
Oracle® Analytics
Building Semantic Models in Oracle Analytics
Server

F91008-01
March 2024

Oracle Analytics Building Semantic Models in Oracle Analytics Server,

F91008-01

Copyright © 2024, Oracle and/or its affiliates.

Primary Author: Stefanie Rhone

Contributing Authors: Shounak Ganguly

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Contents

Part I Before You Begin

1 Introduction to Semantic Models

What Is a Semantic Model? 1-1

About a Semantic Model's Architecture 1-1

How Does a Semantic Model Query Data? 1-3

What Is SMML? 1-4

Oracle Analytics Data Modeling Tools 1-5

What Is Oracle Analytics Semantic Modeler? 1-6

2 Plan a Semantic Model

Understand a Semantic Model's Requirements 2-1

Components of a Semantic Model 2-1

Plan the Physical Layer 2-2

About Physical Schema Types 2-3

Identify the Data Source Table Structure 2-3

Physical Layer Design Tips 2-4

Plan the Logical Layer 2-5

Guidelines for Identifying the Logical Layer's Content 2-5

Identify the Logical Fact Tables 2-6

Identify the Logical Dimension Tables 2-6

Identify Dimensions 2-7

Identify Lookup Tables 2-8

Logical Layer Design Tips 2-8

Model Outer Joins 2-9

Plan the Presentation Layer 2-10

Part II Create and Build Your Model

iii

3 Get Started with Semantic Modeling

Workflow to Build a Semantic Model 3-1

Semantic Model Object Naming Requirements 3-3

Edit Semantic Model Objects Using the SMML Editor 3-4

About Command-Line Utilities and Semantic Modeler 3-4

4 Develop Semantic Models in a Collaborative Environment

About Collaborative Semantic Model Development 4-1

Use Permissions for Collaborative Semantic Model Development 4-2

About Using Git with Semantic Model Development 4-2

Upload a Semantic Model to a Git Repository Using HTTPS 4-3

Upload a Semantic Model to a Git Repository Using SSH 4-4

Work With Branches 4-4

View and Manage Git Profiles 4-5

Understand and Resolve Merge Conflicts 4-6

What are Merge Conflicts? 4-6

About the Merge Editor 4-6

Understand How to Resolve Conflicts 4-9

Change Git's Merge Strategy 4-10

Cancel All Merge Conflicts 4-11

Resolve All Merge Conflicts 4-11

Resolve Individual Merge Conflicts 4-12

5 Work with Data Sources

About Connections for Semantic Models 5-1

Data Sources Available for Data Modeling 5-2

View Available Data Source Connections 5-2

Semantic Modeler Data Source Limitations 5-3

Import Metadata from Data Sources 5-3

6 Migrate From Model Administration Tool

Plan Your Migration From Model Administration Tool to Semantic Modeler 6-1

Understand the Differences Between Model Administration Tool and Semantic Modeler 6-2

Prepare the Semantic Model for Migration to Semantic Modeler 6-3

Import the Semantic Model From the Model Administration Tool .rpd File 6-4

Import the Semantic Model Deployed From Model Administration Tool 6-5

Update the Semantic Model After Migration From Model Administration Tool 6-5

iv

7 Create a Semantic Model

Create an Empty Semantic Model 7-1

Import a File to Create a Semantic Model 7-1

Import the Deployed Model to Create a Semantic Model 7-2

Clone a Git Repository Using HTTPS 7-3

Clone a Git Repository Using SSH 7-4

8 Build a Semantic Model's Physical Layer

What is the Physical Layer? 8-1

Create a Database and Add Tables to the Physical Layer 8-2

Add a Catalog to a Database 8-2

Add a Schema to a Database or Catalog 8-3

Use a Variable to Dynamically Name a Catalog or Schema 8-3

Change a Database Object's Database Type 8-4

Modify a Database's Data Source Properties and Supported Query Features 8-4

Add or Modify a Database's Data Source Properties 8-4

What Are Supported Query Features? 8-5

Modify a Database's Supported Query Features 8-6

Work with Connection Pools 8-6

What Are Connection Pools? 8-6

About Connection Pools for Initialization Blocks 8-7

Connection Pool General Properties 8-8

Set a Connection Pool's General Properties 8-10

Set a Connection Pool's Connection Property 8-11

Add Connection Scripts to a Connection Pool 8-11

About Setting the Bulk Insert Buffer Size and Transaction Boundary Settings 8-12

Set up Write Back in a Connection Pool 8-12

Set a Connection Pool's Permissions 8-13

About Physical Tables 8-14

What Are a Physical Table's General Properties? 8-14

Disable Auto Joins Creation in the Physical Layer 8-16

Create a Physical Table 8-16

Create or Modify a Physical Column 8-17

Populate Physical Columns with a Stored Procedure or Select Statement 8-18

About Physical Alias Tables 8-19

Create an Alias Table 8-20

Open the Physical Diagram from the Physical Layer 8-21

Delete a Physical Table 8-21

Delete a Physical Column 8-22

Work with Physical Joins 8-22

v

About Physical Joins 8-22

About Joining Fragmented Data 8-23

Add and Define Physical Joins 8-24

Use Hints in SQL Statements 8-24

About Hints in SQL Statements 8-25

About the Index Hint 8-25

About the Leading Hint 8-25

Performance Considerations for SQL Statement Hints 8-26

Create Physical Table Hints 8-26

Create Physical Join Hints 8-26

Preview Data in Physical Tables 8-27

9 Build a Semantic Model's Logical Layer

What is the Logical Layer? 9-1

Automatically Rename Logical Layer Objects 9-2

Create a Business Model in the Logical Layer 9-3

About Logical Tables 9-3

Create a Fact, Dimension, or Lookup Logical Table 9-4

Work with Logical Columns 9-4

About Logical Columns 9-4

Add or Modify a Logical Column 9-5

Delete a Logical Column's Logical Table Source 9-5

Base a Logical Column's Sort Order on a Different Column 9-6

Add Double Column Support 9-6

Create Derived Columns 9-7

Configure Logical Columns for Multicurrency Support 9-8

Specify a Logical Table's Primary Key 9-9

Work with Logical Joins 9-10

About Logical Joins 9-10

What Are Driving Tables? 9-10

What Determines Join Trimming? 9-11

Add and Define Logical Joins 9-14

Identify the Physical Tables That Map to Logical Tables 9-15

Open the Logical Diagram 9-15

Open the Physical Diagram from the Logical Layer 9-16

Work with Logical Column Aggregation 9-17

About Levels of Aggregation 9-17

Set Aggregation Rules for a Measure Column 9-17

Set an Aggregation Level Based on a Dimension for a Measure Column 9-18

Associate an Attribute with a Logical Level in Dimension Tables 9-19

vi

Enable Write Back On Columns 9-19

Work with Bridge Tables 9-20

About Bridge Tables 9-21

Create Joins in the Physical Layer for Bridge and Associated Dimension Tables 9-21

Model the Associated Dimension Tables in a Single Dimension 9-22

Model the Associated Dimension Tables in Separate Dimensions 9-23

10

Build a Semantic Model's Presentation Layer

What is the Presentation Layer? 10-1

About Alternative Names for Presentation Objects 10-2

Work with Subject Areas 10-2

About Creating Subject Areas 10-3

About the Implicit Fact Column 10-3

Create a Subject Area 10-4

Work with Presentation Tables and Columns 10-5

About Presentation Tables 10-5

Create a Presentation Table 10-5

About Presentation Columns 10-6

Create a Presentation Column 10-6

Modify a Presentation Column Name 10-7

Delete a Presentation Column 10-7

Reorder and Nest Tables for End Users 10-8

Work with Presentation Hierarchies and Levels 10-8

About Presentation Hierarchies and Levels 10-9

About Creating Presentation Hierarchies 10-9

About Adding Logical Hierarchies with Multiple Hierarchies to the Presentation Layer 10-10

Add a Presentation Hierarchy to a Presentation Table 10-12

Add and Modify Presentation Hierarchy Levels 10-13

Write an Expression to Hide a Presentation Object 10-13

Work with Localization 10-14

Modify or Delete Individual Localization Keys and Variables 10-15

Clear All Name and Description Variables 10-15

Generate Localization Keys and Name and Description Variables 10-16

Externalize Strings for a Subject Area 10-16

Externalize Strings for All Subject Areas 10-17

Translate Strings 10-17

11

Work with Logical Hierarchies

About Working with Logical Hierarchies 11-1

vii

Create and Manage Level-Based Hierarchies 11-2

About Level-Based Hierarchies 11-2

About Hierarchy Structures 11-4

About Using Dimension Hierarchy Levels in Level-Based Hierarchies 11-5

Automatically Create Dimensions with Level-Based Hierarchies 11-6

Manually Create Dimensions in Level-Based Hierarchies 11-6

Create Logical Levels in a Logical Dimension Table 11-7

Associate a Logical Column and Its Table with a Dimension Level 11-7

About Level-Based Measure Calculations 11-8

Grand Total Dimensional Hierarchy Example 11-9

Identify the Primary Key for a Dimension Level 11-9

Select and Sort Chronological Keys in a Time Dimension 11-10

Add a Dimension Level to the Preferred Drill Path 11-10

Create and Manage Parent-Child Hierarchies 11-11

About Parent-Child Hierarchies 11-11

About Levels and Distances in Parent-Child Hierarchies 11-12

About Parent-Child Relationship Tables 11-13

Create Dimensions with Parent-Child Hierarchies 11-14

Generate Scripts to Create a Parent-Child Relationship Table 11-15

Add the Parent-Child Relationship Table to the Semantic Model 11-15

Define Parent-Child Relationship Tables 11-16

About Modeling Aggregates for Parent-Child Hierarchies 11-17

About Storing Facts for Parent-Child Hierarchies 11-17

About Aggregating Parent-Child Hierarchies 11-18

Maintain Parent-Child Hierarchies Based on Relational Tables 11-20

Model Time Series Data 11-20

About Time Series Functions 11-20

About the AGO Function 11-21

About the TODATE Function 11-22

About the PERIODROLLING Function 11-23

About Creating Logical Time Dimensions 11-24

About Setting Chronological Keys 11-25

Create the Logical Time Dimension 11-25

Create AGO, TODATE, and PERIODROLLING Measures 11-26

12

Manage Logical Table Sources

What are Logical Table Sources? 12-1

How Are Fact Logical Table Sources Selected to Answer a Query? 12-1

How Are Dimension Logical Table Sources Selected to Answer a Query? 12-2

Change the Default Selection Criteria for Dimension Logical Table Sources 12-3

viii

About Consistency Among Data in Multiple Table Sources 12-3

Add Logical Table Sources 12-3

Enable or Disable a Logical Table Source 12-4

Work With Logical Table Source Priorities 12-4

About Assigning Logical Table Sources Priority Order 12-5

Set the Logical Table Sources Priority Order 12-5

Reverse the Table Source Priority Ranking at Query Time 12-6

Modify a Logical Table Source's Logical Column to Physical Column Mappings 12-6

Map a Logical Table Source's Logical Column to a Calculated Item 12-7

Work With Data Granularity 12-8

About Data Granularity 12-8

About Aggregate Tables 12-9

About Aggregate Table Joins 12-9

About the Logical Table Source's Parent-Child Settings 12-10

Define Logical Table Source Data Granularity 12-11

Work With Logical Table Source Data Fragmentation 12-12

About Data Fragmentation 12-12

About Global Variables and Logical Table Source Fragmentation 12-13

Define Data Fragmentation for a Logical Table Source 12-13

Improve the Performance of Fragmented Logical Table Sources 12-14

Work With Fragmentation for Aggregate Navigation 12-14

Specify Fragmentation for Single Column, Value-Based Predicates 12-14

Specify Fragmentation for Single Column, Range-Based Predicates 12-15

Work With Aggregate Table Fragments 12-18

About Aggregate Table Fragments 12-19

Specify the Aggregate Table Content 12-19

Define a Physical Layer Table with a Select Statement to Complete the Domain 12-20

Specify the SQL Virtual Table Content 12-20

Create Physical Joins for the Virtual Table 12-21

Work With Logical Table Source Data Filters 12-21

About Logical Table Source Data Filters 12-21

Add a Data Filter to a Logical Table Source 12-22

13

Create and Use Variables in a Semantic Model

About Semantic Model Variables 13-1

Create and Configure Initialization Blocks 13-2

Create an Initialization Block 13-3

Open an Initialization Block 13-3

Defer Session Variable Processing 13-4

When You Can't Defer Session Variable Processing 13-4

ix

About Dynamically Creating Session Variables and Setting Their Values 13-5

Use a List of Values to Initialize a Session Variable 13-6

Create a Schedule to Update Global Variable Values 13-7

Add an Additional Database Query to an Initialization Block 13-8

Initialization Queries Used in Variables to Override Selection Steps 13-8

Test an Initialization Block's Query 13-10

Change the Order of Variables in an Initialization Block 13-10

Add Dependencies to an Initialization Block 13-11

Disable or Enable an Initialization Block 13-11

Define Global Variables 13-12

About Global Variables 13-12

Create a Global Variable 13-12

Define Session Variables 13-13

About Session Variables 13-13

About Multi-Source Session Variables 13-14

Create a Session Variable 13-15

Example - Create and Use a Multi-Source Session Variable 13-16

Create a Multi-Source Session Variable 13-16

Use a Multi-Source Session Variable in an Expression 13-17

Use a Multi-Source Session Variable in a Data Filter 13-18

Define Static Variables 13-18

About Static Variables 13-18

Create a Static Variable 13-19

14

Support Multilingual Data

What Is Multilingual Data Support? 14-1

What is Lookup? 14-1

What Is Double Column Support? 14-2

Design Translation Lookup Tables in Multilingual Schema 14-2

Create Logical Lookup Tables and Logical Lookup Columns 14-3

Create Logical Lookup Tables 14-3

Designate a Logical Table as a Lookup Table 14-5

About the LOOKUP Function Syntax 14-5

Create Logical Lookup Columns 14-6

Create Physical Lookup Tables and Physical Lookup Columns 14-7

Enable Lexographical Sorting 14-9

15

Apply Data Access Security to Semantic Model Objects

About Data Access Security 15-1

x

Work With Row-Level Security 15-2

About Row-Level Security 15-2

Where to Set Up Row-Level Security 15-2

Set Up Row-Level Security in the Database 15-3

About Data Filters and Row-Level Security 15-3

Set Up Data Filters in the Semantic Model 15-4

About Specifying Functional Groups for Application Roles in Data Filters 15-5

Specify a Functional Group for a Data Filter's Application Role 15-6

Work With Object Permissions 15-6

About Permission Inheritance for Application Roles 15-7

Set Up Presentation Object Permissions 15-7

About Object Permissions 15-7

Work With Query Limits 15-9

Limit the Number of Rows in a Database Query 15-9

Limit Database Queries by Maximum Run Time 15-10

Allow or Disallow Direct Database Requests 15-10

Override an Application Role's Query Limits 15-11

Pause an Application Role's Query Limits 15-11

16

Check Consistency and Deploy a Semantic Model

Work with Check Consistency 16-1

About Check Consistency 16-1

Types of Semantic Model Consistency Checks 16-2

Common Consistency Check Messages 16-3

Check the Consistency of a Semantic Model 16-5

Check Consistency of One or More Semantic Model Objects 16-5

Run the Advanced Consistency Check Before Deploying a Semantic Model 16-6

Find and View Advanced Check History 16-6

Why Are the Advanced Check Records in a Different Language? 16-7

Show or Hide the Advanced Check Warning Message 16-7

Export Consistency Check Results to a CSV File 16-7

Other Semantic Model Finalization Tasks 16-8

Deploy a Semantic Model 16-8

17

Manage Semantic Models

Export a Semantic Model 17-1

Generate an .rpd file from JSON/SMML 17-2

Download an Exported .rpd File 17-3

Import an .rpd or .zip File Into Your Semantic Model 17-3

xi

Import the Deployed Model Into Your Semantic Model 17-4

Generate JSON/SMML from an .rpd File 17-4

View a Semantic Model's Logs 17-5

View a Semantic Model's Job History 17-6

Generate Indexes for a Semantic Model 17-6

Part III Reference

18

Design Tips

Business Model Design 18-1

Time Dimension Design 18-3

Physical Table Alias 18-5

Implicit Facts in Subject Areas 18-8

Dimensional Hierarchies, Level Keys and Content Levels 18-9

19

Miscellaneous Reference Information

Keyboard Shortcuts for Semantic Modeler 19-1

Model Binary Large Object (BLOB) Data and Character Large Object (CLOB) Data 19-2

20

Data Types Supported by Oracle Analytics Cloud

Data Types Supported by Oracle Analytics 20-1

Data Type Limitations 20-2

Floating Point Limitations 20-4

Use the NQSGetSQLDataTypes Procedure to Access Data Type Information 20-4

SQL Identifier Character Limitation 20-4

Other Oracle BI Server Limitations 20-5

Data Type Mapping in Oracle Database and Oracle Analytics 20-5

21

Expression Editor Reference

SQL Operators 21-1

Conditional Expressions 21-3

Functions 21-4

Aggregate Functions 21-5

Analytics Functions 21-8

Date and Time Functions 21-9

Date Extraction Functions 21-11

Conversion Functions 21-13

xii

Display Functions 21-14

Evaluate Functions 21-16

Mathematical Functions 21-16

Running Aggregate Functions 21-18

Spatial Functions 21-19

String Functions 21-20

System Functions 21-24

Time Series Functions 21-24

Constants 21-27

Types 21-27

Variables 21-27

xiii

Preface

Learn how to use Semantic Modeler to build and deploy semantic models for use in
workbooks, analyses, and dashboards.

Audience
This guide is intended for data modelers and business intelligence analysts who use
Oracle Analytics Server:

• Data Modelers use the Semantic Modeler to create, design, edit, and deploy
semantic models to Oracle Analytics Server.

• Analysts use the deployed semantic model's subject areas to model enterprise
data and create workbooks, analyses, and dashboards for consumers. Analysts
can select interactive visualizations and create advanced calculations to reveal
data insights.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having
a diverse workforce that increases thought leadership and innovation. As part of our
initiative to build a more inclusive culture that positively impacts our employees,
customers, and partners, we are working to remove insensitive terms from our
products and documentation. We are also mindful of the necessity to maintain
compatibility with our customers' existing technologies and the need to ensure
continuity of service as Oracle's offerings and industry standards evolve. Because of
these technical constraints, our effort to remove insensitive terms is ongoing and will
take time and external cooperation.

Conventions
The following text conventions are used in this document:

Audience

14

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which you
supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Conventions

15

Part I
Before You Begin

This part contains information about understanding and designing your semantic models.

Topics:

• Introduction to Semantic Models

• Plan a Semantic Model

1
Introduction to Semantic Models

This chapter introduces you to Oracle Analytics semantic models.

Topics:

• What Is a Semantic Model?

• About a Semantic Model's Architecture

• How Does a Semantic Model Query Data?

• What Is SMML?

• Oracle Analytics Data Modeling Tools

• What Is Oracle Analytics Semantic Modeler?

What Is a Semantic Model?
A semantic model is a metadata model that contains physical database objects that are
abstracted and modified into logical dimensions. A semantic model is designed to present
data for analysis according to the structure of the business.

After deployment, the semantic model is presented to users as subject areas, which are
made up of tables, columns, and hierarchies. In the semantic model, these are mapped to the
data sources that provide data to the workbooks, analyses, and dashboards that users create
and consume.

A semantic model acts like a translation layer between your application and your underlying
data structures. You can use this metrics-oriented data layer that the semantic model
exposes directly with APIs, with embedded visualizations, or from other analytics tools to
support your enterprise's advanced analytics applications.

A well-designed semantic model meets the business requirements of the stakeholders
without them needing to understand the complexity of the underlying data structure. And a
well-designed semantic model enable analysts to design workbooks, analyses, and
dashboards to query data in the same intuitive way that users think about their business and
ask business questions.

A semantic model enables you to structure data in a business-friendly way. It enables you to
add business semantics to provide meaning to the data and the governance rules that secure
data access.

About a Semantic Model's Architecture
The semantic model contains three layers of metadata that build on each other and prepare
the data source's data for users to query and analyze.

Physical Layer

This is the first layer of the semantic model.

1-1

The physical layer defines the objects and relationships that the Oracle Analytics
query engine needs to write native queries against each physical data source. You
create this layer by importing tables from your data sources into physical databases
and then creating alias tables to obfuscate the actual database tables from end users
and to control access and updates to the actual data.

Separating the logical behavior of the application from the physical model provides the
ability to federate multiple physical sources to the same logical object, enabling
aggregate navigation and partitioning, as well as dimension conformance and isolation
from changes in the physical sources.

The physical layer can contain: subject areas, folders, localization configuration
information, role-based permissions, row-level security, variables, governance rules,
and mappings.

See What is the Physical Layer?

Logical Layer

This is the second layer of the semantic model.

The logical layer defines the logical model of the data and specifies the mapping
between the logical model and the physical schemas. This layer determines the
analytic behavior seen by users, and defines the superset of objects and relationships
available to users. The logical layer hides the complexity of the source data models.

Each column in the logical layer maps to one or more columns in the physical layer. At
runtime, the Oracle Analytics query engine evaluates Logical SQL requests against
the logical layer, and then uses the mappings to determine the best set of physical
tables and files for generating the necessary physical queries. The mappings often
contain calculations and transformations, and might combine multiple physical tables.

The logical layer can contain: business models, business entities, levels, measures,
filters, aggregates, table sources, hierarchies, level-based measures, calculations,
aggregates by dimension, and fragmented or federated logic.

See What is the Logical Layer?

Presentation Layer

This is the third layer of the semantic model.

The presentation layer provides a way to present customized, secure, role-based
views of a logical layer to users. It adds a level of abstraction over the logical layer and
provides the view of the data seen by users building requests in Oracle Analytics and
other clients. The presentation layer allows users to easily query data without having
to understand the underlying data source.

You can create multiple subject areas in the presentation layer that map to a single
logical layer, effectively breaking up the logical layer into manageable pieces.

The presentation layer can contain: tables, data sources, aliases, joins, connections,
fragmented sources, and federated sources.

See What is the Presentation Layer?

Chapter 1
About a Semantic Model's Architecture

1-2

How Does a Semantic Model Query Data?
The Oracle Analytics query engine interprets Logical SQL queries and generates optimized
Physical SQL queries to data sources as specified in a semantic model.

Oracle Analytics Query Engine

The Oracle Analytics query engine is the backbone of Oracle Analytics' governed and self-
service analytics functionality. The query engine provides centralized data access, computes
calculations, and enables data governance by creating a pipeline through which anyone can
consume information specific to their application roles across their enterprise. The query
engine is central to data visualizations, dashboards, ad-hoc queries, mobile access,
enterprise reporting, data flows, and more. The semantic model functions as the brain of the
query engine.

The Oracle Analytics query engine maintains the logical data model and provides client
access to the model using ODBC connectivity or native APIs, such as OCI for the Oracle
Database.

Logical SQL Queries

The Oracle Analytics query engine uses the semantic model's metadata to translate Logical
SQL queries from workbooks, dashboards, and analyses into physical SQL queries against
the mapped data sources that supply the data. The Oracle Analytics query engine also
transforms and combines the physical result sets and perform final calculations.

This diagram shows how a Logical SQL query traverses the layers of a semantic model to
query the data sources.

Logical Request Transformation Example

This example shows how the Oracle Analytics query engine interprets and converts a Logical
SQL query to a Physical SQL query.

The Oracle Analytics query engine receives the following simple client request:

Chapter 1
How Does a Semantic Model Query Data?

1-3

SELECT
"D0 Time"."T02 Per Name Month" saw_0,
"D4 Product"."P01 Product" saw_1,
"F2 Units"."2-01 Billed Qty (Sum All)" saw_2
FROM "Sample Sales"
ORDER BY saw_0, saw_1

The Oracle Analytics query engine converts the Logical SQL query into a Physical
SQL query:

WITH SAWITH0 AS (
select T986.Per_Name_Month as c1, T879.Prod_Dsc as c2,
 sum(T835.Units) as c3, T879.Prod_Key as c4
from
 Product T879 /* A05 Product */ ,
 Time_Mth T986 /* A08 Time Mth */ ,
 FactsRev T835 /* A11 Revenue (Billed Time Join) */
where (T835.Prod_Key = T879.Prod_Key and T835.Bill_Mth = T986.Row_Wid)
group by T879.Prod_Dsc, T879.Prod_Key, T986.Per_Name_Month
)
select SAWITH0.c1 as c1, SAWITH0.c2 as c2, SAWITH0.c3 as c3
from SAWITH0
order by c1, c2

What Is SMML?
The Semantic Modeler Markup Language (SMML) is a JSON-based markup language
that describes the design-time semantic model's objects. SMML provides a grammar,
syntax, and structure for defining semantic models.

Each SMML file represents an object in the semantic model. You can use a semantic
model's SMML files for metadata migration, programmatic metadata generation and
manipulation, metadata patching, and other functions.

SMML allows developers to use their semantic model editor of choice. Developers can
use the Semantic Modeler user interface and its diagramming capabilities to create
models, or use the native SMML editor or their preferred external text editor to create
and modify the semantic model.

And because SMML uses JSON files, Semantic Modeler can integrate with any Git-
compatible repository, such as GitHub, GitLab, or Git on Oracle Visual Builder, to
provide a seamless, efficient multi-user development environment and source control.
With full support for branching, merging, pull, push, and commit from within Semantic
Modeler, multiuser development becomes much less complicated. With Git integration,
you have full visibility to a complete change history and the ability to publish to multiple
targets.

Other benefits of SMML include:

• File granularity is at the table level (not the column level), which reduces the
number of files to manage.

• SMML files are human readable.

• Object references are easy to define with fully-qualified object names.

• SMML object names match the names used by the Semantic Modeler user
interface.

Chapter 1
What Is SMML?

1-4

• Attributes order matches the attribute order used by the Semantic Modeler interface.

• The semantic model's SMML files can be exported as data model archive (.mar) files.

For more information about SMML, see SMML Schema Reference for Oracle Analytics
Cloud.

Oracle Analytics Data Modeling Tools
Oracle Analytics offers several data modeling tools that you can use to create enterprise
semantic models and self-service datasets.
Use this topic to learn the differences between the data modeling tools and which tool to use
based on what you want to create.

Tool Use to create Description

Semantic Modeler Governed data
models

A browser-based modeling tool that developers use for
creating, building, and deploying the semantic model to
an .rpd file. The Semantic Modeler editor is a fully-integrated
Oracle Analytics component.

Because the Semantic Modeler generates Semantic Model
Markup Language (SMML) to define semantic models.
developers have the choice of using the Semantic Model
editor, the native SMML editor, or another editor to develop
semantic models. Semantic Modeler provides full Git
integration to support multi-user development.

You can use the Semantic Modeler to create semantic
models from the data sources that it supports. Use the Model
Administration Tool to create semantic models from data
sources that Semantic Modeler doesn't support.

See What Is Oracle Analytics Semantic Modeler? and
Supported Data Sources.

Chapter 1
Oracle Analytics Data Modeling Tools

1-5

Tool Use to create Description

Model
Administration Tool

Administration Tool

Oracle BI
Administration Tool

Governed data
models

A mature, longstanding, heavyweight, developer-focused
modeling tool that provides complete governed data
modeling capabilities. Developers use the Model
Administration Tool to define rich business semantics, data
governance, and data interaction rules to fetch, process, and
present data at different granularity from disparate data
systems.

Oracle recommends that you use Semantic Modeler to
create semantic models from the data sources Semantic
Modeler supports, and that you use Model Administration
Tool to create semantic models from any data source that
Semantic Modeler doesn’t support.

See About Creating Semantic Models with Model
Administration Tool and Supported Data Sources.

The Model Administration Tool is a Windows-based
application that isn't integrated into the Oracle Analytics
interface. You download the Model Administration Tool and
install it onto and use it from your computer.

If you previously modeled your business data with Oracle BI
Enterprise Edition, you don't have to start from scratch in
Oracle Analytics. You can use the Model Administration Tool
to upload a complete semantic model .rpd file to Oracle
Analytics Server and immediately start using your subject
areas in visualizations, dashboards, and analyses.

Optionally, can use the Model Administration Tool to
download, edit, and upload your semantic model .rpd files to
Oracle Analytics.

Data Model Editor
(For Pixel-Perfect
Reports)

XML data structure
for Pixel-Perfect
Reports

The Data Model editor enables you to combine data from
multiple datasets into a single XML data structure for pixel-
perfect reports.
See Build Data Models for Pixel-Perfect Reports.

Dataset Editor Self-service data
models

A user-friendly data modeling and data preparation tool that
data analysts and business analysts use to create datasets
containing multiple tables with joins. A dataset can contain
data from local and remote files, including more than 50
connections and subject areas.

The Dataset editor is available from the Oracle Analytics
interface and enables business users to create self-service
data models on top of existing governed semantic models.

See What Are Datasets?

What Is Oracle Analytics Semantic Modeler?
Oracle Analytics Semantic Modeler is a browser-based data modeling tool with a
modern user interface. It provides a streamlined user experience for creating semantic
models (governed data models), and is a fully-integrated Analytics Cloud component.
Key benefits include:

• Provides a modern alternative to the Model Administration Tool.

• Includes complete semantic modeling capabilities for most data sources. Support
for more data sources to be included in future releases.

Chapter 1
What Is Oracle Analytics Semantic Modeler?

1-6

• Contains complete semantic modeling capabilities, including physical diagrams, logical
diagrams, and lineage diagrams.

• Includes streamlined search integration that seamlessly shows relationships among the
semantic model's objects.

• Includes a lineage viewer to show the mapping of physical, logical, and presentation
layers.

• Integrates with any Git-based platform, such as GitHub, GitLab, or Git on Oracle Visual
Builder, to provide a seamless, efficient multi-user development environment and source
control.

• Allows developers to perform most common Git operations from within the Semantic
Modeler user interface.

• Transparently generates Semantic Model Markup Language (SMML), which uses
Javascript Object Notation (JSON) to define semantic models.

• Allows developers to use their semantic model editor of choice. Developers can use the
Semantic Modeler user interface and its diagramming capabilities to create models, or
display and use the native SMML editor or use their preferred external text editor to
create or modify the semantic model's source code.

• Ability to validate calculations and advanced expressions from within the SMML editor.

Chapter 1
What Is Oracle Analytics Semantic Modeler?

1-7

2
Plan a Semantic Model

This topic contains information to help you design a semantic model.

Topics:

• Understand a Semantic Model's Requirements

• Components of a Semantic Model

• Plan the Physical Layer

• Plan the Logical Layer

• Plan the Presentation Layer

Understand a Semantic Model's Requirements
Before you can begin modeling data, you must understand your semantic model's
requirements.

When creating a semantic model, the key objective is to design a model that presents
business information in the way that users understand their business' structure. A well
designed semantic model allow users to query data in the same way that they would ask
business questions.

Use this list of questions to help you analyze a semantic model's requirements:

• What kinds of business questions are business analysts trying to answer?

• What are the measures required to understand business performance?

• What are all the dimensions the business operates under? Or, in other words, what are
the dimensions used to break down the measurements and provide headers for the
reports?

• Are there hierarchical elements in each dimension, and what types of relationships define
each hierarchy?

Answering these questions makes it easier to identify and define the semantic model's
objects.

Components of a Semantic Model
Fact tables, dimension tables, joins, and hierarchies are a semantic model's key components.

2-1

Component Description

Fact Tables Fact tables contain measures (columns) that have aggregations built into
their definitions.

Measures aggregated from facts must be defined in a fact table.
Measures are typically calculated data such as dollar value or quantity
sold, and they can be specified in terms of hierarchies. For example, you
might want to determine the sum of dollars for a given product in a given
market over a given time period.

Each measure has its own aggregation rule such as SUM, AVG, MIN, or
MAX. A business might want to compare values of a measure and need
a calculation to express the comparison.

Dimension Tables A business uses facts to measure performance by well-established
dimensions, for example, by time, product, and market. Every dimension
has a set of descriptive attributes. Dimension tables contain attributes
that describe business entities (like Customer Name, Region, Address,
or Country).

Dimension table attributes provide context to numeric data, such as
being able to categorize Service Requests. Attributes stored in this
dimension might include Service Request Owner, Area, Account, or
Priority.

Dimension tables in the model are conformed. In other words, even if
there are three different source instances of a particular Customer table,
the model only has one table. To achieve this, all three source instances
of Customer are combined into one using database views.

Joins Joins indicate relationships between fact tables and dimension tables in
the model. When you create joins, you specify the fact table, dimension
table, fact column, and dimension column you want to join.

Joins allow queries to return rows where there is at least one match in
both tables.

Tip: Analysts can use the option Include Null Values when building
reports to return rows from one table where there’re no matching rows in
another table.

Hierarchies Hierarchies are sets of top-down relationships between dimension table
attributes.

In hierarchies, levels roll up from lower levels to higher levels. For
example, months can roll up into a year. These rollups occur over the
hierarchy elements and span natural business relationships.

Plan the Physical Layer
Use the topics in this section to determine the physical layer's content.

Topics:

• About Physical Schema Types

• Identify the Data Source Table Structure

• Physical Layer Design Tips

Chapter 2
Plan the Physical Layer

2-2

About Physical Schema Types
When you model data sources, you can break down the model of any physical source into
overlapping dimensional subsets.

Each physical model mirrors the shape of the source. For example, snowflake or normalized.

• Star Schemas

A star schema is a set of dimensional schemas (stars) that each have a single fact table
with join relationships to several dimension tables. When you map a star to the business
model, you first map the physical fact columns to one or more logical fact tables. Then,
for each physical dimension table that joins to the physical fact table for that star, you
map the physical dimension columns to the appropriate conformed logical dimension
tables.

• Snowflake Schemas

A snowflake schema is similar to a star schema, except that each dimension is made up
of multiple tables joined together. Like star schemas, you first map the physical fact
columns to one or more logical tables. Then, for each dimension, you map the snowflake
physical dimension tables to a single logical table. You can achieve this by either having
multiple logical table sources, or by using a single logical table source with joins.

• Normalized Schemas

Normalized schemas distribute data entities into multiple tables to minimize data storage
redundancy and optimize data updates. Before mapping a normalized schema to the
business model, you need to understand how the distributed structure is understood in
terms of facts and dimensions.

After analyzing the structure, you pick a table that has fact columns and then map the
physical fact columns to one or more logical fact tables. Then, for each dimension
associated with that set of physical fact columns, you map the distributed physical tables
containing dimensional columns to a single logical table. Like with snowflake schemas,
you can achieve this by having multiple logical table sources, or by using a single logical
table source with joins. Mapping normalized schemas is an iterative process because you
first map a certain set of facts, then the associated dimensions, and then you move on to
the next set of facts.

When a single physical table has both fact and dimension columns, you may need to
create a physical alias table to handle the multiple roles played by that table.

• Fully Denormalized Schemas

This type of dimensional schema combines the facts and dimensions as columns in one
table, and is mapped differently than other types of schemas. When you map a fully
denormalized schema to the star-shaped business model, you map the physical fact
columns from the single physical fact table to multiple logical fact tables in the business
model. Then, you map the physical dimension columns to the appropriate conformed
logical dimension tables.

Identify the Data Source Table Structure
When you build a semantic model, you map logical tables to the underlying physical tables in
your data sources. Before you can map the tables, you need to identify the contents of the
physical data sources as it relates to your business model.

Identify the following contents of the physical data source:

Chapter 2
Plan the Physical Layer

2-3

• Identify the contents of each table.

• Identify the detail level for each table.

• Identify the table definition for each aggregate table. This lets you set up the
aggregate navigation. The Oracle Analytics query engine requires the following:

– The columns the tables are grouped by (the aggregation level).

– The type of aggregation: SUM, AVG, MIN, MAX, or COUNT.

• Identify the contents of each column.

• Identify how each measure is calculated.

• Identify the joins defined in the database.

To find this information, go to any available documentation that describes the data
elements created when the data source was implemented. Or you could work with the
DBA for each data source to gather this information.

To fully understand all of the data elements, you could ask the people who use or own
the data, or the developers of the applications that create the data.

Physical Layer Design Tips
Use the information in this topic to help you design the semantic model's physical
layer.

The most common way to create the schema in the Physical layer to import metadata
from databases and other data sources. If you import metadata, many of the
properties are configured automatically based on the information gathered during the
import process. You can also define other attributes of the physical data source, such
as join relationships, that might not exist in the data source metadata.

For each data source, there is at least one corresponding connection pool. The
connection pool contains data source name (DSN) information used to connect to a
data source, the number of connections allowed, timeout information, and other
connectivity-related administrative details.

Use these tips when designing the physical layer:

• You should use table aliases in the physical layer to eliminate extraneous joins,
including the following:

– Eliminate all physical joins that cross dimensions (inter-dimensional circular
joins) by using aliases.

– Eliminate all circular joins (intra-dimensional circular joins) in a logical table
source in the physical layer by creating physical table aliases.

A circular join involves using different joins from the same table to get results.
For example, suppose you have a Customer table that's used to look up ship-
to addresses, and you use a different join to the Customer table to look up bill-
to addresses. You can avoid the circular joins by creating an alias table in the
physical layer so that only one table instance is used for each purpose, with
separate joins.

If you don't eliminate circular joins, you could get erroneous report results. Also,
query performance is negatively impacted by circular joins.

Chapter 2
Plan the Physical Layer

2-4

• You should use alias tables to create separate physical joins when you need the join to
perform as an inner join in one logical table source, and as an outer join in another logical
table source.

• You might import some tables into the physical layer that you might not use right away,
but that you don't want to delete. To identify tables that you do want to use right away in
the logical layer, you can assign aliases to physical tables before mapping them to the
logical layer.

• Use a SELECT statement only if there is no other solution to your modeling problem. You
should create a physical table or a materialized view. SELECT statements prevent the
Oracle Analytics query engine from generating optimized SQL because SELECT
statements contain fixed SQL statements that are sent to the underlying data source.

• Decide if you want to set up row-level security controls in the database or in the semantic
model. This decision determines if you share connection pools and cache, and may limit
the number of separate source databases you want to include in your deployment.

Plan the Logical Layer
Use the topics in this section to determine the logical layer's content.

Topics:

• Guidelines for Identifying the Logical Layer's Content

• Identify the Logical Fact Tables

• Identify the Logical Dimension Tables

• Identify Dimensions

• Identify Lookup Tables

• Logical Layer Design Tips

• Model Outer Joins

Guidelines for Identifying the Logical Layer's Content
Use this sequence to determine what content to include in your semantic model's logical
layer.

1. Identify the logical columns that users need to query.

2. Identify each column's role as either a measure column or a dimensional attribute.

3. Arrange the logical columns in a dimensional model based on the relevant roles,
relationships between columns, and logic.

Businesses are analyzed by relevant dimensional criteria, and the business model is
developed from these relevant dimensions. These dimensional models form the basis of the
valid business models to use with the Oracle Analytics query engine.

Although not all dimensional models are built around a star schema, it's a best practice to use
a simple star schema in the business model layer. In other words, the dimensional model
should represent some measurable facts that are viewed in terms of various dimensional
attributes.

After you analyze your business model requirements, you need to identify the specific logical
tables and hierarchies that you need to include in your business model.

Chapter 2
Plan the Logical Layer

2-5

Identify the Logical Fact Tables
The semantic model's logical layer contains logical fact tables containing measures
with aggregations built into their definitions.

Logical fact tables are different from physical fact tables in relational models. Physical
tables in relational models define facts at the lowest possible grain. Logical fact table
can contain measures of different grains,

You must define measures aggregated from facts in a logical fact table. Measures are
calculated data such as dollar value or quantity sold. You can specify measures in
terms of dimensions. For example, you might want to determine the sum of dollars for
a given product in a given market over a given time period.

Each measure has its own aggregation rule such as SUM, AVG, MIN, or MAX. A business
might want to compare values of a measure and need a calculation to express the
comparison. You can specify aggregation rules to specific dimensions. You can define
complex, dimension-specific aggregation rules in the semantic model.

You don't explicitly label tables in the logical layer as fact tables or dimension tables.
The Oracle Analytics query engine treats tables at the one end of a join as dimension
tables, and tables at the many end of a join as fact tables.

The image shows the many-to-one joins to a fact table in a logical diagram. In the
logical diagram, all joins have an arrow, indicating the one side, pointing away from the
fact table. No joins are pointing to it.

Identify the Logical Dimension Tables
Dimension tables contain attributes that describe business entities such as Customer
Name, Region, Address and Country.

Chapter 2
Plan the Logical Layer

2-6

A business uses facts to measure performance by established dimensions such as by time,
product, and market. Every dimension has a set of descriptive attributes. Dimension tables
contain primary keys that identify each member.

Dimension table attributes provide context to numeric data, for example, by providing the
ability to categorize Service Requests. Attributes stored in a service requests dimension table
could include Service Request Owner, Area, Account, and Priority.

Dimensions in the business model are conformed dimensions. For example, if a specific data
source has five different instances of a specific Customer table, the business model should
only have one Customer table. To achieve conformance, all five physical source instances of
Customer are mapped to a single Customer logical table, with transformations in the logical
table source as necessary. Conformed dimensions hide the complexity of the physical layer
from users, and enable combining data from multiple fact sources at different grains.
Conformed dimensions enable combining multiple data sources.

The business model uses business keys for a dimension and level keys instead of generated
surrogate keys. For example, you would use Customer Name with values like Oracle instead
of Customer Key with values like 1076823. Using business keys in the business model
ensures that all sources for that dimension can conform to the same logical dimension table
with the same logical key and level key.

Generated surrogate keys can exist in the physical layer where the keys are useful for their
query performance advantages on joins. The logical layer doesn't have surrogate key
columns.

Identify Dimensions
Dimensions are categories of attributes that define your business.

Common dimensions are time periods, products, markets, customers, suppliers, promotion
conditions, raw materials, manufacturing plants, transportation methods, media types, and
time of day. There are many attributes within a dimension. For example, the time period
dimension can contain the attributes day, week, month, quarter, and year. Exactly what
attributes a dimension contains depends on the way the business is analyzed.

Dimensions contain hierarchies that are sets of top-down relationships between members
within a dimension. There are two types of hierarchies:

• Level-based hierarchies (structure hierarchies) - In these hierarchies, members of the
same type occur only at a single level, while members in parent-child hierarchies all have
the same type. Oracle Analytics supports a time dimension level-based hierarchy that
provides functionality for modeling time series data.

In level-based hierarchies, levels roll up from a lower level to higher level, for example,
months can roll up into a year. These roll ups occur over the hierarchy elements and
span natural business relationships.

• Parent-child hierarchies (value hierarchies) - In these hierarchies, the business
relationships occur between different members of the same real-world type such as the
manager-employee relationship in an organizational hierarchy tree. Parent-child
hierarchies don't have explicitly named levels. There isn't a limit to the number of implicit
levels in a parent-child hierarchy.

To define your hierarchies, you specify the contains relationships in your business to drive
roll up aggregations in all calculations, as well as drill-down navigation in reports and
dashboards. For example, if month rolls up into year and an aggregate table exists at the

Chapter 2
Plan the Logical Layer

2-7

month level, you can use the table to answer questions at the year level by adding up
all of the month-level data for a year.

To determine the correct hierarchy type for your modeling needs, consider the
following:

• Are all the members of the same type such as employee, assembly, or account, or
are they different types that naturally fall into levels such as year-quarter-month,
continent-country-state/province, or brand-line-product?

• Do members have the same set of attributes? For example, in a parent-child
hierarchy like Employees, all members might have a Hire Date attribute. In a level-
based hierarchy like Time, the Day type might have a Holiday attribute, while the
Month type doesn't have the Holiday attribute.

• Are the levels fixed at design time (year-quarter-month), or can runtime business
transactions add or subtract levels? For example, if you can add a level when the
current lowest-level employee hires a subordinate, who then is the new lowest
level.

• Are there constraints in your primary data source that require a certain hierarchy
type? If your primary data source is modeled in one way, you might need to use
the same hierarchy type in your business model, regardless of other factors.

Dimensions can contain multiple hierarchies. Dimensions with multiple hierarchies
must always end with the same column. For example, time dimensions often have one
hierarchy for the calendar year, and another hierarchy for the fiscal year.

Identify Lookup Tables
When you need to display translated field information from multilingual schemas, you
create a logical lookup table that corresponds to a lookup table in the physical layer.

A lookup table stores multilingual data corresponding to rows in the base tables.
Before using a specific logical lookup table, you must designate the table as a lookup
table in the logical table's lookup tables.

You can use lookup tables to display one set of values to users, while using a different
corresponding set of values in the physical query. You can use the lookup table to
provide human-readable values that are looked up in a different data source.

Logical Layer Design Tips
The logical layer organizes information by business model. In this layer, each business
model is effectively a separate application.

The logical schema defined in each business model must contain at least two logical
tables. You must define relationships between all the logical tables.

When designing the logical layer:

• Create the business model with one-to-many logical joins between logical
dimension tables and the fact tables wherever possible. The business model
should resemble a simple star schema in which each fact table is joined directly to
its dimensions.

• Join every logical fact table to at least one logical dimension table. When the
source is a fully denormalized table, you must map its physical fact columns to one

Chapter 2
Plan the Logical Layer

2-8

or more logical fact tables, and its physical dimension columns to logical dimension
tables.

• Define relationships between dimension attributes by creating hierarchies within a logical
dimension.

• Map all appropriate fact sources map to the appropriate level in the hierarchy using data
aggregation when creating level-based measures.

• Create aggregate sources as separate logical table sources.

• Create a unique level key for each dimension level in a hierarchy. Each logical dimension
table must have a unique primary key. The key is also used as the level key for the
lowest hierarchy level.

• Ensure that each logical level of a dimension hierarchy contains the correct value. Fact
sources are selected on a combination of the fields selected as well as the levels in the
dimensions to which they map. By adjusting these values, you can alter the fact source
selected by the Oracle Analytics query engine.

Logical Fact Tables

• Logical fact tables can contain measures of different grains. Don't use the grain as a
reason to split up logical fact tables.

• Logical fact tables shouldn't contain any keys, except when you need to send Logical
SQL queries against the Oracle Analytics query engine from a client that requires keys. In
this case, you need to expose those keys in both the logical fact tables, and in the
presentation layer.

• All columns in logical fact tables are aggregated measures, except for keys required by
external clients, or dummy columns used as a divider. Other non-aggregated columns
should exist in a logical dimension table.

• You can use multiple logical fact tables in a single business model. For Logical SQL
queries, the multiple logical fact tables behave as if they're one table. Reasons to have
multiple logical fact tables include: to automatically create small subject areas in the
presentation layer, and to organize and simplify them within the business model.

Calculations

You can define calculations in the following ways:

• Before the aggregation, in the logical table source. For example:

sum(col_A *(col_B))
• After the aggregation, in a logical column derived from two other logical columns. For

example:

sum(col A) * sum(col B)
You can also define post-aggregation calculations in workbooks, dashboards, analyses, or in
Logical SQL queries.

Model Outer Joins
Use this information to model outer joins.

• Queries that use outer joins are usually slower. To avoid performance issues, define outer
joins only when necessary. Where possible, use ETL techniques to eliminate the need for
outer joins in the reporting SQL.

Chapter 2
Plan the Logical Layer

2-9

• Outer joins are always defined in the logical layer. Physical layer joins don’t specify
inner or outer.

• You can define outer joins by using logical table joins, or in logical table sources.
Which type of outer join you use is determined by whether the physical join maps
to a business model join, or to a logical table source join.

• If you must define an outer join, try to create two separate dimensions: one that
uses the outer join and one that doesn’t. Make sure to name the dimension with
the outer join in a way that clearly identifies it, so that client users can use it as
little as possible.

• Avoid using more than one outer join. Instead, to achieve the same effect as a
logical outer join, Oracle recommends that the logical join be an inner join and that
the analysis designer at design time selects the Include Null Value option in the
corresponding analysis.

Plan the Presentation Layer
The presentation layer is where you set up the user view of the business model. After
you deploy the semantic model, the presentation layer is displayed as subject areas.

The names of folders and columns in the presentation layer can appear in localized
language translations. The presentation layer is the appropriate layer in which to set
user permissions.

In this layer, you can do the following:

• You can show fewer columns than exist in the logical layer. For example, you can
exclude the key columns because they have no business meaning.

• You can organize columns using a different structure from the table structure in the
logical layer.

• You can display column names that are different from the column names in the
logical layer.

• You can set permissions to grant or deny users access to individual subject areas,
tables, and columns.

• You can export logical keys to ODBC-based query and reporting tools.

• You can create multiple subject areas for a single business model.

• You can create a list of alternative names for presentation objects that are used in
Logical SQL queries. Alternative names allows you to change presentation column
names without breaking existing reports.

The following is a list of tips to use when designing the presentation layer:

• Because there isn't an automatic way to synchronize all changes between the
logical layer and the presentation layer, it's best to wait until the logical layer is
relatively stable before adding customizations in the presentation layer.

• There are many ways to create subject areas, such as dragging and dropping the
entire business model, dragging and dropping incremental pieces of the model, or
automatically creating subject areas based on logical stars or snowflakes.
Dragging and dropping incrementally works well if certain parts of your business
model are still changing.

• For better maintainability, it's a best practice to rename objects in the logical layer
rather than the presentation layer Assigning user-friendly names to logical objects

Chapter 2
Plan the Presentation Layer

2-10

rather than presentation objects ensures that you can use the names in multiple subject
areas. Also, it ensures that the names persist even when you need to delete and re-
create subject areas to incorporate changes to your business model.

• Members in a presentation hierarchy aren't visible in the presentation layer. You can see
hierarchy members in the Workbook editor or in the Analysis editor.

• When setting up data access security for a large number of objects, consider setting
object permissions by role rather than setting permissions for individual columns.

Chapter 2
Plan the Presentation Layer

2-11

Part II
Create and Build Your Model

Topics:

• Get Started with Semantic Modeling

• Develop Semantic Models in a Collaborative Environment

• Work with Data Sources

• Migrate From Model Administration Tool

• Create a Semantic Model

• Build a Semantic Model's Physical Layer

• Build a Semantic Model's Logical Layer

• Build a Semantic Model's Presentation Layer

• Work with Logical Hierarchies

• Manage Logical Table Sources

• Create and Use Variables in a Semantic Model

• Support Multilingual Data

• Apply Data Access Security to Semantic Model Objects

• Check Consistency and Deploy a Semantic Model

• Manage Semantic Models

3
Get Started with Semantic Modeling

This chapter provides information to help you understand the general steps required to create
and build a semantic model. It also provides information about how to navigate the Semantic
Modeler tool, name and search for your semantic model's objects, and manage multi-user
development.

Topics:

• Workflow to Build a Semantic Model

• Semantic Model Object Naming Requirements

• Edit Semantic Model Objects Using the SMML Editor

• About Command-Line Utilities and Semantic Modeler

Workflow to Build a Semantic Model
Here are the common tasks for creating and building a semantic model.

Task Description More Information

Understand Semantic Modeler Use Semantic Modeler to create
a semantic model and build its
physical, logical, and
presentation layers.

Introduction to Semantic Models

Plan a Semantic Model

Request Permissions to Use
Semantic Modeler

Ask your administrator to give
you the BI Data Model Author
application role.

To check you if have permission
to use Semantic Modeler,
navigate to the Home page, click
Create, and look for the
Semantic Model option. If you
don't see the Semantic Model
option, then you don't have the
BI Data Model Author application
role.

If you plan to set up one or more
data source connections for your
semantic model, ask your
administrator to give you the DV
Content Author application role.

About Application Roles

3-1

Task Description More Information

Confirm that your data source is
supported

Understand which data sources
Semantic Modeler supports.
Semantic Modeler only supports
relational data sources.

Before you import a semantic
model from Model Administration
Tool or Data Modeler, confirm
that Semantic Modeler supports
the model's data source. Be sure
to remove or replace any
unsupported data sources in the
semantic model before migration.
The import fails if a semantic
model contains an unsupported
data source.

Data Sources Available for Data
Modeling

Create the Semantic Model Create the semantic model in
one of the following ways:

• Create an empty semantic
model.

• Import an exported semantic
model (.rpd file), an archived
semantic model (.zip file), or
an .rpd file from Model
Administration Tool.

• Load the semantic model
deployed to Oracle
Analytics.

• Clone a Git repository to
your development
environment.

Create a Semantic Model

Develop Semantic Models in a
Collaborative Environment

Build the Physical Layer Define the semantic model's data
sources and the relationships
between physical databases and
other data sources that the
Oracle Analytics query engine
uses to process multiple data
source queries.

Define other attributes of the
physical data sources, such as
join relationships, that might not
exist in the data source
metadata.

Tasks include:

• Importing metadata
• Creating physical tables and

columns
• Creating alias tables
• Creating joins

Build a Semantic Model's
Physical Layer

Chapter 3
Workflow to Build a Semantic Model

3-2

Task Description More Information

Build the Logical Layer Define one or more business
model objects that contain the
business model definitions and
the mappings from logical to
physical tables. Create logical
tables (fact and dimension)
containing logical columns.

Tasks include:

• Examine logical joins
• Examine logical table

sources
• Rename logical objects
• Delete unnecessary logical

objects
• Create simple measures

Build a Semantic Model's Logical
Layer

Work with Logical Hierarchies

Build the Presentation Layer Structure the logical layer's
objects to be presented to users
as subject areas that they'll use
to build visualizations and
analyses.

Tasks include:

• Create presentation tables
• Create presentation

columns
• Rename and reorder

presentation columns

Build a Semantic Model's
Presentation Layer

Test and Validate the semantic
model

Check the semantic model for
errors. Deploy the semantic
model. Test the semantic model
by creating visualizations and
analyses and verifying the
results.

Tasks include:

• Check consistency
• Deploy
• Create and run

visualizations and analyses

Check Consistency and Deploy a
Semantic Model

Semantic Model Object Naming Requirements
Use these guidelines and requirements to name the semantic model's objects, for example
tables and columns.

• Names can contain multi-byte characters.

• Names must be 128 characters or less.

• Names can't contain leading or trailing spaces.

• Names can't contain characters such as single quotes, hash marks, question marks, or
asterisks.

Chapter 3
Semantic Model Object Naming Requirements

3-3

Edit Semantic Model Objects Using the SMML Editor
You can use the SMML editor to view and edit the JSON SMML schema file of an
object in your semantic model.

The SMML editor displays a semantic model object's text-based JSON SMML schema
file based on the object-type JSON schema. If you are viewing or editing an invalid file,
syntax and semantic errors are marked on the relevant line of text.

For more information about SMML, see SMML Schema Reference for Oracle Analytics
Cloud.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. In the semantic model's left pane, select a layer.

4. Locate the object you want to edit.

5. Right-click the object and then select Open in SMML Editor.

6. Edit the SMML schema file and click Save to save the semantic model.

About Command-Line Utilities and Semantic Modeler
You can use some of the Oracle Analytics Server command-line utilities with the
semantic models that you create in Semantic Modeler.

For information about the command-line utilities, see About the Oracle BI Server
Command-Line Utilities.

Chapter 3
Edit Semantic Model Objects Using the SMML Editor

3-4

4
Develop Semantic Models in a Collaborative
Environment

This chapter contains information to help you understand how multiple developers can work
on and deploy the same model.

Topics:

• About Collaborative Semantic Model Development

• Use Permissions for Collaborative Semantic Model Development

• About Using Git with Semantic Model Development

• Upload a Semantic Model to a Git Repository Using HTTPS

• Upload a Semantic Model to a Git Repository Using SSH

• Work With Branches

• View and Manage Git Profiles

• Understand and Resolve Merge Conflicts

About Collaborative Semantic Model Development
More than one developer can work on and deploy a semantic model. You can use Git
repositories or permissions to allow and manage concurrent semantic model development.

Git repositories and permissions both ensure that you and other developers or teams of
developers work on the latest version of the semantic model. You can also learn about the
changes that other developers made to the semantic model.

These are the ways that you and your team can collaborate on a semantic model:

• Git - Oracle recommends that you use Git in collaborative environments. Implement and
use Git to allow the semantic model developers to create and work in branches to add,
update, and commit the files on their individual development environments and then push
the commits to the remote repository. To learn about how to use Git with semantic
models, see About Using Git with Semantic Model Development.

• Permissions - Use permissions to provide members of a small development team
access to the semantic model. Permissions determine which roles and users can access
and develop the semantic model. When you use permissions, only one developer at a
time can work on the semantic model. See Use Permissions for Collaborative Semantic
Model Development.

4-1

Use Permissions for Collaborative Semantic Model
Development

The owner of a semantic model can assign access permissions to other semantic
model developers in a concurrent development environment.

Use permissions to share a semantic model within a small development team. When
you use permissions to share a semantic model, only one developer at a time can
work on the semantic model.

The Share using Permissions option is only available for semantic models that aren't
using Git. When you use Git to share a semantic model, you can't change it to use
permission to share it. But if you use permissions to share a semantic model, you can
later update sharing to use Git.

These are the permissions that you can assign to the semantic model's users and
roles:

• Full Control - Choose this option to give the corresponding users and roles the
ability to access and modify the semantic model, and the ability to add and assign
users and roles and permissions to the semantic model.

• Read-Write - Choose this option to give the corresponding users and roles the
ability to access and modify the semantic model.

1. On the Home page, click Navigator and then click Semantic Models.

2. Locate the semantic model that you want share, click Actions, and then click
Inspect.

3. Click the Sharing tab.

4. In the Sharing tab, click Share using Permissions.

5. Optional: To add users and roles, click the Add field and type the name of the user
or role that you want to add. Select the user or role from the search results list to
add it, and click the permission that you want to assign it.

6. Optional: To modify permissions, locate a user or role and click the permission that
you want to assign to it.

7. Optional: To delete a user or role, hover over it and click Delete.

8. Click Save.

About Using Git with Semantic Model Development
You can use Git to enable sharing and concurrent semantic model development. You
can use any Git service in a public cloud that Oracle Analytics can access.

Examples of Git services that you can use are: Oracle Visual Builder Studio, GitHub,
Bitbucket, GitLab, and Azure DevOps.

To learn about other ways of sharing semantic models, see About Collaborative
Semantic Model Development.

A semantic model is comprised of a set of SMML files. When you create and develop
a semantic model locally, the model's SMML files are stored in Oracle Cloud. To make

Chapter 4
Use Permissions for Collaborative Semantic Model Development

4-2

a semantic model's SMML files available for other development team members to work on,
the semantic model's owner creates a Git repository, initializes it with HTTPS or SSH, and
uploads the semantic model's SMML files to the repository. Each developer creates a
semantic model and uses HTTPS or SSH to connect to and clone the semantic model's
SMML files to their Git repository.

When working on a cloned semantic model, the development team creates and works in
branches to add, update, and commit the files on their computers and then pushes the
commits to the remote repository.

To effectively create and contribute to a semantic model Git repository, you must have a basic
understanding of Git and how to work with branches. If you're new to Git and want to learn
more about Git repositories and Git basics, such as remote repositories, cloning, commits,
pushes, and branches, then read the Git documentation. See https://git-scm.com/book/ and
http://git-scm.com/doc.

Upload a Semantic Model to a Git Repository Using HTTPS
An HTTPS connection uses your Git user name and password to initialize and upload a
semantic model to an empty Git repository.

Before you can use HTTPS to connect to, initialize, and upload a semantic model to an
empty Git repository, you must:

• Go to your Git provider and create an empty repository.

• Copy the empty repository's URL needed to initialize the Git repository.

• Know your Git user name and password to create the Git profile to authenticate to the Git
repository. If you're using Github, then instead of a Git user password, you need to know
your personal access token. Or choose a profile that you use with other semantic model
Git repositories. See View and Manage Git Profiles.

• Create and save the semantic model to upload to the Git repository.

After you've uploaded the semantic model to the Git repository, provide the URL to your
development team members. Developers use the URL to clone the Git repository to their
development environments.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Toggle Git Panel to open the Git pane.

4. In the Git pane, click Start.

5. In Initialize Git, enter the repository's URL using the following format: https://
gitserver.com/myorg/myproject.git. Click Continue.

6. Click Git profile and either select a Git profile that you've already used to initialize or
clone a Git repository, or select New Profile and enter a profile name, your Git user
name, and your password to create a profile. If you're using Github, then instead of
entering a Git user password, enter your personal access token.

