
Oracle® Multitenant
Administrator’s Guide

23ai
F46742-07
May 2024

Oracle Multitenant Administrator’s Guide, 23ai

F46742-07

Copyright © 2017, 2024, Oracle and/or its affiliates.

Primary Authors: Aparna Kamath, Randy Urbano, Lance Ashdown, Donna Keesling, James Spiller

Contributing Authors: Patricia Huey, Roopesh Kumar, Bert Rich, Richard Strohm

Contributors: Penny Avril, Thomas Baby, Hermann Baer, Yasin Baskan, Dominique Jeunot, Andre Kruglikov,
Kishy Kumar, Sue Lee, Siyu Liu, Bryn Llewellyn, Colin McGregor, John McHugh, Valarie Moore, Muthu
Olagappan, Bhavesh Patel, Kumar Rajamani, Giridhar Ravipati, Can Tuzla, Patrick Wheeler

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, MySQL and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xviii

Documentation Accessibility xviii

Related Documents xix

Conventions xix

1 Introduction to Multitenant Administration

Changes in Oracle Database Release 23ai for Oracle Multitenant Administrator’s Guide 1-1

Hybrid read-only mode for pluggable databases 1-1

Control PDB Open Order 1-3

Oracle DBCA Support for Standard Edition High Availability 1-3

Multitenant Architecture 1-4

CDBs 1-4

PDBs 1-5

Application Containers 1-6

Benefits of the Multitenant Architecture 1-7

Benefits of Consolidating Data into a Single CDB 1-7

Benefits of the Multitenant Architecture for Manageability 1-9

Overview of Multitenant Administration 1-10

Users, Roles, and Objects in a Multitenant Environment 1-10

About Commonality in a CDB 1-11

About Common and Local User Accounts 1-13

Overview of Common and Local Roles in a CDB 1-20

Common and Local Objects 1-21

Separation of Duties in CDB and PDB Administration 1-21

Tasks and Tools for a Multitenant Environment 1-21

Tasks for a Multitenant Environment 1-22

Tools for a Multitenant Environment 1-25

Overview of Container Creation 1-25

Creation of a CDB 1-26

Creation of a PDB or Application Container 1-26

iii

Part I Creating CDBs

2 Preparing to Create a CDB

Prerequisites for a Multitenant Environment 2-1

Deciding When to Create a CDB 2-2

Deciding How to Configure the CDB 2-2

Plan the PDBs 2-3

Plan the Physical Layout 2-3

Learn How to Manage Initialization Parameters 2-4

Select the Character Set 2-5

Default CDB Character Set 2-5

Different Character Sets for CDB and PDBs 2-7

Decide Which Time Zones to Support 2-7

Select the Database and Redo Log Block Sizes 2-7

Plan the SYSTEM and SYSAUX Tablespaces 2-8

Plan the Temporary Tablespaces 2-8

Choose the Undo Mode 2-8

Plan the Services for Your Application 2-9

Learn How to Start Up and Shut Down a CDB 2-10

Plan for Oracle RAC 2-10

3 Creating a CDB: Basic Steps

Creating a CDB with DBCA 3-1

About Creating a CDB with DBCA 3-2

After Creating a CDB 3-2

Creating a Database with the CREATE DATABASE Statement 3-5

About CDB Creation with SQL Statements 3-6

About Oracle RAC and Oracle ASM 3-6

About Enabling PDBs 3-7

About the Names and Locations of Files for the CDB Root and PDB$SEED 3-7

About the Attributes of the Data Files for PDB$SEED 3-9

About the CDB Undo Mode 3-11

Step 1: Specify an Instance Identifier (SID) 3-11

Step 2: Ensure That the Required Environment Variables Are Set 3-12

Step 3: Choose a Database Administrator Authentication Method 3-12

Step 4: Create the Initialization Parameter File 3-13

Step 5: (Windows Only) Create an Instance 3-14

Step 6: Connect to the Instance 3-15

Step 7: Create a Server Parameter File 3-16

iv

Step 8: Start the Database Instance 3-17

Step 9: Issue the CREATE DATABASE Statement 3-17

Creating a CDB Without Using Oracle Managed Files: Example 3-17

Creating a CDB Using Oracle Managed Files: Example 3-21

Step 10: Run Scripts to Build Data Dictionary Views 3-23

Step 11: (Optional) Run Scripts to Install Additional Options 3-24

Step 12: Back Up the Database 3-24

Step 13: (Optional) Enable Automatic Instance Startup 3-24

Considerations After Creating a CDB 3-25

Database Security 3-26

Transparent Data Encryption 3-27

A Secure External Password Store 3-27

Transaction Guard and Application Continuity 3-28

File System Server Support in the Database 3-29

The Oracle Database Sample Schemas 3-30

Database Data Dictionary Views 3-30

4 Creating a CDB: Advanced Topics

Specifying CREATE DATABASE Statement Clauses 4-1

About CREATE DATABASE Statement Clauses 4-2

Protecting Your Database: Specifying Passwords for SYS and SYSTEM Users 4-3

Creating a Locally Managed SYSTEM Tablespace 4-3

Specify Data File Attributes for the SYSAUX Tablespace 4-4

About the SYSAUX Tablespace 4-4

Using Automatic Undo Management: Creating an Undo Tablespace 4-5

Creating a Default Tablespace 4-5

Creating a Default Temporary Tablespace 4-6

Specifying Oracle Managed Files at Database Creation 4-7

Supporting Bigfile Tablespaces During Database Creation 4-8

Specifying the Default Tablespace Type 4-9

Overriding the Default Tablespace Type 4-9

Specifying the Database Time Zone and Time Zone File 4-10

Setting the Database Time Zone 4-10

About the Database Time Zone Files 4-11

Specifying the Database Time Zone File 4-11

Specifying FORCE LOGGING Mode 4-11

Using the FORCE LOGGING Clause 4-12

Performance Considerations of FORCE LOGGING Mode 4-13

Specifying Initialization Parameters 4-13

About Initialization Parameters and Initialization Parameter Files 4-14

v

Sample Initialization Parameter File 4-16

Text Initialization Parameter File Format 4-17

Expressions in Initialization Parameter Settings 4-17

Determining the Global Database Name 4-18

DB_NAME Initialization Parameter 4-18

DB_DOMAIN Initialization Parameter 4-19

Specifying a Fast Recovery Area 4-19

Specifying Control Files 4-20

Specifying Database Block Sizes 4-20

DB_BLOCK_SIZE Initialization Parameter 4-21

Nonstandard Block Sizes 4-21

Specifying the Maximum Number of Processes 4-22

Specifying the DDL Lock Timeout 4-22

Specifying the Method of Undo Space Management 4-23

UNDO_MANAGEMENT Initialization Parameter 4-23

UNDO_TABLESPACE Initialization Parameter 4-24

Specifying the Database Compatibility Level 4-24

About the COMPATIBLE Initialization Parameter 4-24

Setting the License Parameter 4-25

Managing Initialization Parameters Using a Server Parameter File 4-26

What Is a Server Parameter File? 4-27

Migrating to a Server Parameter File 4-28

Server Parameter File Default Names and Locations 4-28

Creating a Server Parameter File 4-29

The SPFILE Initialization Parameter 4-30

Changing Initialization Parameter Values 4-30

About Changing Initialization Parameter Values 4-31

Setting or Changing Initialization Parameter Values 4-31

Clearing Initialization Parameter Values 4-32

Exporting the Server Parameter File 4-34

Backing Up the Server Parameter File 4-35

Recovering a Lost or Damaged Server Parameter File 4-35

Methods for Viewing Parameter Settings 4-36

Managing Application Workloads with Database Services 4-37

Database Services 4-37

About Database Services 4-37

Database Services and Performance 4-39

Oracle Database Features That Use Database Services 4-39

Creating Database Services 4-40

Global Data Services 4-41

Reset Database Session State to Prevent Application State Leaks 4-42

vi

Database Service Data Dictionary Views 4-43

Managing Standard Edition High Availability for Oracle Databases 4-43

About Standard Edition High Availability 4-45

Requirements for Using Standard Edition High Availability With Oracle Databases 4-45

Enabling Standard Edition High Availability for Oracle Databases 4-46

Create Standard Edition High Availability Database Using DBCA 4-48

Relocating a Standard Edition High Availability Database to Another Node 4-49

Adding a Node to a Standard Edition High Availability Database 4-50

Removing a Configured Node from a Standard Edition High Availability Database 4-51

Starting and Stopping Standard Edition High Availability Databases 4-52

Deactivating Standard Edition High Availability for Oracle Databases 4-53

Cloning a Database 4-53

Cloning a Database with CloneDB in a Non-multitenant Environment 4-53

About Cloning a Database with CloneDB 4-54

Cloning a Database with CloneDB 4-55

After Cloning a Database with CloneDB 4-60

Cloning a Database in a Multitenant Environment 4-60

Cloning a Database with Oracle Automatic Storage Management (Oracle ASM) 4-61

Dropping a Database 4-61

5 Configuring a CDB Fleet

About CDB Fleets 5-1

Purpose of a CDB Fleet 5-3

Setting the Lead CDB in a CDB Fleet 5-4

Designating a CDB Fleet Member 5-4

Part II Creating PDBs and Application Containers

6 Overview of PDB Creation

Current Container and PDB Creation 6-1

Techniques for Creating a PDB 6-2

PDB Storage 6-4

Storage Limits 6-4

Default Tablespace 6-5

User Tablespaces 6-5

PDB File Locations 6-7

FILE_NAME_CONVERT Clause 6-9

CREATE_FILE_DEST Clause 6-10

The PATH_PREFIX Clause 6-11

vii

Restrictions on PDB File Locations 6-11

Service Name Conversion 6-12

Summary of Clauses for Creating a PDB 6-13

General Prerequisites for PDB Creation 6-21

7 Creating a PDB from Scratch

About Creating a PDB from Scratch 7-1

Creating a PDB 7-4

Creating a PDB: Examples 7-5

Creating a PDB Using No Clauses: Example 7-6

Creating a PDB and Granting Predefined Oracle Roles to the PDB Administrator:
Example 7-6

Creating a PDB Using Multiple Clauses: Example 7-7

8 Cloning a PDB

About Cloning a PDB 8-1

How Cloning Works 8-2

User Interface for PDB Cloning 8-3

Cloning a Local PDB 8-4

About Cloning a Local PDB 8-5

Cloning a Local PDB: Basic Steps 8-6

After Cloning a Local PDB 8-7

Cloning a Local PDB: Examples 8-8

Cloning a Local PDB Using No Clauses: Example 8-8

Cloning a Local PDB Using DBCA: Example 8-9

Cloning a Local PDB with the PATH_PREFIX Clause: Example 8-10

Cloning a Local PDB Using the STORAGE Clause: Example 8-10

Cloning a Local PDB with the NO DATA Clause: Example 8-11

Cloning a Remote PDB 8-12

About Cloning a Remote PDB 8-12

Cloning a Remote PDB: Basic Steps 8-14

After Cloning a Remote PDB 8-16

Cloning a Remote PDB: Examples 8-17

Cloning a Remote PDB Using No Clauses: Example 8-18

Cloning a Remote PDB Using DBCA: Example 8-18

About Refreshable Clone PDBs 8-19

Purpose of Refreshable Clone PDBs 8-20

Automatic and Manual Refresh Modes 8-21

Requirements for Refreshable Clone PDBs 8-22

Creating a Refreshable Clone PDB: Scenario 8-22

viii

About Creating Refreshable Clone PDBs with DBCA 8-23

Creating a Refreshable Clone PDB Using DBCA: Example 8-24

Cloning PDBs from PDB Snapshots 8-25

About Cloning PDBs from PDB Snapshots 8-25

PDB Snapshot Carousel 8-26

Creation of a PDB with the USING SNAPSHOT Clause 8-26

Cloning a PDB from a PDB Snapshot: Scenario 8-27

Creating and Materializing Snapshot Copy PDBs 8-28

About Snapshot Copy PDBs 8-28

Storage Requirements for Snapshot Copy PDBs 8-28

Restrictions for Snapshot Copy PDBs 8-30

Creating a Snapshot Copy PDB: Scenario 8-30

Materializing a Snapshot Copy PDB 8-31

Creating a Split Mirror Clone PDB 8-32

9 Relocating a PDB

About PDB Relocation 9-1

Purpose of PDB Relocation 9-4

How PDB Relocation Works 9-4

Server Session Draining When Relocating or Stopping PDBs 9-4

Stages of PDB Relocation 9-6

PDB Relocation in a Common Listener Network 9-6

PDB Relocation in Isolated Listener Networks 9-7

User Interface for PDB Relocation 9-9

Relocating a PDB Using CREATE PLUGGABLE DATABASE 9-10

Relocating a PDB: Examples 9-13

Relocating a PDB from a Remote CDB 9-13

Relocating a PDB Using DBCA: Example 9-14

10

Plugging In an Unplugged PDB

About PDB Plugin Operations 10-1

About the XML File and Archive File 10-1

Source File Locations When Plugging In an Unplugged PDB 10-4

SOURCE_FILE_NAME_CONVERT Clause 10-4

SOURCE_FILE_DIRECTORY Clause 10-5

Plugging In an Unplugged PDB 10-6

After Plugging in an Unplugged PDB 10-10

Plugging in an Unplugged PDB: Examples 10-11

ix

11

Creating a PDB as a Proxy PDB

About Creating a Proxy PDB 11-1

Proxy PDBs and SQL Statements 11-4

Proxy PDBs and Database Links 11-4

Proxy PDBs and Authentication 11-5

Proxy PDBs and the Listener 11-5

HOST Clause 11-5

PORT Clause 11-6

Creating a Proxy PDB 11-6

12

Administering a PDB Snapshot Carousel

About PDB Snapshot Carousel 12-1

Purpose of PDB Snapshot Carousel 12-2

How PDB Snapshot Carousel Works 12-5

Contents of a PDB Snapshot 12-5

Contents of a PDB Snapshot Carousel 12-7

User Interface for PDB Snapshot Carousel 12-8

Setting the Maximum Number of Snapshots in a PDB Snapshot Carousel 12-10

Configuring Automatic PDB Snapshots 12-11

Creating PDB Snapshots Manually 12-13

Dropping a PDB Snapshot 12-15

Viewing Metadata for PDB Snapshots 12-15

13

Removing a PDB

Unplugging a PDB from a CDB 13-1

About Unplugging a PDB 13-1

Unplugging a PDB 13-4

Dropping a PDB 13-5

14

Creating and Removing Application Containers and Seeds

About Application Containers 14-2

Purpose of Application Containers 14-2

Key Benefits of Application Containers 14-3

Application Container Use Case: SaaS 14-3

Application Containers Use Case: Logical Data Warehouse 14-4

Application Root 14-5

Application PDBs 14-6

Application Seed 14-6

x

Creating Application Containers 14-7

About Creating an Application Container 14-7

Preparing for Application Containers 14-8

Creating an Application Container 14-9

Unplugging an Application Container from a CDB 14-12

About Unplugging an Application Container 14-12

Unplugging an Application Container 14-13

Dropping an Application Container 14-14

Creating Application Seeds 14-16

About Creating an Application Seed 14-16

Preparing for an Application Seed 14-17

Creating an Application Seed 14-17

Unplugging an Application Seed from an Application Container 14-21

About Unplugging an Application Seed 14-21

Unplugging an Application Seed 14-22

Dropping an Application Seed 14-23

Creating an Application PDB 14-24

Part III Administering a Multitenant Environment

15

Administering a CDB

About CDB Administration 15-2

About the Current Container 15-2

About Administrative Tasks in a CDB 15-3

About Using Manageability Features in a CDB 15-7

About Managing Tablespaces in a CDB 15-13

About Managing Tablespaces in a CDB 15-13

About Managing Temporary Tablespaces in a CDB 15-13

About Managing Database Objects in a CDB 15-14

About Flashing Back a PDB 15-15

About Restricting PDB Users for Enhanced Security 15-15

PDB Lockdown Profiles 15-15

PDB_OS_CREDENTIAL Initialization Parameter 15-17

Accessing Containers in a CDB 15-17

About Container Access in a CDB 15-17

Services in a CDB 15-18

Session Limits in a CDB 15-19

User Names in a Multitenant Environment 15-19

How the Multitenant Option Affects Password Files for Administrative Users 15-19

Accessing a Container in a CDB 15-20

xi

Connecting to a Container Using the SQL*Plus CONNECT Command 15-20

Switching to a Container Using the ALTER SESSION Statement 15-22

Starting Up and Shutting Down a CDB 15-26

Starting Up a CDB 15-26

About Database Startup Options 15-27

Specifying Initialization Parameters at Startup 15-29

About Automatic Startup of Database Services 15-32

Preparing to Start Up an Instance 15-33

Starting Up an Instance 15-34

Altering Database Availability 15-39

Mounting a Database to an Instance 15-39

Opening a Closed Database 15-40

Opening a Database in Read-Only Mode 15-40

Restricting Access to an Open Database 15-41

Shutting Down a CDB 15-42

About Shutting Down the Database 15-42

Shutting Down with the Normal Mode 15-43

Shutting Down with the Immediate Mode 15-43

Shutting Down with the Transactional Mode 15-44

Shutting Down with the Abort Mode 15-44

Shutdown Timeout 15-45

Quiescing a CDB 15-45

About Quiescing a Database 15-46

Placing a Database into a Quiesced State 15-47

Restoring the System to Normal Operation 15-48

Viewing the Quiesce State of an Instance 15-48

Suspending and Resuming a Database 15-49

Delaying Instance Abort 15-50

Modifying a CDB at the System Level 15-50

About System-Level Modifications of a CDB 15-51

Modifying a CDB with ALTER SYSTEM 15-51

Modifying Containers When Connected to the CDB Root 15-52

About Container Modification When Connected to CDB Root 15-53

Modifying an Entire CDB Using ALTER DATABASE 15-54

Setting the Undo Mode in a CDB Using ALTER DATABASE 15-55

About the CDB Undo Mode 15-55

Configuring a CDB to Use Local Undo Mode 15-57

Configuring a CDB to Use Shared Undo Mode 15-58

Modifying the CDB Root Using ALTER DATABASE 15-59

Executing SQL in a Different Container 15-60

Issuing DML Statements on a Container in a CDB 15-61

xii

About Issuing DML Statements on a Container in a CDB 15-61

Specifying the Default Container for DML Statements in a CDB 15-62

Executing DDL Statements in a CDB 15-62

About Executing DDL Statements in a CDB 15-63

Executing a DDL Statement in the Current Container 15-65

Executing a DDL Statement in All Containers in a CDB 15-65

Running Oracle-Supplied SQL Scripts in a CDB 15-66

About Running Oracle-Supplied SQL Scripts in a CDB 15-66

Syntax and Parameters for catcon.pl 15-67

Running the catcon.pl Script 15-70

Executing Code in Containers Using the DBMS_SQL Package 15-72

Monitoring Containers in a CDB 15-74

About CDB and Container Information in Views 15-75

About Viewing Information When the Current Container Is Not the CDB Root 15-75

About Viewing Information When the Current Container Is the CDB Root 15-76

Views for a CDB 15-77

Viewing Information About the Containers in a CDB 15-80

Viewing Information About PDBs 15-81

Viewing the Open Mode of Each PDB 15-81

Querying Container Data Objects 15-82

Querying Across Containers with the CONTAINERS Clause 15-86

About Querying Across Containers with the CONTAINERS Clause 15-86

Querying User-Created Tables and Views Across All Containers 15-88

Querying Application Common Objects Across Application PDBs 15-90

Determining the Current Container ID or Name 15-92

Listing the Modifiable Initialization Parameters in PDBs 15-93

Viewing the History of PDBs 15-94

16

Administering PDBs

About PDB Administration 16-1

Tasks Common to PDBs and CDBs 16-2

Tasks Specific to CDBs 16-2

Managing Connections to a PDB 16-3

Connecting to a PDB 16-4

Managing Services for PDBs 16-5

About Services for PDBs 16-5

Managing Services for a PDB Using SRVCTL and DBMS_SERVICE 16-8

Modifying the Listener Settings of a Referenced PDB 16-10

Altering the Listener Host Name of a Referenced PDB 16-11

Altering the Listener Port Number of a Referenced PDB 16-12

xiii

Modifying a PDB at the System Level 16-13

About System-Level Modifications of a PDB 16-13

Modifying a PDB with ALTER SYSTEM 16-15

Modifying a PDB at the Database Level 16-16

About PDB-Level Modifications 16-16

Storage Clauses 16-16

Logging and Recovery Clauses 16-17

Miscellaneous Clauses 16-19

Modifying a PDB with the ALTER PLUGGABLE DATABASE Statement 16-20

Changing the Global Database Name of a PDB 16-23

Managing Refreshable Clone PDBs 16-24

Refreshing a PDB 16-24

Switching Over a Refreshable Clone PDB 16-25

Modifying the Open Mode of PDBs 16-29

About the Open Mode of a PDB 16-29

Summary of PDB Open Modes 16-30

Opening a Pluggable Database in Hybrid Read-Only Mode 16-31

Clauses for Changing the Open State of PDBs 16-32

Compatibility Checks When a PDB Is Opened 16-36

How to Disable or Enable Replay Upgrade 16-37

Modifying the Open Mode of PDBs with ALTER PLUGGABLE DATABASE 16-38

Setting Read-Only Access for a PDB User 16-41

Preserving or Discarding the Open Mode of PDBs When the CDB Restarts 16-42

Altering the Open Mode of a PDB Using STARTUP and SHUTDOWN 16-44

About Modifying the Open Mode of PDBs with the SQL*Plus STARTUP Command 16-44

Starting Up a PDB Using the STARTUP Command 16-46

Modifying the Open Mode of PDBs with the SQL*Plus STARTUP Command 16-47

Shutting Down a PDB Using the SHUTDOWN Command 16-48

Starting and Stopping PDBs in Oracle RAC 16-50

17

Administering an Application Container

Overview of Applications in an Application Container 17-1

About Application Container Administration 17-2

Transparent Data Encryption and Application Containers 17-5

Application Maintenance 17-6

About Application Maintenance 17-6

Application Installation 17-7

Application Upgrade 17-8

Application Patch 17-12

Migration of an Existing Application 17-13

xiv

Implicitly Created Applications 17-13

Application Synchronization 17-14

Synchronization of a Single Application 17-14

Synchronization of Multiple Applications 17-15

About Modifying an Application Root 17-16

Managing Applications in an Application Container 17-17

About Application Management 17-18

Basic Steps of Application Maintenance 17-19

Application Versions 17-19

Application Module Names and Service Names 17-20

Installing Applications in an Application Container 17-21

About Installing Applications in an Application Container 17-22

Installing an Application in an Application Container with Automated Propagation 17-22

Upgrading Applications in an Application Container 17-23

About Upgrading Applications in an Application Container 17-23

Upgrading an Application in an Application Container 17-26

Patching Applications in an Application Container 17-27

About Patching Applications in an Application Container 17-28

Patching an Application in an Application Container with Automated Propagation 17-28

Migrating an Existing Application to an Application Container 17-30

About Migrating an Existing Application to an Application Container 17-30

Creating an Application Root Using an Existing PDB 17-31

Creating an Application PDB Using an Existing PDB 17-32

Synchronizing Applications in an Application PDB 17-33

Synchronizing an Application Root Replica with a Proxy PDB 17-35

About Synchronizing an Application Root Replica with a Proxy PDB 17-35

Creating a Proxy PDB That References an Application Root Replica 17-37

Setting the Compatibility Version of an Application 17-43

Performing Bulk Inserts During Application Install, Upgrade, and Patch Operations 17-44

Uninstalling Applications from an Application Container 17-46

About Uninstalling Applications from an Application Container 17-46

Uninstalling an Application from an Application Container 17-47

Managing Application Common Objects 17-48

About Application Common Objects 17-49

Creation of Application Common Objects 17-49

About Metadata-Linked Application Common Objects 17-51

About Data-Linked Application Common Objects 17-51

About Extended Data-Linked Application Common Objects 17-52

Restrictions for Application Common Objects 17-52

Creating Application Common Objects 17-53

Issuing DML Statements on Application Common Objects 17-56

xv

Issuing DML on Metadata-Linked Common Objects 17-56

Issuing DML on Data-Linked Common Objects 17-58

Modifying Application Common Objects with DDL Statements 17-60

Issuing DML Statements on Containers in an Application Container 17-61

About Issuing DML Statements on Containers in an Application Container 17-61

Specifying the Default Container for DML Statements in an Application Container 17-63

Partitioning by PDB with Container Maps 17-63

About Container Maps 17-63

Map Objects 17-64

List-Partitioned Container Map: Example 17-65

Range-Partitioned Container Map: Example 17-66

Creating a Container Map 17-67

Viewing Information About Applications in Application Containers 17-69

Viewing Information About Applications 17-70

Viewing Information About Application Status 17-71

Viewing Information About Application Statements 17-72

Viewing Information About Application Versions 17-74

Viewing Information About Application Patches 17-75

Viewing Information About Application Errors 17-76

Listing the Shared Database Objects in an Application Container 17-76

Listing the Extended Data-Linked Objects in an Application Container 17-77

Part IV Database Configuration Assistant Command Reference for Silent
Mode

18

DBCA Overview

DBCA Command-Line Syntax Overview 18-1

About DBCA Templates 18-3

Database User Authentication in DBCA Commands Using Oracle Wallet 18-3

19

DBCA Silent Mode Commands

addInstance 19-2

configureDatabase 19-3

configureDataguard 19-11

configurePluggableDatabase 19-12

convertToRAC 19-16

createCloneTemplate 19-17

createDatabase 19-19

createDuplicateDB 19-29

xvi

createPDBSnapshot 19-34

createPluggableDatabase 19-34

createTemplateFromDB 19-44

createTemplateFromTemplate 19-45

createTrueCache 19-49

deleteDatabase 19-52

deleteInstance 19-53

deletePDBSnapshot 19-55

deletePluggableDatabase 19-55

deleteTemplate 19-56

executePrereqs 19-57

generateScripts 19-58

moveDatabase 19-66

relocatePDB 19-68

unplugDatabase 19-73

20

DBCA Exit Codes

Glossary

Index

xvii

Preface

This document describes how to create and configure CDBs, PDBs, and application
containers.

• Audience

• Documentation Accessibility

• Related Documents

• Conventions

Audience
This document explains how to administer containers as containers, for example, how
to create CDBs and PDBs, start them up and shut them down, and perform cross-
container operations. Specifically, this document is intended for database
administrators who perform the following tasks:

• Create CDBs, PDBs, and application containers

• Relocate, unplug, and plug in PDBs and application containers

• Install and maintain applications in application containers

• Perform cross-container operations

Note:

Oracle Database Administrator’s Guide describes traditional administrative
tasks that you perform within an existing container, including managing
database storage, schema objects, resources, and task scheduling.

To use this document, you must be familiar with relational database concepts. You
must also be familiar with the operating system environment under which you are
running Oracle Database.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Preface

xviii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents
For more information, see these Oracle resources:

• Oracle Database Concepts

• Oracle Database Administrator’s Guide

• Oracle Database SQL Language Reference

• Oracle Database Reference

• Oracle Database PL/SQL Packages and Types Reference

• Oracle Automatic Storage Management Administrator's Guide

• Oracle Database VLDB and Partitioning Guide

• Oracle Database Error Messages Reference

• Oracle Database Net Services Administrator's Guide

• Oracle Database Backup and Recovery User’s Guide

• Oracle Database Performance Tuning Guide

• Oracle Database SQL Tuning Guide

• Oracle Database Development Guide

• Oracle Database PL/SQL Packages and Types Reference

• SQL*Plus User's Guide and Reference

Many of the examples in this book use the sample schemas. See Oracle Database Sample
Schemas for information about these schemas.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an action,
or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which you
supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in examples,
text that appears on the screen, or text that you enter.

Preface

xix

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
Introduction to Multitenant Administration

You can create and administer multitenant container databases (CDBs), pluggable databases
(PDBs), and application containers.

• Changes in Oracle Database Release 23ai for Oracle Multitenant Administrator’s Guide
The following features are new in this release.

• Multitenant Architecture
The multitenant architecture enables an Oracle database to be a CDB.

• Benefits of the Multitenant Architecture
Creating separate PDBs and application containers within a single CDB provides benefits
for manageability and performance.

• Overview of Multitenant Administration
Become familiar with basic concepts related to configuring and managing a multitenant
environment.

Changes in Oracle Database Release 23ai for Oracle
Multitenant Administrator’s Guide

The following features are new in this release.

Note:

A multitenant container database is the only supported architecture in Oracle
Database 21c and later releases. While the documentation is being revised, legacy
terminology may persist. In most cases, "database" and "non-CDB" refer to a CDB
or PDB, depending on context. In some contexts, such as upgrades, "non-CDB"
refers to a non-CDB from a previous release.

• Hybrid read-only mode for pluggable databases

• Control PDB Open Order

• Oracle DBCA Support for Standard Edition High Availability

Hybrid read-only mode for pluggable databases
Starting with Oracle Database 23ai, you can configure pluggable databases (PDBs) to
operate in a new mode called hybrid read-only.

Hybrid read-only mode enables the PDB to operate as either read-write or read-only,
depending on the user who is connected to the PDB. For common users, the PDB will be in
both read-only and read-write mode. For local users, the PDB will be restricted to read-only
mode.

1-1

To accommodate this enhancement, the following change has been made:

• The ALTER PLUGGABLE DATABASE statement has a new clause, HYBRID READ ONLY.

The V$CONTAINER_TOPOLOGY dynamic view has a new column, IS_HYBRID_READ_ONLY.
The output of the V$PDBS dynamic view is also affected by this feature. For local users,
the OPEN_MODE column shows READ ONLY; for common users, this column shows READ
WRITE.

The benefit of using the hybrid read-only mode is that it enables database and
application administrators to patch and maintain an application in a safe mode for
open PDBs without the risk of local users, including higher privileged ones, interfering
with the ongoing maintenance operation of the PDB.

Related Topics

• Opening a Pluggable Database in Hybrid Read-Only Mode
Hybrid Read Only open mode is a special open mode in which PDB operates as
Read Write as well as Read Only depending on which user is connected.

• Viewing the Open Mode of Each PDB
The V$PDBS view provides information about the PDBs associated with the current
database instance.

• Modifying a PDB with the ALTER PLUGGABLE DATABASE Statement
To modify the attributes of a single PDB, use the ALTER PLUGGABLE DATABASE
statement.

• About the Open Mode of a PDB
When a PDB is mounted, you can open it in read/write, read-only, hybrid read-only
or MIGRATE mode. You can also mount a PDB without opening it.

• Summary of PDB Open Modes
Depending on the options that you specify in ALTER PLUGGABLE DATABASE OPEN,
the PDB opens in different modes.

• OPEN and CLOSE Clauses
READ WRITE is the default for ALTER PLUGGABLE DATABASE OPEN unless a PDB
being opened belongs to a CDB used as a physical standby database, in which
case READ ONLY is the default.

• Modifying the Open Mode of PDBs with ALTER PLUGGABLE DATABASE
You can modify the open mode of PDBs with the ALTER PLUGGABLE DATABASE
statement with a pdb_change_state clause.

• Starting Up a PDB Using the STARTUP Command
When the current container is a PDB, the SQL*Plus STARTUP command opens the
PDB.

• Modifying the Open Mode of PDBs with the SQL*Plus STARTUP Command
You can use the STARTUP PLUGGABLE DATABASE command to open a single PDB.

• Modifying the Open Mode of PDBs with the SQL*Plus STARTUP Command
You can use the STARTUP PLUGGABLE DATABASE command to open a single PDB.

• Starting and Stopping PDBs in Oracle RAC
You can use SRVCTL commands to manage PDBs.

Chapter 1
Changes in Oracle Database Release 23ai for Oracle Multitenant Administrator’s Guide

1-2

Control PDB Open Order
Starting with Oracle Database 23ai, customers can define a startup order for PDBs where the
most important PDBs are started first. The database administrator can define a priority for
each PDB. The priority is applied to PDB opening order and upgrade order as follows:

• Restoring PDB states when opening the CDB

• Setting PDB states when using the PDB OPEN ALL statement

• Setting the order for PDB database upgrade operations

• Starting PDBs in an ADG switchover or failover

This feature allows critical PDBs to start and open before less important PDBs, reducing the
time for the critical applications to become usable.

Related Topics

• Clauses for Changing the Open State of PDBs
To change the open mode of a PDB when the current container is the CDB root, specify
the pdb_change_state clause of ALTER PLUGGABLE DATABASE.

• OPEN and CLOSE Clauses
READ WRITE is the default for ALTER PLUGGABLE DATABASE OPEN unless a PDB being
opened belongs to a CDB used as a physical standby database, in which case READ
ONLY is the default.

• To Set the Priority of a PDB
Use the ALTER PLUGGABLE DATABASE <databasename> Priority <value> set the
priority.

Oracle DBCA Support for Standard Edition High Availability
Starting with Oracle Database 23ai, Oracle Database Configuration Assistant (Oracle DBCA)
enables you to create a Standard Edition High Availability, single-instance Oracle Database.
This database is a Single instance database with failover capability. This database uses ASM
or ACFS for the database storage files(NAS is not supported).

Oracle DBCA automatically registers your database and allows you to select the cluster
nodes that you want to configure for your Standard Edition High Availability, single instance
database deployment. The SPFILE and password files are automatically created in ASM or
ACFS based on db storage location.

Related Topics

• About Standard Edition High Availability
In this release, you can install Oracle Database Standard Edition 2 in high availability
mode.

• Requirements for Using Standard Edition High Availability With Oracle Databases
To use Standard Edition High Availability, deploy Oracle Database Standard Edition 2 in
accordance with these configuration requirements.

• Create Standard Edition High Availability Database Using DBCA
Oracle Database Configuration Assistant (Oracle DBCA) enables you to create a
Standard Edition High Availability (SEHA), single-instance Oracle Database.

Chapter 1
Changes in Oracle Database Release 23ai for Oracle Multitenant Administrator’s Guide

1-3

Multitenant Architecture
The multitenant architecture enables an Oracle database to be a CDB.

Every Oracle database must contain or be able to be contained by another database.
For example, a CDB contains PDBs, and an application container contains application
PDBs. A PDB is contained by a CDB or application container, and an application
container is contained by a CDB.

Starting in Oracle Database 21c, a multitenant container database is the only
supported architecture. In previous releases, Oracle supported non-container
databases (non-CDBs).

• CDBs
A CDB contains one or more user-created PDBs and application containers.

• PDBs
A PDB is a portable collection of schemas, schema objects, and nonschema
objects that appears to an application as a separate database.

• Application Containers
An application container is an optional, user-created container within a CDB that
stores data and metadata for one or more applications.

CDBs
A CDB contains one or more user-created PDBs and application containers.

At the physical level, a CDB is a set of files: control file, online redo log files, and data
files. The database instance manages the files that make up the CDB.

The following figure shows a CDB and an associated database instance.

Chapter 1
Multitenant Architecture

1-4

Figure 1-1 Database Instance and CDB

Background
Processes

Client
Process

PMON

SMON

RECO

MMON

MMNL

Others

Database
Buffer Cache

Redo�
Log

Buffer

ARCn RVWR

10101
10101

10101
1010110101

10101
10101

10101
1010110101

LGWRCKPTDBWn

Java
Pool

Streams
Pool

Fixed
SGA

Data
Files

Control
Files

Server
Process

PGA

Session Memory Private SQL Area

SQL Work Areas

Archived
Redo Log

Flashback
Log

Online
Redo Log

Database

System Global Area (SGA)

Large Pool

Instance

UGA

I/O Buffer Area

Free Memory

Large Pool

Response
Queue

Request
Queue

Shared Pool

Private �
SQL Area�
(Shared�
Server Only)

Shared SQL Area

Library Cache

Data
Dictionary
Cache

Server
Result
Cache

Other Reserved
Pool

SELECT * FROM
 employees

PDBs
A PDB is a portable collection of schemas, schema objects, and nonschema objects that
appears to an application as a separate database.

At the physical level, each PDB has its own set of data files that store the data for the PDB.
The CDB includes all the data files for the PDBs contained within it, and a set of system data
files that store metadata for the CDB itself.

To move or archive a PDB, you can unplug it. An unplugged PDB consists of the PDB data
files and a metadata file. An unplugged PDB is not usable until it is plugged in to a CDB.

The following figure shows a CDB named MYCDB.

Chapter 1
Multitenant Architecture

1-5

Figure 1-2 PDBs in a CDB

Root
(CDB$ROOT)

hrpdb

salespdb

MYCDB

HR Application

Sales Application

Physically, MYCDB is an Oracle database, in the sense of a set of data files associated
with an instance. MYCDB has one database instance, although multiple instances are
possible in Oracle Real Application Clusters, and one set of database files.

MYCDB contains two PDBs: hrpdb and salespdb. As shown in Figure 1-2, these PDBs
appear to their respective applications as separate, independent databases. An
application has no knowledge of whether it is connecting to a CDB or PDB.

To administer the CDB itself or any PDB within it, you can connect to the CDB root.
The root is a collection of schemas, schema objects, and nonschema objects to which
all PDBs and application containers belong.

Application Containers
An application container is an optional, user-created container within a CDB that
stores data and metadata for one or more applications.

In this context, an application (also called the master application definition) is a named,
versioned set of common data and metadata stored in the application root. For
example, the application might include definitions of tables, views, user accounts, and
PL/SQL packages that are common to a set of PDBs.

In some ways, an application container functions as an application-specific CDB within
a CDB. An application container, like the CDB itself, can include multiple application
PDBs, and enables these PDBs to share metadata and data. At the physical level, an
application container has its own set of data files, just like a PDB.

For example, a SaaS deployment can use multiple application PDBs, each for a
separate customer, which share application metadata and data. For example, in the
following figure, sales_app is the application model in the application root. The

Chapter 1
Multitenant Architecture

1-6

application PDB named cust1_pdb contains sales data only for customer 1, whereas the
application PDB named cust2_pdb contains sales data only for customer 2. Plugging,
unplugging, cloning, and other PDB-level operations are available for individual customer
PDBs.

Figure 1-3 SaaS Use Case

CDB

Seed
(PDB$SEED)

Application
Container

cust1_pdb

cust2_pdbApplication
Seed

sales_app
Application Root

Application
PDBs

Root (CDB$ROOT)

Benefits of the Multitenant Architecture
Creating separate PDBs and application containers within a single CDB provides benefits for
manageability and performance.

• Benefits of Consolidating Data into a Single CDB
Database consolidation is the process of consolidating data from multiple databases on
separate hosts into one CDB on one host. The multitenant architecture enables you to
consolidate data and code without altering existing schemas or applications.

• Benefits of the Multitenant Architecture for Manageability
The multitenant architecture improves manageability by storing the data and metadata
specific to a PDB in the PDB itself.

Benefits of Consolidating Data into a Single CDB
Database consolidation is the process of consolidating data from multiple databases on
separate hosts into one CDB on one host. The multitenant architecture enables you to
consolidate data and code without altering existing schemas or applications.

Chapter 1
Benefits of the Multitenant Architecture

1-7

Consolidating data into a single CDB has the following benefits:

• Cost reduction

By consolidating hardware and database infrastructure to a single set of
background processes, and efficiently sharing computational and memory
resources, you reduce costs for hardware and maintenance. For example, 100
PDBs in a single CDB on a single host can share one database instance.

• Easier and more rapid movement of data and code

By design, you can quickly plug a PDB into a CDB, unplug the PDB from the CDB,
and then plug this PDB into a different CDB. You can also clone PDBs while they
remain available. You can plug in a PDB with any character set and access it
without character set conversion. If the character set of the CDB is AL32UTF8,
then PDBs with different database character sets can exist in the same CDB.

• Easier management and monitoring of the physical database

The CDB administrator can manage the environment as an aggregate by
executing a single operation, such as patching or performing an RMAN backup, for
all hosted tenants and the CDB root. Backup strategies and disaster recovery are
simplified.

• Separation of data and code

Although consolidated into a single physical CDB, PDBs appears to applications
as separate databases. For example, if user error loses critical data in a single
PDB, then the PDB administrator can use Oracle Flashback or point-in-time
recovery to retrieve the lost data without affecting other PDBs.

• Secure separation of administrative duties

A common user account can connect to any container on which it has sufficient
privileges, whereas a local user account is restricted to a specific PDB.
Administrators can divide duties as follows:

– An administrator uses a common user account to manage a CDB or
application container.

– A PDB administrator uses a local user account to manage an individual PDB.
Because a privilege is contained within the container in which it is granted, a
local user on one PDB does not have privileges on other PDBs within the
same CDB.

• Ease of performance tuning

It is easier to collect performance metrics for a single CDB on one host than for
multiple databases on multiple hosts. For example, it is easier to size one SGA
than 100 SGAs.

• Fewer database patches and upgrades

It is easier to apply a patch to one CDB than to 100 databases, and to upgrade
one CDB than to upgrade 100 databases.

Chapter 1
Benefits of the Multitenant Architecture

1-8

See Also:

• "Overview of Multitenant Administration"

• Oracle Database Security Guide to learn about common user accounts

Benefits of the Multitenant Architecture for Manageability
The multitenant architecture improves manageability by storing the data and metadata
specific to a PDB in the PDB itself.

By storing its own dictionary metadata, a PDB becomes easier to manage as a unit. This
benefit occurs even when only one PDB resides in a CDB. Grouping PDBs into a separately
managed application container increases manageability even further.

In a CDB, the data dictionary metadata is split between the CDB root and the PDBs. Benefits
of data dictionary separation include the following:

• Easier upgrade of data and code

For example, instead of upgrading a CDB from one database release to another, you can
rapidly unplug a PDB from the existing CDB, and then plug it into a newly created CDB
from a higher release.

• Easier migration between servers

To perform load balancing or to meet SLAs, you can migrate an application database
from an on-premise data center to the Oracle Cloud, or between two servers in the same
environment.

• Protection against data corruption within a PDB

You can flash back a PDB to an SCN or PDB-specific restore point, without affecting
other PDBs.

• Ability to install, administer, and upgrade application-specific data and metadata in a
single place

You can define a set of application-specific PDBs as a single component, called an
application container. You can then define one or more applications within this container.
Each application definition is a named, versioned set of common metadata and data
shared within this application container.

For example, each customer of a SaaS vendor could have its own application PDB. Each
application PDB might have identically defined tables named sales_mlt, with different
data in each PDB. The PDBs could share a data-linked common object named
countries_olt, which has identical data in each PDB. As an application administrator,
you could manage the master application definition so that every new customer gets a
PDB with the same objects, and every change to existing schemas (for example, the
addition of a new table, or a change in the definition of a table) applies to all PDBs that
share the application definition.

• Integration with Oracle Database Resource Manager (the Resource Manager)

In the multitenant environment, PDBs contend for shared resources. To address resource
contention, usage, and monitoring issues, use the Resource Manager.

Chapter 1
Benefits of the Multitenant Architecture

1-9

See Also:

• "Administering an Application Container"

• Oracle Database Administrator’s Guide to learn more about the
Resource Manager

• Oracle Database Concepts to learn more about data dictionary
separation

Overview of Multitenant Administration
Become familiar with basic concepts related to configuring and managing a multitenant
environment.

• Users, Roles, and Objects in a Multitenant Environment
The container architecture enables database administrators to assume different
roles. The key to the separation of duties is the distinction between common and
local users, roles, and objects.

• Tasks and Tools for a Multitenant Environment
This manual explains how to create and perform operations on containers using
command-line tools such as SQL*Plus or SQL Developer.

• Overview of Container Creation
You create a CDB using CREATE DATABASE, and then create PDBs and application
containers using CREATE PLUGGABLE DATABASE.

Users, Roles, and Objects in a Multitenant Environment
The container architecture enables database administrators to assume different roles.
The key to the separation of duties is the distinction between common and local users,
roles, and objects.

• About Commonality in a CDB
A common phenomenon defined in a CDB or application root is the same in all
containers plugged in to this root.

• About Common and Local User Accounts
A database user account has a password and specific database privileges.

• Overview of Common and Local Roles in a CDB
User-created roles are either local or common. Common roles are either common
to the CDB itself or to a specific application container.

• Common and Local Objects
A common object is defined in either the CDB root or an application root, and can
be referenced using metadata links or object links. A local object is every object
that is not a common object.

• Separation of Duties in CDB and PDB Administration
Some database administrators manage an entire CDB, while others manage
individual PDBs.

Chapter 1
Overview of Multitenant Administration

1-10

About Commonality in a CDB
A common phenomenon defined in a CDB or application root is the same in all containers
plugged in to this root.

• Principles of Commonality
In a CDB, a phenomenon can be common within either the system container (the CDB
itself), or within a specific application container.

• Namespaces in a CDB
In a CDB, the namespace for every object is scoped to its container.

Principles of Commonality
In a CDB, a phenomenon can be common within either the system container (the CDB itself),
or within a specific application container.

For example, if you create a common user account while connected to CDB$ROOT, then this
user account is common to all PDBs and application roots in the CDB. If you create an
application common user account while connected to an application root, however, then this
user account is common only to the PDBs in this application container.

Within the context of CDB$ROOT or an application root, the principles of commonality are as
follows:

• A common phenomenon is the same in every existing and future container.

Therefore, a common user defined in the CDB root has the same identity in every PDB
plugged in to the CDB root; a common user defined in an application root has the same
identity in every application PDB plugged in to this application root. In contrast, a local
phenomenon is scoped to exactly one existing container.

• Only a common user can alter the existence of common phenomena.

More precisely, only a common user logged in to either the CDB root or an application
root can create, destroy, or modify attributes of a user, role, or object that is common to
the current container.

Namespaces in a CDB
In a CDB, the namespace for every object is scoped to its container.

The following principles summarize the scoping rules:

• From an application perspective, a PDB is a separate database that is distinct from any
other PDBs.

• Local phenomena are created within and restricted to a single container.

Note:

In this topic, the word “phenomenon” means “user account, role, or database
object.”

• Common phenomena are defined in a CDB root or application root, and exist in all PDBs
that are or will be plugged into this root.

Chapter 1
Overview of Multitenant Administration

1-11

The preceding principles have implications for local and common phenomena.

Local Phenomena

A local phenomenon must be uniquely named within a container, but not across all
containers in the CDB. Identically named local phenomena in different containers are
distinct. For example, local user sh in one PDB does not conflict with local user sh in
another PDB.

CDB$ROOT Common Phenomena

Common phenomena defined in CDB$ROOT exist in multiple containers and must be
unique within each of these namespaces. For example, the CDB root includes
predefined common users such as SYSTEM and SYS. To ensure namespace separation,
Oracle Database prevents creation of a SYSTEM user within another container.

To ensure namespace separation, the name of user-created common phenomena in
the CDB root must begin with the value specified by the COMMON_USER_PREFIX
initialization parameter. The default prefix is c## or C##. The names of all other user-
created phenomena must not begin with c## or C##. For example, you cannot create a
local user in hrpdb named c##hr, nor can you create a common user in the CDB root
named hr.

Application Common Phenomena

Within an application container, names for local and application common phenomena
must not conflict.

• Application common users and roles

The same principles apply to application common users as to CDB common users.
The difference is that for CDB common users, the default value for the common
user prefix is c## or C##, whereas in application root the default value for the
common user prefix is the empty string.

The multitenant architecture assumes that you create application PDBs from an
application root, or convert a single-tenant application to a multitenant application.

• Application common objects

The multitenant architecture assumes that you create application common objects
in the application root. Later, you add data locally within the application PDBs.
However, Oracle Database supports creation of local tables within an application
PDB. In this case, the local tables reside in the same namespace as application
common objects within the application PDB.

See Also:

Oracle Database Security Guide to learn more about common users and
roles

Chapter 1
Overview of Multitenant Administration

1-12

About Common and Local User Accounts
A database user account has a password and specific database privileges.

User Accounts and Schemas

Each user account owns a single schema, which has the same name as the user. The
schema contains the data for the user owning the schema. For example, the hr user account
owns the hr schema, which contains schema objects such as the employees table. In a
production database, the schema owner usually represents a database application rather
than a person.

Within a schema, each schema object of a particular type has a unique name. For example,
hr.employees refers to the table employees in the hr schema. The following figure depicts a
schema owner named hr and schema objects within the hr schema.

Figure 1-4 HR Schema

H
R

 U
s

e
r

H
R

 S
c

h
e

m
a

S
c
h

e
m

a

O
b

je
c
ts

o
w

n
s

T
a

b
le

In
d

e
x

e
s

T
a

b
le

T
a

b
le

T
a

b
le

s

Common and Local User Accounts

If a user account owns objects that define the database, then this user account is common.
User accounts that are not Oracle-supplied are either local or common. A CDB common user
is a common user that is created in the CDB root. An application common user is a user that
is created in an application root, and is common only within this application container.

The following graphic shows the possible user account types in a CDB.

Chapter 1
Overview of Multitenant Administration

1-13

Figure 1-5 User Accounts in a CDB

Common User

Local User

Application Common User

CDB Common User

Same Identity in
Every Container

Identity Restricted
to One PDB

User-Created

Oracle-Supplied

Name must begin with
C## or c##

SYS, SYSTEM

A CDB common user can connect to any container in the CDB to which it has sufficient
privileges. In contrast, an application common user can only connect to the application
root in which it was created, or a PDB that is plugged in to this application root,
depending on its privileges.

• Common User Accounts
Within the context of either the system container (CDB) or an application
container, a common user is a database user that has the same identity in the
root and in every existing and future PDB within this container.

• Local User Accounts
A local user is a database user that is not common and can operate only within a
single PDB.

Common User Accounts
Within the context of either the system container (CDB) or an application container, a
common user is a database user that has the same identity in the root and in every
existing and future PDB within this container.

Every common user can connect to and perform operations within the root of its
container, and within any PDB in which it has sufficient privileges. Some administrative
tasks must be performed by a common user. Examples include creating a PDB and
unplugging a PDB.

For example, SYSTEM is a CDB common user with DBA privileges. Thus, SYSTEM can
connect to the CDB root and any PDB in the database. You might create a common
user saas_sales_admin in the saas_sales application container. In this case, the
saas_sales_admin user could only connect to the saas_sales application root or to an
application PDB within the saas_sales application container.

Every common user is either Oracle-supplied or user-created. Examples of Oracle-
supplied common users are SYS and SYSTEM. Every user-created common user is
either a CDB common user, or an application common user.

Chapter 1
Overview of Multitenant Administration

1-14

The following figure shows sample users and schemas in two PDBs: hrpdb and salespdb.
SYS and c##dba are CDB common users who have schemas in CDB$ROOT, hrpdb, and
salespdb. Local users hr and rep exist in hrpdb. Local users hr and rep also exist in
salespdb.

Figure 1-6 Users and Schemas in a CDB

Seed
(PDB$SEED)

hrpdb salespdb

hr

rep

SYS

c##dba

hr

rep

SYS

c##dba

Root (CDB$ROOT)
SYS

c##dba

Common
Users

Local
Users

hr in
hrpdb

hr in
salespdb

rep in
salespdb

rep in
hrpdb

c##dba

SYS

PUBLICPUBLIC

PUBLIC

PUBLIC

SYS

Common users have the following characteristics:

• A common user can log in to any container (including CDB$ROOT) in which it has the
CREATE SESSION privilege.
A common user need not have the same privileges in every container. For example, the
c##dba user may have the privilege to create a session in hrpdb and in the root, but not to
create a session in salespdb. Because a common user with the appropriate privileges
can switch between containers, a common user in the root can administer PDBs

• An application common user does not have the CREATE SESSION privilege in any
container outside its own application container.
Thus, an application common user is restricted to its own application container. For
example, the application common user created in the saas_sales application can
connect only to the application root and the PDBs in the saas_sales application
container.

Chapter 1
Overview of Multitenant Administration

1-15

• The names of user-created CDB common users must follow the naming rules for
other database users. Additionally, the names must begin with the characters
specified by the COMMON_USER_PREFIX initialization parameter, which are c## or C##
by default. Oracle-supplied common user names and user-created application
common user names do not have this restriction.
No local user name may begin with the characters c## or C##.

• Every common user is uniquely named across all PDBs within the container (either
the system container or a specific application container) in which it was created.
A CDB common user is defined in the CDB root, but must be able to connect to
every PDB with the same identity. An application common user resides in the
application root, and may connect to every application PDB in its container with
the same identity.

• Characteristics of Common Users
Every common user is either Oracle-supplied or user-created.

• SYS and SYSTEM Accounts
All Oracle databases include default common user accounts with administrative
privileges.

Characteristics of Common Users

Every common user is either Oracle-supplied or user-created.

Common user accounts have the following characteristics:

• A common user can log in to any container (including CDB$ROOT) in which it has the
CREATE SESSION privilege.

A common user need not have the same privileges in every container. For
example, the c##dba user may have the privilege to create a session in hrpdb and
in the root, but not to create a session in salespdb. Because a common user with
the appropriate privileges can switch between containers, a common user in the
root can administer PDBs.

• An application common user does not have the CREATE SESSION privilege in any
container outside its own application container.

Thus, an application common user is restricted to its own application container.
For example, the application common user created in the saas_sales application
can connect only to the application root and the PDBs in the saas_sales
application container.

• The names of user-created CDB common users must follow the naming rules for
other database users. Additionally, the names must begin with the characters
specified by the COMMON_USER_PREFIX initialization parameter, which are c## or C##
by default. Oracle-supplied common user names and user-created application
common user names do not have this restriction.

No local user name may begin with the characters c## or C##.

• Every common user is uniquely named across all PDBs within the container (either
the system container or a specific application container) in which it was created.

A CDB common user is defined in the CDB root, but must be able to connect to
every PDB with the same identity. An application common user resides in the
application root, and may connect to every application PDB in its container with
the same identity.

Chapter 1
Overview of Multitenant Administration

1-16

The following figure shows sample users and schemas in two PDBs: hrpdb and salespdb.
SYS and c##dba are CDB common users who have schemas in CDB$ROOT, hrpdb, and
salespdb. Local users hr and rep exist in hrpdb. Local users hr and rep also exist in
salespdb.

Figure 1-7 Users and Schemas in a CDB

Seed
(PDB$SEED)

hrpdb salespdb

hr

rep

SYS

c##dba

hr

rep

SYS

c##dba

Root (CDB$ROOT)
SYS

c##dba

Common
Users

Local
Users

hr in
hrpdb

hr in
salespdb

rep in
salespdb

rep in
hrpdb

c##dba

SYS

PUBLICPUBLIC

PUBLIC

PUBLIC

SYS

See Also:

• Oracle Database Security Guide to learn about common user accounts

• Oracle Database Reference to learn about COMMON_USER_PREFIX

SYS and SYSTEM Accounts

All Oracle databases include default common user accounts with administrative privileges.

Chapter 1
Overview of Multitenant Administration

1-17

Administrative accounts are highly privileged and are intended only for DBAs
authorized to perform tasks such as starting and stopping the database, managing
memory and storage, creating and managing database users, and so on.

The SYS common user account is automatically created when a database is created.
This account can perform all database administrative functions. The SYS schema
stores the base tables and views for the data dictionary. These base tables and views
are critical for the operation of Oracle Database. Tables in the SYS schema are
manipulated only by the database and must never be modified by any user.

The SYSTEM administrative account is also automatically created when a database is
created. The SYSTEM schema stores additional tables and views that display
administrative information, and internal tables and views used by various Oracle
Database options and tools. Never use the SYSTEM schema to store tables of interest to
nonadministrative users.

See Also:

• Oracle Database Security Guide to learn about user accounts

• Oracle Database Administrator’s Guide to learn about SYS, SYSTEM, and
other administrative accounts

Local User Accounts
A local user is a database user that is not common and can operate only within a
single PDB.

Local users have the following characteristics:

• A local user is specific to a PDB and may own a schema in this PDB.

In the example shown in "Characteristics of Common Users", local user hr on
hrpdb owns the hr schema. On salespdb, local user rep owns the rep schema,
and local user hr owns the hr schema.

• A local user can administer a PDB, including opening and closing it.

A common user with SYSDBA privileges can grant SYSDBA privileges to a local user.
In this case, the privileged user remains local.

• A local user in one PDB cannot log in to another PDB or to the CDB root.

For example, when local user hr connects to hrpdb, hr cannot access objects in
the sh schema that reside in the salespdb database without using a database link.
In the same way, when local user sh connects to the salespdb PDB, sh cannot
access objects in the hr schema that resides in hrpdb without using a database
link.

• The name of a local user must not begin with the characters c## or C##.

• The name of a local user must only be unique within its PDB.

The user name and the PDB in which that user schema is contained determine a
unique local user. "Characteristics of Common Users" shows that a local user and

Chapter 1
Overview of Multitenant Administration

1-18

schema named rep exist on hrpdb. A completely independent local user and schema
named rep exist on the salespdb PDB.

The following table describes a scenario involving the CDB in "Characteristics of Common
Users". Each row describes an action that occurs after the action in the preceding row.
Common user SYSTEM creates local users in two PDBs.

Table 1-1 Local Users in a CDB

Operation Description

SQL> CONNECT SYSTEM@hrpdb
Enter password: ********
Connected.

SYSTEM connects to the hrpdb container
using the service name hrpdb.

SQL> CREATE USER rep IDENTIFIED BY password;

User created.

SQL> GRANT CREATE SESSION TO rep;

Grant succeeded.

SYSTEM now creates a local user rep and
grants the CREATE SESSION privilege in this
PDB to this user. The user is local because
common users can only be created by a
common user connected to the root.

SQL> CONNECT rep@salespdb
Enter password: *******
ERROR:
ORA-01017: invalid username/password; logon
denied

The rep user, which is local to hrpdb,
attempts to connect to salespdb. The
attempt fails because rep does not exist in
PDB salespdb.

SQL> CONNECT SYSTEM@salespdb
Enter password: ********
Connected.

SYSTEM connects to the salespdb container
using the service name salespdb.

SQL> CREATE USER rep IDENTIFIED BY password;

User created.

SQL> GRANT CREATE SESSION TO rep;

Grant succeeded.

SYSTEM creates a local user rep in salespdb
and grants the CREATE SESSION privilege in
this PDB to this user. Because the name of a
local user must only be unique within its PDB,
a user named rep can exist in both
salespdb and hrpdb.

SQL> CONNECT rep@salespdb
Enter password: *******
Connected.

The rep user successfully logs in to
salespdb.

Chapter 1
Overview of Multitenant Administration

1-19

See Also:

Oracle Database Security Guide to learn about local user accounts

Overview of Common and Local Roles in a CDB
User-created roles are either local or common. Common roles are either common to
the CDB itself or to a specific application container.

Every Oracle-supplied role is common, for example, the predefined DBA role. In Oracle-
supplied scripts, every privilege or role granted to Oracle-supplied users and roles is
granted commonly, with one exception: system privileges are granted locally to the
common role PUBLIC.

• Common Roles in a CDB
A common role exists either in the CDB root or an application root, and applies to
every PDB within the root container (either the CDB or the application container).

• Local Roles in a CDB
A local role exists only in a single PDB, and is thus completely independent of
local roles in any other PDBs.

Common Roles in a CDB
A common role exists either in the CDB root or an application root, and applies to
every PDB within the root container (either the CDB or the application container).

Common roles are useful for cross-container operations, ensuring that a common user
has a role in every PDB. Every common role is one of the following types:

• Oracle-supplied

All Oracle-supplied roles, such as DBA and PUBLIC, are common to the CDB.

• User-created

Create a common role by executing CREATE ROLE ... CONTAINER=ALL in either the
CDB root or application root, which determines the container to which the role is
common. The standard naming conventions apply. Additionally, the names of CDB
common roles must begin with the characters specified by the
COMMON_USER_PREFIX initialization parameter, which are c## or C## by default.

The scope of the role is the scope of the root within which it is defined. If you define
the role in CDB$ROOT, then its scope is the entire CDB. If you define the role within
application root, then its scope is the application container.

Local Roles in a CDB
A local role exists only in a single PDB, and is thus completely independent of local
roles in any other PDBs.

A local role can only contain roles and privileges that apply within the container in
which the role exists. For example, if you create the local role pdbadmin in hrpdb, then
the scope of this role is restricted to this PDB.

Chapter 1
Overview of Multitenant Administration

1-20

PDBs in the same CDB, or in the same application container, may contain local roles with the
same name. For example, the user-created role pdbadmin may exist in both hrpdb and
salespdb. However, these roles are completely independent of each other.

Common and Local Objects
A common object is defined in either the CDB root or an application root, and can be
referenced using metadata links or object links. A local object is every object that is not a
common object.

Database-supplied common objects are defined in CDB$ROOT and cannot be changed. Oracle
Database does not support creation of common objects in CDB$ROOT.

You can create most schema objects—such as tables, views, PL/SQL and Java program
units, sequences, and so on—as common objects in an application root. If the object exists in
an application root, then it is called an application common object.

A local user can own a common object. Also, a common user can own a local object, but only
when the object is not data-linked or metadata-linked, and is also neither a metadata link nor
a data link.

See Also:

Oracle Database Security Guide to learn more about privilege management for
common objects

Separation of Duties in CDB and PDB Administration
Some database administrators manage an entire CDB, while others manage individual PDBs.

DBAs who manage an entire CDB connect to the CDB as common users, and manage
attributes of the entire CDB and the root, as well as some attributes of PDBs. For example,
these CDB DBAs can create, unplug, plug in, and drop PDBs. They can also specify the
temporary tablespace and the default tablespace for the CDB root, and they can change the
open mode of PDBs.

DBAs can also connect to a specific PDB as a local PDB administrator. The PDB DBA
performs tasks required for the PDB to support an application. For example, tasks can
include management of tablespaces and schemas in a PDB, specification of storage
parameters for that PDB, changing the open mode of the current PDB, and setting PDB-level
initialization parameters.

Tasks and Tools for a Multitenant Environment
This manual explains how to create and perform operations on containers using command-
line tools such as SQL*Plus or SQL Developer.

• Tasks for a Multitenant Environment
This section summarizes the tasks required to manage a multitenant environment.

• Tools for a Multitenant Environment
You can use various tools to configure and administer a multitenant environment.

Chapter 1
Overview of Multitenant Administration

1-21

Tasks for a Multitenant Environment
This section summarizes the tasks required to manage a multitenant environment.

This manual explains how to administer containers as containers, for example, how to
create CDBs and PDBs, start them up and shut them down, and perform cross-
container operations. Oracle Database Administrator’s Guide describes traditional
administrative tasks that you perform within an existing container, including managing
database storage, schema objects, resources, and task scheduling.

To achieve the goals described in "Benefits of the Multitenant Architecture", you must
complete the following general tasks:

Task 1 Plan for the Multitenant Environment
Creating and configuring any database requires careful planning. A CDB requires
special considerations. For example, consider the following factors when you plan for
a CDB:

• The number of PDBs that will be plugged into each CDB

• The resources required to support the planned CDB

• Container management policies run as an aggregate on the entire CDB or run
locally on individual PDBs

• Container database topology, which could consist of application containers with
application PDBs or a CDB with PDBs, or a combination of both

See "Preparing to Create a CDB" for detailed information about planning for a CDB.

Task 2 Create One or More CDBs
When you have completed the necessary planning, you can create one or more CDBs
using either the Database Configuration Assistant (DBCA) or the CREATE
DATABASE ... ENABLE PLUGGABLE DATABASE command. In either case, you must
specify the configuration details for each CDB.
See "Creating a CDB with DBCA" and "Creating a Database with the CREATE
DATABASE Statement" for detailed information about creating a CDB.
After a CDB is created, it consists of the root and PDB$SEED, as shown in the following
figure. The CDB root contains only Oracle maintained objects and data structures,
and PDB$SEED is a generic seed database for cloning purposes.

Chapter 1
Overview of Multitenant Administration

1-22

Figure 1-8 A Newly Created CDB

CDB

Seed
(PDB$SEED)

Root (CDB$ROOT)

Task 3 Optionally, Create Application Containers
An application container is an optional component of a CDB that consists of an application
root and the application PDBs associated with it. An application container stores data for one
or more applications.
The following graphic shows a CDB with one empty application container.

Figure 1-9 An Application Container

CDB

Seed
(PDB$SEED)

Application
Container

Application Root

Root (CDB$ROOT)

See "About Application Containers".

Task 4 Create, Plug In, and Unplug PDBs
PDBs contain user data. After creating a CDB, you can create PDBs, plug unplugged PDBs
into it, and unplug PDBs from it whenever necessary. You can unplug a PDB from a CDB
and plug this PDB into a different CDB. You might move a PDB from one CDB to another if,
for example, you want to move the workload for the PDB from one server to another.
See "Creating PDBs and Application Containers" for information about creating PDBs,
plugging in PDBs, and unplugging PDBs.
The following figure shows a CDB with several PDBs.

Chapter 1
Overview of Multitenant Administration

1-23

Figure 1-10 A CDB with PDBs

PDBs

CDB

Seed
(PDB$SEED)

Root (CDB$ROOT)

Figure 1-11 shows a CDB with PDBs, application containers, and application PDBs.

Figure 1-11 A CDB with PDBs, Application Containers, and Application PDBs

PDBs and Application Containers

CDB

Seed
(PDB$SEED)

Root (CDB$ROOT)

Application
Container

Application
PDBs

Application
Container

Application
PDBs

Application
Seed

Application Root Application Root

Task 5 Administer and Monitor the CDB and Application Containers
Administering and monitoring a CDB involves managing the entire CDB, the CDB
root, and some attributes of PDBs.. Administering and monitoring an application
container is similar to administering and monitoring a CDB, but your actions only
affect the application root and the application PDBs that are part of the application
container.
See "After Creating a CDB" for descriptions of tasks that are similar and tasks that are
different. Also, see " Administering a CDB" and "Monitoring Containers in a CDB".

Chapter 1
Overview of Multitenant Administration

1-24

You can use Oracle Resource Manager to allocate and manage resources among PDBs
hosted in a CDB, and you can use it to allocate and manage resource use among user
processes within a PDB.
You can also use Oracle Scheduler to schedule jobs in a CDB and in individual PDBs. See
Oracle Database Administrator’s Guide.

Task 6 Administer and Monitor PDBs and Application PDBs
See " Administering PDBs" and "Monitoring Containers in a CDB".

Tools for a Multitenant Environment
You can use various tools to configure and administer a multitenant environment.

Table 1-2 Tools for a Multitenant Environment

Tool Description See Also

SQL*Plus SQL*Plus is a command-line tool that
enables you to create, manage, and monitor
CDBs and PDBs. You use SQL statements
and Oracle-supplied PL/SQL packages to
complete these tasks in SQL*Plus.

SQL*Plus User's Guide and Reference

Oracle Database
Configuration
Assistant (DBCA)

DBCA is a utility with a graphical user
interface that enables you to create and
duplicate CDBs. It also enables you to
create, relocate, clone, plug in, and unplug
PDBs.

Oracle Database Installation Guide and the
DBCA online help

Oracle Enterprise
Manager Cloud
Control

Cloud Control is a system management tool
with a graphical user interface that enables
you to manage and monitor a CDB and its
PDBs.

Cloud Control online help

Oracle SQL Developer Oracle SQL Developer is a client application
with a graphical user interface that enables
you to configure a CDB, create PDBs, plug
and unplug PDBs, modify the state of a
PDB, clone a PDB to the Oracle Cloud, hot
clone/refresh a PDB, relocate a PDB
between application roots, and more.

Additionally, Oracle SQL Developer has
graphical interfaces for resource
management, storage, security,
configuration, and reporting of performance
metrics on containers and pluggable
databases in a CDB.

Oracle SQL Developer User's Guide

The Server Control
(SRVCTL) utility

The SRVCTL utility can create and manage
services for PDBs.

"Managing Services for PDBs"

Overview of Container Creation
You create a CDB using CREATE DATABASE, and then create PDBs and application containers
using CREATE PLUGGABLE DATABASE.

• Creation of a CDB
The CREATE DATABASE statement creates a new CDB.

Chapter 1
Overview of Multitenant Administration

1-25

• Creation of a PDB or Application Container
The CREATE PLUGGABLE DATABASE SQL statement creates a PDB. Specifying the
AS APPLICATION CONTAINER clause creates an application container.

Creation of a CDB
The CREATE DATABASE statement creates a new CDB.

When you create a CDB, Oracle Database automatically creates a root container
(CDB$ROOT) and a seed PDB (PDB$SEED). The following graphic shows a newly created
CDB:

Figure 1-12 CDB with Seed PDB

CDB

Seed
(PDB$SEED)

Root (CDB$ROOT)

See Also:

• " Creating a CDB: Basic Steps"

• Oracle Database SQL Language Reference for more information about
specifying the clauses and parameter values for the CREATE DATABASE
statement

Creation of a PDB or Application Container
The CREATE PLUGGABLE DATABASE SQL statement creates a PDB. Specifying the AS
APPLICATION CONTAINER clause creates an application container.

A created PDB automatically includes a full data dictionary, including metadata and
internal links to system-supplied objects in the CDB root or application root. You must
define every PDB from a single root: either the CDB root or an application root. A PDB
created in an application container is called an application PDB.

Every PDB and application container has a globally unique identifier (GUID). The PDB
GUID is primarily used to generate names for directories that store the PDB files,
including both Oracle Managed Files directories and non-Oracle Managed Files
directories.

Chapter 1
Overview of Multitenant Administration

1-26

Note:

In the following topics, the term "PDB" refers to a PDB, application container, or
application PDB.

• Creation of a PDB by Cloning
One technique for creating a PDB is called cloning.

• Creation of a PDB by Plugging In an Unplugged PDB
An unplugged PDB is a self-contained set of data files, and an XML metadata file that
specifies the locations of the PDB files. To plug in an unplugged PDB, use the CREATE
PLUGGABLE DATABASE statement with the USING clause.

• Creation of a PDB by Relocating
To relocate a PDB from one CDB to another, use either the CREATE PLUGGABLE
DATABASE ... RELOCATE statement or DBCA.

• Creation of a PDB as a Proxy PDB
A proxy PDB provides access to different PDB, called the referenced PDB, in a remote
CDB.

See Also:

"Creating PDBs and Application Containers"

Creation of a PDB by Cloning
One technique for creating a PDB is called cloning.

You can clone a PDB from PDB$SEED, an application seed, or a remote or local PDB.

• Creation of a PDB from a Seed
You can use the CREATE PLUGGABLE DATABASE statement to create a PDB from a seed.

• Creation of a PDB by Cloning a PDB
To clone a PDB from another PDB, use the CREATE PLUGGABLE DATABASE statement with
the FROM clause.

Creation of a PDB from a Seed

You can use the CREATE PLUGGABLE DATABASE statement to create a PDB from a seed.

A seed is a PDB that serves as a template for creation of another PDB. Creating a PDB from
a seed copies some or all of the contents of a PDB, and then assigns a new unique identifier.

A seed PDB is either of the following:

• The PDB seed (PDB$SEED), which is a system-supplied template for creating PDBs

Every CDB has exactly one PDB$SEED, which cannot be modified or dropped.

• An application seed, which is a user-created PDB for a specified application root

Chapter 1
Overview of Multitenant Administration

1-27

Within an application container, you can create an application seed using the
CREATE PLUGGABLE DATABASE AS SEED statement, which you can then use to
accelerate creation of new application PDBs.

Figure 1-13 Creation from PDB$SEED

Files of the New PDBPDB$SEED Database Files

Copy to New Location

New
PDB

PDBs

CREATE PLUGGABLE DATABASE

CDB

Seed
(PDB$SEED)

Root (CDB$ROOT)

Example 1-1 Creation of a PDB from PDB$SEED

The following SQL statement creates a PDB named hrpdb from PDB$SEED using Oracle
Managed Files:

CREATE PLUGGABLE DATABASE hrpdb
 ADMIN USER dba1 IDENTIFIED BY password;

See Also:

"Creating a PDB from Scratch"

Creation of a PDB by Cloning a PDB

To clone a PDB from another PDB, use the CREATE PLUGGABLE DATABASE statement
with the FROM clause.

In this technique, the source is a PDB in a local or remote CDB. The target is the PDB
copied from the source. The cloning operation copies the files associated with the
source to a new location, and then assigns a new GUID to create the PDB.

Chapter 1
Overview of Multitenant Administration

1-28

This technique is useful for quickly creating PDBs for testing and development. For example,
you might test a new or modified application on a cloned PDB before deploying the
application in a production PDB. If a PDB is in local undo mode, then the source PDB can be
open in read/write mode during the operation, referred to as hot cloning.

Note:

If you clone a PDB from a remote CDB, then you must use a database link.

If you run CREATE PLUGGABLE DATABASE statement in an application root, then you create the
cloned PDB in the application container. In this case, the application name and version of the
source PDB must be compatible with the application name and version of the application
container.

The following graphic illustrates cloning a PDB when both source and target are in the same
CDB.

Figure 1-14 Cloning a PDB

New
PDB

PDBs

CDB

CREATE PLUGGABLE DATABASE ... FROM

Copy

Seed
(PDB$SEED)

Root (CDB$ROOT)

Files of the New

PDB

Files of the Source

PDB

Copy to New Location

Source
PDB

Starting in Oracle Database 19c, you can clone a remote PDB using DBCA.

Example 1-2 Cloning a PDB

The following SQL statement clones a PDB named salespdb from the plugged-in PDB
named hrpdb:

CREATE PLUGGABLE DATABASE salespdb FROM hrpdb;

Chapter 1
Overview of Multitenant Administration

1-29

• Clones from PDB Snapshots
Create a clone from a PDB snapshot by specifying USING SNAPSHOT clause of
the CREATE PLUGGABLE DATABASE command.

• Snapshot Copy PDBs
A snapshot copy PDB is based on a copy of the underlying storage system.
Snapshot copy PDBs reduce the amount of storage required for testing purposes
and reduce creation time significantly.

• Refreshable Clone PDBs
A refreshable clone PDB is a read-only clone that can periodically synchronize
with its source PDB.

See Also:

• "Cloning a PDB"

• "Application Maintenance"

Clones from PDB Snapshots
Create a clone from a PDB snapshot by specifying USING SNAPSHOT clause of the
CREATE PLUGGABLE DATABASE command.

Creation of PDB Snapshots with the SNAPSHOT Clause

A PDB snapshot is a point-in-time copy of a PDB. The source PDB can be open read-
only or read/write while the snapshot is created. A PDB snapshot taken while the
source PDB is open is called a hot clone. You can create clones from PDB snapshots.
These clone PDBs are useful in development and testing.

You can create snapshots manually using the SNAPSHOT clause of CREATE PLUGGABLE
DATABASE (or ALTER PLUGGABLE DATABASE), or automatically using the EVERY interval
clause. The following statement creates a PDB snapshot with the name
pdb1_wed_4_1201:

ALTER PLUGGABLE DATABASE SNAPSHOT pdb1_wed_4_1201;

If the storage system supports sparse clones, then the preceding command creates a
sparse copy. Otherwise, the command creates a full copy.

Every PDB snapshot is associated with a snapshot name and the SCN and timestamp
at snapshot creation.

Creation of a PDB Clone with the USING SNAPSHOT Clause

If you create a clone from a PDB snapshot using the SNAPSHOT COPY clause, then the
PDB is a snapshot copy PDB and is based on a copy of the underlying storage
system.

Chapter 1
Overview of Multitenant Administration

1-30

To create a clone from a PDB snapshot, specify the USING SNAPSHOT clause of the CREATE
PLUGGABLE DATABASE statement. For example, the following statement clones a PDB named
pdb1_copy from the PDB-level snapshot named pdb1_wed_4_1201:

CREATE PLUGGABLE DATABASE pdb1_copy FROM pdb1
 USING SNAPSHOT pdb1_wed_4_1201;

See Also:

• "About Cloning PDBs from PDB Snapshots"

• Oracle Database Licensing Information User Manual for details on which
features are supported for different editions and services

Snapshot Copy PDBs
A snapshot copy PDB is based on a copy of the underlying storage system. Snapshot copy
PDBs reduce the amount of storage required for testing purposes and reduce creation time
significantly.

If the file system supports storage snapshots, then CREATE PLUGGABLE DATABASE ...
FROM ... SNAPSHOT COPY copies a PDB from a source PDB, which can be read/write during
the operation. The snapshot copy PDB files use copy-on-write technology. Only modified
blocks require extra storage on disk. If the file system does not support storage snapshots or
use Oracle Exadata sparse files, then the CLONEDB initialization parameter must be true, and
the source PDB must be read-only for as long as the snapshot copy PDB exists.

Because a snapshot copy PDB depends on storage-managed snapshots, you cannot unplug
a snapshot copy PDB from the CDB root or application root. You cannot drop the storage
snapshot on which a snapshot copy PDB is based.

You can transform a snapshot copy PDB, which uses sparse files, into a full PDB. This
process is known as materializing the snapshot copy PDB. Because a materialized PDB
does not depend on the source PDB, you can drop it. Materialize a PDB by running the ALTER
PLUGGABLE DATABASE MATERIALIZE command.

Note:

A PDB created with the USING SNAPSHOT clause and a PDB created with the
SNAPSHOT COPY clause have different properties. You cannot specify both clauses in
a single CREATE PLUGGABLE DATABASE command. The CREATE PLUGGABLE DATABASE
… FROM … USING SNAPSHOT clause creates a full, standalone PDB that does not
need to be materialized. The CREATE PLUGGABLE DATABASE … FROM … SNAPSHOT
COPY clause creates a sparse PDB that must be materialized if you want to drop the
storage-level snapshot on which it is based.

Chapter 1
Overview of Multitenant Administration

1-31

Note:

"Creating and Materializing Snapshot Copy PDBs"

Refreshable Clone PDBs
A refreshable clone PDB is a read-only clone that can periodically synchronize with
its source PDB.

