See Standard Installation Topology for Oracle
HTTP Server in a WebLogic Server Domain in
Installing and Configuring Oracle HTTP Server.

Figure 1-1 illustrates the standard installation topology for Oracle HTTP Server in a
standalone domain.

Figure 1-1 Standard Installation Topology for Oracle HTTP Server in a
Standalone Domain

Figure 1-2 illustrates the standard installation topology for Oracle HTTP Server in a
WebLogic Server domain.

Chapter 1
Oracle HTTP Server Topologies

1-4

Figure 1-2 Standard Installation Topology for Oracle HTTP Server in a WebLogic
Server Domain

Key Features of Oracle HTTP Server
Oracle HTTP Server includes a web server proxy plug-in for Oracle WebLogic Server,
components for boosting web application performance, an installation mode that does not
require a database connection, multiple security configuration options, and more.

The following sections describe some key features of Oracle HTTP Server:

• Restricted-JRF Mode

• Oracle WebLogic Server Proxy Plug-In (mod_wl_ohs)

• CGI and Fast CGI Protocol (mod_proxy_fcgi)

• Security Features

• URL Rewriting and Proxy Server Capabilities

• Restricted-JRF Mode

• Oracle WebLogic Server Proxy Plug-In (mod_wl_ohs)

• CGI and Fast CGI Protocol (mod_proxy_fcgi)

• Security Features

• URL Rewriting and Proxy Server Capabilities

Restricted-JRF Mode
To install Oracle HTTP Server in a Oracle WebLogic Server domain in the Restricted-JRF
mode, then a connection to an external database is not required. All of the Oracle HTTP

Chapter 1
Key Features of Oracle HTTP Server

1-5

Server functionality through Fusion MiddleWare Control and WLST described in this
documentation is still available, with the exception of cross component wiring.

Lack of support for cross component wiring means that:

• There are changes to the Oracle Fusion Middleware Control menu options. Some
of the menu options which support cross component wiring are removed or
disabled.

• Any database dependencies are completely removed.

See Also:

Wiring Components to Work Together in Administering Oracle Fusion
Middleware.

The management of keys and certificates for an Oracle HTTP Server instance in a
Restricted-JRF domain continue to be keystore services (KSS). In a Restricted-JRF
domain, the database persistency of KSS is replaced with file persistency. To an end
user, there are no visible change in basic KSS APIs to manage keys or certificates.

Oracle HTTP Server continues to support multiple Oracle wallets for complex virtual
server configurations both in Restricted-JRF and full JRF mode.

Oracle WebLogic Server Proxy Plug-In (mod_wl_ohs)
The Oracle WebLogic Server Proxy Plug-In (mod_wl_ohs) enables requests to be
proxied from Oracle HTTP Server to Oracle WebLogic Server. This plug-in enhances
an Oracle HTTP server installation by allowing Oracle WebLogic Server to handle
requests that require dynamic functionality. In other words, you typically use a plug-in
where the HTTP server serves static pages such as HTML pages, while Oracle
WebLogic Server serves the J2EE dynamic pages such as Servlets, Java Server
Pages (JSPs), and Enterprise Java Bean (EJB).

See Configuring the Plug-In for Oracle HTTP Server.

CGI and Fast CGI Protocol (mod_proxy_fcgi)
CGI programs are commonly used to program Web applications. Oracle HTTP Server
enhances the programs by providing a mechanism to keep them active beyond the
request lifecycle by using the mod_proxy_fcgi module.

The mod_proxy_fcgi module is the Oracle replacement for the deprecated mod_fastcgi
module. The mod_proxy_fcgi module requires the service of the mod_proxy module
and provides support for the FastCGI protocol.

For information on configuring the mod_proxy_fcgi module, see About Configuring
mod_proxy_fcgi. For information on migrating from the mod_fastcgi module to
mod_proxy_fcgi, see Migrating to the mod_proxy_fcgi and mod_authnz_fcgi Modules .

Security Features
Oracle HTTP Server employs many security features. Key among them are:

Chapter 1
Key Features of Oracle HTTP Server

1-6

• Oracle Secure Sockets Layer (mod_ossl)

• Security: Encryption with Secure Sockets Layer

• Security: Single Sign-On with WebGate

• Oracle Secure Sockets Layer (mod_ossl)

• Security: Encryption with Secure Sockets Layer

• Security: Single Sign-On with WebGate

Oracle Secure Sockets Layer (mod_ossl)
The mod_ossl module, the Oracle Secure Sockets Layer (SSL) implementation used in the
Oracle database, enables strong cryptography for Oracle HTTP Server. It is a plug-in to
Oracle HTTP Server that enables the server to use SSL and is very similar to the OpenSSL
module, mod_ssl. The mod_ossl module supports TLS version 1.0, 1.1 , and 1.2.

Security: Encryption with Secure Sockets Layer
Secure Sockets Layer (SSL) is required to run any website securely. Oracle HTTP Server
supports SSL encryption based on patented, industry standard, algorithms. SSL works
seamlessly with commonly-supported Internet browsers. Security features include the
following:

• SSL hardware acceleration support uses dedicated hardware for SSL. Hardware
encryption is faster than software encryption.

• Variable security per directory allows individual directories to be protected by different
strength encryption.

• Oracle HTTP Server and Oracle WebLogic Server communicate using the HTTP protocol
to provide both encryption and authentication. You can also enable HTTP tunneling for
the T3 or IIOP protocols to provide non-browser clients access to WebLogic Server
services.

See Also:

Securing Applications with Oracle Platform Security Services

Security: Single Sign-On with WebGate
WebGate enables single sign-on (SSO) for Oracle HTTP Server. WebGate examines
incoming requests and determines whether the requested resource is protected, and if so,
retrieves the session information for the user. Through WebGate, Oracle HTTP Server
becomes an SSO partner application enabled to use SSO to authenticate users, obtain their
identity by using Oracle Single Sign-On, and to make user identities available to web
applications accessed through Oracle HTTP Server.

Chapter 1
Key Features of Oracle HTTP Server

1-7

See Also:

Securing Applications with Oracle Platform Security Services

URL Rewriting and Proxy Server Capabilities
Active websites usually update their web pages and directory contents often, and
possibly their URLs as well. Oracle HTTP Server makes it easy to accommodate the
changes by including an engine that supports URL rewriting so end users do not have
to change their bookmarks.

Oracle HTTP Server also supports reverse proxy capabilities, making it easier to make
content served by different servers to appear from one single server.

Domain Types
You can install Oracle HTTP Server on two types of domains: WebLogic Server
domain and standalone domain. In the WebLogic Server domain, Oracle HTTP Server
can be collocated with Oracle WebLogic Server in full or Restricted-JRF mode.
Standalone domain has restricted functionality.

You can select which environment you want to use during server configuration.

• WebLogic Server Domain (Full-JRF Mode)

• WebLogic Server Domain (Restricted-JRF Mode)

• Standalone Domain

• WebLogic Server Domain (Full-JRF Mode)

• WebLogic Server Domain (Restricted-JRF Mode)

• Standalone Domain
A standalone domain is a container for system components, such as Oracle HTTP
Server. It has a directory structure similar to an Oracle WebLogic Server Domain,
but it does not contain an Administration Server or Managed Servers. It can
contain one or more instances of system components of the same type, such as
Oracle HTTP Server, or a mix of system component types.

WebLogic Server Domain (Full-JRF Mode)
A WebLogic Server Domain in Full-JRF mode contains a WebLogic Administration
Server, zero or more WebLogic Managed Servers, and zero or more System
Component Instances (for example, an Oracle HTTP Server instance). This type of
domain provides enhanced management capabilities through the Fusion Middleware
Control and WebLogic Management Framework present throughout the system. A
WebLogic Server Domain can span multiple physical machines, and it is centrally
managed by the administration server. Because of these properties, a WebLogic
Server Domain provides the best integration between your System Components and
Java EE Components.

WebLogic Server Domains support all WebLogic Management Framework tools.

Chapter 1
Domain Types

1-8

Because Fusion Middleware Control provides advanced management capabilities, Oracle
recommends using WebLogic Server Domain, which requires installing a complete Oracle
Fusion Middleware infrastructure before you install Oracle HTTP Server.

• For more information about installing a WebLogic Server Domain, see Installing and
Configuring the Oracle Fusion Middleware Infrastructure.

• For information about installing Oracle HTTP Server either as part of a Oracle Fusion
Middleware infrastructure or as standalone component, see Installing and Configuring
Oracle HTTP Server.

WebLogic Server Domain (Restricted-JRF Mode)
The Weblogic Server Domain in Restricted-JRF mode is similar in architecture and
functionality to Weblogic Server Domain in Full mode, except it does not define a connection
to an external database. There are no database dependencies in Restricted-JRF mode.

This lack of a backing database means that cross component wiring is not supported by
Oracle HTTP Server in a Restricted-JRF domain; this is the major differentiating factor
between a Full JRF- and a Restricted-JRF-based domain.

Like the Full -JRF domain, the management of keys and certificates of an Oracle HTTP
Server instance in a Restricted-JRF domain continues to be keystore service (KSS). In a
Restricted-JRF domain, the database persistency of KSS is replaced with file persistency,
although to an end user there is no visible change in basic KSS APIs to manage keys and
certificates.

Like the Full -JRF domain, Oracle HTTP Server in a Restricted-JRF domain supports multiple
Oracle wallets for complex virtual server configurations.

Standalone Domain
A standalone domain is a container for system components, such as Oracle HTTP Server. It
has a directory structure similar to an Oracle WebLogic Server Domain, but it does not
contain an Administration Server or Managed Servers. It can contain one or more instances
of system components of the same type, such as Oracle HTTP Server, or a mix of system
component types.

For standalone domains, the WebLogic Management Framework supports the following tools:

• Node Manager

• The WebLogic Scripting Tool (WLST) commands, including:

– nmStart(), nmKill(), nmSoftRestart(), and nmStop() that start and stop Oracle
HTTP Server instance.

– nmConnect() to connect to Node Manager.

– nmLog() to get the Node Manager log information.

For a complete list of supported WLST Node Manager commands, see Node Manager
Commands in WLST Command Reference for WebLogic Server.

Chapter 1
Domain Types

1-9

Note:

If you have a remote Oracle HTTP Server in a managed mode and
another in standalone with the remote administration mode enabled, you
can use WLST to perform management tasks such as SSL configuration.

• Configuration Wizard

• Pack or Unpack

Generally, you would use a standalone domain when you do not want your Oracle
HTTP Server implementation installed with a WebLogic Server domain and do not
need the management functionality provided by Oracle Fusion Middleware Control.
Nor would you use it when you want to keep Oracle HTTP Server in a "demilitarized
zone" (DMZ, that is, the zone between the internal and external firewalls) and you do
not want to open management ports used by Node Manager.

Understanding Oracle HTTP Server Directory Structure
When Oracle HTTP Server is installed in a domain, a directory tree is created that
contains the files that are required by Oracle HTTP server to support that domain
type.

Oracle HTTP Server domains can be either WebLogic Server or standalone. When
installed, each domain has its own directory structure that contains files necessary to
implement the domain type. For a complete file structure topology, see Understanding
the Directory Structures in Installing and Configuring Oracle HTTP Server.

Understanding Configuration Files
Oracle HTTP Server contains several configuration files that are similar to those used
in Apache HTTP Server. Most of these files end with the .conf file type.

The following topics explain the layout of the configuration file directories, mechanisms
for editing the files, and more about the files themselves.

• Staging and Run-time Configuration Directories

• Oracle HTTP Server Configuration Files

• Modifying an Oracle HTTP Server Configuration File

• Staging and Run-time Configuration Directories

• Oracle HTTP Server Configuration Files

• Modifying an Oracle HTTP Server Configuration File

Staging and Run-time Configuration Directories
Two configuration directories are associated with each Oracle HTTP Server instance:
a staging directory and a run-time directory.

• Staging directory

DOMAIN_HOME/config/fmwconfig/components/OHS/componentName

Chapter 1
Understanding Oracle HTTP Server Directory Structure

1-10

• Run-time directory

DOMAIN_HOME/config/fmwconfig/components/OHS/instances/componentName

Each of the configuration directories contain the complete Oracle HTTP Server configuration
-- httpd.conf, admin.conf, auditconfig.xml, and so on.

Modifications to the configuration are made in the staging directory. These modifications are
automatically propagated to the run-time directory during the following operations:

Note:

Before making any changes to the files in the staging directory manually (that is,
without using Fusion Middleware Control or WLST), stop the Administration Server.

• Oracle HTTP Server instances which are part of a WebLogic Server Domain

Modifications are replicated to the run-time directory on the node with the managed
Oracle HTTP Server instance after changes are activated from within Fusion Middleware
Control, or when the administration server initializes and prior changes need to be
replicated. If communication with Node Manager is broken at the time of the action,
replication will occur at a later time when communication has been restored.

• Standalone Oracle HTTP Server instances

Modifications are synchronized with the run-time directory when a start, restart, or stop
action is initiated. Some changes might be written to the run-time directory during domain
update, but the changes will be finalized during synchronization.

Any modifications to the configuration within the run-time directory will be lost during
replication or synchronization.

Note:

When a standalone instance is created, the keystores directory containing a demo
wallet is created only in the run-time directory.

Before creating the first new wallet for the instance, the user must create a
keystores directory within the staging directory.

DOMAIN_HOME/config/fmwconfig/components/OHS/componentName/keystores

Wallets must then be created within that keystores directory.

Oracle HTTP Server Configuration Files
The default Oracle HTTP Server configuration contains the files described in Configuration
Files.

Additional files can be added to the configuration and included in the top-level .conf file
httpd.conf using the Include directive. For information on how to use this directive, see the
Include directive documentation, at:

http://httpd.apache.org/docs/2.4/mod/core.html#include

Chapter 1
Understanding Configuration Files

1-11

http://httpd.apache.org/docs/2.4/mod/core.html#include

The default configuration provides an Include directive which includes all .conf files in
the moduleconf/ directory within the configuration.

An Include directive should be added to an existing .conf file, usually httpd.conf,
for .conf files which are not stored in the moduleconf/ directory. This may be required if
the new .conf file must be included at a different configuration scope, such as within an
existing virtual host definition.

Modifying an Oracle HTTP Server Configuration File
For instances that are part of a WebLogic Server Domain, Fusion Middleware Control
and the management infrastructure manages the Oracle HTTP Server configuration.
Direct editing of the configuration in the staging directory is subject to being
overwritten after subsequent management operations, including modifying the
configuration in Fusion Middleware Control. For such instances, direct editing should
only be performed when the administration server is stopped. When the administration
server is subsequently started (with start or restart), the results of any manual edits will
be replicated to the run-time directory on the node of the managed instance. See
About Editing Configuration Files.

Note:

Fusion Middleware Control and other Oracle software that manage the
Oracle HTTP Server configuration might save these files in a different,
equivalent format. After using the software to make a configuration change,
multiple configuration files might be rewritten.

Upgrading from Earlier Releases of Oracle HTTP Server
You can use the Upgrade Assistant to upgrade and configure supported Fusion
Middleware and Oracle HTTP Server domains from an earlier release to 12c
(12.2.1.4.0) and perform a readiness check prior to an upgrade.

To upgrade Oracle HTTP Server, see Upgrading with the Upgrade Assistant.

Oracle HTTP Server Support
Oracle provides technical support for Oracle HTTP Server features.

The following Oracle HTTP Server features and conditions are supported:

• Modules included in the Oracle distribution. Oracle does not support modules
obtained from any other source, including the Apache Software Foundation.
Oracle HTTP Server will still be supported when non-Oracle-provided modules are
included. If non-Oracle-provided modules are suspect of contributing to reported
problems, customers may be requested to reproduce the problems without
including those modules.

• Problems that can be reproduced within an Oracle HTTP Server configuration
consisting only of supported Oracle HTTP Server modules.

Chapter 1
Upgrading from Earlier Releases of Oracle HTTP Server

1-12

2
Understanding Oracle HTTP Server Modules

Modules extend the basic functionality of Oracle HTTP Server and support integration
between Oracle HTTP Server and other Oracle Fusion Middleware components. Oracle
HTTP Server uses both Oracle developed modules or “plug-ins” and Apache and third party-
developed modules.

This chapter includes the following sections:

• Oracle-Developed Modules for Oracle HTTP Server

• Apache HTTP Server and Third-party Modules in Oracle HTTP Server

• Oracle-Developed Modules for Oracle HTTP Server
Oracle has developed modules that Oracle HTTP Server can use specifically to extend
its basic functionality.

• Apache HTTP Server and Third-party Modules in Oracle HTTP Server
Oracle HTTP Server includes Apache and third-party modules. These modules are not
developed by Oracle.

Oracle-Developed Modules for Oracle HTTP Server
Oracle has developed modules that Oracle HTTP Server can use specifically to extend its
basic functionality.

The following sections describe these modules:

• mod_certheaders Module—Enables Reverse Proxies

• mod_context Module—Creates or Propagates ECIDs

• mod_dms Module—Enables Access to DMS Data

• mod_odl Module—Enables Access to ODL

• mod_ora_audit—Supports Authentication and Authorization Auditing

• mod_ossl Module—Enables Cryptography (SSL)

• mod_webgate Module—Enables Single Sign-on

• mod_wl_ohs Module—Proxies Requests to Oracle WebLogic Server

• mod_certheaders Module—Enables Reverse Proxies

• mod_context Module—Creates or Propagates ECIDs

• mod_dms Module—Enables Access to DMS Data

• mod_odl Module—Enables Access to ODL

• mod_ora_audit—Supports Authentication and Authorization Auditing

• mod_ossl Module—Enables Cryptography (SSL)

• mod_webgate Module—Enables Single Sign-on

• mod_wl_ohs Module—Proxies Requests to Oracle WebLogic Server

2-1

mod_certheaders Module—Enables Reverse Proxies
The mod_certheaders module enables reverse proxies that terminate Secure Sockets
Layer (SSL) connections in front of Oracle HTTP Server to transfer information
regarding the SSL connection, such as SSL client certificate information, to Oracle
HTTP Server and the applications running behind Oracle HTTP Server. This
information is transferred from the reverse proxy to Oracle HTTP Server using HTTP
headers. The information is then transferred from the headers to the standard CGI
environment variable. The mod_ossl module or the mod_ssl module populate the
variable if the SSL connection is terminated by Oracle HTTP Server.

The mod_certheaders module also enables certain requests to be treated as HTTPS
requests even though they are received through HTTP. This is done using the
SimulateHttps directive.

SimulateHttps takes the container it is contained within, such as <VirtualHost> or
<Location>, and treats all requests received for this container as if they were received
through HTTPS, regardless of the real protocol used by the request.

See mod_certheaders Module for a list and description of the directives accepted by
mod_certheaders.

mod_context Module—Creates or Propagates ECIDs
The mod_context module creates or propagates Execution Context IDs, or ECIDs, for
requests handled by Oracle HTTP Server. If an ECID has been created for the request
execution flow before it reaches Oracle HTTP Server, mod_context will make the ECID
available for logging within Oracle HTTP Server and for propagation to other Fusion
Middleware components, such as WebLogic Server. If an ECID has not been created
when the request reaches Oracle HTTP Server, mod_context will create one.

mod_context is not configurable. It enables loading ECIDs into the server with the
LoadModule directive, and disabled by removing or commenting out the LoadModule
directive corresponding to this module. It should always be enabled to aid with
problem diagnosis.

mod_dms Module—Enables Access to DMS Data
The mod_dms module provides FMW infrastructure access to the Oracle HTTP Server
Dynamic Monitoring Service (DMS) data.

See Also:

Oracle Dynamic Monitoring Service in Tuning Performance.

mod_odl Module—Enables Access to ODL
The mod_odl module allows Oracle HTTP Server to access Oracle Diagnostic Logging
(ODL). ODL generates log messages in text or XML-formatted logs, in a format which

Chapter 2
Oracle-Developed Modules for Oracle HTTP Server

2-2

complies with Oracle standards for generating error log messages. Oracle HTTP Server uses
ODL by default.

ODL provides the following benefits:

• The capability to limit the total amount of diagnostic information saved. You can set the
level of information saved and you can specify the maximum size of the log file and the
log file directory.

• When you reach the specified size, older segment files are removed and newer segment
files are saved in chronological fashion.

• Components can remain active, and do not need to be shutdown, when older diagnostic
logging files are deleted.

You can view log files using Fusion Middleware Control or with WLST commands, or you can
download log files to your local client and view them using another tool (for example, a text
edit or another file viewing utility)

For more information on using ODL with Oracle HTTP Server, see Managing Oracle HTTP
Server Logs.

See Also:

Managing Log Files and Diagnostic Datain Administering Oracle Fusion
Middleware.

mod_ora_audit—Supports Authentication and Authorization Auditing
This module provides the OraAuditEnable directive to support authentication and
authorization auditing by using the FMW Common Audit Framework. Previously the code for
Audit was integrated in Oracle HTTP Server binary itself. In the current release, this is
provided as a separate loadable module. See Support for FMW Audit Framework.

mod_ossl Module—Enables Cryptography (SSL)
The mod_ossl module enables strong cryptography for Oracle HTTP Server. It is a plug-in to
Oracle HTTP Server that enables the server to use SSL. The functionality of this module is
similar to the functionality of Apache’s mod_ssl module. However, the cryptography engine
used in the mod_ossl module differs from that of the mod_ssl module. The mod_ossl module
uses Oracle’s Secure Socket Layer, which is based on RSA security technology, whereas the
mod_ssl module relies on OpenSSL to provide the cryptography engine.

Note:

Oracle HTTP server distributes OpenSSL libraries for usage with mod_security2
module. As stated above, the mod_ossl module does not use OpenSSL libraries.

Oracle HTTP Server complies with the Federal Information Processing Standard publication
140 (FIPS 140). It uses a version of the underlying SSL libraries that has gone through formal

Chapter 2
Oracle-Developed Modules for Oracle HTTP Server

2-3

FIPS certification. As part of Oracle HTTP Server's FIPS 140 compliance, the
mod_ossl plug-in now includes the SSLFIPS directive. See SSLFIPS Directive.

Oracle no longer supports the mod_ssl module. A tool is provided to enable you to
migrate from mod_ssl to mod_ossl, and convert your text certificates to Oracle wallets.

The mod_ossl modules provides these features:

• Encrypted communication between client and server, using RSA or DES
encryption standards.

• Integrity checking of client/server communication using MD5 or SHA checksum
algorithms.

• Certificate management with Oracle wallets.

• Authorization of clients with multiple access checks, exactly as performed in the
mod_ssl module.

mod_ossl Module Directives

See mod_ossl Module for a list and descriptions of directives accepted by the
mod_ossl module.

Note:

See Configuring SSL for the Web Tier in Administering Oracle Fusion
Middleware.

mod_webgate Module—Enables Single Sign-on
The mod_webgate module is included with Oracle HTTP Server to enable single sign-
on features from Oracle Access Manager (OAM). OAM's WebGate feature examines
incoming requests and determines whether the requested resource is protected, and if
so, retrieves the session information for the user. See Authenticating Users with
WebGate and Security: Single Sign-On with WebGate.

mod_webgate is generally integrated with mod_ossl and mod_wl_ohs, and has a
dependency on cURL and OpenSSL libraries. These libraries are also included in the
Oracle HTTP Server installation. For information about configuring WebGate, see
Configuring WebGate for Oracle Access Manager in Installing and Configuring Oracle
HTTP Server.

See Also:

Securing Applications with Oracle Platform Security Services

mod_wl_ohs Module—Proxies Requests to Oracle WebLogic Server
The mod_wl_ohs module is a key feature of Oracle HTTP Server that enables
requests to be proxied from Oracle HTTP Server to Oracle WebLogic Server. This

Chapter 2
Oracle-Developed Modules for Oracle HTTP Server

2-4

module is generally referred to as the Oracle WebLogic Server Proxy Plug-In. This plug-in
enhances an Oracle HTTP server installation by allowing Oracle WebLogic Server to handle
requests that require dynamic functionality. In other words, you typically use a plug-in where
the HTTP server serves static pages such as HTML pages, while Oracle WebLogic Server
serves dynamic pages such as HTTP Servlets and Java Server Pages (JSPs).

For information about the prerequisites and procedure for configuring mod_wl_ohs, see
Configuring the Plug-In for Oracle HTTP Server in Using Oracle WebLogic Server Proxy
Plug-Ins. Directives for this module are listed in Parameters for Oracle WebLogic Server
Proxy Plug-Ins in Using Oracle WebLogic Server Proxy Plug-Ins.

Note:

mod_wl_ohs is similar to the mod_wl plug-in, which you can use to proxy requests
from Apache HTTP Server to Oracle WebLogic server. However, while the mod_wl
plug-in for Apache HTTP Server should be downloaded and installed separately,
the mod_wl_ohs plug-in is bundled with Oracle HTTP Server.

Apache HTTP Server and Third-party Modules in Oracle HTTP
Server

Oracle HTTP Server includes Apache and third-party modules. These modules are not
developed by Oracle.

Table 2-1 lists these modules.

Table 2-1 Apache HTTP Server and Third-party Modules in Oracle HTTP Server

Module Enabled by
Default?

For more information, see:

mod_access_compat No http://httpd.apache.org/docs/2.4/mod/
mod_access_compat.html

mod_actions Yes http://httpd.apache.org/docs/2.4/mod/
mod_actions.html

mod_alias Yes http://httpd.apache.org/docs/2.4/mod/mod_alias.html
mod_asis Yes http://httpd.apache.org/docs/2.4/mod/mod_asis.html
mod_auth_basic Yes http://httpd.apache.org/docs/2.4/mod/

mod_auth_basic.html
mod_authn_anon Yes http://httpd.apache.org/docs/2.4/mod/

mod_authn_anon.html
mod_authn_core Yes http://httpd.apache.org/docs/2.4/mod/

mod_authn_core.html
mod_authn_file Yes http://httpd.apache.org/docs/2.4/mod/

mod_authn_file.html
mod_authz_core Yes http://httpd.apache.org/docs/2.4/mod/

mod_authz_core.html

Chapter 2
Apache HTTP Server and Third-party Modules in Oracle HTTP Server

2-5

http://httpd.apache.org/docs/2.4/mod/mod_access_compat.html
http://httpd.apache.org/docs/2.4/mod/mod_access_compat.html
http://httpd.apache.org/docs/2.4/mod/mod_actions.html
http://httpd.apache.org/docs/2.4/mod/mod_actions.html
http://httpd.apache.org/docs/2.4/mod/mod_alias.html
http://httpd.apache.org/docs/2.4/mod/mod_asis.html
http://httpd.apache.org/docs/2.4/mod/mod_auth_basic.html
http://httpd.apache.org/docs/2.4/mod/mod_auth_basic.html
http://httpd.apache.org/docs/2.4/mod/mod_authn_anon.html
http://httpd.apache.org/docs/2.4/mod/mod_authn_anon.html
http://httpd.apache.org/docs/2.4/mod/mod_authn_core.html
http://httpd.apache.org/docs/2.4/mod/mod_authn_core.html
http://httpd.apache.org/docs/2.4/mod/mod_authn_file.html
http://httpd.apache.org/docs/2.4/mod/mod_authn_file.html
http://httpd.apache.org/docs/2.4/mod/mod_authz_core.html
http://httpd.apache.org/docs/2.4/mod/mod_authz_core.html

Table 2-1 (Cont.) Apache HTTP Server and Third-party Modules in Oracle HTTP Server

Module Enabled by
Default?

For more information, see:

mod_authnz_fcgi No http://httpd.apache.org/docs/2.4/mod/
mod_authnz_fcgi.html

mod_authz_groupfile Yes http://httpd.apache.org/docs/2.4/mod/
mod_authz_groupfile.html

mod_authz_host Yes http://httpd.apache.org/docs/2.4/mod/
mod_authz_host.html

mod_authz_owner No http://httpd.apache.org/docs/2.4/mod/
mod_authz_owner.html

mod_authz_user Yes http://httpd.apache.org/docs/2.4/mod/
mod_authz_user.html

mod_autoindex Yes http://httpd.apache.org/docs/2.4/mod/
mod_autoindex.html

mod_cache (Windows only) No http://httpd.apache.org/docs/2.4/mod/mod_cache.html
mod_cache_disk No http://httpd.apache.org/docs/2.4/mod/

mod_cache_disk.html
mod_disk_cache (Windows
only)

No http://httpd.apache.org/docs/2.2/mod/
mod_disk_cache.html

mod_cern_meta Yes http://httpd.apache.org/docs/2.4/mod/
mod_cern_meta.html

mod_cgi Yes http://httpd.apache.org/docs/2.4/mod/mod_cgi.html
mod_cgid (UNIX only) Yes http://httpd.apache.org/docs/2.4/mod/mod_cgid.html
mod_deflate No http://httpd.apache.org/docs/2.4/mod/

mod_deflate.html
Note: To enable mod_deflate, you must first upload mod_filter.
In Apache HTTP Server Version 2.4, the command
AddOutputFilterByType directive is moved to mod_filter module.
See https://httpd.apache.org/docs/current/
upgrading.html#commonproblems.

mod_dir Yes http://httpd.apache.org/docs/2.4/mod/mod_dir.html
mod_dumpio No http://httpd.apache.org/docs/2.4/mod/mod_dumpio.html
mod_env Yes http://httpd.apache.org/docs/2.4/mod/mod_env.html
mod_expires Yes http://httpd.apache.org/docs/2.4/mod/

mod_expires.html
mod_file_cache Yes http://httpd.apache.org/docs/2.4/mod/

mod_file_cache.html
mod_filter No http://httpd.apache.org/docs/2.4/mod/mod_filter.html

Note: The syntax of the FilterProvider directive under
mod_filter has changed in Apache 2.4. This directive must be
upgraded manually. See http://httpd.apache.org/docs/2.4/
upgrading.html

Chapter 2
Apache HTTP Server and Third-party Modules in Oracle HTTP Server

2-6

http://httpd.apache.org/docs/2.4/mod/mod_authnz_fcgi.html
http://httpd.apache.org/docs/2.4/mod/mod_authnz_fcgi.html
http://httpd.apache.org/docs/2.4/mod/mod_authz_groupfile.html
http://httpd.apache.org/docs/2.4/mod/mod_authz_groupfile.html
http://httpd.apache.org/docs/2.4/mod/mod_authz_host.html
http://httpd.apache.org/docs/2.4/mod/mod_authz_host.html
http://httpd.apache.org/docs/2.4/mod/mod_authz_owner.html
http://httpd.apache.org/docs/2.4/mod/mod_authz_owner.html
http://httpd.apache.org/docs/2.4/mod/mod_authz_user.html
http://httpd.apache.org/docs/2.4/mod/mod_authz_user.html
http://httpd.apache.org/docs/2.4/mod/mod_autoindex.html
http://httpd.apache.org/docs/2.4/mod/mod_autoindex.html
http://httpd.apache.org/docs/2.4/mod/mod_cache.html
http://httpd.apache.org/docs/2.4/mod/mod_cache_disk.html
http://httpd.apache.org/docs/2.4/mod/mod_cache_disk.html
https://httpd.apache.org/docs/2.2/mod/mod_disk_cache.html
https://httpd.apache.org/docs/2.2/mod/mod_disk_cache.html
http://httpd.apache.org/docs/2.4/mod/mod_cern_meta.html
http://httpd.apache.org/docs/2.4/mod/mod_cern_meta.html
http://httpd.apache.org/docs/2.4/mod/mod_cgi.html
http://httpd.apache.org/docs/2.4/mod/mod_cgid.html
http://httpd.apache.org/docs/2.4/mod/mod_deflate.html
http://httpd.apache.org/docs/2.4/mod/mod_deflate.html
https://httpd.apache.org/docs/current/upgrading.html#commonproblems
https://httpd.apache.org/docs/current/upgrading.html#commonproblems
http://httpd.apache.org/docs/2.4/mod/mod_dir.html
http://httpd.apache.org/docs/2.4/mod/mod_dumpio.html
http://httpd.apache.org/docs/2.4/mod/mod_env.html
http://httpd.apache.org/docs/2.4/mod/mod_expires.html
http://httpd.apache.org/docs/2.4/mod/mod_expires.html
http://httpd.apache.org/docs/2.4/mod/mod_file_cache.html
http://httpd.apache.org/docs/2.4/mod/mod_file_cache.html
http://httpd.apache.org/docs/2.4/mod/mod_filter.html
http://httpd.apache.org/docs/2.4/upgrading.html
http://httpd.apache.org/docs/2.4/upgrading.html

Table 2-1 (Cont.) Apache HTTP Server and Third-party Modules in Oracle HTTP Server

Module Enabled by
Default?

For more information, see:

mod_headers Yes http://httpd.apache.org/docs/2.4/mod/
mod_headers.html

mod_imagemap Yes http://httpd.apache.org/docs/2.4/mod/
mod_imagemap.html

mod_include Yes http://httpd.apache.org/docs/2.4/mod/
mod_include.html

mod_info Yes http://httpd.apache.org/docs/2.4/mod/mod_info.html
mod_lbmethod_bybusyness No http://httpd.apache.org/docs/2.4/mod/

mod_lbmethod_bybusyness.html
mod_lbmethod_byrequests No http://httpd.apache.org/docs/2.4/mod/

mod_lbmethod_byrequests.html
mod_lbmethod_bytraffic No http://httpd.apache.org/docs/2.4/mod/

mod_lbmethod_bytraffic.html
mod_log_config Yes http://httpd.apache.org/docs/2.4/mod/

mod_log_config.html
mod_log_forensic Yes http://httpd.apache.org/docs/2.4/mod/

mod_log_forensic.html
mod_logio No http://httpd.apache.org/docs/2.4/mod/mod_logio.html
mod_macro No http://httpd.apache.org/docs/2.4/mod/mod_macro.html
mod_mime Yes http://httpd.apache.org/docs/2.4/mod/mod_mime.html
mod_mime_magic Yes http://httpd.apache.org/docs/2.4/mod/

mod_mime_magic.html
mod_mpm_event Yes (Linux

only)
http://httpd.apache.org/docs/2.4/mod/event.html

mod_mpm_prefork No http://httpd.apache.org/docs/2.4/mod/prefork.html
mod_mpm_winnt (Windows
only)

Yes http://httpd.apache.org/docs/2.4/mod/mpm_winnt.html

mod_mpm_worker Yes (on Non-
Windows and
non-Linux
platforms)

http://httpd.apache.org/docs/2.4/mod/worker.html

mod_negotiation Yes http://httpd.apache.org/docs/2.4/mod/
mod_negotiation.html

mod_proxy Yes http://httpd.apache.org/docs/2.4/mod/mod_proxy.html
mod_proxy_balancer Yes http://httpd.apache.org/docs/2.4/mod/

mod_proxy_balancer.html
mod_proxy_connect Yes http://httpd.apache.org/docs/2.4/mod/

mod_proxy_connect.html
mod_proxy_fcgi No http://httpd.apache.org/docs/2.4/mod/

mod_proxy_fcgi.html

Chapter 2
Apache HTTP Server and Third-party Modules in Oracle HTTP Server

2-7

http://httpd.apache.org/docs/2.4/mod/mod_headers.html
http://httpd.apache.org/docs/2.4/mod/mod_headers.html
http://httpd.apache.org/docs/2.4/mod/mod_imagemap.html
http://httpd.apache.org/docs/2.4/mod/mod_imagemap.html
http://httpd.apache.org/docs/2.4/mod/mod_include.html
http://httpd.apache.org/docs/2.4/mod/mod_include.html
http://httpd.apache.org/docs/2.4/mod/mod_info.html
http://httpd.apache.org/docs/2.4/mod/mod_lbmethod_bybusyness.html
http://httpd.apache.org/docs/2.4/mod/mod_lbmethod_bybusyness.html
http://httpd.apache.org/docs/2.4/mod/mod_lbmethod_byrequests.html
http://httpd.apache.org/docs/2.4/mod/mod_lbmethod_byrequests.html
http://httpd.apache.org/docs/2.4/mod/mod_lbmethod_bytraffic.html
http://httpd.apache.org/docs/2.4/mod/mod_lbmethod_bytraffic.html
http://httpd.apache.org/docs/2.4/mod/mod_log_config.html
http://httpd.apache.org/docs/2.4/mod/mod_log_config.html
http://httpd.apache.org/docs/2.4/mod/mod_log_forensic.html
http://httpd.apache.org/docs/2.4/mod/mod_log_forensic.html
http://httpd.apache.org/docs/2.4/mod/mod_logio.html
http://httpd.apache.org/docs/2.4/mod/mod_macro.html
http://httpd.apache.org/docs/2.4/mod/mod_mime.html
http://httpd.apache.org/docs/2.4/mod/mod_mime_magic.html
http://httpd.apache.org/docs/2.4/mod/mod_mime_magic.html
http://httpd.apache.org/docs/2.4/mod/event.html
http://httpd.apache.org/docs/2.4/mod/prefork.html
http://httpd.apache.org/docs/2.4/mod/mpm_winnt.html
http://httpd.apache.org/docs/2.4/mod/worker.html
http://httpd.apache.org/docs/2.4/mod/mod_negotiation.html
http://httpd.apache.org/docs/2.4/mod/mod_negotiation.html
http://httpd.apache.org/docs/2.4/mod/mod_proxy.html
http://httpd.apache.org/docs/2.4/mod/mod_proxy_balancer.html
http://httpd.apache.org/docs/2.4/mod/mod_proxy_balancer.html
http://httpd.apache.org/docs/2.4/mod/mod_proxy_connect.html
http://httpd.apache.org/docs/2.4/mod/mod_proxy_connect.html
http://httpd.apache.org/docs/2.4/mod/mod_proxy_fcgi.html
http://httpd.apache.org/docs/2.4/mod/mod_proxy_fcgi.html

Table 2-1 (Cont.) Apache HTTP Server and Third-party Modules in Oracle HTTP Server

Module Enabled by
Default?

For more information, see:

mod_proxy_ftp Yes http://httpd.apache.org/docs/2.4/mod/
mod_proxy_ftp.html

mod_proxy_http Yes http://httpd.apache.org/docs/2.4/mod/
mod_proxy_http.html

mod_remoteip No http://httpd.apache.org/docs/2.4/mod/
mod_remoteip.html

mod_reqtimeout No http://httpd.apache.org/docs/2.4/mod/
mod_reqtimeout.html

mod_rewrite Yes http://httpd.apache.org/docs/2.4/mod/
mod_rewrite.html

mod_security2 No http://www.modsecurity.org/documentation.html
Also, for Oracle HTTP Server-specific information regarding
mod_security, see Configuring mod_security in the httpd.conf File..

mod_sed No http://httpd.apache.org/docs/2.4/mod/mod_sed.html
mod_setenvif Yes http://httpd.apache.org/docs/2.4/mod/

mod_setenvif.html
mod_slotmem_shm Yes http://httpd.apache.org/docs/2.4/mod/

mod_slotmem_shm.html
mod_socache_shmcb Yes http://httpd.apache.org/docs/2.4/mod/

mod_socache_shmcb.html
mod_speling Yes http://httpd.apache.org/docs/2.4/mod/

mod_speling.html
mod_status Yes http://httpd.apache.org/docs/2.4/mod/mod_status.html
mod_substitute No http://httpd.apache.org/docs/2.4/mod/

mod_substitute.html
mod_unique_id Yes http://httpd.apache.org/docs/2.4/mod/

mod_unique_id.html
mod_unixd Yes http://httpd.apache.org/docs/2.4/mod/mod_unixd.html
mod_userdir Yes http://httpd.apache.org/docs/2.4/mod/

mod_userdir.html
mod_usertrack Yes http://httpd.apache.org/docs/2.4/mod/

mod_usertrack.html
mod_version Yes http://httpd.apache.org/docs/2.4/mod/

mod_version.html
mod_vhost_alias Yes http://httpd.apache.org/docs/2.4/mod/

mod_vhost_alias.html
mod_proxy_wstunnel No http://httpd.apache.org/docs/2.4/mod/

mod_proxy_wstunnel.html

Chapter 2
Apache HTTP Server and Third-party Modules in Oracle HTTP Server

2-8

http://httpd.apache.org/docs/2.4/mod/mod_proxy_ftp.html
http://httpd.apache.org/docs/2.4/mod/mod_proxy_ftp.html
http://httpd.apache.org/docs/2.4/mod/mod_proxy_http.html
http://httpd.apache.org/docs/2.4/mod/mod_proxy_http.html
http://httpd.apache.org/docs/2.4/mod/mod_remoteip.html
http://httpd.apache.org/docs/2.4/mod/mod_remoteip.html
http://httpd.apache.org/docs/2.4/mod/mod_reqtimeout.html
http://httpd.apache.org/docs/2.4/mod/mod_reqtimeout.html
http://httpd.apache.org/docs/2.4/mod/mod_rewrite.html
http://httpd.apache.org/docs/2.4/mod/mod_rewrite.html
http://www.modsecurity.org/documentation.html
http://httpd.apache.org/docs/2.4/mod/mod_sed.html
http://httpd.apache.org/docs/2.4/mod/mod_setenvif.html
http://httpd.apache.org/docs/2.4/mod/mod_setenvif.html
http://httpd.apache.org/docs/2.4/mod/mod_slotmem_shm.html
http://httpd.apache.org/docs/2.4/mod/mod_slotmem_shm.html
http://httpd.apache.org/docs/2.4/mod/mod_socache_shmcb.html
http://httpd.apache.org/docs/2.4/mod/mod_socache_shmcb.html
http://httpd.apache.org/docs/2.4/mod/mod_speling.html
http://httpd.apache.org/docs/2.4/mod/mod_speling.html
http://httpd.apache.org/docs/2.4/mod/mod_status.html
http://httpd.apache.org/docs/2.4/mod/mod_substitute.html
http://httpd.apache.org/docs/2.4/mod/mod_substitute.html
http://httpd.apache.org/docs/2.4/mod/mod_unique_id.html
http://httpd.apache.org/docs/2.4/mod/mod_unique_id.html
http://httpd.apache.org/docs/2.4/mod/mod_unixd.html
http://httpd.apache.org/docs/2.4/mod/mod_userdir.html
http://httpd.apache.org/docs/2.4/mod/mod_userdir.html
http://httpd.apache.org/docs/2.4/mod/mod_usertrack.html
http://httpd.apache.org/docs/2.4/mod/mod_usertrack.html
http://httpd.apache.org/docs/2.4/mod/mod_version.html
http://httpd.apache.org/docs/2.4/mod/mod_version.html
http://httpd.apache.org/docs/2.4/mod/mod_vhost_alias.html
http://httpd.apache.org/docs/2.4/mod/mod_vhost_alias.html
http://httpd.apache.org/docs/2.4/mod/mod_proxy_wstunnel.html
http://httpd.apache.org/docs/2.4/mod/mod_proxy_wstunnel.html

3
Understanding Oracle HTTP Server
Management Tools

Oracle HTTP Server can be managed using tools such as the Configuration Wizard, Fusion
Middleware Control, and WebLogic Scripting tool.

The following sections describe the management tools, how to access Fusion Middleware
Control and the Oracle HTTP Server home page, and how to use the WebLogic Scripting
Tool (WLST)

• Configuration Wizard, which enables you to create and delete Oracle HTTP Server
instances. See Installing and Configuring Oracle HTTP Server.

• Fusion Middleware Control, which is a browser-based management tool. See
Administering Oracle Fusion Middleware.

• WebLogic Scripting Tool, which is a command-driven scripting tool. See Understanding
the WebLogic Scripting Tool.

Note:

• The management tools available to your Oracle HTTP Server implementation
depend on whether you have configured it in a WebLogic Server domain (with
FMW Infrastructure) or in a standalone domain. See Domain Types.

• The Oracle HTTP Server MBeans, which might be visible in Fusion Middleware
Control or the WebLogic Scripting Tool (WLST) are provided for the use of
Oracle management tools. The interfaces are not supported for other use and
are subject to change without notice.

This chapter includes the following sections:

• Administering Oracle HTTP Server Using Fusion Middleware Control

• Administering Oracle HTTP Server Using WLST

• Administering Oracle HTTP Server Using Fusion Middleware Control
Fusion Middleware Control is the main tool for managing Oracle HTTP Server. This tool
is browser-based and helps to administer and monitor the Oracle Fusion Middleware
environment.

• Administering Oracle HTTP Server Using WLST
The WebLogic Scripting Tool (WLST) is a command-driven scripting tool that provides
specific commands to manage Oracle HTTP Server.

3-1

Administering Oracle HTTP Server Using Fusion
Middleware Control

Fusion Middleware Control is the main tool for managing Oracle HTTP Server. This
tool is browser-based and helps to administer and monitor the Oracle Fusion
Middleware environment.

The following sections describe some of the basic Oracle HTTP Server administration
tasks you can perform with Fusion Middleware Control.

• Accessing Fusion Middleware Control

• Accessing the Oracle HTTP Server Home Page

• About the Oracle HTTP Server Home Page

• Editing Configuration Files Using Fusion Middleware Control

• Accessing Fusion Middleware Control

• Accessing the Oracle HTTP Server Home Page

• About the Oracle HTTP Server Home Page

• Editing Configuration Files Using Fusion Middleware Control

See Also:

Administering Oracle Fusion Middleware

Accessing Fusion Middleware Control
To display Fusion Middleware Control, you enter the Fusion Middleware Control URL,
which includes the name of the WebLogic Administration Server host and the port
number assigned to Fusion Middleware Control during the installation. The following
shows the format of the URL:

http://hostname.domain:port/em

If you saved the installation information by clicking Save on the last installation screen,
the URL for Fusion Middleware Control is included in the file that is written to disk.

1. Display Fusion Middleware Control by entering the URL in your Web browser. For
example:

http://host1.example.com:7001/em

The Welcome page appears.

2. Enter the Fusion Middleware Control administrator user name and password and
click Login.

The default user name for the administrator user is weblogic. This is the account
you can use to log in to the Fusion Middleware Control for the first time. The

Chapter 3
Administering Oracle HTTP Server Using Fusion Middleware Control

3-2

weblogic password is the one you supplied during the installation of Fusion Middleware
Control.

Accessing the Oracle HTTP Server Home Page
When you select a target, such as a WebLogic Managed Server or a component, such as
Oracle HTTP Server, the target's home page is displayed in the content pane and the target's
menu is displayed at the top of the page, in the context pane.

To display the Oracle HTTP Server home page and the server menu, select an Oracle HTTP
Server component from the HTTP Server folder. You can also display the Oracle HTTP
Server menu by right-clicking the Oracle HTTP Server target in the navigation pane.

About the Oracle HTTP Server Home Page describes the target navigation pane and the
home page of Oracle HTTP Server.

About the Oracle HTTP Server Home Page
The Oracle HTTP Server Home page in Fusion Middleware Control contains menus and
regions that enable you to manage the server. Use the menus for monitoring, managing,
routing, and viewing general information.

The Oracle HTTP Server home page contains the following regions:

• General Region: Shows the name of the component, its state, host, port, and machine
name, and the location of the Oracle Home.

• Key Statistics Region: Shows the processes and requests statistics.

• Response and Load Region: Provides information such as the number of active
requests, how many requests were submitted, and how long it took for Oracle HTTP
Server to respond to a request. It also provides information about the number of bytes
processed with the requests.

• CPU and Memory Usage Region: Shows how much CPU (by percentage) and memory
(in megabytes) are being used by an Oracle HTTP Server instance.

• Resource Center: Provides links to books and topics related to Oracle HTTP Server.

Note:

Administering Oracle Fusion Middleware contains detailed descriptions of all the
items on the target navigation pane and the home page.

Editing Configuration Files Using Fusion Middleware Control
The Advanced Server Configuration page in Fusion Middleware Control enables you to edit
your Oracle HTTP Server configuration without directly editing the configuration (.conf) files.
See Modifying an Oracle HTTP Server Configuration File. Be aware that Fusion Middleware
Control and other Oracle software that manage the Oracle HTTP Server configuration might
save these files in a different, equivalent format. After using the software to make a
configuration change, multiple configuration files might be rewritten. For instructions on how
to edit a configuration file from Fusion Middleware Control, see Editing a Configuration File
for a WebLogic Server Domain.

Chapter 3
Administering Oracle HTTP Server Using Fusion Middleware Control

3-3

Administering Oracle HTTP Server Using WLST
The WebLogic Scripting Tool (WLST) is a command-driven scripting tool that provides
specific commands to manage Oracle HTTP Server.

This section contains information on WLST commands and how to use WLST in a
standalone environment.

• Oracle HTTP Server-Specific WLST Commands

• Using WLST in a Standalone Environment

For detailed information on WLST, see Understanding the WebLogic Scripting Tool

For more information on the WLST custom commands that are available for Oracle
HTTP Server, see Oracle HTTP Server WLST Custom Commands.

• Oracle HTTP Server-Specific WLST Commands

• Using WLST in a Standalone Environment

Oracle HTTP Server-Specific WLST Commands
WLST provides Oracle HTTP Server-specific commands for server management in
WebLogic Server Domains. See Oracle HTTP Server WLST Custom Commands.

The following are online commands, which require a connection between WLST and
the administration server for the domain.

• ohs_createInstance
• ohs_deleteInstance
• ohs_addAdminProperties
• ohs_addNMProperties
• ohs_exportKeyStore
• ohs_updateInstances
Oracle recommends that you use the ohs_createInstance and ohs_deleteInstance
commands to create and delete Oracle HTTP Server instances instead of using the
Configuration Wizard. These commands perform additional error checking and, in the
case of instance creation, automatic port assignment.

Using WLST in a Standalone Environment
If your Oracle HTTP Server instance is running in a standalone environment, you can
use WLST but must use the offline, or "agent", commands that route tasks through.
The specific WLST commands are described in Running Oracle HTTP Server, in the
context of the task they perform (for example, the WLST command for starting a
standalone Oracle HTTP Server instance is documented in Starting Oracle HTTP
Server Instances Using WLST); however, you must use the nmConnect() command to
actually connect to offline WLST. For both Linux and Windows, the format of the
command is the same:

nmConnect('login','password','hostname','port','<domainName>')

Chapter 3
Administering Oracle HTTP Server Using WLST

3-4

For example:

nmConnect('weblogic','<yourpassword>','localhost','5556','myDomain')

If you have a remote Oracle HTTP Server in a managed mode and another in standalone
with the remote administration mode enabled, you can use WLST to perform management
tasks such as SSL configuration.