7. Click Initialize Git.

Chapter 4
Upload a Semantic Model to a Git Repository Using HTTPS

4-3

https://git-scm.com/book/
http://git-scm.com/doc

Upload a Semantic Model to a Git Repository Using SSH
An SSH connection uses a key that you generate in Oracle Analytics and copy into
your Git account to create an SSH key. You use this key to initialize and connect to a
Git repository without needing to supply a Git user name and password.

Before you can use SSH to connect to, initialize, and upload a semantic model to an
empty Git repository, you must:

• Go to your Git provider and create an empty repository.

• Copy the empty repository's URL needed to initialize the Git repository.

• Decide whether to create a Git profile or use an existing profile to authenticate to
the Git repository. An existing profile is a profile that you use with other semantic
model Git repositories. See View and Manage Git Profiles.

• Create and save the semantic model to upload to the Git repository.

After you've uploaded the semantic model to the Git repository, provide the URL to
your development team members. Developers use this URL to clone the Git repository
to their development environments.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Toggle Git Panel to open the Git pane.

4. In the Git pane, click Start.

5. In Initialize Git, enter the repository's URL using the following format:
git@gitserver.com:myorg/myproject.git. Click Continue.

6. Click Git profile.

7. Optional: If you want to use a Git profile that you've already used to initialize or
clone a Git repository, then select an existing profile.

8. Optional: If you want to create a profile, then select New Profile and click
Generate Key.

9. If you completed the previous step to create a profile and generate a key, then
click Copy Key, go to your Git account, and use the copied key to create an SSH
key. Then return to the Oracle Analytics Initialize Git wizard.

10. Click Initialize Git.

Work With Branches
By default a semantic model's Git repository has one default main branch. However,
you can add more branches to the repository for development purposes.

Branching lets you work on different features and updates at any time without affecting
the original source code. You can create branches for feature development work and
for things like urgent product fixes.

Before you start working on a new feature or update major portions of the source
code, it’s considered a good practice to create a local branch and commit your
changes to the local branch. This way your changes don’t affect the original source
code and are safe to test and review.

Chapter 4
Upload a Semantic Model to a Git Repository Using SSH

4-4

Oracle assumes that you understand the concepts of working with branches in Git
repositories. See https://git-scm.com/book/en/v2/ to learn more about the Git branch
workflow.

The Oracle Analytics Git pane contains tabs that correspond to Git's standard repository
development functionality like push, pull, and merge. This table describes how to use each
tab.

Tab Name Icon Description

Status Use this tab to view a list of and manage your unstaged, staged, and committed
changes. This tab also displays files with merge conflicts. You can stage and
commit some or all changes. When you commit a change, it moves the change
into the branch you're working on.

Pull Use this tab to pull the committed changes made by other developers on the
remote branch into your local branch. You use pull to ensure that you're working
with the latest code.

Push Use this tab to push your staged and committed changes to the remote branch.
The changes you push to the remote branch are available to the other
developers using the branch.

Merge Use this tab to merge the contents of the selected branch into your current
branch and resolve any resulting conflicts. See Understand and Resolve Merge
Conflicts.

Switch Branch Use this tab to change from one branch to another. The name of the branch
you're working on is displayed in the Semantic Modeler heading.

Create Local
Branch

Use this tab to create a local branch from the branch that you select. You work
on your local branch instead of working on another public branch. On your local
branch, you make your unstaged, uncommitted changes. Other developers can't
access and update this branch. Only you can update this branch.

Delete Branch Use this tab to select and delete your local branches after you've finished
working on them.

Manage Git
Profiles

Use this tab to regenerate or copy profile keys, update a profile's Git user name
and password, or delete a profile. See View and Manage Git Profiles.

View and Manage Git Profiles
A Git profile contains your Git user name and password or the SSH key that you use to
access semantic model Git repositories. You create a Git profile or use an existing profile
when you create or clone a Git repository.

Use the Manage Git Profiles tab to regenerate or copy profile keys, update a profile's Git
user name and password, or delete a profile. In most cases you won't need to update your
profiles or regenerate your SSH key.

Note:

Deleting a profile can be destructive. Before you delete a profile, confirm that it's no
longer used by any semantic mode Git repositories. After you delete a profile, you
can no longer access the semantic model Git repositories initialized with the profile.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

Chapter 4
View and Manage Git Profiles

4-5

https://git-scm.com/book/en/v2/

3. Click Toggle Git Panel to open the Git pane.

4. Click the Manage Git Profiles tab.

5. Optional: To check or update a Git user name or password associated with a
profile, expand the profile and update the credentials. Click Save.

6. Optional: To check, copy, or regenerate an SSH key, expand the profile and either
click Copy Key to copy the key, or click Regenerate Key to regenerate the SSH
key.

7. Optional: To delete a profile, click its Delete profile icon.

Understand and Resolve Merge Conflicts
This topic describes what you need to know to understand and resolve the merge
conflicts that Git can't automatically resolve.

Topics:

• What are Merge Conflicts?

• About the Merge Editor

• Change Git's Merge Strategy

• Cancel All Merge Conflicts

• Resolve All Merge Conflicts

• Resolve Individual Merge Conflicts

What are Merge Conflicts?
Merge conflicts happen when Git can't automatically determine how to resolve
conflicting code changes between commits from two different branches. You need to
manually resolve merge conflicts.

In Git, a merge is when users combine commits from different branches. In most cases
Git uses the merge strategy that you specified in the Git pane's Merge to resolve the
differences between two commits. But in some cases, such as where users have
updated the same line of code differently, Git doesn't know which code change is
correct. These situations create merge conflicts that you manually resolve by telling Git
which code changes to keep and which to discard.

After you manually resolve the merge conflicts, you can successfully commit the
changes to the repository.

About the Merge Editor
Use the Merge editor to locate, understand, and resolve merge conflicts in the
selected file. The Merge editor provides the same Git functionality that you can access
from the command line Git interface.

Chapter 4
Understand and Resolve Merge Conflicts

4-6

Each Merge editor feature and how you can use it is explained here:

• Merge Tab

The Merge tab displays a drop down list of the branches you're working with and the
merge strategy Git uses to resolve most merge conflicts. See Change Git's Merge
Strategy. A semantic model is comprised of many SMM files, and any merge conflicts
that Git can't resolve are listed by file name in the Merge Conflicts pane.

You can use the Merge tab to cancel all of the merge conflicts that Git couldn't resolve.
See Cancel All Merge Conflicts.

• Branch Panes

The Branch panes highlight the conflicts between Branch A and Branch B.

– Branch A - This area highlights the conflicting code from the source (Theirs) branch,
which is the branch you're merging from.

– Branch B - This area highlights the conflicting code from the target (Ours) branch,
which is the branch you're merging into.

Chapter 4
Understand and Resolve Merge Conflicts

4-7

Scroll in either pane to locate and review the highlighted conflicts and decide how
to resolve them. You can click the branch's Take All button and then go to the
Output pane and click Resolve All to use the branch as the source of truth to
resolve all conflicts. See the "Output Pane" section below for more information
about the Resolve All button.

• Output Pane

The Output pane stacks and highlights the conflicting code so that you can
compare and select which code to use to resolve the conflict. The highlight colors
correspond to branches A (Theirs) and B (Ours) displayed in the Branch panes.

Use the Conflict up and down buttons to locate and review the highlighted
conflicts.

This section describes the buttons you use to resolve the merge conflicts.

– A and B Buttons

How you deselect and select the A and B toggle buttons depends on how you
need to resolve the conflict. You can resolve an individual conflict by selecting
A or B, or by re-ordering a code sequence conflict by specifying the sequence
(for example, branch B's code should be located before branch A's code). See
Understand How to Resolve Conflicts.

– Resolve Item Button

Use this button to resolve one conflict at a time. After you use the A or B
button to specify how to resolve the highlighted conflict, click Resolve Item to

Chapter 4
Understand and Resolve Merge Conflicts

4-8

mark the item as resolved. After you click Resolve Item, the Output pane navigates
to the next conflict. See Resolve Individual Merge Conflicts.

– Resolve All Button

You can use this button in the following ways:

In the Output pane, use the A and B buttons to navigate to and specify a resolution
for each conflict, and then click Resolve All to resolve all conflicts.

In the Branch pane, click the Take All button in the A (Ours) or B (Theirs) Branch
pane and then click Resolve All to resolve all conflicts using the branch you chose.
See Resolve All Merge Conflicts.

Understand How to Resolve Conflicts
This topic explains how to use the Merge editor's buttons to resolve a file's merge conflicts
one at a time or all at the same time.

See About the Merge Editor.

Resolve an Individual Conflict

In the Output pane, use the A and B buttons to specify how to resolve merge conflicts one at
a time.

Confirm that the button corresponding to the branch that you want to use to resolve the
conflict is highlighted. By default both A and B are selected, so to select A, you must deselect
B.

After you set the A and B buttons to indicate how to resolve the conflict, click the Resolve
Item button to resolve the issue and navigate to the next conflict.

Reorder a Code Change to Resolve an Individual Conflict

In the Output pane, use the A and B buttons to reorder a code change to resolve a conflict.

Select a sequence for a conflict where you need to reorder (or stack) a code change. To
specify a sequence, click the A button and then the B button to deselect them. Then click the
buttons in either the A before B (so A's code before B's code) or B before A (so B's code
before A's code) sequence to specify how to stack the changes. Then click the Resolve Item
button to resolve the issue and navigate to the next conflict.

Chapter 4
Understand and Resolve Merge Conflicts

4-9

Resolve All Conflicts at the Same Time

Note:

You can't use the Resolve All button with the Output pane's A and B buttons
to resolve all conflicts at the same time.

In the Branch pane, click the Take All button for the A (Ours) or B (Theirs) branch that
you want to use as the single source of truth to resolve all conflicts, and then click
Resolve All.

Mark Individual Conflicts and then Resolve All Conflicts as Marked

In the Output pane, use the Conflict up and down buttons to navigate to each
highlighted conflict and use the A and B buttons to specify how to resolve each
highlighted conflict. After you've specified how to resolve each item, click Resolve All
to resolve all conflicts.

Change Git's Merge Strategy
You can choose how you want Git to automatically resolve the merge conflicts that it
finds in your branches. In most cases Git can use the merge strategy to resolve the
differences between branches.

You can choose from the following Git merge strategies:

Semantic Merge - Use this option to use Semantic Modeler's merge strategy.
Semantic Merge merges the model's objects and not just text. Oracle recommends
that you use this merge strategy.

Git Merge - Use this option to use Git's default merge strategy. Git's default merge
strategy uses a three way algorithm. In cases where there is more than one common
ancestor, Git creates a merged tree of the common ancestors and uses it to determine
the three way merge.

Ours - Use this option to have Git resolve conflicts by favoring code changes from the
branch that you are merging into. This is branch B or the target branch. If you select
this option, Git won't use Ours to resolve all merge conflicts, but only when it can't use
its default merge strategy to resolve specific conflicts.

Theirs - Use this option to resolve conflicts by favoring code from the branch that you
are merging from. This is Branch A or the source branch. If you select this option, Git
won't use Theirs to resolve all merge conflicts, but only when it can't use its default
merge strategy to resolve specific conflicts.

If Git can't automatically resolve the merge conflicts, then the Merge Conflicts pane is
displayed and lists the conflicts that you must resolve manually. See Resolve All
Merge Conflicts and Resolve Individual Merge Conflicts.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Toggle Git Panel to open the Git pane.

Chapter 4
Understand and Resolve Merge Conflicts

4-10

4. Click the Merge tab and go to the Strategy field and select a merge strategy to use when
you merge branches.

5. Click Merge.

Cancel All Merge Conflicts
You can cancel the merge process and reconstruct the pre-merge state of the branches.

If your semantic model contained uncommitted changes when you started the merge, then
Git might not be able to reconstruct the pre-merge changes.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Toggle Git Panel to open the Git pane.

4. Click the Merge tab and go to the Merge Conflicts pane.

5. Click Cancel All.

Resolve All Merge Conflicts
You can choose one branch as the source of truth to resolve all merge conflicts in the
selected file.

See Understand How to Resolve Conflicts.

The Branch panes highlight the conflicts between Branch A and Branch B.

• Branch A - This pane highlights the conflicting code in the Their branch, which is the
source branch or the branch you're merging from.

• Branch B - This pane highlights the conflicting code in the Ours branch, which is the
target branch or the branch you're merging into.

Note:

You can't resolve all conflicts by clicking the Output pane's A or B button and then
clicking the Resolve All button.

Resolving merge conflicts doesn't fix inconsistencies in your semantic model. You must run
the consistency check to detect and fix inconsistencies in your semantic model.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Toggle Git Panel to open the Git pane.

4. Click the Merge tab and go to the Merge Conflicts pane.

5. Right-click a file and select View Conflicts.

6. In the Branch panes, click the Take All button corresponding to the branch that you want
to use to resolve all merge conflicts in the file.

7. In the Output pane, click Resolve All.

Chapter 4
Understand and Resolve Merge Conflicts

4-11

8. Go to the Merge Conflicts pane and confirm that the file that contained the
conflicts was removed from the list.

9. In the Merge tab, click Merge.

Resolve Individual Merge Conflicts
You can review and resolve each of the selected file's merge conflicts one at a time.

The Output pane displays and highlights the conflicting code side-by-side so that you
can compare and select which code to use to resolve the conflict. The highlight colors
correspond to branches A (Theirs) and B (Ours) displayed in the Branch panes.

For each conflict, use the A and B buttons to specify which branch's code you want to
use to resolve the highlighted conflict. By default both buttons are selected, so to
select A, you must deselect B. Or use the A and B buttons to specify the order (or
stacking) of the code changes. See Understand How to Resolve Conflicts.

Resolving merge conflicts doesn't fix any inconsistencies in your semantic model. You
must run the consistency check to detect and fix inconsistencies in your semantic
model.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Toggle Git Panel to open the Git pane.

4. Click the Merge tab and go to the Merge Conflicts pane.

5. Right-click a file and select View Conflicts.

6. In the Output pane, locate the highlighted merge conflict.

7. Use the A and B buttons to specify how to resolve the conflict. Click Resolve
Item.

8. Click Conflict Navigate Down to highlight the next merge conflict.

9. Use the A and B buttons to specify how to resolve the conflict. Click Resolve
Item.

10. Navigate to each conflict and resolve it.

11. After you've resolved all conflicts, go to the Merge Conflicts pane and confirm that
the file that contained the conflicts was removed from the list.

12. In the Merge tab, click Merge.

Chapter 4
Understand and Resolve Merge Conflicts

4-12

5
Work with Data Sources

This chapter contains information to help you understand how to connect to data sources to
use when creating semantic models.

Topics:

• About Connections for Semantic Models

• Data Sources Available for Data Modeling

• View Available Data Source Connections

• Semantic Modeler Data Source Limitations

• Import Metadata from Data Sources

About Connections for Semantic Models
A connection must have the System connection field selected to make it available for
semantic model development.

In Oracle Analytics, you need DV Content Author permissions to create connections to data
sources.

To make a data source connection available to semantic models, you must select the System
Connection checkbox when you create the connection. You can't edit the data source's
System Connection option after setting up the connection.

5-1

Go to the Oracle Analytics Home Page and click Create, then Connection to connect
to each database that you're modeling. Make sure to click the System connection
checkbox..

To view a list of data sources that you can use in a semantic model, see Data Sources
Available for Data Modeling.

Data Sources Available for Data Modeling
Before you create or migrate a semantic model, it is important to understand which
data sources are supported by Semantic Modeler and which are supported by Model
Administration Tool.

To find out which databases Semantic Modeler supports, look for a Yes in the 'Data
Models - Semantic Modeler' column in the supported data sources list. See
Certification - Supported Data Sources.

View Available Data Source Connections
A data source connection accesses and supplies tables and data to a semantic model.

Your list contains the connections that you built and the connections that you have
permission to access and use.

Semantic models can only use connections with the System connection field
selected. This field must be selected when the connection is created because it can't
be changed after the connection is saved.

Chapter 5
Data Sources Available for Data Modeling

5-2

If you need to create a connection, see About Connections for Semantic Models.

1. In the Home Page, click Navigator and then click Data.

2. Click the Connections tab to view your connections list.

Semantic Modeler Data Source Limitations
Use the information linked to in the topic to understand the data source limitations that can
impact your semantic models.

For information about Apache Hive limitations, see Limitations on the Use of Apache Hive.

For information about Teradata limitations, see Avoid Spool Space Errors for Queries Against
Teradata Data Sources.

Import Metadata from Data Sources
You can import metadata for supported data source by selecting the appropriate connection
type from the Connections tab in the Semantic Model pane.

To import metadata, you must have all database connections created. To create a
connection, see About Connections for Semantic Models.

When you import physical tables, be careful to import only those tables that contain data that
are likely to be used in the business models you create. You can search and select the tables
that you want to add. Adding large numbers of extraneous tables and other objects adds
unnecessary complexity and increases the size of the semantic model.

When you import metadata for most data sources, the default is to import tables and primary
keys.

You can also import database views, aliases, synonyms, and system tables. Import these
objects only if you want the Oracle Analytics query engine to generate queries against them.

After you import metadata, you should check to ensure that your database and connection
pool settings are correct.

In rare cases, the Oracle Analytics query engine can't determine the exact database type
during import and instead assigns an approximate type to the database object.

Chapter 5
Semantic Modeler Data Source Limitations

5-3

6
Migrate From Model Administration Tool

This chapter contains information to help you migrate a semantic model from Model
Administration Tool to Semantic Modeler. You can migrate a semantic model from an .rpd file
or from the deployed model.

Topics:

• Plan Your Migration From Model Administration Tool to Semantic Modeler

• Understand the Differences Between Model Administration Tool and Semantic Modeler

• Prepare the Semantic Model for Migration to Semantic Modeler

• Import the Semantic Model From the Model Administration Tool .rpd File

• Import the Semantic Model Deployed From Model Administration Tool

• Update the Semantic Model After Migration From Model Administration Tool

Plan Your Migration From Model Administration Tool to
Semantic Modeler

Use this information to understand the steps required to migrate your semantic model from
Model Administration Tool to Semantic Modeler.

Step Description

Check the model's data
source

Confirm that the model you want to migrate uses a data source that
Semantic Modeler supports. Semantic Modeler only supports relational
data sources. Be sure to remove or replace any unsupported data
sources in the semantic model before migration.

See Data Sources Available for Data Modeling.

Go to your Oracle Analytics
development or test
environment

Perform the semantic model migration in a non-production
environment, such as an existing development or test environment,
before making changes to your production environment.

Back up your environment Use the Console to take a full snapshot of your development or test
environment. You can use the snapshot to restore the environment if
you discover issues after deploying the imported model.

See Take a Snapshot.

Understand the differences
between Model
Administration Tool and
Semantic Modeler

Learn about the functionality and features differences between Model
Administration Tool and Semantic Modeler.

See Understand the Differences Between Model Administration Tool
and Semantic Modeler.

Prepare the semantic model
in Model Administration Tool

Check and update the semantic model to ensure successful migration.

See Prepare the Semantic Model for Migration to Semantic Modeler.

6-1

Step Description

Import the model Use the Semantic Modeler Create option to migrate the model. When
you create the model, you have the option of importing the .rpd file into
the new model, or importing the model deployed from Model
Administration Tool.

See Import the Semantic Model From the Model Administration
Tool .rpd File or Import the Semantic Model Deployed From Model
Administration Tool.

Modify the imported model
and check consistency

Use Semantic Modeler to modify the migrated model and run the
advanced consistency check. Learn about and try Semantic Modeler's
many features.

See Update the Semantic Model After Migration From Model
Administration Tool and Check the Consistency of a Semantic Model.

Deploy the model If the model is working as expected and passes the advanced
consistency check, then deploy the model from Semantic Modeler.

See Deploy a Semantic Model.

Revert to Model
Administration Tool if
necessary

If you deployed the model from Semantic Modeler and discover issues
such as visualizations not displaying the correct data, then use the
Console to restore your environment to the state when the snapshot
was taken.

If you revert your environment, any changes you made on your
environment since you took the snapshot are lost.

See Restore from a Snapshot.

Understand the Differences Between Model Administration
Tool and Semantic Modeler

Semantic Modeler offers most of the same functionality as Model Administration Tool
with some exceptions. Before you migrate the semantic model, use this topic to
understand some of the differences between Semantic Modeler and Model
Administration Tool.

Functionality Differences

Item Description

Initialization block deferred execution In Semantic Modeler, when you create an
initialization block, by default its deferred
execution property is set to on. See Defer
Session Variable Processing.

Allow Unmapped Table property This field is included in Model Administration
Tool logical table properties user interface, but
isn't include in the Semantic Modeler logical
table properties user interface.

When you migrate a logical table source from
Model Administration Tool or add a logical
table source in Semantic Modeler, this
property is internally set to on.

Chapter 6
Understand the Differences Between Model Administration Tool and Semantic Modeler

6-2

Terminology Differences

Model Administration Tool Term Semantic Modeler Term

aggregation content data aggregation

BI Server Oracle Analytics query engine

Business Model and Mapping Layer logical layer

common enterprise information model, RPD
queries

semantic model

complex join join expression

data model semantic model

dynamic variable global variable

execution precedence dependencies

flat file This term and concept not used in Semantic
Modeler.

foreign keys join

governed data model semantic model

ignore (Query Limit field option) inherit

logical dimensions logical hierarchies

Logical Table Source (user interface elements and
labels)

Sources tab (fact and dimension logical tables)

Logical Table Source dialog box's Content tab Data Granularity section located on a logical
table's Sources tab

metadata repository semantic model

opaque view SELECT statement

Oracle BI repository repository

Presentation layer aliases alternative names

query limit restrictions allow and disallow available and unavailable

repository semantic model

repository variable semantic model variable

Row-wise initialization (Session Variable
Initialization Block Variable Target field)

Query Returns field with Variable names and
values selected

RPD semantic model

.rpd file

single join join

Status Max Rows (Query Limits field) Row Limit

Status Max Time (Query Limits field) Max Time

translation localization

Prepare the Semantic Model for Migration to Semantic Modeler
Check and prepare the semantic model to ensure a successful migration.

To learn more about how Semantic Modeler handles the migration and the types of issue you
might need to fix after the migration, see Update the Semantic Model After Migration From
Model Administration Tool.

Chapter 6
Prepare the Semantic Model for Migration to Semantic Modeler

6-3

Item Description

Data sources Confirm that the semantic model uses a data
sources that Semantic Modeler supports.
Semantic Modeler supports only relational
data sources. Be sure to remove or replace
any unsupported data sources in the semantic
model before migration.

See Data Sources Available for Data
Modeling.

Logical dimension (hierarchy) based on two
logical tables

Check that any logical dimension (hierarchy) is
based on only one logical table (dimension
table). Semantic Modeler doesn't support
logical dimensions (hierarchies) based on two
logical tables. For example, a dimension table
and a dimension extension logical table.

To fix this issue before migration, go to Model
Administration Tool and combine the two
logical tables (for example, dimension table
and dimension extension table) into one logical
table.

Logical foreign key joins Check if the semantic model contains logical
foreign key joins. Logical foreign key joins don't
exist in Semantic Modeler and won't be
included with the migration.

Before you migrate the model, be sure to
delete the logical foreign key joins and replace
them with logical joins.

Primary keys Check that all of the semantic model's logical
levels contain primary keys.

Consistency check The semantic model must pass consistency
check before migration. In Model
Administration Tool, run consistency check on
the model and fix any errors before migration.

Import the Semantic Model From the Model Administration
Tool .rpd File

You can migrate the semantic model created in Model Administration Tool by importing
the model's .rpd file into your semantic modeler development environment.

Before you begin the migration, be sure that you perform the steps required to prepare
and fully migrate the model. See Plan Your Migration From Model Administration Tool
to Semantic Modeler and Prepare the Semantic Model for Migration to Semantic
Modeler.

Because of the difference between Model Administration Tool and Semantic Modeler,
after migration you might need to update the model to ensure that it passes the
advanced consistency check and functions properly. See Update the Semantic Model
After Migration From Model Administration Tool.

1. On the Home page, click Create and then click Semantic Model.

2. In Create Semantic Model enter a name for the semantic model. Click Create.

Chapter 6
Import the Semantic Model From the Model Administration Tool .rpd File

6-4

3. In the Create Semantic Model options page, click Import a File.

4. In the File Upload dialog, browse for the .rpd file to upload. Click Open.

5. On the Import File window enter the password required to import the file.

6. Click Import.

Import the Semantic Model Deployed From Model
Administration Tool

You can migrate the semantic model created in and deployed from Model Administration Tool
into your semantic modeler development environment.

Before you begin the migration, be sure that you perform the steps required to prepare and
fully migrate the model. See Plan Your Migration From Model Administration Tool to Semantic
Modeler and Prepare the Semantic Model for Migration to Semantic Modeler.

Because of the difference between Model Administration Tool and Semantic Modeler, after
migration you might need to update the model to ensure that it passes the advanced
consistency check and functions properly. See Update the Semantic Model After Migration
From Model Administration Tool.

1. On the Home page, click Create and then click Semantic Model.

2. In Create Semantic Model enter a name for the semantic model. Click Create.

3. In the Create Semantic Model options page, click Import the Deployed Model.

Update the Semantic Model After Migration From Model
Administration Tool

Use this topic to learn how Semantic Modeler handles model migration and the types of issue
you might need to fix after the migration from Model Administration Tool to Semantic Modeler.

See Understand the Differences Between Model Administration Tool and Semantic Modeler.

Item Description

Display keys in logical
dimension (hierarchy) levels

If the semantic model you migrated contained display keys for logical
levels, the migrated model includes only the first display key and the
remaining keys aren't included.

Data connections Semantic Modeler only supports Data Connections. If you migrating a
semantic model with a defined connection or that uses an external
Console Connection, after migration you need to create a data
connection and assign it to the connection pool in Semantic Modeler.

See About Connections for Semantic Models and Work with
Connection Pools.

Logical foreign key joins Although Model Administration Tool doesn't support logical foreign key
joins, there is a chance that your semantic model contains them. Any
foreign key joins aren't included in the migrated model.

To fix this issue, after migration create the needed logical joins in
Semantic Modeler.

See Work with Logical Joins.

Chapter 6
Import the Semantic Model Deployed From Model Administration Tool

6-5

Item Description

Primary keys Semantic Modeler requires that each logical level contains a primary
key. If the migrated model doesn't contain primary keys, then add them.
See Identify the Primary Key for a Dimension Level.

Consistency check After fixing the post-migration items in this table, run the Semantic
Modeler's advanced consistency check on the migrated model.

Note that Semantic Modeler's consistency check enforces more data
modeling best practices and checks additional rules than the Model
Administration Tool consistency check. Even though the model was
consistent before you migrated it, the Semantic Modeler consistency
check might find errors and issues.

See Work with Check Consistency.

Chapter 6
Update the Semantic Model After Migration From Model Administration Tool

6-6

7
Create a Semantic Model

This chapter contains information to help you understand how to create a semantic model.
After you create the semantic model you can begin adding or modifying its layers.

Topics:

• Create an Empty Semantic Model

• Import a File to Create a Semantic Model

• Import the Deployed Model to Create a Semantic Model

• Clone a Git Repository Using HTTPS

• Clone a Git Repository Using SSH

Create an Empty Semantic Model
Create an empty semantic model when you want to choose and import table definitions and
manually build each semantic model layer and its objects.

Note:

You must have BI Data Model Author permissions to access and use Semantic
Modeler. If you go to the Home page, click Create, and don't see the Semantic
Modeler option, then ask your administrator to assign the BI Data Model Author
permissions to you.

When you create an empty semantic model, the Semantic Modeler editor opens and an
empty database is displayed in the Physical Layer tab. The Connections tab is populated
with the database connections made available for semantic models.

1. On the Home page, click Create and then click Semantic Model.

2. In Create Semantic Model enter a name for the semantic model. Click Create.

3. In the Create Semantic Model options page, click Start with an Empty Model.

Import a File to Create a Semantic Model
You can import an .rpd file (exported semantic model) or .zip file (archived semantic model)
file to create a semantic model in your semantic modeler development environment.

You can import an .rpd file from Model Administration Tool to create a semantic model. See
Import the Semantic Model From the Model Administration Tool .rpd File.

If you're working in a Windows or Linux environment, you can use the rpdtojson utility to
import a semantic model. See Generate JSON/SMML from an .rpd File.

7-1

Note:

You must have BI Data Model Author permissions to access and use
Semantic Modeler. If you go to the Home page, click Create, and don't see
the Semantic Modeler option, then ask your administrator to assign the BI
Data Model Author permissions to you.

An imported model contains a connection, data table definitions, and semantic model
layer objects that you can modify as needed.

After you import a file, the Semantic Modeler editor opens and you must:

• Review the imported model's metadata, objects, and properties to confirm that
they were populated correctly.

• Confirm that the semantic model accesses the required connection. You or
another user can create or share the imported semantic model's connection before
or after file import. See Manage Connections to Data Sources.

• Add any needed connection pools or assign a connection to each imported
connection pool. See Set a Connection Pool's Connection Property

1. On the Home page, click Create and then click Semantic Model.

2. In Create Semantic Model enter a name for the semantic model. Click Create.

3. In the Create Semantic Model options page, click Import a File.

4. In the File Upload dialog, browse for an exported (.rpd file) or archived (.zip file)
semantic model to upload. Click Open.

5. Optional: If you chose an exported (.rpd file) semantic model, then in the Import
File window enter the password required to import the file.

6. Click Import.

Import the Deployed Model to Create a Semantic Model
You can import the deployed semantic model from Oracle Analytics to create a
semantic model in your semantic modeler development environment.

You can use this option when:

• You don't have access to the deployed semantic model's source files but need
them to perform troubleshooting work from the Semantic Modeler editor.

• You need to migrate the semantic model created and deployed from Model
Administration Tool to Semantic Modeler. For specific information, see Import the
Semantic Model Deployed From Model Administration Tool.

The new semantic model contains a connection, data table definitions, and semantic
model layer objects that you can modify as needed. After you import the deployed
semantic model, the Semantic Modeler editor opens and you should do the following:

• Review the imported model's metadata, objects, and properties to confirm that
they were populated correctly.

• Confirm that the semantic model accesses the required connection. You or
another user can create or share the imported semantic model's connection before
or after file import. See Manage Connections to Data Sources.

Chapter 7
Import the Deployed Model to Create a Semantic Model

7-2

• Review the connection pool for each database and assign a data system connection to
each imported connection pool. See Set a Connection Pool's Connection Property.

1. On the Home page, click Create and then click Semantic Model.

2. In Create Semantic Model enter a name for the semantic model. Click Create.

3. In the Create Semantic Model options page, click Import the Deployed Model.

Clone a Git Repository Using HTTPS
An HTTPS connection uses your Git user name and password to clone the Git repository to
your development environment.

Note:

You must have BI Data Model Author permissions to access and use Semantic
Modeler.
If you go to the Home page, click Create, and don't see the Semantic Modeler
option, then ask your administrator to assign the BI Data Model Author permissions
to you.

Before you can use HTTPS to clone a Git repository, you must:

• Get the semantic model Git repository's URL from the developer who initialized and
uploaded it.

• Know your Git user name and password to create the Git profile to authenticate to the Git
repository. If you're using Github, then instead of a Git user password, you need to know
your personal access token. Or choose a profile that you use with other semantic model
Git repositories. See View and Manage Git Profiles.

1. On the Home page, click Create and then click Semantic Model.

2. In Create Semantic Model enter a name for the semantic model. Click Create.

3. In the Create Semantic Model options page, click Clone a Git Repository.

4. In Clone a Git Repository, enter the repository's URL. The URL must have this format:
https://gitserver.com/myorg/myproject.git. Click Continue.

5. Click Git profile and specify the profile you want to use to clone the repository.

• Select a Git profile that you've already used to initialize or clone a Git repository.

• Select New Profile and enter a profile name and your Git user name and password
to create a profile. If you're using Github, then instead of entering a Git user
password, you enter your personal access token.

6. Click Clone.

The Semantic Modeler editor opens and the new semantic model's layers are populated
with the cloned model's metadata, objects, and properties.

Chapter 7
Clone a Git Repository Using HTTPS

7-3

Clone a Git Repository Using SSH
An SSH connection uses a deploy key that you generated in Oracle Analytics and
copy into your Git account to create an SSH key. You use this key to connect to and
clone a Git repository without needing to supply a Git user name and password.

Note:

You must have BI Data Model Author permissions to access and use
Semantic Modeler.
If you go to the Home page, click Create, and don't see the Semantic
Modeler option, then ask your administrator to assign the BI Data Model
Author permissions to you.

Before you can use SSH to clone a Git repository, you must:

• Get the semantic model Git repository's URL from the developer who initialized
and uploaded it.

• Decide whether to create a Git profile or use an existing profile to authenticate to
the Git repository. An existing profile is a profile that you use with other semantic
models stored in Git repositories. See View and Manage Git Profiles.

1. On the Home page, click Create and then click Semantic Model.

2. In Create Semantic Model enter a name for the semantic model. Click Create.

3. In the Create Semantic Model options page, click Clone a Git Repository.

4. In Clone a Git Repository, enter the repository's URL. The URL must have this
format: git@gitserver.com:myorg/myproject.git. Click Continue.

5. Click Git profile and specify the profile you want to use to clone the repository.

• Select a Git profile that you've already used to initialize or clone a Git
repository.

• Select New Profile and enter a profile name and click Generate Key.

6. If you created a new Git profile and generated a key, then click Copy Key, go to
your Git account, and use the copied key to create an SSH key. Then return to the
Oracle Analytics Initialize Git wizard.

7. Click Clone.

The Semantic Modeler editor opens and the new semantic model's layers are
populated with the cloned model's metadata, objects, and properties.

Chapter 7
Clone a Git Repository Using SSH

7-4

8
Build a Semantic Model's Physical Layer

This chapter contains information to help you understand how to build a semantic model's
physical layer.

Topics:

• What is the Physical Layer?

• Create a Database and Add Tables to the Physical Layer

• Add a Catalog to a Database

• Add a Schema to a Database or Catalog

• Use a Variable to Dynamically Name a Catalog or Schema

• Change a Database Object's Database Type

• Modify a Database's Data Source Properties and Supported Query Features

• Work with Connection Pools

• About Physical Tables

• What Are a Physical Table's General Properties?

• Disable Auto Joins Creation in the Physical Layer

• Create a Physical Table

• Create or Modify a Physical Column

• Populate Physical Columns with a Stored Procedure or Select Statement

• About Physical Alias Tables

• Create an Alias Table

• Open the Physical Diagram from the Physical Layer

• Delete a Physical Table

• Delete a Physical Column

• Work with Physical Joins

• Use Hints in SQL Statements

• Preview Data in Physical Tables

What is the Physical Layer?
The semantic model's physical layer contains objects representing physical data constructs
from the back-end data sources that provide data for visualizations and reports.

The physical layer defines the objects and relationships available to the Oracle Analytics
query engine for writing physical queries. This layer encapsulates data source dependencies
to enable portability and federation.

8-1

Typically, each of the semantic model's data sources has its own discrete physical
model in the physical layer. The top-level object in the physical layer is a database,
and the type of database determines which features and rules apply to that physical
model.

Physical tables, joins, and other objects in the physical layer are typically created
automatically when you import metadata from the data sources. After these objects
have been imported, you can perform tasks such as create additional join paths that
aren't in the data source or create alias tables for physical tables that need to serve in
different roles.

Create a Database and Add Tables to the Physical Layer
A database is the physical layer's highest level object and minimally contains one
schema and a subset of tables and metadata from the semantic model's data source.

When you drag a table from the connection and drop it into an empty physical
database, Oracle Analytics creates a physical schema and puts the table into the
schema.

Dragging and dropping a table from the data source connection to the database
populates some of the database's features, the query features, and connection pools.
You can adjust these settings as needed. You can add query limits for application roles
to the database.

Before you start adding tables to the database, you can add catalogs and schemas
structure to organize the database's tables. See Add a Catalog to a Database and Add
a Schema to a Database or Catalog.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Physical Layer.

4. In the Physical Layer pane click Create and then click Create Database.

5. In Create Database, go to the Name field and type a name. Click OK.

The new database's Tables tab is displayed.

6. Click Connections and in the connections pane, browse or search for the table to
add to the physical database.

7. Drag the table to the physical database and drop it into the Tables list.

8. Click Save.

Add a Catalog to a Database
You can add catalogs to the physical layer's databases to group a semantic model's
schemas and tables to mirror how the data source is organized.

You can't rearrange the catalog and schema groupings that you add. For example, if
you added a schema and tables directly into a database, then you can't later create a
catalog and move them to the catalog.

See Add a Schema to a Database or Catalog.

Chapter 8
Create a Database and Add Tables to the Physical Layer

8-2

You can use a variable to dynamically populate the catalog's name. See Use a Variable to
Dynamically Name a Catalog or Schema.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Physical Layer.

4. Click Create and then click Create Catalog.

5. In Create Catalog, locate the Name field and type a catalog name.

6. In Location, click the menu and specify which database to add the catalog to.

7. Click OK.

Add a Schema to a Database or Catalog
You can add schemas to the physical layer's databases or catalogs to mirror how the data
source is organized.

You can't rearrange the catalog and schema groupings that you add. For example, if you
added a schema and tables directly into a database, then you can't later create a catalog and
move them to the catalog.

See Add a Catalog to a Database.

You can use a variable to dynamically populate the schema's name. See Use a Variable to
Dynamically Name a Catalog or Schema.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Physical Layer.

4. Click Create and then click Create Schema.

5. In Create Schema, locate the Name field and type a schema name.

6. In Location, click the menu and specify which database or catalog to add the schema to.

7. Click OK.

Use a Variable to Dynamically Name a Catalog or Schema
You can use variables to dynamically name the physical layer's catalogs and schemas.

For example, suppose you have data for multiple clients and you structured the data source
so that data for each client is in a separate catalog. In this case, you can initialize a session
variable named Client that dynamically sets the name for the catalog object when a user
signs into Oracle Analytics.

See About Session Variables.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Physical Layer.

4. Browse for and double-click the catalog or schema that you want to add the variable to.

Chapter 8
Add a Schema to a Database or Catalog

8-3

5. In the item's General pane click Select.

6. In Select Variables, locate and click the variable that you want to use. Click Select.

7. Click Save.

Change a Database Object's Database Type
When you import the physical schema into the physical layer, the database type is
assigned automatically. In some cases you need to change the database type.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Physical Layer.

4. Locate and double-click a database.

5. In the database's tab, click General.

6. Click the Database Type field and select a database type.

7. Click Save.

Modify a Database's Data Source Properties and Supported
Query Features

This topic provides information about how to modify a database object's properties.

Topics:

• Add or Modify a Database's Data Source Properties

• What Are Supported Query Features?

• Modify a Database's Data Source Properties and Supported Query Features

Add or Modify a Database's Data Source Properties
Use this topic to understand and specify a database's data source properties.

These are the data source properties that you can assign to a database:

• Virtual Private Database - Select to identify the database source as a virtual
private database (VPD). When a VPD is used, returned data results are contingent
on the user's authorization credentials. Therefore, it's important to identify these
sources. These data results affect the validity of the query result set that's used
with caching. See About Row-Level Security.

If you select this option, then you also should select the Security Sensitive option
in the session variable's Variables tab.

• Siebel CRM Database - Select to indicate that the definition of physical tables and
columns for Siebel CRM tables was derived from the Siebel metadata dictionary.

• Allow direct database requests by default - If this property is configured
incorrectly, it can expose sensitive data to an unintended audience.

Chapter 8
Change a Database Object's Database Type

8-4

Select to allow all users to run physical queries. The Oracle Analytics query engine sends
unprocessed, user-entered, physical SQL directly to an underlying database. The
returned results set can be rendered in the Oracle Analytics query engine and then
charted, rendered, and treated as an Oracle Analytics request.

If you want most but not all users to be able to run physical queries, select this option and
use the Query Limits tab to limit queries for specific application roles.

• Allow populate queries by default - Select to allow everyone to run POPULATE SQL. If
you want most, but not all, users to be able to run POPULATE SQL, select this option and
then limit queries for specific users or groups.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Physical Layer and locate and double-click a database.

4. In the database's tab, click Advanced.

5. Go to the Data Source Properties section of the Features table and specify the
database's data source properties.

6. Click Save.

What Are Supported Query Features?
The Oracle Analytics query engine uses the specified query features settings to determine
how to query the data source. The supported query features are automatically populated with
values appropriate for your semantic model's data source.

Query features are the SQL expressions, statements, function, operations, and other features
that you can run against the data source such as a query that uses an ISDESCENDANT
statement. Operations such as ADD or SQRT (square root) operations are supported.

When a supported query feature is selected or a value is specified, the data source supports
the feature and the Oracle Analytics query engine pushes the function or calculation to the
data source for improved performance.

When a supported query feature is deselected or no value is specified, then it isn't supported
in the data source and the calculation or processing is performed in the Oracle Analytics
query engine.

In most cases, you should keep the default selections and values. If you enable or change
query features that the data source doesn't support, your query may return errors and
unexpected results. If you disable supported SQL features, the server could issue less
efficient SQL to the data source. Before you change any of the defaults, confirm that the
query feature is supported by the data source.

See Modify a Database's Supported Query Features.

These are some reasons why you would update a database's query feature settings:

• If you're upgrading to a newer version of a data source. In this case, you can tailor the
query features for the data source to see if the updated feature is reflected in the Oracle
Analytics query engine defaults.

• If a data source supports a particular feature such as left outer join queries but you want
to prohibit the Oracle Analytics query engine from sending such queries to a particular
data source.

Chapter 8
Modify a Database's Data Source Properties and Supported Query Features

8-5

• If you have federated data sources that run functions differently. In this case, you
can disable the appropriate functions so that Oracle Analytics query engine
performs calculations consistently and produce correct query results.

• If you're troubleshooting a query or other operation that isn't working as expected.

Modify a Database's Supported Query Features
You can view and modify how the database's supported query features are set. The
data source determines how the default query feature values are set.

In most cases, you should keep the default selections and values. If you enable or
change query features that the data source doesn't support, your query may return
errors and unexpected results. If you disable supported SQL features, the server could
issue less efficient SQL to the data source. Before you change any of the defaults,
confirm that the query feature is supported by the data source. For more information,
see What Are Supported Query Features?

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Physical Layer and locate and double-click a database.

4. In the database's tab, click Advanced.

5. Go to the Supported Query Features section of the Features table and modify the
database's query features as needed.

6. Click Save.

Work with Connection Pools
This topic provides information about how to create and modify a database's
connection pools.

Topics:

• What Are Connection Pools?

• About Connection Pools for Initialization Blocks

• Set a Connection Pool's General Properties

• Set a Connection Pool's Connection Property

• Add Connection Scripts to a Connection Pool

• About Setting the Bulk Insert Buffer Size and Transaction Boundary Settings

• Set up Write Back in a Connection Pool

• Set a Connection Pool's Permissions

What Are Connection Pools?
The semantic model's physical layer contains at least one connection pool for each
database. These connection pools are configured to enhance the execution of
commands between the Oracle Analytics query engine and the semantic model's
database data source.

Chapter 8
Work with Connection Pools

8-6

A connection pool is automatically created when you import tables into a database object in
the physical layer. You can add and configure multiple connection pools for each database.
Connection pools allow multiple concurrent data source requests (queries) to share a single
database connection, reducing the overhead of connecting to a database. Oracle
recommends that you create a dedicated connection pool for initialization blocks. See About
Connection Pools for Initialization Blocks.

For each connection pool, you must specify the maximum number of concurrent connections
allowed. After this limit is reached, the connection request waits until a connection becomes
available.

Increasing the allowed number of concurrent connections can potentially increase the load on
the underlying database accessed by the connection pool. Test and consult with the database
administrator to make sure the data source can handle the number of connections specified
in the connection pool. Also, if the data sources have a charge back system based on the
number of connections, you might want to limit the number of concurrent connections to keep
the charge-back costs down.

In addition to the potential load and costs associated with the database resources, the Oracle
Analytics query engine allocates shared memory for each connection upon server startup.
This raises the number of connections and increases the Oracle Analytics query engine
memory usage.

About Connection Pools for Initialization Blocks
You should create a dedicated connection pool for initialization blocks. Don't use the
connection pools that you create for initialization blocks for data queries.

You should isolate the connections pools for different types of initialization blocks. By isolating
the connection pools, you can ensure that authentication and login-specific initialization
blocks don't slow down the login process. The following types of initialization blocks should
have separate connection pools:

• All initialization blocks that set session variables.

• All initialization blocks that set semantic model variables. Run initialization blocks that set
variables using credentials with administrator privileges.

Be aware of the number of these initialization blocks, their scheduled refresh rate, and
when they're scheduled to run. It would take an extreme case for this scenario to affect
resources. For example, refresh rates set in minutes, greater than 15 initialization blocks
that refresh concurrently, and a situation in which either of these scenarios could occur
during prime user access time frames.

It's more efficient and less resource intensive to set as many variables as possible in an
initialization block. For example, suppose you have one initialization block that contains five
variables. In this case, the initialization string makes one call to the back-end tables. Creating
five initialization blocks that contain one variable each results in five calls to the back-end
tables.

If an initialization block fails for a particular connection pool, no more initialization blocks
using that connection pool are processed. Instead, the connection pool is denied and
subsequent initialization blocks for that connection pool are skipped. This behavior ensures
that Oracle Analytics continues to work, even when a connection pool has a large number of
associated initialization blocks or variables.

Chapter 8
Work with Connection Pools

8-7

If this issue occurs, a message similar to the following is displayed in the server log:

[OracleBIServerComponent] [ERROR:1] [43143] Blacklisted connection
pool name_of_connection_pool

If you see this error, check the initialization blocks for the given connection pool to
ensure they're correct.

Connection Pool General Properties
The topic describes the connection pool properties in the Connection Pool's tab
General pane. These properties are common among most connection types.

Use the information in this topic to help you create or modify a connection pool. See
Set a Connection Pool's General Properties.

Property Description

Connection Displays the connections available to semantic models. A connection's System
Connection property must be selected for the connection to display in this list.
See Manage Connections to Data Sources.

Oracle Analytics doesn't always automatically assign the connection pool's
connection, so sometimes you must manually assign one. You're not able to
preview a physical table's data until it's database's connection pool connection
is assigned.

Remote
Connection

Identifies if the database connection uses remote data connectivity.

This field isn't automatically selected if the database uses remote data
connectivity. You must set this field manually.

If the database uses remote data connectivity and this field isn't selected then
you'll receive an error when you run consistency check.

Max
Connections

Specifies the maximum number of connections allowed for this connection pool.
The default is 10. You can determined the value by the database make and
model and the configuration of the hardware for the computer where the
database runs, and the number of concurrent users who require access.

For deployments with Oracle BI Interactive Dashboards pages, consider
estimating this value at 10% to 20% of the number of simultaneous users
multiplied by the number of requests on a dashboard. You can adjust the
number based on usage. Define the total number of all connections in the
semantic model to less than 800. To estimate the maximum connections
needed for a connection pool dedicated to an initialization block, you might use
the number of users concurrently logged on during initialization block
processing.

Timeout Specifies the amount and increment of time that a connection remains open
after a request completes. During this time, new requests use this connection
rather than open a new one up to the number specified for the maximum
connections. The time is reset after each completed connection request.

Chapter 8
Work with Connection Pools

8-8

Property Description

Isolation
Level

Specifies the value sets the transaction isolation level on each connection to the
back-end database. For ODBC gateways only. Controls the default transaction
locking behavior for all statements issued by a connection. You can only set one
at a time. It remains set for that connection until it's explicitly changed.

The options are:

Dirty read - Implements dirty read, isolation level 0 locking. This is the least
restrictive isolation level. When this option is set, it's possible to read
uncommitted or dirty data, change values in the data, and have rows appear or
disappear in the data set before the end of the transaction.

Dirty data is data to clean before running a query to obtain correct results. For
example, duplicate records, records with inconsistent naming conventions, or
records with incompatible data types.

Committed read - Specifies that shared locks are held while the data is read to
avoid dirty reads. You can change the data before the end of the transaction,
resulting in non-repeatable reads or phantom data.

Repeatable read - Places locks on all data that's used in a query, preventing
other users from updating the data. You can insert new phantom rows into the
data set by another user and are included in later reads in the current
transaction.

Serializable - Places a range lock on the data set, preventing other users from
updating or inserting rows into the data set until the transaction is complete.
This is the most restrictive of the four isolation levels. Because concurrency is
lower, use this option only if necessary.

Chapter 8
Work with Connection Pools

8-9

Property Description

Require fully
qualified table
names

When selected, specifies that all requests sent from the connection pool use
fully qualified names to query the underlying database. Select this option if the
database or database configuration requires fully qualified table names. This
option isn't available for some connection types.

The fully qualified names are based on the physical object names in the
semantic model. If you're querying the same tables that the physical layer
metadata was imported from, then you can safely select this option. If you've
migrated your semantic model from one physical database to another physical
database that has different database and schema names, the fully qualified
names are invalid in the newly migrated database. In this case, if you don't
select this option, the queries succeed against the new database objects.

For some connections, fully qualified names are a safer because they
guarantee that the queries are directed to the desired tables in the desired
database. For example, if the RDBMS supports an original database concept, a
query against a table named Customer first looks for that table in the original
database, and then looks for it in the specified database. If the table named
Customer exists in the original database, that table is queried, not the table
named Customer in the specified database.

You might need to select this option when you're using an Oracle Database and
you're accessing the database with a user that isn't the owner of the schema
containing the tables. When the Oracle Database interprets table names in
SQL, it assumes that the user that made the query is the owner if the table
name isn't fully qualified in the query. This can result in an incorrect qualified
name.

For example, if the user SAMPLE creates a table called CUSTOMER, the fully
qualified table name is SAMPLE.CUSTOMER. When the SAMPLE user
references the CUSTOMER table in a query, the Oracle Database assumes the
fully qualified table name is SAMPLE.CUSTOMER, and the access is
successful. However, if the JANEDOE user references the CUSTOMER table in
a query, the Oracle Database assumes the fully qualified table name is
JANEDOE.CUSTOMER, and a Table or view not found error can result. To
enable access for JANEDOE, you must select Require fully qualified table
names in the connection pool so that the Oracle Analytics query engine
specifies SAMPLE.CUSTOMER in all queries.

Use
multithreaded
connections

When selected, specifies that the Oracle Analytics query engine terminates idle
physical queries (threads). When not selected, one thread is tied to one
database connection, number of threads = maximum connections. Even if
threads are idle, they consume memory.

Parameters
supported

When selected, indicates that the database features table supports parameters
and special code runs that allows the Oracle Analytics query engine to push
filters (or calculations) with parameters to the database. The Oracle Analytics
query engine does this by simulating parameter support within the gateway/
adapter layer by sending extra SQLPrepare calls to the database.

Enable
connection
pooling

Allows a single database connection to remain open for the specified time for
use by future query requests. Connection pooling saves the overhead of
opening and closing a new connection for every query. If you don't select this
option, each query sent to the database opens a new connection.

Set a Connection Pool's General Properties
General properties include Max Connections, Timeout, Isolation Level, and so on.

For description of the general properties and how to set them, see Connection Pool
General Properties.

Chapter 8
Work with Connection Pools

8-10

The properties listed in the General tab vary according to the data source type.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Physical Layer and locate and double-click a database.

4. In the database's tab, click Connection Pools.

5. In the connection pools list table, click a connection pool to select it and then click Detail
view to open the Properties pane.

6. Go to the General section of the Properties pane and modify the connection pool's
properties.

7. Click Save.

Set a Connection Pool's Connection Property
A connection pool's connection must be correctly assigned before you can preview a physical
table's data.

When you import a .rpd or .zip file or load the deployed semantic model to create a semantic
model, Oracle Analytics doesn't always automatically assign the connection pool's
connection. In such cases you must manually assign one.

The Connections field displays the data source connections that you can use with semantic
models. You must create or have been given access to the needed semantic model's data
source connection. See Manage Connections to Data Sources.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Physical Layer and locate and double-click a database.

4. In the database, click Connection Pools and click Detail view.

5. Go to the connections pool list and click a connection pool to display its details.

6. In the connection pool's details, scroll to the Connection field, click it, and select a
connection.

7. Click Save.

Add Connection Scripts to a Connection Pool
You can add one or more connection scripts and set them to run before the connection is
established, before a query is run, after a query is run, or after the connection is
disconnected.

For example, you can create a connection script that on connect inserts the name of the user
and the connection time into a table.

Connection scripts can contain any commands accepted by the database, such as a
command to turn on quoted identifiers. This enables mainframe environments to maintain
security in one central location.

Because the connection script is sent directly to the data source, you must write the script in
native SQL. Don't write the script in Oracle Analytics Logical SQL because the data source
won't understand it.

Chapter 8
Work with Connection Pools

8-11

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Physical Layer and locate and double-click a database.

4. In the database's tab, click Connection Pools.

5. In the connection pools list table, click a connection pool to select it and then click
Detail view to open the properties pane.

6. Scroll to Connection Scripts, click Add Script, and select when to run the script.

A subsection is added for the selected connection script type.

7. Write the script using native SQL or a language that the data source understands.

8. Optional: Click Enable so that the script runs before the connection is established.

9. Click Save.

About Setting the Bulk Insert Buffer Size and Transaction Boundary
Settings

For write back, if each row size in a result set is 1 KB and the buffer size is 20 KB, then
the maximum array size is 20 KB.

If there are 120 rows, there are 6 batches with each batch size limited to 20 rows.

If you set Transaction boundary to 3, the server commits twice. The first time, the
server commits after row 60 (3 * 20). The second time, the server commits after row
120. If there is a failure when the server commits, the server only rolls back the current
transaction. For example, if there are two commits and the first commit succeeds but
the second commit fails, the server only rolls back the second commit.

For optimum performance, consider setting the buffer size to 128 and the transaction
boundary to 1000.

Set up Write Back in a Connection Pool
A connection pool's write back requirements include a temporary table and bulk insert
properties.

See About Setting the Bulk Insert Buffer Size and Transaction Boundary Settings.

The table describes the properties in the Write Back tab of the Connection Pool dialog.

Chapter 8
Work with Connection Pools

8-12

Property Description

Database supports unicode Select when the columns are of an explicit Unicode data type, such as
NCHAR, in a Unicode database. This makes sure that the binding is
correct and that data is inserted correctly. Different database vendors
provide different character data types and different levels of Unicode
support.

Use these guidelines to determine when to set this option:

• On a database where CHAR data type supports Unicode and
there isn't a separate NCHAR data type, don't select this option.

• On a database where NCHAR data type is available, it's
recommended to select this option.

• On a database where CHAR and NCHAR data type are configured
to support Unicode, it's option to select this option.

Unicode and non-Unicode data types can't coexist in a single non-
Unicode database. For example, mixing the CHAR and NCHAR data
types in a single non-Unicode database environment isn't supported.

Temporary Table - Prefix Enter the first two characters in the temporary table name that the
Oracle Analytics query engine creates.

Temporary Table - Owner Enter the table owner name used to qualify a temporary table name in
a SQL statement. For example, owner.tablename. If left blank, the
user name specified in the writeable connection pool is used to qualify
the table name.

Bulk Insert - Buffer size (KB) Enter the maximum number of bytes inserted into a database table.
For optimum performance, set this parameter to 10240.

Bulk Insert - Transaction
boundary

Enter the batch size for an insert in a database table. For optimum
performance, set this parameter to 1000.

Use these steps to specify your database's write back properties.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Physical Layer and locate and double-click a database.

4. In the database's tab, click Connection Pools.

5. In the connection pools list table, click a connection pool to select it and then click Detail
view to open the properties pane.

6. Scroll to Write Back and specify the write back properties.

7. Click Save.

Set a Connection Pool's Permissions
A connection pool's permissions specify which application roles have read-write, read-only,
and no access permissions to use the connection pool. For example, you can set up the
users in the DV Content Author application role to have their own connection pool.

By default, all roles have read-only access to the connection pool. Add applications roles and
assign permissions to limit who can use the connection pool.

Don't use connection pool permissions to determine data access security. For example,
connection pool permissions don't protect cache entries.

Chapter 8
Work with Connection Pools

8-13

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Physical Layer and locate and double-click a database.

4. In the database's tab, click Connection Pools.

5. In the connection pools list table, click a connection pool to select it and then click
Detail view to open the properties pane.

6. Scroll to Permissions.

7. Click in the search field and type the name of a role, or enter * (an asterisk) to see
the full list of roles. From the results list, click the role that you want to add to the
permissions table.

8. Specify the role's permission.

9. Click Save.

About Physical Tables
A physical table is an object that represents a data source's table. You can configure
tables as physical tables, select tables, or stored procedure tables.

You can drag and drop tables from the data source into the physical layer's database.
These imported tables contain metadata and joins from the data source. This
metadata enables the Oracle Analytics query engine to use a SQL request to access
the corresponding data source table.

You can also create virtual physical tables. Virtual tables provide the Oracle Analytics
query engine and the underlying data sources with the proper metadata to perform
advanced query requests.

You can store a virtual physical table as a stored procedure or a SELECT statement.
You can define a table from a select statement and deploy it in the data source to
create a deployed view.

For more information about the table source types you assign to physical tables, see
What Are a Physical Table's General Properties?

What Are a Physical Table's General Properties?
This topic contains information about the properties that you assign to your imported,
added, or aliased physical tables.

See Create a Physical Table and Populate Physical Columns with a Stored Procedure
or Select Statement.

Chapter 8
About Physical Tables

8-14

Property Description

Source Specifies how the physical table's columns get their data.

For an alias table, you can't change the table's source option, but you can click
Replace... to change the source table.

For an imported or newly added table, select Table if you need to add columns to
match those in a corresponding data source table. You might use this options when
you need to add physical columns because a data source's table isn't finalized and
available for import, or if the administrator has added more columns to a data
source's table. After you select this option, you use the Columns tab to create the
needed columns.

For an imported or added table, select Stored Procedure or Select Statement to
use a stored procedure or select statement to populate the physical table's
columns. After you select this option, you use the Columns tab to write the default
or database-specific stored procedure or select statement and to create the needed
columns. See Populate Physical Columns with a Stored Procedure or Select
Statement.

Dynamic Name Displays the name of the session variable used to name the table. This option is
available if you selected Table in the Source field. Available for imported or added
tables.

You can choose Use Dynamic Name to select between primary and shadow tables
that are valid at different times in the ETL cycle. In both cases, you can assign
session variables to dynamically select the appropriate table.

Caching Specifies if and how the table's data is cached. Typically you cache data when the
table doesn't need to be accessed in real time.

Select Same cache setting as source so that the alias table uses the same
caching preference as its source table. If you select this option then the source's
caching option is displayed next to the field. For example, (Cache forever).

Select Do not cache to not cache the table.

Select Cache forever so that the table entry cache doesn't automatically expire.
This option is useful when a table is important to a large number of queries that
users might run. For example, if most queries have a reference to an account
object, keeping it cached indefinitely could actually improve performance rather
than compromise it. Selecting this option doesn't mean that an entry always
remains in the cache. Other invalidation techniques, such as manual purging, LRU
(Least Recently Used) replacement, metadata changes, or use of the cache polling
table can result in entries being removed from the cache.

Select Cache for to specify how long the table entries are persisted in the query
cache. Setting a cache persistence time is useful for data sources that are updated
frequently. For example, you could set this option to refresh the underlying physical
tables daily for a particular workbook or dashboard.

If a query references multiple physical tables with different persistence times, the
cache entry for the query exists for the shortest persistence time set for any of the
tables referenced in the query. This makes sure that no subsequent query gets a
cache hit from an expired cache entry.

SQL Hint Contains instructions that tell the data source query optimizer the most efficient way
to run the SQL statement. See About Hints in SQL Statements.

Join Keys Displays the table's keys that are used in joins to other physical tables. Join keys
are automatically created when you import joined data source tables and when you
create or modify physical table joins. Use the physical diagram to update joins. See
About Physical Joins.

Additional Keys Displays a list of keys that, in addition to the join keys, defines identifier columns for
the table.

Chapter 8
What Are a Physical Table's General Properties?

