
Oracle® Fusion Middleware
Integrating Enterprise Data Quality with
External Systems

12c (12.2.1.4.0)
E95652-04
March 2024

Oracle Fusion Middleware Integrating Enterprise Data Quality with External Systems, 12c (12.2.1.4.0)

E95652-04

Copyright © 2018, 2024, Oracle and/or its affiliates.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Contents

 Preface

Audience viii

Documentation Accessibility viii

Related Documents viii

Conventions ix

1 Integrating with Subversion

1.1 Software Requirements 1-1

1.2 Understanding the Integration Architecture 1-1

1.3 Setting Up a Repository 1-4

1.4 Configuring EDQ with Subversion 1-4

1.4.1 Configuring a New EDQ Installation 1-5

1.4.2 Retaining Existing Configuration Information 1-5

1.5 Understanding the Integration Elements 1-6

1.6 Reviewing a Deployment Example 1-7

1.7 Troubleshooting Errors 1-9

2 Integrating with Git

2.1 Understanding the Integration Architecture 2-1

2.2 Preparing the Git Workspace 2-2

2.3 Configuring EDQ with Git 2-3

2.4 Using EDQ 2-3

3 Integrating with IBM Global Name Recognition

3.1 System Requirements 3-1

3.2 Configuring the EDQ Server 3-1

3.3 Building the Search Library 3-2

3.4 Configuring the GNR Connector 3-3

3.4.1 Creating the EDQ GNR Properties File 3-3

3.5 Creating the Search Configuration Files 3-4

iii

3.5.1 Support for GNR 3.2 and GNR 4.2 in Search Configuration Files 3-4

4 Integrating with Experian QAS

4.1 Software Requirements 4-1

4.2 Integrating with Experian QAS 4-1

4.3 Migrating QAS integrations 4-2

5 Integrating with Capscan Matchcode

5.1 Software Requirements 5-1

5.2 Integrating the Capscan Matchcode Libraries into EDQ 5-1

5.3 Customizing the Matchcode API 5-2

6 Using the Command Line Interface

6.1 Running the Command Line Interface 6-1

6.2 Understanding the Commands and Arguments 6-1

6.2.1 runjob 6-1

6.2.2 runopsjob 6-2

6.2.3 droporphans 6-3

6.2.4 listorphans 6-3

6.2.5 scriptorphans 6-3

6.2.6 list 6-3

6.2.7 showlogs 6-3

6.2.8 shutdown 6-4

6.2.9 version 6-4

6.3 Reviewing Examples 6-4

6.3.1 Listing All the Available Commands 6-4

6.3.2 Listing the Available Parameters for a Command 6-5

6.3.3 Running a Named Job 6-5

6.3.4 Running a Named Job in Operations Mode 6-5

7 Configuring Additional Database Connections

7.1 Using JNDI to Connect to Data Stores 7-1

7.2 Connecting to an Oracle Database Using tnsnames.ora 7-1

7.2.1 To Configure EDQ to Connect Through TNS 7-1

7.3 Connecting to an Oracle Database Using Oracle Internet Directory (LDAP) 7-2

iv

8 Configuring EDQ to Process XML Data Files

8.1 Using Simple XML Data Stores 8-1

8.1.1 Reading Simple XML Files 8-1

8.1.2 Writing Simple XML Files 8-2

8.2 Using XML and Stylesheet Data Stores 8-2

8.2.1 Using DN-XML 8-3

8.2.2 Reading Custom XML Files 8-4

8.2.2.1 Configuring the Data Store 8-6

8.2.3 Writing Custom XML Files 8-6

8.2.3.1 Configuring the Data Store 8-7

9 Using the EDQ Configuration API

9.1 REST Interface for Projects 9-1

9.1.1 Retrieving a List of EDQ Projects 9-1

9.1.2 Creating a Project 9-2

9.1.3 Deleting a Project 9-2

9.2 REST Interface for Data Stores 9-3

9.2.1 Retrieving a List of Data Stores 9-3

9.2.2 Creating a Data Store 9-4

9.2.3 Deleting a data store 9-6

9.3 REST Interface for Snapshots 9-6

9.3.1 Retrieving a List of Snapshots 9-7

9.3.2 Creating a Snapshot 9-7

9.3.3 Deleting a Snapshot 9-8

9.4 REST Interface for Processes 9-8

9.4.1 Retrieving a List of Processes 9-9

9.4.2 Deleting a Process 9-9

9.4.3 Creating a Simple Process 9-10

9.5 REST Interfaces for Jobs 9-11

9.5.1 Retrieving a List of Jobs 9-11

9.5.2 Deleting a Job 9-12

9.5.3 Creating a Simple Job 9-12

9.5.4 Running a Job 9-12

9.5.5 Cancelling a Running Job 9-13

9.5.6 Getting the Status of a Job 9-14

9.5.7 Getting the Details of All Running Jobs 9-14

9.6 REST Interface for Reference Data 9-15

9.6.1 Retrieving a List of Reference Data 9-15

9.6.2 Retrieving Contents of Reference Data 9-16

9.6.3 Creating Reference Data 9-17

v

9.6.4 Deleting Reference Data 9-17

9.7 REST Interface for Web Services 9-18

9.7.1 Retrieving a List of Web Services 9-18

9.7.2 Creating or Updating a Web Service 9-19

9.7.3 Deleting a Web Service 9-20

9.8 Example: Profiling from an External Application 9-20

10

Using REST APIs for Importing and Exporting Configuration Objects

10.1 REST Interface for Packaging Configuration 10-1

10.2 JSON Payload Format 10-2

10.3 Packaging Task Status Result Format 10-6

10.4 Packaging REST API Triggers 10-8

11

Using REST APIs for User Management and Launchpad Administration

11.1 REST Interface for Creating and Updating Groups 11-1

11.2 REST Interface for External Group Mappings 11-3

11.3 REST Interface for Creating and Updating Users 11-4

11.4 REST Interface for Launchpad Applications 11-6

12

Using the Java Messaging Service (JMS) with EDQ

12.1 Understanding the Message Queue Architecture 12-1

12.2 Uses of JMS with EDQ 12-1

12.3 Configuring EDQ to Read and Write JMS Messages 12-2

12.4 Defining the Interface Files 12-2

12.4.1 Knowing the <attributes> section 12-2

12.4.2 Knowing the <messengerconfig> Section 12-3

12.4.3 Knowing the <messagebody> section 12-5

12.5 Illustrations 12-5

13

Using Apache Kafka with EDQ

13.1 Introduction to Kafka and EDQ 13-1

13.2 Configuring EDQ to Read and Write Kafka Records 13-1

13.3 Defining the Interface Files 13-2

13.3.1 Understanding the <attributes> section 13-2

13.3.2 Understanding the <messengerconfig> section 13-3

13.3.3 Understanding the <incoming> or <outgoing> section 13-3

13.3.3.1 Understanding the <messageheaders> section 13-4

13.3.3.2 Understanding the <messagebody> section 13-4

vi

13.4 Illustrations 13-6

14

Using Amazon Simple Queue Service (Amazon SQS) with EDQ

14.1 Introduction to Amazon SQS and EDQ 14-1

14.2 Configuring EDQ to Read and Write Amazon SQS Messages 14-1

14.3 Defining the Interface Files 14-2

14.3.1 Understanding the <attributes> section 14-2

14.3.2 Understanding the <messengerconfig> section 14-3

14.3.3 Understanding the <incoming> or <outgoing> section 14-3

14.3.3.1 Understanding the <messageheaders> section 14-4

14.3.3.2 Understanding the <messagebody> section 14-5

14.4 Illustrations 14-5

15

Using Oracle Cloud Infrastructure (OCI) Queue with EDQ

15.1 Introduction to OCI Queue and EDQ 15-1

15.2 Configuring EDQ to Read and Write OCI Queue Messages 15-1

15.3 Defining the Interface Files 15-2

15.3.1 Understanding the <attributes> section 15-2

15.3.2 Understanding the <messengerconfig> section 15-3

15.3.3 Understanding the <incoming> or <outgoing> section 15-3

15.3.3.1 Understanding the <messageheaders> section 15-3

15.3.3.2 Understanding the <messagebody> section 15-4

15.3.4 Illustrations 15-4

16

Using Scripted Global Web Services with EDQ

16.1 Introduction to Global Web Services and EDQ 16-1

16.2 Configuring EDQ to Read and Write Web Service Requests 16-1

16.3 Defining the Interface Files 16-2

16.3.1 Understanding the <attributes> section 16-2

16.3.2 Understanding the <messengerconfig> section 16-3

16.3.3 Understanding the <incoming> or <outgoing> section 16-3

16.3.3.1 Understanding the <messageheaders> section 16-3

16.3.3.2 Understanding the <messagebody> section 16-4

16.4 Illustrations 16-5

vii

Preface

Describes how to integrate Enterprise Data Quality with external systems and
applications.

Audience
This document is intended for advanced users of EDQ and administrators responsible
for integrating EDQ with third-party applications.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Accessible Access to Oracle Support

Oracle customers who have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

Related Documents
For more information, see the Oracle Enterprise Data Quality documentation set.

Find the latest version of the EDQ guides and all of the Oracle product documentation
at

https://docs.oracle.com

Online Help

Online help is provided for all EDQ user applications. It is accessed in each application
by pressing the F1 key or by clicking the Help icons. The main nodes in the Director
project browser have integrated links to help pages. To access them, either select a
node and then press F1, or right-click on an object in the Project Browser and then
select Help. The EDQ processors in the Director Tool Palette have integrated help
topics, as well. To access them, right-click on a processor on the canvas and then
select Processor Help, or left-click on a processor on the canvas or tool palette and
then press F1.

Preface

viii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://docs.oracle.com

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

ix

1
Integrating with Subversion

This chapter describes how to integrate and use EDQ with the Subversion version control
system.
The following sections are included:

• Software Requirements

• Understanding the Integration Architecture

• Setting Up a Repository

• Configuring EDQ with Subversion

• Understanding the Integration Elements

• Reviewing a Deployment Example

• Troubleshooting Errors

1.1 Software Requirements
EDQ supports integration with all current versions of Subversion. For more information about
Subversion, see the Apache Subversion website found at http://subversion.apache.org/.

The Subversion server with which EDQ is being integrated must meet these prerequisites:

• Support Hypertext Transfer Protocol (HTTP) and Distributed Authoring and Versioning
(DAV) access.

• Require authentication on commit.

• Not require authentication on checkout or update.

When Subversion is integrated with EDQ as a store of configuration information, the following
restrictions and limitations apply. Consider the following points before deciding to configure
integrated version control using Subversion.

• You cannot update or revert an item that is open in the Director interface or the
Subversion server.

• You cannot rename a project once the project is under version control. This is critical in
avoiding duplication of reference processor names in a project.

• Deleting a project does not remove it from the Subversion repository.

• Case insensitive name matching is used.

1.2 Understanding the Integration Architecture
The EDQ server can be configured to be aware of a Subversion server as a store of
configuration information.

1-1

http://subversion.apache.org/

Note:

In this instance, configuration information means information that is managed
using the Director UI; for example, projects and system-level data.

In a standard EDQ instance, configuration information, including project information, is
stored in the Director database:

The following figure shows an EDQ instance integrated with Subversion:

Chapter 1
Understanding the Integration Architecture

1-2

Note:

The Director database is still required because it contains data derived from the file-
mastered configuration that has been normalized to allow querying by the
applications.

With EDQ configuration files mastered and stored in a Subversion repository, a Subversion
client can be used to commit or otherwise access them. Because EDQ includes an
embedded Subversion client, Subversion client operations to control configuration changes

Chapter 1
Understanding the Integration Architecture

1-3

can be performed directly in Director once the EDQ integration with Subversion has
been enabled.

1.3 Setting Up a Repository
The first stage of configuration is to create a workspace directory where the checked
out data is stored:

1. Create a directory on the disk where desired (for example, C:\MyRepository) and
then add it and commit it to Subversion.

2. Inside the newly created directory, set the following Subversion property:

svn propset edq:systemversion 12.1.3:base .

Note:

Set Subversion property to "12.1.3:base" and not to the current version
of EDQ.

3. Commit these changes into Subversion. Your workspace now displays these
properties:

svn proplist -v .
Properties on '.':
 edq:systemversion
 12.1.3:base

4. Create the following subdirectories in the newly created directory:

• Data Stores

• Hidden Reference Data

• Images

• Projects

• Published Processors

• Reference Data

5. Add and commit these directories. The repository is now set up correctly for EDQ.

The preceding steps only need to be performed once per repository. All remaining
changes can be made using EDQ.

1.4 Configuring EDQ with Subversion
Subversion must be integrated with a fresh installation of EDQ.

Chapter 1
Setting Up a Repository

1-4

Caution:

When an EDQ instance is integrated with Subversion, all pre-existing and other
configuration information is lost. To retain this information, you must package and
export it first. For further details, see Retaining Existing Configuration Information.

Note:

Oracle recommends that a single workspace be assigned to each instance of EDQ
because it is difficult to move between workspaces in a single EDQ instance.

1.4.1 Configuring a New EDQ Installation
To configure a new EDQ installation:

1. Shut down the application server.

2. Check out the workspace from Subversion. It is not necessary to checkout the whole
tree; just the workspace directory itself is required.

3. Edit the director.properties file in the ORACLE_HOME/
user_projects\domains\domains\edq_domain\edq\oedq.local.home directory.

4. Add the following line replacing the directory path with that of the absolute path to your
root workspace directory. For example:

sccs.workspace = C\:\\MyRepository

Note:

This example demonstrates the need to escape colon (:) and backslash (\)
characters in the path with a backslash. You must also escape space
characters in the path with a backslash.

5. Start your EDQ server, and then start Director.

6. Check the top of the Main0.log file for an INFO message listing the name of the SCCS
workspace you added. For example:

INFO: 02-Sep-2013 10:05:21: SCCS workspace is C:\MyRepository
7. If no errors follow this message, EDQ is configured to use Subversion. If there are errors,

see Troubleshooting Errors, for possible solutions.

1.4.2 Retaining Existing Configuration Information
As previously stated, Subversion must be integrated with a fresh installation of EDQ.
Therefore, any pre-existing projects and other configuration items in an EDQ installation must
be packaged before integration begins and then imported to the new installation afterwards:

1. Package all configuration items in the current EDQ instance into DXI files.

Chapter 1
Configuring EDQ with Subversion

1-5

2. Install a new instance of EDQ with the Subversion integration enabled.

3. Import the DXI files into the new instance, and commit the files to the Subversion
workspace.

4. Check that the configuration items are all valid and working correctly.

Note that all passwords for Data Stores must be re-entered after a configuration
import.

5. Decommission the previous instance.

1.5 Understanding the Integration Elements
Once EDQ is integrated with Subversion enabled, the following interface elements
become visible within the Director application:

• Subversion status icon overlays in Project Browser - There are two icons used to
indicate the three possible Subversion statuses of nodes in the Project Browser:

– No icon - The node (and its sub-nodes) are all up to date.

– Green icon- This node (and its sub-nodes) have modifications.

– Blue icon - This node (and its sub-nodes) is new/currently not under Version
Control.

For example, the following image shows both icons in use. The Reference Data
node is modified (green icon) as one of its sub-nodes has changed. A new piece
of Reference Data, Business Words, has been added, and is marked with the blue
icon:

• Version Control tab - The Properties dialog (displayed by right-clicking on an item
in the Project Browser and selecting Properties) now contains a Version Control
tab that describes the state of the item, when it was last updated, its Subversion
revision, and whether it is current.

• New context menu for Version Control - The Project Browser right-click menu now
contains a Version Control option. When selected, this displays a sub-menu with
Subversion options to update, commit, revert, compare or view the log for the item.
These options are recursive. For example, if you perform View Log on a single
process then you will see the log for this process only, but if you perform View Log
on the Processes node you will see changes for all processes.

• Comment and credentials dialogs on commit - When you commit changes to the
repository, Director displays the Commit log dialog:

Chapter 1
Understanding the Integration Elements

1-6

In this dialog you can enter a comment describing the change in the Comment field.
Alternatively, you can automatically populate the field by choosing a comment from the
list of comments previously entered in the current session.

After you click OK in the Commit log dialog, Director displays the Version Control
Credentials dialog if you have not already provided your credentials in the current
session:

In this dialog you enter your user name and password for the Subversion repository and
then click OK.

1.6 Reviewing a Deployment Example
An example deployment is presented here. In this illustration, there is a single Subversion
server that holds three copies of the configuration for four EDQ installations:

Chapter 1
Reviewing a Deployment Example

1-7

The copies of the configuration are:

• trunk - the traditional location that all development work is performed on. New
features of the configuration are developed and saved here.

• branches and UAT - this branch represents the copy of the configuration under
UAT testing.

• branches and production - this branch represents the production copy of the
configuration.

The four EDQ installations using the Subversion server for storing their configuration
are:

• Two development laptops where design work and maintenance of existing projects
are carried out.

• A UAT server for User Acceptance Testing changes.

• A production server for production runs.

In this example deployment, the laptop users develop configuration for individual
projects on their own laptops and then commit changes back to the subversion
repository on "trunk". Where the developers are co-operating on developing a project
they will periodically update their local installation to pick up changes from the other
developer.

At some point development reaches a point where it needs to be released to UAT for
testing. A release manager then copies the necessary projects from "trunk" to "UAT"
on the subversion server.

For example, the following Subversion command may be used:

svn cp -m"Release Project X to UAT" http://svn/repos/config/trunk/ProjectX
http://svn/repos/config/branches/UAT

The test manager then updates the UAT server's projects to load the new configuration
into the EDQ server. Over a period of time testing continues. As issues are found they
are fixed in the UAT environment and committed back to the subversion repository.

Chapter 1
Reviewing a Deployment Example

1-8

Once UAT environment has achieved an acceptable test level it is promoted to release. This
achieved in much the same way as the release from development to UAT. The necessary
projects are copied across in the version control repository and then the production server is
updated to use this configuration.

1.7 Troubleshooting Errors
You may encounter the following errors for which the cause and solution is provided.

Error Cause and Solution

Configuration database is not
compatible with workspace

The database has been used with a different workspace. This
error usually arises occurs when operations have been
performed in EDQ before Subversion version control is
enabled.There are two solutions: drop and recreate the Director
database or reinstall EDQ.

Unable to open an ra_local
session to URL

This may occur when trying to commit files to an invalid
repository. The EDQ integration is not compatible with file-
based repositories (those repositories beginning with
file:/// or C:\example). A fully declared http:// path to the
repository must be made.

Chapter 1
Troubleshooting Errors

1-9

2
Integrating with Git

This chapter describes how to integrate and use EDQ with the Git version control system.
Consider the following points before deciding to configure integrated version control using
Git.

• Project and global objects are stored in the file systems, but Software Configuration
Management (SCM) operations such as commits, pushes and pull requests are
performed manually outside of EDQ.

• The EDQ system must be freshly initialized. The Git configuration must be completed
before you start the system for the first time.

Note:

If you have an existing EDQ system with configuration that you want to convert
to using Git, you should package all projects on this system and back up its
local home. You can then import the projects and any configuration extensions
or other needed files in the local home onto a Git-integrated system.

The following sections are included:

• Understanding the Integration Architecture

• Preparing the Git Workspace

• Configuring EDQ with Git

• Using EDQ

2.1 Understanding the Integration Architecture
The EDQ server can be configured to be aware of a Git server as a store of configuration
information.

The following figure illustrates a typical setup of two EDQ instances that are integrated with
Git. Here the Dev/Test instance is used to make and test changes. The tested changes are
then promoted onto a main branch used by a Production instance by a pull request that is
approved by a Git administrator. Note that the Dev and Test instances could equally be
separate. For example, they may both work on the same fork, but with changes only moving
to Test once committed and pushed from Dev.

2-1

2.2 Preparing the Git Workspace
The first stage of configuration is to create a workspace directory where the checked
out data is stored:

1. Create a new empty directory in a Git workspace and create a .wsprops file that
includes this single line:

systemversion=12.1.3:base

Note:

Set the property to "12.1.3:base" and not to the current version of EDQ.
This is the correct value for all versions of EDQ 12.2.x.