Depending on the value specified in the REFRESH MODE clause, synchronization occurs
automatically or manually. For example, if hrpdb_re_clone is a clone of hrpdb, then
every month you could manually refresh hrpdb_re_clone with changes from hrpdb.
Alternatively, you could configure hrpdb to propagate changes to hrpdb_re_clone
automatically every 24 hours.

You can switch the roles of a source PDB and its refreshable clone. This switchover
can be useful for load balancing between CDBs, and when the source PDB suffers a
failure.

Note:

"About Cloning a PDB" to learn how to clone a PDB using the REFRESH MODE
clause

Creation of a PDB by Plugging In an Unplugged PDB
An unplugged PDB is a self-contained set of data files, and an XML metadata file that
specifies the locations of the PDB files. To plug in an unplugged PDB, use the CREATE
PLUGGABLE DATABASE statement with the USING clause.

When plugging in an unplugged PDB, you have the following options:

• Specify the XML metadata file that describes the PDB and the files associated with
the PDB.

• Specify a PDB archive file, which is a compressed file that contains both the XML
file and PDB data files. You can create a PDB by specifying the archive file, and
thereby avoid copying the XML file and the data files separately.

The following graphic illustrates plugging in an unplugged PDB using the XML file.

Chapter 1
Overview of Multitenant Administration

1-32

Figure 1-15 Plugging In an Unplugged PDB

XML

Metadata

File

Database Files

New
PDB

PDBs

CDB

CREATE PLUGGABLE DATABASE ... USING

Seed
(PDB$SEED)

Root (CDB$ROOT)

.PDB

File

XML

Metadata

File

Database Files

CREATE PLUGGABLE DATABASE ... USING

OR

.PDB File

Example 1-3 Plugging In a PDB

The following SQL statement plugs in a PDB named salespdb based on the metadata stored
in the named XML file, and specifies NOCOPY because the files of the unplugged PDB do not
need to be moved to a new location:

CREATE PLUGGABLE DATABASE salespdb USING '/disk1/usr/salespdb.xml' NOCOPY;

Chapter 1
Overview of Multitenant Administration

1-33

See Also:

"Plugging In an Unplugged PDB"

Creation of a PDB by Relocating
To relocate a PDB from one CDB to another, use either the CREATE PLUGGABLE
DATABASE ... RELOCATE statement or DBCA.

This technique has the following advantages:

• The relocation occurs with minimal downtime.

• The technique keeps the PDB being relocated open in read/write mode during the
relocation, and then brings the PDB online in its new location.

You must create a database link at the target CDB, which is the CDB that will contain
the relocated PDB. Also, the source PDB must use local undo data.

The following graphic depicts a PDB relocation.

Chapter 1
Overview of Multitenant Administration

1-34

Figure 1-16 Relocating a PDB

PDB being
Relocated

Relocated
PDB

PDBs

CDB

PDBs

CDB

Seed
(PDB$SEED)

Seed
(PDB$SEED)

Root (CDB$ROOT)

Root (CDB$ROOT)

Files of the PDBFiles of the PDB

Move to New Location

CREATE PLUGGABLE DATABASE ... FROM ... RELOCATE

Database
Link

Move

Starting in Oracle Database 19c, you can relocate a remote PDB using DBCA in silent mode.

Example 1-4 PDB Relocation

The following statement, which is issued at a target CDB, relocates hrpdb from the source
CDB to the target CDB:

CREATE PLUGGABLE DATABASE hrpdb FROM hrpdb@lnk_to_source RELOCATE;

Chapter 1
Overview of Multitenant Administration

1-35

See Also:

"Relocating a PDB"

Creation of a PDB as a Proxy PDB
A proxy PDB provides access to different PDB, called the referenced PDB, in a
remote CDB.

Proxy PDBs enable you to aggregate data from multiple sources. A SQL statement
submitted for execution in a proxy PDB executes within the referenced PDB.

A typical use case is a proxy PDB that references an application root replica. If
multiple CDBs have the same application definition (for example, same tables and
PL/SQL packages), then you can create a proxy PDB in the application container of
the master application root. The referenced PDB for the proxy PDB is the application
root in a different CDB. By running installation scripts in the master root, the
application roots in the other CDBs become replicas of the master application root.

To create a proxy PDB, use the CREATE PLUGGABLE DATABASE statement with the FROM
clause, which must specify a database link to the referenced PDB in the remote CDB,
and the AS PROXY clause.

Note:

If you plug a proxy PDB directly into CDB$ROOT, then you must have created
the proxy in CDB$ROOT. A proxy of an application PDB must both be plugged
in to an application root.

The following graphic shows the creation of a proxy PDB that references a PDB in a
remote CDB.

Chapter 1
Overview of Multitenant Administration

1-36

Figure 1-17 Creating a Proxy PDB

Referenced
PDB

Proxy
PDB

PDBs

CDB

PDBs

CDB

Seed
(PDB$SEED)

Seed
(PDB$SEED)

Root (CDB$ROOT)

Root (CDB$ROOT)

Proxy PDB’s SYSTEM
and SYSAUX Files

Referenced PDB’s
SYSTEM and SYSAUX Files

 Copy to New Location

CREATE PLUGGABLE DATABASE ... AS PROXY ... FROM

Reference

Database
Link

Example 1-5 Creation of a Proxy PDB

This example creates a proxy PDB named pdb1. The referenced PDB is specified using a
database link.

CREATE PLUGGABLE DATABASE pdb1 AS PROXY FROM pdb1@pdb1_link;

Chapter 1
Overview of Multitenant Administration

1-37

Note:

"Creating a PDB as a Proxy PDB"

Chapter 1
Overview of Multitenant Administration

1-38

Part I
Creating CDBs

You can create CDBs using the CREATE DATABASE command.

• Preparing to Create a CDB
Before creating the CDB, you must make many important decisions: physical layout,
database character set, database block sizes, and so on.

• Creating a CDB: Basic Steps
After you plan your CDB, you can create it with a graphical tool or a SQL command.

• Creating a CDB: Advanced Topics
This chapter covers creating a CDB in greater detail.

• Configuring a CDB Fleet
A CDB fleet is a collection of CDBs and hosted PDBs that you can manage as one
logical CDB.

2
Preparing to Create a CDB

Before creating the CDB, you must make many important decisions: physical layout,
database character set, database block sizes, and so on.

• Prerequisites for a Multitenant Environment
Prerequisites must be met for a multitenant environment.

• Deciding When to Create a CDB
You can create the CDB either during or after Oracle Database software installation.

• Deciding How to Configure the CDB
Prepare to create the CDB by research and careful planning.

Prerequisites for a Multitenant Environment
Prerequisites must be met for a multitenant environment.

The following minimum prerequisites must be met before you can create and use a
multitenant environment:

• You must install or upgrade to Oracle Database 12c or later releases. Oracle Multitenant
is not supported in Oracle Database 11g and earlier releases.

The installation includes setting various environment variables unique to your operating
system and establishing the directory structure for software and database files.

• The database compatibility level must be set to 12.0.0 or later.

• Sufficient memory must be available to start the Oracle Database instance.

Size the memory required by a CDB to accommodate the workload of each of its
containers and the number of containers.

• Sufficient disk storage space must be available for the planned PDBs on the computer
that runs Oracle Database. In an Oracle RAC environment, sufficient shared storage
must be available.

The disk storage space required by a CDB is the sum of the space requirements for all
PDBs that will reside in the CDB.

These prerequisites are discussed in the Oracle Database Installation Guide or Oracle Grid
Infrastructure Installation and Upgrade Guide specific to your operating system. If you use the
Oracle Universal Installer, then it will guide you through your installation and provide help in
setting environment variables and establishing directory structure and authorizations.

2-1

See Also:

• Oracle Database Installation Guide specific to your operating system

• Oracle Database Upgrade Guide for information about the database
compatibility level

Deciding When to Create a CDB
You can create the CDB either during or after Oracle Database software installation.

The following are typical reasons to create a CDB after installation:

• You used Oracle Universal Installer (OUI) to install software only, and did not
create a CDB.

• You want to create another CDB on the same host as an existing CDB. In this
case, this chapter assumes that the new CDB uses the same Oracle home as the
existing database. You can also create the CDB in a new Oracle home by running
OUI again.

The techniques for creating a CDB are:

• With the Database Configuration Assistant (DBCA), a graphical tool.

See "Creating a CDB with DBCA".

• With the CREATE DATABASE ... ENABLE PLUGGABLE DATABASE SQL command.

See "Creating a Database with the CREATE DATABASE Statement".

Deciding How to Configure the CDB
Prepare to create the CDB by research and careful planning.

• Plan the PDBs
Plan the tables and indexes for the pluggable databases (PDBs) and estimate the
amount of space they require.

• Plan the Physical Layout
Plan the layout of the underlying operating system files your CDB will comprise.

• Learn How to Manage Initialization Parameters
Familiarize yourself with the initialization parameters that can be included in an
initialization parameter file.

• Select the Character Set
You must choose a character set for the CDB.

• Decide Which Time Zones to Support
Consider which time zones your CDB must support.

• Select the Database and Redo Log Block Sizes
Select the standard database block size for the CDB.

• Plan the SYSTEM and SYSAUX Tablespaces
There is a separate SYSAUX and SYSTEM tablespace for the CDB root and for each
PDB.

Chapter 2
Deciding When to Create a CDB

2-2

• Plan the Temporary Tablespaces
Plan to use default temporary tablespaces.

• Choose the Undo Mode
Plan to use an undo tablespace to manage your undo data.

• Plan the Services for Your Application
Plan for the database services required to meet the needs of your applications.

• Learn How to Start Up and Shut Down a CDB
Familiarize yourself with the principles and options of starting up and shutting down a
database instance and mounting and opening a CDB.

• Plan for Oracle RAC
If you plan to use Oracle RAC, then plan for an Oracle RAC environment.

Plan the PDBs
Plan the tables and indexes for the pluggable databases (PDBs) and estimate the amount of
space they require.

In a CDB, most user data resides in the PDBs. The root contains no user data or minimal
user data. Plan for the PDBs that will be part of the CDB. The disk storage space requirement
for a CDB is the space required for the Oracle Database installation plus the sum of the
space requirements for all PDBs that will be part of the CDB.

The MAX_PDBS initialization parameter specifies a limit on the total number of PDBs that you
can create in a CDB root or application root. The default value and maximum value for
MAX_PDBS depend on your Oracle Database offering. See Oracle Database Licensing
Information User Manual for details on which features are supported for different editions and
services.

You can also create application containers in a CDB. An application container is a collection
of application PDBs that store the data for one or more applications. In addition, application
containers support user-created application common objects that can be shared by the
application PDBs in the application container.

See Also:

• "Creating PDBs and Application Containers"

• Oracle Database Administrator’s Guide to learn more about database structure
and storage and schema objects

• Oracle Database Reference to learn more about MAX_PDBS

Plan the Physical Layout
Plan the layout of the underlying operating system files your CDB will comprise.

There are separate data files for the CDB root, PDB$SEED, each PDB, each application root,
and each application PDB.

Chapter 2
Deciding How to Configure the CDB

2-3

There is one online redo log for a single-instance CDB, or one online redo log for each
instance of an Oracle Real Application Clusters (Oracle RAC) CDB. Also, for Oracle
RAC, all data files and online redo log files must be on shared storage.

See Also:

• Oracle Database Administrator’s Guide for information about using
Oracle Managed Files

• Oracle Automatic Storage Management Administrator's Guide

• Oracle Database Performance Tuning Guide

• Oracle Database Backup and Recovery User’s Guide

• Oracle Grid Infrastructure Installation and Upgrade Guide for information
about configuring storage for Oracle RAC

• Your Oracle operating system–specific documentation, including the
appropriate Oracle Database installation guide.

Learn How to Manage Initialization Parameters
Familiarize yourself with the initialization parameters that can be included in an
initialization parameter file.

Before creating a CDB, ensure that you are familiar with the concept and operation of
a server parameter file (SPFILE). An SPFILE file lets you store and manage your
initialization parameters persistently in a server-side binary file.

A CDB uses a single SPFILE or a single text initialization parameter file (PFILE).
Values of initialization parameters set for the root can be inherited by PDBs. You can
set some initialization parameters for a PDB by using the ALTER SYSTEM statement.

The CDB root must be the current container when you operate on an SPFILE. The
user who creates or modifies the SPFILE must be a common user with SYSDBA,
SYSOPER, or SYSBACKUP administrative privilege, and the user must exercise the
privilege by connecting AS SYSDBA, AS SYSOPER, or AS SYSBACKUP respectively.

The following initialization parameters are important:

• To create a CDB, the ENABLE_PLUGGABLE_DATABASE initialization parameter must be
set to TRUE.

• Create the global database name for the CDB root by setting both the DB_NAME and
DB_DOMAIN initialization parameters. The global database name of the root is the
global database name of the CDB. The global database name of a PDB is defined
by the PDB name and the DB_DOMAIN initialization parameter.

Chapter 2
Deciding How to Configure the CDB

2-4

See Also:

• "About the Current Container"

• "Modifying a CDB with ALTER SYSTEM"

• "Listing the Modifiable Initialization Parameters in PDBs"

• Oracle Database Administrator’s Guide for information about schema objects

• Oracle Database Administrator’s Guide for information about determining the
global database name

• Oracle Database Reference

Select the Character Set
You must choose a character set for the CDB.

When selecting the database character set for the CDB, you must consider the current
character sets of the databases that you want to consolidate (plug) into this CDB. Oracle
recommends AL32UTF8 for the CDB database character set and AL16UTF6 for the CDB
national character set because they provide the most flexibility.

When upgrading a non-CDB to a PDB, it is best to migrate the non-CDB to AL32UTF8 first.
You can use Oracle Database Migration Assistant for Unicode (DMU) to migrate a non-CDB
to AL32UTF8. After a CDB is created, you cannot migrate the character set of the CDB using
DMU.

• Default CDB Character Set
It is important to select the right character set for your CDB. Oracle recommends
AL32UTF8 as the CDB character set.

• Different Character Sets for CDB and PDBs
When the character set of the CDB root is AL32UTF8, PDBs that are plugged into the
CDB can have a different character set from the CDB root.

See Also:

Oracle Database Globalization Support Guide

Default CDB Character Set
It is important to select the right character set for your CDB. Oracle recommends AL32UTF8
as the CDB character set.

AL32UTF8 is Oracle's name for the UTF-8 encoding of the Unicode standard. The Unicode
standard is the universal character set that supports most of the currently spoken languages
of the world. The use of the Unicode standard is indispensable for any multilingual
technology, including database processing.

After a CDB is created and accumulates production data, changing the database character
set is a time consuming and complex project. Therefore, it is very important to select the right

Chapter 2
Deciding How to Configure the CDB

2-5

character set at installation time. Even if the database does not currently store
multilingual data but is expected to store multilingual data within a few years, the
choice of AL32UTF8 for the database character set is usually the only good decision.
The universality and flexibility of Unicode typically outweighs some additional cost
associated with it, such as slightly slower text processing compared to single-byte
character sets and higher storage space requirements for non-ASCII text compared to
non-Unicode character sets.

If you do not want to use AL32UTF8, and you are not restricted in your choice by a
vendor requirement, then Oracle suggests that you use one of the character sets listed
as recommended for the database. The recommended character sets were selected
based on the requirements of modern client operating systems. Oracle Universal
Installer (OUI) presents the recommended list only, and Database Configuration
Assistant (DBCA) must be used separately to choose a non-recommended character
set. In addition, the default database creation configuration in DBCA allows the
selection of the recommended character sets only. You must use the advanced
configuration mode of DBCA or the CREATE DATABASE statement to select a non-
recommended character set.

If no character set choice is presented in an OUI or a DBCA installation mode, then
AL32UTF8 is used as the database character set, unless a custom database template
with another character set has been selected.

Note:

• AL32UTF8 is the proper implementation of the Unicode encoding UTF-8.
AL32UTF8 is used as the default database character set while creating a
database using Oracle Universal Installer (OUI) as well as Oracle
Database Configuration Assistant (DBCA).

• You can only select an ASCII-based character set for the database on an
ASCII-based platform.

Caution:

Do not use UTF8 as the database character set unless required unless
explicitly requested by your application vendor. Despite having a very similar
name, UTF8 is not a proper implementation of the Unicode encoding UTF-8.
If the UTF8 character set is used where UTF-8 processing is expected, data
loss and security issues may occur. This is especially true for Web related
data, such as XML and URL addresses.

AL32UTF8 and UTF8 character sets are not compatible with each other as
they have different maximum character widths. AL32UTF8 has a maximum
character width of 4 bytes, whereas UTF8 has a maximum character width of
3 bytes.

Chapter 2
Deciding How to Configure the CDB

2-6

See Also:

Oracle Database Globalization Support Guide for information about the character
sets recommended for the database

Different Character Sets for CDB and PDBs
When the character set of the CDB root is AL32UTF8, PDBs that are plugged into the CDB
can have a different character set from the CDB root.

PDBs that you create from PDB$SEED inherit the AL32UTF8 character set from it, but you can
migrate the PDB to a different character set. When the character set of the root is not
AL32UTF8, all PDBs in the CDB use the character set of the CDB root.

Note:

Oracle Multitenant does not support a LOB in one container from being accessed
by a container with a different character set using data links, extended data links, or
the CONTAINERS() clause. For example, if the CDB root and salespdb have different
character sets, then a CONTAINERS() query run in the CDB root should not access
LOBs stored in salespdb.

Decide Which Time Zones to Support
Consider which time zones your CDB must support.

You can set the time zones for the entire CDB (including all PDBs). You can also set the time
zones individually for each PDB.

See Also:

"Specifying the Database Time Zone File" for information about specifying the
database time zone and time zone file

Select the Database and Redo Log Block Sizes
Select the standard database block size for the CDB.

This is specified at CDB creation by the DB_BLOCK_SIZE initialization parameter and cannot be
changed after the CDB is created. The standard block size applies to the entire CDB.

If you plan to store online redo log files on disks with a 4K byte sector size, then determine
whether you must manually specify the online redo log block size.

• "Specifying Database Block Sizes" to learn how to specify database block sizes

• Oracle Database Administrator’s Guide for information about planning the block size of
redo log files

Chapter 2
Deciding How to Configure the CDB

2-7

Plan the SYSTEM and SYSAUX Tablespaces
There is a separate SYSAUX and SYSTEM tablespace for the CDB root and for each PDB.

You must determine the appropriate initial sizing for the SYSAUX tablespace. Also, plan
to use a default tablespace for non-SYSTEM users to prevent inadvertently saving
database objects in the SYSTEM tablespace. You can specify a separate default
tablespace for the CDB root and for each PDB.

See Also:

• "About the SYSAUX Tablespace" for information about the SYSAUX
tablespace

• "Creating a Default Tablespace" for information about creating a default
permanent tablespace

• "About Container Modification When Connected to CDB Root"

Plan the Temporary Tablespaces
Plan to use default temporary tablespaces.

A default temporary tablespace exists for every container in the CDB. Therefore, the
CDB root and every PDB, application root, and application PDB has its own default
temporary tablespace.

Oracle Database uses the shared temporary tablespace for recursive SQL only.
Hosted PDB tenants do not use this tablespace directly.

See Also:

• "About Container Modification When Connected to CDB Root"

• "Creating a Default Temporary Tablespace" for information about
creating a default temporary tablespace

Choose the Undo Mode
Plan to use an undo tablespace to manage your undo data.

A CDB can run in different undo modes. You can configure a CDB to have one active
undo tablespace for the entire CDB or a separate undo tablespace for each container
in the CDB. You can specify the undo mode during CDB creation, and you can change
the undo mode after the CDB is created.

When you choose to have one active undo tablespace for the entire CDB, shared
undo is used, and local undo is disabled. In this configuration, there is one active undo

Chapter 2
Deciding How to Configure the CDB

2-8

tablespace for a single-instance CDB. When local undo is enabled, there is one undo
tablespace for each container in a single instance configuration. For an Oracle RAC CDB,
each PDB has one undo tablespace in each node in which it is open. With shared undo, only
a common user who has the appropriate privileges and whose current container is the root
can create an undo tablespace.

The best practice is to use local undo for a CDB. Shared undo is supported primarily for
upgrade and transitional purposes only. Although there is minor overhead associated with
local undo when compared with shared undo, the benefits of local undo make it preferable in
most environments. Local undo makes unplug operations and point in time recovery faster,
and it is required for some features, such as relocating a PDB. By default, DBCA creates new
CDBs with local undo enabled.

In a CDB, the UNDO_MANAGEMENT initialization parameter must be set to AUTO, and an undo
tablespace is required to manage the undo data.

When local undo is not enabled, undo tablespaces are visible in static data dictionary views
and dynamic performance (V$) views when the current container is the root. Undo
tablespaces are visible only in dynamic performance views when the current container is a
PDB.

Also, when local undo is disabled, Oracle Database silently ignores undo tablespace and
rollback segment operations when the current container is a PDB.

See Also:

• "Setting the Undo Mode in a CDB Using ALTER DATABASE"

• "About the Current Container"

• Oracle Database Administrator’s Guide for information about managing undo

Plan the Services for Your Application
Plan for the database services required to meet the needs of your applications.

The root and each PDB might require several services. You can create services for the root
or for individual PDBs.

Database services have an optional PDB property. You can create services and associate
them with a particular PDB by specifying the PDB property. Services with a null PDB property
are associated with the CDB root.

You can also use the DBMS_SERVICE supplied PL/SQL package to create services and
associate them with PDBs. When you run CREATE_SERVICE procedure, the service is
associated with the current container.

You can manage services with the SRVCTL utility, Oracle Enterprise Manager Cloud Control,
and the DBMS_SERVICE supplied PL/SQL package.

When you create a PDB, a new default service for the PDB is created automatically. The
service has the same name as the PDB. You cannot manage this service with the SRVCTL
utility. However, you can create user-defined services and customize them for your
applications.

Chapter 2
Deciding How to Configure the CDB

2-9

See Also:

• "Managing Services for PDBs"

• "Managing Application Workloads with Database Services"

• Oracle Database Administrator’s Guide to learn about using SRVCTL
with a single-instance database

• Oracle Real Application Clusters Administration and Deployment Guide
for information about using the SRVCTL utility with an Oracle RAC
database

Learn How to Start Up and Shut Down a CDB
Familiarize yourself with the principles and options of starting up and shutting down a
database instance and mounting and opening a CDB.

In a CDB, the CDB root and all containers share a single database instance, or, when
using Oracle RAC, multiple concurrent instances. You can start up and shut down an
entire CDB, which in turn determines the state of hosted PDBs. When the CDB is
open, you can control the open mode of PDBs by using either an ALTER PLUGGABLE
DATABASE statement in the context of the CDB or PDB to open or close hosted PDBs.
To maintain backward compatibility, the ALTER DATABASE OPEN statement is supported
when it is executed and a PDB is the current container.

You can also use the SQL*Plus STARTUP command and the SQL*Plus SHUTDOWN
command when a PDB is the current container. However, the SQL*Plus STARTUP
MOUNT command is a CDB-only operation and cannot be used when a PDB is the
current container.

See Also:

• "Modifying the Open Mode of PDBs"

• "Modifying a PDB with the ALTER PLUGGABLE DATABASE Statement"

• " Starting Up and Shutting Down a CDB"

Plan for Oracle RAC
If you plan to use Oracle RAC, then plan for an Oracle RAC environment.

The Oracle RAC documentation describes special considerations for a CDB in an
Oracle RAC environment. See your platform-specific Oracle RAC installation guide for
information about creating a CDB in an Oracle RAC environment.

Chapter 2
Deciding How to Configure the CDB

2-10

See Also:

Oracle Real Application Clusters Administration and Deployment Guide

Chapter 2
Deciding How to Configure the CDB

2-11

3
Creating a CDB: Basic Steps

After you plan your CDB, you can create it with a graphical tool or a SQL command.

Database creation prepares several operating system files to work together as CDB. You only
need to create a CDB once, regardless of how many data files it has or how many instances
access it. You can create a CDB to erase information in an existing CDB and create a new
CDB with the same name and physical structure.

• Creating a CDB with DBCA
Oracle Database Configuration Assistant (DBCA) is a tool for creating and configuring a
CDB.

• Creating a Database with the CREATE DATABASE Statement
Using the CREATE DATABASE ... ENABLE PLUGGABLE DATABASE SQL statement is a more
manual approach to creating a database than using Oracle Database Configuration
Assistant (DBCA). One advantage of using this statement over using DBCA is that you
can create databases from within scripts.

• Considerations After Creating a CDB
After you create a CDB, the instance is left running, and the database is open and
available for normal database use. You may want to perform specific actions after
creating a database.

• Database Data Dictionary Views
You can query data dictionary views for information about your database content and
structure.

See Also:

• Your platform-specific Oracle Real Application Clusters (Oracle RAC)
installation guide for information about creating a database in an Oracle RAC
environment

• Oracle Clusterware Administration and Deployment Guide for information on
creating a database using Fleet Patching and Provisioning (it was called as
Rapid Home Provisioning in the earlier database releases)

Creating a CDB with DBCA
Oracle Database Configuration Assistant (DBCA) is a tool for creating and configuring a
CDB.

• About Creating a CDB with DBCA
Oracle strongly recommends using the Database Configuration Assistant (DBCA) to
create a CDB, because it is a more automated approach, and your CDB is ready to use
when DBCA completes.

3-1

• After Creating a CDB
After creation, a CDB consists of the root and the PDB seed.

About Creating a CDB with DBCA
Oracle strongly recommends using the Database Configuration Assistant (DBCA) to
create a CDB, because it is a more automated approach, and your CDB is ready to
use when DBCA completes.

DBCA offers the following advantages over alternative techniques:

• Creation is largely automated.

• DBCA enables you to specify the number of PDBs in the CDB when it is created.

• When DBCA completes, the CDB is ready to use.

• After a CDB is created, you can use DBCA to do the following:

– Clone local PDBs

– Plug in and unplug PDBs

– Duplicate a CDB (silent mode only)

Depending on the type of install that you select, Oracle Universal Installer (OUI) can
launch DBCA. You can also launch DBCA as a standalone tool at any time after
Oracle Database installation.

You can use DBCA to create a CDB in either of the following modes:

• Interactive mode

This mode provides a graphical interface and guided workflow for creating and
configuring a CDB.

• Noninteractive mode (also called silent mode)

This mode enables you to script a preconfigured CDB template deployment with
customized PDB seed databases that are suitable for cloning. Run DBCA in silent
mode by specifying command-line arguments, a response file, or both.

See Also:

• Oracle Database Administrator’s Guide to learn how to create a
database with DBCA

• The DBCA online help

After Creating a CDB
After creation, a CDB consists of the root and the PDB seed.

The root contains system-supplied metadata and common users that can administer
the PDBs. The PDB seed is a template that you can use to create new PDBs. The
following graphic shows a newly created CDB.

Chapter 3
Creating a CDB with DBCA

3-2

Figure 3-1 A Newly Created CDB

CDB

Seed
(PDB$SEED)

Root (CDB$ROOT)

In a CDB, the root contains minimal user data or no user data. User data resides in the
PDBs. Therefore, after creating a CDB, one of the first tasks is to add the PDBs that will
contain the user data.

The following graphic shows a CDB with PDBs.

Figure 3-2 CDB with PDBs

PDBs

CDB

Seed
(PDB$SEED)

Root (CDB$ROOT)

You have the option of creating one or more application containers. An application container
consists of an application root and application PDBs, and it stores data for one or more
applications. An application container can store application common objects, which contain
user data that can be shared by the application PDBs in the application container. It can also
contain an application seed for fast creation of application PDBs in an application container.

Chapter 3
Creating a CDB with DBCA

3-3

Figure 3-3 Application Containers in a CDB

PDBs and Application Containers

CDB

Seed
(PDB$SEED)

Root (CDB$ROOT)

Application
Container

Application
PDBs

Application
Container

Application
PDBs

Application
Seed

Application Root Application Root

A CDB contains the following files:

• One control file

• One active online redo log for a single-instance CDB, or one active online redo log
for each instance of an Oracle RAC CDB

• Sets of temp files

There is one default temporary tablespace for the root of the CDB and one for
each PDB, application root, and application PDB.

• Sets of system data files

A CDB includes one set of system data files for each container in the CDB,
including a set of system data files for each PDB, application root, and application
PDB. In addition, a CDB has one set of user-created data files for each container.
If the CDB is in local undo mode, then each container also has its own undo
tablespace and associated data files.

• Sets of user-created data files

Each PDB has its own set of non-system data files. These data files contain the
user-defined schemas and database objects for the PDB.

For backup and recovery of a CDB, Recovery Manager (RMAN) is recommended.
PDB point-in-time recovery (PDB PITR) must be performed with RMAN. By default,
RMAN turns on control file autobackup for a CDB. It is strongly recommended that
control file autobackup is enabled for a CDB, to ensure that PDB PITR can undo data
file additions or deletions.

Chapter 3
Creating a CDB with DBCA

3-4

See Also:

Oracle Database Backup and Recovery User’s Guide for information about RMAN

Creating a Database with the CREATE DATABASE Statement
Using the CREATE DATABASE ... ENABLE PLUGGABLE DATABASE SQL statement is a more
manual approach to creating a database than using Oracle Database Configuration Assistant
(DBCA). One advantage of using this statement over using DBCA is that you can create
databases from within scripts.

• About CDB Creation with SQL Statements
This section explains how to create a CDB manually, without using DBCA.

• Step 1: Specify an Instance Identifier (SID)
The ORACLE_SID environment variable is used to distinguish this instance from other
Oracle Database instances that you may create later and run concurrently on the same
host computer.

• Step 2: Ensure That the Required Environment Variables Are Set
Depending on your platform, before you can start SQL*Plus (as required in a later step),
you may have to set environment variables, or at least verify that they are set properly.

• Step 3: Choose a Database Administrator Authentication Method
You must be authenticated and granted appropriate system privileges in order to create a
CDB.

• Step 4: Create the Initialization Parameter File
When an Oracle instance starts, it reads an initialization parameter file.

• Step 5: (Windows Only) Create an Instance
On the Windows platform, before you can connect to a database instance, you must
manually create it if it does not already exist. The ORADIM command creates an instance
by creating a new Windows service.

• Step 6: Connect to the Instance
Start SQL*Plus and connect to your Oracle Database instance with the SYSDBA
administrative privilege.

• Step 7: Create a Server Parameter File
The server parameter file enables you to change initialization parameters with the ALTER
SYSTEM command and persist the changes across a database shutdown and startup. You
create the server parameter file from your edited text initialization file.

• Step 8: Start the Database Instance
Start an instance without mounting a CDB.

• Step 9: Issue the CREATE DATABASE Statement
To create the new database, use the CREATE DATABASE statement.

• Step 10: Run Scripts to Build Data Dictionary Views
Run the scripts necessary to build data dictionary views, synonyms, and PL/SQL
packages in the CDB root.

• Step 11: (Optional) Run Scripts to Install Additional Options
You may want to run other scripts. The scripts that you run are determined by the
features and options you choose to use or install.

Chapter 3
Creating a Database with the CREATE DATABASE Statement

3-5

• Step 12: Back Up the Database
Take a full backup of the database to ensure that you have a complete set of files
from which to recover if a media failure occurs.

• Step 13: (Optional) Enable Automatic Instance Startup
You might want to configure the Oracle database instance to start automatically
when its host computer restarts.

About CDB Creation with SQL Statements
This section explains how to create a CDB manually, without using DBCA.

Note:

"Specifying CREATE DATABASE Statement Clauses" provides more
detailed information about the SQL clauses described in this chapter.

• About Oracle RAC and Oracle ASM
The instructions in this section apply to single-instance installations only.

• About Enabling PDBs
To create a CDB with the CREATE DATABASE command, the
ENABLE_PLUGGABLE_DATABASE initialization parameter must be set to true.

• About the Names and Locations of Files for the CDB Root and PDB$SEED
To create the CDB, Oracle Database must know the names and locations of the
files for the CDB root and PDB$SEED.

• About the Attributes of the Data Files for PDB$SEED
You can use the PDB seed (PDB$SEED) as a template to create new containers.

• About the CDB Undo Mode
Shared undo is the default. You can use the undo_mode_clause to an ENABLE
PLUGGABLE DATABASE clause to specify the undo mode of the CDB.

See Also:

Oracle Database Concepts for information about the files in a CDB

About Oracle RAC and Oracle ASM
The instructions in this section apply to single-instance installations only.

See the Oracle Real Application Clusters (Oracle RAC) installation guide for your
platform for instructions for creating an Oracle RAC database.

Chapter 3
Creating a Database with the CREATE DATABASE Statement

3-6

Note:

• Single-instance does not mean that only one Oracle instance can reside on a
single host computer. In fact, multiple Oracle instances (and their associated
databases) can run on a single host computer. A single-instance database is
a database that is accessed by only one Oracle instance at a time, as opposed
to an Oracle RAC database, which is accessed concurrently by multiple Oracle
instances on multiple nodes.

• Starting in Oracle Database 12c Release 2 (12.2), read-only and read/write
instances can coexist within a single Oracle RAC database. This configuration
is useful for the scalability of parallel queries.

Tip:

If you are using Oracle Automatic Storage Management (Oracle ASM) to manage
your disk storage, then you must start the Oracle ASM instance and configure your
disk groups before performing these steps. See Oracle Automatic Storage
Management Administrator's Guide.

See Also:

• Oracle Real Application Clusters Administration and Deployment Guidefor more
information on Oracle RAC

• Oracle Clusterware Administration and Deployment Guide for information about
configuring read-only and read/write instances that coexist within a single
Oracle RAC database

About Enabling PDBs
To create a CDB with the CREATE DATABASE command, the ENABLE_PLUGGABLE_DATABASE
initialization parameter must be set to true.

The CREATE DATABASE command creates a CDB with the CDB root and PDB$SEED. You must
create all other containers manually.

About the Names and Locations of Files for the CDB Root and PDB$SEED
To create the CDB, Oracle Database must know the names and locations of the files for the
CDB root and PDB$SEED.

After the CREATE DATABASE statement completes successfully, you can use PDB$SEED and its
files to create new PDBs. You cannot modify the PDB seed after it is created.

You must specify the names and locations of the files for PDB$SEED in one of the following
ways:

Chapter 3
Creating a Database with the CREATE DATABASE Statement

3-7

1. The ENABLE PLUGGABLE DATABASE SEED FILE_NAME_CONVERT clause of CREATE
DATABASE

2. Oracle Managed Files

3. The PDB_FILE_NAME_CONVERT initialization parameter

If you use more than one technique, then the CREATE DATABASE statement uses one
technique in the order of precedence of the list. For example, if you use all techniques,
then the CREATE DATABASE statement only uses the specifications in the ENABLE
PLUGGABLE DATABASE SEED FILE_NAME_CONVERT clause because it is first in the list.

• The ENABLE PLUGGABLE DATABASE SEED FILE_NAME_CONVERT Clause
The ENABLE PLUGGABLE DATABASE SEED FILE_NAME_CONVERT clause of the CREATE
DATABASE statement specifies how to generate the names of the PDB$SEED files
using the names of the CDB root files.

• Oracle Managed Files
When Oracle Managed Files is enabled, it can determine the names and locations
of the PDB$SEED files.

• The PDB_FILE_NAME_CONVERT Initialization Parameter
The PDB_FILE_NAME_CONVERT initialization parameter can specify the names and
locations of the seed's files.

See Also:

"Creating a PDB from Scratch"

The ENABLE PLUGGABLE DATABASE SEED FILE_NAME_CONVERT Clause
The ENABLE PLUGGABLE DATABASE SEED FILE_NAME_CONVERT clause of the CREATE
DATABASE statement specifies how to generate the names of the PDB$SEED files using
the names of the CDB root files.

You can use this clause to specify one of the following options:

• One or more file name patterns and replacement file name patterns, in the
following form:

'string1' , 'string2' , 'string3' , 'string4' , ...

The string2 file name pattern replaces the string1 file name pattern, and the
string4 file name pattern replaces the string3 file name pattern. You can use as
many pairs of file name pattern and replacement file name pattern strings as
required.

If you specify an odd number of strings (the last string has no corresponding
replacement string), then an error is returned. Do not specify more than one
pattern/replace string that matches a single file name or directory.

File name patterns cannot match files or directories managed by Oracle Managed
Files.

Chapter 3
Creating a Database with the CREATE DATABASE Statement

3-8

• NONE when no file names should be converted. Omitting the SEED FILE_NAME_CONVERT
clause is the same as specifying NONE.

Example 3-1 SEED FILE_NAME_CONVERT Clause

This ENABLE PLUGGABLE DATABASE SEED FILE_NAME_CONVERT clause generates file names for
the PDB$SEED files in the /oracle/pdbseed/ directory using file names in the /oracle/dbs/
directory.

ENABLE PLUGGABLE DATABASE SEED FILE_NAME_CONVERT = ('/oracle/dbs/', '/oracle/
pdbseed/')

See Also:

Oracle Database SQL Language Reference for the syntax of the ENABLE PLUGGABLE
DATABASE SEED FILE_NAME_CONVERT clause

Oracle Managed Files
When Oracle Managed Files is enabled, it can determine the names and locations of the
PDB$SEED files.

See Also:

Oracle Database Administrator’s Guide

The PDB_FILE_NAME_CONVERT Initialization Parameter
The PDB_FILE_NAME_CONVERT initialization parameter can specify the names and locations of
the seed's files.

To use this technique, ensure that the PDB_FILE_NAME_CONVERT initialization parameter is
included in the initialization parameter file when you create the CDB.

File name patterns specified in this initialization parameter cannot match files or directories
managed by Oracle Managed Files.

See Also:

Oracle Database Reference

About the Attributes of the Data Files for PDB$SEED
You can use the PDB seed (PDB$SEED) as a template to create new containers.

Chapter 3
Creating a Database with the CREATE DATABASE Statement

3-9

The attributes of the data files for the CDB root SYSTEM and SYSAUX tablespaces might
not be suitable for the PDB seed. In this case, you can specify different attributes for
the PDB seed data files by using the tablespace_datafile clauses. Use these
clauses to specify attributes for all data files comprising the SYSTEM and SYSAUX
tablespaces in the PDB seed. The values inherited from the root are used for any
attributes whose values have not been provided.

The syntax of the tablespace_datafile clauses is the same as the syntax for a data
file specification, excluding the name and location of the data file and the REUSE
attribute. You can use the tablespace_datafile clauses with any of the methods for
specifying the names and locations of the PDB seed's data files described in "About
the Names and Locations of Files for the CDB Root and PDB$SEED".

The tablespace_datafile clauses do not specify the names and locations of the PDB
seed's data files. Instead, they specify the attributes of SYSTEM and SYSAUX data files in
the PDB seed that differ from those in the root. If SIZE is not specified in the
tablespace_datafile clause for a tablespace, then data file size for the tablespace is
set to a predetermined fraction of the size of a corresponding root data file.

Example 3-2 Using the tablespace_datafile Clauses

Assume the following CREATE DATABASE clauses specify the names, locations, and
attributes of the data files that comprise the SYSTEM and SYSAUX tablespaces in the
root.

DATAFILE '/u01/app/oracle/oradata/newcdb/system01.dbf'
 SIZE 325M REUSE
SYSAUX DATAFILE '/u01/app/oracle/oradata/newcdb/sysaux01.dbf'
 SIZE 325M REUSE

You can use the following tablespace_datafile clauses to specify different attributes
for these data files:

SEED
 SYSTEM DATAFILES
 SIZE 125M AUTOEXTEND ON NEXT 10M MAXSIZE UNLIMITED
 SYSAUX DATAFILES
 SIZE 100M

In this example, the data files for the PDB seed's SYSTEM and SYSAUX tablespaces
inherit the REUSE attribute from the root's data files. However, the following attributes of
the PDB seed's data files differ from the root's:

• The data file for the SYSTEM tablespace is 125 MB for the PDB seed and 325 MB
for the root.

• AUTOEXTEND is enabled for the PDB seed's SYSTEM data file, and it is disabled by
default for the root's SYSTEM data file.

• The data file for the SYSAUX tablespace is 100 MB for the PDB seed and 325 MB
for the root.

Chapter 3
Creating a Database with the CREATE DATABASE Statement

3-10

See Also:

Oracle Database SQL Language Reference for information about data file
specifications

About the CDB Undo Mode
Shared undo is the default. You can use the undo_mode_clause to an ENABLE PLUGGABLE
DATABASE clause to specify the undo mode of the CDB.

The undo_mode_clause specifies whether the CDB undo mode is local or shared. Local undo
mode means that every container in the CDB uses local undo. To configure local undo mode
for the CDB, specify LOCAL UNDO ON.

Shared undo mode means that there is one active undo tablespace for a single-instance
CDB, or for an Oracle RAC CDB, there is one active undo tablespace for each instance. To
configure shared undo mode for the CDB, either do not specify undo_mode_clause, or
specify LOCAL UNDO OFF.

Step 1: Specify an Instance Identifier (SID)
The ORACLE_SID environment variable is used to distinguish this instance from other Oracle
Database instances that you may create later and run concurrently on the same host
computer.

1. Decide on a unique Oracle system identifier (SID) for your instance.

2. Open a command window.

Note:

Use this command window for the subsequent steps.

3. Set the ORACLE_SID environment variable.

Restrictions related to the valid characters in an ORACLE_SID are platform-specific. On some
platforms, the SID is case-sensitive.

Note:

It is common practice to set the SID to be equal to the database name. The
maximum number of characters for the database name is eight.

The following example for UNIX and Linux operating systems sets the SID for the instance
that you will connect to in Step 6: Connect to the Instance:

Chapter 3
Creating a Database with the CREATE DATABASE Statement

3-11

• Bourne, Bash, or Korn shell:

ORACLE_SID=mynewdb
export ORACLE_SID

• C shell:

setenv ORACLE_SID mynewdb

The following example sets the SID for the Windows operating system:

set ORACLE_SID=mynewdb

See Also:

• Oracle Database Concepts for background information about the Oracle
instance

• Oracle Database Reference to learn more about the DB_NAME
initialization parameter

Step 2: Ensure That the Required Environment Variables Are Set
Depending on your platform, before you can start SQL*Plus (as required in a later
step), you may have to set environment variables, or at least verify that they are set
properly.

• Set required environment variables.

For example, on most platforms, ORACLE_SID and ORACLE_HOME must be set. In
addition, it is advisable to set the PATH variable to include the ORACLE_HOME/bin
directory. On the UNIX and Linux platforms, you must set these environment variables
manually. On the Windows platform, OUI automatically assigns values to ORACLE_HOME
and ORACLE_SID in the Windows registry. If you did not create a database upon
installation, OUI does not set ORACLE_SID in the registry, and you will have to set the
ORACLE_SID environment variable when you create your database later.

Step 3: Choose a Database Administrator Authentication Method
You must be authenticated and granted appropriate system privileges in order to
create a CDB.

• Decide on an authentication method.

You can be authenticated as an administrator with the required privileges in the
following ways:

• With a password file

• With operating system authentication

Chapter 3
Creating a Database with the CREATE DATABASE Statement

3-12

To be authenticated with a password file, create the password file. To be authenticated with
operating system authentication, ensure that you log in to the host computer with a user
account that is a member of the appropriate operating system user group. On the UNIX and
Linux platforms, for example, this is typically the dba user group. On the Windows platform,
the user installing the Oracle software is automatically placed in the required user group.

See Also:

Oracle Database Administrator’s Guide for information about password files and
operating system authentication

Step 4: Create the Initialization Parameter File
When an Oracle instance starts, it reads an initialization parameter file.

The parameter file can be a text file, which can be created and modified with a text editor, or
a binary file, which is created and dynamically modified by the database. The binary file,
which is preferred, is called a server parameter file. In this step, you create a text
initialization parameter file. In a later step, you create a server parameter file from the text file.

• Create the initialization parameter file.

One way to create the text initialization parameter file is to edit the sample presented in
"Sample Initialization Parameter File".

If you create the initialization parameter file manually, ensure that it contains at least the
parameters listed in the following table. All other parameters not listed have default values.

Table 3-1 Recommended Minimum Initialization Parameters

Parameter Name Mandatory Notes

DB_NAME Yes Database identifier for the name of the CDB root. Must
correspond to the value used in the CREATE DATABASE
statement. Maximum 8 characters.

It is common practice to set the SID to the name of the CDB
root. The maximum number of characters for this name is 30.
For more information, see the discussion of the DB_NAME
initialization parameter in Oracle Database Reference.

DB_DOMAIN Yes Specifies the network domain where the database is created.

Create the global database name for the CDB root by setting
both the DB_NAME and DB_DOMAIN initialization parameters. The
global database name of the CDB root is the global database
name of the CDB. The global database name of a PDB is
defined by the PDB name and the DB_DOMAIN initialization
parameter.

ENABLE_PLUGGABL
E_DATABASE

Yes Specifies that the database is a CDB. Must be set to TRUE.

CONTROL_FILES No Strongly recommended. If not provided, then the database
instance creates one control file in the same location as the
initialization parameter file. Providing this parameter enables
you to multiplex control files.

Chapter 3
Creating a Database with the CREATE DATABASE Statement

3-13

Table 3-1 (Cont.) Recommended Minimum Initialization Parameters

Parameter Name Mandatory Notes

MEMORY_TARGET No Sets the total amount of memory used by the instance and
enables automatic memory management. You can choose other
initialization parameters instead of this one for more manual
control of memory usage.

DB_CREATE_FILE_
DEST

No Defines the base directory for Oracle Managed Files that the
CDB creates and automatically names. To use Oracle Managed
Files, the initialization parameter DB_CREATE_FILE_DEST must
be set.

For convenience, store your initialization parameter file in the Oracle Database default
location, using the default file name. Then when you start your database, it will not be
necessary to specify the PFILE clause of the STARTUP command, because Oracle
Database automatically looks in the default location for the initialization parameter file.

For more information about initialization parameters and the initialization parameter
file, including the default name and location of the initialization parameter file for your
platform, see "About Initialization Parameters and Initialization Parameter Files".

See Also:

• "Specifying Initialization Parameters"

• Oracle Database Reference for details on all initialization parameters

Step 5: (Windows Only) Create an Instance
On the Windows platform, before you can connect to a database instance, you must
manually create it if it does not already exist. The ORADIM command creates an
instance by creating a new Windows service.

To create a database instance:

• Enter the following command at a Windows command prompt:

oradim -NEW -SID sid -STARTMODE MANUAL -PFILE file

Replace the following placeholders with appropriate values:

– sid - The desired SID (for example mynewdb)

– file - The full path to the text initialization parameter file

Chapter 3
Creating a Database with the CREATE DATABASE Statement

3-14

Caution:

Do not set the -STARTMODE argument to AUTO at this point, because this causes the
new instance to start and attempt to mount the database, which does not exist yet.
You can change this parameter to AUTO, if desired, in Step 13: (Optional) Enable
Automatic Instance Startup.

Most Oracle Database services log on to the system using the privileges of the Oracle Home
User. The service runs with the privileges of this user. The ORADIM command prompts you for
the password to this user account. You can specify other options using ORADIM.

See Also:

Oracle Database Platform Guide for Microsoft Windows for more information on the
ORADIM command and the Oracle Home User

Step 6: Connect to the Instance
Start SQL*Plus and connect to your Oracle Database instance with the SYSDBA administrative
privilege.

• To authenticate with a password file, enter the following commands, and then enter the
SYS password when prompted:

$ sqlplus /nolog
SQL> CONNECT SYS AS SYSDBA

• To authenticate with operating system authentication, enter the following commands:

$ sqlplus /nolog
SQL> CONNECT / AS SYSDBA

SQL*Plus outputs the following message:

Connected to an idle instance.

Note:

SQL*Plus may output a message similar to the following:

Connected to:
Oracle Database 19c Enterprise Edition Release 19.0.0.0.0 - Production
Version 19.1.0.0.0

If so, the instance is already started. You may have connected to the wrong
instance. Exit SQL*Plus with the EXIT command, check that ORACLE_SID is set
properly, and repeat this step.

Chapter 3
Creating a Database with the CREATE DATABASE Statement

3-15

Step 7: Create a Server Parameter File
The server parameter file enables you to change initialization parameters with the
ALTER SYSTEM command and persist the changes across a database shutdown and
startup. You create the server parameter file from your edited text initialization file.

• Run the following SQL*Plus command:

CREATE SPFILE FROM PFILE;

This SQL*Plus command reads the text initialization parameter file (PFILE) with the
default name from the default location, creates a server parameter file (SPFILE) from
the text initialization parameter file, and writes the SPFILE to the default location with
the default SPFILE name.

You can also supply the file name and path for both the PFILE and SPFILE if you are
not using default names and locations.

Tip:

The CDB must be restarted before the server parameter file takes effect.

Note:

Although creating a server parameter file is optional at this point, it is
recommended. If you do not create a server parameter file, the instance
continues to read the text initialization parameter file whenever it starts.

Important—If you are using Oracle Managed Files and your initialization
parameter file does not contain the CONTROL_FILES parameter, then you must
create a server parameter file now so the database can save the names and
locations of the control files that it creates during the CREATE DATABASE
statement. See "Specifying Oracle Managed Files at Database Creation" for
more information.

See Also:

• "Managing Initialization Parameters Using a Server Parameter File"

• Oracle Database SQL Language Reference for more information on the
CREATE SPILE command

Chapter 3
Creating a Database with the CREATE DATABASE Statement

3-16

Step 8: Start the Database Instance
Start an instance without mounting a CDB.

• Run the STARTUP command with the NOMOUNT clause.

Typically, you do this only during CDB creation or while performing maintenance on the
database. In this example, because the initialization parameter file or server parameter file is
stored in the default location, you are not required to specify the PFILE clause:

STARTUP NOMOUNT

At this point, the instance memory is allocated and its processes are started. The CDB itself
does not yet exist.

See Also:

• " Starting Up and Shutting Down a CDB" for information about using the
STARTUP command

• "Managing Initialization Parameters Using a Server Parameter File"

Step 9: Issue the CREATE DATABASE Statement
To create the new database, use the CREATE DATABASE statement.

• Run the CREATE DATABASE statement with the ENABLE PLUGGABLE DATABASE clause.

The following topics show sample statements, using Oracle Managed Files and user-
specified files.

• Creating a CDB Without Using Oracle Managed Files: Example
The following statement creates a CDB named newcdb. This name must agree with the
DB_NAME parameter in the initialization parameter file.

• Creating a CDB Using Oracle Managed Files: Example
This example illustrates creating a CDB with Oracle Managed Files, which enables you to
use a much simpler CREATE DATABASE statement.

Creating a CDB Without Using Oracle Managed Files: Example
The following statement creates a CDB named newcdb. This name must agree with the
DB_NAME parameter in the initialization parameter file.

Assumptions

This example assumes the following:

• The initialization parameter file specifies the number and location of control files with the
CONTROL_FILES parameter.

• The ENABLE_PLUGGABLE_DATABASE initialization parameter is set to true.

Chapter 3
Creating a Database with the CREATE DATABASE Statement

3-17

• The directory /u01/app/oracle/oradata/newcdb exists.

• The directory /u01/app/oracle/oradata/pdbseed exists.

• The directories /u01/logs/my and /u02/logs/my exist.

This example includes the ENABLE PLUGGABLE DATABASE clause to create a CDB with
the root and the PDB seed. This example also includes the SEED FILE_NAME_CONVERT
clause to specify the names and locations of the PDB seed's files. This example also
includes tablespace_datafile clauses that specify attributes of the PDB seed data
files for the SYSTEM and SYSAUX tablespaces that differ from the root data files. This
example includes the undo_mode_clause to specify that the CDB undo mode is local.

CREATE DATABASE newcdb
 USER SYS IDENTIFIED BY sys_password
 USER SYSTEM IDENTIFIED BY system_password
 LOGFILE GROUP 1 ('/u01/logs/my/redo01a.log','/u02/logs/my/redo01b.log')
 SIZE 100M BLOCKSIZE 512,
 GROUP 2 ('/u01/logs/my/redo02a.log','/u02/logs/my/redo02b.log')
 SIZE 100M BLOCKSIZE 512,
 GROUP 3 ('/u01/logs/my/redo03a.log','/u02/logs/my/redo03b.log')
 SIZE 100M BLOCKSIZE 512
 MAXLOGHISTORY 1
 MAXLOGFILES 16
 MAXLOGMEMBERS 3
 MAXDATAFILES 1024
 CHARACTER SET AL32UTF8
 NATIONAL CHARACTER SET AL16UTF16
 EXTENT MANAGEMENT LOCAL
 DATAFILE '/u01/app/oracle/oradata/newcdb/system01.dbf'
 SIZE 700M REUSE AUTOEXTEND ON NEXT 10240K MAXSIZE UNLIMITED
 SYSAUX DATAFILE '/u01/app/oracle/oradata/newcdb/sysaux01.dbf'
 SIZE 550M REUSE AUTOEXTEND ON NEXT 10240K MAXSIZE UNLIMITED
 DEFAULT TABLESPACE deftbs
 DATAFILE '/u01/app/oracle/oradata/newcdb/deftbs01.dbf'
 SIZE 500M REUSE AUTOEXTEND ON MAXSIZE UNLIMITED
 DEFAULT TEMPORARY TABLESPACE tempts1
 TEMPFILE '/u01/app/oracle/oradata/newcdb/temp01.dbf'
 SIZE 20M REUSE AUTOEXTEND ON NEXT 640K MAXSIZE UNLIMITED
 UNDO TABLESPACE undotbs1
 DATAFILE '/u01/app/oracle/oradata/newcdb/undotbs01.dbf'
 SIZE 200M REUSE AUTOEXTEND ON NEXT 5120K MAXSIZE UNLIMITED
 ENABLE PLUGGABLE DATABASE
 SEED
 FILE_NAME_CONVERT = ('/u01/app/oracle/oradata/newcdb/',
 '/u01/app/oracle/oradata/pdbseed/')
 SYSTEM DATAFILES SIZE 125M AUTOEXTEND ON NEXT 10M MAXSIZE UNLIMITED
 SYSAUX DATAFILES SIZE 100M
 USER_DATA TABLESPACE usertbs
 DATAFILE '/u01/app/oracle/oradata/pdbseed/usertbs01.dbf'
 SIZE 200M REUSE AUTOEXTEND ON MAXSIZE UNLIMITED
 LOCAL UNDO ON;

A CDB is created with the following characteristics:

Chapter 3
Creating a Database with the CREATE DATABASE Statement

3-18

• The CDB is named newcdb. Its global database name is newcdb.us.example.com, where
the domain portion (us.example.com) is taken from the initialization parameter file. See
Oracle Database Administrator’s Guide for information about determining the global
database name.

• Three control files are created as specified by the CONTROL_FILES initialization parameter,
which was set before CDB creation in the initialization parameter file. See Oracle
Database Administrator’s Guide for a sample initialization parameter file and Oracle
Database Administrator’s Guide for information about specifying control files.

• The passwords for user accounts SYS and SYSTEM are set to the values that you specified.
The passwords are case-sensitive. The two clauses that specify the passwords for SYS
and SYSTEM are not mandatory in this release of Oracle Database. However, if you specify
either clause, then you must specify both clauses. For further information about the use
of these clauses, see Oracle Database Administrator’s Guide for information about
specifying passwords for users SYS and SYSTEM.

• The new CDB has three online redo log file groups, each with two members, as specified
in the LOGFILE clause. MAXLOGFILES, MAXLOGMEMBERS, and MAXLOGHISTORY define limits for
the redo log. See Oracle Database Administrator’s Guide for information about choosing
the number of redo log files. The block size for the redo logs is set to 512 bytes, the same
size as physical sectors on disk. The BLOCKSIZE clause is optional if block size is to be
the same as physical sector size (the default). Typical sector size and thus typical block
size is 512. Permissible values for BLOCKSIZE are 512, 1024, and 4096. For newer disks
with a 4K sector size, optionally specify BLOCKSIZE as 4096. See Oracle Database
Administrator’s Guide for more information about planning the block size of redo log files.

• MAXDATAFILES specifies the maximum number of data files that can be open in the CDB.
This number affects the initial sizing of the control file. For a CDB, set MAXDATAFILES to a
high number that anticipates the aggregate number of data files for all containers, in
addition to the CDB root files.

Note:

You can set several limits during CDB creation. Some of these limits are limited
by and affected by operating system limits. For example, if you set
MAXDATAFILES, then Oracle Database allocates enough space in the control file
to store MAXDATAFILES file names, even if the CDB has only one data file
initially. However, because the maximum control file size is limited and
operating system dependent, you might not be able to set all CREATE DATABASE
parameters at their theoretical maximums.

For more information about setting limits during CDB creation, see the Oracle
Database SQL Language Reference and your operating system–specific
Oracle documentation.

• The AL32UTF8 character set is used to store data in this CDB.

• The AL16UTF16 character set is specified as the NATIONAL CHARACTER SET used to store
data in columns specifically defined as NCHAR, NCLOB, or NVARCHAR2.

• The SYSTEM tablespace, consisting of the operating system file /u01/app/oracle/
oradata/newcdb/system01.dbf, is created as specified by the DATAFILE clause. If a file
with that name already exists, then it is overwritten.

Chapter 3
Creating a Database with the CREATE DATABASE Statement

3-19

• The SYSTEM tablespace is created as a locally managed tablespace. See Oracle
Database Administrator’s Guide for information about creating a locally managed
SYSTEM tablespace.

• A SYSAUX tablespace is created, consisting of the operating system file /u01/app/
oracle/oradata/newcdb/sysaux01.dbf as specified in the SYSAUX DATAFILE
clause. See Oracle Database Administrator’s Guide for information about the
SYSAUX tablespace.

• The DEFAULT TABLESPACE clause creates and names a default tablespace for this
CDB.

• The DEFAULT TEMPORARY TABLESPACE clause creates and names a default
temporary tablespace for the root of this CDB. See Oracle Database
Administrator’s Guide for information about creating a default temporary
tablespace.

• The UNDO TABLESPACE clause creates and names an undo tablespace that is used
to store undo data for this CDB. In a CDB, an undo tablespace is required to
manage the undo data, and the UNDO_MANAGEMENT initialization parameter must be
set to AUTO. If you omit this parameter, then it defaults to AUTO. See Oracle
Database Administrator’s Guide for information about creating an undo
tablespace.

• Redo log files will not initially be archived, because the ARCHIVELOG clause is not
specified in this CREATE DATABASE statement. This is customary during CDB
creation. You can later use an ALTER DATABASE statement to switch to ARCHIVELOG
mode. The initialization parameters in the initialization parameter file for newcdb
relating to archiving are LOG_ARCHIVE_DEST_1 and LOG_ARCHIVE_FORMAT. See
Oracle Database Administrator’s Guide for information about managing archived
redo log files.

• The ENABLE PLUGGABLE DATABASE clause creates a CDB with the root and the PDB
seed.

• SEED is required for the FILE_NAME_CONVERT clause and the tablespace_datafile
clauses.

• The FILE_NAME_CONVERT clause generates file names for the PDB seed's files in
the /u01/app/oracle/oradata/pdbseed directory using file names in
the /u01/app/oracle/oradata/newcdb directory.

• The SYSTEM DATAFILES clause specifies attributes of the PDB seed SYSTEM
tablespace data file(s) that differ from the root's.

• The SYSAUX DATAFILES clause specifies attributes of the PDB seed SYSAUX
tablespace data file(s) that differ from the root's.

• The USER_DATA TABLESPACE clause creates and names the PDB seed's tablespace
for storing user data and database options such as Oracle XML DB. PDBs created
using the PDB seed include this tablespace and its data file. The tablespace and
data file specified in this clause are not used by the root.

• The LOCAL UNDO ON clause sets the CDB undo mode to local, which means that
each container in the CDB uses local undo.

When the CDB is created in local undo mode, the PDB seed includes an undo
tablespace so that any new PDB created from the PDB seed has an undo
tablespace. When a PDB is created by plugging it in or cloning a remote PDB, and

Chapter 3
Creating a Database with the CREATE DATABASE Statement

3-20

the source PDB was in shared undo mode, an undo tablespace is created for the PDB
automatically the first time the PDB is opened.

Note:

• Ensure that all directories used in the CREATE DATABASE statement exist. The
CREATE DATABASE statement does not create directories.

• If you are not using Oracle Managed Files, then every tablespace clause must
include a DATAFILE or TEMPFILE clause.

• If CDB creation fails, then you can look at the alert log to determine the reason
for the failure and to determine corrective actions. See Oracle Database
Administrator’s Guide for information about viewing the alert log. If you receive
an error message that contains a process number, then examine the trace file
for that process. Look for the trace file that contains the process number in the
trace file name. See Oracle Database Administrator’s Guide for more
information.

Tip:

If your CREATE DATABASE statement fails, and if you did not complete
Step 7, then ensure that there is not a pre-existing server parameter
file (SPFILE) for this database instance that is setting initialization
parameters in an unexpected way. For example, an SPFILE contains
a setting for the complete path to all control files, and the CREATE
DATABASE statement fails if those control files do not exist. Ensure that
you shut down and restart the instance (with STARTUP NOMOUNT) after
removing an unwanted SPFILE. See "Managing Initialization
Parameters Using a Server Parameter File" for more information.

• To resubmit the CREATE DATABASE statement after a failure, you must first shut
down the instance and delete any files created by the previous CREATE
DATABASE statement.

Creating a CDB Using Oracle Managed Files: Example
This example illustrates creating a CDB with Oracle Managed Files, which enables you to
use a much simpler CREATE DATABASE statement.

To use Oracle Managed Files, the initialization parameter DB_CREATE_FILE_DEST must be set.
This parameter defines the base directory for the various CDB files that the CDB creates and
automatically names.

The following statement is an example of setting this parameter in the initialization parameter
file:

DB_CREATE_FILE_DEST='/u01/app/oracle/oradata'

Chapter 3
Creating a Database with the CREATE DATABASE Statement

3-21

This example sets the parameter Oracle ASM storage:

DB_CREATE_FILE_DEST = +data

This example does not include the SEED FILE_NAME_CONVERT clause because Oracle
Managed Files determines the names and locations of the PDB seed's files. However,
this example does include tablespace_datafile clauses that specify attributes of the
PDB seed data files for the SYSTEM and SYSAUX tablespaces that differ from the CDB
root data files.

With Oracle Managed Files and the following CREATE DATABASE statement, the CDB
creates the SYSTEM and SYSAUX tablespaces, creates the additional tablespaces
specified in the statement, and chooses default sizes and properties for all data files,
control files, and redo log files. Note that these properties and the other default CDB
properties set by this method might not be suitable for your production environment, so
Oracle recommends that you examine the resulting configuration and modify it if
necessary.

CREATE DATABASE newcdb
USER SYS IDENTIFIED BY sys_password
USER SYSTEM IDENTIFIED BY system_password
EXTENT MANAGEMENT LOCAL
DEFAULT TABLESPACE users
DEFAULT TEMPORARY TABLESPACE temp
UNDO TABLESPACE undotbs1
ENABLE PLUGGABLE DATABASE
 SEED
 SYSTEM DATAFILES SIZE 125M AUTOEXTEND ON NEXT 10M MAXSIZE UNLIMITED
 SYSAUX DATAFILES SIZE 100M;

A CDB is created with the following characteristics:

• The CDB is named newcdb. Its global database name is newcdb.us.example.com,
where the domain portion (us.example.com) is taken from the initialization
parameter file. See Oracle Database Administrator’s Guide for information about
determining the global database name.

• The passwords for user accounts SYS and SYSTEM are set to the values that you
specified. The passwords are case-sensitive. The two clauses that specify the
passwords for SYS and SYSTEM are not mandatory in this release of Oracle
Database. However, if you specify either clause, then you must specify both
clauses. For further information about the use of these clauses, see Oracle
Database Administrator’s Guide for information about specifying passwords for
users SYS and SYSTEM.

• The DEFAULT TABLESPACE clause creates and names a default tablespace for this
CDB.

• The DEFAULT TEMPORARY TABLESPACE clause creates and names a default
temporary tablespace for the root of this CDB. See Oracle Database
Administrator’s Guide for information about creating a default temporary
tablespace.

• The UNDO TABLESPACE clause creates and names an undo tablespace that is used
to store undo data for this CDB. In a CDB, an undo tablespace is required to

Chapter 3
Creating a Database with the CREATE DATABASE Statement

3-22

manage the undo data, and the UNDO_MANAGEMENT initialization parameter must be set to
AUTO. If you omit this parameter, then it defaults to AUTO. See Oracle Database
Administrator’s Guide for information about creating an undo tablespace.

• Redo log files will not initially be archived, because the ARCHIVELOG clause is not
specified in this CREATE DATABASE statement. This is customary during CDB creation. You
can later use an ALTER DATABASE statement to switch to ARCHIVELOG mode. The
initialization parameters in the initialization parameter file for newcdb relating to archiving
are LOG_ARCHIVE_DEST_1 and LOG_ARCHIVE_FORMAT. See Oracle Database Administrator’s
Guide for information about managing archived redo log files.

• The ENABLE PLUGGABLE DATABASE SEED clause is required for the tablespace_datafile
clauses.

Note:

If you do not specify the SYSTEM and SYSAUX clauses, which are optional, then
the ENABLE PLUGGABLE DATABASE SEED clause is not required.

• The SYSTEM DATAFILES clause specifies attributes of the PDB seed's SYSTEM tablespace
data files that differ from the root's.

• The SYSAUX DATAFILES clause specifies attributes of the PDB seed's SYSAUX tablespace
data files that differ from the root's.

Step 10: Run Scripts to Build Data Dictionary Views
Run the scripts necessary to build data dictionary views, synonyms, and PL/SQL packages in
the CDB root.

Perform these actions by running the supplied catcdb.sql script, which installs all
components required by a CDB. The at-sign (@) is shorthand for the command that runs a
SQL*Plus script. The question mark (?) is a SQL*Plus variable indicating the Oracle home
directory.

Before you run the catcdb.sql SQL script, ensure that you set the following environment
variables:

• CATCDB_SYS_PASSWD - administrator password (SYS)

• CATCDB_SYSTEM_PASSWD - administrator password (SYSTEM)

• CATCDB_TEMP - temporary tablespace name

Follow these steps:

1. Run the catcdb.sql SQL script.

Enter the following in SQL*Plus to run the script:

@?/rdbms/admin/catcdb.sql

2. When prompted by the script, enter the log file directory for parameter 1 and the log file
name for parameter 2.

Chapter 3
Creating a Database with the CREATE DATABASE Statement

3-23

For following example enters /tmp for the first prompt and create_cdb.log for the
second prompt:

SQL> host perl -I &&rdbms_admin &&rdbms_admin_catcdb --logDirectory
&&1 --logFilename &&2
Enter value for 1: /tmp
Enter value for 2: create_cdb.log

3. When prompted by the script, enter any other required information.

For example, the scripts prompts for administrator passwords and the temporary
tablespace name:

Enter new password for SYS: ********
Enter new password for SYSTEM: ********
Enter temporary tablespace name: TEMP

Step 11: (Optional) Run Scripts to Install Additional Options
You may want to run other scripts. The scripts that you run are determined by the
features and options you choose to use or install.

• Run scripts to install additional options.

Many of the scripts available to you are described in the Oracle Database Reference.

If you plan to install other Oracle products to work with this database, then see the
installation instructions for those products. Some products require you to create
additional data dictionary tables. Usually, command files are provided to create and
load these tables into the database data dictionary.

See your Oracle documentation for the specific products that you plan to install for
installation and administration instructions.

Step 12: Back Up the Database
Take a full backup of the database to ensure that you have a complete set of files from
which to recover if a media failure occurs.

• Back up the CDB.

For information on backing up a CDB, see Oracle Database Backup and Recovery
User’s Guide.

Step 13: (Optional) Enable Automatic Instance Startup
You might want to configure the Oracle database instance to start automatically when
its host computer restarts.

• Configure the Oracle instance to start automatically when its host computer
restarts.

Chapter 3
Creating a Database with the CREATE DATABASE Statement

3-24

See your operating system documentation for instructions. For example, on Windows, use
the following command to configure the database service to start the instance upon computer
restart:

ORADIM -EDIT -SID sid -STARTMODE AUTO -SRVCSTART SYSTEM [-SPFILE]

You must use the -SPFILE argument if you want the instance to read an SPFILE upon
automatic restart.

See Also:

• Oracle Database Administrator’s Guide to learn more about Oracle Restart

• Oracle Database Platform Guide for Microsoft Windows for more information on
the ORADIM command.

Considerations After Creating a CDB
After you create a CDB, the instance is left running, and the database is open and available
for normal database use. You may want to perform specific actions after creating a database.

• Database Security
You can use the default Oracle Database features to configure security in several areas
for your Oracle database.

• Transparent Data Encryption
Transparent Data Encryption enables encryption of database columns before storing
them in the data file, or enables encryption of entire tablespaces.

• A Secure External Password Store
Consider using client-side Oracle wallets to reduce exposing authentication and signing
credentials over networks.

• Transaction Guard and Application Continuity
Transaction Guard uses a logical transaction ID to prevent the possibility of a client
application submitting duplicate transactions after a recoverable error. Application
Continuity enables the replay, in a nondisruptive and rapid manner, of a request against
the database after a recoverable error that makes the database session unavailable.

• File System Server Support in the Database
An Oracle database can be configured to store file system objects and access them from
any NFS client. The database stores both the files and their metadata. The database
responds to file system requests from the NFS daemon process in the operating system
(OS) kernel.

• The Oracle Database Sample Schemas
Oracle Database includes sample schemas that help you to become familiar with Oracle
Database functionality. Some Oracle Database documentation and training materials use
the sample schemas in examples.

Chapter 3
Considerations After Creating a CDB

3-25

Database Security
You can use the default Oracle Database features to configure security in several
areas for your Oracle database.

The following are some of the areas in which you can configure security for your
database:

• User accounts: When you create user accounts, you can secure them in a variety
of ways. You can also create password profiles to better secure password policies
for your site.

• Authentication methods: Oracle Database provides several ways to configure
authentication for users and database administrators. For example, you can
authenticate users on the database level, from the operating system, and on the
network.

• Privileges and roles: You can use privileges and roles to restrict user access to
data.

Note:

• A newly created database has at least three user accounts that are
important for administering your database: SYS, SYSTEM, and SYSMAN.
Additional administrative accounts are provided that should be used only
by authorized users.

• To prevent unauthorized access and protect the integrity of your
database, it is important that a new password is specified to the SYS user
when the database is created.

• Most Oracle Database supplied user accounts, except SYS and sample
schemas are schema only accounts, that is, these accounts are created
without passwords. You can assign passwords to these accounts
whenever you want them to be authenticated, but Oracle recommends
that for better security, you should change these accounts back to
schema only accounts, when you do not need to authenticate them
anymore.

To find the status of an account, query the ACCOUNT_STATUS column of
the DBA_USERS data dictionary view. If the account is schema only, then
the status is NONE.

Chapter 3
Considerations After Creating a CDB

3-26

See Also:

• Oracle Database Security Guide for a complete list of predefined user accounts
created with each new Oracle Database installation

• Oracle Database Security Guide to learn how to add new users and change
passwords

• Oracle Database SQL Language Reference for the syntax of the ALTER USER
statement used for unlocking database user accounts

• Oracle Database Enterprise User Security Administrator's Guidefor information
about Oracle Identity Management

• Oracle Database Security Guide for security guidelines for configuring a
database

Transparent Data Encryption
Transparent Data Encryption enables encryption of database columns before storing them in
the data file, or enables encryption of entire tablespaces.

If users attempt to circumvent the database access control mechanisms by looking inside
data files directly with operating system tools, Transparent Data Encryption prevents such
users from viewing sensitive information.

Users who have the CREATE TABLE privilege can choose one or more columns in a table to be
encrypted. The data is encrypted in the data files. Database users with appropriate privileges
can view the data in unencrypted format.

See Also:

• Oracle Database Administrator’s Guide to learn about encrypting columns

• Oracle Database Administrator’s Guide to learn about encrypted tablespaces

• Oracle Database Advanced Security Guide to learn more about Transparent
Data Encryption

A Secure External Password Store
Consider using client-side Oracle wallets to reduce exposing authentication and signing
credentials over networks.

For large-scale deployments where applications use password credentials to connect to
databases, it is possible to store such credentials in a client-side Oracle wallet. An Oracle
wallet is a secure software container that is used to store authentication and signing
credentials.

Storing database password credentials in a client-side Oracle wallet eliminates the need to
embed usernames and passwords in application code, batch jobs, or scripts. Client-side
storage reduces the risk of exposing passwords in the clear in scripts and application code. It

Chapter 3
Considerations After Creating a CDB

3-27

also simplifies maintenance, because you need not change your code each time
usernames and passwords change. In addition, not having to change application code
also makes it easier to enforce password management policies for these user
accounts.

When you configure a client to use the external password store, applications can use
the following syntax to connect to databases that use password authentication:

CONNECT /@database_alias

You need not specify database login credentials in this CONNECT command. Instead
your system looks for database login credentials in the client wallet.

See Also:

• Oracle Database Security Guide

• Oracle Database Enterprise User Security Administrator's Guide

Transaction Guard and Application Continuity
Transaction Guard uses a logical transaction ID to prevent the possibility of a client
application submitting duplicate transactions after a recoverable error. Application
Continuity enables the replay, in a nondisruptive and rapid manner, of a request
against the database after a recoverable error that makes the database session
unavailable.

Transaction Guard is a reliable protocol and API that application developers can use to
provide a known outcome for the last open transaction on a database session that
becomes unavailable. After an outage, the commit message that is sent from the
database to the client is not durable. If the connection breaks between an application
(the client) and an Oracle database (the server), then the client receives an error
message indicating that the communication failed. This error message does not inform
the client about the success or failure of commit operations or procedure calls.

Transaction Guard uses a concept called the logical transaction identifier (LTXID), a
globally unique identifier that identifies the transaction from the application's
perspective. When a recoverable outage occurs, the application uses the LTXID to
determine the outcome of the transaction. This outcome can be returned to the client
instead of the ambiguous communication error. The user can decide whether to
resubmit the transaction. The application also can be coded to resubmit the
transaction if the states are correct.

Application Continuity masks outages from end users and applications by recovering
the in-flight database sessions following recoverable outages, for both unplanned and
planned outages. After a successful replay, the application can continue using a new
session where the original database session left off. Application Continuity performs
this recovery so that the outage appears to the application as a delayed execution.

Application Continuity is enabled at the service level and is invoked for outages that
are recoverable. These outages typically are related to underlying software,
foreground, hardware, communications, network, or storage layers. Application
Continuity supports queries, ALTER SESSION statements, Java and OCI APIs, PL/SQL,

Chapter 3
Considerations After Creating a CDB

3-28

DDL, and the last uncommitted transaction before the failure. Application Continuity
determines whether the last in-flight transaction committed or not, and whether the last user
call completed or not, using Transaction Guard.

See Also:

• Oracle Database Concepts for a conceptual overview of Transaction Guard and
Application Continuity

• Oracle Database Development Guide for complete information about
Transaction Guard and Application Continuity

File System Server Support in the Database
An Oracle database can be configured to store file system objects and access them from any
NFS client. The database stores both the files and their metadata. The database responds to
file system requests from the NFS daemon process in the operating system (OS) kernel.

When you configure the Oracle File System (OFS) server in a database and create a file
system, you can store unstructured data, such as emails, videos, audio files, credit card bills,
documents, photo images, and so on, inside the database. You can manipulate and manage
these unstructured objects without using SQL. Instead, you can use operating system utilities
for NFS support.

To enable NFS access in the database, set the OFS_THREADS initialization parameter to
configure a sufficient number of OFS threads to process the NFS requests. The OFS_THREADS
initialization parameter controls the number of OFS threads to create when the first file
system is mounted with the database. The number of threads specified by the OFS_THREADS
parameter are created only once for the database instance and subsequent file systems do
not create any additional threads. The default value of the OFS_THREADS initialization
parameter is 4. At database startup, OFSD background process is the sole OFS process that
is spawned by the database server.

You can use the DBMS_FS package to create a file system in the database using a specified
database object. You can also use this package to mount and unmount a specified file
system.

See Also:

• Oracle Database SecureFiles and Large Objects Developer's Guide for more
information about the Oracle File System (OFS)

• Oracle Database PL/SQL Packages and Types Reference for more information
about the DBMS_FS package

Chapter 3
Considerations After Creating a CDB

3-29

The Oracle Database Sample Schemas
Oracle Database includes sample schemas that help you to become familiar with
Oracle Database functionality. Some Oracle Database documentation and training
materials use the sample schemas in examples.

The schemas and installation instructions are described in detail in Oracle Database
Sample Schemas.

Note:

Oracle strongly recommends that you do not install the sample schemas in a
production database.

Database Data Dictionary Views
You can query data dictionary views for information about your database content and
structure.

You can view information about your database content and structure using the
following views:

View Description

DATABASE_PROPERT
IES

Displays permanent database properties

GLOBAL_NAME Displays the global database name

V$DATABASE Contains database information from the control file

Chapter 3
Database Data Dictionary Views

3-30

4
Creating a CDB: Advanced Topics

This chapter covers creating a CDB in greater detail.

• Specifying CREATE DATABASE Statement Clauses
When you execute a CREATE DATABASE statement, Oracle Database performs several
operations. The actual operations performed depend on the clauses that you specify in
the CREATE DATABASE statement and the initialization parameters that you have set.

• Specifying Initialization Parameters
You can add or edit basic initialization parameters before you create your new database.

• Managing Initialization Parameters Using a Server Parameter File
Initialization parameters for the Oracle Database have traditionally been stored in a text
initialization parameter file. For better manageability, you can choose to maintain
initialization parameters in a binary server parameter file that is persistent across
database startup and shutdown.

• Managing Application Workloads with Database Services
A database service is a named representation of one or more database instances.
Services enable you to group database workloads and route a particular work request to
an appropriate instance.