8-15

Disable Auto Joins Creation in the Physical Layer
Disable the Automatically create joins if tables added to the physical layer have
foreign keys user preference to prevent Oracle Analytics from automatically creating
physical joins.

Note:

Deselecting Automatically create joins if tables added to the physical
layer have foreign keys disables the option for all semantic models that you
work with, not just the semantic model that was open when you set this user
preference.

By default the Automatically create joins if tables added to the physical layer
have foreign keys user preference is set to on. When you add data source tables to
the physical layer, any foreign keys defined in the data source automatically create
joins between the corresponding tables in the physical layer.

In some cases you might want to manually build the physical layer's joins. For
example, if adding data source tables creates unneeded or incorrect joins in the
physical layer and it's time consuming for you to delete these joins. In such cases you
deselect the Automatically create joins if tables added to the physical layer have
foreign keys checkbox to turn off automatic joins.

Deselecting Automatically create joins if tables added to the physical layer have
foreign keys doesn't remove the physical layer's existing joins, so you must remove
those joins manually.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Page Menu and then click Preferences.

4. In the Users Preferences dialog box, scroll to Physical Layer and then click
Automatically create joins if tables added to the physical layer have foreign
keys to deselect it.

5. Click Apply.

Create a Physical Table
Manually create a physical table when you can't import a data source table. You create
a table to mirror a table in the data source, or to use a select statement or stored
procedure to populate the physical columns you specify.

For information about how to set the table properties, see What Are a Physical Table's
General Properties?

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Physical Layer.

Chapter 8
Disable Auto Joins Creation in the Physical Layer

8-16

4. In the Physical Layer pane click Create and then click Create Physical Table.

5. In Create Physical Table, go to the Name field and enter a table name. Then go to
Location and browse for and select the new table's location.

6. Click OK.

7. In the new table's tab, click General and specify the table's properties.

8. Click Columns and depending on the source you specified, add the columns or enter a
stored procedure or select statement to populate the columns.

9. Click Save.

Create or Modify a Physical Column
You can create a new column in a physical table, or update an existing or imported column's
properties. Physical columns store data within tables in the physical database.

Remember that if you create, modify, or delete the physical table's columns, then any alias
tables that use the physical table as its source reflect those changes.

When you create or update a physical table, you can set its Source property to use a stored
procedure or select statement to populate columns. See Populate Physical Columns with a
Stored Procedure or Select Statement.

Use this information to help you set a column's properties:

• Type - Indicates the column's data type. Use caution when changing the data type.
Setting the values to data types that are incorrect in the underlying data source might
cause unexpected results. If there are any data type mismatches, correct them in the
semantic model or reimport the columns that have mismatched data types.

If you reimport columns, you also need to remap any logical column sources that
reference the remapped columns. The data type of a logical column in the business
model must match the data type of its physical column source. The Oracle Analytics
query engine passes these logical column data types to client applications.

Longvarchar and longvarbinary data types are supported for writing complete Logical
SQL statements into usage tracking tables for debugging purposes. They aren't
supported for general-purpose queries, and can't be displayed in Oracle BI Server.

• Nullable - Specifies whether null values are allowed for the column. If null values can
exist in the underlying table, you need to select this option. This allows null values to be
returned to the user, which is expected with certain functions and with outer joins. It's
generally safe to change a non-nullable value to a nullable value in a physical column.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Physical Layer.

4. In the database pane, browse for and double-click the table where you want to add or
modify a column.

5. In the physical table, click the Columns tab.

6. Click Add Column and select Create New Column to create a new column in the
physical table. Or in the table, click a column to highlight it, and then click it again to
enable the fields to be updated.

Chapter 8
Create or Modify a Physical Column

8-17

7. Optional: To duplicate a column, hover over the column you want to duplicate and
click its Row Menu and click Duplicate.

8. Specify the column's properties and then click off of the column.

9. Click Save.

Populate Physical Columns with a Stored Procedure or
Select Statement

If you chose the stored procedure or select statement as the physical table's source
type, then you create physical columns and write a stored procedure or select
statement to populate them.

Preview isn't available for columns populated by a stored procedure.

Use this information to help you write a stored procedure or select statement:

• Stored procedure - Provides a default stored procedure and database-specific
stored procedures. Requests for this table call the stored procedure. The default
initialization string is run when the queried database type doesn't have a
corresponding database-specific string defined.

Stored procedures within an Oracle Database might not return result sets. You
can't initiate stored procedures from within Analytics Cloud. You need to rewrite
the procedure as an Oracle function, use the Oracle function in a SELECT
statement in the initialization block, and associate the Oracle function with the
appropriate session variables.

The following example shows a SQL initialization string using the GET_ROLES
function that's associated with the USER, GROUP, and DISPLAYNAME variables. The
function takes a user Id as a parameter and returns a semicolon-delimited list of
group names:

SELECT user_id, get_roles(user_id), first_name || ' ' || last_name
FROM csx_security_table
WHERE user_id = ':USER' and password = ':PASSWORD'

• Select statement - Provides a default SELECT statement and a SELECT statement
for any databases that you select. You need to manually create the table columns.
The column names must match the ones specified in the SELECT statement.
Column aliases are required for advanced SQL functions, such as aggregates and
CASE statements.

The default SELECT statement is run when the queried database type doesn't have
a corresponding database-specific SELECT statement defined.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Physical Layer.

4. In the database pane, browse for and double-click the table where you want to add
the stored procedure or select statement.

5. In the physical table, click the General tab and in the Source field, select either
Stored Procedure or Select Statement.

6. Click the Columns tab.

Chapter 8
Populate Physical Columns with a Stored Procedure or Select Statement

8-18

7. Click Add Column and select Create New Column to add the new physical column
needed to store the data. Add more columns as needed.

8. Depending on the source you selected, go to the DEFAULT field and enter your default
stored procedure or select statement.

9. Optional: To add stored procedures or select statements written for specific database
types, click Specify query for additional databases and then click Add additional
databases and click to select the needed databases.

10. Optional: In the list of databases, click a database and enter its required stored procedure
or select statement.

11. Click Save.

About Physical Alias Tables
An alias table is a physical table that uses an alternative name to references another physical
table as its source. Creating alias tables lets you to reuse an existing table more than once so
you don't have to import the table into the physical layer several times.

The primary reasons to use alias tables are:

• To set up multiple tables, each with different keys, names, or joins, when a single data
source table needs to serve in different semantic roles. Setting up alias tables in this case
is a way to avoid triangular or circular joins.

For example, suppose you have a fact table in which the order date and shipping date
both point to the same column in the time dimension data source table. In this case you
can alias the dimension table so that each role is presented as a separately labeled alias
table with a join. These separate roles carry over into the business model, so that Order
Date and Ship Date are part of two different logical hierarchies. If a single logical query
contains both columns, the physical query uses aliases in the SQL statement so that it
can include both of them.

You can also use aliases to enable a data source table to play the role of both a fact table
and a dimension table that joins to another fact table, often called a fan trap.

• To include best practice naming conventions for physical table names. For example, you
can prefix the alias table name with the table type such as fact, dimension, or bridge, and
not change the original physical table names. Some organizations create alias tables for
all physical tables to enforce best practice naming conventions. In this case, all mappings
and joins are based on the alias tables rather than the original tables.

Alias table names appear in physical SQL queries. Using alias tables to provide meaningful
table names can make SQL queries referencing those tables easier to read. For example:

WITH
SAWITH0 AS (select sum(T835.Dollars) as c1
from
 FactsRevT835/*AllRevenue(Billed Time Join)*/)
select distinct 0 as c1,
 D1.c1 as c2
from
 SAWITH0 D1
order by c1

In this query, the meaningful alias table name A11 Revenue (Billed Time Join) has been
applied to the terse original physical table name FactsRev. In this case, the alias table name

Chapter 8
About Physical Alias Tables

8-19

provides information about which role the table was playing each time it appears in
SQL queries.

Alias tables can have cache properties that differ from their original tables.

Because the alias table's columns are automatically synchronized with the original
table, you can't add, delete, or modify columns in an alias table. Synchronization
ensures that the original tables and their related alias tables have the same column
definitions. For example, if you delete a column in the original table, the column is
automatically removed from the alias table.

You can't delete an original table unless you delete all of its alias tables first.
Alternatively, you can select the original table and all its alias tables and delete them at
the same time.

You can change an alias table's original table if a new original table is a superset of the
current original table. However, this could result in an inconsistent semantic model if
changing the original table deletes columns that are being used. Running consistency
check identifies orphaned aliases.

Alias tables inherit some properties from their original tables. Some of the properties
that the alias table gets from the original table can't be changed in the alias table. Such
properties are grayed out in the alias table properties. If the original table changes its
value for a grayed out property, the same property change displays for the alias table.

Create an Alias Table
An alias table uses another physical table as its source. You can use an alias table to
create an alternative name for its source table. For example, if you imported a table
named SAMP_TIME_DAY from the data source, you can create an alias table named
Time Day Grain.

You can change some of the source table properties that the alias table inherits, such
as its source table and caching method. You can also use the alias table to create
joins. See About Physical Alias Tables and What Are a Physical Table's General
Properties?

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Physical Layer.

4. In the Physical Layer pane click Create and then click Create Physical Table
Alias.

5. In Create Physical Table Alias, go to the Name field and enter a table name. Then
go to Source and browse for and select the source table you want the alias table
to use.

6. Click OK.

7. In the new alias table, click General and updated the table's properties.

8. Click Save.

Chapter 8
Create an Alias Table

8-20

Open the Physical Diagram from the Physical Layer
The physical diagram provides a graphic view of the physical table or tables that you
selected. From the diagram you can view a table's columns, show direct joins, and add,
modify, or delete physical joins.

You can select what you want the diagram to contain:

• Selected Tables Only - Displays only the selected physical tables. Physical joins display
only if they exist between the tables that you selected.

• Selected Tables and Direct Joins - Displays the selected physical tables and any
physical tables that join to the table or tables that you selected.

You can open the physical diagram from the physical layer or the logical layer. Opening the
physical diagram from the logical layer helps you understand the model's logical-to-physical
mappings, and shows you the physical objects that are associated with a particular logical
object.

For information about adding or modifying joins from the physical diagram, see Add and
Define Physical Joins.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Physical Layer.

4. Locate and right-click a table, or use Shift click or Ctrl click to select more than one table
and right-click.

5. Hover over Show Physical Diagram and click Selected Tables Only or Selected
Tables and Direct Joins.

6. In the physical diagram, double-click a table to view a list of column names with column
type icons. Double-click the list to collapse it.

7. Right-click a table and select Show Direct Joins to display the tables that join to the
table.

8. Click a join to access the Edit Physical Join dialog box to view or modify the join's
properties.

9. Click a table to select it and on the right side of the table, grab its handle and drag to
another table to create a physical join and specify its properties.

10. Click Add.

11. Click Save.

Delete a Physical Table
Deleting a physical table also deletes its dependent objects. For example, columns, keys,
and joins.

You can't delete a table that an alias table is using as its source. You must first delete the
alias table.

Instead of browsing to the physical table that you want to delete, you can search for it.

1. On the Home page, click Navigator and then click Semantic Models.

Chapter 8
Open the Physical Diagram from the Physical Layer

8-21

2. In the Semantic Models page, click a semantic model to open it.

3. Click Physical Layer.

4. In the physical layer pane, locate and right-click the table you want to delete. Click
Delete.

5. When prompted, click Save All.

Delete a Physical Column
Deleting a physical column deletes it from any physical alias tables that include the
column.

Instead of browsing to the physical column that you want to delete, you can search for
it.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Physical Layer.

4. In the database pane, browse for and double-click the table with the column you
want to delete.

5. In the physical table, click the Columns tab.

6. Locate the column that you want to delete, click Row Menu and click Delete.

Work with Physical Joins
This topic provides information about how to create and modify physical joins.

Topics:

• About Physical Joins

• About Joining Fragmented Data

• Add and Define Physical Joins

About Physical Joins
Physical joins indicate relationships between physical tables and tell the Oracle
Analytics query engine how to retrieve data from the tables.

Creating a physical join automatically creates a join key for the identifier column and
adds it to the primary table's properties. To view a table's join keys, open the physical
table and then go to the General tab. You can view join keys, but not edit them. To find
more information about a join, open the Physical Diagram and click a join to find out
the tables it's joined to, join cardinality, join type, join condition, and so on.

You must explicitly define joins in each data source or between data sources to
express relationships between tables in the physical layer. You can create a join can
based on a join condition, or on an expression that you provide. For most data
sources, join conditions are preferred for performance reasons. Joins based on
expressions usually don't perform as well because they don't use key column
relationships to form the join.

Chapter 8
Delete a Physical Column

8-22

Joins that are defined to enforce referential integrity constraints can result in specifying
incorrect joins in queries. For example, joins between a multipurpose lookup table and
several other tables can result in unnecessary or invalid circular joins in the SQL queries
issued by the Oracle Analytics query engine.

You can define a join from one metadata database object to another metadata database
object. This is called a multi-database join.

While the Oracle Analytics query engine has several strategies for optimizing the
performance of multi-database joins, these joins are significantly slower than joins between
tables within the same database. As a result of the negative performance impact, you should
avoid using multi-database joins whenever possible.

About Joining Fragmented Data
Fragmented data is data for a single entity that is split between multiple tables.

For example, a data source might store sales data for customers with last names beginning
with the letter A through M in one table and last names from N through Z in another table.
With fragmented tables, you need to define all of the join conditions between each fragment
and all the related tables. The figure shows the physical joins with a fragmented sales table
and a fragmented customer table where the data are fragmented the same way (A through M
and N through Z).

You could have a fragmented fact table and a fragmented dimension table with fragments
across different values. You create the joins to the fragmented table and define a one-to-
many join, as shown in the Customer A to F and from Customer G to Z to Sales A to M
example.

Chapter 8
Work with Physical Joins

8-23

Note:

Avoid adding join conditions where they aren't necessary, for example,
between Sales A to M and Customer N to Z. Extra join conditions can cause
performance degradations.

Add and Define Physical Joins
You can define joins between physical tables in the same data source, or you can
define joins between physical tables in different data sources. You use the Physical
Diagram to add and define joins.

Semantic Modeler determines what type of join to create based on the selected object
types and the join expression.

See About Physical Joins and Use Hints in SQL Statements.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Physical Layer.

4. Click a table, right click, and select Show Physical Diagram and select Selected
Tables Only.

5. Drag and drop additional tables to the Physical Diagram.

6. Working in the Physical Diagram, hover over the first table in the join (the table
representing many in the one-to-many join.), grab its handle, and drag to the table
that you want to join to (the table representing one in the one-to-many join).

A box is displayed around the table that you are joining to.

7. In the Add Physical Join dialog box, specify one or more join conditions, or click
Use Join Expression to specify the join properties and enter the join expression.

If using Unknown cardinality, then you only need to select Unknown for one side of
the join. For example, choosing unknown-to-1 is equivalent to unknown-to-
unknown and appears as such the next time you open the dialog box for this join.

8. Click Add.

Use Hints in SQL Statements
This topic provides information about how to add SQL hints to physical tables and
physical joins.

Topics:

• About Hints in SQL Statements

• About the Index Hint

• About the Leading Hint

• Performance Considerations for SQL Statement Hints

• Create Physical Table Hints

Chapter 8
Use Hints in SQL Statements

8-24

• Create Physical Join Hints

About Hints in SQL Statements
Hints are instructions that you add to a SQL statement that tell the data source query
optimizer the most efficient way to run the statement.

Hints override the optimizer's processing plan, so you can use hints to improve performance
by forcing the optimizer to use a more efficient plan. Hints are only supported for Oracle
Database data sources.

You can add hints to a physical table or a join expression. When the object associated with
the hint is queried, the Oracle Analytics query engine inserts the hint into the SQL statement.

For physical tables, SQL hints you specify for tables with the source type Table are
supported, but SQL hints that you specify for tables with the source type Stored Procedure
or Select Statement are ignored. For tables with the source type of Select Statement, you
can provide the hint text as part of the SQL statement you enter in the DEFAULT field.

About the Index Hint
An Index hint explains how the optimizer scans a specified index rather than a table.

See Oracle hints in the SQL reference guide for the version of the Oracle Database that you
use.

This is the syntax for the Index hint:

index(table_name,index_name)

For example, suppose queries against the ORDER_ITEMS table are slow and you've reviewed
the processing plan of the query optimizer and discovered that the FAST_INDEX wasn't used.
You can create an Index hint to force the optimizer to scan the FAST_INDEX rather than the
ORDER_ITEMS table.

For this example, you add this syntax to the physical table's SQL Hints properties field:

index(ORDER_ITEMS, FAST_INDEX)

About the Leading Hint
A Leading hint forces the optimizer to build the join order of a query with a specific table.

See Oracle hints in the SQL reference guide for the version of the Oracle Database that you
use.

This is the syntax for the Leading hint:

leading(table_name)

For example, suppose you have a join between the Sales Fact table and the Products table
and want to force the optimizer to begin the join with the Products table.

For this example, you add this syntax to the physical join's Include Hint field:

leading(Products)

Chapter 8
Use Hints in SQL Statements

8-25

Performance Considerations for SQL Statement Hints
Well researched and planned SQL statement hints can result in significantly better
query performance. However, hints can also negatively affect performance if they
result in a suboptimal processing plan.

Follow these guidelines to create hints to optimize query performance:

• Only add hints to a semantic model after you've tried to improve performance in
the following ways:

– Adding physical indexes or other physical changes to the Oracle Database.

– Making modeling changes within the server.

• Avoid creating hints for physical table and join objects that are queried often. If you
drop or rename a physical object that's associated with a hint, you must also
update the hints accordingly.

Create Physical Table Hints
You can add SQL hints to a physical table. You can't add hints to an alias table, but
only to its source table.

Although hints are identified using SQL comment markers (/* or --), don't type SQL
comment markers when you type the text of the hint. The Oracle Analytics query
engine inserts the comment markers when the hint is run.

For a description of available Oracle hints and hint syntax, see SQL reference for the
version of the Oracle Database that you use.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Physical Layer.

4. In the database pane, browse for and double-click the table where you want to add
a SQL hint.

5. Click the General tab, and in the SQL Hints field enter the SQL hint.

6. Click Save.

Create Physical Join Hints
You can add SQL hints to a physical join in an alias table.

Although hints are identified using SQL comment markers (/* or --), don't type SQL
comment markers when you type the text of the hint. The Oracle Analytics query
engine inserts the comment markers when the hint is run.

For a description of available Oracle hints and hint syntax, see SQL reference for the
version of the Oracle Database that you use.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Physical Layer.

Chapter 8
Use Hints in SQL Statements

8-26

4. Hover over a table and right-click. Select Show Physical Diagram and the diagram type
you want to work from.

5. Double-click a join.

6. In Edit Physical Join, click the Include Hint field and enter the SQL hint.

7. Click Save.

Preview Data in Physical Tables
You can preview a physical table's data.

Before you can preview a table's data, the database that contains the table must have a
connection pool connection assigned to it. See Set a Connection Pool's General Properties.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Physical Layer.

4. In the database pane, browse for and double-click the table that you want to preview data
for.

5. In the physical table, click the Preview tab.

Chapter 8
Preview Data in Physical Tables

8-27

9
Build a Semantic Model's Logical Layer

This chapter contains information to help you understand how to build a semantic model's
logical layer.

Topics:

• What is the Logical Layer?

• Automatically Rename Logical Layer Objects

• Create a Business Model in the Logical Layer

• About Logical Tables

• Create a Fact, Dimension, or Lookup Logical Table

• Work with Logical Columns

• Specify a Logical Table's Primary Key

• Work with Logical Joins

• Open the Logical Diagram

• Open the Physical Diagram from the Logical Layer

• Work with Logical Columns

• Work with Logical Column Aggregation

• Enable Write Back On Columns

• Work with Bridge Tables

What is the Logical Layer?
The semantic model's logical layer defines the dimensional business model of the data and
specifies the mapping between the business model and the physical layer schemas.

The logical layer determines the analytic behavior seen by users, and defines the superset of
objects and relationships available to users. The logical layer hides the complexity of the
source data models.

The logical layer can contain more than one business model, but ideally a single, integrated
business model is preferred to provide common dimensions used to analyze data across
subject areas. Business models are always dimensional, unlike objects in the physical layer,
which reflect the organization of the data sources. Each business model contains logical
tables, logical columns, logical table sources, and logical hierarchies.

Even though similar terminology is used for logical table and physical table objects, such as
tables and joins, objects in the logical layer have their own set of rules that differ from those
of relational models. For example, logical joins can represent many possible physical joins.

Tables, joins, mappings, and other objects in the logical layer are typically created
automatically when you drag and drop objects from the physical layer to a business model.
After these objects have been created, you can perform tasks like create additional logical

9-1

joins, perform calculations and transformations on columns, and add and remove joins
from dimension and fact tables.

Each column in the logical layer maps to one or more columns in the physical layer. At
run time, the Oracle Analytics query engine evaluates Logical SQL requests against
the logical layer, and then uses the mappings to determine the best set of physical
tables and files for generating the necessary physical queries. The mappings often
contain calculations and transformations, and might combine multiple physical tables.

Automatically Rename Logical Layer Objects
Use the Automatically rename objects when added to logical layer user
preference to automatically rename the physical tables and columns that you add to
the logical layer.

Note:

Setting Automatically rename objects when added to logical layer
preferences applies to all semantic models that you work with, not just the
semantic model that was open when you set this preference.

When you select this option, you also specify how you want the tables and column
renamed. For example, choose the Change each underscore(_) to a space rename
action and then choose the All lowercase rename action. So now when you drag
SAMP_CUSTOMER_D to the logical layer, its name is changed to samp customer d.

By default the Automatically rename objects when added to logical layer user
preference is set to off. So when you drag and drop tables and columns from the
physical layer to the logical layer, the resulting logical table and column names match
the corresponding physical table and column names.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Page Menu and then click Preferences.

4. In the Users Preferences dialog box, scroll to Logical Layer and then click the
Automatically rename objects when added to logical layer checkbox to enable
the user preference.

5. Select which physical objects you want to automatically rename when you drag
them to the logical layer.

6. In Rename Actions, click Add rules and select a rule.

7. Optional: Click Add rules to add another rule.

8. Click Apply.

Chapter 9
Automatically Rename Logical Layer Objects

9-2

Create a Business Model in the Logical Layer
A business model contains logical tables, logical columns, logical table sources, and logical
hierarchies. The business model also contains mappings from logical to physical tables.

A business model can map to more than one data source. Data mapping can also come from
different granularity within data sources.

The logical layer can contain one or more business models.

To add tables to the business model, you can drag tables from the physical layer to the
business model. Or you can create new fact, dimension, and lookup tables within the
business model.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Logical Layer.

4. In the Logical Layer pane click Create and then click Create Business Model.

5. In Create Business Model, go to the Name field and type a name. Click OK.

The new business model's tab is displayed and opens to Logical Tables.

About Logical Tables
Logical tables provide a dimensional view of your business' data.

A logical table is sourced from one or more physical tables through mappings. There are
three types of logical tables: fact, dimension, and lookup. The logical schema defined in each
business model must contain at least two logical tables, and you must define relationships
between the logical tables.

Each logical table is associated with one or more logical columns and one or more logical
table sources. You can add a new logical table source, edit or delete an existing table source,
create or change mappings to the table source, or define when to use logical table sources.

In most cases when you need to create a logical table, you drag and drop tables from the
physical layer to the logical layer. In some situations you need to create a logical table
manually. See Create a Fact, Dimension, or Lookup Logical Table.

When you drag and drop physical tables from the physical layer to the logical layer, the
columns in the table are also added to the logical table along with join relationships. Primary
keys and joins are created that mirror the keys and joins in the physical layer. After adding
objects to the logical layer, you can modify the objects in the logical table without affecting the
objects in the physical layer.

If you create tables manually or drag tables from the physical layer to the logical layer, then
you must create the logical mappings between the new or newly dragged tables and the
previously dragged tables.

After you add a logical table, you can perform tasks such as change a table's name, reorder
the logical table sources, and configure logical joins.

Chapter 9
Create a Business Model in the Logical Layer

9-3

Create a Fact, Dimension, or Lookup Logical Table
Manually create a logical table when you can't drag and drop a table from the physical
layer to the logical layer. For example, if a table you need doesn't exist in your physical
schema, then you create a logical table manually.

When you create a table, you choose the table type:

Fact table - Contains measures. For example, revenue and cost.

Dimension table - Contain data to be analyzed by measures. For example, products
and customers.

Lookup table - Contains multilingual data corresponding to rows in the base tables.
For more information see What Is Multilingual Data Support?

After creating a logical table, you must add columns and logical table sources to it.
And you must join it to other logical tables within the business model.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Logical Layer.

4. In the Logical Layer pane click Create and then click Create Logical Table.

5. In Create Logical Table, go to the Name field and enter a table name. Then go to
Type and select the new table's type.

6. Go to Business Model and select the business model to add the table to.

7. Click OK.

Work with Logical Columns
This topic provides information about how to create and modify logical columns.

Topics:

• About Logical Columns

• Add or Modify a Logical Column

• Delete a Logical Column's Logical Table Source

• Base a Logical Column's Sort Order on a Different Column

• Add Double Column Support

• Create Derived Columns

• Configure Logical Columns for Multicurrency Support

About Logical Columns
Each logical table contains one or more logical columns. A logical column can be an
attribute or a measure that is mapped or calculated.

Chapter 9
Create a Fact, Dimension, or Lookup Logical Table

9-4

In most cases you create logical columns by dragging tables from the physical layer to the
logical layer. The logical columns you create in this way map to one or more physical
columns and they inherit the physical column's data types.

You can also manually create logical columns that are derived from calculations based on
other logical columns.

For example, you have a dimension table with two mapped attribute columns: a First Name
column and a Last Name column. In the dimension table you can also have a calculated
column named Full Name that is calculated by concatenating the Last Name column with the
First Name column.

In the same example, you have a fact table with two mapped measure columns: a Revenue
measure column with an aggregation of Sum, and a Billed Quantity measure column with an
aggregation of Count. In the fact table you can also have a calculated measure column
named Actual Unit Price that is calculated by dividing Revenue by Billed Quantity.

Add or Modify a Logical Column
You can add a new column to a logical table, or update an imported column's properties.

In most cases you create logical columns by dragging a physical table from the physical layer
to the logical layer. This action creates a logical table with logical columns based on the
physical table and its physical columns.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Logical Layer.

4. In the Logical Layer pane, browse for and double-click the table where you want to add or
modify a column.

5. In the logical table, click the Columns tab.

6. Click Add Column and specify how you want to add the column:

• Click Create New Column to create an empty column.

• Click Add Physical Column and in Select Physical Column browse for and select
one or more columns. Click Select.

7. Optional: To duplicate a column, in the column table, hover over the column you want to
duplicate and click its Row Menu and click Duplicate.

8. In the column table, click a column to highlight it, and then click Detail view to view or
modify its properties.

9. Specify the column's properties.

10. Click Save.

Delete a Logical Column's Logical Table Source
Adding a logical table source to a logical table automatically adds logical columns and maps
them to physical columns. You can delete a column's logical table source.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Logical Layer.

Chapter 9
Work with Logical Columns

9-5

4. In the Logical Layer pane, browse for and double-click the table with the column
you want to modify.

5. In the logical table, click the Columns tab.

6. In the columns list, click a column to select it and then click Detail view to open
the properties pane.

7. Scroll to the Sources section, click the logical table source that you want to
remove, and click Delete.

8. Click Save.

Base a Logical Column's Sort Order on a Different Column
Change the sort order of a logical column when you don't want to order a column's
values alphabetically (lexical order).

In a lexical order sort, columns are ordered by their alphabetic spelling and not divided
into a separate group. For example, if you sorted on month (using a column such as
MONTH_NAME), the results return February, January, March in their lexicographical sort
order.

Suppose you want to sort months in chronological order, so January, February, and
March. Your table needs to have a month key such as MONTH_KEY with values of 1
(January), 2 (February), 3 (March) to achieve the chronological sort order. You set the
Sort order column field for the MONTH_NAME column to the MONTH_KEY and then a
request to order by MONTH_NAME would return January, February, and March.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Logical Layer.

4. In the Logical Layer pane, browse for and double-click the table with the logical
column you want to change the sort order for.

5. In the logical table, click the Columns tab.

6. In the column table, click the column to highlight it, and then click Detail view to
view its properties.

7. In the logical column's General properties, click Sort By and select the column
that you want to sort by.

8. Click Save.

Add Double Column Support
Double column support allows you to associate two columns. One column provides the
display and description values such as the description of an item. The second column
provides a descriptor ID or code column.

For example, you can use the actual column to provide the project list, and hide the ID
column associated with the first column, as in Clinic and Clinic ID. Only the Clinic
description is displayed to the user.

Using double columns can help improve performance because filtering is done on the
ID column, which is numeric and indexed.

Chapter 9
Work with Logical Columns

9-6

When multilingual columns are based on a lookup function, you can specify the non-
translated lookup key column as the descriptor column of the translated column. You can use
double column support to defining language-independent filters. For example, in analyses
users see the display column, but the query filters on the hidden descriptor ID column.

See Support Multilingual Data.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Logical Layer.

4. In the Logical Layer pane, browse for the table with the logical column you want to use as
a double column.

5. In the logical table, click the Columns tab.

6. In the column table, click the column to highlight it, and then click Detail view to view its
properties.

7. In the logical column's General properties, click the Descriptor Column field and select
the column you want to use.

8. Click Save.

Create Derived Columns
Columns can be derived from other logical columns as a way to apply post-aggregation
calculations to measures. You use the Expression Editor to specify the derived column
expression.

You can use a derived column to create a lookup function to display data from multilingual
database schemas. See Create Logical Lookup Columns.

The Oracle Analytics query engine prevents errors in divide-by-zero situations. The Oracle
Analytics query engine creates a divide-by-zero prevention expression using nullif() or a
similar function when it writes the physical SQL. Because of this, you don't have to use CASE
statements to avoid divide-by-zero errors.

To optimize performance and avoid errors on the aggregation level, don't define aggregations
in Expression Editor. Instead, set the logical column's Aggregation Rule field. See Set
Aggregation Rules for a Measure Column.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Logical Layer.

4. In the Logical Layer pane, browse for the table with the logical column you want to add
the derived column expression to.

5. In the logical table, click the Columns tab.

6. In the column table, click the column to highlight it, and then click Detail view to view its
properties.

7. In the logical column's Sources properties, pane, click Logical Expression, and then
click Open Expression Editor and create and validate the expression.

8. In the Expression Editor, click Save.

Chapter 9
Work with Logical Columns

9-7

Configure Logical Columns for Multicurrency Support
You can configure logical columns to allow users to select the currency that they want
to display their visualizations, analyses, and dashboards currencies columns in.

You can set up this feature so that all users see the same static list of currency
options, or you can provide a dynamic list of currency options that changes based on a
Logical SQL statement you specify.

When you use session variables in an expression, you must use this format:
VALUEOF(NQ_SESSION.var_name). Edit any logical columns that display currency values
to use the appropriate conversion factor using the PREFERRED_CURRENCY session
variable.

See Create an Initialization Block and Create a Session Variable.

The following logical column expression uses the value of the
NQ_SESSION.PREFERRED_CURRENCY variable to switch between different currency
columns. The currency columns are expected to have the appropriate converted
values.

INDEXCOL(CASE VALUEOF(NQ_SESSION.PREFERRED_CURRENCY) WHEN 'gc1' THEN 0
WHEN 'gc2' THEN 1 WHEN 'orgc' THEN 2 WHEN 'lc1' THEN 3 ELSE 4 END,
"Paint"."Sales Facts"."USDCurrency",
"Paint"."Sales Facts"."DEMCurrency" ,
"Paint"."Sales Facts"."EuroCurrency" ,
"Paint"."Sales Facts"."JapCurrency" ,
"Paint"."Sales Facts"."USDCurrency")

An Administrator must configure user-preferred currency options to enable
multicurrency support. For information about this configuration, see Define User-
Preferred Currency Options.

1. Click Variables.

2. Click Create, click Create Initialization Block, and create the session variable's
initialization block.

3. Create a session variable and name it PREFERRED_CURRENCY. Make sure to
select the Enable any user to set the value field for the session variable.

4. Click Save.

5. Click Logical Layer.

6. In the Logical Layer pane, browse for the table with the logical column you want to
configure for multicurrency.

7. In the logical table, click the Columns tab.

8. In the column table, click the column to highlight it, and then click Detail view to
view its properties.

9. In the logical column's Sources properties, click the Logical Expression field and
the click Open Expression Editor.

10. In the Expression Editor, create and validate a derived expression that uses the
PREFERRED_CURRENCY variable.

11. Click Save to save the expression.

Chapter 9
Work with Logical Columns

9-8

12. Optional: To provide a dynamic list of currency options, create a table in your data source
that provides the entries you want to display for the user-preferred currency. This table
must include the following columns:

• The first column contains the values used to set the session variable
PREFERRED_CURRENCY. Each value in this column is a string that uniquely identifies the
currency (for example, gc2).

• The second column contains currency tags from the Currencies XML system setting.
The displayMessage values for each tag are used to populate the Currency box and
currency prompts, for example, int:euro-1.

• You can provide a third column that contains the values used to set the presentation
variable currency.userPreference. Each value in this column is a string that
identifies the currency, for example, Global Currency 2. If you omit this column, then
the values for the displayMessage attributes for the corresponding currency tags
located in the Currencies XML system setting are used.

Sample user-preferred currency entries:

• UserPreference: orgc1, CurrencyTag: loc:en-BZ, UserPreferenceName: Org currency

• UserPreference: gc2, CurrencyTag: int:euro-1, UserPreferenceName: Global
currency 2

• UserPreference: lc1, CurrencyTag: int:DEM, UserPreferenceName: Ledger currency

• UserPreference: gc1, CurrencyTag: int:USD, UserPreferenceName: Global Currency
1

Specify a Logical Table's Primary Key
After creating logical tables and adding columns to them, you specify a primary key for each
dimension table.

Logical dimension tables must have a logical primary key. A logical primary key can be a
composite key, which is composed of one or more logical columns. Oracle advises against
specifying logical keys for logical fact tables.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Logical Layer and locate and double-click the logical table that you want to add a
primary key to.

4. In the logical table, click the General tab.

5. Click the Primary Key field and select the column that you want to use as the table's
primary key.

6. Optional: If the primary key is a composite key, then click the Primary Key field and
select another column.

7. Click Save.

Chapter 9
Specify a Logical Table's Primary Key

9-9

Work with Logical Joins
This topic provides information about how to create and modify logical joins.

Topics:

• About Logical Joins

• What Are Driving Tables?

• What Determines Join Trimming?

• Add and Define Logical Joins

• Identify the Physical Tables That Map to Logical Tables

About Logical Joins
Logical joins define relationships between logical tables.

Logical joins are conceptual joins and not physical joins. Logical joins don't join to
specific keys or columns. A single logical join can correspond to many possible
physical joins.

A key property of a logical join is cardinality. Cardinality expresses how rows in one
table are related to rows in the table that it's joined to. A one-to-many cardinality
means that for every row in the first logical dimension table there are 0, 1, or many
rows in the second logical table. Semantic Modeler considers a table to be a logical
fact table if it's at the Many end of all logical joins that connect it to other logical tables.

Specifying the logical table joins is required so that the Oracle Analytics query engine
can have the necessary metadata to translate a logical request against the business
model to SQL queries against the data sources. The logical join information provides
the Oracle Analytics query engine with the many‐to‐one relationships between the
logical tables. This logical join information is used when the Oracle Analytics query
engine generates queries against the underlying data source.

You don't need to create logical joins in the logical layer if both of the following
statements are true:

• You create the logical tables by dragging and dropping all required physical tables
to the logical layer.

• The logical joins are the same as the joins in the physical layer.

You might need to create some logical joins in the logical layer because you can't drag
and drop all physical tables simultaneously except in very simple models.

You use the logical diagram to create joins. When you create a join expression in the
physical layer, you can specify expressions and the specific columns on which to
create the join. When you create a logical join in the logical layer, you can't specify
expressions or columns to create joins on. A join in the physical layer doesn't require a
matching join in the logical layer.

What Are Driving Tables?
Driving tables optimize how the Oracle Analytics query engine processes cross-
database joins when one table is very small and the other table is very large.

Chapter 9
Work with Logical Joins

9-10

Specifying driving tables leads to query optimization in cases where the number of rows
being selected from the driving table is much smaller than the number of rows in the table
that it's joined to.

When you specify a driving table, the Oracle Analytics query engine uses the driving table if
the query plan determines that the table’s use can optimize query processing. The small table
(the driving table) is scanned, and parameterized queries are issued to the large table to
select matching rows. The other tables, including other driving tables, are then joined
together.

You can use driving tables with inner joins, and for outer joins when the driving table is the left
table for a left outer join, or the right table for a right outer join. Driving tables aren't used for
full outer joins.

Note the following information when deciding to set a driving table:

• Specify a driving table when the driving table is extremely small (less than 1000 rows).

• Specify a driving table only when multi-database joins are going to occur.

• If large numbers of rows are being selected from the driving table, specifying a driving
table could lead to significant performance degradation or, if the
MAX_QUERIES_PER_DRIVE_JOIN limit is exceeded the query terminates.

There are two entries in the database features table that control and tune driving table
performance:

• MAX_PARAMETERS_PER_DRIVE_JOIN
This is a performance tuning parameter. The larger its value, the fewer parameterized
queries are generated. Values that are too large can result in parameterized queries that
fail due to back-end database limitations. Setting the value to 0 (zero) turns off drive table
joins.

• MAX_QUERIES_PER_DRIVE_JOIN
This is used to prevent runaway drive table joins. If the number of parameterized queries
exceeds its value, then the query is terminated and an error message is returned to the
user.

What Determines Join Trimming?
This topic describes how the Oracle Analytics query engine determines which joins it can trim
from a physical query.

These are the join trimming rules for tables within a logical table source:

• Join Outerness (Inner, Left Outer, Right Outer, or Full Outer).

• Join Cardinality (There are nine join cardinality combinations excluding those with
Unknown cardinality on at least one side of the join.).

• Whether the logical table source contains a WHERE clause filter.

• Whether the physical join is a join or join expression.

The Oracle Analytics query engine uses the following criteria to trim a join:

• No references to the trimmed table can exists anywhere in the query such as in the
projected list of columns or in the WHERE clause.

Chapter 9
Work with Logical Joins

9-11

• The trimmed table must not cause the cardinality of the result set to change. If
removing a join could potentially change the number of rows selected, then the
Oracle Analytics query engine doesn't trim it.

A join is considered to have the potential to change the number of rows in the
result set if any of the following conditions are true. If any of these conditions are
true, then the join isn't trimmed from the query:

– The join is a full outer join, only inner joins, left outer joins, and right outer joins
are candidates for trimming

– The join cardinality is unknown on either side

– The table to trim is on the many side of a join, in other words, the detail table is
never trimmed in a primary-detail relationship

– The table to trim has a 0..1 cardinality and the join is an inner join. 0..1
cardinality implies that a possible matching row in the table. A join with 0..1
cardinality on one side is effectively like a filter. The Oracle Analytics query
engine can't trim the table without changing the number of rows selected.

– The table to trim is on the left side of a left outer join or on the right side of a
right outer join, the row-preserving table is never trimmed. There is an
exception to this rule for queries that select only attributes in which a
DISTINCT clause is added to the query. Because of the DISTINCT clause,
trimming the row-preserving table doesn't affect the number of rows returned
from the null-supplying table. In the special case of distinct queries on
attributes, you can trim the row-preserving table from an outer join.

The following table provides examples of when the Oracle Analytics query engine
trims joins from the query.

Scenario Result

Employee INNER JOIN Department

The Oracle Analytics query
engine can trim Department
because it's on the one side
of an inner join.

The Oracle Analytics query
engine can't trim Employee
because it's on the many
side of an inner join.

Employee LEFT OUTER JOIN Department

The Oracle Analytics query
engine can trim Department
because it's on the one side
of the join and it's on the right
side of a LEFT OUTER
JOIN, the null supplying
table.

The Oracle Analytics query
engine can't trim Employee
because it's on the many
side, and because it's on the
left side of a LEFT OUTER
JOIN, the row preserving
table.

Chapter 9
Work with Logical Joins

9-12

Scenario Result

Employee RIGHT OUTER JOIN Department

The Oracle Analytics query
engine can't trim Department
because it's on the right side
of a RIGHT OUTER JOIN,
the row preserving table.

The Oracle Analytics query
engine can't trim Employee
because it's on the many
side of the join.

Employee INNER JOIN EmployeeInfo

The Oracle Analytics query
engine can trim either side
because both tables are on
the one side of an inner join.

Employee LEFT OUTER JOIN EmployeeInfo

The Oracle Analytics query
engine can trim
EmployeeInfo since it's on
the one side of the join, and
it's on the right side of a
LEFT OUTER JOIN, the null
supplying table.

The Oracle Analytics query
engine can't trim Employee
because it's on the left side
of a LEFT OUTER JOIN, the
row preserving table.

Employee RIGHT OUTER JOIN EmployeeInfo

The Oracle Analytics query
engine can trim
EmployeeInfo because it's on
the right side of a RIGHT
OUTER JOIN, the row
preserving table.

You can trim Employee
because it's on the "one" side
of the join, and it's on the left
side of a RIGHT OUTER
JOIN, the null supplying
table.

Employee INNER JOIN Department

The Oracle Analytics query
engine can trim Department
because it's on the 0..1 side
of an inner join.

The Oracle Analytics query
engine can trim Employee
because it's on the many
side of an inner join.

Chapter 9
Work with Logical Joins

9-13

Scenario Result

Employee LEFT OUTER JOIN Department

The Oracle Analytics query
engine can trim Department
because it's on the 0..1 side
of an outer join, and it's on
the right side of a LEFT
OUTER JOIN, the null
supplying table.

The Oracle Analytics query
engine allows trimming the
null supplying table on the
0..1 side of an outer join,
because in this case,
trimming Department from
the query wouldn't change
the number of rows selected
from the Employee table.

The Oracle Analytics query
engine can trim Employee
since it's on the many side of
an outer join.

Employee FULL OUTER JOIN Department

The Oracle Analytics query
engine can't trim either side
because the join is a FULL
OUTER JOIN.

Employee MANY TO MANY Project

The Oracle Analytics query
engine can't trim either side
because the join is many-to-
many.

Employee UNKNOWN Department

The Oracle Analytics query
engine can't trim either side
because the join has
unknown cardinality.

Add and Define Logical Joins
You use the Logical Diagram to add and define joins between logical tables.

When you drag multiple tables from the physical layer to the logical layer,
corresponding logical tables and logical columns are created, and a logical join is

Chapter 9
Work with Logical Joins

9-14

automatically created for each physical join. You can modify these joins as needed, or add
new joins.

See About Logical Joins.

Note:

Use caution when specifying a driving table. Driving tables are used for query
optimization only under rare circumstances and when the driving table is small
(fewer than 1000 rows). Choosing a driving table incorrectly can lead to severe
performance degradation. See What Are Driving Tables?

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click a table, right click, and select Show Logical Diagram and select Selected Tables
Only.

4. Drag and drop additional tables to the Logical Diagram.

5. Working in the Logical Diagram, hover over the first table in the join (the table
representing many in the one-to-many join.), grab its handle, and drag to the table that
you want to join to (the table representing one in the one-to-many join).

A box is displayed around the table that you are joining to.

6. In Add Join, modify the values in the Cardinality, Driving Table, and Join Type fields as
needed.

7. Click Add.

Identify the Physical Tables That Map to Logical Tables
The Physical Diagram shows the physical tables that map to the selected logical table or
tables. The diagram also shows the physical joins between each physical table.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Logical Layer.

4. Click a table or Crtl click multiple tables, right click, and select Show Physical Diagram
and select Selected Tables and Direct Joins.

Open the Logical Diagram
The logical diagram provides a graphic view of the logical table or tables that you selected.
From the diagram you can view a logical table's columns, show joins, and add, modify, or
delete logical joins.

The logical model diagram doesn't display other logical objects, such as business models,
dimensions, or hierarchies.

You can select what you want the diagram to contain:

• Selected Tables Only - Displays only the selected logical tables. Logical joins display
only if they exist between the tables that you selected.

Chapter 9
Open the Logical Diagram

9-15

• Selected Tables and Direct Joins - Displays the selected logical tables and any
logical tables that join to the table or tables that you selected.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Logical Layer.

4. Locate and right-click a table, or use Shift click or Ctrl click to select more than one
table and right-click.

5. Hover over Show Logical Diagram and click Selected Tables Only or Selected
Tables and Direct Joins.

6. In the physical diagram, double-click a table to view a list of column names with
column type icons. Double-click the list to collapse it.

7. Right-click a table and select Show Direct Joins to display the tables that join to
the table.

8. Double-click a join to access the Edit Join dialog box to view or modify the join's
properties.

9. Click a table to select it and on the right side of the table, grab its handle and drag
to another table to create a logical join and specify its properties.

Open the Physical Diagram from the Logical Layer
Opening the physical diagram from the logical layer helps you understand the model's
logical-to-physical mappings, and shows you the physical objects that are associated
with a particular logical object.

You can add or modify physical joins from the physical diagram. See Add and Define
Physical Joins.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Logical Layer.

4. Locate and right-click the table that you want logical-to-physical mappings
information about, or use Shift click or Ctrl click to select more than one table and
right-click.

5. Hover over Show Physical Diagram and click Selected Tables Only or Selected
Tables and Direct Joins.

6. In the physical diagram, double-click a table to view a list of column names with
column type icons. Double-click the list to collapse it.

7. Right-click a table and select Show Direct Joins to display the tables that join to
the table.

8. Double-click a join to access the Edit Physical Join dialog box to view or modify
the join's properties.

9. Click a table to select it and on the right side of the table, grab its handle and drag
to another table to create a physical join and specify its properties.

Chapter 9
Open the Physical Diagram from the Logical Layer

9-16

Work with Logical Column Aggregation
This topic provides information about the different ways that you can set up logical column
aggregation.

Topics:

• About Levels of Aggregation

• Set Aggregation Rules for a Measure Column

• Set an Aggregation Level Based on a Dimension for a Measure Column

• Associate an Attribute with a Logical Level in Dimension Tables

About Levels of Aggregation
Only perform aggregations on measure columns. Measure columns should exist only in
logical fact tables.

You can select different aggregation rules for different dimensions that are associated with a
logical column. Suppose someone queries the aggregate column along with one dimension,
you may want to use one type of aggregation rule, whereas with another dimension, you may
want to use a different aggregation rule. For example, number of employees is a count on all
dimensions except on the time dimension where the aggregation rule would be last.

When the default aggregation rule is Count Distinct, you can specify an override
aggregation expression for specific logical table sources. For example, you may want to
specify override aggregation expressions when you're querying different logical table sources
that already contain some level of aggregation.

You can choose the EVALUATE_AGGR aggregation rule to enable queries to call custom
functions in the data source. Use this aggregation rule when the aggregation must be done in
an external data source.

By default, data is considered sparse. However, you might have a logical table source with
dense data. A logical table source is considered to have dense data if it has a row for every
combination of its associated dimension levels. When setting up aggregate rules for a
measure column, you can specify that data is dense only if all the logical table sources to
which it's mapped are dense.

For measures where the aggregation rule is the same in all dimensions, select one of the
aggregate functions from the Aggregation Rule list. The function you select is always
applied when a user or an application requests the column in a query, unless an override
aggregation expression has been specified. When you select Count Distinct as the default
aggregation rule, you can specify an override aggregation expression for specific logical table
sources. Choose this option when you have more than one logical table source mapped to a
logical column and you want to apply a different aggregation rule to each source.

Set Aggregation Rules for a Measure Column
You need to specify aggregation rules for mapped logical columns that are measures.

If your measure has different aggregation rules for different dimensions, for semi-additive
measures, then you choose Based on dimensions as the measure's aggregation rule. See
Set an Aggregation Level Based on a Dimension for a Measure Column.

Chapter 9
Work with Logical Column Aggregation

9-17

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Logical Layer.

4. In the Logical Layer pane, browse for the table with the logical column that you
want to add an aggregation rule to.

5. In the logical table, click the Columns tab.

6. In the column table, click the column to highlight it, and then click Detail view to
view its properties.

7. In the logical column's Aggregation properties, click the Aggregation Rule field
and select an aggregation rule.

8. Click Add Aggregation by Level and in the Dimension field select a table
source.

9. Click the Logical Level field and select the level of aggregation. What you choose
is the minimum level of aggregation, and the measure won't be aggregated below
the level you choose.

10. Click Save.

Set an Aggregation Level Based on a Dimension for a Measure
Column

The majority of measures have the same aggregation rule for each dimension. Some
measures can have different aggregation rules for different dimensions.

For information about setting up dimension hierarchies, see About Level-Based
Hierarchies and About Parent-Child Hierarchies.

For example, a bank could calculate account balances averages over a specific time,
but calculated averages on individual accounts with a simple summation for a period.
You can configure dimension‐specific aggregation rules. You can specify one
aggregation rule for a given dimension and specify other rules to apply to other
dimensions.

Choose Based on dimensions as the measure column's aggregation rule if your
measure has different aggregation rules for different dimensions, for semi-additive
measures.

When setting up the aggregation, selecting the Data is dense option indicates that all
sources that the column is mapped to have a row for every combination of dimension
levels that they represent. Incorrect results are returned if you select this option and
the measure column's table source doesn't contain dense data.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Logical Layer.

4. In the Logical Layer pane, browse for the table with the logical column that you
want to add an aggregation rule to.

5. In the logical table, click the Columns tab.

6. In the column table, click the column to highlight it, and then click Detail view to
view its properties.

Chapter 9
Work with Logical Column Aggregation

9-18

7. In the logical column's Aggregation properties, click the Aggregation Rule field and
select Based on dimensions.

8. Click Add Aggregate by Dimension and in the dimension field select a dimension.

9. Click the Formula list and select an aggregation rule, or click the Expression Builder
icon to use the Expression Editor to create the aggregation rule.

10. If all the logical table sources that the column is mapped to are dense, then select the
Data is dense field.

11. Click Save.

Associate an Attribute with a Logical Level in Dimension Tables
You can associate attributes with a logical level.

You can associate measures with levels from multiple dimensions and aggregate to the levels
specified. A measure is associated to a level is called a level-based measure. A level-based
measure is computed at that grain, even when the query context has a lower grain. For
example, if yearlySales is associated to year level, it's computed at the yearly level in the
following query: Select month, yearlySales.

Dimensions are displayed in the Dimensions list. If the attribute is associated with a logical
level, the level appears in the Levels list.

Another way to associate a measure with a level in a dimension is to expand the dimension
tree in the logical layer, and then use drag-and-drop the column on the target level. See
Level-Based Measure Calculations.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Logical Layer.

4. In the Logical Layer pane, browse for the table with the logical column that you want to
add an aggregation level to. Double-click the column.

5. In the logical table, click the Columns tab.

6. In the column table, click the column to highlight it, and then click Detail view to view its
properties.

7. In the logical column's Aggregation properties, click the Aggregation Rule field and
select an aggregation rule.

8. Click Add Aggregation by Level and in the Dimension field select a logical table
source.

9. Click the Logical Level field and select a level.

10. Click Save.

Enable Write Back On Columns
You can configure individual columns so that analyses and dashboard users can update
column data and write the changes back to the data source.

Enabling write back is a three step process where you disable caching on the corresponding
physical table so that users can immediately see data updates, modify the logical column

Chapter 9
Enable Write Back On Columns

9-19

Writeable field, and assign application roles and users the Read/Write permission to
the corresponding presentation column.

You must perform additional tasks to enable write back in Oracle Analytics. See
Enable Write Back in Analyses and Dashboards.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Physical Layer.

4. In the Physical Layer pane, browse for and double-click the physical table with the
column that you want to enable write back for.

5. In the physical table, click the Columns tab.

6. Click the Caching field and select Do not cache.

7. To locate a list of logical tables that use the physical table as their source, go to
the Physical Layer pane, right-click the physical table, click Show Related, then
Logical, and then Logical Table.

8. In the table list, locate and click the logical table that contains the logical column
that you want to set for write back.

9. In the logical table, click the Columns tab.

10. In the columns list, click a column to select it and then click Detail view to open
the properties pane.

11. In the logical column's General properties click the Writeable field.

12. In the Semantic Modeler's left pane, click Presentation Layer and locate and
double-click the logical table that contains the logical column that you want to set
up for write back.

13. In the columns list, click the presentation column that corresponds to the logical
column that you're setting up write back for, and then click Detail view to open the
properties pane.

14. Scroll to Permissions and deselect the Same permission as table field,

15. In the Permissions table, specify which roles have Read-Write permissions.

16. Click Save.

Work with Bridge Tables
This topic provides information about when to use bridge tables and how to model
them.

Topics:

• About Bridge Tables

• Create Joins in the Physical Layer for Bridge and Associated Dimension Tables

• Model the Associated Dimension Tables in a Single Dimension

• Model the Associated Dimension Tables in Separate Dimensions

Chapter 9
Work with Bridge Tables

9-20

About Bridge Tables
Use a bridge table (or intermediate table) to resolve many-to-many relationships between
tables.

For example, suppose there is an Employee table that contains information about employees,
and a Jobs table that contains information about the jobs the employees perform. An
organization's employees can have multiple jobs, and the same job can be performed by
multiple employees. This results in a many-to-many relationship between the Employees
table and the Jobs table.

For this scenario, you create a bridge table named Assignments to resolve the many-to-many
relationship. Each row in the Assignments table is unique, representing one employee doing
one job. If an employee has several jobs, there are several rows in the Assignments table for
that employee. If a job is performed by several employees, there are several rows in the
Assignments table for that job. The primary key of the Assignments table is a composite key,
made up of a column containing the employee ID and a column containing the job ID.

By acting as a bridge table between the Job and Employee tables, the Assignments table
enables you to resolve the many-to-many relationship between Employees and Jobs into:

• A one-to-many relationship between Employees and Assignments

• A one-to-many relationship between Assignments and Jobs

You should include Weight Factor as an additional column in the bridge table, and to
calculating during ETL for efficient query processing.

Create Joins in the Physical Layer for Bridge and Associated Dimension
Tables

To model bridge tables in the physical layer, create joins between the bridge table and the
associated dimension tables.

After you've completed creating joins in the physical layer, you then add the needed
associated dimension tables to the logical layer and model them in either a single dimension
or separate dimensions.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Physical Layer.

4. In the Physical Layer pane, browse for and Ctrl click the fact, bridge, and associated
dimension tables.

5. Right-click, hover over Show Physical Diagram, and click Selected Tables Only.

6. From the bridge table, click and drag to draw a join line to a dimension table.

7. Add joins from the bridge table to the other associated dimension tables.

8. Confirm that one of the associated dimension tables is joined to the fact table.

9. Click Save.

Chapter 9
Work with Bridge Tables

9-21

Model the Associated Dimension Tables in a Single Dimension
In the logical layer, you can choose to model the two dimension tables associated with
a bridge table in a single dimension, or in two separate dimensions.

Before you perform this task, you need to create the required physical joins. See
Create Joins in the Physical Layer for Bridge and Associated Dimension Tables.

To model the associated dimension tables in a single dimension, create a second
logical table source that maps to the bridge table and to the other dimension table, and
then add columns from the other dimension table. Don't add the bridge table and the
associated dimension table that isn't joined to the fact table to the logical layer. For the
example described in About Bridge Tables, you add the Jobs table (dimension table
joined to the fact table), but not the Assignment table (bridge table) and Employee
table (dimension table not joined to the fact table).

Providing two separate logical table sources makes queries more efficient because it
ensures that queries against a single dimension table don't involve the bridge table.

It's a good practice to use the bridge table name as the name of the source.

You can create dimensions based on your logical tables, including the logical table
with the bridge table source.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Logical Layer.

4. In the Logical Layer pane, click Create and then Create Logical Table to create
the needed logical dimension table. Repeat this step to create the logical fact
table.

5. In the logical layer, double-click the dimension table that is joined to the fact table
and in the table, click the Sources tab.

6. Click Add Physical Table and then Create Logical Table Source and in the table
source's Name field, enter the name of the bridge table that you created in the
physical layer.

7. Click Add Physical Table and then Create Logical Table Source and in the table
source's Name field, enter the name of the associated dimension table that isn't
joined to the fact table.

8. Click the Columns tab to navigate to the table's column list.

9. Click Add Column and then click Create New Column.

10. In the new column's Name field, enter the name of a column from the dimension
table that isn't joined to the fact table. Repeat this step to add the required
columns.

11. Click Save.

Chapter 9
Work with Bridge Tables

9-22

Model the Associated Dimension Tables in Separate Dimensions
Instead of modeling the two dimension tables associated with a bridge table in a single
dimension, you can choose to model them in separate dimensions.

Before you perform this task, you need to create the required physical joins. See Create
Joins in the Physical Layer for Bridge and Associated Dimension Tables.

To model the associated dimension tables in separate dimensions, create a logical join
between the fact table and the dimension table that isn't physically joined to the fact table,
and then modify the dimension table's logical table source to add the other table mappings.
Don't add the bridge table to the logical layer, but add all dimension tables associated with
the bridge table. For the example described in About Bridge Tables, you add the Jobs table
(dimension table joined to the fact table) and Employee table (dimension table not joined to
the fact table), but you won't add the Assignment table (bridge table).

You can create dimensions based on your logical tables, including both logical tables
associated with the bridge table.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Logical Layer.

4. In the Logical Layer pane, click Create and then Create Logical Table to create a logical
dimension table. Repeat this step to create the required logical dimension tables and to
create the logical fact table.

5. In the Logical Layer pane, Crtl click the fact table and associated dimension tables.

6. Right-click, hover over Show Logical Diagram, and click Selected Tables Only.

7. From the fact table, click and drag to draw a join line to the dimension table not joined to
the fact table.

8. In the Logical layer pane, double-click the dimension table you joined to the fact table and
in the table, click the Sources tab.

9. Click Add Physical Table and then Create Logical Table Source and in the new table
source's Name field, enter the name of the bridge table that you created in the physical
layer.

10. Click Add Physical Table and then Create Logical Table Source and in the new table
source's Name field, enter the name of the associated dimension table. Repeat this step
to add other dimension table.

11. Click Save.

Chapter 9
Work with Bridge Tables

9-23

10
Build a Semantic Model's Presentation Layer

This chapter contains information to help you understand how to build a semantic model's
presentation layer.

Topics:

• What is the Presentation Layer?

• About Alternative Names for Presentation Objects

• Work with Subject Areas

• Work with Presentation Tables and Columns

• Work with Presentation Hierarchies and Levels

• Write an Expression to Hide a Presentation Object

• Work with Localization

What is the Presentation Layer?
The presentation layer provides users with customized, secure, role-based views of a
business model.

Role-based views provide object security and also provide a way to hide some of the
complexity of the business model.

In the presentation layer, you can set an implicit fact column. The primary function of the
presentation layer is to provide custom names, dictionary entries, organization, and security
for different groups of users.

Presentation layer views are called subject areas. Subject areas contain presentation tables,
columns, hierarchies, and levels. You can create a subject area that's identical to your
business model, or you can create role-based subject areas that show a single subject or that
supports a specific business role. Subject areas aren't abstract views. You should create
subject areas that organize your content in a way that benefits your users.

You can use a JDBC connection to query subject areas externally. When you access subject
areas in this way, the subject areas are displayed as catalogs.

Even though the Logical SQL requests from visualizations, analyses, and other clients query
the presentation tables and columns, the logic for entities, relationships, and joins is in the
logical layer.

There is no automatic way to synchronize all changes between the logical layer and the
presentation layer. For example, if you add logical columns to an existing logical table, or edit
existing columns, you must manually update the corresponding presentation layer table and
columns.

In some cases, if there are many changes to a logical table or even to an entire business
model, it's easiest to delete the corresponding presentation table or subject area, and then
and drag and drop the updated logical objects to the presentation layer. For this reason, it's

10-1

best to wait until the logical layer is relatively stable before adding customizations in
the presentation layer.

About Alternative Names for Presentation Objects
Use alternative names to help track an object's name changes and to prevent SQL
queries that include the object's previous name from failing.