Chapter 3
Administering Oracle HTTP Server Using WLST

3-5

Part II
Managing Oracle HTTP Server

There are many management tasks to consider when running Oracle HTTP Server. These
tasks include managing and monitoring the server processes, application security,
connectivity, and more.

This part presents information about management tasks for Oracle HTTP Server. It contains
the following chapters:

• Running Oracle HTTP Server

• Working with Oracle HTTP Server

• Managing and Monitoring Server Processes

• Managing Connectivity

• Managing Oracle HTTP Server Logs

• Managing Application Security

• Running Oracle HTTP Server
To run Oracle HTTP Server, create and manage an Oracle HTTP Server instance in a
WebLogic or standalone environment.

• Working with Oracle HTTP Server
When working with an installed version of Oracle HTTP Server, there are some common
tasks that you have to perform, such as editing configuration files, specifying server
properties, and more.

• Configuring High Availability for Web Tier Components
Use the instructions in this chapter to configure an Oracle HTTP Server highly available
deployment in which Oracle HTTP Servers and WebLogic Managed Servers reside on
different hosts, behind a load balancer.

• Managing and Monitoring Server Processes
You have tools and procedures that help to manage and monitor the performance of
Oracle HTTP Server.

• Managing Connectivity
You can manage and monitor the performance of Oracle HTTP Server connectivity by
creating ports, viewing port number usage, and configuring virtual hosts.

• Managing Oracle HTTP Server Logs
Managing Oracle HTTP Server logs includes configuring the server logs, viewing the
cause of an error and its corrective action, and more.

• Managing Application Security
Oracle HTTP Server supports three main categories of security, namely, authentication,
authorization, and confidentiality.

4
Running Oracle HTTP Server

To run Oracle HTTP Server, create and manage an Oracle HTTP Server instance in a
WebLogic or standalone environment.

This chapter describes how to create an instance, perform basic Oracle HTTP Server tasks,
and remotely administer Oracle HTTP Server. It includes the following sections:

• Before You Begin

• Creating an Oracle HTTP Server Instance

• Performing Basic Oracle HTTP Server Tasks

• Remotely Administering Oracle HTTP Server

• Configuring SSL for Admin Port

• Before You Begin
Before running Oracle HTTP Server, there are prerequisite tasks that are to be
completed. These tasks include installing and configuring the server, and starting
WebLogic Server and Node Manager.

• Creating an Oracle HTTP Server Instance
The Configuration Wizard enables you to simultaneously create multiple Oracle HTTP
Server instances when you create a domain.

• Performing Basic Oracle HTTP Server Tasks
You can use WLST or Fusion Middleware Control to perform basic Oracle HTTP Server
administration tasks.

• Remotely Administering Oracle HTTP Server
You can remotely manage an Oracle HTTP Server instance running in a standalone
environment from a collocated Oracle HTTP Server implementation running on a
separate machine. Use WLST or Fusion Middleware Control to start, stop, and configure
the server from the remote machine.

• Configuring SSL for Admin Port
Admin port is used internally by Oracle HTTP Server (OHS) to communicate with the
OHS plugin for Node Manager. The OHS plugin for Node Manager has been enhanced to
use SSL for its communication with the Node Manager.

Before You Begin
Before running Oracle HTTP Server, there are prerequisite tasks that are to be completed.
These tasks include installing and configuring the server, and starting WebLogic Server and
Node Manager.

1. Install and configure Oracle HTTP Server as described in Installing and Configuring
Oracle HTTP Server.

2. SSL is enabled by default on Oracle HTTP Server admin host. The admin host of the
newly created instance is configured to use the default wallet which has a self-signed
certificate. You must change the admin host after configuration to use a CA-signed

4-1

certificate for security reasons using the instructions described in "Configuring SSL
for Admin Host".

3. If you run Oracle HTTP Server in a WebLogic Server Domain, start WebLogic
Server as described in Starting and Stopping Servers in Administering Server
Startup and Shutdown for Oracle WebLogic Server.

Note:

• When you start WebLogic Server from the command line, you might
see many warning messages. Despite these messages, WebLogic
Server should start normally.

• On the Windows platform, Oracle HTTP Server requires Microsoft
Visual C++ run-time libraries to be installed on the system to
function. See Installing and Configuring Oracle HTTP Server.

4. Start Node Manager (required for both WebLogic and standalone domains) as
described in Using Node Manager in Administering Node Manager for Oracle
WebLogic Server.

Creating an Oracle HTTP Server Instance
The Configuration Wizard enables you to simultaneously create multiple Oracle HTTP
Server instances when you create a domain.

If you are creating a WebLogic Server Domain (Full or Restricted JRF domain types),
you are not required to create any instances. If you elect not to create any instances, a
warning appears; however, you are allowed to proceed with the configuration process.

If you are creating a standalone domain, an Oracle HTTP Server instance is created
by default.

This section contains the following information:

• Creating an Oracle HTTP Server Instance in a WebLogic Server Domain

• Creating an Oracle HTTP Server Instance in a Standalone Domain

Note:

If you are attempting to create an Oracle HTTP Server instance that uses a
TCP port in the reserved range (typically less than 1024), then you must
perform some extra configuration to allow the server to bind to privileged
ports. See Starting Oracle HTTP Server Instances on a Privileged Port
(UNIX Only).

• Creating an Oracle HTTP Server Instance in a WebLogic Server Domain

• Creating an Oracle HTTP Server Instance in a Standalone Domain

Chapter 4
Creating an Oracle HTTP Server Instance

4-2

Creating an Oracle HTTP Server Instance in a WebLogic Server Domain
You can create a managed Oracle HTTP Server instance in a WebLogic Server Domain by
using either the WLST custom command ohs_createInstance() or from Fusion Middleware
Control installed as part of a Oracle Fusion Middleware infrastructure. The following sections
describe these procedures.

• Creating an Instance by Using WLST

• Associating Oracle HTTP Server Instances With a Keystore Using WLST

• Creating an Instance by Using Fusion Middleware Control

• About Instance Provisioning

Note:

If you are working with a WebLogic Server Domain, it is recommended to use the
Oracle HTTP Server WLST custom commands as described in Administering
Oracle HTTP Server Using WLST. These commands offer superior error checking,
provide automatic port management, and so on.

• Creating an Instance by Using WLST

• Associating Oracle HTTP Server Instances With a Keystore Using WLST

• Creating an Instance by Using Fusion Middleware Control

• About Instance Provisioning

Creating an Instance by Using WLST
You can create an Oracle HTTP Server instance in a WebLogic Server Domain by using
WLST. Follow these steps.

1. From the command line, launch WLST.

Linux or UNIX: $ORACLE_HOME/oracle_common/common/bin/wlst.sh
Windows: $ORACLE_HOME\oracle_common\common\bin\wlst.cmd

2. Connect to WLST:

• In a WebLogic Server Domain:

> connect('loginID', 'password', '<adminHost>:<adminPort>')

For example:

> connect('weblogic', '<yourpassword>', 'abc03lll.myCo.com:7001')
3. Use the ohs_createInstance() command, with an instance and machine name—which

was assigned during domain creation—to create the instance:

> ohs_createInstance(instanceName='ohs1', machine='abc03lll.myCo.com',
[listenPort=XXXX], [sslPort=XXXX], [adminPort=XXXX])

Chapter 4
Creating an Oracle HTTP Server Instance

4-3

Note:

If Node Manager is down, the create command takes place partially. The
master copy of the config files appear at OHS/componentName. Once
Node Manager comes back up, the system syncs again and the runtime
copy of the files appear at OHS/instances/componentName.

For example:

> ohs_createInstance(instanceName='ohs1', machine='abc03lll.myCo.com')

Note:

If you do not provide port numbers, they will be assigned automatically.

Note:

For information about using the WebLogic Scripting Tool (WLST), see
Understanding the WebLogic Scripting Tool.

Associating Oracle HTTP Server Instances With a Keystore Using WLST
After using the Configuration Wizard to create Oracle HTTP Server instances in
collocated mode, use the ohs_updateInstances WLST custom command to associate
the instances with a keystore.

This command parse across all of the Oracle HTTP Server instances in the domain
and perform the following tasks:

• Create a new keystore with the name <instanceName>_default if one does not
exist.

• Put a demonstration certificate, demoCASignedCertificate in the newly created
keystore.

• Export the keystore to the instance location.

See ohs_updateInstances.

To associate Oracle HTTP Server instances with a keystore:

1. Launch WLST from the command line.

Linux or UNIX: $ORACLE_HOME/oracle_common/common/bin/wlst.sh
Windows: $ORACLE_HOME\oracle_common\common\bin\wlst.cmd

2. Connect to the Administration Server instance:

connect('<userName', '<password>', '<host>:<port>')
3. Issue the ohs_updateInstances WLST custom command, for example:

Chapter 4
Creating an Oracle HTTP Server Instance

4-4

ohs_updateInstances()

Creating an Instance by Using Fusion Middleware Control
You can create an Oracle HTTP Server instance in a WebLogic Server Domain by using
Fusion Middleware Control installed as part of the Oracle Fusion Middleware infrastructure.
Follow these steps.

1. Log in to Fusion Middleware Control and navigate to the system component instance
home page for the WebLogic Server Domain within which you want to create the Oracle
HTTP Server instance.

2. Open the WebLogic Server Domain menu and select Administration then Create/
Delete OHS.

Note:

Create/Delete OHS will appear only if you have extended the domain by using
the Oracle HTTP Server domain template. Otherwise, this command will not be
available.

The OHS Instances page appears.

3. Click Create.

The Create OHS Instance page appears.

4. In Instance Name, enter a unique name for the Oracle HTTP Server instance; for
example, ohs_2.

5. In Machine Name, click the drop-down control and select the machine to which you want
to associate the instance.

6. Click OK.

The OHS Instance page reappears, showing a confirmation message and the new
instance. The port number is automatically assigned.

After creating the instance, the Column on the OHS Instances page shows a down-arrow for
that instance.

This indicates that the instance is not running. For instructions on starting an instance, see
Starting Oracle HTTP Server Instances. Once started, the arrow will point up.

About Instance Provisioning
Once an instance is created, it will be provisioned within the DOMAIN_HOME.

• The master (staging) copy will be in:

DOMAIN_HOME/config/fmwconfig/components/OHS/componentName

• The runtime will be in:

DOMAIN_HOME/config/fmwconfig/components/OHS/instances/componentName

Node Manager must be running to provision an instance in runtime.

Immediately after creation, the state reported for an Oracle HTTP Server instance will vary
depending on how the instance was created:

Chapter 4
Creating an Oracle HTTP Server Instance

4-5

• If ohs_createInstance() was used, the reported state for the instance will be
SHUTDOWN.

• If the Configuration Wizard was used, the reported state for the instance will be
UNKNOWN.

Creating an Oracle HTTP Server Instance in a Standalone Domain
If you select Standalone as your domain during server configuration, the Configuration
Wizard will create the domain, and during this process an Oracle HTTP Server
instance will also be created. See Installing and Configuring Oracle HTTP Server.

Performing Basic Oracle HTTP Server Tasks
You can use WLST or Fusion Middleware Control to perform basic Oracle HTTP
Server administration tasks.

For detailed information on the process ID (PID) file, and how to use WLST or Fusion
Middleware Control to perform basic administration tasks, see the following tasks:

• About Using the WLST Commands

• Understanding the PID File

• Starting Oracle HTTP Server Instances

• Stopping Oracle HTTP Server Instances

• Restarting Oracle HTTP Server Instances

• Checking the Status of a Running Oracle HTTP Server Instance

• Deleting an Oracle HTTP Server Instance

• Changing the Default Node Manager Port Number

• Understanding the PID File

• Starting Oracle HTTP Server Instances

• Stopping Oracle HTTP Server Instances

• About Using the WLST Commands

• Restarting Oracle HTTP Server Instances

• Checking the Status of a Running Oracle HTTP Server Instance

• Deleting an Oracle HTTP Server Instance

• Changing the Default Node Manager Port Number

• Updating the Node Manager Username and Password in a Standalone Domain
You can update username and password of the Node Manager in a standalone
domain using WLST commands:

Understanding the PID File
The process ID can be used by the administrator when restarting and terminating the
daemon. If a process stops abnormally, it is necessary to stop the httpd child
processes using the kill command. You must not change the default PID file name or
its location.

Chapter 4
Performing Basic Oracle HTTP Server Tasks

4-6

When Oracle HTTP Server starts, it writes the process ID (PID) of the parent httpd process
to the httpd.pid file located in the following directory:

DOMAIN_HOME/servers/<componentName>/logs

The PidFile directive in httpd.conf specifies the location of the PID file; however, you should
never modify the value of this directive.

See Also:

PidFile directive in the Apache HTTP Server documentation.

Starting Oracle HTTP Server Instances
This section contains information on how to start Oracle HTTP Server using Fusion
Middleware Control and WLST.

Note:

On the Windows platform, Oracle HTTP Server requires Microsoft Visual C++ run-
time libraries to be installed on the system to function. See Installing and
Configuring Oracle HTTP Server.

This section includes the following topics:

• Starting Oracle HTTP Server Instances Using Fusion Middleware Control

• Starting Oracle HTTP Server Instances Using WLST

• Starting Oracle HTTP Server Instances from the Command Line

• Starting Oracle HTTP Server Instances on a Privileged Port (UNIX Only)

• Starting Oracle HTTP Server Instances as a Different User (UNIX Only)

• Starting Oracle HTTP Server Instances Using Fusion Middleware Control

• Starting Oracle HTTP Server Instances Using WLST

• Starting Oracle HTTP Server Instances from the Command Line

• Starting Oracle HTTP Server Instances on a Privileged Port (UNIX Only)

• Starting Oracle HTTP Server Instances as a Different User (UNIX Only)

Starting Oracle HTTP Server Instances Using Fusion Middleware Control
In Fusion Middleware Control, you start the Oracle HTTP Server from the Oracle HTTP
Server home page. Navigate to the HTTP Server home page and do one of the following:

• From the Oracle HTTP Server menu:

1. Select Control.

2. Select Start Up from the Control menu.

Chapter 4
Performing Basic Oracle HTTP Server Tasks

4-7

http://httpd.apache.org/docs/current/mod/mpm_common.html#pidfile

• From the Target Navigation tree:

1. Right-click the Oracle HTTP Server instance you want to start.

2. Select Control.

3. Select Start Up from the Control menu.

• From the page header, select Start Up.

The instance will start in the state UNKNOWN.

Starting Oracle HTTP Server Instances Using WLST
To start an Oracle HTTP Server instance by using WLST, use the start() command
in a WebLogic Server Domain or nmStart() for a standalone domain. The commands
are illustrated in the following table.

Note:

• Node Manager must be running for these commands to work. If it is
down, you will receive an error message.

• serverType is required for standalone domains. If it is not included an
error will be thrown referencing an inability to find startWebLogic.

These commands assume you have created an Oracle HTTP Server instance, as
described in Creating an Oracle HTTP Server Instance and WLST is running.

Domain Syntax Example

WebLogic start('instanceName')

or

nmStart(serverName='name',
serverType='type')

start('ohs1')

or

nmStart(serverName='ohs1',
serverType='OHS')

Standalone nmStart(serverName='name',
serverType='type')

nmStart(serverName='ohs1',
serverType='OHS')

Starting Oracle HTTP Server Instances from the Command Line
You can start Oracle HTTP Server instances from the command line by invoking the
startComponent script from the host that contains the Administration Server.

1. Ensure that Node Manager is running.

2. Enter the following command:

Linux or UNIX: $DOMAIN_HOME/bin/startComponent.sh componentName

Windows: DOMAIN_HOME\bin\startComponent.cmd componentName

For example:

Chapter 4
Performing Basic Oracle HTTP Server Tasks

4-8

$DOMAIN_HOME/bin/startComponent.sh ohs1

The startComponent script contacts Node Manager and runs the nmStart() command.

3. When prompted, enter your Node Manager password. The system responds with these
messages:

Successfully started server componentName...
Successfully disconnected from Node Manager...

Exiting WebLogic Scripting Tool.

Note:

You can also use this script to start Oracle HTTP Server instances remotely. In that
case, the scripts read the configuration to determine the location of the component.
You must run this script from the same system as the Administration Server. See
Remotely Administering Oracle HTTP Server.

• Storing Your Node Manager Password

Storing Your Node Manager Password
You can avoid having to enter your Node Manager password every time you launch the
server with startComponent command by starting it with the storeUserConfig option for the
first time. Do the following:

1. At the prompt, enter the following command:

$DOMAIN_HOME/bin/startComponent.sh componentName storeUserConfig

The system will prompt for your Node Manager password.

2. Enter your password.

The system responds with this message:

Creating the key file can reduce the security of your system if it is not kept
in a secured location after it is created. Creating new key...
The username and password that were used for this WebLogic NodeManager
connection are stored in $HOME/.wlst/nm-cfg-myDomainName.props and
$HOME /.wlst/nm-key-myDomainName.props.

Starting Oracle HTTP Server Instances on a Privileged Port (UNIX Only)

WARNING:

When this procedure is completed, any Oracle HTTP Server processes running
from this Oracle Home will be able to bind to privileged ports.

On a UNIX system, TCP ports in a reserved range (typically less than 1024) can only be
bound by processes with root privilege. Oracle HTTP Server always runs as a non-root user;
that is, the user who installed Oracle Fusion Middleware. On UNIX, special configuration is
required to allow Oracle HTTP Server to bind to privileged ports.

Chapter 4
Performing Basic Oracle HTTP Server Tasks

4-9

To enable Oracle HTTP Server to listen on a port in the reserved range (for example,
the default port 80 or port 443) use the following one-time setup on each Oracle HTTP
Server machine:

1. Update the ORACLE_HOME/ohs/bin/launch file by performing the following steps
as the super user (if you do not have access to super user privileges, have your
system administrator perform these steps):

a. Change ownership of the file to root:

chown root $ORACLE_HOME/ohs/bin/launch
b. Change the permissions on the file as follows:

chmod 4750 $ORACLE_HOME/ohs/bin/launch

The steps that require root permissions are now complete.

c. Modify the port settings for Oracle HTTP Server as described in Managing
Ports.

2. Configure the User and Group directive in httpd.conf.

The configured user ID for User should be the same user ID that created the
instance. The configured group ID for Group must be the same group ID used to
create the instance. See Oracle HTTP Server Configuration Files. To configure
Oracle HTTP Server to run as a different user id see Starting Oracle HTTP Server
Instances as a Different User (UNIX Only).

3. Stop the instance if it is running by using any of the stop methods described in
Stopping Oracle HTTP Server Instances.

4. Start the instance by using any of the start-up methods described in Starting
Oracle HTTP Server Instances.

Starting Oracle HTTP Server Instances as a Different User (UNIX Only)
On UNIX systems, the Oracle HTTP Server worker processes (the processes that
accept connections and handle requests) may be configured to run as a different user
id than the user id used to create the instance.

Follow the directions in Starting Oracle HTTP Server Instances on a Privileged Port
(UNIX Only) and configure the User directive with the desired user id. The configured
user id must be in the same group as the group that owns the instance directory. The
Group directive must also be configured and set to the same group id used to create
the instance.

Chapter 4
Performing Basic Oracle HTTP Server Tasks

4-10

Note:

• The parent process and logging processes of the Oracle HTTP Server will run
as root—these processes neither accept connections nor handle requests.

• If Node Manager is configured to use the SSL listener, then ensure that other
users have the appropriate permissions to access the SSL trust store used by
NodeMmanager so that the startComponent.sh or nmConnect commands can
run successfully as a different user.

See Node Manager Overview in Administering Node Manager for Oracle
WebLogic Server.

Stopping Oracle HTTP Server Instances
This section contains information on how to stop Oracle HTTP Server using Fusion
Middleware Control and WLST. Be aware that other services might be impacted when Oracle
HTTP Server is stopped.

This section includes the following topics:

• Stopping Oracle HTTP Server Instances Using Fusion Middleware Control

• Stopping Oracle HTTP Server Instances Using WLST

• Stopping Oracle HTTP Server Instances from the Command Line

• Stopping Oracle HTTP Server Instances Using Fusion Middleware Control

• Stopping Oracle HTTP Server Instances Using WLST

• Stopping Oracle HTTP Server Instances from the Command Line

Stopping Oracle HTTP Server Instances Using Fusion Middleware Control
In Fusion Middleware Control, you can stop Oracle HTTP Server from the Oracle HTTP
Server home page. Navigate to the Oracle HTTP Server home page and do one of the
following:

• From the Oracle HTTP Server home page:

1. Select the server instance you want to stop.

2. Select Control then Shut Down from the Oracle HTTP Server drop-down menu on
the server instance home page.

• From the Target Navigation tree:

1. Right-click the Oracle HTTP Server component you want to stop.

2. Select Control.

3. Select Shut Down from the Control menu.

• From the page header on the server instance home page, select Shut Down.

Chapter 4
Performing Basic Oracle HTTP Server Tasks

4-11

Stopping Oracle HTTP Server Instances Using WLST
You can stop Oracle HTTP Server by using WLST. From within the scripting tool, use
one of the following commands:

Note:

• Node Manager must be running for these commands to work. If it is
down, you will receive an error message.

• serverType is required for standalone domains. If it is not included, an
error will be thrown referencing an inability to find startWebLogic

Domain Syntax Example

WebLogic shutdown('serverName') shutdown('ohs1')

Standalone nmKill(serverName='serverName',
serverType='type')1

nmKill(serverName='ohs1',
serverType='OHS')

1 nmKill() will also work in a WebLogic domain.

WARNING:

If you run shutdown() without specifying any parameters, WebLogic Server
will terminate and exit WLST. Oracle HTTP Server will continue running. To
recover, restart WebLogic Server, launch WLST, and reconnect to the
AdminServer. Then re-run the shutdown with the Oracle HTTP Server
instance name.

Stopping Oracle HTTP Server Instances from the Command Line
You can stop Oracle HTTP Server instances from the command line by invoking the
stopComponent script from the host that contains the Administration Server.

1. Enter the following command:

$DOMAIN_HOME/bin/stopComponent.sh componentName

For example:

$DOMAIN_HOME/bin/stopComponent.sh ohs1

This command invokes WLST and executes the nmKill() command. The
stopComponent command will not function if Node Manager is not running.

2. When prompted, enter your Node Manager password.

Chapter 4
Performing Basic Oracle HTTP Server Tasks

4-12

If you started Oracle HTTP Server instance with the storeUserConfig option as
described in Storing Your Node Manager Password, you will not be prompted.

Once the server is stopped, the system will respond:

Successfully killed server componentName...
Successfully disconnected from Node Manager...

Exiting WebLogic Scripting Tool.

Note:

You can also use this script to stop Oracle HTTP Server instances remotely. In that
case, the scripts read the configuration to determine the location of the component.
You must run this script from the same system as the Administration Server. See
Remotely Administering Oracle HTTP Server.

About Using the WLST Commands
If you plan to use WLST, you should familiarize yourself with that tool. You should also be
aware of the following restriction on WLST:

If you run a standalone version of Oracle HTTP Server, you must use the offline, or "agent",
WLST commands. These commands are described in their appropriate context.

See Getting Started Using the Oracle WebLogic Scripting Tool (WLST) in Oracle® Fusion
Middleware Administrator's Guide.

Restarting Oracle HTTP Server Instances
Restarting Oracle HTTP Server causes the Apache parent process to advise its child
processes to exit after their current request (or to exit immediately if they are not serving any
requests). Upon restarting, the parent process re-reads its configuration files and reopens its
log files. As each child process exits, the parent replaces it with a child process from the new
generation of the configuration file, which begins serving new requests immediately.

The following sections contain information on how to restart Oracle HTTP Server using
Fusion Middleware Control and WLST.

• Restarting Oracle HTTP Server Instances Using Fusion Middleware Control

• Restarting Oracle HTTP Server Instances Using WLST

• Restarting Oracle HTTP Server Instances from Command Line

• Restarting Oracle HTTP Server Instances Using Fusion Middleware Control

• Restarting Oracle HTTP Server Instances Using WLST

• Restarting Oracle HTTP Server Instances from Command Line
To restart the Oracle HTTP Server instances from the command line, use the
restartComponent script.

Restarting Oracle HTTP Server Instances Using Fusion Middleware Control
In Fusion Middleware Control you restart Oracle HTTP Server from the Oracle HTTP Server
home page. Navigate to the Oracle HTTP Server home page and do one of the following:

Chapter 4
Performing Basic Oracle HTTP Server Tasks

4-13

• From the Oracle HTTP Server home page:

1. Select the server instance you want to restart. Select Control.

2. Click Start Up on the instance home page, or select Control then Restart
from the Oracle HTTP Server drop-down menu.

• From the Target Navigation tree:

1. Right-click the Oracle HTTP Server instance you want to restart.

2. Select Control.

3. Select Restart from the Control menu.

Restarting Oracle HTTP Server Instances Using WLST
To restart Oracle HTTP Server by using WLST, use the softRestart() command.
From within the scripting tool, enter one of the following commands:

Note:

• For the WebLogic and the Standalone domains, Node Manager must be
running (that is, state is RUNNING) for these commands to work. If it is
down, you will receive an error message.

• All parameters are required for standalone domains. If they are not
included, an error will be thrown referencing an inability to find
startWebLogic.

• The nmSoftRestart command can also be used in WebLogic domains.
To do this, you must first connect to Node Manager by using the
nmConnect command.

Domain Syntax Example

WebLogic softRestart('serverName') softRestart('ohs1')

Standalone nmSoftRestart(serverName='name',
 serverType='type')

nmSoftRestart(serverName='ohs1',
 serverType='OHS')

Restarting Oracle HTTP Server Instances from Command Line
To restart the Oracle HTTP Server instances from the command line, use the
restartComponent script.

Run the following command:

$DOMAIN_HOME/bin/restartComponent.sh componentName

For example:

$DOMAIN_HOME/bin/restartComponent.sh ohs1

Chapter 4
Performing Basic Oracle HTTP Server Tasks

4-14

This command invokes WLST and executes the nmSoftRestart() command. The
restartComponent command will not function if the Node Manager is not running. When
prompted, enter your Node Manager password.

If you had started the instance with storeUserConfig option as described in Storing Your
Node Manager Password, you will not be prompted for the Node Manager password.

Once the server is restarted, the system responds with the following message:

Successfully restarted server componentName...
Successfully disconnected from Node Manager...
Exiting WebLogic Scripting Tool.

Checking the Status of a Running Oracle HTTP Server Instance
This section contains information on how to check the status of a running Oracle HTTP
Server instance. You can check this information from either Fusion Middleware Control
installed as part of an Oracle Fusion Middleware infrastructure or by using WLST.

This section includes the following topics:

• Checking Server Status by Using Fusion Middleware Control

• Checking Server Status Using WLST

• Checking Server Status by Using Fusion Middleware Control

• Checking Server Status Using WLST

Checking Server Status by Using Fusion Middleware Control
An up or down arrow in the top left corner of any Oracle HTTP Server page's header
indicates whether the selected server instance is running. The up arrow indicates that the
server instance, in this case, ohs_2, is running.

The down arrow indicates that the server instance, in this case, ohs_2, is not running.

Checking Server Status Using WLST
In a WebLogic Server Domain, if you used ohs_createInstance() to create the Oracle HTTP
Server instance, its initial state (that is, before starting it) will be SHUTDOWN.

If you used the Configuration Wizard to generate the instance (both WebLogic Server Domain
and standalone domain), its initial state (that is, before starting) will be UNKNOWN.

To check the status of a running Oracle HTTP Server instance by using WLST, from within
the scripting tool, enter the following:

Chapter 4
Performing Basic Oracle HTTP Server Tasks

4-15

Note:

• Node Manager must be running for these commands to work. If it is
down, you will receive an error message. If Node Manager goes down in
a WebLogic Server Domain, the state will be returned as UNKNOWN,
regardless of the real state of the instance. Additionally state() does not
inform you that it cannot connect to Node Manager.

• Unlike other WLST commands, state() will not tell you when Node
Manager is down so there is no way to distinguish an instance that truly
is in state UNKNOWN as opposed to Node Manager simply being down.

• All parameters are required for standalone domains. If they are not
included, then an error will be thrown referencing an inability to find
startWebLogic.

• The nmServerStatus command can also be used in WebLogic domains.
To do this, you must first connect to the Node Manager by using the
nmConnect command.

Domain Syntax Example

WebLogic state('serverName') state('ohs1')

Standalone nmServerStatus(serverName='name'
, serverType='type')

nmServerStatus(serverName='ohs1'
, serverType='OHS')

Note:

This command does not distinguish between non-existent components and
real components in state UNKNOWN. Thus, if you enter a non-existent
instance (for example, you made a typo), a state of UNKNOWN will be
returned.

Deleting an Oracle HTTP Server Instance
You can delete an Oracle HTTP Server instance in both a WebLogic Server Domain
and a standalone domain.

This section includes the following topics:

• Deleting an Oracle HTTP Server Instance in a WebLogic Server Domain

• Deleting an Oracle HTTP Server Instance from a Standalone Domain

• Deleting an Oracle HTTP Server Instance in a WebLogic Server Domain

• Deleting an Oracle HTTP Server Instance from a Standalone Domain

Chapter 4
Performing Basic Oracle HTTP Server Tasks

4-16

Deleting an Oracle HTTP Server Instance in a WebLogic Server Domain
In a WebLogic Server Domain, you can use either the WLST custom command
ohs_deleteInstance() or from Fusion Middleware Control installed as part of an Oracle
Fusion Middleware infrastructure. The following topics describe these procedures.

• Deleting an Instance Using WLST

• Deleting an Instance Using Fusion Middleware Control

• Deleting an Instance Using WLST

• Deleting an Instance Using Fusion Middleware Control

Deleting an Instance Using WLST
If you are in a WebLogic Server Domain, you can delete an Oracle HTTP Server instance by
using the WLST custom command ohs_deleteInstance(). When you use this command, the
following happens:

• The selected instance information is removed from config.xml.

• All Oracle HTTP Server configuration directories and their contents are deleted; for
example, OHS/instanceName and OHS/instances/instanceName. These paths refer to
both the runtime and master copies of the configuration.

• All logfiles associated with the deleted instance are deleted.

• All state information for the deleted instance is removed.

Note:

You cannot delete an instance by using ohs_deleteInstance() if Node Manager is
down.

To delete an instance using WLST:

1. From the command line, launch WLST:

Linux or UNIX: $ORACLE_HOME/oracle_common/common/bin/wlst.sh
Windows: $ORACLE_HOME\oracle_common\common\bin\wlst.cmd

2. Connect to WLST:

• In a WebLogic Server Domain:

> connect('loginID', 'password', '<adminHost>:<adminPort>')

For example:

> connect('weblogic', '<yourpassword>', 'abc03lll.myCo.com:7001')
3. At the command prompt, enter:

ohs_deleteInstance(instanceName='instanceName')

For example, to delete an Oracle HTTP Server instance named ohs1 use the following
command:

Chapter 4
Performing Basic Oracle HTTP Server Tasks

4-17

ohs_deleteInstance(instanceName='ohs1')
You cannot delete an Oracle HTTP Server instance in either an UNKNOWN or a
RUNNING state.

Note:

For newly created Oracle HTTP Server instances in state UNKNOWN (for
example, created with config wizard), one can start and stop the instance to
move the state to SHUTDOWN. It can then be deleted successfully.

For instances in state RUNNING, first stop the instance to move it to state
SHUTDOWN and then it can be deleted successfully.

Deleting an Instance Using Fusion Middleware Control
To delete an Oracle HTTP Server instance by using Fusion Middleware Control:

Note:

You cannot delete a running Oracle HTTP Server instance. If the instance is
running, stop it, as described in Stopping Oracle HTTP Server Instances and
then proceed with the following steps.

1. Log in to Fusion Middleware Control. Navigate to the system component instance
home page for the WebLogic Server Domain that contains the Oracle HTTP
Server instance you want to delete.

2. Open the WebLogic Server Domain menu and select Administration then
Create/Delete OHS.

3. In the OHS Instances page, select the instance you want to delete and click
Delete.

4. In the confirmation window, click Yes to complete the deletion.

The OHS Instances page appears, with an information message indicating that the
selected Oracle HTTP Server instance was deleted.

Deleting an Oracle HTTP Server Instance from a Standalone Domain
You can delete an Oracle HTTP Server instance in a standalone domain by using the
Configuration Wizard if it is not the only instance in the domain. The Configuration
Wizard always requires at least one Oracle HTTP Server instance in a standalone
domain; you will not be able to delete the instance if it is the only one in the domain. To
delete the only instance in a standalone domain, you should instead completely
remove the entire domain directory.

Deleting Oracle HTTP Server instances by using the Configuration Wizard is actually
only a partial deletion (and is inconsistent with the way WebLogic Server domain
performs deletion by using ohs_deleteInstance(). See Deleting an Instance Using
WLST). When you delete a standalone instance by using the Configuration Wizard,
the following occurs:

Chapter 4
Performing Basic Oracle HTTP Server Tasks

4-18

• Information on the specific instance is removed from config.xml, so this instance is no
longer recognized as valid. When you launch the Configuration Wizard again for another
update, the deleted instance will not appear.

• The logs compiled for the deleted instance are left intact at: DOMAIN_HOME/servers/
ohs1 (assuming your instance name was ohs1). If a new instance with the same name is
subsequently created, it will inherit and continue logging to these files.

• The deleted instance's configuration directories and their contents are not deleted; they
remain intact at: DOMAIN_HOME/config/fmwconfig/components/OHS/instanceName and
DOMAIN_HOME/config/fmwconfig/components/OHS/instances/instanceName. The only
change in both directories is that the following files are renamed: httpd.conf becomes
httpd.conf.bak; ssl.conf becomes ssl.conf.bak; and admin.conf becomes admin.conf.bak.
This prevents the instance from being started. (If you create a new instance with the
same name as the instance you deleted, this information will be overwritten, but the *.bak
files will remain).

• The deleted instance's state information is left intact at DOMAIN_HOME/
system_components/. If a new instance of the same name is subsequently created, it will
inherit the state of the old instance. Instead of starting in UNKNOWN state, it could
appear as SHUTDOWN or even FAILED_NOT_RESTARTABLE.

To delete an Oracle HTTP Server instance in a standalone domain, do the following:

1. Shutdown all running instances (see Stopping Oracle HTTP Server Instances). Be aware
the Configuration Wizard will not check the state of the Oracle HTTP Server instance so
you will need to verify that all instances are indeed stopped before deletion.

2. If it is running, shut down Node Manager.

3. Launch the Configuration Wizard (see Installing and Configuring Oracle HTTP Server)
and do the following:

a. Select Update an existing domain and select the path to the domain.

b. Skip both the Templates screen and the JDK Selection screen by clicking Next on
each.

c. On the System Components screen, select the instance you want to delete and click
Delete.

The selected instance is deleted.

d. Click Next, and, on the OHS Server screen, click Next again.

e. On the Configuration Summary screen, verify that the selected instance has been
deleted and click Update.

f. On the Success screen, click Finish.

Changing the Default Node Manager Port Number
You can change the default value of the Node Manager port by using either WLST or the
Oracle WebLogic Server Administration console.

This section includes the following topics:

• Changing the Default Node Manager Port Using WLST

• Changing the Default Node Manager Port Using Oracle WebLogic Server Administration
Console

• Changing the Default Node Manager Port Using WLST

Chapter 4
Performing Basic Oracle HTTP Server Tasks

4-19

• Changing the Default Node Manager Port Using Oracle WebLogic Server
Administration Console

Changing the Default Node Manager Port Using WLST
To change the default Node Manager port number using WLST, use the custom
command readDomain to open the domain. Navigate to the directory containing Node
Manager for the machine. Set the ListenPort property, then update the domain.

...
readDomain('DOMAIN_HOME')
cd('/Machines/Machine_Name/NodeManager/Node_Manager_Name')
set('ListenPort',9090)
updateDomain()
closeDomain()
...

In this example, DOMAIN_HOME represents the root directory of the domain. Machines
and NodeManager are directories. The Node_Manager_Name is the name of Node
Manager belonging to the Machine_Name machine. The default Node Manager name is
localmachine. The default Machine_Name is also localmachine. The ListenPort value
is set to 9090.

Changing the Default Node Manager Port Using Oracle WebLogic Server
Administration Console

Follow these steps to change the default Node Manager port number using Oracle
WebLogic Server Administration Console.

1. Manually edit the DOMAIN_HOME/nodemanager/nodemanager.properties file to
change the value of the ListenPort property.

2. In the WebLogic Server Administration Console, change the configuration of the
machine associated with Node Manager, to point it to the new port number.

From the left pane of the Console, expand Environment and then select Machines.
Select the machine whose configuration you want to edit. Select the Configuration
tab, then the Node Manager tab. Change the Listen Port to the port updated in
nodemanager.properties file. Click Save.

Updating the Node Manager Username and Password in a Standalone
Domain

You can update username and password of the Node Manager in a standalone
domain using WLST commands:

1. Launch the WebLogic Scripting Tool (WLST) by running the following command
from the location MW_HOME/oracle_common/common/bin:

UNIX: ./wlst.sh
Windows: wlst.cmd

2. Execute the following WLST commands:

a. readDomain('$DOMAIN_HOME')

Chapter 4
Performing Basic Oracle HTTP Server Tasks

4-20

b. cd('SecurityConfiguration/$DOMAIN_NAME')

c. set('NodeManagerUsername','new_NodeManager_Username')

d. set('NodeManagerPasswordEncrypted','new_NodeManager_password')

e. updateDomain()

f. closeDomain()

If the Node Manager username and password have been saved using storeConfig option
with startComponent, then delete the following after changing the Node Manager credentials
and before you restart OHS:

• user_home/.wlst/nm-key-domain_name.props
• user_home/.wlst/nm-cfg-domain_name.props

Remotely Administering Oracle HTTP Server
You can remotely manage an Oracle HTTP Server instance running in a standalone
environment from a collocated Oracle HTTP Server implementation running on a separate
machine. Use WLST or Fusion Middleware Control to start, stop, and configure the server
from the remote machine.

This section provides information about how to set up Oracle HTTP Server to run remotely.

• Setting Up a Remote Environment

Setting Up a Remote Environment
The following instructions describe how to set up a remote environment, which will enable
you to run Oracle HTTP Server installed on one machine from an installation on another. This
section contains the following information:

• Host Requirements for a Remote Environment.

• Task 1: Set Up an Expanded Domain on host1.

• Task 2: Pack the Domain on host1.

• Task 3: Unpack the Domain on host2.

• Task 4: Run Oracle HTTP Server Remotely

• Host Requirements for a Remote Environment

• Task 1: Set Up an Expanded Domain on host1

• Task 2: Pack the Domain on host1

• Task 3: Unpack the Domain on host2

• Task 4: Run Oracle HTTP Server Remotely

Chapter 4
Remotely Administering Oracle HTTP Server

4-21

Host Requirements for a Remote Environment
To remotely manage Oracle HTTP Server, you must have separate hosts installed on
separate machines:

• A collocated installation (for this example, this installation will be called host1).

• A standalone installation (host2). The path to standalone MW_HOME on host2
must be the same as the path to the collocated MW_HOME on host1. For
example:

/scratch/user/work

Task 1: Set Up an Expanded Domain on host1
The following steps describe how to set up an expanded domain and link it to a
database on the collocated version of Oracle HTTP Server (host1):

1. Using the Repository Configuration Utility (RCU), set up and install a database for
the expanded domain.See Creating Schemas with the Repository Creation Utility.

2. Launch the Configuration Wizard and create an expanded domain. Use the values
specified in Table 4-1.

Table 4-1 Setting Up an Expanded Domain

For... Select or Enter...

Create Domain Create a new domain and specify its path (for example,
MW_HOME/user_projects/domains/ohs1_domain).

Templates Oracle HTTP Server (Collocated)

Application Locations The default.

Administrator Account A username and password.

Database Configuration
Type

The RCU data. Then, click Get RCU Configuration and then
Next.

Optional Configuration The following items:

• Administration Server
• Node Manager
• System Components
• Deployment and Services

Administration Server The listen address (All Local Addresses or the valid name or
address for host1) and port.

Node Manager Per Domain and specify the NodeManager credentials.

System Components Add and set the fields, using OHS as the Component Type
(for example, use a System Component value of ohs1).

OHS Server The listen addresses and ports or use the defaults.

Machines Add. This will add a machine to the domain (for example,
ohs1_Machine) and the Node Manager listen and port values.
You must specify a listen address for host2 that is accessible
from host1, such the valid name or address for host2 (do not
use localhost or All Local Addresses).

Chapter 4
Remotely Administering Oracle HTTP Server

4-22

Table 4-1 (Cont.) Setting Up an Expanded Domain

For... Select or Enter...

Assign System
Components

The OHS component (for example, ohs1) then use the right
arrow to assign the component to the machine
(ohs1_machine, for example).

Configuration Summary Create (the OPSS steps may take some minutes).

Task 2: Pack the Domain on host1
On host1, use the pack command to pack the domain. The pack command creates a
template archive (.jar) file that contains a snapshot of either an entire domain or a subset of
a domain.

On Unix, run the following command:

MW_HOME/oracle_common/common/bin/pack.sh -domain=path_to_domain -
template=path_to_template -template_name=name -managed=true

For example:

MW_HOME/oracle_common/common/bin/pack.sh -domain=MW_HOME/user_projects/domains/
ohs1_domain -template=/tmp/ohs1_tmplt.jar -template_name=ohs1 -managed=true

Task 3: Unpack the Domain on host2
The unpack command creates a full domain or a subset of a domain used for a Managed
Server domain directory on a remote machine. Use the following steps to unpack the domain
you packed on host1 in Task 2: Pack the Domain on host1, on host2.

1. Copy the template file created in Task 2: Pack the Domain on host1 from host1 to host2.

2. Run the unpack command on Unix to unpack the domain:

MW_HOME/oracle_common/common/bin/unpack.sh -domain=path_to_domain -
template=path_to_template

For example:

MW_HOME/oracle_common/common/bin/unpack.sh -domain=MW_HOME/user_projects/domains/
ohs1_domain -template=/tmp/ohs1_tmplt.jar

Task 4: Run Oracle HTTP Server Remotely
Once you have unpacked the domain created on host1 onto host2, you can use the same set
of WLST commands and Fusion Middleware Control tools you would in a collocated
environment to start, stop, restart, and configure the component.

To run an Oracle HTTP Server remotely, do the following:

1. Start the WebLogic Administration Server on host1:

<MW_HOME>/user_projects/domains/ohs1_domain/bin/startWebLogic.sh &
2. Start Node Manager on host2:

<MW_HOME>/user_projects/domains/ohs1_domain/bin/startNodeManager.sh &

Chapter 4
Remotely Administering Oracle HTTP Server

4-23

You can now run the Oracle HTTP Server instance on host2 from the collocated
implementation on host1. You can use any of the WLST commands or any of the
Fusion Middleware Control tools. For example, to connect host2 to Node Manager and
start the server ohs1, from host1 enter:

<MW_HOME>/ohs/common/bin/wlst.sh
nmConnect('weblogic', '<password>', '<nm-host>', '<nm-port>', '<domain-name>',
'<domain-directory>','ssl')
nmStart(serverName='ohs1', serverType='OHS')

See Performing Basic Oracle HTTP Server Tasks for information on starting, stopping,
restarting, and configuring Oracle HTTP Server components.

Configuring SSL for Admin Port
Admin port is used internally by Oracle HTTP Server (OHS) to communicate with the
OHS plugin for Node Manager. The OHS plugin for Node Manager has been
enhanced to use SSL for its communication with the Node Manager.

The configuration steps described in the following topics are necessary to set up SSL
communication between the OHS admin host (SSL server) and the OHS plugin for
Node Manager (SSL client):

• Performing Server-Side Configuration

• Ensuring that the Host Name Verification Succeeds

• Performing Client-Side Configuration

• Performing Server-Side Configuration
To complete the server-side configuration, you must create a wallet and enable
SSL for Oracle HTTP Server admin host by modifying the admin.conf file present
in the staging directory.

• Ensuring that the Host Name Verification Succeeds
Host name verification happens as part of the SSL handshake between the Node
Manager and the Oracle HTTP Server (OHS) admin host.

• Performing Client-Side Configuration
On the client-side, you must configure trust for the Node Manager.

Performing Server-Side Configuration
To complete the server-side configuration, you must create a wallet and enable SSL
for Oracle HTTP Server admin host by modifying the admin.conf file present in the
staging directory.

To do this, refer to the following topics:

1. Creating a Wallet

2. Enabling SSL for Oracle HTTP Server Admin Host

For information about modifying the admin.conf file, see Modifying an Oracle HTTP
Server Configuration File.

• Creating a Wallet
Create a wallet that contains a certificate signed by a trusted CA.

Chapter 4
Configuring SSL for Admin Port

4-24

• Enabling SSL for Oracle HTTP Server Admin Host
Enable SSL for the admin host by configuring the following mod_ossl directives in a
<IfModule ossl_module> block.

Creating a Wallet
Create a wallet that contains a certificate signed by a trusted CA.

Consider the requirements for ensuring the success of the host-name verification step of the
SSL handshake while choosing the Common Name attribute of the certificate’s Distinguished
Name(DN). See Ensuring that the Host Name Verification Succeeds.

To create a wallet, refer to the following topics depending on your installation type:

• Creating a Wallet for a Standalone Installation

• Creating a Wallet for a Collocated Installation

Creating a Wallet for a Standalone Installation

To create a wallet for a standalone installation, use the KEYTOOL utility to create a keystore,
generate a Certificate Signing Request (CSR), import the required certificates to the keystore,
convert this keystore to a wallet using the ORAPKI utility, and then configure Oracle HTTP
Server admin host to use this wallet.

To do this, complete the following steps:

1. Set the following environment variables:

On UNIX:

export ORACLE_HOME=absolute_path_to_ORACLE_HOME
export PATH=$ORACLE_HOME/oracle_common/bin:$PATH
export JAVA_HOME=absolute_path_to_JDK8

On Windows:

set ORACLE_HOME=absolute_path_to_ORACLE_HOME
set PATH=%ORACLE_HOME%\oracle_common\bin:%PATH%
set JAVA_HOME=absolute_path_to_JDK8

2. Set up a working directory and change the directory to the same:

mkdir walletkey
cd walletkey

3. Create a keystore and a private key:

keytool -genkey -alias ca_cert -keyalg RSA -keysize 2048 -sigalg
SHA256withRSA -dname "CN=hostname.domainname,O=My Company
Corporation,L=Denver,ST=CO,C=US" -keypass keypass_password -keystore
keystore.jks -storepass storepass_password

In this command:

• The alias ca_cert is what will be established. You can choose a different name.

Chapter 4
Configuring SSL for Admin Port

4-25

• keystore.jks is the name you choose for the new keystore.

• keypass_password and storepass_password are the password you specify for
keypass and storepass respectively.

4. Generate a Certificate Signing Request (CSR) and send it to your Certificate
Authority (CA) before you proceed (otherwise, use a self-signed):

keytool -certreq -v -alias ca_cert -file server.csr -sigalg
SHA256withRSA -keypass keypass_password -storepass
storepass_password -keystore keystore.jks

In this command:

• ca_cert is the alias you specified in the previous step.

• server.csr is what you give the CA.

• keystore.jks is the keystore.

5. Import the root trust certificate into the keystore:

keytool -import -v -noprompt -trustcacerts -alias root -file
root.crt -keystore keystore.jks

In this command:

• The alias root is the name you choose for the intermediate CA trust
certificate.

• root.crt is the CA's root trust certificate.

• keystore.jks is the keystore.

6. If supplied from CA, import the Intermediate trust certificate into a the keystore,
and choose an alias:

keytool -import -v -noprompt -trustcacerts -alias intermediate -
file intermediate.crt -keystore keystore.jks

In this command:

• The alias intermediate is the name you choose for the intermediate CA trust
certificate.

• intermediate.crt is the CA's intermediate trust certificate.

• keystore.jks is the keystore.

7. Import the signed server certificate into the keystore:

keytool -import -v -alias ca_cert -file server.crt -keystore
keystore.jks

In this command:

• The alias ca_cert is the name you had chosen for server certificate.

• server.crt is the signed server certificate that you normally get from the
CSR.

Chapter 4
Configuring SSL for Admin Port

4-26

• keystore.jks is the keystore.

8. Convert the keystore to the wallet:

orapki wallet create -wallet ./wallet -auto_login_only
orapki wallet jks_to_pkcs12 -wallet ./wallet -keystore ./keystore.jks -
jkspwd jks_password

9. Configure the wallet in the Oracle HTTP Server admin.conf file. To make it simple and
consistent, use a generic central location as shown in the following example. Ensure that
the location is owned by the same Oracle user.

Example of admin.conf file:

<VirtualHost AdminHostIP:AdminPort>
<IfModule ossl_module>
 ...
 SSLWallet "/usr/oracle/ohs/wallets"
 ...
</IfModule>
</VirtualHost>

Creating a Wallet for a Collocated Installation

For a collocated installation, create a wallet for Oracle HTTP Server admin host via Fusion
Middleware Control and configure the Oracle HTTP Server admin host to use this wallet.

1. Log in to the Fusion Middleware Control using the WebLogic username and password:

http://host.domain:port/em

2. Start the relevant OHS component (for example, ohs1) via Fusion Middleware Control.

Note:

A keystore is uniquely identified by an application stripe and a keystore within
that stripe. Keys and certificates are created in keystores within stripes. Stripe
names within the security store are unique in the security store, and the
keystore names within a stripe are unique in the stripe. For example,
(stripe1,keystoreA), (stripe1,keystoreB), and (stripe2,keystoreA) refer to three
distinct keystores. Applications can create more than one keystore within the
application stripe.