2. Create the following subdirectories in the newly created directory:

• Data Stores

• Hidden Reference Data

• Images

• Projects

• Published Processors

• Reference Data

3. In each directory, create an empty .gitignore file to ensure that the directories
can be committed to Git successfully. You need to do this because you cannot
commit empty directories to Git. To create and populate the directories, use the
following script:

rootdirs="Data_Stores Hidden_Reference_Data Images Projects
Published_Processors
 Reference_Data"

Chapter 2
Preparing the Git Workspace

2-2

Create root dirs
for i in $rootdirs
do x=$(echo $i | tr '_' ' ')
 mkdir "$x"
 echo > "$x/.gitignore"
 echo created $x
done
cat > .wsprops <<EOF
systemversion=12.1.3:base
EOF

4. Add and commit these directories to Git. The repository is now set up correctly for EDQ.

2.3 Configuring EDQ with Git
Git must be integrated with a fresh installation of EDQ. Before you start the EDQ server for
the first time, edit director.properties and add these lines:

sccs.workspace = file system path to root directory
sccs.vcs.type = null

Here, the root directory in the first line is the directory where you created the repository in
Preparing the Git Workspace. The second line disables the integrated Subversion support.

After you have edited director.properties, start the EDQ server.

The built-in reference data objects will be created in the root Reference Data folder. Commit
these objects to Git and push them to the origin server.

2.4 Using EDQ
After the Git configuration is complete, you can use the EDQ Director client to create and edit
global and project objects as normal. The objects are stored in the file system location set by
the sccs.workspace property in Configuring EDQ with Git.

To make changes visible to other users of the Git repository, commit and push the changes
using the standard Git command line tools. For example:

$ cd /opt/git/repo/dev
$ git add Projects/test1
$ git commit -m 'Committing a project'
$ git push

After the changes have been pushed to the origin server, other users can clone or pull from
the repository to work on the same objects.

To update the local workspace with changes created by other users, use a git pull
command:

git pull
remote: Counting objects: 17, done.
remote: Compressing objects: 100% (8/8), done.
remote: Total 13 (delta 3), reused 0 (delta 0)

Chapter 2
Configuring EDQ with Git

2-3

Unpacking objects: 100% (13/13), done.
...

If the local EDQ server is running, rescan the workspace for changes. To do this, use
the jshell.jar utility to run the following script:

$ java -jar jshell.jar scripts/sccs/scan.groovy \
 -server host:8090 -user username -pw password

The Project Browser of running EDQ clients reflect the changes that are picked up by
the script.

Note that the scan.groovy script may update process and job objects that are open in
EDQ clients. However, the Canvas does not reflect these changes. You must close
and reload the objects to see the changes. A good practice is to ensure that no clients
or jobs are running when a scan is run. After you execute any Git operation that
changes the workspace contents, such as switching branches, make sure that you run
the scan.groovy script or restart the EDQ server.

Chapter 2
Using EDQ

2-4

3
Integrating with IBM Global Name
Recognition

This chapter describes how to integrate with IBM Global Name Recognition (GNR).
You can configure EDQ to connect to IBM GNR to facilitate linguistic analysis of names, and
linguistically sensitive name searching.

This chapter includes the following sections:

• System Requirements

• Configuring the EDQ Server

• Building the Search Library

• Configuring the GNR Connector

• Creating the Search Configuration Files

3.1 System Requirements
To enable EDQ connectivity with IBM GNR, you must have the following:

• EDQ 12c (12.2.1.1.0) installed on 64-bit AIX operating system or Linux operating system
running 64-bit Java.

• IBM GNR 4.2.1 (4.2 + 4.2.1 fixpack) or later, including the hotfix based on GNR 4.2.2
(4.2 +4.2.2 fixpack). For more information, see the IBM website at http://www.ibm.com.

EDQ does not make use of any of the web services provided by GNR, so you do not
need to configure these during GNR installation.

Note:

GNR can only be installed on an EDQ instance if you have the required license
agreements with both Oracle and IBM.

3.2 Configuring the EDQ Server
The LD_LIBRARY_PATH must be set as required for the installation environment.

The EDQ GNR analytic processors use a shared library (.so) in the lib64 directory of the
GNR installation. This directory must be specified in an environment variable passed to the
EDQ server.

In a Linux 64-bit environment, the environment variable is LD_LIBRARY_PATH; for example:

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:gnr-installation-dir/lib64

gnr-installation-dir is the GNR installation path; for example, /opt/GNR/GNM.

3-1

http://www.ibm.com

In an AIX environment, the environment variable name is LIBPATH instead of
LD_LIBRARY_PATH.

Note:

The environment variable must be available to the application server
process.

3.3 Building the Search Library
The GNR Search Processor uses a native library that must be linked with the GNR
libraries.

Oracle supplies these files to create the library:

• Two Makefile templates, one for each platform, that script the building of the
search library

• The namehunter.o object module file

When building the library on an AIX system, IBM C++ must be available. When
building the library on Linux systems, the GCC C++ compiler must be available and it
must be of the same version used to create the GNR libraries, as specified in the IBM
GNR documentation.

The Makefile template for a 64-bit AIX operating system is as follows:

Build library from object file

GNR=/opt/GNR/GNM
CFLAGS=-qmkshrobj
LIBS=-lNameHunter -lNameTransliterator -lsicui18n -lsicuuc -lsicudata
SDK=aix61_64-xlc9-release
LIBDIRS=-L$(GNR)/sdk/$(SDK)/lib -L$(GNR)/sdk/icu4c/$(SDK)/lib

all: libnimrod.so

libnimrod.so: namehunter.o
 xlc++_r -q64 $(CFLAGS) -o $@ $? $(LIBDIRS) -lNameHunter -
lNameTransliterator
-lsicui18n -lsicuuc -lsicudata

The Makefile template for 64-bit Linux operating system is as follows:

Build 64-bit library from object file

GNR=/opt/GNR/GNM
CFLAGS=-shared -fPIC

all: libnimrod.so

libnimrod.so: namehunter.o
 g++ -m64 $(CFLAGS) -o $@ $? -L$(GNR)/sdk/rhel4_64-gcc34-release/lib
-L$(GNR)/sdk/icu4c/rhel4_64-gcc34-release/lib -lNameHunter -lNameTransliterator
-lsicui18n -lsicuuc -lsicudata

Chapter 3
Building the Search Library

3-2

Before running the Makefile script for your platform, ensure that the value of GNR in the
Makefile template is set correctly, according to the GNR installation directory location. On
the AIX operating system, also ensure that the value of SDK is set correctly, according to the
system architecture.

After running the edited Makefile, the newly created libnimrod.so shared library file can be
installed anywhere and can be copied to other systems with GNR installs.

3.4 Configuring the GNR Connector
The EDQ GNR connector requires three types of configuration files to integrate it with GNR:

• The gnr.properties properties file in the EDQ installation

• The nameworks.config configuration file in the GNR installation

• Search configuration files in the EDQ installation

3.4.1 Creating the EDQ GNR Properties File
The gnr.properties file and the gnr subdirectory that contains it must be manually created
and placed in the gnr subdirectory of the EDQ configuration directory. It must contain the
following properties:

gnr.install
The GNR installation path. This is the path to the directory containing the following GNR
subdirectories:

• bin
• bin64
• data (which contains the GNR data files)

• lib
• lib64

analytics.config
The absolute location of the nameworks.config configuration file in the GNR installation.

search.jnilib
The absolute location of the libnimrod.so shared library, which was built using the Makefile
template.

nameworks.config
During GNR installation, a nameworks.config file is created and stored in the GNR data
directory.

The critical part of the nameworks.config file is the reference files section:

[Reference Files]
NameSifter=/opt/GNR/GNM/data/SifterRules.ibm

The NameSifter value must refer to the SifterRules.ibm file in the GNR installation.

Chapter 3
Configuring the GNR Connector

3-3

3.5 Creating the Search Configuration Files
Search configuration files are located in the gnr/search subdirectory of the EDQ
configuration directory. They are read by the connector and used to set parameters for
the Search function.

A sample search configuration file named search.config is available in the support/
data/search subdirectory of the EDQ installation. To create a search configuration file,
copy this sample file to the gnr/search subdirectory of the EDQ configuration directory
and edit the copy to suit your needs.

3.5.1 Support for GNR 3.2 and GNR 4.2 in Search Configuration Files
The search configuration format changed slightly from GNR 3.2 to GNR 4.2, and the
EDQ GNR connector supports both versions as far as possible. It also processes data
for Organization searches.

The basic differences between the search configuration files in GNR 3.2 and GNR 4.2
are:

• GNR 4.2 specifies the parameter files (for example, tags and variants) in the
[hunter] section. GNR 3.2 uses the [search] section. The EDQ GNR connector
looks in the [hunter] section first then the [search] section.

• The tag and variant files in GNR 4.2 are specified by keys such as ibmTaqFile
and custTaqFile. In GNR 3.2, just taqFile is used. The EDQEDQ GNR
connector looks for taqFile, ibmTaqFile and custTaqFile and loads each if
found. The same rules are used for variant and terms files.

• The generic reg file is set by a specific genericRegFile setting; in GNR 3.2 this
always defaults to the anglo reg file.

• Some settings have been added to the [parms] sections, and others have been
removed.

Chapter 3
Creating the Search Configuration Files

3-4

4
Integrating with Experian QAS

This chapter describes how to integrate with Experian QAS API and migrate earlier versions
of the QAS integration to EDQ versions 8.1.3 or later.
This chapter includes the following sections:

• Integrating with Experian QAS

• Migrating QAS integrations

4.1 Software Requirements
EDQ includes a connector to the Experian QAS Batch API. You must have an installed
version of the Experian QAS Batch API software appropriate for your platform. For more
information, see the Experian Data Quality website found at http://www.qas.com/.

4.2 Integrating with Experian QAS
Integration of EDQ with Experian QAS Batch is carried out by editing the qas.properties file
distributed with EDQ. The qas.properties file is located in the ORACLE_HOME/
user_projects\domains\domains\edq_domain\edq\oedq.home\qas directory.

Once both EDQ and the QAS Batch software have been installed, edit the properties in the
qas.properties as required for your integration. The properties specified in the file are as
follows:

Property name Description Default Value

qas.install.path The location of the Experian QAS
Batch installation.

C:\\Program Files
(x86)\\QAS\
\QuickAddress Batch API

qas.qaworld.ini The path to the QAWorld.ini file to
use. This allows you to create and edit
copies of the original QAWorld.ini
file distributed with Experian QAS
Batch API. If no value is specified for
this property, it uses the QAWorld.ini
file within the Experian QAS Batch API
installation.

None

4-1

http://www.qas.com/

Property name Description Default Value

max.number.connections The maximum number of connections
that EDQ will create to the API. This
should not be set to a value greater
than 32.

Note: There is a known threading and
memory issue with Experian QAS
Batch API versions 6.85, 6.89 and
6.95, where if maximum usage of 32
instances and 8 threads is reached,
the Batch API may crash. This can be
avoided by setting this property to a
value between 18 and 22 inclusive.

32

connection.pool.timeout This property specifies the number of
milliseconds that a connection can be
idle for before it is closed by the pool
management functionality. If this is set
to -1, idle connections will not be
closed.

60,000

connection.pool.
timer.interval

This property specifies how often, in
milliseconds, the connection pool is
scanned for idle connections.

60,000

default.layout The default layout to use. If no layout
with the specified name is available in
the specified QAWorld.ini file, this
property is ignored.

GBR

4.3 Migrating QAS integrations
Some earlier versions of EDQ (versions prior to 8.1.3) were shipped with a customized
version of QAWorld.ini that was used instead of the version contained within Experian
QAS. It is not possible to migrate automatically from these versions of the Experian
QAS integration to the later versions. To migrate an earlier Experian QAS integration,
you must:

• Locate the local copy of QAWorld.ini and copy any custom layouts specified in
this file into the version of QAWorld.ini contained within Experian QAS.

• Update the settings in qas.properties See Integrating with Experian QAS.

In addition, any existing processes and results books that make use of QAS
processors must be updated as follows:

• Open each configured QAS processor and rename the output attributes to match
those in the new QAWorld.ini file.

• Open any results books built on results grids from QAS processors and re-map the
fields to the new output attribute names.

Refer to the following table for the affected releases for each version of EDQ. All
versions of EDQ (previously known as dn:Director) prior to 7.2 are affected:

Version Releases affected

EDQ (dn:Director) 7.2 Release 7.2.9 and all earlier 7.2 releases

Chapter 4
Migrating QAS integrations

4-2

Version Releases affected

EDQ (dn:Director) 8.0 Release 8.0.21 and all earlier 8.0 releases

EDQ (dn:Director) 8.1 Release 8.1.2 and all earlier 8.1 releases

Chapter 4
Migrating QAS integrations

4-3

5
Integrating with Capscan Matchcode

This document describes how to integrate address verification and cleansing features from
GBGroup Capscan Matchcode with EDQ. This documentation is intended for system
administrators responsible for installing and maintaining EDQ applications.
This chapter includes the following sections:

• Software Requirements

• Integrating the Capscan Matchcode Libraries into EDQ

• Customizing the Matchcode API

5.1 Software Requirements
You must have the Capscan Matchcode software installed on a system that is accessible to
the EDQ Server. For more information, see the GBGroup Matchcode website found at https://
www.gbgplc.com/products/.

5.2 Integrating the Capscan Matchcode Libraries into EDQ
EDQ includes a connector to the Capscan Matchcode API. EDQ includes a connector to the
Capscan Matchcode API from GBGroup. This API provides address verification and
cleansing features. This API provides address verification and cleansing features. Integrate
the Capscan Matchcode Libraries into EDQ as follows:

1. Copy the capscan.jar client API file from the Capscan Matchcode installation to the
ORACLE_HOME/
user_projects\domains\edq_domain\servers\edq_server1\tmp_WL_user\edq\iz3lfy
\war\WEB-INF\widgetjars directory.

The location of the capscan.jar file in a Capscan Matchcode installation depends on the
installation platform; for example, it is located in the Capscan\SDK\Matchcode client
API\Java directory on Windows.

Note:

You can copy the capscan.jar file to a directory other than the default directory
given in this step. If you do so, you must edit the capscan.jar property of the
capscan.properties file to specify the location of the file. If you specify a
relative path, the path must be relative to one of the directories in the EDQ
configuration path.

2. Edit capscan.properties file in the ORACLE_HOME/
user_projects\domains\domains\edq_domain\edq\oedq.home\capscan directory.

3. Edit the server.host property to refer to the system where Capscan Matchcode is
running.

5-1

https://www.gbgplc.com/products/
https://www.gbgplc.com/products/

4. Restart your Server.

5.3 Customizing the Matchcode API
Various aspects of the Capscan Matchcode API behavior can be controlled using the
capscan.properties file. It allows you to set the following properties:

capscan.jar
The location of the capscan.jar client API file in the installation. If you specify a
relative path, the path must be relative to one of the directories in the configuration
path. The default value is the relative path capscan/capscan.jar.

server.host
The IP address of the machine where Capscan Matchcode is running.

connection.timeout
A timeout period, in seconds, after which the Capscan Matchcode API will abort the
search and return (a timeout period of zero indicates that there is no time limit on
searches).

connection.type
The connection mode to use when communicating with the Capscan Matchcode API.
The default connection mode is CONNECTIONLESS. The remaining options are:

• CONNORIENTED
• STATELESS
• WEBCONNECTION
• ONDEMAND
For information about these connection modes, refer to the Capscan Matchcode API
documentation.

number.capscan.connections
The number of connections that EDQ should make to the Capscan Matchcode API.

number.threads
The number of threads that should be used when communicating with the Capscan
Matchcode API.

The default contents of the capscan.properties file are as follows:

This configuration file is configuring the CapScan processor
to be able to communicate with the CapScan server

Capscan server name
server.host = 127.0.0.1

Connection timeout in seconds (0 means no time out)
connection.timeout = 30

The connection type to make to the CapScan server.
Possible values are:

CONNORIENTED
CONNECTIONLESS
STATELESS

Chapter 5
Customizing the Matchcode API

5-2

WEBCONNECTION
ONDEMAND
connection.type = CONNECTIONLESS

The number of connections the director server should
make to the CapScan server
number.capscan.connections = 1

The number of threads that should be used to
communicate with the CapScan server
number.threads = 1

Chapter 5
Customizing the Matchcode API

5-3

6
Using the Command Line Interface

This chapter describes how to use the command line interface.
This chapter includes the following sections:

• Running the Command Line Interface

• Understanding the Commands and Arguments

• Reviewing Examples

The command line interface, jmxtools.jar, provides access to a number of facilities.

6.1 Running the Command Line Interface
The command line interface is distributed as a self contained .jar file in the tools directory,
and is executed by the following command line invocation:

java -jar jmxtools.jar commandname arguments

The commands and arguments are described in the following section.

6.2 Understanding the Commands and Arguments
The command line interface can run a number of commands and provides functionality
including:

• Running jobs

• Listing and dropping orphaned results tables

• Showing user session logs

• Shutting down real-time jobs

• Checking the EDQ version number

The following sections provide a full guide to the commands, arguments and options
available.

EDQ also provides support for jobs through the REST-based EDQ Configuration API
interfaces. For details on using these interfaces for performing various jobs, see "REST
Interfaces for Jobs" in the "Integrating Enterprise Data Quality With External Systems" guide.

6.2.1 runjob
The runjob command runs a named job in the same way as if running the job using the
Director UI. The runjob command takes the following arguments:

Argument Use

-job job_name Specifies the name of the job to run.

6-1

Argument Use

-project project_name Specifies the name of the project that contains the job .

-u user_name Specifies the user name to use to connect to the EDQ server. The user
must have permission to run jobs and must have permission to the
project containing the job.

-p password Specifies the connecting user's password. If the -p option is not set,
EDQ will prompt the user for the password.

-nolockwait Indicates that if any of the resources used by the job are locked, the job
should not wait for them to become available. Instead, it should
terminate with a failure code and return control to the command line.
The -nolockwait argument takes no extra values.

-nowait Indicates that the command line should not wait for the job to complete.
The -nowait argument takes no extra values.

server:port Specifies the server and port of the JMX (management) interface.

6.2.2 runopsjob
The runopsjob command runs a named job in the same way as if running the job
using the Server Console user interface. This provides additional functionality to the
runjob command, specifically the use of Run Labels and Run Profiles. Run Labels
may be used to store results separately from other runs of the same job. Run Profiles
may be used to override externalized configuration settings at runtime.

The runopsjob command takes the following arguments:

Argument Use

-job job_name Specifies the name of the job to run.

-project
project_name

Specifies the name of the project that contains the job

-u user_name Specifies the user name to use to connect to the EDQ server. The
user must have permission to run jobs and must have permission to
the project containing the job.

-p password Specifies the connecting user's password. If the -p option is not set,
EDQ will prompt the user for the password.

-nolockwait Indicates that if any of the resources used by the job are locked, the
job should not wait for them to become available. Instead, it should
terminate with a failure code and return control to the command line.
The -nolockwait argument takes no extra values.

-nowait Indicates that the command line should not wait for the job to
complete. The -nowait argument takes no extra values.

-runlabel
run_label_name

Specifies the name of the run label under which you wish to store
staged output results. Note that this will override any run label that is
specified in a run profile or by -D runlabel = run_label_name.

-props
run_profile_name

Specifies the full path to a run profile properties file containing
override settings for externalized configuration options in the job.

Chapter 6
Understanding the Commands and Arguments

6-2

Argument Use

-D
externalized_option
=value

Allows you to override specific externalized options for the job
individually. The syntax for the externalized options and values is the
same as used in run profile properties files. Note that characters is
interpreted by the command line, so some characters will need to be
escaped according to the shell conventions of your environment.
Also note that any individually specified externalized option settings
will override any settings for the same option if these are specified in
a run profile used in the same run.

server:port Specifies the server and port of the JMX (management) interface.

6.2.3 droporphans
The droporphans command is used to remove any orphaned results tables that may be
created when processes are terminated unexpectedly. It should not be run when any jobs or
processes are running on the EDQ server.

The droporphans command takes the following arguments:

Option Use

-u user name Specifies the user name to use to connect to the server. The user must have
permission to cancel jobs and must have permission to the project containing the
job.

-p password Specifies the connecting user's password. If the -p option is not set, will prompt the
user for the password.

server:port Specifies the server and port of the JMX (management) interface.

6.2.4 listorphans
The listorphans command is used to identify any orphaned results tables. The listorphans
command takes the same arguments as the droporphans command.

6.2.5 scriptorphans
The scriptorphans command creates a list of SQL commands for dropping orphaned results
tables. This is useful if you want to review exactly which commands will run on the Results
database when you drop tables, or if you want to drop the tables yourself manually.