Semantic Modeler doesn't create an alias when you change a presentation object's
name. If you need to track an object's previous names, then Oracle recommends that
you create and manage alternative names for the object. When you rename a
presentation object, you can create alternative names for the object to prevent
breaking references that any existing requests have to the old names, including
requests from workbooks, analyses, dashboards, reports, or other Logical SQL clients.

For example, suppose you have a subject area called Sample Sales Reduced that
contains a presentation table called Facts Other. If you rename the table's
presentation column # of Customers to Number of Customers, any requests that use #
of Customers fail. However, if you add a # of Customers alternative name to the
Number of Customers column object, then queries containing both # of Customers and
Number of Customers succeed and return the same results.

Because presentation layer objects are often deleted and then re-created during the
semantic model development process, it's best to wait until your logical business
model is relatively stable before renaming and creating alternative names for
presentation objects.

Note the following information when working with alternative names:

• Alternative names for presentation objects aren't displayed in the subject areas
that users access to create visualizations and analyses. Also, alternative names
aren't displayed in other query clients used to create queries. End users and users
who write queries only use the assigned names of subject areas, hierarchies,
levels, tables, and columns.

• Alternative names work differently than SQL aliases or the alias feature in the
physical layer. Alternative names provides synonyms for object names, much like
synonyms in SQL.

• You can't rename a presentation object to a name that's already in use as an alias
for an object of the same type.

• You can use alternative names in Logical SQL queries.

Work with Subject Areas
This topic provides information about how to create and modify the presentation layer's
subject areas.

Topics:

• About Creating Subject Areas

• About the Implicit Fact Column

• Create a Subject Area

Chapter 10
About Alternative Names for Presentation Objects

10-2

About Creating Subject Areas
There are several ways to create subject areas in the presentation layer.

Oracle recommends that you drag and drop a business model from the logical layer to the
presentation layer, and then modify the presentation layer based on what you want users to
see. You can move columns between presentation tables, remove columns that don't need to
be seen by the users, or even present all of the data in a single presentation table. You can
create presentation tables to organize and categorize measures in a way that makes sense
to your users.

You can also duplicate an existing subject area and its corresponding business model. Or you
can create an empty subject area.

Although each subject area must be populated with contents from a single business model,
you can create multiple subject areas for one business model. Creating multiple subject
areas for one business model makes it easier for the users to work with the content and
create queries that span multiple subject areas.

There are many ways to create multiple subject areas from a single business model. One
method is to drag a business model to the presentation layer multiple times, then edit the
properties or objects of the resulting subject areas.

For example, suppose you have a business model called ABC that contains the Geography
and Products dimensions. When you drag it to the presentation layer twice two subject areas
are created with the default names ABC and ABC#1. You then edit the subject areas as follows:

• Rename the ABC subject area to DEF, then delete the Geography presentation hierarchy

• Rename the ABC#1 subject area to XYZ, then delete the Products presentation hierarchy

Users can then run queries that span the DEF subject area containing the Products hierarchy,
and the XYZ subject area containing the Geography hierarchy.

When you query a single subject area, all the columns exposed in that subject area are
compatible with all the dimensions exposed in the same subject area. However, when you
combine columns and dimensions from multiple subject areas, you must ensure that you
don't include combinations of columns and dimensions that are incompatible with one
another.

For example, a column in one subject area might not be dimensioned by Project. If columns
from the Project dimension from another subject area are added to the request along with
columns that aren't dimensioned by Project, then the query might fail to return results, or
cause the error, "No fact table exists at the requested level of detail:
XXXX."

About the Implicit Fact Column
For each subject area in the presentation layer, you can set an implicit fact column.

The subject area's specified implicit fact column is added to a query when it contains columns
from two or more dimension tables and no measures. The column isn't visible in the results.
It's used to specify a default join path between dimension tables when there are several
possible alternatives or contexts.

Chapter 10
Work with Subject Areas

10-3

If an implicit fact isn't configured, then the Oracle Analytics query engine uses any fact
table source to answer dimension-only subrequest that contains multiple dimensional
references but no fact reference.

The Oracle Analytics query engine can also use any fact table source if the configured
implicit fact column isn't relevant to the dimensions that are joined. This could happen,
for example, when implicit fact column is a level based measure at a level higher than
the dimensional only subrequest.

You use the Implicit Fact Column field in the subject area's General tab to add,
remove, or replace the implicit fact column. See Create a Subject Area.

Create a Subject Area
Manually create a subject area when you can't drag and drop a business model from
the logical layer to the presentation layer.

You use logical content from a single business model to build the subject area. Subject
areas can't span business models.

The subject area's specified implicit fact column is added to a query when it contains
columns from two or more dimension tables and no measures. The column isn't visible
in the results. It's used to specify a default join path between dimension tables when
there are several possible alternatives or contexts.

You can select the Hide if field and write an expression to hide a subject area. See
Write an Expression to Hide a Presentation Object.

Semantic Modeler doesn't create an alias when you change a subject area's name. If
you need to track a subject area's previous names, then Oracle recommends that you
use the Alternative Names field to create and manage alternative names for the
subject. For more information about alternative names, see About Alternative Names
for Presentation Objects.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Presentation Layer.

4. Click Create and then click Create Subject Area.

5. In Create Subject Area, go to the Name field and enter a subject area name.

6. Go to Business Model and select the business model to associate with the
subject area.

7. Click OK.

8. In the subject area, click General to set the subject area's general properties.

9. Optional: In the Description field, enter a description that is displayed when a
user creating visualizations or analyses hovers over the subject area in the data
sources list.

10. Optional: In the Implicit Fact Column field and click Select to browse for and
select the fact column you want to use.

11. In the Alternative Names field, enter an alternative name for the subject area.

Chapter 10
Work with Subject Areas

10-4

12. Optional: Select the Hide if field and provide an expression that controls whether the
subject area is available to users when they create visualizations and analyses.

13. Click Save.

Work with Presentation Tables and Columns
This topic provides information about how to create and modify the presentation layer's tables
and columns.

Topics:

• About Presentation Tables

• Create a Presentation Table

• About Presentation Columns

• Create a Presentation Column

• Modify a Presentation Column Name

• Delete a Presentation Column

About Presentation Tables
Subject areas contain presentation tables, and presentation tables contain presentation
columns and presentation hierarchies. Presentation tables function as intuitive categories that
collocate the columns and data users need to create visualizations and analyses.

In most cases, you create presentation tables by dragging and dropping logical tables from
the logical layer into a presentation layer's subject area. The names and object properties of
the presentation tables are independent of the logical table properties.

In most cases, a presentation table contains columns from its corresponding logical table. But
you can build a presentation table containing columns from a different logical table within the
same business model. In such cases, be aware that building a presentation table in this way
can cause query errors when a user selects these columns.

Create a Presentation Table
Manually create a presentation table when you can't drag and drop a table from the logical
layer to the presentation layer.

You can select the Hide if field and write an expression to hide a presentation table. See
Write an Expression to Hide a Presentation Object.

Semantic Modeler doesn't create an alias when you change a presentation table's name. If
you need to track a table's previous names, then Oracle recommends that you use the
Alternative Names field to create and manage alternative names for the table. For more
information about alternative names, see About Alternative Names for Presentation Objects.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Presentation Layer.

4. In the Presentation Layer pane click Create and then click Create Presentation Table.

Chapter 10
Work with Presentation Tables and Columns

10-5

5. In Create Presentation Table, go to the Name field and enter a presentation table
name.

6. Go to Subject Area and select which subject area to add the table to.

7. Click OK.

8. In the presentation table, click General to set the presentation table's general
properties.

9. Optional: In the Description field, enter a description that is displayed when a
user creating visualizations or analyses hovers over the table in the subject area.

10. Optional: In the Alternative Names field, enter an alternative name for the
presentation table.

11. Optional: Select the Hide if field and provide an expression that controls whether
the presentation table is available to users when they create visualizations and
analyses.

12. Click Save.

About Presentation Columns
Presentation columns provide the data users need to create visualizations and
analyses.

Presentation columns can be either attribute columns or measure columns. Attribute
columns contains columns from dimension logical tables with a GROUP BY and
DISTINCT clause applies, and measure columns which are numeric columns are from
fact logical tables with an aggregation function like SUM applied.

In most cases, you create presentation columns by dragging and dropping logical
columns from the logical layer to a presentation table. Columns that you drag and drop
must have unique names. But in some cases when you can't drag and drop logical
columns to a presentation table, you can manually create presentation columns within
a presentation table.

You can drag and drop a column from a logical table into multiple presentation tables.
For example, you can create several presentation tables that contain different classes
of measures such as one containing volume measures, one containing share
measures, and one containing measures from a year ago.

Create a Presentation Column
Manually create a presentation column when you can't drag and drop a column from
the logical layer to the presentation layer.

You can select the Hide if field and write an expression to hide a presentation column.
See Write an Expression to Hide a Presentation Object.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Presentation Layer.

4. In the Presentation Layer pane locate and double-click the presentation table that
you want to add a column to.

5. In the presentation table, click Columns and then click Add Column.

Chapter 10
Work with Presentation Tables and Columns

10-6

6. In the New Column table row, enter a name for the column and press Enter.

7. Confirm that the new column is highlighted in the table, and then click Detail view.

8. Optional: In the Description field, enter a description that is displayed when a user
creating visualizations or analyses hovers over the column in the subject area.

9. Go to Logical Column, click Select, and select which logical column to associate the
presentation column with.

10. Optional: Select the Hide if field and provide an expression that controls whether this
column is available to users when they create visualizations and analyses.

11. Click Save.

Modify a Presentation Column Name
When you drag and drop a logical table or logical columns to the presentation layer, by
default the resulting presentation columns have the same names as the logical columns
they're based on. You can change a presentation column's default name to a more user-
friendly name.

Semantic Modeler doesn't create an alias when you change a presentation column's name. If
you need to track a column's previous names, then Oracle recommends that you use the
Alternative Names field to create and manage alternative names for the column. For more
information about alternative names, see About Alternative Names for Presentation Objects.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Presentation Layer.

4. In the Presentation Layer pane locate and expand the presentation table containing the
column to rename. Double-click the column.

5. In Name, enter a new name for the column.

6. Optional: In Alternative Names, type an alternative name and press Enter. Repeat this
step to add more alternative names for the column.

7. Click Save.

Delete a Presentation Column
Remove presentation columns that don't provide meaningful content to the users who create
visualization and analyses.

Consider removing these types of presentation columns from presentation tables:

• Key columns that have no business meaning.

• Columns that users don't need to view. For example, a product code column when its text
descriptions exist in another column.

• Columns that users aren't authorized to read.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Presentation Layer and locate and double-click the presentation table that you
want to remove columns from.

Chapter 10
Work with Presentation Tables and Columns

10-7

4. In the presentation table, click Columns.

5. Click the column that you want to remove, click Row menu, and then click Delete.

6. Click Save.

Reorder and Nest Tables for End Users
You can specify the order and levels that a subject area's tables display to users who
access the subject area to create visualization and analyses.

You can move a presentation table up or down to change its position in the subject
area, and you can change the table's relationship to the other tables in the subject
area by moving the table right or left. Moving tables right and left provides the end user
with nested folders in the subject area.

Changing the table order doesn't change the order that the presentation tables display
in the Semantic Modeler's Presentation Layer pane. The table order and nesting you
specify only appears in the subject area's Tables tab and the subject area that end
users access. The tables aren't actually nested in drill-down, and the qualified names
of the objects remain the same.

When you run consistency check on the subject area, the consistency check detects
any circularity in parent-child presentation table assignments. It also detects and
reports project definitions that include child presentation tables without parent
presentation tables.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Presentation Layer.

4. In the Presentation Layer pane locate and double-click the subject area where you
want to reorder the tables for end users.

5. In Tables click a table to select it and use the Move Up, Move Down, Move
Right, and Move Left buttons to change its position.

6. Click Save.

Work with Presentation Hierarchies and Levels
This topic provides information about how to create and modify the presentation layer's
hierarchies and levels.

Topics:

• About Presentation Hierarchies and Levels

• About Creating Presentation Hierarchies

• About Adding Logical Hierarchies with Multiple Hierarchies to the Presentation
Layer

• Add a Presentation Hierarchy to a Presentation Table

• Add and Modify Presentation Hierarchy Levels

Chapter 10
Work with Presentation Hierarchies and Levels

10-8

About Presentation Hierarchies and Levels
Use presentation hierarchies and presentation levels to provide multidimensional models.
Presentation hierarchies and levels display to users as roll-up information in subject areas
they use to create visualizations and analyses.

In most cases, you create presentation hierarchies by dragging and dropping logical
dimensions from a logical table into a presentation table. If you drag and drop a logical
hierarchy containing more than one hierarchy to a presentation table, then Semantic Modeler
creates a separate presentation hierarchy for each of the logical hierarchy's hierarchies. See
About Adding Logical Hierarchies with Multiple Hierarchies to the Presentation Layer.

You can also manually browse for and add hierarchies to a presentation table. After you've
added a logical hierarchy to a presentation level, you can apply fine-grained access control to
the presentation hierarchy and its levels.

A presentation hierarchy's members aren't visible in the presentation layer. But when creating
visualizations and analyses, users can view hierarchy members in subject areas.

Users can create hierarchy-based queries using objects in presentation hierarchies and
levels. Presentation hierarchies expose analytic functionality such as member selection,
custom member groups, and asymmetric queries.

About Creating Presentation Hierarchies
Oracle recommends that to create a presentation hierarchy, you add a logical dimension
hierarchy from the logical layer to a presentation table.

In the logical layer, logical dimensions are peer objects to tables. In the presentation layer, a
presentation hierarchy is always located in a presentation table. Presentation hierarchies are
displayed within their associated tables in the subject areas users access to create
visualizations and analyses. This structure provides a conceptually simpler model.

If a logical dimension spans multiple logical tables in the logical layer, then it's a best practice
to model the separate logical tables as a single presentation table in the presentation layer.

There are different ways to create presentation hierarchies:

• Drag an entire business model from the logical layer to the presentation layer. Semantic
Modeler automatically creates the presentation hierarchies and constituent levels are
created automatically when you drag an entire model.

• Drag a logical dimension table from the logical layer to the presentation layer. Semantic
Modeler automatically creates presentation hierarchies and levels based on the
dimensions.

• Open a presentation table and in the Hierarchies tab, click Add Hierarchy to browse for
and select the hierarchy to add to the table.

You can also drag an individual logical level from the logical layer to a presentation table to
create a presentation hierarchy that's a subset of the logical dimension hierarchy.

For example, suppose a logical dimension has the levels All Markets, Total US, Region,
District, Market, and Market Key. Dragging and dropping the entire logical dimension to the
corresponding presentation table is displayed like this:

Chapter 10
Work with Presentation Hierarchies and Levels

10-9

However, dragging and dropping the Region level to the same presentation table is
displayed like this:

About Adding Logical Hierarchies with Multiple Hierarchies to the
Presentation Layer

If you drag and drop a logical hierarchy containing more than one hierarchy to a
presentation table, then Semantic Modeler creates a separate presentation hierarchy
for each of the logical hierarchy's hierarchies.

For example, suppose your model contains a logical hierarchy called Product and it
contains the two hierarchies named Category and Country:

Chapter 10
Work with Presentation Hierarchies and Levels

10-10

In the logical layer, Semantic Modeler models this logical hierarchy as a single dimension
object that contains multiple hierarchies. In the presentation layer, Semantic Modeler models
this dimension as two separate objects: one that displays the drill path through the Category
level, and another that shows the drill path through the Country level:

Chapter 10
Work with Presentation Hierarchies and Levels

10-11

Add a Presentation Hierarchy to a Presentation Table
Manually add a presentation hierarchy when you can't drag and drop a logical
hierarchy from the logical layer to the presentation layer.

You can edit a presentation hierarchy's properties to set permissions and apply role-
based access control and add data filters. If you're adding or editing a level-based
hierarchy, then you can add or delete levels and modify a level's properties. See Add
and Modify Presentation Hierarchy Levels.

You can select the Hide if field and write an expression to hide a presentation
hierarchy. See Write an Expression to Hide a Presentation Object.

Semantic Modeler doesn't create an alias when you change a presentation hierarchy's
name. If you need to track a hierarchy's previous names, then Oracle recommends
that you use the Alternative Names field to create and manage alternative names for
the hierarchy. For more information about alternative names, see About Alternative
Names for Presentation Objects.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Presentation Layer.

4. In the Presentation Layer pane locate and double-click the presentation table that
you want to add a hierarchy to.

5. In the presentation table, click the Hierarchies tab and then click Add Hierarchy.
Browse for and select the hierarchy to add it to the presentation table. Confirm that
the added hierarchy is highlighted in the Hierarchies pane.

6. Optional: In the Description field, enter a description that is displayed when a
user creating visualizations or analyses hovers over the table in the subject area.

7. Optional: Select the Hide if field and provide an expression that controls whether
the hierarchy is available to users when they create visualizations and analyses.

8. Click Save.

Chapter 10
Work with Presentation Hierarchies and Levels

10-12

Add and Modify Presentation Hierarchy Levels
You can manually add a level to a level-based presentation hierarchy. Presentation levels are
displayed within hierarchical columns in the corresponding subject area end users access to
create visualization and analyses.

You can specify one or more display columns for a level. Display columns define the columns
used for display for that level on drill-down. For example, if two columns called Name and ID
are at the same level, you can choose to display Name because it's more user-friendly. The
presentation level's available display columns are based on which key columns for the
corresponding logical level have the Use for display option selected.

Semantic Modeler doesn't create an alias when you change a presentation hierarchy level's
name. If you need to track a hierarchy level's previous names, then Oracle recommends that
you use the Alternative Names field to create and manage alternative names for the
hierarchy level. For more information about alternative names, see About Alternative Names
for Presentation Objects.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Presentation Layer.

4. In the Presentation Layer pane expand the presentation table that contains the hierarchy
you want to work with, and from the table's list locate and double-click the hierarchy.

5. In the presentation table's page, click the Hierarchies tab and then in the Hierarchies
pane locate the hierarchy you want to work with.

6. Optional: To add a level to the hierarchy, click Level to select and add a level. You can
select and add a level from any available hierarchy.

7. Optional: To modify an existing level, click the level to display its properties pane.

8. Optional: In the Description field, enter a description that is displayed when a user
creating visualizations or analyses hovers over the table in the subject area.

9. Optional: In the Logical Level field, click Select and select a logical level for the
presentation level.

10. In the Display Columns field, select the columns to use for display for the hierarchy level
on drill-down.

11. Click Save.

Write an Expression to Hide a Presentation Object
You can write an expression to hide a subject area, presentation table, presentation column,
or hierarchy. These expressions determine if or when hidden objects are visible to users
when they create visualizations and analyses.

The presentation object's Hide if field controls a presentation object's visibility and doesn't
affect the ability to access the object. For example, you can query a hidden presentation
object using a tool such as nqcmd.

You can specify three different types of expressions in the Hide If field:

• Constant - Use any non-zero constant in the field to hide the object. Use zero (0) or
leave the field blank to display the object.

Chapter 10
Write an Expression to Hide a Presentation Object

10-13

• Session variable - You can use a session variable in the expression to control
whether the object is hidden. If the expression evaluates to a non-zero value, the
object is hidden. If the expression evaluates to zero, is empty, or has no value
definition, the object is displayed. The session variable must be populated using a
session initialization block or a row-wise initialization block. You must properly
populate the session variable to control the visibility.

The SQL for the init block can use CASE statements to control whether to return
zero or a non-zero number in the session variable. For example:

VALUEOF(NQ_SESSION."VISIBLE")
Session variable names that include periods must be enclosed in double quotes.

• Session variable comparison - You can use an equality or inequality comparison
to control whether the object is hidden, using the following form:

'session_variable_expression' '=|<>' 'constant'
If the expression evaluates to zero, null, or empty, the object is displayed. If the
expression evaluates to a non-zero value, the object is hidden. For example:

NQ_SESSION."VISIBLE" = 'ABC'
NQ_SESSION."VISIBLE" <> 'ABC'

You must enclose session variable names that include periods in double quotes.

You can use any scalar function supported by Oracle Analytics in the Hide object
if expression. Scalar functions include any function that accepts a simple value
for each of its arguments and returns a single value. You can use the functions
listed, except for functions that return non-deterministic results like RAND, NOW,
CURRENT_DATE, CURRENT_TIMESTAMP, and CURRENT_TIME.

– All String Functions.

– Math Functions, except RAND.

– Calendar Date/Time Functions, except NOW, and CURRENT_DATE.

– Conversion Functions such as CAST, IFNULL, TO_DATETIME, and
VALUEOF.

For example, this expression checks to see if the NQ_SESSION.VISIBLE session
variable begins with the letters ABC:

LEFT(VALUEOF(NQ_SESSION."VISIBLE"), 3) = 'ABC'
The following expression checks to see if the given variable begins with
ExtnAttribute:

Left(VALUEOF(NQ_SESSION."ADF_LABEL_ORACLE.APPS.CRM.MODEL.ANALYTICS.
APPLICATIONMODULE.CRMANALYTICSAM_CRMANALYTICSAMLOCAL_CRMANALYTICSAM.
OPPORTUNITYAM.OPPORTUNITY_EXTNATTRIBUTECHAR001"), 13) = 'ExtnAttribute'

Run Check Consistency to find any inconsistencies in the visibility filter expression.

Work with Localization
This topic provides information about localizing presentation objects.

Topics:

• Modify or Delete Individual Localization Keys and Variables

Chapter 10
Work with Localization

10-14

• Clear All Name and Description Variables

• Generate Localization Keys and Name and Description Variables

• Externalize Strings for a Subject Area

• Externalize Strings for All Subject Areas

• Translate Strings

Modify or Delete Individual Localization Keys and Variables
Semantic Modeler automatically creates localization keys and name variables for all subject
areas and presentation objects. You can modify or delete these keys and variables. You can
also manually add description variables.

Localization keys are assigned when presentation objects are created. When externalized
and used to translate strings, a localization key serves to map the object's name with its
translated value. Be careful when modifying localization keys because it can break this
mapping.

If you modify or manually add variables, then you must include VALUEOF(NQ_SESSION.CN)
in name variables (for example, VALUEOF(NQ_SESSION.CN_A_-_Sample_Sales_Offices)
and VALUEOF(NQ_SESSION.CD) in description variables (for example,
VALUEOF(NQ_SESSION.CD_A_-_Sample_Sales_Offices).

When the localization keys and variables are finalized, you can externalize strings for the
subject area. See Externalize Strings for a Subject Area.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Presentation Layer.

4. In the Presentation Layer pane locate and double-click a subject area or the presentation
table that you want to modify keys and variables for.

5. In the subject area or presentation table page, click the Localization tab.

6. Optional: To update a localization key, do one of the following:

• For a subject area, click the Localization Key field and delete or modify its value.

• For a presentation table, locate an object and double-click its table row. Click the
object's Localization Key field and delete or modify its value.

7. Optional: To update a description value, do one of the following:

• For a subject area, click the Name Variable or Description Variable field and delete
or modify its value.

• For a presentation table, locate an object and double-click its table row. Click the
object's Localization Key field or Description Variable and modify or delete its
value.

8. Click Save.

Clear All Name and Description Variables
You can clear name and description variables for a subject area only, for a subject area and
all of its child objects, or for a presentation table and all of its objects.

1. On the Home page, click Navigator and then click Semantic Models.

Chapter 10
Work with Localization

10-15

2. In the Semantic Models page, click a semantic model to open it.

3. Click Presentation Layer.

4. In the Presentation Layer pane locate and double-click a subject area or the
presentation table that you want to clear variables for.

5. In the subject area or presentation table, click the Localization tab.

6. To clear variables, do one of the following:

• For a subject area, click Clear Variables and select which variables to clear,
and then specify if you want to clear variables for the subject area object only
or the subject area and all of its child objects.

• For a presentation table, click Clear Variables and select which variables to
clear.

7. Click Clear.

8. Click Save.

Generate Localization Keys and Name and Description Variables
You can generate localization keys and name and description variables for a subject
area only, for a subject area and all of its child objects, or for a presentation table and
all of its objects.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Presentation Layer.

4. In the Presentation Layer pane locate and double-click a subject area or the
presentation table that you want to generate localization keys and variables for.

5. In the subject area or presentation table, click the Localization tab.

6. To generate variables, do one of the following:

• For a subject area, click Generate Variables and select which variables to
generate, and then specify if you want to generate variables for the subject
area object only or the subject area and all of its child objects.

• For a presentation table, click Clear Variables and select which variables to
generate.

7. Click Generate.

8. Click Save.

Externalize Strings for a Subject Area
You can externalize strings for a subject area, its presentation tables, hierarchies,
columns, and their descriptions. Externalizing strings for the subject area outputs a
CSV file.

After you externalized the strings for the subject area and its objects, you use the
resulting files to translate the strings. See Translate Strings.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

Chapter 10
Work with Localization

10-16

3. Click Presentation Layer.

4. In the Presentation Layer pane locate and right-click the subject area you want to
externalize strings for.

5. Click Externalize Strings.

6. In the Name field, enter a name for the outputted CSV file.

7. Click Externalize.

Externalize Strings for All Subject Areas
You can externalize strings for all of the presentation layer's subject area, their presentation
tables, hierarchies, columns, and their descriptions. Externalizing strings for all subject areas
outputs a CSV file.

After you externalized the strings for the subject area and its objects, you use the resulting
files to translate the strings. See Translate Strings.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Presentation Layer.

4. In the header, click Page Menu and then click Externalize Strings.

5. In the Name field, enter a name for the outputted CSV file.

6. Click Externalize.

Translate Strings
After you externalized translation keys and strings, you can use the resulting files to translate
the strings for the presentation objects.

Note the contents of the output file:

• The first column contains the actual semantic model object names with a prefix indicating
its object type.

• The second column contains the session variables that correspond to the name of each
object or description, with a default prefix of CN_ for custom names and CD_ for custom
descriptions.

• The third column contains the translation keys that correspond to the name of each
object.

1. Open each string file Add a fourth column called Language. In this column, specify the
code for the language in which the name was translated, such as de.

2. Load each string file into a database table.

3. In the Semantic Modeler, import the table into the physical layer.

4. Load the translated strings using row-wise initialization blocks. Ensure that you set the
target of the initialization block to Row-wise initialization and that the execution
precedence is set correctly. For example:

Chapter 10
Work with Localization

10-17

a. Create a session initialization block that has the data source from a database,
using a SQL statement such as the following one:

SELECT 'VALUEOF(NQ_SESSION.WEBLANGUAGE)' FROM DUAL

b. In the Session Variable Initialization Block dialog box for SET Language,
specify the LOCALE session variable for the Variable Target. This specification
ensures that whenever a user signs in, the WEBLANGUAGE session variable
is set. Then this variable sets the LOCALE variable using the initialization
block.

c. Create another session initialization block that creates a set of session
variables using a database-specific SQL statement such as the following one
in the Session Variable Initialization Block Data Source dialog box:

select SESSION_VARIABLE, TRANSLATION from external where
LANGUAGE =
'VALUEOF(NQ_SESSION.LOCALE)'

This block creates all the variables whose language matches the language
that the user specified during sign-in.

d. In the Session Variable Initialization Block Variable Target dialog box, set the
target of the initialization block to Row-wise initialization.

e. In the Execution Precedence area of the Session Variable Initialization Block
dialog box, specify the previously created initialization block, so that the first
block that you created earlier is run first.

5. Click Save.

Chapter 10
Work with Localization

10-18

11
Work with Logical Hierarchies

This chapter contains information to help you understand how to create and manage logical
hierarchies.

Topics:

• About Working with Logical Hierarchies

• Create and Manage Level-Based Hierarchies

• Create and Manage Parent-Child Hierarchies

• Model Time Series Data

About Working with Logical Hierarchies
In the logical layer, a dimension object represents a hierarchical organization of logical
columns (attributes).

You can associate one or more logical dimension tables with one dimension object.

Common dimensions include time periods, products, markets, customers, suppliers,
promotion conditions, raw materials, manufacturing plants, transportation methods, media
types, and time of day. Dimensions exist in the logical layer and in the presentation layer.

In each dimension, you organize logical columns into the structure of the hierarchy. The
structure represents the organization rules and reporting needs required by your business
and provides the metadata the Oracle Analytics query engine uses to drill into and across
dimensions to get detailed views of the data.

There are two types of logical hierarchies:

• Dimensions with level-based hierarchies - These are also called structure hierarchies.
In level-based hierarchies, members are of several types, and members of the same
type, such as employee or assembly occur only at a single level.

• Dimensions with parent-child hierarchies - These are also called value hierarchies. In
parent-child hierarchies, members all have the same type.

Semantic Modeler also supports a special type of level-based dimension called a time
dimension that provides special functionality for modeling time series data.

You can expose logical hierarchies to workbooks and analyses by creating presentation
hierarchy objects that are based on particular logical hierarchies. Creating hierarchies in the
presentation layer enables users to create hierarchy-based queries. See Work with
Presentation Hierarchies and Levels.

You can also expose hierarchies by adding one or more columns from each hierarchy level to
a subject area in the presentation layer.

11-1

Create and Manage Level-Based Hierarchies
This topic provides information to help you understand and create a level-based
hierarchy and its dimensions.

Topics:

• About Level-Based Hierarchies

• About Hierarchy Structures

• About Using Dimension Hierarchy Levels in Level-Based Hierarchies

• Automatically Create Dimensions with Level-Based Hierarchies

• Manually Create Dimensions in Level-Based Hierarchies

• Create Logical Levels in a Logical Dimension Table

• Associate a Logical Column and Its Table with a Dimension Level

• Identify the Primary Key for a Dimension Level

• Select and Sort Chronological Keys in a Time Dimension

• Add a Dimension Level to the Preferred Drill Path

About Level-Based Hierarchies
Each business model can have one or more dimensions, each dimension can have
one or more logical levels, and each logical level has one or more attributes (columns)
associated with it.

When you create logical levels, first create a Grand Total level and then create child
levels, working down to the lowest level.

The following are the parts of a dimension:

Grand Total level

The Grand Total level represents the sum of all totals for a dimension. Each dimension
can have just one Grand Total level. The Grand Total level doesn't contain dimensional
attributes and doesn't have a level key. You can associate measures with a Grand
Total level. The aggregation level for those measures is the grand total for the
dimension. The Grand Total level can exist without any columns.

Level

Levels must have at least one column. You don't need to explicitly associate all of the
columns from a table with logical levels. Any column that you don't associate with a
logical level is automatically associated with the lowest level in the dimension that
corresponds to that dimension table. You must associate all logical columns in the
same dimension table with the same dimension.

A dimension can have an unlimited number of levels.

Hierarchy

Chapter 11
Create and Manage Level-Based Hierarchies

11-2

Each dimension contains one or more hierarchies. All hierarchies must have a common leaf
level. For example, a time dimension might contain a fiscal hierarchy and a calendar
hierarchy, with a common leaf level of Day. In this example, Day has two named parent
levels, Fiscal Year and Calendar Year that are both children of the All root level.

Unlike hierarchies in the presentation layer, in the logical layer logical hierarchies aren't
defined as independent metadata objects. Logical hierarchies exist implicitly through the
relationships between levels.

You can define intermediate levels in your hierarchies to avoid having very large numbers of
members at one level. For example, if you're creating a Product dimension for an automotive
company that tracks data on 500 different car models, you might create some finer-grained
hierarchical levels such as SUVs, Subcompacts, and Midsize Sedans. You could improve
query performance and make reports and diagrams easier to read and navigate. See Create
Logical Levels in a Logical Dimension Table .

Level keys

Each logical level, except the Grand Total level, must have one or more attributes that
compose a level key. The level key defines the unique elements in each logical level. You
must associate the dimension table logical key with the lowest level of a dimension.

A logical level can have multiple level keys. When a logical level has multiple level keys,
specify a key as the primary key for the level. All dimension sources that have aggregate
content at a specified level need to contain the column that's the primary key of that level.
Each logical level should have one level key that's displayed when a user selects the object
to drill down. You can use any level key to provide user access to the level.

You must create a unique level key. To create a unique level key with month, include the year
attribute as part of the key.

Ensure that your level key is unique by including higher-level attributes to prevent queries
from returning unexpected results. For example, when the Oracle Analytics query engine
needs to combine result sets from multiple physical queries, the results might exclude
expected rows that aren't unique according to the level key definition.

Create meaningful level keys using common business keys such as Month_name='2022
July', rather than generated surrogate keys such as time_key='1023793'. The generated
surrogate keys are physical artifacts that only apply to a single instance of a source table. A
business key can map to any physical instance for that logical column, for example,
month_name might map to a detailed table, an aggregate table from an aggregate star, or a
column in a federated data source. The physical layer can use surrogate keys in the joins but
Oracle recommends using business keys.

Time dimensions and chronological keys

You can identify a dimension as a time dimension. Use the following guidelines when setting
up and using time dimensions:

• At least one level of a time dimension must have a chronological key. See Select and
Sort Chronological Keys in a Time Dimension.

• All time series measures using the AGO, TODATE, and PERIODROLLING functions are in time
levels. AGO, TODATE, and PERIODROLLING aggregates are created as derived logical
columns.

• AGO, TODATE, and PERIODROLLING functionality isn't supported either on fragmented
dimensional logical table sources, or on fact sources fragmented on the same time

Chapter 11
Create and Manage Level-Based Hierarchies

11-3

dimension. Fact sources may be fragmented on other dimensions. See Work With
Logical Table Source Data Fragmentation.

See About Time Series Functions.

About Hierarchy Structures
A logical hierarchy can have a balanced, ragged, or skip-level structure.

Balanced hierarchy

A balanced hierarchy's structure contains members that descend to the same level
and where each member's parent is immediately above it.

Unbalanced or ragged hierarchy

An unbalanced or ragged hierarchy is a hierarchy where the leaves (members with no
children) might not have the same depth. For example, a site can choose to have data
for the current month at the day level, previous month's data at the month level, and
the previous five years' data at the quarter level.

User applications can use the IS_LEAF function to determine whether to allow moving
down from any particular member.

A missing member is implemented in the data source with a null value for the member
value. All computations treat the null value as a unique child within its parent. Level-
based measures and aggregate-by calculations group all missing nodes together.

Unbalanced hierarchies aren't necessarily the same as parent-child hierarchies.
Parent-child hierarchies are unbalanced by nature. Unbalanced level-based
hierarchies are possible.

Skip-level hierarchy

A skip-level hierarchy is a hierarchy where there are members that don't have a value
for a particular ancestor level. For example, in a Country-State-City-District hierarchy,
the city Washington D.C. doesn't belong to a State. In this case, you can drill down
from the Country level (USA) to the City level (Washington D.C.) and below.

In a query, skipped levels aren't displayed, and don't affect computations. When sorted
hierarchically, members appear under their nearest ancestors.

A missing member at a particular level is implemented in the data source with a null
value for the member value. All computations treat the null value as a unique child
within its parent. Level-based measures and aggregate-by calculations group all skip-
level nodes together.

Example of hierarchy containing ragged and skip-level

The image shows a hierarchy with both ragged and skip-level characteristics. For
example, A-Brand 4, B-LOB 3, and Type 5 are unbalanced branches, while skips are
present between A-Brand 2 and Type 3, B-LOB 2 and Product 6, and others.

Chapter 11
Create and Manage Level-Based Hierarchies

11-4

About Using Dimension Hierarchy Levels in Level-Based Hierarchies
Learn how to use dimension hierarchical levels.

Dimension hierarchical levels can be used to perform the following actions:

• Set up aggregate navigation.

• Configure level‐based measure calculations. See Level-Based Measure Calculations.

• Determine what attributes are displayed when users drill down in their data requests.

Chapter 11
Create and Manage Level-Based Hierarchies

11-5

Automatically Create Dimensions with Level-Based Hierarchies
You can set up a dimension automatically from a logical dimension table if a dimension
for that table doesn't exist.

To create a dimension with a level-based hierarchy automatically, a semantic model
examines the logical table sources and the column mappings in those sources and
uses the joins between physical tables in the logical table sources to determine logical
levels and level keys. As a best practice, create a dimension table with a level-based
hierarchy after all the logical table sources have been defined for a dimension table.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Logical Layer and locate and double-click a logical dimension table that isn't
associated with any dimension.

4. In the logical table, click the Hierarchy tab.

5. In the Hierarchy Type field, select Level-Based or Parent-Child.

6. Click Save.

Manually Create Dimensions in Level-Based Hierarchies
You can associate each dimension with attributes (columns) from one or more logical
dimension tables and level-based measures from logical fact tables.

It's a best practice to ensure that the physical hierarchy type set in the physical layer
matches the dimension properties you select in the logical layer. Also, be sure that you
set the Ragged and Skipped Levels dimension properties correctly so that the queries
work properly.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. In the Logical layer, right-click a business model and select Create Logical Table.

4. In Name, type a name for the logical table. Click the Type field and select
Dimension.

5. Click OK.

6. In the new logical table's tabs click the Hierarchy tab.

7. Click the Hierarchy Type field and either select Level-Based, or if the dimension
is a time dimension, select Time.

The Default root level field is automatically populated after you associate logical
columns with a dimension level.

8. If the hierarchy type is Level-Based, click either Ragged or Skipped Levels.

9. Click Save.

Chapter 11
Create and Manage Level-Based Hierarchies

11-6

Create Logical Levels in a Logical Dimension Table
When you create logical levels in a logical dimension table, you also create the hierarchy by
identifying the type of level and defining child levels.

If you're defining the level as a Grand Total level, the default value is 1.

The number doesn't have to be exact, but ratios of numbers from one logical level to another
should be accurate. You can retrieve the row count for the level key and use that number as
the number of elements.

The Oracle Analytics query engine uses this number when selecting which aggregate source
to use. For example, when aggregate navigation is used, multiple fact sources exist at
different grains. The Oracle Analytics query engine multiplies the number of elements at each
level for each qualified source as a way to estimate the total number of rows for that source.
The Oracle Analytics query engine then compares the result for each source and selects the
source with the lowest number of total elements to answer the query. The source with the
lowest number of total elements is assumed to be the fastest.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. In the Logical layer, double-click a logical table, and in the logical table's tabs click
Hierarchies.

4. Click the Hierarchy Type field and either select Level-Based, or if the dimension is a
time dimension, select Time.

5. Click New Level.

6. Add and configure the Grand Total level and Detail level.

7. Optional: Rename the Grand Total level and Detail level. For example, Products Total or
Products Detail.

8. To add and define child logical levels, select the hierarchy and click New Level.

9. In the Elements at this level field, specify the number of elements that exist at this
logical level.

10. If measure values at a particular level fully constitute aggregated measures at its parent
level, select Supports rollup to higher level.

11. For all levels except Total, select the Primary Key.

12. For all levels except Total, select the Display Key

13. Click Save.

Associate a Logical Column and Its Table with a Dimension Level
After you create all logical levels within a dimension, you associate one or more columns
from the logical dimension table to each logical level except the Grand Total level.

The first time you add a column to a dimension it associates the logical table to the
dimension. The drag and drop action associates the logical column with that level of the
dimension. To associate the logical level with that logical column, drag a column from one
logical level to another.

Chapter 11
Create and Manage Level-Based Hierarchies

11-7

You must associate the logical column or columns that comprise the logical key of a
dimension table with the lowest level of the dimension.

After you associate a logical column with a dimension level, the tables where these
columns exist are displayed in the Tables tab of the Dimensions dialog box.

For examples, see: About Level-Based Measure Calculations and Grand Total
Dimensional Hierarchy Example.

For time dimensions, ensure that all time-related logical columns in the source table
are defined in the time dimension. For example, if a time-related logical table contains
the columns Month Name and Month Code, you must ensure that both columns are
defined at the appropriate level within the dimension.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Logical Layer and locate and double-click the logical table that you want to
associate with a dimension level.

4. Click the Columns tab.

5. Click to select the logical column, and then click Detail View.

6. Click the Level field and select a logical level, making sure not to select the Grand
Total Level.

7. Click Save.

About Level-Based Measure Calculations
A level-based measure is a column whose values are always calculated to a specific
level of aggregation.

You can set up columns to measure CountryRevenue, RegionRevenue, and
CityRevenue. For example, a company might want to measure its revenue based on
the country, region, and city.

When a query containing a presentation hierarchy includes a level-based measure
column, and the query grain is higher than the level of aggregation specific to the
column, the query results return null. If the request only contains ordinary columns and
no hierarchical columns, the level-based measure isn't replaced with null.

You can create an AllProductRevenue measure as a level-based measure at the
Grand Total level. Level-based measures allow a single query to return data at multiple
levels of aggregation. Level-based measures are also useful in creating share
measures, calculated by taking some measure and dividing it by a level-based
measure to calculate a percentage. For example, you can divide salesperson revenue
by regional revenue to calculate the share of the regional revenue each salesperson
generates.

For example, to set up these calculations, you need to build a dimensional hierarchy in
your semantic model that contains the Grand Total, Country, Region, and City levels.
This hierarchy contains the metadata that defines a one-to-many relationship between
Country and Region and a one-to-many relationship between Region and City. For
each country, there are many regions, but each region is in only one country. Similarly,
for each region, there are many cities, but each city is in only one region.

After building a dimensional hierarchy, you need to create three logical columns one
each for CountryRevenue, RegionRevenue, and CityRevenue. The columns use the

Chapter 11
Create and Manage Level-Based Hierarchies

11-8

Revenue logical column as its source. The Revenue column has a default aggregation rule of
SUM and has sources in the underlying databases.

Assign the CountryRevenue, RegionRevenue, and CityRevenue columns to the Country,
Region, and City levels, respectively. Each query that requests one of these columns returns
the revenue aggregated to its associated level.

Grand Total Dimensional Hierarchy Example
Use this example to learn how to use a grand total dimensional hierarchy with revenue.

If your product dimensional hierarchy contains TotalProducts (Grand Total level), Brands, and
Products levels, and a Revenue column defined with a default aggregation rule of Sum, you
can then create an AllProductRevenue logical column. The AllProductRevenue column uses
Revenue as its source. Associate the AllProductRevenue column to the Grand Total level.
Each query that includes the AllProductRevenue column returns the total revenue for all
products. The value is returned regardless of any constraints on Brands or Products.

If you have constraints on columns in other tables, the grand total is limited to the scope of
the query. For example, if the scope of the query asks for data from 2000 and 2021, the
grand total product revenue is for all products sold in 2000 and 2021.

If you have three products, A, B, and C with total revenues of 100, 200, and 300 respectively,
then the grand total product revenue is 600, the sum of each product's revenue. If you have
set up a semantic model as described in this example, the following query produces the
results listed:

SELECT product, productrevenue, allproductrevenue
FROM sales_subject_area
WHERE product IN 'A' or 'B'

The results are as follows:

PRODUCT;;PRODUCTREVENUE;;ALLPRODUCTREVENUE
A;;;;;;;;100;;;;;;;;;;;;;600
B;;;;;;;;200;;;;;;;;;;;;;600

The AllProductRevenue column always returns a value of 600, regardless of the products on
which the query constrains.

Identify the Primary Key for a Dimension Level
Use a logical dimension table's Hierarchy tab and Primary Key field to identify the column to
use as the dimension level's primary key.

You can't use a derived logical column that's the result of a LOOKUP function as part of a
primary logical level key. This limitation exists because the LOOKUP operation is applied after
aggregates are computed, but level key columns must be available before the aggregates are
computed because they define the granularity at which the aggregates are calculated.

You can use a derived logical column that's the result of a LOOKUP function as a secondary
logical level key.

If the level is in a time dimension, you can select chronological keys and sort the keys by
name.

To help manage primary keys, you can go to the logical table's Columns tab, locate the
column used as a primary key, and add information to its Description field.

Chapter 11
Create and Manage Level-Based Hierarchies

11-9

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. In the Logical layer, right-click on a logical dimension table, then click Edit.

4. Click Logical Layer and locate and double-click the logical table with the
dimension level that you want to add a primary key to.

5. Click the Hierarchy tab.

6. Click to select a level below the Grand Total level.

7. Click the Primary Key field and select a level key from the list and save changes.
If only one key exists, it is the primary key by default.

8. Click Save.

Select and Sort Chronological Keys in a Time Dimension
At least one level of a time dimension must have a chronological key. You can select
one or more chronological keys for any level and then sort keys in the level, but Oracle
Analytics uses only the first chronological key.

Pay attention to the column order in a chronological key with many columns. You set
the column order using a SQL ORDER BY clause on the columns to reflect the real-world
chronological order in the Chronological Key field. Since the range for quarters is 1 to
4 with 4 quarters in a year, using an ORDER BY clause with the Quarter before the Year
(Quarter, Year) is incorrect. The incorrect order shows all first quarters across all
years, before displaying any second quarters, and so on. To correct the results, use
(Year, Quarter) in the ORDER BY clause.

For information about creating a time dimension, see Manually Create Dimensions in
Level-Based Hierarchies.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. In the Logical layer, double-click a logical table, and in the logical table's tabs click
Hierarchies.

4. Click a logical level below the Grand Total level.

5. Click the Chronological Key field and select a chronological key.

6. Click Save.

Add a Dimension Level to the Preferred Drill Path
You can use the Preferred Drill Path field to identify the drill path to use when users
drill down in their data requests.

You should use a preferred drill path only to specify a drill path that's outside the
normal drill path defined by the dimensional level hierarchy. A drill path is most
commonly used to drill from one dimension to another. You can delete a logical level
from a drill path or reorder a logical level in the drill path.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

Chapter 11
Create and Manage Level-Based Hierarchies

11-10

3. Click Logical Layer and locate and double-click the logical table that you want to add a
drill path to.

4. In the logical table, click the Hierarchy tab.

5. Click a logical level, go to the Preferred Drill Path field, and click Add Table.

6. In Select Logical Level, search for and select a logical level, and then click Select.

You can select logical levels from the current dimension or from other dimensions.

7. Click Save.

Create and Manage Parent-Child Hierarchies
This topic provides information to help you understand and create a parent-child hierarchy.

Topics:

• About Parent-Child Hierarchies

• About Levels and Distances in Parent-Child Hierarchies

• About Parent-Child Relationship Tables

• Create Dimensions with Parent-Child Hierarchies

• Generate Scripts to Create a Parent-Child Relationship Table

• Add the Parent-Child Relationship Table to the Semantic Model

• Define Parent-Child Relationship Tables

• About Modeling Aggregates for Parent-Child Hierarchies

• About Storing Facts for Parent-Child Hierarchies

• About Aggregating Parent-Child Hierarchies

• Maintain Parent-Child Hierarchies Based on Relational Tables

About Parent-Child Hierarchies
A parent-child hierarchy is a hierarchy of members that all have the same type. For example,
employee or assembly.

This contrasts with level-based hierarchies, where members of the same type occur only at a
single level of the hierarchy.

A common real-life parent-child hierarchy occurrence is an organizational reporting hierarchy
chart. In an organizational reporting hierarchy chart, the following can apply:

• Each individual in the organization is an employee.

• Each employee, apart from the top-level managers, reports to a single manager.

• The reporting hierarchy has many levels.

These conditions illustrate the basic features that define a parent-child hierarchy, namely:

• A parent-child hierarchy is based on a single logical table, for example, the Employees
table.

• Each row in the table contains two identifying keys, one to identify the member itself, the
other to identify the parent of the member, for example, Emp_ID and Mgr_ID.

Chapter 11
Create and Manage Parent-Child Hierarchies

11-11

The image shows an example of a multi-level parent-child hierarchy.

The following table shows how this parent-child hierarchy could be represented by the
rows and key values in an Employees table.

Emp_ID Mgr_ID

Andrew null

Barbara Andrew

Carlos Andrew

Dawn Barbara

Emre Barbara

You can expose logical parent-child hierarchies to users by creating presentation
hierarchies that are based on particular logical hierarchies. Creating hierarchies in the
presentation layer enables users to create hierarchy-based queries.

See Work with Presentation Hierarchies and Levels .

About Levels and Distances in Parent-Child Hierarchies
All the dimension members of a parent-child hierarchy occur in a single logical column.

In a parent-child hierarchy, the parent of a member is in another row in the same
logical column, pointed to by the parent key. In a level-based hierarchy, the parent of a
member is in a different logical column in the same row. Navigation in a parent-child
hierarchy follows data values, while navigation in a level-based hierarchy follows the
metadata structure.

In level-based hierarchies, each level is named, and occupies a position in the
hierarchy that corresponds to a real-world attribute or category useful for analysis. In
level-based hierarchies the number of levels is fixed at design time. There is no limit to
the depth of a parent-child hierarchy, and the depth can change at run time due to new
data.

Every parent-child hierarchy has two system-generated entities, Total and Detail, that
are automatically defined when the logical hierarchy is created. The Detail entity

Chapter 11
Create and Manage Parent-Child Hierarchies

11-12

contains all the hierarchy members. These two system-generated entities are different from
the implicit, inter-member levels between ancestors and descendants in a parent-child
hierarchy. The implicit levels are referred to as parent-child hierarchical levels.

Closely associated with levels is the concept of distance in parent-child hierarchies. The
distance of one member from another is the number of parent-child hierarchical levels from
the member to an ancestor or to a descendant. For example, the distance from a member to
its parent is always 1. See About Parent-Child Hierarchies for an example.

About Parent-Child Relationship Tables
In a relational table, the relationships between different members in a parent-child hierarchy
are implicitly defined by the identifier key values in the associated base table.

For each parent-child hierarchy defined in a relational table, you must also explicitly define
the inter-member relationships in a separate parent-child relationship table.

The parent-child relationship table must include four columns:

• A column that identifies the member

• A column that identifies an ancestor of the member

An ancestor is the parent of the member, or a higher-level ancestor.

• A relationship distance column that specifies the number of parent-child hierarchical
levels from the member to the ancestor

• A leaf node column that indicates if the member is a leaf member (1=Yes, 0=No)

The column names can be user-defined. The data types of the columns must satisfy the
following conditions:

• The member and ancestor identifier columns have the same data type as the associated
columns in the logical table that contains the hierarchy members.

• The distance and leaf columns are INTEGER columns.

For the rows in a parent-child relationship table:

• Each member must have a row pointing at itself, with distance zero.

• Each member must have a row pointing at each of its ancestors. For a root member, this
is a termination row with null for the parent and distance values.

The example shown in the table uses text strings for readability, but you normally use integer
surrogate keys for member_key and ancestor_key, if they exist in the source dimension table.

The table shows an example of a parent-child relationship table with rows that represent the
inter-member relationships for the employees. See the figure in About Parent-Child
Hierarchies.

Member_Key Ancestor_Key Distance Isleaf

Andrew Andrew 0 0

Barbara Barbara 0 0

Carlos Carlos 0 0

Dawn Dawn 0 0

Emre Emre 0 0

Chapter 11
Create and Manage Parent-Child Hierarchies

11-13

Member_Key Ancestor_Key Distance Isleaf

Andrew null null 0

Barbara Andrew 1 0

Carlos Andrew 1 1

Dawn Barbara 1 1

Dawn Andrew 2 1

Emre Barbara 1 1

Emre Andrew 2 1

You must generate the parent-child relationship table and then import it into the
physical layer before associating it with the parent-child hierarchy. You use the
Hierarchy Tab's Generate Relationship Table functionality to generate scripts that are
run to create and populate the parent-child relationship table.

When you generate the relationship table, two scripts are created: one script to create
the table, and the other script to load the table. Note the following information about
the create and load scripts:

• You run the create script only once, to create the parent-child relationship table in
the data source.

• You must run the load script after each time the data changes in the dimension
table. Because of this, you typically call the load script in your ETL processing.
The load script reloads the entire parent-child relationship table; it isn't
incremental.

For information about generating the relationship table scripts, see Generate Scripts to
Create a Parent-Child Relationship Table.

Create Dimensions with Parent-Child Hierarchies
The key elements that you must define for a parent-child hierarchy are the identifier
columns for the member and the parent of the member.

This basic principle applies to all parent-child hierarchies, regardless of the data
source that the hierarchy is derived from.

Parent-child hierarchies based on relational tables must have an accompanying
parent-child relationship table. See About Parent-Child Relationship Tables and Define
Parent-Child Relationship Tables.

In the Semantic Model pane, click Logical Layer, then double-click on any logical
dimension table to view their primary keys and the other columns in the table.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Logical Layer, click Create, and then select Create Logical Table.

4. In Create Logical Table, enter a name in the Name field.

5. In the Type field, select Dimension.

6. In the Business Model field, select a business model. Click OK.

Chapter 11
Create and Manage Parent-Child Hierarchies

11-14

7. In the Logical Table's tabs, click Sources and add a table source in one of the following
ways:

• Click Add Physical Table, and then select Add Physical Table to select a physical
table source.

• Click Create Logical Table Source to create and add a new logical table source.

8. In the Logical Table's tabs, click Hierarchy, click the Hierarchy Type field and select
Parent-Child.

9. Scroll to the Relationship Table field, click Select and choose a physical table.

10. Go to the Member Key, Display Key, and Parent Key fields and select columns.

11. Click Save.

If the logical table is from a relational table source, you must continue the dimension
definition process by setting up the parent-child relationship table for the hierarchy.

Generate Scripts to Create a Parent-Child Relationship Table
From the logical table's Hierarchy tab you can generate SQL scripts to generate and load the
parent-child relationship tables into your data source.

After you run the scripts and generate the parent-child relationship table, you add them to the
semantic model's physical layer to make them available to use in the parent-child hierarchy.

See About Parent-Child Relationship Tables and Add the Parent-Child Relationship Table to
the Semantic Model.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Logical Layer and locate and double-click the logical table with the parent child
hierarchy that you want to generate a relationship table for.

4. In the Logical Table's tabs, click Hierarchy, click the Generate Relationship Table.

5. In the Generate Relationship Table Scripts dialog, confirm the column name in the
Member Column field and in the Parent Column field choose a column. Confirm the
other fields in the dialog.

6. Click Download Script.

7. Run the downloaded scripts to create the parent-child relationship tables.

Add the Parent-Child Relationship Table to the Semantic Model
For measures in fact tables that are aggregated by rolling up the facts from lower-level
members, you must edit physical layer joins to include the parent-child relationship table.

You need to add the parent-child relationship table to the appropriate logical table source.

For fact tables containing pre-aggregated data for a parent-child hierarchy or for individual
contribution measures, you should join the parent-child dimension table directly with the fact
table rather than joining through the parent-child relationship table.

Joining the parent-child dimension table directly with the fact table ensures that the pre-
aggregated value or individual contribution value is returned, rather than rolling up all the
descendants. When pre-aggregated data is populated for all members, don't add the parent-
child relationship table to the logical table source to avoid over counting.

Chapter 11
Create and Manage Parent-Child Hierarchies

11-15

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Physical Layer. Right-click a physical table, select Show Physical
Diagram, and select Selected Tables Only and Direct Joins.

4. Right-click each direct join from the dimension table to each of the fact tables and
select Delete Join.

5. Click Logical layer and locate and double-click the logical table source for the
logical fact table that's used in your parent-child hierarchy.

6. In the Logical Table's tabs, click Joins and create a join from the parent-child
relationship table to the dimension table using the ancestor key.

7. Create joins from the fact tables to the parent-child relationship table using the
member key.

8. In the Logical Table's tabs, click Sources to edit the logical table source for the
logical fact table that's used in your parent-child hierarchy.

9. In the Sources tab, click Add Physical Table.

10. Locate the parent-child relationship table in the Physical layer, and then click
Select.

11. Click Save.

Define Parent-Child Relationship Tables
The parent-child relationship table must have at least four columns that describe how
the inter-member relationships are derived in the logical table selected for the
hierarchy.

When you configure the parent-child relationship table, you can select an existing
relationship table. Or you can create, generate, and import the required relationship
table into the physical layer. For information about how to generate the table, see
Generate Scripts to Create a Parent-Child Relationship Table.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Logical Layer.

4. In the Logical layer, double-click a logical table, and then click the logical table's
Hierarchy tab.

5. In the Hierarchy Type field and select Parent-Child.

6. Scroll to Relationship Table, click Select to select and add a logical table source,
and then in the Relationship Table field, click Add.

7. In Select Physical Table, click a Physical Table to act as the parent-child
relationship table for your hierarchy, and then click Select.

8. Map the Member Key, Ancestor Key, Relationship Distance, and Leaf Node
Identifier column fields to the physical parent-child relationship table.

9. Click Save.

Chapter 11
Create and Manage Parent-Child Hierarchies

11-16

About Modeling Aggregates for Parent-Child Hierarchies
Fact tables in level-based hierarchies might only contain facts for a single level of the
hierarchy.

Facts for higher-level dimension members can be calculated by aggregating the facts from
the lower-level fact table or from a higher-level summary table.

In contrast, parent-child hierarchies require data modelers to make some additional decisions
related to how to store the base facts in the fact table and how to aggregate the base facts to
obtain the facts for higher-level members of the parent-child hierarchy.

About Storing Facts for Parent-Child Hierarchies
You can store facts in the fact table for only the leaf members of the parent-child hierarchy, or
for members at any level of the parent-child hierarchy, including non-leaf members.

Storing facts for only the leaf members of the parent-child hierarchy

Use this option when facts for the non-leaf members of the parent-child hierarchy can be
derived entirely from the facts of the leaf members. For example, if you've a parent-child
product hierarchy where the actual product members appear only as leaf members of the
hierarchy, then it makes sense for a revenue fact table to only record revenue facts for the
leaf members of this product hierarchy. The revenue figures for the non-leaf members of the
product hierarchy such as the product categories can be derived entirely by aggregating the
facts for the leaf product members at the bottom of the hierarchy.

The image shows example data for a situation where facts are stored only for leaf members
in a parent-child hierarchy.

The following table shows example data for the dimension table PRODUCT_DIM:

MemberKey Name ParentKey

P1 Product1 C1

P2 Product2 C1

C1 Category1 C2

C2 Category2 C3

C3 Category3 -

The following table shows example data for the fact table REVENUE_FACTS:

ProductKey YearKey Revenue

P1 2020 100,000

P1 2021 105,000

P2 2020 75,000

P2 2021 80,000

Chapter 11
Create and Manage Parent-Child Hierarchies

11-17

Store facts for members at any level of the parent-child hierarchy, including non-
leaf members

In this option, facts are stored for members at any level of the parent-child hierarchy.
This is necessary when the facts for the non-leaf members aren't completely derived
from facts of the leaf members. A good example is a sales person hierarchy where a
sales person might report to a manager who is also a sales person. Each individual
sales person, including the manager, could have a different revenue figure stored in
the fact table.

The following table shows example data for the dimension table SALES_REP_DIM:

MemberKey Name ParentKey

101 Phillip 201

102 Vivian 201

201 Jacob 301

202 Audrey 301

301 Ryan -

The following table shows example data for the fact table REVENUE_FACTS:

SalesRepKey YearKey Revenue

101 2021 1,200,000

102 2021 1,100,000

201 2021 250,000

202 2021 1,400,000

Storing facts for both leaf and non-leaf members is also appropriate when the rules for
aggregating the parent-child hierarchy are complex, or when aggregating the hierarchy
at query time is expensive and would lead to unacceptably long query response times.
In this case, the fact table would store preaggregated facts for the non-leaf members
in addition to the facts stored for the leaf members.

About Aggregating Parent-Child Hierarchies
You must determine how to aggregate the stored facts to calculate the aggregated
facts for higher level members of the parent-child hierarchy.

In addition to choosing the correct aggregation function for the measure, you must
decide if you need to roll up the fact values recorded for lower-level members to
calculate the values for higher-level members. In some cases, rolling up the facts of
lower-level members of the parent-child hierarchy makes sense. In other cases such
as with a pre-aggregated fact table or a measure that's intended to show each
member's individual contribution, rolling up the facts from lower-level members of the
parent-child hierarchy is incorrect.

Rolling up facts from lower-level members of a parent-child hierarchy

If a fact table only stores facts for the leaf members of a parent-child hierarchy or if the
fact table only records each member's individual contribution, then most likely the

Chapter 11
Create and Manage Parent-Child Hierarchies

11-18

values stored in the fact table must be rolled up to obtain the correct aggregated value for
higher-level members of the parent-child hierarchy. Rolling up the facts along a parent-child
hierarchy is achieved by joining the fact table to the dimension table through the parent-child
relationship table, see Add the Parent-Child Relationship Table to the Semantic Model.