3. Create a Stripe for Oracle HTTP Server:

a. Navigate to the weblogic domain, go to Security, and click Keystore.

b. Click Create Stripe.

c. Create new stripe by name OHS. Note that the name is case sensitive.

4. Create a Keystore for OHS instance:

a. Click on the ohs instance.

b. Navigate to OracleHTTPServer, go to Security, and click Keystore.

Chapter 4
Configuring SSL for Admin Port

4-27

c. Click Create Keystore and then click Create it as a Policy.

d. Enter the keystore name. For example, Test. A new keystore is created with
the name instancename_Test (for example, ohs1_Test).

5. Generate Keypair:

a. Select the new keystore (ohs1_Test) and click Manage.

b. Click Generate Keypair.

c. Enter the required details and click OK.

6. Generate CSR:

a. Select the new Keypair generated.

b. Click Generate CSR. The page with the following information is displayed:

Certificate signing request with Alias: ohs_cert is exported
successfully. To export it to a
 file, click "Export CSR". You can send this file to a CA
or you can cut and paste the entire
 text in the box from BEGIN NEW CERTIFICATE REQUEST to END
NEW CERTIFICATE REQUEST. Once you
 get your certificate back from CA you can continue with
import.

c. Click Export CSR and save the file.
Ensure that the Lock and Edit is used so that the changes are committed. If
the keystore is not saved, you cannot import the new certificate. Therefore,
before requesting the certificate, exit the browser and go back to verify that the
keystore is saved.

7. Obtain CA signed certificate by sending CSR to any CA and obtaining the
certificates.

8. Import the Trusted Certificate:

a. Navigate to OracleHTTPServer, go to Security, and click Keystore.

b. Select the keystore from which the CSR was generated and click Manage.

c. Click Import.

d. In the Certificate Type, select Trusted Certificate and either paste the
contents of the root CA certificate rootca.crt, or select the file and click OK.

e. Repeat the above steps for any other Trusted CA Certificates in the chain.

9. Import the Trusted Certificate to weblogic domain. Also import the root CA
certificate and any other Trusted CA Certificates to weblogic system stripe under
trust keystore:

a. Navigate to the weblogic domain, go to Security, and click Keystore.

b. Expand system stripe, select trust keystore, and click Manage.

c. Click Import.

d. In the Certificate Type, select Trusted Certificate and either paste the
contents of the root CA certificate rootca.crt, or select the file and click OK.

e. Repeat the above steps for any other Trusted CA Certificates in the chain.

Chapter 4
Configuring SSL for Admin Port

4-28

10. Import the User Certificate:

a. Navigate to OracleHTTPServer, go to Security, and click Keystore.

b. Select the keystore from which the CSR was generated, and click Manage.

c. Click Import.

d. In the Certificate Type, select Certificate and either paste the contents of
server.crt, or select the file and click OK.

11. Export Key store to wallet:

a. Navigate to OracleHTTPServer, go to Security, and click Keystore.

b. Select the keystore from which the CSR was generated, and click Manage.

c. Click Export Keystore to Wallet. An Auto-Login Only Wallet is created in keystore
directory of OHS instance.

Note:

Before you export the keystore to a wallet, ensure that you click Lock and Edit
and then click Activate Changes.

12. Configure the wallet in the Oracle HTTP Server by editing the admin.conf file to point to
the newly created wallet.

Example of admin.conf file:

<VirtualHost AdminHostIP:AdminPort>
<IfModule ossl_module>
 ...
 SSLWallet "/usr/oracle/ohs/wallets"
 ...
</IfModule>
</VirtualHost>

Note:

admin.conf file cannot be edited via Fusion Middleware Control. To manually
edit it, see Modifying an Oracle HTTP Server Configuration File.

Enabling SSL for Oracle HTTP Server Admin Host
Enable SSL for the admin host by configuring the following mod_ossl directives in a
<IfModule ossl_module> block.

By default, admin.conf file includes the following configuration settings.

• SSLEngine ON
For more information, see SSLEngine Directive.

• SSLProtocol TLSv1.2
For more information, see SSLProtocol Directive.

• SSLCipherSuite

Chapter 4
Configuring SSL for Admin Port

4-29

For more information, see SSLCipherSuite Directive.

• SSLWallet
Set this directive to the wallet created in Creating a Wallet. For more information,
see SSLWallet Directive.

Sample configuration:

<VirtualHost 127.0.0.1:9991>
<IfModule ossl_module>
 SSLEngine on
 SSLProtocol TLSv1.2
 SSLCipherSuites
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,TLS_ECDHE_ECDSA_WITH_AES_256_GC
M_SHA384,TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256,TLS_ECDHE_ECDSA_WITH_A
ES_256_CBC_SHA384,TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA,TLS_ECDHE_ECDSA_
WITH_AES_256_CBC_SHA,TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,TLS_ECDHE_RS
A_WITH_AES_256_GCM_SHA384,TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256,TLS_ECD
HE_RSA_WITH_AES_256_CBC_SHA384,TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA,TLS_E
CDHE_RSA_WITH_AES_256_CBC_SHA,TLS_RSA_WITH_AES_128_GCM_SHA256,TLS_RSA_W
ITH_AES_256_GCM_SHA384,TLS_RSA_WITH_AES_128_CBC_SHA256,TLS_RSA_WITH_AES
_256_CBC_SHA256,SSL_RSA_WITH_AES_128_CBC_SHA,SSL_RSA_WITH_AES_256_CBC_S
HA
 SSLWallet “<wallet location>”
</IfModule>
</VirtualHost>

Ensuring that the Host Name Verification Succeeds
Host name verification happens as part of the SSL handshake between the Node
Manager and the Oracle HTTP Server (OHS) admin host.

Host name verification succeeds if the host name in the admin host URL to which the
Node Manager connects, matches the host name in the digital certificate that the OHS
admin host sends back as part of the SSL connection.

To ensure that this verification step succeeds, you must configure the host name for
Oracle HTTP Server admin host correctly as described in the following sections:

• ServerName Directive Configuration

• Listen Directive Configuration

ServerName Directive Configuration

Use the ServerName directive to configure the host name for the Oracle HTTP Server
admin host. The host name configured must match the Common Name attribute of the
SSL certificate's Distinguished Names or match the subjectAltName extension.
Place the ServerName directive within the <VirtualHost> block in the admin.conf file.

Chapter 4
Configuring SSL for Admin Port

4-30

Note:

If ServerName directive is not configured when SSL is enabled for the
communication between Node Manager and the OHS admin host, OHS fails to start
with the following message:

ServerName directive is not configured in admin.conf of <ohs_instance>

Once the host name is configured, changes to the Listen directive configuration may be
required, as Listen directive and host name configurations are linked.

Listen Directive Configuration

Choose an IP address and port for the admin host and configure the Listen directive with this.
The host name configured using the ServerName directive must map to the IP address
configured in the Listen directive of the admin.conf file. This is to avoid the host name
resolution errors during the communication between Node Manager and OHS admin host.
The IP address used for the Listen directive must match the one used with the
<VirtualHost> directive.

Note:

Use nslookup to ensure that the IP address used in the Listen directive is correctly
mapped to the host name of the admin host.

If the Listen directive is configured to listen on all available interfaces (that is,
Listen <port>), instead of a specific IP address (that is, Listen
<ipaddress>:<port>, OHS fails to start with the following message:

HostName/IP address is not configured for Listen directive in
admin.conf of <ohs_instance_name>

After you configure SSL on the server-side, the admin.conf configuration looks like the
following sample:

#[Listen] OHS_PROXY_PORT
Listen <IP>:<PORT>
#[VirtualHost] OHS_PROXY_VH
<VirtualHost <IP>:<PORT>>

// Ensure <HOSTNAME> resolves to <IP>
ServerName <HOSTNAME>
<Location /dms/>
 SetHandler dms-handler
 Require all granted
</Location>
CustomLog "||${PRODUCT_HOME}/bin/odl_rotatelogs
${ORACLE_INSTANCE}/servers/${COMPONENT_NAME}/logs/admin_log 43200" common
<IfModule ossl_module>
 SSLEngine on

Chapter 4
Configuring SSL for Admin Port

4-31

 SSLProtocol TLSv1.2
 SSLCipherSuite
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,TLS_ECDHE_ECDSA_WITH_AES_256_GC
M_SHA384,TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256,TLS_ECDHE_ECDSA_WITH_A
ES_256_CBC_SHA384,TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA,TLS_ECDHE_ECDSA_
WITH_AES_256_CBC_SHA,TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,TLS_ECDHE_RS
A_WITH_AES_256_GCM_SHA384,TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256,TLS_ECD
HE_RSA_WITH_AES_256_CBC_SHA384,TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA,TLS_E
CDHE_RSA_WITH_AES_256_CBC_SHA,TLS_RSA_WITH_AES_128_GCM_SHA256,TLS_RSA_W
ITH_AES_256_GCM_SHA384,TLS_RSA_WITH_AES_128_CBC_SHA256,TLS_RSA_WITH_AES
_256_CBC_SHA256,SSL_RSA_WITH_AES_128_CBC_SHA,SSL_RSA_WITH_AES_256_CBC_S
HA

// Ensure CN attribute of the certificate’s DN matches <HOSTNAME>
 SSLWallet “<WALLET LOCATION>”
 </IfModule>
</VirtualHost>

Note:

In the above sample, <IP>, <PORT>, <HOSTNAME>, and <WALLET LOCATION> are
the details of your environment.

Performing Client-Side Configuration
On the client-side, you must configure trust for the Node Manager.

Ensure that Node Manager is able to trust the certificate configured for the Oracle
HTTP Server (OHS) admin host. This is done by exporting the certificate of root CA
that signed the user certificate present in the OHS admin host's wallet and importing
the same into the Node Manager's wallet for the instance as a trusted certificate. The
Oracle HTTP Server plugin for Node Manager is enhanced to maintain a per-instance
wallet that contains the trusted certificates for the OHS admin host of that instance.

To configure the Node Manager’s wallet for an instance, add the nm-wallet property to
the ohs.plugins.nodemanager.properties file located at $DOMAIN_HOME/config/
fmwconfig/components/COMPONENT_TYPE/COMPONENT_NAME, and set it to the absolute
path to the wallet that contains the trusted certificates.

To set up trust for the Node Manager:

1. Export the root CA certificate that signed the user certificate present in the Oracle
HTTP Server admin host's wallet:

$orapki wallet export -wallet path_to_server_wallet -dn "DN for
root CA certificate" -cert root_CA.crt

2. Create a wallet for the Node Manager :

$orapki wallet create -wallet /test/my_nm_wallet -auto_login_only

Chapter 4
Configuring SSL for Admin Port

4-32

3. Import the certificate for the root CA into my_nm_wallet as a trusted certificate:

$orapki wallet add -wallet /test/my_nm_wallet -trusted_cert -cert
root_CA.crt -auto_login_only

Configure the nm-wallet property in the ohs.plugins.nodemanager.properties file to point
to the Node Manager's wallet:

1. Open the file ohs.plugins.nodemanager.properties located at $DOMAIN_HOME/config/
fmwconfig/components/COMPONENT_TYPE/COMPONENT_NAME in a text editor.

2. Add nm-wallet=/test/my_nm_wallet to the end of the file.

Note:

You cannot edit the ohs.plugins.nodemanager.properties file using Fusion
Middleware Control or WLST. To edit it manually, see Modifying an Oracle HTTP
Server Configuration File.

Chapter 4
Configuring SSL for Admin Port

4-33

5
Working with Oracle HTTP Server

When working with an installed version of Oracle HTTP Server, there are some common
tasks that you have to perform, such as editing configuration files, specifying server
properties, and more.

This chapter includes the following sections:

• About Editing Configuration Files

• Specifying Server Properties

• Configuring Oracle HTTP Server Instances

• Configuring the mod_security Module

• About Editing Configuration Files
Configuration files are to be edited only after the Administration Server is stopped to
avoid losing the changes.

• Specifying Server Properties
Server properties include items like the document root, administrator email, directory
index, and operating system details. You can set Oracle HTTP Server properties by using
Fusion Middleware Control only or by directly editing the configuration files. You cannot
use WLST commands to specify the server properties.

• Configuring Oracle HTTP Server Instances
Some of the common Oracle HTTP Server instance configuration procedures are related
to secure sockets, MIME settings, Oracle WebLogic Server proxy plug-in (mod_wl_ohs),
mod_proxy_fcgi, and more.

• Configuring the mod_security Module
You can use the open-source mod_security module to detect and prevent intrusion
attacks against Oracle HTTP Server. For example, specifying a mod_security rule to
screen all incoming requests, and deny requests that match the conditions specified in
the rule.

About Editing Configuration Files
Configuration files are to be edited only after the Administration Server is stopped to avoid
losing the changes.

For instances that are part of a WebLogic Server Domain, Fusion Middleware Control and the
management infrastructure manages the Oracle HTTP Server configuration. Direct editing of
the configuration in the staging directory is subject to being overwritten after subsequent
management operations, including modifying the configuration in Fusion Middleware Control.
For such instances, direct editing should only be performed when the administration server is
stopped. When the administration server is subsequently started (or restarted), the results of
any manual edits will be replicated to the run-time directory on the node of the managed
instance.

See Understanding Configuration Files.

The following sections provide more information on modifying configuration files.

5-1

• Editing a Configuration File for a Standalone Domain.

• Editing a Configuration File for a WebLogic Server Domain.

• Editing a Configuration File for a Standalone Domain

• Editing a Configuration File for a WebLogic Server Domain
You can modify configuration files for a Weblogic Server Domain. Use the Fusion
Middleware Control to edit these files. The changes are displayed on the
Advanced Server Configuration page after you restart the Oracle HTTP Server.

Editing a Configuration File for a Standalone Domain
For standalone instances, you can edit the configuration directly within the staging
directory at any time. The runtime config files are updated on start, restart or stopping
of the Oracle HTTP Server instance.

Editing a Configuration File for a WebLogic Server Domain
You can modify configuration files for a Weblogic Server Domain. Use the Fusion
Middleware Control to edit these files. The changes are displayed on the Advanced
Server Configuration page after you restart the Oracle HTTP Server.

Note:

You cannot edit admin.conf file using Fusion Middleware Control. You must
use a text editor to edit the admin.conf file manually.

To open and edit configuration files using Fusion Middleware Control, do the following:

1. Select Administration from the HTTP Server menu.

2. Select Advanced Configuration from the Administration menu item.

3. In the Advanced Server Configuration page, select the configuration file from the
Select File drop-down list, such as the httpd.conf file, then click Go.

4. Edit the file, as needed.

5. Review the settings. If the settings are correct, click Apply to apply the changes. If
the settings are incorrect, or you decide to not apply the changes, click Revert to
return to the original settings.

6. Restart Oracle HTTP Server as described in Restarting Oracle HTTP Server
Instances .

The file is saved and displayed on the Advanced Server Configuration page.

Specifying Server Properties
Server properties include items like the document root, administrator email, directory
index, and operating system details. You can set Oracle HTTP Server properties by
using Fusion Middleware Control only or by directly editing the configuration files. You
cannot use WLST commands to specify the server properties.

This section includes the following topics:

Chapter 5
Specifying Server Properties

5-2

• Specifying Server Properties by Using Fusion Middleware Control

• Specify Server Properties by Editing the httpd.conf File

• Specifying Server Properties by Using Fusion Middleware Control

• Specify Server Properties by Editing the httpd.conf File

Specifying Server Properties by Using Fusion Middleware Control
Follow these steps to specify the server properties by using Fusion Middleware Control.

1. Select Administration from the Oracle HTTP Server menu.

2. Select Server Configuration from the Administration menu.

3. In the Server Configuration page, enter the server properties.

a. Enter the documentation root directory in the Document Root field that forms the
main document tree visible from the website.

b. Enter the e-mail address in the Administrator's E-mail field that the server will
include in error messages sent to the client.

c. Enter the directory index in the Directory Index field. The is the main (index) page
that will be displayed when a client first accesses the website.

d. Use the Modules region to enable or disable modules. The available modules are
mod_authnz_fcgi and mod_proxy_fcgi. See About Configuring mod_proxy_fcgi.

e. Create an alias, if necessary in the Aliases table. An alias maps to a specified
directory. For example, to use a specific set of content pages for a group you can
create an alias to the directory that has the content pages.

4. Review the settings. If the settings are correct, click Apply to apply the changes. If the
settings are incorrect, or you decide to not apply the changes, click Revert to return to
the original settings.

5. Restart Oracle HTTP Server as described in Restarting Oracle HTTP Server Instances .

The server properties are saved, and shown on the Server Configuration page.

Specify Server Properties by Editing the httpd.conf File
You can specify server properties by manually editing the httpd.conf file. Follow these steps
to edit the httpd.conf file.

Note:

Before attempting to edit any .conf file, you should familiarize yourself with the
layout of the configuration file directories, mechanisms for editing the files, and
learn more about the files themselves. See Understanding Configuration Files.

1. Open the httpd.conf file (the "master" or "staging" copy: $DOMAIN_HOME/config/
fmwconfig/components/OHS/instance_name/httpd.conf)by using either a text editor or
the Advanced Server Configuration page in Fusion Middleware Control. (See Modifying
an Oracle HTTP Server Configuration File.)

Chapter 5
Specifying Server Properties

5-3

2. In the DocumentRoot section of the file, enter the directory that stores the main
content for the website. The following is an example of the syntax:

DocumentRoot "${ORACLE_INSTANCE}/config/fmwconfig/components/$
{COMPONENT_TYPE}/instances/${COMPONENT_NAME}/htdocs"

3. In the ServerAdmin section of the file, enter the administrator's email address. This
is the e-mail address that will appear on client pages. The following is an example
of the syntax:

ServerAdmin WebMaster@example.com
4. In the DirectoryIndex section of the file, enter the directory index. This is the main

(index) page that will be displayed when a client first accesses the website. The
following is an example of the syntax:

DirectoryIndex index.html index.html.var
5. Create aliases, if needed. An alias maps to a specified directory. For example, to

use a specific set of icons, you can create an alias to the directory that has the
icons for the Web pages. The following is an example of the syntax:

Alias /icons/ "${PRODUCT_HOME}/icons/"<Directory "${PRODUCT_HOME}/icons">
Options Indexes MultiViews AllowOverride None Require all granted</
Directory>

6. Save the file.

7. Restart Oracle HTTP Server as described in Restarting Oracle HTTP Server
Instances .

Configuring Oracle HTTP Server Instances
Some of the common Oracle HTTP Server instance configuration procedures are
related to secure sockets, MIME settings, Oracle WebLogic Server proxy plug-in
(mod_wl_ohs), mod_proxy_fcgi, and more.

Note:

This section does not include initial system configuration information. For
initial system configuration instructions, see Installing and Configuring Oracle
HTTP Server.

This section includes the following topics:

• Secure Sockets Layer Configuration

• Configuring Secure Sockets Layer in Standalone Mode

• Exporting the Keystore to an Oracle HTTP Server Instance Using WLST

• Configuring MIME Settings Using Fusion Middleware Control

• About Configuring mod_proxy_fcgi

• About Configuring the Oracle WebLogic Server Proxy Plug-In (mod_wl_ohs)

• Removing Access to Unneeded Content

• Using the apxs Command to Install Extension Modules

Chapter 5
Configuring Oracle HTTP Server Instances

5-4

• Disabling the Options Method

• Updating Oracle HTTP Server Component Configurations on a Shared File System

Note:

Fusion Middleware Control and other Oracle software which manage the Oracle
HTTP Server configuration might save configuration files in a different, equivalent
format. After using the software to make a configuration change, multiple
configuration files might be rewritten.

• Secure Sockets Layer Configuration

• Configuring Secure Sockets Layer in Standalone Mode

• Exporting the Keystore to an Oracle HTTP Server Instance Using WLST

• Configuring MIME Settings Using Fusion Middleware Control

• About Configuring mod_proxy_fcgi

• About Configuring the Oracle WebLogic Server Proxy Plug-In (mod_wl_ohs)

• Removing Access to Unneeded Content

• Using the apxs Command to Install Extension Modules

• Disabling the Options Method

• Updating Oracle HTTP Server Component Configurations on a Shared File System

Secure Sockets Layer Configuration
Secure Sockets Layer (SSL) is an encrypted communication protocol that is designed for
securely sending messages across the Internet. SSL resides between Oracle HTTP Server
on the application layer and the TCP/IP layer. It transparently handles encryption and
decryption when a secure connection is made by a client.

One common use of SSL is to secure Web HTTP communication between a browser and a
Web server. This case does not preclude the use of non-secured HTTP. The secure version
is simply HTTP over SSL (HTTPS). The differences are that HTTPS uses the URL scheme
https:// rather than http://. The default communication port is 4443 in Oracle HTTP
Server. Oracle HTTP Server does not use the 443 standard https:// privileged port because
of security implications. For information about running Oracle HTTP Server on privileged
ports, see Starting Oracle HTTP Server Instances on a Privileged Port (UNIX Only).

By default, an SSL listen port is configured and enabled using a default wallet during
installation. Wallets store your credentials, such as certificate requests, certificates, and
private keys.

The default wallet that is automatically installed with Oracle HTTP Server is for testing
purposes only. A real wallet must be created for your production server. The default wallet is
located in the DOMAIN_HOME/config/fmwconfig/components/OHS/instances/
componentName/keystores/default directory. You can either place the new wallet in this
location, or change the SSLWallet directive in DOMAIN_HOME/config/fmwconfig/
components/OHS/componentName/ssl.conf to point to the location of your real wallet.

Chapter 5
Configuring Oracle HTTP Server Instances

5-5

Oracle strongly recommends that you do not use a certificate that uses the Message
Digest 5 algorithm (MD5). This algorithm has been severely compromised. The MD5
certificate must be replaced with a certificate that uses Secure Hash Algorithm 2
(SHA-2), which provides more secure encryption.

For the changes to take effect, restart Oracle HTTP Server, as described in Restarting
Oracle HTTP Server Instances .

For information about configuring wallets and SSL by using Fusion Middleware
Control, see Enabling SSL for Oracle HTTP Server Virtual Hosts in the Administering
Oracle Fusion Middleware guide.

Configuring Secure Sockets Layer in Standalone Mode
The following sections contain information about how to enable and configure SSL for
Oracle HTTP Server in standalone mode. These instructions use the mod_ossl
module to Oracle HTTP Server which enables the server to use SSL.

• Configure SSL

• Specify SSLVerifyClient on the Server Side

• Enable SSL Between Oracle HTTP Server and Oracle WebLogic Server

• Using SAN Certificates with Oracle HTTP Server

• Configure SSL

• Specify SSLVerifyClient on the Server Side

• Enable SSL Between Oracle HTTP Server and Oracle WebLogic Server

• Using SAN Certificates with Oracle HTTP Server

Configure SSL
By default, SSL is enabled when you install Oracle HTTP Server. Perform the
following tasks to modify and configure SSL:

• Task 1: Create a Real Wallet

• Task 2: (Optional) Customize Your Configuration

• Basic SSL Configuration Example

• Task 1: Create a Real Wallet

• Task 2: (Optional) Customize Your Configuration

• Basic SSL Configuration Example

Task 1: Create a Real Wallet
To configure Oracle HTTP Server for SSL, you need a wallet that contains the
certificate for the server. Wallets store your credentials, such as certificate requests,
certificates, and private keys.

The default wallet that is automatically installed with Oracle HTTP Server is for testing
purposes only. A real wallet must be created for your production server. The default
wallet is located in $ORACLE_INSTANCE/config/fmwconfig/
components/$COMPONENT_TYPE/instances/$COMPONENT_NAME/keystores/default. You

Chapter 5
Configuring Oracle HTTP Server Instances

5-6

can either place the new wallet in that location, or change the SSLWallet directive in
ssl.conf (the pre-installation location) to point to the location of your real wallet.

See Also:

orapki in Administering Oracle Fusion Middleware for instructions on creating a
wallet. It is important that you do the following:

Generate a certificate request: For the Common Name, specify the name or alias of
the site you are configuring. Make sure that you enable this auto_login_only feature.

Task 2: (Optional) Customize Your Configuration
Optionally, you can further customize your configuration using mod_ossl directives.

See Also:

• mod_ossl Module for a list and descriptions of directives accepted by mod_ossl.

• SSLFIPS Directive for information on how to configure the SSLFIPS directive
and a list of the cipher suites it accepts.

Note:

The files installed during configuration contain all of the necessary SSL
configuration directives and a default setup for SSL.

Basic SSL Configuration Example
Your SSL configuration must contain, at minimum, the directives in the following example.

LoadModule ossl_module "${PRODUCT_HOME}/modules/mod_ossl.so"
Listen 4443
ServerName www.testohs.com
SSLEngine on
SSL Protocol Support:
List the supported protocols.
SSLProtocol TLSv1.2 TLSv1.1 TLSv1
SSL Cipher Suite:
List the ciphers that the client is permitted to negotiate.
SSLCipherSuite
SSL_RSA_WITH_RC4_128_MD5,SSL_RSA_WITH_RC4_128_SHA,SSL_RSA_WITH_3DES_EDE_CBC_SHA,TLS_RSA
_WITH_AES_128_CBC_SHA,TLS_RSA_WITH_AES_256_CBC_SHA
SSLWallet "${ORACLE_INSTANCE}/config/fmwconfig/components/${COMPONENT_TYPE}/instances/$
{COMPONENT_NAME}/keystores/default"
</VirtualHost>To enable client authentication, do the following:

Chapter 5
Configuring Oracle HTTP Server Instances

5-7

Specify SSLVerifyClient on the Server Side
This section describes the different ways of using the SSLVerifyClient directive to
authenticate and authorize access. Use the appropriate client certificate on the client
side for the HTTPS connection. See your client documentation for information on
getting and using a client certificate. Ensure that the Oracle server wallet trusts your
client certificate.

To ensure that the server trusts the client certificate, you can check whether the client
certificate is self-signed or signed by a certificate authority (CA). In both cases, the
certificate must be added to the list of trusted certificates.

You can add a trusted client certificate to an Oracle wallet using one of the following
ways:

• Adding a Trusted Client Certificate in a Standalone Oracle HTTP Server
Installation

• Adding a Trusted Client Certificate in Collocated Oracle HTTP Server Installation

The following subsections describe the different methods of using the SSLVerifyClient
directive to authenticate and authorize access:

• Forcing Clients to Authenticate Using Certificates

• Forcing a Client to Authenticate for a Particular URL

• Authorizing a Client for a Particular URL

• Allowing Clients with Strong Ciphers and CA Client Certificate or Basic
Authentication

• Adding a Trusted Client Certificate in a Standalone Oracle HTTP Server
Installation

• Adding a Trusted Client Certificate in Collocated Oracle HTTP Server Installation

• Forcing Clients to Authenticate Using Certificates

• Forcing a Client to Authenticate for a Particular URL

• Authorizing a Client for a Particular URL

• Allowing Clients with Strong Ciphers and CA Client Certificate or Basic
Authentication

Adding a Trusted Client Certificate in a Standalone Oracle HTTP Server Installation

To add a trusted certificate to the wallet in a standalone installation, use the orapki
command. See orapki in Administering Oracle Fusion Middleware.

Adding a Trusted Client Certificate in Collocated Oracle HTTP Server Installation
To add a trusted certificate to a wallet in a collocated installation, use the Fusion
Middleware Control or the WebLogic Scripting Tool.

1. Import the certificate into the trusted certificate list of the keystore.

2. Export keystore into the server’s wallet after importing trusted certificates to the
keystore.

Chapter 5
Configuring Oracle HTTP Server Instances

5-8

To import certificate using the Fusion Middleware Control, see Managing Certificates with
Fusion Middleware Control in Securing Applications with Oracle Platform Security
Services. Export keystore option is not provided in the Fusion Middleware Control.

To import certificate and export keystore using the WebLogic Scripting Tool, see
Managing Certificates with WLST and Managing Keystores with WLST in Securing
Applications with Oracle Platform Security Services.

Forcing Clients to Authenticate Using Certificates
You can force the client to validate its client certificate and allow access to the server using
SSLVerifyClient. This scenario is valid for all clients having a client certificate supplied by
the server Certificate Authority (CA). The server can validate client's supplied certificates
against its CA for additional permission.

require a client certificate which has to be directly
signed by our CA certificate
SSLVerifyClient require
SSLWallet "${ORACLE_INSTANCE}/config/fmwconfig/components/${COMPONENT_TYPE}/instances/$
{COMPONENT_NAME}/keystores/default"

Forcing a Client to Authenticate for a Particular URL
To force a client to authenticate using certificates for a particular URL, you can use the per-
directory reconfiguration features of mod_ossl. In this case, the SSLVerifyClient appears in
a Location block.

SSLVerifyClient none
SSLWallet "${ORACLE_INSTANCE}/config/fmwconfig/components/${COMPONENT_TYPE}/instances/$
{COMPONENT_NAME}/keystores/default"
<Location /secure/area>
 SSLVerifyClient require
</Location>

Authorizing a Client for a Particular URL
To authorize a client for a particular URL, check that part of the client certificate matches what
you expect. Usually, this means checking all or part of the Distinguished Name (DN), to see if
it contains some known string. There are two ways to do this, using either mod_auth_basic or
SSLRequire.

The mod_auth_basic method is generally required when the certificates are completely
arbitrary, or when their DNs have no common fields (usually the organization, and so on). In
this case, you should establish a password database containing all of the clients allowed, for
example:

SSLVerifyClient none
<Directory /access/required>
 SSLVerifyClient require
 SSLOptions +FakeBasicAuth
 SSLRequireSSL
 AuthName "Oracle Auth"
 AuthType Basic
 AuthBasicProvider file
 AuthUserFile httpd.passwd
 Require valid-user
</Directory>

Chapter 5
Configuring Oracle HTTP Server Instances

5-9

The password used in this example is the DES encrypted string password. For more
information on this directive, see SSLOptions Directive which describes the
SSLOptions directive of the mod_ossl module.

httpd.passwd

Subject: OU=Class 3 Public Primary Certification Authority,O=VeriSign\,
Inc.,C=US
Subject: CN=GTE CyberTrust Global Root,OU=GTE CyberTrust Solutions\,
Inc.,O=GTE Corporation,C=US
Subject: CN=localhost,OU=FOR TESTING ONLY,O=FOR TESTING ONLY
Subject: OU=Class 2 Public Primary Certification Authority,O=VeriSign\,
Inc.,C=US
Subject: OU=Class 1 Public Primary Certification Authority,O=VeriSign\,
Inc.,C=US

When your clients are all part of a common hierarchy, which is encoded into the DN,
you can match them more easily using SSLRequire, for example:

SSLVerifyClient none
SSLWallet "${ORACLE_INSTANCE}/config/fmwconfig/components/${COMPONENT_TYPE}/
instances/${COMPONENT_NAME}/keystores/default"

<Directory /access/required>
 SSLVerifyClient require
 SSLOptions +FakeBasicAuth
 SSLRequireSSL
 SSLRequire %{SSL_CLIENT_S_DN_O} eq "VeriSign\, Inc." \
and %{SSL_CLIENT_S_DN_OU} in {"Class", "Public", "Primary"}
</Directory>

Allowing Clients with Strong Ciphers and CA Client Certificate or Basic Authentication
The following examples presume that clients on the Intranet have IPs in the range
192.168.1.0/24, and that the part of the Intranet website you want to allow Internet
access to is /access/required. This configuration should remain outside of your HTTPS
virtual host, so that it applies to both HTTPS and HTTP.

SSLWallet "$ORACLE_INSTANCE/config/fmwconfig/components/$COMPONENT_TYPE/
instances/$COMPONENT_NAME/keystores/default"
<Directory /access/required>
 # Outside the subarea only Intranet access is granted
 Require ip 192.168.1.0/24
</Directory>

<Directory /access/required>
 # Inside the subarea any Intranet access is allowed
 # but from the Internet only HTTPS + Strong-Cipher + Password
 # or the alternative HTTPS + Strong-Cipher + Client-Certificate

 # If HTTPS is used, make sure a strong cipher is used.
 # Additionally allow client certs as alternative to basic auth.
 SSLVerifyClient optional
 SSLOptions +FakeBasicAuth +StrictRequire
 SSLRequire %{SSL_CIPHER_USEKEYSIZE}>= 128
 # Force clients from the Internet to use HTTPS
 RewriteEngine on
 RewriteCond %{REMOTE_ADDR} !^192\.168\.1\.[0-9]+$
 RewriteCond %{HTTPS} !=on

Chapter 5
Configuring Oracle HTTP Server Instances

5-10

 RewriteRule . - [F]
 # Allow Network Access and/or Basic Auth
 Satisfy any

 # Network Access Control
 Require ip 192.168.1.0/24
 # HTTP Basic Authentication
 AuthType basic
 AuthName "Protected Intranet Area"
 AuthBasicProvider file
 AuthUserFile htpasswd
 Require valid-user
</Directory>

Enable SSL Between Oracle HTTP Server and Oracle WebLogic Server
Use the Oracle WebLogic Server Proxy Plug-In to enable SSL between Oracle HTTP Server
and Oracle WebLogic Server. The plug-ins allow you to configure SSL libraries and configure
one-way and two-way SSL communications. See Use SSL with Plug-Ins and Parameters for
Oracle WebLogic Server Proxy Plug-In in Using Oracle WebLogic Server Proxy Plug-Ins.

Using SAN Certificates with Oracle HTTP Server
A Subject Alternative Name (SAN) Certificate or Unified Communications Certificates (UCC)
can secure multiple sub-domains that are specified in Subject Alternative name field.

You can use the Subject Alternative Name (SAN) field to specify additional host names (for
example, site, IP address, command name) that are to be protected by a single SSL
certificate. Using a SAN certificate, you can secure host names on different base domains in
one SSL certificate. You can also host multiple SSL enabled sites on a single server by using
Multi-Domain (SAN) Certificate with Subject Alternative Names. Certificates with SAN
extension do not support use of wildcards. So you must add each subdomain individually.

Create Certificate Request with SAN Extension by Using orapki Utility

Use the orapki utility to create certificate request with SAN extension. See Adding a
Certificate Request to an Oracle Wallet.

Sample Configuration Using SAN Certificates

1. Create a <VirtualHost> block for each host that you want to serve using the same IP
address and port.

2. In each <VirtualHost> block, set up the ServerName directive to designate which host is
being served.

For example, if VH1 is the first virtual host block, set the ServerName as ServerName
ns1.example.com. Similarly, if VH2 is the second virtual host block, set the ServerName as
ServerName ns2.example.com.

3. Generate a certificate with the host names referring the different virtual hosts added to
the SAN extension field.

4. In each <VirtualHost> block, set up the SSLWallet directive to the wallet that contains
the certificate generated in Step 3.

For example, SSLwallet server.

5. Save the changes and start Oracle HTTP Server.

Chapter 5
Configuring Oracle HTTP Server Instances

5-11

Sample Configuration Example

Listen 4443
<VirtualHost>
 ServerName ns1.example.com
 SSLWallet "server"
</VirtualHost>

<VirtualHost>
 ServerName ns2.example.com
 SSLWallet "server"
</VirtualHost>

Restrictions

Oracle HTTP Server does not support Server Name Indication (SNI) extension. In
absence of SNI support, when setting up more than one SSL enabled virtual host by
using a certificate with several SubjectAltName extension entries, only the per-vhost
mod_ossl directives set for the first virtual host are considered.

Consider the following configuration:

Ensure that Apache listens on port 443
Listen 443
<VirtualHost *:443>
 # Because this virtual host is defined first, it will
 # be used as the default
 DocumentRoot /www/example1
 ServerName ns1.example.com
 # Other directives here
 SSLCipherSuite AES
 SSLProtocol TLSv1
</VirtualHost>
<VirtualHost *:443>
 DocumentRoot /www/example2
 ServerName ns2.example.com
 # Other directives here
 SSLCipherSuite AES-GCM
 SSLProtocol TLSv1.2
</VirtualHost>

When connecting to both ns1.example.com and ns2.example.com, permitted
ciphers and protocols are AES and TLSv1 respectively. Although the cipher suite
directive is set to AES-GCM and the protocol version is set to TLSv1.2 for
ns2.example.com, the ones used in handshake while connecting to
ns2.example.com would be AES cipher and TLSv1 protocol only.

Exporting the Keystore to an Oracle HTTP Server Instance Using
WLST

The collocated Oracle HTTP server uses the Oracle wallet during run time. It is
recommended not to manage certificates in the Oracle wallet using tools like orapki.

Chapter 5
Configuring Oracle HTTP Server Instances

5-12

Instead, use the central storage and unified management available with the Keystore Service
to manage wallets and their contents through the export, import, and synchronization features
of that service. The exportKeyStore command provided by KSS, can be used for exporting
the keystore to the wallet. However, there are many nuances that the user has to be aware of
while using the exportKeyStore command. Hence, a custom OHS WLST command called
ohs_exportKeystore is provided.

Use the WLST custom command ohs_exportKeyStore to export the keystore to the Oracle
wallet after modifying the keystore. For more information about this command and naming
conventions for keystores, see ohs_exportKeyStore.

1. Launch WLST from the command line.

Linux or UNIX: $ORACLE_HOME/oracle_common/common/bin/wlst.sh
Windows: $ORACLE_HOME\oracle_common\common\bin\wlst.cmd

2. Connect to the Administration Server instance:

connect('<userName', '<password>', '<host>:<port>')
3. Issue the ohs_exportKeyStore WLST custom command:

ohs_exportKeyStore(keyStoreName = '<keystore_name>', instanceName =
'<name_of_the_OHS_instance>')

For example, to export the ohs1_myKeystore keystore to the ohs1 Oracle HTTP Server
instance:

ohs_exportKeyStore(keyStoreName = 'ohs1_myKeystore', instanceName = 'ohs1')

Configuring MIME Settings Using Fusion Middleware Control
Oracle HTTP Server uses Multipurpose Internet Mail Extension (MIME) settings to interpret
file types, encodings, and languages. MIME settings for Oracle HTTP Server can only be set
using Fusion Middleware Control. You cannot use WLST commands to specify the MIME
settings.

The following tasks can be completed on the MIME Configuration page:

• Configuring MIME Types

• Configuring MIME Encoding

• Configuring MIME Languages

• Configuring MIME Types

• Configuring MIME Encoding

• Configuring MIME Languages

Configuring MIME Types
MIME type maps a given file extension to a specified content type. The MIME type is used for
filenames containing an extension.

To configure a MIME type using Fusion Middleware Control, do the following:

1. Select Administration from the Oracle HTTP Server menu.

Chapter 5
Configuring Oracle HTTP Server Instances

5-13

2. Select MIME Configuration from the Administration menu. The MIME
configuration page appears. Scroll to the MIME Types region.

3. Click Add Row in MIME Configuration region. A new, blank row is added to the
list.

4. Enter the MIME type and its associated file extension.

5. Review the settings. If the settings are correct, click Apply to apply the changes. If
the settings are incorrect, or you decide to not apply the changes, click Revert to
return to the original settings.

6. Restart Oracle HTTP Server, as described in Restarting Oracle HTTP Server
Instances .

The MIME configuration is saved, and shown on the MIME Configuration page.

Configuring MIME Encoding
MIME encoding enables Oracle HTTP Server to determine the file type based on the
file extension. You can add and remove MIME encodings. The encoding directive
maps the file extension to a specified encoding type.

1. Select Administration from the Oracle HTTP Server menu.

2. Select MIME Configuration from the Administration menu. The MIME
configuration page appears. Scroll to the MIME Encoding region.

3. Expand the MIME Encoding region, if necessary, by clicking the plus sign (+) next
to MIME Encoding.

4. Click Add Row in MIME Encoding region. A new, blank row is added to the list.

5. Enter the MIME encoding, such as x-gzip.

6. Enter the file extension, such as .gx.

7. Review the settings. If the settings are correct, click Apply to apply the changes. If
the settings are incorrect, or you decide to not apply the changes, click Revert to
return to the original settings.

8. Restart Oracle HTTP Server as described in Restarting Oracle HTTP Server
Instances .

Configuring MIME Languages
The MIME language setting maps file extensions to a particular language. This
directive is commonly used for content negotiation, in which Oracle HTTP Server
returns the document that most closely matched the preferences set by the client.

1. Select Administration from the Oracle HTTP Server menu.

2. Select MIME Configuration from the Administration menu. The MIME
configuration page appears. Scroll to the MIME Languages region.

3. Expand the MIME Languages region, if necessary, by clicking the plus sign (+)
next to MIME Languages.

4. Click Add Row in MIME Languages region. A new, blank row is added to the list.

5. Enter the MIME language, such as en-US.

6. Enter the file extension, such as en-us.

Chapter 5
Configuring Oracle HTTP Server Instances

5-14

7. To choose a default MIME language, select the desired row, then click Set As Default.
The default language will appear in the Default MIME Language field.

8. Review the settings. If the settings are correct, click Apply to apply the changes. If the
settings are incorrect, or you decide to not apply the changes, click Revert to return to
the original settings.

9. Restart Oracle HTTP Server as described in Restarting Oracle HTTP Server Instances .

About Configuring mod_proxy_fcgi
The mod_proxy_fcgi module does not have configuration directives. Instead, it uses the
directives set on the mod_proxy module. Unlike the mod_fcgid and mod_fastcgi modules, the
mod_proxy_fcgi module has no provision for starting the application process. The purpose of
mod_proxy_fcgi is to move this functionality outside of the web server for faster performance.
So, mod_proxy_fcgi simply will act as a reverse proxy to an external FastCGI server.

For more information on configuring the mod_proxy_fcgi module, see Task 3: Configure
mod_proxy_fcgi to Act as a Reverse Proxy to an External FastCGI Server and Task 4: Setup
an External FastCGI Server.

About Configuring the Oracle WebLogic Server Proxy Plug-In
(mod_wl_ohs)

You can configure the Oracle WebLogic Server Proxy Plug-In (mod_wl_ohs) either by using
Fusion Middleware Control or by manually editing the mod_wl_ohs.conf configuration file.

For information about the prerequisites and procedure for configuring the Oracle WebLogic
Server Proxy Plug-In to proxy requests from Oracle HTTP Server to Oracle WebLogic Server,
see Configuring the WebLogic Proxy Plug-In for Oracle HTTP Server in Using Oracle
WebLogic Server Proxy Plug-Ins.

• Configuring SSL for mod_wl_ohs

Configuring SSL for mod_wl_ohs
You can use the Secure Sockets Layer (SSL) protocol to protect the connection between the
plug-in and Oracle WebLogic Server. The SSL protocol provides confidentiality and integrity
to the data passed between the plug-in and WebLogic Server. See Using SSL with Plug-Ins
in Using Oracle WebLogic Server Proxy Plug-Ins.

Removing Access to Unneeded Content
By default, the httpd.conf file allows server access to extra content such as documentation
and sample scripts. This access might present a low-level security risk. Starting with the
Oracle HTTP Server 12c (12.2.1) release, some of these sections are commented out.

You might want to tailor this extra content in your own environment to suit your use cases. To
access the httpd.conf file, see About Editing Configuration Files to access the file.

This section includes the following topics:

• Edit the cgi-bin Section

• Edit the Fancy Indexing Section

• Edit the Product Documentation Section

Chapter 5
Configuring Oracle HTTP Server Instances

5-15

• Edit the cgi-bin Section

• Edit the Fancy Indexing Section

• Edit the Product Documentation Section

Edit the cgi-bin Section
Examine the contents of the cgi-bin directory. You can either remove the code from
the httpd.conf file that you do not need, or change the following Directory directive to
point to your own CGI script directory.

...

"${ORACLE_INSTANCE}/config/fmwconfig/components/${COMPONENT_TYPE}/instances/$
{COMPONENT_NAME}/cgi-bin" should be changed to whatever your ScriptAliased
CGI directory exists, if you have that configured.
#
<Directory "${ORACLE_INSTANCE}/config/fmwconfig/components/${COMPONENT_TYPE}/
instances/${COMPONENT_NAME}/cgi-bin">
 AllowOverride None
 Options None
 Require all granted
</Directory>
...

Edit the Fancy Indexing Section
Edit the following sections pertaining to fancy indexing in the httpd.conf file for your
use cases.

...
Uncomment the following line to enable the fancy indexing configuration
below.
Define ENABLE_FANCYINDEXING
<IfDefine ENABLE_FANCYINDEXING>

IndexOptions: Controls the appearance of server-generated directory
listings.
#
IndexOptions FancyIndexing HTMLTable VersionSort

We include the /icons/ alias for FancyIndexed directory listings. If
you do not use FancyIndexing, you may comment this out.
#
Alias /icons/ "${PRODUCT_HOME}/icons/"

<Directory "${PRODUCT_HOME}/icons">
 Options Indexes MultiViews
 AllowOverride None
 Require all granted
</Directory>

#
AddIcon* directives tell the server which icon to show for different
files or filename extensions. These are only displayed for
FancyIndexed directories.
#
AddIconByEncoding (CMP,/icons/compressed.gif) x-compress x-gzip

Chapter 5
Configuring Oracle HTTP Server Instances

5-16

AddIconByType (TXT,/icons/text.gif) text/*
AddIconByType (IMG,/icons/image2.gif) image/*
AddIconByType (SND,/icons/sound2.gif) audio/*
AddIconByType (VID,/icons/movie.gif) video/*

AddIcon /icons/binary.gif .bin .exe
AddIcon /icons/binhex.gif .hqx
AddIcon /icons/tar.gif .tar
AddIcon /icons/world2.gif .wrl .wrl.gz .vrml .vrm .iv
AddIcon /icons/compressed.gif .Z .z .tgz .gz .zip
AddIcon /icons/a.gif .ps .ai .eps
AddIcon /icons/layout.gif .html .shtml .htm .pdf
AddIcon /icons/text.gif .txt
AddIcon /icons/c.gif .c
AddIcon /icons/p.gif .pl .py
AddIcon /icons/f.gif .for
AddIcon /icons/dvi.gif .dvi
AddIcon /icons/uuencoded.gif .uu
AddIcon /icons/script.gif .conf .sh .shar .csh .ksh .tcl
AddIcon /icons/tex.gif .tex
AddIcon /icons/bomb.gif core

AddIcon /icons/back.gif ..
AddIcon /icons/hand.right.gif README
AddIcon /icons/folder.gif ^^DIRECTORY^^
AddIcon /icons/blank.gif ^^BLANKICON^^

#
DefaultIcon is which icon to show for files which do not have an icon
explicitly set.
#
DefaultIcon /icons/unknown.gif

#
AddDescription allows you to place a short description after a file in
server-generated indexes. These are only displayed for FancyIndexed
directories.
Format: AddDescription "description" filename
#
#AddDescription "GZIP compressed document" .gz
#AddDescription "tar archive" .tar
#AddDescription "GZIP compressed tar archive" .tgz
...

#
ReadmeName is the name of the README file the server will look for by
default, and append to directory listings.
#
HeaderName is the name of a file which should be prepended to
directory indexes.
ReadmeName README.html
HeaderName HEADER.html

#
IndexIgnore is a set of filenames which directory indexing should ignore
and not include in the listing. Shell-style wildcarding is permitted.
#
IndexIgnore .??* *~ *# HEADER* README* RCS CVS *,v *,t
</IfDefine>

Chapter 5
Configuring Oracle HTTP Server Instances

5-17

Edit the Product Documentation Section
Uncomment the Define MANUAL_ENABLE line to enable the manual configuration of
product documentation.

...
#
Uncomment the following line to enable the manual configuration below.
Define ENABLE_MANUAL
<IfDefine ENABLE_MANUAL>
AliasMatch ^/manual(?:/(?:de|en|es|fr|ja|ko|pt-br|ru|tr))?(/.*)?$ "$
{PRODUCT_HOME}/manual$1"

<Directory "${PRODUCT_HOME}/manual">
 Options Indexes
 AllowOverride None
 Require all granted

 <Files *.html>
 SetHandler type-map
 </Files>
 # .tr is text/troff in mime.types!
 <Files *.html.tr.utf8>
 ForceType text/html
 </Files>

 SetEnvIf Request_URI ^/manual/(de|en|es|fr|ja|ko|pt-br|ru|tr)/ prefer-
language=$1
 RedirectMatch 301 ^/manual(?:/(de|en|es|fr|ja|ko|pt-br|ru|tr)){2,}(/.*)?$ /
manual/$1$2

 LanguagePriority en de es fr ja ko pt-br ru tr
 ForceLanguagePriority Prefer Fallback
</Directory>
</IfDefine>

Using the apxs Command to Install Extension Modules

Note:

This command is only for UNIX and Linux and is necessary only for modules
which are supplied in source code form. Follow the installation instructions
for modules supplied in binary form.

For more information about the apxs command, see the Apache HTTP
Server documentation at:

http://httpd.apache.org/docs/2.4/programs/apxs.html

The Apache Extension Tool (apxs) can build and install Apache HTTP Server
extension modules for Oracle HTTP Server. apxs installs modules in the
ORACLE_HOME/ohs/modules directory for access by any Oracle HTTP Server
instances which run from this installation.

Chapter 5
Configuring Oracle HTTP Server Instances

5-18

http://httpd.apache.org/docs/2.4/programs/apxs.html

Note:

Once any third-party module is created and loaded, it falls under the third-party
criteria specified in the Oracle HTTP Server support policy. Before continuing with
this procedure, you should be aware of this policy. See Oracle HTTP Server
Support.

Recommended apxs options for use with Oracle HTTP Server are:

Option Purpose Example Command

-c Compile module source $ORACLE_HOME/ohs/bin/apxs -c mod_example.c

-i Install module binary into
ORACLE_HOME

$ORACLE_HOME/ohs/bin/apxs -ci mod_example.c

When the module binary has been installed into ORACLE_HOME, a LoadModule directive in
httpd.conf or other configuration file loads the module into the server processes; for example:

LoadModule example_module "${ORACLE_HOME}/ohs/modules/mod_example.so"

The directive is required in the configurations for all instances which must load the module.

When the -a or -A option is specified, apxs will edit httpd.conf to add a LoadModule directive
for the module. Do not use the -a and -A options with Oracle HTTP Server instances that are
part of a WebLogic Server Domain. Instead, use Fusion Middleware Control to update the
configuration, as described in Modifying an Oracle HTTP Server Configuration File.