6.2.6 list
The list command lists all the available commands.

6.2.7 showlogs
The showlogs command starts a small graphical user interface application that allows user
session logs to be retrieved.

Chapter 6
Understanding the Commands and Arguments

6-3

6.2.8 shutdown
The shutdown command shuts down all real-time jobs. These are jobs that are running
from real-time record providers (web services or Java Message Service).

The shutdown command takes the following arguments:

Option Use

-u user name Specifies the user name to use to connect to the server. The user must have
permission to cancel jobs and must have permission to the project
containing the job.

-p password Specifies the connecting user's password. If the -p option is not set, EDQ
will prompt the user for the password.

-nowait Indicates that the command line should not wait for the job to complete. The
-nowait argument takes no extra values.

server:port Specifies the server and port of the JMX (management) interface.

6.2.9 version
The version command is used to identify the version of the currently installed instance
of .

Enter the following at the command line:

java -jar jmxtools.jar version
The version number is returned.

6.3 Reviewing Examples
This section lists several possible invocations of the command line interface:

• Listing All the Available Commands

• Listing the Available Parameters for a Command

• Running a Named Job

• Running a Named Job in Operations Mode

6.3.1 Listing All the Available Commands
The following invocation of the command line interface lists all of the available
commands:

java -jar jmxtools.jar -list
The output is as follows:

Available launch names:
<Job tools>
runjob Run named job
shutdown Shutdown realtime jobs
runopsjob Run named job in operations mode

Chapter 6
Reviewing Examples

6-4

<Logging>
showlogs Show session logs

<Database Tools>
listorphans List orphaned results tables
droporphans Drop orphaned results tables
scriptorphans Create script for dropping orphaned results tables

<System Information>
version Display version number of tools

6.3.2 Listing the Available Parameters for a Command
If the command line interface is invoked by specifying a command without the corresponding
parameters, it outputs detailed help for the command. For example, to get detailed help on
the runjob command, invoke the command line interface as follows:

java -jar jmxtools.jar runjob
The output is as follows:

Usage: runjob -job jobname -project project [-u user] [-p pw] [-nowait] [-nolockwait]
[-sslprops props | -ssltrust store] server:port

6.3.3 Running a Named Job
This example illustrates how to run a named job in a named project on a specific instance (as
specified by machine name and port).

To run a job called "rulecheck" in a project called "Audit" on the local machine with a JMX
server on port 8090 using a user named "dnadmin", the command is as follows:

java -jar jmxtools.jar runjob -job rulecheck -project audit -u dnadmin
localhost:8090
The application prompts the user to enter the password for the dnadmin user.

6.3.4 Running a Named Job in Operations Mode
This example illustrates how to run a named job in 'operations mode' in a Windows
environment. In operations mode, there is access to the Run Label and Run Profile
capabilities so that the configuration of the job can be specified dynamically, and so that the
results of the job can be stored by Run Label.

To run a job called "profiling" in a project called "MDM" on a server called "prod01", with a run
label of "Nov2011" and a run profile file called File1.properties, with a JMX server on port
8090, the command is as follows:

java -jar jmxtools.jar runopsjob -job profiling -project MDM -runlabel Nov2011 -
props c:\ProgramData\Oracle\"Enterprise Data
Quality\oedq_local_home\File1.properties" -u dnadmin prod01:8090

Chapter 6
Reviewing Examples

6-5

7
Configuring Additional Database Connections

This chapter describes how you can configure additional database connections for use in
Director.

• Using JNDI to Connect to Data Stores

• Connecting to an Oracle Database Using tnsnames.ora

• Connecting to an Oracle Database Using Oracle Internet Directory (LDAP)

The standard options for Director to connect to data stores are described in the online help.
Once implemented, these options appear in the Data Store Configuration step of the New
Data Store wizard in Director. For help with using this wizard, see the Director online help.

7.1 Using JNDI to Connect to Data Stores
You can configure EDQ to use a Java Naming and Directory Interface (JNDI) data store
connection.

1. Define the JNDI data store. JNDI is provided by the hosting application server. For more
information about defining JNDI data sources in Oracle WebLogic Server, see "Using
DataSource Resource Definitions" in .

2. In the EDQ data store wizard, specify JNDI as the type of data store, and then specify the
JNDI name.

7.2 Connecting to an Oracle Database Using tnsnames.ora
You can configure EDQ to use an Oracle Transparent Network Substrate (TNS) data store
connection. To use this connection method, you specify a name from a tnsnames.ora file as
the data source when using the data sources wizard. Only the tnsnames.ora file is needed.
No other Oracle client software is needed.

7.2.1 To Configure EDQ to Connect Through TNS
To connect EDQ through TNS:

1. Set the oracle.net.tns_admin Java system property to a local directory that contains the
tnsnames.ora file.

2. Create a file named jvm.properties in your EDQ local configuration directory
(oedq_local_home by default) and add an entry similar to the following:
oracle.net.tns_admin = c:\\temp). This property may have been set already in the
application server when EDQ was installed.

For more information about the tnsnames.ora file, see "Configuring the Local Naming
Method" in .

7-1

7.3 Connecting to an Oracle Database Using Oracle Internet
Directory (LDAP)

You can configure EDQ to use an Oracle Lightweight Direct Access Protocol (LDAP)
data store connection by setting the required Java system properties. These properties
are:

dn.oracle.directory.servers = ldap://servername:port
dn.oracle.default.admin.context = dc=domaincontext1,dc=domaincontext2
The first property gives the location of your LDAP servers. The second property sets
the context within the LDAP tree. Together, these properties enable EDQ to construct
an Oracle and LDAP JDBC connection string, which looks similar to:

jdbc:oracle:thin:@ldap://servername:port/
unicode,cn=Oraclecontext,dc=domaincontext1,dc=domaincontext2

Chapter 7
Connecting to an Oracle Database Using Oracle Internet Directory (LDAP)

7-2

8
Configuring EDQ to Process XML Data Files

This chapter describes how can be configured to read and write XML data files.
This chapter includes the following sections:

• Using Simple XML Data Stores

• Using XML and Stylesheet Data Stores

You can use XML data files in snapshots to read and write the data contained in the file. A
snapshot is a staged copy of data in a data store that is used in one or more processes.
provides two types of data stores for working with XML data files: Simple XML and XML and
Stylesheet. Both are available for server-side and client-side data stores.

8.1 Using Simple XML Data Stores
Simple XML data stores can read and write XML files that have a simple 2-level structure in
which the top level tag represents the entity and the lower level tags represent the attributes
of the entity. XML files exported from Microsoft Access are an example.

Following is an example of a simple XML file format that could be used with :

<dataroot>
 <Person>
 <Id>1</Id>
 <FirstName>Fred</FirstName>
 <LastName>Bloggs</LastName>
 <DateOfBirth>1972-01-31T00:00:00.000+0000</DateOfBirth>
 <Weight>85</Weight>
 </Person>
 <Person>
 <Id>2</Id>
 <FirstName>Jane</FirstName>
 <LastName>Smith</LastName>
 <DateOfBirth>1985-07-16T00:00:00.000+0100</DateOfBirth>
 <Weight>63</Weight>
 </Person>
</dataroot>

8.1.1 Reading Simple XML Files
When reads Simple XML files the following occurs:

• The root element name is not used, so it can be anything.

• The record element name appears as the table name in the Table Selection page of the
Snapshot Wizard dialog.

8-1

• The lower level element names appear as the column names in the Column
Selection page of the Snapshot Wizard and therefore become EDQ attribute
names.

8.1.2 Writing Simple XML Files
When generating Simple XML files using an export to the data store, the name of the
data store defines the record XML element name. The element Person in the example
in Using Simple XML Data Stores shows how this appears in the XML.

The XML element names of the lower level tags are taken from the attribute names.
EDQ names are encoded to ensure that invalid XML is not generated. For example,
space characters in names are replaced by the character sequence _x0020_, so an
attribute named Date Of Birth would generate XML elements in the following format:

<Date_x0020_Of_x0020_Birth>

8.2 Using XML and Stylesheet Data Stores
When there is a requirement to work with XML of a different structure than that of
Simple XML, then you use the XML and Stylesheet data stores.

These data stores read and write XML conforming to the DN-XML schema and
optionally allow the use of a custom stylesheet to:

Chapter 8
Using XML and Stylesheet Data Stores

8-2

• Transform XML from a custom XML format to DN-XML during data snapshot

• Transform XML from DN-XML to a custom XML format during data export

For more information about XML stylesheets, see the W3C website found at http://
www.w3.org/Style/XSL/ and http://www.w3.org/standards/xml.

8.2.1 Using DN-XML
DN-XML is the format by which custom XML can be processed by .

An example of DN-XML is as follows:

<dn:data xmlns:dn="http://www.datanomic.com/2008/dnx">
 <dn:record skip="true">
 <dn:value name="Id" type="string"/>
 <dn:value name="FirstName" type="string"/>
 <dn:value name="LastName" type="string"/>
 <dn:value name="DateOfBirth" type="date"/>
 <dn:value name="Height" type="number"/>
 <dn:value name="Weight" type="number"/>
 </dn:record>
 <dn:record>
 <dn:value name="Id">1</dn:value>
 <dn:value name="FirstName">Fred</dn:value>
 <dn:value name="LastName">Bloggs</dn:value>
 <dn:value name="DateOfBirth">1972-01-31</dn:value>
 <dn:value name="Height">1.85</dn:value>
 <dn:value name="Weight">85</dn:value>
 </dn:record>
 <dn:record>
 <dn:value name="Id">2</dn:value>
 <dn:value name="FirstName">Jane</dn:value>
 <dn:value name="LastName">Smith</dn:value>
 <dn:value name="DateOfBirth">1985-07-16</dn:value>
 <dn:value name="Height">1.65</dn:value>
 <dn:value name="Weight">63</dn:value>
 </dn:record>
</dn:data>

This is the equivalent DN-XML for the example given in Using Simple XML Data Stores.

Note that the attribute names are defined differently in DN-XML compared with Simple XML.
Because DN-XML uses attribute content to specify attribute names, it is possible to create
attributes with spaces and other special characters in their names.

In the previous example, the <dn:record skip="true"> XML element and its contents allows
the definition of the structure of the source including the field names and their data types. All
other record elements define a row of data in . This is analogous to the header row in a
comma-separated values file. The following data types are permitted:

• string

• date

• number

Chapter 8
Using XML and Stylesheet Data Stores

8-3

http://www.w3.org/Style/XSL/
http://www.w3.org/Style/XSL/
http://www.w3.org/standards/xml

Note:

Date values in DN-XML files should be specified in the XSD date format (ISO
8601). For example, '2008-10-31T15:07:38.6875000-05:00' or without the
time component simply as '2008-10-31'.

Within a data record, value elements are used to specify attribute values for the
record. The name attribute is used to specify the attribute in question and the text
content of the attribute specifies the value for that attribute. For example, the XML
fragment, <dn:value name="FirstName">Fred</dn:value>, assigns the value 'Fred' to
the attribute 'FirstName'.

DN-XML files can be read in to by creating an XML and Stylesheet data store and
specifying the location of the XML source file; the XSLT file option should be left blank:

Similarly, can write DN-XML files by exporting data to an XML and Stylesheet data
store with the XSLT option left blank.

8.2.2 Reading Custom XML Files
XML files in custom formats can be read by using the XML and Stylesheet data store
configured to use a custom XML stylesheet (XSLT) to transform from the custom
schema to the DN-XML schema during data snapshotting.

Following is an example custom XML file that could be read into :

<crmdata>
 <contacts>
 <contact id="1">
 <name>

Chapter 8
Using XML and Stylesheet Data Stores

8-4

 <firstname>Fred</firstname>
 <surname>Bloggs</surname>
 </name>
 <dob>1972-01-31</dob>
 <properties>
 <property name="height" value="1.85"/>
 <property name="weight" value="85"/>
 </properties>
 </contact>
 <contact id="2">
 <name>
 <firstname>Jane</firstname>
 <surname>Smith</surname>
 </name>
 <dob>1985-07-16</dob>
 <properties>
 <property name="height" value="1.68"/>
 <property name="weight" value="63"/>
 </properties>
 </contact>
 <contacts>
</crmdata>

The following XML stylesheet demonstrates one way that the preceding example custom
XML can be transformed into a suitable DN-XML format:

<xsl:stylesheet version="1.0" xmlns:dn="http://www.datanomic.com/2008/dnx"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:fn="http://www.w3.org/2005/02/xpath-functions">

 <xsl:output method="xml"/>

 <xsl:template match="/">
 <dn:data>

 <!-- Write out the header record -->
 <dn:record skip="true">
 <dn:value name="Id" type="string"/>
 <dn:value name="FirstName" type="string"/>
 <dn:value name="LastName" type="string"/>
 <dn:value name="DateOfBirth" type="date"/>
 <dn:value name="Height" type="number"/>
 <dn:value name="Weight" type="number"/>
 </dn:record>

 <!-- Get each contact record -->
 <xsl:apply-templates select="/crmdata/contacts/contact"/>

 </dn:data>
 </xsl:template>

 <xsl:template match="contact">

 <!-- Write out a data record -->
 <dn:record>
 <dn:value name="Id"><xsl:value-of select="@id"/></dn:value>
 <dn:value name="FirstName"><xsl:value-of select="name/firstname"/></dn:value>
 <dn:value name="LastName"><xsl:value-of select="name/surname"/></dn:value>
 <dn:value name="DateOfBirth"><xsl:value-of select="dob"/></dn:value>
 <dn:value name="Height">

Chapter 8
Using XML and Stylesheet Data Stores

8-5

 <xsl:value-of select="properties/property[@name='height']/@value"/>
 </dn:value>
 <dn:value name="Weight">
 <xsl:value-of select="properties/property[@name='weight']/@value"/>
 </dn:value>
 </dn:record>

 </xsl:template>

 </xsl:stylesheet>

8.2.2.1 Configuring the Data Store
The data can be read in to by creating an XML and Stylesheet data store and
specifying the location of the XML source file and the XSLT file (stylesheet).

reads the source XML file in chunks for efficiency breaking up the file on record
boundaries. By default uses the element immediately below the root as the record
element. If this is not the case in the source XML file then an XPath-style expression to
the record element from the root must be specified.

8.2.3 Writing Custom XML Files
XML files in custom formats can be written by using the XML and Stylesheet data
store configured to use a custom XSLT to transform from the DN-XML schema to the
custom target schema the during data export.

Following is an example target custom XML format that needs to be generated by :

<Report>
 <Person Id="1" FullName="Fred Bloggs"/>
 <Person Id="2" FullName="Jane Smith"/>
</Report>

Chapter 8
Using XML and Stylesheet Data Stores

8-6

The following XML stylesheet demonstrates one way in which the DN-XML format can be
transformed into the target custom XML format:

<xsl:stylesheet version="1.0"
 xmlns:dn="http://www.datanomic.com/2008/dnx"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:fn="http://www.w3.org/2005/02/xpath-functions">

 <xsl:output method="xml"/>

 <xsl:template match="/">
 <Report>
 <xsl:apply-templates select="/dn:data/dn:record"/>
 </Report>
 </xsl:template>

 <xsl:template match="dn:record">
 <Person>
 <xsl:attribute name="Id">
 <xsl:value-of select="dn:value[@name = 'Id']"/>
 </xsl:attribute>
 <xsl:attribute name="FullName">
 <xsl:value-of select="dn:value[@name = 'FirstName']"/>
 <xsl:text> </xsl:text>
 <xsl:value-of select="dn:value[@name = 'LastName']"/>
 </xsl:attribute>
 </Person>
 </xsl:template>

</xsl:stylesheet>

8.2.3.1 Configuring the Data Store
The data can be written by by creating an XML and Stylesheet data store and specifying the
destination for the custom XML file and XSLT (stylesheet) file.

Chapter 8
Using XML and Stylesheet Data Stores

8-7

9
Using the EDQ Configuration API

EDQ provides a set of REST-based interfaces that enable you to perform various
configuration tasks programmatically, using any preferred programming language.
In this chapter, the EDQ service is assumed to be installed at:

http://edqserver:8001/edq
This chapter provides a detailed description of these interfaces and the operations that can
be performed using these interfaces. It includes the following topics:

• REST Interface for Projects

• REST Interface for Data Stores

• REST Interface for Snapshots

• REST Interface for Processes

• REST Interfaces for Jobs

• REST Interface for Reference Data

• REST Interface for Web Services

• Example: Profiling from an External Application

9.1 REST Interface for Projects
The REST interface for working with EDQ projects is

http://edqserver:8001/edq/config/projects
This interface allows you to perform the following tasks:

• Retrieving a List of EDQ Projects

• Creating a Project

• Deleting a Project

9.1.1 Retrieving a List of EDQ Projects
To get a list of all projects that are available with the current EDQ installation, you need to
simply run an HTTP GET operation on the REST interface for EDQ projects, as shown in the
following code:

GET http://edqserver:8001/edq/config/projects
When this code runs successfully, a list of projects is generated in JSON format:

[
 {
 "id":10,
 "name":"My Project"
 },

9-1

 {
 "id":12,
 "name":"Scratch Project"
 }
]

9.1.2 Creating a Project
To create a new project, you need to create a JSON object that describes the project
to be created and then send it in the request body of the REST call using an HTTP
POST.

For example:

POST http://edqserver:8001/edq/config/projects

{ "name" : "Profile Customer Names" ,
 "description" : "Profile my customers" }

This code returns a response of type "OK" with a response body similar to the
following:

{"id":14,"name":"Profile Customer Names"}

However, if an error occurs while creating a project, then a response of type "500
Internal Server Error" is generated, along with an error message similar to the
following:

"Profile Customer Names" already exists (Code: 205,130)

9.1.3 Deleting a Project
To delete a project, you need to call HTTP DELETE on the REST interface and specify
the project you need to delete, as a query parameter.

There are two ways to specify a project for deletion:

• By ID using pid=<NN>
• By name using pname=<Name>
To delete a project by ID, do the following:

DELETE http://edqserver:8001/edq/config/projects?pid=14

To delete a project by name, do the following:

DELETE http://edqserver:8001/edq/config/projects?pname=Profile%20Customer%20Names

In both cases, the result is a string similar to the following:

Project Profile Customer Names deleted

If an invalid project is specified then a response of type 406 'Not Acceptable' is
returned with an appropriate string message, for example:

Bad project ID "14" (Code: 205,454)

or

No project named "Profile Customer Names" (Code: 205,453)

Chapter 9
REST Interface for Projects

9-2

9.2 REST Interface for Data Stores
You can query and manipulate data stores in EDQ, using the following interface:

http://edqserver:8001/edq/config/datasources

This interface allows you to perform the following tasks:

• Retrieving a List of Data Stores

• Creating a Data Store

• Deleting a data store

9.2.1 Retrieving a List of Data Stores
To get a list of data stores, call the interface with a valid project name.

For example:

GET http://edqserver:8001/edq/config/datasources?pid=14

If successful, an OK response is returned along with a list of data stores in the response
body.

For example:

[
 {
 "client":false,
 "id":36,
 "name":"Individuals",
 "properties":[
 {
 "name":"quote",
 "value":"\""
 },
 {
 "name":"encoding",
 "value":"ISO-8859-1"
 },
 {
 "name":"file",
 "value":"Customer/customerindividuals.csv"
 },
 {
 "name":"cols",
 "value":""
 },
 {
 "name":"project",
 "value":"59"
 },
 {
 "name":"hdr",
 "value":"1"
 },
 {
 "name":"usepr",
 "value":"0"

Chapter 9
REST Interface for Data Stores

9-3

 },
 {
 "name":"skip",
 "value":""
 },
 {
 "name":"sep",
 "value":","
 }
],
 "species":"servertxt"
 }
]

9.2.2 Creating a Data Store
To create a data store you need to create a JSON object that describes the data store
and then POST it to the endpoint specifying the project (by name or id) that will own
the data store.

For example:

A server-based .csv file that has been placed in the landing area.