For a fact table that stores facts only for the leaf members such as the product revenue fact
table, this modeling technique calculates aggregate values that correctly summarize all the
facts for the leaf-level members.

For a fact table that stores the individual contribution of both leaf members and non-leaf
members, this technique computes a hierarchical aggregate that summarizes the individual
contributions of the member and all its members.

Modeling individual contribution measures

To report the individual contribution of each member, in addition, to reporting the summarized
hierarchical aggregate that rolls up the individual contributions of multiple members, you must
create two separate fact logical table sources. One fact logical table source maps the base
fact table and the parent child relationship table. This is the logical table source for the
hierarchical aggregate measure. The second fact logical table source maps only an alias of
the fact table. This fact table alias should join directly with the dimension table rather than
joining indirectly through the parent-child relationship table. This is the logical table source for
the individual contribution measure.

Modeling pre-aggregated measures

Some fact tables contain pre-aggregated data that's populated for all members of the parent-
child hierarchy. For example, the fact value for a root member might be populated with the
aggregation of the data for all of its descendent members. It's important to ensure that
queries don't aggregate the members from this dimension to avoid erroneous results.

To correctly model this type of parent-child hierarchy, you must create a parent-child
relationship table to support hierarchical filter functions like IsAncestor and IsDescendant.
You can join the parent-child dimension table directly with the fact table rather than joining
through the parent-child relationship table to ensure that the pre-aggregated member value is
returned, rather than rolling up all the descendants.

Don't modify the parent-child relationship table script to only include the self rows, because
doing so would break the IsAncestor and IsDescendant functions.

To achieve the correct aggregation for dimensions of this type, you must determine what you
want to see as a grand total when the parent-child hierarchy is aggregated. For example,
assume that your hierarchy contains a single root member, and you want to display the pre-
aggregated value for this root member. You must first create an additional fact logical table
source mapped at the Total level of the parent-child hierarchy. Next, in the logical table
source, create a WHERE clause filter that selects only the root member.

With this model in place, for queries that are at the Total level of the parent-child hierarchy,
the Oracle Analytics query engine selects the aggregate logical table source and applies the
root member WHERE clause filter. For queries that are at the Detail level, the Oracle Analytics
query engine selects the detailed logical table source and returns the pre-aggregated
member values. In either case, it doesn't matter how the aggregation rule is set, because
there is a pre-aggregated source at each level.

Use this approach only if the queries are at the Total or Detail level of the parent-child
dimension. For queries that group by some non-unique attribute of the parent-child
dimension, the aggregation might not be correct. For example, if an Employee dimension has
a Location attribute, and a query groups by Employee.Location, then double counting is likely

Chapter 11
Create and Manage Parent-Child Hierarchies

11-19

because an employee often reports to other employees at the same location. Because
of this, when fact tables contain pre-aggregated member values, you should avoid
grouping by non-unique attributes of the parent-child dimension. If grouping by those
attributes is unavoidable, then you should model them as separate dimensions.

Maintain Parent-Child Hierarchies Based on Relational Tables
For parent-child hierarchies based on relational tables, you must ensure that the data
in the parent-child relationship table accurately reflects the inter-member relationships
in the dimension.

If you wrote scripts to create and populate the parent-child relationship table, you must
run these scripts, adapting them to guarantee the integrity of the parent-child
relationships in the hierarchy. You should add the Populate script to your extract-
transform-load (ETL) process so that the script runs after the dimension table is
updated. For more information on scripts, see Generate Scripts to Create a Parent-
Child Relationship Table.

Model Time Series Data
This topic provides information to help you understand and use functions to model
time series data.

Topics:

• About Time Series Functions

• About the AGO Function

• About the TODATE Function

• About the PERIODROLLING Function

• About Creating Logical Time Dimensions

• Create the Logical Time Dimension

• Select and Sort Chronological Keys in a Time Dimension

• Create AGO, TODATE, and PERIODROLLING Measures

About Time Series Functions
Time series functions operate on time-oriented dimensions. You use them to compare
business performance with previous time periods, allowing you to analyze data that
spans multiple time periods.

For example, time series functions enable you to compare current sales to sales from
one year ago or one month ago.

Because SQL doesn't provide a direct way to make time comparisons, you must model
time series data in the semantic model. First, set up time dimensions based on the
period table in your data warehouse. Then, you can define measures that take
advantage of this time dimension to use the AGO, TODATE, and PERIODROLLING
functions. At query time, the Oracle Analytics query engine generates highly optimized
SQL that pushes the time offset processing to the database whenever possible,
resulting in the best performance and functionality.

Chapter 11
Model Time Series Data

11-20

To use time series functions on a particular dimension, you must designate the dimension as
a Time dimension and set one or more keys at one or more levels as chronological keys.
These keys identify the chronological order of the members within a dimension level.

Use Expression Editor to call a logical function to perform time series calculations instead of
aliasing physical tables and modeling logically. The time series functions calculate AGO,
TODATE, and PERIODROLLING functions based on the calendar tables in your data warehouse,
not on standard SQL date manipulation functions.

This example shows a sample report that includes several measures derived using time
series functions.

You can use several different grains, such as:

• Query grain - The lowest time grain of the request.

• Time Series grain - The time series grain indicates the aggregation or offset is requested
for the AGO and TODATE functions. In the above example, the time series grain is Quarter.
Time series queries are valid only if the time series grain is at the query grain or higher.
The PERIODROLLING function doesn't have a time series grain, so instead you specify a
start and end period in the function.

• Storage grain - You can generate the report shown in the above example from daily
sales or monthly sales. The grain of the source is called the storage grain. A
chronological key must be defined at this level for the query to work, but performance is
generally much better if a define a chronological key at the query grain.

Queries against time series data must exactly match to access the query cache.

About the AGO Function
The AGO function offsets the time dimension to display data from a past period.

This function is useful for comparisons such as Dollars compared to Dollars a Quarter Ago.
The value of Dollars Qago for month 2008/08 equals the value of Dollars for month 2008/05.

This example shows values for the Dollars and Dollars Qago measures.

In the above example, the Dollars Qago measure is derived from the Dollars measure.

In Expression Builder, the AGO function has the following template:

Chapter 11
Model Time Series Data

11-21

Ago(<<Measure>>, <<Level>>, <<Number of Periods>>)

<<Measure>> represents the logical measure column that you want to derive from. In
this example, you select the measure "Dollars" from your existing logical fact tables.

<<Level>> is the optional time series grain you want to use. In this example, you select
"Quarter" from your time dimension.

<<Number of Periods>> is the size of the offset, measured in the grain you provided in
the <<Level>> argument. For example, if the <<Level>> is Quarter and the <<Number
of Periods>> is 2, the function displays dollars from two quarters ago.

Use this function template to create an expression for a One Quarter Ago measure, as
follows:

Ago("Sales"."Base Measures"."Dollars" , "Sales"."Time MonthDim"."Quarter" , 1)

The <<Level>> parameter is optional. If you don't want to specify a time series grain in
the AGO function, the function uses the query grain as the time series grain.

For example, you could define Dollars_Ago as Ago(Dollars, 1). Then, you could
perform the following logical query:

SELECT Month, Dollars, Dollars_Ago

The result is the same as if you defined Dollars_Ago as Ago(Dollars, Month, 1), or
you could perform the following logical query:

SELECT Quarter, Dollars, Dollars_Ago

The result is the same as if you defined Dollars_Ago as Ago(Dollars, Quarter, 1).

See Logical SQL Reference Guide for Oracle Business Intelligence Enterprise Edition.

About the TODATE Function
The TODATE function accumulates the measure from the beginning of the time series
grain period to the current displayed query grain period.

This example shows a report with the measure Dollars QTD, the Quarter To Date
version of the Dollars measure.

In the example, Dollars QTD for Month 2008/05 is the sum of Dollars for 2008/04 and
2008/05. Dollars QTD is the sum of the values for all the query grain periods (month)
for the current time series grain period (quarter). The accumulation starts over for the
next quarter.

In the example, the Dollars QTD measure is derived from the Dollars measure.

In Expression Builder, the TODATE function uses the following format:

ToDate(<<Measure>>, <<Level>>)

Chapter 11
Model Time Series Data

11-22

https://docs.oracle.com/middleware/bi12214/biee/BIESQ/toc.htm

<<Measure>> represents the logical measure column that you want to derive from. In this
example, you select the measure Dollars from your existing logical fact tables.

<<Level>> is the time series grain you want to use. In this example, you select Quarter from
your time dimension.

Using this function format, you can create the following expression for the measure:

ToDate("Sales"."Base Measures"."Dollars" , "Sales"."Time MonthDim"."Quarter")

The query grain is specified in the query itself at run time. For example, this measure can
display Quarter To Date at the Day grain, and accumulates up to the end of the Quarter.

See Logical SQL Reference Guide for Oracle Business Intelligence Enterprise Edition.

About the PERIODROLLING Function
The PERIODROLLING function lets you perform an aggregation across a specified set of
query grain periods, rather than within a fixed time series grain.

The most common use is to create rolling averages such as a 13-week Rolling Average.

The PERIODROLLING function doesn't have a time series grain, the length of the rolling
sequence is determined by the query grain. For example, the Dollars 3-Period Rolling
Average calculates the mean of values from the last 3 months if the query grain is Month, but
calculates the mean of the last 3 years if the query grain is Year.

The image shows a report with these two measures.

In the example above , the Dollars 3-Period Rolling Sum and Dollars 3-Period Rolling Avg
measures are derived from the Dollars measure.

In Expression Editor, the PERIODROLLING function has the following format:

PeriodRolling(<<Measure>>, <<Starting Period Offset>>, <<Ending Period Offset>>)
<<Measure>> represents the logical measure column from which you want to derive. To create
the measure Dollars 3-Period Rolling Sum, you select the measure, Dollars from your
existing logical fact tables.

<<Starting Period Offset>> and <<Ending Period Offset>> identify the first period and
last period used in the rolling aggregation. The integer is the relative number of periods from
the displayed period. In this example, the query grain is month, and the 3-month rolling sum
starts 2 periods in the past and includes the current period, that is, for month 2008/07, the
rolling sum includes 2008/05, 2008/06 and 2008/07. To create the measure, Dollars 3-
Period Rolling Sum, the integers to indicate these offsets are -2 and 0.

Using this function format, you can create the following expression for the measure:

PeriodRolling("Sales"."Base Measures"."Dollars" , -2, 0)

Chapter 11
Model Time Series Data

11-23

https://docs.oracle.com/middleware/bi12214/biee/BIESQ/toc.htm

The example also shows a 3-month rolling average. To compute this measure, you
can divide the rolling sum that you previously created by 3 to get a 3-period rolling
average. The assumption to divide the rolling sum by 3 results from the <<Starting
Period Offset>> and <<Ending Period Offset>> fields for the rolling sum that are -2
and 0.

The expression for the 3-month rolling average is:

PeriodRolling("Sales"."Base Measures"."Dollars" , -2, 0) /3
Don't use the AVG function to create a rolling average. The AVG function computes the
average of the database rows accessed at the storage grain. To perform the rolling
average, you need an average where the denominator is the number of rolling periods
at the query grain.

The PERIODROLLING function includes a fourth optional hierarchy argument that lets
you specify the name of a hierarchy in a time dimension such as yr, mon, day, that
you want to use to compute the time window. This option is useful when there are
multiple hierarchies in a time dimension, or when you want to distinguish between
multiple time dimensions.

See Logical SQL Reference Guide for Oracle Business Intelligence Enterprise Edition.

About Creating Logical Time Dimensions
Creating time dimensions requires selecting a Time hierarchy type and designating a
chronological key for every level of every dimension hierarchy.

Use these guidelines when modeling time series data:

• Use a time series function when the data source contains history. A data source
that contains history might use a star or snowflake schema with an explicit time
dimension table. A normalized, historical database might include a time hierarchy
with levels in a schema similar to a snowflake. A simple date field isn't adequate
for use with a time series function.

• Oracle Analytics Server requires the time dimension physical table or set of
normalized tables that are separate from its related physical fact table.

A common source schema pattern is a fully denormalized table that has time
dimension columns are in the same table as facts and other dimensions. This
common source schema pattern can't qualify as a time dimension, because the
time dimension table is combined with the fact table. Because you can't change
the source model, you can create a SELECT statement of the physical table
containing the time columns to act as the distinct physical time dimension table.
You must join the SELECT statement time dimension to the physical table that
contains the facts.

• In the physical layer, the time dimension table or lowest-level table in the
normalized/snowflake must join directly to the fact table without any intervening
tables.

• The tables in the physical model containing the time dimension can't join to other
data sources, except at the most detailed level.

• A member value must be physically present for every period at every hierarchy
level. They must not contain rows that are skipped in the sequence. You don't
need a fact data for every period. Only the dimension data must be complete.

Chapter 11
Model Time Series Data

11-24

https://docs.oracle.com/middleware/bi12214/biee/BIESQ/toc.htm

• You must model each unit of distance between members such as month, half, or year, in
a separate hierarchy level.

See Create the Logical Time Dimension.

About Setting Chronological Keys
The chronological keys you set identify the member order within the time dimension level.

The chronological keys must be comparable with the standard SQL ORDER BY clause. The
ORDER BY clause on the chronological key must reflect the real world chronological order of
the time dimension members represented by the key. For example, if the time dimension
members are: Jan-3-2022, Jan-4-2022, Jan-5-2022 then the following chronological keys can
be assigned to them in the same order: 1, 5, 9. However, assigning chronological keys such
as 2,1,3 would result in Jan-4-2022, Jan-3-2022, Jan-5-2022, which is an incorrect
chronological order.

The Oracle Analytics query engine uses the chronological key to create mathematically
correct time series predictions, such as Jan + 2 months = Mar. You should set a chronological
key for every level, except for the Grand Total level, so that you can perform time series
operations on all levels with good performance. This enables you to use an AGO, TODATE, or
PERIODROLLING function for any level of any time dimension hierarchy, such as fiscal month
ago, calendar year ago, and day ago.

Theoretically, time series functions operate correctly if only the bottom level key in the logical
hierarchy is chronological. In practice, however, this causes performance problems because
it forces the physical query to use the lowest grain, causing joins of orders of magnitude more
rows, for example, 365 times more rows for a "year ago" joining at the "day" grain.

As with any level key, be sure the key is unique at its level. For example, a column containing
simple month names such as "January" isn't unique unless it's concatenated to a column
containing year names.

Create the Logical Time Dimension
To enable the time series functions on the dimension, select the Time hierarchy type in the
logical dimension table and then designate a chronological key for every level of each
dimension hierarchy.

See About Creating Logical Time Dimensions and About Setting Chronological Keys.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. In the Logical layer, double-click the logical table where you want to enable time series
functions and in the logical table's tabs click Hierarchy.

4. Click the Hierarchy Type field and select Time.

5. Click a hierarchy level and in its details click Chronological Key and choose a key.

6. For each hierarchy level that you need to set a key for, go the level's details, click the
Chronological Key, and choose a key.

7. Click Save.

Chapter 11
Model Time Series Data

11-25

Create AGO, TODATE, and PERIODROLLING Measures
You can build time series measures by creating derived expressions from base
measures.

Follow these guidelines when modeling time series functions:

• You can't derive time series functions from measures that use the fragmentation
form of federation. This rule prevents some complex boundary conditions and
cross-source assumptions in the query generation and result merging, such as the
need to join some time dimension rows from one source to some of the fact rows
in a different source. To reduce maintenance and increase accuracy, it's best to
create a single base measure, and then derive a family of time series measures
from it. For example, start with a base measure, then define variations for month-
ago, year-ago, and month-to-date.

• You must define the unit as a level of the time dimension, so that it can take
advantage of the chronological keys built in the time dimension.

For information about how to use time series functions in expressions, see About the
AGO Function, About the TODATE Function, and About the PERIODROLLING
Function.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. In the Logical layer, double-click the logical table containing the logical column that
you want to add a time series function to. Click Columns.

4. Locate and click the column and click Detail View. Scroll to Sources and click
Logical Expression.

5. Click Open Expression Editor.

6. In Expression Builder, go to the Function panel and scroll to Time Series
Calculations and use these functions to build the expression.

7. Click Save.

Chapter 11
Model Time Series Data

11-26

12
Manage Logical Table Sources

This chapter contains information to help you understand how to create and manage logical
table sources.

Topics:

• What are Logical Table Sources?

• How Are Fact Logical Table Sources Selected to Answer a Query?

• How Are Dimension Logical Table Sources Selected to Answer a Query?

• Change the Default Selection Criteria for Dimension Logical Table Sources

• About Consistency Among Data in Multiple Table Sources

• Add Logical Table Sources

• Enable or Disable a Logical Table Source

• Work With Logical Table Source Priorities

• Modify a Logical Table Source's Logical Column to Physical Column Mappings

• Map a Logical Table Source's Logical Column to a Calculated Item

• Work With Data Granularity

• Work With Logical Table Source Data Fragmentation

• Work With Logical Table Source Data Filters

What are Logical Table Sources?
Logical table sources define the mappings from a single logical table to one or more physical
tables.

Use the physical to logical mapping to specify transformations that occur between the
physical layer and the logical layer and to enable aggregate navigation and fragmentation.

In the logical layer, you can open a fact or dimension table and use the Sources tab to open
a list of its table sources. From that list, you can select a specific table to view its properties
such as table mapping, joins, and column mapping.

Logical tables can have many physical table sources. A single logical column might map to
many physical columns from multiple physical tables, including aggregate tables that map to
the column such as if a query asks for the appropriate level of aggregation on that column.

How Are Fact Logical Table Sources Selected to Answer a
Query?

Oracle Analytics uses a specific criteria to select a fact logical table's sources to answer a
query.

12-1

Every column in a query is sourced from a single logical table source based on the
below criteria. Queries aren't load-balanced across multiple logical table sources.

After the fact logical table sources are selected, Oracle Analytics selects the best
dimensional logical table sources to answer a query. See How Are Dimension Logical
Table Sources Selected to Answer a Query?

The fact logical table source selection criteria is listed from the highest precedence to
the lowest precedence:

• Logical table source priority group - A higher priority fact logical table source
group is used before a lower priority fact logical table source group, even if the
higher priority source is at a more detailed grain. A lower group number indicates a
higher priority. See About Assigning Logical Table Sources Priority Order.

• The grain of the logical table source - If all fact table sources have the same
priority number, then a higher-grain logical table source is used before a lower-
grain logical table source.

• Logical table source list order - If all other criteria are equal, then the first logical
table source in the fact table's sources list is selected. This list is displayed in the
logical table's Sources tab.

How Are Dimension Logical Table Sources Selected to
Answer a Query?

After the fact logical table sources are selected, Oracle Analytics selects the best
dimensional logical table sources to answer a query.

See How Are Fact Logical Table Sources Selected to Answer a Query?

Oracle Analytics uses the following criteria to select the dimension logical table source.
The criteria are listed from the highest precedence to the lowest precedence:

• Logical table source priority group - A higher priority dimension logical table
source group is used before a lower priority dimension logical table source group.
A lower group number indicates higher priority. See About Assigning Logical Table
Sources Priority Order.

• Lower join cost - If all dimension table sources have the same priority assigned
to them, then the dimension logical table source with the lowest join cost is
selected before dimension logical tables sources with higher join costs.

• Higher level - If the priority group and join cost are the same, then the higher level
logical table source is used because that logical table source could require joining
fewer rows.

• Number of elements at this level setting - If the grains aren't comparable, then
the number specified for the Number of elements at this level field is considered.

For example, suppose you've the following two logical table sources with grains
that aren't comparable: LTS1(year, city) and LTS2(month, state). If you've 10
years, 100 cities, 120 months, and 9 states, the worst case size of LTS1 is 10 x
100 = 1000, and the worst case size of LTS2 is 120 x 9 = 1080. In this scenario,
LTS1 is selected because the source with the lowest estimated number of total
elements is assumed to be the fastest.

Chapter 12
How Are Dimension Logical Table Sources Selected to Answer a Query?

12-2

Change the Default Selection Criteria for Dimension Logical
Table Sources

You can change the default logical table source selection criteria to favor dimension logical
table sources that are at the same level as the fact logical table source before considering the
higher level logical table source.

Create a session variable and name it DIMENSION_LTS_JOIN_RESTRICTIONS. Set this session
variable to PREFER_SAME_LEVEL.

If a suitable dimension logical table source at the same level as the fact logical table source
doesn't exists, then the Oracle Analytics query engine selects the highest level dimension
logical table source that's joinable to the fact. These factors are only considered after priority
group and join cost.

The PREFER_SAME_LEVEL value for the DIMENSION_LTS_JOIN_RESTRICTIONS session variable
sets the following criteria for selecting the dimension logical table source to answer the query:

• Logical table source priority group

• Lower join cost

• Same level as the fact logical table source

• Higher level than other dimension logical table sources if no other logical table source is
at the same level as the fact logical table source

When DIMENSION_LTS_JOIN_RESTRICTIONS is set to NONE, the default value, you can join
fact logical table sources to a higher level dimension logical table source even if there is
another joinable dimension logical table source at the same level as the fact.

About Consistency Among Data in Multiple Table Sources
It's important to confirm that your table sources' data is consistent.

For example, the year-level logical table source and the month-level logical table source for
your time dimension should cover the same time period.

You might see consistency issues in table source data for queries that override null
suppression. For example, some aggregate tables might not include the dimension records
that correspond to the null fact values such as a yearly sales aggregate table that doesn't
include years with no sales. All years in the year dimension must exist for the null values to
be included in the result.

Add Logical Table Sources
A logical table's physical source is included when you drag and drop a table from the physical
layer to the logical layer. You can add logical table sources to the logical tables that you
create by dragging and dropping, or to logical tables that you create manually.

Add logical table sources when you need multiple physical tables to source the logical table's
data. For example:

• You have three different business units each with its own order system where you get
revenue information.

Chapter 12
Change the Default Selection Criteria for Dimension Logical Table Sources

12-3

• You periodically summarize revenue from an orders system or a financial system
and use this table for high-level reporting.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Logical Layer.

4. In the Logical Layer pane, browse for and double-click the table where you want to
add a table source.

5. In the logical table, click the Sources tab.

6. Optional: To browse for and add a physical table source, click Add Physical
Table, select Add Physical Table, and browse for and select a physical table.

7. Optional: To add a new source, click Add Physical Table, select Create New
Source, and enter a name for the source table.

8. From the table's source list, click a table source and then click Detail view.

9. Specify the data source's general properties, table mapping, joins, column
mapping, and data granularity.

10. Click Save.

Enable or Disable a Logical Table Source
You can enable or disable one or more of a logical table's source.

You can use this setting to test your queries. Any table that is disabled isn't considered
during query generation.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Logical Layer.

4. In the Logical Layer pane, browse for and double-click the table with the source
that you want to enable or disable.

5. In the logical table, click the Sources tab.

6. In the sources table, click the source table that you want to enable or disable and
then click Detail view to open the properties pane.

7. Click the Enabled field to select (enable) the table source, or click the field to clear
(disable) the table source.

8. Click Save.

Work With Logical Table Source Priorities
This topic provides information to help you understand and assign logical table source
priorities.

Topics:

• About Assigning Logical Table Sources Priority Order

• Set the Logical Table Sources Priority Order

Chapter 12
Enable or Disable a Logical Table Source

12-4

• Reverse the Table Source Priority Ranking at Query Time

About Assigning Logical Table Sources Priority Order
Priority numbers determine which logical table source is used to answer a query.

For example, you might have user queries that are fulfilled by both a data warehouse and an
OLTP source. Often access to an operational system is expensive, while access to a data
warehouse is cheap. In this situation, you can assign a higher priority to the data warehouse
to ensure that all queries are fulfilled by the data warehouse if possible.

Although the logical table source priority is the metric that the Oracle Analytics query engine
considers before any other cost metric, the table source's priority group doesn't always
determine that a particular query is fulfilled by that source. The Oracle Analytics query engine
uses other factors to determine which logical table source to use for a query. See How Are
Fact Logical Table Sources Selected to Answer a Query? and How Are Dimension Logical
Table Sources Selected to Answer a Query?

To assign priority group numbers, you rank your logical table sources in numeric order, with 0
being the highest-priority source. You can assign the same number to multiple sources to
create a priority group. For example, you can have two logical table sources in priority group
0, two logical table sources in priority group 1, and so on. In most cases only two priority
groups (0 and 1) are needed.

Assigning priority groups is optional.

It's important that you don't use priority groups as a method of fine tuning the choice of logical
table sources used to answer queries. The Oracle Analytics query engine tries to
automatically use the most optimal logical table sources, but only within the same priority
group. When you set a different priority group to each logical table source, it might cause the
Oracle Analytics query engine to use suboptimal logical table sources.

Set the Logical Table Sources Priority Order
Sometimes a logical table contains more than one table source that can be used in a query.
In such cases, you can set priority numbers to determine which logical table source is used in
a query.

You can assign the same priority number to more than one source table to create a priority
group.

See About Assigning Logical Table Sources Priority Order.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Logical Layer.

4. In the Logical Layer pane, browse for and double-click the table with the sources that you
want to assign priority groups to.

5. In the logical table, click the Sources tab.

6. In the sources list table, click the source table that you want to assign query groups to
and then click Detail view to open the properties pane.

7. Scroll to General and click the Priority field and enter a priority group number.

8. In the sources list table, click another source table that you want to assign query groups
to and then click Detail view to open the properties pane.

Chapter 12
Work With Logical Table Source Priorities

12-5

9. Scroll to General and then click the Priority field and enter a priority group
number.

10. Click Save.

Reverse the Table Source Priority Ranking at Query Time
You can use session variables and request variables with logical table source priority
groups to reverse the logical table source priorities at query time. This method
provides a way to dynamically select a source at run time, depending on user
preference.

1. To enable the dynamic selection, first create the
REVERSIBLE_LTS_PRIORITY_SA_VEC session variable in the semantic model. Create
this variable as a string vector session variable that uses a row-wise session
initialization block. REVERSIBLE_LTS_PRIORITY_SA_VEC should list the subject areas
for which you want to allow users to reverse the logical table source priority
ranking. You must define this variable to enable priority ranking reversal.

2. After you've defined the set of subject areas where you want to allow priority
ranking reversal, users can include the request variable REVERSE_LTS_PRIORITY
with their queries to reverse the logical table source priority ranking. You can set
this request variable to 1 to reverse the logical table source priority, or 0 to keep
the normal logical table source priority.

3. As an alternative to using a request variable at query time, you can define a
predetermined set of subject areas for which the logical table source priority is
permanently reversed. To do this, create the session variable
REVERSED_LTS_PRIORITY_SA_VEC. Create this variable as a string vector session
variable that uses a row-wise session initialization block.
REVERSED_LTS_PRIORITY_SA_VEC should list the subject areas where you want the
logical table source priority set to permanently reversed.

4. You could create a table called SA_TABLE that contains two columns:
SUBJECT_AREA_NAME and REVERSIBLE. This table could contain rows
mapping subject area names to their reversible values (1 or 0), as follows:

• SUBJECT_AREA_NAME - my_sa_1; REVERSIBLE - 1

• SUBJECT_AREA_NAME - my_sa_2; REVERSIBLE - 0

5. Then, create a string vector session variable called
REVERSIBLE_LTS_PRIORITY_SA_VEC with a row-wise session initialization
block. The initialization string for this initialization block is similar to the following:
SELECT 'REVERSIBLE_LTS_PRIORITY_SA_VEC', SUBJECT_AREA_NAME FROM
SA_TABLE WHERE REVERSIBLE=1

Modify a Logical Table Source's Logical Column to Physical
Column Mappings

Semantic Modeler automatically maps logical columns to physical columns when you
drag and drop a table from the physical layer to the logical layer, or when you add

Chapter 12
Modify a Logical Table Source's Logical Column to Physical Column Mappings

12-6

additional logical table sources to a logical table. You can modify these default column
mappings.

You must include a physical table source to make its column available for use in column
mapping. See Add Logical Table Sources.

Logical to physical column mapping can also be used to specify transformations that occur
between the physical layer and the logical layer. The transformations can be simple, such as
changing an integer data type to a character, or more complex, such as applying a formula to
find a percentage of sales per unit of population. Applying these transformations is typically
referred to as creating calculated items.

The data type of a logical column is determined by its logical table source mappings. For
example, if a logical column has one physical source with a data type of VARCHAR(50) not-
nullable, and another physical source with a VARCHAR(20) data type, nullable, then the data
type of the logical column is VARCHAR(50) nullable. This final type is called a promoted type.
Because of the rules governing logical table source mappings, you can't map physical
sources with data types that are promotable such as an INT with a VARCHAR.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Logical Layer.

4. In the Logical Layer pane, browse for and double-click the table with the column
mappings you want to modify.

5. In the logical table, click the Sources tab.

6. In the logical table sources list table, click a logical table source to select it and then click
Detail view to open the properties pane.

7. Scroll to Column Mapping, locate and double-click the column mapping that you want to
change.

8. Click the physical column field's dropdown button and browse for and select the name of
the physical column to map the corresponding logical column to.

9. Click Save.

Map a Logical Table Source's Logical Column to a Calculated
Item

Create a calculated item when you need to derive the logical column's data from two or more
physical columns or tables.

You can create calculated items where formulas are applied pre-aggregation. These are two
examples:

• Create the measure tons sold using the columns units_sold and unit_weight, you apply a
pre-aggregation formula (fact.units_sold*product.unit_weight), and then apply the
aggregation rule SUM in the measure object.

• Use CAST to transform a column of type TIMESTAMP to type DATE for faster display in
Answers and other clients, for example, CAST("DB"."."TABLE"."COL" AS DATE).

You can also change data sources by creating expressions that perform transformations on
physical data. For example, you can use the CAST function to transform a column with a
character data type to an integer data type to match data coming from a second logical table

Chapter 12
Map a Logical Table Source's Logical Column to a Calculated Item

12-7

source. Other examples include using CONCATENATE or math functions to make similar
transformations on physical data.

You must include a physical table source to make its columns available for use in a
calculation. See Add Logical Table Sources.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Logical Layer.

4. In the Logical Layer pane, browse for and double-click the table with the column
mappings you want to modify.

5. In the logical table, click the Sources tab.

6. In the logical table sources list table, click a logical table source to select it and
then click Detail view to open the properties pane.

7. Go to the pane's Column Mapping section, locate and double-click the column
mapping that you want to create a calculated item for.

8. Click Open Expression Editor and create and validate the physical item's
calculation. In the Expression Editor click Save.

9. Click Save to save the semantic model.

Work With Data Granularity
This topic provides information to help you understand and define logical table
sources' data granularity.

Topics:

• About Data Granularity

• About Aggregate Tables

• About Aggregate Table Joins

• About the Logical Table Source's Parent-Child Settings

• Define Logical Table Source Data Granularity

About Data Granularity
Data granularity indicates a logical table source's level of detail. When a query is
issued, the Oracle Analytics query engine uses the logical table source's data
granularity to find the required level of detail for the requested data.

The logical table's logical dimensions and hierarchies determine the granularity levels
that you can assign to a logical table source. For example, years, months, weeks,
days, or hours.

You need to specify data granularity for each fact table's logical table sources. This
granularity defines at what level of granularity the data is stored in the fact table. You
also need to define granularity for each logical table that joins to the fact table. The
Oracle Analytics query engine assumes that if no logical table sources level is
specified, then the most detailed level should be used. A data modeling best practice
is to assign data granularity for each table source.

Chapter 12
Work With Data Granularity

12-8

About Aggregate Tables
Aggregate tables are physical tables that store precomputed results from measures that have
been aggregated over a set of dimensional attributes.

You must join the aggregate fact and dimension tables. See About Aggregate Table Joins.

Each aggregate table column contains data at a given set of levels. For example, a monthly
sales table might contain a precomputed sum of the revenue for each product in each store
during each month.

When you create a logical table source for an aggregate fact table, you should create
corresponding logical dimension table sources at the same levels of aggregation.

You need to have at least one logical dimension table source for each level of aggregation. If
the sources at each level already exist, you don't need to create additional sources.

For example, you might have a monthly sales fact table containing a precomputed sum of the
revenue for each product in each store during each month. You need to have the following
three dimension sources, one for each of the logical dimension tables referenced in the
example:

• A source for the Product logical table with one of the following content specifications:

– By logical level: ProductDimension.ProductLevel

– By column: Product.Product_Name

• A source for the Store logical table with one of the following content specifications:

– By logical level: StoreDimension.StoreLevel

– By column: Store.Store_Name

• A source for the Time logical table with one of the following content specifications:

– By logical level: TimeDimension.MonthLevel

– By column: Time.Month

At query time, the Oracle Analytics query engine first determines which sources have enough
detail to answer the query. Out of these sources, the Oracle Analytics query engine chooses
the most aggregated source to answer the query, because it's assumed to be the fastest. The
most aggregated source is the one with the lowest multiplied number of elements.

See Create Logical Levels in a Logical Dimension Table to learn how to specify the number of
elements at each level.

About Aggregate Table Joins
You must create physical joins between the aggregate fact tables and the aggregate
dimension tables.

Joins tells the Oracle Analytics query engine where to send queries for physical aggregate
fact tables joined to and constrained by values in the physical aggregate dimension tables.

You can verify joins by opening the fact logical table's logical diagram. The diagram displays
only the dimension logical tables that are directly joined to the fact logical table. The diagram
doesn't display dimension tables if the same physical table is used in logical fact and
dimension sources.

Chapter 12
Work With Data Granularity

12-9

The image shows the Fact - Assess fact table's logical diagram.

The table contains a list of the logical level for each dimension table that's directly
joined to the Fact - Assess fact table.

Dimension Logical Level

Account Geography Postal Code Detail

Person Geography Postal Code Detail

Time Day Detail

Account Organization Account Detail

Opportunity Opty Detail

Primary Visibility
Organization

Detail

Employee Detail

Assessment Detail

Contact (W_PERSON_D) Detail

FINS Time Day

Positions Details

About the Logical Table Source's Parent-Child Settings
When a logical table is part of a dimension with a parent-child hierarchy that's based
on relational tables, the logical table includes both a physical source and a source for
the parent-child relationship table required by the parent-child hierarchy.

Parent-child relationship tables explicitly define the inter-member relationships for
parent-child hierarchies.

Chapter 12
Work With Data Granularity

12-10

You can view details for the parent-child relationship table source in logical table's Hierarchy
tab.

• Relationship Table - The name of the parent-child relationship table that the source is
based on.

• Member Key - The name of the column in the parent-child relationship table that
identifies the member.

• Parent Key - The name of the column in the parent-child relationship table that identifies
an ancestor of the member.

• Relationship Distance - The name of the column in the parent-child relationship table
that specifies the number of parent-child hierarchical levels from the member to the
ancestor.

• Leaf Node Identifier - The name of the column in the parent-child relationship table that
indicates if the member is a leaf member (1=Yes, 0=No).

See Create Dimensions with Parent-Child Hierarchies.

Define Logical Table Source Data Granularity
Define granularity for the dimension tables and dimension and level information for the fact
table joined to the dimension tables. The Oracle Analytics query engine uses this information
to find the required level of detail for the requested data.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Logical Layer.

4. In the Logical Layer pane, browse for and double-click the dimension table with the table
source you want to define data granularity for.

5. In the table's tabs, click Sources.

6. In the table sources list, click the logical table source that you want to define data
granularity for and then click Detail view to open the properties pane.

7. Scroll to Data Granularity, click the Defined by field, and choose a level. Repeat this step
for other dimension tables as needed.

8. In the Logical Layer pane, browse for and double-click the fact table joined to the
dimension tables that you defined data granularity for.

9. In the table's tabs, click the Sources tab.

10. In the logical table sources list table, click the logical table source that you want to define
data granularity for and then click Detail view to open the properties pane.

11. Scroll to the pane's Data Granularity section and click Add Level.

12. In the new level's Dimension field, click the dropdown button and choose a dimension
table. In the Level field, click the dropdown button and choose a granularity level. Repeat
this step for other dimension tables joined to the fact table.

13. Click Save.

Chapter 12
Work With Data Granularity

12-11

Work With Logical Table Source Data Fragmentation
This topic provides information to help you understand and define data fragmentation.

Topics:

• About Data Fragmentation

• About Global Variables and Logical Table Source Fragmentation

• Define Data Fragmentation for a Logical Table Source

• Improve the Performance of Fragmented Logical Table Sources

• Work With Fragmentation for Aggregate Navigation

• Work With Aggregate Table Fragments

About Data Fragmentation
A logical table can include table sources that have the same level of detail, but each
contains a specific range of values (or fragments of data). These tables are called
fragmented tables.

When you use fragmented tables as logical table sources, you must write an
expressions for each table source to indicate its range of values. The Oracle Analytics
query engine uses the expression to determine which table to use to find the data
requested by the query.

Fragmented logical table sources must have physical joins to the appropriate tables so
that when the Oracle Analytics query engine uses the fragment, it still joins to the
appropriate table sources.

Sometimes the data needed for a query overlaps between fragmented logical table
sources. In these cases you might need to select the This source should be
combined with other sources at this level option. Consider the following examples
of how to use this option:

• Example 1 - Suppose your logical table uses a fragmented logical table source
containing all sales for years 2000 to the current year (2022), and another
fragmented logical table source containing current year sales and its table source
fragmentation expression is set to year = 2022. In this case the table fragments
overlap and you shouldn't select the This source should be combined with
other sources at this level option. In this case, the Oracle Analytics query engine
can use any single fragment based on query predicate or fragmentation predicate
compatibility.

• Example 2 - Suppose your logical table uses a fragmented logical table source
that contains all sales for years 2000 to 2021, and another fragmented logical
table source containing sales for year 2022. In this case you should select the
This source should be combined with other sources at this level option
because the fragments don't overlap. In this case, the Oracle Analytics query
engine creates a union of all the logical table sources on this level that can't be
disqualified based on query predicate or fragmentation predicate compatibility.

If a logical table is sourced from a set of fragmented tables, then each fragmented
table doesn't have to map the same set of columns. However, the Oracle Analytics
query engine returns different answers depending on how the columns are mapped.

Chapter 12
Work With Logical Table Source Data Fragmentation

12-12

For the best query results, Oracle recommends that all the fragments map to the same set of
columns.

• If the logical table is sourced from fragmented tables that map the same set of columns,
then the Oracle Analytics query engine considers the set of fragmented sources to be a
complete set of logical table sources. This means that measure aggregations can be
calculated based on the set of fragments.

• If the set of mapped columns differs between the fragmented tables, then the Oracle
Analytics query engine assumes that the set of logical table sources is incomplete, and
because some fragments are missing, won't calculate aggregate rollups. In this case, the
server returns NULL as measure aggregates.

About Global Variables and Logical Table Source Fragmentation
You can use global variables in a logical table source's fragmentation expression to
automatically modify a fragment's content.

For example, suppose you have two sources for information about orders where one source
contains recent orders and the other source contains historical data. You need to update the
global variable to use the recent orders and move the historical order data to a different view.
Without using global variables, you would describe the content of the source containing
recent data with an expression such as:

Orders.OrderDates."Order Date" >= TIMESTAMP '2001-06-02 00:00:00'

This content statement becomes invalid as new data is added to the recent source and older
data is moved to the historical source. To accurately reflect the new content of the recent
source, you would have to modify the fragmentation content description manually. Instead
you can define global variables to automatically modify the content.

Define Data Fragmentation for a Logical Table Source
A fragmented table contains a portion of the data at a specific aggregation level. When you
use fragmented tables, you must write an expressions for each table source to indicate its
range of values.

See About Data Fragmentation.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Logical Layer.

4. In the Logical Layer pane, browse for and double-click the table with the table source you
want to define data fragmentation for.

5. In the table's tabs, click Sources.

6. In the logical table sources list table, click the logical table source that you want to define
data fragmentation for and then click Detail view to open the properties pane.

7. Go to the pane's Data Fragmentation section and click Data is fragmented.

8. Click Open Expression Editor and create and validate the fragment expression. In the
Expression Editor click Save.

9. Optional: If the data needed for a query is located in more than one fragmented table,
then click Combine with other fragmented sources to sum the data.

Chapter 12
Work With Logical Table Source Data Fragmentation

12-13

10. Optional: Click Enable Data Driven Fragment Selection to improve the
performance of the logical table source.

11. Click Save.

Improve the Performance of Fragmented Logical Table Sources
You can use data driven fragment selection to improve the performance of fragmented
logical table sources.

Data driven fragment selection is disabled by default.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Logical Layer.

4. In the Logical Layer pane, browse for and double-click the table with the
fragmented source that you want to improve performance for.

5. In the table's tabs, click Sources.

6. In the table sources list, click the logical table source that you want to improve
performance for then click Detail view to open the properties pane.

7. Scroll to Data Granularity and click Data is fragmented to display the expression
that you created.

8. Click Enable Data Driven Fragment Selection.

9. Click Save.

Work With Fragmentation for Aggregate Navigation
This topic contains examples that provide techniques and rules for specifying data
fragmentation.

See Define Data Fragmentation for a Logical Table Source.

Topics:

• Specify Fragmentation for Single Column, Value-Based Predicates

• Specify Fragmentation for Single Column, Range-Based Predicates

Specify Fragmentation for Single Column, Value-Based Predicates
You can replace the IN predicates with either an equality predicate or multiple equality
predicates separated by the OR connective.

Fragment 1:

logicalColumn IN <valueList1>

Fragment n:

logicalColumn IN <valueListN>

Chapter 12
Work With Logical Table Source Data Fragmentation

12-14

Specify Fragmentation for Single Column, Range-Based Predicates
Use >= and < predicates to ensure that the fragment content descriptions don't overlap. For
each fragment, you must express the upper value as <. An error occurs if you use <=. You
can't use the BETWEEN predicate to describe fragment range content.

Fragment 1:

logicalColumn >= valueof(START_VALUE) AND logicalColumn < valueof(MID_VALUE1)

Fragment 2:

logicalColumn >= valueof(MID_VALUE1) AND logicalColumn < valueof(MID_VALUE2)

Fragment n:

logicalColumn >= valueof(MID_VALUEN-1) AND logicalColumn < valueof(END_VALUE)

Pick your start point, midpoints, and endpoint carefully.

The valueof referenced here is the value of a semantic model variable. If you use semantic
model values in your expression, the following construct doesn't work for Fragment 2:

logicalColumn >= valueof(MID_VALUE1)+1 AND logicalColumn < valueof(MID_VALUE2)

Use another semantic model variable instead of valueof(MID_VALUE1)+1.

The same variables, for example, valueof(MID_VALUE1), aren't required to appear in the
content of both fragments. You could set another variable, and create statements of the
following form:

Fragment 1:

logicalColumn >= valueof(START_VALUE) AND logicalColumn < valueof(MID_VALUE1)

Fragment 2:

logicalColumn >= valueof(MID_VALUE2) AND logicalColumn < valueof(MID_VALUE3)

Specify Multicolumn Content Descriptions
An arbitrary number of predicates on different columns can be included in each content filter.
Each column predicate can be value-based or range-based.

Fragment 1:

<logicalColumn1 predicate> AND <logicalColumn2 predicate > ... AND <logicalColumnM
predicate>

Fragment n:

<logicalColumn1 predicate> AND <logicalColumn2 predicate > ... AND <logicalColumnM
predicate>

Ideally, all fragments have predicates on the same M columns. If there is no predicate
constraint on a logical column, The Oracle Analytics query engine assumes that the fragment
contains data for all values in that logical column.

Chapter 12
Work With Logical Table Source Data Fragmentation

12-15

Specify Parallel Content Descriptions
Use the parallel OR to handle dates that cross logical columns such as across years,
or across months in a date range.

Use the parallel OR technique to handle the multiple hierarchical relationships
across logical columns such as from year to year month to date, and from month to
year month to date. For example, consider fragments delineated by different points in
time such as year and month. Constraining sufficiently far back in a year is enough to
drive the selection of just the historical fragment. The parallel OR technique
supports this.

This example assumes that the snapshot month was April 1, 12:00 a.m. in the year
2022.

Fragment 1 (Historical):

EnterpriseModel.Period."Day" < VALUEOF("Snapshot Date") OR
EnterpriseModel.Period.MonthCode < VALUEOF("Snapshot Year Month") OR
EnterpriseModel.Period."Year" < VALUEOF("Snapshot Year") OR
EnterpriseModel.Period."Year" = VALUEOF("Snapshot Year") AND
 EnterpriseModel.Period."Month in Year" < VALUEOF("Snapshot Month") OR
EnterpriseModel.Period."Year" = VALUEOF("Snapshot Year") AND
 EnterpriseModel.Period."Monthname" IN ('Mar', 'Feb', 'Jan')

Fragment 2 (Current):

EnterpriseModel.Period."Day" >= VALUEOF("Snapshot Date") OR
EnterpriseModel.Period.MonthCode >= VALUEOF("Snapshot Year Month") OR
EnterpriseModel.Period."Year" > VALUEOF("Snapshot Year") OR
EnterpriseModel.Period."Year" = VALUEOF("Snapshot Year") AND
 EnterpriseModel.Period."Month in Year" >= VALUEOF("Snapshot Month") OR
EnterpriseModel.Period."Year" = VALUEOF("Snapshot Year") AND
 EnterpriseModel.Period."Monthname" IN ('Dec', 'Nov', 'Oct', 'Sep', 'Aug',
'Jul',
 'Jun', '', 'Apr')

If the logical model doesn't go down to the date level of detail, then omit the predicate
on EnterpriseModel.Period."Day" in the preceding example.

Notice the use of the OR connective to support parallel content description tracks.

Specify Unbalanced Parallel Content Descriptions
In an order entry application, time-based fragmentation between historical and current
fragments is insufficient.

For example, records might still be volatile, even though they're historical records
entered into the database before the snapshot date.

For the following example, assume that open orders can be directly updated by the
application until the order is shipped or canceled. After the order has shipped,
however, the only change that can be made to the order is to type a separate
compensating return order transaction.

There are two parallel tracks in the following content descriptions. The first track uses
the multicolumn, parallel track techniques described in the preceding section. Notice

Chapter 12
Work With Logical Table Source Data Fragmentation

12-16

the parentheses nesting the parallel calendar descriptions within the Shipped-or-Canceled
order status multicolumn content description.

The second parallel track is present only in the Current fragment and specifies that all Open
records are in the Current fragment only.

Fragment 1 (Historical):

Marketing."Order Status"."Order Status" IN ('Shipped', 'Canceled') AND
 Marketing.Calendar."Calendar Date" <= VALUEOF("Snapshot Date") OR
Marketing.Calendar."Year" <= VALUEOF("Snapshot Year") OR
Marketing.Calendar."Year Month" <= VALUEOF("Snapshot Year Month")

Fragment 2 (Current):

Marketing."Order Status"."Order Status" IN ('Shipped', 'Canceled') AND
 Marketing.Calendar."Calendar Date" > VALUEOF("Snapshot Date") OR
Marketing.Calendar."Year" >= VALUEOF("Snapshot Year") OR
Marketing.Calendar."Year Month" >= VALUEOF("Snapshot Year Month") OR
Marketing."Order Status"."Order Status" = 'Open'

The overlapping Year and Month descriptions in the two fragments don't cause a problem
because overlap is permissible when there are parallel tracks. The rule is that at least one of
the tracks has to be non-overlapping. The other tracks can have overlap.

Examples of Parallel Content Descriptions
These examples explain how to use labels with fragment content statements.

The Track number labels in the examples are shown to help relate the examples to the
discussion that follows. You wouldn't include these labels in the actual fragmentation content
statement.

Fragment 1 (Historical)

Track 1 EnterpriseModel.Period."Day" < VALUEOF("Snapshot Date") OR
Track 2 EnterpriseModel.Period.MonthCode < VALUEOF("Snapshot Year Month") OR
Track 3 EnterpriseModel.Period."Year" < VALUEOF("Snapshot Year") OR
Track 4 EnterpriseModel.Period."Year" = VALUEOF("Snapshot Year") AND
 EnterpriseModel.Period."Month in Year" < VALUEOF("Snapshot Month") OR
Track 5 EnterpriseModel.Period."Year" = VALUEOF("Snapshot Year") AND
 EnterpriseModel.Period."Monthname" IN ('Mar', 'Feb', 'Jan')

For example, consider the first track on EnterpriseModel.Period."Day." In the historical
fragment, the < predicate tells the Oracle Analytics query engine that any queries that
constrain on Day before the Snapshot Date fall within the historical fragment. Conversely, the
>= predicate in the current fragment on Day indicates that the current fragment doesn't
contain data before the Snapshot Date.

The second track on MonthCode, for example, 202112, is similar to Day. It uses the < and >=
predicates, as there is a non-overlapping delineation on month because the snapshot date is
April 1. The key rule to remember is that each additional parallel track must reference a
different column set. You can use common columns, but the overall column set must be
unique. The Oracle Analytics query engine uses the column set to select the most
appropriate track.

The third track on Year, < in the historical fragment and > in the current fragment, tells the
Oracle Analytics query engine that optimal (single) fragment selections can be made on
queries that just constrain on year. For example, a logical query on Year IN (2019, 2020)

Chapter 12
Work With Logical Table Source Data Fragmentation

12-17

should only hit the historical fragment. Likewise, a query on Year = 2022 should only
hit the current fragment. However, a query that hits the year 2021 can't be answered
by the content described in this track, and therefore hits both fragments, unless
additional information can be found in subsequent tracks.

The fourth track describes the fragment set for Year and Month in Year (month
integer). Notice the use of the multi-column content description technique, described
previously. Notice the use of < and >= predicates, as there is no ambiguity or overlap
for these two columns.

The fifth track describes fragment content in terms of Year and Month name. It uses
the value-based IN predicate technique.

As an embellishment, suppose the snapshot date fell on a specific day within a month:
therefore, multi-column content descriptions on just year and month would overlap on
the specific snapshot month. To specify this ambiguity, <= and >= predicates are used.

Fragment 1 (Historical):

EnterpriseModel.Period."Day" < VALUEOF("Snapshot Date") OR
EnterpriseModel.Period.MonthCode <= VALUEOF("Snapshot Year Month") OR
EnterpriseModel.Period."Year" < VALUEOF("Snapshot Year") OR
EnterpriseModel.Period."Year" = VALUEOF("Snapshot Year") AND
 EnterpriseModel.Period."Month in Year" <= VALUEOF("Snapshot Month") OR
EnterpriseModel.Period."Year" = VALUEOF("Snapshot Year") AND
 EnterpriseModel.Period."Monthname" IN ('Apr', 'Mar', 'Feb', 'Jan')

Fragment 2 (Current):

EnterpriseModel.Period."Day" >= VALUEOF("Snapshot Date") OR
EnterpriseModel.Period.MonthCode >= VALUEOF("Snapshot Year Month") OR
EnterpriseModel.Period."Year" > VALUEOF("Snapshot Year") OR
EnterpriseModel.Period."Year" = VALUEOF("Snapshot Year") AND
 EnterpriseModel.Period."Month in Year" >= VALUEOF("Snapshot Month") OR
EnterpriseModel.Period."Year" = VALUEOF("Snapshot Year") AND
 EnterpriseModel.Period."Monthname" IN ('Dec', 'Nov', 'Oct', 'Sep', 'Aug',
'Jul',
 'Jun', '', 'Apr')

Work With Aggregate Table Fragments
This topic contains a use case that provides techniques and rules for working with
aggregate table fragments.

See Define Data Fragmentation for a Logical Table Source.

Topics:

• About Aggregate Table Fragments

• Specify the Aggregate Table Content

• Define a Physical Layer Table with a Select Statement to Complete the Domain

• Specify the SQL Virtual Table Content

• Create Physical Joins for the Virtual Table

Chapter 12
Work With Logical Table Source Data Fragmentation

12-18

About Aggregate Table Fragments
Data at an aggregation level can be stored in multiple physical tables. In such cases, you
need to specify which logical table source contains which fragment of the data so that the
Oracle Analytics query engine chooses the correct source for the query.

For example, suppose you have a database that tracks the sales of soft drinks in all stores.
The detail level of data is at the store level. Aggregate information is stored at the city level
for the sales of Coke and Pepsi, but there is no aggregate information for the sales of 7‐Up or
other sodas.

The goal of this type of configuration is to maximize the use of the aggregate table. If a query
asks for sales figures for Coke and Pepsi, the data should be returned from the aggregate
table. If a query asks for sales figures for all soft drinks, the aggregate table should be used
for Coke and Pepsi and the detail data for the other brands.

The Oracle Analytics query engine handles this type of partial aggregate navigation. To
configure a semantic model to use aggregate fragments for queries whose domain spans
multiple fragments, you need to define the entire domain for each level of aggregate data,
even if you must configure an aggregate fragment as being based on a less summarized
physical source.

Specify the Aggregate Table Content
You configure the aggregate table navigation in the logical table source's fragmentation
expression.

In the soft drink example, the aggregate table contains data for Coke and Pepsi sales at the
city level.

Its data fragmentation expression should be similar to the following:

Chapter 12
Work With Logical Table Source Data Fragmentation

12-19

SoftDrinks.Products.Product IN ('Coke', 'Pepsi')

This expression tells the Oracle Analytics query engine that the source table has data
at the city and product level for two of the products.

Because this source is a fragment of the data at this level, you must select the
Combine with other fragmented sources field to indicate that the source combines
with other sources at the same level.

Define a Physical Layer Table with a Select Statement to Complete the Domain
The data for the rest of the domain (the other types of sodas) is all stored at the store
level.

To define the entire domain at the aggregate level, for example city and product, you
need to have a source that contains the rest of the domain at this level. Because the
data at the store level is at a lower, more detailed level than at the city level, it's
possible to calculate the city and product level detail from the store and product detail
by adding up the product sales data of all of the stores in a city. You can use a query
involving the store and product level table.

One way to do this is to define a table in the physical layer with a Select statement that
returns the store level calculations. To define the table, go to the physical layer on the
physical schema object and create a table on the physical schema object that the
SELECT statement uses for the query. Choose Select from the Table Type list, and type
the SQL statement in the Default Initialization String box.

The SQL statement must define a virtual table that completes the domain at the level
of the other aggregate tables. In this case, there is one existing aggregate table, and it
contains data for Coke and Pepsi by city. Therefore, the SQL statement has to return
all of the data at the city level, except for the Coke and Pepsi data.

Specify the SQL Virtual Table Content
Create a logical table source for the Sales column that covers the remainder of the
domain at the city and product level.

This source contains the virtual table created in the previous section. Map the Dollars
logical column to the US Dollars physical column in this virtual table.

The aggregate content specification for this source is:

Group by logical level:

GeographyDim.CityLevel, ProductDim.ProductLevel

This tells the Oracle Analytics query engine that this source has data at the city and
product level.

The fragmentation content specification might be:

SoftDrinks.Products.Product = '7-Up'

Additionally, because it combines with the aggregate table containing the Coke and
Pepsi data at the city and product level to complete the domain, you need to select the
Combine with other fragmented sources field.

Chapter 12
Work With Logical Table Source Data Fragmentation

12-20

Create Physical Joins for the Virtual Table
This topic provides an example that shows you how to construct physical joins for the virtual
table.

Construct the correct physical joins for the virtual table. Notice that CityProductSales2 joins to
the Cities and Products tables.

In this example, the two sources comprise the whole domain for soda sales. A domain can
have many sources. The sources have to all follow the rule that each level must contain
sources that, when combined, comprise the whole domain of values at that level. Setting up
the entire domain for each level helps ensure that queries asking for Coke, Pepsi, and 7‐Up
don't leave out 7‐Up. It also helps ensure that queries requesting information that has been
precomputed and stored in aggregate tables can retrieve that information from the aggregate
tables, even if the query requests other information that isn't stored in the aggregate tables.

Work With Logical Table Source Data Filters
This topic provides information to help you understand and add logical table source data
filters.

Topics:

• About Logical Table Source Data Filters

• Add a Data Filter to a Logical Table Source

About Logical Table Source Data Filters
A logical table source's data filter limits the data returned from the physical table.

Chapter 12
Work With Logical Table Source Data Filters

12-21

Each logical table source should contain data at a single intersection of aggregation
levels. For example, you wouldn't want to create a source that has sales data at both
the Brand and Manufacturer levels. If the physical tables include data at multiple
levels, then add an appropriate data filter to constraint to values to a single level.

Add a Data Filter to a Logical Table Source
Add a data filter to limit the data returned from the logical table source's corresponding
physical table.

For example, if the physical table contains data for all global regions, but you only
need data for North America, then add a filter that returns data for North America only.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Logical Layer.

4. In the Logical Layer pane, browse for and double-click the table with the table
source you want to add a data filter to.

5. In the table's tabs, click Sources.

6. In the table sources list, click the logical table source that you want to add a data
filter to and then click Detail view to open the properties pane.

7. Scroll to Data Filter and click Open Expression Editor.

8. Create and validate the filter expression. Click Save to save the expression.

9. Optional: If the logical source table contains duplicate data, then click Select
distinct values.

10. Click Save.

Chapter 12
Work With Logical Table Source Data Filters

12-22

13
Create and Use Variables in a Semantic
Model

This chapter contains information to help you understand how to create, manage, and use
global, session, and static variables.

Topics:

• About Semantic Model Variables

• Create and Configure Initialization Blocks

• Define Global Variables

• Define Session Variables

• Define Static Variables

About Semantic Model Variables
A semantic model variable contains a single value at any point in time. You use a variable
instead of a literal or constant in data filters and expressions.

Types of Variables

You can create three types of semantic model variables:

• Global variables - A global variable has the same value for all users. You can let the
system set the value, or specify a schedule to set the value. For example, you can define
current period or current year as a global variable.

• Session variables - A session variable's value is specific to a user's session and is
usually set when a user logs into Oracle Analytics, for example, user department or sales
region.

• Static variables - A static variable holds a value that doesn't change, for example,
minimum credit score or preferred credit score.

About Initialization Blocks and Variables

A global or session variable's initialization block contains a default initialization query that is
run to initialize or refresh the variables defined in the initialization block. The initialization
query references the data source's tables that supply the variable values. A query can
populate values into several variables, that is one variable for each column in the query. You
must also specify a connection pool that the initialization query uses to access the data
source and return the variable values.

In addition to the default initialization query, you can choose to create data source-specific
initialization queries for the data sources that your company is using (for example, Snowflake
or DB2). If you define an additional initialization query, then Oracle Analytics uses it rather
than the default initialization query to instantiate the initialization block and populate the
variables.

13-1

For example, suppose you're an Oracle Fusion Cloud Applications customer and your
data source is Snowflake. The semantic model delivered with Oracle Fusion Cloud
Applications contains variables with their initialization queries written for Oracle
Autonomous Database. To ensure that the variables included in the semantic model
delivered with Oracle Fusion Cloud Applications work properly in your instance, you
must modify the initialization blocks containing the variables to include an additional
initialization query written for the Snowflake data source.

A static variable's initialization block doesn't contain an initialization query. To define a
static variable, you specify the variable name and value.

After you define the variables in the initialization block, the variables are then available
for you to include in data filters and expressions.

About Variables In Semantic Model Data Filters and Expressions

Variables are available for you to include in data filters and expressions. You use
variables instead of literals or constants in expressions. You can't use variables to
represent columns or other semantic model objects.

Variables are arguments of the function VALUEOF(). For example:

CASE WHEN "Hour" >= VALUEOF("prime_begin")AND "Hour" <
VALUEOF("prime_end") THEN 'Prime Time' WHEN ... ELSE...END
The Semantic Modeler displays the Variables tab in the Expression Editor. The
Variables tab lists the variables that you can use in a data filter or expression. When
you double-click a variable, the Expression Editor inserts the VALUEOF() function and
the variable name.

Create and Configure Initialization Blocks
This topic describes what you need to know to understand, create, and configure
initialization blocks.

Chapter 13
Create and Configure Initialization Blocks

13-2

• Create an Initialization Block

• Open an Initialization Block

• Defer Session Variable Processing

• When You Can't Defer Session Variable Processing

• About Dynamically Creating Session Variables and Setting Their Values

• Use a List of Values to Initialize a Session Variable

• Create a Schedule to Update Global Variable Values

• Add an Additional Database Query to an Initialization Block

• Initialization Queries Used in Variables to Override Selection Steps

• Test an Initialization Block's Query

• Change the Order of Variables in an Initialization Block

• Add Dependencies to an Initialization Block

• Disable or Enable an Initialization Block

Create an Initialization Block
Create an initialization block specifically for the type of variable that you want to create.