You can use the -a or -A option with Oracle HTTP Server instances that are part of a
standalone domain if the CONFIG_FILE_PATH environment variable is set to the staging
directory for the instance before invoking apxs. For example:

CONFIG_FILE_PATH=$ORACLE_HOME/user_projects/domains/base_domain/config/fmwconfig/
components/OHS/ohs1
export CONFIG_FILE_PATH
$ORACLE_HOME/ohs/bin/apxs -cia mod_example.c

By default, apxs uses the Perl interpreter in /usr/bin. If apxs cannot locate the product install
or encounters other operational errors when using /usr/bin/perl, use the Perl interpreter
within the Middleware home by invoking apxs as follows:

$ORACLE_HOME/perl/bin/perl $ORACLE_HOME/ohs/bin/apxs -c mod_example.c

Modules often require directives besides LoadModule to properly function. After the module
has been installed and loaded using the LoadModule directive, refer to the documentation for
the module for any additional configuration requirements.

Disabling the Options Method
The Options method enables clients to determine which methods are supported by a web
server. If enabled, it appears in the Allow line of HTTP response headers.

For example, if you send a request such as:

Chapter 5
Configuring Oracle HTTP Server Instances

5-19

---- Request -------
OPTIONS / HTTP/1.0
Content-Length: 0
Accept: */*
Accept-Language: en-US
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Win32)
Host: host123:80

you might get the following response from the web server:

---- Response --------
HTTP/1.1 200 OK
Date: Wed, 23 Apr 2008 20:20:49 GMT
Server: Oracle-Application-Server-11g/11.1.1.0.0 Oracle-HTTP-Server
Allow: GET,HEAD,POST,OPTIONS
Content-Length: 0
Connection: close
Content-Type: text/html

Some sources consider exposing the Options method a low security risk because
malicious clients could use it to determine the methods supported by a web server.
However, because web servers support only a limited number of methods, disabling
this method will just slow down malicious clients, not stop them. In addition, the
Options method may be used by legitimate clients.

If your Oracle Fusion Middleware environment does not have clients that require the
Options method, you can disable it by including the following lines in the httpd.conf file:

<IfModule mod_rewrite.c>
RewriteEngine on
RewriteCond %{REQUEST_METHOD} ^OPTIONS
RewriteRule .* – [F]
</IfModule>

Updating Oracle HTTP Server Component Configurations on a Shared
File System

You might encounter functional or performance issues when an Oracle HTTP Server
component is created on a shared file system, such as NFS (Network File System). In
particular, lock files or UNIX sockets used by Oracle HTTP Server might not work or
may have severe performance degradation; Oracle WebLogic Server requests routed
by mod_wl_ohs may have severe performance degradation due to file system
accesses in the default configuration.

Table 5-1 provides information about the Lock file issues and the suggested changes
in the httpd.conf file specific to the operating systems.

Table 5-1 Lock File issues

Operating System Description httpd.conf changes

Linux Lock files are not required. The
Sys V semaphore is the
preferred cross-process mutex
implementation.

Change Mutex fnctl:fileloc
default to Mutex sysvsem default
where fileloc is the value of the
directive Mutex (three places in
httpd.conf).

Chapter 5
Configuring Oracle HTTP Server Instances

5-20

Table 5-1 (Cont.) Lock File issues

Operating System Description httpd.conf changes

Solaris Lock files are not required. The
cross-process pthread mutex is
the preferred cross-process
mutex implementation.

Change Mutex fnctl:fileloc
default to Mutex pthread
default where fileloc is the value
of the directive Mutex (three places in
httpd.conf).

Other UNIX
platforms

Change the file location specified in the
Mutex directive to point to a local file
system (three places in httpd.conf).

UNIX socket issues mod_cgid is not enabled by
default. If enabled, use the
ScriptSock directive to place
mod_cgid's UNIX socket on a
local file system.

Configuring the mod_security Module
You can use the open-source mod_security module to detect and prevent intrusion attacks
against Oracle HTTP Server. For example, specifying a mod_security rule to screen all
incoming requests, and deny requests that match the conditions specified in the rule.

The mod_security module and its prerequisites are included in the Oracle HTTP Server
installation as a shared object named mod_security2.so in the ORACLE_HOME/ohs/modules
directory. The shared object mod_security2.so has a dependency on cURL and OpenSSL
libraries. These libraries are also included in the Oracle HTTP Server installation. The
mod_security module provided as part of the Oracle HTTP Server installation supports the
SecRemoteRules directive. This directive allows an user to load rules from a target server. The
communication from Oracle HTTP server to the target server that hosts the mod_security
rules happens over TLS and is implemented using cURL and OpenSSL.

The TLS communication between Oracle HTTP Server and the target server succeeds only if
Oracle HTTP Server trusts the remote server with which it communicates. To establish trust,
update the trust store used by Oracle HTTP Server with the CA certificate of the remote
server.

To add the CA certificate chain of the remote server to the trust store:

1. Obtain the CA certificate chain for the remote server.

2. Append the contents of certificate chain to the default trust store path.

The trust store path used by libcurl on Linux is /etc/pki/tls/certs/ca-bundle.crt.

On Windows:

1. Create a file named curl-ca-bundle.crt.

2. Place curl-ca-bundle.crt in either Windows System directory (for example,
C:\windows\system32), or Windows Directory (for example, C:\windows), or any directory
present in %PATH% (for example, ${PRODUCT_HOME}/bin).

3. Add the CA certificate chain used to sign the certificate of the remote server to curl-ca-
bundle.crt.

Chapter 5
Configuring the mod_security Module

5-21

On Solaris x64 and Solaris SPARC platforms, the cURL library requires the CA
certificates to be available at /etc/pki/tls/certs/ca-bundle.crt.

Starting version 12c (12.2.1.1.0), Oracle HTTP Server supports mod_security version
2.9.0 directives, variables, action, phases, and functions. See http://
www.modsecurity.org/documentation.html.

Sample mod_security.conf File provides a usable example of the mod_security.conf
file, including the LoadModule statement.

Note:

• mod_security was removed from earlier versions of Oracle HTTP Server
but was reintroduced in version 11.1.1.7. This version follows the
recommendations and practices prescribed for open source
mod_security 2.9.0. Only documentation applicable to open source
mod_security 2.9.0 is applicable to the Oracle HTTP Server
implementation of the module.

• In Oracle HTTP Server versions 11.1.1.7 and later, mod_security is not
loaded or configured by default. However, if you have an installation
patched from version 11.1.1.6, implementing the patch might have
already loaded and configured the module.

• Oracle supports the Oracle supplied version of mod_security. Newer
versions from modsecurity.org is not supported.

The mod_security configuration can be added to the httpd.conf configuration file,
or it can appear in a separate mod_security.conf configuration file.

This section contains the following information:

• Configuring mod_security in the httpd.conf File

• Configuring mod_security in a mod_security.conf File

• Configuring SecRemoteRules in the mod_security.conf File

• Sample mod_security.conf File

• Configuring mod_security in the httpd.conf File

• Configuring mod_security in a mod_security.conf File

• Configuring SecRemoteRules in the mod_security.conf File
The SecRemoteRules is an optional directive that you can use to load rules from
a remote server.

• Sample mod_security.conf File

Configuring mod_security in the httpd.conf File
You can configure the mod_security module by entering mod_security directives in the
httpd.conf file in an IfModule container. To make the mod_security module available
when Oracle HTTP Server is running, ensure that the mod_security configuration
begins with the following lines:

Chapter 5
Configuring the mod_security Module

5-22

http://www.modsecurity.org/documentation.html
http://www.modsecurity.org/documentation.html

...
#Load module
LoadModule security2_module "${PRODUCT_HOME}/modules/mod_security2.so"
...

Configuring mod_security in a mod_security.conf File
You can specify the mod_security directives in a separate mod_security.conf file and include
that file in the httpd.conf file by using the Include directive.

1. You must create the mod_security.conf file yourself, preferably by using the template in
Sample mod_security.conf File.

Copy and paste the sample into a text editor, then edit it for your system.

2. To make the mod_security module available when Oracle HTTP Server is running,
ensure that mod_security.conf begins with the following lines:

#Load module
LoadModule security2_module "${PRODUCT_HOME}/modules/mod_security2.so"

3. Save the file with the name "mod_security.conf" and include it in your httpd.conf file by
using the Include directive.

If you implement mod_security.conf file as described, it will use the LoadModule directive
to load mod_security2.so into the run time environment.

Configuring SecRemoteRules in the mod_security.conf File
The SecRemoteRules is an optional directive that you can use to load rules from a remote
server.

Syntax

SecRemoteRules some-key https://www.yourserver.com/plain-text-rules.txt

Table 5-2 provides information about the variables of SecRemoteRules.

Table 5-2 SecRemoteRules Variables

Variable Description

some-key These keys can be used by the target server to provide different content
for different keys. You must provide these keys.

Along with these keys, mod_security sends its unique ID and the status
call in the format of headers to the target web server. The following
headers are used:
• ModSec-status
• ModSec-unique-id
• ModSec-key

The optional option crypto tells mod_security to expect some
encrypted content from server. The utilization of SecRemoteRules is only
allowed over TLS. Thus, this option may not be necessary.

Chapter 5
Configuring the mod_security Module

5-23

Table 5-2 (Cont.) SecRemoteRules Variables

Variable Description

yourserver.com yourserver.com is the remote server that hosts the mod_security rules.

When the SecRemoteRules directive is configured on a server S1, S1
establishes an SSL connection with yourserver.com to fetch the
mod_security rules. Here, the plain-text-rules.txt file contains
the mod_security rules. Server S1 acts as an SSL client and
yourserver.com acts as an SSL server.

The SSL client is implemented using libcurl. By default, libcurl
verifies the peer SSL certificate. The verification is done by using a CA
certificate store that the SSL library can use to ensure that the peer's
server certificate is valid.

If the server uses a certificate signed by a CA that is not included in the
store you use, add the CA certificate for your server to the existing default
CA certificate store. The trust store path used by libcurl on Linux
is /etc/pki/tls/certs/ca-bundle.crt.

To add the remote server certificate to the trust store, do the following:

1. Extract the CA certificate for a particular server.

If you use the openssl tool, you can do the following to extract the
CA certificate for a particular server:

a. openssl s_client -connect xxxxx.com:443 |tee
logfile

b. Type QUIT and press Enter.

The certificate will have BEGIN CERTIFICATE and END
CERTIFICATE markers.

2. Append the contents of certificate to the default trust store path.

/etc/pki/tls/certs/ca-bundle.crt
Ensure that you do not add a new line at the end of the file.

libcurl also verifies server host name verification. That is, libcurl
considers the server as the intended server when the Common Name
field or a Subject Alternate Name field in the certificate matches the host
name in the URL to which you told curl to connect. The communication
might fail if this condition is not met.

Sample mod_security.conf File
The following code illustrates a sample mod_security.conf configuration file.

Example 5-1 mod_security.conf Sample

#Load module
LoadModule security2_module "${PRODUCT_HOME}/modules/mod_security2.so"
-- Rule engine initialization --

Enable ModSecurity, attaching it to every transaction. Use detection
only to start with, because that minimizes the chances of post-installation
disruption.
#
SecRuleEngine DetectionOnly

Chapter 5
Configuring the mod_security Module

5-24

-- Request body handling ---

Allow ModSecurity to access request bodies. If you don't, ModSecurity
won't be able to see any POST parameters, which opens a large security
hole for attackers to exploit.
#
SecRequestBodyAccess On

Enable XML request body parser.
Initiate XML Processor in case of xml content-type
#
SecRule REQUEST_HEADERS:Content-Type "text/xml"
"id:'200000',phase:1,t:none,t:lowercase,pass,nolog,ctl:requestBodyProcessor=XML"

Maximum request body size we will accept for buffering. If you support
file uploads then the value given on the first line has to be as large
as the largest file you are willing to accept. The second value refers
to the size of data, with files excluded. You want to keep that value as
low as practical.
#
SecRequestBodyLimit 13107200
SecRequestBodyNoFilesLimit 131072

Store up to 128 KB of request body data in memory. When the multipart
parser reachers this limit, it will start using your hard disk for
storage. That is slow, but unavoidable.
#
SecRequestBodyInMemoryLimit 131072

What do do if the request body size is above our configured limit.
Keep in mind that this setting will automatically be set to ProcessPartial
when SecRuleEngine is set to DetectionOnly mode in order to minimize
disruptions when initially deploying ModSecurity.
#
SecRequestBodyLimitAction Reject

Verify that we've correctly processed the request body.
As a rule of thumb, when failing to process a request body
you should reject the request (when deployed in blocking mode)
or log a high-severity alert (when deployed in detection-only mode).
#
SecRule REQBODY_ERROR "!@eq 0" \
"id:'200001', phase:2,t:none,log,deny,status:400,msg:'Failed to parse request \
body.',logdata:'%{reqbody_error_msg}',severity:2"

By default be strict with what we accept in the multipart/form-data
request body. If the rule below proves to be too strict for your
environment consider changing it to detection-only. You are encouraged
not to remove it altogether.
#
SecRule MULTIPART_STRICT_ERROR "!@eq 0" \
"id:'200002',phase:2,t:none,log,deny,status:44, \
msg:'Multipart request body failed strict validation: \
PE %{REQBODY_PROCESSOR_ERROR}, \
BQ %{MULTIPART_BOUNDARY_QUOTED}, \
BW %{MULTIPART_BOUNDARY_WHITESPACE}, \
DB %{MULTIPART_DATA_BEFORE}, \
DA %{MULTIPART_DATA_AFTER}, \
HF %{MULTIPART_HEADER_FOLDING}, \
LF %{MULTIPART_LF_LINE}, \

Chapter 5
Configuring the mod_security Module

5-25

SM %{MULTIPART_MISSING_SEMICOLON}, \
IQ %{MULTIPART_INVALID_QUOTING}, \
IP %{MULTIPART_INVALID_PART}, \
IH %{MULTIPART_INVALID_HEADER_FOLDING}, \
FL %{MULTIPART_FILE_LIMIT_EXCEEDED}'"

Did we see anything that might be a boundary?
#
SecRule MULTIPART_UNMATCHED_BOUNDARY "!@eq 0" \
"id:'200003',phase:2,t:none,log,deny,status:44,msg:'Multipart parser detected a possible
unmatched boundary.'"

PCRE Tuning
We want to avoid a potential RegEx DoS condition
#
SecPcreMatchLimit 1000
SecPcreMatchLimitRecursion 1000

Some internal errors will set flags in TX and we will need to look for these.
All of these are prefixed with "MSC_". The following flags currently exist:
#
MSC_PCRE_LIMITS_EXCEEDED: PCRE match limits were exceeded.
#
SecRule TX:/^MSC_/ "!@streq 0" \
 "id:'200004',phase:2,t:none,deny,msg:'ModSecurity internal error flagged: %
{MATCHED_VAR_NAME}'"

-- Response body handling --

Allow ModSecurity to access response bodies.
You should have this directive enabled in order to identify errors
and data leakage issues.

Do keep in mind that enabling this directive does increases both
memory consumption and response latency.
#
SecResponseBodyAccess On

Which response MIME types do you want to inspect? You should adjust the
configuration below to catch documents but avoid static files
(e.g., images and archives).
#
SecResponseBodyMimeType text/plain text/html text/xml

Buffer response bodies of up to 512 KB in length.
SecResponseBodyLimit 524288

What happens when we encounter a response body larger than the configured
limit? By default, we process what we have and let the rest through.
That's somewhat less secure, but does not break any legitimate pages.
#
SecResponseBodyLimitAction ProcessPartial

-- Filesystem configuration --

The location where ModSecurity stores temporary files (for example, when
it needs to handle a file upload that is larger than the configured limit).

This default setting is chosen due to all systems have /tmp available however,
this is less than ideal. It is recommended that you specify a location that's private.
#

Chapter 5
Configuring the mod_security Module

5-26

SecTmpDir /tmp/

The location where ModSecurity will keep its persistent data. This default setting
is chosen due to all systems have /tmp available however, it
too should be updated to a place that other users can't access.
#
SecDataDir /tmp/

-- File uploads handling configuration -------------------------------------

The location where ModSecurity stores intercepted uploaded files. This
location must be private to ModSecurity. You don't want other users on
the server to access the files, do you?
#
#SecUploadDir /opt/modsecurity/var/upload/

By default, only keep the files that were determined to be unusual
in some way (by an external inspection script). For this to work you
will also need at least one file inspection rule.
#
#SecUploadKeepFiles RelevantOnly

Uploaded files are by default created with permissions that do not allow
any other user to access them. You may need to relax that if you want to
interface ModSecurity to an external program (e.g., an anti-virus).
#
#SecUploadFileMode 0600

-- Debug log configuration ---

The default debug log configuration is to duplicate the error, warning
and notice messages from the error log.
#
#SecDebugLog /opt/modsecurity/var/log/debug.log
#SecDebugLogLevel 3

-- Audit log configuration ---

Log the transactions that are marked by a rule, as well as those that
trigger a server error (determined by a 5xx or 4xx, excluding 404,
level response status codes).
#
SecAuditEngine RelevantOnly
SecAuditLogRelevantStatus "^(?:5|4(?!04))"

Log everything we know about a transaction.
SecAuditLogParts ABIJDEFHZ

Use a single file for logging. This is much easier to look at, but
assumes that you will use the audit log only ocassionally.
#
SecAuditLogType Serial
SecAuditLog "${ORACLE_INSTANCE}/servers/${COMPONENT_NAME}/logs/modsec_audit.log"

Specify the path for concurrent audit logging.
SecAuditLogStorageDir "${ORACLE_INSTANCE}/servers/${COMPONENT_NAME}/logs"
#Simple test
SecRule ARGS "\.\./" "t:normalisePathWin,id:99999,severity:4,msg:'Drive Access'"

Chapter 5
Configuring the mod_security Module

5-27

-- Miscellaneous ---

Use the most commonly used application/x-www-form-urlencoded parameter
separator. There's probably only one application somewhere that uses
something else so don't expect to change this value.
#
SecArgumentSeparator &

Settle on version 0 (zero) cookies, as that is what most applications
use. Using an incorrect cookie version may open your installation to
evasion attacks (against the rules that examine named cookies).
#
SecCookieFormat 0

Specify your Unicode Code Point.
This mapping is used by the t:urlDecodeUni transformation function
to properly map encoded data to your language. Properly setting
these directives helps to reduce false positives and negatives.
#
#SecUnicodeCodePage 20127
#SecUnicodeMapFile unicode.mapping

Chapter 5
Configuring the mod_security Module

5-28

6
Configuring High Availability for Web Tier
Components

Use the instructions in this chapter to configure an Oracle HTTP Server highly available
deployment in which Oracle HTTP Servers and WebLogic Managed Servers reside on
different hosts, behind a load balancer.

This chapter includes the following sections:

• Oracle HTTP Server Single-Instance Characteristics

• Oracle HTTP Server and Domains

• Oracle HTTP Server Startup and Shutdown Lifecycle

• Starting and Stopping Oracle HTTP Server

• Oracle HTTP Server High Availability Architecture and Failover Considerations

• Oracle HTTP Server Failure Protection and Expected Behaviors

• Configuring Oracle HTTP Server Instances on Multiple Machines

• Configuring Oracle HTTP Server for High Availability

• Oracle HTTP Server Single-Instance Characteristics
Oracle HTTP Server (OHS) is based on Apache infrastructure and includes Oracle
modules that you can use to extend OHS core functionality.

• Oracle HTTP Server and Domains
Oracle HTTP Server (OHS) doesn't require a WebLogic domain but you usually use it
with one. Oracle recommends associating OHS with a domain so that you can
incorporate OHS into the Administration Console, where you can manage and monitor it.

• Oracle HTTP Server Startup and Shutdown Lifecycle
After Oracle HTTP Server starts, it is ready to listen for and respond to HTTP(S)
requests.

• Starting and Stopping Oracle HTTP Server
Use Fusion Middleware Control or the WebLogic Scripting Tool (WLST) to start, stop, and
restart Oracle HTTP Server.

• Oracle HTTP Server High Availability Architecture and Failover Considerations
Oracle HTTP Servers and Managed Servers reside on different hosts, behind a load
balancer, in a high availability topology.

• Oracle HTTP Server Failure Protection and Expected Behaviors
Oracle HTTP Server (OHS) has two failure types: process failures and node failures.
An individual operating system process may fail. A node failure can involve failure of the
entire host computer that OHS runs on.

• Configuring Oracle HTTP Server Instances on Multiple Machines
If you use the Configuration Wizard to configure Oracle HTTP Server (OHS) and OHS is
part of a domain, update the mod_wl_ohs.conf file for each instance.

6-1

• Configuring Oracle HTTP Server for High Availability
To configure an example high availability deployment of Oracle HTTP Server
(OHS), you must meet specific prerequisites. You can then install OHS on an
additional web server, then configure and validate OHS high availability.

Oracle HTTP Server Single-Instance Characteristics
Oracle HTTP Server (OHS) is based on Apache infrastructure and includes Oracle
modules that you can use to extend OHS core functionality.

OHS has these components to handle client requests

• HTTP listener handles incoming requests and routes them to the appropriate
processing utility.

• Modules (mods) implement and extend OHS functionality. OHS includes many
standard Apache modules. Oracle also includes modules that are specific to OHS
to support OHS and OHS component integration.

OHS can also be a proxy server, both forward and reverse. A reverse proxy enables
content served by different servers to appear as if it comes from one server.

Oracle HTTP Server and Domains
Oracle HTTP Server (OHS) doesn't require a WebLogic domain but you usually use it
with one. Oracle recommends associating OHS with a domain so that you can
incorporate OHS into the Administration Console, where you can manage and monitor
it.

The mod_wl_ohs module handles the link to Managed Servers. You configure
mod_wl_ohs by routing requests of a particular type, such as JSPs, or by routing
requests destined to a URL to specific Managed Servers.

OHS usually front ends a cluster. In this configuration, a special mod_wl_ohs directive,
WebLogicCluster, specifies a comma-separated list of cluster members.

These steps describe the mod_wl_ohs directive process:

1. mod_wl_ohs receives a request for a Managed Server then sends the request to
one cluster member in the directive. At least one Managed Server must be
available to fulfill the request.

2. The Managed Server receives the request, processes it, and sends a complete list
of cluster members back to mod_wl_ohs.

3. When mod_wl_ohs receives the updated list, it dynamically adds previously
unknown servers to the known servers list. By doing this, all future requests are
load balanced across the cluster member list. The benefit is that new Managed
Servers are added to a cluster without updating mod_wl_ohs or adding OHS.

Chapter 6
Oracle HTTP Server Single-Instance Characteristics

6-2

Note:

The mod_wl_ohs directive DynamicServerList controls whether or not unknown
servers are added to the known servers list. You must set DynamicServerList
to ON to enable dynamic addition of servers.

Note:

When you start, you don't need to include all current Managed Servers in the
mod_wl_ohs directive. A high availability setup requires only two cluster members in
the list for the first call to work. For more information about running an OHS high
availability deployment, see Configuring the WebLogic Proxy Plug-In for Oracle
HTTP Server in Using Oracle WebLogic Server Proxy Plug-Ins.

For more information about Oracle WebLogic clusters, see Introduction and
Roadmap in Administering Clusters for Oracle WebLogic Server.

Oracle HTTP Server Startup and Shutdown Lifecycle
After Oracle HTTP Server starts, it is ready to listen for and respond to HTTP(S) requests.

The request processing model is different on Microsoft Windows systems compared to UNIX
systems:

• For Microsoft Windows, there is one parent process and one child process. The child
process creates threads that handle client requests. The number of created threads is
static and you can configure them for performance.

• For UNIX, there is one parent process that manages multiple child processes. Child
processes handle requests. The parent process brings up more child processes as
necessary, based on configuration.

Note:

For more information about the OHS processing model, see Oracle HTTP Server
Processing Model.

Starting and Stopping Oracle HTTP Server
Use Fusion Middleware Control or the WebLogic Scripting Tool (WLST) to start, stop, and
restart Oracle HTTP Server.

If you plan to use WLST, you should familiarize yourself with that tool; see Getting Started
Using the Oracle WebLogic Scripting Tool (WLST) in the Oracle Fusion Middleware
Administrator's Guide.

Chapter 6
Oracle HTTP Server Startup and Shutdown Lifecycle

6-3

Note:

For more information about starting and stopping an OHS instance, see
Performing Basic Oracle HTTP Server Tasks.

Oracle HTTP Server High Availability Architecture and
Failover Considerations

Oracle HTTP Servers and Managed Servers reside on different hosts, behind a load
balancer, in a high availability topology.

Figure 6-1 shows two Oracle HTTP Servers behind a load balancer.

Figure 6-1 Oracle HTTP Server High Availability Architecture

https:443 http:80

https:7777 https:7777

https:7075 https:7075

Load Balancer

myapp.example.com

Oracle HTTP Server 1 Oracle HTTP Server 2

WebLogic Managed

Server

WebLogic Managed

Server

The load balancer receives user requests and forwards them to connected Oracle
HTTP Servers. The load balancer receives requests on standard HTTP/HTTPS ports
(80/443). However, it then passes requests to Oracle HTTP Servers using completely
different ports. Advantages of this setup are:

• Actual ports are hidden from users.

• Users don't have to add port numbers to the URL.

On UNIX-based systems, starting OHS with root privileges isn't mandatory. Only root
can start a process that uses a port less than 1024. However, for processes that use a
port number below 1024, you must use root privilege to start a process.

The load balancer routes requests to the functioning Oracle HTTP Server.

Figure 6-1 also shows how OHS distributes requests to Managed Servers. For high
availability, each pair of components (OHS and Managed Servers) should reside on
different host computers. Managed Servers belong to the same cluster; to load
balance across a set of Managed Servers, they must belong to the same cluster.

Chapter 6
Oracle HTTP Server High Availability Architecture and Failover Considerations

6-4

Oracle HTTP Server Failure Protection and Expected Behaviors
Oracle HTTP Server (OHS) has two failure types: process failures and node failures. An
individual operating system process may fail. A node failure can involve failure of the entire
host computer that OHS runs on.

Table 6-1 OHS Failure Types and Failure Protections

Failure Type Protection

Process Node Manager protects and manages OHS processes. If an OHS process fails,
Node Manager automatically restarts it.

Node Load balancer in front of OHS sends a request to another OHS if the first one
doesn't respond or URL pings indicate it failed.

Managed Server If a Managed Server in a cluster fails, mod_wl_ohs automatically redirects
requests to one of the active cluster members. If the application stores state,
state replication is enabled within the cluster, which enables redirected requests
access to the same state information.

Database Typically, an issue only when using mod_oradav or mod_plsql. With Oracle
RAC databases, the Oracle RAC connection determines failure characteristics.

If client connection failover is configured, in-flight transactions roll back.
Database reconnection is required.

If Transparent Application Failover (TAF) is configured, any in-flight database
write rolls back but automatic database reconnection occurs and select
statements recover automatically. TAF fails over select statements only; package
variables are lost. TAF, a JDBC Oracle Call Interface driver feature, enables an
application to automatically reconnect to a database if the database instance the
connection is made to fails. In this case, active transactions roll back.

Configuring Oracle HTTP Server Instances on Multiple
Machines

If you use the Configuration Wizard to configure Oracle HTTP Server (OHS) and OHS is part
of a domain, update the mod_wl_ohs.conf file for each instance.

The file is in the DOMAIN_HOME/config/fmwconfig/components/OHS/componentName directory.
Restart the Administration Server to propagate changes to all OHS instances in the domain,
even if they reside on a different host. See Configuring mod_wl_ohs.conf.

Note:

If you install and configure OHS instances in separate domains, you must manually
copy changes to other Oracle HTTP Servers. You must verify that the changes
apply to all OHS instances and that they are synchronized.

Chapter 6
Oracle HTTP Server Failure Protection and Expected Behaviors

6-5

Configuring Oracle HTTP Server for High Availability
To configure an example high availability deployment of Oracle HTTP Server (OHS),
you must meet specific prerequisites. You can then install OHS on an additional web
server, then configure and validate OHS high availability.

• Prerequisites to Configure a Highly Available OHS
Complete the following prerequisites before configuring a highly available Oracle
HTTP Server deployment:

• Installing and Validating Oracle HTTP Server on WEBHOST2

• Configuring and Validating an OHS High Availability Deployment
To configure and validate the OHS high availability deployment, update
mod_wl_ohs.conf and then use test URLs to validate OHS configuration.

Prerequisites to Configure a Highly Available OHS
Complete the following prerequisites before configuring a highly available Oracle
HTTP Server deployment:

• Load Balancer Prerequisites

• Configuring Load Balancer Virtual Server Names and Ports

• Managing Load Balancer Port Numbers

• Installing and Validating Oracle HTTP Server on WEBHOST1

• Creating Virtual Host(s) on WEBHOST1

• Configuring mod_wl_ohs.conf

• Configuring mod_wl_conf if you use SSL Termination

• Creating proxy.conf File

• Load Balancer Prerequisites
To distribute requests against Oracle HTTP Server, you can either use an external
load balancer to distribute HTTP(S) requests between available Oracle HTTP
Servers, or configure Oracle HTTP Server VirtualHost proxy for load balancing.

• Configuring Load Balancer Virtual Server Names and Ports
In an OHS installation, virtual servers are configured for HTTP connections, which
are distributed across the HTTP servers.

• Managing Load Balancer Port Numbers
Many Oracle Fusion Middleware components and services use ports. As an
administrator, you must know the port numbers that services use and ensure that
two services don't use the same port number on your host computer.

• Installing and Validating Oracle HTTP Server on WEBHOST1

• Creating Virtual Host(s) on WEBHOST1
For each virtual host or site name that you use, add an entry to the OHS
configuration.

• Configuring mod_wl_ohs.conf
After you install and configure OHS, link it to any defined Managed Servers by
editing the mod_wl_ohs.conf file.

Chapter 6
Configuring Oracle HTTP Server for High Availability

6-6

• Configuring mod_wl_conf if you use SSL Termination
If you use SSL termination AND route requests to WebLogic, you must take additional
configuration steps.

• Creating proxy.conf File
If you are not using an external load balancer, you can configure Oracle HTTP Server
virtual host proxy for load balancing.

Load Balancer Prerequisites
To distribute requests against Oracle HTTP Server, you can either use an external load
balancer to distribute HTTP(S) requests between available Oracle HTTP Servers, or
configure Oracle HTTP Server VirtualHost proxy for load balancing.

If you have an external load balancer, it must have features that Third-Party Load Balancer
Requirements describes.

If you want to configure Oracle HTTP Server for load balancing, use virtual host based proxy
configuration. To do this, create a separate configuration file, for example, proxy.conf with
the configuration details, and append this configuration into httpd.conf using include tag.
For example, include "proxy.conf". For more information, see Creating proxy.conf File.

Configuring Load Balancer Virtual Server Names and Ports
In an OHS installation, virtual servers are configured for HTTP connections, which are
distributed across the HTTP servers.

If your site serves requests for HTTP and HTTPS connections, Oracle recommends that
HTTPS requests terminate at the load balancer and pass through as HTTP requests. To do
this, the load balancer should be able to perform the protocol conversion and must be
configured for persistent HTTP sessions.

This example configuration assumes that the load balancer is configured as:

• Virtual Host: Myapp.example.com
• Virtual Port: 7777
• Server Pool: Map
• Server: WEBHOST1, Port 7777, WEBHOST2, Port 7777

Managing Load Balancer Port Numbers
Many Oracle Fusion Middleware components and services use ports. As an administrator,
you must know the port numbers that services use and ensure that two services don't use the
same port number on your host computer.

Most port numbers are assigned during installation. It is important that any traffic going from
Oracle HTTP Servers to Oracle WebLogic Servers has access through any firewalls.

Installing and Validating Oracle HTTP Server on WEBHOST1
To install Oracle HTTP Server on WEBHOST1, see the steps in Installing the Oracle HTTP
Server Software in Installing and Configuring Oracle HTTP Server.

Validate the installation using the following URL to access the OHS home page:

Chapter 6
Configuring Oracle HTTP Server for High Availability

6-7

http://webhost1:7777/

Creating Virtual Host(s) on WEBHOST1
For each virtual host or site name that you use, add an entry to the OHS configuration.

Create a file named virtual_hosts.conf in the DOMAIN_HOME/config/fmwconfig/
components/OHS/ohs_component_name/moduleconf directory as follows:

NameVirtualHost *:7777
<VirtualHost *:7777>
 ServerName http://myapp.example.com:80
 RewriteEngine On
 RewriteOptions inherit
 UseCanonicalName On
</VirtualHost>

If you are using SSL/SSL Termination (*):

NameVirtualHost *:7777
<VirtualHost *:7777>
 ServerName https://myapp.example.com:443
 RewriteEngine On
 RewriteOptions inherit
 UseCanonicalName On
</VirtualHost>

Note:

You can also use Fusion Middleware Control to create virtual hosts. See
Wiring Components Together in Administering Oracle Fusion Middleware.

Configuring mod_wl_ohs.conf
After you install and configure OHS, link it to any defined Managed Servers by editing
the mod_wl_ohs.conf file.

The file is in DOMAIN_HOME/config/fmwconfig/components/OHS/componentName
directory.

For more information about editing the mod_wl_ohs.conf file, see Configuring the
WebLogic Proxy Plug-In for Oracle HTTP Server in Oracle Fusion Middleware Using
Oracle WebLogic Server Proxy Plug-Ins 12.1.2.

Note:

You can also use Fusion Middleware Control to link OHS to Managed
Servers. See Wiring Components Together in Administering Oracle Fusion
Middleware.

The following example shows mod_wl_ohs.conf entries:

Chapter 6
Configuring Oracle HTTP Server for High Availability

6-8

LoadModule weblogic_module PRODUCT_HOME/modules/mod_wl_ohs.so

<IfModule mod_weblogic.c>
 WebLogicCluster apphost1.example.com:7050, apphost2.example.com:7050
 MatchExpression *.jsp
 </IfModule>

<Location /weblogic>
 SetHandler weblogic-handler
 WebLogicCluster apphost1.example.com:7050,apphost2.example.com:7050
 DefaultFileName index.jsp
</Location>

<Location /console>
 SetHandler weblogic-handler
 WebLogicCluster apphost1.example.com
 WebLogicPort 7003
</Location>

These examples show two different ways to route requests to Managed Servers:

• The <ifModule> block sends any requests ending in *.jsp to the WebLogic Managed
Server cluster located on APPHOST1 and APPHOST2.

• The <Location> block sends any requests with URLs that have a /weblogic prefix to the
Managed Server cluster located on APPHOST1 and APPHOST2.

Configuring mod_wl_conf if you use SSL Termination
If you use SSL termination AND route requests to WebLogic, you must take additional
configuration steps.

To configure mod_wl_conf if you use SSL termination:

1. In the WebLogic console, verify that WebLogic Plugin Enabled is set to true, either at the
domain, cluster, or Managed Server level.

2. Add these lines to the Location block, which directs requests to Managed Servers:

WLProxySSL ON
WLProxySSLPassThrough ON

For example:

<Location /weblogic>
 SetHandler weblogic-handler
 WebLogicCluster apphost1.example.com:7050,apphost2.example.com:7050
 WLProxySSL On
 WLProxySSLPassThrough ON
 DefaultFileName index.jsp
</Location>

After you enable the WebLogic plugin, restart the Administration Server.

Creating proxy.conf File
If you are not using an external load balancer, you can configure Oracle HTTP Server virtual
host proxy for load balancing.

To do this, create a separate configuration file, for example, proxy.conf at the following
locations:

Chapter 6
Configuring Oracle HTTP Server for High Availability

6-9

• MW_HOME/user_projects/domains/DOMAIN_NAME/config/fmwconfig/
components/OHS/INSTANCE_NAME/

• MW_HOME/user_projects/domains/DOMAIN_NAME/config/fmwconfig/
components/OHS/instances/INSTANCE_NAME/

Add the following snippet to the newly created configuration file (at both the locations):

LoadModule lbmethod_byrequests_module
"${PRODUCT_HOME}/modules/mod_lbmethod_byrequests.so"

<VirtualHost myohs.com:8080>

 # Proxy : HTTP - HTTP
 <Proxy "balancer://ha">
 ProxySet lbmethod=byrequests
 BalancerMember http://OHS_Host1:Port
 BalancerMember http://OHS_Host1:Port
 </Proxy>

 # Proxy pass : HTTP - HTTP
 ProxyPass "/ha" "balancer://ha"
 ProxyPassReverse "/ha" "balancer://ha"

</VirtualHost>

Append this configuration file (proxy.conf) into httpd.conf file.

Installing and Validating Oracle HTTP Server on WEBHOST2
To install Oracle HTTP Server on WEBHOST2, see Installing the Oracle HTTP Server
Software in Oracle Fusion Middleware Installing and Configuring Oracle HTTP Server.

Validate the installation on WEBHOST2 by using the following URL to access the
Oracle HTTP Server home page:

http://webhost2:7777/

Configuring and Validating an OHS High Availability Deployment
To configure and validate the OHS high availability deployment, update
mod_wl_ohs.conf and then use test URLs to validate OHS configuration.

• Configuring Virtual Host(s) on WEBHOST2
Update the mod_wl_ohs.conf file located in DOMAIN_HOME/config/fmwconfig/
components/OHS/componentName directory.

• Validating the Oracle HTTP Server Configuration
You validate the OHS configuration by using specific URLs.

Chapter 6
Configuring Oracle HTTP Server for High Availability

6-10

Configuring Virtual Host(s) on WEBHOST2
Update the mod_wl_ohs.conf file located in DOMAIN_HOME/config/fmwconfig/
components/OHS/componentName directory.

You must then restart the Administration Server to propagate changes to all OHS instances in
the domain.

Validating the Oracle HTTP Server Configuration
You validate the OHS configuration by using specific URLs.

http://myapp.example.com/
https://myapp.example.com (if using SSL/SSL termination)

http://myapp.example.com:7777/weblogic

Chapter 6
Configuring Oracle HTTP Server for High Availability

6-11

7
Managing and Monitoring Server Processes

You have tools and procedures that help to manage and monitor the performance of Oracle
HTTP Server.

This chapter includes the following sections. These sections discuss the procedures and
tools that manage the server in your environment.

• Oracle HTTP Server Processing Model

• Monitoring Server Performance

• Oracle HTTP Server Performance Directives

• Understanding Process Security for UNIX

• Oracle HTTP Server Processing Model
There are two types of processing models that help to monitor Oracle HTTP Server:
Request Process Model and Single Unit Process Model.

• Monitoring Server Performance
Oracle Fusion Middleware automatically and continuously measures runtime
performance for Oracle HTTP Server and Oracle WebLogic Server proxy plug-in module.

• Oracle HTTP Server Performance Directives
Oracle HTTP Server performance is managed by directives specified in the configuration
files. Use Fusion Middleware Control to tune performance-related directives for Oracle
HTTP Server.

• Understanding Process Security for UNIX
Special configuration is required to allow Oracle HTTP Server to bind to privileged ports
when installed on UNIX.

Oracle HTTP Server Processing Model
There are two types of processing models that help to monitor Oracle HTTP Server: Request
Process Model and Single Unit Process Model.

The following sections describe the processing models for Oracle HTTP Server.

• Request Process Model

• Single Unit Process Model

• Request Process Model

• Single Unit Process Model

Request Process Model
After Oracle HTTP Server is started, it is ready to listen for and respond to HTTP(S) requests.
The request processing model on Microsoft Windows systems differs from that on UNIX
systems.

7-1

• On Microsoft Windows, there is a single parent process and a single child process.
The child process creates threads that are responsible for handling client requests.
The number of created threads is static and can be configured for performance.

• On UNIX, there is a single parent process that manages multiple child processes.
The child processes are responsible for handling requests. The parent process
brings up additional child processes as necessary, based on configuration.
Although the server can dynamically start additional child processes, it is best to
configure the server to start enough child processes initially so that requests can
be handled without having to spawn more child processes.

Single Unit Process Model
Oracle HTTP Server provides functionality that allows it to terminate as a single unit if
the parent process fails. The parent process is responsible for starting and stopping all
the child processes for an Oracle HTTP Server instance. The failure of the parent
process without first shutting down the child processes leaves Oracle HTTP Server in
an inconsistent state that can only be fixed by manually shutting down all the orphaned
child processes. Until all the child processes are closed, a new Oracle HTTP Server
instance cannot be started because the orphaned child processes still occupy the
ports the new Oracle HTTP Server instance needs to access.

To prevent this from occurring, the DMS instrumentation layer in child processes on
UNIX and monitor functionality within WinNT MPM on Windows monitor the parent
process. If they detect that the parent process has failed, then all of the remaining
child processes are shut down.

Monitoring Server Performance
Oracle Fusion Middleware automatically and continuously measures runtime
performance for Oracle HTTP Server and Oracle WebLogic Server proxy plug-in
module.

The server performance metrics are automatically enabled; you do not need to set
options or perform any extra configuration to collect them. If you encounter a problem,
such as an application that is running slowly or hanging, you can view the metrics to
find out more about the problem. Fusion Middleware Control provides real-time data.
Cloud Control can be used to view historical data.

These sections describe performance metrics and how to view them:

• Oracle HTTP Server Performance Metrics

• Viewing Performance Metrics

• Oracle HTTP Server Performance Metrics

• Viewing Performance Metrics
You can view the performance metrics of the Oracle HTTP Server and Oracle
WebLogic Server Proxy Plug-In module by using the Fusion Middleware Control or
issuing the appropriate WLST command. View performance metrics to monitor
and analyze the server performance.

Oracle HTTP Server Performance Metrics
This section lists commonly-used metrics that can help you analyze Oracle HTTP
Server performance.

Chapter 7
Monitoring Server Performance

7-2

Oracle HTTP Server Metrics

The Oracle HTTP Server Metrics folder contains performance metric options for Oracle HTTP
Server. The following table describes the metrics in the Oracle HTTP Server Metrics folder:

Element Description

CPU Usage CPU usage and idle times

Memory Usage Memory usage and free memory, in MB

Processes Busy and idle process metrics

Request Throughput Request throughput, as measured by requests per second

Request Processing Time Request processing time, in seconds

Response Data Throughput Response data throughput, in KB per second

Response Data Processed Response data processed, in KB per response

Active HTTP Connections Number of active HTTP connections

Connection Duration Length of time for connections

HTTP Errors Number of HTTP 4xx and 5xx errors

Oracle HTTP Server Virtual Host Metrics

The Oracle HTTP Server Virtual Host Metrics folder contains performance metric options for
virtual hosts, also known as access points. The following table describes the metrics in the
Oracle HTTP Server Virtual Host Metrics folder:

Element Description

Request Throughput for a
Virtual Host

Number of requests per second for each virtual host

Request Processing Time for a
Virtual Host

Time to process each request for each virtual host

Response Data Throughput for
a Virtual Host

Amount of data being sent for each virtual host

Response Data Processed for
a Virtual Host

Amount of data being processed for each virtual host

Oracle HTTP Server Module Metrics

The Oracle HTTP Server Module Metrics folder contains performance metric option for
modules. The following table describes the metrics in the Oracle HTTP Server Module
Metrics folder.

Element Description

Request Handling Throughput Request handling throughput for a module, in requests per second

Request Handling Time Request handling time for a module, in seconds

Module Metrics Modules including active requests, throughput, and time for each
module

Chapter 7
Monitoring Server Performance

7-3

Viewing Performance Metrics
You can view the performance metrics of the Oracle HTTP Server and Oracle
WebLogic Server Proxy Plug-In module by using the Fusion Middleware Control or
issuing the appropriate WLST command. View performance metrics to monitor and
analyze the server performance.

You can view Oracle HTTP Server and Oracle WebLogic Server Proxy Plug-In module
performance metrics by using the procedures described in the following sections:

• Viewing Server Metrics by Using Fusion Middleware Control

• Viewing Server Metrics Using WLST

• Viewing Server Metrics by Using Fusion Middleware Control

• Viewing Server Metrics Using WLST

Viewing Server Metrics by Using Fusion Middleware Control
You can view metrics from the Oracle HTTP Server home menu of Fusion Middleware
Control:

1. Select the Oracle HTTP Server that you want to monitor.

2. From the Oracle HTTP Server menu on the Oracle HTTP Server home page,
choose Monitoring, and then select Performance Summary.

The Performance Summary page is displayed. It shows performance metrics and
information about response time and request processing time for the Oracle HTTP
Server instance.

3. To see additional metrics, click Show Metric Palette and expand the metric
categories.

Tip:

Oracle HTTP Server port usage information is also available from the
Oracle HTTP Server home menu.

4. Select additional metrics to add them to the Performance Summary.

Viewing Server Metrics Using WLST
To obtain and view metrics for an instance from the command line, you must connect
to, and issue the appropriate WLST command. These commands allow you to perform
any of these functions:

• Display Metric Table Names

• Display metric tables

• Dump metrics

Chapter 7
Monitoring Server Performance

7-4

Note:

For more information on using WLST, see Understanding the WebLogic Scripting
Tool.

Before attempting this procedure:

Before attempting to access server metrics from the command line, ensure the following:

• The domain exists and the instance for which you want to see the metrics exist.

• The instance is running.

• Node Manager is running on the instance machine.

The Administration server can be running, but this is not required.

To view metrics using WLST:

Note:

In both managed and standalone domain types, the following procedure will work
whether you run the commands from the same machine or from a machine that is
remote to the server.

1. Launch WLST:

On Linux or UNIX:

$ORACLE_HOME/oracle_common/common/bin/wlst.sh

On Windows:

$ORACLE_HOME\oracle_common\common\bin\wlst.cmd
2. From the selected domain directory (for example, ORACLE_HOME/user_projects/

domains/domainName), connect to the instance:

nmConnect('username', 'password', nm_host, nm_port, domainName)
3. Enter one of the following WLST commands, depending on what task you want to

accomplish:

• displayMetricTableNames(servers=['serverName'], servertype='serverType')

• displayMetricTables(servers=['serverName'], servertype='serverType')
• dumpMetrics(servers=['serverName'], servertype='serverType')
For example:

displayMetricTableNames(servers=['ohs1'], servertype='OHS')
displayMetricTables(servers=['ohs1'], servertype='OHS')
dumpMetrics(servers=['ohs1'], servertype='OHS')

Chapter 7
Monitoring Server Performance

7-5

Oracle HTTP Server Performance Directives
Oracle HTTP Server performance is managed by directives specified in the
configuration files. Use Fusion Middleware Control to tune performance-related
directives for Oracle HTTP Server.

The following sections describe the Oracle HTTP Server performance directives.

• Understanding Performance Directives

• Configuring Performance Directives by Using Fusion Middleware Control

• Understanding Performance Directives

• Configuring Performance Directives by Using Fusion Middleware Control

Understanding Performance Directives
Oracle HTTP Server uses directives declared in httpd.conf and other configuration
files. This configuration file specifies the maximum number of HTTP requests that can
be processed simultaneously, logging details, and certain limits and timeouts. Oracle
HTTP Server supports and ships with the following Multi-Processing Modules (MPMs)
which are responsible for binding to network ports on the machine, accepting requests,
and dispatching children to handle the requests:

• Worker: This is the default MPM for Oracle HTTP Server in UNIX (non-Linux)
environments. This MPM implements a hybrid multi-process multi-threaded server.
By using threads to serve requests, it can serve many requests with fewer system
resources than a process-based server. However, it retains much of the stability of
a process-based server by keeping multiple processes available, each with many
threads. If you are using Worker MPM, then you must configure the mod_cgid
module for your CGI applications instead of the mod_cgi module. For more
information, see the following URL:

http://httpd.apache.org/docs/2.4/mod/mod_cgid.html

• WinNT: This is the default MPM for Oracle HTTP Server on Windows platforms. It
uses a single control process which launches a single child process which in turn
creates threads to handle requests.

• Prefork: This MPM implements a non-threaded, pre-forking server that handles
requests in a manner similar to Apache 1.3. It is appropriate for sites that need to
avoid threading for compatibility with non-thread-safe libraries. It is also the best
MPM for isolating each request, so that a problem with a single request will not
affect any other. If you are going to implement a CGI module with this MPM, use
only mod_fastcgi.

• Event: This is the default MPM for Oracle HTTP Server in Linux environments.
This MPM is designed to allow more requests to be served simultaneously by
passing off some processing work to supporting threads, freeing up the main
threads to work on new requests. It is based on the Worker MPM, which
implements a hybrid multi-process multi-threaded server. Run-time configuration
directives are identical to those provided by Worker.

The following sections describe how to change the MPM type value for an Oracle
HTTP Server instance in a standalone and an Oracle WebLogic Server domain

• Changing the MPM Type Value in a Standalone Domain

Chapter 7
Oracle HTTP Server Performance Directives

7-6

http://httpd.apache.org/docs/2.4/mod/mod_cgid.html

• Changing the MPM Type Value in a WebLogic Server Managed Domain

• Changing the MPM Type Value in a Standalone Domain

• Changing the MPM Type Value in a WebLogic Server Managed Domain

Changing the MPM Type Value in a Standalone Domain
To change the MPM type value for an Oracle HTTP Server instance in a standalone domain,
follow these steps:

1. Navigate to the ohs.plugins.nodemanager.properties file at the following location: $
{ORACLE_INSTANCE}/config/fmwconfig/components/OHS/${COMPONENT_NAME}.

2. Edit the ohs.plugins.nodemanager.properties file to make the following changes.

Look for the key mpm in an uncommented line.

• If you find the key in an uncommented line, then replace the existing value of mpm with
the value you want to set for MPM.

• If you do not find it in an uncommented line, then add a new line to the file using the
following format:

mpm = mpm_value

where mpm_value is the value you want to set as MPM.

3. Start or re-start the Oracle HTTP Server instance.

Changing the MPM Type Value in a WebLogic Server Managed Domain
To change the MPM type value for an Oracle HTTP Server instance in an Oracle WebLogic
Server domain, follow these steps.