POST http://edqserver:8001/edq/config/datasources?pid=14

{
 "client":false,
 "name":"Individuals",
 "properties":[
 {
 "name":"quote",
 "value":"\""
 },
 {
 "name":"encoding",
 "value":"ISO-8859-1"
 },
 {
 "name":"file",
 "value":"Customer/customerindividuals.csv"
 },
 {
 "name":"hdr",
 "value":"1"
 },
 {
 "name":"usepr",
 "value":"0"
 },
 {
 "name":"sep",
 "value":","
 }
],
 "species":"servertxt"
}

A server-based Oracle schema:

Chapter 9
REST Interface for Data Stores

9-4

POST http://edqserver:8001/edq/config/datasources?pid=14

{
 "client":false,
 "name":"Staging",
 "properties":[
 {
 "name":"service",
 "value":"sid"
 },
 {
 "name":"sid",
 "value":"orcl"
 },
 {
 "name":"user",
 "value":"staging"
 },
 {
 "name":"port",
 "value":"1521"
 },
 {
 "name":"password",
 "value":"staging"
 },
 {
 "name":"host",
 "value":"localhost"
 }
],
 "species":"oracle"
}

If successful, an OK response is returned along with the name and ID of the data store, as
shown in the following example:

{"id":42,"name":"Staging"}

The value of the species parameter varies depending on the type of data store being used in
a project. For example, if you are using the Oracle database, the value of species would be
"oracle". Each species parameter has its own set of properties.

The following table lists the properties for the species "oracle":

Property Type Required Description

host String Yes The machine hosting the database

port Number Yes Port number of the database

sid String Yes Database Identifier

service Choice of sid or srv Yes Whether the database identifier above is a
SID or a SERVICE (srv) name

user String Yes User to log in as

password String No Password for the user

schema String No The schema to use (usually left empty)

The following table lists the properties for the species "servertext":

Chapter 9
REST Interface for Data Stores

9-5

Property Type Required Description

file String Yes The name and location of the file in the
landing area

userpr Boolean Yes Use project specific landing area

hdr Boolean Yes Treat the first line as header

sep String No The field delimiter

quote Choice No Quote character

cols Integer No Number of columns to read

encoding String Yes The character encoding of text

skip Integer No The number of the lines to skip at the
start

Note:

For Boolean type use 0 for false and 1 for true.

For quote, the value needs to be a double quote like this ""\"", or a single
quote like this "'", or an empty value like this "".

For the species, "other", which uses a JDBC connection, the properties are listed in
the following table:

Property Type Required Description

driver String Yes The JDBC driver java class

url String Yes The address of the database

user String No The user to log in as

password String No The user's password

9.2.3 Deleting a data store
To delete a data store call HTTP DELETE on the endpoint by specifying either a data
store id or a valid project (by name or id) and a data store name, for example:

DELETE http://edqserver:8001/edq/config/datasources?id=42

or

DELETE http://edqserver:8001/edq/config/datasources?pid=14&name=Staging

When the deletion is successful, an OK response is returned without any response
body.

9.3 REST Interface for Snapshots
The REST interface for snapshots is:

Chapter 9
REST Interface for Snapshots

9-6

http://edqserver:8001/edq/config/snapshots

It allows you to perform the following tasks:

• Retrieving a List of Snapshots

• Creating a Snapshot

• Deleting a Snapshot

9.3.1 Retrieving a List of Snapshots
To retrieve a list of snapshots specify a valid project, for example:

GET http://edqserver:8001/edq/config/snapshots?pid=14

or

GET http://edqserver:8001/edq/config/snapshots?pname=Profile%20Customer%20Names

If successful, it returns an OK response with a list of snapshots in the response body.

For example:

[
 {
 "columns":[
 "TITLE",
 "FULLNAME",
 "GIVENNAMES",
 "FAMILYNAME",
 "NAMETYPE",
 "PRIMARYNAME",
 "ADDRESS1",
 "ADDRESS2",
 "ADDRESS3",
 "ADDRESS4",
 "CITY",
 "STATE",
 "POSTALCODE"
],
 "datasource":"Individuals",
 "name":"Individuals",
 "table":"customerindividuals.csv"
 }
]

9.3.2 Creating a Snapshot
To create a snapshot, you need to create a JSON object that describes the snapshot and
specify the project where it will be created.

For example:

POST http://edqserver:8001/edq/config/snapshots?pid=14

{
 "name":"Individuals",
 "description":"Customer data",
 "datasource":"Individuals",
 "table":"customerindividuals.csv",

Chapter 9
REST Interface for Snapshots

9-7

 "columns":[
 "TITLE",
 "FULLNAME",
 "GIVENNAMES",
 "FAMILYNAME",
 "NAMETYPE",
 "PRIMARYNAME",
 "ADDRESS1",
 "ADDRESS2",
 "ADDRESS3",
 "ADDRESS4",
 "CITY",
 "STATE",
 "POSTALCODE"
],
 "sampling":{
 "number":100,
 "offset":0,
 "ordering":"ascending",
 "count":"true"
 }
}

If successful, an OK response is returned with the snapshot ID in the response body.

For example:

{"id":68,"name":"Individuals"}

9.3.3 Deleting a Snapshot
To delete a snapshot, you need to specify either a snapshot ID or a valid project and
snapshot name.

For example:

DELETE http://edqserver:8001/edq/config/snapshots?id=68

or

DELETE http://edqserver:8001/edq/config/snapshots?pid=14&name=Individuals

or

DELETE http://edqserver:8001/edq/config/snapshots?
pname=Profile%20Customer%20Names&name=Individuals

When the specified snapshot is deleted successfully, it returns an OK response with a
string message in the response body, which is similar to the following:

Snapshot Individuals deleted

9.4 REST Interface for Processes
The interface for EDQ processes is:

http://edqserver:8001/edq/config/processes

Using this interface, you can perform the following tasks:

Chapter 9
REST Interface for Processes

9-8

• Retrieving a List of Processes

• Deleting a Process

The following sub-level interface allows you to create a simple profiling process:

http://edqserver:8001/edq/config/processes/simpleprocess

See Creating a Simple Process section for details.

9.4.1 Retrieving a List of Processes
To get a list of processes in a project, you need to call HTTP GET on the processes interface
with a valid project name.

Example:

GET http://edqserver:8001/edq/config/processes?pid=14

or

GET http://edqserver:8001/edq/config/processes?pname=Profile%20Customer%20Names

An OK response is returned along with a list of processes.

Example:

[{"name":"Profile Names","id":31}]

If the request is not successful, an error response would either be a 404 'Not Found' or 500
'Internal Server Error' along with a string in the response body describing the error.

9.4.2 Deleting a Process
To delete a process, specify either the process ID, or the project ID or name, and the process
name. For example:

DELETE http://edqserver:8001/edq/config/processes?id=31

or

DELETE http://edqserver:8001/edq/config/processes?pid=14&name=Profile%20Names

or

DELETE http://edqserver:8001/edq/config/processes?
pname=Profile%20Customer%20Names&name=Profile%20Names

When the deletion is successful, an OK response is returned with a string message and
response body, as shown in the following example:

Process Profile Names deleted

If the deletion is not successful, then either of the following errors along with a response
string are returned:

• 404 "Not Found"

• 500 "Internal Server Error"

Chapter 9
REST Interface for Processes

9-9

9.4.3 Creating a Simple Process
The interface currently only supports creation of simple profiling processes. To create
a simple process, you need to create a JSON object that describes the process you
want to create and specify the project where it should be created. The HTTP POST
operation is used to post this information to the interface.

For example:

POST http://edqserver:8001/edq/config/processes/simpleprocess?pid=14
{
 "name":"Profile Names",
 "description":"Profile Individuals Names",
 "reader":{
 "name":"Read from Individuals",
 "stageddata":"Individuals"
 },
 "processors":[
 {
 "name":"Do Quickstats",
 "type":"dn:quickstatsprofiler",
 "columnlist":[
 "GivenNames",
 "FamilyName"
]
 },
 {
 "name":"Do Frequency Profiling",
 "type":"dn:attributefrequencycountsprofiler"
 }
]
}

When the simple process is created successfully, an OK response is returned along
with the name and ID of the process in the response body.

For example:

{"id":33,"name":"Profile Names"}

An error response would be generated in the following cases:

• 404 'Not Found' if the project does not exist

• 400 'Bad Request' if the JSON object is malformed

• 500 'Internal Server Error' if a server error occurs during creation, along with a
string in the response body describing the error.

The full list of supported processors is mentioned in the following table:

Processor Type

Quick Stats Profiler dn:quickstatsprofiler

Data Types Profiler dn:datatypesprofiler

Max/Min Profiler dn:maxandminprofiler

Length Profiler dn:lengthprofiler

Chapter 9
REST Interface for Processes

9-10

Processor Type

Record Completeness Profiler dn:recordcompletenessprofiler

Character Profiler dn:characterprofiler

Frequency Profiler dn:attributefrequencycountsprofiler

Patterns Profiler dn:attributepatternsprofiler

9.5 REST Interfaces for Jobs
The /config/jobs interface performs the following tasks on EDQ jobs:

• Retrieving a List of Jobs

• Deleting a Job

• Creating a Simple Job

The URL for this interface is similar to the following:

http://edqserver:8001/edq/config/jobs
There is another REST interface, /jobs to perform the following tasks:

• Running a Job

• Cancelling a Running Job

• Getting the Status of a Job

• Getting the Details of All Running Jobs

The URL for this interface is similar to the following:

http://edqserver:8001/edq/jobs

9.5.1 Retrieving a List of Jobs
You can get a list of jobs for a project using HTTP GET. You must specify at least one project
(there could be more than one project) as the query parameter.

The project can be specified by using the pid or pname in the query parameter, as shown in
the following example:

GET http://edqserver:8001/edq/config/jobs?pid=14
or

GET http://edqserver:8001/edq/config/jobs?pname=Profile%20Customer%20Names
The response to this operation would list all the jobs for the specific project or projects, as
shown in the following example:

[
 {
 "id":99,
 "name":"Profile Names Job"
 },
 {
 "id":98,

Chapter 9
REST Interfaces for Jobs

9-11

 "name":"Profile Individuals Job"
 }
]

9.5.2 Deleting a Job
To delete a job you need to either specify a valid job ID or a valid project (using one of
the query parameters) and a valid job name.

To delete a job by job ID:

DELETE http://edqserver:8001/edq/config/jobs?id=99
To delete a job by job name:

DELETE http://edqserver:8001/edq/config/jobs?
pid=14&name=Profile%20Names%20Job
or

DELETE http://edqserver:8001/edq/config/jobs?
pname=Profile%20Customer%20Names&name=Profile%20Names%20Job
When the job is deleted successfully, a message appears to confirm the deletion:

Job Profile Names Job deleted

9.5.3 Creating a Simple Job
A simple job has a single phase and contains a single process. To create a simple job,
you need to specify a valid project that owns the job (using one of the query
parameters). Also, you need to create a JSON object describing the job to create.

For example:

POST http://edqserver:8001/edq/config/jobs/simplejob?pid=14
{
"name" : "Profile Names Job" ,
"process" : "Profile Names" ,
"description" : "Profile Customer Names"
"resultsdrilldown" : "none"
}

The attribute resultsdrilldown can have any of the following values: none, sample,
limited, all. However, the sample and limited values have the same implication.

9.5.4 Running a Job
With the /jobs/run interface you can run a named job using HTTP POST. The
required parameters are the project name or project ID and the job name. Optionally,
you can specify run label and overrides.

The following example shows the URL and associated payload used with running a job
named "Real-time Start All" for the project "Profile Customer Name":

POST http://edqserver:8001/edq/jobs/run

{
 "project":"Profile Customer Name",

Chapter 9
REST Interfaces for Jobs

9-12

 "job":"Real-time Start All",
 "runlabel": "uk",
 "runprofile": "profiling",
 "overrides":[
 {
 "name":"a",
 "value":"b"
 },
 {
 "name":"c",
 "value":"d"
 }
]
}

The JSON response to this request would be similar to the following:

{
"executionID": 2,
"runeverywhere": false
}

In this example, the job "Real-time Start All" returns the "runeverywhere" value as false,
which implies that this job can run only in one place. In such cases, an executionID is
returned for the job. This executionID can be used to cancel a job and query a job's status.

However, if the value of "runeverywhere" were true, then only the "jobtype" would be
returned in the JSON response. For "runeverywhere" jobs, cancel and query calls are not
supported.

9.5.5 Cancelling a Running Job
To cancel a running job, the HTTP POST operation is used. The interface URL is similar to
the following:

POST http://edqserver:8001/edq/jobs/cancel
You only need the executionID of the job to cancel it. The following example illustrates
cancelling a job with the executionID 12.

{
"executionID": 12,
"type" : "immediate"
}

The following options are available with the "type" parameter:

• immediate: This option cancels the job as early as possible.

• keepresults: This option cancels the job but retains the results that have been generated
so far.

• shutdown: This options is used to cancel or shutdown a job that runs a web service.

No response is returned when a job is cancelled successfully.

Chapter 9
REST Interfaces for Jobs

9-13

9.5.6 Getting the Status of a Job
To get the status of an individual job, the executionID is passed in the URL. The URL
looks similar to the following:

GET http://edqserver:8001/edq/jobs/status?xid=executionID
For example, if the execution ID of the job "Real-time Start All" is 14, the URL
would be:

GET http://edqserver:8001/edq/jobs/status?xid=14
The JSON response would be as follows:

{
 "executionid": 14,
 "project": "Profile Customer Name",
 "job": "Real-time START ALL",
 "server": "edqserver",
 "starttime": "2016-04-20T08:44:48+01:00",
 "endtime": "2016-04-20T08:45:22+01:00",
 "complete": true,
 "status": "finished"}

In this example, the "Real-time Start All" job triggers other jobs. Once all the jobs
in the project are triggered, the status of the executionID 14 shows finished.
However, the jobs that are triggered by the "Real-time Start All" job, may still show
the status as running.

9.5.7 Getting the Details of All Running Jobs
The status of all running jobs in a project can be retrieved using the /jobs/running
interface, which would be represented by a URL similar to the following:

GET http://edqserver:8001/edq/jobs/running
The following example shows the output in JSON format:

{
 "executionid": 4,
 "project": "Profile Customer Name",
 "job": "Real-time Individual Clean",
 "server": "edqserver",
 "starttime": "2016-04-19T10:05:30.74+01:00",
 "endtime": "2016-04-19T16:05:41+01:00",
 "complete": false,
 "status": "running"
 }

Optionally, you can provide other query parameters such as project name, job name,
and run label. For jobs without a run label, omit the run label parameter and set it to
empty filter jobs with no run label. The URL in this case would be similar to the
following:

/jobs/running?[project=project[&job=job][&runlabel=]

Chapter 9
REST Interfaces for Jobs

9-14

9.6 REST Interface for Reference Data
Reference data can exist within a project or outside of all projects at system level. To refer to
reference data at system level, specify the project ID as 0 or pid=0.

The interface for reference data is:

http://edqserver:8001/edq/config/referencedata
The interface for reference data content is:

http://edqserver:8001/edq/config/referencedata/contents
You can use this interface to perform the following tasks:

• Retrieving a List of Reference Data

• Retrieving Contents of Reference Data

• Creating Reference Data

• Deleting Reference Data

9.6.1 Retrieving a List of Reference Data
To get a list of all reference data defined at system level specify the project using either of the
following parameters:

By pid = 0:

GET http://edqserver:8001/edq/config/referencedata?pid=0
By pname:

GET http://edqserver:8001/edq/config/referencedata?
pname=Profile%20Customer%20Names
A list of JSON objects, which represent reference data, are returned. The output looks similar
to the following:

[
 {
 "activerows":2,
 "category":"charactertokeymap",
 "columns":[
 {
 "key":true,
 "name":"Name",
 "type":"STRING",
 "unique":true
 },
 {
 "name":"Value",
 "type":"STRING",
 "value":true
 }
],
 "id":39,
 "name":"Tokens",
 "totalrows":2

Chapter 9
REST Interface for Reference Data

9-15

 }
]

9.6.2 Retrieving Contents of Reference Data
To list the contents of the reference data, the reference data contents interface is used.
You must specify a valid project or use pid=0 for system level.

For example:

GET http://edqserver:8001/edq/config/referencedata/contents?pid=0&id=40
or

GET http://edqserver:8001/edq/config/referencedata/contents?
pid=0&name=ShortNameMap
This returns information about the reference data rows, as shown in the following code
snippet:

{
 "activerows":4,
 "columns":[
 {
 "key":true,
 "name":"ShortName",
 "type":"STRING",
 "unique":true,
 "value":true
 },
 {
 "key":true,
 "name":"LongName",
 "type":"STRING",
 "value":true
 }
],

"description":"Map short names to long names",
 "id":43,
 "name":"ShortNameMap",
 "rows":[
 {
 "data":[
 "Jeff",
 "Jeffrey"
]
 },
 {
 "data":[
 "Jon",
 "Jonathan"
]
 }
],
 "totalrows":4
}

Chapter 9
REST Interface for Reference Data

9-16

9.6.3 Creating Reference Data
To create reference data you need to create a JSON object describing the reference data,
which you will post to the interface specifying either pid=0 for system level, or a valid project
name.

For example:

POST
http://edqserver:8001/edq/config/referencedata?pname=Profile%20Customer%20Names

{
"name" : "ShortNameMap",
"description" : "Map short names to long names",
"columns":
 [
 {
 "key": true,
 "name": "ShortName",
 "type": "STRING",
 "unique": true,
 "value": true
 },
 {
 "key": true,
 "name": "LongName",
 "type": "STRING",
 "value": true
 }
],
"rows":
 [
 {
 "data":
 [
 "Jeff",
 "Jeffrey"
]
 },
 {
 "data":
 [
 "Jon",
 "Jonathan"
]
 }
]
}

On successful creation, a response similar to the following is returned:

{"id":40,"name":"ShortNameMap"}

9.6.4 Deleting Reference Data
To delete reference data, you need to call HTTP DELETE on the reference data interface,
with either a valid reference data ID or a valid project (including pid=0 for system level) and a
valid reference data name.

Chapter 9
REST Interface for Reference Data

9-17

To delete by reference data ID:

DELETE http://edqserver:8001/edq/config/referencedata?id=40

To delete by reference data name:

DELETE http://edqserver:8001/edq/config/referencedata?pid=0&name=ShortNameMap

After a successful deletion, the response returns a string message, such as the
following:

Reference data ShortNameMap deleted

9.7 REST Interface for Web Services
The interface for web services is:

http://edqserver:8001/edq/config/webservices
It allows you to perform the following tasks when you call the respective get, post, or
delete operations:

• Retrieving a List of Web Services

• Creating or Updating a Web Service

• Deleting a Web Service

9.7.1 Retrieving a List of Web Services
You can get a list of web services defined for a valid project by using the HTTP GET
operation on the web services interface. To get a list of web services, specify a valid
project using either the pid or pname parameter.

For example:

GET http://edqserver:8001/edq/config/webservices?pid=14&pid=20
A successful call returns a list of web services, and their input and output interfaces, in
the response body:

[
 {
 "id":1,
 "inputs":{
 "attributes":[
 {
 "name":"Name",
 "type":"STRING"
 }
],
 "multirecord":false
 },
 "name":"Long Names",
 "outputs":{
 "attributes":[
 {
 "name":"LongName",
 "type":"STRING"
 }
],

Chapter 9
REST Interface for Web Services

9-18

 "multirecord":false
 }
 }
]

9.7.2 Creating or Updating a Web Service
You can create and update web services by creating an appropriate JSON object, which you
then POST to the web services interface.

To create a web service you need to specify a valid project (by name or id), as shown in the
following example:

POST http://edqserver:8001/edq/config/webservices?pid=14

{
 "name":"Name Gender",
 "inputs":{
 "attributes":[
 {
 "name":"Name",
 "type":"STRING"
 }
],
 "multirecord":false
 },
 "outputs":{
 "attributes":[
 {
 "name":"Gender",
 "type":"STRING"
 }
],
 "multirecord":false
 }
}

If successful, the name and ID of the web service is returned in the response body.

Example:

{"id":4,"name":"Name Gender"}
To update a web service, you need a JSON object that is identical in structure, but with an
additional ID attribute to identify the existing web service. For an update you do not specify a
project.

Example:

POST http://edqserver:8001/edq/config/webservices

{
 "id":4,
 "name":"Name Gender",
 "inputs":{
 "attributes":[
 {
 "name":"First Name",
 "type":"STRING"
 },
 {

Chapter 9
REST Interface for Web Services

9-19

 "name":"Last Name",
 "type":"STRING"
 }
],
 "multirecord":false
 },
 "outputs":{
 "attributes":[
 {
 "name":"Gender",
 "type":"STRING"
 }
],
 "multirecord":false
 }
}

If successful, the name and ID of the web service is returned in the response body, as
shown in the following example:

{"id":4,"name":"Name Gender"}

9.7.3 Deleting a Web Service
To delete a web service call HTTP DELETE on the web service interface. Specify
either the web service ID or a valid project (by name or ID) and the web service name.