• Managing Standard Edition High Availability for Oracle Databases
The Standard Edition High Availability feature provides protection against unplanned
outages for Oracle Database Standard Edition 2 single instance databases using Oracle
Clusterware.

• Cloning a Database
This section describes various methods of cloning an Oracle database.

• Dropping a Database
Dropping a CDB involves removing its data files, online redo logs, control files, and
initialization parameter files.

Specifying CREATE DATABASE Statement Clauses
When you execute a CREATE DATABASE statement, Oracle Database performs several
operations. The actual operations performed depend on the clauses that you specify in the
CREATE DATABASE statement and the initialization parameters that you have set.

• About CREATE DATABASE Statement Clauses
You can use the CREATE DATABASE clauses to simplify the creation and management of
your database.

• Protecting Your Database: Specifying Passwords for SYS and SYSTEM Users
To protect your database, specify passwords for SYS and SYSTEM users.

• Creating a Locally Managed SYSTEM Tablespace
During database creation, create a locally managed SYSTEM tablespace. A locally
managed tablespace uses a bitmap stored in each data file to manage the extents.

4-1

• Specify Data File Attributes for the SYSAUX Tablespace
The SYSAUX tablespace is created by default, but you can specify its data file
attributes during database creation.

• Using Automatic Undo Management: Creating an Undo Tablespace
Automatic undo management uses an undo tablespace.

• Creating a Default Tablespace
Oracle strongly recommends that you create a default tablespace. Oracle
Database assigns to this tablespace any non-SYSTEM users for whom you do not
explicitly specify a different tablespace.

• Creating a Default Temporary Tablespace
When you create a default temporary tablespace, Oracle Database assigns it as
the temporary tablespace for users who are not explicitly assigned a temporary
tablespace.

• Specifying Oracle Managed Files at Database Creation
You can minimize the number of clauses and parameters that you specify in your
CREATE DATABASE statement by using the Oracle Managed Files feature.

• Supporting Bigfile Tablespaces During Database Creation
Oracle Database simplifies management of tablespaces and enables support for
extremely large databases by letting you create bigfile tablespaces.

• Specifying the Database Time Zone and Time Zone File
Oracle Database datetime and interval data types and time zone support make it
possible to store consistent information about the time of events and transactions.

• Specifying FORCE LOGGING Mode
Some data definition language statements (such as CREATE TABLE) allow the
NOLOGGING clause, which causes some database operations not to generate redo
records in the database redo log. The NOLOGGING setting can speed up operations
that can be easily recovered outside of the database recovery mechanisms, but it
can negatively affect media recovery and standby databases.

About CREATE DATABASE Statement Clauses
You can use the CREATE DATABASE clauses to simplify the creation and management of
your database.

When you execute a CREATE DATABASE statement, Oracle Database performs at least
these operations:

• Creates the data files for the database

• Creates the control files for the database

• Creates the online redo logs for the database and establishes the ARCHIVELOG
mode

• Creates the SYSTEM tablespace

• Creates the SYSAUX tablespace

• Creates the data dictionary

• Sets the character set that stores data in the database

• Sets the database time zone

• Mounts and opens the database for use

Chapter 4
Specifying CREATE DATABASE Statement Clauses

4-2

Protecting Your Database: Specifying Passwords for SYS and SYSTEM
Users

To protect your database, specify passwords for SYS and SYSTEM users.

• In the CREATE DATABASE statement, include clauses that specify the password for users
SYS and SYSTEM.

The clauses of the CREATE DATABASE statement used for specifying the passwords for users
SYS and SYSTEM are:

• USER SYS IDENTIFIED BY password

• USER SYSTEM IDENTIFIED BY password

When choosing a password, keep in mind that passwords are case-sensitive. Also, there may
be password formatting requirements for your database.

See Also:

Oracle Database Security Guide for information about the Oracle guidelines for
creating secure passwords

Creating a Locally Managed SYSTEM Tablespace
During database creation, create a locally managed SYSTEM tablespace. A locally managed
tablespace uses a bitmap stored in each data file to manage the extents.

• Specify the EXTENT MANAGEMENT LOCAL clause in the CREATE DATABASE statement to
create a locally managed SYSTEM tablespace.

If you do not specify the EXTENT MANAGEMENT LOCAL clause, then by default the database
creates a dictionary-managed SYSTEM tablespace. Dictionary-managed tablespaces are
deprecated.

If you create your database with a locally managed SYSTEM tablespace, and if you are not
using Oracle Managed Files, then ensure that the following conditions are met:

• You specify the DEFAULT TEMPORARY TABLESPACE clause in the CREATE DATABASE
statement.

• You include the UNDO TABLESPACE clause in the CREATE DATABASE statement.

Chapter 4
Specifying CREATE DATABASE Statement Clauses

4-3

See Also:

• Oracle Database SQL Language Reference for more specific information
about the use of the DEFAULT TEMPORARY TABLESPACE and UNDO
TABLESPACE clauses when EXTENT MANAGEMENT LOCAL is specified for the
SYSTEM tablespace

• Oracle Database Administrator’s Guide to learn about locally managed
tablespaces

Specify Data File Attributes for the SYSAUX Tablespace
The SYSAUX tablespace is created by default, but you can specify its data file
attributes during database creation.

To specify data file attributes for the SYSAUX tablespace:

• Include the SYSAUX DATAFILE clause in the CREATE DATABASE statement.

If you include a DATAFILE clause for the SYSTEM tablespace, then you must specify the
SYSAUX DATAFILE clause as well, or the CREATE DATABASE statement will fail. This
requirement does not exist if the Oracle Managed Files feature is enabled (see
"Specifying Oracle Managed Files at Database Creation").

• About the SYSAUX Tablespace
The SYSAUX tablespace is always created at database creation.

About the SYSAUX Tablespace
The SYSAUX tablespace is always created at database creation.

The SYSAUX tablespace serves as an auxiliary tablespace to the SYSTEM tablespace.
Because it is the default tablespace for many Oracle Database features and products
that previously required their own tablespaces, it reduces the number of tablespaces
required by the database. It also reduces the load on the SYSTEM tablespace.

You can specify only data file attributes for the SYSAUX tablespace, using the SYSAUX
DATAFILE clause in the CREATE DATABASE statement. Mandatory attributes of the SYSAUX
tablespace are set by Oracle Database and include:

• PERMANENT
• READ WRITE
• EXTENT MANAGEMENT LOCAL
• SEGMENT SPACE MANAGEMENT AUTO
You cannot alter these attributes with an ALTER TABLESPACE statement, and any
attempt to do so will result in an error. You cannot drop or rename the SYSAUX
tablespace.

The size of the SYSAUX tablespace is determined by the size of the database
components that occupy SYSAUX. You can view a list of these components by querying
the V$SYSAUX_OCCUPANTS view. Based on the initial sizes of these components, the

Chapter 4
Specifying CREATE DATABASE Statement Clauses

4-4

SYSAUX tablespace must be at least 400 MB at the time of database creation. The space
requirements of the SYSAUX tablespace will increase after the database is fully deployed,
depending on the nature of its use and workload.

The SYSAUX tablespace has the same security attributes as the SYSTEM tablespace.

See Also:

Oracle Database Administrator’s Guide to learn how to manage the SYSAUX
tablespace

Using Automatic Undo Management: Creating an Undo Tablespace
Automatic undo management uses an undo tablespace.

• To enable automatic undo management, set the UNDO_MANAGEMENT initialization parameter
to AUTO in your initialization parameter file. Alternatively, omit this parameter so that the
database defaults to automatic undo management.

In this mode, undo data is stored in an undo tablespace and is managed by Oracle Database.
To define and name the undo tablespace yourself, you must include the UNDO TABLESPACE
clause in the CREATE DATABASE statement at database creation time. If you omit this clause,
and automatic undo management is enabled, then the database creates a default undo
tablespace named SYS_UNDOTBS.

Note:

If you decide to define the undo tablespace yourself, then ensure that its block size
matches the highest data file block size for the database.

See Also:

• "Specifying the Method of Undo Space Management"

• Oracle Database Administrator’s Guide for information about the creation and
use of undo tablespaces

Creating a Default Tablespace
Oracle strongly recommends that you create a default tablespace. Oracle Database assigns
to this tablespace any non-SYSTEM users for whom you do not explicitly specify a different
tablespace.

To specify a default tablespace for the database:

• Include the DEFAULT TABLESPACE clause in the CREATE DATABASE statement

Chapter 4
Specifying CREATE DATABASE Statement Clauses

4-5

If you do not specify the DEFAULT TABLESPACE clause, then the SYSTEM tablespace is the
default tablespace for non-SYSTEM users.

See Also:

Oracle Database SQL Language Reference for the syntax of the DEFAULT
TABLESPACE clause of CREATE DATABASE and ALTER DATABASE

Creating a Default Temporary Tablespace
When you create a default temporary tablespace, Oracle Database assigns it as the
temporary tablespace for users who are not explicitly assigned a temporary
tablespace.

To create a default temporary tablespace for the CDB:

• Include the DEFAULT TEMPORARY TABLESPACE clause in the CREATE DATABASE
statement.

You can explicitly assign a temporary tablespace or tablespace group to a user in the
CREATE USER statement. However, if you do not do so, and if no default temporary
tablespace has been specified for the database, then by default these users are
assigned the SYSTEM tablespace as their temporary tablespace. It is not good practice
to store temporary data in the SYSTEM tablespace, and it is cumbersome to assign
every user a temporary tablespace individually. Therefore, Oracle recommends that
you use the DEFAULT TEMPORARY TABLESPACE clause of CREATE DATABASE.

Note:

When you specify a locally managed SYSTEM tablespace, the SYSTEM
tablespace cannot be used as a temporary tablespace. In this case you must
create a default temporary tablespace. This behavior is explained in
"Creating a Locally Managed SYSTEM Tablespace".

See Also:

• Oracle Database SQL Language Reference for the syntax of the
DEFAULT TEMPORARY TABLESPACE clause of CREATE DATABASE and ALTER
DATABASE

• Oracle Database Administrator’s Guide for information about creating
and using temporary tablespaces

Chapter 4
Specifying CREATE DATABASE Statement Clauses

4-6

Specifying Oracle Managed Files at Database Creation
You can minimize the number of clauses and parameters that you specify in your CREATE
DATABASE statement by using the Oracle Managed Files feature.

• Specify either a directory or Oracle Automatic Storage Management (Oracle ASM) disk
group in which your files are created and managed by Oracle Database.

By including any of the initialization parameters DB_CREATE_FILE_DEST,
DB_CREATE_ONLINE_LOG_DEST_n, or DB_RECOVERY_FILE_DEST in your initialization parameter
file, you instruct Oracle Database to create and manage the underlying operating system files
of your database. Oracle Database will automatically create and manage the operating
system files for the following database structures, depending on which initialization
parameters you specify and how you specify clauses in your CREATE DATABASE statement:

• Tablespaces and their data files

• Temporary tablespaces and their temp files

• Control files

• Online redo log files

• Archived redo log files

• Flashback logs

• Block change tracking files

• RMAN backups

The following CREATE DATABASE statement shows briefly how the Oracle Managed Files
feature works, assuming you have specified required initialization parameters:

CREATE DATABASE mynewdb
 USER SYS IDENTIFIED BY sys_password
 USER SYSTEM IDENTIFIED BY system_password
 EXTENT MANAGEMENT LOCAL
 UNDO TABLESPACE undotbs1
 DEFAULT TEMPORARY TABLESPACE tempts1
 DEFAULT TABLESPACE users
 ENABLE PLUGGABLE DATABASE
 SEED
 SYSTEM DATAFILES SIZE 125M AUTOEXTEND ON NEXT 10M MAXSIZE UNLIMITED
 SYSAUX DATAFILES SIZE 100M;

• The SYSTEM tablespace is created as a locally managed tablespace. Without the EXTENT
MANAGEMENT LOCAL clause, the SYSTEM tablespace is created as dictionary managed,
which is not recommended.

• No DATAFILE clause is specified, so the database creates an Oracle managed data file for
the SYSTEM tablespace.

• No LOGFILE clauses are included, so the database creates two Oracle managed redo log
file groups.

• No SYSAUX DATAFILE is included, so the database creates an Oracle managed data file
for the SYSAUX tablespace.

Chapter 4
Specifying CREATE DATABASE Statement Clauses

4-7

• No DATAFILE subclause is specified for the UNDO TABLESPACE and DEFAULT
TABLESPACE clauses, so the database creates an Oracle managed data file for
each of these tablespaces.

• No TEMPFILE subclause is specified for the DEFAULT TEMPORARY TABLESPACE
clause, so the database creates an Oracle managed temp file.

• If no CONTROL_FILES initialization parameter is specified in the initialization
parameter file, then the database also creates an Oracle managed control file.

• If you are using a server parameter file, then the database automatically sets the
appropriate initialization parameters.

See Also:

– "Specifying a Fast Recovery Area" for information about setting
initialization parameters that create a Fast Recovery Area

– Oracle Database Administrator’s Guide for information about the
Oracle Managed Files feature and how to use it

– Oracle Automatic Storage Management Administrator's Guide for
information about Automatic Storage Management

Supporting Bigfile Tablespaces During Database Creation
Oracle Database simplifies management of tablespaces and enables support for
extremely large databases by letting you create bigfile tablespaces.

Bigfile tablespaces can contain only one file, but that file can have up to 4G blocks.
The maximum number of data files in an Oracle Database is limited (usually to 64K
files). Therefore, bigfile tablespaces can significantly enhance the storage capacity of
an Oracle Database.

This section discusses the clauses of the CREATE DATABASE statement that let you
include support for bigfile tablespaces.

• Specifying the Default Tablespace Type
The SET DEFAULT...TABLESPACE clause of the CREATE DATABASE statement
determines the default type of tablespace for this database in subsequent CREATE
TABLESPACE statements.

• Overriding the Default Tablespace Type
The SYSTEM and SYSAUX tablespaces are always created with the default
tablespace type. However, you optionally can explicitly override the default
tablespace type for the UNDO and DEFAULT TEMPORARY tablespace during the
CREATE DATABASE operation.

See Also:

Oracle Database Administrator’s Guide for more information about bigfile
tablespaces

Chapter 4
Specifying CREATE DATABASE Statement Clauses

4-8

Specifying the Default Tablespace Type
The SET DEFAULT...TABLESPACE clause of the CREATE DATABASE statement determines the
default type of tablespace for this database in subsequent CREATE TABLESPACE statements.

• Specify either SET DEFAULT BIGFILE TABLESPACE or SET DEFAULT SMALLFILE
TABLESPACE.

If you omit this clause, then the default is a bigfile tablespace. The use of bigfile tablespaces
further enhances the Oracle Managed Files feature, because bigfile tablespaces make data
files completely transparent for users. SQL syntax for the ALTER TABLESPACE statement has
been extended to allow you to perform operations on tablespaces, rather than the underlying
data files.

The CREATE DATABASE statement shown in "Specifying Oracle Managed Files at Database
Creation" can be modified as follows to specify that the default type of tablespace is a bigfile
tablespace:

CREATE DATABASE mynewdb
 USER SYS IDENTIFIED BY sys_password
 USER SYSTEM IDENTIFIED BY system_password
 SET DEFAULT BIGFILE TABLESPACE
 UNDO TABLESPACE undotbs1
 DEFAULT TEMPORARY TABLESPACE tempts1
 ENABLE PLUGGABLE DATABASE
 SEED
 SYSTEM DATAFILES SIZE 125M AUTOEXTEND ON NEXT 10M MAXSIZE UNLIMITED
 SYSAUX DATAFILES SIZE 100M;

To dynamically change the default tablespace type after database creation, use the SET
DEFAULT TABLESPACE clause of the ALTER DATABASE statement:

ALTER DATABASE SET DEFAULT SMALLFILE TABLESPACE;

You can determine the current default tablespace type for the database by querying the
DATABASE_PROPERTIES data dictionary view as follows:

SELECT PROPERTY_VALUE FROM DATABASE_PROPERTIES
 WHERE PROPERTY_NAME = 'DEFAULT_TBS_TYPE';

Overriding the Default Tablespace Type
The SYSTEM and SYSAUX tablespaces are always created with the default tablespace type.
However, you optionally can explicitly override the default tablespace type for the UNDO and
DEFAULT TEMPORARY tablespace during the CREATE DATABASE operation.

• Specify an UNDO TABLESPACE clause or a DEFAULT TEMPORARY TABLESPACE clause that
overrides the default tablespace type.

Chapter 4
Specifying CREATE DATABASE Statement Clauses

4-9

For example, you can create a bigfile UNDO tablespace in a database with the default
tablespace type of smallfile as follows:

CREATE DATABASE mynewdb
...
 BIGFILE UNDO TABLESPACE undotbs1
 DATAFILE '/u01/oracle/oradata/mynewdb/undotbs01.dbf'
 SIZE 200M REUSE AUTOEXTEND ON MAXSIZE UNLIMITED;

You can create a smallfile DEFAULT TEMPORARY tablespace in a database with the
default tablespace type of bigfile as follows:

CREATE DATABASE mynewdb
 SET DEFAULT BIGFILE TABLESPACE
...
 SMALLFILE DEFAULT TEMPORARY TABLESPACE tempts1
 TEMPFILE '/u01/oracle/oradata/mynewdb/temp01.dbf'
 SIZE 20M REUSE
...

Specifying the Database Time Zone and Time Zone File
Oracle Database datetime and interval data types and time zone support make it
possible to store consistent information about the time of events and transactions.

• Setting the Database Time Zone
You can set the database time zone with the SET TIME_ZONE clause of the CREATE
DATABASE statement.

• About the Database Time Zone Files
Two time zone files are included in a subdirectory of the Oracle home directory.
The time zone files contain the valid time zone names.

• Specifying the Database Time Zone File
All databases that share information must use the same time zone data file.

Setting the Database Time Zone
You can set the database time zone with the SET TIME_ZONE clause of the CREATE
DATABASE statement.

• Set the database time zone when the database is created by using the SET
TIME_ZONE clause of the CREATE DATABASE statement.

If you do not set the database time zone, then it defaults to the time zone of the host
operating system.

You can change the database time zone for a session by using the SET TIME_ZONE
clause of the ALTER SESSION statement.

Chapter 4
Specifying CREATE DATABASE Statement Clauses

4-10

See Also:

Oracle Database Globalization Support Guide for more information about setting
the database time zone

About the Database Time Zone Files
Two time zone files are included in a subdirectory of the Oracle home directory. The time
zone files contain the valid time zone names.

The following information is also included for each time zone:

• Offset from Coordinated Universal Time (UTC)

• Transition times for Daylight Saving Time

• Abbreviations for standard time and Daylight Saving Time

The default time zone file is ORACLE_HOME/oracore/zoneinfo/timezlrg_11.dat. A smaller
time zone file with fewer time zones can be found in ORACLE_HOME/oracore/zoneinfo/
timezone_11.dat.

To view the time zone names in the file being used by your database, use the following query:

SELECT * FROM V$TIMEZONE_NAMES;

See Also:

Oracle Database Globalization Support Guide for more information about managing
and selecting time zone files

Specifying the Database Time Zone File
All databases that share information must use the same time zone data file.

The database server always uses the large time zone file by default.

To use the small time zone file on the client and know that all your data will refer only to
regions in the small file:

• Set the ORA_TZFILE environment variable on the client to the full path name of the
timezone version.dat file on the client, where version matches the time zone file version
that is being used by the database server.

If you are already using the default larger time zone file on the client, then it is not practical to
change to the smaller time zone file, because the database may contain data with time zones
that are not part of the smaller file.

Specifying FORCE LOGGING Mode
Some data definition language statements (such as CREATE TABLE) allow the NOLOGGING
clause, which causes some database operations not to generate redo records in the

Chapter 4
Specifying CREATE DATABASE Statement Clauses

4-11

database redo log. The NOLOGGING setting can speed up operations that can be easily
recovered outside of the database recovery mechanisms, but it can negatively affect
media recovery and standby databases.

Oracle Database lets you force the writing of redo records even when NOLOGGING has
been specified in DDL statements. The database never generates redo records for
temporary tablespaces and temporary segments, so forced logging has no affect for
objects.

• Using the FORCE LOGGING Clause
You can force the writing of redo records even when NOLOGGING is specified in DDL
statements.

• Performance Considerations of FORCE LOGGING Mode
FORCE LOGGING mode results in some performance degradation.

See Also:

Oracle Database SQL Language Reference for information about operations
that can be done in NOLOGGING mode

Using the FORCE LOGGING Clause
You can force the writing of redo records even when NOLOGGING is specified in DDL
statements.

To put the database into FORCE LOGGING mode:

• Include the FORCE LOGGING clause in the CREATE DATABASE statement.

If you do not specify this clause, then the database is not placed into FORCE LOGGING
mode.

Use the ALTER DATABASE statement to place the database into FORCE LOGGING mode
after database creation. This statement can take a considerable time for completion,
because it waits for all unlogged direct writes to complete.

You can cancel FORCE LOGGING mode using the following SQL statement:

ALTER DATABASE NO FORCE LOGGING;

Independent of specifying FORCE LOGGING for the database, you can selectively specify
FORCE LOGGING or NO FORCE LOGGING at the tablespace level. However, if FORCE
LOGGING mode is in effect for the database, it takes precedence over the tablespace
setting. If it is not in effect for the database, then the individual tablespace settings are
enforced. Oracle recommends that either the entire database is placed into FORCE
LOGGING mode, or individual tablespaces be placed into FORCE LOGGING mode, but not
both.

The FORCE LOGGING mode is a persistent attribute of the database. That is, if the
database is shut down and restarted, it remains in the same logging mode. However, if
you re-create the control file, the database is not restarted in the FORCE LOGGING mode
unless you specify the FORCE LOGGING clause in the CREATE CONTROL FILE statement.

Chapter 4
Specifying CREATE DATABASE Statement Clauses

4-12

See Also:

Oracle Database Administrator’s Guide for information about using the FORCE
LOGGING clause for tablespace creation.

Performance Considerations of FORCE LOGGING Mode
FORCE LOGGING mode results in some performance degradation.

If the primary reason for specifying FORCE LOGGING is to ensure complete media recovery, and
there is no standby database active, then consider the following:

• How many media failures are likely to happen?

• How serious is the damage if unlogged direct writes cannot be recovered?

• Is the performance degradation caused by forced logging tolerable?

If the database is running in NOARCHIVELOG mode, then generally there is no benefit to placing
the database in FORCE LOGGING mode. Media recovery is not possible in NOARCHIVELOG mode,
so if you combine it with FORCE LOGGING, the result may be performance degradation with little
benefit.

Starting with Oracle Database 18c, the following two new nologging clauses are introduced,
which enable non-logged operations to be carried out and have Active Data Guard standby
databases receive all the data, thus preventing performance degradation caused by large
redo log generation by the FORCE LOGGING mode:

• STANDBY NOLOGGING FOR DATA AVAILABILITY
• STANDBY NOLOGGING FOR LOAD PERFORMANCE

See Also:

Oracle Data Guard Concepts and Administration for more information about these
STANDBY NOLOGGING clauses

Specifying Initialization Parameters
You can add or edit basic initialization parameters before you create your new database.

• About Initialization Parameters and Initialization Parameter Files
When an Oracle instance starts, it reads initialization parameters from an initialization
parameter file. This file must at a minimum specify the DB_NAME parameter. All other
parameters have default values.

• Determining the Global Database Name
The global database name consists of the user-specified local database name and the
location of the database within a network structure.

Chapter 4
Specifying Initialization Parameters

4-13

• Specifying a Fast Recovery Area
The Fast Recovery Area is a location in which Oracle Database can store and
manage files related to backup and recovery. It is distinct from the database area,
which is a location for the current database files (data files, control files, and online
redo logs).

• Specifying Control Files
Every database has a control file, which contains entries that describe the
structure of the database (such as its name, the timestamp of its creation, and the
names and locations of its data files and redo files). The CONTROL_FILES
initialization parameter specifies one or more names of control files, separated by
commas.

• Specifying Database Block Sizes
The DB_BLOCK_SIZE initialization parameter specifies the standard block size for
the database.

• Specifying the Maximum Number of Processes
The PROCESSES initialization parameter determines the maximum number of
operating system processes that can be connected to Oracle Database
concurrently.

• Specifying the DDL Lock Timeout
You can specify the amount of time that blocking DDL statements wait for locks.

• Specifying the Method of Undo Space Management
Every Oracle Database must have a method of maintaining information that is
used to undo changes to the database. Such information consists of records of the
actions of transactions, primarily before they are committed. Collectively these
records are called undo data.

• Specifying the Database Compatibility Level
The COMPATIBLE initialization parameter controls the database compatibility level.

• Setting the License Parameter
If you use named user licensing, Oracle Database can help you enforce this form
of licensing. You can set a limit on the number of users created in the database.
Once this limit is reached, you cannot create more users.

See Also:

• Oracle Database Administrator’s Guide for a discussion of the
initialization parameters that pertain to memory management

• Oracle Database Reference for descriptions of all initialization
parameters including their default settings

About Initialization Parameters and Initialization Parameter Files
When an Oracle instance starts, it reads initialization parameters from an initialization
parameter file. This file must at a minimum specify the DB_NAME parameter. All other
parameters have default values.

The initialization parameter file can be either a read-only text file, a PFILE, or a read/
write binary file.

Chapter 4
Specifying Initialization Parameters

4-14

The binary file is called a server parameter file. A server parameter file enables you to
change initialization parameters with ALTER SYSTEM commands and to persist the changes
across a shutdown and startup. It also provides a basis for self-tuning by Oracle Database.
For these reasons, it is recommended that you use a server parameter file. You can create
one manually from your edited text initialization file, or automatically by using Database
Configuration Assistant (DBCA) to create your database.

Before you manually create a server parameter file, you can start an instance with a text
initialization parameter file. Upon startup, the Oracle instance first searches for a server
parameter file in a default location, and if it does not find one, searches for a text initialization
parameter file. You can also override an existing server parameter file by naming a text
initialization parameter file as an argument of the STARTUP command.

Default file names and locations for the text initialization parameter file are shown in the
following table:

Platform Default Name Default Location

UNIX and Linux initORACLE_SID.ora
For example, the initialization parameter file for the
mynewdb database is named:

initmynewdb.ora

ORACLE_BASE_CONF
IG/dbs

Windows initORACLE_SID.ora ORACLE_HOME\datab
ase

If you are creating an Oracle database for the first time, Oracle suggests that you minimize
the number of parameter values that you alter. As you become more familiar with your
database and environment, you can dynamically tune many initialization parameters using
the ALTER SYSTEM statement. If you are using a text initialization parameter file, then your
changes are effective only for the current instance. To make them permanent, you must
update them manually in the initialization parameter file, or they will be lost over the next
shutdown and startup of the database. If you are using a server parameter file, then
initialization parameter file changes made by the ALTER SYSTEM statement can persist across
shutdown and startup.

• Sample Initialization Parameter File
Oracle Database provides generally appropriate values in a sample text initialization
parameter file. You can edit these Oracle-supplied initialization parameters and add
others, depending upon your configuration and options and how you plan to tune the
database.

• Text Initialization Parameter File Format
The text initialization parameter file specifies the values of parameters in name/value
pairs.

• Expressions in Initialization Parameter Settings
Set the value of an initialization parameter to the desired numeric value, text value, or
expression.

Chapter 4
Specifying Initialization Parameters

4-15

See Also:

• "Determining the Global Database Name" for information about the
DB_NAME parameter

• "Managing Initialization Parameters Using a Server Parameter File"

• "About Initialization Parameter Files and Startup"

Sample Initialization Parameter File
Oracle Database provides generally appropriate values in a sample text initialization
parameter file. You can edit these Oracle-supplied initialization parameters and add
others, depending upon your configuration and options and how you plan to tune the
database.

The sample text initialization parameter file is named init.ora and is found in the
following location on most platforms:

ORACLE_HOME/dbs

The following is the content of the sample file:

###
#######
Example INIT.ORA file
#
This file is provided by Oracle Corporation to help you start by
providing
a starting point to customize your RDBMS installation for your site.

NOTE: The values that are used in this file are only intended to be
used
as a starting point. You may want to adjust/tune those values to your
specific hardware and needs. You may also consider using Database
Configuration Assistant tool (DBCA) to create INIT file and to size
your
initial set of tablespaces based on the user input.
###
########

Change '<ORACLE_BASE>' to point to the oracle base (the one you
specify at
install time)

db_name='ORCL'
memory_target=1G
processes = 150
db_block_size=8192
db_domain=''
db_recovery_file_dest='<ORACLE_BASE>/flash_recovery_area'
db_recovery_file_dest_size=2G

Chapter 4
Specifying Initialization Parameters

4-16

diagnostic_dest='<ORACLE_BASE>'
dispatchers='(PROTOCOL=TCP) (SERVICE=ORCLXDB)'
open_cursors=300
remote_login_passwordfile='EXCLUSIVE'
undo_tablespace='UNDOTBS1'
You may want to ensure that control files are created on separate physical
devices
control_files = (ora_control1, ora_control2)
compatible ='12.0.0'
enable_pluggable_database=TRUE

Text Initialization Parameter File Format
The text initialization parameter file specifies the values of parameters in name/value pairs.

The text initialization parameter file (PFILE) must contain name/value pairs in one of the
following forms:

• For parameters that accept only a single value:

parameter_name=value
• For parameters that accept one or more values (such as the CONTROL_FILES parameter):

parameter_name=(value[,value] ...)
Parameter values of type string must be enclosed in single quotes ('). Case (upper or lower)
in file names is significant only if case is significant on the host operating system.

For parameters that accept multiple values, to enable you to easily copy and paste name/
value pairs from the alert log, you can repeat a parameter on multiple lines, where each line
contains a different value.

control_files='/u01/app/oracle/oradata/orcl/control01.ctl'
control_files='/u01/app/oracle/oradata/orcl/control02.ctl'
control_files='/u01/app/oracle/oradata/orcl/control03.ctl'

If you repeat a parameter that does not accept multiple values, then only the last value
specified takes effect.

See Also:

• Oracle Database Administrator’s Guide to learn about the alert log

• Oracle Database Reference for more information about the content and syntax
of the text initialization parameter file

Expressions in Initialization Parameter Settings
Set the value of an initialization parameter to the desired numeric value, text value, or
expression.

Starting with Oracle Database Release 21c, you can use expressions when setting the value
of initialization parameters. The expressions can contain other initialization parameters and
one or more of the following:

Chapter 4
Specifying Initialization Parameters

4-17

• arithmetic operators (+, -, *, /)

• environment variables

• MIN or MAX function

Examples:

SGA_TARGET = SYSTEM_MEMORY * 0.4
PARALLEL_MAX_SERVERS = MAX(100, PROCESSES * 0.4)
DB_CREATE_FILE_DEST=$ORACLE_HOME/oracle/database_files

Determining the Global Database Name
The global database name consists of the user-specified local database name and the
location of the database within a network structure.

• Set the DB_NAME and DB_DOMAIN initialization parameters.

The DB_NAME initialization parameter determines the local name component of the
database name, and the DB_DOMAIN parameter, which is optional, indicates the domain
(logical location) within a network structure. The combination of the settings for these
two parameters must form a database name that is unique within a network.

For example, to create a database with a global database name of
test.us.example.com, edit the parameters of the new parameter file as follows:

DB_NAME = test
DB_DOMAIN = us.example.com

You can rename the GLOBAL_NAME of your database using the ALTER DATABASE RENAME
GLOBAL_NAME statement. However, you must also shut down and restart the database
after first changing the DB_NAME and DB_DOMAIN initialization parameters and recreating
the control files. Recreating the control files is easily accomplished with the command
ALTER DATABASE BACKUP CONTROLFILE TO TRACE. See Oracle Database Backup and
Recovery User's Guide for more information.

• DB_NAME Initialization Parameter
The DB_NAME initialization parameter specifies a database identifier.

• DB_DOMAIN Initialization Parameter
In a distributed database system, the DB_DOMAIN initialization parameter specifies
the logical location of the database within the network structure.

See Also:

Oracle Database Utilities for information about using the DBNEWID utility,
which is another means of changing a database name

DB_NAME Initialization Parameter
The DB_NAME initialization parameter specifies a database identifier.

Chapter 4
Specifying Initialization Parameters

4-18

DB_NAME must be set to a text string of no more than 8 characters. The database name must
start with an alphabetic character. During database creation, the name provided for DB_NAME
is recorded in the data files, redo log files, and control file of the database. If during database
instance startup the value of the DB_NAME parameter (in the parameter file) and the database
name in the control file are different, then the database does not start.

DB_DOMAIN Initialization Parameter
In a distributed database system, the DB_DOMAIN initialization parameter specifies the logical
location of the database within the network structure.

DB_DOMAIN is a text string that specifies the network domain where the database is created. If
the database you are about to create will ever be part of a distributed database system, then
give special attention to this initialization parameter before database creation. This parameter
is optional.

See Also:

Oracle Database Administrator’s Guide for more information about distributed
databases

Specifying a Fast Recovery Area
The Fast Recovery Area is a location in which Oracle Database can store and manage files
related to backup and recovery. It is distinct from the database area, which is a location for
the current database files (data files, control files, and online redo logs).

Specify the Fast Recovery Area with the following initialization parameters:

• DB_RECOVERY_FILE_DEST: Location of the Fast Recovery Area. This can be a directory, file
system, or Automatic Storage Management (Oracle ASM) disk group.

In an Oracle Real Application Clusters (Oracle RAC) environment, this location must be
on a cluster file system, Oracle ASM disk group, or a shared directory configured through
NFS.

• DB_RECOVERY_FILE_DEST_SIZE: Specifies the maximum total bytes to be used by the Fast
Recovery Area. This initialization parameter must be specified before
DB_RECOVERY_FILE_DEST is enabled.

In an Oracle RAC environment, the settings for these two parameters must be the same on
all instances.

You cannot enable these parameters if you have set values for the LOG_ARCHIVE_DEST and
LOG_ARCHIVE_DUPLEX_DEST parameters. You must disable those parameters before setting up
the Fast Recovery Area. You can instead set values for the LOG_ARCHIVE_DEST_n parameters.

Oracle recommends using a Fast Recovery Area, because it can simplify backup and
recovery operations for your database.

Chapter 4
Specifying Initialization Parameters

4-19

See Also:

Oracle Database Backup and Recovery User's Guide to learn how to create
and use a Fast Recovery Area

Specifying Control Files
Every database has a control file, which contains entries that describe the structure of
the database (such as its name, the timestamp of its creation, and the names and
locations of its data files and redo files). The CONTROL_FILES initialization parameter
specifies one or more names of control files, separated by commas.

• Set the CONTROL_FILES initialization parameter.

When you execute the CREATE DATABASE statement, the control files listed in the
CONTROL_FILES parameter are created.

If you do not include CONTROL_FILES in the initialization parameter file, then Oracle
Database creates a control file in the same directory as the initialization parameter file,
using a default operating system–dependent file name. If you have enabled Oracle
Managed Files, the database creates Oracle managed control files.

If you want the database to create new operating system files when creating database
control files, the file names listed in the CONTROL_FILES parameter must not match any
file names that currently exist on your system. If you want the database to reuse or
overwrite existing files when creating database control files, ensure that the file names
listed in the CONTROL_FILES parameter match the file names that are to be reused, and
include a CONTROLFILE REUSE clause in the CREATE DATABASE statement.

Oracle strongly recommends you use at least two control files stored on separate
physical disk drives for each database.

See Also:

• Oracle Database Administrator’s Guide

• "Specifying Oracle Managed Files at Database Creation"

Specifying Database Block Sizes
The DB_BLOCK_SIZE initialization parameter specifies the standard block size for the
database.

• Set the DB_BLOCK_SIZE initialization parameter.

This block size is used for the SYSTEM tablespace and by default in other tablespaces.
Oracle Database can support up to four additional nonstandard block sizes.

• DB_BLOCK_SIZE Initialization Parameter
The most commonly used block size should be picked as the standard block size.
In many cases, this is the only block size that you must specify.

Chapter 4
Specifying Initialization Parameters

4-20

• Nonstandard Block Sizes
You can create tablespaces of nonstandard block sizes.

DB_BLOCK_SIZE Initialization Parameter
The most commonly used block size should be picked as the standard block size. In many
cases, this is the only block size that you must specify.

• Set the DB_BLOCK_SIZE initialization parameter.

Typically, DB_BLOCK_SIZE is set to either 4K or 8K. If you do not set a value for this parameter,
then the default data block size is operating system specific, which is generally adequate.

You cannot change the block size after database creation except by re-creating the database.
If the database block size is different from the operating system block size, then ensure that
the database block size is a multiple of the operating system block size. For example, if your
operating system block size is 2K (2048 bytes), the following setting for the DB_BLOCK_SIZE
initialization parameter is valid:

DB_BLOCK_SIZE=4096

A larger data block size provides greater efficiency in disk and memory I/O (access and
storage of data). Therefore, consider specifying a block size larger than your operating
system block size if the following conditions exist:

• Oracle Database is on a large computer system with a large amount of memory and fast
disk drives. For example, databases controlled by mainframe computers with vast
hardware resources typically use a data block size of 4K or greater.

• The operating system that runs Oracle Database uses a small operating system block
size. For example, if the operating system block size is 1K and the default data block size
matches this, the database may be performing an excessive amount of disk I/O during
normal operation. For best performance in this case, a database block should consist of
multiple operating system blocks.

See Also:

Your operating system specific Oracle documentation for details about the
default block size.

Nonstandard Block Sizes
You can create tablespaces of nonstandard block sizes.

To create tablespaces of nonstandard block sizes:

• Specify the BLOCKSIZE clause in a CREATE TABLESPACE statement.

These nonstandard block sizes can have any of the following power-of-two values: 2K, 4K,
8K, 16K or 32K. Platform-specific restrictions regarding the maximum block size apply, so
some of these sizes may not be allowed on some platforms.

To use nonstandard block sizes, you must configure subcaches within the buffer cache area
of the SGA memory for all of the nonstandard block sizes that you intend to use. The
initialization parameters used for configuring these subcaches are described in Oracle
Database Administrator’s Guide.

Chapter 4
Specifying Initialization Parameters

4-21

The ability to specify multiple block sizes for your database is especially useful if you
are transporting tablespaces between databases. You can, for example, transport a
tablespace that uses a 4K block size from an OLTP environment to a data warehouse
environment that uses a standard block size of 8K.

Note:

A 32K block size is valid only on 64-bit platforms.

Caution:

Oracle recommends against specifying a 2K block size when 4K sector size
disks are in use, because performance degradation can occur. For an
explanation, see Oracle Database Administrator’s Guide.

Specifying the Maximum Number of Processes
The PROCESSES initialization parameter determines the maximum number of operating
system processes that can be connected to Oracle Database concurrently.

• Set the PROCESSES initialization parameter.

The value of this parameter must be a minimum of one for each background process
plus one for each user process. The number of background processes will vary
according the database features that you are using. For example, if you are using
Advanced Queuing or the file mapping feature, then you will have additional
background processes. If you are using Automatic Storage Management, then add
three additional processes for the database instance.

If you plan on running 50 user processes, a good estimate would be to set the
PROCESSES initialization parameter to 70.

Specifying the DDL Lock Timeout
You can specify the amount of time that blocking DDL statements wait for locks.

A data definition language (DDL) statement is either nonblocking or blocking, and both
types of DDL statements require exclusive locks on internal structures. If these locks
are unavailable when a DDL statement runs, then nonblocking and blocking DDL
statements behave differently:

• Nonblocking DDL waits until every concurrent DML transaction that references the
object affected by the DDL either commits or rolls back.

• Blocking DDL fails, though it might have succeeded if it had been executed
subseconds later when the locks become available.

To enable blocking DDL statements to wait for locks, specify a DDL lock timeout—the
number of seconds a DDL command waits for its required locks before failing.

• To specify a DDL lock timeout, set the DDL_LOCK_TIMEOUT parameter.

Chapter 4
Specifying Initialization Parameters

4-22

The permissible range of values for DDL_LOCK_TIMEOUT is 0 to 1,000,000. The default is 0.
You can set DDL_LOCK_TIMEOUT at the system level, or at the session level with an ALTER
SESSION statement.

Note:

The DDL_LOCK_TIMEOUT parameter does not affect nonblocking DDL statements.

See Also:

• Oracle Database Reference

• Oracle Database Development Guide

• Oracle Database SQL Language Reference

Specifying the Method of Undo Space Management
Every Oracle Database must have a method of maintaining information that is used to undo
changes to the database. Such information consists of records of the actions of transactions,
primarily before they are committed. Collectively these records are called undo data.

To set up an environment for automatic undo management using an undo tablespace.

• Set the UNDO_MANAGEMENT initialization parameter to AUTO, which is the default.

• UNDO_MANAGEMENT Initialization Parameter
The UNDO_MANAGEMENT initialization parameter determines whether an instance starts in
automatic undo management mode, which stores undo in an undo tablespace. Set this
parameter to AUTO to enable automatic undo management mode. AUTO is the default if the
parameter is omitted or is null.

• UNDO_TABLESPACE Initialization Parameter
The UNDO_TABLESPACE initialization parameter enables you to override that default undo
tablespace for an instance.

See Also:

Oracle Database Administrator’s Guide

UNDO_MANAGEMENT Initialization Parameter
The UNDO_MANAGEMENT initialization parameter determines whether an instance starts in
automatic undo management mode, which stores undo in an undo tablespace. Set this
parameter to AUTO to enable automatic undo management mode. AUTO is the default if the
parameter is omitted or is null.

Chapter 4
Specifying Initialization Parameters

4-23

UNDO_TABLESPACE Initialization Parameter
The UNDO_TABLESPACE initialization parameter enables you to override that default
undo tablespace for an instance.

When an instance starts up in automatic undo management mode, it attempts to select
an undo tablespace for storage of undo data. If the database was created in automatic
undo management mode, then the default undo tablespace (either the system-created
SYS_UNDOTBS tablespace or the user-specified undo tablespace) is the undo tablespace
used at instance startup. You can override this default for the instance by specifying a
value for the UNDO_TABLESPACE initialization parameter. This parameter is especially
useful for assigning a particular undo tablespace to an instance in an Oracle Real
Application Clusters environment.

If no undo tablespace is specified by the UNDO_TABLESPACE initialization parameter,
then the first available undo tablespace in the database is chosen. If no undo
tablespace is available, then the instance starts without an undo tablespace, and undo
data is written to the SYSTEM tablespace. You should avoid running in this mode.

Note:

When using the CREATE DATABASE statement to create a database, do not
include an UNDO_TABLESPACE parameter in the initialization parameter file.
Instead, include an UNDO TABLESPACE clause in the CREATE DATABASE
statement.

Specifying the Database Compatibility Level
The COMPATIBLE initialization parameter controls the database compatibility level.

• Set the COMPATIBLE initialization parameter to a release number.

• About the COMPATIBLE Initialization Parameter
The COMPATIBLE initialization parameter enables or disables the use of features in
the database that affect file format on disk. For example, if you create an Oracle
Database 19c database, but specify COMPATIBLE=12.0.0 in the initialization
parameter file, then features that require Oracle Database 19c compatibility
generate an error if you try to use them. Such a database is said to be at the
12.0.0 compatibility level.

About the COMPATIBLE Initialization Parameter
The COMPATIBLE initialization parameter enables or disables the use of features in the
database that affect file format on disk. For example, if you create an Oracle Database
19c database, but specify COMPATIBLE=12.0.0 in the initialization parameter file, then
features that require Oracle Database 19c compatibility generate an error if you try to
use them. Such a database is said to be at the 12.0.0 compatibility level.

You can advance the compatibility level of your database by changing the COMPATIBLE
initialization parameter. If you do, then there is no way to start the database using a

Chapter 4
Specifying Initialization Parameters

4-24

lower compatibility level setting, except by doing a point-in-time recovery to a time before the
compatibility was advanced.

The default value for the COMPATIBLE parameter is the release number of the most recent
major release.

Note:

• When you set this parameter in a server parameter file (SPFILE) using the
ALTER SYSTEM statement, you must specify SCOPE=SPFILE, and you must restart
the database for the change to take effect.

• The COMPATIBLE initialization parameter must be specified as at least three
decimal numbers separated by a dot, such as 19.0.0.

See Also:

• Oracle Database Upgrade Guide for a detailed discussion of database
compatibility and the COMPATIBLE initialization parameter

• Oracle Database Reference

• Oracle Database Backup and Recovery User's Guide for information about
point-in-time recovery of your database

Setting the License Parameter
If you use named user licensing, Oracle Database can help you enforce this form of licensing.
You can set a limit on the number of users created in the database. Once this limit is reached,
you cannot create more users.

Note:

This mechanism assumes that each person accessing the database has a unique
user name and that no people share a user name. Therefore, so that named user
licensing can help you ensure compliance with your Oracle license agreement, do
not allow multiple users to log in using the same user name.

To limit the number of users created in a database, set the LICENSE_MAX_USERS initialization
parameter in the database initialization parameter file.

The following example sets the LICENSE_MAX_USERS initialization parameter:

LICENSE_MAX_USERS = 200

Chapter 4
Specifying Initialization Parameters

4-25

Note:

Oracle no longer offers licensing by the number of concurrent sessions.
Therefore the LICENSE_MAX_SESSIONS and LICENSE_SESSIONS_WARNING
initialization parameters are no longer needed and have been deprecated.

Managing Initialization Parameters Using a Server
Parameter File

Initialization parameters for the Oracle Database have traditionally been stored in a
text initialization parameter file. For better manageability, you can choose to maintain
initialization parameters in a binary server parameter file that is persistent across
database startup and shutdown.

• What Is a Server Parameter File?
A server parameter file can be thought of as a repository for initialization
parameters that is maintained on the system running the Oracle Database server.
It is, by design, a server-side initialization parameter file.

• Migrating to a Server Parameter File
If you are currently using a text initialization parameter file, then you can migrate to
a server parameter file.

• Server Parameter File Default Names and Locations
Oracle recommends that you allow the database to give the SPFILE the default
name and store it in the default location. This eases administration of your
database. For example, the STARTUP command assumes this default location to
read the SPFILE.

• Creating a Server Parameter File
You use the CREATE SPFILE statement to create a server parameter file. You must
have the SYSDBA, SYSOPER, or SYSBACKUP administrative privilege to execute this
statement.

• The SPFILE Initialization Parameter
The SPFILE initialization parameter contains the name of the current server
parameter file.

• Changing Initialization Parameter Values
You can change initialization parameter values to affect the operation of a
database instance.

• Clearing Initialization Parameter Values
You can use the ALTER SYSTEM RESET statement to clear an initialization
parameter value. When you do so, the initialization parameter value is changed to
its default value or its startup value.

• Exporting the Server Parameter File
You can use the CREATE PFILE statement to export a server parameter file
(SPFILE) to a text initialization parameter file.

• Backing Up the Server Parameter File
You can create a backup of your server parameter file (SPFILE) by exporting it. If
the backup and recovery strategy for your database is implemented using
Recovery Manager (RMAN), then you can use RMAN to create a backup of the

Chapter 4
Managing Initialization Parameters Using a Server Parameter File

4-26

SPFILE. The SPFILE is backed up automatically by RMAN when you back up your
database, but RMAN also enables you to specifically create a backup of the currently
active SPFILE.

• Recovering a Lost or Damaged Server Parameter File
You can recover the server parameter file (SPFILE). If your server parameter file
(SPFILE) becomes lost or corrupted, then the current instance may fail, or the next
attempt at starting the database instance may fail.

• Methods for Viewing Parameter Settings
You can view parameter settings using several different methods.

What Is a Server Parameter File?
A server parameter file can be thought of as a repository for initialization parameters that is
maintained on the system running the Oracle Database server. It is, by design, a server-side
initialization parameter file.

Initialization parameters stored in a server parameter file are persistent, in that any changes
made to the parameters while an instance is running can persist across instance shutdown
and startup. This arrangement eliminates the need to manually update initialization
parameters to make persistent any changes effected by ALTER SYSTEM statements. It also
provides a basis for self-tuning by the Oracle Database server.

A server parameter file is initially built from a text initialization parameter file using the CREATE
SPFILE statement. (It can also be created directly by the Database Configuration Assistant.)
The server parameter file is a binary file that cannot be edited using a text editor. Oracle
Database provides other interfaces for viewing and modifying parameter settings in a server
parameter file.

Note:

Although you can open the binary server parameter file with a text editor and view
its text, do not manually edit it. Doing so will corrupt the file. You will not be able to
start your instance, and if the instance is running, it could fail.

When you issue a STARTUP command with no PFILE clause, the Oracle instance searches an
operating system–specific default location for a server parameter file from which to read
initialization parameter settings. If no server parameter file is found, the instance searches for
a text initialization parameter file. If a server parameter file exists but you want to override it
with settings in a text initialization parameter file, you must specify the PFILE clause when
issuing the STARTUP command.

See Also:

"Starting Up a CDB"

Chapter 4
Managing Initialization Parameters Using a Server Parameter File

4-27

Migrating to a Server Parameter File
If you are currently using a text initialization parameter file, then you can migrate to a
server parameter file.

To migrate to a server parameter file:

1. If the initialization parameter file is located on a client system, then transfer the file
(for example, FTP) from the client system to the server system.

Note:

If you are migrating to a server parameter file in an Oracle Real
Application Clusters environment, you must combine all of your instance-
specific initialization parameter files into a single initialization parameter
file. Instructions for doing this and other actions unique to using a server
parameter file for instances that are part of an Oracle Real Application
Clusters installation are discussed in Oracle Real Application Clusters
Administration and Deployment Guide and in your platform-specific
Oracle Real Application Clusters Installation Guide.

2. Create a server parameter file in the default location using the CREATE SPFILE
FROM PFILE statement. See "Creating a Server Parameter File" for instructions.

This statement reads the text initialization parameter file to create a server
parameter file. The database does not have to be started to issue a CREATE
SPFILE statement.

3. Start up or restart the instance.

The instance finds the new SPFILE in the default location and starts up with it.

Server Parameter File Default Names and Locations
Oracle recommends that you allow the database to give the SPFILE the default name
and store it in the default location. This eases administration of your database. For
example, the STARTUP command assumes this default location to read the SPFILE.

The following table shows the default name and location for both the text initialization
parameter file (PFILE) and server parameter file (SPFILE) for the UNIX, Linux, and
Windows platforms, both with and without the presence of Oracle Automatic Storage
Management (Oracle ASM). The table assumes that the SPFILE is a file.

Chapter 4
Managing Initialization Parameters Using a Server Parameter File

4-28

Table 4-1 PFILE and SPFILE Default Names and Locations on UNIX, Linux, and Windows

Platform PFILE Default
Name

SPFILE Default
Name

PFILE Default
Location

SPFILE Default Location

UNIX and
Linux

initORACLE_SID.
ora

spfileORACLE_S
ID.ora

ORACLE_BASE_C
ONFIG/dbs or the
same location as
the data files

Without Oracle ASM:

ORACLE_BASE_CONFIG/dbs or
the same location as the data files

When Oracle ASM is present:

In the same disk group as the data
files (assuming the database was
created with DBCA)

Windows initORACLE_SID.
ora

spfileORACLE_S
ID.ora

Oracle_Home\dat
abase

Without Oracle ASM:

OH\database
When Oracle ASM is present:

In the same disk group as the data
files (assuming the database was
created with DBCA)

Note:

Upon startup, the instance first searches for an SPFILE named
spfileORACLE_SID.ora, and if not found, searches for spfile.ora. Using
spfile.ora enables all Real Application Cluster (Oracle RAC) instances to use the
same server parameter file.

If neither SPFILE is found, the instance searches for the text initialization parameter
file initORACLE_SID.ora.

If you create an SPFILE in a location other than the default location, you must create in the
default PFILE location a "stub" PFILE that points to the server parameter file. For more
information, see "Starting Up a Database".

When you create the database with DBCA when Oracle ASM is present, DBCA places the
SPFILE in an Oracle ASM disk group, and also causes this stub PFILE to be created.

Creating a Server Parameter File
You use the CREATE SPFILE statement to create a server parameter file. You must have the
SYSDBA, SYSOPER, or SYSBACKUP administrative privilege to execute this statement.

To create a server parameter file:

• Run the CREATE SPFILE statement.

Chapter 4
Managing Initialization Parameters Using a Server Parameter File

4-29

Note:

When you use the Database Configuration Assistant to create a database, it
automatically creates a server parameter file for you.

The CREATE SPFILE statement can be executed before or after instance startup.
However, if the instance has been started using a server parameter file, an error is
raised if you attempt to re-create the same server parameter file that is currently being
used by the instance.

You can create a server parameter file (SPFILE) from an existing text initialization
parameter file or from memory. Creating the SPFILE from memory means copying the
current values of initialization parameters in the running instance to the SPFILE.

The following example creates a server parameter file from text initialization parameter
file /u01/oracle/dbs/init.ora. In this example no SPFILE name is specified, so the
file is created with the platform-specific default name and location shown in Table 4-1.

CREATE SPFILE FROM PFILE='/u01/oracle/dbs/init.ora';

The next example illustrates creating a server parameter file and supplying a name
and location.

CREATE SPFILE='/u01/oracle/dbs/test_spfile.ora'
 FROM PFILE='/u01/oracle/dbs/test_init.ora';

The next example illustrates creating a server parameter file in the default location
from the current values of the initialization parameters in memory.

CREATE SPFILE FROM MEMORY;

Whether you use the default SPFILE name and default location or specify an SPFILE
name and location, if an SPFILE of the same name already exists in the location, it is
overwritten without a warning message.

When you create an SPFILE from a text initialization parameter file, comments
specified on the same lines as a parameter setting in the initialization parameter file
are maintained in the SPFILE. All other comments are ignored.

The SPFILE Initialization Parameter
The SPFILE initialization parameter contains the name of the current server parameter
file.

When the default server parameter file is used by the database—that is, you issue a
STARTUP command and do not specify a PFILE parameter—the value of SPFILE is
internally set by the server. The SQL*Plus command SHOW PARAMETERS SPFILE (or any
other method of querying the value of a parameter) displays the name of the server
parameter file that is currently in use.

Changing Initialization Parameter Values
You can change initialization parameter values to affect the operation of a database
instance.

Chapter 4
Managing Initialization Parameters Using a Server Parameter File

4-30

• About Changing Initialization Parameter Values
The ALTER SYSTEM statement enables you to set, change, or restore to default the values
of initialization parameters. If you are using a text initialization parameter file, the ALTER
SYSTEM statement changes the value of a parameter only for the current instance,
because there is no mechanism for automatically updating text initialization parameters
on disk. You must update them manually to be passed to a future instance. Using a
server parameter file overcomes this limitation.

• Setting or Changing Initialization Parameter Values
With a server parameter file, use the SET clause of the ALTER SYSTEM statement to set or
change initialization parameter values.

About Changing Initialization Parameter Values
The ALTER SYSTEM statement enables you to set, change, or restore to default the values of
initialization parameters. If you are using a text initialization parameter file, the ALTER SYSTEM
statement changes the value of a parameter only for the current instance, because there is
no mechanism for automatically updating text initialization parameters on disk. You must
update them manually to be passed to a future instance. Using a server parameter file
overcomes this limitation.

There are two kinds of initialization parameters:

• Dynamic initialization parameters can be changed for the current Oracle Database
instance. The changes take effect immediately.

• Static initialization parameters cannot be changed for the current instance. You must
change these parameters in the text initialization file or server parameter file and then
restart the database before changes take effect.

Setting or Changing Initialization Parameter Values
With a server parameter file, use the SET clause of the ALTER SYSTEM statement to set or
change initialization parameter values.

• Run an ALTER SYSTEM SET statement.

For example, the following statement changes the maximum number of failed login attempts
before the connection is dropped. It includes a comment, and explicitly states that the change
is to be made only in the server parameter file.

ALTER SYSTEM SET SEC_MAX_FAILED_LOGIN_ATTEMPTS=3
 COMMENT='Reduce from 10 for tighter security.'
 SCOPE=SPFILE;

The next example sets a complex initialization parameter that takes a list of attributes.
Specifically, the parameter value being set is the LOG_ARCHIVE_DEST_n initialization
parameter. This statement could change an existing setting for this parameter or create a
new archive destination.

ALTER SYSTEM
 SET LOG_ARCHIVE_DEST_4='LOCATION=/u02/oracle/rbdb1/',MANDATORY,'REOPEN=2'
 COMMENT='Add new destination on Nov 29'
 SCOPE=SPFILE;

When a value consists of a list of parameters, you cannot edit individual attributes by the
position or ordinal number. You must specify the complete list of values each time the
parameter is updated, and the new list completely replaces the old list.

Chapter 4
Managing Initialization Parameters Using a Server Parameter File

4-31

• The SCOPE Clause in ALTER SYSTEM SET Statements
The optional SCOPE clause in ALTER SYSTEM SET statements specifies the scope of
an initialization parameter change.

The SCOPE Clause in ALTER SYSTEM SET Statements
The optional SCOPE clause in ALTER SYSTEM SET statements specifies the scope of an
initialization parameter change.

SCOPE Clause Description

SCOPE = SPFILE The change is applied in the server parameter file only. The effect is as
follows:

• No change is made to the current instance.
• For both dynamic and static parameters, the change is effective at

the next startup and is persistent.
This is the only SCOPE specification allowed for static parameters.

SCOPE = MEMORY The change is applied in memory only. The effect is as follows:

• The change is made to the current instance and is effective
immediately.

• For dynamic parameters, the effect is immediate, but it is not
persistent because the server parameter file is not updated.

For static parameters, this specification is not allowed.

SCOPE = BOTH The change is applied in both the server parameter file and memory.
The effect is as follows:

• The change is made to the current instance and is effective
immediately.

• For dynamic parameters, the effect is persistent because the
server parameter file is updated.

For static parameters, this specification is not allowed.

It is an error to specify SCOPE=SPFILE or SCOPE=BOTH if the instance did not start up with
a server parameter file. The default is SCOPE=BOTH if a server parameter file was used
to start up the instance, and MEMORY if a text initialization parameter file was used to
start up the instance.

For dynamic parameters, you can also specify the DEFERRED keyword. When specified,
the change is effective only for future sessions.

When you specify SCOPE as SPFILE or BOTH, an optional COMMENT clause lets you
associate a text string with the parameter update. The comment is written to the server
parameter file.

Clearing Initialization Parameter Values
You can use the ALTER SYSTEM RESET statement to clear an initialization parameter
value. When you do so, the initialization parameter value is changed to its default
value or its startup value.

The ALTER SYSTEM RESET statement includes a SCOPE clause. When executed in a
non-CDB or a multitenant container database (CDB) root, the ALTER SYSTEM RESET
statement and SCOPE clause behave differently than when the statement is executed in
a pluggable database (PDB), an application root, or an application PDB.

Chapter 4
Managing Initialization Parameters Using a Server Parameter File

4-32

The startup value of a parameter is the value of the parameter in memory after the instance's
startup or PDB open has completed. This value can be seen in the VALUE and DISPLAY_VALUE
columns in the V$SYSTEM_PARAMETER view immediately after startup. The startup value can be
different from the value in the spfile or the default value (if the parameter is not set in the
spfile), since the value of the parameter can be adjusted internally at startup.

The SCOPE values for the ALTER SYSTEM RESET statement behave as follows in a non-CDB
and in the CDB$ROOT of a CDB:

• SCOPE=SPFILE: If an instance is using spfile, removes the parameter from the spfile; the
default value takes effect upon the next instance startup.

• SCOPE=MEMORY: The startup value takes effect immediately. However, the change is not
stored in instance's spfile and will be lost upon instance restart.

• SCOPE=BOTH: If an instance is using spfile, removes the parameter from the spfile; the
default value takes effect immediately and the change is available across instance
restart.

Note:

SCOPE=BOTH changes the way SCOPE=MEMORY behaves. After SCOPE=BOTH is issued,
SCOPE=MEMORY always resets the parameter to the default value.

The SCOPE values for the ALTER SYSTEM RESET statement behave as follows in a PDB, an
application root, or an application PDB:

• SCOPE=SPFILE: Removes the parameter from the container's spfile; the container will
inherit the parameter value from its root upon the next PDB open.

• SCOPE=MEMORY: There are two cases:

– The parameter is present in container's spfile when the container is opened. The
parameter value is updated to the startup value for the parameter. This change is not
stored in container’s spfile and will be lost upon the next container open.

– The parameter is not present in container’s spfile when the container is opened. The
container starts inheriting the parameter value from its root.

• SCOPE=BOTH: Removes the parameter from the container’s spfile; the container will inherit
the parameter value from its root.

Note:

• SCOPE=BOTH changes the way SCOPE=MEMORY behaves. After SCOPE=BOTH is
issued, the container always inherits the parameter value from its root when
SCOPE=MEMORY is issued.

• In a case where a container inherits a parameter value from its root, a PDB
inherits the value from CDB$ROOT. In an application container, an application
PDB inherits the parameter value from its application root, and an application
root inherits the parameter value from CDB$ROOT.

Chapter 4
Managing Initialization Parameters Using a Server Parameter File

4-33

See Also:

Oracle Database SQL Language Reference for information about the ALTER
SYSTEM command

Exporting the Server Parameter File
You can use the CREATE PFILE statement to export a server parameter file (SPFILE) to
a text initialization parameter file.

• Run a CREATE PFILE statement.

Exporting the server parameter file might be necessary for several reasons:

• For diagnostic purposes, listing all of the parameter values currently used by an
instance. This is analogous to the SQL*Plus SHOW PARAMETERS command or
selecting from the V$PARAMETER or V$PARAMETER2 views.

• To modify the server parameter file by first exporting it, editing the resulting text
file, and then re-creating it using the CREATE SPFILE statement

The exported file can also be used to start up an instance using the PFILE clause.

You must have the SYSDBA, SYSOPER, or SYSBACKUP administrative privilege to execute
the CREATE PFILE statement. The exported file is created on the database server
system. It contains any comments associated with the parameter in the same line as
the parameter setting.

The following example creates a text initialization parameter file from the SPFILE:

CREATE PFILE FROM SPFILE;

Because no names were specified for the files, the database creates an initialization
parameter file with a platform-specific name, and it is created from the platform-
specific default server parameter file.

The following example creates a text initialization parameter file from a server
parameter file, but in this example the names of the files are specified:

CREATE PFILE='/u01/oracle/dbs/test_init.ora'
 FROM SPFILE='/u01/oracle/dbs/test_spfile.ora';

Note:

An alternative is to create a PFILE from the current values of the initialization
parameters in memory. The following is an example of the required
command:

CREATE PFILE='/u01/oracle/dbs/test_init.ora' FROM MEMORY;

Chapter 4
Managing Initialization Parameters Using a Server Parameter File

4-34

Backing Up the Server Parameter File
You can create a backup of your server parameter file (SPFILE) by exporting it. If the backup
and recovery strategy for your database is implemented using Recovery Manager (RMAN),
then you can use RMAN to create a backup of the SPFILE. The SPFILE is backed up
automatically by RMAN when you back up your database, but RMAN also enables you to
specifically create a backup of the currently active SPFILE.

• Back up the server parameter file either by exporting it or by using RMAN.

See Also:

• "Exporting the Server Parameter File"

• Oracle Database Backup and Recovery User’s Guide

Recovering a Lost or Damaged Server Parameter File
You can recover the server parameter file (SPFILE). If your server parameter file (SPFILE)
becomes lost or corrupted, then the current instance may fail, or the next attempt at starting
the database instance may fail.

There are several ways to recover the SPFILE:

• If the instance is running, issue the following command to re-create the SPFILE from the
current values of initialization parameters in memory:

CREATE SPFILE FROM MEMORY;

This command creates the SPFILE with the default name and in the default location. You
can also create the SPFILE with a new name or in a specified location. See "Creating a
Server Parameter File" for examples.

• If you have a valid text initialization parameter file (PFILE), re-create the SPFILE from the
PFILE with the following statement:

CREATE SPFILE FROM PFILE;

This command assumes that the PFILE is in the default location and has the default
name. See "Creating a Server Parameter File" for the command syntax to use when the
PFILE is not in the default location or has a nondefault name.

• Restore the SPFILE from backup.

See "Backing Up the Server Parameter File" for more information.

• If none of the previous methods are possible in your situation, perform these steps:

1. Create a text initialization parameter file (PFILE) from the parameter value listings in
the alert log.

Chapter 4
Managing Initialization Parameters Using a Server Parameter File

4-35

When an instance starts up, the initialization parameters used for startup are
written to the alert log. You can copy and paste this section from the text
version of the alert log (without XML tags) into a new PFILE.

See Oracle Database Administrator’s Guide for more information.

2. Create the SPFILE from the PFILE.

See "Creating a Server Parameter File" for instructions.

Read/Write Errors During a Parameter Update

If an error occurs while reading or writing the server parameter file during a parameter
update, the error is reported in the alert log and all subsequent parameter updates to
the server parameter file are ignored. At this point, you can take one of the following
actions:

• Shut down the instance, recover the server parameter file and described earlier in
this section, and then restart the instance.

• Continue to run the database if you do not care that subsequent parameter
updates will not be persistent.

Methods for Viewing Parameter Settings
You can view parameter settings using several different methods.

Method Description

SHOW PARAMETERS This SQL*Plus command displays the values of initialization
parameters in effect for the current session.

SHOW SPPARAMETERS This SQL*Plus command displays the values of initialization
parameters in the server parameter file (SPFILE).

CREATE PFILE This SQL statement creates a text initialization parameter file
(PFILE) from the SPFILE or from the current in-memory settings.
You can then view the PFILE with any text editor.

V$PARAMETER This view displays the values of initialization parameters in effect
for the current session.

V$PARAMETER2 This view displays the values of initialization parameters in effect
for the current session. It is easier to distinguish list parameter
values in this view because each list parameter value appears in
a separate row.

V$SYSTEM_PARAMETER This view displays the values of initialization parameters in effect
for the instance. A new session inherits parameter values from
the instance-wide values.

V$SYSTEM_PARAMETER2 This view displays the values of initialization parameters in effect
for the instance. A new session inherits parameter values from
the instance-wide values. It is easier to distinguish list parameter
values in this view because each list parameter value appears in
a separate row.

V$SPPARAMETER This view displays the current contents of the SPFILE. The view
returns FALSE values in the ISSPECIFIED column if an SPFILE
is not being used by the instance.

Chapter 4
Managing Initialization Parameters Using a Server Parameter File

4-36

See Also:

Oracle Database Reference for a complete description of views

Managing Application Workloads with Database Services
A database service is a named representation of one or more database instances. Services
enable you to group database workloads and route a particular work request to an
appropriate instance.

• Database Services
A database service represents a single database. This database can be a single-instance
database or an Oracle Real Application Clusters (Oracle RAC) database with multiple
concurrent database instances. A global database service is a service provided by
multiple databases synchronized through data replication.

• Global Data Services
Starting with Oracle Database 12c, you can use Global Data Services (GDS) for
workload management involving multiple Oracle databases.

• Reset Database Session State to Prevent Application State Leaks
When you use the RESET_STATE service attribute, the session state set by an application
in a request is cleared when the request ends.

• Database Service Data Dictionary Views
You can query data dictionary views to find information about database services.

Database Services
A database service represents a single database. This database can be a single-instance
database or an Oracle Real Application Clusters (Oracle RAC) database with multiple
concurrent database instances. A global database service is a service provided by multiple
databases synchronized through data replication.

• About Database Services
Database services divide workloads for a single database into mutually disjoint
groupings.

• Database Services and Performance
Database services offer an extra dimension in performance tuning.

• Oracle Database Features That Use Database Services
Several Oracle Database features support database services.

• Creating Database Services
There are a few ways to create database services, depending on your database
configuration.

About Database Services
Database services divide workloads for a single database into mutually disjoint groupings.

Each database service represents a workload with common attributes, service-level
thresholds, and priorities. The grouping is based on attributes of work that might include the
application function to be used, the priority of execution for the application function, the job

Chapter 4
Managing Application Workloads with Database Services

4-37

class to be managed, or the data range used in the application function or job class.
For example, the Oracle E-Business Suite defines a database service for each
responsibility, such as general ledger, accounts receivable, order entry, and so on.
When you configure database services, you give each service a unique name,
associated performance goals, and associated importance. The database services are
tightly integrated with Oracle Database and are maintained in the data dictionary.

Connection requests can include a database service name. Thus, middle-tier
applications and client/server applications use a service by specifying the database
service as part of the connection in TNS connect data. If no database service name is
included and the Net Services file listener.ora designates a default database service,
then the connection uses the default database service.

Database services enable you to configure a workload for a single database,
administer it, enable and disable it, and measure the workload as a single entity. You
can do this using standard tools such as the Database Configuration Assistant
(DBCA), Oracle Net Configuration Assistant, and Oracle Enterprise Manager Cloud
Control (Cloud Control). Cloud Control supports viewing and operating services as a
whole, with drill down to the instance-level when needed.

In an Oracle Real Application Clusters (Oracle RAC) environment, a database service
can span one or more instances and facilitate workload balancing based on
transaction performance. This capability provides end-to-end unattended recovery,
rolling changes by workload, and full location transparency. Oracle RAC also enables
you to manage several database service features with Cloud Control, the DBCA, and
the Server Control utility (SRVCTL).

Database services describe applications, application functions, and data ranges as
either functional services or data-dependent services. Functional services are the most
common mapping of workloads. Sessions using a particular function are grouped
together. In contrast, data-dependent routing routes sessions to database services
based on data keys. The mapping of work requests to database services occurs in the
object relational mapping layer for application servers and TP monitors. For example,
in Oracle RAC, these ranges can be completely dynamic and based on demand
because the database is shared.

In addition to database services that are used by applications, Oracle Database also
supports two internal database services: SYS$BACKGROUND is used by the background
processes only, and SYS$USERS is the default database service for user sessions that
are not associated with services.

Using database services requires no changes to your application code. Client-side
work can connect to a named database service. Server-side work, such as Oracle
Scheduler, parallel execution, and Oracle Database Advanced Queuing, set the
database service name as part of the workload definition. Work requests executing
under a database service inherit the performance thresholds for the service and are
measured as part of the service.

Chapter 4
Managing Application Workloads with Database Services

4-38

See Also:

• Oracle Database Concepts

• Oracle Real Application Clusters Administration and Deployment Guide for
information about using services in an Oracle RAC environment

• Oracle Database Net Services Administrator's Guide for information on
connecting to a service

• The Cloud Control online help

Database Services and Performance
Database services offer an extra dimension in performance tuning.

Tuning by "service and SQL" can replace tuning by "session and SQL" in the majority of
systems where all sessions are anonymous and shared. With database services, workloads
are visible and measurable. Resource consumption and waits are attributable by application.
Additionally, resources assigned to database services can be augmented when loads
increase or decrease. This dynamic resource allocation enables a cost-effective solution for
meeting demands as they occur. For example, database services are measured
automatically, and the performance is compared to service-level thresholds. Performance
violations are reported to Cloud Control, enabling the execution of automatic or scheduled
solutions.

Oracle Database Features That Use Database Services
Several Oracle Database features support database services.

The Automatic Workload Repository (AWR) manages the performance of services. AWR
records database service performance, including execution times, wait classes, and
resources consumed by services. AWR alerts warn when database service response time
thresholds are exceeded. The dynamic views report current service performance metrics with
one hour of history. Each database service has quality-of-service thresholds for response
time and CPU consumption.

In addition, the Database Resource Manager can map database services to consumer
groups. Therefore, you can automatically manage the priority of one database service relative
to others. You can use consumer groups to define relative priority in terms of either ratios or
resource consumption.

You also can specify an edition attribute for a database service. Editions make it possible to
have two or more versions of the same objects in the database. When you specify an edition
attribute for a database service, all subsequent connections that specify the database service
use this edition as the initial session edition.

Specifying an edition as a database service attribute can make it easier to manage resource
usage. For example, database services associated with an edition can be placed on a
separate instance in an Oracle RAC environment, and the Database Resource Manager can
manage resources used by different editions by associating resource plans with the
corresponding database services.

For Oracle Scheduler, you optionally assign a database service when you create a job class.
During execution, jobs are assigned to job classes, and job classes can run within database

Chapter 4
Managing Application Workloads with Database Services

4-39

services. Using database services with job classes ensures that the work executed by
the job scheduler is identified for workload management and performance tuning.

For parallel query and parallel DML, the query coordinator connects to a database
service just like any other client. The parallel query processes inherit the database
service for the duration of the execution. At the end of query execution, the parallel
execution processes revert to the default database service.

See Also:

Oracle Database Administrator’s Guide to learn about the following topics:

• "Managing Resources with Oracle Database Resource Manager"

• "Specifying Session-to-Consumer Group Mapping Rules"

• "Setting the Edition Attribute of a Database Service"

• "Scheduling Jobs with Oracle Scheduler"

Creating Database Services
There are a few ways to create database services, depending on your database
configuration.

Note:

Starting with Oracle Database 19c, customer use of the SERVICE_NAMES
parameter is deprecated. It can be desupported in a future release. To
manage your services, Oracle recommends that you use the SRVCTL or
GDSCTL command line utilities, or the DBMS_SERVICE package.

Note:

This section describes creating services locally.

To create a database service:

• If your single-instance database is being managed by Oracle Restart, use the
SRVCTL utility to create the database service.

srvctl add service -db db_unique_name -service service_name

• If your single-instance database is not being managed by Oracle Restart, do one
of the following:

– Append the desired database service name to the SERVICE_NAMES parameter.

– Call the DBMS_SERVICE.CREATE_SERVICE package procedure.

Chapter 4
Managing Application Workloads with Database Services

4-40

• (Optional) Define database service attributes with Cloud Control or with
DBMS_SERVICE.MODIFY_SERVICE.

Oracle Net Listener (the listener) receives incoming client connection requests and manages
the traffic of these requests to the database server. The listener handles connections for
registered services, and it supports dynamic service registration.

See Also:

• "Global Data Services"

• Oracle Database Administrator’s Guide for information about Oracle Restart

• Oracle Database PL/SQL Packages and Types Reference for information about
the DBMS_SERVICE package

• Oracle Real Application Clusters Administration and Deployment Guide for
information about creating a service in an Oracle RAC environment

• Oracle Database Net Services Administrator's Guide for more information about
Oracle Net Listener and services

Global Data Services
Starting with Oracle Database 12c, you can use Global Data Services (GDS) for workload
management involving multiple Oracle databases.

GDS enables administrators to automatically and transparently manage client workloads
across replicated databases that offer common services. These common services are known
as global services.

GDS enables you to integrate multiple databases in various locations into private GDS
configurations that can be shared by global clients. Benefits include the following:

• Enables central management of global resources

• Provides global scalability, availability, and run-time load balancing

• Allows you to dynamically add databases to the GDS configuration and dynamically
migrate global services

• Extends service management, load balancing, and failover capabilities for distributed
environments of replicated databases that use features such as Oracle Active Data
Guard, Oracle GoldenGate, and so on

• Provides high availability through seamless failover of global services across databases
(located both locally or globally)

• Provides workload balancing both within and between data centers through services,
connection load balancing, and runtime load balancing

• Allows efficient utilization of the resources of the GDS configuration to service client
requests

Chapter 4
Managing Application Workloads with Database Services

4-41

See Also:

Oracle Database Global Data Services Concepts and Administration Guide
for an overview of Global Data Services

Reset Database Session State to Prevent Application State Leaks
When you use the RESET_STATE service attribute, the session state set by an
application in a request is cleared when the request ends.

The service attribute RESET_STATE is recommended for all stateless applications to
prevent the leakage of a session state to later reuses.

Stateless Applications

A stateless application is an application program that does not use the session state of
one request, such as context and PL/SQL states that were set by a prior usage of that
session, in another web request or similar connection pool usage. The necessary state
to handle the request is contained within the request, as a part of the request itself; in
the URL, query-string parameters, request body, or headers.

In a cloud environment, it is preferable for applications to be stateless for scalability
and portability. Being stateless enables greater scalability because the server does not
have to maintain, update, or communicate a session state. For example, load
balancers do not have to consider session affinity for stateless systems. Most modern
web applications are stateless.

Prevent Application State Leaking to Later Usages

Setting the session state in a request leaves the session with the current state,
meaning that subsequent usages of that session can see the current session state.
For example, when an application borrows and returns a connection to a connection
pool, if the sessions state is not cleared, the next usage of that connection can see the
session state of the previous usage.

RESET_STATE is an attribute of the database service. When you use the RESET_STATE
service attribute, the session state set by an application in a request is cleared when
the database request ends. When RESET_STATE is used, an application can depend on
the state being reset at the end of a request. Without RESET_STATE, application
developers must cancel their cursors and clear the session state that has been set
before returning their connections to a pool for reuse.

RESET_STATE is used with applications that are stateless between requests. These type
of applications use the session state in a request, and do not rely on that session state
in the later requests. The necessary session state that the request needs is contained
within the request itself. REST, ORDS, Oracle Application Express (APEX) are
examples of stateless applications.

RESET_STATE is available for all applications that use Oracle and third party connection
pools with request boundaries. Setting RESET_STATE to LEVEL1 enables automatic
resetting of session states at an explicit end of request. RESET_STATE does not apply to
implicit request boundaries, such as those with DRCP implicit statement caching.

Using the RESET_STATE attribute has the following impact at the end of a request:

Chapter 4
Managing Application Workloads with Database Services

4-42

• Cursors are canceled.

• PL/SQL global variables are cleared.

• Temporary tables that have a session-based duration are truncated.

• Temporary LOBs that have a session-based duration are cleared.

• Session local sequences are reset.

RESET_STATE is a very important database feature that enables your developers to rely on the
session state being clean when a session is returned to a connection pool with request
boundaries. This can be an Oracle connection pool or a custom connection pool with added
request boundaries. RESET_STATE also improves your protection when using Transparent
Application Continuity (TAC), because the session state is clean at the beginning of a new
request.