Note:

The following steps assume that the Administration Server and Node Manager for
the domain are already up and running.

1. Launch WLST from the command line.

Linux or UNIX: $ORACLE_HOME/oracle_common/common/bin/wlst.sh
2. Connect to the Administration Server instance:

connect('<userName', '<password>', '<host>:<port>')
3. Navigate to the Mbean containing the MPM type value key.

You can use the editCustom() command only when WLST is connected to the
Administration Server. Use cd to navigate the hierarchy of management objects. This
example assumes that Oracle HTTP Server instance with name 'ohs1'.

editCustom()
cd('oracle.ohs')
cd('oracle.ohs:type=OHSInstance.NMProp,OHSInstance=ohs1,component=OHS')

Chapter 7
Oracle HTTP Server Performance Directives

7-7

4. Set the MPM type value key.

Start an edit session and set the MPM type value key Mpm to the type value. In this
example the type value is set to event.

startEdit()
set('Mpm','event')
save()
activate()

Configuring Performance Directives by Using Fusion Middleware
Control

The discussion and recommendations in this section are based on the use of Worker,
Event, or WinNT MPM, which uses threads. The thread-related directives listed below
are not applicable if you are using the Prefork MPM.

Use the Performance Directives page of Fusion Middleware Control to tune
performance-related directives for Oracle HTTP Server.

Performance directives management consists of these areas: request, connection, and
process configuration. The following sections describe how to set these configurations.

• Setting the Request Configuration by Using Fusion Middleware Control

• Setting the Connection Configuration by Using Fusion Middleware Control

• Setting the Process Configuration by Using Fusion Middleware Control

• Setting the Request Configuration by Using Fusion Middleware Control

• Setting the Connection Configuration by Using Fusion Middleware Control

• Setting the Process Configuration by Using Fusion Middleware Control

Setting the Request Configuration by Using Fusion Middleware Control
To specify the Oracle HTTP Server request configuration using Fusion Middleware
Control, do the following:

1. Select Administration from the Oracle HTTP Server menu.

2. Select Performance Directives from the Administration menu. The Performance
Directives page appears.

3. Enter the maximum number of requests in the Maximum Requests field
(MaxRequestWorkers directive).

This setting limits the number of requests that can be dealt with simultaneously.
The default value is 400. This is applicable for all Linux/UNIX platforms.

4. Set the maximum requests per child process in the Maximum Request per Child
Process field (MaxConnectionsPerChild directive).

You can choose to have no limit, or a maximum number. If you choose to have a
limit, enter the maximum number in the field.

5. Enter the request timeout value in the Request Timeout (seconds) field (Timeout
directive).

This value sets the maximum time, in seconds, Oracle HTTP Server waits to
receive a GET request, the amount of time between receipt of TCP packets on a

Chapter 7
Oracle HTTP Server Performance Directives

7-8

POST or PUT request, and the amount of time between ACKs on transmissions of TCP
packets in responses.

6. Review the settings. If the settings are correct, click Apply to apply the changes. If the
settings are incorrect, or you decide to not apply the changes, click Revert to return to
the original settings.

7. Restart Oracle HTTP Server. See Restarting Oracle HTTP Server Instances .

The request configuration settings are saved, and shown on the Performance Directives
page.

Setting the Connection Configuration by Using Fusion Middleware Control
To specify the connection configuration using Fusion Middleware Control, do the following:

1. Select Administration from the Oracle HTTP Server menu.

2. Select Performance Directives from the Administration menu. The Performance
Directives page appears.

3. Enter the maximum connection queue length in the Maximum Connection Queue Length
field (ListenBacklog directive).

This is the queue for pending connections. This is useful if the server is experiencing a
TCP SYN overload, which causes numerous new connections to open up, but without
completing the pending task.

4. Set the Multiple Requests per Connection field (KeepAlive directive) to indicate whether
to allow multiple connections. If you choose to allow multiple connections, enter the
number of seconds for timeout in the Allow With Connection Timeout field.

The Allow With Connection Timeout value sets the number of seconds the server waits
for a subsequent request before closing the connection. Once a request has been
received, the specified value applies. The default is 5 seconds.

5. Review the settings. If the settings are correct, click Apply to apply the changes. If the
settings are incorrect, or you decide to not apply the changes, click Revert to return to
the original settings.

6. Restart Oracle HTTP Server. See Restarting Oracle HTTP Server Instances .

The connection configuration settings are saved, and shown on the Performance Directives
page.

Setting the Process Configuration by Using Fusion Middleware Control
The child process and configuration settings impact the ability of the server to process
requests. You might need to modify the settings as the number of requests increase or
decrease to maintain a well-performing server.

For UNIX, the default number of child server processes is 3. For Microsoft Windows, the
default number of threads to handle requests is 150.

To specify the process configuration using Fusion Middleware Control, do the following:

1. Select Administration from the Oracle HTTP Server menu.

2. Select Performance Directives from the Administration menu. The Performance
Directives page appears.

Chapter 7
Oracle HTTP Server Performance Directives

7-9

3. Enter the number for the initial child server processes in the Initial Child Server
Processes field (StartServers directive).

This is the number of child server processes created when Oracle HTTP Server is
started. The default is 3. This is for UNIX only.

4. Enter the number for the maximum idle threads in the Maximum Idle Threads field
(MaxSpareThreads directive).

An idle thread is a process that is running, but not handling a request.

5. Enter the number for the minimum idle threads in the Minimum Idle Threads field
(MinSpareThreads directive).

6. Enter the number for the threads per child server process in the Threads per Child
Server Process field (ThreadsPerChild directive).

7. Review the settings. If the settings are correct, click Apply to apply the changes. If
the settings are incorrect, or you decide to not apply the changes, click Revert to
return to the original settings.

8. Restart Oracle HTTP Server. See Restarting Oracle HTTP Server Instances .

The process configuration settings are saved, and shown on the Performance
Directives page.

Understanding Process Security for UNIX
Special configuration is required to allow Oracle HTTP Server to bind to privileged
ports when installed on UNIX.

By default, Oracle HTTP Server is not able to bind to ports on UNIX in the reserved
range (typically less than 1024). To enable Oracle HTTP Server to listen on ports in
the reserved range (for example, port 80 and port 443) on UNIX, see Starting Oracle
HTTP Server Instances on a Privileged Port (UNIX Only).

Chapter 7
Understanding Process Security for UNIX

7-10

8
Managing Connectivity

You can manage and monitor the performance of Oracle HTTP Server connectivity by
creating ports, viewing port number usage, and configuring virtual hosts.

This chapter includes the following sections which describes the procedures for managing
Oracle HTTP Server connectivity:

• Default Listen Ports

• Defining the Admin Port

• Viewing Port Number Usage

• Managing Ports

• Configuring Virtual Hosts

• Default Listen Ports
Listen ports (SSL and non-SSL) have a default range of port numbers.

• Defining the Admin Port
Admin port is used internally by Oracle HTTP Server to communicate with Node
Manager. This port is configured in the admin.conf file.

• Viewing Port Number Usage
You can view ports using Fusion Middleware Control or WLST.

• Managing Ports
The ports used by Oracle HTTP Server can be set during and after installation. In
addition, you can change the port numbers, as needed.

• Configuring Virtual Hosts
You can create virtual hosts to run more than one website (such as www.company1.com
and www.company2.com) on a single machine. Virtual hosts can be IP-based, meaning
that you have a different IP address for every website, or name-based, meaning that you
have multiple names running on each IP address. The fact that the virtual ports run on
the same physical server is not apparent to the end user.

Default Listen Ports
Listen ports (SSL and non-SSL) have a default range of port numbers.

Automatic port assignment occurs only if you use ohs_createInstance() or Fusion
Middleware Control. The default, non-SSL port is 7777. If port 7777 is occupied, the next
available port number, within a range of 7777-65535, is assigned. The default SSL port is
4443. Similarly, if port 4443 is occupied, the next available port number, within a range of
4443-65535, is assigned.

If you create instances using Configuration Wizard, then you must perform your own port
management. The Configuration Wizard has no automatic port assignment capabilities.

For information about specifying ports when creating a new Oracle HTTP Server component,
see Creating an Oracle HTTP Server Instance.

8-1

Defining the Admin Port
Admin port is used internally by Oracle HTTP Server to communicate with Node
Manager. This port is configured in the admin.conf file.

The communication between Node Manager and admin port happens over SSL, by
default. It is possible to use plain-text communication by disabling SSL on the admin
port, however it's not recommended. If SSL is disabled, a warning message indicating
plain-text communication is logged to the console and the ohs_nm.log during Oracle
HTTP Server start-up, and then the OHS starts successfully. The following is the
sample warning message:

“SSL is not enabled for the admin port of 'ohs1'. Thus,
the connection between NodeManager and the admin port of 'ohs1' is not
secure. SSL must be enabled for this connection. For more
information on how to enable SSL for this connection, refer to OHS
documentation”.

See Configuring SSL for Admin Port.

Automatic Admin port assignment occurs only if you use ohs_createInstance() or
Fusion Middleware Control. If you create instances using Configuration Wizard, then
you must perform your own Admin port management. The Configuration Wizard has
no automatic port assignment capabilities.

If for any reason you need to use the default port for another purpose, you can
reconfigure the Admin port by using the Configuration Wizard to update the domain
and manually reset ports there.

Viewing Port Number Usage
You can view ports using Fusion Middleware Control or WLST.

This section includes the following topics:

• Viewing Port Number Usage by Using Fusion Middleware Control

• Viewing Port Number Usage Using WLST

• Viewing Port Number Usage by Using Fusion Middleware Control

• Viewing Port Number Usage Using WLST

Viewing Port Number Usage by Using Fusion Middleware Control
You can view how ports are assigned on the Fusion Middleware Control Port Usage
detail page. To view the port number usage using Fusion Middleware Control, do the
following:

1. Navigate to the Oracle HTTP Server home page.

2. Select Port Usage from the Oracle HTTP Server menu.

The Port Usage detail page shows the component, the ports that are in use, the IP
address the ports are bound to, and the protocol being used.

Chapter 8
Defining the Admin Port

8-2

Viewing Port Number Usage Using WLST
If you are using Oracle HTTP Server in collocated mode, then you can use WLST commands
to view the port number information on a given instance.

1. Launch WLST:

$ORACLE_HOME/oracle_common/common/bin/wlst.sh
2. Connect to the AdminServer.

3. Use the editCustom() command to navigate to the root of the oracle.ohs MBean. You
can use the editCustom() command only when WLST is connected to the Administration
Server. Use cd to navigate the hierarchy of management objects, then get() to get the
value of the Ports parameter:

editCustom()
cd('oracle.ohs')
cd('oracle.ohs:type=OHSInstance,name=ohs1')
get('Ports')

WLST will return a value similar to the following:

array(java.lang.String,['7777', '4443', '127.0.0.1:9999'])

Note:

On Unix, you can also cd into the directory of the master copy of the Oracle HTTP
Server configuration files and do a grep for the Listen directives.

Managing Ports
The ports used by Oracle HTTP Server can be set during and after installation. In addition,
you can change the port numbers, as needed.

This section describes how to create, edit, and delete ports using Fusion Middleware Control.

Caution:

The Oracle HTTP Server administration virtual host and its configuration, defined in
the admin.conf file, must not be edited with the WebLogic Scripting Tool (WLST).

See Also:

Changing the Oracle HTTP Server Listen Ports in the Administering Oracle Fusion
Middleware.

This section includes the following topics:

Chapter 8
Managing Ports

8-3

• Creating Ports Using Fusion Middleware Control

• Editing Ports Using Fusion Middleware Control

Note:

When deleting a port, if there is a virtual host configured to use the port you
want to delete, you must first delete that virtual host before deleting the port.

• Creating Ports Using Fusion Middleware Control

• Editing Ports Using Fusion Middleware Control

• Disabling a Listening Port in a Standalone Environment

Creating Ports Using Fusion Middleware Control
You create a port for an Oracle HTTP Server endpoint on the Fusion Middleware
Control Create port page. To create ports using Fusion Middleware Control, do the
following:

1. Navigate to the Oracle HTTP Server home page.

2. Select Administration from the Oracle HTTP Server menu.

3. Select Ports Configuration from the Administration menu.

4. Click Create.

5. Use the IP Address menu to select an IP address for the new port. Ports can listen
on a local IP Address of an associated host or on any available network interfaces.

You can configure SSL for a port on the Virtual Hosts page, as described in
Configuring Virtual Hosts Using Fusion Middleware Control.

6. In Port, enter the port number.

7. Click OK.

8. Restart Oracle HTTP Server. See Restarting Oracle HTTP Server Instances .

Note:

If you change the port or make other changes that affect the URL, such as
changing the host name, enabling or disabling SSL, you need to re-register
partner applications with the SSO server using the new URL. See
Registering Oracle HTTP Server mod_osso with OSSO Server.

Editing Ports Using Fusion Middleware Control
You can edit the values for existing ports on the Fusion Middleware Control Edit Port
page. To edit the ports using Fusion Middleware Control, do the following:

1. Navigate to the Oracle HTTP Server home page.

Chapter 8
Managing Ports

8-4

https://docs.oracle.com/cd/E23520_01/doc.311/e20664/chapter_10.htm

2. Select Administration from the Oracle HTTP Server menu.

3. Select Ports Configuration from the Administration menu.

4. Select the port for which you want to change the port number.

The Admin port cannot be edited by using Fusion Middleware Control. Although this is a
port Oracle HTTP Server uses for its internal communication with Node Manager, in most
of the cases it does not need to be changed. If you really want to change it, manually edit
the DOMAIN_HOME/config/fmwconfig/components/OHS/componentName/admin.conf
file.

5. Click Edit.

6. Edit the IP Address and/or Port number for the port.

You can be configure SSL for a port on the Virtual Hosts page as described in
Configuring Virtual Hosts Using Fusion Middleware Control.

7. Click OK.

8. Restart Oracle HTTP Server. See Restarting Oracle HTTP Server Instances .

Note:

If you change the port or make other changes that affect the URL, such as changing
the host name, enabling or disabling SSL, you need to re-register partner
applications with the SSO server using the new URL.

Disabling a Listening Port in a Standalone Environment
While you can use Fusion Middleware Control to disable a listen port in a WebLogic Server
environment, to do so in a standalone environment, you must directly update staging
configuration file by commenting-out the line where port is exposed; for example:

#Listen slc01qtd.us.myCo.com:7777

Note:

Before attempting to edit any .conf file, you should familiarize yourself with the
layout of the configuration file directories, mechanisms for editing the files, and
learn more about the files themselves. See Understanding Configuration Files.

Configuring Virtual Hosts
You can create virtual hosts to run more than one website (such as www.company1.com and
www.company2.com) on a single machine. Virtual hosts can be IP-based, meaning that you
have a different IP address for every website, or name-based, meaning that you have
multiple names running on each IP address. The fact that the virtual ports run on the same
physical server is not apparent to the end user.

Chapter 8
Configuring Virtual Hosts

8-5

Caution:

The Oracle HTTP Server administration virtual host and its configuration,
defined in the admin.conf file, must not be edited with the WebLogic Scripting
Tool (WLST).

The current release of Oracle HTTP Server enables you to use IPv6 and IPv4
addresses as the virtual host name.

You can also configure multiple addresses for the same virtual host; that is, a virtual
host can be configured to serve on multiple addresses. This allows requests to
different addresses to be served with the same content from the same virtual host.

This section describes how to create and edit virtual hosts using Fusion Middleware
Control.

• Creating Virtual Hosts Using Fusion Middleware Control

• Configuring Virtual Hosts Using Fusion Middleware Control

• Creating Virtual Hosts Using Fusion Middleware Control

• Configuring Virtual Hosts Using Fusion Middleware Control

See Also:

For more information about virtual hosts, see Apache HTTP Server
documentation.

Creating Virtual Hosts Using Fusion Middleware Control
You can create a virtual host for Oracle HTTP Server on the Fusion Middleware
Control Create Virtual Hosts page. To create a virtual host using Fusion Middleware
Control, do the following:

1. Navigate to the Oracle HTTP Server home page.

2. Select Administration from the Oracle HTTP Server menu.

3. Select Virtual Hosts from the Administration menu.

4. Click Create.

5. In the Create Virtual Host screen, enter a name for the virtual host field and then
choose whether to enter a new listen address or to use an existing listen address.

• New listen address - Use this option when you want to create a virtual host
that maps to a specific hostname, IP address, or IPv6 address, for example
mymachine.com:8080. This will create the following VirtualHost directive:

<VirtualHost mymachine.com:8080>
• Use existing listen address - Use this option when you want to create a

virtual host using an existing listen port and the one that maps to all IP
addresses. This will create following type VirtualHost directive:

Chapter 8
Configuring Virtual Hosts

8-6

http://httpd.apache.org/docs/2.4/vhosts/
http://httpd.apache.org/docs/2.4/vhosts/

<VirtualHost *:8080>

Note:

If you attempt to create a virtual host with a wildcard character, for example,
*:port and no listen directive exists for that port, then the virtual host creation
will fail.

In this case, you must first add the listen directive, and then try to add the virtual
host.

6. Enter the remaining attributes for the new virtual host.

• Server Name - The name of the server for Oracle HTTP Server

• Document Root - Documentation root directory that forms the main document tree
visible from the website

• Directory Index - The main (index) page that will be displayed when a client first
accesses the website

• Administrator's E-mail Address - The e-mail address that the server will include in
error messages sent to the client

7. Click OK.

8. Restart Oracle HTTP Server. See Restarting Oracle HTTP Server Instances .

Removing Unnecessary Listen Directives

Creating a virtual host by using Fusion Middleware Control also adds the Listen directive for
the virtual host. However, virtual host creation will add unnecessary Listen directives in the
following situations:

• A virtual host is being created for one host name and the Listen directive already exists
for the different host name resolving to the same IP address.

• A virtual host is being created for one host name and the Listen directive already exists
for the IP address that the host name resolves to.

• A virtual host is being created for multiple host names that resolve to the same IP
address.

In these situations, Oracle HTTP Server will fail to start because there are multiple Listen
directives for the same IP address. You must remove any extra Listen directives configured
for the same IP address.

Configuring Virtual Hosts Using Fusion Middleware Control
You can use the options on the Configure menu of the Virtual Hosts page to specify Server,
MIME, Log, SSL, and mod_wl_ohs configuration for a selected virtual host.

To configure a virtual host using Fusion Middleware Control, do the following:

1. Navigate to the Oracle HTTP Server home page.

2. Select Administration from the Oracle HTTP Server menu.

3. Select Virtual Hosts from the Administration menu.

4. Highlight an existing virtual host in the table.

Chapter 8
Configuring Virtual Hosts

8-7

5. Click Configure.

6. Select one of the following options from the Configure menu to open its
corresponding configuration page. The values on these pages apply only to the
virtual host. If the fields are blank, the virtual host uses the values configured at
the server level.

• Server Configuration: Configure basic virtual host properties, such as
document root directory, installed modules, and aliases. See Specifying Server
Properties by Using Fusion Middleware Control .

• MIME Configuration: Configure MIME settings, which are used by Oracle
HTTP Server to interpret file types, encodings, and languages. Configuring
MIME Settings Using Fusion Middleware Control.

• Log Configuration: Configure access logs that will record all requests
processed by the virtual host. The logs contain basic information about every
HTTP transaction handled by the virtual host. See Configuring Oracle HTTP
Server Logs.

• SSL Configuration: For instructions on configuring SSL using Fusion
Middleware Control, see Enabling SSL for Oracle HTTP Server Virtual Hosts
in the Administering Oracle Fusion Middleware.

• mod_wl_ohs Configuration: Configure the mod_wl_ohs module to allow
requests to be proxied from an Oracle HTTP Server to Oracle WebLogic
Server. See About Configuring the Oracle WebLogic Server Proxy Plug-In
(mod_wl_ohs).

7. Review the settings on each configuration page. If the settings are correct, click
OK to apply the changes. If the settings are incorrect, or you decide to not apply
the changes, click Cancel to return to the original settings.

8. Restart Oracle HTTP Server. See Restarting Oracle HTTP Server Instances .

Chapter 8
Configuring Virtual Hosts

8-8

9
Managing Oracle HTTP Server Logs

Managing Oracle HTTP Server logs includes configuring the server logs, viewing the cause
of an error and its corrective action, and more.

Oracle HTTP Server generates log files containing messages that record all types of events,
including startup and shutdown information, errors, warning messages, access information on
HTTP requests, and additional information.

This chapter includes the following sections:

• Overview of Server Logs

• Configuring Oracle HTTP Server Logs

• Configuring the Log Level Using WLST

• Log Directives for Oracle HTTP Server

• Viewing Oracle HTTP Server Logs

• Recording ECID Information

• Overview of Server Logs
Oracle HTTP Server has two types of server logs: error logs and access logs. Error log
files record server problems, and access log files record details of components and
applications being accessed and by whom.

• Configuring Oracle HTTP Server Logs
You can use Fusion Middleware Control to configure error and access logs.

• Configuring the Log Level Using WLST
You can use WLST commands to set the LogLevel directive, which controls the verbosity
of the error log.

• Log Directives for Oracle HTTP Server
Oracle HTTP Server can be configured to use either Oracle Diagnostic Logging (ODL) for
generating diagnostic messages or the legacy Apache HTTP Server message format.

• Viewing Oracle HTTP Server Logs
You can view server logs using Fusion Middleware Control, WLST, or a text editor.

• Recording ECID Information
You can configure Oracle HTTP Server logs to record Execution Context ID (ECID)
information.

Overview of Server Logs
Oracle HTTP Server has two types of server logs: error logs and access logs. Error log files
record server problems, and access log files record details of components and applications
being accessed and by whom.

You can view Oracle Fusion Middleware log files using either Fusion Middleware Control or a
text editor. The log files for Oracle HTTP Server are located in the following directory:

ORACLE_HOME/user_projects/domains/<base_domain>/servers/componentName/logs

9-1

This section contains the following topics:

• About Error Logs

• About Access Logs

• Configuring Log Rotation

• About Error Logs

• About Access Logs

• Configuring Log Rotation

About Error Logs
Oracle HTTP Server enables you to choose the format in which you want to generate
log messages. You can choose to generate log messages in the legacy Apache HTTP
Server message format, or use Oracle Diagnostic Logging (ODL) to generate log
messages in text or XML-formatted logs, which complies with Oracle standards for
generating error log messages.

By default, Oracle HTTP Server error logs use ODL for generating diagnostic
messages. It provides a common format for all diagnostic messages and log files, and
a mechanism for correlating the diagnostic messages from various components across
Oracle Fusion Middleware.

The default name of the error log file is instance_name.log.

Note:

ODL error logging cannot have separate log files for each virtual host. It can
only be configured globally for all virtual hosts.

About Access Logs
Access logs record all requests processed by the server. The logs contain basic
information about every HTTP transaction handled by the server. The access log
contains the following information:

• Host name

• Remote log name

• Remote user and time

• Request

• Response code

• Number of transferred bytes

The default name of the access log file is access_log.

Access Log Format

You can specify the information to include in the access log, and the manner in which it
is written. The default format is the Common Log Format (CLF).

Chapter 9
Overview of Server Logs

9-2

LogFormat "%h %l %u %t %E \"%r\" %>s %b" common

The CLF format contains the following fields:

host ident remote_logname remote_usre date ECID request authuser status bytes

• host: This is the client domain name or its IP number. Use %h to specify the host field in
the log.

• ident: If IdentityCheck is enabled and the client system runs identd, this is the client
identity information. Use %i to specify the client identity field in the log.

• remote_logname: Remote log name (from identd, if supplied). Use %l to specify the
remote log name in the log.

• remote_user: Remote user if the request was authenticated. Use %u to specify the remote
user in the log.

• date: This is the date and time of the request in the day/month/year:hour:minute:second
format. Use %t to specify date and time in the log.

• ECID: Capture ECID information. Use %E to capture ECID in the log. See also Configuring
Access Logs for ECID Information.

• request: This is the request line, in double quotes, from the client. Use %r to specify
request in the log.

• authuser: This is the user ID for the authorized user. Use %a to specify the authorized
user field in the log.

• status: This is the three-digit status code returned to the client. Use %s to specify the
status in the log. If the request will be forwarded from another server, use %>s to specify
the last server in the log.

• bytes: This is the number of bytes, excluding headers, returned to the client. Use %b to
specify number of bytes in the log. Use %i to include the header in the log.

See Also:

Access Log in the Apache HTTP Server documentation.

Configuring Log Rotation
Oracle HTTP Server supports two types of log rotation policies: size-based and time-based.
You can configure the Oracle HTTP Server logs to use either of the two rotation polices, by
using odl_rotatelogs in ORACLE_HOME/ohs/bin. By default, Oracle HTTP Server uses
odl_rotatelogs for both error and access logs.

odl_rotatelogs supports all the features of Apache HTTP Server's rotatelogs and the
additional feature of log retention.

You can find information about the features and options provided by rotatelogs at the
following URL:

http://httpd.apache.org/docs/2.4/programs/rotatelogs.html
The following is the general syntax of odl_rotatelogs:

Chapter 9
Overview of Server Logs

9-3

http://httpd.apache.org/docs/2.4/logs.html#accesslog
http://httpd.apache.org/docs/2.4/programs/rotatelogs.html

odl_rotatelogs [-u:offset] logfile {size-|time-based-rotation-options}

odl_rotatelogs is meant to be used with the piped logfile feature. This feature allows
error and access log files to be written through a pipe to another process, rather than
directly to a file. This increases the flexibility of logging, without adding code to the
main server. To write logs to a pipe, replace the filename with the pipe character "|",
followed by the name of the executable which should accept log entries on its standard
input. For more information on the piped logfile feature, see the following URL:

http://httpd.apache.org/docs/2.4/logs.html#piped
Used with the piped logfile feature, the syntax of odl_rotatelogs becomes the
following:

CustomLog " |${PRODUCT_HOME}/bin/odl_rotatelogs [-u:offset] logfile {size-|time-
based-rotation-options}" log_format

Whenever there is an input to odl_rotatelogs, it checks if the specified condition for
rotation has been met. If so, it rotates the file. Otherwise it simply writes the content. If
no input is provided, then it will do nothing.

Table 9-1 describes the size- and time-based rotation options:

Table 9-1 Options for odl_rotatelogs

Option Description

-u The time (in seconds) to offset from UTC.

logfile The path and name of the log file, followed by a hyphen (-) and then the
timestamp format.

The following are the common timestamp format strings:

• %m: Month as a two-digit decimal number (01-12)

• %d: Day of month as a two-digit decimal number (01-31)

• %Y: Year as a four-digit decimal number

• %H: Hour of the day as a two-digit decimal number (00-23)

• %M: Minute as a two-digit decimal number (00-59)

• %S: Second as a two-digit decimal number (00-59)

It should not include formats that expand to include slashes.

frequency The time (in seconds) between log file rotations.

retentionTime The maximum time for which the rotated log files are retained.

startTime The time when time-based rotation should start.

maxFileSize The maximum size (in MB) of log files.

allFileSize The total size (in MB) of files retained.

With time-based rotation, log rotation of Oracle HTTP Server using the
odl_rotatelogs is calculated by default according to UTC time. For example, setting
log rotation to 86400 (24 hours) rotates the logs every 12:00 midnight, UTC. If Oracle
HTTP Server is running on a server in IST (Indian Standard Time) which is
UTC+05:30, then the logs are rotated at 05:30 a.m.

As an alternative to using the -u option with the UTC offset, you can use the -l option
provided by Apache. This option causes Oracle HTTP Server to use local time as the
base for the interval. Using the-l option in an environment which changes the UTC

Chapter 9
Overview of Server Logs

9-4

http://httpd.apache.org/docs/2.4/logs.html#piped

offset (such as British Standard Time (BST) or Daylight Savings Time (DST)) can lead to
unpredictable results.

• Syntax and Examples for Time- and Size-Based Log Rotation

Syntax and Examples for Time- and Size-Based Log Rotation
The following examples demonstrate the odl_rotatelogs syntax to set time- and size-based
log rotation.

• Time-based rotation

Syntax:

odl_rotatelogs -u:offset logfile frequency retentionTime startTime

Example:

CustomLog "| odl_rotatelogs -u:-18000 /varlog/error.log-%Y-%m-%d 21600 172800
2014-03-10T08:30:00" common

This configures log rotation to be performed for a location UTC-05:00 (18000 seconds,
such as New York). The rotation will be performed every 21600 seconds (6 hours)
starting from 8:30 a.m. on March 10, 2014, and it specifies that the rotated log files
should be retained for 172800 seconds (2 days). The log format is common.

Syntax:

odl_rotatelogs logfile frequency retentionTime startTime

Example:

CustomLog "| odl_rotatelogs /varlog/error.log-%Y-%m-%d 21600 172800
2014-03-10T08:30:00" common

This configures log rotation to be performed every 21600 seconds (6 hours) starting from
8:30 a.m. on March 10, 2014, and it specifies that the rotated log files should be retained
for 172800 seconds (2 days). The log format is common.

• Size-based rotation

Syntax:

odl_rotatelogs logfile maxFileSize allFileSize

Example:

This configures log rotation to be performed when the size of the log file reaches 10 MB,
and it specifies the maximum size of all the rotated log files as 70 MB (up to 7 log files
(=70/10) will be retained). The log format is common.

CustomLog "| odl_rotatelogs /var/log/error.log-%Y-%m-%d 10M 70M" common

Configuring Oracle HTTP Server Logs
You can use Fusion Middleware Control to configure error and access logs.

The following sections describe logging tasks that can be set from the Log Configuration
page:

• Configuring Error Logs Using Fusion Middleware Control

Chapter 9
Configuring Oracle HTTP Server Logs

9-5

• Configuring Access Logs Using Fusion Middleware Control

• Configuring the Log File Creation Mode (umask) (UNIX/Linux Only)

• Configuring Error Logs Using Fusion Middleware Control

• Configuring Access Logs Using Fusion Middleware Control

• Configuring the Log File Creation Mode (umask) (UNIX/Linux Only)

Configuring Error Logs Using Fusion Middleware Control
You configure error logs on the Fusion Middleware Control Log Configuration page. To
configure an error log for Oracle HTTP Server using Fusion Middleware Control, do
the following:

1. Navigate to the Oracle HTTP Server home page.

2. Select Log Configuration from the Administration menu.

The Log Configuration page is displayed.

3. Set up the following error log configuration tasks on this page:

• Configuring the Error Log Format and Location

• Configuring the Error Log Level

• Configuring Error Log Rotation Policy

• Configuring the Error Log Format and Location

• Configuring the Error Log Level

• Configuring Error Log Rotation Policy

Configuring the Error Log Format and Location
You can change the error log format and location on the Fusion Middleware Control
Log Configuration page. By default, Oracle HTTP Server uses ODL-Text as the error
log format and creates the log file with the name component_name.log under the
DOMAIN_HOME/servers/component_name/logs directory. To use a different format or
log location, do the following:

1. From the Log Configuration page, navigate to the General section under the Error
Log section.

2. Select the desired file format.

• ODL-Text: the format of the diagnostic messages conform to an Oracle
standard and are written in text format.

• Apache: the format of the diagnostic messages conform to the legacy Apache
HTTP Server message format.

3. Enter a path for the error log in the Log File/Directory field. This directory must
exist before you enter it here.

4. Review the settings. If the settings are correct, click Apply to apply the changes. If
the settings are incorrect, or you decide to not apply the changes, click Revert to
return to the original settings.

5. Restart Oracle HTTP Server. See Restarting Oracle HTTP Server Instances .

Chapter 9
Configuring Oracle HTTP Server Logs

9-6

Configuring the Error Log Level
You can configure the amount and type of information written to log files by specifying the
message type and level. Error log level for Oracle HTTP Server by default is configured to
WARNING:32. To use a different error log level do the following:

1. From the Log Configuration page, navigate to the General section under the Error Log
section.

2. Select a level for the logging from the Level menu. The higher the log level, the more
information that is included in the log.

3. Review the settings. If the settings are correct, click Apply to apply the changes. If the
settings are incorrect, or you decide to not apply the changes, click Revert to return to
the original settings.

4. Restart Oracle HTTP Server. See Restarting Oracle HTTP Server Instances .

Note:

The log levels are different for the Apache HTTP Server log format and ODL-Text
format.

• For details on ODL log levels, refer to Setting the Level of Information Written to
Log Filesin Administering Oracle Fusion Middleware.

• For details on Apache HTTP Server log levels, refer to the LogLevel Directive in
the Apache HTTP Server documentation.

Configuring Error Log Rotation Policy
Log rotation policy for error logs can either be time-based, such as once a week, or sized-
based, such as 120MB. By default, the error log file is rotated when it reaches 10 MB and a
maximum of 7 error log files will be retained. To use a different rotation policy, do the
following:

1. From the Log Configuration page, navigate to the General section under the Error Log
section.

2. Select a rotation policy.

• No Rotation: if you do not want to have the log file rotated ever.

• Size Based: rotate the log file whenever it reaches a configured size. Set the
maximum size for the log file in Maximum Log File Size (MB) field and the maximum
number of error log files to retain in Maximum Files to Retain field.

• Time Based: rotate the log file whenever configured time is reached. Set the start
time, rotation frequency, and retention period.

3. Review the settings. If the settings are correct, click Apply to apply the changes. If the
settings are incorrect, or you decide to not apply the changes, click Revert to return to
the original settings.

4. Restart Oracle HTTP Server. See Restarting Oracle HTTP Server Instances .

Chapter 9
Configuring Oracle HTTP Server Logs

9-7

http://httpd.apache.org/docs/2.4/mod/core.html#loglevel

Configuring Access Logs Using Fusion Middleware Control
You can configure an access log format and rotation policy for Oracle HTTP Server
from the Fusion Middleware Control Log Configuration page.

The following access log configuration tasks can be set from this page:

• Configuring the Access Log Format

• Configuring the Access Log File

• Configuring the Access Log Format

• Configuring the Access Log File

Configuring the Access Log Format
Log format specifies the information included in the access log file and the manner in
which it is written. To add a new access log format or to edit or remove an existing
format, do the following:

1. Navigate to the Oracle HTTP Server home page.

2. Select Log Configuration from the Administration menu.

3. From the Log Configuration page, navigate to the Access Log section.

4. Click Manage Log Formats.

The Manage Custom Access Log Formats page is displayed.

5. Select an existing format to change or remove, or click Add Row to create a new
format.

6. If you choose to create a new format, then enter the new log format in the Log
Format Name field and the log format in the Log Format Pattern field.

For information about log format directives, see Apache HTTP Server
documentation.

7. Click OK to save the new format.

Configuring the Access Log File
You can configure rotation policy for the access log on the Fusion Middleware Control
Create or Edit Access Log page. To configure an access log for file Oracle HTTP
Server, do the following:

1. Navigate to the Oracle HTTP Server home page.

2. Select Log Configuration from the Administration menu.

3. From the Log Configuration page, navigate to the Access Log section.

4. Click Create to create a new access log, or select a row from the table and click
Edit button to edit an existing access log file.

The Create or Edit Access Log page is displayed.

5. Enter the path for the access log in the Log File Path field. This directory must
exist before you enter it.

6. Select an existing access log format from the Log Format menu.

Chapter 9
Configuring Oracle HTTP Server Logs

9-8

http://httpd.apache.org/docs/2.4/mod/mod_log_config.html#accesslog
http://httpd.apache.org/docs/2.4/mod/mod_log_config.html#accesslog

7. Select a rotation policy.

• No Rotation: If you do not want to have the log file rotated ever.

• Size Based: Rotate the log file whenever it reaches a configured size. Set the
maximum size for the log file in Maximum Log File Size (MB) field and the maximum
number of error log files to retain in Maximum Files to Retain field.

• Time Based: Rotate the log file whenever configured time is reached. Set the start
time, rotation frequency, and retention period.

8. Click OK to continue.

You can create multiple access log files.

Configuring the Log File Creation Mode (umask) (UNIX/Linux Only)
Set the value of default file mode creation mask (umask) before starting the Oracle HTTP
Server instance. The value that you set for umask determines the file permissions for the files
created by Oracle HTTP Server instance such as the error log, access log, and so on. If
umask is not set explicitly, then a value of 0027 is used by default.

This section contains the following information:

• Configure umask for an Oracle HTTP Server Instance in a Standalone Domain

• Configure umask for an Oracle HTTP Server Instance in a WebLogic Server Managed
Domain

• Configure umask for an Oracle HTTP Server Instance in a Standalone Domain

• Configure umask for an Oracle HTTP Server Instance in a WebLogic Server Managed
Domain

Configure umask for an Oracle HTTP Server Instance in a Standalone Domain
To configure the default file mode creation mask in a standalone domain, set the umask
property in the ohs.plugins.nodemanager.properties file under the staging location:

DOMAIN_HOME/config/fmwconfig/components/OHS/instanceName/
ohs.plugins.nodemanager.properties

Configure umask for an Oracle HTTP Server Instance in a WebLogic Server
Managed Domain

To configure the default file mode creation mask in a WebLogic Server (either Full-JRF or
Restricted-JRF) domain, follow these steps:

1. Start the AdminServer and NodeManager for the domain, for example:

<Domain_HOME>/bin/startWebLogic.sh &
<DOMAIN_HOME>/bin/startNodeManager.sh &

2. Start WLST and connect to the AdminServer.

<ORACLE_HOME>/oracle_common/bin/wlst.sh
connect('<userName', <'password'>, <'adminServerURL'>

Chapter 9
Configuring Oracle HTTP Server Logs

9-9

3. Navigate to the following MBean. Note that the ObjectName for this MBean is
dependent on the name of Oracle HTTP Server instance. In this example, the
name of Oracle HTTP Server instance is ohs1
editCustom()
cd('oracle.ohs')
cd('oracle.ohs:OHSInstance=ohs1,component=OHS,type=OHSInstance.NMProp')

4. Set the value of umask to the desired value.

startEdit()
set('Umask','0022')

5. Save and activate the changes.

save()
activate()

Configuring the Log Level Using WLST
You can use WLST commands to set the LogLevel directive, which controls the
verbosity of the error log.

For more information on the LogLevel directive, see the Apache documentation:
http://httpd.apache.org/docs/current/mod/core.html#loglevel
Follow these steps to set the LogLevel directive using WLST commands.

1. Launch WLST.

$ORACLE_HOME/oracle_common/common/bin/wlst.sh
2. Connect to Administration Server.

connect('<user-name>', '<password>','<host>:<port>')
3. Use the editCustom() command to navigate to the root of the oracle.ohs MBean.

You can use the editCustom() command only when WLST is connected to the
Administration Server. Use cd to navigate the hierarchy of management objects, in
this case, ohs1 under oracle.ohs. Use the startEdit() command to start an edit
session.

editCustom()
cd('oracle.ohs')
cd('oracle.ohs:type=OHSInstance,name=ohs1')
startEdit()

4. Use the set command to set the value of the log level attribute. The following
example sets the global log level to trace7, the module status log level to error,
and the module env log level to warn (warning).

set('LogLevel','trace7 status:error env:warn')
5. Save, then activate your changes. The edit lock associated with this edit session is

released once the activation is completed.

save()
activate()

Chapter 9
Configuring the Log Level Using WLST

9-10

http://httpd.apache.org/docs/current/mod/core.html#loglevel

Log Directives for Oracle HTTP Server
Oracle HTTP Server can be configured to use either Oracle Diagnostic Logging (ODL) for
generating diagnostic messages or the legacy Apache HTTP Server message format.

The following sections describe Oracle HTTP Server error and access log-related directives
in the httpd.conf file.

• Oracle Diagnostic Logging Directives

• Apache HTTP Server Log Directives

• Oracle Diagnostic Logging Directives

• Apache HTTP Server Log Directives

Oracle Diagnostic Logging Directives
Oracle HTTP Server by default uses Oracle Diagnostic Logging (ODL) for generating
diagnostic messages. The following directives are used to set up logging using ODL:

• OraLogMode

• OraLogDir

• OraLogSeverity

• OraLogRotationParams

• OraLogMode

• OraLogDir

• OraLogSeverity

• OraLogRotationParams

OraLogMode
Enables you to choose the format in which you want to generate log messages. You can
choose to generate log messages in the legacy Apache HTTP Server or ODL text format.

OraLogMode Apache | ODL-Text
Default value: ODL-Text
For example: OraLogMode ODL-Text

Note:

The Apache HTTP Server log directives ErrorLog and LogLevel are only effective
when OraLogMode is set to Apache. When OraLogMode is set to ODL-Text, the
ErrorLog and LogLevel directives are ignored.

Chapter 9
Log Directives for Oracle HTTP Server

9-11

OraLogDir
Specifies the path to the directory that contains all log files. This directory must exist.

This directive is used only when OraLogMode is set to ODL-Text. When OraLogMode is
set to Apache, OraLogDir is ignored and ErrorLog is used instead.

OraLogDir <path>

Default value: ORACLE_INSTANCE/servers/componentName/logs

For example: OraLogDir /tmp/logs

OraLogSeverity
Enables you to set message severity. The message severity specified with this
directive is interpreted as the lowest desired message severity, and all messages of
that severity level and higher are logged.

This directive is used only when OraLogMode is set to ODL-Text. When OraLogMode is
set to Apache, OraLogSeverity is ignored and LogLevel is used instead. In the
following syntax, short_module_identifierName is the module name with the trailing
_module omitted.

OraLogSeverity [short_module_identifierName] <msg_type>[:msg_level]

Default value: WARNING:32
For example: OraLogSeverity mime NOTIFICATION:32
msg_type

Message types can be specified in upper or lowercase, but appear in the message
output in upper case. This parameter must be of one of the following values:

• INCIDENT_ERROR

• ERROR

• WARNING

• NOTIFICATION

• TRACE

msg_level

This parameter must be an integer in the range of 1–32, where 1 is the most severe,
and 32 is the least severe. Using level 1 will result in fewer messages than using level
32.

OraLogRotationParams
Enables you to choose the rotation policy for an error log file. This directive is used
only when OraLogMode is set to ODL-Text. When OraLogMode is set to Apache,
OraLogRotationParams is ignored.

OraLogRotationParams <rotation_type> <rotation_policy>

Chapter 9
Log Directives for Oracle HTTP Server

9-12

Default value: S 10:70
For example: OraLogRotationParams T 43200:604800 2009-05-08T10:53:29
rotation_type

This parameter can either be S (for sized-based rotation) or T (for time-based rotation).

rotation_policy

When rotation_type is set to S (sized-based), set the rotation_policy parameter to:

maxFileSize:allFilesSize (in MB)

For example, when configured as 10:70, the error log file is rotated whenever it reaches
10MB and a total of 70MB is allowed for all error log files (a maximum of 70/10=7 error log
files will be retained).

When rotation_type is set to T (time-based), set the rotation_policy parameter to:

frequency(in sec) retentionTime(in sec) startTime(in YYYY-MM-DDThh:mm:ss)
For example, when configured as 43200:604800 2009-05-08T10:53:29, the error log is
rotated every 43200 seconds (that is, 12 hours), rotated log files are retained for maximum of
604800 seconds (7 days) starting from May 5, 2009 at 10:53:29.

Apache HTTP Server Log Directives
Although Oracle HTTP Server uses ODL by default for error logs, you can configure the
OraLogMode directive to Apache to generate error log messages in the legacy Apache HTTP
Server message format. The following directives are discussed in this section:

• ErrorLog

• LogLevel

• LogFormat

• CustomLog

• ErrorLog

• LogLevel

• LogFormat

• CustomLog

ErrorLog
The ErrorLog directive sets the name of the file where the server logs any errors it
encounters. If the filepath is not absolute then it is assumed to be relative to the ServerRoot.

This directive is used only when OraLogMode is set to Apache. When OraLogMode is set to ODL-
Text, ErrorLog is ignored and OraLogDir is used instead.

Chapter 9
Log Directives for Oracle HTTP Server

9-13

See Also:

For information about the Apache ErrorLog directive, see:

http://httpd.apache.org/docs/current/mod/core.html#errorlog

LogLevel
The LogLevel directive adjusts the verbosity of the messages recorded in the error
logs.

This directive is used only when OraLogMode is set to Apache. When OraLogMode is set
to ODL-Text, LogLevel is ignored and OraLogSeverity is used instead.

See Also:

For information about the Apache HTTP Server LogLevel directive see:

http://httpd.apache.org/docs/current/mod/core.html#loglevel

LogFormat
The LogFormat directive specifies the format of the access log file. By default, Oracle
HTTP Server comes with the following four access log formats defined:

LogFormat "%h %l %u %t %E \"%r\" %>s %b" commonLogFormat "%h %l %u %t %E \"%r\"
%>s %b \"%{Referer}i\" \"%{User-Agent}i\"" combinedLogFormat "%h %l %u %t %E
\"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\" %I %O" combinedio

See Also:

For information about the Apache HTTP Server LogFormat directive, see:

http://httpd.apache.org/docs/current/mod/
mod_log_config.html#logformat

CustomLog
Use the CustomLog directive to log requests to the server. A log format is specified and
the logging can optionally be made conditional on request characteristics using
environment variables. By default, the access log file is configured to use the common
log format.

Chapter 9
Log Directives for Oracle HTTP Server

9-14

http://httpd.apache.org/docs/current/mod/core.html#errorlog
http://httpd.apache.org/docs/2.4/mod/core.html#loglevel
http://httpd.apache.org/docs/current/mod/core.html#loglevel
http://httpd.apache.org/docs/current/mod/mod_log_config.html#logformat
http://httpd.apache.org/docs/current/mod/mod_log_config.html#logformat

See Also:

For information about the Apache CustomLog directive, see:

http://httpd.apache.org/docs/current/mod/mod_log_config.html#customlog

Viewing Oracle HTTP Server Logs
You can view server logs using Fusion Middleware Control, WLST, or a text editor.

There are mainly two types of log files for Oracle HTTP Server: error logs and access logs.
The error log file is an important source of information for maintaining a well-performing
server. The error log records all of the information about problem situations so that the
system administrator can easily diagnose and fix the problems. The access log file contains
basic information about every HTTP transaction that the server handles. You can use this
information to generate statistical reports about the server's usage patterns.

See Overview of Server Logs for more information on error logs and access logs.

This section describes the methods to view Oracle HTTP Server logs:

• Viewing Logs Using Fusion Middleware Control

• Viewing Logs Using WLST

• Viewing Logs in a Text Editor

• Viewing Logs Using Fusion Middleware Control

• Viewing Logs Using WLST

• Viewing Logs in a Text Editor

Viewing Logs Using Fusion Middleware Control
To access the log messages for an Oracle HTTP Server instance:

1. Navigate to the Oracle HTTP Server home page.

2. Select the server instance for which you want to view log messages.

3. From the Oracle HTTP Server drop-down list, select Logs, then View Log Messages.

The Log Messages page opens.

For information about searching and viewing log files, see Viewing Log Files and Their
Messages Using Fusion Middleware Control in Administering Oracle Fusion Middleware.

Viewing Logs Using WLST
To obtain and view server logs from the command line, you need to connect to Node
Manager and issue the appropriate WebLogic Scripting Tool (WLST) command. These
commands allow you to perform any of these functions:

• List server logs.

• Display the content of a specific log.

Chapter 9
Viewing Oracle HTTP Server Logs

9-15

http://httpd.apache.org/docs/current/mod/mod_log_config.html#customlog

Note:

For more information on using WLST, see Understanding the WebLogic
Scripting Tool.

Before attempting this procedure:

Before attempting to access server metrics from the command line, ensure the
following:

• The domain exists.

• The instance you want to start exists.

• Node Manager is running on the instance machine.

To use this procedure, the instance and Administration server can be running but do
not need to be.

To view metrics using WLST:

Note:

For managed domains, this procedure will work on an Administration server
running on either the Administration machine or on a remote machine,
whether the instance is in a running state or a shutdown state. For
standalone domains, the procedure will work only on a local machine;
however the instance can be either in a running or shutdown state.

1. Launch WLST:

From Linux or UNIX:

$ORACLE_HOME/oracle_common/common/bin/wlst.sh

From Windows:

C:\ORACLE_HOME\oracle_common\common\bin\wlst.cmd
2. From the selected domain directory (for example, ORACLE_HOME/user_projects/

domains/domainName), connect to Node Manager:

nmConnect('username', 'pwd', localhost, 5556, domainName)
3. Enter one of the following WLST commands, depending on what task you want to

accomplish:

• listLogs(nmConnected=1, ...)
• displayLogs(nmConnected=1, ...)
For example:

listLogs(nmConnected=1, target='ohs1')
displayLogs(nmConnected=1, target='ohs1', tail=5)

Chapter 9
Viewing Oracle HTTP Server Logs

9-16

Viewing Logs in a Text Editor
You can also use a text editor to view Oracle HTTP Server log files directly from the
DOMAIN_HOME directory. By default, Oracle HTTP Server log files are located in the
DOMAIN_HOME/servers/component_name/logs directory. Download a log file to your local
client and view the log files using another tool.

Recording ECID Information
You can configure Oracle HTTP Server logs to record Execution Context ID (ECID)
information.

The following sections describe how to record Execution Context ID (ECID) information in
error logs and access logs.

• About ECID Information

• Configuring Error Logs for ECID Information

• Configuring Access Logs for ECID Information

• About ECID Information

• Configuring Error Logs for ECID Information

• Configuring Access Logs for ECID Information

About ECID Information
An ECID is a globally unique ID that can be attached to requests between Oracle
components. The ECID enables you to track log messages pertaining to the same request
when multiple requests are processed in parallel.

The Oracle HTTP Server module mod_context scans each incoming request for an ECID-
Context key in the URI or cookie, or for the ECID-Context header. If found, then the value is
used as the execution context if it is valid. If it is not, then mod_context creates a new
execution context for the request and adds it as the value of the ECID-Context header.

Configuring Error Logs for ECID Information
ECID information is recorded as part of Oracle Diagnostic Logging (ODL). ODL is a method
for reporting diagnostic messages which presents a common format for diagnostic messages
and log files, and a method for correlating all diagnostic messages from various components.