For example:

DELETE http://edqserver:8001/edq/config/webservices?id=5
or

DELETE http://edqserver:8001/edq/config/webservices?
pid=14&name=Name%20Gender
If successful, an OK response is returned but without a response body.

9.8 Example: Profiling from an External Application
Consider a scenario where an external application needs to profile data in a table in an
Oracle database, using EDQ. In such a case, you can programmatically profile this
table using the REST-based APIs. For this example, a CUSTOMERS table in a
CustomerDB database will be used.

To generate and run the profiling job on the CUSTOMERS table, the following tasks
are performed:

1. Create a project by using the following URL:

POST http://edqserver:8001/edq/config/projects
The project name (pname) is "Profile Customer". The JSON code is:

{
"name":"Profile Customer",
"description": "Profiling customers in the CUSTOMERS table"
}

Chapter 9
Example: Profiling from an External Application

9-20

2. Create a data store using an Oracle database, CustomerDB, by using the following URL:

POST http://edqserver:8001/edq/config/datasources?pid=4
An example JSON code to create the data store is:

{
 "client":false,
 "name":"CustomersDB",
 "properties":[
 {
 "name":"service",
 "value":"sid"
 },
 {
 "name":"sid",
 "value":"orcl"
 },
 {
 "name":"user",
 "value":"CRM"
 },
 {
 "name":"port",
 "value":"1521"
 },
 {
 "name":"password",
 "value":"welcome123"
 },
 {
 "name":"host",
 "value":"localhost"
 }
],
 "species":"oracle"
}

Note:

To determine the pid or the project ID for the project "Profile Customer", use the
HTTP GET operation with the URL:

GET http://edqserver:8001/edq/config/projects

3. Create a snapshot by using the following URL:

POST http://edqserver:8001/edq/snapshots?pid=4
The JSON code for creating the snapshot is:

{
 "name":"CustomersDB.Customers",
 "description":"Customer details",
 "datasource":"CustomersDB",
 "table":"Customers",
 "columns":[
 "ID",
 "FULLNAME",
 "GIVENNAME",
 "FAMILYNAME",

Chapter 9
Example: Profiling from an External Application

9-21

 "Street",
 "City",
 "State",
 "PostalCode",
 "State",
 "Phone",
 "Cell",
 "Work",
 "eMail",
 "DoB",
 "Gender",
 "Active",
 "CreditLimit",
 "StartDate",
 "EndDate"
],
 "sampling":{
 "number":100,
 "offset":0,
 "ordering":"ascending",
 "count":"true"
 }
}

The result for this is displayed as:

{
 "id": 85,
 "name": "CustomersDB.Customers"
}

The snapshot with the name "CustomersDB.Customers" is created.

4. Create a simple process by using the following URL:

POST http://edqserver:8001/edq/config/processes/simpleprocess?pid=4
For this example, a simple process is created with a Quickstats Profiler and a
Frequency Profiler, both profiling only the Name fields. This can be done using
the following example JSON.

{
 "name":"Profile Names",
 "description":"Profile Customer Names",
 "reader":{
 "name":"Read from Customers",
 "stageddata":"Connection to Customers"
 },
 "processors":[
 {
 "name":"Do Quickstats",
 "type":"dn:quickstatsprofiler",
 "columnlist":[
 "GIVENNAME",
 "FAMILYNAME"
]
 },
 {
 "name":"Do Frequency Profiling",
 "type":"dn:attributefrequencycountsprofiler"
 }

Chapter 9
Example: Profiling from an External Application

9-22

]
}

The response to this request is:

{
 "id": 267,
 "name": "Profile Names"
}

5. Create a simple job by using the following URL:

POST http://edqserver:8001/edq/jobs/simplejob?pid=4
{
 "name":"Profile Customer Job",
 "process":"Profile Names",
 "description":"Profiling Customer Names",
 "resultsdrilldown":"none"
}

The response to the request is:

{
 "id": 211,
 "name": "Profile Customer Job"
}

6. Run the job using the following URL:

POST http://edqserver:8001/edq/jobs/run
The JSON code for running the job "Profile Customer Job", which in turn would run the
profiling process, is:

{
"project":"Profile Customer",
"job":"Profile Customer Job"
}

The response is:

{
 "executionID": 20,
 "runeverywhere": false
}

Once this job is running, you can check the status of this execution of the job using the
following URL:

GET http://edqserver:8001/edq/jobs/status?xid=20
Running this URL displays the status of the job, as shown in the following code:

{
 "complete": true,
 "endtime": "2016-04-29T14:05:41+01:00",
 "executionid": 1,
 "job": "Profile Customer Job",
 "project": "Profile Customer",
 "server": "edq_server1",
 "starttime": "2016-04-29T14:05:38+01:00",
 "status": "finished"
}

Chapter 9
Example: Profiling from an External Application

9-23

If required, you can cancel the job using the following URL:

POST http://edqserver:8001/edq/jobs/cancel
The JSON code to cancel a job is:

{
"executionID": 12345,
"type" : "immediate"
}

This would cancel the job instantly, without saving the results. For other options that
can be used with "type", see Cancelling a Running Job.

To log in to EDQ Director to view the results of a profiling job that was executed
successfully, use the following URL:

http://edqserver:8001/edq/blueprints/director/jnlp?
projectid=1&processid=1&processornum=2
The projectid and processid are the same that are generated using the
corresponding REST API calls and the processornum value is set to 2, which is the
first processor after the reader.

This URL opens the Director UI with the focus on the first profiling processor in the job
so that its results can be viewed immediately.

An external application may include an option to remove generated jobs, which would
execute calls to the relevant deletion calls. The simplest version of this is to delete the
whole project. For details on deleting a project, see Deleting a Project.

Chapter 9
Example: Profiling from an External Application

9-24

10
Using REST APIs for Importing and Exporting
Configuration Objects

EDQ 12.2.1.4.4 and later provides a set of REST-based interfaces to automate transfer of
configuration between EDQ environments. You can use these REST APIs to package, export,
and import the following configuration objects:

• Projects

• Global Reference Data

• Global Data Stores

• Global Published Processors

• Stored Credentials

• Case Sources

• Case Workflows

• Case Permissions

The package file that is written and read by the APIs is in ZIP format. You can encrypt the
configuration objects and stored credentials using a password supplied in the request
payload.

This chapter provides a detailed description of these interfaces and the operations that can
be performed using these interfaces. It includes the following topics:

• REST Interface for Packaging Configuration

• JSON Payload Format

• Packaging Task Status Result Format

• Packaging REST API Triggers

10.1 REST Interface for Packaging Configuration
The REST interface for working with EDQ packaging, exporting, and importing configuration
is

http://edqserver:port/edq/package
This interface allows you to perform the following tasks:

• Exporting configuration
You must have the Package functional permission to package and export configuration
objects. If case management objects are included in the export, you must have access to
the Case Management Administration application.

To package and export configuration objects, use the following interface:

POST http://edqserver:port/edq/package/export
• Importing configuration

10-1

You must have create and delete function permissions for all the objects that are
being imported. If case management objects are included in the import, you must
have access to the Case Management Administration application.

To import configuration objects, use the following interface:

POST http://edqserver:port/edq/package/import
• Getting packaging task status

Export and import calls return immediately and the packaging task runs
asynchronously. The result of package calls is a JSON object containing an "id"
attribute, which is the "execution ID" for the task. For example:

{"id":"58636dd0-22b6-4d7d-be16-74908d30404f"}

To get status information on a packaging task, use the following interface:

GET http://edqserver:port/edq/package/status/executionid
Packaging status is retained in the system for one hour after the task has
completed. If you do not specify the execution ID in the get status call, the status
for all retained packaging tasks is returned.

For example:

GET http://server/edq/package/status/58636dd0-22b6-4d7d-
be16-74908d30404f
returns status information specific to this execution ID.

GET http://server/edq/package/status
returns status information for all retained packaging tasks. See Packaging Task
Status Result Format for more details.

10.2 JSON Payload Format
The REST APIs use a JSON payload to define the configuration objects for the
packaging, export, and import.

The following table lists the attributes of the JSON payload:

Attribute Description

casemanagement Defines the case management objects to export/import. See
casemanagement attributes.

destination Required. Destination definition. See destination attributes.

password Encryption password. If present, configuration objects and stored
credentials are encrypted in the package file.

preserve If true, existing object are not overwritten. Applies to import only.

label Label describing packaging task. This information is shown in log
messages and included in status reports.

datastores Selector for global data stores to export/import.

publishedprocessors Selector for global published processors to export/import.

referencedata Selector for global reference data to export/import.

projects Selector for projects to export/import.

storedcredentials Selector for stored credentials to export/import.

Chapter 10
JSON Payload Format

10-2

casemanagement attributes

The casemanagement value is an object with these attributes:

Attribute Description

sources Selector for case sources to export/import.

workflows Selector for case workflows to export/import.

permissions Selector for case permissions to export/import. Case permissions are
matched using the unique internal permission keys, which can be examined
in the Case Management Administration application.

destination attributes

The payload destination value is an object containing these attributes:

Attribute Description

location Required. File name or URL for the package file. If a non-absolute file name
is specified, the location is relative to the "local home" configuration
directory.

credentials Name of stored credentials used to authenticate a request to a URL location.
Ignored if the location is a file. If the URL requires simple username/
password authentication, use "basic" stored credentials.

platformcredentials If true, uses platform credentials for the file upload/download. Supported on
Oracle Cloud Infrastructure (OCI) Object Storage, Amazon Web Services
(AWS), and Google Cloud Platform (GCP).

method HTTP method used for uploads. Ignored if the location is a file. The default is
PUT.

Examples:

Use a file in the EDQ landing area:

{ ...
 "destination": {
 "location": "landingarea/pkg/package2.zip"
 },
 ...
}

Use OCI object storage, with stored credentials:

{ ...
 "destination": {
 "location": "https://objectstorage.us-phoenix-1.oraclecloud.com/n/
mytenancy/b/bucket1/o/package.zip",
 "credentials": "OCI 1"
 },
 ...
}

Chapter 10
JSON Payload Format

10-3

Use AWS S3, with stored credentials:

{ ...
 "destination": {
 "location": "https://mystorage.s3.us-east-2.amazonaws.com/
package.zip",
 "credentials": "aws1"
 },
 ...
}

Use GCP, with stored credentials:

{ ...
 "destination": {
 "location": "https://storage.googleapis.com/upload/storage/v1/b/
edqstorage/o?name=package.zip",
 "method": "POST",
 "credentials": "GCP 1"
 },
 ...
}

Output Selectors

The selector object used to specify objects to export/import has these attributes:

Attribute Description

include Array of "glob-style" patterns used to select objects to include. Use an
asterix (*) to match any characters and a question mark (?) to match a
single character.

exclude Array of "glob-style" patterns used to select objects to exclude. Use an
asterix (*) to match any characters and a question mark (?) to match a
single character.

renames Object specifying the old to new object renames. On export the
rename controls the item written to the package. On import the rename
applies to objects in the package and controls the name imported into
the system.

In an export task the include and exclude patterns are matched against items in the
database. In an import task the patterns are matched against the items in the package
file.

Examples:

To include all projects except "Temp1" and those starting with "Test", and to include all
non-standard reference data:

{ ...
 "projects": {
 "include": ["*"],
 "exclude": ["Temp1", "Test*"]
 },

Chapter 10
JSON Payload Format

10-4

 "referencedata": {
 "include": ["*"],
 "exclude": ["**"]
 },
 ...
}

Note the use of the escape character backslash (\) to prevent the first asterix (*) from being
treated as a wild card. To conform to JSON syntax, you need to use two backslash (\)
characters.

To include everything:

{ ...

 "projects": {
 "include": ["*"]
 },

 "referencedata": {
 "include": ["*"]
 },

 "datastores": {
 "include": ["*"]
 },

 "publishedprocessors": {
 "include": ["*"]
 },

 "storedcredentials": {
 "include": ["*"]
 },

 "casemanagement": {

 "sources": {
 "include": ["*"]
 },

 "workflows": {
 "include": ["*"]
 },

 "permissions": {
 "include": ["*"]
 }
 }
}

Chapter 10
JSON Payload Format

10-5

10.3 Packaging Task Status Result Format
The result of the GET status call is an object in which the attributes are the currently
retained execution IDs. The value of each attribute is a status object with these
attributes:

Attribute Description

label The label copied from the packaging request payload.

type Whether "import" or "export".

complete Set to true when the packaging process has completed.

failed Set to true if the packaging process failed with an errors.

start Packaging process start timestamp.

end Packaging process end timestamp. Set when the process is complete.

status Current status of packaging process. Cleared when process is
compete.

error Error message if failed is true.

manifest Manifest object defining contents of the export package or the items
imported. Set on successful completion.

The manifest for an export task is stored as the first entry in the package ZIP file. The
manifest object contains these attributes:

Attribute Description

version Manifest object version. Always 1 in this version.

appversion Application version, such as "12.2.1.4.4".

encrypted Set to true if the package was generated with a password.

projects Array of names of projects included in the export or matched during
import.

referencedata Array of names of global reference data included in the export or
matched during import.

datastores Array of names of global data stores included in the export or matched
during import.

publishedprocessors Array of names of global published processors included in the export
or matched during import.

storedcredentials Array of names of stored credentials included in the export or matched
during import.

casemanagement Case management items included in the export or matched during
import.

sources - Case source names

workflows - Case workflow names

permissions - Case permission keys

Example status result

Chapter 10
Packaging Task Status Result Format

10-6

An export that is run with this payload:

{ ...

{ "label": "Export task1",

 "password": "medusa",

 "destination": {
 "location": "https://objectstorage.us-phoenix-1.oraclecloud.com/n/
devbigdata/b/rde.bucket1/o/example.zip",
 "credentials": "OCI 1"
 },

 "projects": {
 "include": ["adb", "cases", "s*"],
 "exclude": ["snowflake"],
 "renames": {
 "adb": "Oracle ADB"
 }
 },

 "referencedata": {
 "include": ["*Country*"]
 },

 "storedcredentials": {
 "include": ["OCI*", "aws*"],
 "exclude": ["aws?"]
 },

 "casemanagement": {

 "sources": {
 "include": ["CS2", "Issue Remediation"]
 },

 "workflows": {
 "include": ["Issue Remediation*"]
 },

 "permissions": {
 "include": ["Permission?"]
 }
 }
}

would return this status after completion:

{ "d154aee7-9af4-46ab-af89-84ed6b12109a": {
 "start": "2023-07-13T16:44:17.809Z",
 "label": "Export task1",
 "type": "export",
 "end": "2023-07-13T16:44:26.871Z",

Chapter 10
Packaging Task Status Result Format

10-7

 "manifest": {
 "appversion": "14.1.2.0.0",
 "encrypted": true,
 "projects": [
 "Oracle ADB",
 "cases",
 "scannerbug",
 "scripts",
 "services",
 "sqlserver",
 "srvr"
],
 "referencedata": [
 "Country from City",
 "Nationality to Standard Country",
 "Standardize Country Names"
],
 "datastores": [],
 "publishedprocessors": [],
 "storedcredentials": [
 "OCI 1",
 "OCI edqtest",
 "OCI edqtest2",
 "aws - oracle",
 "aws rde",
 "aws s3"
],
 "casemanagement": {
 "permissions": [
 "Permission1",
 "Permission2"
],
 "workflows": [
 "Issue Remediation Alerts",
 "Issue Remediation Cases"
],
 "sources": [
 "CS2",
 "Issue Remediation"
]
 },
 "version": 1
 },
 "complete": true
 }
}

10.4 Packaging REST API Triggers
The packaging APIs run triggers with these paths:

• /package/export/start
• /package/export/end

Chapter 10
Packaging REST API Triggers

10-8

• /package/import/start
• /package/import/end
The arguments to each trigger call are the task label (from the export/import payload) and the
packaging status JSON as a string. The status is passed as a string so that it can be sent
easily to a logging or streaming framework without additional parsing.

The following is an example that notifies administrators using a web push when an export is
complete:

addLibrary("webpush")

function getPath() {
 return "/package/export/end"
}

function run(path, id, env, label, status) {
 if (path.endsWith("/end")) {
 var push = WebPush.create("Export " + label + " complete")

 push.title = "Export notification"
 push.icon = "images/logo.png"

 push.groupnames = ["Administrators"]
 push.push()
 }
}

Chapter 10
Packaging REST API Triggers

10-9

11
Using REST APIs for User Management and
Launchpad Administration

EDQ 12.2.1.4.4 and later includes a set of REST-based interfaces to manage groups,
permissions, external group mappings, users, and launchpad applications.

The result for all POST and DELETE calls is an object containing these attributes:

Attribute Description

ok Success flag. Possible values are true or false.

message Error message, present if ok is false.

This chapter includes the following topics:

• REST Interface for Creating and Updating Groups

• REST Interface for External Group Mappings

• REST Interface for Creating and Updating Users

• REST Interface for Launchpad Applications

11.1 REST Interface for Creating and Updating Groups
The calling user must have the Access User Administration functional permission for all
user administration calls.

The group object used in requests and responses has these attributes:

Attribute Type Description

name String The name of the group. Always required.

permissions Array of strings Functional permissions associated with group.
Values are the internal identifiers representing
permissions.

In create or update requests, all the permissions in
a category can be selected using prefix:. For
example ops:* or user_admin:*.

applications Array of strings Applications available to the group. Values are the
internal identifiers for launchpad applications.

You can perform the following tasks:

• Get all groups
To return an array of group objects, use the following interface:

GET http://server:port/edq/useradmin/groups
• Get named group

To get information on a single named group, use the following interface:

11-1

GET http://server:port/edq/useradmin/group/name
The result is a group object. If the group does not exist, a 404 response is
returned.

• Create or update single group
To create or update a single group, use the following interface:

POST http://server:port/edq/useradmin/group
The payload is a single group object. If the permissions or applications
attributes are not specified, the corresponding values in the group are not changed
on update. If the group does not exist, the calling user must have the Add Group
permission, otherwise the user must have the Modify Group permission.

• Create or update multiple groups
To create or update multiple groups, use the following interface:

POST http://server:port/edq/useradmin/groups
The payload is an array of group objects.

• Delete named group
To delete a named group, use the following interface:

DELETE http://server:port/edq/useradmin/group/name
The user must have the Delete Group permission.

• Update group
To update a group, use the following interface:

POST http://server:port/edq/useradmin/updategroup
This request can be used to add or remove permissions or applications from an
existing group. The payload is a JSON object with these attributes:

Attribute Description

name The name of the group. Always required.

permissions Permission additions and removals.

applications Application additions and removals.

The permissions and applications attributes are object with these attributes:

Attribute Description

add Array of values to add to the group.

remove Array of values to remove from the group.

Example:

{ "name": "Test Group",
 "permissions": {
 "add": ["user_admin:*", "ops:dnviewallevents"],
 "remove": ["server_admin:accessserveradmin"]
 },
 "applications": {
 "add": ["opsui"]

Chapter 11
REST Interface for Creating and Updating Groups

11-2

 }
}

• Get lists of supported applications and functional permissions
Use the following interface:

GET http://server:port/edq/useradmin/permissionsinfo
Group objects list applications and functional permissions using internal identifiers. The
call returns lists of all supported applications and permissions including both the display
strings used in the administration web UI and the associated identifiers. Permissions are
grouped by the categories shown in the group administration web UI.

The result object contains these attributes:

Attribute Description

applications List of supported applications.

functionalpermissions List of permission categories. Each element contains these attributes:
– categorylabel - Display string for the category. For example

"CM.Static" or "Director".
– prefix - Prefix associated with the category. For example "data:" or

"user_admin:".
– permissions - List of permissions in the category.

Individual application and permission objects contain these attributes:

Attribute Description

label Display string for application or permission.

identifier Internal identifier.

Display strings are returned in the language implied by the web request.

11.2 REST Interface for External Group Mappings
Groups in external realms (LDAP etc) are mapped to EDQ internal group so that the
permissions and applications available to a user can be determined on login. Calls in this
category return the currently defined mappings and update mappings.

Each mapping is represented by an object with these attributes:

Attribute Description

realm The realm name as defined in login.properties. In an update call this
attribute may be omitted if exactly one external realm is defined.

externalgroup The name of group in the external realm. Always required.

internalgroups Array of EDQ internal group names. In an update call, existing mappings are
removed if this attribute is omitted or empty.