For a global or session variable, its initialization block contains the variable definition and the
initialization query that supplies the variable with its value. For a static variable, its
initialization block contains the variable definition, including the variable's default value. A
static variable's initialization block doesn't contain an initialization query.

For information about how to define an initialization block for a specific type of variable, see
Create a Global Variable, Create a Session Variable, or Create a Static Variable.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Variables.

4. Click Create and then click Create Initialization Block.

5. In Create Initialization Block, go to Name and enter an initialization block name.

6. Go to the Type field and select the type of variable that you want to create. Click OK.

Open an Initialization Block
Open an initialization block to view or update its configuration, and to view, update, or add
variable definitions.

For information about how to add variable definitions to an initialization block, see Create a
Global Variable, Create a Session Variable, or Create a Static Variable.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Variables.

4. In the Variables pane, browse or search for the initialization block that you want to open
and double-click it.

Chapter 13
Create and Configure Initialization Blocks

13-3

Defer Session Variable Processing
To decrease logon time and save system resources, you can defer the processing of
an initialization block containing many session variables.

Any new initialization blocks that you create are set to deferred execution by default.
When you import a model created in Data Modeler or Model Administration Tool, the
deferred execution property set in its variables are imported into Semantic Modeler.

If you defer the processing of a session variable initialization block, then any variable
included in the initialization block is processed when it's accessed for the first time
during the session rather than at logon time. And Oracle Analytics doesn't run
initialization blocks that contain session variables that aren't used during the session.

The deferred run of an initialization block also triggers the processing of all
unprocessed predecessor initialization blocks. All associated variables of the
initialization block and its unprocessed predecessors are updated with the values
returned from the deferred processing.

A message is displayed when you can't defer the processing of a session variable
initialization block. See When You Can't Defer Session Variable Processing.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Variables.

4. In the Variables pane, browse or search for the initialization block that you want to
defer execution for and double-click it.

5. In the Initialization Block, click the General tab and then click Allow deferred
execution.

6. Click Save.

When You Can't Defer Session Variable Processing
This topic explains when you can't defer session variable initialization block processing
and the example messages that Semantic Modeler displays.

You can't defer variable initialization block processing when:

• The Variable names and values option is selected in the Query Returns field
and the variables haven't been declared explicitly with default values.

Example message: "The execution of init block 'A_blk' cannot be
deferred as it is using row-wise initialization."

• The initialization block contains variables with the Security Sensitive option
selected.

Example message: "The execution of init block 'A_blk' cannot be
deferred as it is used by session variable 'A' which is
security sensitive."

• The initialization block is a predecessor to another initialization block that doesn't
have the Allow deferred execution option selected.

Chapter 13
Create and Configure Initialization Blocks

13-4

Example message: "One of the successors for init block 'A_blk' does
not have "Allow deferred execution" flag set. Init block 'B_blk'
does not have "Allowed deferred execution" flag set.

About Dynamically Creating Session Variables and Setting Their Values
In a session variable's initialization block, you can select the Variable names and values
option in the Query Returns field to create session variables dynamically and set their values
when the session begins.

The names and values of the session variables reside in an external data source that you
access through a connection pool. The variables receive their values from the initialization
query that you provide.

Example 1 - Initialization Query With a Single Value Variable

Suppose you want to create session variables using values contained in a table named
RW_SESSION_VARS. This table contains three columns:

• USERID - Contains values that represent the unique identifiers of the users.

• NAME - Contains values that represent session variable names.

• VALUE - Contains values that represent session variable values.

This table shows the example columns and their values.

USERID NAME VALUE

JOHN LEVEL 4

JOHN STATUS FULL-TIME

JANE LEVEL 8

JANE STATUS FULL-TIME

JANE GRADE AAA

To implement this example, create a session variable initialization block and select Variable
names and values in the Query Returns field. Then in the Select Statement field, enter this
initialization query:

SELECT NAME, VALUE
FROM RW_SESSION_VARS
WHERE USERID='VALUEOF(NQ_SESSION.USERID)'

NQ_SESSION.USERID is a system session variable that Oracle Analytics initializes for each user
when they log on.

When initialized, this example creates the following session variables:

• When John connects to Oracle Analytics, his session contains two session variables:
LEVEL containing the value 4, and STATUS containing the value FULL_TIME.

• When Jane connects to Oracle Analytics, her session contains three session variables:
LEVEL containing the value 8, STATUS containing the value FULL-TIME, and GRADE
containing the value AAA.

Chapter 13
Create and Configure Initialization Blocks

13-5

Example 2 - Initialization Query With a Multiple Value Variable

Suppose you want to create session variables using values contained in a table
named RW_SESSION_VARS. This table contains three columns:

• ROLE_NAME - Contains values that represent user roles.

• NAME - Contains values that represent session variable names.

• VALUE - Contains values that represent session variable values.

This table shows the example columns and their values.

ROLE_NAME NAME VALUE

Role1 LEVEL 4

Role1 STATUS FULL-TIME

Role2 GRADE AAA

To implement this example, create a session variable initialization block and select
Variable names and values in the Query Returns field. Then in the Select
Statement field, enter this initialization query:

SELECT NAME, VALUE
FROM RW_SESSION_VARS
WHERE ';' || 'valueof(NQ_SESSION.ROLES)' || ';' like '%;' || ROLE_NAME || ';%'

If a user is assigned Role1 and Role 2, then valueof(NQ_SESSION.ROLES) returns the
value Role1;Role2.

NQ_SESSION.ROLES is a system session variable that Oracle Analytics initializes for
each user when they log on.

When initialized, this example creates the following session variables:

• When users assigned to Role1 connect to Oracle Analytics, their sessions
contains two session variables: LEVEL containing the value 4, and STATUS
containing the value FULL-TIME.

• When users assigned to Role2 connect to Oracle Analytics, their sessions contain
one session variable GRADE containing the value AAA.

• When users assigned to Role 1 and Role2 connect to Oracle Analytics, their
sessions contain three session variables: LEVEL containing the value 4, STATUS
containing the value FULL-TIME, and GRADE containing the value AAA.

Use a List of Values to Initialize a Session Variable
You can configure a session variable's initialization block to initialize a session variable
with a list of values.

To configure an initialization block to initialize a session variable with a list of values, in
the initialization block configuration you must select Variable names and values in
the Query Returns field.

When you select the Variable names and values field, the Query Returns field is
displayed. Selecting the Cache Query result option puts the query's results in a main
memory cache. The Oracle Analytics query engine uses the cached results for

Chapter 13
Create and Configure Initialization Blocks

13-6

subsequent sessions. This can reduce session startup time. However, the cached results
might not contain the most current session variable values. If every new session needs the
most current set of session variables and their corresponding values, you should clear this
option.

The information and example in this topic pertain to Logical SQL. If you're using Physical
SQL to initialize a variable with a list of values, then use the VALUELISTOF function.

For example, to get the customers assigned to the user names in the variable
LIST_OF_USERS, use the following SQL statement in the initialization query:

SELECT 'LIST_OF_USERS', USERID
FROM RW_SESSION_VARS
WHERE NAME='STATUS' AND VALUE='FULL-TIME'

This SQL statement populates the variable LIST_OF_USERS with a colon-separated list of the
values JOHN and JANE (for example, JOHN:JANE). You can then use this variable in a filter, as
shown in the following WHERE clause:

WHERE TABLE.USER_NAME = valueof(NQ_SESSION.LIST_OF_USERS)

The variable LIST_OF_USERS contains a list of one or more values. The physical IN clause
replaces the logical WHERE clause as shown in the following statement:

WHERE TABLE.USER_NAME IN ('JOHN', 'JANE')

Select 'LIST_OF_CUSTOMERS', Customer_Name from RW_CUSTOMERS where
RW.CUSTOMERS.USER_NAME in (VALUELISTOF(NQ_SESSION.LIST_OF_USERS))

To filter by specific values in a list, use ValueNameof. The first value is 0, not 1. For example:

Select 'LIST_OF_CUSTOMERS', Customer_Name from RW_CUSTOMERS where
RW.CUSTOMERS.USER_NAME in '(ValueNameOf(0,NQ_SESSION.LIST_OF_USERS))

Create a Schedule to Update Global Variable Values
You can schedule how often an initialization block's global variables' values are updated.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Variables.

4. In the Variables pane, browse or search for the initialization block that you want to
schedule and double-click it.

5. In the Initialization Block, click the General tab.

6. Go to the Run every field and specify how frequently you want to refresh the initialization
block's variable values.

7. Go to the Starting On field and select the date and time when you want the initialization
block's refresh schedule to begin.

8. Click Save.

Chapter 13
Create and Configure Initialization Blocks

13-7

Add an Additional Database Query to an Initialization Block
An initialization block must have a default initialization query. You can specify
additional initialization queries specific to the data sources that your company is using
(for example, Oracle Snowflake or DB2).

When you define an additional initialization query and the corresponding variable is
used in a data filter or expression, Oracle Analytics skips the initialization block's
default query. The data source-specific query bypasses the Oracle Analytics query
engine to instantiate the initialization block and populate the variables.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Variables.

4. In the Variables pane, browse or search for the initialization block that you want to
add database query to and double-click it.

5. In the Initialization Block, click the Variables tab and then click Specify query for
additional databases.

6. Click Add database-specific query and then select the database that you want to
write a query for.

7. In the Select Statement: <your_database> field, write a select statement.

8. Click Save.

Initialization Queries Used in Variables to Override Selection Steps
For analyses that contain hierarchical columns, global variables or session variables
can override selection steps.

Global and session variables intended for this purpose must use valid JSON syntax.

Using JSON, you must define type, column, and members with the following syntax.

{
 "type": "Hierarchy",
 "column": {
 "subject_area":"your_subject_area",
 "hier_id":"your_hier_id",
 "dim_id":"your_dim_id",
 "table_name":"your_table_name"
 },
 "members": [
 {
 "level_id":"your_level_id",
 "values": [
 your_value,
 your_value
]
 },
 {
 "level_id":"your_level_id",
 "values": [
 your_value
]

Chapter 13
Create and Configure Initialization Blocks

13-8

 }
]
}

Where:

"type" indicates hierarchy type.

"column" indicates the hierarchy column's information such as subject area and table name.

"dim_id" is the logical hierarchy name.

"members" indicates which hierarchy level and which member ID.

"level_id" is the presentation level name.

Example of Standard Hierarchy Syntax

{
 "type": "Hierarchy",
 "column": {
 "subject_area": "A - Sample Sales",
 "hier_id": "H2 Offices",
 "dim_id": "H3 Offices",
 "table_name": "Offices"
 },
 "members": [
 {
 "level_id": "Company",
 "values": [
 10001,
 10002
]
 },
 {
 "level_id": "Organization",
 "values": [
 1005
]
 }
]
}

Example of Parent-Child Hierarchy Syntax

{
 "type":"Hierarchy",
 "column":{
 "subject_area":"A - Sample Sales",
 "hier_id":"Sales Rep Hierarchy",
 "dim_id":"H5 Sales Rep",
 "table_name":"Sales Person"
 },
 "members":[
 {
 "level_id":"Grand Total",
 "values":[
 27,
 24,
 18,
 16

Chapter 13
Create and Configure Initialization Blocks

13-9

]
 }
]
}

Test an Initialization Block's Query
Test the initialization block's initialization query to confirm that the connection pool is
working properly, the query returns the expected values, and the values are correctly
assigned to the variables that you defined.

It is best practice to create and use a dedicated connection pool for initialization
blocks. See About Connection Pools for Initialization Blocks.

If an initialization block fails because of a particular connection pool, then no more
initialization blocks using that connection pool are processed. Instead, the connection
pool is blocked and subsequent initialization blocks for that connection pool are
skipped.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Variables.

4. In the Variables pane, browse or search for the initialization block that you want to
test and double-click it.

5. In the Initialization Block, click the Variables tab and then click Test Query.

Change the Order of Variables in an Initialization Block
If you test an initialization block's query and the variables are populated with the wrong
values, then you might need to change the order of the variables.

The initialization query's column order and the variable order specified in the
initialization block determines the column value assigned to each variable. When you
associate variables with an initialization block, the first column specified in the query is
assigned to the first variable in the list. If the initialization query's column order doesn't
match the variables' order, then the variables are populated with the wrong values.

The number of associated variables could differ from the number of columns retrieved.
If there are fewer variables than columns, extra column values are ignored. If there are
more variables than columns, the additional variables aren't refreshed and the
variables retain their original values.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Variables.

4. In the Variables pane, browse or search for the initialization block that you want to
disable or enable and double-click it.

5. In the Initialization Block, click the Variables tab.

6. Go to the variables list and click to highlight the variable that you want to move.
Click Move Up or Move Down.

7. Click Save.

Chapter 13
Create and Configure Initialization Blocks

13-10

Add Dependencies to an Initialization Block
When a semantic model has multiple initialization blocks, you can set the order that the
blocks are initialized in.

If you don't set dependencies, then Oracle Analytics runs all initialization blocks at the same
time. This results in null values because the variable values aren't returned in the necessary
order.

To add dependencies, you first open the initialization block that you want to be run last and
then add the initialization blocks that you want to be run before the block you've opened. For
example, suppose a semantic model has two initialization blocks, A and B. You open
initialization Block B, and then specify that Block A runs before Block B. If you're setting
dependencies for session initialization blocks that include schedules, then Block A runs
according to Block B's schedule in addition to its own schedule.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Variables.

4. In the Variables pane, browse or search for the initialization block that you want to add a
dependency to.

5. In the Initialization Block, click the Dependencies tab.

6. Click Add Initialization Block and browse for and select an initialization block to add it to
the Dependencies list.

7. Click Save.

Disable or Enable an Initialization Block
You can disable or enable any global or session initialization blocks. By default, initialization
blocks are enabled.

You might disable or enable an initialization block for testing purposes.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Variables.

4. In the Variables pane, browse or search for the initialization block that you want to disable
or enable and double-click it.

5. In the Initialization Block, click the General tab and then click Disable to disable the
initialization block, or clear Disable to enable the initialization block.

6. Click Save.

Chapter 13
Create and Configure Initialization Blocks

13-11

Define Global Variables
This topic describes what you need to know to understand and define global variables
for use in data filters and expressions.

Topics:

• About Global Variables

• Create a Global Variable

About Global Variables
Use a global variable when you need a variable's value to be the same for all users.

To define a global variable, you create or use an existing initialization block to contain
one or more global variables. The initialization block contains an initialization string
and connection pool to access the data source and return results to populate the
global variables that you define. The global variables are then available for you to add
to data filters or expressions.

For global variables, you can scheduled the initialization block to refresh variable
values as needed.

A common use of global variables is to set filters in logical table sources. See About
Global Variables and Logical Table Source Fragmentation.

Create a Global Variable
Create a global variable when you need the variable's value to be the same for all
users, for example, current period or current year.

After you define and save global variables, they're available for you to add to the
semantic model's data filters or expressions.

In a semantic model, you create and define a global variable within an initialization
block. You can't create and define a standalone global variable and then later
associate it with an initialization block.

Consider the following information when creating a global variable:

• If you add more than one variable to the initialization block, then the variables
must match the column order in the initialization query. This is so each variable
receives the proper value when the initialization query runs.

• The initialization query used to populate the variables must reference the data
source tables needed for the variable values. You don't have to include the data
source tables that supply the variable values in the semantic model's physical
layer.

• If you're creating a variable to override selection steps in a hierarchy column, then
use JSON syntax to write the initialization query. See Initialization Queries Used in
Variables to Override Selection Steps.

• Because object permissions don't apply to variables, the values in variables aren’t
secure and anyone who knows or can guess the name of the variable can use it in

Chapter 13
Define Global Variables

13-12

an expression. Because of this, Oracle recommends that you don’t put sensitive data like
passwords in variables.

Follow these steps to create a global variable:

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Variables.

4. Click Create and then click Create Initialization Block.

5. In Create Initialization Block, go to the Name field and enter an initialization block name.

6. Go to the Type field and select Global. Click Add.

7. Confirm that the Variables tab is displayed, and then go to the Select Statement:
DEFAULT field and enter the initialization query.

8. Go to Connection Pool and click Select to browse for and select a connection pool
specifically for use in initialization blocks.

9. Click Add Variable and enter a unique name.

10. Use one of the following options to specify a default value.

• Go to the Value field and enter a default value.

• Leave the Value blank if you want null as the default value.

• Click Detail View and click Open Expression Editor to create an expression that
determines the default value.

11. Optional: Click Add Variable to add another variable, and use the Move Up and Move
Down to position the variables in the correct order.

12. Optional: Click Test Query to review the variable values returned by the initialization
query and to confirm that the variables are receiving the correct values.

13. Click Save.

Define Session Variables
This topic describes what you need to know to understand and define session variables for
use in data filters and expressions.

• About Session Variables

• About Multi-Source Session Variables

• Create a Session Variable

• Example - Create and Use a Multi-Source Session Variable

About Session Variables
Use a session variable when you need a variable with a value specific to a user's session and
is set when a user logs into Oracle Analytics. Use session variables to set filters and
permissions for the session.

Session variables dynamically modify metadata content to adjust to a changing data
environment. For example, suppose User1 belongs to Department1 and User2 belongs to
Department2. These users must access only the data for their respective departments. In this

Chapter 13
Define Session Variables

13-13

case you can create and use the DEPARTMENT_NUMBER variable to store the
appropriate values for User1 and User2. You can then use this variable to filter data by
Department2 for User1 and Department2 for User2.

To define a session variable, you create or use an existing initialization block to contain
one or more session variables. The initialization block contains a default initialization
query and connection pool to access the data source and return results to populate the
session variables that you define. The session variables are then available for you to
add to the semantic model's data filters or expressions.

Unlike global variables, the initialization of session variables isn't scheduled. When a
user begins a session, Oracle Analytics creates new instances of session variables
and initializes them. Session variable values remain unchanged for the duration of the
session.

There are as many instances of a session variable as there are active sessions on
Oracle Analytics. You can initialize each instance of a session variable to a different
value.

Initialization blocks that contain many session variables can slow performance. You
can defer the processing of session variable initialization blocks during session logon
until their associated session variables are actually accessed within the session. See
Defer Session Variable Processing.

About Multi-Source Session Variables
Create and use multi-source session variables when you need a variable to provide
values from more than one data source. You can use multi-source session variables in
data filters and expressions.

There is no restriction to the number of values that the multi-source session variable
can hold.

In a session initialization block, you use the following format to create a session
variables for each source. This format contains four underscore characters as the
separator between the variable name and the source.

<ms_variable_name>____<source>
The multi-source system variable definitions that you created are listed in the saved
session initialization block's definition (for example, MVCOUNTRY____ORCL and
MVCOUNTRY____SNFL). But when you create expressions that include the multi-
source session variable name, the Expression Editor's Variables tab displays the
variable name (for example, MVCOUNTRY).

For an example of how to create multi-source session variables, see Create a Multi-
Source Session Variable.

You can add values to the multi-source session variable from other component
initialization blocks that return values. The multi-source session variable fails if all of
the component initialization blocks return null values.

You can set processing dependencies and deferred processing for multi-source
session variables, similar to regular session variables.

Chapter 13
Define Session Variables

13-14

Create a Session Variable
Create a session variable when you need the variable's value to be specific to a user's
session and set when a user logs into Oracle Analytics. For example, user department or
sales region.

After you define and save session variables, they're available for you to add to data filters and
expressions.

In a semantic model, you create and define a session variable within an initialization block.
You can't create and define a standalone session variable and then later associate it with an
initialization block.

Consider the following information when creating a session variable:

• If you add more than one variable to the initialization block, then the variables must
match the column order in the initialization query. This is so each variable receives the
proper value when the query is run.

• The initialization query used to populate the variables must reference the physical tables
needed for the variable values. You don't have to include the physical tables that supply
the variable values in the semantic model's physical layer.

• The Enable any user to set the value option allows any user to set the variable's value
in an analyses or dashboard (for example, a What If analysis). The user-specified
variable value is passed to the Oracle Analytics query engine and used in the underlying
calculation.

• The Security Sensitive option identifies the variable as sensitive to security when using
a row-level database security strategy such as Virtual Private Database (VPD). When this
option and the database's Virtual Private Database data source property are selected,
then the Oracle Analytics query engine matches a list of security-sensitive variables to
each prospective cache hit. Cache hits occur only on cache entries that include and
match all security-sensitive variables.

• If you're creating a variable to override selection steps in a hierarchy column, then use
JSON syntax to write the initialization query. See Initialization Queries Used in Variables
to Override Selection Steps.

• Because object permissions don't apply to variables, the values in variables aren’t secure
and anyone who knows or can guess the name of the variable can use it in an
expression. Because of this, Oracle recommends that you don’t put sensitive data like
passwords in variables.

Follow these steps to create a session variable:

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Variables.

4. Click Create and then click Create Initialization Block.

5. In Create Initialization Block, go to the Name field and enter an initialization block name.

6. Go to the Type field and select Session. Click Add.

7. Confirm that the Variables tab is displayed, and then go to the Select Statement:
DEFAULT field and enter the initialization query.

Chapter 13
Define Session Variables

13-15

8. Go to Connection Pool and click Select to browse for and select a connection
pool specifically for use in initialization blocks.

9. Click Add Variable and enter a unique name.

10. Use one of the following options to specify a default value.

• Go to the Value field and enter a default value.

• Leave the Value blank if you want null as the default value.

• Click Detail View and click Open Expression Editor to create an expression
that determines the default value.

11. Optional: Select Enable any user to set the value to allow the user to set the
variable's value in an analyses or dashboard (for example, a What If analysis).

12. Optional: Select Security Sensitive to identify the variable as sensitive to security
when using a row-level database security strategy, such as a Virtual Private
Database (VPD).

13. Optional: Click Add Variable to add another variable, and use the Move Up and
Move Down to position the variables in the correct order.

14. Optional: Click Test Query to review the variable values returned by the
initialization query and to confirm that the variables are receiving the correct
values.

15. Click Save.

Example - Create and Use a Multi-Source Session Variable
This topic provides an example of how to create and use the MVCOUNTRY multi-
source session variable.

Topics:

• Create a Multi-Source Session Variable

• Use a Multi-Source Session Variable in an Expression

• Use a Multi-Source Session Variable in a Data Filter

Create a Multi-Source Session Variable
This topic explains how to create the MVCOUNTRY multi-source session variable.
When you add the MVCOUNTRY variable to an expression or data filter, it returns data
from the Oracle and Snowflake data sources.

After you create a multi-source session variable, the variables definitions are listed in
the initialization block's definition (for example, MVCOUNTRY____ORCL and
MVCOUNTRY____SNFL). But in the Expression Editor, the multi-source session
variable name is displayed (for example, MVCOUNTRY).

See About Multi-Source Session Variables.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Create the first variable.

a. Click Variables.

Chapter 13
Define Session Variables

13-16

b. Click Create and then click Create Initialization Block.

c. In Create Initialization Block, go to the Name field and enter mvcountry_orcl_init.

d. Go to the Type field and select Session. Click Add.

e. Confirm that the Variables tab is displayed, and then go to the Query Returns field
and select Variable names and values.

f. Go to the Select Statement: DEFAULT field and enter the following initialization
query, using four underscores between the variable name (MVCOUNTRY) and the
source (ORCL):

select distinct 'MVCOUNTRY____ORCL', country from oracle_table
g. Go to Connection Pool and click Select to browse for and select a connection pool.

h. Click Add Variable and enter the name MVCOUNTRY____ORCL. You need to add four
underscores between the variable name and the source name.

i. Click Save.

4. Create the second variable.

a. Click Variables.

b. Click Create and then click Create Initialization Block.

c. In Create Initialization Block, go to the Name field and enter mvcountry_snfl_init.

d. Go to the Type field and select Session. Click Add.

e. Confirm that the Variables tab is displayed, and then go to the Query Returns field
and select Variable names and values.

f. Go to the Select Statement: DEFAULT field and enter the following initialization
query, using four underscores between the variable name (MVCOUNTRY) and the
source (SNFL):

select distinct 'MVCOUNTRY____SNFL', country from snowflake_table
g. Go to Connection Pool and click Select to browse for and select a connection pool.

h. Click Add Variable and enter the name MVCOUNTRY____SNFL. You need to add four
underscores between the variable name and the source name.

i. Click Save.

Use a Multi-Source Session Variable in an Expression
After you create the MVCOUNTRY multi-source session variable, you can use it in an
expression.

For information about the MVCOUNTRY session variable used in this example, see Create a
Multi-Source Session Variable.

This is an example of how to use the multi-source session variable in an expression:

select lastName, firstName, country from employee
where country=VALUEOF(NQ_SESSION.MVCOUNTRY)

Chapter 13
Define Session Variables

13-17

Use a Multi-Source Session Variable in a Data Filter
After you create the MVCOUNTRY multi-source session variable, you can use it in a
data filter.

The MVCOUNTRY multi-source session variable is displayed in the Expression
Editor's Variables tab. For information about the MVCOUNTRY session variable used
in this example, see Create a Multi-Source Session Variable.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Browse for and open a logical or presentation table.

4. Click the Data Filters tab.

5. Go to the Add field, enter the application role that you want to set the data filter
for, click Search by Role Name, and from the list select the application role.

6. In the Role Name list, click the role you added to highlight it, and then click Open
Expression Editor.

7. Enter this expression:

Country=VALUEOF(NQ_SESSION.MVCOUNTRY)
8. Optional: Click Validate.

9. Click Save to save the expression.

10. Click Save to save the semantic model.

Define Static Variables
This topic describes what you need to know to understand and define static variables
for use in data filters and expressions.

Topics:

• About Static Variables

• Create a Static Variable

About Static Variables
Use a static variable when you need a variable with a fixed value.

For example, suppose you want to create an expression to group times of day into
different day segments. If Prime Time were one of those segments and corresponded
to the hours between 5:00 PM and 10:00 PM, you could create a CASE statement like
the following:

CASE WHEN "Hour" >= 17 AND "Hour" < 23 THEN 'Prime Time' WHEN... ELSE...END

Hour is a logical column, mapped to a timestamp physical column using the date-and-
time Hour(<<timeExpr>>) function.

Instead of entering the numbers 17 and 23 into this expression as constants, you
could create and use a static variable named prime_begin, set the variable's value to

Chapter 13
Define Static Variables

13-18

17, and then create another variable named prime_end and set the variable's value to 23.

When you create a static variable, you must include a default value. You can set the Value
field with a number, character, date, time, or timestamp value. Or you can use the Expression
Editor to insert the Date, Time, and TimeStamp constants into an expression.

Create a Static Variable
Create a static variable when you need a variable with a value that doesn't change, for
example, minimum credit score or preferred credit score.

After you define and save static global variables, they're available for you to add to the
semantic model's data filters or expressions.

In a semantic model, you create and define a static variable within an initialization block. You
can't create and define a standalone static variable and then later associate it with an
initialization block.

A static variable must have a default value that is a numeric, character, date, time, or
timestamp value. If you initialize a static variable using a character string, enclose the string
in single quotes ('). You can use the Expression Editor to insert the Date, Time, or
Timestamp constants.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Variables.

4. Click Create and then click Create Initialization Block.

5. In Create Initialization Block, go to the Name field and enter an initialization block name.

6. Go to the Type field and select Static. Click Add.

7. Confirm that the Variables tab is displayed and then click Add Variable and enter a
unique name.

8. Go to the Value field and enter a static value. Or, click Detail View and click Open
Expression Editor to create an expression that determines the static value.

9. Click Save.

Chapter 13
Define Static Variables

13-19

14
Support Multilingual Data

Oracle Analytics supports several language translations. This chapter section describes how
you configure field information to display in multiple languages

Topics:

• What Is Multilingual Data Support?

• What is Lookup?

• What Is Double Column Support?

• Design Translation Lookup Tables in Multilingual Schema

• Create Logical Lookup Tables and Logical Lookup Columns

• Create Physical Lookup Tables and Physical Lookup Columns

• Enable Lexographical Sorting

What Is Multilingual Data Support?
Multilingual data support is the ability to display data from database schemas in multiple
languages.

Oracle Analytics supports multilingual schemas by simplifying the administration and
improving query performance for translations. Multilingual schemas typically store translated
fields in separate tables called lookup tables. Lookup tables contain translations for descriptor
columns in several languages, while the base tables contain the data in the base language.
Descriptor columns provide a textual description for a key column where there is a logical
one-to-one relationship between the descriptor column and the key column. An example of a
descriptor column might be Product_Name, which provides textual descriptions for a
Product_Key column.

What is Lookup?
Lookup is when a query joins the base table and lookup table to obtain the translated values
for each row in the base table.

Lookup tables might be dense and sparse in nature. A dense lookup table contains
translations in all languages for every record in the base table. A sparse lookup table
contains translations for only for some records in the base tables. Sometimes it is also
possible that lookup tables are both dense and sparse. For example, a lookup table might
contain complete translation for the Product Description field but only partial translation for
the Product Category field. Dense and Sparse are types of lookup operation rather than
being a table property. You configure lookup tables using the Semantic Modeler.

14-1

What Is Double Column Support?
Double column support is the ability to associate two columns (a descriptor ID column
and a descriptor column) in the logical layer, and can help you to define language
independent filters.

When the user creates a filter based on a descriptor column, the query tool displays a
list of values to the user that are selected from the descriptor column.

This descriptor column technique is also useful when dealing with queries that involve
LOB data types such as CLOBs and BLOBs and aggregate functions such as COUNT or
SUM. Some data sources don't allow LOB columns to be used in the GROUP BY clause.
So, instead of adding the LOB column to the GROUP BY, it's necessary to group by
some other column that has a one-to-one relationship with the LOB column and then
in join the LOB column after the aggregates have been computed.

See Add Double Column Support.

Design Translation Lookup Tables in Multilingual Schema
The two common techniques of designing translation lookup tables: design a lookup
table for each base table, and design a lookup table for each translated field.

Lookup Table for Each Base Table

There is often a separate lookup table for each base table. The lookup table contains a
foreign key reference to records in the base table, and contains the values for each
translated field in a separate column.

Assuming a completely dense lookup table, the number of rows in the lookup table for
a particular language equals the number of rows in the base table.

The example in the figure below shows each record in the lookup table matching only
one row in the base table.

Base Table

Key Code Description Category_Code Category

1 A123 Bread D45 Groceries

2 B234 Marmalade D45 Groceries

3 C345 Milk D45 Groceries

Lookup Table

Key Language_Key Description Category

1 DE Brot Lebensmittelgeschaft

1 IT Pane Drogheria

2 DE Marmelade Lebensmittelgeschaft

2 IT Marmeleta di agrumi Drogheria

3 DE Milch Lebensmittelgeschaft

3 IT Latte Drogheria

Chapter 14
What Is Double Column Support?

14-2

Lookup Table for Each Translated Field

The alternative approach to using one lookup table for each base table involves a separate
lookup table for each translated field, as shown in the figure below.

Getting the translated value of each field requires a separate join to a lookup table. In
practice there is often just one physical table that contains translations for multiple fields.
When a single table contains translations for multiple fields, you must place a filter on the
lookup table to restrict the data to only those values that are relevant to a particular column in
the base table.

Base Table

Key Code Description Category_Code Category

1 A123 Bread D45 Groceries

2 B234 Marmalade D45 Groceries

3 C345 Milk D45 Groceries

Lookup Table

Field_Key Value_Key Language_Key Translation

Description A123 DE Brot

Description A123 IT Pane

Description B234 DE Marmelade

Description B234 IT Marmeleta di agrumi

Description C345 DE Milch

Description C345 IT Latte

Category D45 DE Lebensmittelgeschaft

Category D45 IT Drogheria

Create Logical Lookup Tables and Logical Lookup Columns
This section describes creating logical lookup tables and lookup columns.

Topics:

• Create Logical Lookup Tables

• Designate a Logical Table as a Lookup Table

• About the LOOKUP Function Syntax

• Create Logical Lookup Columns

Create Logical Lookup Tables
You create a logical lookup table object in the business model to define the necessary
metadata for a translation lookup table.

A lookup table is a logical table with a property that designates it as a lookup table, as
described in Designate a Logical Table as a Lookup Table. The figure below provides an
example of a lookup table.

Chapter 14
Create Logical Lookup Tables and Logical Lookup Columns

14-3

Product_Translation Table

Product_Code Language_Key Description

A123 DE Brot

A123 IT Pane

B234 DE Marmelade

B234 IT Marmelde di agrumi

C345 DE Milch

C345 IT Latte

• Each of the lookup table's primary keys are considered together as a Lookup Key
and perform the lookup. The lookup can be performed only when the values for all
lookup key columns are provided. For example, in the figure above, the combined
Product_Code and Language_Key form the primary key of this lookup table.

• A lookup key is different from a logical table key because lookup key columns are
order sensitive. For example, Product_Code and Language_Key are considered a
different lookup key to Language_Key and Product_Code. All columns of the
lookup key must be joined in the lookup function.

• A lookup table has a combination of lookup keys.

• A lookup table has at least one value column. In the figure above, the value
column is Description, and it contains the translated value for the product
description.

• There must be a functional dependency from a lookup key to each value column.
That is the lookup key can identify the value column. The lookup key and value
column should both belong to the same physical table.

• A lookup table is standalone without joining to any other logical tables.

The consistency check rules are relaxed for lookup tables, such that if a table is
designated as a lookup table, it need not be joined with any other table in the
subject area (logical tables would normally be joined to at least one table in the
subject area).

• The aggregation results when using lookup columns should match the results from
the base column. For example, the following code

SELECT productname_trans.productname, sales.revenue FROM
snowflakesales;

should return the same results as

SELECT product.productname, sales.revenue FROM snowflakesales;

If the lookup table productname_trans in this example uses the lookup key
ProductID and LANGUAGE, then both queries return the same aggregation
results.

If the lookup key contains a column with a different aggregation level to
productname, then the query grain changes and this affects the aggregation.

Chapter 14
Create Logical Lookup Tables and Logical Lookup Columns

14-4

Designate a Logical Table as a Lookup Table
A logical table must be designated as a lookup table (using the Semantic Modeler) before
you can use it as a lookup table.

To designate a logical table as a lookup table, you must first import the lookup table into the
physical layer and drag and drop it into the logical layer.

The order in which the columns are specified in the lookup table primary key determines the
order of the corresponding arguments in the LOOKUP function.

For example, if the lookup table primary key consists of the RegionKey, CityKey, and
LanguageKey columns, then the matching arguments in the LOOKUP function must be
specified in the same order. You use the Semantic Modeler to change the order of primary
key columns.

About the LOOKUP Function Syntax
A LOOKUP function is typically used in the logical layer, as an expression in a translated logical
table column.

The syntax of the LOOKUP function is as follows:

Lookup ::= LookUp([DENSE] value_column, expression_list) | LookUp(SPARSE
value_
column, base_column, expression_list)

expression_list ::= expr {, expression_list }

expr ::= logical_column | session_variable | literal

For example:

LOOKUP(SPARSE SnowflakeSales.ProductName_TRANS.ProductName,
SnowflakeSales.Product.ProductName, SnowflakeSales.Product.ProductID,
VALUEOF(NQ_SESSION."LANGUAGE"))

LOOKUP(DENSE SnowflakeSales.ProductName_TRANS.ProductName,
SnowflakeSales.Product.ProductID, VALUEOF(NQ_SESSION."LANGUAGE"))

Note the following:

• A LOOKUP function is either dense or sparse, and is specified using the keyword DENSE or
SPARSE. The default behavior is dense lookup, if neither DENSE or SPARSE is specified. For
DENSE lookup, the translation table is joined to the base table through an inner join, while
for SPARSE lookup, a left outer join is performed.

• The first parameter (the parameter after the DENSE or SPARSE keyword) must be a valid
value column from a valid lookup table that's defined in the logical layer.

• If the SPARSE keyword is given, then the second parameter must be a column that
provides the base value of the value_column. For DENSE lookup, this base column isn't
required.

Chapter 14
Create Logical Lookup Tables and Logical Lookup Columns

14-5

• The number of expressions in the expression_list must be equal to the number of
the lookup key columns that are defined in the lookup table, which is defined by
the value_column. The expression that's specified in the expression list must also
match the lookup key columns one by one in order.

For example:

– The lookup key for lookup table ProductName_TRANS is both Product_code
and Language_Key

– The expressions in expression_list are SnowflakeSales.Product.ProductID and
VALUEOF(NQ_SESSION."LANGUAGE")

– The meaning of the lookup is:

return the translated value of ProductName from the translation table with the
condition of Product_code = SnowflakeSales.Product.ProductID and
Language_Key = VALUEOF(NQ_SESSION."LANGUAGE")

Create Logical Lookup Columns
You use the Expression Builder in the Semantic Modeler to create a logical column
that includes the lookup function.

The value of the logical column depends on the language that is associated with the
current user.

You create a logical column using a derived column expression in the column
properties pane located in the logical table's Columns tab. See Create Derived
Columns.

For example to get the translated product name:

INDEXCOL(VALUEOF(NQ_SESSION."LAN_INT"), "Translated Lookup
Tables"."Product". "ProductName",
LOOKUP(DENSE "Translated Lookup Tables"."Product Translations".
"ProductName", "Translated Lookup Tables"."Product"."ProductID",
VALUEOF(NQ_SESSION."WEBLANGUAGE")))

LAN_INT is a session variable that's populated by the session initialization block MLS
and represents either the base language or other languages:

• 0 for base language (for example, en - English)

• 1 for other language codes (for example, fr - French, or cn - Chinese)

WEBLANGUAGE is a session variable that is initialized automatically, based on the
language selected when a user logs in.

The INDEXCOL function helps to select the appropriate column. In the preceding
example, the expression returns the value of the base column (ProductName) only if
the user language is the base language (that is, when the value of session variable
LAN_INT is 0). If the user language isn't the base language (when the value of the
session variable LAN_INT is 1), then the expression returns the value from the lookup
table of the language that's passed in the WEBLANGUAGE session variable.

When you use the DENSE function (shown in the previous example), if there's no value
for a column in the translated language, then the lookup function displays a blank
entry.

Chapter 14
Create Logical Lookup Tables and Logical Lookup Columns

14-6

When you use the SPARSE function (shown in the following example), and there is no value for
a column in the translated language, then the lookup function displays a corresponding value
in the base language.

INDEXCOL(VALUEOF(NQ_SESSION."LAN_INT"), "Translated Lookup
Tables"."Product".
"ProductName", LOOKUP(SPARSE "Translated Lookup Tables"."Product
Translations".
"ProductName", "Translated Lookup Tables"."Product"."ProductName",
"Translated
Lookup Tables"."Product"."ProductID", VALUEOF(NQ_SESSION."WEBLANGUAGE")))

Create Physical Lookup Tables and Physical Lookup Columns
You can create physical lookup table objects in the logical layer to define the necessary
metadata for translation lookup tables. Physical lookup tables are similar to logical lookup
tables in both semantics and usage.

Physical lookup tables address the following scenarios that logical lookup tables can't handle:

• The lookup table source is fragmented. In this case, use multiple physical lookup tables
to hold the values. For example, translation values for fragmented product name data can
be distributed in two physical lookup tables called productname_trans_AtoM and
productname_trans_NtoZ.

• Different levels of translation tables are available. It's preferable to use the same source
as the base query.

Unlike logical lookup tables, you configure physical lookup tables by constructing lookup
functions in the logical table source mapping.

For example, suppose that you have the following physical tables:

• A base table called Categories, with columns such as categoryid and categoryname.

• A translation table called Categories_Trans, with columns such as categoryid,
language_key, and categoryname. The translated value of categoryname is determined
through a combination of the categoryid and language_key columns.

Suppose that you have a logical table called Categories. In that table, you add a new logical
column called categoryname_p, which is a translation column that depends on the current
language. The column isn't derived from any other logical column (unlike logical lookup
columns).

The following procedure explains how to configure a physical lookup translation column using
the previous example.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Logical Layer and browse for and double-click the table (for example, Categories)
where you want to add a logical column.

4. In the logical table, click Columns and then click Add Column. In the New Column_1
row enter a column name (for example, categoryname_p). Press Enter.

5. Click Sources.

Chapter 14
Create Physical Lookup Tables and Physical Lookup Columns

14-7

6. In the logical table sources list table, click the logical table source and then click
Detail view to open the properties pane.

7. Scroll to Column Mapping, click the Show field, and select Unmapped.

8. Locate and click the new logical column (for example, categoryname_p) to select
it, and then click it again to display the expression field. Click the expression editor
icon and create an expression similar to the following:

INDEXCOL(VALUEOF(NQ_SESSION."LAN_INT"),
"DB_Name"."My_Category"."My_Schema"."Categories"."CategoryName",
LOOKUP(SPARSE
"DB_Name"."My_Category"."My_Schema"."CATEGORIES_TRANS"."CATEGORYNAME
",
"DB_Name"."My_Category"."My_Schema"."Categories"."CategoryName",
"DB_Name"."My_Category"."My_Schema"."Categories"."CategoryID",
VALUEOF(NQ_SESSION."LANGUAGE")))

9. In Logical Table Source, click OK.

The Categories_trans physical translation table doesn't need to be incorporated into
the logical table source. The INDEXCOL function checks that if the LAN_INT session
variable is 0, then the categoryname column is fetched from the base table. Note the
following about the LOOKUP function:

• The physical LOOKUP function works the same as a logical LOOKUP function. The
only difference is that all the references to logical tables and columns are replaced
by physical tables and columns.

• The first column of the LOOKUP function is a value column, which is a translation
value column from a translation table. The second column is the base value
column, if a sparse lookup exists. The remaining columns are columns or values to
be joined to the physical translation table, which is the table that's implied by the
value column of the LOOKUP function.

Because you can't use a dialog box to configure a physical lookup table, you must
ensure that the order of the join columns and values is compatible with the column
sequence displayed in the Additional Keys section of the physical table's General tab
for the physical translation table. For example, the Additional Keys section for the
Categories_trans table indicates that the primary key is composed of the CategoryID
and Language_Key columns.

The columns that are specified in the LOOKUP function correspond to these columns:

• The following line:

"DB_Name"."My_Category"."My_Schema"."Categories"."CategoryID"

corresponds to the Categories_trans.CategoryID column.

• The following line:

valueof(NQ_SESSION."LANGUAGE")

corresponds to the Categories_trans.Language_key column.

Chapter 14
Create Physical Lookup Tables and Physical Lookup Columns

14-8

See Create Logical Lookup Columns for information about lookup concepts like the LAN_INT
and LANGUAGE session variables and full syntax information for the LOOKUP function.

Enable Lexographical Sorting
Lexicographical sorting is the ability to sort data in alphabetical order.

Most data sources support lexicographical sorting. However, if you notice that lexicographical
sorting isn't working properly for a particular data source, then you can configure the Oracle
Analytics query engine to perform the sort rather than the back-end data source. To perform
this configuration, you need to confirm or deselect the semantic model database's
ORDERBY_SUPPORTED supported query feature. See Modify a Database's Supported
Query Features.

Note that disabling ORDERBY_SUPPORTED in the database can have a very large
performance impact because consequently many joins aren't pushed down to the data
source. In many cases, the performance impact is significant enough that
ORDERBY_SUPPORTED can still be enabled in the data source regardless of the impact on
the lexicographical sorting functionality.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Physical Layer and locate and double-click a database.

4. In the database, click Advanced.

5. Go to the Supported Query Features section of the Features table and locate the
ORDERBY_SUPPORTED feature.

6. Confirm that the ORDERBY_SUPPORTED feature is deselected.

7. Click Save.

Chapter 14
Enable Lexographical Sorting

14-9

15
Apply Data Access Security to Semantic
Model Objects

This chapter explains the data access security types and how to implement them in your
semantic model.

Topics:

• About Data Access Security

• Work With Row-Level Security

• Work With Object Permissions

• Work With Query Limits

About Data Access Security
After developing your semantic model, you need to set up a data security architecture to
control source data access.

Set up data access security to meet data security requirements such as:

• Protect business data from unauthorized access.

• Protect your semantic model's metadata such as measure definitions.

• Prevent individual users from damaging overall system performance.

You can set up three types of data security: row-level security, object permissions, and query
limits (governors).

In the semantic model, you set up object permissions and query limits, which are then
enforced by the Oracle Analytics query engine. You can add row-level data security, which is
also enforced by the Oracle Analytics query engine, to both the semantic model and the
database.

It's best practice to implement row-level security in the database and object permissions and
query limits in the semantic model. Although it's possible to provide database-level object
restrictions on individual tables or columns, objects that users don't have access to are still
visible in all clients even though queries against them fail. It's better to set up object
permissions in the semantic model so that objects that users don't have access to are hidden
in all clients.

To control user access to workbooks, dashboards, or analyses, set up access and read and
write permissions at the workbook, dashboard, or analyses object level.

If you implement security only in workbooks, dashboards, or analyses, then the deployed
semantic model and database are exposed to SQL injection hacker attacks and other
security vulnerabilities. Implementing object-level security and data and row-level security in
the semantic model prevents these attacks and vulnerabilities. This security applies to all
incoming clients.

15-1

Work With Row-Level Security
This topic provides information to help you understand and define semantic model
row-level security.

Topics:

• About Row-Level Security

• Where to Set Up Row-Level Security

• Set Up Row-Level Security in the Database

• About Data Filters and Row-Level Security

• Set Up Data Filters in the Semantic Model

• About Specifying Functional Groups for Application Roles in Data Filters

• Specify a Functional Group for a Data Filter's Application Role

About Row-Level Security
Some data sources apply row-level security policies to determine what data can be
queried by an individual user.

Data security is described using various terms such as row-level security, data-level
security, or Virtual Private Database (VPD) policies. This document uses the term row-
level security.

Some data sources support connections using a privileged user that can impersonate
the end user running a query. Connection pools allow parameterization of connection
string information, and on-connection and on-query scripts that run prior to data
queries. When Oracle Analytics connects to a data source by using a privileged user
that can impersonate the actual end user, the data source’s data security policies
apply to the end user queries.

In addition to the connection string and query script configuration, Oracle Analytics
provides a Virtual Private Database (VPD) data source property for each database in
the semantic model's physical layer. When you enable the Virtual Private Database
(VPD) option, you can prevent sharing of query cache between users because each
user needs to retrieve only the data they are permitted to query.

You must define the users, permissions, and security policies in the database. Refer to
your database documentation for more information.

You can use a connection script to achieve the same row-level security for Oracle
Database data sources.

Where to Set Up Row-Level Security
You can set up row-level security in the semantic model or in the database.

Implementing row-level security in the semantic model provides benefits such as:

• All users share the same database connection pool for better performance.

• All users share cache for better performance.

Chapter 15
Work With Row-Level Security

15-2

• Security rules can be defined and maintained to apply across many federated data
sources.

Implementing row-level security in the database is good for situations where multiple
applications share the same database. When you design and implement row-level security in
the database, you should also define and apply object permissions in the semantic model.

Although it's possible to set up row-level security in both the semantic model and in the
database, you typically don't enforce row-level security in both places unless there is a
specific need to do so.

Set Up Row-Level Security in the Database
Implement row-level security in the database when multiple applications share the same
database.

If you configured the database to use the Virtual Private Database (VPD) feature, then
perform this task to make database queries through a semantic model.

Selecting the Virtual Private Database field in the physical database's Advanced properties
ensures that the Oracle Analytics query engine protects cache entries for each user. Oracle
Analytics query engine matches a list of security-sensitive variables to each prospective
cache hit. Cache hits would only occur on cache entries that included and matched all
security-sensitive variables.

After you set up row-level security in the database, you can set up object permissions in the
semantic model for the presentation layer or other objects. You can also set query limits
(governors). See Set Up Presentation Object Permissions and Limit the Number of Rows in a
Database Query .

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Physical Layer, and then double-click the database you want to edit.

4. Click the Advanced tab.

5. In Data Source Properties, select Virtual Private Database.

6. Click Save.

About Data Filters and Row-Level Security
Define data filters on semantic model objects for specific application roles.

Typically you don't set up data filters if you've implemented row-level security in the database.
Row-level security policies are enforced by the database and not by Oracle Analytics.

You can set data filters for objects in the logical layer and the presentation layer. Applying a
filter on a logical object impacts all presentation layer objects that use the object. If you set a
filter on a presentation layer object, it's applied to the object along with any other filters that
are set on the underlying logical objects.

The image shows how data filter rules are enforced in the Oracle Analytics query engine. The
security rules are applied to all incoming clients and can't be breached, even when the
Logical SQL query is modified.

In this example, a filter has been applied to an application role. When Anne Green, who is a
member of that role, sends a request, the return results are limited based on the filter.

Chapter 15
Work With Row-Level Security

15-3

Because no filters have been applied to the application roles for the Administrator
user, all results are returned. The Oracle Analytics query engine-generated SQL takes
into account any data filters that have been defined.

Set Up Data Filters in the Semantic Model
You can assign data filters for specific application roles to enforce row-level security
rules in the semantic model.

To create filters, you select objects from subject areas where you want to apply the
filters and then you provide the filter expression information for the individual objects.
For example, you might want to define a filter like "Sample Sales"."D2 Market"."M00
Mkt Key" > 5 to restrict results based on a range of values for another column in the
table.

You can also use semantic model and session variables in filter definitions.

When a semantic model object such as a logical fact table is accessed by multiple
application roles with different levels of access, you can create functional groups to
prevent application roles from viewing data restricted from view by that specific
application role.

For example, suppose you want your regional sales associates to see the revenue for
a quarter in their assigned region, but to avoid exposing sensitive information you want
to prevent your regional sales associates to see to total segment sales for all of the
regions, In this scenario you create functional groups with different levels of access as
appropriate for the specific application role to the filter. See Specify a Functional Group
for a Data Filter's Application Role.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

Chapter 15
Work With Row-Level Security

15-4

3. Click Logical Layer or Presentation Layer and double-click the table where you want to
set up data filters.

4. Click the Data Filters tab.

5. In Add, search for and select the application role that you want to set the data filter for.

6. Click Open Expression Editor.

7. In the Expression Editor, define the condition using the semantic model objects and
operators.

8. Click Save.

About Specifying Functional Groups for Application Roles in Data Filters
When a semantic model object such as a logical fact table is accessed by multiple application
roles with different levels of access, you can specify functional groups to prevent application
roles from viewing data restricted from view by that specific application role.

When there are no functional groups defined, all the security filters applied to a given table,
regardless of the associated role, and are combined using the OR operator. Using the OR
operator works in most cases because a role can view a union of all the rows selected by the
security filters. For example, consider the following filters:

Role A is assigned the filter, Product = 'Camera'
Role B is assigned the filter, Product = 'Monitor'
If an application role is given Role A and Role B, then the role can view data for both the
Camera and Monitor products.

When the two security filters from the same table are combined in the query, the filter
conditions are combined using the OR operator, this is appropriate for most security filters
defined on dimension tables, for example:

Product = 'Camera' OR Product = 'Monitor'
Using functional groups is necessary when securing a single fact table, using data filters from
different dimensions.

In this example, a fact table is secured using the following filters:

Role A is assigned the filter, Product = 'Camera'
Role B is assigned the filter, Product = 'Monitor'
Role C is assigned the filter, Region = 'Southwest'
If you don't use functional groups, a user with roles A, B, and C would have all three filter
conditions combined in the query using the OR operator, for example:

(Product = 'Camera' OR Product = 'Monitor' OR Region = 'Southwest')
Combining the results of Role A, B, and C doesn't make sense because Product and Region
are independent dimensions. Combining data filters from different dimensions using OR
operator provides the application roles access to more data values than the roles should
view.

In this example, the application role can see data for all products within the Southwest region
as well as data for all regions within the Camera and Monitor products.

Chapter 15
Work With Row-Level Security

15-5

To get the expected behavior, that is allowing the application role to see data only for
the Camera and Monitor products within the Southwest region, you need to change
the filter to combine the product filters with the region filter using the AND operator, for
example:

(Product = 'Camera' OR Product = 'Monitor') AND (Region = 'Southwest')
To achieve this using functional groups, assign the security filters to functional groups
as follows:

Role A is assigned the filter, Product = 'Camera' with functional group
"Product"
Role B is assigned the filter, Product = 'Monitor' with functional group
"Product"
Role C is assigned the filter, Region = 'Southwest' with functional group
"Region"
All the filters in the same functional group are combined using the OR operator and all
sets of filters in different functional groups are combined using the AND operator. By
choosing the functional groups associated with each security filter, you can control
how the filters are combined using the OR and AND operators.

Specify a Functional Group for a Data Filter's Application Role
You can specify a functional group for an application role with different data access
filters on the same semantic model object, usually a logical fact table.

See About Specifying Functional Groups for Application Roles in Data Filters and Set
Up Data Filters in the Semantic Model.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Logical Layer or Presentation Layer and double-click the table containing
the data filter that you want to specify a functional group for.

4. Click the Data Filters tab.

5. Select the filter that you want to specify the functional group for.

6. Click the Functional Group field and select an existing group or enter the name of
a new group.

7. Click Save.

Work With Object Permissions
This topic provides information to help you understand and set up semantic model
object permissions.

Topics:

• About Object Permissions

• About Permission Inheritance for Application Roles

• Set Up Presentation Object Permissions

Chapter 15
Work With Object Permissions

15-6

About Permission Inheritance for Application Roles
Application roles can have permissions granted through membership in other application
roles.

Permissions granted explicitly to an application role take precedence over any permissions
granted through other application roles.

If there are multiple application roles acting on an application role at the same level with
conflicting security attributes, then the application role is granted the least restrictive security
attribute. Oracle currently requires that the application role with access to an object also have
access to the object's container. For example, if ApplicationRole 1 has permission to access
Column A, which is part of Table B, then ApplicationRole1 must also have permission to
access Table B.

Set Up Presentation Object Permissions
Add application roles and permissions to secure a presentation object.

The permissions that you set for an object are inherited by its child objects. You can change
the child object's permissions to override its parent object's permissions. For example, if you
set permissions on a subject area, then you can set permissions on a table or column to
override the corresponding subject area's permissions.

These are the role permissions that you can set for a presentation object:

• Read-Write - Provides both read and write access to the object.

• Read Only - Allows only read access to the object.

• No Access - Denies all access to the object.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Presentation Layer.

4. In the Presentation Layer pane locate and double-click the object that you want to assign
permissions to.

5. Click the Permissions tab.

6. In Add, search for and select the application role that you want to set permissions for.

7. Choose a permission for the application role.

8. Click Save.

About Object Permissions
You can use object permissions to configure data filters for objects in the logical layer by
using functional groups for multiple application roles.

The object permissions you set determine the security rules that Oracle Analytics applies to
client queries. These permissions can't be breached, even when the Logical SQL query is
modified.

To set up object permissions:

Chapter 15
Work With Object Permissions

15-7

• Select individual objects such as subject areas, presentation tables, or
presentation columns in the presentation layer and assign data access for specific
application roles.

• Select individual objects in the logical layer and use data filters to specify
functional groups when multiple application roles have different levels of access to
the same object.

Set up object permissions for application roles when you want to define data access
permissions for a set of objects that are common to users assigned the specific
application role.

• If an application role has permissions on an object from multiple sources, for
example, explicitly and through one or more additional application roles, the
permissions are applied based on the order of precedence.

• If you explicitly deny access to an object that has child objects, application roles
are denied access to the child objects. For example, if you explicitly deny access
to a particular logical table, you're implicitly denying access to all of the logical
columns associated with that table.

• It's best practice to not put sensitive data like passwords in session or semantic
model variables. Object permissions don't apply to semantic model and session
variables, so values in these variables aren't secure. Anyone who knows or can
guess the name of the variable can use it in an expression in Answers or in a
Logical SQL query.

• The AuthenticatedUser is the default application role associated with new
semantic model objects, which means that any authenticated user has read
access to new semantic model objects.

The AuthenticatedUser application role is internal to the semantic model and
doesn't display in the semantic modeler user interface. You can override the
AuthenticatedUser application role's access at the object level. For example, in a
subject area's permissions.

Chapter 15
Work With Object Permissions

15-8

Work With Query Limits
This topic provides information to help you understand and set up semantic model query
limits.

Topics:

• Limit the Number of Rows in a Database Query

• Limit Database Queries by Maximum Run Time

• Allow or Disallow Direct Database Requests

• Override an Application Role's Query Limits

• Pause an Application Role's Query Limits

Limit the Number of Rows in a Database Query
You can control runaway queries for an application role assigned to a physical database by
limiting queries to a specific number of rows.

Any query limits you set should exceed the Presentation Server settings for Maximum
Number of Rows Processed when Rendering a Table View and Maximum Number of Rows to
Download by at least 500 to avoid error messages. When you specify a max row query limit,
then those users assigned to the application role may receive Max Row Limit Exceeded
messages.

You can override the row limit that you set for an application role. See Override an Application
Role's Query Limits.

The options for row limit are:

• Enable - Limits the number of rows to the value specified. If the number of rows exceeds
the Max Rows value, the query is terminated.

• Disable - Disables any limits set in the Max Rows field.

• Warn - Logs queries that exceed the set limit in the Query log. This option doesn't
enforce limits.

• Inherit - Inherits limits from the parent application role. If there is no row limit to inherit,
no limit is enforced.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Physical Layer.

4. In the Physical Layer pane, locate and double-click the database that you want to assign
query limits to.

5. Click the Query Limits tab.

6. Locate the role name that you want to limit, double-click its Max rows field, and enter the
maximum number of rows that members of the application role can retrieve from the
source database object.

7. Double-click the Row Limit field and select a row limit.

8. Click Save.

Chapter 15
Work With Query Limits

15-9

Limit Database Queries by Maximum Run Time
You can specify the maximum time a query can run on a physical database for a
particular application role.

You can override the time queries that you set for an application role. See Override an
Application Role's Query Limits.

The options for time limit are:

• Enable - This limits the time to the value specified.

• Disable - Disables any limits set in the Max Time field.

• Warn - Logs queries that exceed the set time limit in the Query log. This option
doesn't enforce the time limits.

• Inherit - Inherits limits from the parent application role. If there is no time limit to
inherit, no limit is enforced.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Physical Layer.

4. In the Physical Layer pane, locate and double-click the database that you want to
assign query limits to.

5. Click the Query Limits tab.

6. Locate the role name that you want to limit, double-click its Max time (minutes)
field, and enter the maximum number of minutes rows that want queries to run on
each database object.

7. Double-click the Time Limit field and select a time limit.

8. Click Save.

Allow or Disallow Direct Database Requests
You can specify if you want an application role to be able to run direct database
requests.

What you specify in the Query Limits Execute Direct Database Requests field
overrides what you selected in the Allow direct database requests by default field in
the physical database's Advanced tab.

The options for the Execute Direct Database Requests field are:

• Allow - Grants the ability to run direct database requests for this database.

• Disallow - Denies the ability to run direct database requests for this database.

• Inherit - Inherits limits from the parent application role. If there is no limit to inherit,
then direct database requests are allowed or disallowed based on the Allow
direct database requests by default property for the database.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Physical Layer.

Chapter 15
Work With Query Limits

15-10

4. In the Physical Layer pane, locate and double-click the database that you want to assign
query limits to.

5. Click the Query Limits tab.

6. Locate the role name that you want to specify direct database requests for, go to the
Execute Direct Database Requests field, click it, and select an option.

7. Click Save.

Override an Application Role's Query Limits
You can specify when and how you want to override a database's query limits for a specific
application role.

For each application role in a physical database, you can choose to override the row and time
limits and the run direct database requests setting. You can also specify how many seconds
to limit the application role's logical queries to.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Physical Layer.

4. In the Physical Layer pane, locate and double-click the database that you want to
override assign query limits for.

5. Click the Query Limits tab.

6. Locate the click the role name with the query limits that you want to override.

7. Click Detail View.

8. In the day and time grid, click to select one or more day and time that you want the
override to occur.

9. In the Row Limit, Time Limit, Execute Direct Database Requests, and Limit logical
queries to fields, specify how to override the application role's query limit settings.

10. Click Available.

11. Click Save.

Pause an Application Role's Query Limits
You can specify when you want to pause a database's query limits for a specific application
role.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Physical Layer.