To configure Oracle HTTP Server error logs to record ECID information, ensure that the
OraLogMode directive in the httpd.conf file is set to the default value, odl. The odl value
specifies standard Apache log format and ECID information for log records specifically
associated with a request.

For more information on OraLogMode and other possible values for this directive, see
OraLogMode.

Chapter 9
Recording ECID Information

9-17

Note:

Oracle recommends that you enter the directives before any modules are
loaded (LoadModule directive) in the httpd.conf file so that module-specific
logging severities are in effect before modules have the opportunity to
perform any logging.

Configuring Access Logs for ECID Information
By default, the LogFormat directive in the httpd.conf file is configured to capture ECID
information:

LogFormat "%h %l %u %t %E \"%r\" %>s %b" common

If you want to add response time measured in microseconds, then add %D as follows:

LogFormat "%h %l %u %t %E %D \"%r\" %>s %b" common

If you want to suppress the capture of ECID information, then remove %E from the
LogFormat directive:

LogFormat "%h %l %u %t \"%r\" %>s %b" common

Chapter 9
Recording ECID Information

9-18

10
Managing Application Security

Oracle HTTP Server supports three main categories of security, namely, authentication,
authorization, and confidentiality.

To know more about Oracle HTTP Server security features and configuration information for
setting up a secure website, see the following sections:

• About Oracle HTTP Server Security

• Classes of Users and Their Privileges

• Authentication, Authorization and Access Control

• Implementing SSL

• Using mod_security

• Using Trust Flags

• About Oracle HTTP Server Security
Oracle HTTP Server supports all three security categories, namely, authentication,
authorization, and confidentiality. Oracle HTTP Server’s security infrastructure is primarily
provided by Apache security modules.

• Classes of Users and Their Privileges
Oracle HTTP Server authorizes and authenticates users before allowing them to access
or modify resources on the server, based on their user privileges.

• Authentication, Authorization and Access Control
Oracle HTTP Server provides user authentication and authorization at two stages:
access control and user authentication and authorization.

• Implementing SSL
Oracle HTTP Server secures communications by using a Secure Sockets Layer (SSL)
protocol. SSL secures communication by providing message encryption, integrity, and
authentication. The SSL standard allows the involved components (such as browsers and
HTTP servers) to negotiate which encryption, authentication, and integrity mechanisms to
use.

• Using mod_security
mod_security is an open-source module that you can use to detect and prevent intrusion
attacks against Oracle HTTP Server.

• Using Trust Flags
Trust flags allow adequate roles to be assigned to certificates to facilitate operations like
certificate chain validation and path building. However, by default, wallets do not support
trust flags.

• Enabling Perfect Forward Secrecy on Oracle HTTP Server
Perfect Forward Secrecy (PFS) is a feature of specific key agreement protocols that
gives assurance that your session keys will not be compromised even if the private key of
the server is compromised.

10-1

About Oracle HTTP Server Security
Oracle HTTP Server supports all three security categories, namely, authentication,
authorization, and confidentiality. Oracle HTTP Server’s security infrastructure is
primarily provided by Apache security modules.

Oracle HTTP Server is based on the Apache HTTP Server, and its security
infrastructure is primarily provided by the Apache modules, mod_auth_basic,
mod_authn_file, mod_auth_user, and mod_authz_groupfile, and WebGate. The
mod_auth_basic, mod_authn_file, mod_auth_user, and mod_authz_groupfile modules
provide authentication based on user name and password pairs, while
mod_authz_host controls access to the server based on the characteristics of a
request, such as host name or IP address, mod_ossl provides confidentiality and
authentication with X.509 client certificates over SSL.

Oracle HTTP Server provides access control, authentication, and authorization
methods that you can configure with access control directives in the httpd.conf file.
When URL requests arrive at Oracle HTTP Server, they are processed in a sequence
of steps determined by server defaults and configuration parameters. The steps for
handling URL requests are implemented through a module or plug-in architecture that
is common to many Web listeners.

Classes of Users and Their Privileges
Oracle HTTP Server authorizes and authenticates users before allowing them to
access or modify resources on the server, based on their user privileges.

The following are three classes of users that access the server using Oracle HTTP
Server, and their privileges:

• Users who access the server without providing any authentication. They have
access to unprotected resources only.

• Users who have been authenticated and potentially authorized by modules within
Oracle HTTP Server. This includes users authenticated by Apache HTTP Server
modules like mod_auth_basic, mod_authn_file, mod_auth_user, and
mod_authz_groupfile modules and Oracle's mod_ossl. These users have access
to URLs defined in http.conf file. See Authentication, Authorization and Access
Control.

• Users who have been authenticated through Oracle Access Manager. These users
have access to resources allowed by Single Sign-On. See Securing Applications
with Oracle Platform Security Services.

Authentication, Authorization and Access Control
Oracle HTTP Server provides user authentication and authorization at two stages:
access control and user authentication and authorization.

• Access Control (stage one): This is based on the details of the incoming HTTP
request and its headers, such as IP addresses or host names.

• User Authentication and Authorization (stage two): This is based on different
criteria depending on the HTTP server configuration. You can configure the server
to authenticate users with user name and password pairs that are checked against

Chapter 10
About Oracle HTTP Server Security

10-2

a list of known users and passwords. You can also configure the server to use single
sign-on authentication for Web applications or X.509 client certificates over SSL.

• Access Control

• User Authentication and Authorization

• Support for FMW Audit Framework

Access Control
Access control refers to any means of controlling access to any resource.

See Also:

Refer to the Apache HTTP Server documentation for more information on how to
configure access control to resources.

User Authentication and Authorization
Authentication is any process by which you verify that someone is who they claim they are.
Authorization is any process by which someone is allowed to be where they want to go, or to
have information that they want to have. You can authenticate users with either Apache
HTTP Server modules or with WebGate.

• Authenticating Users with Apache HTTP Server Modules

• Authenticating Users with WebGate

• Authenticating Users with Apache HTTP Server Modules

• Authenticating Users with WebGate

Authenticating Users with Apache HTTP Server Modules
The Apache HTTP Server authentication directives can be used to verify that users are who
they claim to be.

For more information about how to authenticate users, see Apache HTTP Server
documentation.

Authenticating Users with WebGate
WebGate enables single sign-on (SSO) for Oracle HTTP Server. WebGate examines
incoming requests and determines whether the requested resource is protected, and if so,
retrieves the session information for the user.

Through WebGate, Oracle HTTP Server becomes an SSO partner application enabled to use
SSO to authenticate users, obtain their identity by using Oracle Single Sign-On, and to make
user identities available to web applications accessed through Oracle HTTP Server.

By using WebGate, web applications can register URLs that require SSO authentication.
WebGate detects which requests received by Oracle HTTP Server require SSO
authentication, and redirects them to the SSO server. Once the SSO server authenticates the

Chapter 10
Authentication, Authorization and Access Control

10-3

http://httpd.apache.org/docs/2.4/howto/access.html
http://httpd.apache.org/docs/2.4/howto/auth.html
http://httpd.apache.org/docs/2.4/howto/auth.html

user, it passes the user's authenticated identity back to WebGate in a secure token.
WebGate retrieves the user's identity from the token and propagates it to applications
accessed through Oracle HTTP Server, including applications running in Oracle
WebLogic Server and CGIs and static files handled by Oracle HTTP Server.

See Also:

Securing Applications with Oracle Platform Security Services

Support for FMW Audit Framework
Oracle HTTP Server supports authentication and authorization auditing by using the
FMW Common Audit Framework. As part of enabling auditing, Oracle HTTP Server
supports a directive called OraAuditEnable, which defaults to On. When it is enabled,
audit events enabled in auditconfig.xml will be recorded in an audit log. By default, no
audit events are enabled in auditconfig.xml.

When OraAuditEnable is set to Off, auditing is disabled regardless of the settings in
auditconfig.xml.

You can configure audit filters using Fusion Middleware Control or by editing
auditconfig.xml directly.

• Managing Audit Policies Using Fusion Middleware Control

See Also:

Overview of Audit Features in Securing Applications with Oracle Platform
Security Services

Managing Audit Policies Using Fusion Middleware Control
Use the Audit Policies page in Fusion Middleware Control to assign audit policies to a
selected Oracle HTTP Server instance.

1. Navigate to the Oracle HTTP Server Home Page.

2. Select the server instance to which you want to apply audit policies.

3. From the Oracle HTTP Server drop-down menu, select Security, and then select
Audit Policy.

The Audit Policy page appears.

For more information about setting audit policies, see Managing Audit Policies for Java
Components with Fusion Middleware Control in Securing Applications with Oracle
Platform Security Services.

Chapter 10
Authentication, Authorization and Access Control

10-4

Implementing SSL
Oracle HTTP Server secures communications by using a Secure Sockets Layer (SSL)
protocol. SSL secures communication by providing message encryption, integrity, and
authentication. The SSL standard allows the involved components (such as browsers and
HTTP servers) to negotiate which encryption, authentication, and integrity mechanisms to
use.

For details on how to implement SSL for Oracle HTTP Server, see Configuring SSL for the
Web Tier in Administering Oracle Fusion Middleware. For information on using mod_ossl,
Oracle's SSL module, see mod_ossl Module—Enables Cryptography (SSL). For information
about mod_ossl directives, see mod_ossl Module.

The mod_wl_ohs module also contains a configuration for SSL. See Using SSL with Plug-ins
and Parameters for Web Server Plug-Ins in Using Oracle WebLogic Server Proxy Plug-Ins.

These sections describes SSL features that are supported for this release.

• Global Server ID Support

• PKCS #11 Support

• SSL and Logging

• Terminating SSL Requests

• Global Server ID Support

• PKCS #11 Support

• SSL and Logging

• Terminating SSL Requests

Global Server ID Support
The global ID support feature adds support SSL protocol features called variously as step-up,
server gated crypto, or global server ID.

Step-up is a feature that allows old, weak encryption browsers, to step-up so that public keys
greater than 512 bits and bulk encryption keys greater than 64 bits can be used in the SSL
protocol. This means that server X.509 certificates that contain public keys in excess of 512
bits and which contain step-up digital rights can now be used by Oracle Application Server.
Such certificates are often called 128 bit certificates, even though the certificate itself typically
contains a 1024 bit certificate. The Verisign Secure Site Pro is an example of such a
certificate which can now be used by Oracle Application Server.

Global Server ID functionality is provided by default.

PKCS #11 Support
Public-Key Cryptography Standards #11, or PKCS #11 for short, is a public key cryptography
specification that outlines how systems use hardware security modules, which are basically
"boxes" where cryptographic functions (encryption/decryption) are performed and where
encryption keys are stored.

Chapter 10
Implementing SSL

10-5

Oracle HTTP Server supports the option of having dedicated SSL hardware through
nCipher. nCipher is a certified third-party accelerator that improves the performance of
the PKI cryptography that SSL uses.

See Also:

• Administering Oracle Fusion Middleware

• http://www.ncipher.com

SSL and Logging
SSL and communication related debugging can be set using the SSLTraceLogLevel
directive. Here you can set different verbosity of log level according to your logging
requirements. This directive generates SSL and communication logs. See
SSLTraceLogLevel Directive.

Note:

SSL logs will work when Oracle HTTP Server logs is set for INFO or higher
level.

Terminating SSL Requests
The following sections describe how to terminate requests using SSL before or within
Oracle HTTP Server, where the mod_wl_ohs module forwards requests to WebLogic
Server. Whether you terminate SSL before the request reaches Oracle HTTP Server
or when the request is in the server, depends on your topology. A common reason to
terminate SSL is for performance considerations when an internal network is otherwise
protected with no risk of a third-party intercepting data within the communication.
Another reason is when WebLogic Server is not configured to accept HTTPS requests.

This section includes the following topics:

• About Terminating SSL at the Load Balancer

• About Terminating SSL at Oracle HTTP Server

• About Terminating SSL at the Load Balancer

• About Terminating SSL at Oracle HTTP Server

About Terminating SSL at the Load Balancer
If you are using another device such as a load balancer or a reverse proxy which
terminates requests using SSL before reaching Oracle HTTP Server, then you must
configure the server to treat the requests as if they were received through HTTPS. The
server must also be configured to send HTTPS responses back to the client.

Chapter 10
Implementing SSL

10-6

http://www.ncipher.com

Figure 10-1 illustrates an example where the request transmitted from the browser through
HTTPS to WebLogic Server. The load balancer terminates SSL and transmits the request as
HTTP. Oracle HTTP Server must be configured to treat the request as if it was received
through HTTPS.

Figure 10-1 Terminating SSL Before Oracle HTTP Server

• Terminating SSL at the Load Balancer

Terminating SSL at the Load Balancer
To instruct the Oracle HTTP Server to treat requests as if they were received through HTTPS,
configure the httpd.conf file with the SimulateHttps directive in the mod_certheaders
module.

For more information on mod_certheaders module, see mod_certheaders Module—Enables
Reverse Proxies.

Note:

This procedure is not necessary if SSL is configured on Oracle HTTP Server (that
is, if you are directly accessing Oracle HTTP Server using HTTPS).

1. Configure the httpd.conf configuration file with the external name of the server and its
port number, for example:

ServerName <www.example.com:port>
2. Configure the httpd.conf configuration file to load the mod_certheaders module, for

example:

• On UNIX:

LoadModule certheaders_module libexec/mod_certheaders.so
• On Windows:

LoadModule certheaders_module modules/ApacheModuleCertHeaders.dll
AddModule mod_certheaders.c

Note:

Oracle recommends that the AddModule line should be included with other
AddModule directives.

3. Configure the SimulateHttps directive at the bottom of the httpd.conf file to send
HTTPS responses back to the client, for example:

Chapter 10
Implementing SSL

10-7

For use with other load balancers and front-end devices:
SimulateHttps On

4. Restart Oracle HTTP Server and test access to the server. Especially, test whether
you can access static pages such as https://host:port/index.html
Test your configuration as a basic setup. If you are having issues, then you should
troubleshoot from here to avoid overlapping with other potential issues, such as
with virtual hosting.

5. Ideally, you may want to configure a VirtualHost in the httpd.conf file to handle
all HTTPS requests. This separates the HTTPS requests from the HTTP requests
as a more scalable approach. This may be more desirable in a multi-purpose site
or if a load balancer or other device is in front of Oracle HTTP Server which is also
handling both HTTP and HTTPS requests.

The following sample instructions load the mod_certheaders module, then creates
a virtual host to handle only HTTPS requests.

Load correct module here or where other LoadModule lines exist:
LoadModule certheaders_module libexec/mod_certheaders.so
This only handles https requests:
 <VirtualHost <name>:<port>
 # Use name and port used in url:
 ServerName <www.example.com:port>
 SimulateHttps On
 # The rest of your desired configuration for this VirtualHost goes
here
 </VirtualHost>

6. Restart Oracle HTTP Server and test access to the server, First test a static page
such as https://host:port/index.html and then your test your application.

About Terminating SSL at Oracle HTTP Server
If SSL is configured in Oracle HTTP Server but not on Oracle WebLogic Server, then
you can terminate SSL for requests sent by Oracle HTTP Server.

The following figures illustrate request flows, showing where HTTPS stops. In
Figure 10-2, an HTTPS request is sent from the browser. The load balancer transmits
the HTTPS request to Oracle HTTP Server. SSL is terminated in Oracle HTTP Server
and the HTTP request is sent to WebLogic Server.

Figure 10-2 Terminating SSL at Oracle HTTP Server—With Load Balancer

In Figure 10-3 there is no load balancer and the HTTPS request is sent directly to
Oracle HTTP Server. Again, SSL is terminated in Oracle HTTP Server and the HTTP
request is sent to WebLogic Server.

Chapter 10
Implementing SSL

10-8

Figure 10-3 Terminating SSL at Oracle HTTP Server—Without Load Balancer

• Terminating SSL at Oracle HTTP Server

Terminating SSL at Oracle HTTP Server
To instruct the Oracle HTTP Server to treat requests as if they were received through HTTPS,
configure the WLSProxySSL directive in the mod_wl_ohs.conf file and ensure that the
SecureProxy directive is not configured.

1. Configure the mod_wl_ohs.conf file to add the WLSProxySSL directive for the location of
your non-SSL configured managed servers.

For example:

WLProxySSL ON
2. If using a load balancer or other device in front of Oracle HTTP Server (which is also

using SSL), you might need to configure the WLProxySSLPassThrough directive instead,
depending on if it already sets WL-Proxy-SSL.

For example:

WLProxySSLPassThrough ON

For more information, see your load balancer documentation. For more information on
WLProxySSLPassThrough, see Parameters for Oracle WebLogic Server Proxy Plug-Ins
in Using Oracle WebLogic Server Proxy Plug-Ins.

3. Ensure that the SecureProxy directive is not configured, as it will interfere with the
intended communication between the components.

This directive is to be used only when SSL is used throughout. The SecureProxy directive
is commented out in the following example:

To configure SSL throughout (all the way to WLS):
SecureProxy ON
WLSSLWallet "<Path to Wallet>"

4. Enable the WebLogic Plug-In flag for your managed servers or cluster.

By default, this option is not enabled. Complete the following steps to enable the
WebLogic Plug-In flag:

a. Log in to the Oracle WebLogic Server Administration Console.

b. In the Domain Structure pane, expand the Environment node.

c. Click on Clusters.

d. Select the cluster to which you want to proxy requests from Oracle HTTP Server.

The Configuration: General tab appears.

e. Scroll down to the Advanced section, expand it.

Chapter 10
Implementing SSL

10-9

f. Click Lock and Edit.

g. Set the WebLogic Plug-In Enabled to yes.

h. Click Save and Activate the Changes.

i. Restart the servers for the changes to be effective.

5. Restart Oracle HTTP Server and test access to a Java application.

For example: https://host:port/path/application_name.

Using mod_security
mod_security is an open-source module that you can use to detect and prevent
intrusion attacks against Oracle HTTP Server.

An example of how you can use mod_security to prevent intrusion is by specifying a
mod_security rule to screen all incoming requests and deny requests that match the
conditions specified in the rule. The mod_security module (version 2.7.2) and its
prerequisites are included in the Oracle HTTP Server installation as a shared object
named mod_security2.so in the ORACLE_HOME/ohs/modules directory.

See Configuring the mod_security Module.

Using Trust Flags
Trust flags allow adequate roles to be assigned to certificates to facilitate operations
like certificate chain validation and path building. However, by default, wallets do not
support trust flags.

You can use the orapki utility to maintain trust flags in the certificates installed in an
Oracle Wallet. You can create and convert wallets to support trust flags, create and
maintain appropriate flags in each certificate, and so on. For more information on trust
flags and instructions on how to incorporate them into your security strategy, see
Creating and Managing Trust Flags in Administering Oracle Fusion Middleware.

Enabling Perfect Forward Secrecy on Oracle HTTP Server
Perfect Forward Secrecy (PFS) is a feature of specific key agreement protocols that
gives assurance that your session keys will not be compromised even if the private
key of the server is compromised.

In Apache, the SSLHonorCipherOrder directive is used. This directive is supported in
Oracle HTTP Server 12.2.1 and later.

Oracle HTTP Server out of the box configuration does not explicitly enable Perfect
Forward Secrecy feature. To enable PFS, do the following configuration changes in the
Oracle HTTP Server:

1. Configure TLS1.2 protocol for OHS server using SSLProtocol directive. See
SSLProtocol Directive.

2. Enforce the ordering of server cipher suites by setting SSLHonorCipherOrder to
ON. See SSLHonorCipherOrder Directive.

Chapter 10
Using mod_security

10-10

3. Use ECC certificates in Oracle HTTP Server wallet. See Adding an ECC Certificate to
Oracle Wallets with orapki in Administering Oracle Fusion Middleware.

4. Configure ECDHE_ECDSA Cipher Suites in OHS. For the list of supported
ECDHE_ECDSA cipher suites, see SSLCipherSuite Directive.

Chapter 10
Enabling Perfect Forward Secrecy on Oracle HTTP Server

10-11

A
Oracle HTTP Server WLST Custom
Commands

There are specific WLST Server commands for managing Oracle HTTP Server in WebLogic
Server domains. Most are online commands, which require a connection between WLST and
Administration Server for the domain.

This appendix contains information on Oracle HTTP Server specific WLST commands:

• Getting Help on Oracle HTTP Server WLST Custom Commands

• Oracle HTTP Server Commands

• Getting Help on Oracle HTTP Server WLST Custom Commands
Online help is available for Oracle HTTP Server WLST custom commands.

• Using WLST Online Commands

• Oracle HTTP Server Commands
Use the ohs_createInstance and ohs_deleteInstance commands to create and delete
Oracle HTTP Server instances instead of using the Configuration Wizard. These custom
commands perform additional error checking and assign ports automatically in the case
of instance creation.

Getting Help on Oracle HTTP Server WLST Custom Commands
Online help is available for Oracle HTTP Server WLST custom commands.

To get online help, enter help('manageohs') from the WLST command line and it will display
all the of the WLST custom commands for Oracle HTTP Server.

To get help for specific WLST custom commands, enter help('custom_command_name') from
the WLST command line, for example:

help('ohs_createInstance')

Using WLST Online Commands
Perform the following steps before you use WLST online commands:

1. Open the CLI and launch WLST using the following command:

• (Linux/UNIX) $ORACLE_HOME/oracle_common/common/bin/wlst.sh
• (Windows) $ORACLE_HOME\oracle_common\common\bin\wlst.cmd

2. Connect to the Admin Server of the Domain.

For more information about connecting to Admin Server, see connect section in WLST
Command Reference for Oracle WebLogic Server.

A-1

https://docs.oracle.com/en/middleware/standalone/weblogic-server/14.1.1.0/wlstc/reference.html#GUID-282E885A-57C3-45FB-9A7C-87515963B423
https://docs.oracle.com/en/middleware/standalone/weblogic-server/14.1.1.0/wlstc/index.html#Oracle%C2%AE-Fusion-Middleware
https://docs.oracle.com/en/middleware/standalone/weblogic-server/14.1.1.0/wlstc/index.html#Oracle%C2%AE-Fusion-Middleware

3. Run the custom OHS WLST online command with the recommended arguments
as shown in the following example:

ohs_createInstance(instanceName='xxx', machine='yyy',
serverName='zzz', ...)

Oracle HTTP Server Commands
Use the ohs_createInstance and ohs_deleteInstance commands to create and
delete Oracle HTTP Server instances instead of using the Configuration Wizard.
These custom commands perform additional error checking and assign ports
automatically in the case of instance creation.

The WLST custom commands listed in Table A-1 manage Oracle HTTP Server
instances in WebLogic Server domains.

Table A-1 Oracle HTTP Server Commands

Use this command... To... Use with
WLST...

ohs_addAdminProperties Add the LogLevel property to Oracle HTTP Server
Administration server property file.

Online

ohs_addNMProperties Add a property to the Oracle HTTP Server Node
Manager plug-in property file.

Online

ohs_createInstance Create a new instance of Oracle HTTP Server. Online

ohs_deleteInstance Delete the specified Oracle HTTP Server instance. Online

ohs_exportKeyStore Exports the keyStore to the specified Oracle HTTP
Server instance.

Online

ohs_updateInstances Creates a keystore in the KSS database in the case
where Oracle HTTP Server instances were created
using Configuration Wizard.

Online

• ohs_addAdminProperties
The ohs_addAdminProperties command adds the LogLevel property to Oracle
HTTP Server Administration server property file (ohs_admin.properties);
LogLevel is the only parameter ohs_addAdminProperties currently supports. This
command is available when WLST is connected to an Administration Server
instance.

• ohs_addNMProperties

• ohs_createInstance

• ohs_deleteInstance

• ohs_exportKeyStore

• ohs_updateInstances

ohs_addAdminProperties
The ohs_addAdminProperties command adds the LogLevel property to Oracle HTTP
Server Administration server property file (ohs_admin.properties); LogLevel is the

Appendix A
Oracle HTTP Server Commands

A-2

only parameter ohs_addAdminProperties currently supports. This command is available
when WLST is connected to an Administration Server instance.

Use with WLST: Online

Syntax

ohs_addAdminProperties(logLevel = 'value')

Argument Description

LogLevel The granularity of information written to the log. The default is INFO. The
following other values are accepted:

• ALL
• CONFIG
• FINE
• FINER
• FINEST
• OFF
• SEVERE
• WARNING

Example

This example creates a log file when log level is set to FINEST.

ohs_addAdminProperties(logLevel = 'FINEST')

ohs_addNMProperties
Use with WLST: Online

Description

The ohs_addNMProperties command adds a property to the Oracle HTTP Server Node
Manager plug-in property file (ohs_nm.properties). This command is available when WLST
is connected to an Administration Server instance.

Syntax

ohs_addNMProperties(logLevel = 'value', machine='node-manager-machine-name')

Argument Description

LogLevel The granularity of information written to the log. The default is INFO; other
values accepted are:

• ALL
• CONFIG
• FINE
• FINER
• FINEST
• OFF
• SEVERE
• WARNING

machine The name of the machine on which Node Manage is running.

Example

Appendix A
Oracle HTTP Server Commands

A-3

This example creates a log file with name ohs_nm.log under the path <domain_dir>/
system_components/OHS with log level is set to FINEST on the target machine,
my_NM_machine. The user need not restart Node Manager.

ohs_addNMProperties(logLevel = 'FINEST', machine = 'my_NM_machine')

ohs_createInstance
Use with WLST: Online

Description

The ohs_createInstance command creates a new instance of Oracle HTTP Server,
allowing critical configuration such as listening ports to be specified explicitly or
assigned automatically.

Syntax

ohs_createInstance(instanceName='xxx', machine='yyy', serverName='zzz', ...)

Argument Definition

instanceName The name of the managed instance being created.

machine The existing machine entry for the instance. This name (often
<hostName>.myCorp.com) is set during creation of the WebLogic
Server Domain. If you forget the name, you can
check $ORACLE_INSTANCE/config/config.xml and look for the
<machine> block. Alternately, in WLST you can find the machine name
by running:

serverConfig()
cd('Machines')
ls()

listenPort (Optional) The port number of the non-SSL server. If this value is not
specified, a port is automatically assigned. Listen ports typically begin
at 7777 and go up from there.

sslPort (Optional) The port number of the SSL virtual host. If this value is not
specified, a port is automatically assigned. SSL ports typically start at
4443 and go up from there.

adminPort (Optional) The port number used for communication with Node
Manager. If this value is not specified, a port is automatically assigned.
Administration ports typically begin at 9999 and go up from there.

serverName (Optional) The value of the ServerName directive of the non-SSL
server. If this value is not specified, the host name of the machine and
the listen port will be used to construct the value.

Example

The following example creates an Oracle HTTP Server instance called ohs1 that runs
on the machine abc03.myCorp.com:

ohs_createInstance(instanceName='ohs1', machine='abc03.myCorp.com')

ohs_deleteInstance
Use with WLST: Online

Appendix A
Oracle HTTP Server Commands

A-4

Description

The ohs_deleteInstance command deletes a specified Oracle HTTP Server instance. The
instance must be stopped before you can delete it. This command will return an error if the
instance is in the UNKNOWN or RUNNING state.

Syntax

ohs_deleteInstance(instanceName='xxx')

instanceName is the name of the Oracle HTTP Server instance.

Example

The following example deletes the Oracle HTTP Server instance ohs1.

ohs_deleteInstance(instanceName='ohs1')

ohs_exportKeyStore
Use with WLST: Online

Description

The ohs_exportKeyStore command exports the keystore to the specified Oracle HTTP
Server instance location. This command is available when WLST is connected to an
Administration Server instance. For more information on how to use this command, see
Exporting the Keystore to an Oracle HTTP Server Instance Using WLST.

Syntax

ohs_exportKeyStore(keyStoreName='<keyStoreName>', instanceName = '<instanceName>')

Argument Description

keyStoreName The name of the keystore.

instanceName The name of the Oracle HTTP Server instance.

Naming Conventions for Keystores

The keystore name (keyStoreName) must start with the string: <instanceName>_.

For example, presume that the keystore must be exported to an Oracle HTTP Server
instance named ohs1. Then the names of all of the keystores that must be exported to ohs1
must start with ohs1_.

If this syntax is not followed while creating the keystore, then the export of the keystore might
not be successful.

Example

This example exports the keystore ohs1_myKeystore to the Oracle HTTP Server instance
ohs1.

ohs_exportKeyStore(keyStoreName='ohs1_myKeystore', instanceName = 'ohs1')

ohs_updateInstances
Use with WLST: Online

Appendix A
Oracle HTTP Server Commands

A-5

Description

The ohs_updateInstances command is available only when WLST is connected to an
Administration Server instance. It will parse across all of the Oracle HTTP Server
instances in the domain and perform the following tasks:

• Create a new keystore with the name <instanceName>_default if one does not
exist.

• Put a demonstration certificate, demoCASignedCertificate, in the newly created
keystore.

• Export the keystore to the instance location.

This command is to be used after an Oracle HTTP Server instance is created using
Configuration Wizard in collocated mode only. See Associating Oracle HTTP Server
Instances With a Keystore Using WLST.

Syntax

ohs_updateInstances()

This command does not take any arguments.

Example

ohs_updateInstances()

Appendix A
Oracle HTTP Server Commands

A-6

B
Migrating to the mod_proxy_fcgi and
mod_authnz_fcgi Modules

The mod_fastcgi module was deprecated in the previous release and has been replaced in
the current release by the mod_proxy_fcgi and the mod_authnz_fcgi modules. You must
complete certain tasks to migrate from the mod_fastcgi module to the mod_proxy_fcgi and
mod_authnz_fcgi modules.

The mod_proxy_fcgi module uses mod_proxy to provide FastCGI support. The
mod_authnz_fcgi module allows FastCGI authorizer applications to authenticate users and
authorize access to resources.

Complete the following tasks to migrate from the mod_fastcgi module to the mod_proxy_fcgi
and mod_authnz_fcgi modules:

• Task 1: Replace LoadModule Directives in htttpd.conf File

• Task 2: Delete mod_fastcgi Configuration Directives From the htttpd.conf File

• Task 3: Configure mod_proxy_fcgi to Act as a Reverse Proxy to an External FastCGI
Server

• Task 4: Setup an External FastCGI Server

• Task 5: Setup mod_authnz_fcgi to Work with FastCGI Authorizer Applications

• Task 1: Replace LoadModule Directives in htttpd.conf File
To update the LoadModule directives in the Oracle HTTP Server configuration file,
httpd.conf open this file in an editor and replace the modulesmod_fastcgi and
mod_fcgi with the modulesmod_proxy ,mod_proxy_fcgi , and mod_authnz_fcgi .

• Task 2: Delete mod_fastcgi Configuration Directives From the htttpd.conf File
To migrate to the new modules provided by Oracle HTTP Server, you must delete the
configuration directives that belong to the deprecated module mod_fastcgi in the
httpd.conf file.

• Task 3: Configure mod_proxy_fcgi to Act as a Reverse Proxy to an External FastCGI
Server
The mod_proxy_fcgi module does not have configuration directives. Instead, it uses the
directives set on the mod_proxy module. Unlike the mod_fcgid and mod_fastcgi modules,
the mod_proxy_fcgi module has no provision for starting the application process. The
purpose of mod_proxy_fcgi is to move this functionality outside of the web server for
faster performance. So, mod_proxy_fcgi simply will act as a reverse proxy to an external
FastCGI server.

• Task 4: Setup an External FastCGI Server
An external FastCGI server enables you to run FastCGI scripts external to the web server
or even on a remote machine. Therefore, you must set up an external FastCGI server.

• Task 5: Setup mod_authnz_fcgi to Work with FastCGI Authorizer Applications
You can set up mod_authnz_fcgi module to work with FastCGI authorizer applications to
authenticate users and authorize access to resources. It supports generic FastCGI
authorizers that participate in a single phase for authentication and authorization, and

B-1

Apache httpd specific authenticators and authorizers. FastCGI authorizers can
authenticate using the user ID and password for basic authentication or
authenticate using arbitrary mechanisms.

Task 1: Replace LoadModule Directives in htttpd.conf File
To update the LoadModule directives in the Oracle HTTP Server configuration file,
httpd.conf open this file in an editor and replace the modulesmod_fastcgi and
mod_fcgi with the modulesmod_proxy ,mod_proxy_fcgi , and mod_authnz_fcgi .

Edit the httpd.conf file to comment out the LoadModule lines for mod_fastcgi and
mod_fcgi. Add LoadModule lines for mod_proxy, mod_proxy_fcgi, and
mod_authnz_fcgi. For example:

LoadModule fastcgi_module modules/mod_fastcgi.so
LoadModule fcgi_module modules/mod_fcgi.so
LoadModule proxy_module modules/mod_proxy.so
LoadModule proxy_fcgi_module modules/mod_proxy_fcgi
LoadModule authnz_fcgi_module modules/mod_authnz_fcgi

Task 2: Delete mod_fastcgi Configuration Directives From
the htttpd.conf File

To migrate to the new modules provided by Oracle HTTP Server, you must delete the
configuration directives that belong to the deprecated module mod_fastcgi in the
httpd.conf file.

For more information on these directives, see Module mod_fastcgi.

• FastCgiServer
• FastCgiConfig
• FastCgiExternalServer
• FastCgiIpcDir
• FastCgiWrapper
• FastCgiAuthenticator
• FastCgiAuthenticatorAuthoritative
• FastCgiAuthorizer
• FastCgiAuthorizerAuthoritative
• FastCgiAccessChecker
• FastCgiAccessCheckerAuthoritative

Task 3: Configure mod_proxy_fcgi to Act as a Reverse
Proxy to an External FastCGI Server

The mod_proxy_fcgi module does not have configuration directives. Instead, it uses
the directives set on the mod_proxy module. Unlike the mod_fcgid and mod_fastcgi

Appendix B
Task 1: Replace LoadModule Directives in htttpd.conf File

B-2

https://docs.oracle.com/cd/B31017_01/web.1013/q20204/mod_fastcgi.html

modules, the mod_proxy_fcgi module has no provision for starting the application process.
The purpose of mod_proxy_fcgi is to move this functionality outside of the web server for
faster performance. So, mod_proxy_fcgi simply will act as a reverse proxy to an external
FastCGI server.

For examples of using mod_proxy_fcgi, see:

http://httpd.apache.org/docs/trunk/mod/mod_proxy_fcgi.html
For information about the directives available for mod_proxy, including reverse proxy
examples, see:

http://httpd.apache.org/docs/trunk/mod/mod_proxy.html
Another way to setup the mod_proxy_fcgi module to act as a reverse proxy to a FastCGI
server is to force a request to be handled as a reverse-proxy request. To do this, you must
create a suitable Handler pass-through (also known as Access via Handler). For more
information about how to set up a Handler pass-through, see:

http://httpd.apache.org/docs/trunk/mod/mod_proxy.html#handler

Task 4: Setup an External FastCGI Server
An external FastCGI server enables you to run FastCGI scripts external to the web server or
even on a remote machine. Therefore, you must set up an external FastCGI server.

The following list provides information on some available FastCGI server solutions:

• fcgistarter, a utility for starting FastCGI programs. This solution is provided by Apache
httpd 2.4. It only works on UNIX systems. See http://httpd.apache.org/docs/trunk/
programs/fcgistarter.html.

• PHP-FPM, an alternative PHP FastCGI implementation. This solution is included with
PHP release 5.3.3 and later. See http://php.net/manual/en/
install.fpm.configuration.php.

• spawn-fcgi, a utility for spawning remote and local FastCGI processes. See http://
redmine.lighttpd.net/projects/spawn-fcgi/wiki/WikiStart.

Task 5: Setup mod_authnz_fcgi to Work with FastCGI Authorizer
Applications

You can set up mod_authnz_fcgi module to work with FastCGI authorizer applications to
authenticate users and authorize access to resources. It supports generic FastCGI
authorizers that participate in a single phase for authentication and authorization, and Apache
httpd specific authenticators and authorizers. FastCGI authorizers can authenticate using the
user ID and password for basic authentication or authenticate using arbitrary mechanisms.

For more information about using mod_authnz_fcgi, see http://httpd.apache.org/docs/
trunk/mod/mod_authnz_fcgi.html.

Appendix B
Task 4: Setup an External FastCGI Server

B-3

http://httpd.apache.org/docs/trunk/mod/mod_proxy_fcgi.html
http://httpd.apache.org/docs/trunk/mod/mod_proxy.html
http://httpd.apache.org/docs/trunk/mod/mod_proxy.html#handler
http://httpd.apache.org/docs/trunk/programs/fcgistarter.html
http://httpd.apache.org/docs/trunk/programs/fcgistarter.html
http://php.net/manual/en/install.fpm.configuration.php
http://php.net/manual/en/install.fpm.configuration.php
http://redmine.lighttpd.net/projects/spawn-fcgi/wiki/WikiStart
http://redmine.lighttpd.net/projects/spawn-fcgi/wiki/WikiStart
http://httpd.apache.org/docs/trunk/mod/mod_authnz_fcgi.html
http://httpd.apache.org/docs/trunk/mod/mod_authnz_fcgi.html

C
Setting CGIDScriptTimeout When Using
mod_cgid

Oracle HTTP Server includes mod_cgi and mod_cgid modules provided by Apache to run the
CGI scripts.

When using a multi-threaded MPM on Unix, the mod_cgid module should be loaded instead
of the mod_cgi module for better performance and to avoid unnecessary burden on the
operating system due to forked multiple threads. The mod_cgid module has optimizations to
improve the system performance in a multi-threaded environment as compared to the
mod_cgi module. See Apache Module mod_cgid.

By default, the mod_cgid module is loaded when using a multi-threaded MPM on Unix. To
verify the configuration:

1. Open the httpd.conf file using the Advanced Server Configuration page in the Fusion
Middleware Control or a text editor.

2. In the LoadModule section, if mod_cgid is not configured already, add the following lines to
load the mod_cgid module:

<IfDefine OHS_MPM_EVENT>
 LoadModule cgid_module "${PRODUCT_HOME}/modules/mod_cgid.so"
</IfDefine>

<IfDefine OHS_MPM_WORKER>
 LoadModule cgid_module "${PRODUCT_HOME}/modules/mod_cgid.so"
</IfDefine>

The mod_cgid module supports the CGIDScriptTimeout directive that can be used to limit the
length of time to wait for more output from the CGI program.

• CGIDScriptTimeout Directive
This directive limits the length of time to wait for more output from the CGI program.

CGIDScriptTimeout Directive
This directive limits the length of time to wait for more output from the CGI program.

If the time exceeds, the request and the CGI get terminated. It can be used to limit resource
exhaustion due to the CGI scripts that stop communicating with the server and can protect
against both unintentional errors and malicious actions (for example, DoS attacks).

By default, mod_cgid uses the Timeout Directive to limit the length of time to wait for CGI
output. This timeout can be overridden with the CGIDScriptTimeout directive. The default
value of CGIDScriptTimeout is the Timeout directive, when it is not set or set to 0. To
configure CGIDScriptTimeout:

C-1

http://httpd.apache.org/docs/2.4/mod/mod_cgid.html

1. Open the httpd.conf file using the Advanced Server Configuration page in the
Fusion Middleware Control or a text editor.

2. Add the following lines for configuring the CGIDScriptTimeout directive:

<IfModule cgid_module>

CGIDScriptTimeout: Limits the waiting time for output from the
CGI program
Replace 20 with the actual timeout value to be set in seconds

 CGIDScriptTimeout 20
</IfModule>

Note:

Testing should be performed with your application to ensure the best results.
The timeout value should be set based on the time required by your CGI
program to send output back to OHS. The above configuration instructs OHS
to wait for 20 seconds for output from the CGI program.

Appendix C
CGIDScriptTimeout Directive

C-2

D
Frequently Asked Questions

This appendix provides answers to frequently asked questions about Oracle HTTP Server. It
includes the following topics:

• How Do I Create Application-Specific Error Pages?

• What Type of Virtual Hosts Are Supported for HTTP and HTTPS?

• Can I Use Different Language and Character Set Versions of Document?

• Can I Apply Apache HTTP Server Security Patches to Oracle HTTP Server?

• Can I Upgrade the Apache HTTP Server Version of Oracle HTTP Server?

• Can I Compress Output From Oracle HTTP Server?

• How Do I Create a Namespace That Works Through Firewalls and Clusters?

• How Can I Enhance Website Security?

• Why is REDIRECT_ERROR_NOTES not set for "File Not Found" errors?

• How can I hide information about the Web Server Vendor and Version

• Can I Start Oracle HTTP Server by Using apachectl or Other Command Line Tool?

• How Do I Configure Oracle HTTP Server to Listen at Port 80?

• How Do I Terminate Requests Using SSL Within Oracle HTTP Server?

• How Do I Configure End-to-End SSL Within Oracle HTTP Server?

• Can Oracle HTTP Server Front-End Oracle WebLogic Server?

• What is the Difference Between Oracle WebLogic Server Domains and Standalone
Domains?

• Can Oracle HTTP Server Cache the Response Data?

• How Do I Configure a Virtual Server-Specific Access Log?

• How to Enable SSL for Oracle HTTP Server by Using Fusion Middleware Control?

Documentation from the Apache Software Foundation is referenced when applicable.

Note:

Readers using this guide in PDF or hard copy formats will be unable to access
third-party documentation, which Oracle provides in HTML format only. To access
the third-party documentation referenced in this guide, use the HTML version of this
guide and click the hyperlinks.

• How Do I Create Application-Specific Error Pages?

• What Type of Virtual Hosts Are Supported for HTTP and HTTPS?

• Can I Use Different Language and Character Set Versions of Document?

D-1

• Can I Apply Apache HTTP Server Security Patches to Oracle HTTP Server?

• Can I Upgrade the Apache HTTP Server Version of Oracle HTTP Server?

• Can I Compress Output From Oracle HTTP Server?

• How Do I Create a Namespace That Works Through Firewalls and Clusters?

• How Can I Enhance Website Security?

• Why is REDIRECT_ERROR_NOTES not set for "File Not Found" errors?

• How can I hide information about the Web Server Vendor and Version

• Can I Start Oracle HTTP Server by Using apachectl or Other Command Line Tool?

• How Do I Configure Oracle HTTP Server to Listen at Port 80?

• How Do I Terminate Requests Using SSL Within Oracle HTTP Server?

• How Do I Configure End-to-End SSL Within Oracle HTTP Server?

• Can Oracle HTTP Server Front-End Oracle WebLogic Server?

• What is the Difference Between Oracle WebLogic Server Domains and
Standalone Domains?

• Can Oracle HTTP Server Cache the Response Data?

• How Do I Configure a Virtual Server-Specific Access Log?

• How to Enable SSL for Oracle HTTP Server by Using Fusion Middleware Control?
You can enable SSL for Oracle HTTP Server using Fusion Middleware control.

How Do I Create Application-Specific Error Pages?
Oracle HTTP Server has a default content handler for dealing with errors. You can use
the ErrorDocument directive to override the defaults.

See Also:

Apache HTTP Server documentation on the ErrorDocument directive at:

http://httpd.apache.org/docs/current/mod/core.html#errordocument

What Type of Virtual Hosts Are Supported for HTTP and
HTTPS?

(Apache 2.4 required)

For HTTP, Oracle HTTP Server supports both name-based and IP-based virtual hosts.
Name-based virtual hosts are virtual hosts that share a common listening address (IP
plus port combination), but route requests based on a match between the Host header
sent by the client and the ServerName directive set within the VirtualHost. IP-based
virtual hosts are virtual hosts that have distinct listening addresses. IP-based virtual
hosts route requests based on the address they were received on.

Appendix D
How Do I Create Application-Specific Error Pages?

D-2

http://httpd.apache.org/docs/2.4/mod/core.html#errordocument
http://httpd.apache.org/docs/current/mod/core.html#errordocument

For HTTPS, only IP-based virtual hosts are possible with Oracle HTTP Server. This is
because for name-based virtual hosts, the request must be read and inspected to determine
which virtual host processes the request. If HTTPS is used, an SSL handshake must be
performed before the request can be read. To perform the SSL handshake, a server
certificate must be provided. To have a meaningful server certificate, the host name in the
certificate must match the host name the client requested, which implies a unique server
certificate per virtual host. However, because the server cannot know which virtual host to
route the request to until it has read the request, and it can't properly read the request unless
it knows which server certificate to provide, there is no way to make name-based virtual
hosting work with HTTPS.

Can I Use Different Language and Character Set Versions of
Document?

Yes, you can use multiviews, a general name given to the Apache HTTP Server's ability to
provide language and character-specific document variants in response to a request.

See Also:

Multiviews option in the Apache HTTP Server documentation on Content
Negotiation, at:

http://httpd.apache.org/docs/current/content-negotiation.html

Can I Apply Apache HTTP Server Security Patches to Oracle
HTTP Server?

No, you cannot apply the Apache HTTP Server security patches to Oracle HTTP Server for
the following reasons:

• Oracle tests and appropriately modifies security patches before releasing them to Oracle
HTTP Server users.

• In many cases, the Apache HTTP Server alerts, such as OpenSSL alerts, may not be
applicable because Oracle has removed those components from the stack.

The latest security related fixes to Oracle HTTP Server are performed through the Oracle
Critical Patch Update (CPU). See Oracle's Critical Patch Updates and Security Alerts Web
page.

Note:

After applying a CPU, the Apache HTTP Server-based version may stay the same,
but the vulnerability will be fixed. There are third-party security detection tools that
can check the version, but do not check the vulnerability itself.

Appendix D
Can I Use Different Language and Character Set Versions of Document?

D-3

http://httpd.apache.org/docs/2.4/mod/mod_negotiation.html#multiviews
http://httpd.apache.org/docs/current/content-negotiation.html
http://www.oracle.com/technology/deploy/security/alerts.htm

Can I Upgrade the Apache HTTP Server Version of Oracle
HTTP Server?

No, you cannot upgrade only the Apache HTTP Server version inside Oracle HTTP
Server. Oracle provides a newer version of Apache HTTP Server that Oracle HTTP
Server is based on, which is part of either a patch update or the next major or minor
release of Oracle Fusion Middleware.

Can I Compress Output From Oracle HTTP Server?
In general, Oracle recommends using mod_deflate, which is included with Oracle
HTTP Server. For more information pertaining to mod_deflate, see http://
httpd.apache.org/docs/current/mod/mod_deflate.html

How Do I Create a Namespace That Works Through
Firewalls and Clusters?

The general idea is that all servers in a distributed website should use a single URL
namespace. Every server serves some part of that namespace, and can redirect or
proxy requests for URLs that it does not serve to a server that is closer to that URL.
For example, your namespaces could be the following:

/app1/login.html
/app1/catalog.html
/app1/dologin.jsp
/app2/orderForm.html
/apps/placeOrder.jsp

You could initially map these name spaces to two Web servers by putting app1 on
server1 and app2 on server2. The configuration for server1 might look like the
following:

Redirect permanent /app2 http://server2/app2
Alias /app1 /myApps/application1
<Directory /myApps/application1>
 ...
</Directory>

The configuration for Server2 is complementary.

If you decide to partition the namespace by content type (HTML on server1, and JSP
on server2), then you can change server configuration and move files around, but you
do not have to make changes to the application itself. The resulting configuration of
server1 might look like the following:

RedirectMatch permanent (.*) \.jsp$ http://server2/$1.jsp
AliasMatch ^/app(.*) \.html$ /myPages/application$1.html
<DirectoryMatch "^/myPages/application\d">
 ...
</DirectoryMatch>

Appendix D
Can I Upgrade the Apache HTTP Server Version of Oracle HTTP Server?

D-4

http://httpd.apache.org/docs/current/mod/mod_deflate.html
http://httpd.apache.org/docs/current/mod/mod_deflate.html

The amount of actual redirection can be minimized by configuring a hardware load balancer
like F5 system BIG-IP to send requests to server1 or server2 based on the URL.

How Can I Enhance Website Security?
The following are some general guidelines for securing your web site.

• Use a commercial firewall between your ISP and your Web server.

• Use switched Ethernet to limit the amount of traffic a compromised server can detect.
Use additional firewalls between Web server machines and highly sensitive internal
servers running the database and enterprise applications.

• Remove unnecessary network services such as RPC, Finger, and telnet from your server.

• Always validate all input from Web forms and output from your applications. Be sure to
validate encodings, long input strings and input that contains non-printable characters,
HTML tags, or javascript tags.

• Encrypt the contents of cookies when it is relevant.

• Check often for security patches for all your system and application software, and install
them as soon as possible. Only accept patches from Oracle or your Oracle support
representative.

• When it is relevant, use an intrusion detection package to monitor for defaced Web
pages, viruses, and presence of rootkits. If possible, mount system executables and Web
content on read-only file systems.

• Consider using Pen testing or other relevant security testing on your application.
Consider configuring web security using the appropriate custom mod_security rules to
protect your application. For more information on mod_security, see Configuring the
mod_security Module and Using mod_security.

• Remove unneeded content from the httpd.conf file.See Removing Access to Unneeded
Content.

• Take precautions to protect your web pages from clickjacking attempts. There is a lot of
helpful information available on the internet. For more information on clickjacking, see the
Security Best Practices section in "Security Vulnerability FAQ for Oracle Database and
Fusion Middleware Products (Doc ID 1074055.1)".

Why is REDIRECT_ERROR_NOTES not set for "File Not
Found" errors?

The REDIRECT_ERROR_NOTES CGI environment variable is not set for "File Not Found"
errors in Oracle HTTP Server because compatibility with Apache HTTP Server does not
make that information available to CGI and other applications for this condition.

How can I hide information about the Web Server Vendor and
Version

Specify ServerSignature Off to remove this information from web server generated
responses. Specify ServerTokens Custom some-server-string to disguise the web server
software when Oracle HTTP Server generates the web Server response header. (When a

Appendix D
How Can I Enhance Website Security?

D-5

backend server generates the response, the server response header may come from
the backend server depending on the proxy mechanism.)

Note:

ServerTokens Custom some-server-string is a replacement for the
ServerHeader Off setting in Oracle HTTP Server 10g.

Can I Start Oracle HTTP Server by Using apachectl or Other
Command Line Tool?