You can perform the following tasks:

• Get current mappings
To retrieve information about the current external group mappings, use the following
interface:

Chapter 11
REST Interface for External Group Mappings

11-3

GET http://server:port/edq/useradmin/externalgroups
The result is an array of mapping objects.

• Update mappings
To update information about the current external group mappings, use the
following interface:

POST http://server:port/edq/useradmin/externalgroups
The payload is an array of mapping objects. The calling user must have the
Modify External Group Permissions functional permission.

Example:

[
 { "realm": "EXAMPLE.COM",
 "externalgroup": "edqgroup1",
 "internalgroups": ["Data Analysts"]
 },
 { "realm": "EXAMPLE.COM",
 "externalgroup": "edqgroup2",
 "internalgroups": ["Match Reviewers", "Executives"]
 }
]

11.3 REST Interface for Creating and Updating Users
The user object used in requests and responses has these attributes:

Attribute Type Description

username String The name of the user. Always required.

password String The user password. Required when creating a
new user.

blocked Boolean Set to true if the user has been blocked
permanently.

fullname String The full name of user. Required when creating
a new user.

email String The e-mail address of user.

organization String The name of the user's organization.

telephone String The user's telephone number.

forcepasswordchange Boolean If true forces the user to change their
password on the next login.

passwordpolicy Integer User password expiration policy. Possible
values are:
• 0 - Password expiry defined by system

configuration
• 1 - Password never expires
• 2 - Password expires after system defined

period

Chapter 11
REST Interface for Creating and Updating Users

11-4

Attribute Type Description

lockoutpolicy Integer User lockout policy after bad logins. Possible
values are:

• 0 - Policy defined by system configuration
• 1 - No action
• 2 - Lockout for 2 minutes
• 3 - Lockout for 5 minutes
• 4 - Lockout for 15 minutes
• 5 - Lockout for 30 minutes
• 6 - Lockout for 1 hour
• 7 - Lockout for 24 hours
• 8 - Lockout permanently

groups Array of strings Groups to associate with the user.

The passwordpolicy and lockoutpolicy attributes correspond to the Password Policy and
Invalid Attempts fields in the user definition web UI:

You can perform the following tasks:

• Get all users
To return an array of user objects, use the following interface:

GET http://server:port/edq/useradmin/users
• Get named user

To get information on a single named user, use the following interface:

GET http://server:port/edq/useradmin/username
The result is a user object. If the user does not exist a 404 response is returned.

• Create or update single user
To create or update a single user, use the following interface:

POST http://server:port/edq/useradmin/group
The payload is a single user object. On update, attributes that are not included in the
payload object are not modified in the target user. An attribute which is set to null in the
payload is cleared in the target user object.

For example to update a user and clear the e-mail address, use this payload:

{ "username": "user23",
 "email": null
}

To update the password for a user, but force a change on next logon, use the following:

{ "username": "user153",
 "password": "newtemppassword",
 "forcepasswordchange" : true
}

To create a new user, the caller must have the Add User permission. To modify a user,
the required permissions depend on the detailed changes. The following table lists the
permissions you need corresponding to the information you want to update:

Chapter 11
REST Interface for Creating and Updating Users

11-5

Action Required Permission

Change password Change/Reset User Passwords

Block user permanently Block User

Unblock user Unblock User

Change full name, e-mail address,
organization name or telephone number

Modify User Details

Change password policy, lockout policy or
force change option

Modify Account Security Options

Change group membership Modify User Group Permissions

• Create or update multiple users
To create or update multiple users, use the following interface:

POST http://server:port/edq/useradmin/users
The payload is an array of user objects. To modify users, the required permissions
depend on the detailed changes as listed in the table above.

• Delete named user
To delete a user, the user must have the Delete User permission. Use the
following interface:

DELETE http://server:port/edq/useradmin/user/username

11.4 REST Interface for Launchpad Applications
Calls in this category are used to list and update the applications that are shown on
the launchpad for all users. The calling user must have the Access Server
Administration and Set User Application Access permissions for both calls.

You can perform the following tasks:

• Get applications
To return the current list of published applications, and a list of all applications
known to the system, use the following interface:

GET http://server:port/edq/admin/web/launchpad/applications
The result object contains these attributes:

Attribute Type Description

published Array of strings List of applications that are currently shown on
the launchpad, in display order.

allapplications Array of application
objects

List of all the applications which are known to the
system. Each object contains the following
values:

– label - Display string for application
– identifier - Internal identifier
Note that the allapplications list includes
applications that are permission controlled by
group membership (such as Case Management)
and also applications that are links to simple
content, such as Watchlist Screening Help.

• Update launchpad applications

Chapter 11
REST Interface for Launchpad Applications

11-6

To update launchpad applications, use the following interface:

POST http://server:port/edq/admin/web/launchpad/applications
The payload is an array of strings listing the identifiers of the applications that should
appear on the launchpad, in order.

For example:

["opsui",
 "director",
 "casemanager",
 "casemanageradmin"
]

Chapter 11
REST Interface for Launchpad Applications

11-7

12
Using the Java Messaging Service (JMS) with
EDQ

This document describes how to get started using Java Messaging Service (JMS) technology
with Oracle Enterprise Data Quality (EDQ). This documentation is intended for system
administrators responsible for installing and maintaining EDQ applications.

This chapter includes the following sections:

• Understanding the Message Queue Architecture

• Uses of JMS with EDQ

• Configuring EDQ to Read and Write JMS Messages

• Defining the Interface Files

• Illustrations

12.1 Understanding the Message Queue Architecture
JMS is a flexible technology that allows EDQ to integrate with a variety of different messaging
systems and technologies, including WebLogic Server Messaging, WebSphere MQ, Oracle
Advanced Queueing (OAQ), and many more.

The EDQ server acts as a ‘client’ of a message queue. The server component may be
installed on the same physical server as EDQ, but more commonly the server (or servers) will
be remote to it. EDQ is shipped with the client jars needed to connect to either ActiveMQ or
Artemis message queue providers. If EDQ is deployed on WebLogic Server, it will also be
able to connect natively to WebLogic JMS. Otherwise, for example if EDQ needs to act as a
client to an alternative message queue (MQ) system, such as WebSphere MQ, it will need
additional client jars to be installed. In this case, the administrator of the MQ system should
be consulted to determine which files are needed for a Java application such as EDQ to act
as a client.

12.2 Uses of JMS with EDQ
There are two main uses of JMS with EDQ, as listed below: We will focus here on the first
use of JMS with EDQ.

• Consuming and Providing Messages: You can configure EDQ to read messages from
JMS queues, and write messages to them. This can be beneficial where several EDQ
servers need to read from a single stream of messages that needs to be persistent to
ensure no loss of messages. In this mode, each EDQ server will consume messages
from a queue and only ‘commit’ when it has finished processing each message. Note that
JMS is best used for Asynchronous communication, where EDQ is not expected to return
a response to a calling application for a specific message.

• Using JMS in Triggers: EDQ may send JMS messages to other systems, or may
consume JMS messages to start triggers (for example to use a JMS queue to distribute

12-1

batch jobs amongst several EDQ servers;). For more details, see the Using JMS in
Triggers.

12.3 Configuring EDQ to Read and Write JMS Messages
JMS interfaces to and from EDQ are configured using XML interface files that define:

• The path to the queue of messages

• Properties that define how to work with the specific JMS technology

• How to decode the message payload into a format understood by an EDQ process
(for Message Providers – where EDQ reads messages from a queue), or convert
messages to a format expected by an external process (for Message Consumers
– where EDQ writes messages to a queue).

The XML files are located in the EDQ Local Home directory (formerly known as the
config directory), in the following paths:

• buckets/realtime/providers (for interfaces ‘in’ to EDQ)

• buckets/realtime/consumers (for interfaces ‘out’ from EDQ)

Once the XML files have been configured, Message Provider interfaces are available
in Reader processors in EDQ and to map to Data Interfaces as ‘inputs’ to a process,
and Message Consumer interfaces are available in Writer processors, and to map
from Data Interfaces as ‘outputs’ from a process as shown in Figures 1 and 2 below:

12.4 Defining the Interface Files
An interface file in EDQ consists of three sections, as follows:

• The <attributes> section, defining the shape of the interface as understood by
EDQ

• The <messengerconfig> section, defining how to connect to the JMS queue or
topic

• The <messagebody> section, defining how to extract contents of a message (e.g.
from XML) into attribute data readable by EDQ (for inbound interfaces), or how to
convert attribute data from EDQ to message data (e.g. in XML).

12.4.1 Knowing the <attributes> section

The <attributes> section defines the shape of the interface. It constitutes the attributes
that are available in EDQ when configuring a Reader or Writer. For example the
following excerpt from the beginning of an interface file configures three string
attributes that can be used in EDQ, and their names are:

<?xml version="1.0" encoding="UTF-8"?>
<realtimedata messenger="jms">
 <attributes>
<attribute type="string" name="messageID"/>
<attribute type="string" name="name"/>
<attribute type="string" name="AccountNumber"/>

Chapter 12
Configuring EDQ to Read and Write JMS Messages

12-2

</attributes>

[file continues]...

EDQ supports all the standard attribute types and they are:

• string

• number

• date

• stringarray

• numberarray

• datearray

12.4.2 Knowing the <messengerconfig> Section
The <messengerconfig> section of the interface file configures the settings needed to
connect to a given JMS queue or topic on a particular type of JMS technology. The text in
<messengerconfig> is parsed as a Java properties file and is merged with the set of
properties from the realtime.properties file in the EDQ configuration path, with settings in
the <messengerconfig> section overriding any matching settings inrealtime.properties.
The realtime.properties file therefore allows the configuration of a number of global
properties that do not need to be stated in every JMS interface file.

Note:

• As with all property files stored in the EDQ Local Home directory, properties are
themselves merged with a set of ‘base’ properties in the EDQ Home directory
which should not be modified, with any property stated in a file in the Local
Home directory used in preference to any property in the EDQ Home directory.
For example therealtime.properties file in the EDQ Local Home directory will
be merged with the file of the same name in the EDQ Home directory to form
the final set of properties used.

• The realtime.properties values may also be used to set properties for Web
Services in EDQ. A prefix of jms. is therefore used (in this file only, not in the
<messengerconfig> section of a JMS interface file) to set properties for JMS
(ws. is used for Web Services).

The messenger configuration properties, specified either in the <messengerconfig> section of
a JMS interface file, or inherited from realtime.properties, are used:

• To configure a JNDI name store to look up queues

• To specify the name of the queue/topic and connection factory

• To supply authentication information to the MQ server, if required

JNDI Setup Properties

• java.naming.factory.initial - It denotes the class name of the JNDI initial context
factory, used to bootstrap JNDI naming

Chapter 12
Defining the Interface Files

12-3

• java.naming.provider.url - the JNDI URL used to connect to the JNDI server or
local store

In some cases, authentication is required to connect to the JNDI service. In this case
the following properties must be added:

• java.naming.security.principal - JNDI user name

• java.naming.security.credentials - JNDI password

These JNDI properties are a standard Java feature and for more details, see JNDI
Documentation.

JMS Names
The other properties are:

• connectionfactory - the JNDI name of the JMS ‘connection factory’. The default
for this (if the property is not set) is ‘ConnectionFactory’ which is correct for several
MQ servers.

• destination - the JNDI name of the JMS queue or topic. There is no default for
this and it is always required.

Authentication
If the MQ server requires authentication when making connections, add the below
properties:

username: connection user name
password: connection password

Note:

These properties are used to authenticate against the MQ server and are
used to connect to JNDI. In rare cases, both sets may be required.

Notes for specific MQ servers

1. ActiveMQ -
To connect to an ActiveMQ server, use a property setting as listed below:

This can be set in the <messengerconfig> section to apply to a single interface, or
can be set in realtime.properties (prefixed with jms.) to set the default for all
interfaces.

java.naming.provider.url=tcp://host:port
ActiveMQ servers generally require connection authentication, so the username
and password properties will be required.

To use ActiveMQ on an EDQ server installed on WebLogic, the property settings
above need to be entered into the realtime.properties in the EDQ Local Home
directory. (The settings are present, but commented out, in the file in the Home
directory, as it is assumed that WebLogic JMS will normally be used where EDQ is
installed on WebLogic.)

2. WebLogic JMS -
When running in a full JavaEE application server, such as WebLogic, Glassfish or
WebSphere, the JNDI settings for local JMS are configured automatically and the

Chapter 12
Defining the Interface Files

12-4

http://docs.oracle.com/javase/8/docs/technotes/guides/jndi/index.html
http://docs.oracle.com/javase/8/docs/technotes/guides/jndi/index.html

JNDI factory and url information do not need to be specified in any EDQ configuration file.

The recommended approach in these cases is to define the JMS configuration within the
application server and then just specify the JNDI connection factory and destination
names in <messengerconfig>.

WebLogic supports the concept of ‘foreign’ JMS servers. In this case, you define the
connection information in the WebLogic Console and expose the destination(s) and
connection factory as names in the native WebLogic JNDI store. This works well with
Oracle Advanced Queueing (AQ). See below for a snippet of the configuration of a
‘foreign JMS server’ pointing at an AQ schema.

When JMS is configured like this, a typical <messengerconfig> section might be:

<messengerconfig>
 connectionfactory = jms/cf1
 destination = jms/queue1
</messengerconfig>

Here jms/cf1and jms/queue1 are JNDI names defined in WebLogic.

12.4.3 Knowing the <messagebody> section
This section uses JavaScript to parse message payloads into attributes that EDQ can use for
inbound interfaces, and perform the reverse operation (convert EDQ attribute data into
message payload data) for outbound interfaces. A function named ‘extract’ is used to extract
data from XML into attribute data for inbound interfaces, and a function named ‘build’ is used
to build XML data from attribute data.

For more details, refer to Illustrations , wherein the scripts are best illustrated using
examples.

12.5 Illustrations
Example 1 – Simple Provider File

The following XML is a simple example of a provider interface file, reading messages from a
queue in the path ‘dynamicQueues/InputQueue’.

<?xml version="1.0" encoding="UTF-8"?>
<realtimedata messenger="jms">
 <attributes>
<attribute type="string" name="messageID"/>
<attribute type="string" name="name"/>
<attribute type="string" name="AccountNumber"/>
<attribute type="string" name="AccountName"/>
 <attribute type="string" name="Country"/>
 </attributes>
<messengerconfig> destination = dynamicQueues/InputQueue </messengerconfig>
 <incoming>
<messagebody>
<script>
<![CDATA[function extract(str) { var screeningRequest = new XML(str); var
rec = new Record(); rec.messageID = screeningRequest.individual.messageID;
rec.name = screeningRequest.individual.name; rec.AccountNumber =

Chapter 12
Illustrations

12-5

screeningRequest.individual.AccountNumber; rec.AccountName =
screeningRequest.individual.AccountName; rec.Country =
screeningRequest.individual.Country; return [rec]; }]]>
 </script>
 </messagebody>
<eof>
<messageheader name="JMSType" value="t1eof"/>
</eof>
 </incoming>
</realtimedata>

Example 2 – Simple Consumer File

The following XML is a simple example of a consumer file representing similar data to
the provide file listed above, but with additional attributes, which can be added by an
EDQ process:

<?xml version="1.0" encoding="UTF-8"?>
<realtimedata messenger="jms">
 <attributes>
<attribute type="string" name="messageID"/>
<attribute type="string" name="AccountNumber"/>
<attribute type="string" name="AccountName"/>
<attribute type="string" name="Country"/>
<attribute type="string" name="AccountType"/>
</attributes>
<messengerconfig> destination = dynamicQueues/OutputQueue </
messengerconfig>
<outgoing>
<messagebody>
<script>
<![CDATA[function build(recs) { var rec = recs[0]; var xml =
<Request> <individual> <messageID>{checkNull(rec.messageID)}</
messageID> <AccountNumber>{checkNull(rec.AccountNumber)}</
AccountNumber> <AccountName>{checkNull(rec.AccountName)}</AccountName>
<Country>{checkNull(rec.Country)}</Country>
<AccountType>{checkNull(rec.AccountType)}</AccountType> </individual>
</Request>; return xml.toXMLString(); } function checkNull(value)
{ return value != null ? value : ""; }]]>
 </script>
</messagebody>
</outgoing>
</realtimedata>

Example 3 – Date Parsing and Formatting

The following example file shows how to define a DATE attribute type, and include
date parsing and formatting when decoding the message payload:

<?xml version="1.0" encoding="UTF-8"?>
<realtimedata messenger="jms">
<attributes>
<attribute type="date" name="processingDate"/>
</attributes>

Chapter 12
Illustrations

12-6

<messengerconfig> destination = dynamicQueues/HoldQueue </messengerconfig>
<incoming>
<messagebody>
 <script>
<![CDATA[var df = Formatter.newDateFormatter("yyyy-MM-dd'T'HH:mm:ss.SSSZ");
function extract(str) { var screeningRequest = new XML(str); var rec = new
Record();rec.processingDate = date(screeningRequest.processingDate; return
[rec]; } function date(x) { var s = x.text().toString(); return s == "" ?
null : df.parse(s); }]]>
 </script>
 </messagebody>
 <eof>
<messageheader name="JMSType" value="t1eof"/>
 </eof>
</incoming>
 </realtimedata>

Chapter 12
Illustrations

12-7

13
Using Apache Kafka with EDQ

This document describes how to get started using the Apache Kafka streaming platform with
Oracle Enterprise Data Quality (EDQ). This documentation is intended for system
administrators responsible for installing and maintaining EDQ applications. In-depth
understanding of Kafka concepts and configuration is assumed.

Note:

This feature is applicable only for EDQ 12.2.1.4.1 release.

This chapter includes the following sections:

• Introduction to Kafka and EDQ

• Configuring EDQ to Read and Write Kafka Records

• Defining the Interface Files

• Illustrations

13.1 Introduction to Kafka and EDQ
Apache Kafka is a highly performant distributed streaming platform.

EDQ can use the Kafka Consumer API to subscribe to one or more topics and process
records as they are published, and can use the Kafka Producer API to publish a stream of
records to a topic.

Kafka records contain a value and an optional key. EDQ supports only text values for record
values and keys.

13.2 Configuring EDQ to Read and Write Kafka Records
Kafka interfaces to and from EDQ are configured using XML interface files that define:

• The EDQ attributes produced or consumed by the interface

• Properties that define how to configure the Kafka consumer or producer API

• How to decode the record value into EDQ attributes (for Message Providers – where
EDQ reads records from a topic), or convert attributes to a value for a Kafka record (for
Message Consumers – where EDQ writes messages to a topic).

The XML files are located in the EDQ Local Home directory, in the following paths:

• buckets/realtime/providers (for interfaces 'in' to EDQ)

• buckets/realtime/consumers (for interfaces 'out' from EDQ)

13-1

http://kafka.apache.org/documentation.html#consumerapi
http://kafka.apache.org/documentation.html#producerapi

Once the XML files have been configured, Message Provider interfaces are available
in Reader processors in EDQ and to map to Data Interfaces as 'inputs' to a process,
and Message Consumer interfaces are available in Writer processors and to map from
Data Interfaces as 'outputs' from a process, in the same way as Web Service inputs/
outputs and JMS providers/consumers.

13.3 Defining the Interface Files
An interface file in EDQ consists of a realtimedata element which defines the
message framework. For Kafka interfaces, use the following:

<realtimedata messenger=”kafka”>
 …
</realtimedata>

The realtimedata element contains three subsections:

• The <attributes> section, defining the shape of the interface as understood by
EDQ

• The <messengerconfig> section, defining how to configure the Kafka API

• A message format section defining how a Kafka record is mapped from or to EDQ
attributes. For provider interfaces, the element is <incoming>; for consumer
interfaces, the element is <outgoing>.

13.3.1 Understanding the <attributes> section

The <attributes> section defines the shape of the interface. It configures the
attributes that are available in EDQ when configuring a Reader or Writer. For example,
the following excerpt from the beginning of an interface file configures string and
number attributes that can be used in EDQ:

<?xml version="1.0" encoding="UTF-8"?>
<realtimedata messenger="kafka">
 <attributes>
 <attribute type="string" name="messageID"/>
 <attribute type="string" name="name"/>
 <attribute type="number" name="AccountNumber"/>
 </attributes>
…

EDQ supports all the standard attribute types. These are:

• string

• number

• date

• stringarray

• numberarray

• datearray

Chapter 13
Defining the Interface Files

13-2

13.3.2 Understanding the <messengerconfig> section

The <messengerconfig> section of the interface file configures the Kafka API. The text in
<messengerconfig> is parsed as a set of Java properties.