4. In the Physical Layer pane, locate and double-click the database that you want to
override assign query limits for.

5. Click the Query Limits tab.

6. Locate the click the role name with the query limits that you want to pause.

7. Click Detail View.

Chapter 15
Work With Query Limits

15-11

8. In the day and time grid, click to select one or more week days and times that you
want to pause the query limits.

9. Click Unavailable.

10. Click Save.

Chapter 15
Work With Query Limits

15-12

16
Check Consistency and Deploy a Semantic
Model

This chapter contains information to help you understand and how to use the Check
Consistency feature, deploy a semantic model, and access a deployed semantic model's log
files.

Topics:

• Work with Check Consistency

• Other Semantic Model Finalization Tasks

• Deploy a Semantic Model

Work with Check Consistency
This topic describes how to use the Check Consistency and Advanced Checker features to
check a semantic model for errors and warnings.

Topics:

• About Check Consistency

• Types of Semantic Model Consistency Checks

• Common Consistency Check Messages

• Check the Consistency of a Semantic Model

• Check Consistency of One or More Semantic Model Objects

• Run the Advanced Consistency Check Before Deploying a Semantic Model

• Find and View Advanced Check History

• Why Are the Advanced Check Records in a Different Language?

• Export Consistency Check Results to a CSV File

About Check Consistency
Use the Check Consistency feature to validate a semantic model object or the entire
semantic model. Check Consistency locates and helps you fix issues that cause query
generation to fail at runtime.

Check Consistency provides the following types of messages:

• Errors - Error messages describe errors that you must fix. Use the information in the
message to correct the inconsistency, then run the Check Consistency again to confirm
that you've fixed the error.

• Warnings - These messages indicate conditions that you might need to fix. For example,
a warning message about a missing display key in a logical hierarchy level. Other

16-1

messages warn of inconsistent values, or feature table changes that don't match
the defaults.

For examples of error and warning messages, see Common Consistency Check
Messages.

The consistency check report displays in a tab and contains information that you can
use to understand, navigate to, and fix the objects listed in the report. Each error or a
warning is identified by its name and object type (for example, Logical Table or
Initialization Block). You can also search for objects in the list by name, error message
number, and so on.

Passing the consistency check doesn't guarantee that a semantic model is constructed
correctly, but it does rule out many common problems.

The consistency check doesn't check the validity of objects outside the metadata using
the connection. It only checks the consistency of the metadata and not the mapping to
the physical objects outside the metadata. If the connection isn't working or objects
were deleted in the database, the consistency check doesn't report these errors.

If you use lookup tables to store localized field names with multilingual schemas, the
consistency check rules are relaxed for the lookup tables.

Sometimes when you check the semantic model's consistency after an Oracle
Analytics upgrade, you might see errors that weren't included in previous consistency
checks.

Types of Semantic Model Consistency Checks
There are two consistency checks that you can run: Check Consistency and Advanced
Check.

Check Consistency

Check Consistency examines individual semantic objects and their relationships to
other objects and finds certain kinds of errors and inconsistencies. You can run Check
Consistency on an individual object, a group of selected objects, or the whole
semantic model. Run Check Consistency and resolve all errors before you run
Advanced Check.

Here are some examples of what running Check Consistency does:

• Finds any logical tables that don't have logical sources configured.

• Finds any logical columns that aren't mapped to physical sources.

• Checks for undefined logical join conditions.

• Determines if any physical tables referenced in a business model aren't joined to
the other tables referenced in the business model.

Chapter 16
Work with Check Consistency

16-2

• Checks if each business model has a corresponding subject area.

While you're developing the semantic model, Oracle recommends that you run Check
Consistency on objects and the whole model to find and fix any errors. See Check the
Consistency of a Semantic Model.

Advanced Check

Run Advanced Check before you deploy the semantic model.

To successfully deploy a semantic model, it must pass the Advanced Check. However, to
troubleshoot migration issues, a semantic model doesn't have to pass the Advanced Check.
You can convert a semantic model that passed only Check Consistency to a .rpd file, but be
aware that it might contain issues that prevent query generation.

The Advanced Check does the following:

• Runs Check Consistency to check the whole model. The consistency check must be
error-free before Semantic Modeler can perform the advanced checks.

If the Advanced Check runs Check Consistency and finds any errors, then only Check
Consistency errors are displayed. Advanced Check errors aren't found and displayed
until all Check Consistency errors are resolved.

• Converts the semantic model from SMML to a .rpd file and runs advanced checks on
the .rpd. If the model contains Check Consistency errors, Advanced Check can't convert
it from SMML to a.rpd file and perform advanced checks.

• Looks for scenarios with query generation navigation space errors.

Common Consistency Check Messages
Use this topic to help you understand and fix some of the most common consistency check
warnings and errors.

This topic provides a partial list of check consistency messages, and doesn't describe all
possible warnings and errors.

Error or Warning Example Error or
Warning

More Information

[14031] The content filter of a
source for logical table:
FACT_TABLE_NAME references
multiple dimensions.

Error Indicates that the logical table has a logical table source with
a WHERE clause filter that references multiple dimensions.
A WHERE clause with multiple dimensions is invalid.

[38126] 'Logical Table' '"Technology
- WFA"."Fact WFA WO "' has name
with leading or trailing space(s).

Error Identifies an object with leading or trailing spaces in the
object name. Leading spaces in object names can cause
query and reporting issues.

[38012] Logical column
DIM_Start_Date.YEAR_QUARTER
_NBR doesn't have a physical data
type mapping, nor is it a derived
column.

[38001] Logical column
DIM_Start_Date.YEAR_QUARTER
_NBR has no physical data source
mapping.

Error Indicates that logical columns aren't mapped to any logical
table source. These mappings are invalid and cause queries
to fail.

Both of the validation rules relate to the same issue.

Chapter 16
Work with Check Consistency

16-3

Error or Warning Example Error or
Warning

More Information

[39062] Initialization Block
'Authorization' uses Connection
Pool '"My_DB".

"My_CP"' which is used for report
queries. This may impact query
performance.

Warning Indicates that the same connection pool is used for both
queries and for initialization blocks. This configuration isn't
recommended.

To fix this issue, create a dedicated connection pool for
initialization blocks. Otherwise, query performance may
suffer, or user logins can stop responding if authorization
initialization blocks can't run.

[39028] The features in Database
'MyDB' don't match the defaults.
This can cause query problems.

Warning Indicates that some database feature defaults were changed
in this release of Oracle Analytics. Unless you've specific
customizations to your feature set, it's recommended that
you reset your database features to the new defaults.

[39003] Missing functional
dependency association for column:
DIM_Offer_End_Date.CREATE_DT.

Warning Indicates that the given column is only mapped to logical
table sources that are disabled. This warning prompts you to
decide if you want to use the default behavior.

[39059] Logical dimension table
MY_DIM has a source
MY_DIM_DAILY at level Daily that
joins to a higher level fact source
MY_FACT_SUM.MTHLY_SUM

Warning Indicates that the fact logical table source has an aggregate
grain set in this dimension, but either no join was found that
connects to any logical table source in this dimension or an
invalid join was found.

This means that either no join exists at all, or it does exist but
is potentially invalid because it connects a higher-level fact
source to a lower-level dimensional source. Such joins are
potentially invalid because if followed, they might lead to
double counting in query results.

For example, consider Select year, yearlySales. Even if a join
exists between monthTable and yearlySales table on yearId,
it shouldn't be used because such a join would overstate the
results by a factor of 12 (the number of months in each year).

If you get a 39059 warning after upgrading, verify that the
join is as intended and doesn't result in incorrect double
counting. If the join is as intended, then ignore the 39059
warning.

[39055] Fact table "HR"."FACT - HC
Budget" isn't joined to tables in
logical dimension "HR"."DIM - HR
EmployeeDim". This can cause
problems when extracting
project(s).

Warning Indicates that there's a physical join between the given fact
and dimension sources, but there isn't a corresponding
logical join between the fact table and the dimension table.

[39057] There are physical tables
mapped in Logical Table Source
""HR"."Dim -
Schedule"."SCH_DEFN"" that
aren't used in any column
mappings or expressions.

Warning Indicates that the given logical table source contains tables
that aren't used in any mapping. This situation shouldn't
cause any errors.

Chapter 16
Work with Check Consistency

16-4

Check the Consistency of a Semantic Model
Run Check Consistency to validate all of the semantic model's objects and the relationships
between objects. Check Consistency displays a list of syntax or semantic errors and
warnings that can cause runtime query generation to fail.

Oracle recommends that you check consistency to find and fix any errors while you develop
the semantic model. Oracle also recommends that you run Check Consistency and fix any
errors before you run Advanced Check and deploy the model.

You can deploy a model with warnings, but not with errors. You can export a semantic model
that contains errors.

For more information about Check Consistency, see About Check Consistency.

You can also run Check Consistency on a specific semantic model object. For example, a
database, business model, subject area, or table. See Check Consistency of One or More
Semantic Model Objects.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. If you've updated the semantic model, then click Save to save it before running Check
Consistency.

4. In the toolbar, click the Check Consistency icon and then select either Errors and
Warnings or Errors Only to specify the results you want.

The Check Consistency tab is displayed and contains a list of errors and warnings.

5. From the Check Consistency tab, click an object's link to locate and open it.

6. Fix the object and then click Save to save the semantic model.

7. Click the Check Consistency tab and click Check to re-run Check Consistency and
refresh the Check Consistency tab.

Check Consistency of One or More Semantic Model Objects
Use Check Consistency to validate a specific semantic model object or the objects that you
choose. Check Consistency displays a list of syntax or semantic errors and warnings that
may cause runtime queries to fail.

For more information about Check Consistency, see About Check Consistency.

For information about running Check Consistency for the whole semantic model, see Check
the Consistency of a Semantic Model.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. If you've updated the semantic model, then click Save to save it before running Check
Consistency.

4. Click the semantic model layer containing the object or objects to check and browse for
or use Search to find the object or objects that you want to run consistency check on.

5. To check one object, right-click it and select Check Consistency.

To check multiple objects, hold down the Ctrl key and click the objects that you want to
check, right-click, and select Check Consistency

Chapter 16
Work with Check Consistency

16-5

The Check Consistency tab is displayed and contains a list of errors and warnings.

6. From the Check Consistency tab, click the object's link to locate and open it.

7. Fix the issue and then click Save to save the semantic model.

8. Click the Check Consistency tab and click Check to re-run the consistency check
and to refresh the Check Consistency tab.

Run the Advanced Consistency Check Before Deploying a Semantic
Model

Run the Advanced Check to confirm that your semantic model is ready for deployment
and successful query generation.

The consistency check must be error-free before Semantic Modeler can perform the
advanced checks and display any advanced check errors. Running Advanced Check
won't show you a list of both consistency check and advanced check errors.

When you run Advanced Check, it first runs Check Consistency to check the whole
model. If it finds any consistency errors, it displays them in a tab and you must resolve
the errors before you can re-run the Advanced Check.

After Advanced Check runs Check Consistency successfully, it converts the semantic
model from SMML to a .rpd file and then checks it for query generation navigation
space errors.

After Advanced Check completes, it displays the Advanced Check tab and contains a
list of syntax or semantic errors and warnings that it found.

Oracle Analytics runs Advanced Check in the background.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Update the semantic model as needed and click Save to save the semantic model
before running Advanced Check.

4. In the toolbar, click the down arrow next to the Check Consistency icon and then
select Advanced Check.

5. Go to the Oracle Analytics footer and view the status of the Advanced Check. If
the footer displays "Consistency errors found," then click it and select View
Results to display the Advanced Check tab containing the list of errors.

6. From the Advanced Check tab, click an object's link to locate and open it.

7. Fix the object and then click Save to save the semantic model.

8. In the toolbar, click the down arrow next to the Check Consistency icon and then
select Advanced Check to re-run Advanced Check.

Find and View Advanced Check History
You can find and view the results of the five previous advanced checks that you or
other users ran on a semantic model.

You can refer to the information in previous Advance Check records to help you
understand and troubleshoot model errors and warnings.

Chapter 16
Work with Check Consistency

16-6

See Why Are the Advanced Check Records in a Different Language?

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. In the toolbar, click the down arrow next to the Check Consistency icon.

4. Hover over Advanced Check History, and click the Advanced Check history record that
you want to view.

Why Are the Advanced Check Records in a Different Language?
When you run the advanced consistency check, the language you selected when you logged
into Oracle Analytics determines the language used to output and store the records
containing the error and warning messages.

For example, if you selected Deutsch when you logged in and then ran the advanced
consistency check, Oracle Analytics generates and stores the records in German.

When a user logs in and opens the advanced consistency check records, the records are
displayed in the language used to generate them. For example, if the records were generated
in German and another user selects English when logging in, the records are displayed in
German.

To work around this issue, the user who opens the records must rerun the advanced
consistency check so that the records are generated and stored using the language they
selected when logged in.

Show or Hide the Advanced Check Warning Message
When you run Advanced Check, by default Oracle Analytics displays a message containing
information about the Advanced Check. You can hide this message in your instance, or after
you hide the message, you can choose to display it again.

Selecting the Do not show me this warning message again field in the Advanced Check
dialog turns the Show Advanced Check warning message user preference off.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Click Page Menu and then click Preferences.

4. In the Users Preferences dialog box, scroll to Consistency Check and then clear the
Show Advanced Check warning message checkbox to turn the message off, or click to
select the checkbox to turn the message on.

5. Click Apply.

Export Consistency Check Results to a CSV File
After you run Check Consistency or Advanced Check, you can export the results to a CSV
file.

Exporting consistency check results exports all results and not only the results displayed in
the Check Consistency tab. For example, if you ran Check Consistency on a semantic model
for both errors and warnings, and in the Check Consistency tab you click Error to display
only error messages, when you click Export to CSV, Oracle Analytics produces a CSV file
containing all errors and warnings.

Chapter 16
Work with Check Consistency

16-7

See About Check Consistency.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. If you've updated the semantic model, then click Save to save it before running
Check Consistency or Advanced Check.

4. Run Check Consistency on the model or model object, or Advanced Check on the
model:

5. In the Check Consistency tab or the Advanced Check tab, click Export to CSV.

Other Semantic Model Finalization Tasks
After you check the model's consistency and before you deploy the model, you can
use nqcmd to test the repository. After you deploy the model, you can enable end user
client applications to connect to the deployed model.

For information about how to use nqcmd, see Use nqcmd to Test and Refine the
Repository.

For information about creating data source connections for client applications, see
Create Data Source Connections to the Oracle BI Server for Client Applications.

Deploy a Semantic Model
Deployment moves the semantic model from the design-time environment to the
runtime environment.

The users see the deployed semantic model as subject areas that they query from
workbooks, dashboards, and analyses. The Oracle Analytics query engine uses the
semantic model's metadata to write physical queries against the data source and to
transform and combine the physical result set and perform final calculations.

Before you deploy a semantic model, make sure that you run Check Consistency and
Advanced Check and resolve any errors. You can't successfully deploy a semantic
model that contains errors. See Check the Consistency of a Semantic Model and Run
the Advanced Consistency Check Before Deploying a Semantic Model.

After you begin deploying a semantic model, the deployment's status is displayed at
the bottom of the Semantic Modeler editor. You can click the drop-down button and
click Cancel to cancel the deployment.

If your semantic model deployment fails, then Oracle Analytics creates log files that
you can use to understand why the deployment failed. See View a Semantic Model's
Logs.

If the subject areas don't display or aren't updated after you successfully deployed the
semantic model, then log out and log back into Oracle Analytics. In some cases, an
Administrator may need to go to the Console and click the Session and Query Cache's
Reload Files and Metadata link to reload the subject areas.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. In the toolbar, click Page Menu and then click Deploy.

Chapter 16
Other Semantic Model Finalization Tasks

16-8

17
Manage Semantic Models

This chapter contains information to help you understand how you can manage your
semantic models. For example, export and import models, find and download a model's log
files, and view information about when a model was deployed or imported.

Topics:

• Export a Semantic Model

• Generate an .rpd file from JSON/SMML

• Download an Exported .rpd File

• Import an .rpd or .zip File Into Your Semantic Model

• Import the Deployed Model Into Your Semantic Model

• Generate JSON/SMML from an .rpd File

• View a Semantic Model's Logs

• View a Semantic Model's Job History

• Generate Indexes for a Semantic Model

Export a Semantic Model
Export a semantic model from your development environment to a .rpd or .zip file when you
want to backup the semantic model, or share it with another developer.

A semantic model must pass Check Consistency before you can export it. A semantic model
doesn't need to pass Advanced Check before you can export it. See Check the Consistency
of a Semantic Model.

Oracle recommends that you use export and import to share files with other developers, but
not for collaborative semantic model development. Exporting and importing a model creates a
copy of the model, and developers who import the model aren't working on the same version
of the model. For collaborative model development use Git or permissions. See About
Collaborative Semantic Model Development.

If you're working in a Windows or Linux environment, you can use the jsontorpd utility to
export a semantic model. See Generate an .rpd file from JSON/SMML.

• Exporting to .zip - Choose to export to a .zip file if you want to back up the semantic
model, or share the semantic model's SMML files and not a compiled .rpd file. Oracle
Analytics doesn't generate historic information or log files when you export to a .zip file.

You can open the .zip file locally and work with the SMML files to perform design time
tasks such as search and replace. After you're finished with your tasks, you can export
the files to a .zip file and upload it to create a semantic model in your environment.

• Exporting to .rpd - Choose to export to an .rpd file to back up the semantic model, or if
you want the users you share the file with to only open the semantic model in Semantic
Modeler.

17-1

When you export to a .rpd file, Oracle Analytics generates log files and stores the
export file with the semantic model's history. See Download an Exported .rpd File.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. In the toolbar, click Page Menu and then click Export.

4. In the Name field, enter a name for the file.

5. Select the type of file to export to. If you choose Repository Document File
(.rpd), then specify a password that is eight or more characters and includes at
least one numeric character and one non-numeric character.

6. Click Export.

Generate an .rpd file from JSON/SMML
Use the jsontorpd utility to generate an .rpd file from JSON/SMML. Running this utility
is similar to using Semantic Modeler to export a semantic model.

You can run jsontorpd using a JSON folder to generate an equivalent .rpd file for the
input JSON.

After you install the Client Tools, the location of the jsontorpd utility is BI_DOMAIN/
bitools/bin

Syntax

The jsontorpd utility takes the following parameters:

jsontorpd [-P repository_password] {-R repository_path} {-D
target_json_path}

Where the required flags are:

repository_password is the password for the semantic model.

repository_path is the path and name of the semantic model. You must provide the full
path names to the input and output repository files if they're located in different
directories.

target_json_path is the path and name for the target JSON/SMML. You must provide
the full path names to the input and output repository files if they're located in different
directories.

Where the optional flags are:

Specify -O to generate an output log file at the path you specify.

Specify -H or -? to display usage information and exit.

Chapter 17
Generate an .rpd file from JSON/SMML

17-2

Examples

Note:

For all examples, the full path names to the input and output repository files are
required if they're located in different directories.

This example generates a semantic model with a password in /project/target.rpd
based on the input JSON /project/json:

jsontorpd -P password -R /project/source.rpd -D /project/json

This example generates a semantic model with a password in /project/target.rpd
based on the input JSON /project/json. It also generates an additional log file for the
conversion:

jsontorpd -P password -R /project/source.rpd -D /project/json -O /project/
logs/jsontorpd.log

Download an Exported .rpd File
When you export a semantic model to an .rpd file, you can't specify where to save the file.
Instead you need to download the exported file.

See Export a Semantic Model.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, locate the semantic model you exported, click Actions,
and click Inspect.

3. Click Job History and locate and hover over the export job with the semantic model .rpd
file that you want to download.

4. Click Download RPD.

Import an .rpd or .zip File Into Your Semantic Model
Another developer can export a semantic model as an .rpd or .zip that you then upload into
the semantic model on your environment.

When you import an .rpd or .zip file, you can choose to replace all content or add content and
replace matching objects in the semantic model on your environment.

Oracle recommends that you use export and import to share files with other developers, but
not for collaborative semantic model development. Exporting and importing a model creates a
copy of the model, and developers who import the model aren't working on the same version
of the model. For collaborative model development use permissions or Git. See About
Collaborative Semantic Model Development.

1. On the Home page, click Navigator and then click Semantic Models.

Chapter 17
Download an Exported .rpd File

17-3

2. In the Semantic Models page, click a semantic model to open it.

3. In the semantic model editor, click Page Menu, and then select Import.

4. In Import From File, choose if you want to replace all content or add content and
replace matching objects in the semantic model on your environment.

5. Click Select to browse for and select the .zip or .rpd file to import.

6. Click Import.

7. Click Save.

Import the Deployed Model Into Your Semantic Model
You can import the deployed model into the semantic model on your environment
when you need to learn about or troubleshoot the deployed model.

Importing the deployed model into your environment is the only way that you can
examine the deployed model. When you import the deployed model, everything in your
environment is replaced with the deployed model's contents.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. In the semantic model editor, click Page Menu, and then select Import Deployed
Model.

4. Click Load.

5. Click Save.

Generate JSON/SMML from an .rpd File
Use the rpdtojson utility to generate JSON/SMML from an .rpd file. Running this utility
is similar to using Semantic Modeler to import a semantic model.

The location of the rpdtojson utility is BI_DOMAIN/bitools/bin

Syntax

The rpdtojson utility takes the following parameters:

rpdtojson [-P repository_password] {-R repository_path} {-D
target_json_path} [-8] [-O log_pathname] [-C]

Where the required flags are:

repository_password is the password for the semantic model.

repository_path is the path and name of the semantic model. You must provide the full
path names to the input and output repository files if they're located in different
directories.

target_json_path is the path and name for the target JSON/SMML. You must provide
the full path names to the input and output repository files if they're located in different
directories.

Chapter 17
Import the Deployed Model Into Your Semantic Model

17-4

Where the optional flags are:

Specify -O to generate an output log file at the path you specify.

Specify -8 to assure that the semantic model to JSON conversions supports all UTF-8
encoding.

Specify -C to use compatibility mode to generate additional metadata for backward
compatibility in legacy semantic models.

Specify -H or -? to display usage information and exit.

Examples

Note:

For all examples, the full path names to the input and output repository files are
required if they're located in different directories.

This example generates JSON/SMML with ASCII encoding in /project/json based on the
input repository source.rpd:

rpdtojson -P password -R /project/source.rpd -D /project/json

This example generates JSON/SMML with UTF-8 encoding in /project/json based on
the input repository source.rpd:

rpdtojson -P password -R /project/source.rpd -D /project/json -8

This example uses compatability mode to generate JSON/SMML in /project/json based
on the input repository source.rpd. It also generates an additional log file for the conversion.

rpdtojson -P password -R /project/source.rpd -D /project/json -O /project/
logs/rpdtojson.log -C

View a Semantic Model's Logs
You can view and copy logs for the semantic models you deployed, imported, loaded, or
exported.

Logs aren't available for semantic models exported to ZIP.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, locate the semantic model to download, click Actions, and
click Inspect.

3. Click Job History and locate and hover over the job that you want logs for.

4. Click Logs.

Chapter 17
View a Semantic Model's Logs

17-5

View a Semantic Model's Job History
You can view job history information for the semantic models you deployed, imported,
loaded, or exported.

Job history information includes start time, job type, status, duration, and model size.
You can also view and copy log files for the semantic models you deployed, imported,
loaded, or exported. See View a Semantic Model's Logs.

Job history information isn't available for semantic models exported to ZIP.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, locate the semantic model that you want history
information for, click Actions, and click Inspect.

3. Click Job History and locate and hover over the job that you want history
information for.

Generate Indexes for a Semantic Model
The Generating Indexes option is for use with support-related issues. Use this option
only when the Oracle Support team directs you to.

Chapter 17
View a Semantic Model's Job History

17-6

Part III
Reference

This part provides reference information.

Chapters:

• Design Tips

• Miscellaneous Reference Information

• Data Types Supported by Oracle Analytics Cloud

• Expression Editor Reference

18
Design Tips

This chapter contains reference information to help you design semantic models.

Topics:

• Business Model Design

• Time Dimension Design

• Physical Table Alias

• Implicit Facts in Subject Areas

• Dimensional Hierarchies, Level Keys and Content Levels

Business Model Design
In Oracle Analytics, you can configure the logical layer in your semantic model in many
different ways. Oracle recommends that you follow the best practices described here, so you
can avoid several errors at runtime and significantly decrease your maintenance workload.

Best Practice

• Use star schemas in business models

Data structure in the physical layer may come in many different forms. Having star
schemas in the physical layer is useful for performance but it isn’t mandatory. However,
no matter the structure of the physical layer, your business model should always be star
schemas.

Each logical table can include multiple physical tables, either in the same logical table
source or split across multiple logical table sources.

• Use a separate dimension logical table for each dimension

• Don’t combine or merge dimensions into one logical table

18-1

• Use a separate fact logical table for each fact

The same goes for facts, you don’t want to end up with a single fact logical table
called “Facts – Stuff”!

• Use a separate logical table for “Compound” facts

A compound fact is the place where you put derived expressions that combine
metrics from multiple fact tables. For example, if you have Fact Order and Fact
Opportunity, include a calculation with the formula “# Opportunities/ # Orders” in
separate logical table Fact Compound Opportunity & Order.

• Prefix logical table names with Dim – or Fact – or Fact Compound –

• Assign unique business columns as dimension primary keys wherever
possible

• Rename logical columns to use presentation names

• Keep only used columns in the logical layer

• Don’t assign logical primary keys on logical fact tables

Logical primary keys are needed only on dimension tables.

• Create “dummy” measures to separate facts into various groups, if required

Chapter 18
Business Model Design

18-2

• Ensure almost every fact logical column has an aggregation rule set.

Time Dimension Design
In Oracle Analytics, fact tables often include many dates, and therefore many potential time
dimensions. Oracle recommends that you follow the most efficient way to handle and
configure time dimensions in your semantic model as described here.

Best Practices

• Create a single generic time dimension for each fact table

For each fact table, identify one date which is the used the most with this fact. To help
you identify the best date, ask yourself questions like, “if I select this amount for June,
what does ‘June’ mean?”.

After you’ve identified a specific date for each fact table, use that date to join each fact to
a generic time dimension. A generic time dimension is required for reports that includes
multiple facts and is much easier for end-users than creating a separate time dimension
for each fact table.

Chapter 18
Time Dimension Design

18-3

• Only create secondary time dimensions if needed

A time dimension is only useful for a date if you want to simplify user selection at
the date level (such as the year or quarter) or if you need to drill down the date
hierarchy at runtime. For both these cases, we recommend that you create a
secondary time dimension with joins to only the specific fact tables. Otherwise,
displaying the date itself as a single attribute in the Presentation layer is often
enough.

• Configure your time dimension for time series

Time series functions like Ago or ToDate are often used to easily calculate metrics
such as Year-Ago or YearToDate. These time series functions are available only if
you configure chronological keys for the corresponding time dimension. These
chronological keys must be unique at each level of the dimension hierarchy.

You can use time series functions after chronological keys are defined. However,
these time series functions can have an impact on performance. One way you can
minimize the performance impact is to define sequence numbers on the time
dimension. Sequence numbers are optional and used only for performance
reasons.

There are two types of sequence:

Chapter 18
Time Dimension Design

18-4

– Absolute: Integer chronological keys with values that increment by 1 and range from
N to M. For example, a 4-digit year.

– Relative: Integer values with values that increment by 1 and range from 1 to N.
These values represent the chronological order within a higher level. For example,
month number (1 – 12).

As absolute and relative sequences cover different use cases, you can define both
types of sequence. Logical columns must be at the appropriate level in the hierarchy
to be available for the sequence definition.

• In the Presentation layer, always display the generic time dimension as the first
folder

You can place secondary time dimensions as folders or sub-folders next to their
corresponding dimension attributes.

Physical Table Alias
In Oracle Analytics, you can create aliases for tables in the physical layer of your semantic
model. Table aliases are useful when a single table has several different roles.

Best Practices

A single table often has multiple roles. Sometimes a table is used as a dimension, sometimes
as a fact table, sometimes to extend another dimension to retrieve a specific attribute, and
sometimes as a helper table to join two other tables together.

Often, each role comes with a different set of physical joins. If you configure all the joins on a
single instance of the table, it results in data integrity issues. You can avoid such issues, if
you use table aliases and follow some basic rules.

• Use a consistent naming convention for aliases

The alias name should include both the name of the original table, and some indication of
the role of the alias. This way on first sight, developers immediately know which table is
being used and understands the purpose of the alias.

Chapter 18
Physical Table Alias

18-5

• Don’t define any physical joins on the original table

Start by creating an alias. Each physical table should always have at least one
alias. Only the alias will be used, not the original table. This way if you need new
instances of the same table for other roles in the future, it’s easy to identify the
differences and roles of each alias.

• Create additional aliases when you need different physical joins depending
on the context in which a table is used

Here are two common examples

Example 1

Example 1 shows an implementation of the Employee table. Table W_MARKET_D
includes the key of the employee who is the Market Manager. Table W_PRODUCT_D
includes the key of the employee who is the Product Manager. Without any alias,
table W_EMPLOYEE_D joins to both W_MARKET_D and W_PRODUCT_D. If you create a
report that selects the name of both the Market Manager and Product Manager,
the WHERE clause generated in the physical SQL would include the following
statements: W_MARKET_D.EMP_ID=W_EMPLOYEE_D.ID and
W_PRODUT_D.EMP_ID=W_EMPLOYEE_D.ID
This means that the ID of the employee must at the same time equal the Market
Manager ID and Product Manager ID. This isn’t possible because these managers
are two different employees, so the query doesn’t return any records.

Instead, as described on the diagram above, the solution is to have two aliases of
the Employee table. One alias is joined with the Market table and the other is
joined to the Product table. These two aliases are considered as if they are two
different tables, completely independent from each other. By using two aliases,
there is no conflict between the two joins.

Example 2

Example 2 shows three tables. Table W_ORDER_F is used as a fact table for order
metrics, a dimension for order attributes, and it includes the Order Date. There is
also calendar table W_DAY_D, and invoice table W_INVOICE_F that includes Order
ID and Invoice Date. The invoice table is joined to the order table to retrieve
order attributes as a dimension for Invoice Fact metrics. Note that Oracle

Chapter 18
Physical Table Alias

18-6

Analytics generates separate sub-queries for each fact table. Therefore, we must
consider Order Fact Star and Invoice Fact Star separately, as shown in the diagram.

Without any aliases, the diagrams look like this:

This configuration causes similar data integrity issues to the Employee example, that is,
the Order Date is not equal to Invoice Date but they are both joined to the same date
column on the calendar table.

The solution is to create two aliases for the Order table, one alias for the fact and the
second alias for the dimension. With aliases, the diagrams look like this:

Now there's no conflict between the joins, as the dimension alias of the Order table is not
joined to the calendar dimension.

Also note that there’s no need to join Fact_W_ORDER_F with Dim_W_ORDER_D. Except for
rare specific situations, you should never join two aliases of the same table together.
While doing so doesn’t impact data integrity, it does impact performance and it’s useless.

Instead, create two logical table sources in the Order Dimension in the business model
as shown here. Use one logical table source for the Invoice Fact Star and the other for
the Order Fact Star.

Summary

• Always create at least one alias for each physical table.

• If needed, create additional aliases based on the different roles of the table in your model
and the different types of joins you require.

• Although there are exceptions, in most cases you shouldn’t join two aliases of the same
table together.

Chapter 18
Physical Table Alias

18-7

Implicit Facts in Subject Areas
You can set an implicit fact in a subject area so that Oracle Analytics always uses a
predictable fact source when a query contains only dimensions. This way, you can
ensure that query results always match your expectations.

Different fact tables within the same semantic model often result in a different set of
elements for the same query filters. For example, the list of products for Revenue or
Quota Amount for the month of January.

The values returned from the query Select Month, Product from subject area A
where month = ‘Jan’ depends on which fact table is used to run the query.

Most queries contain a mixture of facts and dimensions, so the sources used are
predictable and the results match expectations. When a query contains only
dimensions, Oracle Analytics must choose a fact table using the best information
available, and this might yield results that don't match your expectations.

In this scenario, there's an option to assign an implicit fact for your subject area. This
implicit fact is automatically included for any query that only includes dimensions from
that subject area. This ensures that Oracle Analytics always uses a predictable fact
source, and query results match your expectations.

Chapter 18
Implicit Facts in Subject Areas

18-8

For example, this session log shows the implicit fact added to the logical query.

SELECT
 0 s_0,
 "C - Sample Costs"."Products"."P1 Product" s_1,
 "C - Sample Costs"."Time"."T02 Per Name Month" s_2,
 DESCRIPTOR_IDOF("C - Sample Costs"."Products"."P1 Product") s_3
FROM "C - Sample Costs"
WHERE("Time"."T02 Per Name Month" = '2010 / 01')
ORDER BY
 3 ASC NULLS LAST,
 2 ASC NULLS LAST,
 4 ASC NULLS LASTFETCH FIRST 500001 ROWS ONLY
-------------------- Logical Request (before navigation): [[
RqList [1,2,3]
 0 as c1 GB,
 D1 Products (Level Based Hier).P1 Product as c2 GB,
 D0 Time.T02 Per Name Month as c3 GB,
 D1 Products (Level Based Hier).P0 Product Number as c4 GB,
 11- Fixed Costs:[DAggr(F0 Sales Base Measures.11- Fixed Costs by [D1
Products (Level Based Hier).P0 Product Number, D1 Products (Level Based
Hier).P1 Product, D0 Time.T02 Per Name Month])] as c5 GB
DetailFilter: D0 Time.T02 Per Name Month = '2010 / 01'
OrderBy: c3 asc NULLS LAST, c2 asc NULLS LAST, c4 asc NULLS LAST

Dimensional Hierarchies, Level Keys and Content Levels
In Oracle Analytics, dimensional hierarchies, level keys, and content levels together form the
basis of navigation. This topic describes how you can set up dimensional hierarchies to
enhance the capabilities of Oracle Analytics.

Level keys are used to define the levels in a dimensional hierarchy. In turn, these levels are
used to set content levels or the level of aggregation of a logical table source. Oracle

Chapter 18
Dimensional Hierarchies, Level Keys and Content Levels

18-9

Analytics uses content levels to navigate to the most optimized logical table source for
a given query.

Dimensional hierarchies are also required to create level-based measures and to set
up drilling for analyses.

Dimensional Hierarchies

Always create dimensional hierarchies, even when there’s only one level. We
recommend that you do this for many reasons:

• Oracle Analytics uses dimensional hierarchies to select the most optimized logical
table source by way of content levels.

• Dimensional hierarchies are required to drill up and down between levels.
Sometimes drilling is intuitive. For example, if you’re analyzing a brand, you’ll
probably want to drill down to its corresponding Universal Product Codes (UPC).
Other types of drill-downs might not be obvious but still useful. For example, you
might want to drill down from a contact type to a contact name.

• Dimensional hierarchies are useful when Oracle Analytics joins two result sets. For
example, if you combine two fact tables in the same report.

• Dimensional hierarchies are required to create level-based measures.

• Time dimensions are required in some time series calculations. For example,
where the calculation is based on a specific level, such as the year.

• When you define dimensional hierarchies and content levels for a logical table
source, it improves the capabilities of the consistency checker to identify issues
with the semantic model.

Types of Dimensional Hierarchies

• A balanced level-based hierarchy is the most common type of hierarchy used in
Oracle Analytics. In all level-based hierarchies, the detail levels roll up into higher
levels. In a balanced level-based hierarchy, all members of the hierarchy have
ancestors at all levels as shown here.

• A time dimension is a special level-based hierarchy that is used specifically for
time-based hierarchies. A time dimension is required if you want to use time series
calculations such as AGO and TODATE. To define a time dimension, you select Time
in the properties of the dimensional hierarchy.

Chapter 18
Dimensional Hierarchies, Level Keys and Content Levels

18-10

• A skipped-level hierarchy is a special level-based hierarchy where not all members of the
hierarchy have ancestors at all levels. To define a skipped-level hierarchy, you select
Skipped Levels in the properties of the hierarchy.

This example shows a skipped-level hierarchy where Washington DC doesn’t belong to a
state, so the state/province level is skipped.

Chapter 18
Dimensional Hierarchies, Level Keys and Content Levels

18-11

• A ragged or unbalanced hierarchy is another special level-based hierarchy where
not all the data is present at all levels of the hierarchy. To define a ragged
hierarchy, you select Ragged in the properties of the hierarchy.

This example shows a ragged and skipped-level hierarchy where the Distributor
and Store levels are missing from the Web branch of the hierarchy.

Here, you select both Ragged and Skipped Levels in the properties of the
hierarchy.

Chapter 18
Dimensional Hierarchies, Level Keys and Content Levels

18-12

• A parent-child hierarchy is a type of hierarchy often associated with an organization. For
example, employees rolling up to a manager. In a parent-child hierarchy, each child
member rolls up to a single parent member. At the lowest level, each member has no
child members. At the highest level, there is a single parent with no further parent levels.
In between, each member is both a parent and a child.

Parent-child hierarchies are based on a specialized parent-child relationship table made
up of four columns:

– Member

– Ancestor or ancestors of a member

– Number of levels between the member and the ancestor

– If the member is a leaf member, that is, at the lowest level

To define a parent-child hierarchy, you select Dimension with Parent-Child Hierarchy
when you create a new hierarchy, and then select Parent-Child Settings to set up the
parent-child hierarchy as shown here.

Chapter 18
Dimensional Hierarchies, Level Keys and Content Levels

18-13

Rules When You Create a Dimensional Hierarchy

• A dimensional hierarchy can contain only one grand total.

• If a dimensional hierarchy has multiple branches, all branches typically have a
common beginning point and a common end point.

• To define the grand total-level, you must select Grand total level in the properties
for the level.

This example shows Grand total level selected and Number of elements at this
level set to 1.

• To define a non grand total levels, you must select Supports rollup to higher
level of aggregation in the properties for the level. After you define a grand total
level, Oracle Analytics automatically sets Supports rollup to higher level of
aggregation for all other levels in the hierarchy.

For all non grand total levels, Number of elements at this level is always higher
than 1.

This example shows a dimensional hierarchy with multiple branches starting and
ending at a common point. The shared starting point is the grand total level and
the shared end point is the detail level.

Chapter 18
Dimensional Hierarchies, Level Keys and Content Levels

18-14

• When you define a dimensional hierarchy, always specify the number of elements per
level. Oracle Analytics uses the number of elements to identify aggregate tables and mini
dimensions. This number doesn’t need to be exact, a rough estimate is sufficient. In
navigation, a cross product is calculated across all the content levels in a logical table
source. This is used as a tie-breaker when navigating between otherwise equal sources.

• The number of elements per level is hierarchical with the lowest number of elements at
the top (1 for a grand total). Higher levels in a dimensional hierarchy should have fewer
elements than lower levels. Note that the consistency checker warns you if a parent level
has a greater number of elements than a child level.

This example shows a logical level Month with 120 elements defined.

• After you create a dimensional hierarchy for a logical table, all columns in that table are
part of the hierarchy. By default, a column not explicitly associated with a higher level is
considered to be part of the lowest or detail level.

Level Keys

You use level keys to identify a given level.

• The primary key of each level must be unique.

• If a single column used as a primary key of a level is not unique, you must combine it with
additional columns to form a unique, composite level key. For example, consider the case
where month number or month name is used for a level key. The month number for
October is 10 but both October and 10 are not unique, as every year has a month

Chapter 18
Dimensional Hierarchies, Level Keys and Content Levels

18-15

number 10 and a month named October. To form a unique level key, you must
combine month number or month name with year to form a composite level key. In
this example, the composite level key is month number 10 and year 2021 or month
name October and year 2021.

• The primary key of the lowest or detail level of a dimensional hierarchy must
match the primary key of the logical dimension table that the hierarchy is based
on.

This example shows a logical dimension table and dimensional hierarchy with
common primary keys.

• Grand total levels don’t have a level key associated with them.

• If a column is a primary level key or part of a primary level key, you must assign
that column to that level. If a column is a level key in a parent level and part of a
composite level key in a child level, you assign that column to the parent level.
Using the earlier example, month number and month name should be assigned to
the month level and year to the year level.

• Display keys are a level key with Use for Display selected. A display key is the
column that is shown in an analysis when you drill down on an object.

• If a dimensional hierarchy is for a time dimension, at least one of the levels must
have a chronological key which specifies the sort order of the periods from the
oldest to the newest. Often the primary key of the detail level is also the
chronological key.

This example shows a time dimension level key with the same primary key and
chronological key.

Chapter 18
Dimensional Hierarchies, Level Keys and Content Levels

18-16

Content Levels

You use content levels to define the level of aggregation of a logical table source in both facts
and dimensions.

• Content levels allow Oracle Analytics to select the most optimized logical table source for
a query.

• Content levels help the consistency checker find issues with your semantic model
configuration and this can prevent runtime errors.

• If you specify content levels for a fact logical table source, you must specify content
levels for all the dimensions that join to that logical fact table. If you join a dimension table
with no content level set to a fact table but content levels exist for other dimensions,
Oracle Analytics doesn’t perform a join between that dimension table and the fact table.
In this case, Oracle Analytics assumes that the dimension table doesn’t join to the fact
table. Queries involving dimensions with no content levels specified but which do join to a
fact source return the error Unable to navigate requested expression.

This example shows a fact logical table source showing level of aggregation or content
levels for a fact table. Note that this fact logical table source joins to only 4 of 12 attribute
tables.

Chapter 18
Dimensional Hierarchies, Level Keys and Content Levels

18-17

19
Miscellaneous Reference Information

This chapter contains reference information to help you understand and use Semantic
Modeler.

Topics:

• Keyboard Shortcuts for Semantic Modeler

• Model Binary Large Object (BLOB) Data and Character Large Object (CLOB) Data

Keyboard Shortcuts for Semantic Modeler
You can use keyboard shortcuts to navigate and to perform actions in Semantic Modeler.

Using Keyboard Shortcuts in Semantic Modeler

Use these general keyboard shortcuts for working with Semantic Modeler.

Task Keyboard Shortcut

Close active tab Ctrl+Shift+X (Windows)

Command+Shift+X (Mac)

Copy Ctrl+C (Windows)

Command+C (Mac)

Cut Ctrl+X (Windows)

Command+X (Mac)

Delete Backspace (Windows)

Delete (Mac)

Edit Enter (Windows)

Enter (Mac)

Global Check Consistency Ctrl+K (Windows)

Command+K (Mac)

Global Search Ctrl+Shift+F (Windows)

Command+Shift+F (Mac)

Go to Connection Tab in Finger pane Ctrl+Alt+0 (Windows)

Command+Option+0 (Mac)

Go to Invalid Tab in Finger pane Ctrl+Alt+5 (Windows)

Command+Option+5 (Mac)

Go to Logical Tab in Finger pane Ctrl+Alt+2 (Windows)

Command+Option+2 (Mac)

Go to Physical Tab in Finger pane Ctrl+Alt+1 (Windows)

Command+Option+1 (Mac)

Go to Presentation Tab in Finger pane Ctrl+Alt+3 (Windows)

Command+Option+3 (Mac)

19-1

Task Keyboard Shortcut

Go to Variables Tab in Finger pane Ctrl+Alt+4 (Windows)

Command+Option+4 (Mac)

Paste Ctrl+V (Windows)

Command+V (Mac)

Save the Model Ctrl+S (Windows)

Command+S (Mac)

Show/Hide Finger pane Ctrl+Alt+H (Windows)

Command+Option+H (Mac)

Show/Hide Git pane Ctrl+Alt+G (Windows)

Command+Option+G (Mac)

View Lineage Ctrl+Shift+L (Windows)

Command+Shift+L (Mac)

View Source (SMML) Shift+Enter (Windows)

Shift+Enter (Mac)

Model Binary Large Object (BLOB) Data and Character
Large Object (CLOB) Data

Learn how to model binary large object (BLOB) data and character large object
(CLOB) data in a semantic model.

CLOB data is a large plain text document in any character set. The supported BLOB
image types are: GIF, PNG, TIFF, JPEG, and BMP. BLOB formats not supported are:
PDF, audio, or video.

The default data type for BLOB columns after the import is LongVarBinary, while for
CLOB columns it's LongVarChar. The column for the BLOB or CLOB can't exceed the
MaxFieldSize limit of 32 KB.

When configuring the physical joins, create a physical join between the tables using
the primary key when the primary key is used as a join in the other table.

1. On the Home page, click Navigator and then click Semantic Models.

2. In the Semantic Models page, click a semantic model to open it.

3. Import the physical table containing the BLOB or CLOB data from the data source
into the physical layer.

4. After import, open the physical column for the BLOB or CLOB column, and change
the Length field.

5. Configure physical joins.

6. Drag the BLOB or CLOB column to the logical layer to generate a logical column.

7. Configure a physical lookup for the logical column to ensure that the Oracle
Analytics query engine doesn't generate a group by or order by on the logical
column.

8. In the logical column's General tab, configure the Descriptor ID column to ensure
that Presentation Services uses the correct column when generating filters.

Chapter 19
Model Binary Large Object (BLOB) Data and Character Large Object (CLOB) Data

19-2

9. Configure the Sort order column, configure the sort order column to ensure that the
Oracle Analytics query engine orders column as expected.

10. Save the changes.

Chapter 19
Model Binary Large Object (BLOB) Data and Character Large Object (CLOB) Data

19-3

20
Data Types Supported by Oracle Analytics
Cloud

This topic provides information about supported data types and semantic models.

Topics:

• Data Types Supported by Oracle Analytics

• Data Type Limitations

• Floating Point Limitations

• Use the NQSGetSQLDataTypes Procedure to Access Data Type Information

• SQL Identifier Character Limitation

• Other Oracle BI Server Limitations

• Data Type Mapping in Oracle Database and Oracle Analytics

Data Types Supported by Oracle Analytics
This topic contains a list by category of the data types that you can use with Oracle Analytics.

For more information about supported base data types, see Supported Data Types.

Binary Data

The supported binary data types are:

• BIT

• BINARY

• LONGVARBINARY

• VARBINARY

Date and Time Data

The supported date and time data types are:

• DATE

• TIME

• TIMESTAMP

Numeric Data

For information about DOUBLE and FLOAT, see Floating Point Limitations and Data Type
Limitations.

The supported numeric data types are:

20-1

• BIGINT

• DECIMAL

• DOUBLE

• FLOAT

• INTEGER

• NUMERIC

• REAL

• SMALLINT

• TINYINT

Textual Data

The supported textual data types are:

• CHAR

• LONGVARCHAR

• VARCHAR

Data Type Limitations
This topic lists the supported data types, their descriptions, and their limitations.

An administrator or semantic model developer can use this information to evaluate
whether a particular data type is suitable for a given column or set of values, and to
determine whether the data type is capable of representing all the required values.

For example, the INTEGER column in the Oracle database supports a very large range
of values, up to 38 decimal digits, but the INTEGER data type in Oracle Analytics is a
32-bit binary integer type that's capable of holding up to nine digits without
encountering data overflow (truncation) issues. If the column holds values in the range
of [-2,147,483,648, 2,147,483,647], then you should use the INTEGER data type.
However, if the column stores values larger than this range, then you should use
another data type such as NUMERIC or VARCHAR.

Choose the smallest, in bytes, data type that's capable of representing the column's
expected range of values. Choosing a data type in this way reduces the amount of
memory and disk space consumed by the Oracle BI Server for cache files, temp files,
and so on.

Data Type Limitations

BIG INT JDBC and the Semantic Modeler don't support this type;
therefore, Oracle Analytics doesn't fully support the BIG INT
type. The BIG INT type is intended to be same as the C int64
data type.

BINARY Oracle Analytics doesn't fully support the BINARY type. Oracle
Analytics supports only the fetching of columns whose data type
is BINARY. The Oracle Analytics query engine doesn't support
the BINARY type in bind parameters or insert statements.

Chapter 20
Data Type Limitations

20-2

Data Type Limitations

BIT Oracle Analytics doesn't fully support the BIT type. Instead, you
should use either the INT or CHAR type to represent Boolean
data.

CHAR The CHAR type's values are always padded with ending spaces
that can equal up to the length specified by the data type. The
CHAR type supports Unicode values.

DATE The DATE type represents only year, month, and day
components. DATE type doesn't represent hours, minutes, or
seconds like the Oracle DATE data type.

DECIMAL The DECIMAL type is the same as the NUMERIC type.

DOUBLE The DOUBLE type is the same as the IEEE 754 64-bit double-
precision binary floating-point data type. The internal storage is
eight bytes. The significand occupies 53 bits (including the sign
bit). Therefore, the precision is limited to approximately 16
decimal digits. The exponent occupies 11 bits. The range of the
exponent is approximately ±307 as a base 10 decimal value.

See Floating Point Limitations.

INTEGER The INTEGER type is a signed binary integer data type
occupying four bytes. The maximum value that can be
represented is 2,147,483,647, and the minimum value is
-2,147,483,648.

FLOAT The FLOAT type is the same as the IEEE 754 32-bit single-
precision binary floating-point data type. The internal storage is
four bytes. The significand occupies 24 bits (including the sign
bit). Therefore, the precision is limited to approximately 7 decimal
digits. The exponent occupies eight bits. The range of the
exponent is approximately ±38 as a base 10 decimal value.

See Floating Point Limitations.

LONGVARBINARY The LONGVARBINARY type supports up to 32,678 bytes.

LONGVARCHAR The LONGVARCHAR type supports up to 32,678 bytes. Both the
LONGVARCHAR type and the VARCHAR type support Unicode
values.

NUMERIC The NUMERIC type is a true decimal data type occupying 22
bytes. The internal representation and limitations are the same
as the Oracle NUMBER data type.

The NUMERIC type supports positive numbers in the range of 1
x 10^-130 to 9.999...9 x 10^125 with up to 38 significant digits.
The precision and scale aren't stored in the semantic model. The
scale is assumed to be 10.

REAL The REAL type has the same description and limitations as the
FLOAT type.

SMALLINT The SMALLINT type is represented as the INTEGER type
internally in the Oracle Analytics query engine and has the same
limitations as the INTEGER data type.

TIME The TIME type represents only hour, minute, and second
components.

TIMESTAMP The TIMESTAMP type represents year, month, day, hour, minute,
and second components. For some data sources on some
platforms, it can also support fractions of a second.

Chapter 20
Data Type Limitations

20-3

Data Type Limitations

TINYINT The TINYINT type is represented as an INTEGER internally in
the Oracle Analytics query engine. The TINYINT type and
INTEGER type have the same limitations.

VARBINARY The VARBINARY type is interchangeable with the
LONGVARBINARY type. The VARBINARY type and the
LONGVARBINARY type have the same limitations.

VARCHAR The VARCHAR type is interchangeable with the
LONGVARCHAR type. The VARCHAR type and
LONGCARCHAR type have the same limitations.

Semantic Modeler allows users to enter a maximum character
length of 2,147,483,647. However, the actual maximum length
supported is 32,678.

Floating Point Limitations
You can't represent some numbers exactly with binary floating point data types such
as FLOAT and DOUBLE.

When converting decimal numbers to and from binary floating point representations,
often there are rounding errors because of the representational limitations of binary
floating point formats. For example, a decimal number such as 1.365 might be
represented as 1.364999999999999 when converted to the DOUBLE type. When this
number is rounded to 3 digits after the decimal point, the result is 1.365. However, if
the number is rounded to 2 decimal digits, then the result is 1.36 and not 1.37.

To avoid the limitations of the FLOAT and DOUBLE types, Oracle suggests that you
update the FLOAT and DOUBLE data types to the NUMERIC type. There is no
workaround to fix the inherent limitations with binary floating point data types, other
than switching to the NUMERIC data type.

Use the NQSGetSQLDataTypes Procedure to Access Data
Type Information

To access a list of data types supported by Oracle Analytics Server, use the Oracle BI
Server nqcmd utility to run the NQSGetSQLDataTypes procedure.

For example: call NQSGetSQLDataTypes(0);
When you run this procedure, the results contain a list of supported data types and
information specific to each data type such as case sensitivity and the ability to search.

See Use nqcmd to Test and Refine the Repository.

SQL Identifier Character Limitation
In addition to the data type limitations, 128 characters is the default maximum length of
all SQL identifiers that Oracle Analytics can process.

See Data Type Limitations.

Chapter 20
Floating Point Limitations

20-4

Other Oracle BI Server Limitations
Learn about other data type limitations such as table name and column name length.

In addition to the data type limitations, Oracle BI Server has the following limitations:

• The default maximum length of all fields in Oracle BI Server is 32,678 bytes. This default
limit can be changed by setting the environment variable OBIS_MAX_FIELD_SIZE.

• The default maximum length of all SQL identifiers, for example, table names and column
names, is 128 characters.

Data Type Mapping in Oracle Database and Oracle Analytics
When you import metadata from an Oracle Database, the Semantic Modeler uses these
mappings to determine the corresponding data type in the Oracle Analytics query engine for
each imported column.

The mapping of data types from the Oracle Database to the Oracle Analytics query engine
might differ depending on the database.

Oracle Database Data Type Oracle Analytics Data Type

CHAR CHAR

NCHAR CHAR

VARCHAR2 VARCHAR

NVARCHAR2 VARCHAR

NUMBER (precision, scale) INT if scale = 0 and 1 <= precision <= 9; otherwise, same as
NUMBER

BINARY_FLOAT FLOAT

BINARY_DOUBLE DOUBLE

DATE DATETIME

TIMESTAMP TIMESTAMP

TIMESTAMP WITH TIME
ZONE

TIMESTAMP

TIMESTAMP WITH LOCAL
TIME ZONE

TIMESTAMP

BLOB LONGVARBINARY

CLOB LONGVARCHAR

NCLOB LONGVARCHAR

BFILE Not supported

LONG LONGVARCHAR

LONG RAW Not supported

ROWID CHAR

XML Type LONGVARBINARY

UriType Not supported

Chapter 20
Other Oracle BI Server Limitations

20-5

21
Expression Editor Reference

This part describes the expression elements that you can use in the Expression Editor

Topics:

• SQL Operators

• Conditional Expressions

• Functions

• Constants

• Types

• Variables

SQL Operators
You use SQL operators to specify comparisons and arithmetic operations between
expressions.

You can use various types of SQL operators.

Operator Example Description Syntax

BETWEEN "COSTS"."UNIT_C
OST" BETWEEN
100.0 AND
5000.0

Determines if a value is between two
non-inclusive bounds.

BETWEEN can be preceded with NOT to
negate the condition.

BETWEEN
[LowerBound] AND
[UpperBound]

IN "COSTS"."UNIT_C
OST" IN(200,
600, 'A')

Determines if a value is present in a set
of values.

IN ([Comma
Separated List])

IS NULL "PRODUCTS"."PRO
D_NAME" IS NULL

Determines if a value is null. IS NULL

LIKE "PRODUCTS"."PRO
D_NAME" LIKE
'prod%'

Determines if a value matches all or
part of a string. Often used with
wildcard characters to indicate any
character string match of zero or more
characters (%) or any single character
match (_).

LIKE

+ (FEDERAL_REVENU
E +
LOCAL_REVENUE)
-
TOTAL_EXPENDITU
RE

Plus sign for addition. +

21-1

Operator Example Description Syntax

- (FEDERAL_REVENU
E +
LOCAL_REVENUE)
-
TOTAL_EXPENDITU
RE

Minus sign for subtraction. -

* or X SUPPORT_SERVICE
S_EXPENDITURE *
1.5

Multiply sign for multiplication. *
X

/ CAPITAL_OUTLAY_
EXPENDITURE/
1.05

Divide by sign for division. /

% Percentage %
|| STATE||

CAST(YEAR AS
CHAR(4))

Character string concatenation. ||

((FEDERAL_REVENU
E +
LOCAL_REVENUE)
-
TOTAL_EXPENDITU
RE

Open parenthesis. (

) (FEDERAL_REVENU
E +
LOCAL_REVENUE)
-
TOTAL_EXPENDITU
RE

Close parenthesis.)

> YEAR > 2000 and
YEAR < 2016 and
YEAR <> 2013

Greater than sign, indicating values
higher than the comparison.

>

< YEAR > 2000 and
YEAR < 2016 and
YEAR <> 2013

Less than sign, indicating values lower
than the comparison.

<

= Equal sign, indicating the same value. =
>= Greater than or equal to sign, indicating

values the same or higher than the
comparison.

>=

<= Less than or equal to sign, indicating
values the same or lower than the
comparison.

<=

<> YEAR > 2000 and
YEAR < 2016 and
YEAR <> 2013

Not equal to, indicating values higher or
lower, but different.

<>

, STATE in
('ALABAMA','CAL
IFORNIA')

Comma, used to separate elements in a
list.

,

Chapter 21
SQL Operators

21-2

Conditional Expressions
You use conditional expressions to create expressions that convert values.

The conditional expressions described in this section are building blocks for creating
expressions that convert a value from one form to another.

Follow these rules:

• In CASE statements, AND has precedence over OR.

• Strings must be in single quotes.

Expression Example Description Syntax

CASE (If) CASE
WHEN score-par < 0 THEN
'Under Par'
WHEN score-par = 0 THEN
'Par'
WHEN score-par = 1 THEN
'Bogey'
WHEN score-par = 2 THEN
'Double Bogey'
ELSE 'Triple Bogey or
Worse'
END

Evaluates each WHEN
condition and if satisfied,
assigns the value in the
corresponding THEN
expression.

If none of the WHEN conditions
are satisfied, it assigns the
default value specified in the
ELSE expression. If no ELSE
expression is specified, the
system automatically adds an
ELSE NULL.

Note: See Best Practices for
using CASE statements in
Analyses and Visualizations.

CASE WHEN
request_condition1
THEN expr1 ELSE
expr2 END

CASE
(Switch)

CASE Score-par
WHEN -5 THEN 'Birdie on
Par 6'
WHEN -4 THEN 'Must be
Tiger'
WHEN -3 THEN 'Three
under par'
WHEN -2 THEN 'Two under
par'
WHEN -1 THEN 'Birdie'
WHEN 0 THEN 'Par'
WHEN 1 THEN 'Bogey'
WHEN 2 THEN 'Double
Bogey'
ELSE 'Triple Bogey or
Worse'
END

Also referred to as CASE
(Lookup). The value of the
first expression is examined,
then the WHEN expressions. If
the first expression matches
any WHEN expression, it
assigns the value in the
corresponding THEN
expression.

If none of the WHEN
expressions match, it assigns
the default value specified in
the ELSE expression. If no
ELSE expression is specified,
the system automatically
adds an ELSE NULL.

If the first expression
matches an expression in
multiple WHEN clauses, only
the expression following the
first match is assigned.

Note See Best Practices for
using CASE statements in
Analyses and Visualizations.

CASE expr1 WHEN
expr2 THEN expr3
ELSE expr4 END

Chapter 21
Conditional Expressions

21-3

Expression Example Description Syntax

IfCase >
ELSE

- - ELSE [expr]

IfCase >
IFNULL

- - IFNULL([expr],
[value])

IfCase >
NULLIF

- - NULLIF([expr],
[expr])

IfCase >
WHEN

- - WHEN [Condition]
THEN [expr]

IfCase >
CASE

- - CASE WHEN
[Condition] THEN
[expr] END

SwitchCase >
ELSE

- - ELSE [expr]

SwitchCase
>IFNULL

- - IFNULL([expr],
[value])

SwitchCase >
NULLIF

- - NULLIF([expr],
[expr])

SwitchCase >
WHEN

- - WHEN [Condition]
THEN [expr]

Functions
There are various types of functions that you can use in expressions.

Topics:

• Aggregate Functions

• Analytics Functions

• Conversion Functions

• Date and Time Functions

• Date Extraction Functions

• Display Functions

• Evaluate Functions

• Mathematical Functions

• Running Aggregate Functions

• Spatial Functions

• String Functions

• System Functions

• Time Series Functions

Chapter 21
Functions

21-4

Aggregate Functions
Aggregate functions perform operations on multiple values to create summary results.

The following list describes the aggregation rules that are available for columns and measure
columns. The list also includes functions that you can use when creating calculated items for
analyses.

• Default — Applies the default aggregation rule as in the semantic model or by the
original author of the analysis. Not available for calculated items in analyses.

• Server Determined — Applies the aggregation rule that's determined by the Oracle BI
Server (such as the rule that is defined in the semantic model). The aggregation is
performed within Oracle BI Server for simple rules such as Sum, Min, and Max. Not
available for measure columns in the Layout pane or for calculated items in analyses.