Database Service Data Dictionary Views
You can query data dictionary views to find information about database services.

You can find information about database services in the following views:

• DBA_SERVICES
• ALL_SERVICES or V$SERVICES
• V$ACTIVE_SERVICES
• V$SERVICE_STATS
• V$SERVICE_EVENT
• V$SERVICE_WAIT_CLASS
• V$SERV_MOD_ACT_STATS
• V$SERVICEMETRIC
• V$SERVICEMETRIC_HISTORY
The following additional views also contain some information about database services:

• V$SESSION
• V$ACTIVE_SESSION_HISTORY
• DBA_RSRC_GROUP_MAPPINGS
• DBA_SCHEDULER_JOB_CLASSES
• DBA_THRESHOLDS
The ALL_SERVICES view includes a GLOBAL_SERVICE column, and the V$SERVICES and
V$ACTIVE_SERVICES views contain a GLOBAL column. These views and columns enable you to
determine whether a database service is a global service.

Managing Standard Edition High Availability for Oracle
Databases

The Standard Edition High Availability feature provides protection against unplanned outages
for Oracle Database Standard Edition 2 single instance databases using Oracle Clusterware.

Chapter 4
Managing Standard Edition High Availability for Oracle Databases

4-43

Note:

Standard Edition High Availability is supported in this release of Oracle
Database.

Note:

The srvctl commands used with Standard Edition High Availability are
different from those used with Oracle Restart. For Standard Edition High
Availability, refer to the srvctl commands documented in the Oracle Real
Application Clusters Administration and Deployment Guide.

• About Standard Edition High Availability
In this release, you can install Oracle Database Standard Edition 2 in high
availability mode.

• Requirements for Using Standard Edition High Availability With Oracle Databases
To use Standard Edition High Availability, deploy Oracle Database Standard
Edition 2 in accordance with these configuration requirements.

• Enabling Standard Edition High Availability for Oracle Databases
You enable Standard Edition High Availability to provide cluster-based failover for
an Oracle Database Standard Edition 2 database.

• Create Standard Edition High Availability Database Using DBCA
Oracle Database Configuration Assistant (Oracle DBCA) enables you to create a
Standard Edition High Availability (SEHA), single-instance Oracle Database.

• Relocating a Standard Edition High Availability Database to Another Node
To manage planned outages, you can relocate an Oracle Database Standard
Edition 2 database that uses Standard Edition High Availability to another
configured node.

• Adding a Node to a Standard Edition High Availability Database
Adding new nodes to an existing Standard Edition High Availability configuration
provides enhanced failover capabilities to your Standard Edition 2 database.

• Removing a Configured Node from a Standard Edition High Availability Database
Use srvctl commands to remove a node from the list of nodes configured for a
Standard Edition High Availability database.

• Starting and Stopping Standard Edition High Availability Databases
Use srvctl commands to start or stop an Oracle Database that is configured for
Standard Edition High Availability.

• Deactivating Standard Edition High Availability for Oracle Databases
When you deactivate Standard Edition High Availability for a single instance
Oracle Database, the database is no longer part of a high availability failover
configuration.

Related Topics

• Oracle Database Installation Guide for Linux

• Oracle Real Application Clusters Administration and Deployment Guide

Chapter 4
Managing Standard Edition High Availability for Oracle Databases

4-44

About Standard Edition High Availability
In this release, you can install Oracle Database Standard Edition 2 in high availability mode.

Standard Edition High Availability provides cluster-based failover for single-instance Standard
Edition Oracle Databases using Oracle Clusterware.

Oracle Standard Edition High Availability benefits from the cluster capabilities and storage
solutions that are already part of Oracle Grid Infrastructure, such as Oracle Clusterware,
Oracle Automatic Storage Management (Oracle ASM) and Oracle Advanced Cluster File
System (Oracle ACFS).

Using integrated, shared, and concurrently mounted storage, such as Oracle ASM and
Oracle ACFS for database files as well as for unstructured data, enables Oracle Grid
Infrastructure to restart an Oracle Database on a failover node much faster than any cluster
solution that relies on failing over and remounting volumes and file systems.

Standard Edition High Availability is supported on Linux x86-64.

Note:

This section is specific to Standard Edition High Availability, which provides cluster-
based database failover for Standard Edition Oracle Databases 23ai and later. For
more information about high availability options for Oracle Database, see Oracle
Clusterware Administration and Deployment Guide.

Requirements for Using Standard Edition High Availability With Oracle
Databases

To use Standard Edition High Availability, deploy Oracle Database Standard Edition 2 in
accordance with these configuration requirements.

• The database is created in a cluster running Oracle Grid Infrastructure for a Standalone
Cluster, with its database files placed in Oracle Automatic Storage Management (Oracle
ASM) or Oracle Advanced Cluster File System (Oracle ACFS).

• When using the Database Configuration Assistant, do not create a listener when creating
an Oracle Database Standard Edition 2 database that you want to configure for Standard
Edition High Availability.

• Register the database with Single Client Access Name (SCAN) listeners as remote
listeners, and node listeners as the local listener.

• Create a database service. Use this service, instead of the default database service,
when you connect applications or database clients to the database.

• Ensure that the server parameter file (spfile) and password file are on Oracle ASM or
Oracle ACFS. If the spfile and password file were placed on a local file system when
the database was created or configured, then move these files to Oracle ASM or Oracle
ACFS.

Refer to the database installation documentation for additional requirements that must be
met.

Chapter 4
Managing Standard Edition High Availability for Oracle Databases

4-45

Related Topics

• Oracle Database Installation Guide for Linux

Enabling Standard Edition High Availability for Oracle Databases
You enable Standard Edition High Availability to provide cluster-based failover for an
Oracle Database Standard Edition 2 database.

Note:

The steps in this topic must be performed after you install the Oracle
Database software binaries to configure Standard Edition High Availability,
as described in the Oracle Database Installation Guide for Linux, and create
a database. If you have an existing Standard Edition 2 database that runs on
one cluster node, and you want to enable Standard Edition High Availability
for this database, you need to add a node to the configuration.

Note:

Skip this topic, if you use the following topic Create Standard Edition High
Availability Database Using DBCA

Prerequisites

• Ensure that the initialization parameter local_listener is not set. This is to
enable node listeners to be automatically used and database connections to be
made over the node virtual IP address.

Use the following command to display the current listener configuration:

SQL> SHOW PARAMETER LOCAL_LISTENER;

If the output of the above command shows a local listener name, then reset the
local listener using the following command:

SQL> ALTER SYSTEM RESET LOCAL_LISTENER SCOPE = BOTH;

The database must be restarted for the listener configuration change to take
effect. However, if the database is relocated to another node, as part of verifying
the Standard Edition High Availability configuration, then the database need not be
restarted.

• When the database files are stored in Oracle Advanced Cluster File System
(Oracle ACFS), the Oracle ACFS file system must be registered in Oracle
Clusterware and the dependency of the database resource on the corresponding
Oracle ACFS resources must be configured using srvctl commands. For
example:

$ srvctl modify database -db se2cdb2 -acfspath /u01/app/oradata

Chapter 4
Managing Standard Edition High Availability for Oracle Databases

4-46

To enable Standard Edition High Availability for an Oracle Database Standard Edition 2
database:

1. If the database was created using the CREATE DATABASE command, then register the
database with Oracle Clusterware.

Databases created using the CREATE DATABASE command are not automatically
registered with Oracle Clusterware. Use the srvctl add database command to register
the database.

For example, the following command registers the single instance database, whose
unique name is se2cdb, with the nodes node2 and node3:

$ srvctl add database -db se2cdb -oraclehome $ORACLE_HOME
-dbtype SINGLE -spfile +DATA/SE2CDB1/PARAMETERFILE/spfile.276.1030845691
-node node2,node3

2. If the database is already registered with Oracle Clusterware, use the srvctl modify
database command to enable Standard Edition High Availability.

For example, the following command enables Standard Edition High Availability on a
Standard Edition 2 database whose database unique name is se2cdb:

$ srvctl modify database -db se2cdb -node node2,node3

Note:

The -fixed option to create a fixed single instance database is not supported
with Standard Edition High Availability.

After you enable Standard Edition High Availability for a database:

• When there is an unplanned outage of the node which runs the database instance, the
instance is restarted on an available node in the configured node list.

• When there is an unplanned termination of the database instance, an attempt is made to
restart the instance on the current node. If the restart fails, a failover is initiated to an
available node in the configured node list.

• When the node which runs the database instance completely loses connectivity to the
public network, the instance is relocated to an available node in the configured node list.

Note:

The order of nodes in the node list determines the node on which the database is
started. Oracle Clusterware attempts to start the database on the first node in the
node list. If the first node is unavailable, it moves to the next node in the node list.

Oracle Clusterware also uses the order of nodes in the node list to determine the
failover target, if the current node fails. Failover targets are considered starting with
the first node in the list and until a suitable candidate is found and unless other
circumstances in the cluster prevent this order to determine the failover node.

Chapter 4
Managing Standard Edition High Availability for Oracle Databases

4-47

To verify the Standard Edition High Availability configuration, especially its current
configured node list, use the srvctl config database command. For example:

$ srvctl config database -db se2cdb
...
Type: SINGLE
...
Configured nodes:
 node2, node3

Notice from the output that the type of database is single, but there are multiple
configured nodes. This indicates that Standard Edition High Availability is enabled.

Further verification can be performed by relocating the database to another configured
node.

Related Topics

• Oracle Database Installation Guide for Linux

• Adding a Node to a Standard Edition High Availability Database
Adding new nodes to an existing Standard Edition High Availability configuration
provides enhanced failover capabilities to your Standard Edition 2 database.

Create Standard Edition High Availability Database Using DBCA
Oracle Database Configuration Assistant (Oracle DBCA) enables you to create a
Standard Edition High Availability (SEHA), single-instance Oracle Database.

After you complete installing Standard Edition High Availability database software you
can use Oracle DBCA, in either interactive or silent mode, to create a single-instance
Oracle Database. For details see Deploying Standard Edition High Availability.

A Standard Edition High Availability database:

• is a single instance database with failover capability.

• uses Oracle ASM or Oracle ACFS for the database storage files (NAS is not
supported).

DBCA provides these capabilities for the Standard Edition High Availability single
instance database:

• DBCA provides an interface to select node list for placement of the Standard
Edition High Availability database.

• DBCA creates a service for the Standard Edition High Availability database.

• DBCA creates spfile and password file in Oracle ASM or Oracle ACFS based on
db storage location.

NOT_SUPPORTED

Creating a Standard Edition High Availability database with DBCA

1. Start Oracle Database Configuration Assistant (Oracle DBCA) in interactive mode.

cd $ORACLE_HOME/bin
 ./dbca

Chapter 4
Managing Standard Edition High Availability for Oracle Databases

4-48

2. In the Select Database Operation screen, select Create a database and click Next.

3. In the Select Database Creation Mode screen, select Advanced configuration and
click Next.

4. In the Select Database Deployment Type page, for the Database type field select
Oracle SEHA (SI) database. Select Automatic as the Database Management policy,
and select an appropriate template for your database. Click Next.

5. Select the database template, then Click Next .

6. In the Select List of Nodes page, select each node you wish to use for your single
instance cluster. Click Next.

7. On the Specify Database Identification Details page, provide a Global database
name and a SID prefix.

8. Respond to the configuration screens and prompts as needed to complete the database
creation process. Configuration screens vary depending on the configuration option that
you select.

NOT_SUPPORTED

Silent Mode Options for Standard Edition High Availability

-databaseConfigType SEHA
[-SEHAServiceName Service name for the service to be created for Standard
Edition High Availability database]. This option is mandatory when the
databaseConfigType is SEHA]

Sample command line for Oracle ASM:

dbca -silent -createDatabase -createAsContainerDatabase true
-templateName $ORACLE_HOME/assistants/dbca/templates/General_Purpose.dbc -
gdbname test
-sehaNodeList node1,node2 -storageType ASM -diskgroupName +DATA –
databaseConfigType SEHA
–SEHAServiceName dbtestsvc

Sample command line for Oracle ACFS:

dbca -silent -createDatabase -createAsContainerDatabase true
-templateName $ORACLE_HOME/assistants/dbca/templates/General_Purpose.dbc -
gdbname testdb
-sehaNodeList node1,node2 -storageType FS –datafileDestination /acfsmount/
oradata –databaseConfigType SEHA
–SEHAServiceName dbtestsvc

Relocating a Standard Edition High Availability Database to Another Node
To manage planned outages, you can relocate an Oracle Database Standard Edition 2
database that uses Standard Edition High Availability to another configured node.

The node to which the database is being relocated must be part of the configured node list for
this database.

Chapter 4
Managing Standard Edition High Availability for Oracle Databases

4-49

To relocate an active Oracle Database Standard Edition 2 database from its current
node to another configured node:

• Use the srvctl relocate command.

This command performs an offline relocation. It shuts down the database on the
existing node and then starts it on the new node.

For example, the following command relocates the Standard Edition 2 database
named se2cdb, that uses Standard Edition High Availability, to the node node5:

$ srvctl relocate database -db se2cdb -node node5

Note:

The –abort and –revert options of srvctl relocate database command
are not supported with Standard Edition High Availability.

Adding a Node to a Standard Edition High Availability Database
Adding new nodes to an existing Standard Edition High Availability configuration
provides enhanced failover capabilities to your Standard Edition 2 database.

You may need to add nodes in certain scenarios. Assume that you configured two
nodes for your Standard Edition High Availability database. Subsequently, a new node
is added to the cluster and you want to include this new node in your database
configuration. You can do this by adding the node to the Standard Edition High
Availability configuration. Another scenario is when you want to enable Standard
Edition High Availability for an existing Standard Edition 2 database.

To add a node to a Standard Edition High Availability database:

1. Extend the Oracle Database Oracle home to the new node. The steps depend on
the storage used.

For a local (non-shared) Oracle home:

a. Log in to the first cluster node (on which you configured Standard Edition High
Availability) as the Oracle installation owner user account (oracle).

b. Navigate to the ORACLE_HOME/addnode directory and run the addnode.sh script
on Linux or addnode.bat on Windows.

For example, to extend the Oracle home to node3 on Linux:

$./addnode.sh -silent "CLUSTER_NEW_NODES={node3}"

For a shared Oracle home using Oracle ACFS:

a. Start the Oracle ACFS resource on the new node by running the following
command as root from the Grid_home/bin directory:

srvctl start filesystem -device volume_device [-node node_name]

Chapter 4
Managing Standard Edition High Availability for Oracle Databases

4-50

Note:

Make sure the Oracle ACFS resources, including Oracle ACFS registry
resource and Oracle ACFS file system resource where the Oracle home is
located, are online on the newly added node.

b. Log in to the first cluster node (on which you configured Standard Edition High
Availability) as the Oracle installation owner user account (oracle).

c. Attach the Oracle home on the first cluster node to the node that you want to add.

$ $ORACLE_HOME/addnode/addnode.sh -silent
CLUSTER_NEW_NODES=new_node_name

2. On the new node (that must be added), as the root user, and run the ORACLE_HOME/
root.sh script.

/u01/app/oracle/product/21.0.0/dbhome_1/root.sh

3. On any configured node, including the node that is being added, as the oracle user, add
the new node by using the srvctl modify database command.

The -node argument must list the existing configured nodes and the new node that is
being added.

For example, the following command adds the node node3 to the database with unique
name se2cdb. Existing configured nodes are node1 and node2.

$ srvctl modify database -db se2cdb -node node1,node2,node3

You can optionally verify the new configuration as described in Enabling Standard Edition
High Availability for Oracle Databases.

Related Topics

• Enabling Standard Edition High Availability for Oracle Databases
You enable Standard Edition High Availability to provide cluster-based failover for an
Oracle Database Standard Edition 2 database.

Removing a Configured Node from a Standard Edition High Availability
Database

Use srvctl commands to remove a node from the list of nodes configured for a Standard
Edition High Availability database.

Navigate to the Oracle Database home directory. On Linux, log in to the database host
computer as the Oracle installation owner user account (oracle). On Windows, log in to the
database host computer as Administrator.

To remove a configured node from a database that uses Standard Edition High Availability:

1. List the existing configured nodes by using the srvctl config database command.

Chapter 4
Managing Standard Edition High Availability for Oracle Databases

4-51

2. If the database is currently running on the node that you want to remove, relocate
the database to another configured node by using the srvctl relocate database
command.

3. Remove the node by using the srvctl modify database command with the -node
argument.

The -node argument must list all the configured nodes, except the node that must
be removed.

Example 4-1 Removing a Configured Node from a Standard Edition High
Availability Database

The example assumes that the database with unique name sec2cdb uses Standard
Edition High Availability and the configured nodes are node1, node2, and node3. The
database is currently running on node3. To remove node2 from the list of configured
nodes for this database, log in as a user who installed the Oracle Database home and
run the following command:

$ srvctl modify database -db sec2cdb -node node1,node3

Related Topics

• Relocating a Standard Edition High Availability Database to Another Node
To manage planned outages, you can relocate an Oracle Database Standard
Edition 2 database that uses Standard Edition High Availability to another
configured node.

Starting and Stopping Standard Edition High Availability Databases
Use srvctl commands to start or stop an Oracle Database that is configured for
Standard Edition High Availability.

Navigate to the Oracle Database home directory. On Linux, log in to the database host
computer as the Oracle installation owner user account (oracle). On Windows, log in
to the database host computer as Administrator.

To start up a Standard Edition High Availability database:

• Use the srvctl start database command.

Optionally, include the -node argument to specify the node on which the database
must be started.

To stop a Standard Edition High Availability database:

• Use the srvctl stop database command

Example 4-2 Starting Up a Standard Edition High Availability Database on a
Specified Node

This example starts up a database with the unique name se2cdb on the node named
node3.

$ srvctl start database -db sec2cdb -node node3

Chapter 4
Managing Standard Edition High Availability for Oracle Databases

4-52

Example 4-3 Stopping a Standard Edition High Availability Database

This example stops a database instance that is configured to use Standard Edition High
Availability. The unique name of the database is sec2cdb.

$ srvctl stop database -db sec2cdb

Related Topics

• Oracle Real Application Clusters Administration and Deployment Guide

Deactivating Standard Edition High Availability for Oracle Databases
When you deactivate Standard Edition High Availability for a single instance Oracle
Database, the database is no longer part of a high availability failover configuration.

To deactivate Standard Edition High Availability for an Oracle Database:

• Use the srvctl modify command and include only one node in the -node argument.

Example 4-4 Deactivating the Use of Standard Edition High Availability for an Oracle
Database

This example deactivates the use of Standard Edition High Availability for the database with
unique name se2cdb and configures only one node, node1, for this database:

srvctl modify database -db se2cdb -node node1

All previously configured nodes are removed and the database is now a single-instance
database that is registered with Oracle Clusterware.

Cloning a Database
This section describes various methods of cloning an Oracle database.

• Cloning a Database with CloneDB in a Non-multitenant Environment
CloneDB enables you to clone a database in a non-multitenant environment multiple
times without copying the data files into several different locations. Instead, CloneDB
uses copy-on-write technology, so that only the blocks that are modified require additional
storage on disk.

• Cloning a Database in a Multitenant Environment
You can clone a database in a multitenant environment.

• Cloning a Database with Oracle Automatic Storage Management (Oracle ASM)
Oracle Automatic Storage Management (Oracle ASM) provides support for cloning a
pluggable database (PDB) in a multitenant container database (CDB). Oracle ASM does
not support cloning a non-CDB.

Cloning a Database with CloneDB in a Non-multitenant Environment
CloneDB enables you to clone a database in a non-multitenant environment multiple times
without copying the data files into several different locations. Instead, CloneDB uses copy-on-
write technology, so that only the blocks that are modified require additional storage on disk.

Chapter 4
Cloning a Database

4-53

• About Cloning a Database with CloneDB
It is often necessary to clone a production database for testing purposes or other
purposes.

• Cloning a Database with CloneDB
You can clone a database with CloneDB.

• After Cloning a Database with CloneDB
After a CloneDB database is created, you can use it in almost any way you use
your production database. Initially, a CloneDB database uses a minimal amount of
storage for each data file. Changes to rows in a CloneDB database cause storage
space to be allocated on demand.

About Cloning a Database with CloneDB
It is often necessary to clone a production database for testing purposes or other
purposes.

Common reasons to clone a production database include the following:

• Deployment of a new application, or an update of an existing application, that uses
the database

• A planned operating system upgrade on the system that runs the database

• New storage for the database installation

• Reporting

• Analysis of older data

Before deploying a new application, performing an operating system upgrade, or using
new storage, thorough testing is required to ensure that the database works properly
under the new conditions. Cloning can be achieved by making copies of the production
data files in one or more test environments, but these copies typically require large
amounts of storage space to be allocated and managed.

With CloneDB, you can clone a database multiple times without copying the data files
into several different locations. Instead, Oracle Database creates the files in the
CloneDB database using copy-on-write technology, so that only the blocks that are
modified in the CloneDB database require additional storage on disk.

Cloning a database in this way provides the following advantages:

• It reduces the amount of storage required for testing purposes.

• It enables the rapid creation of multiple database clones for various purposes.

The CloneDB databases use the data files of a database backup. Using the backup
data files ensures that the production data files are not accessed by the CloneDB
instances and that the CloneDB instances do not compete for the production
database's resources, such as CPU and I/O resources.

Note:

• The instructions in this section about cloning a database with CloneDB
are not applicable for a database in a multitenant environment.

• The CloneDB feature is not intended for performance testing.

Chapter 4
Cloning a Database

4-54

See Also:

"Cloning a Database in a Multitenant Environment" for more information about
cloning a database in a multitenant environment

Cloning a Database with CloneDB
You can clone a database with CloneDB.

Before cloning a database, the following prerequisites must be met:

• Each CloneDB database must use Direct NFS Client, and the backup of the production
database must be located on an NFS volume.

Direct NFS Client enables an Oracle database to access network attached storage (NAS)
devices directly, rather than using the operating system kernel NFS client. This CloneDB
database feature is available on platforms that support Direct NFS Client.

See Oracle Grid Infrastructure Installation Guide for your operating system for information
about Direct NFS Client.

• At least 2 MB of additional System Global Area (SGA) memory is required to track the
modified blocks in a CloneDB database.

See Oracle Database Administrator’s Guide.

• Storage for the database backup and for the changed blocks in each CloneDB database
is required.

The storage required for the database backup depends on the method used to perform
the backup. A single full RMAN backup requires the most storage. Storage snapshots
carried out using the features of a storage appliance adhere to the requirements of the
storage appliance. A single backup can support multiple CloneDB databases.

The amount of storage required for each CloneDB database depends on the write activity
in that database. Every block that is modified requires an available block of storage.
Therefore, the total storage requirement depends on the number of blocks modified in the
CloneDB database over time.

This section describes the steps required to create one CloneDB database and uses these
sample databases and directories:

• The Oracle home for the production database PROD1 is /u01/prod1/oracle.

• The files for the database backup are in /u02/oracle/backup/prod1.

• The Oracle home for CloneDB database CLONE1 is /u03/clone1/oracle.

To clone a database with CloneDB:

1. Create a backup of your production database. You have the following backup options:

• An online backup

If you perform an online backup, then ensure that your production database is in
ARCHIVELOG mode and that all of the necessary archived redo log files are saved and
accessible to the CloneDB database environment.

• A full offline backup

Chapter 4
Cloning a Database

4-55

If you perform a full offline backup, then ensure that the backup files are
accessible to the CloneDB database environment.

• A backup that copies the database files

If you specify BACKUP AS COPY in RMAN, then RMAN copies each file as an
image copy, which is a bit-for-bit copy of a database file created on disk.
Image copies are identical to copies created with operating system commands
such as cp on Linux or COPY on Windows, but are recorded in the RMAN
repository and so are usable by RMAN. You can use RMAN to make image
copies while the database is open. Ensure that the copied database files are
accessible to the CloneDB database environment.

See Oracle Database Backup and Recovery User’s Guide for information about
backing up a database.

2. Create a text initialization parameter file (PFILE) if one does not exist.

If you are using a server parameter file (SPFILE), then run the following statement
on the production database to create a PFILE:

CREATE PFILE FROM SPFILE;

3. Create SQL scripts for cloning the production database.

You will use one or more SQL scripts to create a CloneDB database in a later step.
To create the SQL scripts, you can either use an Oracle-supplied Perl script called
clonedb.pl, or you can create a SQL script manually.

To use the clonedb.pl Perl script, complete the following steps:

a. Set the following environment variables at an operating system prompt:

MASTER_COPY_DIR - Specify the directory that contains the backup created in
Step 1. Ensure that this directory contains only the backup of the data files of
the production database.

CLONE_FILE_CREATE_DEST - Specify the directory where CloneDB database
files will be created, including data files, log files, control files.

CLONEDB_NAME - Specify the name of the CloneDB database.

S7000_TARGET - If the NFS host providing the file system for the backup and
the CloneDB database is a Sun Storage 7000, then specify the name of the
host. Otherwise, do not set this environment variable. Set this environment
variable only if cloning must be done using storage snapshots. You can use
S7000 storage arrays for Direct NFS Client without setting this variable.

b. Run the clonedb.pl Perl script.

The script is in the $ORACLE_HOME/rdbms/install directory and has the
following syntax:

$ORACLE_HOME/perl/bin/perl $ORACLE_HOME/rdbms/install/clonedb.pl
prod_db_pfile [sql_script1] [sql_script2]

Specify the following options:

prod_db_pfile - Specify the full path of the production database's PFILE.

sql_script1 - Specify a name for the first SQL script generated by clonedb.pl.
The default is crtdb.sql.

Chapter 4
Cloning a Database

4-56

sql_script2 - Specify a name for the second SQL script generated by clonedb.pl.
The default is dbren.sql.

The clonedb.pl script copies the production database's PFILE to the CloneDB
database's directory. It also creates two SQL scripts that you will use to create the
CloneDB database.

c. Check the two SQL scripts that were generated by the clonedb.pl Perl script, and
make changes if necessary.

d. Modify the initialization parameters for the CloneDB database environment, and save
the file.

Change any initialization parameter that is specific to the CloneDB database
environment, such as parameters that control SGA size, PGA target, the number of
CPUs, and so on. The CLONEDB parameter must be set to TRUE, and the initialization
parameter file includes this parameter. See Oracle Database Reference for
information about initialization parameters.

e. In SQL*Plus, connect to the CloneDB database with SYSDBA administrative privilege.

f. Run the SQL scripts generated by the clonedb.pl Perl script.

For example, if the scripts use the default names, then run the following scripts at the
SQL prompt:

crtdb.sql
dbren.sql

To create a SQL script manually, complete the following steps:

a. Connect to the database with SYSDBA or SYSBACKUP administrative privilege.

See Oracle Database Administrator’s Guide.

b. Generate a backup control file script from your production database by completing
the following steps:

Run the following SQL statement:

ALTER DATABASE BACKUP CONTROLFILE TO TRACE;

This statement generates a trace file that contains the SQL statements that create
the control file. The trace file containing the CREATE CONTROLFILE statement is stored
in a directory determined by the DIAGNOSTIC_DEST initialization parameter. Check the
database alert log for the name and location of this trace file.

c. Open the trace file generated in Step 3b, and copy the STARTUP NOMOUNT and CREATE
CONTROLFILE statements in the trace file to a new SQL script.

d. Edit the new SQL script you created in Step 3c in the following ways:

Change the name of the database to the name of the CloneDB database you are
creating. For example, change PROD1 to CLONE1.

Change the locations of the log files to a directory in the CloneDB database
environment. For example, change/u01/prod1/oracle/dbs/t_log1.f to /u03/clone1/
oracle/dbs/t_log1.f.

Change the locations of the data files to the backup location. For example,
change /u01/prod1/oracle/dbs/t_db1.f to /u02/oracle/backup/prod1/t_db1.f.

Chapter 4
Cloning a Database

4-57

The following is an example of the original statements generated by the ALTER
DATABASE BACKUP CONTROLFILE TO TRACE statement:

STARTUP NOMOUNT
CREATE CONTROLFILE REUSE DATABASE "PROD1" NORESETLOGS ARCHIVELOG
 MAXLOGFILES 32
 MAXLOGMEMBERS 2
 MAXDATAFILES 32
 MAXINSTANCES 1
 MAXLOGHISTORY 292
LOGFILE
 GROUP 1 '/u01/prod1/oracle/dbs/t_log1.f' SIZE 25M BLOCKSIZE
512,
 GROUP 2 '/u01/prod1/oracle/dbs/t_log2.f' SIZE 25M BLOCKSIZE
512
-- STANDBY LOGFILE
DATAFILE
 '/u01/prod1/oracle/dbs/t_db1.f',
 '/u01/prod1/oracle/dbs/t_ax1.f',
 '/u01/prod1/oracle/dbs/t_undo1.f',
 '/u01/prod1/oracle/dbs/t_xdb1.f',
 '/u01/prod1/oracle/dbs/undots.dbf'
CHARACTER SET WE8ISO8859P1;

The following is an example of the modified statements in the new SQL script:

STARTUP NOMOUNT PFILE=/u03/clone1/oracle/dbs/clone1.ora
CREATE CONTROLFILE REUSE DATABASE "CLONE1" RESETLOGS ARCHIVELOG
 MAXLOGFILES 32
 MAXLOGMEMBERS 2
 MAXDATAFILES 32
 MAXINSTANCES 1
 MAXLOGHISTORY 292
LOGFILE
 GROUP 1 '/u03/clone1/oracle/dbs/t_log1.f' SIZE 25M BLOCKSIZE
512,
 GROUP 2 '/u03/clone1/oracle/dbs/t_log2.f' SIZE 25M BLOCKSIZE
512
-- STANDBY LOGFILE
DATAFILE
 '/u02/oracle/backup/prod1/t_db1.f',
 '/u02/oracle/backup/prod1/t_ax1.f',
 '/u02/oracle/backup/prod1/t_undo1.f',
 '/u02/oracle/backup/prod1/t_xdb1.f',
 '/u02/oracle/backup/prod1/undots.dbf'
CHARACTER SET WE8ISO8859P1;

If you have a storage level snapshot taken on a data file, then you can replace
the RMAN backup file names with the storage snapshot names.

e. After you edit the SQL script, save it to a location that is accessible to the
CloneDB database environment.

Chapter 4
Cloning a Database

4-58

Make a note of the name and location of the new SQL script. You will run the script in
a subsequent step. In this example, assume the name of the script is
create_clonedb1.sql

f. Copy the text initialization parameter file (PFILE) from the production database
environment to the CloneDB database environment.

For example, copy the text initialization parameter file from /u01/prod1/oracle/dbs
to /u03/clone1/oracle/dbs. The name and location of the file must match the name
and location specified in the STARTUP NOMOUNT command in the modified SQL script.
In the example in Step 3d, the file is /u03/clone1/oracle/dbs/clone1.ora.

g. Modify the initialization parameters for the CloneDB database environment, and save
the file.

Add the CLONEDB parameter, and ensure that this parameter is set to TRUE. Change
any other initialization parameter that is specific to the CloneDB database
environment, such as parameters that control SGA size, PGA target, the number of
CPUs, and so on. See Oracle Database Reference for information about initialization
parameters.

h. In SQL*Plus, connect to the CloneDB database with SYSDBA administrative privilege.

i. Run the SQL script you saved in Step 3e.

For example, enter the following in SQL*Plus:

@create_clonedb1.sql

j. For each data file in the backup location, run the CLONEDB_RENAMEFILE procedure in
the DBMS_DNFS package and specify the appropriate location in the CloneDB
database environment.

For example, run the following procedure if the backup data file is /u02/oracle/
backup/prod1/t_db1.f and the CloneDB database data file is /u03/clone1/oracle/dbs/
t_db1.f:

BEGIN
 DBMS_DNFS.CLONEDB_RENAMEFILE(
 srcfile => '/u02/oracle/backup/prod1/t_db1.f',
 destfile => '/u03/clone1/oracle/dbs/t_db1.f');
END;
/

See Oracle Database PL/SQL Packages and Types Reference for more information
about the DBMS_DNFS package.

4. If you created your CloneDB database from an online backup, then recover the CloneDB
database. This step is not required if you performed a full offline backup or a BACKUP AS
COPY backup.

For example, run the following SQL statement on the CloneDB database:

RECOVER DATABASE USING BACKUP CONTROLFILE UNTIL CANCEL;

This statement prompts for the archived redo log files for the period when the backup
was performed.

Chapter 4
Cloning a Database

4-59

5. Open the database by running the following SQL statement:

ALTER DATABASE OPEN RESETLOGS;

The CloneDB database is ready for use.

To create additional CloneDB databases of the production database, repeat Steps 3-5
for each CloneDB database.

After Cloning a Database with CloneDB
After a CloneDB database is created, you can use it in almost any way you use your
production database. Initially, a CloneDB database uses a minimal amount of storage
for each data file. Changes to rows in a CloneDB database cause storage space to be
allocated on demand.

You can use the same backup files to create multiple CloneDB databases. This
backup can be taken either by RMAN or by storage level snapshots. If you have a
storage level snapshot taken on a data file, then you can replace the RMAN backup
file names with the storage snapshot names.

You can use the V$CLONEDFILE view to show information about each data file in the
CloneDB database. This information includes the data file name in the backup, the
corresponding data file name in the CloneDB database, the number of blocks read
from the backup file, and the number of requests issued against the backup file.

Because CloneDB databases use the backup files as their backend storage, the
backup files must be available to each CloneDB database for it to run. If the backup
files become unavailable, then the CloneDB databases return errors.

When your use of a CloneDB database is complete, you can destroy the CloneDB
database environment. You can delete all of the files in the CloneDB database
environment without affecting the production database environment or the backup
environment.

See Also:

Oracle Database Reference for more information about the V$CLONEDFILE
view

Cloning a Database in a Multitenant Environment
You can clone a database in a multitenant environment.

Refer to Oracle Multitenant Administrator's Guide for more information about cloning a
database in a multitenant environment.

Chapter 4
Cloning a Database

4-60

Cloning a Database with Oracle Automatic Storage Management (Oracle
ASM)

Oracle Automatic Storage Management (Oracle ASM) provides support for cloning a
pluggable database (PDB) in a multitenant container database (CDB). Oracle ASM does not
support cloning a non-CDB.

See the following guides for more information:

• Oracle Automatic Storage Management Administrator's Guide

• Oracle Multitenant Administrator's Guide

Dropping a Database
Dropping a CDB involves removing its data files, online redo logs, control files, and
initialization parameter files.

WARNING:

Dropping a CDB deletes all its data.

To drop a database:

• Submit the following statement:

DROP DATABASE;

The DROP DATABASE statement first deletes all control files and all other database files listed in
the control file. It then shuts down the database instance.

To use the DROP DATABASE statement successfully, the database must be mounted in
exclusive and restricted mode.

The DROP DATABASE statement has no effect on archived redo log files, nor does it have any
effect on copies or backups of the database. It is best to use RMAN to delete such files.

If you used the Database Configuration Assistant to create your database, you can use that
tool to delete (drop) your database and remove the files.

See Also:

Oracle Database Administrator’s Guide

Chapter 4
Dropping a Database

4-61

5
Configuring a CDB Fleet

A CDB fleet is a collection of CDBs and hosted PDBs that you can manage as one logical
CDB.

• About CDB Fleets
A lead CDB is the central location for monitoring and managing the CDBs in the fleet.

• Purpose of a CDB Fleet
A CDB fleet provides the database infrastructure for scalability and centralized
management of many CDBs.

• Setting the Lead CDB in a CDB Fleet
Set the lead CDB in a CDB fleet by setting the LEAD_CDB database property to true.

• Designating a CDB Fleet Member
Designate a fleet member by setting the LEAD_CDB_URI database property to a database
link that points to the lead CDB.

About CDB Fleets
A lead CDB is the central location for monitoring and managing the CDBs in the fleet.

Designate one CDB in the fleet to be the lead CDB by setting its LEAD_CDB database property
to TRUE. The other CDBs in the fleet point to the lead CDB by setting the LEAD_CDB_URI
database property. After you configure the CDB fleet, PDB information from the various CDBs
is synchronized with the lead CDB. All PDBs in the CDBs are now “visible” in the lead CDB,
enabling you to access the PDBs in the fleet as a single, logical CDB from the lead CDB.

The following figure shows a CDB fleet consisting of CDB1, CDB2, and CDB3. The lead CDB
is CDB1. CDB2_hrpdb, which resides in CDB2, is visible in CDB1. CDB3_hrpdb, which
resides in CDB3, is also visible in CDB1.

5-1

Figure 5-1 CDB Fleet

CDB 3

CDB3_hrpdb

Seed
(PDB$SEED)

Root (CDB$ROOT)

CDB 2

CDB2_hrpdb

Seed
(PDB$SEED)

Root (CDB$ROOT)

CDB 1

CDB3_hrpdbCDB2_hrpdbCDB1_hrpdb

Seed
(PDB$SEED)

Root (CDB$ROOT)

All Oracle Database features, such as Oracle Real Application Cluster (Oracle RAC),
RMAN, point-in-time recovery, and flashback features, are supported for CDBs in the
fleet.

You can use the following cross-container features to access the CDBs and PDBs in a
CDB fleet:

• CDB views

• GV$ views

• The CONTAINERS clause

• Container maps

If a common application schema is configured with application containers, then these
cross-container features enable query and data aggregation across PDBs in different
CDBs managed in the fleet.

Note:

• Each PDB name must be unique across all CDBs in a CDB fleet.

• You can create a PDB in any CDB in the fleet, but you can only open a
PDB in the CDB where it was created.

Chapter 5
About CDB Fleets

5-2

See Also:

• "Monitoring Containers in a CDB"

• "Partitioning by PDB with Container Maps"

Purpose of a CDB Fleet
A CDB fleet provides the database infrastructure for scalability and centralized management
of many CDBs.

A CDB fleet is useful in the following situations:

• The number of PDBs you must provision exceeds the MAX_PDBS initialization parameter
setting, requiring you to create multiple CDBs.

• Different PDBs in a single configuration require different types of servers to function
optimally.

For example, some PDBs might process a large transaction load, while other PDBs are
used mainly for monitoring, and you want the appropriate server resources for these
PDBs, such as CPU, memory, I/O rate, and storage systems.

• Different PDBs that use the same application must reside in different locations.

Monitoring and Diagnostic Collection Across CDBs

The lead CDB can run monitoring and reporting applications that execute across the CDBs in
the fleet. You can install a monitoring application in one container, and then use CDB views
and GV$ views to monitor and process diagnostic data for the entire CDB fleet. A cross-
container query issued in the lead CDB can automatically execute in all PDBs across the
CDB fleet.

Software as a Service (SaaS) Applications

Using a common schema and common application objects in different application containers
across the CDB fleet, you can use the CONTAINERS clause or a container map to run queries
across all PDBs in the CDB fleet. To ensure a common application schema across the CDBs,
the application can be installed in an application root.

A typical use case involves installing the master application root in the lead CDB. An
application root clone resides in every other CDB in the fleet. Proxy PDBs for the application
root clones reside in the master application root.

Database as a Service (DBaaS) Applications

The lead CDB can serve as a central location where you can collect and view usage metrics
and status of all or a subset of the PDBs provisioned in the CDB fleet.

Microservices

Microservices are a specialization of service-oriented architectures used to build flexible,
independently deployable software systems. With microservices, each team can deploy and
manage a CDB fleet with customized scaling and availability SLAs. The CDBs can use
different storage systems and configuration settings and cater to different types of workloads.

Chapter 5
Purpose of a CDB Fleet

5-3

The lead CDB can help the central DBA manage the collection of CDBs associated
with each individual microservice.

See Also:

• "Monitoring Containers in a CDB"

• "Partitioning by PDB with Container Maps"

• Oracle Database Reference to learn more about MAX_PDBS

Setting the Lead CDB in a CDB Fleet
Set the lead CDB in a CDB fleet by setting the LEAD_CDB database property to true.

To set the lead CDB in a CDB fleet:

1. In SQL*Plus, ensure that the current container is the root of the CDB that will be
the lead CDB.

2. Optionally, check the current LEAD_CDB database property by running the following
query:

SELECT PROPERTY_VALUE
FROM DATABASE_PROPERTIES
WHERE PROPERTY_NAME='LEAD_CDB';

3. Set the LEAD_CDB database property to TRUE.

Example 5-1 Setting the Lead CDB Database Property to true

1. Access the CDB root:

ALTER SESSION SET CONTAINER = CDB$ROOT;

2. Run the following SQL statement:

ALTER DATABASE SET LEAD_CDB = TRUE;

See Also:

"About Container Access in a CDB"

Designating a CDB Fleet Member
Designate a fleet member by setting the LEAD_CDB_URI database property to a
database link that points to the lead CDB.

Chapter 5
Setting the Lead CDB in a CDB Fleet

5-4

Prerequisites

You must use a database link with fixed user semantics, which means that the user name
and password are in the link definition. The link cannot use connected user semantics, in
which case the user name and password are not in the link definition.

To designate a CDB fleet member:

1. In SQL*Plus, ensure that the current container is the root of the CDB that you want to
designate as a fleet member.

2. Optionally, check the current LEAD_CDB_URI database property by running the following
query:

SELECT PROPERTY_VALUE FROM DATABASE_PROPERTIES WHERE
PROPERTY_NAME='LEAD_CDB_URI';

3. If a database link does not exist, then create a link to the root of the lead CDB in the fleet.

The database link must be a fixed common user database link.

4. Set the LEAD_CDB_URI database property to the name of the database link to the lead
CDB.

Example 5-2 Designating a CDB Fleet Member

This example assumes that the lead CDB is cdb1 and that the database link to the lead CDB
does not exist. It also assumes that the network is configured so that the current CDB can
connect to cdb1 using the lead_pod service name.

1. Access the root of the CDB that you want to designate as a fleet member:

ALTER SESSION SET CONTAINER = CDB$ROOT;

2. Create the database link to cdb1:

CREATE PUBLIC DATABASE LINK lead_link
 CONNECT TO C##CF1 IDENTIFIED BY password
 USING 'lead_pod';

3. Set the LEAD_CDB_URI property to the name of the database link:

ALTER DATABASE SET LEAD_CDB_URI = 'dblink:LEAD_LINK';

See Also:

• "About Container Access in a CDB"

• Oracle Database Administrator’s Guide for information about fixed user
database links

Chapter 5
Designating a CDB Fleet Member

5-5

Part II
Creating PDBs and Application Containers

To create PDBs and application containers, use the CREATE PLUGGABLE DATABASE command.

For example, you can create a PDB from scratch, cloning an existing PDB, or plug in an
unplugged PDB. You can also remove PDBs from a CDB.

Note:

You can complete the tasks in this part using SQL*Plus or Oracle SQL Developer.

• Overview of PDB Creation
A CDB supports multiple techniques for creating PDBs.

• Creating a PDB from Scratch
Use the CREATE PLUGGABLE DATABASE statement to create a PDB in a CDB using the files
of the PDB seed (PDB$SEED).

• Cloning a PDB
You can create a PDB by cloning a local or remote PDB.

• Relocating a PDB
You can move a PDB to a different CDB or application container.

• Plugging In an Unplugged PDB
You can create a PDB by plugging an unplugged PDB into a CDB.

• Creating a PDB as a Proxy PDB
You can create a PDB as a proxy PDB by referencing it in a remote CDB.

• Administering a PDB Snapshot Carousel
You can configure a PDB snapshot carousel for a specified PDB, create snapshots
manually or automatically, and set the maximum number of snapshots.

• Removing a PDB
You can remove a plugged-in PDB from a CDB by unplugging it, dropping it, or relocating
it.

• Creating and Removing Application Containers and Seeds
You can create application containers and application seeds in several different ways.
You can also remove application containers from a CDB, and you can remove application
seeds from application containers.

Related Topics

• Tools for a Multitenant Environment
You can use various tools to configure and administer a multitenant environment.

6
Overview of PDB Creation

A CDB supports multiple techniques for creating PDBs.

The created PDB automatically includes a full data dictionary including metadata and internal
links to system-supplied objects in the CDB root. You must define every PDB from a single
root: either the CDB root or an application root.

Each PDB has a globally unique identifier (GUID). The PDB GUID is primarily used to
generate names for directories that store the PDB's files, including both Oracle Managed
Files directories and non-Oracle Managed Files directories.

• Current Container and PDB Creation
You can use the CREATE PLUGGABLE DATABASE statement to create PDBs, application
containers, application seeds, and application PDBs.

• Techniques for Creating a PDB
You can create a PDB with various techniques, all of which require the CREATE PLUGGABLE
DATABASE statement.

• PDB Storage
However you choose to create a PDB, you must decide on the tablespaces and files that
will store the data.

• Service Name Conversion
An important aspect of PDB creation is managing the renaming of database services.

• Summary of Clauses for Creating a PDB
When you create a PDB with the CREATE PLUGGABLE DATABASE statement, various
clauses are available based on different factors.

• General Prerequisites for PDB Creation
Before creating a PDB, you must meet certain prerequisites.

Current Container and PDB Creation
You can use the CREATE PLUGGABLE DATABASE statement to create PDBs, application
containers, application seeds, and application PDBs.

When you create a PDB, the current container—CDB root or application root—determines
the association of the PDB. The SQL statements that create PDBs and application PDBs are
the same. For example, when you run CREATE PLUGGABLE DATABASE statement in the CDB
root, the PDB belongs to the CDB root. When you run CREATE PLUGGABLE DATABASE
statement in an application root, the application PDB belongs to the application root.

When the CDB root is the current container, create an application root by running a CREATE
PLUGGABLE DATABASE statement with the AS APPLICATION CONTAINER clause. When cloning,
relocating, or plugging in a PDB to an application container, the application name and version
of the PDB must match the application name and version of the application container.

6-1

Techniques for Creating a PDB
You can create a PDB with various techniques, all of which require the CREATE
PLUGGABLE DATABASE statement.

Creating a PDB is the process of associating it with a CDB or an application container.

The following graphic depicts the options for creating a PDB.

Note:

A multitenant container database is the only supported architecture in Oracle
Database 21c and later releases. While the documentation is being revised,
legacy terminology may persist. In most cases, "database" and "non-CDB"
refer to a CDB or PDB, depending on context. In some contexts, such as
upgrades, "non-CDB" refers to a non-CDB from a previous release.

Figure 6-1 Options for Creating a PDB

Adopting a
Non-CDB as a

PDB

Plugging in an
Unplugged PDB

RemotelyLocally

Creating a PDB

Referencing as a
Proxy PDB

Plugging InRelocationCloningCreating from
Scratch

Using Classic
Upgrade

(Deprecated)

Using Replay
Upgrade

The following table describes the creation techniques. An additional technique, which
is not covered in this manual, is to use the DUPLICATE command in Recovery Manager
to copy a PDB from one CDB to another CDB.

Chapter 6
Techniques for Creating a PDB

6-2

Table 6-1 Techniques for Creating a PDB

Technique Description More Information

Create a PDB from scratch Create a PDB in a CDB using the files of the
PDB seed or application seed. This
technique copies the files associated with
the seed to a new location and associates
the copied files with the new PDB. This is
the default creation mechanism. The other
techniques require either a source PDB or
XML.

"Creating a PDB from Scratch"

Clone an existing PDB Create a PDB by cloning a source PDB. A
source can be a PDB in the local CDB, a
PDB in a remote CDB, or a PDB in a local or
remote application container. This technique
copies the files associated with the source to
a new location and associates the copied
files with the new PDB.

"Cloning a PDB"

Relocate a PDB to a different
CDB

Create a PDB by relocating it from one CDB
to another. This technique moves the files
associated with the PDB to a new location.

"Relocating a PDB"

Plug an unplugged PDB into a
CDB

Create a PDB by using the XML metadata
file that describes the PDB and the files
associated with the PDB to plug it into the
CDB.

"Plugging In an Unplugged
PDB"

Reference a PDB as a proxy PDB Create a PDB as a proxy PDB by
referencing a different PDB with a database
link. The referenced PDB can be in the
same CDB as the proxy PDB, or it can be in
a different CDB.

"Creating a PDB as a Proxy
PDB"

Adopting a non-CDB as a PDB
using Replay Upgrade

When adopting a non-CDB from a previous
release as a PDB in an Oracle Database
21c CDB, the upgrade occurs automatically
when the PDB is opened normally. The
Replay Upgrade feature automatically
captures necessary CREATE OR REPLACE
statements, replays the statements only for
changed objects, and converts the data
dictionary. The replay mechanism is the
same one used in application
synchronization.

If you disable Replay Upgrade by executing
ALTER DATABASE UPGRADE SYNC OFF,
which is not recommended, then you can
run catctl.pl with the -t option for classic
upgrade. In this case, you must resolve any
compatibility errors manually.

Oracle Database Upgrade
Guide to learn how to adopt a
non-CDB as a PDB using
Replay Upgrade

You can unplug a PDB when you want to plug it into a different CDB. You can unplug or drop
a PDB when you no longer need it. An unplugged PDB is not usable until it is plugged into a
CDB.

Chapter 6
Techniques for Creating a PDB

6-3

See Also:

• "Creating and Removing Application Containers and Seeds"

• "Unplugging a PDB from a CDB"

• "Dropping a PDB"

• Oracle Database Backup and Recovery User’s Guide to learn how to
copy a PDB using the DUPLICATE command

• Oracle Database SQL Language Reference for more information about
the CREATE PLUGGABLE DATABASE statement

PDB Storage
However you choose to create a PDB, you must decide on the tablespaces and files
that will store the data.

• Storage Limits
The optional STORAGE clause of the CREATE PLUGGABLE DATABASE statement
specifies storage limits for PDBs.

• Default Tablespace
The DEFAULT TABLESPACE clause of the CREATE PLUGGABLE DATABASE statement
specifies the default tablespace for the new PDB.

• User Tablespaces
The USER_TABLESPACES clause of the CREATE PLUGGABLE DATABASE statement
specifies which tablespaces are available in the new PDB. You can use this clause
to separate the data for multiple schemas into different PDBs.

• PDB File Locations
In the CREATE PLUGGABLE DATABASE statement, you can specify the locations of
files used by the new PDB.

Storage Limits
The optional STORAGE clause of the CREATE PLUGGABLE DATABASE statement specifies
storage limits for PDBs.

The STORAGE clause specifies the following limits:

• The amount of storage that can be used by all tablespaces that belong to the PDB

Use MAXSIZE and a size clause to specify a limit, or set MAXSIZE to UNLIMITED to
indicate no limit.

• The amount of storage that can be used by unified audit OS spillover (.bin format)
files in the PDB

Use MAX_AUDIT_SIZE and a size clause to specify a limit, or set MAX_AUDIT_SIZE to
UNLIMITED to indicate no limit.

• The amount of diagnostics (trace files and incident dumps) in the Automatic
Diagnostic Repository (ADR) that can be used by the PDB

Chapter 6
PDB Storage

6-4

Use MAX_DIAG_SIZE and a size clause to specify a limit, or set MAX_DIAG_SIZE to
UNLIMITED to indicate no limit.

If STORAGE UNLIMITED is set, or if there is no STORAGE clause, then there are no storage limits
for the PDB.

The following are examples that use the STORAGE clause.

Example 6-1 STORAGE Clause That Specifies a Storage Limit

This STORAGE clause specifies that the storage used by all tablespaces that belong to the PDB
must not exceed 2 gigabytes.

STORAGE (MAXSIZE 2G)

Example 6-2 STORAGE Clause That Specifies Unlimited Storage

This STORAGE clause specifies unlimited storage for all tablespaces that belong to the PDB.

STORAGE (MAXSIZE UNLIMITED)

See Also:

Oracle Database SQL Language Reference for the syntax of the STORAGE clause

Default Tablespace
The DEFAULT TABLESPACE clause of the CREATE PLUGGABLE DATABASE statement specifies the
default tablespace for the new PDB.

Oracle Database assigns the default tablespace to any non-SYSTEM users who do not have a
different tablespace specified.

When you create the PDB from the PDB seed or an application seed and specify the DEFAULT
TABLESPACE clause, Oracle Database creates a bigfile tablespace and sets it as the default
tablespace for the PDB. When you create the PDB using a method other than the using the
PDB seed or application seed, such as cloning a PDB or plugging in an unplugged PDB, the
default tablespace must be a tablespace that already exists in the source PDB.

Example 6-3 DEFAULT TABLESPACE Clause

DEFAULT TABLESPACE sales

User Tablespaces
The USER_TABLESPACES clause of the CREATE PLUGGABLE DATABASE statement specifies which
tablespaces are available in the new PDB. You can use this clause to separate the data for
multiple schemas into different PDBs.

You can use this clause to specify one of the following options:

Chapter 6
PDB Storage

6-5

• List one or more tablespaces to include.

• Specify ALL, the default, to include all tablespaces.

• Specify ALL EXCEPT to include all tablespaces, except for the tablespaces listed.

• Specify NONE to exclude all tablespaces.

• If the creation mode of the user tablespaces must be different from the creation
mode for the Oracle-supplied tablespaces (such as SYSTEM and SYSAUX), then
specify one of the following in the USER_TABLESPACES clause:

– COPY: The files of the tablespaces are copied to a new location.

– MOVE: The files of the tablespaces are moved to a new location.

– NOCOPY: The files of the tablespaces are not copied or moved.

– SNAPSHOT COPY: The tablespaces are cloned with storage snapshots.

– NO DATA: The data model definition of the tablespaces is cloned but not the
tablespaces’ data.

When the compatibility level of the CDB is 12.2.0 or higher, the tablespaces that are
excluded by this clause are created offline in the new PDB, and they have no data files
associated with them. When the compatibility level of the CDB is lower than 12.2.0, the
tablespaces that are excluded by this clause are offline in the new PDB, and all data
files that belong to these tablespaces are unnamed and offline.

This clause does not apply to the SYSTEM, SYSAUX, or TEMP tablespaces. Do not include
these tablespaces in a tablespace list for this clause.

The following are examples that use the USER_TABLESPACES clause.

Example 6-4 USER_TABLESPACES Clause That Includes One Tablespace

Assume that the PDB from which a PDB is being created includes the following
tablespaces: tbs1, tbs2, and tbs3. This USER_TABLESPACES clause includes the tbs2
tablespace, but excludes the tbs1 and tbs3 tablespaces.

USER_TABLESPACES=('tbs2')

Example 6-5 USER_TABLESPACES Clause That Includes a List of Tablespaces

Assume that the PDB from which a PDB is being created includes the following
tablespaces: tbs1, tbs2, tbs3, tbs4, and tbs5. This USER_TABLESPACES clause
includes the tbs1, tbs4, and tbs5 tablespaces, but excludes the tbs2 and tbs3
tablespaces.

USER_TABLESPACES=('tbs1','tbs4','tbs5')

Example 6-6 USER_TABLESPACES Clause That Includes All Tablespaces
Except for Listed Ones

Assume that the PDB from which a PDB is being created includes the following
tablespaces: tbs1, tbs2, tbs3, tbs4, and tbs5. This USER_TABLESPACES clause

Chapter 6
PDB Storage

6-6

includes the tbs2 and tbs3 tablespaces, but excludes the tbs1, tbs4, and tbs5 tablespaces.

USER_TABLESPACES=ALL EXCEPT('tbs1','tbs4','tbs5')

Example 6-7 USER_TABLESPACES in a Different Creation Mode

This example shows a full CREATE PLUGGABLE DATABASE statement that plugs in a PDB and
only includes the tbs3 user tablespace from the PDB. The example copies the files for
Oracle-supplied tablespaces (such as SYSTEM and SYSAUX) to a new location, but moves the
files of the tbs3 user tablespace.

CREATE PLUGGABLE DATABASE ncdb USING '/disk1/oracle/ncdb.xml'
 COPY
 FILE_NAME_CONVERT = ('/disk1/oracle/dbs/', '/disk2/oracle/ncdb/')
 USER_TABLESPACES=('tbs3') MOVE;

PDB File Locations
In the CREATE PLUGGABLE DATABASE statement, you can specify the locations of files used by
the new PDB.

The term "file name" means both the name and the location of a file. The CREATE PLUGGABLE
DATABASE statement has the following clauses that indicate the file names of the new PDB
being created:

• The FILE_NAME_CONVERT clause specifies the names of the PDB's files after the PDB is
created.

Use this clause when the files are not yet at their ultimate destination, and you want to
copy or move them during PDB creation. You can use this clause in any CREATE
PLUGGABLE DATABASE statement.

• The CREATE_FILE_DEST clause specifies the default Oracle Managed Files file system
directory or Oracle ASM disk group for the PDB's files.

Use this clause to enable Oracle Managed Files for the new PDB, independent of any
Oracle Managed Files default location specified in the root for the CDB. You can use this
clause in any CREATE PLUGGABLE DATABASE statement.

When necessary, you can use both clauses in the same CREATE PLUGGABLE DATABASE
statement. In addition, the following initialization parameters can control the location of the
new PDB files:

• The DB_CREATE_FILE_DEST initialization parameter set in the root

This initialization parameter specifies the default location for Oracle Managed Files for
the CDB. When this parameter is set in a PDB, it specifies the default location for Oracle
Managed Files for the PDB.

• The PDB_FILE_NAME_CONVERT initialization parameter

This initialization parameter maps names of existing files to new file names when
processing a CREATE PLUGGABLE DATABASE statement.

The following table shows the precedence order when both clauses are used in the same
CREATE PLUGGABLE DATABASE statement, and both initialization parameters are set. For each

Chapter 6
PDB Storage

6-7

clause and initialization parameter, the table also shows whether the files created by
the CREATE PLUGGABLE DATABASE statement will use Oracle Managed Files or not.

Table 6-2 Summary of File Location Clauses and Initialization Parameters

Clause or Initialization
Parameter

Precedence Order Will the Files Created by
CREATE PLUGGABLE
DATABASE Use Oracle
Managed Files?

FILE_NAME_CONVERT clause 1 No

CREATE_FILE_DEST clause 2 Yes

DB_CREATE_FILE_DEST
initialization parameter

3 Yes

PDB_FILE_NAME_CONVERT
initialization parameter

4 No

Regarding the use of Oracle Managed Files, the table only applies to files created by
the CREATE PLUGGABLE DATABASE statement. Files created for the PDB after the PDB
has been created might or might not use Oracle Managed Files.

In addition, if FILE_NAME_CONVERT and CREATE_FILE_DEST are both specified in the
CREATE PLUGGABLE DATABASE statement, then the FILE_NAME_CONVERT setting is used
for the files being placed during PDB creation, and the CREATE_FILE_DEST setting is
used to set the DB_CREATE_FILE_DEST initialization parameter in the PDB. In this case,
Oracle Managed Files controls the location of the files for the PDB after PDB creation.

Note:

The PATH_PREFIX clause does not affect files created by Oracle Managed
Files.

• FILE_NAME_CONVERT Clause
If the PDB will not use Oracle Managed Files, then the FILE_NAME_CONVERT clause
of the CREATE PLUGGABLE DATABASE statement specifies how to generate the
names of files (such as data files) using the names of existing files.

• CREATE_FILE_DEST Clause
The CREATE_FILE_DEST clause of the CREATE PLUGGABLE DATABASE statement
enables Oracle Managed Files for the PDB and specifies the default file system
directory or Oracle ASM disk group for the PDB files.

• The PATH_PREFIX Clause
The PATH_PREFIX clause of CREATE PLUGGABLE DATABASE ensures that all directory
object paths associated with the PDB are restricted to the specified directory or its
subdirectories.

• Restrictions on PDB File Locations
The PATH_PREFIX clause of the CREATE PLUGGABLE DATABASE statement ensures
that all directory object paths associated with the PDB are restricted to the
specified directory or its subdirectories.

Chapter 6
PDB Storage

6-8

See Also:

Oracle Database Reference to learn more about DB_CREATE_FILE_DEST and
PDB_FILE_NAME_CONVERT

FILE_NAME_CONVERT Clause
If the PDB will not use Oracle Managed Files, then the FILE_NAME_CONVERT clause of the
CREATE PLUGGABLE DATABASE statement specifies how to generate the names of files (such as
data files) using the names of existing files.

You can use this clause to specify one of the following options:

• One or more file name patterns and replacement file name patterns, in the following form:

'string1' , 'string2' , 'string3' , 'string4' , ...

The string2 file name pattern replaces the string1 file name pattern, and the string4 file
name pattern replaces the string3 file name pattern. You can use as many pairs of file
name pattern and replacement file name pattern strings as required.

If you specify an odd number of strings (the last string has no corresponding replacement
string), then an error is returned. Do not specify more than one pattern/replace string that
matches a single file name or directory.

• NONE when no files should be copied or moved during PDB creation. Omitting the
FILE_NAME_CONVERT clause is the same as specifying NONE.

You can use the FILE_NAME_CONVERT clause in any CREATE PLUGGABLE DATABASE statement.

When the FILE_NAME_CONVERT clause is not specified in a CREATE PLUGGABLE DATABASE
statement, either Oracle Managed Files or the PDB_FILE_NAME_CONVERT initialization
parameter specifies how to generate the names of the files. If you use both Oracle Managed
Files and the PDB_FILE_NAME_CONVERT initialization parameter, then Oracle Managed Files
takes precedence. The FILE_NAME_CONVERT clause takes precedence when it is specified.

File name patterns specified in the FILE_NAME_CONVERT clause cannot match files or
directories managed by Oracle Managed Files.

Example 6-8 FILE_NAME_CONVERT Clause

This FILE_NAME_CONVERT clause generates file names for the new PDB in the /oracle/pdb5
directory using file names in the /oracle/dbs directory.

FILE_NAME_CONVERT = ('/oracle/dbs/', '/oracle/pdb5/')

Chapter 6
PDB Storage

6-9

See Also:

• "Example 15-34"

• Oracle Database Administrator’s Guide

• Oracle Database SQL Language Reference for the syntax of the
FILE_NAME_CONVERT clause

• Oracle Database Reference for information about the
PDB_FILE_NAME_CONVERT initialization parameter

CREATE_FILE_DEST Clause
The CREATE_FILE_DEST clause of the CREATE PLUGGABLE DATABASE statement enables
Oracle Managed Files for the PDB and specifies the default file system directory or
Oracle ASM disk group for the PDB files.

The PDB data files and temp files are restricted to the specified directory and its
subdirectories. If a file system directory is specified as the default location in this
clause, then the directory must exist. Also, the user who runs the CREATE PLUGGABLE
DATABASE statement must have the appropriate privileges to create files in the specified
directory. Alternatively, you can specify the name of a directory object that exists in the
CDB root (CDB$ROOT). The directory object points to the file system directory used by
CREATE_FILE_DEST.

If there is a default Oracle Managed Files location for the CDB set in the CDB root,
then the CREATE_FILE_DEST setting overrides the CDB root’s setting, and the specified
CREATE_FILE_DEST setting is used for the PDB.

If CREATE_FILE_DEST=NONE is specified, then Oracle Managed Files is disabled for the
PDB.

When the CREATE_FILE_DEST clause is set to a value other than NONE, the
DB_CREATE_FILE_DEST initialization parameter is set implicitly in the PDB with
SCOPE=SPFILE.

If the CDB root uses Oracle Managed Files, and this clause is not specified, then the
PDB inherits the Oracle Managed Files default location from the CDB root.

Note:

This feature is available starting with Oracle Database 12c Release 1
(12.1.0.2).

Example 6-9 CREATE_FILE_DEST Clause

This CREATE_FILE_DEST clause specifies /oracle/pdb2/ as the default Oracle Managed
Files file system directory for the new PDB.

CREATE_FILE_DEST = '/oracle/pdb2/'

Chapter 6
PDB Storage

6-10

See Also:

Oracle Database Administrator’s Guide

The PATH_PREFIX Clause
The PATH_PREFIX clause of CREATE PLUGGABLE DATABASE ensures that all directory object
paths associated with the PDB are restricted to the specified directory or its subdirectories.

PATH_PREFIX also ensures that the following files associated with the PDB are restricted to
specified directory:

• The Oracle XML repository for the PDB

• Files created with a CREATE PFILE statement

• The export directory for Oracle wallets

• Library object created with a CREATE LIBRARY statement

Note:

The library must use a directory object. If a PDB uses a predefined PATH_PREFIX,
attempts to use a library object that does not use a directory object result in an
ORA-65394 error. The library object is not invalidated, but to make it usable you must
recreate it using a directory object.

Restrictions on PDB File Locations
The PATH_PREFIX clause of the CREATE PLUGGABLE DATABASE statement ensures that all
directory object paths associated with the PDB are restricted to the specified directory or its
subdirectories.

This clause also ensures that the following files associated with the PDB are restricted to the
specified directory: the Oracle XML repository for the PDB, files created with a CREATE PFILE
statement, and the export directory for Oracle wallets. Use this clause when you want to
ensure that a PDB's files reside in a specific directory and its subdirectories.

You can use this clause to specify one of the following options:

• An absolute path that is used as a prefix for all file paths associated with the PDB.

• The name of a directory object that exists in the CDB root (CDB$ROOT). The directory
object points to the absolute path to be used for PATH_PREFIX.

• NONE to indicate that there are no restrictions for the file paths. Omitting the PATH_PREFIX
clause is the same as specifying NONE.

After a PDB is created, its PATH_PREFIX setting cannot be modified.

You can use the PATH_PREFIX clause in any CREATE PLUGGABLE DATABASE statement.

Chapter 6
PDB Storage

6-11

Example 6-10 PATH_PREFIX Clause

This PATH_PREFIX clause ensures that all file paths associated with the PDB are
restricted to the /disk1/oracle/dbs/salespdb/ directory.

PATH_PREFIX = '/disk1/oracle/dbs/salespdb/'

Be sure to specify the path name so that it is properly formed when file names are
appended to it. For example, on UNIX systems, be sure to end the path name with a
forward slash (/).

Note:

• After the PATH_PREFIX clause is specified for a PDB, existing directory
objects might not work as expected, since the PATH_PREFIX string is
always added as a prefix to all local directory objects in the PDB.

• The PATH_PREFIX clause does not affect files created by Oracle
Managed Files.

• The PATH_PREFIX clause only applies to user-created directory objects. It
does not apply to Oracle-supplied directory objects.

• The PATH_PREFIX clause does not apply to data files or temporary files. If
you are using Oracle Managed Files, then use the CREATE_FILE_DEST
clause to restrict the locations of data files and temporary files.

See Also:

• "Users, Roles, and Objects in a Multitenant Environment"

• "Viewing Information About the Containers in a CDB"

Service Name Conversion
An important aspect of PDB creation is managing the renaming of database services.

When the service name of a new PDB conflicts with an existing service name in the
CDB, plug-in violations can result. The SERVICE_NAME_CONVERT clause of the CREATE
PLUGGABLE DATABASE statement renames the user-defined services of the new PDB
based on the service names of the source PDB. Using this clause, you can rename
services and avoid plug-in violations.

You can use this clause to specify one of the following options:

• One or more service names and replacement service names, in the following form:

'string1' , 'string2' , 'string3' , 'string4' , ...

Chapter 6
Service Name Conversion

6-12

The string2 service name replaces the string1 service name, and the string4 service
name replaces the string3 service name. You can use as many pairs of service names
and replacement service names as required.

If you specify an odd number of strings (the last string has no corresponding replacement
string), then an error is returned.

• NONE when no service names need to be renamed. Omitting the SERVICE_NAME_CONVERT
clause is the same as specifying NONE.

You can use the SERVICE_NAME_CONVERT clause in any CREATE PLUGGABLE DATABASE
statement, except for a CREATE PLUGGABLE DATABASE statement that creates a PDB from the
PDB seed. The PDB seed cannot have user-defined services. However, you can use this
statement for a CREATE PLUGGABLE DATABASE statement that creates an application PDB from
an application seed in an application container.

Note:

This clause does not apply to the default service for the PDB. The default service
has the same name as the PDB.

Example 6-11 SERVICE_NAME_CONVERT Clause

This SERVICE_NAME_CONVERT clause uses renames the salesrep service to salesperson.

SERVICE_NAME_CONVERT = ('salesrep','salesperson')

See Also:

Oracle Database SQL Language Reference

Summary of Clauses for Creating a PDB
When you create a PDB with the CREATE PLUGGABLE DATABASE statement, various clauses
are available based on different factors.

One factor is the technique you are using to create the PDB. You can determine which
clauses to use by answering a series of questions.

The following table describes which CREATE PLUGGABLE DATABASE clauses to specify based
on different factors.

Table 6-3 Clauses for Creating a PDB

Question Yes No Clause Can Be
Used Only When

Do you want to create an
application container
instead of a PDB?

Specify the AS APPLICATION
CONTAINER clause.

Omit the AS APPLICATION
CONTAINER clause.

Creating an
application
container in a CDB

Chapter 6
Summary of Clauses for Creating a PDB

6-13

Table 6-3 (Cont.) Clauses for Creating a PDB

Question Yes No Clause Can Be
Used Only When

Are you plugging a PDB
into a CDB that contains
one or more PDBs that
were created by plugging in
the same PDB?

Specify the AS CLONE clause to
ensure that Oracle Database
generates a unique PDB DBID,
GUID, and other identifiers
expected for the new PDB. The
PDB is plugged in as a clone of
the unplugged PDB to ensure
that all of its identifiers are
unique.

Omit the AS CLONE clause. Plugging in an
unplugged PDB

Do you want to create an
application seed in an
application container?

Specify the AS SEED clause. Omit the AS SEED clause. Creating an
application seed in
an application
container

Do you want to use a
CREATE_FILE_DEST
clause to specify the
Oracle Managed Files
default location for the PDB
files?

When creating a PDB from
the PDB seed or an
application seed, the
source files are the files
associated with the seed.

Include a CREATE_FILE_DEST
clause that specifies the default
file system directory or Oracle
ASM disk group for the PDB's
files.

Omit the
CREATE_FILE_DEST clause.

Use one of these techniques
to specify the target locations
of the files:

• FILE_NAME_CONVERT
clause

• Enable Oracle Managed
Files for the CDB for it to
determine the target
locations.

• Specify the target
locations in the
PDB_FILE_NAME_CONVE
RT initialization
parameter.

See "PDB File Locations".

Creating a PDB
from the PDB seed
or an application
seed

Cloning a PDB

Relocating a PDB

Plugging in an
unplugged PDB

Do you want to specify a
default tablespace for the
PDB?

Specify a DEFAULT
TABLESPACE clause with the
appropriate limits.

Oracle Database will assign to
this tablespace any non-SYSTEM
users for whom you do not
specify a different tablespace.

When creating a PDB from the
PDB seed or an application
seed, Oracle Database creates
a bigfile tablespace and sets it
as the default tablespace. When
using a technique other than
creation from the PDB seed or
an application seed, the
specified tablespace must exist
in the source PDB.

Omit the DEFAULT
TABLESPACE clause.

If you do not specify this
clause, then the SYSTEM
tablespace is the default
tablespace for non-SYSTEM
users. Using the SYSTEM
tablespace for non-SYSTEM
users is not recommended.

Creating a PDB
from the PDB seed
or an application
seed

Cloning a PDB

Relocating a PDB

Plugging in an
unplugged PDB

Chapter 6
Summary of Clauses for Creating a PDB

6-14

Table 6-3 (Cont.) Clauses for Creating a PDB

Question Yes No Clause Can Be
Used Only When

Do you want to use a
FILE_NAME_CONVERT
clause to specify the target
locations of the files?

When creating a PDB from
the PDB seed or an
application seed, the
source files are the files
associated with the seed.

Include a FILE_NAME_CONVERT
clause that specifies the target
locations of the files based on
the names of the source files.

Omit the
FILE_NAME_CONVERT
clause.

Use one of these techniques
to specify the target locations
of the files:

• CREATE_FILE_DEST
clause

• Enable Oracle Managed
Files for the CDB for it to
determine the target
locations.

• Specify the target
locations in the
PDB_FILE_NAME_CONVE
RT initialization
parameter.

See "PDB File Locations".

Creating a PDB
from the PDB seed
or an application
seed

Cloning a PDB

Relocating a PDB

Creating a proxy
PDB (Only applies
to data files in the
SYSTEM and
SYSAUX
tablespaces.)

Plugging in an
unplugged PDB

Is the PDB a reference
PDB with a dependent
proxy PDB, and is the host
name of its listener
changing?

Include a HOST clause and
specify the host name of the
listener for the PDB being
created.

For example, you might have a
listener network for the physical
host name and default port and
configure a second listener
bound to a virtual host name
and virtual IP address with a
nondefault port number.

Omit the HOST clause. Creating a PDB
from the PDB seed
or an application
seed

Cloning a PDB

Relocating a PDB

Plugging in an
unplugged PDB

Do you want to specify the
logging attribute of the
tablespaces in the new
PDB?

Include the logging_clause. Omit the logging_clause. Creating a PDB
from the PDB seed
or an application
seed

Cloning a PDB

Plugging in an
unplugged PDB

Chapter 6
Summary of Clauses for Creating a PDB

6-15

Table 6-3 (Cont.) Clauses for Creating a PDB

Question Yes No Clause Can Be
Used Only When

Do you want to copy or
move the files to a new
location?

Specify COPY to copy the files to
a new location. COPY is the
default. Specify MOVE to move
the files to a new location. Use
one of these techniques to
specify the target location:

• Include a
FILE_NAME_CONVERT
clause that specifies the
target locations based on
the names of the source
files.

• Include a
CREATE_FILE_DEST clause
that specifies the Oracle
Managed Files default
location for the PDB's files.

• Enable Oracle Managed
Files for it to determine the
target locations.

• Specify the target locations
in the
PDB_FILE_NAME_CONVERT
initialization parameter.

See "PDB File Locations".

Specify NOCOPY. Plugging in an
unplugged PDB

Do you want to specify that
the data model definition of
the source PDB is cloned
but not the data of the
source PDB?

Include the NO DATA clause. Omit the NO DATA clause. Cloning a PDB

Do you want to use multiple
parallel execution servers
to parallelize PDB
creation?

To let the CDB choose the
degree of parallelism, include or
omit the PARALLEL clause.

To specify the degree of
parallelism, specify the
PARALLEL clause with an
integer. For example, specify
PARALLEL 4 to indicate a
degree of parallelism of 4.

Specify PARALLEL 0 or
PARALLEL 1.

Creating a PDB
from the PDB seed
or an application
seed

Cloning a PDB

Chapter 6
Summary of Clauses for Creating a PDB

6-16

Table 6-3 (Cont.) Clauses for Creating a PDB

Question Yes No Clause Can Be
Used Only When

Do you want to use a
PATH_PREFIX clause to
restrict file paths for the
PDB for the following:
directory objects, the
Oracle XML repository for
the PDB, files created with
a CREATE PFILE
statement, and the export
directory for Oracle
wallets?

The PATH_PREFIX clause
does not affect files created
by Oracle Managed Files.

Include a PATH_PREFIX clause
that specifies an absolute path.

Set the PATH_PREFIX clause
to NONE or omit it.

Creating a PDB
from the PDB seed
or an application
seed

Cloning a PDB

Relocating a PDB

Plugging in an
unplugged PDB

Is the PDB a reference
PDB with a dependent
proxy PDB, and is the port
number of its listener
changing to a value other
than 1521?

Include a PORT clause and
specify the port number of the
listener for the PDB being
created.

For example, you might have a
listener network for the physical
host name and default port and
configure a second listener
bound to a virtual host name
and virtual IP address with a
nondefault port number.

Omit the PORT clause. Creating a PDB
from the PDB seed
or an application
seed

Cloning a PDB

Relocating a PDB

Plugging in an
unplugged PDB

Do you want to be able to
refresh the PDB to
propagate changes from
the source PDB to the
clone PDB?

A refreshable PDB must be
opened in read-only mode.

Include a REFRESH MODE
MANUAL or REFRESH MODE
EVERY minutes clause.

Omit the REFRESH MODE
clause or include a REFRESH
MODE NONE clause.

Cloning a PDB

Do you want to grant
predefined Oracle roles to
the PDB_DBA role locally in
the PDB?

The new administrator for
the PDB is granted the
PDB_DBA common role
locally in the PDB. By
default, the CREATE
PLUGGABLE DATABASE
statement does not grant
the administrator or the role
any privileges.

Include the ROLES clause and
specify the predefined Oracle
roles to grant to the PDB_DBA
role. The specified roles are
granted to the PDB_DBA role
locally in the PDB. The user who
runs the CREATE PLUGGABLE
DATABASE statement does not
need to be granted the specified
roles. See Oracle Database
Security Guide for information
about predefined Oracle roles.

Omit the ROLES clause. Creating a PDB
from the PDB seed
or an application
seed

Creating a proxy
PDB

Chapter 6
Summary of Clauses for Creating a PDB

6-17

Table 6-3 (Cont.) Clauses for Creating a PDB

Question Yes No Clause Can Be
Used Only When

Do you want to use a
SERVICE_NAME_CONVERT
clause to rename the user-
defined services of the new
PDB based on the service
names of the source PDB?

Include a
SERVICE_NAME_CONVERT
clause that specifies the new
name of a service and the
service name it is replacing.
Specify multiple service names
and replacement service names
if necessary.

Omit the
SERVICE_NAME_CONVERT
clause.

Creating a PDB
from the application
seed, but not a
PDB seed

Cloning a PDB

Relocating a PDB

Creating a proxy
PDB (Only applies
to data files in the
SYSTEM and
SYSAUX
tablespaces.)

Plugging in an
unplugged PDB

Do you want to clone a
PDB using a storage-
managed snapshot (not a
snapshot generated by
ALTER PLUGGABLE
DATABASE SNAPSHOT)?

Specify a SNAPSHOT COPY
clause to clone a PDB using
storage-managed snapshots.
SNAPSHOT COPY is supported
only if the underlying file system
supports storage snapshots.