Properties prefixed with conf. are passed directly to the Kafka API after removing the conf.
prefix from the key.

Other properties which may be placed in the <messengerconfig> section for Kafka are:

• topic: For provider interfaces, a comma or space separated list of Kafka topics to
subscribe to is required. For consumer interfaces, a single topic name is required.

• poll: The interval between polls for new records in milliseconds. This is only applicable
for provider interfaces. The default value is 500.

• key.encoding and value.encoding: The character sets used for converting record keys
and values. The character sets must be recognized by
java.nio.charset.Charset.forName. The default values are implementation-specific.

On a WebLogic installation, authentication information required in configuration properties
may be stored in the OPSS credentials store, and used in properties with ${username} and $
{password} substitution. Use the cred.key and cred.map properties to define the credentials
store key and map names. The map name defaults to “edq” if omitted.

The following is an example of a complete configuration with credentials store use:

<messengerconfig>
 cred.key = kafka1
 topic = mytopic

 conf.bootstrap.servers = kserver:9094
 confs.acks = all
 conf.max.block.ms = 1000
 conf.security.protocol = SASL_SSL
 conf.sasl.mechanism = PLAIN
 conf.ssl.truststore.location = pathtokeystore.jks
 conf.ssl.truststore.password = pw
 conf.sasl.jaas.config =
org.apache.kafka.common.security.plain.PlainLoginModule required
 username="${username}" password="${password}";
</messengerconfig>

The user name and password for the jaas.config property are read from the credentials
store with key "kafka1".

Default properties may be defined in the realtime.properties file in the EDQ local home
directory. Keys for Kafka interfaces in this file are prefixed with "kafka.". For example:

kafka.conf.security.protocol = SASL_SSL

13.3.3 Understanding the <incoming> or <outgoing> section

Chapter 13
Defining the Interface Files

13-3

The <incoming> or <outgoing> section defines how record metadata and values are
converted to/from EDQ attributes. It consists of the following two subsections:

• The <messageheaders> section

• The <messagebody> section

13.3.3.1 Understanding the <messageheaders> section

The <messageheaders> section is optional. It defines how data outside the record value
is converted to/from EDQ attributes.

The format of this section is as follows:

<messageheaders>
 <header name=”headername” attribute=”attributename”/>
 …
</messageheaders>

The Kafka interface defines two header names as follows:

• key: For providers, the key value from a record is stored in the named EDQ
attribute. For consumers, the value of the EDQ attribute is used as the record key
on publish.

• topic: The name of the Kafka topic on which a record was received is stored in the
EDQ attribute. It is only applicable for consumers. This is useful if the interface is
defined to subscribe to a number of different topics.

13.3.3.2 Understanding the <messagebody> section

The <messagebody> section defines how the text value in a Kafka message is
converted from/to EDQ attributes. The element is followed by a subsection defining the
conversion mechanism. The following conversion mechanisms are supported:

• JSON Conversion

• Script Conversion

JSON Conversion

The record value is expected to be in JSON format. The nested elements define the
mapping between JSON attributes and EDQ attributes.

The format is as follows:

<json [multirecord=”true or false”] [defaultmappings=”true or false”]>
 <mapping attribute=”attributename” path=”jsonattributename”/>
…
</json>

If the defaultmappings attribute is omitted or set to true, automatic mappings are
created from the interface EDQ attributes to JSON attributes.

Chapter 13
Defining the Interface Files

13-4

If the multirecord attribute is set to true, consumer interfaces expect the JSON input to be
an array and provider interfaces to generate a JSON array.

Assuming the attributes shown in the <attributes> section description, here are some JSON
conversion examples:

Example 1:

An example of a simple JSON conversion in which everything is automatic is as follows:

<json/>

A simple conversion with automatic mappings expects and generates values like:

{ "messageID": "x123",
 "name": "John Smith",
 "AccountNumber": 34567
}

Example 2:

An example of a multirecord JSON conversion with a mapping is as follows:

<json multirecord=”true”>
 <mapping attribute=”AccountNumber” path=”accno”/>
</json>

A multirecord conversion with a single attribute name mapping expects and generates values
like:

[{ "messageID": "x123",
 "name": "John Smith",
 "accno": 34567
},
…
]

Script Conversion

To support more complex conversions, for example XML parsing, a JavaScript script can be
provided to process the record value.

In provider interfaces, the script must define a function named "extract" which takes the string
record value as an argument. The script should return an array of Record objects with
attribute names matching EDQ attributes.

The following is an example parsing some XML, using the E4X XML processing API in Rhino
JavaScript:

<script>
<![CDATA[
 function extract(str) {
 var r = new Record()
 var x = new XML(XMLTransformer.purifyXML(str));

Chapter 13
Defining the Interface Files

13-5

 r.messageID = x.ID
 r.name = x.Accname
 r.accountNumber = parseInt(x.Accnumber)
 return [r];
 }
]]>
</script>

In consumer interfaces, the script must define a function named "build" which takes an
array of Record objects and returns the text value.

The following is an example generating some XML:

<script>
 <![CDATA[
 function build(recs, mtags) {
 var rec = recs[0];

 var xml =
 <response xmlns="http://www.datanomic.com/ws">
 <sum>{rec.sum}</sum>
 </response>;

 return xml.toXMLString();
 }
]]>
</script>

In a multi-record response, the default behaviour is to call the script for each record. If
<script multirecord=”true”> is used, the build function is called once with all the
records in the message.

For more details, refer to Illustrations, which provides an example of a provider
interface file using default JSON conversion.

13.4 Illustrations
The following XML is a simple example of a provider interface file, using default JSON
conversion:

<?xml version="1.0" encoding="UTF-8"?>
<realtimedata messenger="kafka">

 <attributes>
 <attribute type="string" name="messageID"/>
 <attribute type="string" name="name"/>
 <attribute type="string" name="AccountNumber"/>
 <attribute type="string" name="AccountName"/>
 <attribute type="string" name="Country"/>
 </attributes>

 <messengerconfig>

Chapter 13
Illustrations

13-6

 cred.key = kafka1
 topic = mytopic

 conf.bootstrap.servers = kserver:9094
 confs.acks = all
 conf.max.block.ms = 1000
 conf.security.protocol = SASL_SSL
 conf.sasl.mechanism = PLAIN
 conf.ssl.truststore.location = mykeystore,jks
 conf.ssl.truststore.password = pw
 conf.sasl.jaas.config =
org.apache.kafka.common.security.plain.PlainLoginModule required
 username="${username}" password="${password}";
 </messengerconfig>

 <incoming>
 <messagebody>
 <json/>
 </messagebody>
 </incoming>
</realtimedata>
</realtimedata>

Chapter 13
Illustrations

13-7

14
Using Amazon Simple Queue Service
(Amazon SQS) with EDQ

This document describes how to get started using the Amazon Simple Queue Service
(Amazon SQS) technology with Oracle Enterprise Data Quality (EDQ). This documentation is
intended for system administrators responsible for installing and maintaining EDQ
applications.

This chapter includes the following sections:

• Introduction to Amazon SQS and EDQ

• Configuring EDQ to Read and Write Amazon SQS Messages

• Defining the Interface Files

• Illustrations

14.1 Introduction to Amazon SQS and EDQ
EDQ realtime provider and consumer buckets can be configured to use Amazon SQS queues
for reading and publishing.

14.2 Configuring EDQ to Read and Write Amazon SQS
Messages

Amazon SQS interfaces to and from EDQ are configured using XML interface files that
define:

• The path to the queue of messages

• Properties that define how to work with the specific Amazon SQS technology

• How to decode the message payload into a format understood by an EDQ process (for
Message Providers – where EDQ reads messages from a queue), or convert messages
to a format expected by an external process (for Message Consumers – where EDQ
writes messages to a queue).

The XML files are located in the EDQ Local Home directory (formerly known as the config
directory), in the following paths:

• buckets/realtime/providers (for interfaces ‘in’ to EDQ)

• buckets/realtime/consumers (for interfaces ‘out’ from EDQ)

Once the XML files have been configured, Message Provider interfaces are available in
Reader processors in EDQ and to map to Data Interfaces as ‘inputs’ to a process, and
Message Consumer interfaces are available in Writer processors, and to map from Data
Interfaces as ‘outputs’ from a process.

14-1

14.3 Defining the Interface Files
An interface file in EDQ consists of a realtimedata element which defines the
message framework. For Amazon SQS interfaces, use the following:

<?xml version="1.0" encoding="UTF-8"?>

<realtimedata messenger="sqs">
 ...
</realtimedata>

The realtimedata element contains three subsections:

• The <attributes> section, defining the shape of the interface as understood by
EDQ

• The <messengerconfig> section, defining how to connect to the Amazon SQS
queue.

• A message format section defining how to extract contents of a message (e.g.
from XML) into attribute data readable by EDQ (for inbound interfaces), or how to
convert attribute data from EDQ to message data (e.g. in XML). For provider
interfaces, the element is <incoming>; for consumer interfaces, the element is
<outgoing>.

14.3.1 Understanding the <attributes> section
The <attributes> section defines the shape of the interface. It constitutes the attributes
that are available in EDQ when configuring a Reader or Writer. For example, the
following excerpt from the beginning of an interface file configures string and number
attributes that can be used in EDQ:

<?xml version="1.0" encoding="UTF-8"?>
<realtimedata messenger="sqs">
<attributes>
 <attribute type="string" name="messageID"/>
 <attribute type="string" name="name"/>
 <attribute type="number" name="AccountNumber"/>
</attributes>

[file continues]...

EDQ supports all the standard attribute types and they are:

• string

• number

• date

• stringarray

• numberarray

• datearray

Chapter 14
Defining the Interface Files

14-2

14.3.2 Understanding the <messengerconfig> section
The following properties can be set in the <messengerconfig> section:

Property Description

queue SQS queue URL (required).

credentials Stored credentials name used to connect to
stream; if omitted, platform (instance)
authentication is used.

interval Interval in milliseconds between polls for message
reception. The default is 0 (long polls are used).

proxy host:port proxy server for HTTPS calls.

deletemode Controls message deletion after reception. Valid
values are:

• reception: Each message is deleted
immediately on reception. This is the default.

• completion: Each message is deleted when
it has completed traversing the processes in
the job.

• off: Messages are not deleted automatically.
They must be deleted manually, perhaps
using the reception handle in a web service
call.

MessageDeduplicationId Deduplication ID for FIFO queues. May be
overridden by header attribute. Two special values
are supported:

• $hash: The deduplication ID is computed as
the SHA-256 hash of the message body.

• $uuid: A random UUID is used as the
deduplication ID.

MessageGroupId Group ID for FIFO queues. May be overridden by
header attribute.

DelaySeconds Sending delay in seconds. May be overridden by
header attribute.

MaxNumberOfMessages Maximum number of messages to receive in one
call. The default is 10.

VisibilityTimeout The duration (in seconds) that the received
messages are hidden from subsequent receive
requests. The default is set in the queue definition.

WaitTimeSeconds Wait time in seconds for long poll receive
requests. The default is 20s.

Defaults can be set in realtime.properties with prefix "sqs.".

14.3.3 Understanding the <incoming> or <outgoing> section
The <incoming> or <outgoing> section defines how message metadata and values are
converted to/from EDQ attributes. It consists of the following two subsections:

• The <messageheaders> section

Chapter 14
Defining the Interface Files

14-3

• The <messagebody> section

14.3.3.1 Understanding the <messageheaders> section
The <messageheaders> section allows attributes to be mapped to additional sending
properties for transmission, and attributes to be set from message metadata on
reception. Refer to the SQS Documentation for more details on each value. A non
empty message header value will override a <messengerconfig> property with the
same name.

The following standard headers are available:

Header name Settable Readable Type Description

DelaySeconds yes no number Sending delay in
seconds

MessageDeduplic
ationId

yes yes string Deduplication ID
for FIFO queues

MessageGroupId yes yes string Group ID for
FIFO queues

ApproximateFirst
ReceiveTimestam
p

no yes number Timestamp for
first receive from
queue

ApproximateRece
iveCount

no yes number Number of times
message has
been received

AWSTraceHeader no yes string X-Ray trace
header

SenderId no yes string IAM user or role
ID

SentTimestamp no yes number Sending
timestamp

SequenceNumbe
r

no yes number Sequence
number from
SQS

MessageId no yes string Internal message
ID

ReceiptHandle no yes string Receipt handle,
required for
manual deletion
of messages

Custom message attributes

In addition to the standard headers defined above, the <messageheaders> section
can also define custom attributes. Custom attribute names are prefixed with
"messageattribute:" to distinguish them from standard headers.

Example custom attribute

<messageheaders>
 <header name="messageattribute:tel" attribute="telephone"

Chapter 14
Defining the Interface Files

14-4

https://docs.aws.amazon.com/sqs/

type="string"/>
</messageheaders>

14.3.3.2 Understanding the <messagebody> section
This section uses JavaScript to parse message payloads into attributes that EDQ can use for
inbound interfaces, and perform the reverse operation (convert EDQ attribute data into
message payload data) for outbound interfaces. A function named ‘extract’ is used to extract
data from XML into attribute data for inbound interfaces, and a function named ‘build’ is used
to build XML data from attribute data.

For more details, refer to Illustrations, which provides an example of a complete provider
bucket which can receive JSON messages from a case management filter reporting trigger.

14.4 Illustrations
The following XML is a simple example of a complete provider bucket which can receive
JSON messages from a case management filter reporting trigger. The sender ID and
message group ID are also returned, along with two custom message attributes, attr1 and
attr2.

<?xml version="1.0" encoding="UTF-8"?>

<realtimedata messenger="sqs">
 <attributes>
 <attribute name="filter" type="string"/>
 <attribute name="type" type="string"/>
 <attribute name="xaxis" type="string"/>
 <attribute name="yaxis" type="string"/>
 <attribute name="server" type="string"/>
 <attribute name="userid" type="number"/>
 <attribute name="user" type="string"/>
 <attribute name="userdisplay" type="string"/>
 <attribute name="start" type="date" format="iso"/>
 <attribute name="duration" type="number"/>
 <attribute name="status" type="string"/>
 <attribute name="sql" type="string"/>
 <attribute name="arg.type" type="stringarray"/>
 <attribute name="arg.value" type="stringarray"/>
 <attribute name="senderid" type="string"/>
 <attribute name="attr1" type="string"/>
 <attribute name="attr2" type="number"/>
 <attribute name="mgid" type="string"/>
 </attributes>

 <messengerconfig>
 queue = https://sqs.eu-west-1.amazonaws.com/458503484332/queue1
 credentials = aws1
 deletemode = completion
 </messengerconfig>

 <incoming>

 <messageheaders>

Chapter 14
Illustrations

14-5

 <header name="SenderId" attribute="senderid"/>
 <header name="MessageGroupId" attribute="mgid"/>
 <header name="messageattribute:attr1" attribute="attr1"
type="string"/>
 <header name="messageattribute:attr3" attribute="attr2"
type="number"/>
 </messageheaders>

 <messagebody>
 <script>
 <![CDATA[
 var simple = ["filter", "type", "xaxis", "yaxis", "server",
"userid", "user", "userdisplay", "duration", "status", "sql"]

 function extract(str) {
 var obj = JSON.parse(str)
 var rec = new Record()

 for (let x of simple) {
 rec[x] = obj[x]
 }

 rec.start = obj.start && new Date(obj.start)

 if (obj.args) {
 rec['arg.type'] = obj.args.map(a => a.type)
 rec['arg.value'] = obj.args.map(a => a.value &&
a.value.toString())
 }

 return [rec];
 }
]]>
 </script>
 </messagebody>

 </incoming>

</realtimedata>

Chapter 14
Illustrations

14-6

15
Using Oracle Cloud Infrastructure (OCI)
Queue with EDQ

This document describes how to get started using the Oracle Cloud Infrastructure (OCI)
Queue service with Oracle Enterprise Data Quality (EDQ). This documentation is intended for
system administrators responsible for installing and maintaining EDQ applications.

This chapter includes the following sections:

• Introduction to OCI Queue and EDQ

• Configuring EDQ to Read and Write OCI Queue Messages

• Defining the Interface Files

• Illustrations

15.1 Introduction to OCI Queue and EDQ
EDQ realtime provider and consumer buckets can be configured to use OCI Queue service
for reading and publishing. This queue service is a much better fit for realtime processing as
compared to OCI streams.

15.2 Configuring EDQ to Read and Write OCI Queue Messages
OCI Queue interfaces to and from EDQ are configured using XML interface files that define:

• The path to the queue of messages

• Properties that define how to work with the specific OCI Queue technology

• How to decode the message payload into a format understood by an EDQ process (for
Message Providers – where EDQ reads messages from a queue), or convert messages
to a format expected by an external process (for Message Consumers – where EDQ
writes messages to a queue).

The XML files are located in the EDQ Local Home directory (formerly known as the config
directory), in the following paths:

• buckets/realtime/providers (for interfaces ‘in’ to EDQ)

• buckets/realtime/consumers (for interfaces ‘out’ from EDQ)

Once the XML files have been configured, Message Provider interfaces are available in
Reader processors in EDQ and to map to Data Interfaces as ‘inputs’ to a process, and
Message Consumer interfaces are available in Writer processors, and to map from Data
Interfaces as ‘outputs’ from a process.

15-1

15.3 Defining the Interface Files
An interface file in EDQ consists of a realtimedata element which defines the
message framework. For OCI Queue interfaces, use the following:

<?xml version="1.0" encoding="UTF-8"?>

<realtimedata messenger="ociqueues">
 ...
</realtimedata>

The realtimedata element contains three subsections:

• The <attributes> section, defining the shape of the interface as understood by
EDQ

• The <messengerconfig> section, defining how to connect to OCI Queue.

• A message format section defining how to extract contents of a message (e.g.
from XML) into attribute data readable by EDQ (for inbound interfaces), or how to
convert attribute data from EDQ to message data (e.g. in XML). For provider
interfaces, the element is <incoming>; for consumer interfaces, the element is
<outgoing>.

15.3.1 Understanding the <attributes> section
The <attributes> section defines the shape of the interface. It constitutes the attributes
that are available in EDQ when configuring a Reader or Writer. For example, the
following excerpt from the beginning of an interface file configures string and number
attributes that can be used in EDQ:

<?xml version="1.0" encoding="UTF-8"?>
<realtimedata messenger="ociqueues">
<attributes>
 <attribute type="string" name="messageID"/>
 <attribute type="string" name="name"/>
 <attribute type="number" name="AccountNumber"/>
</attributes>

[file continues]...

EDQ supports all the standard attribute types and they are:

• string

• number

• date

• stringarray

• numberarray

• datearray

Chapter 15
Defining the Interface Files

15-2

15.3.2 Understanding the <messengerconfig> section
The following properties can be set in the <messengerconfig> section:

Property Description

queue The queue OCID (required).

credentials Stored credentials name used to connect to stream; if
omitted, platform (instance) authentication is used.

interval Interval in milliseconds between polls for message reception.
The default is 0 (long polls are used).

proxy host:port proxy server for HTTPS calls.

deletemode Controls message deletion after reception. Valid values are:

• reception: Each message is deleted immediately on
reception. This is the default.

• completion: Each message is deleted when it has
completed traversing the processes in the job.

• off: Messages are not deleted automatically. They must
be deleted manually, perhaps using the reception handle
in a web service call.

limit Maximum number of messages to receive in one call. The
default is 20.

visibilityInSeconds The duration (in seconds) that the received messages are
hidden from subsequent receive requests. The default is set
in the queue definition.

timeoutInSeconds Wait time in seconds for long poll receive requests. If omitted
the OCI default of 30s is used.

Defaults can be set in realtime.properties with the prefix "ociqueues.".

15.3.3 Understanding the <incoming> or <outgoing> section
The <incoming> or <outgoing> section defines how message metadata and values are
converted to/from EDQ attributes. It consists of the following two subsections:

• The <messageheaders> section

• The <messagebody> section

15.3.3.1 Understanding the <messageheaders> section
The <messageheaders> section allows attributes to be mapped to additional sending
properties for transmission, and attributes to be set from message metadata on reception.
Refer to the OCI Queue Documentation for more details on each value. A non empty
message header value will override a <messengerconfig> property with the same name.