• Sum — Calculates the sum obtained by adding up all values in the result set. Use this for
items that have numeric values.

• Min — Calculates the minimum value (lowest numeric value) of the rows in the result set.
Use this for items that have numeric values.

• Max — Calculates the maximum value (highest numeric value) of the rows in the result
set. Use this for items that have numeric values.

• Average — Calculates the average (mean) value of an item in the result set. Use this for
items that have numeric values. Averages on tables and pivot tables are rounded to the
nearest whole number.

• First — In the result set, selects the first occurrence of the item for measures. For
calculated items, selects the first member according to the display in the Selected list.
Not available in the Edit Column Formula dialog box.

• Last — In the result set, selects the last occurrence of the item. For calculated items,
selects the last member according to the display in the Selected list. Not available in the
Edit Column Formula dialog box.

• Count — Calculates the number of rows in the result set that have a non-null value for
the item. The item is typically a column name, in which case the number of rows with
non-null values for that column are returned.

• Count Distinct — Adds distinct processing to the Count function, which means that each
distinct occurrence of the item is counted only once.

• None — Applies no aggregation. Not available for calculated items in analyses.

• Server Complex Aggregate — Applies the aggregation rule that is determined by the
Oracle BI Server (such as the rule that is defined in the semantic model). The
aggregation is performed by the Oracle BI Server, rather than within Presentation
Services. Not available for calculated items in analyses.

• Report-Based Total (when applicable) — If not selected, specifies that the Oracle BI
Server should calculate the total based on the entire result set, before applying any filters
to the measures. Not available in the Edit Column Formula dialog box or for calculated
items in analyses. Only available for attribute columns.

Chapter 21
Functions

21-5

Function Example Description Syntax

AGGREGATE
AT

AGGREGATE(sales
AT year)

Aggregates columns based on the level or
levels in the data model hierarchy you
specify.

• measure is the name of a measure
column.

• level is the level at which you want to
aggregate.

You can optionally specify more than one
level. You can't specify a level from a
dimension that contains levels that are being
used as the measure level for the measure
you specified in the first argument. For
example, you can't write the function as
AGGREGATE(yearly_sales AT month) if
month is from the same time dimension used
as the measure level for yearly_sales.

AGGREGATE(measure AT
level [, level1,
levelN])

AGGREGATE
BY

AGGREGATE(sales
BY month,
region)

Aggregates a measure based on one or
more dimension columns.
• measure is the name of a measure

column to aggregate.
• column is the dimension column at

which you want to aggregate.
You can aggregate measures based more
than one column.

AGGREGATE(measure BY
column [, column1,
columnN])

AVG Avg(Sales) Calculates the average (mean) of a numeric
set of values.

AVG(expr)

AVGDISTINCT Calculates the average (mean) of all distinct
values of an expression.

AVG(DISTINCT expr)

BIN BIN(revenue BY
productid, year
WHERE productid
> 2 INTO 4 BINS
RETURNING
RANGE_LOW)

Classifies a given numeric expression into a
specified number of equal width buckets.
The function can return either the bin
number or one of the two end points of the
bin interval. numeric_expr is the measure or
numeric attribute to bin. BY grain_expr1,…,
grain_exprN is a list of expressions that
define the grain at which the numeric_expr is
calculated. BY is required for measure
expressions and is optional for attribute
expressions. WHERE a filter to apply to the
numeric_expr before the numeric values are
assigned to bins INTO number_of_bins BINS
is the number of bins to return BETWEEN
min_value AND max_value is the min and
max values used for the end points of the
outermost bins RETURNING NUMBER
indicates that the return value should be the
bin number (1, 2, 3, 4, etc.). This is the
default. RETURNING RANGE_LOW
indicates the lower value of the bin interval
RETURNING RANGE_HIGH indicates the
higher value of the bin interval

BIN(numeric_expr [BY
grain_expr1, ...,
grain_exprN] [WHERE
condition] INTO
number_of_bins BINS
[BETWEEN min_value
AND max_value]
[RETURNING {NUMBER |
RANGE_LOW |
RANGE_HIGH}])

Chapter 21
Functions

21-6

Function Example Description Syntax

BottomN Ranks the lowest n values of the expression
argument from 1 to n, 1 corresponding to the
lowest numerical value.

expr is any expression that evaluates to a
numerical value. integer is any positive
integer. Represents the bottom number of
rankings displayed in the result set, 1 being
the lowest rank.

BottomN(expr,
integer)

COUNT COUNT(Products) Determines the number of items with a non-
null value.

COUNT(expr)

COUNTDISTIN
CT

Adds distinct processing to the COUNT
function.

expr is any expression.

COUNT(DISTINCT expr)

COUNT* SELECT COUNT(*)
FROM Facts

Counts the number of rows. COUNT(*)

First First(Sales) Selects the first non-null returned value of
the expression argument. The First
function operates at the most detailed level
specified in your explicitly defined dimension.

First([NumericExpress
ion)]

Last Last(Sales) Selects the last non-null returned value of
the expression.

Last([NumericExpressi
on)]

MAVG Calculates a moving average (mean) for the
last n rows of data in the result set, inclusive
of the current row.

expr is any expression that evaluates to a
numerical value. integer is any positive
integer. Represents the average of the last n
rows of data.

MAVG(expr, integer)

MAX MAX(Revenue) Calculates the maximum value (highest
numeric value) of the rows satisfying the
numeric expression argument.

MAX(expr)

MEDIAN MEDIAN(Sales) Calculates the median (middle) value of the
rows satisfying the numeric expression
argument. When there are an even number
of rows, the median is the mean of the two
middle rows. This function always returns a
double.

MEDIAN(expr)

MIN MIN(Revenue) Calculates the minimum value (lowest
numeric value) of the rows satisfying the
numeric expression argument.

MIN(expr)

NTILE Determines the rank of a value in terms of a
user-specified range. It returns integers to
represent any range of ranks. NTILE with
numTiles=100 returns what is commonly
called the "percentile" (with numbers ranging
from 1 to 100, with 100 representing the high
end of the sort).

expr is any expression that evaluates to a
numerical value. numTiles is a positive,
nonnull integer that represents the number of
tiles.

NTILE(expr, numTiles)

Chapter 21
Functions

21-7

Function Example Description Syntax

PERCENTILE Calculates a percentile rank for each value
satisfying the numeric expression argument.
The percentile rank ranges are between 0
(0th percentile) to 1 (100th percentile).

expr is any expression that evaluates to a
numerical value.

PERCENTILE(expr)

RANK RANK(chronologic
al_key, null,
year_key_columns
)

Calculates the rank for each value satisfying
the numeric expression argument. The
highest number is assigned a rank of 1, and
each successive rank is assigned the next
consecutive integer (2, 3, 4,...). If certain
values are equal, they'reare assigned the
same rank (for example, 1, 1, 1, 4, 5, 5, 7...).

expr is any expression that evaluates to a
numerical value.

RANK(expr)

STDDEV STDDEV(Sales)
STDDEV(DISTINCT
Sales)

Returns the standard deviation for a set of
values. The return type is always a double.

STDDEV(expr)

STDDEV_POP STDDEV_POP(Sales
)
STDDEV_POP(DISTI
NCT Sales)

Returns the standard deviation for a set of
values using the computational formula for
population variance and standard deviation.

STDDEV_POP([NumericEx
pression])

SUM SUM(Revenue) Calculates the sum obtained by adding up all
values satisfying the numeric expression
argument.

SUM(expr)

SUMDISTINCT Calculates the sum obtained by adding all of
the distinct values satisfying the numeric
expression argument.

expr is any expression that evaluates to a
numerical value.

SUM(DISTINCT expr)

TOPN Ranks the highest n values of the expression
argument from 1 to n, 1 corresponding to the
highest numerical value.

expr is any expression that evaluates to a
numerical value. integer is any positive
integer. Represents the top number of
rankings displayed in the result set, 1 being
the highest rank.

TOPN(expr, integer)

Analytics Functions
Analytics functions allow you to explore data using models such as trendline and
cluster.

Chapter 21
Functions

21-8

Function Example Description Syntax

TRENDLINE TRENDLINE(revenue,
(calendar_year,
calendar_quarter,
calendar_month) BY
(product), 'LINEAR',
'VALUE')

Oracle recommends that
you apply a Trendline using
the Add Statistics
property when viewing a
visualization. See Adjust
Visualization Properties.

Fits a linear, polynomial, or
exponential model, and
returns the fitted values or
model. The numeric_expr
represents the Y value for
the trend and the series
(time columns) represent
the X value.

TRENDLINE(numeric_expr,
([series]) BY
([partitionBy]),
model_type, result_type)

CLUSTER CLUSTER((product,
company),
(billed_quantity,
revenue), 'clusterName',
'algorithm=k-
means;numClusters=%1;maxI
ter=%2;useRandomSeed=FALS
E;enablePartitioning=TRUE
', 5, 10)

Collects a set of records
into groups based on one
or more input expressions
using K-Means or
Hierarchical Clustering.

CLUSTER((dimension_expr1
, ... dimension_exprN),
(expr1, ... exprN),
output_column_name,
options,
[runtime_binded_options])

OUTLIER OUTLIER((product,
company),
(billed_quantity,
revenue), 'isOutlier',
'algorithm=kmeans')

Classifies a record as
Outlier based on one or
more input expressions
using K-Means or
Hierarchical Clustering or
Multi-Variate Outlier
detection Algorithms.

OUTLIER((dimension_expr1
, ... dimension_exprN),
(expr1, ... exprN),
output_column_name,
options,
[runtime_binded_options])

REGR REGR(revenue,
(discount_amount),
(product_type, brand),
'fitted', '')

Fits a linear model and
returns the fitted values or
model. This function can be
used to fit a linear curve on
two measures.

REGR(y_axis_measure_expr,
(x_axis_expr),
(category_expr1, ...,
category_exprN),
output_column_name,
options,
[runtime_binded_options])

Date and Time Functions
Date and time functions manipulate data based on DATE and DATETIME.

Function Example Description Syntax

CURRENT_Dat
e

CURRENT_DATE Returns the current date.

The date is determined by the system in
which the Oracle BI is running.

CURRENT_DATE

Chapter 21
Functions

21-9

Function Example Description Syntax

CURRENT_TI
ME

CURRENT_TIME(3) Returns the current time to the specified
number of digits of precision, for example:
HH:MM:SS.SSS

If no argument is specified, the function
returns the default precision.

CURRENT_TIME(expr)

CURRENT_TI
MESTAMP

CURRENT_TIMESTAM
P(3)

Returns the current date/timestamp to the
specified number of digits of precision.

CURRENT_TIMESTAMP(exp
r)

DAYNAME DAYNAME(Order_Da
te)

Returns the name of the day of the week for
a specified date expression.

DAYNAME(expr)

DAYOFMONTH DAYOFMONTH(Order
_Date)

Returns the number corresponding to the
day of the month for a specified date
expression.

DAYOFMONTH(expr)

DAYOFWEEK DAYOFWEEK(Order_
Date)

Returns a number between 1 and 7
corresponding to the day of the week for a
specified date expression. For example, 1
always corresponds to Sunday, 2
corresponds to Monday, and so on through
to Saturday which returns 7.

DAYOFWEEK(expr)

DAYOFYEAR DAYOFYEAR(Order_
Date)

Returns the number (between 1 and 366)
corresponding to the day of the year for a
specified date expression.

DAYOFYEAR(expr)

DAY_OF_QUA
RTER

DAY_OF_QUARTER(O
rder_Date)

Returns a number (between 1 and 92)
corresponding to the day of the quarter for
the specified date expression.

DAY_OF_QUARTER(expr)

HOUR HOUR(Order_Time) Returns a number (between 0 and 23)
corresponding to the hour for a specified
time expression. For example, 0 corresponds
to 12 a.m. and 23 corresponds to 11 p.m.

HOUR(expr)

MINUTE MINUTE(Order_Tim
e)

Returns a number (between 0 and 59)
corresponding to the minute for a specified
time expression.

MINUTE(expr)

MONTH MONTH(Order_Time
)

Returns the number (between 1 and 12)
corresponding to the month for a specified
date expression.

MONTH(expr)

MONTHNAME MONTHNAME(Order_
Time)

Returns the name of the month for a
specified date expression.

MONTHNAME(expr)

MONTH_OF_Q
UARTER

MONTH_OF_QUARTE
R(Order_Date)

Returns the number (between 1 and 3)
corresponding to the month in the quarter for
a specified date expression.

MONTH_OF_QUARTER(expr
)

NOW NOW() Returns the current timestamp. The NOW
function is equivalent to the
CURRENT_TIMESTAMP function.

NOW()

QUARTER_OF
_YEAR

QUARTER_OF_YEAR(
Order_Date)

Returns the number (between 1 and 4)
corresponding to the quarter of the year for a
specified date expression.

QUARTER_OF_YEAR(expr)

SECOND SECOND(Order_Tim
e)

Returns the number (between 0 and 59)
corresponding to the seconds for a specified
time expression.

SECOND(expr)

Chapter 21
Functions

21-10

Function Example Description Syntax

TIMESTAMPAD
D

TIMESTAMPADD(SQL
_TSI_MONTH,
12,Time."Order
Date")

Adds a specified number of intervals to a
timestamp, and returns a single timestamp.

Interval options are: SQL_TSI_SECOND,
SQL_TSI_MINUTE, SQL_TSI_HOUR,
SQL_TSI_DAY, SQL_TSI_WEEK,
SQL_TSI_MONTH, SQL_TSI_QUARTER,
SQL_TSI_YEAR

TIMESTAMPADD(interval
, expr, timestamp)

TIMESTAMPDI
FF

TIMESTAMPDIFF(SQ
L_TSI_MONTH,
Time."Order
Date",CURRENT_DA
TE)

Returns the total number of specified
intervals between two timestamps.

Use the same intervals as TIMESTAMPADD.

TIMESTAMPDIFF(interva
l, expr, timestamp2)

WEEK_OF_QU
ARTER

WEEK_OF_QUARTER(
Order_Date)

Returns a number (between 1 and 13)
corresponding to the week of the quarter for
the specified date expression.

WEEK_OF_QUARTER(expr)

WEEK_OF_YE
AR

WEEK_OF_YEAR(Ord
er_Date)

Returns a number (between 1 and 53)
corresponding to the week of the year for the
specified date expression.

WEEK_OF_YEAR(expr)

YEAR YEAR(Order_Date) Returns the year for the specified date
expression.

YEAR(expr)

Date Extraction Functions
These functions calculate or round-down timestamp values to the nearest specified time
period, such as hour, day, week, month, and quarter.

You can use the calculated timestamps to aggregate data using a different grain. For
example, you might apply the EXTRACTDAY() function to sales order dates to calculate a
timestamp for midnight on the day that orders occur, so that you can aggregate the data by
day.

Function Example Description Syntax

Extract Day EXTRACTDAY("Order Date")
• 2/22/1967 3:02:01 AM

returns 2/22/1967
12:00:00 AM.

• 9/2/2022 10:38:21 AM
returns 9/2/2022
12:00:00 AM.

Returns a timestamp for midnight
(12 AM) on the day in which the
input value occurs. For example,
if the input timestamp is for
3:02:01 AM on February 22nd,
the function returns the
timestamp for 12:00:00 AM on
February 22nd.

EXTRACTDAY(expr)

Extract Hour EXTRACTHOUR("Order Date")
• 2/22/1967 3:02:01 AM

returns 2/22/1967
3:00:00 AM.

• 6/17/1999 11:18:30 PM
returns 6/17/1999
11:00:00 PM.

Returns a timestamp for the start
of the hour in which the input
value occurs. For example, if the
input timestamp is for 11:18:30
PM, the function returns the
timestamp for 11:00:00 PM.

EXTRACTHOUR (expr)

Chapter 21
Functions

21-11

Function Example Description Syntax

Extract Hour of
Day

EXTRACTHOUROFDAY("Order
Date")
• 2014/09/24 10:58:00

returns 2000/01/01
10:00:00.

• 2014/08/13 11:10:00
returns 2000/01/01
11:00:00

Returns a timestamp where the
hour equals the hour of the input
value with default values for year,
month, day, minutes, and
seconds.

EXTRACTHOUROFDAY(expr
)

Extract
Millisecond

EXTRACTMILLISECOND("Order
Date")
• 1997/01/07

15:32:02.150 returns
1997/01/07
15:32:02.150.

• 1997/01/07
18:42:01.265 returns
1997/01/07
18:42:01.265.

Returns a timestamp containing
milliseconds for the input value.
For example, if the input
timestamp is for 15:32:02.150,
the function returns the
timestamp for 15:32:02.150.

EXTRACTMILLISECOND(ex
pr)

Extract Minute EXTRACTMINUTE("Order
Date")
• 6/17/1999 11:18:00 PM

returns 6/17/1999
11:18:00 PM.

• 9/2/2022 10:38:21 AM
returns 9/2/2022
10:38:00 AM.

Returns a timestamp for the start
of the minute in which the input
value occurs. For example, if the
input timestamp is for 11:38:21
AM, the function returns the
timestamp for 11:38:00 AM.

EXTRACTMINUTE (expr)

Extract Month EXTRACTMONTH("Order
Date")
• 2/22/1967 3:02:01 AM

returns 2/1/1967
12:00:00 AM.

• 6/17/1999 11:18:00 PM
returns 6/1/1999
12:00:00 AM.

Returns a timestamp for the first
day in the month in which the
input value occurs. For example,
if the input timestamp is for
February 22nd, the function
returns the timestamp for
February 1st.

EXTRACTMONTH(expr)

Chapter 21
Functions

21-12

Function Example Description Syntax

Extract Quarter EXTRACTQUARTER("Order
Date")
• 2/22/1967 3:02:01 AM

returns 1/1/1967
12:00:00 AM, the first day
of the first fiscal quarter.

• 6/17/1999 11:18:00 PM
returns 4/1/1999
12:00:00 AM, the first day
of the second fiscal quarter.

• 9/2/2022 10:38:21 AM
returns 7/1/2022
12:00:00 AM, the first day
of the third fiscal quarter.
Tip: Use QUARTER (expr)
to calculate just the ordinal
quarter from the returned
timestamp.

Returns a timestamp for the first
day in the quarter in which the
input value occurs. For example,
if the input timestamp occurs in
the third fiscal quarter, the
function returns the timestamp
for July 1st.

EXTRACTQUARTER(expr)

Extract Second EXTRACTSECOND("Order
Date")
• 1997/01/07

15:32:02.150 returns
1997/01/07 15:32:02.

• 1997/01/07
20:44:18.163 returns
1997/01/07 20:44:18.

Returns a timestamp for the input
value. For example, if the input
timestamp is for 15:32:02.150,
the function returns the
timestamp for 15:32:02.

EXTRACTSECOND(expr)

Extract Week EXTRACTWEEK("Order Date")
• 2014/09/24 10:58:00

returns 2014/09/21.

• 2014/08/13 11:10:00
returns 2014/08/10.

Returns the date of the first day
of the week (Sunday) in which
the input value occurs. For
example, if the input timestamp is
for Wednesday, September 24th,
the function returns the
timestamp for Sunday,
September 21st.

EXTRACTWEEK(expr)

Extract Year EXTRACTYEAR("Order Date")
• 1967/02/22 03:02:01

returns 1967/01/01
00:00:00.

• 1999/06/17 23:18:00
returns 1999/01/01
00:00:00.

Returns a timestamp for January
1st for the year in which the input
value occurs. For example, if the
input timestamp occurs in 1967,
the function returns the
timestamp for January 1st, 1967.

EXTRACTYEAR (expr)

Conversion Functions
Conversion functions convert a value from one form to another.

Chapter 21
Functions

21-13

Function Example Description Syntax

CAST CAST(hiredate AS
CHAR(40)) FROM
employee

Changes the data type of an
expression or a null literal to another
data type. For example, you can cast a
customer_name (a data type of CHAR
or VARCHAR) or birthdate (a datetime
literal).

Use CAST to change to a Date data
type.

Don’t use TODATE.

CAST(expr AS type)

IFNULL IFNULL(Sales, 0) Tests if an expression evaluates to a
null value, and if it does, assigns the
specified value to the expression.

IFNULL(expr, value)

INDEXCOL SELECT
INDEXCOL(VALUEOF
(NQ_SESSION.GEOGRAPHY
_LEVEL), Country,
State, City), Revenue
FROM Sales

Uses external information to return the
appropriate column for the signed-in
user to see.

INDEXCOL([integer
literal], [expr1] [,
[expr2], ?-])

NULLIF SELECT e.last_name,
NULLIF(e.job_id,
j.job_id) "Old Job
ID" FROM employees e,
job_history j WHERE
e.employee_id =
j.employee_id ORDER
BY last_name, "Old
Job ID";

Compares two expressions. If they’re
equal, then the function returns NULL.
If they’re not equal, then the function
returns the first expression. You can’t
specify the literal NULL for the first
expression.

NULLIF([expression],
[expression])

To_DateTime SELECT To_DateTime
('2009-03-0301:01:00'
, 'yyyy-mm-dd
hh:mi:ss') FROM sales

Converts string literals of DateTime
format to a DateTime data type.

To_DateTime([expressi
on], [literal])

VALUEOF SalesSubjectArea.Cust
omer.Region =
VALUEOF("Region
Security"."REGION")

References the value of a semantic
model variable in a filter.

Use expr variables as arguments of the
VALUEOF function. Refer to static
semantic model variables by name.

VALUEOF(expr)

Display Functions
Display functions operate on the result set of a query.

Function Example Description Syntax

BottomN BottomN(Sales,
10)

Returns the n lowest values of expression,
ranked from lowest to highest.

BottomN([NumericExpre
ssion], [integer])

FILTER FILTER(Sales
USING Product =
'widget')

Computes the expression using the given
preaggregate filter.

FILTER(measure USING
filter_expr)

Chapter 21
Functions

21-14

Function Example Description Syntax

MAVG MAVG(Sales, 10) Calculates a moving average (mean) for the
last n rows of data in the result set, inclusive
of the current row.

MAVG([NumericExpressi
on], [integer])

MSUM SELECT Month,
Revenue,
MSUM(Revenue, 3)
as 3_MO_SUM FROM
Sales

Calculates a moving sum for the last n rows
of data, inclusive of the current row.

The sum for the first row is equal to the
numeric expression for the first row. The sum
for the second row is calculated by taking the
sum of the first two rows of data, and so on.
When the n th row is reached, the sum is
calculated based on the last n rows of data.

MSUM([NumericExpressi
on], [integer])

NTILE NTILE(Sales,
100)

Determines the rank of a value in terms of a
user-specified range. It returns integers to
represent any range of ranks. The example
shows a range from 1 to 100, with the lowest
sale = 1 and the highest sale = 100.

NTILE([NumericExpress
sion], [integer])

PERCENTILE PERCENTILE(Sales
)

Calculates a percent rank for each value
satisfying the numeric expression argument.
The percentile rank ranges are from 0 (1st
percentile) to 1 (100th percentile), inclusive.

PERCENTILE([NumericEx
pression])

RANK RANK(Sales) Calculates the rank for each value satisfying
the numeric expression argument. The
highest number is assigned a rank of 1, and
each successive rank is assigned the next
consecutive integer (2, 3, 4,...). If certain
values are equal, they're assigned the same
rank (for example, 1, 1, 1, 4, 5, 5, 7...).

RANK([NumericExpressi
on])

RCOUNT SELECT month,
profit,
RCOUNT(profit)
FROM sales WHERE
profit > 200

Takes a set of records as input and counts
the number of records encountered so far.

RCOUNT([NumericExpres
sion])

RMAX SELECT month,
profit,
RMAX(profit)
FROM sales

Takes a set of records as input and shows
the maximum value based on records
encountered so far. The specified data type
must be one that can be ordered.

RMAX([NumericExpressi
on])

RMIN SELECT month,
profit,
RMIN(profit)
FROM sales

Takes a set of records as input and shows
the minimum value based on records
encountered so far. The specified data type
must be one that can be ordered.

RMIN([NumericExpressi
on])

RSUM SELECT month,
revenue,
RSUM(revenue) as
RUNNING_SUM FROM
sales

Calculates a running sum based on records
encountered so far.

The sum for the first row is equal to the
numeric expression for the first row. The sum
for the second row is calculated by taking the
sum of the first two rows of data, and so on.

RSUM([NumericExpressi
on])

TOPN TOPN(Sales, 10) Returns the n highest values of expression,
ranked from highest to lowest.

TOPN([NumericExpressi
on], [integer])

Chapter 21
Functions

21-15

Evaluate Functions
Evaluate functions are database functions that can be used to pass through
expressions to get advanced calculations.

Embedded database functions can require one or more columns. These columns are
referenced by %1 ... %N within the function. The actual columns must be listed after
the function.

Function Example Description Syntax

EVALUATE SELECT
EVALUATE('instr(
%1, %2)',
address, 'Foster
City') FROM
employees

Passes the specified database function with
optional referenced columns as parameters
to the database for evaluation.

EVALUATE([string
expression], [comma
separated
expressions])

EVALUATE_AG
GR

EVALUATE_AGGR('R
EGR_SLOPE(%1,
%2)',
sales.quantity,
market.marketkey
)

Passes the specified database function with
optional referenced columns as parameters
to the database for evaluation. This function
is intended for aggregate functions with a
GROUP BY clause.

EVALUATE_AGGR('db_agg
_function(%1...%N)'
[AS datatype] [,
column1, columnN])

Mathematical Functions
The mathematical functions described in this section perform mathematical operations.

Function Example Description Syntax

ABS ABS(Profit) Calculates the absolute value of a numeric
expression.

expr is any expression that evaluates to a
numerical value.

ABS(expr)

ACOS ACOS(1) Calculates the arc cosine of a numeric
expression.

expr is any expression that evaluates to a
numerical value.

ACOS(expr)

ASIN ASIN(1) Calculates the arc sine of a numeric
expression.

expr is any expression that evaluates to a
numerical value.

ASIN(expr)

ATAN ATAN(1) Calculates the arc tangent of a numeric
expression.

expr is any expression that evaluates to a
numerical value.

ATAN(expr)

ATAN2 ATAN2(1, 2) Calculates the arc tangent of y /x, where y is
the first numeric expression and x is the
second numeric expression.

ATAN2(expr1, expr2)

Chapter 21
Functions

21-16

Function Example Description Syntax

CEILING CEILING(Profit) Rounds a non-integer numeric expression to
the next highest integer. If the numeric
expression evaluates to an integer, the
CEILING function returns that integer.

CEILING(expr)

COS COS(1) Calculates the cosine of a numeric
expression.

expr is any expression that evaluates to a
numerical value.

COS(expr)

COT COT(1) Calculates the cotangent of a numeric
expression.

expr is any expression that evaluates to a
numerical value.

COT(expr)

DEGREES DEGREES(1) Converts an expression from radians to
degrees.

expr is any expression that evaluates to a
numerical value.

DEGREES(expr)

EXP EXP(4) Sends the value to the power specified.
Calculates e raised to the n-th power, where
e is the base of the natural logarithm.

EXP(expr)

ExtractBit Int
ExtractBit(1, 5)

Retrieves a bit at a particular position in an
integer. It returns an integer of either 0 or 1
corresponding to the position of the bit.

ExtractBit([Source
Number], [Digits])

FLOOR FLOOR(Profit) Rounds a non-integer numeric expression to
the next lowest integer. If the numeric
expression evaluates to an integer, the
FLOOR function returns that integer.

FLOOR(expr)

LOG LOG(1) Calculates the natural logarithm of an
expression.

expr is any expression that evaluates to a
numerical value.

LOG(expr)

LOG10 LOG10(1) Calculates the base 10 logarithm of an
expression.

expr is any expression that evaluates to a
numerical value.

LOG10(expr)

MOD MOD(10, 3) Divides the first numeric expression by the
second numeric expression and returns the
remainder portion of the quotient.

MOD(expr1, expr2)

PI PI() Returns the constant value of pi. PI()
POWER POWER(Profit, 2) Takes the first numeric expression and raises

it to the power specified in the second
numeric expression.

POWER(expr1, expr2)

RADIANS RADIANS(30) Converts an expression from degrees to
radians.

expr is any expression that evaluates to a
numerical value.

RADIANS(expr)

RAND RAND() Returns a pseudo-random number between
0 and 1.

RAND()

Chapter 21
Functions

21-17

Function Example Description Syntax

RANDFromSee
d

RAND(2) Returns a pseudo-random number based on
a seed value. For a given seed value, the
same set of random numbers are generated.

RAND(expr)

ROUND ROUND(2.166000,
2)

Rounds a numeric expression to n digits of
precision.

expr is any expression that evaluates to a
numerical value.

integer is any positive integer that represents
the number of digits of precision.

ROUND(expr, integer)

SIGN SIGN(Profit) Returns the following:

• 1 if the numeric expression evaluates to
a positive number

• -1 if the numeric expression evaluates to
a negative number

• 0 if the numeric expression evaluates to
zero

SIGN(expr)

SIN SIN(1) Calculates the sine of a numeric expression. SIN(expr)
SQRT SQRT(7) Calculates the square root of the numeric

expression argument. The numeric
expression must evaluate to a nonnegative
number.

SQRT(expr)

TAN TAN(1) Calculates the tangent of a numeric
expression.

expr is any expression that evaluates to a
numerical value.

TAN(expr)

TRUNCATE TRUNCATE(45.1234
5, 2)

Truncates a decimal number to return a
specified number of places from the decimal
point.

expr is any expression that evaluates to a
numerical value.

integer is any positive integer that represents
the number of characters to the right of the
decimal place to return.

TRUNCATE(expr,
integer)

Running Aggregate Functions
Running aggregate functions perform operations on multiple values to create summary
results.

Function Example Description Syntax

MAVG Calculates a moving average (mean) for the
last n rows of data in the result set, inclusive
of the current row.

expr is any expression that evaluates to a
numerical value. integer is any positive
integer. Represents the average of the last n
rows of data.

MAVG(expr, integer)

Chapter 21
Functions

21-18

Function Example Description Syntax

MSUM select month,
revenue,
MSUM(revenue, 3)
as 3_MO_SUM from
sales_subject_ar
ea

Calculates a moving sum for the last n rows
of data, inclusive of the current row.

expr is any expression that evaluates to a
numerical value. integer is any positive
integer. Represents the sum of the last n
rows of data.

MSUM(expr, integer)

RSUM SELECT month,
revenue,
RSUM(revenue) as
RUNNING_SUM from
sales_subject_ar
ea

Calculates a running sum based on records
encountered so far.

expr is any expression that evaluates to a
numerical value.

RSUM(expr)

RCOUNT select month,
profit,
RCOUNT(profit)
from
sales_subject_ar
ea where profit
> 200

Takes a set of records as input and counts
the number of records encountered so far.

expr is an expression of any datatype.

RCOUNT(expr)

RMAX SELECT month,
profit,RMAX(prof
it) from
sales_subject_ar
ea

Takes a set of records as input and shows
the maximum value based on records
encountered so far.

expr is an expression of any datatype.

RMAX(expr)

RMIN select month,
profit,RMIN(prof
it) from
sales_subject_ar
ea

Takes a set of records as input and shows
the minimum value based on records
encountered so far.

expr is an expression of any datatype.

RMIN(expr)

Spatial Functions
Spatial functions enable you to perform geographical analysis when you model data. For
example, you might calculate the distance between two geographical areas (known as
shapes or polygons).

Note:

You can't use these spatial functions in custom calculations for visualization
workbooks.

Function Example Description Syntax

GeometryArea GeometryArea(Shape) Calculates the area that a
shape occupies.

GeometryArea(Shape)

GeometryDista
nce

GeometryDistance(TRIP_STA
RT, TRIP_END)

Calculates the distance
between two shapes.

GeometryDistance(Shape 1,
Shape 2)

Chapter 21
Functions

21-19

Function Example Description Syntax

GeometryLengt
h

GeometryLength(Shape) Calculates the
circumference of a shape.

GeometryLength(Shape)

GeometryRelat
e

GeometryRelate(TRIP_START
, TRIP_END)

Determines whether one
shape is inside another
shape. Returns TRUE or
FALSE as a string
(varchar).

GeometryRelate(Shape 1,
Shape 2)

GeometryWithi
nDistance

GeometryWithinDistance(TR
IP_START, TRIP_END, 500)

Determines whether two
shapes are within a
specified distance of each
other. Returns TRUE or
FALSE as a string
(varchar).

GeometryWithinDistance(Sh
ape1, Shape2,
DistanceInFloat)

String Functions
String functions perform various character manipulations. They operate on character
strings.

Function Example Description Syntax

ASCII ASCII('a') Converts a single character string to its
corresponding ASCII code, between 0 and
255. If the character expression evaluates to
multiple characters, the ASCII code
corresponding to the first character in the
expression is returned.

expr is any expression that evaluates to a
character string.

ASCII(expr)

BIT_LENGTH BIT_LENGTH('abcd
ef')

Returns the length, in bits, of a specified
string. Each Unicode character is 2 bytes in
length (equal to 16 bits).

expr is any expression that evaluates to a
character string.

BIT_LENGTH(expr)

CHAR CHAR(35) Converts a numeric value between 0 and
255 to the character value corresponding to
the ASCII code.

expr is any expression that evaluates to a
numerical value between 0 and 255.

CHAR(expr)

CHAR_LENGT
H

CHAR_LENGTH(Cust
omer_Name)

Returns the length, in number of characters,
of a specified string. Leading and trailing
blanks aren’t counted in the length of the
string.

expr is any expression that evaluates to a
character string.

CHAR_LENGTH(expr)

CONCAT SELECT DISTINCT
CONCAT ('abc',
'def') FROM
employee

Concatenates two character strings.

exprs are expressions that evaluate to
character strings, separated by commas.

You must use raw data, not formatted data,
with CONCAT.

CONCAT(expr1, expr2)

Chapter 21
Functions

21-20

Function Example Description Syntax

INSERT SELECT
INSERT('123456',
2, 3, 'abcd')
FROM table

Inserts a specified character string into a
specified location in another character string.

expr1 is any expression that evaluates to a
character string. Identifies the target
character string.

integer1 is any positive integer that
represents the number of characters from
the beginning of the target string where the
second string is to be inserted.

integer2 is any positive integer that
represents the number of characters in the
target string to be replaced by the second
string.

expr2 is any expression that evaluates to a
character string. Identifies the character
string to be inserted into the target string.

INSERT(expr1,
integer1, integer2,
expr2)

LEFT SELECT
LEFT('123456',
3) FROM table

Returns a specified number of characters
from the left of a string.

expr is any expression that evaluates to a
character string

integer is any positive integer that represents
the number of characters from the left of the
string to return.

LEFT(expr, integer)

LENGTH LENGTH(Customer_
Name)

Returns the length, in number of characters,
of a specified string. The length is returned
excluding any trailing blank characters.

expr is any expression that evaluates to a
character string.

LENGTH(expr)

LOCATE LOCATE('d'
'abcdef')

Returns the numeric position of a character
string in another character string. If the
character string isn’t found in the string being
searched, the function returns a value of 0.

expr1 is any expression that evaluates to a
character string. Identifies the string for
which to search.

expr2 is any expression that evaluates to a
character string.

Identifies the string to be searched.

LOCATE(expr1, expr2)

LOCATEN LOCATEN('d'
'abcdef', 3)

Like LOCATE, returns the numeric position
of a character string in another character
string. LOCATEN includes an integer
argument that enables you to specify a
starting position to begin the search.

expr1 is any expression that evaluates to a
character string. Identifies the string for
which to search.

expr2 is any expression that evaluates to a
character string. Identifies the string to be
searched.

integer is any positive (nonzero) integer that
represents the starting position to begin to
look for the character string.

LOCATEN(expr1, expr2,
integer)

Chapter 21
Functions

21-21

Function Example Description Syntax

LOWER LOWER(Customer_N
ame)

Converts a character string to lowercase.

expr is any expression that evaluates to a
character string.

LOWER(expr)

OCTET_LENG
TH

OCTET_LENGTH('ab
cdef')

Returns the number of bytes of a specified
string.

expr is any expression that evaluates to a
character string.

OCTET_LENGTH(expr)

POSITION POSITION('d',
'abcdef')

Returns the numeric position of strExpr1 in a
character expression. If strExpr1 isn’t found,
the function returns 0.

expr1 is any expression that evaluates to a
character string. Identifies the string to
search for in the target string. For example,
"d".

expr2 is any expression that evaluates to a
character string. Identifies the target string to
be searched. For example, "abcdef".

POSITION(expr1,
expr2)

REPEAT REPEAT('abc', 4) Repeats a specified expression n times.

expr is any expression that evaluates to a
character string

integer is any positive integer that represents
the number of times to repeat the character
string.

REPEAT(expr, integer)

REPLACE REPLACE('abcd123
4', '123', 'zz')

Replaces one or more characters from a
specified character expression with one or
more other characters.

expr1 is any expression that evaluates to a
character string. This is the string in which
characters are to be replaced.

expr2 is any expression that evaluates to a
character string. This second string identifies
the characters from the first string that are to
be replaced.

expr3 is any expression that evaluates to a
character string. This third string specifies
the characters to substitute into the first
string.

REPLACE(expr1, expr2,
expr3)

RIGHT SELECT
RIGHT('123456',
3) FROM table

Returns a specified number of characters
from the right of a string.

expr is any expression that evaluates to a
character string.

integer is any positive integer that represents
the number of characters from the right of
the string to return.

RIGHT(expr, integer)

SPACE SPACE(2) Inserts blank spaces.

integer is any positive integer that indicates
the number of spaces to insert.

SPACE(expr)

Chapter 21
Functions

21-22

Function Example Description Syntax

SUBSTRING SUBSTRING('abcde
f' FROM 2)

Creates a new string starting from a fixed
number of characters into the original string.

expr is any expression that evaluates to a
character string.

startPos is any positive integer that
represents the number of characters from
the start of the left side of the string where
the result is to begin.

SUBSTRING([SourceStri
ng] FROM
[StartPostition])

SUBSTRINGN SUBSTRING('abcde
f' FROM 2 FOR 3)

Like SUBSTRING, creates a new string
starting from a fixed number of characters
into the original string.

SUBSTRINGN includes an integer argument
that enables you to specify the length of the
new string, in number of characters.

expr is any expression that evaluates to a
character string.

startPos is any positive integer that
represents the number of characters from
the start of the left side of the string where
the result is to begin.

SUBSTRING(expr FROM
startPos FOR length)

TrimBoth Trim(BOTH '_'
FROM '_abcdef_')

Strips specified leading and trailing
characters from a character string.

char is any single character. If you omit this
specification (and the required single
quotes), a blank character is used as the
default.

expr is any expression that evaluates to a
character string.

TRIM(BOTH char FROM
expr)

TRIMLEADING TRIM(LEADING '_'
FROM '_abcdef')

Strips specified leading characters from a
character string.

char is any single character. If you omit this
specification (and the required single
quotes), a blank character is used as the
default.

expr is any expression that evaluates to a
character string.

TRIM(LEADING char
FROM expr)

TRIMTRAILING TRIM(TRAILING
'_' FROM
'abcdef_')

Strips specified trailing characters from a
character string.

char is any single character. If you omit this
specification (and the required single
quotes), a blank character is used as the
default.

expr is any expression that evaluates to a
character string.

TRIM(TRAILING char
FROM expr)

UPPER UPPER(Customer_N
ame)

Converts a character string to uppercase.

expr is any expression that evaluates to a
character string.

UPPER(expr)

Chapter 21
Functions

21-23

System Functions
The USER system function returns values relating to the session. For example, the user
name you signed in with.

Function Example Description Syntax

DATABASE Returns the name of the subject area to
which you're logged on.

DATABASE()

USER Returns the user name for the semantic
model to which you're logged on.

USER()

Time Series Functions
Time series functions enable you to aggregate and forecast data based on time
dimensions. For example, you might use the AGO function to calculate revenue from
one year ago.

Time dimension members must be at or below the level of the function. Because of
this, one or more columns that uniquely identify members at or below the given level
must be projected in the query.

Function Example Description Syntax

AGO SELECT Year_ID,
AGO(sales, year,
1)

Calculates the aggregated value of a
measure in a specified time period in the
past. For example, to calculate monthly
revenue one year ago, use AGO(Revenue,
Year, 1, SHIP_MONTH). To calculate
quarterly revenues in the last quarter, use
AGO(Revenue, Quarter, 1).

AGO(EXPR, TIME_LEVEL,
OFFSET)
Where:

• EXPR = the measure to
calculate, for example,
revenue.

• TIME_LEVEL = the time
interval, which must be Year,
Quarter, Month, Week, or
Day.

• OFFSET = the number of
time intervals to calculate
back to, for example, 1 for
one year.

Chapter 21
Functions

21-24

Function Example Description Syntax

PERIODR
OLLING

SELECT Month_ID,
PERIODROLLING
(monthly_sales,
-1, 1)

Computes the aggregate of a measure over
the period starting x units of time and ending
y units of time from the current time. For
example, PERIODROLLING can compute
sales for a period that starts at a quarter
before and ends at a quarter after the current
quarter.

PERIODROLLING(measure, x
[,y])
Where:

• measure = the name of a
measure column.

• x is an integer that specifies
the offset from the current
time.

• y specifies the number of
time units over which the
function computes.

• hierarchy is an optional
argument that specifies the
name of a hierarchy in a
time dimension, such as yr,
mon, day, that you want to
use to compute the time
window.

TODATE SELECT Year_ID,
Month_ID, TODATE
(sales, year)

Calculates the aggregated value of a
measure from the start of a time period to
the latest time period, for example, year to
date calculations.

For example, to calculate Year to Date Sales,
use TODATE(sales, year).

TODATE(EXPR, TIME_LEVEL)
Where:

• EXPR = an expression that
references at least one
measure column, for
example, sales.

• TIME_LEVEL = the time
interval, which must be Year,
Quarter, Month, Week, or
Day.

FORECAST Function

Creates a time-series model of the specified measure over the series using Exponential
Smoothing (ETS) or Seasonal ARIMA or ARIMA. This function outputs a forecast for a set of
periods as specified by the numPeriods argument.

Syntax FORECAST(numeric_expr, ([series]), output_column_name, options,
[runtime_binded_options])])
Where:

• numeric_expr indicates the measure to forecast, for example, revenue data.

• series indicates the time grain used to build the forecast model. The series is a list of one
or more time dimension columns. If you omit series, then the time grain is determined
from the query.

• output_column_name indicates the valid column names of forecast, low, high, and
predictionInterval.

• options indicates a string list of name/value pairs separated by a semi-colon (;). The
value can include %1 ... %N specified in runtime_binded_options.

• runtime_binded_options indicates a comma separated list of columns and options.
Values for these columns and options are evaluated and resolved during individual query
execution time.

Chapter 21
Functions

21-25

FORECAST Function Options The following table list available options to use with
the FORECAST function.

Option Name Values Description

numPeriods Integer The number of periods to forecast.

predictionInterval 0 to 100, where higher values specify
higher confidence

The confidence level for the
prediction.

modelType ETS (Exponential Smoothing)

SeasonalArima

ARIMA

The model to use for forecasting.

useBoxCox TRUE

FALSE

If TRUE, then use Box-Cox
transformation.

lambdaValue Not applicable The Box-Cox transformation
parameter.

Ignore if NULL or when useBoxCox
is FALSE.

Otherwise the data is transformed
before the model is estimated.

trendDamp TRUE

FALSE

This is specific to the Exponential
Smoothing model.

If TRUE, then use damped trend. If
FALSE or NULL, then use non-
damped trend.

errorType Not applicable This is specific to the Exponential
Smoothing model.

trendType N (none)

A (additive)

M (multiplicative)

Z (automatically selected)

This is specific to the Exponential
Smoothing model

seasonType N (none)

A (additive)

M (multiplicative)

Z (automatically selected)

This is specific to the Exponential
Smoothing model

modelParamIC ic_auto

ic_aicc

ic_bic

ic_auto (this is the default)

The information criterion (IC) used in
the model selection.

Revenue Forecast by Day Example

This example selects revenue forecast by day.

FORECAST("A - Sample Sales"."Base Facts"."1- Revenue" Target,
("A - Sample Sales"."Time"."T00 Calendar Date"),'forecast',
'numPeriods=30;predictionInterval=70;') ForecastedRevenue

Revenue Forecast by Year and Quarter Example

This example selects revenue forecast by year and quarter.

FORECAST("A - Sample Sales"."Base Facts"."1- Revenue",
("A - Sample Sales"."Time"."T01 Year" timeYear, "A - Sample Sales"."Time"."T02

Chapter 21
Functions

21-26

Quarter" TimeQuarter),'forecast', 'numPeriods=30;predictionInterval=70;')
ForecastedRevenue

Constants
You can use constants to include specific fixed dates and times in workbooks and reports.

Constant Example Description Syntax

DATE DATE
'2026-04-09'

Creates a specific date in a calculation or
expression.

DATE 'yyyy-mm-dd'

TIME TIME '12:00:00' Creates a specific time in a calculation or
expression.

TIME 'hh:mi:ss'

TIMESTAMP TIMESTAMP
'2026-04-09
12:00:00'

Creates a specific time-stamp in a calculation or
expression.

TIMESTAMP 'yyyy-mm-
dd hh:mi:ss'

Types
You can use data types, such as CHAR, INT, and NUMERIC in expressions.

For example, you use types when creating CAST expressions that change the data type of an
expression or a null literal to another data type.

Variables
Variables are used in expressions.

You can use a variable in an expression.

See Advanced Techniques: Reference Stored Values in Variables.

Chapter 21
Constants

21-27

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Conventions

	Part I Before You Begin
	1 Introduction to Semantic Models
	What Is a Semantic Model?
	About a Semantic Model's Architecture
	How Does a Semantic Model Query Data?
	What Is SMML?
	Oracle Analytics Data Modeling Tools
	What Is Oracle Analytics Semantic Modeler?

	2 Plan a Semantic Model
	Understand a Semantic Model's Requirements
	Components of a Semantic Model
	Plan the Physical Layer
	About Physical Schema Types
	Identify the Data Source Table Structure
	Physical Layer Design Tips

	Plan the Logical Layer
	Guidelines for Identifying the Logical Layer's Content
	Identify the Logical Fact Tables
	Identify the Logical Dimension Tables
	Identify Dimensions
	Identify Lookup Tables
	Logical Layer Design Tips
	Model Outer Joins

	Plan the Presentation Layer

	Part II Create and Build Your Model
	3 Get Started with Semantic Modeling
	Workflow to Build a Semantic Model
	Semantic Model Object Naming Requirements
	Edit Semantic Model Objects Using the SMML Editor
	About Command-Line Utilities and Semantic Modeler

	4 Develop Semantic Models in a Collaborative Environment
	About Collaborative Semantic Model Development
	Use Permissions for Collaborative Semantic Model Development
	About Using Git with Semantic Model Development
	Upload a Semantic Model to a Git Repository Using HTTPS
	Upload a Semantic Model to a Git Repository Using SSH
	Work With Branches
	View and Manage Git Profiles
	Understand and Resolve Merge Conflicts
	What are Merge Conflicts?
	About the Merge Editor
	Understand How to Resolve Conflicts
	Change Git's Merge Strategy
	Cancel All Merge Conflicts
	Resolve All Merge Conflicts
	Resolve Individual Merge Conflicts

	5 Work with Data Sources
	About Connections for Semantic Models
	Data Sources Available for Data Modeling
	View Available Data Source Connections
	Semantic Modeler Data Source Limitations
	Import Metadata from Data Sources

	6 Migrate From Model Administration Tool
	Plan Your Migration From Model Administration Tool to Semantic Modeler
	Understand the Differences Between Model Administration Tool and Semantic Modeler
	Prepare the Semantic Model for Migration to Semantic Modeler
	Import the Semantic Model From the Model Administration Tool .rpd File
	Import the Semantic Model Deployed From Model Administration Tool
	Update the Semantic Model After Migration From Model Administration Tool

	7 Create a Semantic Model
	Create an Empty Semantic Model
	Import a File to Create a Semantic Model
	Import the Deployed Model to Create a Semantic Model
	Clone a Git Repository Using HTTPS
	Clone a Git Repository Using SSH

	8 Build a Semantic Model's Physical Layer
	What is the Physical Layer?
	Create a Database and Add Tables to the Physical Layer
	Add a Catalog to a Database
	Add a Schema to a Database or Catalog
	Use a Variable to Dynamically Name a Catalog or Schema
	Change a Database Object's Database Type
	Modify a Database's Data Source Properties and Supported Query Features
	Add or Modify a Database's Data Source Properties
	What Are Supported Query Features?
	Modify a Database's Supported Query Features

	Work with Connection Pools
	What Are Connection Pools?
	About Connection Pools for Initialization Blocks
	Connection Pool General Properties
	Set a Connection Pool's General Properties
	Set a Connection Pool's Connection Property
	Add Connection Scripts to a Connection Pool
	About Setting the Bulk Insert Buffer Size and Transaction Boundary Settings
	Set up Write Back in a Connection Pool
	Set a Connection Pool's Permissions

	About Physical Tables
	What Are a Physical Table's General Properties?
	Disable Auto Joins Creation in the Physical Layer
	Create a Physical Table
	Create or Modify a Physical Column
	Populate Physical Columns with a Stored Procedure or Select Statement
	About Physical Alias Tables
	Create an Alias Table
	Open the Physical Diagram from the Physical Layer
	Delete a Physical Table
	Delete a Physical Column
	Work with Physical Joins
	About Physical Joins
	About Joining Fragmented Data
	Add and Define Physical Joins

	Use Hints in SQL Statements
	About Hints in SQL Statements
	About the Index Hint
	About the Leading Hint
	Performance Considerations for SQL Statement Hints
	Create Physical Table Hints
	Create Physical Join Hints

	Preview Data in Physical Tables

	9 Build a Semantic Model's Logical Layer
	What is the Logical Layer?
	Automatically Rename Logical Layer Objects
	Create a Business Model in the Logical Layer
	About Logical Tables
	Create a Fact, Dimension, or Lookup Logical Table
	Work with Logical Columns
	About Logical Columns
	Add or Modify a Logical Column
	Delete a Logical Column's Logical Table Source
	Base a Logical Column's Sort Order on a Different Column
	Add Double Column Support
	Create Derived Columns
	Configure Logical Columns for Multicurrency Support

	Specify a Logical Table's Primary Key
	Work with Logical Joins
	About Logical Joins
	What Are Driving Tables?
	What Determines Join Trimming?
	Add and Define Logical Joins
	Identify the Physical Tables That Map to Logical Tables

	Open the Logical Diagram
	Open the Physical Diagram from the Logical Layer
	Work with Logical Column Aggregation
	About Levels of Aggregation
	Set Aggregation Rules for a Measure Column
	Set an Aggregation Level Based on a Dimension for a Measure Column
	Associate an Attribute with a Logical Level in Dimension Tables

	Enable Write Back On Columns
	Work with Bridge Tables
	About Bridge Tables
	Create Joins in the Physical Layer for Bridge and Associated Dimension Tables
	Model the Associated Dimension Tables in a Single Dimension
	Model the Associated Dimension Tables in Separate Dimensions

	10 Build a Semantic Model's Presentation Layer
	What is the Presentation Layer?
	About Alternative Names for Presentation Objects
	Work with Subject Areas
	About Creating Subject Areas
	About the Implicit Fact Column
	Create a Subject Area

	Work with Presentation Tables and Columns
	About Presentation Tables
	Create a Presentation Table
	About Presentation Columns
	Create a Presentation Column
	Modify a Presentation Column Name
	Delete a Presentation Column
	Reorder and Nest Tables for End Users

	Work with Presentation Hierarchies and Levels
	About Presentation Hierarchies and Levels
	About Creating Presentation Hierarchies
	About Adding Logical Hierarchies with Multiple Hierarchies to the Presentation Layer
	Add a Presentation Hierarchy to a Presentation Table
	Add and Modify Presentation Hierarchy Levels

	Write an Expression to Hide a Presentation Object
	Work with Localization
	Modify or Delete Individual Localization Keys and Variables
	Clear All Name and Description Variables
	Generate Localization Keys and Name and Description Variables
	Externalize Strings for a Subject Area
	Externalize Strings for All Subject Areas
	Translate Strings

	11 Work with Logical Hierarchies
	About Working with Logical Hierarchies
	Create and Manage Level-Based Hierarchies
	About Level-Based Hierarchies
	About Hierarchy Structures
	About Using Dimension Hierarchy Levels in Level-Based Hierarchies
	Automatically Create Dimensions with Level-Based Hierarchies
	Manually Create Dimensions in Level-Based Hierarchies
	Create Logical Levels in a Logical Dimension Table
	Associate a Logical Column and Its Table with a Dimension Level
	About Level-Based Measure Calculations
	Grand Total Dimensional Hierarchy Example
	Identify the Primary Key for a Dimension Level
	Select and Sort Chronological Keys in a Time Dimension
	Add a Dimension Level to the Preferred Drill Path

	Create and Manage Parent-Child Hierarchies
	About Parent-Child Hierarchies
	About Levels and Distances in Parent-Child Hierarchies
	About Parent-Child Relationship Tables
	Create Dimensions with Parent-Child Hierarchies
	Generate Scripts to Create a Parent-Child Relationship Table
	Add the Parent-Child Relationship Table to the Semantic Model
	Define Parent-Child Relationship Tables
	About Modeling Aggregates for Parent-Child Hierarchies
	About Storing Facts for Parent-Child Hierarchies
	About Aggregating Parent-Child Hierarchies
	Maintain Parent-Child Hierarchies Based on Relational Tables

	Model Time Series Data
	About Time Series Functions
	About the AGO Function
	About the TODATE Function
	About the PERIODROLLING Function
	About Creating Logical Time Dimensions
	About Setting Chronological Keys
	Create the Logical Time Dimension
	Create AGO, TODATE, and PERIODROLLING Measures

	12 Manage Logical Table Sources
	What are Logical Table Sources?
	How Are Fact Logical Table Sources Selected to Answer a Query?
	How Are Dimension Logical Table Sources Selected to Answer a Query?
	Change the Default Selection Criteria for Dimension Logical Table Sources
	About Consistency Among Data in Multiple Table Sources
	Add Logical Table Sources
	Enable or Disable a Logical Table Source
	Work With Logical Table Source Priorities
	About Assigning Logical Table Sources Priority Order
	Set the Logical Table Sources Priority Order
	Reverse the Table Source Priority Ranking at Query Time

	Modify a Logical Table Source's Logical Column to Physical Column Mappings
	Map a Logical Table Source's Logical Column to a Calculated Item
	Work With Data Granularity
	About Data Granularity
	About Aggregate Tables
	About Aggregate Table Joins
	About the Logical Table Source's Parent-Child Settings
	Define Logical Table Source Data Granularity

	Work With Logical Table Source Data Fragmentation
	About Data Fragmentation
	About Global Variables and Logical Table Source Fragmentation
	Define Data Fragmentation for a Logical Table Source
	Improve the Performance of Fragmented Logical Table Sources
	Work With Fragmentation for Aggregate Navigation
	Specify Fragmentation for Single Column, Value-Based Predicates
	Specify Fragmentation for Single Column, Range-Based Predicates
	Specify Multicolumn Content Descriptions
	Specify Parallel Content Descriptions
	Specify Unbalanced Parallel Content Descriptions
	Examples of Parallel Content Descriptions

	Work With Aggregate Table Fragments
	About Aggregate Table Fragments
	Specify the Aggregate Table Content
	Define a Physical Layer Table with a Select Statement to Complete the Domain
	Specify the SQL Virtual Table Content
	Create Physical Joins for the Virtual Table

	Work With Logical Table Source Data Filters
	About Logical Table Source Data Filters
	Add a Data Filter to a Logical Table Source

	13 Create and Use Variables in a Semantic Model
	About Semantic Model Variables
	Create and Configure Initialization Blocks
	Create an Initialization Block
	Open an Initialization Block
	Defer Session Variable Processing
	When You Can't Defer Session Variable Processing
	About Dynamically Creating Session Variables and Setting Their Values
	Use a List of Values to Initialize a Session Variable
	Create a Schedule to Update Global Variable Values
	Add an Additional Database Query to an Initialization Block
	Initialization Queries Used in Variables to Override Selection Steps
	Test an Initialization Block's Query
	Change the Order of Variables in an Initialization Block
	Add Dependencies to an Initialization Block
	Disable or Enable an Initialization Block

	Define Global Variables
	About Global Variables
	Create a Global Variable

	Define Session Variables
	About Session Variables
	About Multi-Source Session Variables
	Create a Session Variable
	Example - Create and Use a Multi-Source Session Variable
	Create a Multi-Source Session Variable
	Use a Multi-Source Session Variable in an Expression
	Use a Multi-Source Session Variable in a Data Filter

	Define Static Variables
	About Static Variables
	Create a Static Variable

	14 Support Multilingual Data
	What Is Multilingual Data Support?
	What is Lookup?
	What Is Double Column Support?
	Design Translation Lookup Tables in Multilingual Schema
	Create Logical Lookup Tables and Logical Lookup Columns
	Create Logical Lookup Tables
	Designate a Logical Table as a Lookup Table
	About the LOOKUP Function Syntax
	Create Logical Lookup Columns

	Create Physical Lookup Tables and Physical Lookup Columns
	Enable Lexographical Sorting

	15 Apply Data Access Security to Semantic Model Objects
	About Data Access Security
	Work With Row-Level Security
	About Row-Level Security
	Where to Set Up Row-Level Security
	Set Up Row-Level Security in the Database
	About Data Filters and Row-Level Security
	Set Up Data Filters in the Semantic Model
	About Specifying Functional Groups for Application Roles in Data Filters
	Specify a Functional Group for a Data Filter's Application Role

	Work With Object Permissions
	About Permission Inheritance for Application Roles
	Set Up Presentation Object Permissions
	About Object Permissions

	Work With Query Limits
	Limit the Number of Rows in a Database Query
	Limit Database Queries by Maximum Run Time
	Allow or Disallow Direct Database Requests
	Override an Application Role's Query Limits
	Pause an Application Role's Query Limits

	16 Check Consistency and Deploy a Semantic Model
	Work with Check Consistency
	About Check Consistency
	Types of Semantic Model Consistency Checks
	Common Consistency Check Messages
	Check the Consistency of a Semantic Model
	Check Consistency of One or More Semantic Model Objects
	Run the Advanced Consistency Check Before Deploying a Semantic Model
	Find and View Advanced Check History
	Why Are the Advanced Check Records in a Different Language?
	Show or Hide the Advanced Check Warning Message
	Export Consistency Check Results to a CSV File

	Other Semantic Model Finalization Tasks
	Deploy a Semantic Model

	17 Manage Semantic Models
	Export a Semantic Model
	Generate an .rpd file from JSON/SMML
	Download an Exported .rpd File
	Import an .rpd or .zip File Into Your Semantic Model
	Import the Deployed Model Into Your Semantic Model
	Generate JSON/SMML from an .rpd File
	View a Semantic Model's Logs
	View a Semantic Model's Job History
	Generate Indexes for a Semantic Model

	Part III Reference
	18 Design Tips
	Business Model Design
	Time Dimension Design
	Physical Table Alias
	Implicit Facts in Subject Areas
	Dimensional Hierarchies, Level Keys and Content Levels

	19 Miscellaneous Reference Information
	Keyboard Shortcuts for Semantic Modeler
	Model Binary Large Object (BLOB) Data and Character Large Object (CLOB) Data

	20 Data Types Supported by Oracle Analytics Cloud
	Data Types Supported by Oracle Analytics
	Data Type Limitations
	Floating Point Limitations
	Use the NQSGetSQLDataTypes Procedure to Access Data Type Information
	SQL Identifier Character Limitation
	Other Oracle BI Server Limitations
	Data Type Mapping in Oracle Database and Oracle Analytics

	21 Expression Editor Reference
	SQL Operators
	Conditional Expressions
	Functions
	Aggregate Functions
	Analytics Functions
	Date and Time Functions
	Date Extraction Functions
	Conversion Functions
	Display Functions
	Evaluate Functions
	Mathematical Functions
	Running Aggregate Functions
	Spatial Functions
	String Functions
	System Functions
	Time Series Functions

	Constants
	Types
	Variables