A snapshot copy is nearly
instantaneous because it does
not require copying the full data
files of the source PDB.
However, you cannot unplug a
snapshot copy PDB from the
CDB root or application root.
Also, if a snapshot copy PDB
exists, then you cannot drop the
storage snapshot on which the
snapshot copy PDB is based.

The process of materializing
transforms a snapshot copy
PDB, which uses sparse files,
into a full PDB. Materialize a
PDB by running the ALTER
PLUGGABLE DATABASE
MATERIALIZE command.

Omit the SNAPSHOT COPY
clause.

Cloning a PDB

Chapter 6
Summary of Clauses for Creating a PDB

6-18

Table 6-3 (Cont.) Clauses for Creating a PDB

Question Yes No Clause Can Be
Used Only When

Do you want to enable
PDB-level snapshots using
ALTER PLUGGABLE
DATABASE SNAPSHOT?

Specify a SNAPSHOT MODE
clause in the ALTER
PLUGGABLE DATABASE
SNAPSHOT command, and
specify MANUAL or EVERY
snapshot_interval
[MINUTES|HOURS].

Omit the SNAPSHOT MODE
clause or specify SNAPSHOT
MODE NONE.

Creating a PDB
from the PDB seed
or an application
seed

Cloning a PDB

Relocating a PDB

Creating a proxy
PDB (Only applies
to data files in the
SYSTEM and
SYSAUX
tablespaces.)

Plugging in an
unplugged PDB

Are all source files in a
single directory with new
file names that would
require multiple
SOURCE_FILE_NAME_CONV
ERT entries?

Specify the
SOURCE_FILE_DIRECTORY with
the full absolute path to the
source files.

Omit the
SOURCE_FILE_DIRECTORY
clause.

Plugging in an
unplugged PDB
using an XML file
directly.

This clause does
not apply to
plugging in an
unplugged PDB
with a .pdb archive
file.

Do the contents of the XML
file accurately describe the
locations of the source
files?

Omit the
SOURCE_FILE_NAME_CONVERT
clause.

Use the
SOURCE_FILE_NAME_CONVE
RT clause to specify the
source file locations.

Plugging in an
unplugged PDB
using an XML file
directly.

This clause does
not apply to
plugging in an
unplugged PDB
with a .pdb archive
file.

Do you want to include the
new PDB in one or more
standby CDBs?

Specify ALL, ALL EXCEPT, or a
list of standby CDBs.

When creating a remote clone,
you can set the initialization
parameter
STANDBY_PDB_SOURCE_FILE_D
BLINK to the name of the
database link that points to the
source PDB data files. The
operation copies the data files
only if the source PDB is open
read-only.

Omit the STANDBYS clause or
specify NONE.

Creating a PDB
from the PDB seed
or an application
seed

Cloning a PDB

Relocating a PDB

Plugging in an
unplugged PDB

Chapter 6
Summary of Clauses for Creating a PDB

6-19

Table 6-3 (Cont.) Clauses for Creating a PDB

Question Yes No Clause Can Be
Used Only When

Do you want to limit the
amount of storage that the
PDB can use?

Specify a STORAGE clause with
the appropriate limits.

Omit the STORAGE clause, or
specify unlimited storage
using the STORAGE clause.

Creating a PDB
from the PDB seed
or an application
seed

Cloning a PDB

Relocating a PDB

Plugging in an
unplugged PDB

Do you want to reuse the
temp file if a temp file exists
in the target location?

Include the TEMPFILE REUSE
clause.

Omit the TEMPFILE REUSE
clause.

Ensure that there is no file
with the same name as the
new temp file in the target
location.

Creating a PDB
from the PDB seed
or an application
seed

Cloning a PDB

Relocating a PDB

Plugging in an
unplugged PDB

Do you want to specify
which tablespaces are
included in the new PDB
and which tablespaces are
excluded from the new
PDB?

Include the USER_TABLESPACES
clause and specify the
tablespaces that are included in
the new PDB.

Omit the
USER_TABLESPACES clause.

Plugging in an
unplugged PDB

Do you want to plug an
unplugged PDB into a
CDB?

Include the USING filename
clause.

If you are plugging in a PDB to a
primary CDB in a Data Guard
scenario, then set the
STANDBY_PDB_SOURCE_FILE_D
IRECTORY initialization
parameter to a standby location
that contains the source data
files for instantiating the PDB. If
not found, then the standby
database tries to locate the files
in the OMF location. If not found
in the OMF location, then copy
the data files to the OMF
location, and restart redo apply
on the standby database.

Omit the USING filename
clause.

Plugging in an
unplugged PDB

Chapter 6
Summary of Clauses for Creating a PDB

6-20

Table 6-3 (Cont.) Clauses for Creating a PDB

Question Yes No Clause Can Be
Used Only When

Do you want to create a
new PDB based on a PDB
snapshot?

Include the USING SNAPSHOT
clause and specify either the
PDB snapshot name, SCN, or
timestamp. The result is a full,
standalone PDB.

A PDB snapshot is a point-in-
time copy of a PDB. The source
PDB can be open read-only or
read/write while the snapshot is
created. To create PDB-level
snapshots manually, specify the
SNAPSHOT clause of CREATE
PLUGGABLE DATABASE (or
ALTER PLUGGABLE DATABASE).
Specifying the EVERY
interval clause configures the
PDB to create snapshots
automatically.

Note: PDB-level snapshots are
different from storage-managed
snapshots.

Exclude the USING
SNAPSHOT clause.

Cloning a PDB
snapshot

Do you want to clone a
PDB that resides in Oracle
ASM by splitting a mirror?

Include the USING MIRROR
COPY clause and specify the
name of the mirror copy and the
source PDB.

Omit the USING MIRROR
COPY clause.

Cloning a PDB that
uses Oracle ASM
storage

General Prerequisites for PDB Creation
Before creating a PDB, you must meet certain prerequisites.

Ensure that the following prerequisites are met before creating a PDB.

Table 6-4 Prerequisites for Creating PDBs

Prerequisite See Also

The CDB must exist. "Creating CDBs"

The CDB must be in read/write mode. "Modifying the Open Mode of PDBs"

The current user must be a common user whose
current container is the CDB root or an application
container.

"Common User Accounts"

The current user must have the CREATE
PLUGGABLE DATABASE system privilege.

Oracle Database Advanced Security Guide to
learn about system privileges

Chapter 6
General Prerequisites for PDB Creation

6-21

Table 6-4 (Cont.) Prerequisites for Creating PDBs

Prerequisite See Also

You must decide on a unique container name for
each container. Each container name must be
unique in a single CDB, and each container name
must be unique within the scope of all the CDBs
whose instances are reached through a specific
listener.

The PDB name distinguishes a PDB from other
PDBs in the CDB. PDB names follow the same
rules as service names, which includes being case-
insensitive.

Oracle Database Net Services Reference to
learn the rules for service names

If you are creating a PDB in an Oracle Data Guard
configuration with a physical standby database,
then you must complete additional tasks before
creating a PDB.

Oracle Data Guard Concepts and Administration
for more information

If you are creating a PDB that includes data that
was encrypted with Transparent Data Encryption,
then you must complete additional tasks.

Oracle Database Advanced Security Guide for
instructions

If you are creating a Database Vault-enabled PDB,
then you must complete additional tasks.

Oracle Database Vault Administrator’s Guide for
instructions

If you are creating a PDB by cloning a non-CDB,
and if you want the ability to recover the new PDB
using backups of the source non-CDB, then you
must execute DBMS_PDB.EXPORTRMANBACKUP
before cloning. When the source database is
opened in read-write mode, execute the procedure
as the last step before cloning. This procedure
captures all backup metadata in the data dictionary.

When relocating a PDB to a different CDB,
executing DBMS_PDB.EXPORTRMANBACKUP is not
necessary. Unplugging the PDB automatically
exports the backup metadata.

Oracle Database Backup and Recovery User’s
Guide for instructions

See Also:

• "About the Current Container"

• Oracle Database PL/SQL Packages and Types Reference to learn more
about DBMS_PDB.EXPORTRMANBACKUP

Chapter 6
General Prerequisites for PDB Creation

6-22

7
Creating a PDB from Scratch

Use the CREATE PLUGGABLE DATABASE statement to create a PDB in a CDB using the files of
the PDB seed (PDB$SEED).

You can also use this statement to create an application PDB in an application container
using the files of an application seed or the PDB seed.

• About Creating a PDB from Scratch
Use the CREATE PLUGGABLE DATABASE statement to create a new PDB by using the files of
the PDB seed or an application PDB from the files of an application seed or the PDB
seed.

• Creating a PDB
Using the CREATE PLUGGABLE DATABASE statement, you can create a PDB from the PDB
seed, and you can create an application PDB from an application seed or the PDB seed.

• Creating a PDB: Examples
These examples create a new PDB named salespdb and a salesadm local administrator
given different factors.

See Also:

Oracle Database SQL Language Reference for more information about the CREATE
PLUGGABLE DATABASE statement

About Creating a PDB from Scratch
Use the CREATE PLUGGABLE DATABASE statement to create a new PDB by using the files of the
PDB seed or an application PDB from the files of an application seed or the PDB seed.

The statement copies these files to a new location and associates them with the new PDB.
The following figure illustrates how this technique creates a new PDB in a CDB with the CDB
root as the current container.

7-1

Figure 7-1 Create a PDB in the CDB Root Using the PDB$SEED Files

Files of the New PDBPDB$SEED Database Files

Copy to New Location

New
PDB

PDBs

CREATE PLUGGABLE DATABASE

CDB

Seed
(PDB$SEED)

Root (CDB$ROOT)

The following figure illustrates how this technique creates a new application PDB in an
application container with the application root as the current container.

Chapter 7
About Creating a PDB from Scratch

7-2

Figure 7-2 Create a PDB in an Application Root Using the Application Seed Files

PDBs and Application Containers

CDB

Seed
(PDB$SEED)

Application
PDBs

Application
Seed

Files of the New
Application PDB

Application Seed
Database Files

Copy to New
Location

CREATE PLUGGABLE DATABASE

New
Application
PDB

Application Root

Application
Container

Root (CDB$ROOT)

See Also:

When an application container includes an application seed, and a CREATE PLUGGABLE
DATABASE statement is run in the application root to create an application PDB from the seed,
the application PDB is created using the application seed. However, when an application
container does not include an application seed, and a CREATE PLUGGABLE DATABASE
statement is run in the application root to create an application PDB from the seed, the
application PDB is created using the PDB seed (PDB$SEED).

When you create a new PDB or application PDB from the seed, you must specify an
administrator for the PDB or application PDB in the CREATE PLUGGABLE DATABASE statement.
The statement creates the administrator as a local user in the PDB and grants the PDB_DBA
role locally to the administrator.

Before creating a PDB using the PDB seed or an application seed, address the questions
that apply to creating a PDB from the seed in Table 6-3. The table describes which CREATE
PLUGGABLE DATABASE clauses you must specify based on different factors.

Chapter 7
About Creating a PDB from Scratch

7-3

See Also:

• "PDB Storage"

• "Creating an Application PDB"

Creating a PDB
Using the CREATE PLUGGABLE DATABASE statement, you can create a PDB from the
PDB seed, and you can create an application PDB from an application seed or the
PDB seed.

Prerequisites

Before creating a PDB from the PDB seed (PDB$SEED) or an application PDB from an
application seed or the PDB seed, complete the prerequisites described in "General
Prerequisites for PDB Creation".

To create a PDB:

1. In SQL*Plus, ensure that the current container is the CDB root or an application
root.

When the current container is the CDB root, the PDB is created in the CDB using
the files of the PDB seed.

When the current container is an application root, the application PDB is created in
the application container using the files of the application seed. If there is no
application seed in the application container, then the application PDB is created in
the application container using the files of the PDB seed.

2. Run the CREATE PLUGGABLE DATABASE statement, and specify a local administrator
for the PDB. Specify other clauses when they are required.

After you create the PDB, it is in mounted mode, and its status is NEW. You can
view the open mode of a PDB by querying the OPEN_MODE column in the V$PDBS
view. You can view the status of a PDB by querying the STATUS column of the
CDB_PDBS or DBA_PDBS view.

A new default service is created for the PDB. The service has the same name as
the PDB and can be used to access the PDB. Oracle Net Services must be
configured properly for clients to access this service.

3. Open the new PDB in read/write mode.

You must open the new PDB in read/write mode for Oracle Database to complete
the integration of the new PDB into the CDB. An error is returned if you attempt to
open the PDB in read-only mode. After the PDB is opened in read/write mode, its
status is NORMAL.

4. Back up the PDB.

A PDB cannot be recovered unless it is backed up.

A local user with the name of the specified local administrator is created and granted
the PDB_DBA common role locally in the PDB. If this user was not granted administrator

Chapter 7
Creating a PDB

7-4

privileges during PDB creation, then use the SYS and SYSTEM common users to administer to
the PDB.

Note:

If an error is returned during PDB creation, then the PDB being created might be in
an UNUSABLE state. You can check a PDB's state by querying the CDB_PDBS or
DBA_PDBS view, and you can learn more about PDB creation errors by checking the
alert log. An unusable PDB can only be dropped, and it must be dropped before a
PDB with the same name as the unusable PDB can be created.

See Also:

• "About Container Access in a CDB"

• "Modifying the Open Mode of PDBs" for more information

• Oracle Database Backup and Recovery User’s Guide for information about
backing up a PDB

Creating a PDB: Examples
These examples create a new PDB named salespdb and a salesadm local administrator
given different factors.

In addition to creating the salespdb PDB, this statement grants the PDB_DBA role to the PDB
administrator salesadm and grants the specified predefined Oracle roles to the PDB_DBA role
locally in the PDB.

In each example, the root to which the new PDB belongs depends on the current container
when the CREATE PLUGGABLE DATABASE statement is run:

• When the current container is the CDB root, the new PDB is created in the CDB root.

• When the current container is an application root in an application container, the new
PDB is created as an application PDB in the application root.

• Creating a PDB Using No Clauses: Example
This example shows the simplest way to create a PDB.

• Creating a PDB and Granting Predefined Oracle Roles to the PDB Administrator:
Example
This example uses the ROLES parameter to grant a predefined role.

• Creating a PDB Using Multiple Clauses: Example
This example creating a PDB using the STORAGE, DEFAULT TABLESPACE, PATH_PREFIX, and
FILE_NAME_CONVERT clauses.

Chapter 7
Creating a PDB: Examples

7-5

Creating a PDB Using No Clauses: Example
This example shows the simplest way to create a PDB.

This example assumes the following factors:

• Storage limits are not required for the PDB. Therefore, the STORAGE clause is not
required.

• The PDB does not require a default tablespace.

• The PATH_PREFIX clause is not required.

• The FILE_NAME_CONVERT clause and the CREATE_FILE_DEST clause are not
required.

Either Oracle Managed Files is enabled for the CDB, or the
PDB_FILE_NAME_CONVERT initialization parameter is set. The files associated with
the PDB seed or application seed will be copied to a new location based on the
Oracle Managed Files configuration or the initialization parameter setting.

• There is no file with the same name as the new temp file that will be created in the
target location. Therefore, the TEMPFILE REUSE clause is not required.

• No predefined Oracle roles need to be granted to the PDB_DBA role.

The following statement creates the PDB:

CREATE PLUGGABLE DATABASE salespdb ADMIN USER salesadm IDENTIFIED BY
pwd;

See Also:

• Oracle Database Administrator’s Guide for information about using
Oracle Managed Files

• Oracle Database Reference for information about the
PDB_FILE_NAME_CONVERT initialization parameter

• Oracle Database Security Guide for guidelines about choosing
passwords

Creating a PDB and Granting Predefined Oracle Roles to the PDB
Administrator: Example

This example uses the ROLES parameter to grant a predefined role.

This example assumes the following factors:

• Storage limits are not required for the PDB. Therefore, the STORAGE clause is not
required.

• The PDB does not require a default tablespace.

Chapter 7
Creating a PDB: Examples

7-6

• The PATH_PREFIX clause is not required.

• The FILE_NAME_CONVERT clause and the CREATE_FILE_DEST clause are not required.

Either Oracle Managed Files is enabled, or the PDB_FILE_NAME_CONVERT initialization
parameter is set. The files associated with the PDB seed or application seed will be
copied to a new location based on the Oracle Managed Files configuration or the
initialization parameter setting.

• There is no file with the same name as the new temp file that will be created in the target
location. Therefore, the TEMPFILE REUSE clause is not required.

• The PDB_DBA role should be granted the following predefined Oracle role locally: DBA.

The following statement creates the PDB:

CREATE PLUGGABLE DATABASE salespdb
 ADMIN USER salesadm IDENTIFIED BY password
 ROLES=(DBA);

See Also:

• Oracle Database Administrator’s Guide for information about using Oracle
Managed Files

• Oracle Database Reference for information about the PDB_FILE_NAME_CONVERT
initialization parameter

• Oracle Database Security Guide for guidelines about choosing passwords

Creating a PDB Using Multiple Clauses: Example
This example creating a PDB using the STORAGE, DEFAULT TABLESPACE, PATH_PREFIX, and
FILE_NAME_CONVERT clauses.

This example assumes the following factors:

• Storage limits must be enforced for the PDB. Therefore, the STORAGE clause is required.
Specifically, all tablespaces that belong to the PDB must not exceed 2 gigabytes.

• A default permanent tablespace is required for any non-administrative users for which
you do not specify a different permanent tablespace. Specifically, this example creates a
default permanent tablespace named sales with the following characteristics:

– The single data file for the tablespace is sales01.dbf, and the statement creates it in
the /disk1/oracle/dbs/salespdb directory.

– The SIZE clause specifies that the initial size of the tablespace is 250 megabytes.

– The AUTOEXTEND clause enables automatic extension for the file.

• The path prefix must be added to the PDB directory object paths. Therefore, the
PATH_PREFIX clause is required. In this example, the path prefix /disk1/oracle/dbs/
salespdb/ is added to the PDB’s directory object paths.

Chapter 7
Creating a PDB: Examples

7-7

• The CREATE_FILE_DEST clause will not be used, Oracle Managed Files is not
enabled, and the PDB_FILE_NAME_CONVERT initialization parameter is not set.
Therefore, the FILE_NAME_CONVERT clause is required. Specify the location of the
data files for the PDB seed or application seed on your system. In this example,
Oracle Database copies the files from /disk1/oracle/dbs/pdbseed to /disk1/
oracle/dbs/salespdb.

• There is no file with the same name as the new temp file that will be created in the
target location. Therefore, the TEMPFILE REUSE clause is not required.

• No predefined Oracle roles need to be granted to the PDB_DBA role.

The following statement creates the PDB:

CREATE PLUGGABLE DATABASE salespdb
 ADMIN USER salesadm IDENTIFIED BY password
 STORAGE (MAXSIZE 2G)
 DEFAULT TABLESPACE sales
 DATAFILE '/disk1/oracle/dbs/salespdb/sales01.dbf' SIZE 250M
 AUTOEXTEND ON
 PATH_PREFIX = '/disk1/oracle/dbs/salespdb/'
 FILE_NAME_CONVERT = ('/disk1/oracle/dbs/pdbseed/',
 '/disk1/oracle/dbs/salespdb/');

See Also:

• "Example 15-34" to learn how to view the location of the data files for the
PDB seed or application seed

• Oracle Database SQL Language Reference for more information about
the DEFAULT TABLESPACE clause

• Oracle Database Security Guide for guidelines about choosing
passwords

Chapter 7
Creating a PDB: Examples

7-8

8
Cloning a PDB

You can create a PDB by cloning a local or remote PDB.

• About Cloning a PDB
Cloning means creating a new PDB from a source PDB.

• Cloning a Local PDB
You can clone a local PDB by running a CREATE PLUGGABLE DATABASE statement and
specifying a local PDB in the FROM statement.

• Cloning a Remote PDB
You can clone a local PDB by running a CREATE PLUGGABLE DATABASE statement, and
specifying a database link to the remote PDB in the FROM statement.

• About Refreshable Clone PDBs
The CREATE PLUGGABLE DATABASE ... REFRESH MODE statement clones a source PDB
and configures the clone to be refreshable. Refreshing the clone PDB updates it with
redo accumulated since the last redo log apply.

• Cloning PDBs from PDB Snapshots
You can create PDBs from PDB snapshots by executing the CREATE PLUGGABLE
DATABASE … USING SNAPSHOT statement.

• Creating and Materializing Snapshot Copy PDBs
You can clone a PDB from snapshots of the underlying storage. The PDB files are
sparse, but you can materialize the files to create a standalone PDB.

• Creating a Split Mirror Clone PDB
In Oracle ASM, a split mirror is the process of detaching a point-in-time media copy from
a parent copy. After the split, updates to the parent do not affect the child copy.

About Cloning a PDB
Cloning means creating a new PDB from a source PDB.

A typical use case is development testing. You can create one or more clones of a PDB and
safely test them in isolation. For example, you might test a new or modified application on a
cloned PDB before using the application with a production PDB.

• How Cloning Works
This technique creates a new PDB from a source PDB. The process automatically plugs
the new PDB into the CDB.

• User Interface for PDB Cloning
All forms of PDB cloning use the CREATE PLUGGABLE DATABASE statement.

8-1

See Also:

Oracle Database Advanced Security Guide to learn about cloning a source
with encrypted data or a keystore set

How Cloning Works
This technique creates a new PDB from a source PDB. The process automatically
plugs the new PDB into the CDB.

To use this technique, you must specify the source in a CREATE PLUGGABLE DATABASE
statement. The source can be a local or remote PDB.

The target PDB is the copy of the source PDB. The copy is called a clone PDB.

The CREATE PLUGGABLE DATABASE statement copies the files associated with the
source to a new location and associates the files with the target PDB. When the CDB
is in ARCHIVELOG mode and local undo mode, the source PDB can be open in read/
write mode and operational during the cloning process. This technique is known as
hot cloning.

Note:

If you clone a PDB, and if that PDB has encrypted data or a TDE master
encryption key has been set, you must provide the keystore password of the
target keystore by including the KEYSTORE IDENTIFIED BY
keystore_password clause in the CREATE PLUGGABLE DATABASE ... FROM
SQL statement. You must provide the target keystore password so that a
check can be made to see if additional keys must be imported before the
clone can be used. You can determine whether the source PDB has
encrypted data or a TDE master encryption key set in the keystore by
querying the V$ENCRYPTION_KEYS dynamic view.

In all cloning scenarios, when you run the CREATE PLUGGABLE DATABASE statement in
the application root, the clone PDB is created in the application container. The
application name and version of the source PDB must match the application name and
version of the application container.

The following graphic illustrates how this technique creates a new application PDB in
an application container by cloning a local source application PDB. The source PDB
can also be a PDB plugged into the local CDB root, a PDB plugged into a remote CDB
root, or an application PDB plugged into a remote application root.

Chapter 8
About Cloning a PDB

8-2

Figure 8-1 Clone a PDB in an Application Container

PDBs and Application Containers

CDB

Seed
(PDB$SEED)

Root (CDB$ROOT)

Application
Container

Application
PDBs

Application
Seed

Files of the New
Application PDB

Files of the
Source PDB

Copy to New
Location

CREATE PLUGGABLE DATABASE ... FROM

New
Application
PDB

Application Root

Source
PDB

Copy

See Also:

"PDB Storage"

User Interface for PDB Cloning
All forms of PDB cloning use the CREATE PLUGGABLE DATABASE statement.

Cloning requires specifying the source PDB in a FROM clause. The following table summarizes
the most important clauses.

Chapter 8
About Cloning a PDB

8-3

Table 8-1 CREATE PLUGGABLE DATABASE Options for PDB Cloning

Clause Cloning Operation See Also

USING SNAPSHOT Creates a clone from a PDB-level snapshot (ALTER PLUGGABLE
DATABASE SNAPSHOT). Specify the PDB snapshot name, SCN, or
timestamp.

"Clones from PDB
Snapshots"

REFRESH MODE Creates a refreshable clone PDB. "Refreshable Clone
PDBs"

SNAPSHOT COPY Creates a snapshot copy PDB from a storage-managed snapshot
(not ALTER PLUGGABLE DATABASE SNAPSHOT). Storage-managed
snapshots are only supported on specific file systems.

A snapshot copy PDB does not include a complete copy of the
source data files. Rather, Oracle Database creates a storage-level
snapshot of the underlying file system, and then creates the clone
PDB from the snapshot.

Unlike a standard clone PDB, the snapshot copy PDB is dependent
on the storage snapshot. Therefore, you cannot unplug a snapshot
copy PDB from the CDB root or plug it in to an application root. Also,
you cannot drop the storage snapshot on which the PDB is based.
Instead, you must materialize the snapshot copy PDB, which
converts it into a full PDB with non-sparse files.

"Snapshot Copy
PDBs"

USING MIRROR
COPY

Creates a new PDB by splitting the ASM storage mirror specified by
mirror_name. You can only split one PDB from a prepared mirror
copy. If you want to create additional splits, you must prepare a new
mirror copy.

"Creating a Split
Mirror Clone PDB"

See Also:

• "Materializing a Snapshot Copy PDB"

• Oracle Database SQL Language Reference to learn more about CREATE
PLUGGABLE DATABASE clauses

Cloning a Local PDB
You can clone a local PDB by running a CREATE PLUGGABLE DATABASE statement and
specifying a local PDB in the FROM statement.

• About Cloning a Local PDB
The simplest form of cloning copies a PDB from a CDB into the same CDB.

• Cloning a Local PDB: Basic Steps
You can clone a local PDB by executing CREATE PLUGGABLE DATABASE and specify
the source PDB in the FROM clause.

• After Cloning a Local PDB
Certain rules regarding users and tablespaces apply after cloning a local PDB.

Chapter 8
Cloning a Local PDB

8-4

• Cloning a Local PDB: Examples
The following examples clone a local source PDB named pdb1 to a target PDB named
pdb2 given different factors.

About Cloning a Local PDB
The simplest form of cloning copies a PDB from a CDB into the same CDB.

Note:

You cannot use the FROM clause in the CREATE PLUGGABLE DATABASE statement to
create a PDB from the PDB seed (PDB$SEED) or from an application seed.

The following figure illustrates how to clone a local PDB.

Figure 8-2 Clone a Local PDB

New
PDB

PDBs

CDB

CREATE PLUGGABLE DATABASE ... FROM

Copy

Seed
(PDB$SEED)

Root (CDB$ROOT)

Files of the New

PDB

Files of the Source

PDB

Copy to New Location

Source
PDB

Before cloning a PDB, address the questions that apply to cloning a PDB in "Table 6-3". The
table describes which CREATE PLUGGABLE DATABASE clauses to specify based on different
factors.

Starting in Oracle Database 18c, you can clone a local PDB using DBCA.

Chapter 8
Cloning a Local PDB

8-5

See Also:

• "Determining the Current Container ID or Name"

• "Creating a PDB from Scratch" to learn how to create a PDB from the
seed

• "Cloning a Local PDB Using DBCA: Example"

• "Creating an Application PDB"

Cloning a Local PDB: Basic Steps
You can clone a local PDB by executing CREATE PLUGGABLE DATABASE and specify the
source PDB in the FROM clause.

Prerequisites

You must meet the following prerequisites:

• Complete the prerequisites described in "General Prerequisites for PDB Creation".

• The current user must have the CREATE PLUGGABLE DATABASE system privilege in
both the root and the source PDB.

• The source PDB cannot be closed.

• If the CDB is not in local undo mode, then the source PDB must be in open read-
only mode. This requirement does not apply if the CDB is in local undo mode.

• If the CDB is not in ARCHIVELOG mode, then the source PDB must be in open read-
only mode. This requirement does not apply if the CDB is in ARCHIVELOG mode.

• If you are creating an application PDB, then the application PDB must have the
same character set and national character set as the application container.

If the database character set of the CDB is AL32UTF8, then the character set and
national character set of the application container can be different from the CDB.
However, all application PDBs in an application container must have same
character set and national character set, matching that of the application container.

Note:

You can use the REFRESH MODE clause to create a refreshable clone of a local
PDB, but only if the database link loops back to the same CDB.

To clone a local PDB:

1. In SQL*Plus, ensure that the current container is the CDB root or an application
root.

When the current container is the CDB root, the PDB is created in the CDB. When
the current container is an application root, the application PDB is created in the
application container.

Chapter 8
Cloning a Local PDB

8-6

2. Run the CREATE PLUGGABLE DATABASE statement, and specify the source PDB in the FROM
clause. Specify other clauses when required.

After cloning a local PDB, the source and target PDBs are in the same CDB. The new
PDB is in mounted mode, and its status is NEW. You can view the open mode of a PDB by
querying the OPEN_MODE column in the V$PDBS view. You can view the status of a PDB by
querying the STATUS column of the CDB_PDBS or DBA_PDBS view.

A new default service is created for the PDB. The service has the same name as the
PDB and can be used to access the PDB. Oracle Net Services must be configured
properly for clients to access this service.

3. Open the new PDB in read/write mode.

You must open the new PDB in read/write mode for Oracle Database to complete the
integration of the new PDB into the CDB. An error is returned if you attempt to open the
PDB in read-only mode. After the PDB is opened in read/write mode, its status is NORMAL.

4. Back up the new PDB.

A PDB cannot be recovered unless it is backed up.

Note:

If an error is returned during PDB creation, then the PDB being created might be in
an UNUSABLE state. You can check the PDB state by querying the CDB_PDBS or
DBA_PDBS view. You can learn more about PDB creation errors by checking the alert
log. An unusable PDB can only be dropped, and it must be dropped before you can
create a PDB with the same name as the unusable PDB.

See Also:

• "About the Current Container" and "About Container Access in a CDB"

• "About the CDB Undo Mode"

• "Modifying the Open Mode of PDBs"

• Oracle Database Backup and Recovery User’s Guide to learn how to back up a
PDB

After Cloning a Local PDB
Certain rules regarding users and tablespaces apply after cloning a local PDB.

Users in the new PDB who used the default temporary tablespace of the source PDB use the
default temporary tablespace of the new PDB. Users who used nondefault temporary
tablespaces in the PDB continue to use the same local temporary tablespaces in the cloned
PDB.

Chapter 8
Cloning a Local PDB

8-7

See Also:

"About Managing Tablespaces in a CDB"

Cloning a Local PDB: Examples
The following examples clone a local source PDB named pdb1 to a target PDB named
pdb2 given different factors.

In each example, the root to which the new PDB belongs depends on the current
container when the CREATE PLUGGABLE DATABASE statement is run:

• When the current container is the CDB root, the database creates the PDB in the
CDB root.

• When the current container is an application root in an application container, the
database creates an application PDB in the application root.

• Cloning a Local PDB Using No Clauses: Example
This example shows the simplest way to clone a PDB.

• Cloning a Local PDB Using DBCA: Example
This example clones a PDB using the silent mode of DBCA. Hot cloning is
supported.

• Cloning a Local PDB with the PATH_PREFIX Clause: Example
This example explains how to clone a local PDB with the PATH_PREFIX,
FILE_NAME_CONVERT, and SERVICE_NAME_CONVERT clauses.

• Cloning a Local PDB Using the STORAGE Clause: Example
This example clones a local PDB using the FILE_NAME_CONVERT, STORAGE, and
SERVICE_NAME_CONVERT clauses.

• Cloning a Local PDB with the NO DATA Clause: Example
This example clones the data model definition of the PDB, but does not clone the
data in the PDB.

Cloning a Local PDB Using No Clauses: Example
This example shows the simplest way to clone a PDB.

This example assumes the following factors:

• The PATH_PREFIX clause is not required.

• The FILE_NAME_CONVERT clause and the CREATE_FILE_DEST clause are not
required.

Either Oracle Managed Files is enabled, or the PDB_FILE_NAME_CONVERT
initialization parameter is set. Therefore, the FILE_NAME_CONVERT clause is not
required. The files will be copied to a new location based on the Oracle Managed
Files configuration or the initialization parameter setting.

• Storage limits are not required for the PDB. Therefore, the STORAGE clause is not
required.

Chapter 8
Cloning a Local PDB

8-8

• There is no file with the same name as the new temp file that will be created in the target
location. Therefore, the TEMPFILE REUSE clause is not required.

The following statement clones the pdb2 PDB from the pdb1 PDB:

CREATE PLUGGABLE DATABASE pdb2 FROM pdb1;

See Also:

• Oracle Database Administrator’s Guide for more information about Oracle
Managed Files

• Oracle Database Reference for information about the PDB_FILE_NAME_CONVERT
initialization parameter

Cloning a Local PDB Using DBCA: Example
This example clones a PDB using the silent mode of DBCA. Hot cloning is supported.

This example assumes the following factors:

• The source CDB is a single-instance database with the SID orcl.

• The source PDB is pdb1. You intend for pdb1 to remain open during the cloning operation,
which means that local undo and ARCHIVELOG mode are enabled in the CDB. Otherwise,
DBCA closes the PDB during the clone operation, and after receiving confirmation, opens
the source PDB in read-only mode.

• The new PDB is pdb2.

• You are running DBCA in noninteractive mode.

The following command clones the pdb2 PDB from the pdb1 PDB:

./dbca -silent
 -createpluggabledatabase
 -sourcedb orcl
 -createpdbfrom PDB
 -pdbName pdb2
 -sourcepdb pdb1

See Also:

Oracle Database Administrator’s Guide for the DBCA command reference

Chapter 8
Cloning a Local PDB

8-9

Cloning a Local PDB with the PATH_PREFIX Clause: Example
This example explains how to clone a local PDB with the PATH_PREFIX,
FILE_NAME_CONVERT, and SERVICE_NAME_CONVERT clauses.

This example assumes the following factors:

• The path prefix must be added to the PDB's directory object paths. Therefore, the
PATH_PREFIX clause is required. In this example, the path prefix /disk2/oracle/
pdb2/ is added to the PDB’s directory object paths.

• The FILE_NAME_CONVERT clause is required to specify the target locations of the
copied files. In this example, the files are copied from /disk1/oracle/pdb1 to /
disk2/oracle/pdb2.

The CREATE_FILE_DEST clause is not used, and neither Oracle Managed Files nor
the PDB_FILE_NAME_CONVERT initialization parameter is used to specify the target
locations of the copied files.

To view the location of the data files for a PDB, run the query in "Example 15-34".

• Storage limits are not required for the PDB. Therefore, the STORAGE clause is not
required.

• There is no file with the same name as the new temp file that will be created in the
target location. Therefore, the TEMPFILE REUSE clause is not required.

• The PDB that is being cloned (pdb1) has two user-defined services: salesrep_ca
and orders_ca for the sales representatives and order entry personnel in
California. The new services will be for the sales representatives and order entry
personnel in Oregon, and the service names will be renamed to salesrep_or and
orders_or, respectively, in the cloned PDB (pdb2).

• Future tablespaces created within the PDB will be created with the NOLOGGING
attribute by default. This feature is available starting with Oracle Database 12c
Release 1 (12.1.0.2).

The following statement clones the pdb2 PDB from the pdb1 PDB:

CREATE PLUGGABLE DATABASE pdb2 FROM pdb1
 PATH_PREFIX = '/disk2/oracle/pdb2/'
 FILE_NAME_CONVERT = ('/disk1/oracle/pdb1/', '/disk2/oracle/pdb2/')
 SERVICE_NAME_CONVERT =
('salesrep_ca','salesrep_or','orders_ca','orders_or')
 NOLOGGING;

Cloning a Local PDB Using the STORAGE Clause: Example
This example clones a local PDB using the FILE_NAME_CONVERT, STORAGE, and
SERVICE_NAME_CONVERT clauses.

This example assumes the following factors:

• The PATH_PREFIX clause is not required.

Chapter 8
Cloning a Local PDB

8-10

• The FILE_NAME_CONVERT clause is required to specify the target locations of the copied
files. In this example, the files are copied from /disk1/oracle/pdb1 to /disk2/oracle/pdb2.

The CREATE_FILE_DEST clause is not used, and neither Oracle Managed Files nor the
PDB_FILE_NAME_CONVERT initialization parameter is used to specify the target locations of
the copied files.

To view the location of the data files for a PDB, run the query in Example 15-34.

• Storage limits must be enforced for the PDB. Therefore, the STORAGE clause is required.
Specifically, all tablespaces that belong to the PDB must not exceed 2 gigabytes.

• The source PDB (pdb1) has two user-defined services: salesrep_ca and orders_ca for
the sales representatives and order entry personnel in California. The new services will
be for the sales representatives and order entry personnel in Oregon, and the service
names will be renamed to salesrep_or and orders_or, respectively, in the cloned PDB
(pdb2).

• There is no file with the same name as the new temp file that will be created in the target
location. Therefore, the TEMPFILE REUSE clause is not required.

The following statement clones the pdb2 PDB from the pdb1 PDB:

CREATE PLUGGABLE DATABASE pdb2 FROM pdb1
 FILE_NAME_CONVERT = ('/disk1/oracle/pdb1/', '/disk2/oracle/pdb2/')
 STORAGE (MAXSIZE 2G)
 SERVICE_NAME_CONVERT =
('salesrep_ca','salesrep_or','orders_ca','orders_or');

Cloning a Local PDB with the NO DATA Clause: Example
This example clones the data model definition of the PDB, but does not clone the data in the
PDB.

This example assumes the following factors:

• The NO DATA clause is required because the goal is to clone the data model definition of
the source PDB without cloning its data.

• The PATH_PREFIX clause is not required.

• The FILE_NAME_CONVERT clause and the CREATE_FILE_DEST clause are not required.

Either Oracle Managed Files is enabled, or the PDB_FILE_NAME_CONVERT initialization
parameter is set. Therefore, the FILE_NAME_CONVERT clause is not required. The process
copies the files to a new location based on the Oracle Managed Files configuration or the
initialization parameter setting.

• Storage limits are not required for the PDB. Therefore, the STORAGE clause is not
required.

• There is no file with the same name as the new temp file that will be created in the target
location. Therefore, the TEMPFILE REUSE clause is not required.

Assume that the source PDB pdb1 has a large amount of data. The following steps illustrate
how the clone does not contain the data of the source PDB when the operation is complete:

Chapter 8
Cloning a Local PDB

8-11

1. With the source PDB pdb1 as the current container, query a table with a large
amount of data:

SELECT COUNT(*) FROM tpch.lineitem;

 COUNT(*)

 60001215

The table has over sixty million rows.

2. Clone the source PDB with the NO DATA clause:

CREATE PLUGGABLE DATABASE pdb2 FROM pdb1 NO DATA;

3. Open the cloned PDB:

ALTER PLUGGABLE DATABASE pdb2 OPEN;

4. With the cloned PDB pdb2 as the current container, query the table that has a
large amount of data in the source PDB:

SELECT COUNT(*) FROM tpch.lineitem;

 COUNT(*)

 0

The table in the cloned PDB has no rows.

Cloning a Remote PDB
You can clone a local PDB by running a CREATE PLUGGABLE DATABASE statement, and
specifying a database link to the remote PDB in the FROM statement.

• About Cloning a Remote PDB
When the source is a PDB is in a remote CDB, you must use a database link to
clone the PDB into the local CDB.

• Cloning a Remote PDB: Basic Steps
You can create a PDB by cloning a remote PDB. After the cloning operation, the
source and the target PDB are in different locations.

• After Cloning a Remote PDB
Certain rules regarding users and tablespaces apply after cloning a remote PDB.

• Cloning a Remote PDB: Examples
These examples clone a remote PDB given different factors.

About Cloning a Remote PDB
When the source is a PDB is in a remote CDB, you must use a database link to clone
the PDB into the local CDB.

Chapter 8
Cloning a Remote PDB

8-12

The database link must exist in the local CDB (not the remote CDB). When you issue the
CREATE PLUGGABLE DATABASE statement from the root of the local CDB, you must specify a
database link to the remote CDB that contains the PDB being cloned in the FROM clause. The
database link connects from the local CDB to either to the root of the remote CDB or to the
remote source PDB.

The following figure illustrates how this technique creates a new PDB when the source PDB
is remote.

Figure 8-3 Creating a PDB by Cloning a Remote PDB

Source
PDB

New
PDB

PDBs

CDB

PDBs

CDB

Seed
(PDB$SEED)

Seed
(PDB$SEED)

Root (CDB$ROOT)

Root (CDB$ROOT)

Files of the

New PDB

Files of the

Source PDB

Copy to New Location

CREATE PLUGGABLE DATABASE ... FROM

Database
Link

Copy

Starting in Oracle Database 19c, you can clone a remote PDB using DBCA in silent mode.

Chapter 8
Cloning a Remote PDB

8-13

Cloning a Remote PDB: Basic Steps
You can create a PDB by cloning a remote PDB. After the cloning operation, the
source and the target PDB are in different locations.

General Prerequisites

The following prerequisites must be met:

• Complete the prerequisites described in "General Prerequisites for PDB Creation".

• The current user must have the CREATE PLUGGABLE DATABASE system privilege in
the root of the CDB that will contain the target PDB.

• The source and target platforms must meet the following requirements:

– They must have the same endianness.

– The database options installed on the source platform must be the same as, or
a subset of, the database options installed on the target platform.

• If you are creating an application PDB, then the application name and version of
the source PDB must match the application name and version of the target
application container.

Prerequisites for Character Sets

• If the character set of the CDB to which the PDB is being cloned is not AL32UTF8,
then the source and target must have compatible character sets and national
character sets. If the character set of the CDB to which the PDB is being cloned is
AL32UTF8, then this requirement does not apply.

• If you are creating an application PDB, then the application PDB must have the
same character set and national character set as the application container.

If the database character set of the CDB is AL32UTF8, then the character set and
national character set of the application container can different from the CDB.
However, all application PDBs in an application container must have same
character set and national character set, matching that of the application container.

Note:

Oracle Multitenant does not support a LOB in one container from being
accessed by a container with a different character set using data links,
extended data links, or the CONTAINERS() clause. For example, if the CDB
root and salespdb have different character sets, then a CONTAINERS() query
run in the CDB root should not access LOBs stored in salespdb.

Prerequisites for the Open Mode of the Source PDB

• The source PDB must not be closed.

• If the remote CDB is not in local undo mode, then the source PDB must be open in
read-only mode.

See "About the CDB Undo Mode".

Chapter 8
Cloning a Remote PDB

8-14

• If the remote CDB is not in ARCHIVELOG mode, then the source PDB must be open in
read-only mode.

• If you are creating a refreshable PDB, then the source PDB must be in ARCHIVELOG mode
and local undo mode.

• When the source PDB is open read-only and resides on a standby database: If the
PDB is open on the primary, and recovery is running on the standby, then the data files of
the source PDB are currently being recovered, and remote cloning of the source PDB is
not possible. You must stop the media recovery on the source standby database first, and
then perform the remote clone of the source PDB.

Prerequisites for the Database Link

The following prerequisites must be met:

• A database link must enable a connection from the destination CDB (the CDB to which
the PDB is being cloned) to the PDB in the source CDB.

• The database link can connect as a common user to the root of the source CDB, or as a
common or local user to the source PDB. The source PDB can be either a standard PDB
or application PDB.

• The user account specified in the database link must have either of the following
privileges:

– The CREATE PLUGGABLE DATABASE privilege, granted either commonly or locally, on
the source PDB

– The SYSOPER privilege

• In an Oracle Data Guard environment, if you are performing a remote clone of a PDB into
a primary CDB, then on the standby CDB set the STANDBY_PDB_SOURCE_FILE_DBLINK
initialization parameter. This parameter specifies the name of the database link used in
CREATE PLUGGABLE DATABASE ... FROM dblink. The standby CDB attempts to copy the
data files from the source PDB referenced in the database link, but only if the source
PDB is open in read-only mode. Otherwise, you must copy data files to the Oracle
Managed Files location on the standby CDB.

To clone a remote PDB:

1. In SQL*Plus, ensure that the current container is the root of the target CDB or the
application root of the target application container.

2. Run the CREATE PLUGGABLE DATABASE statement, and specify the source PDB in the FROM
clause. Specify other clauses when required.

After you create the PDB, it is in mounted mode, and its status is NEW. You can view the
open mode of a PDB by querying the OPEN_MODE column in the V$PDBS view. You can view
the status of a PDB by querying the STATUS column of the CDB_PDBS or DBA_PDBS view.

A new default service is created for the PDB. The service has the same name as the
PDB and can be used to access the PDB. Oracle Net Services must be configured
properly for clients to access this service.

Chapter 8
Cloning a Remote PDB

8-15

Note:

If an error is returned during PDB creation, then the PDB being created
might be in an UNUSABLE state. You can check the PDB state by querying
the CDB_PDBS or DBA_PDBS view, and you can learn more about PDB
creation errors by checking the alert log. An unusable PDB can only be
dropped, and it must be dropped before a PDB with the same name as
the unusable PDB can be created.

3. Open the new PDB in read/write mode.

You must open the new PDB in read/write mode for Oracle Database to complete
the integration of the new PDB into the CDB. An error is returned if you attempt to
open the PDB in read-only mode. After the PDB is opened in read/write mode, its
status is NORMAL.

Note:

For the case where the source PDB is open read-only and resides
on a standby database: If the PDB is open on the primary database,
and recovery is running on the standby database, and the datafiles of the
source PDB are being recovered, then remote cloning of the source PDB
is not possible. The media recovery on the source standby database
must be stopped first, and then the remote clone of the source PDB can
be performed.

4. Back up the PDB.

A PDB cannot be recovered unless it is backed up.

See Also:

• "Refreshing a PDB"

• "Modifying the Open Mode of PDBs"

• Oracle Database Backup and Recovery User’s Guide for information
about backing up a PDB

• Oracle Data Guard Concepts and Administration to learn more about
plugging in a PDB in an Oracle Data Guard environment

• Oracle Database Globalization Support Guide to learn about the
requirements for the compatibility of character sets

• Oracle Database Reference for information about the
PDB_FILE_NAME_CONVERT initialization parameter

After Cloning a Remote PDB
Certain rules regarding users and tablespaces apply after cloning a remote PDB.

Chapter 8
Cloning a Remote PDB

8-16

The following applies after cloning a remote PDB:

• Users in the new PDB who used the default temporary tablespace of the source PDB use
the default temporary tablespace of the new PDB. Users who used nondefault temporary
tablespaces in the PDB continue to use the same local temporary tablespaces in the
cloned PDB.

• User-created common user accounts that existed in the source CDB but not in the target
CDB do not have privileges granted commonly. However, if the target CDB has a
common user account with the same name as a common user account in the PDB, then
the latter is linked to the former and has the privileges granted to this common user
account in the target CDB.

If the cloned or plugged-in PDB has a common user account that does not exist in the
target CDB, and if this user does not own objects in the PDB, then Oracle Database
drops the user during the synchronization step; otherwise, the user account is locked in
the target PDB. You have the following options regarding locked accounts:

– Close the PDB, connect to the root, and create a common user account with the
same name. When the PDB is opened in read/write mode, differences in roles and
privileges granted commonly to the user account are resolved, and you can unlock
the account. Privileges and roles granted locally to the user account remain
unchanged during this process.

– Create a new local user account in the PDB and use Data Pump to export/import the
locked user's data into the new local user's schema.

– Leave the user account locked.

– Drop the user account.

See Also:

• "About Managing Tablespaces in a CDB"

• Oracle Database Security Guide for information about creating a local user

• Oracle Database Utilities for information about using Oracle Data Pump with a
CDB

Cloning a Remote PDB: Examples
These examples clone a remote PDB given different factors.

In each example, the root to which the new PDB belongs depends on the current container
when the CREATE PLUGGABLE DATABASE statement is run:

• When the current container is the CDB root, the new PDB is created in the CDB root.

• When the current container is an application root in an application container, the new
PDB is created as an application PDB in the application root.

• Cloning a Remote PDB Using No Clauses: Example
This example clones a remote source PDB named pdb1 to a target PDB named pdb2
given different factors.

Chapter 8
Cloning a Remote PDB

8-17

• Cloning a Remote PDB Using DBCA: Example
This example uses DBCA to clone a PDB named pdb1 from a remote CDB to the
local CDB, where it will be renamed clonepdb1.

Cloning a Remote PDB Using No Clauses: Example
This example clones a remote source PDB named pdb1 to a target PDB named pdb2
given different factors.

This example assumes the following factors:

• The database link name to the remote PDB is pdb1_link.

• The PATH_PREFIX clause is not required.

• The FILE_NAME_CONVERT clause and the CREATE_FILE_DEST clause are not
required.

Either Oracle Managed Files is enabled, or the PDB_FILE_NAME_CONVERT
initialization parameter is set. The files will be copied to a new location based on
the Oracle Managed Files configuration or the initialization parameter setting.

• Storage limits are not required for the PDB. Therefore, the STORAGE clause is not
required.

• There is no file with the same name as the new temp file that will be created in the
target location. Therefore, the TEMPFILE REUSE clause is not required.

The following statement clones the pdb2 PDB from the pdb1 remote PDB:

CREATE PLUGGABLE DATABASE pdb2 FROM pdb1@pdb1_link;

See Also:

• Oracle Database Administrator’s Guide for more information about
Oracle Managed Files

• Oracle Database Reference for information about the
PDB_FILE_NAME_CONVERT initialization parameter

Cloning a Remote PDB Using DBCA: Example
This example uses DBCA to clone a PDB named pdb1 from a remote CDB to the local
CDB, where it will be renamed clonepdb1.

Prerequisites

This scenario assumes the following:

• The user in the local database has the CREATE PLUGGABLE DATABASE privilege in
the root container.

• The remote CDB is in local undo mode.

• The remote and local CDBs are in ARCHIVELOG mode.

Chapter 8
Cloning a Remote PDB

8-18

• The common user in the remote CDB to whom the database link connects has the
CREATE PLUGGABLE DATABASE, SESSION, and SYSOPER privilege.

• The local and remote CDBs have the same options installed.

Assumptions

This scenario assumes the following:

• You are running DBCA on the host of the CDB that will contain the cloned PDB. The local
CDB is named loccdb1.

• The remote (source) CDB is named remcdb1 and resides on host remcdb1host. The
instance name for the remote CDB is reminst.

• The remote PDB, which is the PDB to be cloned, is named rempdb1.

• The common user c##adminuser_remcdb1 resides in remcdb1.

• The administrative user locSYS has SYSDBA privileges on loccdb1, which is the CDB to
which the PDB is being cloned.

• The administrative user remSYS has SYSDBA privileges on remcdb1, which is the CDB that
contains the PDB to be cloned.

• After cloning to loccdb1, the PDB is renamed clonepdb1.

This following silent command clones rempdb1 to loccdb1:

./dbca -silent
 -createPluggableDatabase
 -createFromRemotePDB
 -sourceDB loccdb1
 -remotePDBName rempdb1
 -remoteDBConnString remcdb1host:1521/reminst
 -remoteDBSYSDBAUserName remSYS
 -remoteDBSYSDBAUserPassword remsyspwd
 -dbLinkUsername c##adminuser_remcdb1
 -dbLinkUserPassword pwd4dblinkusr
 -sysDBAUserName locSYS
 -sysDBAPassword locsyspwd
 -pdbName clonepdb1

See Also:

Oracle Database Administrator’s Guide for syntax and semantics of DBCA
commands

About Refreshable Clone PDBs
The CREATE PLUGGABLE DATABASE ... REFRESH MODE statement clones a source PDB and
configures the clone to be refreshable. Refreshing the clone PDB updates it with redo
accumulated since the last redo log apply.

Chapter 8
About Refreshable Clone PDBs

8-19

• Purpose of Refreshable Clone PDBs
The cloning operation for production PDBs can take significant time.

• Automatic and Manual Refresh Modes
You can configure the clone PDB to refresh automatically at set intervals, or you
can refresh it manually with the ALTER PLUGGABLE DATABASE REFRESH statement.

• Requirements for Refreshable Clone PDBs
Creation of a refreshable clone PDB requires a database link. The database link
can point to the same CDB or a different CDB.

• Creating a Refreshable Clone PDB: Scenario
This scenario creates a refreshable clone named pdb1_ref_cln from a remote
PDB named pdb1.

• About Creating Refreshable Clone PDBs with DBCA
Oracle Database Configuration Assistant (DBCA) supports cloning of a remote
PDB as a refreshable PDB.

• Creating a Refreshable Clone PDB Using DBCA: Example
This example uses DBCA to clone a remote PDB named pdb1 to a refreshable
PDB, where it is renamed refreshpdb1.

Purpose of Refreshable Clone PDBs
The cloning operation for production PDBs can take significant time.

If PDBs are cloned infrequently to avoid a drag on the system, then the cloned data
becomes stale. A refreshable clone PDB solves this problem. When a refreshable
clone PDB is stale, you can close it and then refresh it with recent redo. When not
being refreshed, a refreshable clone PDB can be open read-only. A typical practice is
to maintain a “golden master” refreshable clone of a production PDB, take PDB-level
snapshots, and then create clones from the PDB snapshots for development and
testing.

You can reverse the roles for source and clone PDBs using an ALTER PLUGGABLE
DATABASE ... SWITCHOVER statement. This capability is useful in the following
situations:

• Planned switchover

The CDB hosting the source PDB may experience significantly more overhead
than the CDB hosting the clone PDB. To achieve load balancing, you can reverse
the roles, making the clone the new source PDB, and the source PDB the new
clone.

• Unplanned switchover

The source PDB may suffer an unplanned failure. In this case, you can make the
clone PDB the new source PDB, and resume normal operations.

Chapter 8
About Refreshable Clone PDBs

8-20

See Also:

• "Managing Refreshable Clone PDBs"

• Oracle Database SQL Language Reference to learn more about ALTER
PLUGGABLE DATABASE ... SWITCHOVER

Automatic and Manual Refresh Modes
You can configure the clone PDB to refresh automatically at set intervals, or you can refresh it
manually with the ALTER PLUGGABLE DATABASE REFRESH statement.

The REFRESH MODE clause is supported only in a CREATE PLUGGABLE DATABASE ... FROM
statement. You can use this clause to specify one of the following options:

• Specify REFRESH MODE NONE, the default, to create a PDB that is not refreshable.

You can change a refreshable clone PDB into an ordinary PDB by including the REFRESH
MODE NONE clause in an ALTER PLUGGABLE DATABASE statement and then opening the
PDB in read/write mode. You cannot change an ordinary PDB into a refreshable clone
PDB. After a refreshable clone PDB is converted to an ordinary PDB, you cannot change
it back into a refreshable clone PDB.

• Specify REFRESH MODE MANUAL to create a refreshable PDB that must be refreshed
manually.

• Specify REFRESH MODE EVERY number_of_minutes MINUTES to create a refreshable PDB
that is refreshed automatically after the specified number of minutes has passed. A
refreshable PDB that uses automatic refresh can also be refreshed manually.

Note:

• When you create a refreshable PDB, you can set the
REMOTE_RECOVERY_FILE_DEST initialization parameter in the PDB. This
initialization parameter specifies a directory from which to read archive log files
during refresh operations if the source PDB is not available over its database
link.

• If new data files are created in the source PDB, then the
PDB_FILE_NAME_CONVERT initialization parameter must be set in the CDB to
convert the data file paths from the source PDB to the clone PDB.

• A change to a tablespace encryption algorithm (for example, from AES128 to
AES256) is not applied to a refreshable PDB after the algorithm has been
changed in the source PDB. After you create the refreshable PDB, you must
update its tablespace encryption algorithm manually.

Chapter 8
About Refreshable Clone PDBs

8-21

Example 8-1 A REFRESH MODE Clause That Specifies Automatic Refresh

This refresh mode clause specifies that a refreshable PDB is refreshed automatically
every two hours (120 minutes):

REFRESH MODE EVERY 120 MINUTES

See Also:

• "Cloning a Remote PDB: Basic Steps"

• "Refreshing a PDB"

Requirements for Refreshable Clone PDBs
Creation of a refreshable clone PDB requires a database link. The database link can
point to the same CDB or a different CDB.

A refreshable clone PDB must be in either of the following states:

• Closed

A refreshable PDB must be closed when a refresh is performed. If it is not closed
when automatic refresh is attempted, then the refresh is deferred until the next
scheduled refresh. If it is not closed when a user attempts to perform manual
refresh, then an error is reported.

• Open in read-only mode

The refreshable PDB must be kept in read-only mode to prevent out-of-sync
changes on the refreshable PDB which do not occur on the source PDB. The
refreshable PDB is intended to serve as a clone master and as such must
accurately reflect the source PDB at the refreshed point in time.

Creating a Refreshable Clone PDB: Scenario
This scenario creates a refreshable clone named pdb1_ref_cln from a remote PDB
named pdb1.

The clone PDB is a copy of the source PDB. You can refresh the clone PDB
periodically to update it with any changes made to the source PDB.

Assumptions

This scenario assumes the following factors:

• The database link name to the remote PDB is pdb1_link.

• The PATH_PREFIX clause is not required.

• The FILE_NAME_CONVERT clause and the CREATE_FILE_DEST clause are not
required.

Chapter 8
About Refreshable Clone PDBs

8-22

Either Oracle Managed Files is enabled, or the PDB_FILE_NAME_CONVERT initialization
parameter is set. The files will be copied to a new location based on the Oracle Managed
Files configuration or the initialization parameter setting.

• Storage limits are not required for the PDB. Therefore, the STORAGE clause is not
required.

• There is no file with the same name as the new temp file that will be created in the target
location. Therefore, the TEMPFILE REUSE clause is not required.

• The refreshable clone will be refreshed automatically every 60 minutes.

Note:

To create a refreshable PDB, the source PDB must be in ARCHIVELOG mode and
local undo mode.

To create a refreshable clone PDB:

1. In SQL*Plus, ensure that the current container is the CDB root or an application root.

When the current container is the CDB root, the PDB is created in the CDB. When the
current container is an application root, the application PDB is created in the application
container.

2. Execute the CREATE PLUGGABLE DATABASE statement.

The following statement creates pdb1_ref_cln from pdb1:

CREATE PLUGGABLE DATABASE pdb1_ref_cln FROM pdb1@pdb1_link REFRESH MODE
EVERY 60 MINUTES;

See Also:

"Managing Refreshable Clone PDBs"

About Creating Refreshable Clone PDBs with DBCA
Oracle Database Configuration Assistant (DBCA) supports cloning of a remote PDB as a
refreshable PDB.

When a PDB is created as a refreshable PDB, the changes of the source PDB periodically
propagate to the refreshable PDB. The refreshable PDB can be configured to refresh
manually or automatically during creation. For refreshable PDBs, the database link that
connects to the remote database is not dropped at the end. The link is required to perform
the refresh operation. After creation, the refreshable PDB is left in MOUNTED mode. This is
because the refresh operation works only if the refreshable PDB is closed.

Chapter 8
About Refreshable Clone PDBs

8-23

Table 8-2 Silent Mode Options

Option Description

-createAsRefreshablePDB true/false
Specify true to create the pluggable
database as a refreshable PDB.

-refreshMode AUTO|MANUAL
Specify the refresh mode of the pluggable
database.

-refreshInterval time_interval
Specify the time interval in minutes to perform
automatic refresh of the PDB. If no refresh
interval is provided, then manual refresh is
configured.

Creating a Refreshable Clone PDB Using DBCA: Example
This example uses DBCA to clone a remote PDB named pdb1 to a refreshable PDB,
where it is renamed refreshpdb1.

Prerequisites

This scenario assumes the following:

• The user in the local database has the CREATE PLUGGABLE DATABASE privilege in
the root container.

• The remote PDB is in local undo mode.

• The remote and local PDBs are in ARCHIVELOG mode.

• The common user in the remote PDB to whom the database link connects has the
CREATE PLUGGABLE DATABASE, SESSION, and SYSOPER privilege.

• The local and remote PDBs have the same options installed.

Assumptions

This scenario assumes the following:

• You are running DBCA on the host of the CDB that will contain the cloned PDB.
The local CDB is named loccdb1.

• The remote (source) CDB is named remcdb1 and resides on host remcdb1host.
The instance name for the remote CDB is reminst.

• The remote PDB, which is the PDB to be cloned, is named rempdb1.

• The common user c##adminuser_remcdb1 resides in remcdb1.

• The administrative user locSYS has SYSDBA privileges on loccdb1, which is the
CDB to which the PDB is being cloned.

• The administrative user remSYS has SYSDBA privileges on remcdb1, which is the
CDB that contains the PDB to be cloned.

• After cloning to loccdb1, the PDB is renamed refreshpdb1.

Chapter 8
About Refreshable Clone PDBs

8-24

This following silent command clones rempdb1 to loccdb1:

./dbca -silent
 -createPluggableDatabase
 -createFromRemotePDB
 -sourceDB loccdb1
 -remotePDBName rempdb1
 -remoteDBConnString remcdb1host:1521/reminst
 -remoteDBSYSDBAUserName remSYS
 -remoteDBSYSDBAUserPassword remsyspwd
 -dbLinkUsername c##adminuser_remcdb1
 -dbLinkUserPassword pwd4dblinkusr
 -sysDBAUserName locSYS
 -sysDBAPassword locsyspwd
 -pdbName refreshpdb1
 -createAsRefreshablePDB true
 -refreshMode AUTO
 -refreshInterval 60

See Also:

Oracle Database Administrator’s Guide for syntax and semantics of DBCA
commands

Cloning PDBs from PDB Snapshots
You can create PDBs from PDB snapshots by executing the CREATE PLUGGABLE DATABASE …
USING SNAPSHOT statement.

• About Cloning PDBs from PDB Snapshots
A PDB snapshot is a point-in-time copy of a PDB. The source PDB can be open read-
only or read/write while the snapshot is created. A clone from a PDB snapshot is a full,
standalone PDB.

• Cloning a PDB from a PDB Snapshot: Scenario
This scenario creates a new PDB from a PDB snapshot by executing CREATE PLUGGABLE
DATABASE ... USING SNAPSHOT.

About Cloning PDBs from PDB Snapshots
A PDB snapshot is a point-in-time copy of a PDB. The source PDB can be open read-only or
read/write while the snapshot is created. A clone from a PDB snapshot is a full, standalone
PDB.

• PDB Snapshot Carousel
A PDB snapshot carousel is a library of up to 8 snapshots.

• Creation of a PDB with the USING SNAPSHOT Clause
The USING SNAPSHOT clause of the CREATE PLUGGABLE DATABASE statement creates an
active PDB from a read-only PDB snapshot.

Chapter 8
Cloning PDBs from PDB Snapshots

8-25

PDB Snapshot Carousel
A PDB snapshot carousel is a library of up to 8 snapshots.

The carousel enables you to clone a PDB to a specific SCN or point in time. A typical
use case is to restore a PDB snapshot from the carousel, typically the most recent
snapshot, and then recover it to the required SCN or timestamp.

See Also:

"Administering a PDB Snapshot Carousel"

Creation of a PDB with the USING SNAPSHOT Clause
The USING SNAPSHOT clause of the CREATE PLUGGABLE DATABASE statement creates an
active PDB from a read-only PDB snapshot.

To view the available PDB snapshots, query the DBA_PDB_SNAPSHOTS data dictionary
view. To clone a PDB from a snapshot, specify one of the following values in the USING
SNAPSHOT clause:

• The unique name of the PDB snapshot

• The PDB snapshot SCN in the following form:

USING SNAPSHOT AT SCN scn

• The PDB snapshot timestamp in the following form:

USING SNAPSHOT AT TIME timestamp

A clone from a PDB snapshot is a full, standalone PDB. Unlike a snapshot copy PDB,
which is based on a storage-managed snapshot, you do not need to materialize a
snapshot clone PDB.

See Also:

Oracle Database SQL Language Reference for the syntax and semantics of
the USING SNAPSHOT clause

Chapter 8
Cloning PDBs from PDB Snapshots

8-26

Cloning a PDB from a PDB Snapshot: Scenario
This scenario creates a new PDB from a PDB snapshot by executing CREATE PLUGGABLE
DATABASE ... USING SNAPSHOT.

Assumptions

This example assumes the following factors:

• A PDB snapshot carousel exists with 8 daily snapshots of source PDB salespdb, named
after the weekday, day of the month, and time when they were created:
pdb1_mon_2_1201, pdb1_tue_3_1201, pdb1_wed_4_1201, and so on.

• All snapshots were created when the source salespdb was in read/write mode.

• The new PDB will be a clone of a snapshot named pdb1_wed_4_1201, which is a
snapshot of pdb1 taken last Wednesday on the 4th of the month at 12:01 a.m.

• The PATH_PREFIX clause is not required.

• The FILE_NAME_CONVERT clause and the CREATE_FILE_DEST clause are not required.

Either Oracle Managed Files is enabled, or the PDB_FILE_NAME_CONVERT initialization
parameter is set. Therefore, the FILE_NAME_CONVERT clause is not required. The files will
be copied to a new location based on the Oracle Managed Files configuration or the
initialization parameter setting.

• Storage limits are not required for the PDB. Therefore, the STORAGE clause is not
required.

• There is no file with the same name as the new temp file that will be created in the target
location. Therefore, the TEMPFILE REUSE clause is not required.

To clone a PDB from a PDB snapshot:

1. In SQL*Plus, ensure that the current container is the CDB root or an application root.

When the current container is the CDB root, the PDB is created in the CDB. When the
current container is an application root, the application PDB is created in the application
container.

2. Execute the CREATE PLUGGABLE DATABASE ... USING SNAPSHOT statement.

The following statement clones the pdb1_copy PDB from the PDB snapshot named
pdb1_wed_4_1201:

CREATE PLUGGABLE DATABASE pdb1_copy FROM pdb1
 USING SNAPSHOT pdb1_wed_4_1201;

See Also:

• "Configuring Automatic PDB Snapshots"

• Oracle Database Licensing Information User Manual for details on which
features are supported for different editions and services

Chapter 8
Cloning PDBs from PDB Snapshots

8-27

Creating and Materializing Snapshot Copy PDBs
You can clone a PDB from snapshots of the underlying storage. The PDB files are
sparse, but you can materialize the files to create a standalone PDB.

Note that on Oracle ACFS, the PDB files do not appear sparse. Instead, they use a
storage snapshot so that the snapshot copy files share storage with the source files.

• About Snapshot Copy PDBs
You can create a snapshot copy PDB by executing a CREATE PLUGGABLE
DATABASE ... FROM ... SNAPSHOT COPY statement. The source PDB is specified
in the FROM clause.

• Creating a Snapshot Copy PDB: Scenario
This scenario create a snapshot copy PDB by specify the SNAPSHOT COPY clause in
CREATE PLUGGABLE DATABASE.

• Materializing a Snapshot Copy PDB
You can materialize a snapshot copy PDB by running an ALTER PLUGGABLE
DATABASE statement with the MATERIALIZE clause. Materializing a snapshot copy
PDB copies all data blocks.

See Also:

About Oracle ACFS and Database Data Files in the Oracle Advanced
Cluster File System Guide

About Snapshot Copy PDBs
You can create a snapshot copy PDB by executing a CREATE PLUGGABLE
DATABASE ... FROM ... SNAPSHOT COPY statement. The source PDB is specified in
the FROM clause.

A snapshot copy reduces the time required to create the clone because it does not
include a complete copy of the source data files. Furthermore, the snapshot copy PDB
occupies a fraction of the space of the source PDB.

Storage clones are named and tagged using the GUID of the target PDB. To view
clone tags for storage clones, query the DBA_PDB_HISTORY.CLONETAG column.

• Storage Requirements for Snapshot Copy PDBs
If you use CREATE PLUGGABLE DATABASE ... FROM srcpdb ... SNAPSHOT COPY,
then the source PDB data files must reside in the same storage type.

• Restrictions for Snapshot Copy PDBs
You cannot drop the storage snapshot on which a snapshot copy PDB is based.

Storage Requirements for Snapshot Copy PDBs
If you use CREATE PLUGGABLE DATABASE ... FROM srcpdb ... SNAPSHOT COPY, then
the source PDB data files must reside in the same storage type.

Chapter 8
Creating and Materializing Snapshot Copy PDBs

8-28

The behavior of the CREATE PLUGGABLE DATABASE ... FROM ... SNAPSHOT COPY command
depends on the following rules:

1. If the file system supports storage-managed snapshots, then the snapshot copy PDB is
based on a storage-level copy of the underlying file system. The snapshot copy PDB files
share storage with their source. The copy-on-write technology means that only modified
blocks require additional storage on disk.

2. If the file system does not support storage snapshots, then the algorithm is as follows:

• If the storage system uses Oracle Exadata sparse disk groups, then Oracle Database
creates a snapshot copy PDB. However, the source PDB must remain read/only for
the lifetime of the snapshot copy PDB.

• If the storage system does not use Oracle Exadata sparse disk groups, then the
behavior is as follows:

– If CLONEDB=true, then the underlying file system for the source PDB files can be
any local file system, network file system (NFS), or a clustered file system such
as Oracle ACFS. If using a network file system, Direct NFS should be enabled for
the CDB. The file system should support sparse files. Most UNIX systems meet
these requirements.

When CLONEDB=true, the open mode of the source PDB has the following effects:

* If the source PDB is open in read-only mode, then Oracle Database creates
a snapshot copy PDB using copy-on-write technology. The snapshot copy
PDB contains sparse files, not full copies.

* If the source PDB is not open in read-write mode, then Oracle Database
issues an error.

– If CLONEDB=false, then Oracle Database issues an error.

Direct NFS Client enables an Oracle database to access network attached storage (NAS)
devices directly, rather than using the operating system kernel NFS client. If the files of the
source PDB are stored on Direct NFS Client storage, then the following additional
requirements must be met:

• The source PDB files must be located on an NFS volume.

• Storage credentials must be stored in a Transparent Data Encryption keystore.

• The storage user must have the privileges required to create and destroy snapshots on
the volume that hosts the files of the source PDB.

• Credentials must be stored in the keystore using an ADMINISTER KEY MANAGEMENT ADD
SECRET SQL statement.

The following example configures an Oracle Database secret in a software keystore:

ADMINISTER KEY MANAGEMENT
 ADD SECRET 'secret' FOR CLIENT 'client_name'
 USING TAG 'storage_user'
 IDENTIFIED BY keystore_password WITH BACKUP;

Run this statement to add a separate entry for each storage server in the configuration. In
the previous example, the following values must be specified:

– secret is the storage password.

Chapter 8
Creating and Materializing Snapshot Copy PDBs

8-29

– client_name is the storage server. On a Linux or UNIX platform, it is the name
entered in /etc/hosts or the IP address of the storage server.

– tag is the user name passed to the storage server.

– keystore_password is the password for the keystore.

Note:

Snapshot copy behavior and efficiency are vendor specific and may vary
between vendors.

See Also:

• Oracle Automatic Storage Management Cluster File System
Administrator's Guide for more information about Oracle ACFS

• Oracle Grid Infrastructure Installation and Upgrade Guide for your
operating system for information about Direct NFS Client

• Oracle Database Advanced Security Guide for more information about
Transparent Data Encryption

• My Oracle Support Note 1597027.1 for more information about
supported platforms for snapshot cloning of PDBs

• Oracle Exadata System Software User's Guide for information about
Exadata support for PDB clones created using the SNAPSHOT COPY clause

Restrictions for Snapshot Copy PDBs
You cannot drop the storage snapshot on which a snapshot copy PDB is based.

You cannot unplug snapshot copy PDBs from the CDB root or application container.
Attempting to unplug a snapshot copy PDB results in an error. However, you can
materialize the snapshot copy PDB, which turns it into a standalone PDB, and then
drop it.

For storage-managed snapshots, the new snapshot PDB is created and mounted only
on the local node where you run the command. For Oracle RAC databases, you must
manually mount the new snapshot file system and open the PDB on other nodes.

Creating a Snapshot Copy PDB: Scenario
This scenario create a snapshot copy PDB by specify the SNAPSHOT COPY clause in
CREATE PLUGGABLE DATABASE.

Assumptions

This scenario assumes the following factors:

• The new snapshot copy PDB will be created from a PDB named pdb1.

Chapter 8
Creating and Materializing Snapshot Copy PDBs

8-30

• The underlying file system supports storage snapshots. Thus, you do not need to set the
CLONEDB initialization parameter.

• The PATH_PREFIX clause is not required.

• The FILE_NAME_CONVERT clause and the CREATE_FILE_DEST clause are not required.

Either Oracle Managed Files is enabled, or the PDB_FILE_NAME_CONVERT initialization
parameter is set. Therefore, the FILE_NAME_CONVERT clause is not required. The files will
be copied to a new location based on the Oracle Managed Files configuration or the
initialization parameter setting.

• Storage limits are not required for the PDB. Therefore, the STORAGE clause is not
required.

• There is no file with the same name as the new temp file that will be created in the target
location. Therefore, the TEMPFILE REUSE clause is not required.

To create a snapshot copy PDB:

1. In SQL*Plus, ensure that the current container is the CDB root or an application root.

When the current container is the CDB root, the PDB is created in the CDB. When the
current container is an application root, the application PDB is created in the application
container.

2. Execute the CREATE PLUGABBLE DATABASE … SNAPSHOT COPY statement.

The following statement clones the pdb1_snap_copy PDB from pdb1:

CREATE PLUGGABLE DATABASE pdb1_snap_copy FROM pdb1 SNAPSHOT COPY;

As long as pdb1_snap_copy exists, you cannot drop the storage snapshot on which
pdb1_snap_copy is based.

See Also:

"Materializing a Snapshot Copy PDB"

Materializing a Snapshot Copy PDB
You can materialize a snapshot copy PDB by running an ALTER PLUGGABLE DATABASE
statement with the MATERIALIZE clause. Materializing a snapshot copy PDB copies all data
blocks.

Materializing a snapshot copy PDB transforms the snapshot copy PDB, which uses sparse
files, into a full PDB, which does not use sparse files. The materialized PDB is no longer
dependent on the source PDB, which can be dropped or changed to a different open mode.

For example, if pd1_snap_copy is a snapshot copy PDB, then you can materialize it into a
standalone PDB by running an ALTER PLUGGABLE DATABASE MATERIALIZE command. After
materialization, pdb1_snap_copy no longer depends on the storage-level snapshot, enabling
you to drop it.

Chapter 8
Creating and Materializing Snapshot Copy PDBs

8-31

To materialize a PDB snapshot:

1. In SQL*Plus, ensure that the current container is the snapshot copy PDB that is
being materialized.

2. Run an ALTER PLUGGABLE DATABASE statement with the MATERIALIZE clause.

Example 8-2 Materializing a Snapshot Copy PDB

The following SQL statement materializes a snapshot copy PDB:

ALTER PLUGGABLE DATABASE MATERIALIZE;

See Also:

• "About Snapshot Copy PDBs" to learn more about snapshot copy PDBs

• "Creating a Snapshot Copy PDB: Scenario"

• My Oracle Support Note 2627975.1 to learn how to revert the source
PDB data file permissions after removing all snapshot clone PDBs

Creating a Split Mirror Clone PDB
In Oracle ASM, a split mirror is the process of detaching a point-in-time media copy
from a parent copy. After the split, updates to the parent do not affect the child copy.

Starting in Oracle Database 18c, the parent copy can be a PDB rather than a storage
volume. The split mirror clone PDB resides on the same media as the parent. The
principal use case is to rapidly provision test and development PDBs in an Oracle
ASM environment.

Note:

Oracle ASM flex and extended disk groups are required for split mirror clone
PDBs.

Mirror refresh is refreshing a split mirror clone PDB with changes from the parent PDB.
In effect, this operation is equivalent to deleting the mirror split, and then taking a new
mirror split.

To drop a split mirror clone PDB, enter ALTER PLUGGABLE DATABASE ... DROP MIRROR
COPY.

To create a split mirror clone PDB:

1. Start SQL*Plus, and connect to the CDB root.

2. Prepare the source PDB by issuing the ALTER PLUGGABLE DATABASE ... PREPARE
MIRROR COPY statement.

Chapter 8
Creating a Split Mirror Clone PDB

8-32

https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=2627975.1

If you are creating the PDB in a different CDB, issue the ALTER PLUGGABLE DATABASE ...
PREPARE MIRROR COPY statement with the FOR DATABASE database_name clause where
database_name is the name of the target CDB.

3. Create a clone PDB from the source PDB by issuing the CREATE PLUGGABLE
DATABASE ... FROM ... USING MIRROR COPY statement.

If you are creating the PDB in a different CDB, include the database link to the source
CDB in the FROM clause. Before issuing the CREATE PLUGGABLE DATABASE command, you
must create a database link that can connect to the source CDB from where the ALTER
PLUGGABLE DATABASE ... PREPARE MIRROR COPY command was issued.

4. Optionally, query V$ASM_DBCLONE_INFO view to see the relationship between the source
PDB, the cloned PDB, and their file groups.

See Also:

• Oracle Automatic Storage Management Administrator's Guide to learn how to
create or drop a split mirror clone PDB

• Oracle Database Reference to learn more about V$ASM_DBCLONE_INFO

Chapter 8
Creating a Split Mirror Clone PDB

8-33

9
Relocating a PDB

You can move a PDB to a different CDB or application container.

• About PDB Relocation
During relocation, the source PDB can be open in read/write mode and fully functional.

• Purpose of PDB Relocation
This technique is the fastest way to move a PDB with minimal or no down time.
Otherwise, unplugging the source PDB requires a PDB outage until the PDB is plugged
in to the target CDB.

• How PDB Relocation Works
The operation moves the files associated with the PDB to a new location, adds the PDB
to the target CDB, and then opens the PDB.

• User Interface for PDB Relocation
You can relocate PDBs on the command line using SQL, the DBCA utility, or the Fleet
Patching and Provisioning utility.

• Relocating a PDB Using CREATE PLUGGABLE DATABASE
The CREATE PLUGGABLE DATABASE ... RELOCATE statement moves a PDB to a different
container.

• Relocating a PDB: Examples
The examples in this section demonstration relocation using SQL and DBCA.

About PDB Relocation
During relocation, the source PDB can be open in read/write mode and fully functional.

PDB relocation executes an online block level copy of the source PDB data files, redo, and
undo while the source PDB is open with active sessions. When the target PDB comes online
because of an ALTER PLUGGABLE DATABASE OPEN statement, Oracle Database terminates the
active sessions and closes the source PDB.