Oracle HTTP Server process management is handled by Node Manager. You can use
the startComponent command to start Oracle HTTP Server without using WLST or
Fusion Middleware Control directly. See Starting Oracle HTTP Server Instances from
the Command Line.

How Do I Configure Oracle HTTP Server to Listen at Port
80?

By default, Oracle HTTP Server is not able to bind to ports on UNIX in the reserved
range (typically less than 1024). You can enable Oracle HTTP Server to listen on a
port in the reserved range (for example, the default port 80) by following the
instructions in Starting Oracle HTTP Server Instances on a Privileged Port (UNIX
Only).

How Do I Terminate Requests Using SSL Within Oracle
HTTP Server?

You can terminate requests using SSL before or within Oracle HTTP Server, where the
mod_wl_ohs module forwards requests to WebLogic Server. Whether you terminate
SSL before the request reaches Oracle HTTP Server or when the request is in the
server, depends on your topology. See Terminating SSL at the Load Balancer and
Terminating SSL at Oracle HTTP Server.

How Do I Configure End-to-End SSL Within Oracle HTTP
Server?

Support for Secure Sockets Layer (SSL) is provided by the Oracle WebLogic Server
Proxy Plug-In. You can use the SSL protocol to protect the connection between the
plug-in and Oracle WebLogic Server. The SSL protocol provides confidentiality and
integrity to the data passed between the plug-in and WebLogic Server. See Use SSL
with Plug-Ins in Using Oracle WebLogic Server Proxy Plug-Ins for information on
setting up SSL libraries and for setting up one-way or two-way SSL communications
between the web server and Oracle WebLogic Server.

Appendix D
Can I Start Oracle HTTP Server by Using apachectl or Other Command Line Tool?

D-6

If you will be configuring SSL in Oracle HTTP Server but not on Oracle WebLogic Server,
then you can terminate SSL for requests sent by Oracle HTTP Server. For information on
configuring this scenario, see Terminating SSL at Oracle HTTP Server.

Can Oracle HTTP Server Front-End Oracle WebLogic Server?
Oracle HTTP Server is the web server component for Oracle Fusion Middleware. The server
uses the WebLogic Management Framework to provide a simple, consistent and distributed
environment for administering Oracle HTTP Server, Oracle WebLogic Server, and the rest of
the Fusion Middleware stack. It acts as the HTTP front-end by hosting the static content from
within and by using its built-in Oracle WebLogic Server Proxy Plug-In (mod_wl_ohs module) to
route dynamic content requests to WebLogic-managed servers.

For information about the topologies you into which you can install Oracle HTTP Server, see
Oracle HTTP Server Topologies.

What is the Difference Between Oracle WebLogic Server
Domains and Standalone Domains?

Oracle HTTP Server can be installed in either a standalone, a Full-JRF, or a Restricted-JRF
domain. A standalone domain is a container for system components, such as Oracle HTTP
Server. It is ideal for a DMZ environment because it has the least overhead. A standalone
domain has a directory structure similar to an Oracle WebLogic Server Domain, but it does
not contain an Administration Server, or Managed Servers, or any management support. It
can contain one or more instances of system components of the same type, such as Oracle
HTTP Server, or a mix of system component types.

WebLogic Server Domains support all WebLogic Management Framework tools. An Oracle
WebLogic Server domain can be either Full-JRF or Restricted JRF. A WebLogic Server
Domain in Full-JRF mode contains a WebLogic Administration Server, zero or more
WebLogic Managed Servers, and zero or more System Component Instances (for example,
an Oracle HTTP Server instance). This type of domain provides enhanced management
capabilities through the Fusion Middleware Control and WebLogic Management Framework
present throughout the system. A WebLogic Server Domain can span multiple physical
machines, and it is centrally managed by the administration server. Because of these
properties, a WebLogic Server Domain provides the best integration between your System
Components and Java EE Components.

The purpose of the Restricted-JRF domain is to simplify Oracle HTTP Server administration
by using the WebLogic server domain. A Restricted-JRF Oracle WebLogic Server domain is
similar to a Full-JRF domain except that a connection to an external database is not required.
All of the Oracle HTTP Server functionality through Fusion MiddleWare Control and WLST is
still available, with the exception of cross component wiring.

For more details on each of these domains, see Domain Types.

Can Oracle HTTP Server Cache the Response Data?
Oracle HTTP Server now includes the Apache mod_cache and mod_cache_disk modules to
cache response data.

For more information, on mod_cache and mod_cache_disk, see mod_cache in the Apache
documentation:

Appendix D
Can Oracle HTTP Server Front-End Oracle WebLogic Server?

D-7

http://httpd.apache.org/docs/2.4/mod/mod_cache.html

How Do I Configure a Virtual Server-Specific Access Log?
Within every VirtualHost directive, you can use the Apache LogFormat and CustomLog
directives to configure Virtual Host-specific access log format and log files. See
LogFormat and CustomLog.

How to Enable SSL for Oracle HTTP Server by Using
Fusion Middleware Control?

You can enable SSL for Oracle HTTP Server using Fusion Middleware control.

The steps mentioned in this section is applicable to Oracle HTTP Server - Version
12.2.1.0.0 and later.

Complete the following steps to enable SSL for Oracle HTTP Server using Fusion
Middleware control:

• Start Node Manager and Admin Server

• Create Keystore

• Generate Keypair

• Generate CSR for a Certificate

• Import the Trusted Certificate

• Import the Trusted Certificate to WebLogic Domain

• Import the User Certificate

• Export Keystore to Wallet

• Start Node Manager and Admin Server

• Create Keystore

• Generate Keypair

• Generate CSR for a Certificate

• Import the Trusted Certificate

• Import the Trusted Certificate to WebLogic Domain

• Import the User Certificate

• Export Keystore to Wallet

• Enable SSL

Start Node Manager and Admin Server
1. Start the Node Manager in the collocated ORACLE_HOME.

$ORACLE_HOME/user_projects/domains/bin/startNodeManager.sh

Appendix D
How Do I Configure a Virtual Server-Specific Access Log?

D-8

http://httpd.apache.org/docs/2.4/mod/mod_cache.html

2. Start the Admin Server in the collocated ORACLE_HOME.

$ORACLE_HOME/user_projects/domains/bin/startWeblogic.sh

3. Log in to Fusion Middleware Control with the Weblogic user name and password.

For example, http://host.domain:7001/em.

Create Keystore
1. Log in to Fusion Middleware Control.

2. Go to Domain, click Security, and then click Keystore.

The Keystore page appears.

3. Click Create Keystore.

The Create Keystore dialog box appears.

4. In this dialog box, enter the following data:

• Keystore Name: Enter a unique name. For example, Test.

• Protection Type: Choose Policy.

A new keystore is created with the name _Test, that is, ohs1_Test.
Once the keystore is created, select the new keystore ohs1_Test, and then click Manage
to perform all other steps

Generate Keypair
To generate a certificate with an associated keypair:

1. Log in to Fusion Middleware Control.

2. From the navigation pane, locate the domain of interest.

3. Navigate to Security, then Keystore.

The Keystore page appears.

4. Expand the stripe in which the keystore resides. Select the row corresponding to the
keystore.

5. Click Manage.

The Manage Certificates page appears.

6. Click Generate Keypair.

The Generate Keypair dialog appears.

7. Enter the details, and the click OK.

The new certificate appears in the list of certificates. You can view the certificate details
by clicking on the certificate alias.

The generated keypair is wrapped in a CA signed certificate. To use this certificate for SSL or
where trust needs to be established, applications must either use the domain trust store as
their trust store or import the certificate to a custom application-specific trust store.

Appendix D
How to Enable SSL for Oracle HTTP Server by Using Fusion Middleware Control?

D-9

Generate CSR for a Certificate
To generate a CSR for a certificate or trusted certificate:

1. Log in to Fusion Middleware Control.

2. From the navigation pane, locate the domain of interest.

3. Navigate to Security, and then Keystore.

The Keystore page appears.

4. Expand the stripe in which the keystore resides. Select the row corresponding to
the keystore.

5. Click Manage.

The Manage Certificates page appears.

6. Select the row corresponding to the new keypair and click Generate CSR.

The Generate CSR dialog appears.

7. Copy and paste the entire CSR into a text file, and click Close.

Alternatively, you can click Export CSR to automatically save the CSR to a file.

You can send the resulting certificate request to a certificate authority (CA) which will
return a signed certificate.

Import the Trusted Certificate
To import a certificate into a password-protected keystore.

1. Log in to Fusion Middleware Control.

2. From the navigation pane, locate Oracle HTTP Server.

3. Navigate to Security, and then Keystore.

The Keystore page appears.

4. Expand the stripe in which the keystore resides. Select the keystore from which
the CSR was generated.

5. Click Manage.

The Manage Certificates page appears.

6. Click Import.

The Import Certificate dialog appears.

7. In the Certificate Type, select Trusted Certificate.

8. In Alias, enter a name for the Alias.

9. In Certificate Source, either paste the content of the trusted certificate in Paste
Certificate String here text box or select a trusted certificate file.

10. Click OK.

Repeat these steps for any other trusted CA certificates in the chain.

The imported trusted certificate appears in the list of certificates.

Appendix D
How to Enable SSL for Oracle HTTP Server by Using Fusion Middleware Control?

D-10

Import the Trusted Certificate to WebLogic Domain
You also need to import root CA certificate and any other Trusted CA Certificates to
WebLogic "system" stripe under trust keystore.

1. Log in to Fusion Middleware Control.

2. From the navigation pane, locate WebLogic domain.

3. Navigate to Security, and then Keystore.

The Keystore page appears.

4. Expand the stripe in which the keystore resides. Select the keystore from which the CSR
was generated.

5. Click Manage.

The Manage Certificates page appears.

6. Click Import.

The Import Certificate dialog appears.

7. In the Certificate Type, select Trusted Certificate.

8. In Alias, enter a name for the Alias.

9. In Certificate Source, either paste the content of the trusted certificate in Paste
Certificate String here text box or select a trusted certificate file.

10. Click OK.

Repeat these steps for any other trusted CA certificates in the chain.

The imported trusted certificate appears in the list of certificates.

If you miss this step, then trying to export keystore to wallet fails with the following error
message:

Error "Failed to export keystore to wallet. Error message: null"
While Trying to Export Keystore to Wallet
See Note: 2140257.1

Import the User Certificate

1. Log in to Fusion Middleware Control.

2. From the navigation pane, locate Oracle HTTP Server.

3. Navigate to Security, and then Keystore.

The Keystore page appears.

4. Expand the stripe in which the keystore resides. Select the keystore from which the CSR
was generated.

5. Click Manage.

The Manage Certificates page appears.

6. Click Import.

The Import Certificate dialog appears.

Appendix D
How to Enable SSL for Oracle HTTP Server by Using Fusion Middleware Control?

D-11

7. In the Certificate Type, select Certificate.

8. In Alias, enter a name for the Alias.

9. In Certificate Source, either paste the content of the user certificate in Paste
Certificate String here text box or select a user certificate file.

10. Click OK.

The imported user certificate appears in the list of certificates.

Export Keystore to Wallet
1. Log in to Fusion Middleware Control.

2. From the navigation pane, locate Oracle HTTP Server.

3. Navigate to Security, and then Keystore.

The Keystore page appears.

4. Expand the stripe in which the keystore resides. Select the keystore from which
the CSR was generated.

5. Click Manage.

The Manage Certificates page appears.

6. Click Import.

The Import Certificate dialog appears.

7. Click Export Keystore to Wallet.

You get an auto login wallet, cwallet.sso, that does not need a password. This auto
login enabled wallet is also associated with a PKCS#12 wallet (ewallet.p12).

Enable SSL
1. Navigate to the Oracle HTTP Server home page.

2. Select Administration from the Oracle HTTP Server menu.

3. Select Virtual Hosts from the Administration menu.

4. Highlight an existing virtual host in the table

5. Click Configure.

6. Select SSL Configuration.

7. Check the Enable SSL box.

8. Select a wallet from the drop-down list.

Here, select the path to Test wallet.

9. Click OK to apply the changes.

10. Restart the Oracle HTTP Server instance by navigating to Oracle HTTP Server,
then Control, then Restart.

11. Open a browser session and connect to the port number that was SSL-enabled.

Appendix D
How to Enable SSL for Oracle HTTP Server by Using Fusion Middleware Control?

D-12

E
Troubleshooting Oracle HTTP Server

You can get help to troubleshoot some of the common problems that you might encounter
when using Oracle HTTP Server.

• Oracle HTTP Server Fails to Start Due to Port Conflict

• System Overloaded by Number of httpd Processes

• Permission Denied When Starting Oracle HTTP Server On a Port Below 1024

• Using Log Files to Locate Errors

• Recovering an Oracle HTTP Server Instance on a Remote Host

• Oracle HTTP Server Performance Issues

• Out of DMS Shared Memory

• Oracle HTTP Server Fails to Start When mod_security is Enabled on RHEL or Oracle
Linux 7

• Oracle HTTP Server Fails to Start due to Certificates Signed Using the MD5 Algorithm

• Node Manager Logs Don't Show Clear Message When a Component Fails to Start

• SSL Handshake Fails Due to Certificate Chain

• Oracle HTTP Server Fails to Start Due to Port Conflict
If Oracle HTTP Server cannot start due to a port conflict, a message containing the string
[VirtualHost: main] (98)Address already in use is generated. This error condition
occurs if the listen port configured for Oracle HTTP Server is the same as the one in use
by another process.

• System Overloaded by Number of httpd Processes
When the system is overloaded by too many httpd processes, there are insufficient
resources for normal processing. This slows down the response time. You can lower the
value of MaxRequestWorkers to a value the machine can accommodate.

• Permission Denied When Starting Oracle HTTP Server On a Port Below 1024
If you try to start Oracle HTTP Server on a port below 1024, a message containing the
string [VirtualHost: main] (13)Permission denied: make_sock: could not bind to
address [::]:443 is generated. This error condition occurs because root privileges are
needed to bind these ports.

• Using Log Files to Locate Errors
There are three types of log files that help you locate errors, namely, rewrite, script, and
error.

• Recovering an Oracle HTTP Server Instance on a Remote Host
To recover an Oracle HTTP Server instance on a remote host, you must use tar and
untar; pack.sh and unpack.sh do not work in this scenario.

• Oracle HTTP Server Performance Issues
You might encounter performance issues when running Oracle HTTP Server. The
documentation includes several topics to explain such performance related problems.

E-1

• Out of DMS Shared Memory
When there is an incorrect calculation of the required shared memory for Oracle
HTTP Server DMS, error logs are displayed. These problems can be resolved by
setting the DMS shared memory directive to a value larger than the default value
of 4096 or continuing to set the directive 50% higher until the problem is resolved.

• Oracle HTTP Server Fails to Start When mod_security is Enabled on RHEL or
Oracle Linux 7
If mod_security is configured in Oracle HTTP Server in Red Hat Enterprise Linux
(RHEL) or Oracle Linux (OL) 7, Oracle HTTP Server fails to start. This error
condition occurs because there is no symbolic link /lib64/liblzma.so.0

• Oracle HTTP Server Fails to Start due to Certificates Signed Using the MD5
Algorithm
If Oracle HTTP Server cannot start due to the server wallet containing a certificate
signed with the Message Digest 5 (MD5) algorithm, you can replace the MD5
certificate with a Secure Hash Algorithm 2 (SHA-2) certificate.

• Node Manager Logs Don't Show Clear Message When a Component Fails to Start
When an Oracle HTTP Server (OHS) component fails to start, the following errors
are seen in ORACLE_INSTANCE/servers/COMPONENT_NAME/logs/
COMPONENT_NAME.log:

• SSL Handshake Fails Due to Certificate Chain

Oracle HTTP Server Fails to Start Due to Port Conflict
If Oracle HTTP Server cannot start due to a port conflict, a message containing the
string [VirtualHost: main] (98)Address already in use is generated. This error
condition occurs if the listen port configured for Oracle HTTP Server is the same as
the one in use by another process.

The generated message may look like the following:

[VirtualHost: main] (98)Address already in use: make_sock: could not bind to
address [::]:7777

Solution

Determine what process is already using that port, and then either change the IP:port
address of Oracle HTTP Server or the port of the conflicting process.

Note:

If the Oracle HTTP Server instance was created with the config Wizard, there
is no automated port management. It is possible to create multiple instances
using the same Listen port.

Appendix E
Oracle HTTP Server Fails to Start Due to Port Conflict

E-2

System Overloaded by Number of httpd Processes
When the system is overloaded by too many httpd processes, there are insufficient
resources for normal processing. This slows down the response time. You can lower the
value of MaxRequestWorkers to a value the machine can accommodate.

When too many httpd processes run on a system, the response time degrades because there
are insufficient resources for normal processing.

Solution

Lower the value of MaxRequestWorkers to a value the machine can accommodate.

Permission Denied When Starting Oracle HTTP Server On a
Port Below 1024

If you try to start Oracle HTTP Server on a port below 1024, a message containing the string
[VirtualHost: main] (13)Permission denied: make_sock: could not bind to address
[::]:443 is generated. This error condition occurs because root privileges are needed to
bind these ports.

The generated message may look like the following:

[VirtualHost: main] (13)Permission denied: make_sock: could not bind to address
[::]:443

Oracle HTTP Server will not start on ports below 1024 because root privileges are needed to
bind these ports.

Solution

Follow the steps in Starting Oracle HTTP Server Instances on a Privileged Port (UNIX Only)
to start Oracle HTTP Server on a Privileged Port.

Using Log Files to Locate Errors
There are three types of log files that help you locate errors, namely, rewrite, script, and error.

The log files are explained in the following sections:

• Rewrite Log

• Script Log

• Error Log

• Rewrite Log

• Script Log

• Error Log

Appendix E
System Overloaded by Number of httpd Processes

E-3

Rewrite Log
This log file is necessary for debugging when mod_rewrite is used. The log file
produces a detailed analysis of how the rewriting engine transforms requests. The
value of the LogLevel directive controls the level of detail.

Script Log
This log file enables you to record the input to and output from the CGI scripts. This
should only be used in testing, and not for production servers.

See Also:

ScriptLog in the Apache HTTP Server documentation at:

http://httpd.apache.org/docs/current/mod/mod_cgi.html#scriptlog

Error Log
This log file records overall server problems. Refer to Managing Oracle HTTP Server
Logs for details on configuring and viewing error logs.

Recovering an Oracle HTTP Server Instance on a Remote
Host

To recover an Oracle HTTP Server instance on a remote host, you must use tar and
untar; pack.sh and unpack.sh do not work in this scenario.

If you need to recover an Oracle HTTP Server instance that is installed on a remote
host (that is, a host with just managed servers but no Administration Server), you must
use tar and untar; pack.sh and unpack.sh do not work in this scenario.

Oracle HTTP Server Performance Issues
You might encounter performance issues when running Oracle HTTP Server. The
documentation includes several topics to explain such performance related problems.

• Special Runtime Files Reside on a Network File System

• UNIX Sockets on a Network File System

• DocumentRoot on a Slow File System

• Instances Created on Shared File Systems

• Special Runtime Files Reside on a Network File System

• UNIX Sockets on a Network File System

• DocumentRoot on a Slow File System

Appendix E
Recovering an Oracle HTTP Server Instance on a Remote Host

E-4

http://httpd.apache.org/docs/2.4/mod/mod_cgi.html#scriptlog
http://httpd.apache.org/docs/current/mod/mod_cgi.html#scriptlog

• Instances Created on Shared File Systems

Special Runtime Files Reside on a Network File System
Oracle HTTP Server uses locks for its internal processing, which in turn use lock files. These
files are created dynamically when the lock is created and are accessed every time the lock
is taken or released. If these files reside on a slower file system (for example, network file
system), then there could be severe performance degradation. To counter this issue:

On Linux:

In httpd.conf, change Mutex fnctl:fileloc default to Mutex sysvsem default where
fileloc is the value of the directive LockFile (two places).

On Solaris:

In httpd.conf, change Mutex fnctl:fileloc default to Mutex pthread default where
fileloc is the value of the directive LockFile (two places).

UNIX Sockets on a Network File System
The mod_cgid module is not enabled by default. If enabled, this module uses UNIX sockets
internally. If UNIX sockets reside on a slower file system (for example, network file system), a
severe performance degradation could be observed. You can set the following directive to
avoid the issue:

• If mod_cgid is enabled, use the ScriptSock directive to place mod_cgid's UNIX socket on
a local filesystem.

DocumentRoot on a Slow File System
If you are using mod_wl_ohs to route the requests to back-end WLS server/cluster, and the
DocumentRoot is on a slower file system (for example, network file system), then every
request that mod_wl_ohs routes to the backend server can experience performance issues.
This can be overcome by setting WLSRequest to ON instead of SetHandler weblogic-handler.

Instances Created on Shared File Systems
If you encounter functional or performance issues when creating an Oracle HTTP Server
instance on a shared file system, including NFS (Network File System), it might be due to file
system accesses in the default configuration. In this case, you must update the httpd.conf file
specific to your operating systems. See Updating Oracle HTTP Server Component
Configurations on a Shared File System.

Out of DMS Shared Memory
When there is an incorrect calculation of the required shared memory for Oracle HTTP
Server DMS, error logs are displayed. These problems can be resolved by setting the DMS
shared memory directive to a value larger than the default value of 4096 or continuing to set
the directive 50% higher until the problem is resolved.

An error log containing the string dms_fail_shm_expansion: out of DMS shared memory in
pid XXX, disabling DMS; increase DMSProcSharedMem directive from YYY is displayed
when an incorrect calculation of required shared memory for Oracle HTTP Server DMS. This

Appendix E
Out of DMS Shared Memory

E-5

can be resolved by setting DMSProcSharedMem to a larger value than the default value
of 4096. In some extreme configurations, you might see the following message in the
Oracle HTTP Server error log:

dms_fail_shm_expansion: out of DMS shared memory in pid XXX, disabling DMS;
increase DMSProcSharedMem directive from YYY

This is because of an incorrect calculation of required shared memory for Oracle
HTTP Server DMS. This can be resolved by setting DMSProcSharedMem to a larger
value than the default of 4096. Continue setting DMSProcSharedMem 50% higher until
the problem is resolved. The minimum value for DMSProcSharedMem is 256 and the
maximum value is 65536.

In a configuration with a very large number of virtual hosts (hundreds or thousands), if
the above workaround does not work, you can instead, set the environment variable
OHS_DMS_BLOCKSIZE to a large enough value that Oracle HTTP Server starts without
error. The value of this variable is in kilobytes and a value of 524288 is a good starting
point. If the error persists, continue to increase the value by 50% until Oracle HTTP
Server starts without error.

Oracle HTTP Server Fails to Start When mod_security is
Enabled on RHEL or Oracle Linux 7

If mod_security is configured in Oracle HTTP Server in Red Hat Enterprise Linux
(RHEL) or Oracle Linux (OL) 7, Oracle HTTP Server fails to start. This error condition
occurs because there is no symbolic link /lib64/liblzma.so.0

The generated error looks like the following:

iblzma.so.0: cannot open shared object file: No such file or directory

Solution

1. Log in as a root user.

2. To create a symbolic link, /lib64/liblzma.so.0, run the following command:

cd /lib64
ln -s liblzma.so.5.0.99 liblzma.so.0

3. Verify the symlink as follows:

ls -al *liblzma*

4. Exit root.

5. Start Oracle HTTP Server.

For example, startComponent.sh ohs1, where ohs1 is the Oracle HTTP Server
instance you want to start.

Appendix E
Oracle HTTP Server Fails to Start When mod_security is Enabled on RHEL or Oracle Linux 7

E-6

Oracle HTTP Server Fails to Start due to Certificates Signed
Using the MD5 Algorithm

If Oracle HTTP Server cannot start due to the server wallet containing a certificate signed
with the Message Digest 5 (MD5) algorithm, you can replace the MD5 certificate with a
Secure Hash Algorithm 2 (SHA-2) certificate.

Oracle HTTP Server fails to start if the Oracle HTTP Server wallet contains a certificate or
certificate request that is signed with the Message Digest 5 (MD5) algorithm.

• Solution: Replace the MD5 certificate with a Secure Hash Algorithm 2 (SHA-2)
certificate.

• Workaround: To enable MD5 supported certificate, set the
ORACLE_SSL_ALLOW_MD5_CERT_SIGNATURES environment variable in the
ohs.plugins.nodemanager.properties file to 1.

To set the environment variable in Oracle HTTP Server, see Environment Variable
Configuration Properties.

Node Manager Logs Don't Show Clear Message When a
Component Fails to Start

When an Oracle HTTP Server (OHS) component fails to start, the following errors are seen in
ORACLE_INSTANCE/servers/COMPONENT_NAME/logs/COMPONENT_NAME.log:

[OHS] [INCIDENT_ERROR:20] [AH00480] [mpm_event] [host_id: xxx] [host_addr:
xxx] [pid: xxx]
[tid:xxxx] [user: xxx] [VirtualHost: main] (11)Resource
temporarily unavailable: AH00480: apr_thread_create: unable to create worker
thread

This can be caused due to lack of Virtual Memory or a limit has been placed on the OHS for
the number of processes it can run.

Solution

1. Check and increase the Virtual memory on the host or check the local process limits and
open file descriptor limit for the user.
For example, on Linux, check the user limits using the command ulimit -a and also
check the /etc/security/limits.conf file for any system-wide user limits.

To increase process limit, use the following command on Linux:

$ ulimit -u xxxx

To increase open files : file descriptors limit, use the following command on Linux:

$ ulimit -n xxxxx

2. Kill the processes that are not required and start the OHS.

Appendix E
Oracle HTTP Server Fails to Start due to Certificates Signed Using the MD5 Algorithm

E-7

SSL Handshake Fails Due to Certificate Chain
Certain browsers, such as Internet Explorer require that the entire certificate chain be
imported to the browsers for the SSL handshake to work. If your certificate was issued
by an intermediate CA, you will need to ensure that the complete chain of certificates
is available on the browser or the handshake will fail. If an intermediate certificate in
the chain expires, it must be renewed along with all the certificates (such as OHS
server) in the chain.

Solution

When you configure SSL for Oracle HTTP Server, you may need to import the entire
certificate chain (rootCA, Intermediate CA’s and so on).

Appendix E
SSL Handshake Fails Due to Certificate Chain

E-8

F
Configuration Files

Oracle HTTP Server contains configuration files that specify several properties, such as the
top-level web server configuration, listen ports, the administration port, the SSL configuration,
the plug-ins, keystores, log files, and more.

File Format Description

httpd.conf Apache HTTP Server .conf file format Top-level web server configuration file

Primary feature configured: Various,
including non-SSL listening socket

ssl.conf Apache HTTP Server .conf file format Web server configuration file for SSL

Primary feature configured: mod_ossl

admin.conf Apache HTTP Server .conf file format Web server configuration file for
administration port. Only the listen port
and local address are intended for
customer configuration.

Primary feature configured: mod_dms;
administration port used for
communication with Node Manager

mod_wl_ohs.conf Apache HTTP Server .conf file format Web server configuration file for
WebLogic plugin

Primary feature configured: WebLogic
plugin (mod_wl_ohs)

mime.types mod_mime file format Web server configuration file for
mod_mime

Primary feature configured: Mime
types used by mod_mime

ohs.plugins.nodeman
ager.properties

Java property file format Configuration file for Oracle HTTP
Server Node Manager plug-ins

Primary feature configured: Oracle
HTTP Server plug-ins

magic mod_mime_magic file format Optional, disabled web server
configuration file for mod_mime_magic

Primary feature configured: File
content patterns used by
mod_mime_magic

keystores/<wallet-
directory>

Oracle wallet format Oracle wallet

Primary feature configured: Oracle
wallets for SSL/TLS communication

auditconfig.xml FMW audit framework audit
configuration XML format

Configuration of Oracle HTTP Server
auditing and logging

Primary feature configured:FMW audit
framework auditing of Oracle HTTP
Server operations

F-1

File Format Description

component-logs.xml FMW log file configuration XML format Configuration of Oracle HTTP Server
log files for log collection

Primary feature configured: Log
collection

component_events.x
ml

FMW audit framework component
event XML format

Static configuration of Oracle HTTP
Server audit event definitions

Primary feature configured: FMW audit
framework

For additional information, see the following documentation:

• Understanding Configuration Files

• Apache HTTP Server .conf file format: http://httpd.apache.org/docs/2.4/
configuring.html

• mod_mime file format: http://httpd.apache.org/docs/2.4/mod/mod_mime.html
• mod_mime_magic file format: http://httpd.apache.org/docs/2.2/mod/

mod_mime_magic.html

Appendix F

F-2

http://httpd.apache.org/docs/2.4/configuring.html
http://httpd.apache.org/docs/2.4/configuring.html
http://httpd.apache.org/docs/2.4/mod/mod_mime.html
http://httpd.apache.org/docs/2.2/mod/mod_mime_magic.html
http://httpd.apache.org/docs/2.2/mod/mod_mime_magic.html

G
Property Files

Oracle HTTP Server instances can be configured using property files such
asohs_admin.properties, ohs_nm.properties, and ohs.plugins.nodemanager.properties.

This appendix documents the property files used by Oracle HTTP Server. The files include:

• ohs_addAdminProperties

• ohs_nm.properties File

• ohs.plugins.nodemanager.properties File

• ohs_addAdminProperties
The ohs_addAdminProperties command adds the LogLevel property to Oracle HTTP
Server Administration server property file (ohs_admin.properties); LogLevel is the only
parameter ohs_addAdminProperties currently supports. This command is available when
WLST is connected to an Administration Server instance.

• ohs_nm.properties File
The ohs_nm.properties file is a per domain file used to configure the Oracle HTTP
Server plug-in.

• ohs.plugins.nodemanager.properties File
An ohs.plugins.nodemanager.properties file exists for each configured Oracle HTTP
Server instance. This file contains parameters for configuring Oracle HTTP Server
process management.

ohs_addAdminProperties
The ohs_addAdminProperties command adds the LogLevel property to Oracle HTTP Server
Administration server property file (ohs_admin.properties); LogLevel is the only parameter
ohs_addAdminProperties currently supports. This command is available when WLST is
connected to an Administration Server instance.

Use with WLST: Online

Syntax

ohs_addAdminProperties(logLevel = 'value')

G-1

Argument Description

LogLevel The granularity of information written to the log. The default is INFO.
The following other values are accepted:

• ALL
• CONFIG
• FINE
• FINER
• FINEST
• OFF
• SEVERE
• WARNING

Example

This example creates a log file when log level is set to FINEST.

ohs_addAdminProperties(logLevel = 'FINEST')

ohs_nm.properties File
The ohs_nm.properties file is a per domain file used to configure the Oracle HTTP
Server plug-in.

File path: DOMAIN_HOME/config/fmwconfig/components/OHS/ohs_nm.properties

Property Description

LogLevel The log level for the OHS undemanding plug-in.

Accepted values:

• SEVERE (highest value)
• WARNING
• INFO
• CONFIG
• FINE
• FINER
• FINEST (lowest value)
Default: INFO

ohs.plugins.nodemanager.properties File
An ohs.plugins.nodemanager.properties file exists for each configured Oracle HTTP
Server instance. This file contains parameters for configuring Oracle HTTP Server
process management.

File path: DOMAIN_HOME/config/fmwconfig/components/OHS/instance_name/
ohs.plugins.nodemanager.properties
This section contains the following information:

• Cross-platform Properties

• Environment Variable Configuration Properties

Appendix G
ohs_nm.properties File

G-2

• Properties Specific to Oracle HTTP Server Instances Running on Linux and UNIX

Note:

Any paths placed in Windows implementations of
ohs.plugins.nodemanager.properties that include backslashes must have those
backslashes escaped.

You must do this manually after upgrading from Oracle HTTP Server 11g where
paths with backslashes were migrated from opmn.xml to
ohs.plugins.nodemanager.properties.

For example:

environment.TMP = C:\Users\user\AppData\Local\Temp\1

Must be modified manually to:

environment.TMP = C:\\Users\\user\\AppData\\Local\\Temp\\1

• Cross-platform Properties
You can configure cross-platform properties for Oracle HTTP Server instances such as
config-file, command-line, and more.

• Environment Variable Configuration Properties
You can specify additional environment variables for the Oracle HTTP Server using
environment properties such as SHELL, LANG, INSTANCE_NAME, and more.

• Properties Specific to Oracle HTTP Server Instances Running on Linux and UNIX
You can configure properties for Oracle HTTP Server instances running on Linux or other
UNIX like systems. These properties include restart-mode, stop-mode, and more.

Cross-platform Properties
You can configure cross-platform properties for Oracle HTTP Server instances such as
config-file, command-line, and more.

The following table lists the cross-platform properties:

Property Description

config-file The base filename of the initial Oracle HTTP Server configuration file.

config-file accepts any valid .conf file in the instance configuration
directory.

Caution: The specified .conf file must include admin.conf in the same manner
as the default httpd.conf.

Default: httpd.conf
command-line Extra arguments to add to the httpd invocation.

command-line accepts any valid httpd command-line parameters.

Caution: These must not conflict with the usual start, stop, and restart
parameters. Using -D and symbol is the expected use of this property.

Default: None

Appendix G
ohs.plugins.nodemanager.properties File

G-3

Property Description

start-timeout The maximum number of seconds to wait for Oracle HTTP Server to start and
initialize.

start-timeout accepts any numeric value from 5 to 3600.

Default: 120
stop-timeout The maximum number of seconds to wait for the Oracle HTTP Server to

terminate.

stop-timeout accepts any numeric value from 5 to 3600.

Default: 60
restart-timeout The maximum number of seconds to wait for the Oracle HTTP Server to

restart.

restart-timeout accepts any numeric value from 5 to 3600.

Default: 180
ping-interval The number of seconds from the completion of one health check ping to the

Oracle HTTP Server until the start of the next. A value of 0 disables pings.

ping-interval accepts any numeric value from 0 to 3600.

Default: 30
ping-timeout The maximum number of seconds to wait for an Oracle HTTP Server health

check ping to complete.

ping-tmeout accepts any numeric value from 5 to 3600.

Default: 60
nm-wallet Full path to Node Manager wallet. This wallet contains trusted certificates

which are used by Node Manager to establish SSL communication over OHS
admin port.

If the absolute path of the wallet is not configured, the default lookup directory
is set to INSTANCE_HOME/config/fmwconfig/components/
COMPONENT_TYPE/instances/COMPONENT_NAME/keystores/.

Default: INSTANCE_HOME/config/fmwconfig/components/
COMPONENT_TYPE/instances/COMPONENT_NAME/keystores/default

Example:

config-file = httpd.conf
command-line = -DSYMBOL
start-timeout = 120
stop-timeout = 60
restart-timeout = 180
ping-interval = 30
ping-timeout = 60
nm-wallet = <path to wallet directory>

Environment Variable Configuration Properties
You can specify additional environment variables for the Oracle HTTP Server using
environment properties such as SHELL, LANG, INSTANCE_NAME, and more.

The environment property syntax is:

environment[.append][.<order>].<name> = <value>

Where:

Appendix G
ohs.plugins.nodemanager.properties File

G-4

• The optional .append will append the new <value> to any existing value for <name>. If
<name> has not yet been defined, then <value> will be the new value.

• The optional .<order> value sets order for this definition's setting in the environment (the
default is 0). The order determines when the configured variable is added to the process'
environment (and its value evaluated). Environment properties with lower order values
are processed before those with higher order values. The order value must be an integer
with a value greater than or equal to 0.

• <name> is the environment variable name, which must begin with a letter or underscore,
and consist of letters, numeric digits or underscores.

• <value> is the value of environment variable <name>. The value can reference other
environment variable names, including its own.

The following special references may be included in the value:

– "$:" for the path separator

– "$/" for the file separator

– "$$" for '$'

With the exception of these special characters, UNIX variable syntax references ("$name" or
"${name}") and the Windows variable syntax reference ("%name%") are supported.

Each property name within the same property file must be unique (the behavior is not defined
for multiple properties defined with the same name), thus the .<order> field is necessary to
keep property names unique when multiple definitions are provided for the same environment
variable <name>.

The following environment variables are set by the Oracle HTTP Server plug-in:

• SHELL: From 's environment, or defaults to /bin/sh, or cmd.exe for Windows

• ORA_NLS33: Set to $ORACLE_HOME/nls/data

• NLS_LANG: From 's environment, otherwise default

• LANG: From 's environment, otherwise default

• LC_ALL: From 's environment, if set

• TZ: From 's environment, if set

• ORACLE_HOME: Full path to the Oracle home

• ORACLE_INSTANCE: Full path to the domain home

• INSTANCE_NAME: The name of the domain

• PRODUCT_HOME: The path to the Oracle HTTP Server install: $ORACLE_HOME/ohs

• PATH: Defaults to

– On UNIX:

$PRODUCT_HOME/bin:$ORACLE_HOME/bin:

$ORACLE_HOME/jdk/bin:/bin:/usr/bin:/usr/local/bin

– On Windows:

%PRODUCT_HOME%\bin;%ORACLE_HOME%\bin;

%ORACLE_HOME%\jdk\bin;%SystemRoot%;%SystemRoot%\system32

These variables apply to UNIX only:

Appendix G
ohs.plugins.nodemanager.properties File

G-5

• TNS_ADMIN: From 's environment, or $ORACLE_HOME/network/admin

• LD_LIBRARY_PATH: $PRODUCT_HOME/lib:$ORACLE_HOME/
lib:$ORACLE_HOME/jdk/lib

• LIBPATH: Same as LD_LIBARY_PATH

• X_LD_LIBRARY_PATH_64: Same as LD_LIBRARY_PATH

These variables apply to Windows only:

• ComSpec: Defaults to %ComSpec% value from the system.

• SystemRoot: Defaults to %SystemRoot% value from the system.

• SystemDrive: Defaults to %SystemDrive% value from the system.

Example

On a UNIX like system with the web tier installed as /oracle and the environment
variable "MODX_RUNTIME=special" set in the NodeManager's environment, the
following definitions:

environment.MODX_RUNTIME = $MODX_RUNTIME
environment.1.MODX_ENV = Value A
environment.1.MODX_PATH = $PATH$:/opt/modx/bin
environment.2.MODX_ENV = ${MODX_ENV}, Value B
environment.append.2.MODX_PATH = /var/modx/bin
MODX_ENV = Value A, Value B
MODX_PATH = /oracle/ohs/bin:/oracle/bin:/oracle/jdk/bin:/bin:/usr/bin: /usr/
local/bin:/opt/modx/bin:/var/modx/bin

would result in the following additional environment variables set for Oracle HTTP
Server:

MODX_RUNTIME = special

Properties Specific to Oracle HTTP Server Instances Running on
Linux and UNIX

You can configure properties for Oracle HTTP Server instances running on Linux or
other UNIX like systems. These properties include restart-mode, stop-mode, and
more.

Property Description

restart-mode Determines whether to use graceful or hard restart for the Oracle HTTP
Server when configuration changes are activated.

restart-mode accepts these values:

• restart
• graceful
Default: graceful

stop-mode Determines whether to use a graceful or hard stop when stopping Oracle
HTTP Server.

stop-mode accepts these values:

• stop
• graceful-stop
Default: stop

Appendix G
ohs.plugins.nodemanager.properties File

G-6

Property Description

mpm Determines whether to use the prefork, worker, or event MPM for Oracle
HTTP Server.

mpm accepts these values:

• prefork
• worker
• event
Default: worker for UNIX, event for Linux

allow-corefiles Determines whether ulimit should be set to allow core files to be written
for Oracle HTTP Server crashes.

allow-corefiles accepts these values:

• yes
• no
Default: no

Example

restart-mode = graceful
stop-mode = stop
mpm = worker
allow-corefiles = no

Appendix G
ohs.plugins.nodemanager.properties File

G-7

H
Oracle HTTP Server Module Directives

Modules extend the basic functionality of Oracle HTTP Server and support integration
between Oracle HTTP Server and other Oracle Fusion Middleware components. Oracle
HTTP Server uses both Oracle developed modules or “plug-ins” and Apache and third party-
developed modules. Oracle developed modules have a set of directives that Oracle HTTP
Server supports.

This appendix describes the directives available in the Oracle-developed modules:

• mod_wl_ohs Module

• mod_certheaders Module

• mod_ossl Module

• mod_wl_ohs Module
The mod_wl_ohs module is a key feature of Oracle HTTP Server that enables requests to
be proxied from Oracle HTTP Server to Oracle WebLogic Server. This module is
generally referred to as the Oracle WebLogic Server proxy plug-in.

• mod_certheaders Module
The mod_certheaders module enables reverse proxies using two directives namely,
AddCertHeader and SimulateHttps.

• mod_ossl Module
The mod_ossl module enables strong cryptography for Oracle HTTP Server. It accepts a
set of directives such as SSLCARevocationFile, SSLCipherSuite, SSLEngine, and more.

mod_wl_ohs Module
The mod_wl_ohs module is a key feature of Oracle HTTP Server that enables requests to be
proxied from Oracle HTTP Server to Oracle WebLogic Server. This module is generally
referred to as the Oracle WebLogic Server proxy plug-in.

The mod_wl_ohs module enhances an Oracle HTTP server installation by allowing Oracle
WebLogic Server to handle requests that require dynamic functionality. In other words, you
typically use a plug-in where the HTTP server serves static pages such as HTML pages,
while Oracle WebLogic Server serves dynamic pages such as HTTP Servlets and Java
Server Pages (JSPs). For information on this module's directives, see Parameters for Web
Server Plug-Ins in Using Oracle WebLogic Server Proxy Plug-Ins.

mod_certheaders Module
The mod_certheaders module enables reverse proxies using two directives namely,
AddCertHeader and SimulateHttps.

This section describes the mod_certheaders directives:

• AddCertHeader Directive

• SimulateHttps Directive

H-1

• AddCertHeader Directive

• SimulateHttps Directive

AddCertHeader Directive
Specify which headers should be translated to CGI environment variables. This can be
achieved by using the AddCertHeader directive. This directive takes a single argument,
which is the CGI environment variable that should be populated from a HTTP header
on incoming requests. For example, to populate the SSL_CLIENT_CERT CGI
environment variable.

Category Value

Syntax AddCertHeader environment_variable

Example AddCertHeader SSL_CLIENT_CERT
Default None

SimulateHttps Directive
You can use mod_certheaders to instruct Oracle HTTP Server to treat certain requests
as if they were received through HTTPS even though they were received through
HTTP. This is useful when Oracle HTTP Server is front-ended by a reverse proxy or
load balancer, which acts as a termination point for SSL requests, and forwards the
requests to Oracle HTTP Server through HTTPS.

Category Value

Syntax SimulateHttps on|off
Example SimulateHttps on
Default off

mod_ossl Module
The mod_ossl module enables strong cryptography for Oracle HTTP Server. It accepts
a set of directives such as SSLCARevocationFile, SSLCipherSuite, SSLEngine, and
more.

To configure SSL for your Oracle HTTP Server, enter the mod_ossl module directives
you want to use in the ssl.conf file.

The following sections describe these mod_ossl directives:

• SSLCARevocationFile Directive

• SSLCARevocationPath Directive

• SSLCipherSuite Directive

• SSLEngine Directive

• SSLFIPS Directive

• SSLHonorCipherOrder Directive

Appendix H
mod_ossl Module

H-2

• SSLInsecureRenegotiation Directive

• SSLOptions Directive

• SSLProtocol Directive

• SSLProxyCipherSuite Directive

• SSLProxyEngine Directive

• SSLProxyProtocol Directive

• SSLProxyWallet Directive

• SSLRequire Directive

• SSLRequireSSL Directive

• SSLSessionCache Directive

• SSLSessionCacheTimeout Directive

• SSLTraceLogLevel Directive

• SSLVerifyClient Directive

• SSLWallet Directive

• SSLCARevocationFile Directive

• SSLCARevocationPath Directive

• SSLCipherSuite Directive
Specifies the SSL cipher suite that the client can use during the SSL handshake. This
directive uses either a comma-separated or colon-separated cipher specification string to
identify the cipher suite.

• SSLEngine Directive

• SSLFIPS Directive

• SSLHonorCipherOrder Directive

• SSLInsecureRenegotiation Directive

• SSLOptions Directive

• SSLProtocol Directive

• SSLProxyCipherSuite Directive

• SSLProxyEngine Directive

• SSLProxyProtocol Directive

• SSLProxyWallet Directive

• SSLRequire Directive

• SSLRequireSSL Directive

• SSLSessionCache Directive

• SSLProxySessionCache Directive

• SSLSessionCacheTimeout Directive

• SSLTraceLogLevel Directive

• SSLVerifyClient Directive

• SSLWallet Directive

Appendix H
mod_ossl Module

H-3

SSLCARevocationFile Directive
Specifies the file where you can assemble the Certificate Revocation Lists (CRLs)
from CAs (Certificate Authorities) that you accept certificates from. These are used for
client authentication. Such a file is the concatenation of various PEM-encoded CRL
files in order of preference. This directive can be used alternatively or additionally to
SSLCARevocationPath.

Category Value

Syntax SSLCARevocationFile file_name
Example SSLCARevocationFile ${ORACLE_INSTANCE}/config/fmwconfig/

components/${COMPONENT_TYPE}/instances/${COMPONENT_NAME}/
keystores/crl/ca_bundle.cr

Default None

SSLCARevocationPath Directive
Specifies the directory where PEM-encoded Certificate Revocation Lists (CRLs) are
stored. These CRLs come from the CAs (Certificate Authorities) that you accept
certificates from. If a client attempts to authenticate itself with a certificate that is on
one of these CRLs, then the certificate is revoked and the client cannot authenticate
itself with your server.

This directive must point to a directory that contains the hash value of the CRL. To see
the commands that allow you to create the hashes, see orapki in Administering Oracle
Fusion Middleware.

Category Value

Syntax SSLCARevocationPath path/to/CRL_directory/
Example SSLCARevocationPath ${ORACLE_INSTANCE}/config/fmwconfig/

components/${COMPONENT_TYPE}/instances/${COMPONENT_NAME}/
keystores/crl

Default None

SSLCipherSuite Directive
Specifies the SSL cipher suite that the client can use during the SSL handshake. This
directive uses either a comma-separated or colon-separated cipher specification string
to identify the cipher suite.

SSLCipherSuite accepts the following prefixes:

• none: Adds the cipher to the list

• + : Adds the cipher to the list and places it in the correct location in the list

• - : Removes the cipher from the list (can be added later)

• ! : Removes the cipher from the list permanently

Appendix H
mod_ossl Module

H-4

Tags are joined with prefixes to form a cipher specification string. Cipher suite tags are listed
in Table H-1.

Note:

Cipher suites that use Rivest Cipher 4 (RC4) and Triple Data Encryption Standard
(3DES) algorithms are deprecated from Oracle HTTP Server version 12.2.1.3
onwards due to known security vulnerabilities. These ciphers are removed from the
SSLCipherSuite configuration of the default SSL port of Oracle HTTP Server. These
ciphers are also removed from all supported cipher aliases except RC4 and 3DES
aliases. If Oracle HTTP Server is managed through Enterprise Manager or
WebLogic Scripting Tool, you cannot configure these cipher suites through these
tools as these tools do not recognize the insecure RC4 and 3DES ciphers.

To provide backward compatibility, Oracle HTTP Server enables the RC4 and 3DES
ciphers, if you explicitly add them to the cipher suite configuration. To use these
insecure ciphers, edit the SSLCipherSuite directive in your .conf files using a file
editor, and then add them to the end of the cipher list.

Table 11–2 shows the tags you can use in the string to describe the cipher suite you want.

Category Value

Example SSLCipherSuite ALL:!MD5
In this example, all ciphers are specified except MD5 strength ciphers.

Syntax SSLCipherSuite cipher-spec

Appendix H
mod_ossl Module

H-5

Category Value

Default TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384,

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256,

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA,

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA,

TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384,

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256,

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA,

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA,

TLS_RSA_WITH_AES_256_GCM_SHA384,

TLS_RSA_WITH_AES_128_GCM_SHA256,

TLS_RSA_WITH_AES_256_CBC_SHA256,

TLS_RSA_WITH_AES_128_CBC_SHA256,

SSL_RSA_WITH_AES_256_CBC_SHA,

SSL_RSA_WITH_AES_128_CBC_SHA

Table H-1 SSLCipher Suite Tags

Function Tag Meaning

Key exchange kRSA RSA key exchange

Key exchange kECDHE Elliptic curve Diffie–Hellman Exchange key
exchange

Authentication aRSA RSA authentication

Encryption 3DES Triple DES encoding

Encryption RC4 RC4 encoding

Data Integrity SHA SHA hash function

Data Integrity SHA256 SHA256 hash function

Data Integrity SHA384 SHA384 hash function

Aliases TLSv1 All TLS version 1 ciphers

Appendix H
mod_ossl Module

H-6

Table H-1 (Cont.) SSLCipher Suite Tags

Function Tag Meaning

Aliases TLSv1.1 All TLS version 1.1 ciphers

Aliases TLSv1.2 All TLS version 1.2 ciphers

Aliases MEDIUM All ciphers with 128-bit encryption

Aliases HIGH All ciphers with encryption key size greater than
128 bits

Aliases AES All ciphers using AES encryption

Aliases RSA All ciphers using RSA for both authentication and
key exchange

Aliases ECDSA All ciphers using Elliptic Curve Digital Signature
Algorithm for authentication

Aliases ECDHE All ciphers using Elliptic curve Diffie–Hellman
Exchange for key exchange

Aliases AES-GCM All ciphers that use Advanced Encryption
Standard in Galois/Counter Mode (GCM) for
encryption.

Table H-2 lists the Cipher Suites supported in Oracle Advanced Security 12c (12.2.1).

Note:

When using mod_ossl on a Solaris Sparc platform, the underlying cryptographic
libraries detect the Sparc T4 processor, and makes use of the on-core cryptography
algorithms that accelerate cryptographic operations. No configuration is required to
enable this feature. The following cryptographic algorithms are supported by the
Oracle Sparc Enterprise T-series processors: RSA, 3DES, AES-CBC, AES-GCM,
SHA1, SHA256, and SHA38.