The following standard headers are available:

Header name Settable Readable Type Description

deliveryCount no yes number The number of times the message
has been delivered to a consumer.

Chapter 15
Defining the Interface Files

15-3

https://docs.oracle.com/en-us/iaas/Content/queue/home.htm

Header name Settable Readable Type Description

expireAfter no yes date The time after which the message
will be automatically deleted.

id no yes string The internal message ID.

receipt no yes string The Receipt token that is required
for manual deletion of messages.

visibleAfter no yes date The time after which the message
will be visible to other consumers.

15.3.3.2 Understanding the <messagebody> section
This section uses JavaScript to parse message payloads into attributes that EDQ can
use for inbound interfaces, and perform the reverse operation (convert EDQ attribute
data into message payload data) for outbound interfaces. A function named ‘extract’ is
used to extract data from XML into attribute data for inbound interfaces, and a function
named ‘build’ is used to build XML data from attribute data.

For more details, refer to Illustrations, which provides an example of a complete
provider bucket which can receive JSON messages from a case management filter
reporting trigger.

15.3.4 Illustrations
The following XML is a simple example of a complete provider bucket which can
receive JSON messages from a case management filter reporting trigger. The internal
message ID is also returned.

<?xml version="1.0" encoding="UTF-8"?>

<realtimedata messenger="ociqueues">
 <attributes>
 <attribute name="filter" type="string"/>
 <attribute name="type" type="string"/>
 <attribute name="xaxis" type="string"/>
 <attribute name="yaxis" type="string"/>
 <attribute name="server" type="string"/>
 <attribute name="userid" type="number"/>
 <attribute name="user" type="string"/>
 <attribute name="userdisplay" type="string"/>
 <attribute name="start" type="date" format="iso"/>
 <attribute name="duration" type="number"/>
 <attribute name="status" type="string"/>
 <attribute name="sql" type="string"/>
 <attribute name="arg.type" type="stringarray"/>
 <attribute name="arg.value" type="stringarray"/>
 <attribute name="mgid" type="string"/>
 </attributes>

 <messengerconfig>
 queue =
ocid1.queue.oc1.phx.amaaaaaa7u6obfiaotsz7yuj2zcbc5uhc45evvv7wfwedgertw3

Chapter 15
Defining the Interface Files

15-4

543we
 credentials = OCI 1
 </messengerconfig>

 <incoming>

 <messageheaders>
 <header name="id" attribute="mgid"/>
 </messageheaders>

 <messagebody>
 <script>
 <![CDATA[
 var simple = ["filter", "type", "xaxis", "yaxis", "server",
"userid", "user", "userdisplay", "duration", "status", "sql"]

 function extract(str) {
 var obj = JSON.parse(str)
 var rec = new Record()

 for (let x of simple) {
 rec[x] = obj[x]
 }

 rec.start = obj.start && new Date(obj.start)

 if (obj.args) {
 rec['arg.type'] = obj.args.map(a => a.type)
 rec['arg.value'] = obj.args.map(a => a.value &&
a.value.toString())
 }

 return [rec];
 }
]]>
 </script>
 </messagebody>

 </incoming>

</realtimedata>

Chapter 15
Defining the Interface Files

15-5

16
Using Scripted Global Web Services with
EDQ

EDQ 12.2.1.4.4 restores limited support for global web services. This documentation is
intended for system administrators responsible for installing and maintaining EDQ
applications.
This chapter includes the following topics:

• Introduction to Global Web Services and EDQ

• Configuring EDQ to Read and Write Web Service Requests

• Defining the Interface Files

• Illustrations

16.1 Introduction to Global Web Services and EDQ
EDQ 12.2.1.4.0 and earlier supported "global" SOAP web services, which were installed as
jars in the local webservices directory. Support for global web services was removed in EDQ
12.2.1.4.1.

EDQ 12.2.1.4.4 onwards you can configure realtime provider and consumer buckets to use
global web services for reading and publishing. These web services bucket files use scripts to
decode incoming text payloads and generate outgoing text results. The supported payload
formats are JSON (application/json), XML (text/xml), and plain text (text/plain).

Note:

SOAP is not supported.

16.2 Configuring EDQ to Read and Write Web Service Requests
Web service interfaces to and from EDQ are configured using XML interface files that define:

• The URL path for the web service

• How to decode the message payload into a format understood by an EDQ process (for
Message Providers – where EDQ reads messages), or convert messages to a format
expected by an external process (for Message Consumers – where EDQ writes
messages).

The XML files are located in the EDQ Local Home directory (formerly known as the config
directory), in the following paths:

• buckets/realtime/providers (for interfaces ‘in’ to EDQ)

• buckets/realtime/consumers (for interfaces ‘out’ from EDQ)

16-1

Once the XML files have been configured, Message Provider interfaces are available
in Reader processors in EDQ and to map to Data Interfaces as ‘inputs’ to a process,
and Message Consumer interfaces are available in Writer processors, and to map
from Data Interfaces as ‘outputs’ from a process.

16.3 Defining the Interface Files
An interface file in EDQ consists of a realtimedata element which defines the
message framework. A web service that returns a result is defined by provider and
consumer buckets. The configuration in both must be marked as synchronous. For
web services, use the following:

<?xml version="1.0" encoding="UTF-8"?>

<realtimedata messenger="ws" synchronous="true">
 ...
</realtimedata>

The realtimedata element contains three subsections:

• The <attributes> section, defining the shape of the interface as understood by
EDQ

• The <messengerconfig> section, defining how to connect to the web service
endpoint.

• A message format section defining how to extract contents of a message (e.g.
from XML) into attribute data readable by EDQ (for inbound interfaces), or how to
convert attribute data from EDQ to message data (e.g. in XML). For provider
interfaces, the element is <incoming>; for consumer interfaces, the element is
<outgoing>.

16.3.1 Understanding the <attributes> section
The <attributes> section defines the shape of the interface. It constitutes the attributes
that are available in EDQ when configuring a Reader or Writer.

Provider scripts generate record object from the incoming payload and consumer
scripts convert record contents into the outgoing payload. In a provider bucket script,
create a record using new Record() or newRecord(). The second form should be used
in Groovy scripts. Then set the attributes with assignment like:

rec.id = 23
rec.name = "John Smith"

Record objects contain the attributes defined in the bucket's attributes section. For
example, the following excerpt from the beginning of an interface file defines the
bucket's attributes, which generate record objects that contain id, name and email
attributes:

<?xml version="1.0" encoding="UTF-8"?>
<realtimedata messenger="ws">
<attributes>

Chapter 16
Defining the Interface Files

16-2

 <attribute name="id" id="1" type="number"/>
 <attribute name="name" id="2" type="string"/>
 <attribute name="email" id="3" type="string"/>
</attributes>

[file continues]...

EDQ supports all the standard attribute types and they are:

• string

• number

• date

• stringarray

• numberarray

• datearray

16.3.2 Understanding the <messengerconfig> section
The messengerconfig section must include a path property. The value is appended to
http://server/edq/restws/ to form the endpoint for the web service.

The path can contain letters, digits, and underscore (_) characters.

16.3.3 Understanding the <incoming> or <outgoing> section
The <incoming> or <outgoing> section defines how message metadata and values are
converted to/from EDQ attributes. It consists of the following two subsections:

• Understanding the <messageheaders> section

• Understanding the <messagebody> section

The provider and consumer buckets are linked by adding a key attribute to the incoming and
outgoing elements:

<incoming key="addup1">
<outgoing key="addup1">

The same key value must be used in the provider and consumer web service buckets for a
single service. Each service should use different key values.

16.3.3.1 Understanding the <messageheaders> section
The <messageheaders> section is optional. It defines how data outside the record value is
converted to/from EDQ attributes. The format of this section is as follows:

<messageheaders>
 <header name=”headername” attribute=”attributename”/>
 …
</messageheaders>

Chapter 16
Defining the Interface Files

16-3

16.3.3.2 Understanding the <messagebody> section
This section uses JavaScript to parse message payloads into attributes that EDQ can
use for inbound interfaces, and perform the reverse operation (convert EDQ attribute
data into message payload data) for outbound interfaces. A function named ‘extract’ is
used to extract data from XML into attribute data for inbound interfaces, and a function
named ‘build’ is used to build XML data from attribute data.

Provider Definition

The provider bucket XML file uses a script decoder to create attributes from the input
payload:

<messagebody>
 <script content="...">
 <![CDATA[
 function extract(payload, type, mtags, env) {
 ...
 }
]]>
 </script>
</messagebody>

The content attribute is a comma-separated list of the input types that the provider
supports:

• json: JSON text with content type application/json.

• dom: XML text with content type text/xml. The XML is parsed to DOM by the web
services framework. To decode the DOM in the script use new XML(payload).

• text: Plain text with content type text/plain.

A web service call with a content type not supported by the script will fail with a 415
error. The actual type used is available in env.contenttype;. If the script supports
more than one content type, you can used this to determine how to parse the payload.

For more details, refer to Illustrations, which provides examples of a provider bucket
XML file.

Consumer Definition

The consumer bucket XML file uses a script encoder to create the result text from
input attributes:

<messagebody>
 <script content="...">
 <![CDATA[
 function build(recs, mtags, ctype) {
 ...
 }
]]>
 </script>
</messagebody>

Chapter 16
Defining the Interface Files

16-4

The content attribute is a comma-separated list of the output types that the consumer
supports:

• recs is an array of record objects.

• ctype is the content type (json, dom, or text) of the incoming request. If the service can
accept more than one content type, use this to create the output in the correct format.

Set multirecord="true" if a request can contain multiple records:

<script multirecord="true">

For more details, refer to Illustrations, which provides examples of a consumer bucket XML
file.

16.4 Illustrations
This is an example of a simple global web service called addup, which accepts two numbers
and generates the sum. Supported input formats are JSON, XML, and plain text. The path for
the service is addup and the web service endpoint is:

http://server:port/edq/restws/addup
The following table illustrates how the input and output formats work based on this example
service.

Supported Format Example Input Example Ouput

JSON
{ "n1" : 100,
 "n2" : 235
}

{
 "inputs": [
 100,
 235
],
 "sum": 335
}

XML
<request>
 <n1>100</n1>
 <n2>223</n2>
</request>

<response>
 <inputs>
 <v>100</v>
 <v>223</v>
 </inputs>
 <sum>323</sum>
</response>

Plain text 234,129 234 + 129 = 363

Example 1 – Provider File

The following XML is an example of a provider bucket XML file:

<?xml version="1.0" encoding="UTF-8"?>
<realtimedata messenger="ws" synchronous="true">

Chapter 16
Illustrations

16-5

 <!-- === -->
 <!-- The attributes which are created by this provider -->
 <!-- === -->

 <attributes>
 <attribute name="n1" id="1" type="number"/>
 <attribute name="n2" id="2" type="number"/>
 </attributes>

 <!-- ============================= -->
 <!-- The web service configuration -->
 <!-- ============================= -->

 <messengerconfig>
 path = addup
 </messengerconfig>

 <!-- ==================================== -->
 <!-- The script which unpacks the payload -->
 <!-- ==================================== -->

 <incoming key="addup1">
 <messagebody>
 <script content="json,text,dom">
 <![CDATA[
 function extract(str, type, mtags, env) {
 if (env.contenttype == "json") {
 var x = JSON.parse(str)
 var r = new Record();

 r.n1 = x.n1
 r.n2 = x.n2

 return [r];
 } else if (env.contenttype == "dom") {
 var x = new XML(str)
 var r = new Record();

 r.n1 = parseInt(x.n1)
 r.n2 = parseInt(x.n2)

 return [r];
 } else {
 var a = str.split(",")
 var r = new Record();

 r.n1 = parseInt(a[0])
 r.n2 = parseInt(a[1])

 return [r];
 }
 }
]]>
 </script>

Chapter 16
Illustrations

16-6

 </messagebody>
 </incoming>

</realtimedata>

Example 2 – Consumer File

The following XML is an example of a consumer bucket XML file:

<?xml version="1.0" encoding="UTF-8"?>
<realtimedata messenger="ws" synchronous="true">

 <!-- === -->
 <!-- The attributes which are accepted by this consumer -->
 <!-- == -->

 <attributes>
 <attribute name="n1" type="number"/>
 <attribute name="n2" type="number"/>
 <attribute name="sum" type="number"/>
 </attributes>

 <!-- ============================= -->
 <!-- The web service configuration -->
 <!-- ============================= -->

 <messengerconfig>
 path = addup
 </messengerconfig>

 <!-- =================================== -->
 <!-- The script which creates the output -->
 <!-- =================================== -->

 <outgoing key="addup1">
 <messagebody>
 <script multirecord="true">
 <![CDATA[
 function build(recs, mtags, ctype) {
 var rec = recs[0]

 if (ctype == 'json') {
 return JSON.stringify({ inputs: [rec.n1, rec.n2], sum:
rec.sum }, null, 2)
 } else if (ctype == "dom") {
 return <response><inputs><v>{rec.n1}</v><v>{rec.n2}</v></
inputs><sum>{rec.sum}</sum></response>.toXMLString()
 } else {
 return rec.n1 + " + " + rec.n2 + " = " + rec.sum
 }
 }
]]>
 </script>
 </messagebody>
 </outgoing>

Chapter 16
Illustrations

16-7

</realtimedata>

Chapter 16
Illustrations

16-8

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Integrating with Subversion
	1.1 Software Requirements
	1.2 Understanding the Integration Architecture
	1.3 Setting Up a Repository
	1.4 Configuring EDQ with Subversion
	1.4.1 Configuring a New EDQ Installation
	1.4.2 Retaining Existing Configuration Information

	1.5 Understanding the Integration Elements
	1.6 Reviewing a Deployment Example
	1.7 Troubleshooting Errors

	2 Integrating with Git
	2.1 Understanding the Integration Architecture
	2.2 Preparing the Git Workspace
	2.3 Configuring EDQ with Git
	2.4 Using EDQ

	3 Integrating with IBM Global Name Recognition
	3.1 System Requirements
	3.2 Configuring the EDQ Server
	3.3 Building the Search Library
	3.4 Configuring the GNR Connector
	3.4.1 Creating the EDQ GNR Properties File

	3.5 Creating the Search Configuration Files
	3.5.1 Support for GNR 3.2 and GNR 4.2 in Search Configuration Files

	4 Integrating with Experian QAS
	4.1 Software Requirements
	4.2 Integrating with Experian QAS
	4.3 Migrating QAS integrations

	5 Integrating with Capscan Matchcode
	5.1 Software Requirements
	5.2 Integrating the Capscan Matchcode Libraries into EDQ
	5.3 Customizing the Matchcode API

	6 Using the Command Line Interface
	6.1 Running the Command Line Interface
	6.2 Understanding the Commands and Arguments
	6.2.1 runjob
	6.2.2 runopsjob
	6.2.3 droporphans
	6.2.4 listorphans
	6.2.5 scriptorphans
	6.2.6 list
	6.2.7 showlogs
	6.2.8 shutdown
	6.2.9 version

	6.3 Reviewing Examples
	6.3.1 Listing All the Available Commands
	6.3.2 Listing the Available Parameters for a Command
	6.3.3 Running a Named Job
	6.3.4 Running a Named Job in Operations Mode

	7 Configuring Additional Database Connections
	7.1 Using JNDI to Connect to Data Stores
	7.2 Connecting to an Oracle Database Using tnsnames.ora
	7.2.1 To Configure EDQ to Connect Through TNS

	7.3 Connecting to an Oracle Database Using Oracle Internet Directory (LDAP)

	8 Configuring EDQ to Process XML Data Files
	8.1 Using Simple XML Data Stores
	8.1.1 Reading Simple XML Files
	8.1.2 Writing Simple XML Files

	8.2 Using XML and Stylesheet Data Stores
	8.2.1 Using DN-XML
	8.2.2 Reading Custom XML Files
	8.2.2.1 Configuring the Data Store

	8.2.3 Writing Custom XML Files
	8.2.3.1 Configuring the Data Store

	9 Using the EDQ Configuration API
	9.1 REST Interface for Projects
	9.1.1 Retrieving a List of EDQ Projects
	9.1.2 Creating a Project
	9.1.3 Deleting a Project

	9.2 REST Interface for Data Stores
	9.2.1 Retrieving a List of Data Stores
	9.2.2 Creating a Data Store
	9.2.3 Deleting a data store

	9.3 REST Interface for Snapshots
	9.3.1 Retrieving a List of Snapshots
	9.3.2 Creating a Snapshot
	9.3.3 Deleting a Snapshot

	9.4 REST Interface for Processes
	9.4.1 Retrieving a List of Processes
	9.4.2 Deleting a Process
	9.4.3 Creating a Simple Process

	9.5 REST Interfaces for Jobs
	9.5.1 Retrieving a List of Jobs
	9.5.2 Deleting a Job
	9.5.3 Creating a Simple Job
	9.5.4 Running a Job
	9.5.5 Cancelling a Running Job
	9.5.6 Getting the Status of a Job
	9.5.7 Getting the Details of All Running Jobs

	9.6 REST Interface for Reference Data
	9.6.1 Retrieving a List of Reference Data
	9.6.2 Retrieving Contents of Reference Data
	9.6.3 Creating Reference Data
	9.6.4 Deleting Reference Data

	9.7 REST Interface for Web Services
	9.7.1 Retrieving a List of Web Services
	9.7.2 Creating or Updating a Web Service
	9.7.3 Deleting a Web Service

	9.8 Example: Profiling from an External Application

	10 Using REST APIs for Importing and Exporting Configuration Objects
	10.1 REST Interface for Packaging Configuration
	10.2 JSON Payload Format
	10.3 Packaging Task Status Result Format
	10.4 Packaging REST API Triggers

	11 Using REST APIs for User Management and Launchpad Administration
	11.1 REST Interface for Creating and Updating Groups
	11.2 REST Interface for External Group Mappings
	11.3 REST Interface for Creating and Updating Users
	11.4 REST Interface for Launchpad Applications

	12 Using the Java Messaging Service (JMS) with EDQ
	12.1 Understanding the Message Queue Architecture
	12.2 Uses of JMS with EDQ
	12.3 Configuring EDQ to Read and Write JMS Messages
	12.4 Defining the Interface Files
	12.4.1 Knowing the <attributes> section
	12.4.2 Knowing the <messengerconfig> Section
	12.4.3 Knowing the <messagebody> section

	12.5 Illustrations

	13 Using Apache Kafka with EDQ
	13.1 Introduction to Kafka and EDQ
	13.2 Configuring EDQ to Read and Write Kafka Records
	13.3 Defining the Interface Files
	13.3.1 Understanding the <attributes> section
	13.3.2 Understanding the <messengerconfig> section
	13.3.3 Understanding the <incoming> or <outgoing> section
	13.3.3.1 Understanding the <messageheaders> section
	13.3.3.2 Understanding the <messagebody> section

	13.4 Illustrations

	14 Using Amazon Simple Queue Service (Amazon SQS) with EDQ
	14.1 Introduction to Amazon SQS and EDQ
	14.2 Configuring EDQ to Read and Write Amazon SQS Messages
	14.3 Defining the Interface Files
	14.3.1 Understanding the <attributes> section
	14.3.2 Understanding the <messengerconfig> section
	14.3.3 Understanding the <incoming> or <outgoing> section
	14.3.3.1 Understanding the <messageheaders> section
	14.3.3.2 Understanding the <messagebody> section

	14.4 Illustrations

	15 Using Oracle Cloud Infrastructure (OCI) Queue with EDQ
	15.1 Introduction to OCI Queue and EDQ
	15.2 Configuring EDQ to Read and Write OCI Queue Messages
	15.3 Defining the Interface Files
	15.3.1 Understanding the <attributes> section
	15.3.2 Understanding the <messengerconfig> section
	15.3.3 Understanding the <incoming> or <outgoing> section
	15.3.3.1 Understanding the <messageheaders> section
	15.3.3.2 Understanding the <messagebody> section

	15.3.4 Illustrations

	16 Using Scripted Global Web Services with EDQ
	16.1 Introduction to Global Web Services and EDQ
	16.2 Configuring EDQ to Read and Write Web Service Requests
	16.3 Defining the Interface Files
	16.3.1 Understanding the <attributes> section
	16.3.2 Understanding the <messengerconfig> section
	16.3.3 Understanding the <incoming> or <outgoing> section
	16.3.3.1 Understanding the <messageheaders> section
	16.3.3.2 Understanding the <messagebody> section

	16.4 Illustrations