The following graphic shows the relocation of a common PDB (that is, not an application
PDB) to a new single-instance CDB. The source PDB is plugged in to the CDB root, and the
target PDB is plugged in to the CDB root. Note that the CREATE PLUGGABLE DATABASE ...
RELOCATE statement copies the data blocks, undo blocks, and redo blocks to the new location.
A database link is required.

9-1

Figure 9-1 Relocate a PDB into the Root Container

PDB being
Relocated

Relocated
PDB

PDBs

CDB

PDBs

CDB

Seed
(PDB$SEED)

Seed
(PDB$SEED)

Root (CDB$ROOT)

Root (CDB$ROOT)

Files of the PDBFiles of the PDB

Move to New Location

CREATE PLUGGABLE DATABASE ... FROM ... RELOCATE

Database
Link

Move

When the target PDB is an application PDB or application root, you have the following
options:

• You can relocate a PDB into an application container as an application PDB. The
target PDB can be in the same CDB or a different CDB.

• You can relocate an application PDB from one application root to another. The
target PDB must be in a different CDB.

• You can relocate an empty application root from one CDB to another, but the
application root must not have any hosted application PDBs.

The following graphic illustrates how this technique creates a new application PDB in
an application container.

Chapter 9
About PDB Relocation

9-2

Figure 9-2 Relocate a PDB into an Application Container

CDB

Move

PDBs and Application Containers

Seed
(PDB$SEED)

Application
Container

Application PDBs

Application
Seed

Relocated
Applicaton
PDB

Application Root

Root (CDB$ROOT)

CDB

PDBs and Application Containers

Seed
(PDB$SEED)

Application
Container

Application PDBs

Application
Seed

Applicaton PDB
being relocated

Application Root

Root (CDB$ROOT)

Files of the PDBFiles of the PDB

Move to New Location

CREATE PLUGGABLE DATABASE ... FROM ... RELOCATE

Database
Link

When you open the relocated PDB for the first time, Oracle Database drains active sessions
on the source PDB and redirects client connections to the relocated PDB services. Opening
the relocated PDB initiates the shutdown of the original source PDB. The source and
relocated PDBs are never open at the same time.

Chapter 9
About PDB Relocation

9-3

See Also:

"PDB Storage"

Purpose of PDB Relocation
This technique is the fastest way to move a PDB with minimal or no down time.
Otherwise, unplugging the source PDB requires a PDB outage until the PDB is
plugged in to the target CDB.

When moving a PDB between data centers, or from an on-premises environment to a
cloud environment, all the data must physically move. For large PDBs, this process
may take considerable time, possibly violating availability components of an SLA. PDB
relocation eliminates the outage completely. You can relocate the PDB without taking
the application offline, changing the application, or changing network connection
strings.

How PDB Relocation Works
The operation moves the files associated with the PDB to a new location, adds the
PDB to the target CDB, and then opens the PDB.

• Server Session Draining When Relocating or Stopping PDBs
A key requirement of planned maintenance is draining or failing over PDB
sessions so that application work is not interrupted.

• Stages of PDB Relocation
The details of PDB relocation vary depending on the listener networks.

Server Session Draining When Relocating or Stopping PDBs
A key requirement of planned maintenance is draining or failing over PDB sessions so
that application work is not interrupted.

Automatic Session Failover

In database-generic session draining, active sessions can exit gracefully under a timer.
After the timer has expired, Oracle Database terminates all active sessions, and then
reconnects them to the relocated PDB.

Starting in Oracle Database 21c, during planned maintenance, the database may
decide that a session is unlikely to drain in the drain window. In this case, the database
invokes Application Continuity and fails over the session automatically. The draining
feature is enabled by default for all maintenance operations invoked at the database
service and PDB levels: stop service, relocate service, relocate PDB, and stop PDB.

Chapter 9
Purpose of PDB Relocation

9-4

Note:

If your application server user a Purge Pool property, then disable this property
because it disrupts sessions that are not ready to drain.

Rules for Session Draining

The database uses an extensible set of rules to determine when to drain a database session,
which persists until a rule is satisfied. The rules include the following:

• Standard application server tests for validity

• Custom SQL tests for validity

• Request boundaries are in use and no request is active

• Request boundaries are in use and the current request has ended

• The session has one or more session states that are recoverable, and can be recreated
at failover

A typical use case is application servers and pooled applications that test connections when
borrowing from connection pools, returning connections to the pool, and at batch commits.
When draining sessions, the database automatically intercepts the connection test, closes
the connection, and then returns a failed status for the test. After receiving the failed status,
the application layer can request a different connection. In this way, the application is not
disrupted.

Application Continuity with FAN on Oracle RAC

For an optimal configuration that minimizes the impact on the client, consider configuring
Application Continuity with FAN on the Oracle RAC database. In Oracle Clusterware, the
Fleet Patching and Provisioning feature automates PDB relocation. An example of finer-
grained relocation in an Oracle RAC environment is service relocation between PDB
instances. Oracle RAC and Oracle Clusterware offer a rich high availability environment that
further minimizes the impact on connected clients during relocation. For example, shared
storage may minimize or remove the necessity to copy data files. Transparent Application
Continuity, a mode of Application Continuity, is enabled by default in Oracle Cloud.

Note:

In an Oracle Clusterware environment, when relocating a PDB between different
CDBs, you must create non-database services using SRVCTL.

See Also:

Oracle Clusterware Administration and Deployment Guide to learn about
Application Continuity, SRVCTL, and Fleet Patching and Provisioning

Chapter 9
How PDB Relocation Works

9-5

Stages of PDB Relocation
The details of PDB relocation vary depending on the listener networks.

• PDB Relocation in a Common Listener Network
When the source and target location share a common listener network, forwarding
client connections is not necessary because the SQL*Net layer forwards client
connections implicitly.

• PDB Relocation in Isolated Listener Networks
When independent listeners do not use cross-registration, the listener in the target
CDB and source CDB have no knowledge of each other or of their respective
published services.

PDB Relocation in a Common Listener Network
When the source and target location share a common listener network, forwarding
client connections is not necessary because the SQL*Net layer forwards client
connections implicitly.

AVAILABILITY NORMAL

When the listener network is common, specify the AVAILABILITY NORMAL clause in
CREATE PLUGGABLE DATABASE ... RELOCATE. This option is the default. The following
situations are typical use cases for AVAILABILITY NORMAL:

• Shared listener

If you use the same listener for the PDB in its old and new locations, then new
connections are automatically routed to the new location when relocation
completes. This situation is typical of a relocation between CDBs in the same host.
In this case, the PDB is re-registered with the listener in its new location.
Additional connection handling is not required.

• Cross-registered listeners

If the PDBs use different listeners, and if you employ cross-registration of their
respective listeners through configuration of the local_listener and
remote_listener parameters, then relocation is seamless. The availability and
location of the PDB’s services are automatically registered with both listeners. This
situation is typical of relocation between hosts within a data center, perhaps for
load balancing purposes.

In shared and cross registered listener environments, services from all databases are
published to the common listener network. For this reason, services for relocated
PDBs are immediately known to the common listener network. To avoid service name
space collisions, PDB service definitions must be unique in the common listener
network.

Stages of Relocation in a Common Listener Network

1. The user issues CREATE PLUGGABLE DATABASE ... RELOCATE AVAILABILITY
NORMAL.

This step executes a hot clone of the source PDB from its original location to its
target location. The source PDB copies data files, undo blocks, and redo blocks to
the target PDB as of an implicit begin SCN marker.

Chapter 9
How PDB Relocation Works

9-6

When this step completes, two transactionally consistent copies of this PDB exist: one in
the source container and one in the target container. For the duration of the operation,
processing continues uninterrupted on the source PDB. Users of an application or
applications connected to the source PDB are unaware that a relocation is underway.

All existing application connections, and new connections created during this step,
continue to connect to the source PDB.

2. The user issues ALTER PLUGGABLE DATABASE OPEN.

The following actions occur in the background:

a. The target PDB implicitly sets the end SCN marker, and applies any redo or undo
required to complete media recovery to satisfy the implicit end SCN marker.

b. When media recovery occurs on the target PDB, Oracle Database initiates active
session draining on the source PDB.

c. PDB services are registered with the listener and are available on the target CDB.

d. The source PDB is closed.

e. The target PDB opens in read/write mode.

This step completes the relocation of the PDB to the target CDB. At the end of the
operation, connections point to the newly relocated PDB.

After the PDB is opened in read/write mode, its status is NORMAL. The database
returns an error if you attempt to open the PDB in read-only mode.

See Also:

• Oracle Database Net Services Administrator's Guide for more information about
listener redirects

• Oracle Real Application Clusters Administration and Deployment Guide to learn
more about using Application Continuity to drain and migration sessions before
planned maintenance

PDB Relocation in Isolated Listener Networks
When independent listeners do not use cross-registration, the listener in the target CDB and
source CDB have no knowledge of each other or of their respective published services.

AVAILABILITY MAX

The AVAILABILITY MAX clause in CREATE PLUGGABLE DATABASE ... RELOCATE implicitly
instructs the SQL*Net layer to reconfigure the original listener. This situation may be common
when relocating a PDB between data centers. This configuration is intended to be temporary
while the Oracle Internet Directory (OID) or LDAP server is updated or the client connections
are modified.

If a local listener redirects to a Single Client Access Name (SCAN) listener in an Oracle RAC
configuration, then this listener may need to further redirect the client connection request to
another cluster node. Multiple redirects are not supported by Oracle Net listeners by default.
Because any SCAN listener can route the connection request to any node, set the
ALLOW_MULTIPLE_REDIRECTS_listener_name parameter to the listener_name of every SCAN

Chapter 9
How PDB Relocation Works

9-7

listener, and set it in every listener.ora file in the cluster. For example, if the SCAN
listeners are named listener_scan1, listener_scan2, and listener_scan3, then the
listener.ora file on every destination host should have the following settings:

ALLOW_MULTIPLE_REDIRECTS_LISTENER_SCAN1=YES
ALLOW_MULTIPLE_REDIRECTS_LISTENER_SCAN2=YES
ALLOW_MULTIPLE_REDIRECTS_LISTENER_SCAN3=YES

Caution:

Do not set the ALLOW_MULTIPLE_REDIRECTS_listener_name parameter for
node listeners because it may allow infinite redirection loops in certain
network configurations.

Stages of Relocation in an Isolated Listener Network

1. The user issues CREATE PLUGGABLE DATABASE ... RELOCATE AVAILABILITY MAX.

This step executes a hot clone of the source PDB from its original location to its
target location. The source PDB copies data files, undo blocks, and redo blocks to
the target PDB as of an implicit begin SCN marker.

2. The user issues ALTER PLUGGABLE DATABASE OPEN.

The following actions occur in the background:

a. The target PDB implicitly sets the end SCN marker, and applies any redo or
undo required to complete media recovery to satisfy the implicit end SCN
marker.

b. When media recovery occurs on the target PDB, Oracle Database initiates
active session draining on the source PDB.

c. The LISTENER_NETWORKS initialization parameter is implicitly updated in the
source PDB with the forwarding address, and the listener PDB services for the
source CDB are updated with the forwarding address.

d. The target PDB opens in read-only mode while media recovery completes.

At this stage, only queries of the target PDB are permitted. Queries behave
exactly as if they had been run on the source PDB. However, connections
attempting DML do not complete.

e. Read-only connections are immediately forwarded to the new hosting listener,
and new read/write connections are forwarded to the new hosting listener,
where they spin until the target PDB is opened in a consistent state.

f. The source PDB executes a SHUTDOWN IMMEDIATE, terminating persistent
connections.

g. The target PDB opens in read/write mode.

This step completes the relocation of the PDB to the target CDB. At the end of
the operation, connections point to the newly relocated PDB.

After the PDB is opened in read/write mode, its status is NORMAL. The database
returns an error if you attempt to open the PDB in read-only mode.

Chapter 9
How PDB Relocation Works

9-8

Note:

An artifact known as a tombstone PDB remains in the source CDB to protect the
PDB’s namespace and preserve the listener forwarding configuration until the
updates are complete. In the root of the source CDB, the tombstone PDB is visible
in V$CONTAINERS with a status of RELOCATED. When you change the application
connect strings to provide direct connections to the target PDB, you can drop the
tombstone PDB from the source CDB.

See Also:

• "Creating an Application PDB"

• Oracle Database Net Services Administrator's Guide for more information about
listener redirects

• Oracle Real Application Clusters Administration and Deployment Guide to learn
more about using Application Continuity to drain and migration sessions before
planned maintenance

User Interface for PDB Relocation
You can relocate PDBs on the command line using SQL, the DBCA utility, or the Fleet
Patching and Provisioning utility.

SQL Statement

The form of the SQL statement is as follows:

CREATE PLUGGABLE DATABASE ... FROM src_pdb_name@link2src ... RELOCATE
AVAILABILITY [MAX | NORMAL]

The FROM clause identifies the location of the source PDB. For src_pdb_name, specify the
name of the source PDB. For link2src, specify a database link that indicates the location of
the source PDB. The database link must have been created in the target CDB, which is the
CDB to which the PDB will be relocated. The link can connect either to the root of the remote
CDB or to the remote PDB.

The AVAILABILITY clause determines how the database handles client connections.

DBCA

You can relocate a PDB by running DBCA in silent mode. The relocatePDB command
performs the relocation.

Chapter 9
User Interface for PDB Relocation

9-9

Table 9-1 relocatePDB Parameters

Parameter Description

-remotePDBName remote_pdb_name The name of the PDB that you intend to
relocate.

-remoteDBConnString
remote_db_conn_string

The net service connection to the remote
CDB.

-sysDBAUserName sysdbusername The name of the SYS user in the local CDB.

-sysDBAPassword sysdbapassowrd The password of the SYS user in the local
CDB.

-remoteDBSYSDBAUserName
sysdbusername

The name of the SYS user in the remote CDB.

-remoteDBSYSDBAPassword
sysdbapassowrd

The password of the SYS user in the remote
CDB.

-dbLinkUsername
dblink_common_user_name

The name of the common user in the remote
CDB.

-dbLinkUserPassword
dblink_common_username_pwd

The password of the common user in the
remote CDB.

-sourceDB dbname_pdb_toberelocated The name of the source CDB for the PDB
being relocated.

-pdbName pdbtoberecreated The name of the PDB after relocation.

Fleet Patching and Provisioning Control (RHPCTL)

In Oracle Grid Infrastructure, you can use Fleet Patching and Provisioning to automate
relocation of a PDB from one CDB to another.

See Also:

• Oracle Database SQL Language Reference for CREATE PLUGGABLE
DATABASE syntax and semantics

• Oracle Database Administrator’s Guide for the DBCA command
reference for silent mode

• Oracle Clusterware Administration and Deployment Guide to learn more
about Fleet Patching and Provisioning

Relocating a PDB Using CREATE PLUGGABLE DATABASE
The CREATE PLUGGABLE DATABASE ... RELOCATE statement moves a PDB to a
different container.

The target CDB (also called the destination CDB) is the CDB to which the PDB is
being relocated. The target PDB is the PDB being relocated. After the CREATE
PLUGGABLE DATABASE ... RELOCATE operation completes, Oracle Database moves the
PDB from the source CDB to the destination CDB.

Chapter 9
Relocating a PDB Using CREATE PLUGGABLE DATABASE

9-10

General Prerequisites

Address the questions that apply to relocating a PDB in "Table 6-3". The table describes
which CREATE PLUGGABLE DATABASE clauses you must specify based on different factors.
Also, complete the prerequisites described in "General Prerequisites for PDB Creation".

Database Mode and State Prerequisites

You must meet the following prerequisites:

• The source CDB must be in local undo mode.

• In the source CDB, you must save the service and open state of the PDBs in all database
instances. Log in to the CDB root as an administrator and issue the following statement:

ALTER PLUGGABLE DATABASE ALL SAVE STATE INSTANCES=ALL;

This step ensures that the PDB relocation operation automatically starts the PDB
services in the target CDB.

• If the target CDB is not in ARCHIVELOG mode, then the target PDB must be opened read-
only during the operation. This requirement does not apply if the target CDB is in
ARCHIVELOG mode.

User Privilege Prerequisites

You must meet the following prerequisites:

• In the target CDB, the current user must have the CREATE PLUGGABLE DATABASE system
privilege in the CDB root.

• The following prerequisites apply to the database link:

– A database link must enable a connection from the destination CDB to the source
CDB.

– If the target is a standard PDB, then the database link must connect to the root of the
source CDB. If the target PDB is an application PDB, then the database link must
connect to its application root.

– If the database link user connects to the CDB root in the source CDB, then this user
must be a common user. If the database link connects to the application root, then
this user can be either a CDB-wide common user or an application common user.

– The database link user must have either the CREATE PLUGGABLE DATABASE system
privilege or the SYSOPER administrative privilege.

Platform and Character Set Prerequisites

You must meet the following prerequisites:

• The platforms of the source CDB and the destination CDB must meet the following
requirements:

– They must have the same endianness.

– The database options installed on the source platform must be the same as, or a
subset of, the database options installed on the destination platform.

Chapter 9
Relocating a PDB Using CREATE PLUGGABLE DATABASE

9-11

• If the character set of the destination CDB is not AL32UTF8, then the source CDB
and destination CDB must have compatible character sets and national character
sets.

If the character set of the destination CDB is AL32UTF8, then this requirement
does not apply.

Note:

Oracle Multitenant does not support a LOB in one container from being
accessed by a container with a different character set using data links,
extended data links, or the CONTAINERS() clause. For example, if the
CDB root and salespdb have different character sets, then a
CONTAINERS() query run in the CDB root should not access LOBs stored
in salespdb.

Application Name and Version Prerequisites

If you are creating an application PDB, then the source PDB and target application
container must have the same application name and version.

To relocate a PDB:

1. In SQL*Plus, log in to the target CDB as a user with the CREATE PLUGGABLE
DATABASE system privilege.

2. Ensure that the current container is the root of the target CDB or target application
container.

3. Run the CREATE PLUGGABLE DATABASE ... RELOCATE statement with the FROM
clause.

Specify the source PDB in the FROM clause, and include the RELOCATE clause. To
redirect connections from the old location of the PDB to the new location, specify
the AVAILABILITY MAX clause. Specify other clauses when they are required.

After you relocate the PDB, it is in mounted mode, and its status is RELOCATING.
You can view the open mode of a PDB by querying the OPEN_MODE column in the
V$PDBS view. You can view the status of a PDB by querying the STATUS column of
the CDB_PDBS or DBA_PDBS view.

A new default service is created for the PDB. The service has the same name as
the PDB and can be used to access the PDB. Oracle Net Services must be
configured properly for clients to access this service.

4. Optionally, to determine the status of the file copy operation, query
V$SESSION_LONGOPS.

The OPNAMES column shows kpdbfCopyTaskCbk for the data file copy and
kcrfremnoc for the redo file copy.

5. Open the new PDB in read/write mode.

This step is required to complete the integration of the new PDB into the CDB.
After the PDB is opened in read/write mode, its status is NORMAL. An error is
returned if you attempt to open the PDB in read-only mode.

6. Back up the PDB.

Chapter 9
Relocating a PDB Using CREATE PLUGGABLE DATABASE

9-12

A PDB cannot be recovered unless it is backed up.

Note:

If an error is returned during PDB relocation, then the PDB being created might
be in an UNUSABLE state. You can check the PDB state by querying the
CDB_PDBS or DBA_PDBS view, and you can learn more about PDB creation errors
by checking the alert log. An unusable PDB can only be dropped, and it must
be dropped before a PDB with the same name as the unusable PDB can be
created.

See Also:

• "About the CDB Undo Mode"

• "Modifying the Open Mode of PDBs"

• Oracle Database Globalization Support Guide for the compatibility requirements
for character sets and national character sets

• Oracle Database Backup and Recovery User’s Guide for information about
backing up a PDB

Relocating a PDB: Examples
The examples in this section demonstration relocation using SQL and DBCA.

• Relocating a PDB from a Remote CDB
This example relocates a PDB named pdb1 from a remote CDB to the current CDB.

• Relocating a PDB Using DBCA: Example
This example uses DBCA to relocate a PDB named pdb1 from a remote CDB to the local
CDB, where it will be renamed relpdb1.

Relocating a PDB from a Remote CDB
This example relocates a PDB named pdb1 from a remote CDB to the current CDB.

In this example, the root to which the new PDB belongs depends on the current container
when the CREATE PLUGGABLE DATABASE statement is run:

• When the current container is the CDB root, the new PDB is created in the CDB root.

• When the current container is an application root in an application container, the new
PDB is created as an application PDB in the application root.

This example relocates a PDB named pdb1 from a remote CDB given different factors. This
example assumes the following factors:

• The current user has the CREATE PLUGGABLE DATABASE system privilege in the root of the
target CDB.

Chapter 9
Relocating a PDB: Examples

9-13

• The database link name to the source CDB is lnk2src. This database link was
created with the following SQL statement:

CREATE PUBLIC DATABASE LINK lnk2src CONNECT TO c##myadmin IDENTIFIED
BY password USING 'MYCDB';
The common user c##myadmin has SYSOPER administrative privilege and CREATE
PLUGGABLE DATABASE system privilege in the source CDB.

• The PATH_PREFIX clause is not required.

• The FILE_NAME_CONVERT clause and the CREATE_FILE_DEST clause are not
required.

Either Oracle Managed Files is enabled, or the PDB_FILE_NAME_CONVERT
initialization parameter is set. The files will be moved to a new location based on
the Oracle Managed Files configuration or the initialization parameter setting.

• Storage limits are not required for the PDB. Therefore, the STORAGE clause is not
required.

• There is no file with the same name as the new temp file that will be created in the
target location. Therefore, the TEMPFILE REUSE clause is not required.

• Connections should be relocated automatically from the source PDB to the
relocated PDB. Therefore, the AVAILABILITY MAX clause is included.

The following statement relocates the pdb1 PDB from the source CDB to the current
CDB:

CREATE PLUGGABLE DATABASE pdb1 FROM pdb1@lnk2src RELOCATE AVAILABILITY
MAX;

Relocating a PDB Using DBCA: Example
This example uses DBCA to relocate a PDB named pdb1 from a remote CDB to the
local CDB, where it will be renamed relpdb1.

Prerequisites

This scenario assumes the following:

• The user in the local database has the CREATE PLUGGABLE DATABASE privilege in
the root container.

• The remote CDB is in local undo mode.

• The remote and local CDBs are in ARCHIVELOG mode.

• The common user in the remote CDB to whom the database link connects has the
CREATE PLUGGABLE DATABASE, SESSION, and SYSOPER privilege.

• The local and remote CDBs have the same options installed.

Assumptions

This scenario assumes the following:

• You are running DBCA on the host of the CDB that will contain the relocated PDB.
The local CDB is named loccdb1.

Chapter 9
Relocating a PDB: Examples

9-14

• The remote (source) CDB is named remcdb1 and resides on host remcdb1host. The
instance name for the remote CDB is reminst.

• The remote PDB, which is the PDB to be relocated, is named rempdb1.

• The common user c##adminuser_remcdb1 resides in remcdb1.

• The administrative user locSYS has SYSDBA privileges on loccdb1, which is the CDB to
which the PDB is being relocated.

• The administrative user remSYS has SYSDBA privileges on remcdb1, which is the CDB that
contains the PDB to be relocated.

• After relocation to loccdb1, the PDB will be renamed relpdb1.

This following silent command relocates rempdb1 to loccdb1:

./dbca -silent
 -relocatePDB
 -sourceDB remcdb1
 -remotePDBName rempdb1
 -remoteDBConnString remcdb1host:1521/reminst
 -remoteDBSYSDBAUserName remSYS
 -remoteDBSYSDBAUserPassword remsyspwd
 -dbLinkUsername c##adminuser_remcdb1
 -dbLinkUserPassword pwd4dblinkusr
 -sysDBAUserName locSYS
 -sysDBAPassword locsyspwd
 -pdbName relpdb1

See Also:

Oracle Database Administrator’s Guide for syntax and semantics of DBCA
commands

Chapter 9
Relocating a PDB: Examples

9-15

10
Plugging In an Unplugged PDB

You can create a PDB by plugging an unplugged PDB into a CDB.

• About PDB Plugin Operations
To plug in a PDB, specify the USING clause of CREATE PLUGGABLE DATABASE. This clause
specifies a XML metadata file or a compressed archive file (.pdb file).

• Plugging In an Unplugged PDB
Plug in a PDB with the CREATE PLUGGABLE DATABASE ... USING statement.

• After Plugging in an Unplugged PDB
Certain rules regarding users and tablespaces apply after plugging in an unplugged PDB.

• Plugging in an Unplugged PDB: Examples
These examples plug in an unplugged PDB named salespdb using the /disk1/usr/
salespdb.xml file or the /disk1/usr/sales.pdb file given different factors.

About PDB Plugin Operations
To plug in a PDB, specify the USING clause of CREATE PLUGGABLE DATABASE. This clause
specifies a XML metadata file or a compressed archive file (.pdb file).

• About the XML File and Archive File
An XML metadata file describes the unplugged PDB and the files associated with the
PDB (such as the data files and wallet file). An archive file includes both the XML
metadata file and the PDB files.

• Source File Locations When Plugging In an Unplugged PDB
Use the CREATE PLUGGABLE DATABASE ... USING statement to plug an unplugged PDB
into a CDB.

About the XML File and Archive File
An XML metadata file describes the unplugged PDB and the files associated with the PDB
(such as the data files and wallet file). An archive file includes both the XML metadata file and
the PDB files.

When the XML metadata file is specified, the XML file includes the full paths of the PDB files.
When the .pdb archive file is specified, the XML metadata file contains the relative file names
only.

The following figure illustrates how to plug in an unplugged PDB.

10-1

Figure 10-1 Plugging an Unplugged PDB Into a CDB Root

XML

Metadata

File

Database Files

New
PDB

PDBs

CDB

CREATE PLUGGABLE DATABASE ... USING

Seed
(PDB$SEED)

Root (CDB$ROOT)

.PDB

File

XML

Metadata

File

Database Files

CREATE PLUGGABLE DATABASE ... USING

OR

.PDB File

The following figure illustrates how this technique creates a new application PDB in an
application container.

Chapter 10
About PDB Plugin Operations

10-2

Figure 10-2 Plugging an Unplugged PDB Into an Application Root

CDB

Seed
(PDB$SEED)

Root (CDB$ROOT)

Application
Seed

XML

Metadata

File

Database Files

CREATE PLUGGABLE DATABASE ... USING

.PDB

File

XML

Metadata

File

Database Files

CREATE PLUGGABLE DATABASE ... USING

OR

.PDB File

PDBs and Application Containers

Application
Container

Application PDBs

New Application
PDB

Application Root

Chapter 10
About PDB Plugin Operations

10-3

Note:

Automatic downgrade of a PDB is not supported. Therefore, you cannot plug
in a PDB if the source CDB is a higher Oracle Database release than the
target CDB.

When you plug in an unplugged PDB, you must address the questions that apply to
plugging in an unplugged PDB in Table 6-3. The table describes which CREATE
PLUGGABLE DATABASE clauses you must specify based on different factors.

See Also:

• "PDB Storage"

• "Creating an Application PDB"

Source File Locations When Plugging In an Unplugged PDB
Use the CREATE PLUGGABLE DATABASE ... USING statement to plug an unplugged
PDB into a CDB.

When you use a .pdb archive file when plugging in a PDB, Oracle Database extracts
this file when you plug in the PDB, and places the PDB files in the same directory as
the .pdb archive file. Therefore, the clauses that specify the source file locations are
not required when you use a .pdb archive file.

When you specify an XML metadata file when plugging in a PDB, this file describes
the names and locations of an unplugged PDB source files. The XML file might not
describe the locations of these files accurately if you transported the unplugged files
from one storage system to a different one. The files are in a new location, but the file
paths in the XML file still indicate the old location.

When plugging in an unplugged PDB using an XML metadata file (not a .pdb archive
file), use either the SOURCE_FILE_NAME_CONVERT clause or the SOURCE_FILE_DIRECTORY
clause. These clauses are mutually exclusive.

• SOURCE_FILE_NAME_CONVERT Clause
The SOURCE_FILE_NAME_CONVERT clause specifies how to locate PDB files when
they reside in a location different from that specified in the XML file.

• SOURCE_FILE_DIRECTORY Clause
The SOURCE_FILE_DIRECTORY clause specifies the source directory of the files that
will be used to create the new PDB.

SOURCE_FILE_NAME_CONVERT Clause
The SOURCE_FILE_NAME_CONVERT clause specifies how to locate PDB files when they
reside in a location different from that specified in the XML file.

You can use this clause to specify one of the following options:

Chapter 10
About PDB Plugin Operations

10-4

• One or more file name patterns and replacement file name patterns, in the following form:

'string1' , 'string2' , 'string3' , 'string4' , ...

The string2 file name pattern replaces the string1 file name pattern, and the string4 file
name pattern replaces the string3 file name pattern. You can use as many pairs of file
name pattern and replacement file name pattern strings as required.

When you use this clause, ensure that the files you want to use for the PDB reside in the
replacement file name patterns. Move or copy the files to these locations if necessary.

• NONE when no file names need to be located because the PDB's XML file describes the
file names accurately. Omitting the SOURCE_FILE_NAME_CONVERT clause is the same as
specifying NONE.

You can use the SOURCE_FILE_NAME_CONVERT clause only in a CREATE PLUGGABLE DATABASE
statement with a USING clause that specifies an XML metadata file. Therefore, you can use
this clause only when you are plugging in an unplugged PDB with an XML metadata file. You
cannot use this clause when you are plugging in a PDB with a .pdb archive file.

Example 10-1 SOURCE_FILE_NAME_CONVERT Clause

This SOURCE_FILE_NAME_CONVERT clause uses the files in the /disk2/oracle/pdb7 directory
instead of the /disk1/oracle/pdb7 directory. In this case, the XML file describing a PDB
specifies the /disk1/oracle/pdb7 directory, but the PDB should use the files in the /disk2/
oracle/pdb7 directory.

SOURCE_FILE_NAME_CONVERT = ('/disk1/oracle/pdb7/', '/disk2/oracle/pdb7/')

See Also:

• Plugging In an Unplugged PDB

• Oracle Database SQL Language Reference for the syntax of the
SOURCE_FILE_NAME_CONVERT clause

SOURCE_FILE_DIRECTORY Clause
The SOURCE_FILE_DIRECTORY clause specifies the source directory of the files that will be
used to create the new PDB.

The clause specifies a directory that contains all of the files listed in the XML file. Using this
clause is convenient when you have many data files and specifying a
SOURCE_FILE_NAME_CONVERT pattern for each file is not feasible.

When you plug in a PDB, if the source files are all present in a single directory, then you can
specify the directory name in this clause. The directory is scanned to find the appropriate files
based on the unplugged PDB’s XML file.

You can use this clause to specify one of the following options:

• The absolute path of the source file directory.

• NONE when no files should be copied or moved during PDB creation. Omitting the
SOURCE_FILE_DIRECTORY clause is the same as specifying NONE.

Chapter 10
About PDB Plugin Operations

10-5

You can use the SOURCE_FILE_DIRECTORY clause only in a CREATE PLUGGABLE
DATABASE statement with a USING clause that specifies an XML metadata file.
Therefore, you can use this clause only when you are plugging in an unplugged PDB
with an XML metadata file. You cannot use this clause when you are plugging in a
PDB with a .pdb archive file.

You can specify this clause for configurations that use Oracle Managed Files and for
configurations that do not use Oracle Managed Files.

Example 10-2 SOURCE_FILE_DIRECTORY Clause

This SOURCE_FILE_DIRECTORY clause generates file names for the new PDB by using
the source files in the /oracle/pdb5/ directory.

SOURCE_FILE_DIRECTORY = '/oracle/pdb5/'

See Also:

• Plugging In an Unplugged PDB

• Oracle Database SQL Language Reference for the syntax of the
SOURCE_FILE_DIRECTORY clause

Plugging In an Unplugged PDB
Plug in a PDB with the CREATE PLUGGABLE DATABASE ... USING statement.

General Prerequisites

To plug in an unplugged PDB, the following prerequisites must be met:

• Complete the prerequisites described in "General Prerequisites for PDB Creation".

• Either the XML file that describes the PDB or the .pdb archive file must exist in a
location that is accessible to the CDB.

The USING clause must specify the XML file or the .pdb archive file. If the PDB's
XML file is unusable or cannot be located, then use the DBMS_PDB.RECOVER
procedure to generate an XML file using the PDB's data files.

• If an XML file (not a .pdb file) is specified in the USING clause, then the files
associated with the PDB (such as the data files and wallet file) must exist in a
location that is accessible to the CDB.

• If the target database for the plugin operation is the primary database in an Oracle
Data Guard configuration, then ensure that the standby database can locate the
files for the plugged-in PDB.

On the standby database, set the STANDBY_PDB_SOURCE_FILE_DIRECTORY
initialization parameter to a location that contains the source data files for
instantiating the PDB. If the files are not found, then the standby database tries to
locate the files in the OMF location. If not found in the OMF location, then you
must copy the data files to the OMF location on the standby database, and restart
redo apply on the standby database.

Chapter 10
Plugging In an Unplugged PDB

10-6

• The source and target CDB platforms must meet the following requirements:

– They must have the same endianness.

– The database options installed on the source platform must be the same as, or a
subset of, the database options installed on the target platform.

• If you are creating an application PDB, then the application name and version of the
unplugged PDB must match the application name and version of the application
container into which the application PDB is being plugged.

Note:

If you are plugging in a PDB that includes data that was encrypted with Transparent
Data Encryption, then follow the instructions in Oracle Database Advanced Security
Guide for united mode and Oracle Database Advanced Security Guide for isolated
mode.

Character Set Prerequisites

You must meet the following prerequisites for matching the character sets:

• If the character set of the CDB into which the PDB is being plugged is not AL32UTF8,
then the CDB that contained the unplugged PDB and the target CDB must have
compatible character sets and national character sets. To be compatible, the character
sets and national character sets must meet the requirements specified in Oracle
Database Globalization Support Guide.

If the character set of the CDB into which the PDB is being plugged is AL32UTF8, then
this requirement does not apply.

Note:

Oracle Multitenant does not support a LOB in one container from being
accessed by a container with a different character set using data links,
extended data links, or the CONTAINERS() clause. For example, if the CDB root
and salespdb have different character sets, then a CONTAINERS() query run in
the CDB root should not access LOBs stored in salespdb.

• If you are creating an application PDB, then the application PDB must have the same
character set and national character set as the application container.

If the database character set of the CDB is AL32UTF8, then the character set and
national character set of the application container can be different from the CDB.
However, all application PDBs in an application container must have same character set
and national character set, matching that of the application container.

To determine whether the preceding requirements are met, use the
DBMS_PDB.CHECK_PLUG_COMPATIBILITY function. Step 2 in the following procedure describes
using this function.

Chapter 10
Plugging In an Unplugged PDB

10-7

To plug in a PDB:

1. In SQL*Plus, ensure that the current container is the CDB root or application root
of the target CDB.

When the current container is the CDB root, the PDB is created in the CDB. When
the current container is an application root, the application PDB is created in the
application container.

2. (Optional) Run the DBMS_PDB.CHECK_PLUG_COMPATIBILITY function to determine
whether the unplugged PDB is compatible with the CDB.

a. If the PDB is not yet unplugged, then run the DBMS_PDB.DESCRIBE procedure to
produce an XML file that describes the PDB.

If the PDB is already unplugged, then proceed to Step 2b.

For example, to generate an XML file named salespdb.xml in the /disk1/
oracle directory, run the following procedure:

BEGIN
 DBMS_PDB.DESCRIBE(
 pdb_descr_file => '/disk1/oracle/salespdb.xml',
 pdb_name => 'SALESPDB');
END;
/

If the PDB is in a remote CDB, then you can include @database_link_name in
the pdb_name parameter, where database_link_name is the name of a valid
database link to the remote CDB or to the PDB. For example, if the database
link name to the remote CDB is rcdb, then set the pdb_name value to
SALESPDB@rcdb.

b. Run the DBMS_PDB.CHECK_PLUG_COMPATIBILITY function.

When you run the function, set the following parameters:

• pdb_descr_file - Set this parameter to the full path to the XML file.

• pdb_name - Specify the name of the new PDB. If this parameter is omitted,
then the PDB name in the XML file is used.

For example, to determine whether a PDB described by the /disk1/usr/
salespdb.xml file is compatible with the current CDB, run the following
PL/SQL block:

SET SERVEROUTPUT ON
DECLARE
 compatible CONSTANT VARCHAR2(3) :=
 CASE DBMS_PDB.CHECK_PLUG_COMPATIBILITY(
 pdb_descr_file => '/disk1/usr/salespdb.xml',
 pdb_name => 'SALESPDB')
 WHEN TRUE THEN 'YES'
 ELSE 'NO'
END;
BEGIN
 DBMS_OUTPUT.PUT_LINE(compatible);

Chapter 10
Plugging In an Unplugged PDB

10-8

END;
/

If the output is YES, then the PDB is compatible, and you can continue with the next
step. If the output is NO, then the PDB is not compatible: check the
PDB_PLUG_IN_VIOLATIONS view to see why it is not compatible.

Note:

You can specify a .pdb archive file in the pdb_descr_file parameter.

3. If the PDB is not unplugged, then unplug it.

4. Run the CREATE PLUGGABLE DATABASE ... USING statement, specifying the XML file or
the .pdb archive file in the USING clause. Specify other clauses when they are required.

After you create the PDB, it is in mounted mode, and its status is NEW. You can view the
open mode of a PDB by querying the OPEN_MODE column in the V$PDBS view. You can view
the status of a PDB by querying the STATUS column of the CDB_PDBS or DBA_PDBS view.

A new default service is created for the PDB. The service has the same name as the
PDB and can be used to access the PDB. Oracle Net Services must be configured
properly for clients to access this service.

5. Open the new PDB in read/write mode.

You must open the new PDB in read/write mode for Oracle Database to complete the
integration of the new PDB into the CDB. An error is returned if you attempt to open the
PDB in read-only mode. After the PDB is opened in read/write mode, its status is NORMAL.

Opening a PDB upgrades it automatically when a version mismatch occurs between the
PDB and the CDB root. The Replay Upgrade on PDB Open optimization, which is the
default, avoids manual error correction by re-executing statements stored in capture
tables. The mechanism is the same used in application synchronization. When the PDB
is opened, the database automatically performs a Replay Upgrade.

6. Back up the PDB.

A PDB cannot be recovered unless it is backed up.

Note:

If an error is returned during PDB creation, then the PDB being created might be in
an UNUSABLE state. You can check a PDB's state by querying the CDB_PDBS or
DBA_PDBS view, and you can learn more about PDB creation errors by checking the
alert log. An unusable PDB can only be dropped, and it must be dropped before a
PDB with the same name as the unusable PDB can be created.

Chapter 10
Plugging In an Unplugged PDB

10-9

See Also:

• "Unplugging a PDB from a CDB"

• "Modifying the Open Mode of PDBs" for more information

• Oracle Database Backup and Recovery User’s Guide for information
about backing up a PDB

• Oracle Data Guard Concepts and Administration to learn more about
plugging in a PDB in an Oracle Data Guard environment

• Oracle Database Reference for information about the
PDB_FILE_NAME_CONVERT initialization parameter

• Oracle Database PL/SQL Packages and Types Reference for more
information about this procedure.

After Plugging in an Unplugged PDB
Certain rules regarding users and tablespaces apply after plugging in an unplugged
PDB.

The following applies after plugging in an unplugged PDB:

• User accounts in the PDB who used the default temporary tablespace of the
source PDB use the default temporary tablespace of the target PDB. User
accounts who used nondefault temporary tablespaces in the source PDB continue
to use the same local temporary tablespaces in the target PDB.

• Manually created common user accounts that existed in the source CDB but not in
the target CDB do not have privileges granted commonly. However, if the target
CDB has a common user with the same name as a common user in the PDB, then
the latter is linked to the former and has the privileges granted to this common
user in the target CDB.

If the cloned or plugged-in PDB has a common user account that does not exist in
the target CDB, and if this user does not own objects in the PDB, then Oracle
Database drops the user during the synchronization step; otherwise, the user
account is locked in the target PDB. You have the following options regarding
locked accounts:

– Close the PDB, connect to the root, and create a common user account with
the same name. When the PDB is opened in read/write mode, differences in
roles and privileges granted commonly to the user account are resolved, and
you can unlock the account. Privileges and roles granted locally to the user
account remain unchanged during this process.

– Create a new local user account in the PDB and use Data Pump to export/
import the locked user's data into the new local user's schema.

– Leave the user account locked.

– Drop the user account.

Chapter 10
After Plugging in an Unplugged PDB

10-10

See Also:

• "Managing Services for PDBs"

• "About Managing Tablespaces in a CDB"

• Oracle Database Concepts for information about common users and local users

• Oracle Database Security Guide for information about creating common users
and local users in a CDB

• Oracle Database Utilities for information about using Oracle Data Pump with a
CDB

Plugging in an Unplugged PDB: Examples
These examples plug in an unplugged PDB named salespdb using the /disk1/usr/
salespdb.xml file or the /disk1/usr/sales.pdb file given different factors.

In each example, the root to which the new PDB belongs depends on the current container
when the CREATE PLUGGABLE DATABASE statement is run:

• When the current container is the CDB root, the new PDB is created in the CDB.

• When the current container is an application root, the new application PDB is created in
the application root’s application container.

Example 10-3 Plugging In an Unplugged PDB Using the NOCOPY Clause

This example assumes the following factors:

• The new PDB is not based on the same unplugged PDB that was used to create an
existing PDB in the CDB. Therefore, the AS CLONE clause is not required.

• The PATH_PREFIX clause is not required.

• The XML file accurately describes the current locations of the files. Therefore, the
SOURCE_FILE_NAME_CONVERT clause or SOURCE_FILE_DIRECTORY clause is not required.

• The files are in the correct location. Therefore, NOCOPY is included.

• Storage limits are not required for the PDB. Therefore, the STORAGE clause is not
required.

• A file with the same name as the temp file specified in the XML file exists in the target
location. Therefore, the TEMPFILE REUSE clause is required.

Given the preceding factors, the following statement plugs in the PDB:

CREATE PLUGGABLE DATABASE salespdb USING '/disk1/usr/salespdb.xml'
 NOCOPY
 TEMPFILE REUSE;

Example 10-4 Plugging In an Unplugged PDB Using the AS CLONE and NOCOPY
Clauses

This example assumes the following factors:

Chapter 10
Plugging in an Unplugged PDB: Examples

10-11

• The new PDB is based on the same unplugged PDB that was used to create an
existing PDB in the CDB. Therefore, the AS CLONE clause is required. The AS CLONE
clause ensures that the new PDB has unique identifiers.

• The PATH_PREFIX clause is not required.

• The XML file accurately describes the current locations of the files. Therefore, the
SOURCE_FILE_NAME_CONVERT clause or SOURCE_FILE_DIRECTORY clause is not
required.

• The files are in the correct location. Therefore, NOCOPY is included.

• Storage limits are not required for the PDB. Therefore, the STORAGE clause is not
required.

• A file with the same name as the temp file specified in the XML file exists in the
target location. Therefore, the TEMPFILE REUSE clause is required.

Given the preceding factors, the following statement plugs in the PDB:

CREATE PLUGGABLE DATABASE salespdb AS CLONE USING '/disk1/usr/
salespdb.xml'
 NOCOPY
 TEMPFILE REUSE;

Example 10-5 Plugging In an Unplugged PDB Using the
SOURCE_FILE_NAME_CONVERT, NOCOPY, and STORAGE Clauses

This example assumes the following factors:

• The new PDB is not based on the same unplugged PDB that was used to create
an existing PDB in the CDB. Therefore, the AS CLONE clause is not required.

• The PATH_PREFIX clause is not required.

• The XML file does not accurately describe the current locations of the files.
Therefore, the SOURCE_FILE_NAME_CONVERT clause or SOURCE_FILE_DIRECTORY
clause is required. In this example, the XML file indicates that the files are in /
disk1/oracle/sales, but the files are in /disk2/oracle/sales, and the
SOURCE_FILE_NAME_CONVERT clause is used.

• The files are in the correct location. Therefore, NOCOPY is included.

• Storage limits must be enforced for the PDB. Therefore, the STORAGE clause is
required. Specifically, all tablespaces that belong to the PDB must not exceed 2
gigabytes.

• A file with the same name as the temp file specified in the XML file exists in the
target location. Therefore, the TEMPFILE REUSE clause is required.

Given the preceding factors, the following statement plugs in the PDB:

CREATE PLUGGABLE DATABASE salespdb USING '/disk1/usr/salespdb.xml'
 SOURCE_FILE_NAME_CONVERT = ('/disk1/oracle/sales/', '/disk2/oracle/
sales/')
 NOCOPY
 STORAGE (MAXSIZE 2G)
 TEMPFILE REUSE;

Chapter 10
Plugging in an Unplugged PDB: Examples

10-12

Example 10-6 Plugging In an Unplugged PDB With the COPY, PATH_PREFIX, and
FILE_NAME_CONVERT Clauses

This example assumes the following factors:

• The new PDB is not based on the same unplugged PDB that was used to create an
existing PDB in the CDB. Therefore, the AS CLONE clause is not required.

• The path prefix must be added to the PDB's directory object paths. Therefore, the
PATH_PREFIX clause is required. In this example, the path prefix /disk2/oracle/sales/ is
added to the PDB’s directory object paths.

• The XML file accurately describes the current locations of the files. Therefore, the
SOURCE_FILE_NAME_CONVERT clause or SOURCE_FILE_DIRECTORY clause is not required.

• The files are not in the correct location. Therefore, COPY or MOVE must be included. In this
example, the files are copied.

The CREATE_FILE_DEST clause is not used, Oracle Managed Files is not enabled, and the
PDB_FILE_NAME_CONVERT initialization parameter is not set. Therefore, the
FILE_NAME_CONVERT clause is required. In this example, the files are copied from /disk1/
oracle/sales to /disk2/oracle/sales.

• Storage limits are not required for the PDB. Therefore, the STORAGE clause is not
required.

• There is no file with the same name as the new temp file that will be created in the target
location. Therefore, the TEMPFILE REUSE clause is not required.

Given the preceding factors, the following statement plugs in the PDB:

CREATE PLUGGABLE DATABASE salespdb USING '/disk1/usr/salespdb.xml'
 COPY
 PATH_PREFIX = '/disk2/oracle/sales/'
 FILE_NAME_CONVERT = ('/disk1/oracle/sales/', '/disk2/oracle/sales/');

Example 10-7 Plugging In an Unplugged PDB Using the
SOURCE_FILE_NAME_CONVERT, MOVE, FILE_NAME_CONVERT, and STORAGE
Clauses

This example assumes the following factors:

• The new PDB is not based on the same unplugged PDB that was used to create an
existing PDB in the CDB. Therefore, the AS CLONE clause is not required.

• The PATH_PREFIX clause is not required.

• The XML file does not accurately describe the current locations of the files. Therefore, the
SOURCE_FILE_NAME_CONVERT clause or SOURCE_FILE_DIRECTORY clause is required. In this
example, the XML file indicates that the files are in /disk1/oracle/sales, but the files are
in /disk2/oracle/sales, and the SOURCE_FILE_NAME_CONVERT clause is used.

• The files are not in the correct final location for the PDB. Therefore, COPY or MOVE must be
included. In this example, MOVE is specified to move the files.

The CREATE_FILE_DEST clause is not used, Oracle Managed Files is not enabled, and the
PDB_FILE_NAME_CONVERT initialization parameter is not set. Therefore, the
FILE_NAME_CONVERT clause is required. In this example, the files are moved from /disk2/
oracle/sales to /disk3/oracle/sales.

Chapter 10
Plugging in an Unplugged PDB: Examples

10-13

• Storage limits must be enforced for the PDB. Therefore, the STORAGE clause is
required. Specifically, all tablespaces that belong to the PDB must not exceed 2
gigabytes.

• There is no file with the same name as the new temp file that will be created in the
target location. Therefore, the TEMPFILE REUSE clause is not required.

Given the preceding factors, the following statement plugs in the PDB:

CREATE PLUGGABLE DATABASE salespdb USING '/disk1/usr/salespdb.xml'
 SOURCE_FILE_NAME_CONVERT = ('/disk1/oracle/sales/', '/disk2/oracle/
sales/')
 MOVE
 FILE_NAME_CONVERT = ('/disk2/oracle/sales/', '/disk3/oracle/sales/')
 STORAGE (MAXSIZE 2G);

Example 10-8 Plugging In an Unplugged PDB Using the
SOURCE_FILE_DIRECTORY, MOVE, FILE_NAME_CONVERT, and STORAGE
Clauses

This example assumes the following factors:

• The new PDB is not based on the same unplugged PDB that was used to create
an existing PDB in the CDB. Therefore, the AS CLONE clause is not required.

• The PATH_PREFIX clause is not required.

• The XML file does not accurately describe the current locations of the files.
Therefore, the SOURCE_FILE_NAME_CONVERT clause or SOURCE_FILE_DIRECTORY
clause is required. In this example, the XML file indicates that the files are in /
disk1/oracle/sales, but the files are in /disk2/oracle/sales, and the
SOURCE_FILE_DIRECTORY clause is used.

• The files are not in the correct final location for the PDB. Therefore, COPY or MOVE
must be included. In this example, MOVE is specified to move the files.

The CREATE_FILE_DEST clause is not used, Oracle Managed Files is not enabled,
and the PDB_FILE_NAME_CONVERT initialization parameter is not set. Therefore, the
FILE_NAME_CONVERT clause is required. In this example, the files are moved from /
disk2/oracle/sales to /disk3/oracle/sales.

• Storage limits must be enforced for the PDB. Therefore, the STORAGE clause is
required. Specifically, all tablespaces that belong to the PDB must not exceed 2
gigabytes.

• There is no file with the same name as the new temp file that will be created in the
target location. Therefore, the TEMPFILE REUSE clause is not required.

Given the preceding factors, the following statement plugs in the PDB:

CREATE PLUGGABLE DATABASE salespdb USING '/disk1/usr/salespdb.xml'
 SOURCE_FILE_DIRECTORY = '/disk2/oracle/sales/'
 MOVE
 FILE_NAME_CONVERT = ('/disk2/oracle/sales/', '/disk3/oracle/sales/')
 STORAGE (MAXSIZE 2G);

Chapter 10
Plugging in an Unplugged PDB: Examples

10-14

Example 10-9 Plugging In an Unplugged PDB Using an Archive File

This example assumes the following factors:

• The unplugged PDB is in a .pdb archive file named sales.pdb. The archive file includes
the XML metadata file and the PDB’s files (such as the data files and wallet file) in
compressed form, and these files are extracted to the current directory of the .pdb
archive file when the CREATE PLUGGABLE DATABASE statement is run.

• The new PDB is not based on the same unplugged PDB that was used to create an
existing PDB in the CDB. Therefore, the AS CLONE clause is not required.

• The PATH_PREFIX clause is not required.

• Storage limits must be enforced for the PDB. Therefore, the STORAGE clause is required.
Specifically, all tablespaces that belong to the PDB must not exceed 2 gigabytes.

• There is no file with the same name as the new temp file that will be created in the target
location. Therefore, the TEMPFILE REUSE clause is not required.

Given the preceding factors, the following statement plugs in the PDB using an archive file:

CREATE PLUGGABLE DATABASE salespdb USING '/disk1/usr/sales.pdb'
 STORAGE (MAXSIZE 2G);

Chapter 10
Plugging in an Unplugged PDB: Examples

10-15

11
Creating a PDB as a Proxy PDB

You can create a PDB as a proxy PDB by referencing it in a remote CDB.

• About Creating a Proxy PDB
A proxy PDB provides access to a PDB in a remote CDB. It is analogous to a symbolic
link.

• Creating a Proxy PDB
Create a proxy PDB by referencing a PDB in a different CDB.

About Creating a Proxy PDB
A proxy PDB provides access to a PDB in a remote CDB. It is analogous to a symbolic link.

The CREATE PLUGGABLE DATABASE statement creates a proxy PDB by referencing a PDB in a
different CDB, which is called the referenced PDB. You can use a proxy PDB when you want
a local context for a remote PDB. In addition, when application containers in different CDBs
have the same application, you can keep their application roots synchronized with a proxy
PDB.

To use this technique, run the CREATE PLUGGABLE DATABASE statement in the CDB that will
contain the proxy PDB. You must include:

• The AS PROXY clause to specify that you are creating a proxy PDB.

• A FROM clause that specifies the PDB that the proxy PDB is referencing.

• A database link to the current location of the referenced PDB in the FROM clause. The
database link must be created in the root of the CDB that will contain the proxy PDB, and
the database link connects either to the root of remote CDB or to the remote referenced
PDB.

The following figure illustrates how this technique creates a proxy PDB that references a PDB
in a remote CDB.

11-1

Figure 11-1 Create a Remote Proxy PDB

Referenced
PDB

Proxy
PDB

PDBs

CDB

PDBs

CDB

Seed
(PDB$SEED)

Seed
(PDB$SEED)

Root (CDB$ROOT)

Root (CDB$ROOT)

Proxy PDB’s SYSTEM
and SYSAUX Files

Referenced PDB’s
SYSTEM and SYSAUX Files

 Copy to New Location

CREATE PLUGGABLE DATABASE ... AS PROXY ... FROM

Reference

Database
Link

You can create a proxy PDB in an application container. To do so, the referenced PDB
must be an application root or an application PDB in an application container in a
different CDB. The database link must be created in the root of the application
container that will contain the proxy PDB, and the database link connects either to the
root of remote application container or to the remote referenced application PDB.

The following graphic illustrates how this technique creates a proxy PDB in an
application container based on a remote referenced PDB in an application container.

Chapter 11
About Creating a Proxy PDB

11-2

Figure 11-2 Create a Remote Proxy PDB in an Application Container

Proxy PDB’s SYSTEM
and SYSAUX Files

Referenced PDB’s SYSTEM
and SYSAUX Files

Copy to New Location

CREATE PLUGGABLE DATABASE ... AS PROXY ... FROM

Database
Link

Reference

CDB

Seed
(PDB$SEED)

Root (CDB$ROOT)

Application
Seed

PDBs and Application Containers

Application
Container

Application PDBs

Referenced
PDB

Application Root

CDB

Seed
(PDB$SEED)

Root (CDB$ROOT)

Application
Seed

PDBs and Application Containers

Application
Container

Application PDBs

Proxy
PDB

Application Root

Chapter 11
About Creating a Proxy PDB

11-3

Before creating a proxy PDB, address the questions that apply to creating a proxy
PDB in "Table 6-3". The table describes which CREATE PLUGGABLE DATABASE clauses
you must specify based on different factors.

• Proxy PDBs and SQL Statements
As a rule, when the proxy PDB is the current container, SQL statements submitted
for execution in the proxy PDB are executed in the referenced PDB.

• Proxy PDBs and Database Links
A database link is required when you create a proxy PDB.

• Proxy PDBs and Authentication
Only password authentication is supported for sessions in a proxy PDB.

• Proxy PDBs and the Listener
The host name and port number settings for a PDB are important only if proxy
PDBs will reference the PDB.

See Also:

• "PDB Storage"

• "Synchronizing an Application Root Replica with a Proxy PDB"

Proxy PDBs and SQL Statements
As a rule, when the proxy PDB is the current container, SQL statements submitted for
execution in the proxy PDB are executed in the referenced PDB.

The results of the remote execution are returned to the proxy PDB. For example, data
definition language (DDL) statements, data manipulation language (DML) statements,
and queries executed in the proxy PDB are sent to the referenced PDB for execution,
and the results are returned to the proxy PDB.

There is one exception to the rule. When the proxy PDB is the current container, and
when you execute ALTER PLUGGABLE DATABASE and ALTER DATABASE statements, these
statements only affect the proxy PDB. They are not sent to the referenced PDB for
execution. Similarly, when the current container is the root to which the proxy PDB
belongs, ALTER PLUGGABLE DATABASE statements only affect the proxy PDB. For
example, an ALTER PLUGGABLE DATABASE statement executed in a CDB root,
application root, or proxy PDB can open or close a proxy PDB, but this statement does
not open or close the referenced PDB.

Proxy PDBs and Database Links
A database link is required when you create a proxy PDB.

After the proxy PDB is created, the database link specified during creation is no longer
used by the proxy PDB. Instead, the proxy PDB communicates directly with the
referenced PDB.

This direct communication requires the port number and host name of the listener of
the CDB that contains the referenced PDB. During proxy PDB creation, the proxy PDB
uses the following values by default:

Chapter 11
About Creating a Proxy PDB

11-4

• Listener port number: 1521

If the listener of the referenced PDB does not use the default port number, then you must
use the PORT clause to specify the port number of the listener. You can specify the port
number when you create the referenced PDB.

• Listener host name: The host name of the CDB that contains the referenced PDB

If the listener of the referenced PDB listener does not use the default host name, then
you must use the HOST clause to specify the host name of the listener. You can specify
the host name when you create the referenced PDB.

Related Topics

• Proxy PDBs and the Listener
The host name and port number settings for a PDB are important only if proxy PDBs will
reference the PDB.

• Modifying the Listener Settings of a Referenced PDB
A PDB that is referenced by a proxy PDB is called a referenced PDB.

Proxy PDBs and Authentication
Only password authentication is supported for sessions in a proxy PDB.

Proxy PDBs and the Listener
The host name and port number settings for a PDB are important only if proxy PDBs will
reference the PDB.

• HOST Clause
The HOST clause of the CREATE PLUGGABLE DATABASE statement specifies the host name
of the listener for the PDB being created.

• PORT Clause
The PORT clause of the CREATE PLUGGABLE DATABASE statement specifies the port number
of the listener for the PDB being created.

HOST Clause
The HOST clause of the CREATE PLUGGABLE DATABASE statement specifies the host name of
the listener for the PDB being created.

By default, the host name of the listener is the same as the host name of the PDB being
created. Specify the HOST clause when both of the following conditions are true:

• The host name of the listener is different from the host name of the PDB being created.

• You plan to create proxy PDBs that reference the PDB being created.

A proxy PDB uses a database link to establish communication with its referenced PDB. After
communication is established, the proxy PDB communicates directly with the referenced PDB
without using a database link. The host name of the listener must be correct for the proxy
PDB to function properly.

Example 11-1 HOST Clause

HOST='myhost.example.com'

Chapter 11
About Creating a Proxy PDB

11-5

See Also:

• "About Creating a Proxy PDB"

• "Altering the Listener Host Name of a Referenced PDB"

• Oracle Database SQL Language Reference to learn more about the
HOST clause

PORT Clause
The PORT clause of the CREATE PLUGGABLE DATABASE statement specifies the port
number of the listener for the PDB being created.

By default, the port number of the listener for the PDB being created is 1521. Specify
the PORT clause when both of the following conditions are true:

• The port number of the listener is not 1521.

• You plan to create proxy PDBs that reference the PDB being created.

A proxy PDB uses a database link to establish communication with its referenced
PDB. After communication is established, the proxy PDB communicates directly with
the referenced PDB without using a database link. The port number of the listener
must be correct for the proxy PDB to function properly.

Example 11-2 PORT Clause

PORT=1599

Note:

• "About Creating a Proxy PDB"

• "Altering the Listener Host Name of a Referenced PDB"

• Oracle Database SQL Language Reference to learn more about the
PORT clause

Creating a Proxy PDB
Create a proxy PDB by referencing a PDB in a different CDB.

Prerequisites

The following prerequisites must be met:

• Complete the prerequisites described in "General Prerequisites for PDB Creation".

• The current user must have the CREATE PLUGGABLE DATABASE system privilege in
the root of the CDB in which the proxy PDB is being created.

Chapter 11
Creating a Proxy PDB

11-6

• The CDB that contains the referenced PDB must be in local undo mode.

• The CDB that contains the referenced PDB must be in ARCHIVELOG mode.

• The referenced PDB must be in open read/write mode when the proxy PDB is created.
The open mode of the referenced PDB can be changed after the proxy PDB is created.

• A database link must enable a connection from the root of the CDB in which the proxy
PDB is being created to the location of the referenced PDB. The database link can
connect to either the root of the remote CDB or to the remote PDB.

• If the database link connects to the root in a remote CDB that contains the referenced
PDB, then the user that the database link connects with must be a common user.

• If the database link connects to the referenced PDB, then the user that the database link
connects with in the referenced PDB must have the CREATE PLUGGABLE DATABASE system
privilege.

• If you are creating a proxy PDB in an application container, then the following
prerequisites apply:

– The referenced PDB must be an application root or an application PDB in an
application container.

– The application name and version of the proxy PDB’s application container must
match the application name and version of the referenced PDB.

– When the proxy PDB is being created in an application container, a database link
must enable a connection from the root of the application container in which the
proxy PDB is being created to the location of the referenced PDB. The database link
can connect to either the root of the remote application container or to the remote
application PDB.

– If the database link connects to the root in a remote application container that
contains the referenced PDB, then the user that the database link connects with must
be an application common user.

– If the database link connects to the referenced application PDB, then the user that
the database link connects with in the referenced application PDB must have the
CREATE PLUGGABLE DATABASE system privilege.

Note:

You can create a proxy PDB in a CDB root that is based on a referenced PDB
in an application container.

To create a proxy PDB:

1. In SQL*Plus, ensure that the current container is the CDB root or application root in
which the proxy PDB is being created.

When the current container is the CDB root, the proxy PDB is created in the CDB. When
the current container is an application root, the proxy PDB is created in the application
container.

2. Run the CREATE PLUGGABLE DATABASE statement. Specify the AS PROXY clause, and
specify the referenced PDB with the database link name in the FROM clause. Specify other
clauses when they are required.

Chapter 11
Creating a Proxy PDB

11-7

After you create the proxy PDB, it is in mounted mode, and its status is NEW. You
can view the open mode of a PDB by querying the OPEN_MODE column in the
V$PDBS view. You can view the status of a PDB by querying the STATUS column of
the CDB_PDBS or DBA_PDBS view.

A new default service is created for the PDB. The service has the same name as
the PDB and can be used to access the PDB. Oracle Net Services must be
configured properly for clients to access this service.

3. Open the new PDB in read/write mode.

You must open the new PDB in read/write mode for Oracle Database to complete
the integration of the new PDB into the CDB. An error is returned if you attempt to
open the PDB in read-only mode. After the PDB is opened in read/write mode, its
status is NORMAL.

4. Back up the PDB.

A PDB cannot be recovered unless it is backed up.

Note:

If an error is returned during creation of the proxy PDB, then the PDB being
created might be in an UNUSABLE state. You can check a PDB's state by
querying the CDB_PDBS or DBA_PDBS view, and you can learn more about PDB
creation errors by checking the alert log. An unusable PDB can only be
dropped, and it must be dropped before a PDB with the same name as the
unusable PDB can be created.

Example 11-3 Creating a Remote Proxy PDB

In this example, the root to which the new PDB belongs depends on the current
container when the CREATE PLUGGABLE DATABASE statement is run:

• When the current container is the CDB root, the new PDB is created in the CDB
root.

• When the current container is an application root in an application container, the
new PDB is created as an application PDB in the application root.

This example creates a remote proxy PDB named pdb1 given different factors. This
example assumes the following factors:

• The database link name to the referenced PDB’s CDB is pdb1_link.

• The FILE_NAME_CONVERT clause and the CREATE_FILE_DEST clause are not
required.

Either Oracle Managed Files is enabled, or the PDB_FILE_NAME_CONVERT
initialization parameter is set. The SYSTEM and SYSAUX files will be copied to a new
location based on the Oracle Managed Files configuration or the initialization
parameter setting.

Given the preceding factors, the following statement creates the pdb1 proxy PDB:

CREATE PLUGGABLE DATABASE pdb1 AS PROXY FROM pdb1@pdb1_link;

Chapter 11
Creating a Proxy PDB

11-8

See Also:

• "About the CDB Undo Mode"

• "About Container Access in a CDB"

• "Modifying the Open Mode of PDBs"

• Oracle Database Backup and Recovery User’s Guide for information about
backing up a PDB

Chapter 11
Creating a Proxy PDB

11-9

12
Administering a PDB Snapshot Carousel

You can configure a PDB snapshot carousel for a specified PDB, create snapshots manually
or automatically, and set the maximum number of snapshots.

• About PDB Snapshot Carousel
A PDB snapshot carousel is a library of PDB snapshots.

• Setting the Maximum Number of Snapshots in a PDB Snapshot Carousel
You can set the maximum number of PDB snapshots for a PDB.

• Configuring Automatic PDB Snapshots
Configure a PDB for automatic snapshots by using the SNAPSHOT MODE EVERY clause
when creating or altering a PDB.

• Creating PDB Snapshots Manually
To create a PDB snapshot manually, specify the SNAPSHOT snapshot_name clause in
ALTER PLUGGABLE DATABASE or CREATE PLUGGABLE DATABASE.

• Dropping a PDB Snapshot
You can drop a PDB snapshot by running an ALTER PLUGGABLE DATABASE statement with
the DROP SNAPSHOT clause.

• Viewing Metadata for PDB Snapshots
The data dictionary views DBA_PDB_SNAPSHOTS and DBA_PDB_SNAPSHOTFILE show the
metadata for PDB snapshots.

About PDB Snapshot Carousel
A PDB snapshot carousel is a library of PDB snapshots.

A PDB snapshot is a point-in-time copy of a PDB. The source PDB can be open read-only or
read/write while the snapshot is created. You can create snapshots manually using the
SNAPSHOT clause of CREATE PLUGGABLE DATABASE (or ALTER PLUGGABLE DATABASE), or
automatically using the EVERY interval clause. If the storage system supports sparse
clones, then the preceding command creates a sparse copy. Otherwise, the command
creates a full copy.

• Purpose of PDB Snapshot Carousel
A PDB snapshot carousel is useful for maintaining a library of recent PDB copies for
point-in-time recovery and cloning.

• How PDB Snapshot Carousel Works
The carousel for a specific PDB is a circular library of copies for this PDB.

• User Interface for PDB Snapshot Carousel
The SNAPSHOT MODE clause controls creation of snapshots, and determines whether
creation is manual, automatic, or disabled.

12-1

See Also:

Oracle Database Licensing Information User Manual for details on which
features are supported for different editions and services

Purpose of PDB Snapshot Carousel
A PDB snapshot carousel is useful for maintaining a library of recent PDB copies for
point-in-time recovery and cloning.

Cloning PDBs for Development and Testing

In a typical development use case, you clone a production PDB for testing using a
command of the form CREATE PLUGGABLE DATABASE newpdb FROM srcpdb. When the
CDB is in ARCHIVELOG mode and local undo mode, the source production PDB can be
opened in read/write mode and fully functional when you clone it, a technique known
as hot cloning. The hot clone PDB is transactionally consistent with the source PDB
as of the SCN at the completion of the ALTER PLUGGABLE DATABASE ... OPEN
statement.

The following steps illustrate a typical development scenario:

1. While the production PDB named pdb1_prod is open and in use, create a
refreshable clone PDB named pdb1_test_master.

A refreshable clone PDB can only be opened in read/only mode. To refresh the
clone PDB from pdb1_prod, you must close it.

2. Run ALTER PLUGGABLE DATABASE pdb1_test_master SNAPSHOT MODE EVERY 24
HOURS, which configures the PDB to generate automatic snapshots of
pdb1_test_master every day.

3. When you need new PDBs for testing, create a full clone PDB by using the CREATE
PLUGGABLE DATABASE … USING SNAPSHOT command.

4. Create sparse snapshot copy PDBs of the full clone PDB using CREATE PLUGGABLE
DATABASE ... SNAPSHOT COPY.

The following figure shows the creation of the clone pdb1_test_full1 from the PDB
snapshot taken on April 5. The figure shows three snapshot copy PDBs created from
pdb1_test_full1.

Chapter 12
About PDB Snapshot Carousel

12-2

Figure 12-1 Automatic Snapshots of a Refreshable Clone PDB

pdb1_test_scopy3pdb1_test_scopy1 pdb1_test_scopy2

pdb1_test_full1

pdb1_test_masterpdb1_prod

Mon
4/9

Mon
4/2

Tue
4/3

Wed
4/4

Thu
4/5

Fri
4/6

Sat
4/7

Sun
4/8

Automatic
Snapshots

Refreshable
Clone

Full
Clone

Snapshot Copy

Point-in-Time Restore with PDB Snapshot Carousel

One strategy is to take a snapshot of a PDB every day at the same time. Another strategy is
to take a PDB snapshot manually before data loads. In either case, a PDB snapshot carousel
enables you to restore a PDB using any available PDB snapshot.

For example, a sales history PDB named pdb1_prod generates an automatic snapshot every
day at 12:01 a.m. On the daily data load on the afternoon of Monday 4/9, you accidentally
load the wrong data, corrupting the PDB. You can create a new production PDB based on the
Monday 4/9 snapshot, drop the corrupted PDB, and then retry the data load.

Chapter 12
About PDB Snapshot Carousel

12-3

Figure 12-2 Restore a Production PDB Using a Snapshot

pdb1_prod

Mon
4/9

Mon
4/2

Tue
4/3

Wed
4/4

Thu
4/5

Fri
4/6

Sat
4/7

Sun
4/8

CREATE ...
USING

SNAPSHOT

pdb1_prod

Mon
4/9

Mon
4/2

Tue
4/3

Wed
4/4

Thu
4/5

Fri
4/6

Sat
4/7

Sun
4/8

Create
Snapshots

Logical

Corruption

in P.M. on

Mon 4/9

See Also:

• "About Cloning a PDB"

• Oracle Database SQL Language Reference for CREATE PLUGGABLE
DATABASE syntax and semantics

• Oracle Database Licensing Information User Manual for details on which
features are supported for different editions and services

Chapter 12
About PDB Snapshot Carousel

12-4

How PDB Snapshot Carousel Works
The carousel for a specific PDB is a circular library of copies for this PDB.

The database creates successive copies in the carousel either on demand or automatically.
The database overwrites the oldest snapshot when the snapshot limit is reached.

• Contents of a PDB Snapshot
The contents of a PDB snapshot depend on whether the underlying file system supports
sparse files.

• Contents of a PDB Snapshot Carousel
The PDB snapshot carousel is the set of all existing snapshots for a PDB.

Contents of a PDB Snapshot
The contents of a PDB snapshot depend on whether the underlying file system supports
sparse files.

Snapshot Names

The name of a database-managed PDB snapshot is either user-specified or system-
generated. For system-generated snapshot names, SNAP_ is prefixed to a unique identifier,
which contains the snapshot SCN. For example, the following query shows three snapshots
with system-generated names and the SCNs at which they were taken:

SET LINESIZE 200
SET PAGESIZE 50000

COL CON_ID FORMAT 999999
COL CON_NAME FORMAT a15
COL SNAPSHOT_NAME FORMAT a27

SELECT CON_ID, CON_NAME, SNAPSHOT_NAME, SNAPSHOT_SCN FROM DBA_PDB_SNAPSHOTS;

 CON_ID CON_NAME SNAPSHOT_NAME SNAPSHOT_SCN
------- --------------- --------------------------- ------------
 5 HRPDB SNAP_1389467754_993556301 2925293
 5 HRPDB SNAP_1389467754_993556306 2925679
 5 HRPDB SNAP_1389467754_993556309 2925698

Note:

See Oracle Database Licensing Information User Manual for details on which
features are supported for different editions and services.

Full and Sparse Snapshots

The content of snapshots generated by ALTER PLUGGABLE DATABASE ... SNAPSHOT depends
on the underlying file system. If the underlying file system supports sparse copies, then the
PDB-level snapshots are sparse. Only the first PDB-managed PDB snapshot is full.

Chapter 12
About PDB Snapshot Carousel

12-5

Otherwise, the PDB snapshots contain full copies of the data files. The snapshot
includes other files necessary to create a PDB from the snapshot.

Snapshot Directories

Every PDB has its own snapshot directory. Within this directory, each snapshot has its
own subdirectory named after the SCN at which it was taken. The following query
shows the sparse PDB snapshots for hrpdb, which has a DBID of 1389467754:

SET LINESIZE 200
SET PAGESIZE 50000

COL SNAPSHOT_NAME FORMAT a27
COL FULL_SNAPSHOT_PATH FORMAT a65

SELECT SNAPSHOT_NAME, SNAPSHOT_SCN, FULL_SNAPSHOT_PATH FROM DBA_PDB_SNAPSHOTS;

SNAPSHOT_NAME SNAPSHOT_SCN FULL_SNAPSHOT_PATH
--------------------------- ------------ ---------------------------------------
SNAP_1389467754_993556301 2925293 /d1/snapshots/pdb_1389467754/2925293/
SNAP_1389467754_993556306 2925679 /d1/snapshots/pdb_1389467754/2925679/
SNAP_1389467754_993556309 2925698 /d1/snapshots/pdb_1389467754/2925698/

Note:

If the snapshot were full instead of sparse, then the full snapshot path would
specify an archive with the .pdb suffix.

The directory for /d1/snapshots/pdb_1389467754/2925698/ contains the following
files:

archparlog_1_63_52d1986a_993552590.arc
o1_mf_salestbs_g03341t2_.dbf
o1_mf_sysext_g0333vqw_.dbf
o1_mf_undo_1_g033gd2j_.dbf
o1_mf_sysaux_g0333vqv_.dbf
o1_mf_system_g0333vqt_.dbf
HRPDB.xml

The set includes the data files, archived redo log files, and an XML file that contains
metadata about the PDB snapshot. The following du command shows that the size of
the snapshot data files, which are sparse, is small relative to the size of the data files:

% du -h *dbf
16K o1_mf_salestbs_g03341t2_.dbf
16K o1_mf_sysaux_g0333vqv_.dbf
16K o1_mf_sysext_g0333vqw_.dbf
16K o1_mf_system_g0333vqt_.dbf
16K o1_mf_undo_1_g033gd2j_.dbf

Chapter 12
About PDB Snapshot Carousel

12-6

The following data dictionary join shows the snapshot file names and types for snapshot
2925698:

SELECT f.SNAPSHOT_FILENAME, f.SNAPSHOT_FILETYPE
FROM DBA_PDB_SNAPSHOTS s, DBA_PDB_SNAPSHOTFILE f
WHERE s.SNAPSHOT_SCN=f.SNAPSHOT_SCN
AND s.CON_ID=f.CON_ID
ORDER BY s.SNAPSHOT_SCN DESC;

SNAPSHOT_FILENAME SNAPSHOT
--- --------
/d1/snapshots/pdb_1389467754/2925698/o1_mf_sysaux_g0333vqv_.dbf DATA
/d1/snapshots/pdb_1389467754/2925698/o1_mf_system_g0333vqt_.dbf DATA
/d1/snapshots/pdb_1389467754/2925698/HRPDB.xml XML
/d1/snapshots/pdb_1389467754/2925698/o1_mf_sysext_g0333vqw_.dbf DATA
/d1/snapshots/pdb_1389467754/2925698/o1_mf_salestbs_g03341t2_.dbf DATA
/d1/snapshots/pdb_1389467754/2925698/o1_mf_undo_1_g033gd2j_.dbf DATA
/d1/snapshots/pdb_1389467754/2925698/archparlog_1_63_52d1986a_993552590.arc ARCH
/d1/snapshots/pdb_1389467754/2925679/o1_mf_sysext_g0333vqw_.dbf DATA
/d1/snapshots/pdb_1389467754/2925679/o1_mf_salestbs_g03341t2_.dbf DATA
/d1/snapshots/pdb_1389467754/2925679/o1_mf_undo_1_g033gd2j_.dbf DATA
/d1/snapshots/pdb_1389467754/2925679/o1_mf_sysaux_g0333vqv_.dbf DATA
/d1/snapshots/pdb_1389467754/2925679/archparlog_1_63_52d1986a_993552590.arc ARCH
/d1/snapshots/pdb_1389467754/2925679/HRPDB.xml XML
/d1/snapshots/pdb_1389467754/2925679/o1_mf_system_g0333vqt_.dbf DATA
/d1/snapshots/pdb_1389467754/2925293/HRPDB.xml XML
/d1/snapshots/pdb_1389467754/2925293/o1_mf_system_g0333vqt_.dbf DATA
/d1/snapshots/pdb_1389467754/2925293/o1_mf_sysaux_g0333vqv_.dbf DATA
/d1/snapshots/pdb_1389467754/2925293/o1_mf_undo_1_g033gd2j_.dbf DATA
/d1/snapshots/pdb_1389467754/2925293/o1_mf_salestbs_g03341t2_.dbf DATA
/d1/snapshots/pdb_1389467754/2925293/o1_mf_sysext_g0333vqw_.dbf DATA
/d1/snapshots/pdb_1389467754/2925293/archparlog_1_63_52d1986a_993552590.arc ARCH

Contents of a PDB Snapshot Carousel
The PDB snapshot carousel is the set of all existing snapshots for a PDB.

The MAX_PDB_SNAPSHOTS property specifies the maximum number of snapshots permitted in
the carousel. The current setting is visible in the CDB_PROPERTIES view.

The following figure shows a carousel for cdb1_pdb1. In this example, the database takes a
PDB snapshot automatically every day, maintaining a set of 8. After the first 8 snapshots
have been created, every new snapshot replaces the oldest snapshot. For example, the
Tuesday 4/10 snapshot replaces the Monday 4/2 snapshot; the Wednesday 4/11 snapshot
replaces the Tuesday 4/3 snapshot; and so on.

Chapter 12
About PDB Snapshot Carousel

12-7

Figure 12-3 PDB Snapshot Carousel

Mon
4/9

Mon
4/2

Tue
4/3

Wed
4/4

Thu
4/5

Fri
4/6

Sat
4/7

Sun
4/8

Application
Seed

cdb1_pdb1

Application Root sales_app

Carousel for cdb1_pdb1

If the file system supports sparse files, then all PDB snapshots in the carousel except
the first one are sparse. The source PDB can remain in read/write mode. Sparse files
significantly reduce the carousel storage space.