Table H-2 Cipher Suites Supported in Oracle Advanced Security 12.2.1

Cipher Suite Key
Exchange

Authentic
ation

Encrypt
ion

Data
Integrity

TLS v1 TLS v1.1 TLS v1.2

SSL_RSA_WITH_RC4_128_SHA RSA RSA RC4
(128)

SHA Yes Yes Yes

SSL_RSA_WITH_3DES_EDE_CB
C_SHA

RSA RSA 3DES
(168)

SHA Yes Yes Yes

SSL_RSA_WITH_AES_128_CBC
_SHA

RSA RSA AES
(128)

SHA Yes Yes Yes

SSL_RSA_WITH_AES_256_CBC
_SHA

RSA RSA AES
(256)

SHA Yes Yes Yes

TLS_RSA_WITH_AES_128_CBC
_SHA256

RSA RSA AES
(128)

SHA256 No No Yes

Appendix H
mod_ossl Module

H-7

Table H-2 (Cont.) Cipher Suites Supported in Oracle Advanced Security 12.2.1

Cipher Suite Key
Exchange

Authentic
ation

Encrypt
ion

Data
Integrity

TLS v1 TLS v1.1 TLS v1.2

TLS_RSA_WITH_AES_256_CBC
_SHA256

RSA RSA AES
(256)

SHA256 No No Yes

TLS_RSA_WITH_AES_128_GCM
_SHA256

RSA RSA AES
(128)

SHA256 No No Yes

TLS_RSA_WITH_AES_256_GCM
_SHA384

RSA RSA AES
(256)

SHA384 No No Yes

TLS_ECDHE_ECDSA_WITH_AES
_128_CBC_SHA

ECDHE ECDSA AES
(128)

SHA Yes Yes Yes

TLS_ECDHE_ECDSA_WITH_AES
_256_CBC_SHA

ECDHE ECDSA AES
(256)

SHA Yes Yes Yes

TLS_ECDHE_ECDSA_WITH_AES
_128_CBC_SHA256

ECDHE ECDSA AES
(128)

SHA256 No No Yes

TLS_ECDHE_ECDSA_WITH_AES
_256_CBC_SHA384

ECDHE ECDSA AES
(256)

SHA384 No No Yes

TLS_ECDHE_ECDSA_WITH_AES
_128_GCM_SHA256

ECDHE ECDSA AES
(128)

SHA256 No No Yes

TLS_ECDHE_ECDSA_WITH_AES
_256_GCM_SHA384

ECDHE ECDSA AES
(256)

SHA384 No No Yes

TLS_ECDHE_RSA_WITH_RC4_1
28_SHA

Ephemeral
ECDH with
RSA
signatures

RSA RC4
(128)

SHA Yes Yes Yes

TLS_ECDHE_RSA_WITH_3DES_
EDE_CBC_SHA

Ephemeral
ECDH with
RSA
signatures

RSA 3DES SHA Yes Yes Yes

TLS_ECDHE_RSA_WITH_AES_1
28_CBC_SHA

Ephemeral
ECDH with
RSA
signatures

RSA AES
(128)

SHA Yes Yes Yes

TLS_ECDHE_RSA_WITH_AES_2
56_CBC_SHA

Ephemeral
ECDH with
RSA
signatures

RSA AES
(256)

SHA Yes Yes Yes

TLS_ECDHE_ECDSA_WITH_RC4
_128_SHA

Ephemeral
ECDH with
ECDSA
signatures

ECDSA RC4
(128)

SHA Yes Yes Yes

TLS_ECDHE_ECDSA_WITH_3DE
S_EDE_CBC_SHA

Ephemeral
ECDH with
ECDSA
signatures

ECDSA 3DES SHA Yes Yes Yes

Appendix H
mod_ossl Module

H-8

Table H-2 (Cont.) Cipher Suites Supported in Oracle Advanced Security 12.2.1

Cipher Suite Key
Exchange

Authentic
ation

Encrypt
ion

Data
Integrity

TLS v1 TLS v1.1 TLS v1.2

TLS_ECDHE_RSA_WITH_AES_2
56_GCM_SHA384

Ephemeral
ECDH with
RSA
signatures

RSA AES
(256)

SHA384 No No Yes

TLS_ECDHE_RSA_WITH_AES_1
28_GCM_SHA256

Ephemeral
ECDH with
RSA
signatures

RSA AES
(128)

SHA256 No No Yes

TLS_ECDHE_RSA_WITH_AES_2
56_CBC_SHA384

Ephemeral
ECDH with
RSA
signatures

RSA AES
(256)

SHA384 No No Yes

TLS_ECDHE_RSA_WITH_AES_1
28_CBC_SHA256

Ephemeral
ECDH with
RSA
signatures

RSA AES
(128)

SHA256 No No Yes

SSLEngine Directive
Toggles the usage of the SSL Protocol Engine. This is usually used inside a <VirtualHost>
section to enable SSL for a particular virtual host. By default, the SSL Protocol Engine is
disabled for both the main server and all configured virtual hosts.

Category Value

Syntax SSLEngine on|off
Example SSLEngine on
Default Off

SSLFIPS Directive
This directive toggles the usage of the SSL library FIPS_mode flag. It must be set in the
global server context and should not be configured with conflicting settings (SSLFIPS on
followed by SSLFIPS off or similar). The mode applies to all SSL library operations.

Category Value

Syntax SSLFIPS ON | OFF

Example SSLFIPS ON

Default Off

Appendix H
mod_ossl Module

H-9

Configuring an SSLFIPS change requires that the SSLFIPS on/off directive be set
globally in ssl.conf. Virtual level configuration is disabled in SSLFIPS directive. Hence,
setting SSLFIPS to virtual directive results in an error.

Note:

Note the following restriction on SSLFIPS:

• Enabling SSLFIPS mode in Oracle HTTP Server requires a wallet
created with AES encrypted (compat_v12) headers. To create a new
wallet or to convert an existing wallet with AES encryption, see these
sections in orapki in Administering Oracle Fusion Middleware:

Creating and Viewing Oracle Wallets with orapki

Creating an Oracle Wallet with AES Encryption

Converting an Existing Wallet to Use AES Encryption

The following tables describe the cipher suites that work in SSLFIPS mode with
various protocols. For instructions on how to implement these cipher suites, see
SSLCipherSuite Directive.

Table H-3 lists the cipher suites which work in TLS 1.0, TLS1.1, and TLS 1.2 protocols
in SSLFIPS mode.

Table H-3 Ciphers Which Work in All TLS Protocols in SSLFIPS Mode

Cipher Name Cipher Works in These Protocols:

SSL_RSA_WITH_3DES_EDE_CBC_SHA TLS 1.0, TLS1.1, and TLS 1.2

SSL_RSA_WITH_AES_128_CBC_SHA TLS 1.0, TLS1.1, and TLS 1.2

SSL_RSA_WITH_AES_256_CBC_SHA TLS 1.0, TLS1.1, and TLS 1.2

Table H-4 lists the cipher suites and protocols that can be used in SSLFIPS mode.

Table H-4 Ciphers Which Work in FIPS Mode

Cipher Name Cipher Works in These
Protocols:

TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA TLS 1.0 and later

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA TLS 1.0 and later

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA TLS 1.0 and later

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 TLS1.2 and later

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 TLS1.2 and later

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 TLS1.2 and later

TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 TLS1.2 and later

TLS_RSA_WITH_AES_128_CBC_SHA256 TLS1.2 and later

TLS_RSA_WITH_AES_256_CBC_SHA256 TLS1.2 and later

Appendix H
mod_ossl Module

H-10

Table H-4 (Cont.) Ciphers Which Work in FIPS Mode

Cipher Name Cipher Works in These
Protocols:

TLS_RSA_WITH_AES_128_GCM_SHA256 TLS1.2 and later

TLS_RSA_WITH_AES_256_GCM_SHA384 TLS1.2 and later

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 TLS1.2 and later

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 TLS1.2 and later

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 TLS1.2 and later

TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 TLS1.2 and later

TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA TLS 1.0 and later

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA TLS 1.0 and later

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA TLS 1.0 and later

Note:

• If SSLFIPS is set to ON, and a cipher that does not support FIPS is used at the
server, then client requests that use that cipher fail.

• To use the TLS_ECDHE_ECDSA cipher suite, Oracle HTTP Server requires a
wallet created with an ECC user certificate. The TLS_ECDHE_ECDSA cipher
suite does not work with RSA certificates.

• To use the SSL_RSA/TLS_RSA/TLS_ECDHE_RSA cipher suite, Oracle HTTP
Server requires a wallet created with an RSA user certificate. The SSL_RSA/
TLS_RSA/TLS_ECDHE_RSA cipher suite does not work with ECC certificates.

For more information about how to configure ECC/RSA certificates in a wallet, see
Creating and Viewing Oracle Wallets with orapki in Administering Oracle Fusion
Middleware.

For instructions about how to implement these cipher suites and corresponding
protocols, see SSL Cipher Suite Directive and SSL Protocol.

Table H-5 lists the cipher suites that do not work in SSPFIPS mode.

Table H-5 Ciphers That Do Not Work in SSLFIPS Mode

Cipher Name Description

TLS_ECDHE_ECDSA_WITH_RC4_128_SHA Does not work in SSLFIPS mode in any protocol

SSL_RSA_WITH_RC4_128_SHA Does not work in SSLFIPS mode in any protocol

TLS_ECDHE_RSA_WITH_RC4_128_SHA Does not work in SSLFIPS mode in any protocol

Appendix H
mod_ossl Module

H-11

SSLHonorCipherOrder Directive
When choosing a cipher during a handshake, normally the client's preference is used.
If this directive is enabled, then the server's preference will be used instead.

Category Value

Syntax SSLHonorCipherOrder ON | OFF
Example SSLHonorCipherOrder ON

Default OFF

The server's preference order can be configured using the SSLCipherSuite directive.
When SSLHonorCipherOrder is set to ON, the value of SSLCipherSuite is treated as
an ordered list of cipher values.

Cipher values that appear first in this list are preferred by the server over ciphers that
appear later in the list.

Example:

SSLCipherSuite
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,T
LS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384,TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256

SSLHonorCipherOrder ON

In this case, the server will prefer TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 over
all of the other ciphers configured in SSLCipherSuite directive as it appears first in the
list and chooses this cipher for the SSL connection, if the client supports it.

SSLInsecureRenegotiation Directive
As originally specified, all versions of the SSL and TLS protocols (up to and including
TLS/1.2) were vulnerable to a Man-in-the-Middle attack (CVE-2009-3555) during a
renegotiation. This vulnerability allowed an attacker to "prefix" a chosen plaintext to the
HTTP request as seen by the web server. A protocol extension was developed which
fixed this vulnerability if supported by both client and server.

For more information on Man-in-the-Middle attack (CVE-2009-3555), see:

https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2009-3555
The accepted values for this directive are:

• Default mode: When the directive SSLInsecureRenegotion is not specified in the
configuration, Oracle HTTP Server does not allow client-initiated renegotiation.
This is the most secure mode of operation.

• SSLInsecureRenegotiation ON: This option allows vulnerable peers that do not
have RI/SCSV to perform renegotiation. Hence, this option must be used with
caution, as it leaves the server vulnerable to the renegotiation attack described in
CVE-2009-3555.

• SSLInsecureRenegotiation OFF: This option can be used if support for client-
initiated renegotiation is desired. When SSLInsecureRenegotiation directive is

Appendix H
mod_ossl Module

H-12

https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2009-3555

present in the configuration and set to OFF, Oracle HTTP Server allows client-initiated
renegotiation. However, only peers that support RI/SCSV will be allowed to negotiate and
renegotiate a session.

Category Value

Syntax SSLInsecureRenegotiation ON | OFF

Example SSLInsecureRenegotiation ON

Default The default value is neither ON nor OFF. See description under the heading
Default mode.

To configure SSLInsecureRenegotiation, edit the ssl.conf file and set
SSLInsecureRenegotiation ON/OFF to enable or disable insecure renegotiation. This
directive may be configured either in the server config context or in the virtual host context.

SSLOptions Directive
Controls various runtime options on a per-directory basis. In general, if multiple options apply
to a directory, the most comprehensive option is applied (options are not merged). However, if
all of the options in an SSLOptions directive are preceded by a plus ('+') or minus ('-') symbol,
then the options are merged. Options preceded by a plus are added to the options currently
in force, and options preceded by a minus are removed from the options currently in force.

Accepted values are:

• StdEnvVars: Creates the standard set of CGI/SSI environment variables that are related
to SSL. This is disabled by default because the extraction operation uses a lot of CPU
time and usually has no application when serving static content. Typically, you only
enable this for CGI/SSI requests.

• ExportCertData: Enables the following additional CGI/SSI variables:

SSL_SERVER_CERT
SSL_CLIENT_CERT
SSL_CLIENT_CERT_CHAIN_n (where n= 0, 1, 2...)

These variables contain the Privacy Enhanced Mail (PEM)-encoded X.509 certificates for
the server and the client for the current HTTPS connection, and can be used by CGI
scripts for deeper certificate checking. All other certificates of the client certificate chain
are provided. This option is "Off" by default because there is a performance cost
associated with using it.

SSL_CLIENT_CERT_CHAIN_n variables are in the following order:
SSL_CLIENT_CERT_CHAIN_0 is the intermediate CA who signs SSL_CLIENT_CERT.
SSL_CLIENT_CERT_CHAIN_1 is the intermediate CA who signs SSL_CLIENT_CERT_CHAIN_0,
and so forth, with SSL_CLIENT_ROOT_CERT as the root CA.

• FakeBasicAuth: Translates the subject distinguished name of the client X.509 certificate
into an HTTP basic authorization user name. This means that the standard HTTP server
authentication methods can be used for access control. No password is obtained from
the user; the string 'password' is substituted.

• StrictRequire: Denies access when, according to SSLRequireSSL Directive or
directives, access should be forbidden. Without StrictRequire, it is possible for a

Appendix H
mod_ossl Module

H-13

'Satisfy any' directive setting to override the SSLRequire or SSLRequireSSL
directive, allowing access if the client passes the host restriction or supplies a valid
user name and password.

Thus, the combination of SSLRequireSSL or SSLRequire with SSLOptions
+StrictRequire gives mod_ossl the ability to override a 'Satisfy any' directive
in all cases.

• CompatEnvVars: Exports obsolete environment variables for backward compatibility
to Apache SSL 1.x, mod_ssl 2.0.x, Sioux 1.0, and Stronghold 2.x. Use this to
provide compatibility to existing CGI scripts.

• OptRenegotiate: This enables optimized SSL connection renegotiation handling
when SSL directives are used in a per-directory context.

Category Value

Syntax SSLOptions [+-] StdEnvVars | ExportCertData |
FakeBasicAuth | StrictRequire | CompatEnvVars |
OptRenegotiate

Example SSLOptions -StdEnvVars
Default None

SSLProtocol Directive
Specifies SSL protocol(s) for mod_ossl to use when establishing the server
environment. Clients can only connect with one of the specified protocols. Accepted
values are:

• TLSv1
• TLSv1.1
• TLSv1.2
• All
You can specify multiple values as a space-delimited list. In the syntax, the "-" and "+"
symbols have the following meaning:

• + : Adds the protocol to the list

• - : Removes the protocol from the list

In the current release All is defined as +TLSv1.2.

Category Value

Syntax SSLProtocol [+-] TLSv1 | TLSv1.1 | TLSv1.2 | All
Example SSLProtocol +TLSv1 +TLSv1.1 +TLSv1.2
Default TLSv1.2

SSLProxyCipherSuite Directive
Specifies the SSL cipher suite that the proxy can use during the SSL handshake. This
directive uses a colon-separated cipher specification string to identify the cipher suite.

Appendix H
mod_ossl Module

H-14

Table H-1 shows the tags to use in the string to describe the cipher suite you want.
SSLProxyCipherSuite accepts the following values:

• none: Adds the cipher to the list

• + : Adds the cipher to the list and places it in the correct location in the list

• - : Removes the cipher from the list (which can be added later)

• ! : Removes the cipher from the list permanently

Tags are joined with prefixes to form a cipher specification string. Tags are joined together
with prefixes to form a cipher specification string. The SSLProxyCipherSuite directive uses
the same tags as the SSLCipherSuite directive. For a list of supported suite tags, see
Table H-1.

Category Value

Example SSLProxyCipherSuite ALL:!MD5

In this example, all ciphers are specified except MD5 strength ciphers.

Syntax SSLProxyCipherSuite cipher-spec
Default ALL:!ADH:+HIGH:+MEDIUM

The SSLProxyCipherSuite directive uses the same cipher suites as the SSLCipherSuite
directive. For a list of the Cipher Suites supported in Oracle Advanced Security 12.2.1, see
Table H-2.

SSLProxyEngine Directive
Enables or disables the SSL/TLS protocol engine for proxy. SSLProxyEngine is usually used
inside a <VirtualHost> section to enable SSL/TLS for proxy usage in a particular virtual host.
By default, the SSL/TLS protocol engine is disabled for proxy both for the main server and all
configured virtual hosts.

SSLProxyEngine should not be included in a virtual host that will be acting as a forward proxy
(by using Proxy or ProxyRequest directives). SSLProxyEngine is not required to enable a
forward proxy server to proxy SSL/TLS requests.

Category Value

Syntax SSLProxyEngine ON | OFF

Example SSLProxyEngine on

Default Disable

SSLProxyProtocol Directive
Specifies SSL protocol(s) for mod_ossl to use when establishing a proxy connection in the
server environment. Proxies can only connect with one of the specified protocols. Accepted
values are:

• TLSv1

• TLSv1.1

• TLSv1.2

Appendix H
mod_ossl Module

H-15

• All

You can specify multiple values as a space-delimited list. In the syntax, the "-" and "+"
symbols have the following meaning:

• + : Adds the protocol to the list

• - : Removes the protocol from the list

In the current release All is defined as +TLSv1 +TLSv1.1 +TLSv1.2.

Category Value

Syntax SSLProxyProtocol [+-] TLSv1 | TLSv1.1 | TLSv1.2 |
All

Example SSLProxyProtocol +TLSv1 +TLSv1.1 +TLSv1.2
Default ALL

SSLProxyWallet Directive
Specifies the location of the wallet with its WRL, specified as a filepath, that a proxy
connection needs to use.

Category Value

Syntax SSLProxyWallet file:path to wallet
Example SSLProxyWallet "${ORACLE_INSTANCE}/config/fmwconfig/

components/${COMPONENT_TYPE}/instances/$
{COMPONENT_NAME}/keystores/proxy"

Default None

SSLRequire Directive

Note:

SSLRequire is deprecated and must be replaced with Require expression.

Denies access unless an arbitrarily complex boolean expression is true.

Category Value

Syntax SSLRequire expression
Example SSLRequire word ">=" word |word "ge" word
Default None

Understanding the Expression Variable

The expression variable must match the following syntax (given as a BNF grammar
notation):

Appendix H
mod_ossl Module

H-16

expr ::= "true" | "false"
"!" expr
expr "&&" expr
expr "||" expr
"(" expr ")"

comp ::=word "==" word | word "eq" word
word "!=" word |word "ne" word
word "<" word |word "lt" word
word "<=" word |word "le" word
word ">" word |word "gt" word
word ">=" word |word "ge" word
word "=~" regex
word "!~" regex
wordlist ::= word
wordlist "," word

word ::= digit
cstring
variable
function

digit ::= [0-9]+

cstring ::= "..."

variable ::= "%{varname}"

Table H-6 and Table H-7 list standard and SSL variables. These are valid values for varname.

function ::= funcname "(" funcargs ")"

For funcname, the following function is available:

file(filename)

The file function takes one string argument, the filename, and expands to the contents of the
file. This is useful for evaluating the file's contents against a regular expression.

Table H-6 lists the standard variables for SSLRequire Directive varname.

Table H-6 Standard Variables for SSLRequire Varname

Standard Variables Standard Variables Standard Variables

HTTP_USER_AGENT PATH_INFO AUTH_TYPE
HTTP_REFERER QUERY_STRING SERVER_SOFTWARE
HTTP_COOKIE REMOTE_HOST API_VERSION
HTTP_FORWARDED REMOTE_IDENT TIME_YEAR
HTTP_HOST IS_SUBREQ TIME_MON
HTTP_PROXY_CONNECTION DOCUMENT_ROOT TIME_DAY
HTTP_ACCEPT SERVER_ADMIN TIME_HOUR
HTTP:headername SERVER_NAME TIME_MIN
THE_REQUEST SERVER_PORT TIME_SEC
REQUEST_METHOD SERVER_PROTOCOL TIME_WDAY
REQUEST_SCHEME REMOTE_ADDR TIME
REQUEST_URI REMOTE_USER ENV:variablename

Appendix H
mod_ossl Module

H-17

Table H-6 (Cont.) Standard Variables for SSLRequire Varname

Standard Variables Standard Variables Standard Variables

REQUEST_FILENAME

Table H-7 lists the SSL variables for SSLRequire Directive varname.

Table H-7 SSL Variables for SSLRequire Varname

SSL Variables SSL Variables SSL Variables

HTTPS SSL_PROTOCOL SSL_CIPHER_ALGKEYSIZE
SSL_CIPHER SSL_CIPHER_EXPORT SSL_VERSION_INTERFACE
SSL_CIPHER_USEKEYSIZE SSL_VERSION_LIBRARY SSL_SESSION_ID
SSL_CLIENT_V_END SSL_CLIENT_M_SERIAL SSL_CLIENT_V_START
SSL_CLIENT_S_DN_ST SSL_CLIENT_S_DN SSL_CLIENT_S_DN_C
SSL_CLIENT_S_DN_CN SSL_CLIENT_S_DN_O SSL_CLIENT_S_DN_OU
SSL_CLIENT_S_DN_G SSL_CLIENT_S_DN_T SSL_CLIENT_S_DN_I
SSL_CLIENT_S_DN_UID SSL_CLIENT_S_DN_S SSL_CLIENT_S_DN_D
SSL_CLIENT_I_DN_C SSL_CLIENT_S_DN_Email SSL_CLIENT_I_DN
SSL_CLIENT_I_DN_O SSL_CLIENT_I_DN_ST SSL_CLIENT_I_DN_L
SSL_CLIENT_I_DN_T SSL_CLIENT_I_DN_OU SSL_CLIENT_I_DN_CN
SSL_CLIENT_I_DN_S SSL_CLIENT_I_DN_I SSL_CLIENT_I_DN_G
SSL_CLIENT_I_DN_Email SSL_CLIENT_I_DN_D SSL_CLIENT_I_DN_UID
SSL_CLIENT_CERT SSL_CLIENT_CERT_CHAIN_n SSL_CLIENT_ROOT_CERT
SSL_CLIENT_VERIFY SSL_CLIENT_M_VERSION SSL_SERVER_M_VERSION
SSL_SERVER_V_START SSL_SERVER_V_END SSL_SERVER_M_SERIAL
SSL_SERVER_S_DN_C SSL_SERVERT_S_DN_ST SSL_SERVER_S_DN
SSL_SERVER_S_DN_OU SSL_SERVER_S_DN_CN SSL_SERVER_S_DN_O
SSL_SERVER_S_DN_I SSL_SERVER_S_DN_G SSL_SERVER_S_DN_T
SSL_SERVER_S_DN_D SSL_SERVER_S_DN_UID SSL_SERVER_S_DN_S
SSL_SERVER_I_DN SSL_SERVER_I_DN_C SSL_SERVER_S_DN_Email
SSL_SERVER_I_DN_L SSL_SERVER_I_DN_O SSL_SERVER_I_DN_ST
SSL_SERVER_I_DN_CN SSSL_SERVER_I_DN_T SSL_SERVER_I_DN_OU
SSL_SERVER_I_DN_G SSL_SERVER_I_DN_I

SSLRequireSSL Directive
Denies access to clients not using SSL. This is a useful directive for absolute
protection of a SSL-enabled virtual host or directories in which configuration errors
could create security vulnerabilities.

Appendix H
mod_ossl Module

H-18

Category Value

Syntax SSLRequireSSL
Example SSLRequireSSL
Default None

SSLSessionCache Directive
Specifies the global/interprocess session cache storage type. The cache provides an optional
way to speed up parallel request processing. The accepted values are:

• none: disables the global/interprocess session cache. Produces no impact on
functionality, but makes a major difference in performance.

• shmcb:/path/to/datafile[bytes]: Uses a high-performance Shared Memory Cyclic Buffer
(SHMCB) session cache to synchronize the local SSL memory caches of the server
processes. Note: in this shm setting, no log files are created under /path/to/datafile on
local disk.

Category Value

Syntax SSLSessionCache none | shmcb:/path/to/datafile[bytes]
Examples SSLSessionCache "shmcb:${ORACLE_INSTANCE}/servers/$

{COMPONENT_NAME}/logs/ssl_scache(512000)"
Default SSLSessionCache shmcb:/path/to/datafile[bytes]

SSLProxySessionCache Directive
This directive toggles the usage of a global or interprocess session cache to cache SSL
session information when OHS is configured to behave as a proxy through the use of the
mod_proxy module. The type of global or interprocess SSL session cache that is used to store
the SSL session information is controlled by the SSLSessionCache directive.

The number of seconds before an SSL session expires in the session cache is controlled by
the SSLSessionCacheTimeout directive. The ssl-cache mutex is used to serialize access to
the session cache to prevent corruption.

The accepted values for SSLProxySessionCache directive are:

• On: Enables the SSL session cache when OHS is configured to behave as a proxy
through the use of the mod_proxy module. When this directive is set to On, it is necessary
to choose the type of SSL session cache by configuring the SSLSessionCache directive
appropriately.

SSLSessionCache cannot be set to a value of none, as it would be a conflicting setting to
turn on SSL session cache for the proxy and not specify the type of cache to use.

• Off: Disables SSL session caching when OHS is configured to behave as a proxy
through the use of the mod_proxy module. This is not a recommended setting. The
performance costs of full handshakes must be considered before choosing this option.

Appendix H
mod_ossl Module

H-19

Category Value

Syntax SSLProxySessionCache On | Off
Context Server Config

Default On
Module Identifier ossl_module

The following examples illustrate how to use the SSLSessionCache and
SSLProxySessionCache directives to control the SSL session caching behaviour of
OHS.

Example 1

LoadModule proxy_module "${PRODUCT_HOME}/modules/mod_proxy.so"
LoadModule proxy_balancer_module
"${PRODUCT_HOME}/modules/mod_proxy_balancer.so"

SSLSessionCache none
SSLProxySessionCache on
<VirtualHost _default_:443>
SSLEngine on
 <Proxy "balancer://mybalancer">
SSLProxyEngine On
 #..
 </Proxy>
#...
</VirtualHost>

This is not an allowed configuration. SSLProxySessionCache cannot be turned on
when SSLSessionCache is set to None.

Example 2

LoadModule proxy_module "${PRODUCT_HOME}/modules/mod_proxy.so"
LoadModule proxy_balancer_module
"${PRODUCT_HOME}/modules/mod_proxy_balancer.so"

SSLSessionCache none
SSLProxySessionCache off
<VirtualHost _default_:443>
SSLEngine on
 <Proxy "balancer://mybalancer">
 SSLProxyEngine On
 #..
 </Proxy>
#...
</VirtualHost>

This example

• Turns off SSL session caching for the SSL enabled virtual host defined within the
OHS configuration.

Appendix H
mod_ossl Module

H-20

• Turns off SSL client session caching for requests handled by the proxy mybalancer.

Example 3

LoadModule proxy_module "${PRODUCT_HOME}/modules/mod_proxy.so"
LoadModule proxy_balancer_module
"${PRODUCT_HOME}/modules/mod_proxy_balancer.so"

SSLSessionCache
"shmcb:${ORACLE_INSTANCE}/servers/${COMPONENT_NAME}/logs/ssl_scache(512000)"
SSLProxySessionCache off
<VirtualHost _default_:443>
SSLEngine on
 <Proxy "balancer://mybalancer">
 SSLProxyEngine On
 #..
 </Proxy>
#...
</VirtualHost>

This example

• Turns on SSL session caching for the SSL enabled virtual host defined within the OHS
configuration.

• Turns off SSL client session caching for requests handled by the proxy mybalancer.

Example 4

LoadModule proxy_module "${PRODUCT_HOME}/modules/mod_proxy.so"

SSLSessionCache
"shmcb:${ORACLE_INSTANCE}/servers/${COMPONENT_NAME}/logs/ssl_scache(512000)"
SSLProxySessionCache off

<VirtualHost _default_:443>
SSLEngine on
SSLProxyEngine on

ProxyPass / https://<backend_host_name>:<backend_port>/
ProxyPassReverse / https://<backend_host_name>:<backend_port>/

</VirtualHost>

This example

• Turns on SSL session caching for the SSL enabled virtual host defined within the OHS
configuration.

• Turns off SSL client session caching for the requests handled by the reverse proxy
defined within the virtual host (_default_:443).

Example 5

LoadModule proxy_module "${PRODUCT_HOME}/modules/mod_proxy.so"
LoadModule proxy_balancer_module

Appendix H
mod_ossl Module

H-21

"${PRODUCT_HOME}/modules/mod_proxy_balancer.so"

SSLSessionCache
"shmcb:${ORACLE_INSTANCE}/servers/${COMPONENT_NAME}/logs/
ssl_scache(512000)"
SSLProxySessionCache on
<VirtualHost _default_:443>
SSLEngine on
 <Proxy "balancer://mybalancer">
 SSLProxyEngine On
 #..
 </Proxy>
#...
</VirtualHost>

This example

• Turns on SSL session caching for the SSL enabled virtual host defined within the
OHS configuration.

• Turns on SSL client session caching for requests handled by the proxy
mybalancer.

Example 6

LoadModule proxy_module "${PRODUCT_HOME}/modules/mod_proxy.so"

SSLSessionCache
"shmcb:${ORACLE_INSTANCE}/servers/${COMPONENT_NAME}/logs/
ssl_scache(512000)"
SSLProxySessionCache on

<VirtualHost _default_:443>
SSLEngine on
SSLProxyEngine on

ProxyPass / https://<backend_host_name>:<backend_port>/
ProxyPassReverse / https://<backend_host_name>:<backend_port>/

</VirtualHost>

This example

• Turns on SSL session caching for the SSL enabled virtual host defined within the
OHS configuration.

• Turns on SSL client session caching for the requests handled by the reverse proxy
defined within the virtual host (_default_:443).

Example 7

LoadModule proxy_module "${PRODUCT_HOME}/modules/mod_proxy.so"
LoadModule proxy_balancer_module
"${PRODUCT_HOME}/modules/mod_proxy_balancer.so"

SSLSessionCache

Appendix H
mod_ossl Module

H-22

"shmcb:${ORACLE_INSTANCE}/servers/${COMPONENT_NAME}/logs/ssl_scache(512000)"
SSLProxySessionCache on
<VirtualHost _default_:443>
SSLEngine on
 <Proxy "balancer://mybalancer">
 SSLProxyEngine On
 #..
 </Proxy>

 <Proxy "balancer://mybalancer2">
 SSLProxyEngine On
 #..
 </Proxy>

#...
</VirtualHost>

<VirtualHost _default_:4448>
SSLEngine on
 <Proxy "balancer://mybalancer3">
 SSLProxyEngine On
 #..
 </Proxy>

 <Proxy "balancer://mybalancer4">
 SSLProxyEngine On
 #..
 </Proxy>

#...
</VirtualHost>

This example

• Turns on SSL session caching for all the SSL enabled virtual hosts defined within the
OHS configuration.

• Turns on SSL client session caching for requests handled by the proxy mybalancer,
mybalancer2, mybalancer3, and mybalancer4.

SSLSessionCacheTimeout Directive
Specifies the number of seconds before a SSL session in the session cache expires.

Category Value

Syntax SSLSessionCacheTimeout seconds
Example SSLSessionCacheTimeout 120
Default 300

Appendix H
mod_ossl Module

H-23

SSLTraceLogLevel Directive
SSLTraceLogLevel adjusts the verbosity of the messages recorded in the Oracle
Security library error logs. When a particular level is specified, messages from all other
levels of higher significance will be reported as well. For example, when
SSLTraceLogLevel ssl is set, messages with log levels of error, warn, user and debug
will also be posted.

Note:

This directive can only be set globally in the ssl.conf file.

SSLTraceLogLevel accepts the following log levels:

• none: Oracle Security Trace disable

• fatal: Fatal error; system is unusable.

• error: Error conditions.

• warn: Warning conditions.

• user: Normal but significant condition.

• debug: Debug-level condition

• ssl: SSL level debugging

Category Value

Syntax SSLTraceLogLevel none | fatal | error | warn | user | debug |
ssl

Example SSLTraceLogLevel fatal

Default None

SSLVerifyClient Directive
Specifies whether a client must present a certificate when connecting. The accepted
values are:

• none: No client certificate is required

• optional: Client can present a valid certificate

• require: Client must present a valid certificate

Category Value

Syntax SSLVerifyClient none | optional | require
Example SSLVerifyClient optional

Appendix H
mod_ossl Module

H-24

Category Value

Default None

Note:

The level optional_no_ca included with mod_ssl (in which the client can present a
valid certificate, but it need not be verifiable) is not supported in mod_ossl.

SSLWallet Directive
Specifies the location of the wallet with its WRL, specified as a filepath.

Category Value

Syntax SSLWallet file:path to wallet directory
file:path may also be expressed simply as path.

Example SSLWallet "${ORACLE_INSTANCE}/config/fmwconfig/components/$
{COMPONENT_TYPE}/instances/${COMPONENT_NAME}/keystores/
default"

Default This is the default

Note:

If the wallet has a certificate/certificate request signed with the MD5 algorithm,
Oracle HTTP Server will fail to start.

Appendix H
mod_ossl Module

H-25

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documents
	Conventions

	Part I Understanding Oracle HTTP Server
	1 Introduction to Oracle HTTP Server
	What is Oracle HTTP Server?
	Accessibility Tips for Oracle HTTP Server
	Oracle HTTP Server Topologies
	Key Features of Oracle HTTP Server
	Restricted-JRF Mode
	Oracle WebLogic Server Proxy Plug-In (mod_wl_ohs)
	CGI and Fast CGI Protocol (mod_proxy_fcgi)
	Security Features
	Oracle Secure Sockets Layer (mod_ossl)
	Security: Encryption with Secure Sockets Layer
	Security: Single Sign-On with WebGate

	URL Rewriting and Proxy Server Capabilities

	Domain Types
	WebLogic Server Domain (Full-JRF Mode)
	WebLogic Server Domain (Restricted-JRF Mode)
	Standalone Domain

	Understanding Oracle HTTP Server Directory Structure
	Understanding Configuration Files
	Staging and Run-time Configuration Directories
	Oracle HTTP Server Configuration Files
	Modifying an Oracle HTTP Server Configuration File

	Upgrading from Earlier Releases of Oracle HTTP Server
	Oracle HTTP Server Support

	2 Understanding Oracle HTTP Server Modules
	Oracle-Developed Modules for Oracle HTTP Server
	mod_certheaders Module—Enables Reverse Proxies
	mod_context Module—Creates or Propagates ECIDs
	mod_dms Module—Enables Access to DMS Data
	mod_odl Module—Enables Access to ODL
	mod_ora_audit—Supports Authentication and Authorization Auditing
	mod_ossl Module—Enables Cryptography (SSL)
	mod_webgate Module—Enables Single Sign-on
	mod_wl_ohs Module—Proxies Requests to Oracle WebLogic Server

	Apache HTTP Server and Third-party Modules in Oracle HTTP Server

	3 Understanding Oracle HTTP Server Management Tools
	Administering Oracle HTTP Server Using Fusion Middleware Control
	Accessing Fusion Middleware Control
	Accessing the Oracle HTTP Server Home Page
	About the Oracle HTTP Server Home Page
	Editing Configuration Files Using Fusion Middleware Control

	Administering Oracle HTTP Server Using WLST
	Oracle HTTP Server-Specific WLST Commands
	Using WLST in a Standalone Environment

	Part II Managing Oracle HTTP Server
	4 Running Oracle HTTP Server
	Before You Begin
	Creating an Oracle HTTP Server Instance
	Creating an Oracle HTTP Server Instance in a WebLogic Server Domain
	Creating an Instance by Using WLST
	Associating Oracle HTTP Server Instances With a Keystore Using WLST
	Creating an Instance by Using Fusion Middleware Control
	About Instance Provisioning

	Creating an Oracle HTTP Server Instance in a Standalone Domain

	Performing Basic Oracle HTTP Server Tasks
	Understanding the PID File
	Starting Oracle HTTP Server Instances
	Starting Oracle HTTP Server Instances Using Fusion Middleware Control
	Starting Oracle HTTP Server Instances Using WLST
	Starting Oracle HTTP Server Instances from the Command Line
	Storing Your Node Manager Password

	Starting Oracle HTTP Server Instances on a Privileged Port (UNIX Only)
	Starting Oracle HTTP Server Instances as a Different User (UNIX Only)

	Stopping Oracle HTTP Server Instances
	Stopping Oracle HTTP Server Instances Using Fusion Middleware Control
	Stopping Oracle HTTP Server Instances Using WLST
	Stopping Oracle HTTP Server Instances from the Command Line

	About Using the WLST Commands
	Restarting Oracle HTTP Server Instances
	Restarting Oracle HTTP Server Instances Using Fusion Middleware Control
	Restarting Oracle HTTP Server Instances Using WLST
	Restarting Oracle HTTP Server Instances from Command Line

	Checking the Status of a Running Oracle HTTP Server Instance
	Checking Server Status by Using Fusion Middleware Control
	Checking Server Status Using WLST

	Deleting an Oracle HTTP Server Instance
	Deleting an Oracle HTTP Server Instance in a WebLogic Server Domain
	Deleting an Instance Using WLST
	Deleting an Instance Using Fusion Middleware Control

	Deleting an Oracle HTTP Server Instance from a Standalone Domain

	Changing the Default Node Manager Port Number
	Changing the Default Node Manager Port Using WLST
	Changing the Default Node Manager Port Using Oracle WebLogic Server Administration Console

	Updating the Node Manager Username and Password in a Standalone Domain

	Remotely Administering Oracle HTTP Server
	Setting Up a Remote Environment
	Host Requirements for a Remote Environment
	Task 1: Set Up an Expanded Domain on host1
	Task 2: Pack the Domain on host1
	Task 3: Unpack the Domain on host2
	Task 4: Run Oracle HTTP Server Remotely

	Configuring SSL for Admin Port
	Performing Server-Side Configuration
	Creating a Wallet
	Enabling SSL for Oracle HTTP Server Admin Host

	Ensuring that the Host Name Verification Succeeds
	Performing Client-Side Configuration

	5 Working with Oracle HTTP Server
	About Editing Configuration Files
	Editing a Configuration File for a Standalone Domain
	Editing a Configuration File for a WebLogic Server Domain

	Specifying Server Properties
	Specifying Server Properties by Using Fusion Middleware Control
	Specify Server Properties by Editing the httpd.conf File

	Configuring Oracle HTTP Server Instances
	Secure Sockets Layer Configuration
	Configuring Secure Sockets Layer in Standalone Mode
	Configure SSL
	Task 1: Create a Real Wallet
	Task 2: (Optional) Customize Your Configuration
	Basic SSL Configuration Example

	Specify SSLVerifyClient on the Server Side
	Adding a Trusted Client Certificate in a Standalone Oracle HTTP Server Installation
	Adding a Trusted Client Certificate in Collocated Oracle HTTP Server Installation
	Forcing Clients to Authenticate Using Certificates
	Forcing a Client to Authenticate for a Particular URL
	Authorizing a Client for a Particular URL
	Allowing Clients with Strong Ciphers and CA Client Certificate or Basic Authentication

	Enable SSL Between Oracle HTTP Server and Oracle WebLogic Server
	Using SAN Certificates with Oracle HTTP Server

	Exporting the Keystore to an Oracle HTTP Server Instance Using WLST
	Configuring MIME Settings Using Fusion Middleware Control
	Configuring MIME Types
	Configuring MIME Encoding
	Configuring MIME Languages

	About Configuring mod_proxy_fcgi
	About Configuring the Oracle WebLogic Server Proxy Plug-In (mod_wl_ohs)
	Configuring SSL for mod_wl_ohs

	Removing Access to Unneeded Content
	Edit the cgi-bin Section
	Edit the Fancy Indexing Section
	Edit the Product Documentation Section

	Using the apxs Command to Install Extension Modules
	Disabling the Options Method
	Updating Oracle HTTP Server Component Configurations on a Shared File System

	Configuring the mod_security Module
	Configuring mod_security in the httpd.conf File
	Configuring mod_security in a mod_security.conf File
	Configuring SecRemoteRules in the mod_security.conf File
	Sample mod_security.conf File

	6 Configuring High Availability for Web Tier Components
	Oracle HTTP Server Single-Instance Characteristics
	Oracle HTTP Server and Domains
	Oracle HTTP Server Startup and Shutdown Lifecycle
	Starting and Stopping Oracle HTTP Server
	Oracle HTTP Server High Availability Architecture and Failover Considerations
	Oracle HTTP Server Failure Protection and Expected Behaviors
	Configuring Oracle HTTP Server Instances on Multiple Machines
	Configuring Oracle HTTP Server for High Availability
	Prerequisites to Configure a Highly Available OHS
	Load Balancer Prerequisites
	Configuring Load Balancer Virtual Server Names and Ports
	Managing Load Balancer Port Numbers
	Installing and Validating Oracle HTTP Server on WEBHOST1
	Creating Virtual Host(s) on WEBHOST1
	Configuring mod_wl_ohs.conf
	Configuring mod_wl_conf if you use SSL Termination
	Creating proxy.conf File

	Installing and Validating Oracle HTTP Server on WEBHOST2
	Configuring and Validating an OHS High Availability Deployment
	Configuring Virtual Host(s) on WEBHOST2
	Validating the Oracle HTTP Server Configuration

	7 Managing and Monitoring Server Processes
	Oracle HTTP Server Processing Model
	Request Process Model
	Single Unit Process Model

	Monitoring Server Performance
	Oracle HTTP Server Performance Metrics
	Viewing Performance Metrics
	Viewing Server Metrics by Using Fusion Middleware Control
	Viewing Server Metrics Using WLST

	Oracle HTTP Server Performance Directives
	Understanding Performance Directives
	Changing the MPM Type Value in a Standalone Domain
	Changing the MPM Type Value in a WebLogic Server Managed Domain

	Configuring Performance Directives by Using Fusion Middleware Control
	Setting the Request Configuration by Using Fusion Middleware Control
	Setting the Connection Configuration by Using Fusion Middleware Control
	Setting the Process Configuration by Using Fusion Middleware Control

	Understanding Process Security for UNIX

	8 Managing Connectivity
	Default Listen Ports
	Defining the Admin Port
	Viewing Port Number Usage
	Viewing Port Number Usage by Using Fusion Middleware Control
	Viewing Port Number Usage Using WLST

	Managing Ports
	Creating Ports Using Fusion Middleware Control
	Editing Ports Using Fusion Middleware Control
	Disabling a Listening Port in a Standalone Environment

	Configuring Virtual Hosts
	Creating Virtual Hosts Using Fusion Middleware Control
	Configuring Virtual Hosts Using Fusion Middleware Control

	9 Managing Oracle HTTP Server Logs
	Overview of Server Logs
	About Error Logs
	About Access Logs
	Configuring Log Rotation
	Syntax and Examples for Time- and Size-Based Log Rotation

	Configuring Oracle HTTP Server Logs
	Configuring Error Logs Using Fusion Middleware Control
	Configuring the Error Log Format and Location
	Configuring the Error Log Level
	Configuring Error Log Rotation Policy

	Configuring Access Logs Using Fusion Middleware Control
	Configuring the Access Log Format
	Configuring the Access Log File

	Configuring the Log File Creation Mode (umask) (UNIX/Linux Only)
	Configure umask for an Oracle HTTP Server Instance in a Standalone Domain
	Configure umask for an Oracle HTTP Server Instance in a WebLogic Server Managed Domain

	Configuring the Log Level Using WLST
	Log Directives for Oracle HTTP Server
	Oracle Diagnostic Logging Directives
	OraLogMode
	OraLogDir
	OraLogSeverity
	OraLogRotationParams

	Apache HTTP Server Log Directives
	ErrorLog
	LogLevel
	LogFormat
	CustomLog

	Viewing Oracle HTTP Server Logs
	Viewing Logs Using Fusion Middleware Control
	Viewing Logs Using WLST
	Viewing Logs in a Text Editor

	Recording ECID Information
	About ECID Information
	Configuring Error Logs for ECID Information
	Configuring Access Logs for ECID Information

	10 Managing Application Security
	About Oracle HTTP Server Security
	Classes of Users and Their Privileges
	Authentication, Authorization and Access Control
	Access Control
	User Authentication and Authorization
	Authenticating Users with Apache HTTP Server Modules
	Authenticating Users with WebGate

	Support for FMW Audit Framework
	Managing Audit Policies Using Fusion Middleware Control

	Implementing SSL
	Global Server ID Support
	PKCS #11 Support
	SSL and Logging
	Terminating SSL Requests
	About Terminating SSL at the Load Balancer
	Terminating SSL at the Load Balancer

	About Terminating SSL at Oracle HTTP Server
	Terminating SSL at Oracle HTTP Server

	Using mod_security
	Using Trust Flags
	Enabling Perfect Forward Secrecy on Oracle HTTP Server

	A Oracle HTTP Server WLST Custom Commands
	Getting Help on Oracle HTTP Server WLST Custom Commands
	Using WLST Online Commands
	Oracle HTTP Server Commands
	ohs_addAdminProperties
	ohs_addNMProperties
	ohs_createInstance
	ohs_deleteInstance
	ohs_exportKeyStore
	ohs_updateInstances

	B Migrating to the mod_proxy_fcgi and mod_authnz_fcgi Modules
	Task 1: Replace LoadModule Directives in htttpd.conf File
	Task 2: Delete mod_fastcgi Configuration Directives From the htttpd.conf File
	Task 3: Configure mod_proxy_fcgi to Act as a Reverse Proxy to an External FastCGI Server
	Task 4: Setup an External FastCGI Server
	Task 5: Setup mod_authnz_fcgi to Work with FastCGI Authorizer Applications

	C Setting CGIDScriptTimeout When Using mod_cgid
	CGIDScriptTimeout Directive

	D Frequently Asked Questions
	How Do I Create Application-Specific Error Pages?
	What Type of Virtual Hosts Are Supported for HTTP and HTTPS?
	Can I Use Different Language and Character Set Versions of Document?
	Can I Apply Apache HTTP Server Security Patches to Oracle HTTP Server?
	Can I Upgrade the Apache HTTP Server Version of Oracle HTTP Server?
	Can I Compress Output From Oracle HTTP Server?
	How Do I Create a Namespace That Works Through Firewalls and Clusters?
	How Can I Enhance Website Security?
	Why is REDIRECT_ERROR_NOTES not set for "File Not Found" errors?
	How can I hide information about the Web Server Vendor and Version
	Can I Start Oracle HTTP Server by Using apachectl or Other Command Line Tool?
	How Do I Configure Oracle HTTP Server to Listen at Port 80?
	How Do I Terminate Requests Using SSL Within Oracle HTTP Server?
	How Do I Configure End-to-End SSL Within Oracle HTTP Server?
	Can Oracle HTTP Server Front-End Oracle WebLogic Server?
	What is the Difference Between Oracle WebLogic Server Domains and Standalone Domains?
	Can Oracle HTTP Server Cache the Response Data?
	How Do I Configure a Virtual Server-Specific Access Log?
	How to Enable SSL for Oracle HTTP Server by Using Fusion Middleware Control?
	Start Node Manager and Admin Server
	Create Keystore
	Generate Keypair
	Generate CSR for a Certificate
	Import the Trusted Certificate
	Import the Trusted Certificate to WebLogic Domain
	Import the User Certificate
	Export Keystore to Wallet
	Enable SSL

	E Troubleshooting Oracle HTTP Server
	Oracle HTTP Server Fails to Start Due to Port Conflict
	System Overloaded by Number of httpd Processes
	Permission Denied When Starting Oracle HTTP Server On a Port Below 1024
	Using Log Files to Locate Errors
	Rewrite Log
	Script Log
	Error Log

	Recovering an Oracle HTTP Server Instance on a Remote Host
	Oracle HTTP Server Performance Issues
	Special Runtime Files Reside on a Network File System
	UNIX Sockets on a Network File System
	DocumentRoot on a Slow File System
	Instances Created on Shared File Systems

	Out of DMS Shared Memory
	Oracle HTTP Server Fails to Start When mod_security is Enabled on RHEL or Oracle Linux 7
	Oracle HTTP Server Fails to Start due to Certificates Signed Using the MD5 Algorithm
	Node Manager Logs Don't Show Clear Message When a Component Fails to Start
	SSL Handshake Fails Due to Certificate Chain

	F Configuration Files
	G Property Files
	ohs_addAdminProperties
	ohs_nm.properties File
	ohs.plugins.nodemanager.properties File
	Cross-platform Properties
	Environment Variable Configuration Properties
	Properties Specific to Oracle HTTP Server Instances Running on Linux and UNIX

	H Oracle HTTP Server Module Directives
	mod_wl_ohs Module
	mod_certheaders Module
	AddCertHeader Directive
	SimulateHttps Directive

	mod_ossl Module
	SSLCARevocationFile Directive
	SSLCARevocationPath Directive
	SSLCipherSuite Directive
	SSLEngine Directive
	SSLFIPS Directive
	SSLHonorCipherOrder Directive
	SSLInsecureRenegotiation Directive
	SSLOptions Directive
	SSLProtocol Directive
	SSLProxyCipherSuite Directive
	SSLProxyEngine Directive
	SSLProxyProtocol Directive
	SSLProxyWallet Directive
	SSLRequire Directive
	SSLRequireSSL Directive
	SSLSessionCache Directive
	SSLProxySessionCache Directive
	SSLSessionCacheTimeout Directive
	SSLTraceLogLevel Directive
	SSLVerifyClient Directive
	SSLWallet Directive