See Also:

Oracle Database Licensing Information User Manual for details on which
features are supported for different editions and services

User Interface for PDB Snapshot Carousel
The SNAPSHOT MODE clause controls creation of snapshots, and determines whether
creation is manual, automatic, or disabled.

ALTER PLUGGABLE DATABASE … SNAPSHOT Statement

To set the snapshot mode for a PDB, use one of the following values in the SNAPSHOT
MODE clause of ALTER PLUGGABLE DATABASE or CREATE PLUGGABLE DATABASE:

• MANUAL
This clause, which is the default, enables the creation of manual snapshots of the
PDB. To create a snapshot on demand, specify the SNAPSHOT snapshot_name
clause in an ALTER PLUGGABLE DATABASE or CREATE PLUGGABLE DATABASE
statement.

• EVERY snapshot_interval [MINUTES|HOURS]
This clause enables the automatic creation of snapshots after an interval of time.
The following restrictions apply to the interval specified:

Chapter 12
About PDB Snapshot Carousel

12-8

– The minutes value must be less than 3000.

– The hours value must be less than 2000.

The database assigns each automatic snapshot a system-generated name. Note that
manual snapshots are also supported for the PDB when EVERY is specified.

• NONE
This clause disables snapshot creation for the PDB.

See Also:

• "About Cloning PDBs from PDB Snapshots"

• Oracle Database SQL Language Reference for the syntax and semantics of the
SNAPSHOT clause

MAX_PDB_SNAPSHOTS Database Property

To set the maximum number of snapshots for a PDB, specify the MAX_PDB_SNAPSHOTS
property in ALTER PLUGGABLE DATABASE or CREATE PLUGGABLE DATABASE. The default is for
the property is 8, which is also the maximum value. When the maximum allowed number of
snapshots has been created, the database purges the oldest snapshot. The CDB_PROPERTIES
view shows the setting of MAX_PDB_SNAPSHOTS.

See Also:

Oracle Database SQL Language Reference for the syntax of the ALTER PLUGGABLE
DATABASE statement

Snapshot-Related Data Dictionary Views

The following data dictionary views provide snapshot information:

• The DBA_PDB_SNAPSHOTS view records metadata about PDB snapshots, including
snapshot name, creation SCN, creation time, and file name.

• The DBA_PDB_SNAPSHOTFILE view lists the names and types of the files in a PDB
snapshot. This view is only populated when the snapshots are sparse.

• The DBA_PDBS view has a SNAPSHOT_MODE and SNAPSHOT_INTERVAL column.

See Also:

Oracle Database Reference to learn about DBA_PDB_SNAPSHOTS,
DBA_PDB_SNAPSHOTFILE, and DBA_PDBS

Chapter 12
About PDB Snapshot Carousel

12-9

Setting the Maximum Number of Snapshots in a PDB
Snapshot Carousel

You can set the maximum number of PDB snapshots for a PDB.

The MAX_PDB_SNAPSHOTS database property sets the maximum number of snapshots
for every PDB in a PDB snapshot carousel. The default maximum is 8. You cannot set
the property to a number greater than 8.

Prerequisites

The PDB must be open in read/write mode.

To set the maximum number of PDB snapshots for a PDB:

1. In SQL*Plus, ensure that the current container is the PDB for which you want to
set the limit.

2. Optionally, query CDB_PROPERTIES for the current setting of the SET
MAX_PDB_SNAPSHOTS property.

3. Run an ALTER PLUGGABLE DATABASE or ALTER DATABASE statement with the SET
MAX_PDB_SNAPSHOTS clause.

Example 12-1 Setting the Maximum Number of PDB Snapshots for a PDB

The following query shows the maximum in the carousel for cdb1_pdb1 (sample output
included):

SET LINESIZE 150
COL ID FORMAT 99
COL PROPERTY_NAME FORMAT a17
COL PDB_NAME FORMAT a9
COL VALUE FORMAT a3
COL DESCRIPTION FORMAT a43

SELECT r.CON_ID AS id, p.PDB_NAME, PROPERTY_NAME,
 PROPERTY_VALUE AS value, DESCRIPTION
FROM CDB_PROPERTIES r, CDB_PDBS p
WHERE r.CON_ID = p.CON_ID
AND PROPERTY_NAME LIKE 'MAX_PDB%'
ORDER BY PROPERTY_NAME;

ID PDB_NAME PROPERTY_NAME VAL DESCRIPTION
-- --------- ----------------- --- ------------------------------------
 3 CDB1_PDB1 MAX_PDB_SNAPSHOTS 8 maximum number of snapshots for a
PDB

The following SQL statement sets the maximum number of PDB snapshots for the
current PDB to 7:

ALTER PLUGGABLE DATABASE SET MAX_PDB_SNAPSHOTS=7;

Chapter 12
Setting the Maximum Number of Snapshots in a PDB Snapshot Carousel

12-10

Example 12-2 Dropping All Snapshots in a PDB Snapshot Carousel

To drop all snapshots in a PDB snapshot carousel, set the MAX_PDB_SNAPSHOTS database
property to 0 (zero), as shown in the following statement:

ALTER PLUGGABLE DATABASE SET MAX_PDB_SNAPSHOTS=0;

This technique is faster than executing ALTER PLUGGABLE DATABASE ... DROP SNAPSHOT
snapshot_name for every snapshot.

See Also:

"About Container Access in a CDB"

Configuring Automatic PDB Snapshots
Configure a PDB for automatic snapshots by using the SNAPSHOT MODE EVERY clause when
creating or altering a PDB.

By default, a PDB is configured for manual snapshots.

Prerequisites

Note the following prerequisites for the ALTER PLUGGABLE DATABASE SNAPSHOT statement:

• The CDB must be in local undo mode.

• The administrator must have the privileges to create a PDB and drop a PDB.

To configure automatic snapshots when altering a PDB:

1. In SQL*Plus, log in as an administrator to the PDB whose snapshot mode you intend to
configure.

2. Optionally, query DBA_PDBS to determine the current snapshot mode.

3. Run ALTER PLUGGABLE DATABASE with the SNAPSHOT MODE EVERY interval clause,
specifying either MINUTES or HOURS.

To configure automatic snapshots when creating a PDB:

1. In SQL*Plus, log in as an administrator to the CDB root or application root.

2. Optionally, query DBA_PDBS to determine the current snapshot mode.

3. Run CREATE PLUGGABLE DATABASE with the SNAPSHOT MODE EVERY interval clause,
specifying either MINUTES or HOURS.

Chapter 12
Configuring Automatic PDB Snapshots

12-11

Example 12-3 Configuring an Automatic Snapshot Every Day for an Existing
PDB

This example assumes that you are logged in to the PDB whose snapshot mode you
intend to change. Query the data dictionary to confirm that the PDB is currently in
MANUAL mode (sample output included):

SELECT SNAPSHOT_MODE "S_MODE", SNAPSHOT_INTERVAL/60 "SNAP_INT_HRS"
FROM DBA_PDBS;

S_MODE SNAP_INT_HRS
------ ------------
MANUAL

Change the snapshot mode to every 24 hours:

ALTER PLUGGABLE DATABASE SNAPSHOT MODE EVERY 24 HOURS;

Confirm the change to automatic mode:

SELECT SNAPSHOT_MODE "S_MODE", SNAPSHOT_INTERVAL/60 "SNAP_INT_HRS"
FROM DBA_PDBS;

S_MODE SNAP_INT_HRS
------ ------------
AUTO 24

Example 12-4 Creating a PDB That Takes Snapshots Every Two Hours

This example assumes that you are logged in to the CDB root. The following
statement creates cdb1_pdb3 from an existing PDB named cdb1_pdb1, and configures
it to take snapshots automatically every 2 hours:

CREATE PLUGGABLE DATABASE cdb1_pdb3 FROM cdb1_pdb1
 FILE_NAME_CONVERT=('cdb1_pdb1','cdb1_pdb3')
 SNAPSHOT MODE EVERY 120 MINUTES;

See Also:

• "Cloning a PDB from a PDB Snapshot: Scenario"

• "Configuring a CDB to Use Local Undo Mode"

Chapter 12
Configuring Automatic PDB Snapshots

12-12

Creating PDB Snapshots Manually
To create a PDB snapshot manually, specify the SNAPSHOT snapshot_name clause in ALTER
PLUGGABLE DATABASE or CREATE PLUGGABLE DATABASE.

Prerequisites

Note the following prerequisites for the ALTER PLUGGABLE DATABASE SNAPSHOT statement:

• The CDB must be in local undo mode. You can check the mode by using the following
query, which returns TRUE when local undo is enabled:

SELECT * FROM DATABASE_PROPERTIES WHERE
PROPERTY_NAME='LOCAL_UNDO_ENABLED';

• The DBA must have the privileges to create and drop a PDB.

• If you want the snapshots to be sparse, then the underlying storage system must support
sparse files. In this case, only the first snapshot will be full.

To create a PDB snapshot:

1. In SQL*Plus, log in as an administrator to the PDB whose snapshot you intend to create.

2. Optionally, query DBA_PDBS.SNAPSHOT_MODE to confirm that the snapshot mode is not set
to NONE.

3. Run an ALTER PLUGGABLE DATABASE statement with the SNAPSHOT clause.

Example 12-5 Creating a PDB Snapshot with a User-Specified Name

The following SQL statements create two PDB snapshots of cdb1_pdb1, one before and one
after a Wednesday data load:

ALTER PLUGGABLE DATABASE SNAPSHOT cdb1_pdb1_b4WLOAD;
-- data load
ALTER PLUGGABLE DATABASE SNAPSHOT cdb1_pdb1_afWLOAD;

The following query of DBA_PDB_SNAPSHOTS shows the locations of two snapshots of the PDB
named cdb1_pdb1 (sample output included):

SET LINESIZE 150
COL CON_NAME FORMAT a9
COL ID FORMAT 99
COL SNAPSHOT_NAME FORMAT a17
COL SNAP_SCN FORMAT 9999999
COL FULL_SNAPSHOT_PATH FORMAT a61

SELECT CON_ID AS ID, CON_NAME, SNAPSHOT_NAME,
 SNAPSHOT_SCN AS snap_scn, FULL_SNAPSHOT_PATH
FROM DBA_PDB_SNAPSHOTS
ORDER BY SNAP_SCN;

 ID SNAPSHOT_NAME SNAP_SCN FULL_SNAPSHOT_PATH
--- ----------------- -------- ---

Chapter 12
Creating PDB Snapshots Manually

12-13

 4 CDB1_PDB1_B4WLOAD 5056465 /ade/b/813544604/oracle/dbs/snapshots/
pdb_2935056285/5056465/
 4 CDB1_PDB1_AFWLOAD 5056501 /ade/b/813544604/oracle/dbs/snapshots/
pdb_2935056285/5056501/

If you do not specify a PDB snapshot name, then the database generates a unique
name.

Example 12-6 Creating a PDB Snapshot with a System-Specified Name

The following SQL statement creates a snapshot, but does not specify a name:

ALTER PLUGGABLE DATABASE SNAPSHOT;

The following sample query shows that the database assigned the snapshot a name
prefixed with SNAP_:

SET LINESIZE 150
COL CON_NAME FORMAT a9
COL ID FORMAT 99
COL SNAPSHOT_NAME FORMAT a26
COL SNAP_SCN FORMAT 9999999
COL FULL_SNAPSHOT_PATH FORMAT a61

SELECT CON_ID AS id, CON_NAME, SNAPSHOT_NAME,
 SNAPSHOT_SCN AS snap_scn, FULL_SNAPSHOT_PATH
FROM DBA_PDB_SNAPSHOTS
ORDER BY SNAP_SCN;

 ID SNAPSHOT_NAME SNAP_SCN FULL_SNAPSHOT_PATH
--- -------------------------- --------

 4 CDB1_PDB1_B4WLOAD 5056465 /ade/b/813544604/oracle/dbs/snapshots/
pdb_2935056285/5056465/
 4 CDB1_PDB1_AFWLOAD 5056501 /ade/b/813544604/oracle/dbs/snapshots/
pdb_2935056285/5056501/
 4 SNAP_2935056285_1031574118 5057389 /ade/b/813544604/oracle/dbs/snapshots/
pdb_2935056285/5057389/

See Also:

• "About Container Access in a CDB"

• "Configuring a CDB to Use Local Undo Mode"

Chapter 12
Creating PDB Snapshots Manually

12-14

Dropping a PDB Snapshot
You can drop a PDB snapshot by running an ALTER PLUGGABLE DATABASE statement with the
DROP SNAPSHOT clause.

To drop all PDB snapshots based on a PDB, set the MAX_PDB_SNAPSHOTS property in the PDB
to 0 (zero).

To drop a PDB snapshot:

1. In SQL*Plus, ensure that the current container is the PDB from which you created the
PDB snapshot.

2. Run an ALTER PLUGGABLE DATABASE statement with the DROP SNAPSHOT clause.

Example 12-7 Dropping a PDB Snapshot

The following SQL statement drops a PDB snapshot named sales_snap:

ALTER PLUGGABLE DATABASE DROP SNAPSHOT sales_snap;

See Also:

"About Container Access in a CDB"

Viewing Metadata for PDB Snapshots
The data dictionary views DBA_PDB_SNAPSHOTS and DBA_PDB_SNAPSHOTFILE show the
metadata for PDB snapshots.

DBA_PDB_SNAPSHOTS contains general information about the snapshot, including name, SCN,
time, and path. DBA_PDB_SNAPSHOTFILE shows the path and file type of every file in a
snapshot: data files, archived redo log files, and XML files.

Note:

DBA_PDB_SNAPSHOTFILE only shows sparse clone PDBs. To create sparse clones,
the CLONEDB initialization parameter must be set to TRUE.

To view metadata for PDB snapshots:

1. In SQL*Plus, log in to the database as an administrative user.

2. Query DBA_PDB_SNAPSHOTS.

Chapter 12
Dropping a PDB Snapshot

12-15

For example, run the following query (sample output included):

COL SNAPSHOT_NAME FORMAT a30
SELECT SNAPSHOT_NAME, SNAPSHOT_SCN, SNAPSHOT_TIME FROM
DBA_PDB_SNAPSHOTS;

SNAPSHOT_NAME SNAPSHOT_SCN SNAPSHOT_TIME
------------------------------ ------------ -------------
HRPDB_SNAP_F 3678939 1536262569
HRPDB_SNAP_S 4954803 986473745

3. Query DBA_PDB_SNAPSHOTFILE.

For example, run the following join query (sample output included):

SET LINESIZE 120
COL SNAPSHOT_NAME FORMAT a12
COL SNAPSHOT_FILENAME FORMAT a54

SELECT SNAPSHOT_NAME, SNAPSHOT_FILENAME, SNAPSHOT_FILETYPE AS TYPE
FROM DBA_PDB_SNAPSHOTS s, DBA_PDB_SNAPSHOTFILE f
WHERE s.SNAPSHOT_SCN=f.SNAPSHOT_SCN;

SNAPSHOT_NAM SNAPSHOT_FILENAME
TYPE
------------ --

HRPDB_SNAP_S /d1/snapshots/4954803/o1_mf_undo_1_fry1l5bq_.dbf
DATA
HRPDB_SNAP_S /d1/snapshots/4954803/o1_mf_salestbs_fry19m6h_.dbf
DATA
HRPDB_SNAP_S /d1/snapshots/4954803/o1_mf_sysext_fry19d1n_.dbf
DATA
HRPDB_SNAP_S /d1/snapshots/4954803/o1_mf_sysaux_fry19d1m_.dbf
DATA
HRPDB_SNAP_S /d1/snapshots/4954803/o1_mf_system_fry19d1k_.dbf
DATA
HRPDB_SNAP_S /d1/snapshots/4954803/
HRPDB.xml XML
HRPDB_SNAP_S /d1/snapshots/4954803/archparlog_1_274_b87ca51e_985963
 814.arc
ARCH

Example 12-8 Querying Metadata for Full PDB Snapshots

The following query shows two PDB snapshots. The snapshots are full, not sparse, as
indicated by the .pdb extension.

SET LINESIZE 200
SET PAGESIZE 50000

COL ID FORMAT 99
COL CON_NAME FORMAT a7
COL SNAPSHOT_NAME FORMAT a25
COL SNAPSHOT_SCN FORMAT a7

Chapter 12
Viewing Metadata for PDB Snapshots

12-16

COL FULL_SNAPSHOT_PATH FORMAT a65

SELECT CON_ID AS ID, CON_NAME, SNAPSHOT_NAME,
 SNAPSHOT_SCN, FULL_SNAPSHOT_PATH
FROM DBA_PDB_SNAPSHOTS;

ID CON_NAM SNAPSHOT_NAME SNAPSHO FULL_SNAPSHOT_PATH
-- ------- ------------------------- ------- -------------------------------
 5 HRPDB SNAP_3286480866_994766895 3160319 /d1/snap_3286480866_3160319.pdb
 5 HRPDB SNAP_3286480866_994767095 3165758 /d1/snap_3286480866_3165758.pdb

The following query of DBA_PDB_SNAPSHOTFILE returns no rows because this view is only
populated when PDB snapshots are sparse:

SQL> SELECT COUNT(*) FROM DBA_PDB_SNAPSHOTFILE;

 COUNT(*)

 0

Chapter 12
Viewing Metadata for PDB Snapshots

12-17

13
Removing a PDB

You can remove a plugged-in PDB from a CDB by unplugging it, dropping it, or relocating it.

• Unplugging a PDB from a CDB
Just as you can plug a PDB into a CDB, you can unplug a PDB from a CDB.

• Dropping a PDB
Drop a PDB when you want to move the PDB to a new CDB or when you no longer need
it.

See Also:

"Relocating a PDB"

Unplugging a PDB from a CDB
Just as you can plug a PDB into a CDB, you can unplug a PDB from a CDB.

• About Unplugging a PDB
Unplugging a PDB disassociates the PDB from a CDB. A PDB is usable only when it is
plugged into a CDB.

• Unplugging a PDB
Unplug a PDB with a ALTER PLUGGABLE DATABASE ... UNPLUG INTO statement.

About Unplugging a PDB
Unplugging a PDB disassociates the PDB from a CDB. A PDB is usable only when it is
plugged into a CDB.

Unplug a PDB when you want to do any of the following:

• Move the PDB to a different CDB

• Archive the PDB for later use

• Make the PDB unavailable for use

To unplug a PDB, connect to its CDB root or application root and use the ALTER PLUGGABLE
DATABASE statement to specify either of the following:

• XML file

An XML file (.xml extension) contains metadata about the PDB after it is unplugged. This
metadata contains the required information to enable a CREATE PLUGGABLE DATABASE
statement on a target CDB to plug in the PDB.

• .pdb file

13-1

A .pdb file contains a compressed archive of the XML file that describes the PDB
and the files used by the PDB (such as the data files and wallet file). A .pdb file
enables you to copy a single, compressed file (instead of multiple files) to a new
location to plug the PDB into a CDB.

Figure 13-1 Unplug a PDB

PDB
Being
Unplugged

PDBs

CDB

Seed
(PDB$SEED)

Root (CDB$ROOT)

XML

Metadata

File

Database Files

ALTER PLUGGABLE DATABASE ... UNPLUG INTO

.PDB

File

XML

Metadata

File

Database Files

ALTER PLUGGABLE DATABASE ... UNPLUG INTO

OR

.PDB File

The following illustration shows how this technique unplugs an application PDB from
an application container.

Chapter 13
Unplugging a PDB from a CDB

13-2

XML

Metadata

File

Database Files

ALTER PLUGGABLE DATABASE ... UNPLUG INTO

.PDB

File

XML

Metadata

File

Database Files

ALTER PLUGGABLE DATABASE ... UNPLUG INTO

OR

.PDB File

CDB

Seed
(PDB$SEED)

Root (CDB$ROOT)

Application
Seed

PDBs and Application Containers

Application
Container

Application PDBs

Application Root

PDB
Being
Unplugged

Root (CDB$ROOT)

The PDB must be closed before it can be unplugged. When you unplug a PDB, the
unplugged PDB is in mounted mode. The unplug operation makes some changes in the
PDB's data files to record, for example, that the PDB was successfully unplugged. Because it
is still part of the CDB, the unplugged PDB is included in an RMAN backup of the entire CDB.

Chapter 13
Unplugging a PDB from a CDB

13-3

Such a backup provides a convenient way to archive the unplugged PDB in case it is
needed in the future.

To completely remove the PDB from the CDB, drop the PDB. The only operation
supported on an unplugged PDB is dropping the PDB. The PDB must be dropped from
the CDB before it can be plugged back into the same CDB.

Note:

You can unplug an application container only if no application PDBs belong
to it.

See Also:

• "Dropping a PDB"

• "Modifying the Open Mode of PDBs" for information about closing a PDB

• "Modifying a PDB at the System Level" for information about initialization
parameters and unplugged PDBs

• Oracle Database Security Guide for information about common users
and local users

Unplugging a PDB
Unplug a PDB with a ALTER PLUGGABLE DATABASE ... UNPLUG INTO statement.

Prerequisites

The following prerequisites must be met:

• The current user must have SYSDBA or SYSOPER administrative privilege, and the
privilege must be either commonly granted or locally granted in the PDB. The user
must exercise the privilege using AS SYSDBA or AS SYSOPER at connect time.

• The PDB must have been opened at least once.

Note:

If you are unplugging a PDB that includes data that was encrypted with
Transparent Data Encryption, then follow the instructions in Oracle Database
Advanced Security Guide for united mode and Oracle Database Advanced
Security Guide for isolated mode.

To unplug a PDB:

1. In SQL*Plus, ensure that the current container is the root of the PDB.

Chapter 13
Unplugging a PDB from a CDB

13-4

If the PDB is plugged into the CDB root, then the current container must be the CDB root.
If the PDB is plugged into an application root, then the current container must be the
application root.

If you are unplugging an application container, then the current container must be the
CDB root, and the application container must not have any application PDBs plugged into
it.

2. Close the PDB.

In an Oracle Real Application Clusters (Oracle RAC) environment, the PDB must be
closed on all instances.

3. Run the ALTER PLUGGABLE DATABASE statement with the UNPLUG INTO clause, and specify
the PDB to unplug and the name and location of the PDB's XML metadata file or .pdb file.

Example 13-1 Unplugging PDB salespdb Into an XML Metadata File

This ALTER PLUGGABLE DATABASE statement unplugs the PDB salespdb and creates the
salespdb.xml metadata file in the /oracle/data/ directory:

ALTER PLUGGABLE DATABASE salespdb UNPLUG INTO '/oracle/data/salespdb.xml';

Example 13-2 Unplugging PDB salespdb Into an Archive File

This ALTER PLUGGABLE DATABASE statement unplugs the PDB salespdb and creates the
sales.pdb archive file in the /oracle/data/ directory. The sales.pdb archive file is a
compressed file that includes the XML metadata file and the PDB’s files (such as the data
files and wallet file).

ALTER PLUGGABLE DATABASE salespdb UNPLUG INTO '/oracle/data/sales.pdb';

Dropping a PDB
Drop a PDB when you want to move the PDB to a new CDB or when you no longer need it.

When you drop a PDB, the control file of the CDB is modified to eliminate all references to
the dropped PDB. Archived redo log files and backups associated with the PDB are not
removed, but you can use Oracle Recovery Manager (RMAN) to remove them.

When dropping a PDB, you can either keep or delete the PDB's data files by using one of the
following clauses of the DROP PLUGGABLE DATABASE statement:

• KEEP DATAFILES, the default, retains the data files.

The PDB temp file is removed even when KEEP DATAFILES is specified because the temp
file is no longer needed.

When KEEP DATAFILES is specified, the PDB must be unplugged.

• INCLUDING DATAFILES removes the data files from disk.

If a PDB was created with the SNAPSHOT COPY clause, then you must specify INCLUDING
DATAFILES when you drop the PDB.

• FORCE drops an orphaned application root container.
FORCE requires the following condition: the APP_ROOT_CLONE must be closed, and the
APP_CDB must be open. To close the APP_ROOT_CLONE, you must set the variable
_ORACLE_SCRIPT" to true using ALTER SESSION.

Chapter 13
Dropping a PDB

13-5

Keeping APP_CDB open, close the APP_ROOT_CLONE with these commands:

ALTER SESSION SET _ORACLE_SCRIPT"=true ;
ALTER PLUGGABLE DATABASE APP_ROOT_CLONE CLOSE;
DROP PLUGGABLE DATABASE APP_ROOT_CLONE FORCE INCLUDING DATAFILES;

Note:

An application root clone is a certain type of PDB created as a metadata
repository when you upgrade an application root using the ALTER PLUGGABLE
DATABASE APPLICATION UPGRADE or ALTER PLUGGABLE DATABASE
APPLICATION UNINSTALL statement. This PDB is dropped when you run the
ALTER PLUGGABLE DATABASE APPLICATION SET COMPATIBILITY statement. If
you flash back the PDB, orphan application root clones may be created. To
drop these orphan application root clones, you must use the FORCE keyword.

Prerequisites

The following prerequisites must be met:

• The PDB must be in mounted mode, or it must be unplugged.

See "Modifying the Open Mode of PDBs".

See "Unplugging a PDB from a CDB".

• The current user must have SYSDBA or SYSOPER administrative privilege, and the
privilege must be either commonly granted or locally granted in the PDB. The user
must exercise the privilege using AS SYSDBA or AS SYSOPER at connect time.

Note:

This operation is destructive.

To drop a PDB:

1. In SQL*Plus, ensure that the current container is the CDB root, or, for an
application PDB, the application root that contains the application PDB.

If the PDB is plugged into the CDB root, then the current container must be the
CDB root. If the PDB is plugged into an application root, then the current container
must be that application root or the CDB root.

If you are dropping an application container, then the current container must be the
CDB root, and the application container must not have any application PDBs
plugged into it.

2. Run the DROP PLUGGABLE DATABASE statement and specify the PDB to drop.

Example 13-3 Dropping PDB salespdb While Keeping Its Data Files

DROP PLUGGABLE DATABASE salespdb
 KEEP DATAFILES;

Chapter 13
Dropping a PDB

13-6

Example 13-4 Dropping an Orphaned Application Root Container dbtest

DROP PLUGGABLE DATABASE dbtest --force
 KEEP DATAFILES;

Example 13-5 Dropping PDB salespdb and Its Data Files

DROP PLUGGABLE DATABASE salespdb
 INCLUDING DATAFILES;

See Also:

• "Unplugging a PDB from a CDB"

• "Storage Requirements for Snapshot Copy PDBs"

• Oracle Database SQL Language Reference

• Oracle Database Backup and Recovery User’s Guide for information about
RMAN

Chapter 13
Dropping a PDB

13-7

14
Creating and Removing Application
Containers and Seeds

You can create application containers and application seeds in several different ways. You
can also remove application containers from a CDB, and you can remove application seeds
from application containers.

• About Application Containers
An application container is an optional, user-created CDB component that stores data
and metadata for one or more application back ends. A CDB includes zero or more
application containers.

• Creating Application Containers
You can create application containers in several different ways, including using the PDB
seed, cloning an existing PDB, and plugging in an unplugged PDB by using the CREATE
PLUGGABLE DATABASE statement.

• Unplugging an Application Container from a CDB
You can unplug an application container from a CDB.

• Dropping an Application Container
You can drop an application container when you want to move the application container
from one CDB to another or when you no longer need the application container.

• Creating Application Seeds
You can create application seeds in several different ways, including using the PDB seed,
cloning an existing PDB, and plugging in an unplugged PDB by using the CREATE
PLUGGABLE DATABASE statement.

• Unplugging an Application Seed from an Application Container
You can unplug an application seed from an application container.

• Dropping an Application Seed
You can use the DROP PLUGGABLE DATABASE statement to drop an application seed. You
can drop an application seed when you no longer need it.

• Creating an Application PDB
You create an application PDB by running the CREATE PLUGGABLE DATABASE statement
with an application root as the current container.

See Also:

• "About Application Containers"

• "Administering an Application Container"

14-1

About Application Containers
An application container is an optional, user-created CDB component that stores
data and metadata for one or more application back ends. A CDB includes zero or
more application containers.

Within an application container, an application is the named, versioned set of
common data and metadata stored in the application root. In this context of an
application container, the term “application” means “master application definition.” For
example, the application might include definitions of tables, views, and packages.

For example, you might create multiple sales-related PDBs within one application
container, with these PDBs sharing an application that consists of a set of common
tables and table definitions. You might store multiple HR-related PDBs within a
separate application container, with their own common tables and table definitions.

The CREATE PLUGGABLE DATABASE statement with the AS APPLICATION CONTAINER
clause creates the application root of the application container, and thus implicitly
creates the application container itself. When you first create the application container,
it contains no PDBs. To create application PDBs, you must connect to the application
root, and then execute the CREATE PLUGGABLE DATABASE statement.

In the CREATE PLUGGABLE DATABASE statement, you must specify a container name
(which is the same as the application root name), for example, saas_sales_ac. The
application container name must be unique within the CDB, and within the scope of all
the CDBs whose instances are reached through a specific listener. Every application
container has a default service with the same name as the application container.

• Purpose of Application Containers
In some ways, an application container functions as an application-specific CDB
within a CDB. An application container, like the CDB itself, can include multiple
PDBs, and enables these PDBs to share metadata and data.

• Application Root
An application container has exactly one application root, which is the parent of
the application PDBs in the container.

• Application PDBs
An application PDB is a PDB that resides in an application container. Every PDB
in a CDB resides in either zero or one application containers.

• Application Seed
An application seed is an optional, user-created PDB within an application
container. An application container has either zero or one application seed.

Purpose of Application Containers
In some ways, an application container functions as an application-specific CDB within
a CDB. An application container, like the CDB itself, can include multiple PDBs, and
enables these PDBs to share metadata and data.

The application root enables application PDBs to share an application, which in this
context means a named, versioned set of common metadata and data. A typical
application installs application common users, metadata-linked common objects, and
data-linked common objects.

Chapter 14
About Application Containers

14-2

• Key Benefits of Application Containers
Application containers provide several benefits over storing each application in a
separate PDB.

• Application Container Use Case: SaaS
A SaaS deployment can use multiple application PDBs, each for a separate customer,
that share metadata and data.

• Application Containers Use Case: Logical Data Warehouse
A customer can use multiple application PDBs to address data sovereignty issues.

Key Benefits of Application Containers
Application containers provide several benefits over storing each application in a separate
PDB.

• The application root stores metadata and data that all application PDBs can share.

For example, all application PDBs can share data in a central table, such as a table listed
default application roles. Also, all PDBs can share a table definition to which they add
PDB-specific rows.

• You maintain your master application definition in the application root, instead of
maintaining a separate copy in each PDB.

If you upgrade the application in the application root, then the changes are automatically
propagated to all application PDBs. The application back end might contain the data-
linked common object app_roles, which is a table that list default roles: admin,
manager, sales_rep, and so on. A user connected to any application PDB can query this
table.

• An application container can include an application seed, application PDBs, and proxy
PDBs (which refer to PDBs in other CDBs).

• You can rapidly create new application PDBs from the application seed.

• You can query views that report on all PDBs in the application container.

• While connected to the application root, you can use the CONTAINERS function to perform
DML on objects in multiple PDBs.

For example, if the products table exists in every application PDB, then you can connect
to the application root and query the products in all application PDBs using a single
SELECT statement.

• You can unplug a PDB from an application root, and then plug it in to an application root
in a higher Oracle database release. Thus, PDBs are useful in an Oracle database
upgrade.

Application Container Use Case: SaaS
A SaaS deployment can use multiple application PDBs, each for a separate customer, that
share metadata and data.

In a pure SaaS environment, the master application definition resides in the application root,
but the customer-specific data resides in its own application PDB. For example, sales_app is
the application model in the application root. The application PDB named cust1_pdb contains
sales data only for customer 1, whereas the application PDB named cust2_pdb contains
sales data only for customer 2. Plugging, unplugging, cloning, and other PDB-level
operations are available for individual customer PDBs.

Chapter 14
About Application Containers

14-3

Figure 14-1 SaaS Use Case

CDB

Seed
(PDB$SEED)

Application
Container

cust1_pdb

cust2_pdbApplication
Seed

sales_app
Application Root

Application
PDBs

Root (CDB$ROOT)

A pure SaaS configuration provides the following benefits:

• Performance

• Security

• Support for multiple customers

The data for each customer resides in its own container, but is consolidated so
that you can manage many customers collectively. This model extends the
economies of scale of managing many as one to the application administrator, not
only the DBA.

Application Containers Use Case: Logical Data Warehouse
A customer can use multiple application PDBs to address data sovereignty issues.

In a sample use case, a company puts data specific to each financial quarter in a
separate PDB. For example, the application container named sales_ac includes
q1_2016_pdb, q2_2016_pdb, q3_2016_pdb, and q4_2016_pdb. You define each
transaction in the PDB corresponding to the associated quarter. To generate a report
that aggregates performance across a year, you aggregate across the four PDBs
using the CONTAINERS() clause.

Benefits of this logical warehouse design include:

• ETL for data specific to a single PDB does not affect the other PDBs.

Chapter 14
About Application Containers

14-4

• Execution plans are more efficient because they are based on actual data distribution.

Application Root
An application container has exactly one application root, which is the parent of the
application PDBs in the container.

The property of being an application root is established at creation time, and cannot be
changed. The only container to which an application root belongs is the CDB root. An
application root is like the CDB root in some ways, and like a PDB in other ways:

• Like the CDB root, an application root serves as parent container to the PDBs plugged
into it. When connected to the application root, you can manage common users and
privileges, create application PDBs, switch containers, and issue DDL that applies to all
PDBs in the application container.

• Like a PDB, you create an application root with
the CREATE PLUGGABLE DATABASE statement, alter it with ALTER PLUGGABLE DATABASE, and
change its availability with STARTUP and SHUTDOWN. You can use DDL to plug, unplug, and
drop application roots. The application root has its own service name, and users can
connect to the application root in the same way that they connect to a PDB.

An application root differs from both the CDB root and standard PDB because it can store
user-created common objects, which are called application common objects. Application
common objects are accessible to the application PDBs plugged in to the application root.
Application common objects are not visible to the CDB root, other application roots, or PDBs
that do not belong to the application root.

Example 14-1 Creating an Application Root

In this example, you log in to the CDB root as administrative common user c##system. You
create an application container named saas_sales_ac, and then open the application root,
which has the same name as the container.

-- Create the application container called saas_sales_ac
CREATE PLUGGABLE DATABASE saas_sales_ac AS APPLICATION CONTAINER
 ADMIN USER saas_sales_ac_adm IDENTIFIED BY manager;

-- Open the application root
ALTER PLUGGABLE DATABASE saas_sales_ac OPEN;

You set the current container to saas_sales_ac, and then verify that this container is the
application root:

-- Set the current container to saas_sales_ac
ALTER SESSION SET CONTAINER = saas_sales_ac;

COL NAME FORMAT a15
COL ROOT FORMAT a4
SELECT CON_ID, NAME, APPLICATION_ROOT AS ROOT,
 APPLICATION_PDB AS PDB,
FROM V$CONTAINERS;

 CON_ID NAME ROOT PDB

Chapter 14
About Application Containers

14-5

---------- --------------- ---- ---
 3 SAAS_SALES_AC YES NO

For application container, you specify the following two parameters in USERENV
namespace of the SYS_CONTEXT function.

SYS_CONTEXT('USERENV', 'IS_APPLICATION_ROOT')
SYS_CONTEXT('USERENV', 'IS_APPLICATION_PDB')

The value of SYS_CONTEXT('USERENV', 'IS_APPLICATION_ROOT') in an application
root is as follows:

SQL> select sys_context('USERENV', 'IS_APPLICATION_ROOT') from dual;

SYS_CONTEXT('USERENV','IS_APPLICATION_ROOT')

YES

Note that the value of SYS_CONTEXT('USERENV', 'IS_APPLICATION_ROOT') matches
the column APPLICATION_ROOT in the V$PDBS view.

SQL> select application_root from v$pdbs where
con_id=sys_context('USERENV', 'CON_ID');

APP

YES

Application PDBs
An application PDB is a PDB that resides in an application container. Every PDB in a
CDB resides in either zero or one application containers.

For example, the saas_sales_ac application container might support multiple
customers, with each customer application storing its data in a separate PDB. The
application PDBs cust1_sales_pdb and cust2_sales_pdb might reside in
saas_sales_ac, in which case they belong to no other application container (although
as PDBs they necessarily belong also to the CDB root).

Create an application PDB by executing CREATE PLUGGABLE DATABASE while connected
to the application root. You can either create the application PDB from a seed, or clone
a PDB or plug in an unplugged PDB. Like a PDB that is plugged in to CDB root, you
can clone, unplug, or drop an application PDB. However, an application PDB must
always belong to an application root.

Application Seed
An application seed is an optional, user-created PDB within an application container.
An application container has either zero or one application seed.

Chapter 14
About Application Containers

14-6

An application seed enables you to create application PDBs quickly. It serves the same role
within the application container as PDB$SEED serves within the CDB itself.

The application seed name is always application_container_name$SEED, where
application_container_name is the name of the application container. For example, use the
CREATE PDB ... AS SEED statement to create saas_sales_ac$SEED in the saas_sales_ac
application container.

Creating Application Containers
You can create application containers in several different ways, including using the PDB
seed, cloning an existing PDB, and plugging in an unplugged PDB by using the CREATE
PLUGGABLE DATABASE statement.

• About Creating an Application Container
The CREATE PLUGGABLE DATABASE ... AS APPLICATION CONTAINER statement creates a
new application container.

• Preparing for Application Containers
Prerequisites must be met before creating an application container.

• Creating an Application Container
You can create an application container using the CREATE PLUGGABLE DATABASE
statement with the AS APPLICATION CONTAINER clause.

About Creating an Application Container
The CREATE PLUGGABLE DATABASE ... AS APPLICATION CONTAINER statement creates a new
application container.

An application container consists of an application root and a collection of application PDBs
that store data for one or more applications. The application PDBs are plugged into the
application root, and you can optionally create an application seed for quick and easy
creation of new application PDBs. The application PDBs and application root can share
application common objects.

There are three types of application common objects:

• Metadata-linked application common objects store the metadata for specific objects, such
as tables, so that the containers that share the application common object have the same
structure but different data.

• Data-linked application common objects are defined once in the application root and
shared as read-only objects in the context of hosted application PDBs.

• Extended data-linked application common objects store shared data in the application
root but also allow application PDBs to store data appended to that object. The appended
data is local data that is unique to each application PDB.

You create an application container by including the AS APPLICATION CONTAINER clause in
the CREATE PLUGGABLE DATABASE statement. You can use the following techniques to create
an application container:

• Using the PDB seed

• Cloning an existing PDB

• Relocating a PDB

Chapter 14
Creating Application Containers

14-7

• Plugging in an unplugged PDB

To create an application container, the current container must be the CDB root and you
must specify the AS APPLICATION CONTAINER clause in
the CREATE PLUGGABLE DATABASE statement. You must create the application container
using Oracle Managed Files.

Note:

An application container cannot be unplugged or dropped if any application
PDBs belong to it.

Migrating Existing Applications to an Application Container

You can migrate an application to an application root by creating an application root
using an existing PDB. You must complete additional tasks when you are migrating an
existing application to an application container. The PDBs that you plug in must
contain the application objects, including their data, and you must run procedures in
the DBMS_PDB package to specify which objects are shared. Also, when application
common users, roles, or profiles exist in the application root, you must run procedures
in the DBMS_PDB package to specify that they are common.

After the application is migrated to the application root, you can create application
PDBs in the application root, and create application PDBs using existing PDBs.

See Also:

"Migrating an Existing Application to an Application Container"

Preparing for Application Containers
Prerequisites must be met before creating an application container.

• The CDB must exist.

• The CDB must be in read/write mode.

• The current user must be a common user whose current container is the CDB
root.

• The current user must have the CREATE PLUGGABLE DATABASE system privilege.

• You must decide on a unique application container name for every application
container. Every application container name must be unique with respect to all
containers in a single CDB, and every application container name must be unique
within the scope of all the CDBs whose database instances are reached through a
specific listener.

The application container name is used to distinguish an application container
from other containers in the CDB. Application container names follow the same
rules as service names, which includes being case-insensitive.

• You must create the containing using Oracle Managed Files.

Chapter 14
Creating Application Containers

14-8

• If you are creating an application container in an Oracle Data Guard configuration with a
physical standby database, then additional tasks must be completed before creating an
application container.

• If you are migrating an existing application to an application container using installation
scripts, then the scripts must be available to run.

• If you are migrating an existing application to an application container using a PDB, then
it must be possible to clone the PDB to the application root or plug in the PDB into the
application root.

See Also:

• "About the Current Container"

• "Migrating an Existing Application to an Application Container"

• Oracle Data Guard Concepts and Administration

Creating an Application Container
You can create an application container using the CREATE PLUGGABLE DATABASE statement
with the AS APPLICATION CONTAINER clause.

Before creating an application container, complete the prerequisites described in "Preparing
for Application Containers".

1. In SQL*Plus, ensure that the current container is the CDB root.

2. Run the CREATE PLUGGABLE DATABASE statement, and include the AS APPLICATION
CONTAINER clause. Specify other clauses when they are required.

After you create the application container, it is in mounted mode, and its status is NEW.
You can view the open mode of an application container by querying the OPEN_MODE
column in the V$PDBS view. You can view the status of an application container by
querying the STATUS column of the CDB_PDBS or DBA_PDBS view.

A new default service is created for the application container. The service has the same
name as the application container and can be used to access the application container.
Oracle Net Services must be configured properly for clients to access this service.

3. Open the new application container in read/write mode.

You must open the new application container in read/write mode for Oracle Database to
complete the integration of the new application container into the CDB. An error is
returned if you attempt to open the application container in read-only mode. After the
application container is opened in read/write mode, its status is NORMAL.

4. Back up the application container.

A application container cannot be recovered unless it is backed up.

Chapter 14
Creating Application Containers

14-9

Note:

If an error is returned during application container creation, then the
application container being created might be in an UNUSABLE state. You
can check an application container's state by querying the CDB_PDBS or
DBA_PDBS view, and you can learn more about application container
creation errors by checking the alert log. An unusable application
container can only be dropped, and it must be dropped before an
application container or PDB with the same name as the unusable
application container can be created.

5. If you are migrating an existing application to the application container, then follow
the instructions in "Migrating an Existing Application to an Application Container".

The application container is created with an application root. You can create
application PDBs in the application container.

Example 14-2 Creating an Application Container Using the PDB seed

This example assumes the following factors:

• Storage limits are not required for the application container. Therefore, the
STORAGE clause is not required.

• The application container does not require a default tablespace.

• The PATH_PREFIX clause is not required.

• The FILE_NAME_CONVERT clause and the CREATE_FILE_DEST clause are not
required.

Either Oracle Managed Files is enabled for the CDB, or the
PDB_FILE_NAME_CONVERT initialization parameter is set. The files associated with
the PDB seed will be copied to a new location based on the Oracle Managed Files
configuration or the initialization parameter setting.

• There is no file with the same name as the new temp file that will be created in the
target location. Therefore, the TEMPFILE REUSE clause is not required.

• No predefined Oracle roles need to be granted to the PDB_DBA role.

The following statement creates the application container from the PDB seed:

CREATE PLUGGABLE DATABASE salesact AS APPLICATION CONTAINER
 ADMIN USER salesadm IDENTIFIED BY password;

Example 14-3 Creating an Application Container by Cloning a Local PDB

This example assumes the following factors:

• The PATH_PREFIX clause is not required.

• The FILE_NAME_CONVERT clause is required to specify the target locations of the
copied files. In this example, the files are copied from /disk1/oracle/pdb1/ to /
disk2/oracle/hract/.

The CREATE_FILE_DEST clause is not used, and neither Oracle Managed Files nor
the PDB_FILE_NAME_CONVERT initialization parameter is used to specify the target
locations of the copied files.

Chapter 14
Creating Application Containers

14-10

To view the location of the data files for a PDB, run the query in "Example 15-34".

• Storage limits must be enforced for the application root. Therefore, the STORAGE clause is
required. Specifically, all tablespaces that belong to the application root must not exceed
2 gigabytes. This storage limit does not apply to the application PDBs that are plugged
into the application root.

• There is no file with the same name as the new temp file that will be created in the target
location. Therefore, the TEMPFILE REUSE clause is not required.

Given the preceding factors, the following statement clones hract as an application container
from pdb1:

CREATE PLUGGABLE DATABASE hract AS APPLICATION CONTAINER FROM pdb1
 FILE_NAME_CONVERT = ('/disk1/oracle/pdb1/', '/disk2/oracle/hract/')
 STORAGE (MAXSIZE 2G);

Note:

If you are migrating an existing application to the new application container, then
follow the instructions in "Migrating an Existing Application to an Application
Container".

Example 14-4 Creating an Application Container by Plugging In an Unplugged PDB

This example assumes the following factors:

• The new application container is not based on the same unplugged PDB that was used to
create an existing PDB or application container in the CDB. Therefore, the AS CLONE
clause is not required.

• The PATH_PREFIX clause is not required.

• The XML file does not accurately describe the current locations of the files. Therefore, the
SOURCE_FILE_NAME_CONVERT clause or SOURCE_FILE_DIRECTORY clause is required. In this
example, the XML file indicates that the files are in /disk1/oracle/payroll/, but the files are
in /disk2/oracle/payroll/, and the SOURCE_FILE_NAME_CONVERT clause is used.

• The files are in the correct location. Therefore, NOCOPY is included.

• Storage limits must be enforced for the application container. Therefore, the STORAGE
clause is required. Specifically, all tablespaces that belong to the application container
must not exceed 2 gigabytes.

• A file with the same name as the temp file specified in the XML file exists in the target
location. Therefore, the TEMPFILE REUSE clause is required.

The following statement plugs in the PDB:

CREATE PLUGGABLE DATABASE payrollact AS APPLICATION CONTAINER
 USING '/disk1/usr/payrollpdb.xml'
 SOURCE_FILE_NAME_CONVERT = ('/disk1/oracle/payroll/',
 '/disk2/oracle/payroll/')
 NOCOPY

Chapter 14
Creating Application Containers

14-11

 STORAGE (MAXSIZE 2G)
 TEMPFILE REUSE;

Note:

If you are migrating an existing application to the new application container,
then follow the instructions in "Migrating an Existing Application to an
Application Container".

Related Topics

• About the Current Container
The data dictionary in each container in a CDB is separate, and the current
container is the container whose data dictionary is used for name resolution and
for privilege authorization.

• Administering an Application Container
You can install and administer the applications installed in application containers.

• Accessing a Container in a CDB
Access a container in a CDB with SQL*Plus by issuing a CONNECT or ALTER
SESSION command.

• Modifying the Open Mode of PDBs
You can modify the open mode of a PDB by using the ALTER PLUGGABLE DATABASE
SQL statement or the SQL*Plus STARTUP command.

Unplugging an Application Container from a CDB
You can unplug an application container from a CDB.

• About Unplugging an Application Container
Unplugging an application container disassociates the application container from a
CDB.

• Unplugging an Application Container
Unplug an application container by using an ALTER PLUGGABLE DATABASE ...
UNPLUG INTO statement.

About Unplugging an Application Container
Unplugging an application container disassociates the application container from a
CDB.

Typically, you unplug an application container when you want to move the application
container to a different CDB. Also, you can unplug the application container when you
no longer want it to be available.

Unplugging an application container is similar to unplugging a PDB. To unplug an
application container, connect to its CDB root and use the ALTER PLUGGABLE DATABASE
statement to specify an XML file or a .pdb file. When you specify an XML file (.xml
extension), it will contain metadata about the application container after it is
unplugged. The SQL statement creates the XML file, and it contains the required
information to enable a CREATE PLUGGABLE DATABASE statement on a target CDB to

Chapter 14
Unplugging an Application Container from a CDB

14-12

plug in the application container. When you specify a .pdb file, it contains a compressed
archive of the XML file that describes the application container and the files used by the
application container (such as the data files and wallet file). A .pdb file enables you to copy a
single, compressed file (instead of multiple files) to a new location to plug the application
container into a CDB.

Before it can be unplugged, the application container must not have any application PDBs
plugged into it, and it must be closed. When you unplug an application container, the
unplugged application container is in mounted mode. The unplug operation makes some
changes in the application container’s data files to record, for example, that the application
container was successfully unplugged. Because it is still part of the CDB, the unplugged
application container is included in an RMAN backup of the entire CDB. Such a backup
provides a convenient way to archive the unplugged application container in case it is needed
in the future.

To completely remove the application container from the CDB, you can drop it. The only
operation supported on an unplugged application container is dropping the application
container. The application container must be dropped from the CDB before it can be plugged
back into the same CDB. An application container is usable only when it is plugged into a
CDB.

See Also:

• "Unplugging a PDB from a CDB"

• "Dropping an Application Container"

• "Modifying the Open Mode of PDBs" for information about closing a PDB

• "Modifying a PDB at the System Level" for information about initialization
parameters and unplugged PDBs

• Oracle Database Security Guide for information about common users and local
users

Unplugging an Application Container
Unplug an application container by using an ALTER PLUGGABLE DATABASE ... UNPLUG INTO
statement.

Prerequisites

You must meet the following prerequisites:

• The current user must have SYSDBA or SYSOPER administrative privilege, and the privilege
must be either commonly granted or locally granted in the PDB. The user must exercise
the privilege using AS SYSDBA or AS SYSOPER at connect time.

• The application container must have been opened at least once.

• The application container must not have any application PDBs plugged into it.

• The application container must not have an application seed plugged into it.

Chapter 14
Unplugging an Application Container from a CDB

14-13

Note:

If you are unplugging an application container that includes data that was
encrypted with Transparent Data Encryption, then follow the instructions in
Oracle Database Advanced Security Guide.

To unplug an application container:

1. In SQL*Plus, ensure that the current container is the root of the CDB.

2. Close the application container.

In an Oracle Real Application Clusters (Oracle RAC) environment, the application
container must be closed on all instances.

3. Run the ALTER PLUGGABLE DATABASE statement with the UNPLUG INTO clause, and
specify the application container to unplug and the name and location of the
application container’s XML metadata file or .pdb file.

Example 14-5 Unplugging Application Container salesact

This ALTER PLUGGABLE DATABASE statement unplugs the application container
salesact and creates the salesact.xml metadata file in the /oracle/data/
directory:

ALTER PLUGGABLE DATABASE salesact UNPLUG INTO '/oracle/data/
saleact.xml';

Dropping an Application Container
You can drop an application container when you want to move the application
container from one CDB to another or when you no longer need the application
container.

Dropping an application container is very similar to dropping a PDB. When you drop
an application container, the control file of the CDB is modified to eliminate all
references to the dropped application container. Archived redo log files and backups
associated with the application container are not removed, but you can use Oracle
Recovery Manager (RMAN) to remove them.

When dropping an application container, you can either keep or delete the application
container’s data files by using one of the following clauses in the DROP PLUGGABLE
DATABASE statement:

• KEEP DATAFILES, the default, retains the data files.

The application container’s temp file is removed even when KEEP DATAFILES is
specified because the temp file is no longer needed.

• INCLUDING DATAFILES removes the data files from disk.

If an application container was created with the SNAPSHOT COPY clause, then you
must specify INCLUDING DATAFILES when you drop the application container.

The following prerequisites must be met:

Chapter 14
Dropping an Application Container

14-14

• The application container must be in mounted mode, or it must be unplugged.

See "Modifying the Open Mode of PDBs".

See "Unplugging an Application Container".

• The current user must have SYSDBA or SYSOPER administrative privilege, and the privilege
must be either commonly granted or locally granted in the application container. The user
must exercise the privilege using AS SYSDBA or AS SYSOPER at connect time.

• The application container must not have any application PDBs plugged into it.

• The application container must not have an application seed plugged into it.

Note:

This operation is destructive.

To drop an application container:

1. In SQL*Plus, ensure that the current container is the CDB root.

See "About the Current Container" and "Accessing a Container in a CDB with SQL*Plus".

2. Run the DROP PLUGGABLE DATABASE statement and specify the application container to
drop.

Example 14-6 Dropping Application Container salesact While Keeping Its Data Files

DROP PLUGGABLE DATABASE salesact
 KEEP DATAFILES;

Example 14-7 Dropping Application Container salesact and Its Data Files

DROP PLUGGABLE DATABASE saleact
 INCLUDING DATAFILES;

See Also:

• "Unplugging an Application Container"

• "Dropping a PDB"

• "Storage Requirements for Snapshot Copy PDBs"

• Oracle Database SQL Language Reference

• Oracle Database Backup and Recovery User’s Guide for information about
RMAN

Chapter 14
Dropping an Application Container

14-15

Creating Application Seeds
You can create application seeds in several different ways, including using the PDB
seed, cloning an existing PDB, and plugging in an unplugged PDB by using the CREATE
PLUGGABLE DATABASE statement.

• About Creating an Application Seed
To create a new application seed in an application container, use the CREATE
PLUGGABLE DATABASE statement with the AS SEED clause.

• Preparing for an Application Seed
Prerequisites must be met before creating an application seed.

• Creating an Application Seed
You create an application seed by including the AS SEED clause in
the CREATE PLUGGABLE DATABASE statement.

About Creating an Application Seed
To create a new application seed in an application container, use the CREATE
PLUGGABLE DATABASE statement with the AS SEED clause.

You can use an application seed to provision an application container with application
PDBs that have the application root’s applications installed. Typically, the application
container’s applications are installed in the application root before seed creation. After
the application seed is created, it is synchronized with the application root so that the
applications are installed in the application seed. When that is complete, any PDBs
created using the application seed have the applications installed. When an
application in the application root is upgraded or patched, the application seed must be
synchronized with the application root to apply these changes.

An application container can have zero or one application seeds. When you create an
application seed using the AS SEED clause of CREATE PLUGGABLE DATABASE, you do not
specify its name. The application seed name is always
application_container_name$SEED, where application_container_name is the
name of the application seed’s application container. For example, an application seed
in the salesact application container must be named salesact$SEED.

When you create a new application seed, you must specify an administrator for the
application container in the CREATE PLUGGABLE DATABASE statement. The statement
creates the administrator as a local user in the application container and grants the
PDB_DBA role locally to the administrator.

Chapter 14
Creating Application Seeds

14-16

See Also:

• "Creating a PDB from Scratch"

• "Managing Applications in an Application Container"

• "Synchronizing Applications in an Application PDB"

• Oracle Database SQL Language Reference for syntax and semantics of the AS
SEED clause

Preparing for an Application Seed
Prerequisites must be met before creating an application seed.

Ensure that the following prerequisites are met before creating an application seed:

• The CDB must exist.

See " Creating a CDB: Basic Steps".

• The CDB must be in read/write mode.

• The application container to which the application seed will belong must be in read/write
mode.

• The current user must be a common user whose current container is the application root
to which the application seed will belong.

• The current user must have the CREATE PLUGGABLE DATABASE system privilege.

• For the application seed to include the application for the application container, the
application must be installed in the application root.

See Also:

• "About the Current Container"

• "Managing Applications in an Application Container"

Creating an Application Seed
You create an application seed by including the AS SEED clause in
the CREATE PLUGGABLE DATABASE statement.

An application seed in an application container is similar to the seed in a CDB. An application
seed enables you to create application PDBs that meet the requirements of an application
container quickly and easily.

Before creating an application seed, complete the prerequisites described in "Preparing for
an Application Seed".

1. In SQL*Plus, ensure that the current container is the application root.

Chapter 14
Creating Application Seeds

14-17

2. Run the CREATE PLUGGABLE DATABASE statement, and include the AS SEED clause,
to create the application seed. Specify other clauses when they are required.

After you create the application seed, it is in mounted mode, and its status is NEW.
You can view the open mode of an application seed by querying the OPEN_MODE
column in the V$PDBS view. You can view the status of an application seed by
querying the STATUS column of the CDB_PDBS or DBA_PDBS view.

A new default service is created for the application seed. The service has the
same name as the application seed and can be used to access the application
seed. Oracle Net Services must be configured properly for clients to access this
service.

3. Open the new application seed in read/write mode.

4. You must open the new application seed in read/write mode for Oracle Database
to complete the integration of the new application seed into the application
container. An error is returned if you attempt to open the application seed in read-
only mode. After the application seed is opened in read/write mode, its status is
NORMAL.

5. Perform one or more of the following actions:

• If the application seed was created from the PDB seed, then switch container
to the application seed, and use an ALTER PLUGGABLE DATABASE statement
with the SYNC clause to synchronize the application seed. Synchronizing with
the application root instantiates one or more of the application root’s
applications in the application seed.

• If the application seed was created from an application root, then switch
container to the application seed, and run the pdb_to_apppdb.sql script to
convert the application root to an application PDB.

These actions are not required when the application seed is created by cloning an
application PDB.

6. Close the application seed, and then open it in open read-only mode.

7. Back up the application seed.

An application seed cannot be recovered unless it is backed up.

Note:

• If an error is returned during application seed creation, then the
application seed being created might be in an UNUSABLE state. You
can check an application seed’s state by querying the CDB_PDBS or
DBA_PDBS view, and you can learn more about application seed
creation errors by checking the alert log. An unusable application
seed can only be dropped.

• When an application in the application root is upgraded or patched in
the application root, the application seed must synchronize with the
application root to include the changes.

Example 14-8 Creating an Application Seed from the PDB seed

This example assumes the following factors:

Chapter 14
Creating Application Seeds

14-18

• The application seed is being created in an application container named salesact.

• Storage limits are not required for the application seed. Therefore, the STORAGE clause is
not required.

• The application seed does not require a default tablespace.

• The PATH_PREFIX clause is not required.

• The FILE_NAME_CONVERT clause and the CREATE_FILE_DEST clause are not required.

Either Oracle Managed Files is enabled for the CDB, or the PDB_FILE_NAME_CONVERT
initialization parameter is set. The files associated with the PDB seed will be copied to a
new location based on the Oracle Managed Files configuration or the initialization
parameter setting.

• There is no file with the same name as the new temp file that will be created in the target
location. Therefore, the TEMPFILE REUSE clause is not required.

• No predefined Oracle roles need to be granted to the PDB_DBA role.

The following statement creates the application seed from the PDB seed, opens the
application seed, switches containers to the application seed, synchronizes the application
seed with the applications in the application root, closes the application seed, and then opens
the application seed in open read-only mode:

CREATE PLUGGABLE DATABASE AS SEED
 ADMIN USER actseedadm IDENTIFIED BY password;
ALTER PLUGGABLE DATABASE salesact$SEED OPEN;
ALTER SESSION SET CONTAINER=salesact$SEED;
ALTER PLUGGABLE DATABASE APPLICATION ALL SYNC;
ALTER PLUGGABLE DATABASE CLOSE IMMEDIATE;
ALTER PLUGGABLE DATABASE OPEN READ ONLY;

Because the application container name is salesact, the application seed name is
salesact$SEED.

A local user with the name of the specified local administrator is created and granted
the PDB_DBA common role locally in the application seed. If this user was not granted
administrator privileges during application seed creation, then use the
SYS and SYSTEM common users to administer to the application seed.

The application seed was synchronized with the application root when it was created.
Therefore, the application seed includes the applications installed in the application root and
the application common objects that are part of those applications. When a new application
PDB is created using the application seed, the application PDB also includes the installed
applications and application common objects.

Example 14-9 Creating an Application Seed From an Application PDB

This example assumes the following factors:

• The application seed is being created in an application container named salesact.

• The application seed is being created in an application PDB in the application container
named salesapppdb.

• Storage limits are not required for the application seed. Therefore, the STORAGE clause is
not required.

• The application seed does not require a default tablespace.

Chapter 14
Creating Application Seeds

14-19

• The PATH_PREFIX clause is not required.

• The FILE_NAME_CONVERT clause and the CREATE_FILE_DEST clause are not
required.

Either Oracle Managed Files is enabled for the CDB, or the
PDB_FILE_NAME_CONVERT initialization parameter is set. The files associated with
the application root will be copied to a new location based on the Oracle Managed
Files configuration or the initialization parameter setting.

• There is no file with the same name as the new temp file that will be created in the
target location. Therefore, the TEMPFILE REUSE clause is not required.

Given the preceding factors, the following statement creates the application seed from
the application root, opens the application seed, closes the application seed, and
opens the application seed in open read-only mode:

CREATE PLUGGABLE DATABASE AS SEED FROM salesapppdb;
ALTER PLUGGABLE DATABASE salesact$SEED OPEN;
ALTER PLUGGABLE DATABASE CLOSE IMMEDIATE;
ALTER PLUGGABLE DATABASE OPEN READ ONLY;

Because the application container name is salesact, the application seed name is
salesact$SEED.

The application seed was created from an application PDB. Therefore, the application
seed includes the applications installed in the application root and the application
common objects that are part of those applications. When a new application PDB is
created using the application seed, the application PDB also includes the installed
applications and application common objects.

Example 14-10 Creating an Application Seed From an Application Root

This example assumes the following factors:

• The application seed is being created in an application container named salesact.
The application seed is cloned from the root of the application container.

• Storage limits are not required for the application seed. Therefore, the STORAGE
clause is not required.

• The application seed does not require a default tablespace.

• The PATH_PREFIX clause is not required.

• The FILE_NAME_CONVERT clause and the CREATE_FILE_DEST clause are not
required.

Either Oracle Managed Files is enabled for the CDB, or the
PDB_FILE_NAME_CONVERT initialization parameter is set. The files associated with
the application root will be copied to a new location based on the Oracle Managed
Files configuration or the initialization parameter setting.

• There is no file with the same name as the new temp file that will be created in the
target location. Therefore, the TEMPFILE REUSE clause is not required.

Given the preceding factors, the following statement creates the application seed from
the application root, opens the application seed, switches containers to the application
seed, runs the pdb_to_apppdb.sql script to convert the application root to an

Chapter 14
Creating Application Seeds

14-20

application PDB, closes the application seed, and opens the application seed in open read-
only mode:

CREATE PLUGGABLE DATABASE AS SEED FROM salesact;
ALTER PLUGGABLE DATABASE salesact$SEED OPEN;
ALTER SESSION SET CONTAINER=salesact$SEED;
@$ORACLE_HOME/rdbms/admin/pdb_to_apppdb.sql
ALTER PLUGGABLE DATABASE CLOSE IMMEDIATE;
ALTER PLUGGABLE DATABASE OPEN READ ONLY;

Because the application container name is salesact, the application seed name is
salesact$SEED.

The application seed was created from the application root. Therefore, the application seed
includes the applications installed in the application root and the application common objects
that are part of those applications. When a new application PDB is created using the
application seed, the application PDB also includes the installed applications and application
common objects.

Unplugging an Application Seed from an Application Container
You can unplug an application seed from an application container.

• About Unplugging an Application Seed
Unplugging an application seed disassociates the application seed from an application
container. You unplug an application seed when you no longer want the application seed
to be available.

• Unplugging an Application Seed
To unplug an application seed, run the ALTER PLUGGABLE DATABASE ... UNPLUG INTO
statement.

About Unplugging an Application Seed
Unplugging an application seed disassociates the application seed from an application
container. You unplug an application seed when you no longer want the application seed to
be available.

Unplugging an application seed is similar to unplugging a PDB. To unplug an application
seed, connect to its application root and use the ALTER PLUGGABLE DATABASE statement to
specify an XML file or a .pdb file. When you specify an XML file (.xml extension), it will
contain metadata about the application seed after it is unplugged. The SQL statement
creates the XML file, and it contains the required information to enable a CREATE PLUGGABLE
DATABASE statement on a target CDB to plug it in as a PDB or an application PDB. When you
specify a .pdb file, it contains a compressed archive of the XML file that describes the
application seed and the files used by the application seed (such as the data files and wallet
file). A .pdb file enables you to copy a single, compressed file (instead of multiple files) to a
new location to plug in as a PDB or an application PDB.

Before it can be unplugged, the application seed must be closed. When you unplug an
application seed, the unplugged application seed is in mounted mode. The unplug operation
makes some changes in the application seed’s data files to record, for example, that the
application seed was successfully unplugged. Because it is still part of the application
container, the unplugged application seed is included in an RMAN backup of the entire CDB.

Chapter 14
Unplugging an Application Seed from an Application Container

14-21

Such a backup provides a convenient way to archive the unplugged application seed
in case it is needed in the future.

To completely remove the application seed from the application container, you can
drop it. The only operation supported on an unplugged application seed is dropping
the application seed. The application seed must be dropped from the application
container before it can be plugged back into the same application container. An
application seed is usable only when it is plugged into an application container.

See Also:

• "Unplugging a PDB from a CDB"

• "Dropping an Application Seed"

• "Modifying the Open Mode of PDBs" for information about closing a PDB

• "Modifying a PDB at the System Level" for information about initialization
parameters and unplugged PDBs

• Oracle Database Security Guide for information about common users
and local users

Unplugging an Application Seed
To unplug an application seed, run the ALTER PLUGGABLE DATABASE ... UNPLUG INTO
statement.

Prerequisites

The following prerequisites must be met:

• The current user must have SYSDBA or SYSOPER administrative privilege, and the
privilege must be either commonly granted or locally granted in the application
container. The user must exercise the privilege using AS SYSDBA or AS SYSOPER at
connect time.

• The application seed must have been opened at least once.

Note:

If you are unplugging an application seed that includes data that was
encrypted with Transparent Data Encryption, then follow the instructions in
Oracle Database Advanced Security Guide.

To unplug an application seed:

1. In SQL*Plus, ensure that the current container is the application root of the
application container to which the application seed belongs.

2. Close the application seed.

Chapter 14
Unplugging an Application Seed from an Application Container

14-22

In an Oracle Real Application Clusters (Oracle RAC) environment, the application seed
must be closed on all instances.

3. Run the ALTER PLUGGABLE DATABASE statement with the UNPLUG INTO clause, and specify
the application seed to unplug and the name and location of the application seed’s XML
metadata file or .pdb file.

Example 14-11 Unplugging Application Seed salesact$SEED

This ALTER PLUGGABLE DATABASE statement unplugs the application seed salesact$SEED and
creates the salesact$SEED.xml metadata file in the /oracle/data/ directory:

ALTER PLUGGABLE DATABASE salesact$SEED
 UNPLUG INTO '/oracle/data/saleact$SEED.xml';

Dropping an Application Seed
You can use the DROP PLUGGABLE DATABASE statement to drop an application seed. You can
drop an application seed when you no longer need it.

When you drop an application seed, the control file of the CDB is modified to eliminate all
references to the dropped application seed. Archived redo log files and backups associated
with the application seed are not removed, but you can use Oracle Recovery Manager
(RMAN) to remove them.

When dropping an application seed, you can either keep or delete the application seed’s data
files by using one of the following clauses:

• KEEP DATAFILES, the default, retains the data files.

The application seed’s temp file is removed even when KEEP DATAFILES is specified
because the temp file is no longer needed.

• INCLUDING DATAFILES removes the data files from disk.

If an application seed was created with the SNAPSHOT COPY clause, then you must specify
INCLUDING DATAFILES when you drop the application seed.

The following prerequisites must be met:

• The application seed must be in mounted mode, or it must be unplugged.

• The current user must have SYSDBA or SYSOPER administrative privilege, and the privilege
must be either commonly granted or locally granted in the application container. The user
must exercise the privilege using AS SYSDBA or AS SYSOPER at connect time.

Note:

This operation is destructive.

To drop an application seed:

1. In SQL*Plus, ensure that the current container is the application root of the application
container to which the application seed belongs.

2. Run the DROP PLUGGABLE DATABASE statement and specify the application seed.

Chapter 14
Dropping an Application Seed

14-23

Example 14-12 Dropping Application Seed salesact$SEED While Keeping Its
Data Files

DROP PLUGGABLE DATABASE salesact$SEED
 KEEP DATAFILES;

Example 14-13 Dropping Application Seed salesact$SEED and Its Data Files

DROP PLUGGABLE DATABASE saleact$SEED
 INCLUDING DATAFILES;

See Also:

• "About Container Access in a CDB"

• "Modifying the Open Mode of PDBs"

• "Unplugging an Application Seed"

• "Storage Requirements for Snapshot Copy PDBs"

• Oracle Database SQL Language Reference

• Oracle Database Backup and Recovery User’s Guide for information
about RMAN

Creating an Application PDB
You create an application PDB by running the CREATE PLUGGABLE DATABASE statement
with an application root as the current container.

You can create application PDBs using the same SQL statements that you use to
create PDBs in the CDB root. The newly created PDB is an application PDB when the
CREATE PLUGGABLE DATABASE statement is run in an application root. The statement
must be run in an application root and has an explicit dependency on the application
database defined in that application root.

Before creating an application PDB, complete the prerequisites described in "General
Prerequisites for PDB Creation". You must also complete the prerequisites for the
specific type of PDB you are creating. For example, if you are cloning a PDB, then you
must meet the prerequisites PDB cloning.

1. In SQL*Plus, ensure that the current container is the application root.

2. Run a CREATE PLUGGABLE DATABASE statement.

After you create the application PDB, it is in mounted mode, and its status is NEW.
You can view the open mode of an application PDB by querying the OPEN_MODE
column in the V$PDBS view. You can view the status of an application PDB by
querying the STATUS column of the CDB_PDBS or DBA_PDBS view.

A new default service is created for the application PDB. The service has the
same name as the application PDB and can be used to access the application

Chapter 14
Creating an Application PDB

14-24

PDB. Oracle Net Services must be configured properly for clients to access this service.

3. Open the new application PDB in read/write mode.

4. You must open the new application PDB in read/write mode for Oracle Database to
complete the integration of the new application PDB into the application container. An
error is returned if you attempt to open the application PDB in read-only mode. After the
application PDB is opened in read/write mode, its status is NORMAL.

5. Switch container to the application PDB.

6. Use an ALTER PLUGGABLE DATABASE statement with the SYNC clause to synchronize the
application PDB.

Synchronizing with the application PDB instantiates one or more of the application root’s
applications in the application PDB.

7. Close the application PDB, and then open it in open read-only mode.

8. Back up the application PDB.

An application PDB cannot be recovered unless it is backed up.

Note:

• If an error is returned during application PDB creation, then the application
PDB being created might be in an UNUSABLE state. You can check an
application PDB’s state by querying the CDB_PDBS or DBA_PDBS view, and
you can learn more about application PDB creation errors by checking the
alert log. An unusable application PDB can only be dropped.

• When an application in the application root is upgraded or patched in the
application root, the application PDB must synchronize with the application
root to include the changes.

Related Topics

• Creating PDBs and Application Containers
To create PDBs and application containers, use the CREATE PLUGGABLE DATABASE
command.

• Administering an Application Container
You can install and administer the applications installed in application containers.

Chapter 14
Creating an Application PDB

14-25

Part III
Administering a Multitenant Environment

You can administer containers in a multitenant environment using SQL*Plus or Enterprise
Manager Cloud Control (Cloud Control).

This manual explains how to administer containers as containers, for example, how to create
CDBs and PDBs, start them up and shut them down, and perform cross-container operations.
Oracle Database Administrator’s Guide describes traditional administrative tasks that you
perform within an existing container, including managing database storage, schema objects,
resources, and task scheduling.

• Administering a CDB
Administering a multitenant container database (CDB) includes tasks such as accessing
a container, modifying a CDB, executing DDL statements, and running Oracle-supplied
SQL scripts.

• Administering PDBs
Administering PDBs includes tasks such as connecting to a PDB, modifying a PDB, and
managing services associated with PDBs.

• Administering an Application Container
You can install and administer the applications installed in application containers.

15
Administering a CDB

Administering a multitenant container database (CDB) includes tasks such as accessing a
container, modifying a CDB, executing DDL statements, and running Oracle-supplied SQL
scripts.

Note:

You can complete the tasks in this chapter using SQL*Plus or Oracle SQL
Developer.

• About CDB Administration
Some administrative tasks apply to the entire CDB, whereas others apply to specific
containers.

• Accessing Containers in a CDB
You can connect to a container by using the SQL*Plus CONNECT command. Alternatively,
you can switch into a container with an ALTER SESSION SET CONTAINER SQL statement.

• Starting Up and Shutting Down a CDB
When you start up a CDB, you create an instance and then determine the state of the
CDB. Shutting down a currently running Oracle Database instance can optionally close
and dismount a CDB.

• Modifying a CDB at the System Level
You can set initialization parameters at the CDB level. In some cases, you can override
these parameters at the PDB level.

• Modifying Containers When Connected to the CDB Root
You can modify the entire CDB or the root with the ALTER DATABASE statement.

• Executing SQL in a Different Container
To execute SQL in a different container, use the CONTAINERS clause for DML or the
CONTAINER clause for DDL.

• Monitoring Containers in a CDB
You can view metadata about CDBs, PDBs, and application containers using SQL*Plus
or SQL Developer.

See Also:

"Tools for a Multitenant Environment"

15-1

About CDB Administration
Some administrative tasks apply to the entire CDB, whereas others apply to specific
containers.

• About the Current Container
The data dictionary in each container in a CDB is separate, and the current
container is the container whose data dictionary is used for name resolution and
for privilege authorization.

• About Administrative Tasks in a CDB
Common users perform administrative tasks for a CDB.

• About Using Manageability Features in a CDB
For each of Oracle Database's manageability features in a CDB, it is important to
understand the data location and the data visibility.

• About Managing Tablespaces in a CDB
A tablespace is a logical storage container for database objects, such as tables
and indexes, that consume storage space.

• About Managing Database Objects in a CDB
In a CDB, different containers can contain different database objects.

• About Flashing Back a PDB
You can use the FLASHBACK PLUGGABLE DATABASE statement to return a PDB to a
past time or system change number (SCN).

• About Restricting PDB Users for Enhanced Security
There are several ways to restrict PDB users for enhanced security.

About the Current Container
The data dictionary in each container in a CDB is separate, and the current container
is the container whose data dictionary is used for name resolution and for privilege
authorization.

The current container can be the CDB root, an application root, a PDB, or an
application PDB. Each session has exactly one current container at any point in time.
However, a session can switch from one container to another.

Each container has a unique ID and name in a CDB. You can use the CON_ID and
CON_NAME parameters in the USERENV namespace to determine the current container ID
and name with the SYS_CONTEXT function. For example, the following query returns the
current container name:

SELECT SYS_CONTEXT ('USERENV', 'CON_NAME') FROM DUAL;

You can access a container in various ways. For example, you can use the SQL*Plus
CONNECT command, and you can use an ALTER SESSION SET CONTAINER statement to
switch the container of the current session.

The following rules apply to the current container in a CDB:

• The current container can be CDB$ROOT (CDB root) only for common users.

Chapter 15
About CDB Administration

15-2

• The current container can be a specific PDB for common users and local users.

• The current container can be an application root only for common users or for application
common users created in the application root.

• The current container can be a specific application PDB for common users, application
common users, and local users.

• The current container must be the CDB root or an application root when a SQL statement
includes CONTAINER = ALL.

You can include the CONTAINER clause in several SQL statements, such as the CREATE
USER, ALTER USER, CREATE ROLE, GRANT, REVOKE, and ALTER SYSTEM statements. Note the
following rules about CONTAINER = ALL:

– When a SQL statement includes CONTAINER = ALL and the current container is the
CDB root, the SQL statement affects all containers in the CDB, including all PDBs,
application roots, and application PDBs.

– When a SQL statement includes CONTAINER = ALL and the current container is an
application root, the SQL statement affects all containers in the application container,
including the application root and all the application PDBs that belong to the
application root. The SQL statement does not affect the CDB root or any PDBs or
application PDBs that do not belong to the current application root.

– Only a common user or application common user with the commonly granted SET
CONTAINER privilege can run a SQL statement that includes CONTAINER = ALL.

See Also:

• "About Container Access in a CDB"

• "Executing Code in Containers Using the DBMS_SQL Package"

• "Determining the Current Container ID or Name"

• Oracle Database SQL Language Reference

• Oracle Database Security Guide

About Administrative Tasks in a CDB
Common users perform administrative tasks for a CDB.

A common user has a single identity and can log in to the CDB root, any application root,
PDB, or application PDB in which it has privileges. Some tasks, such as starting up a CDB
instance, can be performed only by a common user.

Chapter 15
About CDB Administration

15-3

Note:

A multitenant container database is the only supported architecture in Oracle
Database 21c and later releases. While the documentation is being revised,
legacy terminology may persist. In most cases, "database" and "non-CDB"
refer to a CDB or PDB, depending on context. In some contexts, such as
upgrades, "non-CDB" refers to a non-CDB from a previous release.

The following table describes some CDB administrative tasks and provides pointers to
the relevant documentation.

Table 15-1 Administrative Tasks for CDBs

Task Description Additional Information

Starting up a CDB instance To start a CDB instance, the current
user must be a common user whose
current container is the CDB root.

When you open a CDB, the CDB root
is opened, but its other containers are
mounted. Use the ALTER PLUGGABLE
DATABASE statement to modify the
open mode of one or more containers.

" Starting Up and Shutting Down a
CDB" for information about starting up
a database

"Modifying the Open Mode of PDBs"

"Modifying a PDB with the ALTER
PLUGGABLE DATABASE Statement"

"About the Current Container"

Managing processes A CDB has one set of background
processes shared by the CDB root
and all containers.

Oracle Database Administrator’s Guide
for information about managing
processes

Managing memory A CDB has a single system global
area (SGA) and a single aggregate
program global area (PGA). The
memory required by a CDB is the sum
of the memory requirements for all
containers that will be part of the CDB.

Oracle Database Administrator’s Guide
for information about managing
memory

Managing security You can create and drop common
users, application common users, and
local users in a CDB. You can also
grant privileges to and revoke
privileges from these users. You can
also manage the CONTAINER_DATA
attributes of common users and
application common users.

In addition, grant the following roles to
the appropriate users:

• Grant the CDB_DBA role to CDB
administrators.

• Grant the PDB_DBA role to
application container
administrators and PDB
administrators.

Oracle Database Security Guide

Monitoring errors and alerts A CDB has one alert log for the entire
CDB. The name of an application
container, PDB, or application PDB is
included in records in trace files, when
appropriate.

Oracle Database Administrator’s Guide
for information about monitoring errors
and alerts

Chapter 15
About CDB Administration

15-4

Table 15-1 (Cont.) Administrative Tasks for CDBs

Task Description Additional Information

Managing diagnostic data In a CDB, you can use the Oracle
Database fault diagnosability
infrastructure and the Automatic
Diagnostic Repository (ADR).

Oracle Database Administrator’s Guide
for information about managing
diagnostic data

Managing control files A CDB has one or more control files. Oracle Database Administrator’s Guide
for information about managing control
files

Managing the online redo log
and the archived redo log files

A CDB has one or more online redo
log files and one or more set of
archived redo log files.

Oracle Database Administrator’s Guide
for information about managing the
redo log

Oracle Database Administrator’s Guide
for information about managing
archived redo log files

Managing tablespaces You can create, modify, and drop
tablespaces and temporary
tablespaces for the CDB root and for
individual containers. You can also
specify a default tablespace, default
tablespace type, and a default
temporary tablespace for the CDB
root. The CDB root has its own set of
Oracle-supplied tablespaces, such as
the SYSTEM tablespace, and other
containers have their own set of
Oracle-supplied tablespaces.

Oracle Database Administrator’s Guide
for information about managing
tablespaces

"About Container Modification When
Connected to CDB Root"

Managing data files and temp
files

The CDB root has its own data files,
and other containers have their own
data files. Note the following:

• You can limit the amount of
storage used by the data files for
a container by using the STORAGE
clause in a CREATE PLUGGABLE
DATABASE or ALTER PLUGGABLE
DATABASE statement.

• There is a default temporary
tablespace for the CDB root and
for individual containers.

Oracle Database Administrator’s Guide
for information about managing data
files and temp files

"About Container Modification When
Connected to CDB Root"

"Storage Limits"

"Modifying a PDB at the Database
Level"

Managing undo A CDB can run in local undo mode or
shared undo mode. Local undo mode
means that every container in the
CDB uses local undo. Shared undo
mode means that there is one active
undo tablespace for a single-instance
CDB, or for an Oracle RAC CDB,
there is one active undo tablespace
for each instance.

In a CDB, the UNDO_MANAGEMENT
initialization parameter must be set to
AUTO, and an undo tablespace is
required to manage the undo data.

"Setting the Undo Mode in a CDB
Using ALTER DATABASE"

Oracle Database Administrator’s Guide
for information about managing undo

"About the Current Container"

Chapter 15
About CDB Administration

15-5

Table 15-1 (Cont.) Administrative Tasks for CDBs

Task Description Additional Information

Moving data between containers You can move data between
containers within a CDB using the
same methods that you would use to
move data between CDBs. For
example, you can transport the data or
use Data Pump export/import to move
the data.

Oracle Database Administrator’s Guide
for information about transporting data

Oracle Database Utilities

Using Oracle Managed Files Using Oracle Managed files can
simplify administration for a CDB.

Oracle Database Administrator’s Guide
for information about using Oracle
Managed Files

Using Transparent Data
Encryption

Transparent Data Encryption is a
feature that enables encryption of
individual table columns before storing
them in the data file, or enables
encryption of entire tablespaces. In a
CDB, each container has its own
master key for Transparent Data
Encryption, and, where applicable, the
ADMINISTER KEY MANAGEMENT SQL
statement enables key management
at the CDB level and for individual
containers.

Oracle Database Advanced Security
Guide

"About the Current Container"

Using a standby database Oracle Data Guard can configure a
physical standby or a logical standby
of a CDB. Data Guard operates on the
entire CDB, not on individual
containers in a CDB.

Oracle Data Guard Concepts and
Administration

Using Oracle Database Vault Oracle Database Vault common
realms can be scoped to an
application root on common objects.
Database Vault common command
rules can be scoped to either the CDB
or an application root. Local realms
and command rules can be locally
scoped to individual PDBs or
application PDBs. When Oracle
Database Vault security objects are in
the CDB root or an application root,
enforcement of the security objects
only applies to the containers that
have Oracle Database Vault enabled.

Oracle Database Vault Administrator’s
Guide

Dropping a database When you drop a CDB, all containers
in the CDB are dropped along with
their data. These containers include
the CDB root and PDB seed and all
application containers, application
seeds, PDBs, and application PDBs.

You can also drop individual
application containers, application
seeds, PDBs, and application PDBs
with the DROP PLUGGABLE DATABASE
statement.

Oracle Database Administrator’s Guide
for information about dropping a
database

"Dropping a PDB"

Chapter 15
About CDB Administration

15-6

See Also:

Oracle Database Concepts for more information about the architecture of a CDB

About Using Manageability Features in a CDB
For each of Oracle Database's manageability features in a CDB, it is important to understand
the data location and the data visibility.

When feature data resides in the CDB root, the data is not included when a PDB is
unplugged. When the data resides in a PDB, however, the data remains both when the PDB
is unplugged and when it is plugged in.

Generally, in a CDB, a common user can view data for the CDB root and for multiple PDBs
when the common user's current container is the CDB root. A common user can view this
data by querying container data objects. The specific data that is visible varies for the
manageability features. A user whose current container is a PDB can view data for that PDB
only.

The following table describes how the manageability features work in a CDB.

Table 15-2 Manageability Features in a CDB

Manageability Feature Data Location Data Visibility Additional Information

Active Session History
(ASH)

ASH collects information
about active database
sessions. You can use this
information to analyze and
identify performance
issues.

Most of the ASH data is
stored in memory. A small
percentage of the ASH
data samples are stored in
the CDB root.

ASH data related to a PDB
is not included if the PDB is
unplugged.

A common user whose
current container is the
CDB root can view ASH
data for the CDB root and
for PDBs.

A user whose current
container is a PDB can
view ASH data for the PDB
only.

Oracle Database Get
Started with Performance
Tuning

Oracle Database
Performance Tuning Guide

Alerts

An alert is a notification of
a possible problem.

Threshold settings that
pertain to a PDB are stored
in the PDB.

Alerts posted when
thresholds are violated are
enqueued into the alert
queue in the CDB root.

Threshold settings that
pertain to a PDB are
included if the PDB is
unplugged. Alerts related to
a PDB are not included if
the PDB is unplugged.

A common user whose
current container is the
CDB root can view alerts
for the CDB root and for
PDBs.

A user whose current
container is a PDB can
view alert thresholds and
alerts for the PDB only.

Oracle Database
Administrator’s Guide for
information about
monitoring errors and
alerts

Chapter 15
About CDB Administration

15-7

Table 15-2 (Cont.) Manageability Features in a CDB

Manageability Feature Data Location Data Visibility Additional Information

Automated Database
Maintenance Tasks

Automated database
maintenance tasks are
tasks that are started
automatically at regular
intervals to perform
maintenance operations on
the database. Automated
tasks include automatic
optimizer statistics
collection, Automatic
Segment Advisor tasks,
and Automatic SQL Tuning
Advisor tasks.

The
ENABLE_AUTOMATIC_MAIN
TENANCE_PDB initialization
parameter can enable or
disable the running of
automated maintenance
tasks for all the PDBs in a
CDB or for individual PDBs
in a CDB.

The
AUTOTASK_MAX_ACTIVE_P
DBS initialization parameter
limits the number of PDBs
that can schedule
automated maintenance
tasks at the same time
(during a maintenance
window).

The SQL tuning advisor
runs the program
AUTO_SQL_TUNING_PROG
in the automatic
maintenance task. In a
multitenant environment,
the CDB runs only the
Automatic SQL Tuning
Advisor with the task name
SYS_AUTO_SQL_TUNING_T
ASK. The PDB runs only
SQL Plan Management
(SPM) Evolve Advisor, with
the task name
SYS_AUTO_SPM_EVOLVE_T
ASK.

A user can schedule
maintenance windows and
enable or disable
maintenance tasks for the
current container only. If
the current container is the
CDB root, then the
changes only apply to the
CDB root. If the current
container is a PDB, then
the changes only apply to
the PDB.

Data related to a PDB is
stored in the PDB for
automatic optimizer
statistics collection and the
Automatic Segment
Advisor. This data is
included if the PDB is
unplugged.

Automatic SQL Tuning
Advisor runs only in the
CDB root. See the SQL
Tuning Advisor row in this
table for information about
data collected by Automatic
SQL Tuning Advisor.

See the appropriate row in
this table for data visibility
information about the
following manageability
features: automatic
optimizer statistics
collection, Optimizer
Statistics Advisor,
Automatic Segment
Advisor, and Automatic
SQL Tuning Advisor.

Oracle Database
Administrator’s Guide for
information about
managing automated
database maintenance
tasks

Oracle Database
Reference for information
about the
ENABLE_AUTOMATIC_MAIN
TENANCE_PDB initialization
parameter

Oracle Database
Reference for information
about the
AUTOTASK_MAX_ACTIVE_P
DBS initialization parameter

Chapter 15
About CDB Administration

15-8

Table 15-2 (Cont.) Manageability Features in a CDB

Manageability Feature Data Location Data Visibility Additional Information

Automatic Database
Diagnostic Monitor (ADDM)

ADDM can diagnose the
performance of a CDB or
PDB and determine how
identified problems can be
resolved.

ADDM executions occur in
a PDB or in the CDB root.
ADDM analyzes data using
one of the following
sources:

• AWR data stored
inside the PDB
through an AWR
snapshot taken inside
the PDB

• AWR data from a CDB
root or PDB that is
imported into the AWR
storage of a PDB

• AWR data stored in
the root container
through an AWR
snapshot taken in root

Before the start of the
analysis, ADDM
determines the source of
the AWR data (PDB or
CDB root) and applies the
rules applicable to each
data type.

Note: Automatic ADDM for
a PDB is enabled only
when automatic snapshots
are enabled for the PDB.

A common user whose
current container is the
CDB root can review
results for the entire CDB.
The ADDM results can
include information about
multiple PDBs. ADDM
results related to a PDB
are not included if the PDB
is unplugged. The ADDM
results cannot be viewed
when the current container
is a PDB.

A user whose current
container is a PDB can
view ADDM results data for
the current PDB only. The
results exclude findings
that apply to the CDB as a
whole, for example, I/O
problems relating to the
buffer cache size.

Oracle Database
Performance Tuning Guide

Automatic Optimizer
Statistics Collection

Automatic optimizer
statistics collection gathers
optimizer statistics for all
schema objects in the
database for which there
are no statistics or only
stale statistics. The
statistics gathered by this
task are used by the SQL
query optimizer to improve
the performance of SQL
execution.

When an automatic
optimizer statistics
collection task gathers data
for a PDB, it stores this
data in the PDB. This data
is included if the PDB is
unplugged.

A common user whose
current container is the
CDB root can view
optimizer statistics data for
PDBs.

A user whose current
container is a PDB can
view optimizer statistics
data for the PDB only.

Oracle Database SQL
Tuning Guide

Automatic Segment
Advisor

The Automatic Segment
Advisor identifies segments
that have space available
for reclamation and makes
recommendations on how
to defragment those
segments.

When Automatic Segment
Advisor gathers data for a
PDB, it stores this data in
the PDB. This data is
included if the PDB is
unplugged.

A common user whose
current container is the
CDB root can view
Automatic Segment
Advisor data for PDBs.

A user whose current
container is a PDB can
view the Automatic
Segment Advisor data for
the PDB only.

Oracle Database
Administrator’s Guide for
information about
reclaiming unused space

Chapter 15
About CDB Administration

15-9

Table 15-2 (Cont.) Manageability Features in a CDB

Manageability Feature Data Location Data Visibility Additional Information

Automatic Workload
Repository (AWR)

The AWR collects,
processes, and maintains
performance statistics for
problem detection and self-
tuning purposes. This data
is stored in the database.
The gathered data can be
displayed in both reports
and views.

AWR reports can be
generated in the CDB root
or in any PDB. AWR
reports generated in the
CDB root pertain to the
entire CDB, while AWR
reports generated when a
PDB is the current
container only pertain to
that PDB.

AWR data generated in the
CDB root is stored in the
CDB root. AWR data
generated in a PDB is
stored in the PDB.

When a PDB is unplugged,
AWR data stored in the
CDB root is not included.

When a PDB is unplugged,
AWR data stored in the
PDB is included.

A common user whose
current container is the
CDB root can view AWR
data for the CDB root and
for PDBs.

A user whose current
container is a PDB can
view AWR data for the PDB
only.

Oracle Database
Performance Tuning Guide

Database Replay

Database Replay is a
feature of Oracle Real
Application Testing.
Database Replay captures
the workload for a CDB or
PDB and replays it exactly
on a test database.

Capture files are always
stored in operating system
files, regardless of whether
the capture and replay is at
the CDB level or PDB level.

For CDB-level workloads, a
common user whose
current container is the
CDB root can view
database capture and
replay information. For
PDB-level workloads, a
local or common PDB
administrator with the
SELECT_CATALOG_ROLE
privilege can view this
information in
DBA_WORKLOAD_CAPTURES
and
DBA_WORKLOAD_REPLAYS.

Oracle Database Testing
Guide

Optimizer Statistics Advisor

Optimizer Statistics Advisor
analyzes how statistics are
being gathered and
suggests changes that can
be made to fine tune
statistics collection.

Data related to a PDB is
stored in the PDB for
Optimizer Statistics
Advisor. This data is
included if the PDB is
unplugged.

A common user whose
current container is the
CDB root can view
Optimizer Statistics Advisor
data for PDBs.

A user whose current
container is a PDB can
view the Optimizer
Statistics Advisor data for
the PDB only.

Oracle Database SQL
Tuning Guide

Chapter 15
About CDB Administration

15-10

Table 15-2 (Cont.) Manageability Features in a CDB

Manageability Feature Data Location Data Visibility Additional Information

SQL Management Base
(SMB)

SMB stores statement logs,
plan histories, SQL plan
baselines, and SQL profiles
in the data dictionary.

SMB data related to a PDB
is stored in the PDB. The
SMB data related to a PDB
is included if the PDB is
unplugged.

A common user whose
current container is the
CDB root can view SMB
data for PDBs.

A user whose current
container is a PDB can
view the SMB data for the
PDB only.

Oracle Database SQL
Tuning Guide

SQL Performance Analyzer
(SPA)

SPA can analyze the SQL
performance impact of SQL
tuning and other system
changes. SPA is often used
with Database Replay.

A common user whose
current container is the
CDB root can run SPA for
any PDB. In this case, the
SPA results data is stored
in the CDB root and is not
included if the PDB is
unplugged.

A user whose current
container is a PDB can run
SPA on the PDB. In this
case, the SPA results data
is stored in the PDB and is
included if the PDB is
unplugged.

A common user whose
current container is the
CDB root can view SPA
results data for PDBs.

A user whose current
container is a PDB can
view the SPA results data
for the PDB only.

Oracle Database Testing
Guide

SQL Tuning Sets (STS)

An STS is a database
object that includes one or
more SQL statements
along with their execution
statistics and execution
context, and could include
a user priority ranking.

You can use an STS to
tune a group of SQL
statements or test their
performance using SPA.

An STS can be stored in
the CDB root or in any
PDB. If it is stored in the
CDB root, then you can
load SQL statements from
any PDB into it.

When a PDB is unplugged,
an STS stored in the CDB
root is not included, even if
the STS contains SQL
statements from the PDB.

When a PDB is unplugged,
an STS stored in the PDB
is included.

A common user whose
current container is the
CDB root can view STS
data stored in the CDB root
only.

A user whose current
container is a PDB can
view STS data for the PDB
only.

Oracle Database SQL
Tuning Guide

Chapter 15
About CDB Administration

15-11

Table 15-2 (Cont.) Manageability Features in a CDB

Manageability Feature Data Location Data Visibility Additional Information

SQL Tuning Advisor

SQL Tuning Advisor
optimizes SQL statements
that have been identified as
high-load SQL statements.

Automatic SQL Tuning
Advisor data is stored in
the CDB root. It might have
results about SQL
statements executed in a
PDB that were analyzed by
the advisor, but these
results are not included if
the PDB is unplugged.

A common user whose
current container is the
CDB root can run SQL
Tuning Advisor manually for
SQL statements from any
PDB. When a statement is
tuned, it is tuned in any
container that runs the
statement.

A user whose current
container is a PDB can
also run SQL Tuning
Advisor manually for SQL
statements from the PDB.
When SQL Tuning Advisor
is run manually from a
PDB, the results are stored
in the PDB from which it is
run. In this case, a
statement is tuned only for
the current PDB, and the
results related to a PDB
are included if the PDB is
unplugged.

When SQL Tuning Advisor
is run automatically, the
results are visible only to a
common user whose
current container is the
CDB root. These results
cannot be viewed when the
current container is a PDB.

When SQL Tuning Advisor
is run manually by a user
whose current container is
a PDB, the results are only
visible to a user whose
current container is that
PDB.

Oracle Database Get
Started with Performance
Tuning

Oracle Database SQL
Tuning Guide

To run SPA or SQL Tuning Advisor for SQL statements from a PDB, a common user
must have the following privileges:

• Common SET CONTAINER privilege or local SET CONTAINER privilege in the PDB

• The privileges required to execute the SQL statements in the PDB

See Also:

• "About the Current Container"

• "About CDB and Container Information in Views" for an overview of
container data objects

• Oracle Database Security Guide for detailed information about container
data objects

Chapter 15
About CDB Administration

15-12

About Managing Tablespaces in a CDB
A tablespace is a logical storage container for database objects, such as tables and indexes,
that consume storage space.

At the physical level, a tablespace stores data in one or more data files or temp files. You can
use the ALTER DATABASE statement to manage tablespaces in a CDB.

The following are considerations for tablespaces in a CDB:

• A tablespace can be associated with exactly one container.

• When you create a tablespace in a container, the tablespace is associated with that
container.

• When local undo is disabled for a CDB, the CDB has only one active undo tablespace, or
one active undo tablespace for each instance of an Oracle RAC CDB. When local undo is
enabled for a CDB, each container in the CDB has its own undo tablespace.

• A local undo tablespace is required for each node in an Oracle Real Application Clusters
(Oracle RAC) cluster in which the PDB is open.

• There is one default temporary tablespace each container in the CDB, including the CDB
root, each PDB, each application root, and each application PDB.

• About Managing Tablespaces in a CDB
A tablespace can be associated with only one container. Therefore, a tablespace can be
associated with the root or with one PDB.

• About Managing Temporary Tablespaces in a CDB
Each container in a CDB has its own default temporary tablespace (or tablespace group).

About Managing Tablespaces in a CDB
A tablespace can be associated with only one container. Therefore, a tablespace can be
associated with the root or with one PDB.

Each container in a CDB must have its own default tablespace, and default tablespaces
cannot be shared between containers. Users connected to the container who are not
explicitly assigned a tablespace use the default tablespace for the container.

About Managing Temporary Tablespaces in a CDB
Each container in a CDB has its own default temporary tablespace (or tablespace group).

You also can create additional temporary tablespaces for individual containers, and you can
assign specific users in containers to these temporary tablespaces. When you unplug a PDB,
its temporary tablespaces are also unplugged.

When a user is not assigned a temporary tablespace explicitly in a container, the user’s
temporary tablespace is the default temporary tablespace for the container.

Chapter 15
About CDB Administration

15-13

See Also:

• Oracle Database Administrator’s Guide for information about managing
tablespaces

• "Unplugging a PDB from a CDB"

• "Modifying an Entire CDB Using ALTER DATABASE"

• "Modifying the CDB Root Using ALTER DATABASE"

About Managing Database Objects in a CDB
In a CDB, different containers can contain different database objects.

An Oracle database stores database objects, such as tables, indexes, and directories.
Database objects that are owned by a schema are called schema objects, while
database objects that are not owned by a schema are called nonschema objects. The
CDB root and PDBs contain schemas, and schemas contain schema objects. The
CDB root and PDBs can also contain nonschema objects, such as users, roles,
tablespaces, directories, and editions.

The CDB root contains Oracle-supplied schemas and database objects. Oracle-
supplied common users, such as SYS and SYSTEM, own these schemas and common
database objects. They can also own local objects, both in the CDB root and in a PDB.

You can create common user accounts in the CDB root to administer PDBs and
application containers. User-created common user accounts can create database
objects in the CDB root. Oracle recommends that, in the CDB root, schemas owned by
user-created common user accounts contain only database triggers and the objects
used in their definitions. A user-created common user account can also own any type
of local object in a PDB.

You can create local user accounts in a PDB. A local user in a PDB can create
schema objects and nonschema objects in the PDB. You cannot create local user
accounts in the CDB root.

In a CDB, names are resolved in the context of the dictionary of the user's current
container.

See Also:

• "About the Current Container"

• Oracle Database Administrator’s Guide for information about managing
schema objects

• Oracle Database SQL Language Reference for information about
schema objects and nonschema objects

• Oracle Database Security Guide for information about creating common
users and local users

Chapter 15
About CDB Administration

15-14

About Flashing Back a PDB
You can use the FLASHBACK PLUGGABLE DATABASE statement to return a PDB to a past time or
system change number (SCN).

You can create restore points for a PDB and flash back the PDB to the restore point without
affecting the CDB or other PDBs.

Note:

Oracle Database Backup and Recovery User’s Guide

About Restricting PDB Users for Enhanced Security
There are several ways to restrict PDB users for enhanced security.

A PDB lockdown profile restricts the features and options available to users in a PDB. The
PDB_OS_CREDENTIAL initialization parameter can specify a unique operating system user for a
PDB to limit operating system access. Also, when the PATH_PREFIX and CREATE_FILE_DEST
clauses are specified during PDB creation, they limit file system access.

• PDB Lockdown Profiles
When identities are shared between PDBs, elevated privileges might exist. You can use
lockdown profiles to prevent this elevation of privileges.

• PDB_OS_CREDENTIAL Initialization Parameter
When the database accesses an external procedure with the extproc agent, the
PDB_OS_CREDENTIAL initialization parameter determines the identity of the operating
system user employed when interacting with the operating system from a PDB.

PDB Lockdown Profiles
When identities are shared between PDBs, elevated privileges might exist. You can use
lockdown profiles to prevent this elevation of privileges.

Identities can be shared in the following situations:

• At the operating system level, when the database interacts with operating system
resources such as files or processes

• At the network level, when the database communicates with other systems

• Inside the database, as PDBs access or create common objects or communicate across
container boundaries using features such as database links

To increase security, a CDB administrator can use PDB lockdown profiles to restrict users in
particular PDBs. A PDB lockdown profile can disable users from running specified SQL
statements, such as ALTER SYSTEM statements, or disable access to a package that can
access the network, such as UTL_SMTP. A PDB lockdown profile can also restrict access to
common users, common objects, administrative tools such as Oracle XML DB, administrative
features such as cursor sharing, and database options such as Oracle Database Advanced
Queuing. PDB lockdown profiles can prohibit the use of the XDB protocols (FTP, HTTP,
HTTPS) by a PDB with the XDB_PROTOCOLS feature.

Chapter 15
About CDB Administration

15-15

When logged in to the CDB root or application root, create a lockdown profile by
issuing the CREATE LOCKDOWN PROFILE statement, which supports the following
optional clauses:

• FROM static_base_profile creates a new lockdown profile by using the values
from an existing profile. Any subsequent changes to the existing profile will not
affect the new profile.

• INCLUDING dynamic_base_profile creates a new lockdown profile by using the
values from an existing profile, except that this new lockdown profile inherits the
DISABLE STATEMENT rules that comprise the base profile, and any subsequent
changes to the base profile.

The user issuing the statement must have the CREATE LOCKDOWN PROFILE system
privilege in the current container. You can add and remove restrictions with the ALTER
LOCKDOWN PROFILE statement. The user must issue the ALTER statement in the CDB
root or application root and must have the have ALTER LOCKDOWN PROFILE system
privilege in the current container.

Specify a lockdown profile by using the PDB_LOCKDOWN initialization parameter. This
parameter determines whether the PDB lockdown profile applies to a given PDB. You
can set this parameter at the following levels:

• PDB

The profile applies only to the PDB in which it is set.

• Application container

The profile applies to all application PDBs in the application container. The value
can be modified only by an application common user who has application common
SYSDBA or common ALTER SYSTEM privileges or a CDB common user who has
common SYSDBA or common ALTER SYSTEM privileges.

• CDB

The profile applies to all PDBs. A common user who has common SYSDBA or
common ALTER SYSTEM privileges can override a CDB-wide setting for a specific
PDB.

If the PDB_LOCKDOWN parameter in a PDB is set to the name of a lockdown profile
different from the container for this PDB (CDB or application container), then a set of
rules govern the interaction between restrictions.

See Also:

• Oracle Database Security Guide for complete information about
lockdown profiles

• Oracle Database SQL Language Reference for more information about
the CREATE LOCKDOWN PROFILE statement

• Oracle Database Reference for more information about the
PDB_LOCKDOWN initialization parameter

Chapter 15
About CDB Administration

15-16

PDB_OS_CREDENTIAL Initialization Parameter
When the database accesses an external procedure with the extproc agent, the
PDB_OS_CREDENTIAL initialization parameter determines the identity of the operating system
user employed when interacting with the operating system from a PDB.

Using an operating system user described by a credential whose name is specified as a
value of the PDB_OS_CREDENTIAL initialization parameter can ensure that operating system
interactions are performed as a less powerful user. In this way, the feature protects data
belonging to one PDB from being accessed by users connected to another PDB. A credential
is an object that is created using the CREATE_CREDENTIAL procedure in the DBMS_CREDENTIAL
package.

The Oracle operating system user is usually a highly privileged user. Using this account for
operating system interactions is not recommended. Also, using the same OS user for
operating system interactions from different PDBs might compromise data belonging to a
given PDB.

Accessing Containers in a CDB
You can connect to a container by using the SQL*Plus CONNECT command. Alternatively, you
can switch into a container with an ALTER SESSION SET CONTAINER SQL statement.

• About Container Access in a CDB
You can use SQL*Plus to access the root or a PDB in a CDB.

• Accessing a Container in a CDB
Access a container in a CDB with SQL*Plus by issuing a CONNECT or ALTER SESSION
command.

About Container Access in a CDB
You can use SQL*Plus to access the root or a PDB in a CDB.

• Services in a CDB
Clients access the root or a PDB through database services.

• Session Limits in a CDB
The setting for the SESSIONS initialization parameter limits the total number of sessions
available in a CDB, including the sessions connected to PDBs.

• User Names in a Multitenant Environment
Within each PDB, a user name must be unique with respect to other user names and
roles in that PDB.

• How the Multitenant Option Affects Password Files for Administrative Users
The password information for the local and common administrative users is stored in
different locations.

Chapter 15
Accessing Containers in a CDB

15-17

See Also:

• Oracle Database Administrator’s Guide for information about submitting
commands and SQL to the database

• Oracle Database Net Services Administrator's Guide for information
about configuring Oracle Net Services

Services in a CDB
Clients access the root or a PDB through database services.

Database services have an optional PDB property. When a PDB is created, a new
default service for the PDB is created automatically. The service has the same name
as the PDB. With the service name, you can access the PDB using the easy connect
syntax or the net service name from the tnsnames.ora file. Oracle Net Services must
be configured properly for clients to access this service.

When a user connects using a service with a non-null PDB property, the user name is
resolved in the context of the specified PDB. When a user connects without specifying
a service or using a service name with a null PDB property, the user name is resolved in
the context of the root. You can view the PDB property for a service by querying the
CDB_SERVICES data dictionary view or by running the config service command in the
SRVCTL utility.

Note:

When two or more CDBs on the same computer system use the same
listener and two or more PDBs have the same service name in these CDBs,
a connection that specifies this service name connects randomly to one of
the PDBs with the service name. To avoid incorrect connections, ensure that
all service names for PDBs are unique on the computer system, or configure
a separate listener for each CDB on the computer system.

Important:

Do not use the default service name; instead, create user-defined services.

See Also:

• "Managing Services for PDBs"

• "Example 15-36"

Chapter 15
Accessing Containers in a CDB

15-18

Session Limits in a CDB
The setting for the SESSIONS initialization parameter limits the total number of sessions
available in a CDB, including the sessions connected to PDBs.

If the limit is reached for the CDB, then users cannot connect to PDBs. To ensure that one
PDB does not use too many sessions, you can limit the number of sessions available to a
PDB by setting the SESSIONS initialization parameter in the PDB.

See Also:

"Listing the Modifiable Initialization Parameters in PDBs"

User Names in a Multitenant Environment
Within each PDB, a user name must be unique with respect to other user names and roles in
that PDB.

Note the following restrictions:

• For common user names, names for user-created common users must begin with a
common user prefix. By default, for CDB common users, this prefix is C##. For application
common users, this prefix is an empty string. This means that there are no restrictions on
the name that can be assigned to an application common user other than that it cannot
start with the prefix reserved for CDB common users. For example, you could name a
CDB common user c##hr_admin and an application common user hr_admin.

The COMMON_USER_PREFIX parameter in CDB$ROOT defines the common user prefix. You
can change this setting, but do so only with great care.

• For local user names, the name cannot start with C## (or c##).

• A user and a role cannot have the same name.

Related Topics

• Oracle Database Security Guide

How the Multitenant Option Affects Password Files for Administrative Users
The password information for the local and common administrative users is stored in different
locations.

• For CDB common administrative users: The password information (hashes of the
password) for the CDB common administrative users to whom administrative privileges
were granted in the CDB root is stored in the password file.

• For all users in a CDB to whom administrative privileges were granted outside the
CDB root: To view information about the password hash information of these users,
query the $PWFILE_USERS dynamic view.

Related Topics

• Oracle Database Security Guide

Chapter 15
Accessing Containers in a CDB

15-19

Accessing a Container in a CDB
Access a container in a CDB with SQL*Plus by issuing a CONNECT or ALTER SESSION
command.

• Connecting to a Container Using the SQL*Plus CONNECT Command
You can use the SQL*Plus CONNECT command to connect to the root or to a PDB.

• Switching to a Container Using the ALTER SESSION Statement
When you are connected to a container as a common user, you can switch to a
different container and application service using the ALTER SESSION statement.

Connecting to a Container Using the SQL*Plus CONNECT Command
You can use the SQL*Plus CONNECT command to connect to the root or to a PDB.

• Connecting to the CDB Root Using the SQL*Plus CONNECT Command
You can connect to the CDB root in several ways.

• Connecting to a PDB Using the SQL*Plus CONNECT Command
To connect to a PDB with the SQL*Plus CONNECT command, you can use easy
connect or a net service name.

Connecting to the CDB Root Using the SQL*Plus CONNECT Command
You can connect to the CDB root in several ways.

Specifically, you can use the following techniques to connect to the root with the
SQL*Plus CONNECT command:

• Local connection

• Local connection with operating system authentication

• Database connection using easy connect

• Database connection using a net service name

• Remote database connection using external authentication

The following prerequisites must be met for the user connecting to the CDB root:

• The user must be a common user.

• The user must be granted CREATE SESSION privilege in the CDB root.

To connect to the root using the SQL*Plus CONNECT command:

1. Configure your environment so that you can open SQL*Plus.

2. Start SQL*Plus with the /NOLOG argument:

sqlplus /nolog

3. Issue a SQL*Plus CONNECT command to connect to the root, as shown in the
following examples.

Chapter 15
Accessing Containers in a CDB

15-20

Example 15-1 Connecting to the Root with a Local Connection

This example connects to the root in the local CDB as user SYSTEM. SQL*Plus prompts for the
SYSTEM user password.

connect system

Example 15-2 Connecting to the Root with Operating System Authentication

This example connects locally to the root with the SYSDBA administrative privilege with
operating system authentication.

connect / as sysdba

Example 15-3 Connecting to the Root with a Net Service Name

Assume that clients are configured to have a net service name for the root in the CDB. For
example, the net service name can be part of an entry in a tnsnames.ora file.

This example connects as common user c##dba to the database service designated by the
net service name mycdb. SQL*Plus prompts for the c##dba user password.

connect c##dba@mycdb

See Also:

Oracle Database Administrator’s Guide for information about submitting commands
and SQL to the database

Connecting to a PDB Using the SQL*Plus CONNECT Command
To connect to a PDB with the SQL*Plus CONNECT command, you can use easy connect or a
net service name.

To connect to a PDB, a user must be one of the following:

• A common user with a CREATE SESSION privilege granted commonly or granted locally in
the PDB

• A local user defined in the PDB with CREATE SESSION privilege

Only a user with SYSDBA, SYSOPER, SYSBACKUP, or SYSDG privilege can connect to a PDB that is
in mounted mode. To change the open mode of a PDB, see "Modifying the Open Mode of
PDBs".

To connect to a PDB using the SQL*Plus CONNECT command:

1. Configure your environment so that you can open SQL*Plus.

2. Start SQL*Plus with the /NOLOG argument:

sqlplus /nolog

Chapter 15
Accessing Containers in a CDB

15-21

3. Issue a SQL*Plus CONNECT command using easy connect or a net service name to
connect to the PDB.

Example 15-4 Connecting to a PDB

Assume that clients are configured to have a net service name for each PDB that
matches each PDB name. For example, the net service name can be part of an entry
in a tnsnames.ora file.

The following command connects to the sh local user in the salespdb PDB:

CONNECT sh@salespdb

The following command connects to the SYSTEM common user in the salespdb PDB:

CONNECT system@salespdb

See Also:

Oracle Database Administrator’s Guide for information about submitting the
SQL*Plus CONNECT command

Switching to a Container Using the ALTER SESSION Statement
When you are connected to a container as a common user, you can switch to a
different container and application service using the ALTER SESSION statement.

You can use the following statement to switch to a different container and application
service:

ALTER SESSION SET CONTAINER = container_name [SERVICE = service_name]

For container_name, specify one of the following:

• CDB$ROOT to switch to the CDB root

• PDB$SEED to switch to the PDB seed

• A PDB name to switch to the PDB

When the current container is the root, you can view the names of the PDBs in a
CDB by querying the DBA_PDBS view.

For service_name, specify a service that is running in the PDB. You can list the
services running in the containers of a CDB, excluding the CDB root, by issuing the
following query with the CDB root as the current container:

COL NAME FORMAT A30
COL CON_NAME FORMAT A20

SELECT NAME,CON_NAME, CON_ID
 FROM V$ACTIVE_SERVICES
 WHERE UPPER(NAME) != CON_NAME

Chapter 15
Accessing Containers in a CDB

15-22

 AND CON_ID !=1
 ORDER BY CON_ID;

By default, when you switch to a container, the session uses the default service for the
container. However, the default PDB service does not support all service attributes and
features such as service metrics, Fast Application Notification (FAN), load balancing,
Resource Manager, Transaction Guard, Application Continuity, and so on. It is best practice
to use a nondefault service for the container by specifying SERVICE = service_name, where
service_name is the name of the service.

With this new capability, connection pools can switch the service, and, when needed the
PDB, on a connection when a connection is borrowed from the pool. Starting with Oracle
Database 12c Release 2 (12.2.0.1), connection pools support more than one database
service with universal connection pools (UCPs). It can also be used standalone.

When switching to a service, applications can consolidate to a CDB, while keeping the
database services identified, prioritized, measured, and highly available. Switching to a
nondefault service provides the following benefits:

• It preserves the service attributes and features.

• It eliminates too many connection pools with too many connections serving these
tenants.

• It allows applications to use more database services for workload control without
consuming too many connection pools. Customers can identify and prioritize workloads
using services without over sizing the database connections.

The following are considerations for using the ALTER SESSION SET CONTAINER statement:

• After the statement completes successfully, the current schema of the session is set to
the schema owned by the common user in the specified container.

• After the statement completes successfully, the security context is reset to that of the
schema owned by the common user in the specified container.

• After the statement completes successfully, login triggers for the specified container do
not fire.

If you require a trigger, then you can define a before or after SET CONTAINER trigger in a
PDB to fire before or after the ALTER SESSION SET CONTAINER statement is executed.

• After the statement completes successfully and the SERVICE clause specifies a nondefault
service for the PDB, the session is using a new service with attributes set, including
metrics, FAN, TAF, Application Continuity, Transaction Guard, drain_timeout, and
stop_option for the new service.

• Package states are not shared across containers.

• When closing a PDB, sessions that switched into the PDB and sessions that connected
directly to the PDB are handled identically.

• A transaction cannot span multiple containers. If you start a transaction and use ALTER
SESSION SET CONTAINER to switch to a different container, then you cannot issue DML,
DDL, COMMIT, or ROLLBACK statements until you switch back to the container in which you
started the transaction.

• If you open a cursor and use ALTER SESSION SET CONTAINER to switch to different
container, then you cannot fetch data from that cursor until you switch back to the
container in which the cursor was opened.

Chapter 15
Accessing Containers in a CDB

15-23

• You can use the ALTER SESSION SET CONTAINER statement with the SERVICE
clause for connection pooling as well as advanced CDB administration.

For example, you can use this statement for connection pooling with PDBs for a
multitenant application. A multitenant application uses a single instance of the
software on a server to serve multiple customers (tenants). In a CDB, each tenant
can have its own PDB. You can use the ALTER SESSION SET CONTAINER statement
in a connection pooling configuration.

• When working with connection pools that serve applications, the applications may
be using data sources with different services. Using the ALTER SESSION SET
CONTAINER statement with the SERVICE clause enables the connection pool to use
the same connections for many applications, sharing the services.

The following prerequisites must be met to use the ALTER SESSION SET CONTAINER
statement:

• The current user must be a common user. The initial connection must be made
using the SQL*Plus CONNECT command.

• When altering a session to switch to a PDB as a common user that was not
supplied with Oracle Database, the current user must be granted the SET
CONTAINER privilege commonly or must be granted this privilege locally in the PDB.

Note:

When an ALTER SESSION SET CONTAINER statement is used to switch to the
current container, these prerequisites are not enforced, and no error
message is returned if they are not met.

Before issuing an ALTER SESSION SET CONTAINER statement with the SERVICE clause,
the following prerequisites must be met:

• The service switched to must be active. You cannot switch to a service that is not
running.

• When switching between services, the service attributes of the service being
switched from and the service being switched to must match. For example, the
services switched from and to must all have TAF, or must all use Application
Continuity, or must all have drain_timeout set.

To switch to a container using the ALTER SESSION statement:

1. In SQL*Plus, connect to a container as a common user with the required
privileges.

2. Check the current open mode of the container to which you are switching.

To check the current open mode of the root or a PDB, query the OPEN_MODE column
in the V$CONTAINERS view when the current container is the root.

If the open mode of the root should be changed, then follow the instructions in
Oracle Database Administrator’s Guide about altering database availability to
change the open mode.

If the open mode of the PDB should be changed, then follow the instructions in
"Modifying the Open Mode of PDBs" to change the open mode.

Chapter 15
Accessing Containers in a CDB

15-24

The open mode of the root imposes limitations on the open mode of PDBs. For example,
the root must be open before any PDBs can be open. Therefore, you might need to
change the open mode of the root before changing the open mode of a PDB.

3. If you are switching to a specific service, then ensure that the service is running.

To check the active status of the service, query the V$ACTIVE_SERVICES view when the
current container is the CDB root.

If the service is not running, then use the SRVCTL utility or the DBMS_SERVICE package to
start the service.

4. Run the ALTER SESSION SET CONTAINER statement and specify the container to which
you want to switch.

Include the SERVICE clause to switch to a specific application service.

The following examples switch to various containers using ALTER SESSION.

Example 15-5 Switching to the PDB salespdb and Using the salesrep Service

ALTER SESSION SET CONTAINER = salespdb SERVICE = salesrep;

Example 15-6 Switching to the PDB salespdb and Using the Default Service

ALTER SESSION SET CONTAINER = salespdb;

Example 15-7 Switching to the CDB Root

ALTER SESSION SET CONTAINER = CDB$ROOT;

Example 15-8 Switching to the PDB Seed

ALTER SESSION SET CONTAINER = PDB$SEED;

Example 15-9 Switching Services Using a Dummy Service in the CDB Root

To design connection pooling that switches the container and the service, one method is to
create a dummy service in the CDB root and set all required service attributes on this dummy
service (for example, drain_timeout, TAF or Application Continuity). The service attributes
must match across the CDB root and the PDB. To use this method, complete the following
steps:

1. Connect to the dummy service when first creating the connection pool and when creating
new connections.

2. As services are added to each PDB, set the same attributes on these real services.

3. When an application requires a connection, complete one of the following actions:

• Create a new connection to the dummy service, and switch to the PDB and service.

• Borrow a free connection in the pool and switch to the PDB and service.

You do not need to return to the CDB root when switching across PDBs.

You do not need to return to the CDB root when switching across PDBs.

Chapter 15
Accessing Containers in a CDB

15-25

See Also:

Oracle Database Administrator’s Guide for information about database
resident connection pooling

Starting Up and Shutting Down a CDB
When you start up a CDB, you create an instance and then determine the state of the
CDB. Shutting down a currently running Oracle Database instance can optionally close
and dismount a CDB.

• Starting Up a CDB
When you start up a CDB, you create an instance of that database and you
determine the state of the database.

• Altering Database Availability
You can alter the availability of a database. You may want to do this in order to
restrict access for maintenance reasons or to make the database read only.

• Shutting Down a CDB
You can shut down a CDB with SQL*Plus or Oracle Restart.

• Quiescing a CDB
A quiesced CDB allows only DBA transactions, queries, fetches, or PL/SQL
statements.

• Suspending and Resuming a Database
The ALTER SYSTEM SUSPEND statement halts all input and output (I/O) to data files
(file header and file data) and control files. The suspended state lets you back up a
database without I/O interference. When the database is suspended all preexisting
I/O operations are allowed to complete and any new database accesses are
placed in a queued state. Use the ALTER SYSTEM RESUME statement to resume
normal database operations.

• Delaying Instance Abort
The INSTANCE_ABORT_DELAY_TIME initialization parameter specifies the amount of
time, in seconds, to delay shutting down a database when an error causes the
instance to abort.

See Also:

Oracle Real Application Clusters Administration and Deployment Guide for
additional information specific to an Oracle Real Application Clusters
environment

Starting Up a CDB
When you start up a CDB, you create an instance of that database and you determine
the state of the database.

Chapter 15
Starting Up and Shutting Down a CDB

15-26

Normally, you start up an instance by mounting and opening the CDB. This operation makes
the CDB available for any valid user to connect to and perform typical data access
operations.

• About Database Startup Options
When Oracle Restart is not in use, you can start up a database instance with SQL*Plus,
Recovery Manager, or Oracle Enterprise Manager Cloud Control (Cloud Control). If your
database is being managed by Oracle Restart, then Oracle recommends starting the
database with SRVCTL.

• Specifying Initialization Parameters at Startup
To start a database instance, the CDB must read instance configuration parameters (the
initialization parameters) from either a server parameter file (SPFILE) or a text initialization
parameter file (PFILE).

• About Automatic Startup of Database Services
When your database is managed by Oracle Restart, you can configure startup options for
each individual database service (service).

• Preparing to Start Up an Instance
You must perform some preliminary steps before attempting to start an instance of your
CDB using SQL*Plus.

• Starting Up an Instance
You can start up an instance using SQL*Plus or Oracle Restart.

About Database Startup Options
When Oracle Restart is not in use, you can start up a database instance with SQL*Plus,
Recovery Manager, or Oracle Enterprise Manager Cloud Control (Cloud Control). If your
database is being managed by Oracle Restart, then Oracle recommends starting the
database with SRVCTL.

Oracle Database Administrator’s Guide for information about Oracle Restart

• Starting Up a Database Using SQL*Plus
You can start a SQL*Plus session, connect to Oracle Database with administrator
privileges, and then issue the STARTUP command. Using SQL*Plus in this way is the only
method described in detail in this book.

• Starting Up a Database Using Recovery Manager
You can also use Recovery Manager (RMAN) to execute STARTUP and SHUTDOWN
commands. You may prefer to do this if your are within the RMAN environment and do
not want to invoke SQL*Plus.

• Starting Up a Database Using Cloud Control
You can use Cloud Control to administer your database, including starting it up and
shutting it down. Cloud Control combines a GUI console, agents, common services, and
tools to provide an integrated and comprehensive systems management platform for
managing Oracle products. Cloud Control enables you to perform the functions discussed
in this book using a GUI interface, rather than command line operations.

• Starting Up a Database Using SRVCTL
When Oracle Restart is installed and configured for your database, Oracle recommends
that you use SRVCTL to start the database.

Chapter 15
Starting Up and Shutting Down a CDB

15-27

Starting Up a Database Using SQL*Plus
You can start a SQL*Plus session, connect to Oracle Database with administrator
privileges, and then issue the STARTUP command. Using SQL*Plus in this way is the
only method described in detail in this book.

• Run the SQL*Plus STARTUP command.

Related Topics

• SQL*Plus User's Guide and Reference

Starting Up a Database Using Recovery Manager
You can also use Recovery Manager (RMAN) to execute STARTUP and SHUTDOWN
commands. You may prefer to do this if your are within the RMAN environment and do
not want to invoke SQL*Plus.

• Run an RMAN STARTUP command.

See Also:

Oracle Database Backup and Recovery Reference for information about the
RMAN STARTUP command

Starting Up a Database Using Cloud Control
You can use Cloud Control to administer your database, including starting it up and
shutting it down. Cloud Control combines a GUI console, agents, common services,
and tools to provide an integrated and comprehensive systems management platform
for managing Oracle products. Cloud Control enables you to perform the functions
discussed in this book using a GUI interface, rather than command line operations.

• In Cloud Control, start the database instance.

See Also:

The Cloud Control online help

Starting Up a Database Using SRVCTL
When Oracle Restart is installed and configured for your database, Oracle
recommends that you use SRVCTL to start the database.

Starting the database instance with SRVCTL ensures that:

• Any components on which the database depends (such as Oracle Automatic
Storage Management and the Oracle Net listener) are automatically started first,
and in the proper order.

Chapter 15
Starting Up and Shutting Down a CDB

15-28

• The database is started according to the settings in its Oracle Restart configuration. An
example of such a setting is the server parameter file location.

• Environment variables stored in the Oracle Restart configuration for the database are set
before starting the instance.

To start a database instance with SRVCTL:

• Run the srvctl start database command.

Oracle Database Administrator’s Guide to learn more about srvctl start database

Specifying Initialization Parameters at Startup
To start a database instance, the CDB must read instance configuration parameters (the
initialization parameters) from either a server parameter file (SPFILE) or a text initialization
parameter file (PFILE).

The CDB looks for these files in a default location. You can specify nondefault locations for
these files, and the method for doing so depends on whether you start the database with
SQL*Plus (when Oracle Restart is not in use) or with SRVCTL (when the database is being
managed with Oracle Restart).

• About Initialization Parameter Files and Startup
When you start the database instance, it attempts to read the initialization parameters
from an SPFILE in a platform-specific default location. If it finds no SPFILE, then it
searches for a text initialization parameter file.

• Starting Up with SQL*Plus with a Nondefault Server Parameter File
With SQL*Plus, you can use the PFILE clause to start an instance with a nondefault
server parameter file.

• Starting Up with SRVCTL with a Nondefault Server Parameter File
If your database is being managed by Oracle Restart, then you can specify the location of
a nondefault SPFILE by setting or modifying the SPFILE location option in the Oracle
Restart configuration for the database.

See Also:

" Creating a CDB: Basic Steps" for more information about initialization parameters,
initialization parameter files, and server parameter files

About Initialization Parameter Files and Startup
When you start the database instance, it attempts to read the initialization parameters from
an SPFILE in a platform-specific default location. If it finds no SPFILE, then it searches for a
text initialization parameter file.

In the platform-specific default location, Oracle Database locates your initialization parameter
file by examining file names in the following order:

1. The location specified by the -spfile option in the SRVCTL commands srvctl add
database or srvctl modify database
You can check the current setting with the srvctl config database command.

Chapter 15
Starting Up and Shutting Down a CDB

15-29

2. spfileORACLE_SID.ora
3. spfile.ora
4. initORACLE_SID.ora
The first three files are SPFILEs and the fourth is a text initialization parameter file. If
DBCA created the SPFILE in an Oracle Automatic Storage Management disk group,
then the database searches for the SPFILE in the disk group.

When AS COPY is not specified in a CREATE SPFILE statement and the database is
defined as a resource in Oracle Clusterware, if you specify both the spfile_name and
the FROM PFILE clause, then this statement automatically updates the SPFILE name
and location in the database resource. When AS COPY is specified in a CREATE SPFILE
statement, the SPFILE is copied, and the database resource is not updated.

Note:

The spfile.ora file is included in this search path because in an Oracle
Real Application Clusters environment one server parameter file is used to
store the initialization parameter settings for all instances. There is no
instance-specific location for storing a server parameter file.

If you (or the Database Configuration Assistant) created a server parameter file, but
you want to override it with a text initialization parameter file, then you can do so with
SQL*Plus, specifying the PFILE clause of the STARTUP command to identify the
initialization parameter file:

STARTUP PFILE = /u01/oracle/dbs/init.ora

Nondefault Server Parameter Files

A nondefault server parameter file (SPFILE) is an SPFILE that is in a location other than
the default location. It is not usually necessary to start an instance with a nondefault
SPFILE. However, should such a need arise, both SRVCTL (with Oracle Restart) and
SQL*Plus provide ways to do so. These are described later in this section.

Initialization Files and Oracle Automatic Storage Management

A database that uses Oracle Automatic Storage Management (Oracle ASM) usually
has a nondefault SPFILE. If you use the Database Configuration Assistant (DBCA) to
configure a database to use Oracle ASM, DBCA creates an SPFILE for the database
instance in an Oracle ASM disk group, and then causes a text initialization parameter
file (PFILE) to be created in the default location in the local file system to point to the
SPFILE, as explained in the next section.

Chapter 15
Starting Up and Shutting Down a CDB

15-30

See Also:

• "Table 4-1" lists PFILE and SPFILE default names and locations.

• Oracle Real Application Clusters Administration and Deployment Guide for
more information about the server parameter file for an Oracle Real Application
Clusters environment

• Oracle Database Administrator’s Guide for the SRVCTL Command Reference
for Oracle Restart

Starting Up with SQL*Plus with a Nondefault Server Parameter File
With SQL*Plus, you can use the PFILE clause to start an instance with a nondefault server
parameter file.

To start up with SQL*Plus with a nondefault server parameter file:

1. Create a one-line text initialization parameter file that contains only the SPFILE parameter.
The value of the parameter is the nondefault server parameter file location.

For example, create a text initialization parameter file /u01/oracle/dbs/spf_init.ora
that contains only the following parameter:

SPFILE = /u01/oracle/dbs/test_spfile.ora

Note:

You cannot use the IFILE initialization parameter within a text initialization
parameter file to point to a server parameter file. In this context, you must use
the SPFILE initialization parameter.

2. Start up the instance pointing to this initialization parameter file.

STARTUP PFILE = /u01/oracle/dbs/spf_init.ora

The SPFILE must reside on the database host computer. Therefore, the preceding method
also provides a means for a client system to start a database that uses an SPFILE. It also
eliminates the need for a client system to maintain a client-side initialization parameter file.
When the client system reads the initialization parameter file containing the SPFILE
parameter, it passes the value to the server where the specified SPFILE is read.

Starting Up with SRVCTL with a Nondefault Server Parameter File
If your database is being managed by Oracle Restart, then you can specify the location of a
nondefault SPFILE by setting or modifying the SPFILE location option in the Oracle Restart
configuration for the database.

To start up with SRVCTL with a nondefault server parameter file:

1. Prepare to run SRVCTL as described in Oracle Database Administrator’s Guide.

Chapter 15
Starting Up and Shutting Down a CDB

15-31

2. Enter the following command:

srvctl modify database -db db_unique_name -spfile spfile_path

where db_unique_name must match the DB_UNIQUE_NAME initialization parameter
setting for the database.

3. Enter the following command:

srvctl start database -db db_unique_name [options]

See Also:

Oracle Database Administrator’s Guide for the SRVCTL Command
Reference for Oracle Restart

About Automatic Startup of Database Services
When your database is managed by Oracle Restart, you can configure startup options
for each individual database service (service).

If you set the management policy for a service to AUTOMATIC (the default), the service
starts automatically when you start the database with SRVCTL. If you set the
management policy to MANUAL, the service does not automatically start, and you must
manually start it with SRVCTL. A MANUAL setting does not prevent Oracle Restart from
monitoring the service when it is running and restarting it if a failure occurs.

In an Oracle Data Guard (Data Guard) environment in which databases are managed
by Oracle Restart, you can additionally control automatic startup of services by
assigning Data Guard roles to the services in their Oracle Restart configurations. A
service automatically starts upon manual database startup only if the management
policy of the service is AUTOMATIC and if one of its assigned roles matches the current
role of the database.

Note:

When using Oracle Restart, Oracle strongly recommends that you use
SRVCTL to create database services.

See Also:

srvctl add service and srvctl modify service in Oracle Database
Administrator’s Guide for the syntax for setting the management policy of
and Data Guard roles for a service

Chapter 15
Starting Up and Shutting Down a CDB

15-32

Preparing to Start Up an Instance
You must perform some preliminary steps before attempting to start an instance of your CDB
using SQL*Plus.

Note:

The following instructions are for installations where Oracle Restart is not in use.

To prepare for starting an instance:

1. Ensure that any Oracle components on which the database depends are started.

For example, if the CDB stores data in Oracle Automatic Storage Management (Oracle
ASM) disk groups, ensure that the Oracle ASM instance is running and the required disk
groups are mounted. Also, it is preferable to start the Oracle Net listener before starting
the CDB.

2. If you intend to use operating system authentication, log in to the database host computer
as a member of the OSDBA group.

3. Ensure that environment variables are set so that you connect to the desired Oracle
instance.

4. Start SQL*Plus without connecting to the CDB root:

SQLPLUS /NOLOG

5. Connect to the CDB root as SYSOPER, SYSDBA, SYSBACKUP, or SYSDG. For example:

CONNECT username AS SYSDBA

—or—

CONNECT / AS SYSDBA

Now you are connected to the CDB root and ready to start up an instance of your database.

See Also:

• Oracle Database Administrator’s Guide to learn about operating system
authentication

• Oracle Database Administrator’s Guide for information about setting
environment variables to connect to an Oracle instance

• Oracle Database Administrator’s Guide if your database is being managed by
Oracle Restart

• SQL*Plus User's Guide and Reference for descriptions and syntax for the
CONNECT, STARTUP, and SHUTDOWN commands

Chapter 15
Starting Up and Shutting Down a CDB

15-33

Starting Up an Instance
You can start up an instance using SQL*Plus or Oracle Restart.

• About Starting Up an Instance
When Oracle Restart is not in use, you use the SQL*Plus STARTUP command to
start up an Oracle Database instance. If your database is being managed by
Oracle Restart, Oracle recommends that you use the srvctl start database
command.

• Starting an Instance, and Mounting and Opening a Database
Normal database operation means that an instance is started and the database is
mounted and open. This mode allows any valid user to connect to the database
and perform data access operations.

• Starting an Instance Without Mounting a Database
You can start an instance without mounting a database. Typically, you do so only
during database creation.

• Starting an Instance and Mounting a Database
You can start an instance and mount a CDB without opening it, allowing you to
perform specific maintenance operations.

• Restricting Access to an Instance at Startup
You can start an instance, and optionally mount and open a database, in restricted
mode so that the instance is available only to administrative personnel (not
general database users).

• Forcing an Instance to Start
In unusual circumstances, you might experience problems when attempting to
start a database instance, and you can force a database instance to start.

• Starting an Instance, Mounting a Database, and Starting Complete Media
Recovery
If you know that media recovery is required, then you can start an instance, mount
a database to the instance, and have the recovery process automatically start.

• Automatic Database Startup at Operating System Start
Many sites use procedures to enable automatic startup of one or more Oracle
Database instances and databases immediately following a system start.

• Starting Remote Instances
If your local Oracle Database server is part of a distributed database, then you
might want to start a remote instance and database.

About Starting Up an Instance
When Oracle Restart is not in use, you use the SQL*Plus STARTUP command to start
up an Oracle Database instance. If your database is being managed by Oracle
Restart, Oracle recommends that you use the srvctl start database command.

With SQL*Plus and Oracle Restart, you can start a database instance in various
modes:

• NOMOUNT—Start the instance without mounting a CDB. This does not allow access
to the database and usually would be done only for database creation or the re-
creation of control files.

Chapter 15
Starting Up and Shutting Down a CDB

15-34

• MOUNT—Start the instance and mount the CDB, but leave it closed. This state allows for
certain DBA activities, but does not allow general access to the database.

• OPEN—Start the instance, and mount and open the CDB. This can be done in unrestricted
mode, allowing access to all users, or in restricted mode, allowing access for database
administrators only.

• FORCE—Force the instance to start after a startup or shutdown problem.

• OPEN RECOVER—Start the instance and have complete media recovery begin immediately.

Note:

You cannot start a database instance if you are connected to the database through
a shared server process.

The following scenarios describe and illustrate the various states in which you can start up an
instance. Some restrictions apply when combining clauses of the STARTUP command or
combining startup options for the srvctl start database command.

Note:

It is possible to encounter problems starting up an instance if control files, database
files, or online redo logs are not available. If one or more of the files specified by the
CONTROL_FILES initialization parameter does not exist or cannot be opened when
you attempt to mount a database, Oracle Database returns a warning message and
does not mount the database. If one or more of the data files or online redo logs is
not available or cannot be opened when attempting to open a database, the
database returns a warning message and does not open the database.

See Also:

• SQL*Plus User's Guide and Reference for details on the STARTUP command
syntax

• Oracle Database Administrator’s Guide for instructions for starting a database
that is managed by Oracle Restart

Starting an Instance, and Mounting and Opening a Database
Normal database operation means that an instance is started and the database is mounted
and open. This mode allows any valid user to connect to the database and perform data
access operations.

The following command starts an instance, reads the initialization parameters from the
default location, and then mounts and opens the database.

Chapter 15
Starting Up and Shutting Down a CDB

15-35

SQL*Plus SRVCTL (When Oracle Restart Is In Use)

STARTUP srvctl start database -db db_unique_name

where db_unique_name matches the DB_UNIQUE_NAME initialization parameter.

Starting an Instance Without Mounting a Database
You can start an instance without mounting a database. Typically, you do so only
during database creation.

Use one of the following commands:

SQL*Plus SRVCTL (When Oracle Restart Is In Use)

STARTUP NOMOUNT srvctl start database -db db_unique_name -startoption
nomount

Starting an Instance and Mounting a Database
You can start an instance and mount a CDB without opening it, allowing you to perform
specific maintenance operations.

For example, the CDB must be mounted but not open during the following tasks:

• Starting with Oracle Database 12c Release 1 (12.1.0.2), putting a database
instance in force full database caching mode. For more information, see Oracle
Database Administrator’s Guide.

• Enabling and disabling redo log archiving options. For more information, see
Oracle Database Administrator’s Guide.

• Performing full database recovery. For more information, see Oracle Database
Backup and Recovery User’s Guide.

The following command starts an instance and mounts the database, but leaves the
database closed:

SQL*Plus SRVCTL (When Oracle Restart Is In Use)

STARTUP
MOUNT

srvctl start database -db db_unique_name -startoption
mount

Restricting Access to an Instance at Startup
You can start an instance, and optionally mount and open a database, in restricted
mode so that the instance is available only to administrative personnel (not general
database users).

Use this mode of instance startup when you must accomplish one of the following
tasks:

Chapter 15
Starting Up and Shutting Down a CDB

15-36

• Perform an export or import of data

• Perform a data load (with SQL*Loader)

• Temporarily prevent typical users from using data

• Perform certain migration or upgrade operations

Typically, all users with the CREATE SESSION system privilege can connect to an open
database. Opening a database in restricted mode allows database access only to users with
both the CREATE SESSION and RESTRICTED SESSION system privilege. Only database
administrators should have the RESTRICTED SESSION system privilege. Further, when the
instance is in restricted mode, a database administrator cannot access the instance remotely
through an Oracle Net listener, but can only access the instance locally from the system that
the instance is running on.

The following command starts an instance (and mounts and opens the database) in restricted
mode:

SQL*Plus SRVCTL (When Oracle Restart Is In Use)

STARTUP
RESTRICT

srvctl start database -db db_unique_name -startoption
restrict

You can use the restrict mode in combination with the mount, nomount, and open modes.

Later, use the ALTER SYSTEM statement to disable the RESTRICTED SESSION feature:

ALTER SYSTEM DISABLE RESTRICTED SESSION;

See Also:

• Oracle Database Administrator’s Guide to learn how to use the ALTER SYSTEM
statement to restrict access after you open the database in nonrestricted mode

• Oracle Database SQL Language Reference for more information on the ALTER
SYSTEM statement

Forcing an Instance to Start
In unusual circumstances, you might experience problems when attempting to start a
database instance, and you can force a database instance to start.

You should not force a database to start unless you are faced with the following:

• You cannot shut down the current instance with the SHUTDOWN NORMAL, SHUTDOWN
IMMEDIATE, or SHUTDOWN TRANSACTIONAL commands.

• You experience problems when starting an instance.

If one of these situations arises, you can usually solve the problem by starting a new instance
(and optionally mounting and opening the database) using one of these commands:

Chapter 15
Starting Up and Shutting Down a CDB

15-37

SQL*Plus SRVCTL (When Oracle Restart Is In Use)

STARTUP FORCE srvctl start database -db db_unique_name -
startoption force

If an instance is running, the force mode shuts it down with mode ABORT before
restarting it. In this case, the alert log shows the message "Shutting down instance
(abort)" followed by "Starting ORACLE instance (normal)."

See Also:

"Shutting Down with the Abort Mode" to understand the side effects of
aborting the current instance

Starting an Instance, Mounting a Database, and Starting Complete Media Recovery
If you know that media recovery is required, then you can start an instance, mount a
database to the instance, and have the recovery process automatically start.

To do so, use one of these commands:

SQL*Plus SRVCTL (When Oracle Restart Is In Use)

STARTUP OPEN
RECOVER

srvctl start database -db db_unique_name -startoption
"open,recover"

If you attempt to perform recovery when no recovery is required, Oracle Database
issues an error message.

Automatic Database Startup at Operating System Start
Many sites use procedures to enable automatic startup of one or more Oracle
Database instances and databases immediately following a system start.

The procedures for performing this task are specific to each operating system. For
information about automatic startup, see your operating system specific Oracle
documentation.

The preferred (and platform-independent) method of configuring automatic startup of a
database is Oracle Restart.

See Also:

Oracle Database Administrator’s Guide to learn about Oracle Restart

Chapter 15
Starting Up and Shutting Down a CDB

15-38

Starting Remote Instances
If your local Oracle Database server is part of a distributed database, then you might want to
start a remote instance and database.

Procedures for starting and stopping remote instances vary widely depending on
communication protocol and operating system.

Altering Database Availability
You can alter the availability of a database. You may want to do this in order to restrict access
for maintenance reasons or to make the database read only.

• Mounting a Database to an Instance
When you perform specific administrative operations, the database must be started and
mounted to an instance, but closed. You can achieve this scenario by starting the
instance and mounting the database.

• Opening a Closed Database
When a database is mounted but closed, you can make it available for general use by
opening it.

• Opening a Database in Read-Only Mode
Opening a database in read-only mode enables you to query an open database while
eliminating any potential for online data content changes.

• Restricting Access to an Open Database
When a database is in restricted mode, only users with the RESTRICTED SESSION privilege
can initiate new connections. Users connecting as SYSDBA or connecting with the DBA role
have this privilege.

Mounting a Database to an Instance
When you perform specific administrative operations, the database must be started and
mounted to an instance, but closed. You can achieve this scenario by starting the instance
and mounting the database.

• To mount a database to a previously started, but not opened instance, use the SQL
statement ALTER DATABASE with the MOUNT clause as follows:

ALTER DATABASE MOUNT;

See Also:

"Starting an Instance and Mounting a Database" for a list of operations that require
the database to be mounted and closed (and procedures to start an instance and
mount a database in one step)

Chapter 15
Starting Up and Shutting Down a CDB

15-39

Opening a Closed Database
When a database is mounted but closed, you can make it available for general use by
opening it.

• To open a mounted database, use the ALTER DATABASE SQL statement with the
OPEN clause:

ALTER DATABASE OPEN;
After executing this statement, any valid Oracle Database user with the CREATE
SESSION system privilege can connect to the database.

Opening a Database in Read-Only Mode
Opening a database in read-only mode enables you to query an open database while
eliminating any potential for online data content changes.

While opening a database in read-only mode guarantees that data files and redo log
files are not written to, it does not restrict database recovery or operations that change
the state of the database without generating redo. For example, you can take data files
offline or bring them online since these operations do not affect data content.

If a query against a database in read-only mode uses temporary tablespace, for
example to do disk sorts, then the issuer of the query must have a locally managed
tablespace assigned as the default temporary tablespace. Otherwise, the query will
fail.

The following statement opens a database in read-only mode:

ALTER DATABASE OPEN READ ONLY;

You can also open a database in read/write mode as follows:

ALTER DATABASE OPEN READ WRITE;

However, read/write is the default mode.

Note:

You cannot use the RESETLOGS clause with a READ ONLY clause.

Limitations of a Read-only Database

• An application must not write database objects while executing against a read-only
database. For example, an application writes database objects when it inserts,
deletes, updates, or merges rows in a database table, including a global temporary
table. An application writes database objects when it manipulates a database
sequence. An application writes database objects when it locks rows, when it runs
EXPLAIN PLAN, or when it executes DDL. Many of the functions and procedures in
Oracle-supplied PL/SQL packages, such as DBMS_SCHEDULER, write database
objects. If your application calls any of these functions and procedures, or if it

Chapter 15
Starting Up and Shutting Down a CDB

15-40

performs any of the preceding operations, your application writes database objects and
hence is not read-only.

• When executing on a read-only database, you must commit or roll back any in-progress
transaction that involves one database link before you use another database link. This is
true even if you execute a generic SELECT statement on the first database link and the
transaction is currently read-only.

• You cannot compile or recompile PL/SQL stored procedures on a read-only database. To
minimize PL/SQL invalidation because of remote procedure calls, use
REMOTE_DEPENDENCIES_MODE=SIGNATURE in any session that does remote procedure calls
on a read-only database.

• You cannot invoke a remote procedure (even a read-only remote procedure) from a read-
only database if the remote procedure has never been called on the database. This
limitation applies to remote procedure calls in anonymous PL/SQL blocks and in SQL
statements. You can either put the remote procedure call in a stored procedure, or you
can invoke the remote procedure in the database before it becomes read only.

See Also:

Oracle Database SQL Language Reference for more information about the ALTER
DATABASE statement

Restricting Access to an Open Database
When a database is in restricted mode, only users with the RESTRICTED SESSION privilege can
initiate new connections. Users connecting as SYSDBA or connecting with the DBA role have
this privilege.

To place an already running instance in restricted mode:

• Run the SQL statement ALTER SYSTEM with the ENABLE RESTRICTED SESSION clause.

When you place a running instance in restricted mode, no user sessions are terminated or
otherwise affected. Therefore, after placing an instance in restricted mode, consider
terminating all current user sessions before performing administrative tasks.

To lift an instance from restricted mode, use ALTER SYSTEM with the DISABLE RESTRICTED
SESSION clause.

See Also:

• Oracle Database Administrator’s Guide for directions for ending user sessions

• Oracle Database Administrator’s Guide to learn some reasons for placing an
instance in restricted mode

Chapter 15
Starting Up and Shutting Down a CDB

15-41

Shutting Down a CDB
You can shut down a CDB with SQL*Plus or Oracle Restart.

• About Shutting Down the Database
When Oracle Restart is not in use, you can shut down a database instance with
SQL*Plus by connecting as SYSOPER, SYSDBA, SYSBACKUP, or SYSDG and issuing the
SHUTDOWN command. If your database is being managed by Oracle Restart, the
recommended way to shut down the database is with the srvctl stop database
command.

• Shutting Down with the Normal Mode
When you shut down a database with the normal mode, the database waits for all
connected users to disconnect before shutting down. Normal mode is the default
mode of shutdown.

• Shutting Down with the Immediate Mode
When you shut down a database with the immediate mode, Oracle Database
terminates any executing SQL statements and disconnects users. Active
transactions are terminated and uncommitted changes are rolled back.

• Shutting Down with the Transactional Mode
When you shut down a database with transactional mode, the database prevents
users from starting new transactions, but waits for all current transactions to
complete before shutting down. This mode can take a significant amount of time
depending on the nature of the current transactions.

• Shutting Down with the Abort Mode
You can shut down a database instantaneously by terminating the database
instance.

• Shutdown Timeout
Shutdown modes that wait for users to disconnect or for transactions to complete
have a limit on the amount of time that they wait.

About Shutting Down the Database
When Oracle Restart is not in use, you can shut down a database instance with
SQL*Plus by connecting as SYSOPER, SYSDBA, SYSBACKUP, or SYSDG and issuing the
SHUTDOWN command. If your database is being managed by Oracle Restart, the
recommended way to shut down the database is with the srvctl stop database
command.

Control is not returned to the session that initiates a database shutdown until
shutdown is complete. Users who attempt connections while a shutdown is in progress
receive a message like the following:

ORA-01090: shutdown in progress - connection is not permitted

Note:

You cannot shut down a database if you are connected to the database
through a shared server process.

Chapter 15
Starting Up and Shutting Down a CDB

15-42

There are several modes for shutting down a database: normal, immediate, transactional,
and abort. Some shutdown modes wait for certain events to occur (such as transactions
completing or users disconnecting) before actually bringing down the database. There is a
one-hour timeout period for these events.

See Also:

Oracle Database Administrator’s Guide for information about Oracle Restart

Shutting Down with the Normal Mode
When you shut down a database with the normal mode, the database waits for all connected
users to disconnect before shutting down. Normal mode is the default mode of shutdown.

To shut down a database in normal situations, use one of these commands:

SQL*Plus SRVCTL (When Oracle Restart Is In Use)

SHUTDOWN [NORMAL] srvctl stop database -db db_unique_name -stopoption normal

The NORMAL clause of the SQL*Plus SHUTDOWN command is optional because this is the default
shutdown method. For SRVCTL, if the -stopoption option is omitted, the shutdown operation
proceeds according to the stop options stored in the Oracle Restart configuration for the
database. The default stop option is immediate.

Normal database shutdown proceeds with the following conditions:

• No new connections are allowed after the statement is issued.

• Before the database is shut down, the database waits for all currently connected users to
disconnect from the database.

The next startup of the database will not require any instance recovery procedures.

Shutting Down with the Immediate Mode
When you shut down a database with the immediate mode, Oracle Database terminates any
executing SQL statements and disconnects users. Active transactions are terminated and
uncommitted changes are rolled back.

Use immediate database shutdown only in the following situations:

• To initiate an automated and unattended backup

• When a power shutdown is going to occur soon

• When the database or one of its applications is functioning irregularly and you cannot
contact users to ask them to log off or they are unable to log off

To shut down a database immediately, use one of the following commands:

Chapter 15
Starting Up and Shutting Down a CDB

15-43

SQL*Plus SRVCTL (When Oracle Restart Is In Use)

SHUTDOWN IMMEDIATE srvctl stop database -db db_unique_name -stopoption
immediate

Immediate database shutdown proceeds with the following conditions:

• No new connections are allowed, nor are new transactions allowed to be started,
after the statement is issued.

• Any uncommitted transactions are rolled back. (If long uncommitted transactions
exist, this method of shutdown might not complete quickly, despite its name.)

• Oracle Database does not wait for users currently connected to the database to
disconnect. The database implicitly rolls back active transactions and disconnects
all connected users.

The next startup of the database will not require any instance recovery procedures.

Shutting Down with the Transactional Mode
When you shut down a database with transactional mode, the database prevents
users from starting new transactions, but waits for all current transactions to complete
before shutting down. This mode can take a significant amount of time depending on
the nature of the current transactions.

When you want to perform a planned shutdown of an instance while allowing active
transactions to complete first, use one of the following commands:

SQL*Plus SRVCTL (When Oracle Restart Is In Use)

SHUTDOWN
TRANSACTIONAL

srvctl stop database -db db_unique_name -stopoption
transactional

Transactional database shutdown proceeds with the following conditions:

• No new connections are allowed, nor are new transactions allowed to be started,
after the statement is issued.

• After all transactions have completed, any client still connected to the instance is
disconnected.

• At this point, the instance shuts down just as it would when a SHUTDOWN IMMEDIATE
statement is submitted.

The next startup of the database will not require any instance recovery procedures.

A transactional shutdown prevents clients from losing work, and at the same time,
does not require all users to log off.

Shutting Down with the Abort Mode
You can shut down a database instantaneously by terminating the database instance.

If possible, perform this type of shutdown only in the following situations:

Chapter 15
Starting Up and Shutting Down a CDB

15-44

• The database or one of its applications is functioning irregularly and none of the other
types of shutdown works.

• You must shut down the database instantaneously (for example, if you know a power
shutdown is going to occur in one minute).

• You experience problems when starting a database instance.

When you must do a database shutdown by aborting transactions and user connections, use
one of the following commands:

SQL*Plus SRVCTL (When Oracle Restart Is In Use)

SHUTDOWN ABORT srvctl stop database -db db_unique_name -stopoption abort

An aborted database shutdown proceeds with the following conditions:

• No new connections are allowed, nor are new transactions allowed to be started, after
the statement is issued.

• Current client SQL statements being processed by Oracle Database are immediately
terminated.

• Uncommitted transactions are not rolled back.

• Oracle Database does not wait for users currently connected to the database to
disconnect. The database implicitly disconnects all connected users.

The next startup of the database will require automatic instance recovery procedures.

Shutdown Timeout
Shutdown modes that wait for users to disconnect or for transactions to complete have a limit
on the amount of time that they wait.

If all events blocking the shutdown do not occur within one hour, the shutdown operation
aborts with the following message: ORA-01013: user requested cancel of current
operation. This message is also displayed if you interrupt the shutdown process, for
example by pressing CTRL-C. Oracle recommends that you do not attempt to interrupt an
instance shutdown. Instead, allow the shutdown process to complete, and then restart the
instance.

After ORA-01013 occurs, you must consider the instance to be in an unpredictable state. You
must therefore continue the shutdown process by resubmitting a SHUTDOWN command. If
subsequent SHUTDOWN commands continue to fail, you must submit a SHUTDOWN ABORT
command to bring down the instance. You can then restart the instance.

Quiescing a CDB
A quiesced CDB allows only DBA transactions, queries, fetches, or PL/SQL statements.

• About Quiescing a Database
Occasionally you might want to put a database in a state that allows only DBA
transactions, queries, fetches, or PL/SQL statements. Such a state is referred to as a
quiesced state, in the sense that no ongoing non-DBA transactions, queries, fetches, or
PL/SQL statements are running in the system.

Chapter 15
Starting Up and Shutting Down a CDB

15-45

• Placing a Database into a Quiesced State
When you place a database in quiesced state, non-DBA active sessions will
continue until they become inactive. An active session is one that is currently
inside of a transaction, a query, a fetch, or a PL/SQL statement; or a session that
is currently holding any shared resources (for example, enqueues). No inactive
sessions are allowed to become active.

• Restoring the System to Normal Operation
When you restore the system to normal operation, all non-DBA activity is allowed
to proceed.

• Viewing the Quiesce State of an Instance
You can view the quiesce state of an instance by querying the V$INSTANCE view.

About Quiescing a Database
Occasionally you might want to put a database in a state that allows only DBA
transactions, queries, fetches, or PL/SQL statements. Such a state is referred to as a
quiesced state, in the sense that no ongoing non-DBA transactions, queries, fetches,
or PL/SQL statements are running in the system.

Note:

In this discussion of quiesce database, a DBA is defined as user SYS or
SYSTEM. Other users, including those with the DBA role, are not allowed to
issue the ALTER SYSTEM QUIESCE DATABASE statement or proceed after the
database is quiesced.

The quiesced state lets administrators perform actions that cannot safely be done
otherwise. These actions include:

• Actions that fail if concurrent user transactions access the same object, for
example, changing the schema of a database table or adding a column to an
existing table where a no-wait lock is required.

• Actions whose undesirable intermediate effect can be seen by concurrent user
transactions, for example, a multistep procedure for reorganizing a table when the
table is first exported, then dropped, and finally imported. A concurrent user who
attempts to access the table after it was dropped, but before import, would not
have an accurate view of the situation.

Without the ability to quiesce the database, you would need to shut down the database
and reopen it in restricted mode. This is a serious restriction, especially for systems
requiring 24 x 7 availability. Quiescing a database is much a smaller restriction,
because it eliminates the disruption to users and the downtime associated with
shutting down and restarting the database.

When the database is in the quiesced state, it is through the facilities of the Database
Resource Manager that non-DBA sessions are prevented from becoming active.
Therefore, while this statement is in effect, any attempt to change the current resource
plan will be queued until after the system is unquiesced.

Chapter 15
Starting Up and Shutting Down a CDB

15-46

See Also:

Oracle Database Administrator’s Guide for more information about the Database
Resource Manager

Placing a Database into a Quiesced State
When you place a database in quiesced state, non-DBA active sessions will continue until
they become inactive. An active session is one that is currently inside of a transaction, a
query, a fetch, or a PL/SQL statement; or a session that is currently holding any shared
resources (for example, enqueues). No inactive sessions are allowed to become active.

For example, If a user issues a SQL query in an attempt to force an inactive session to
become active, the query will appear to be hung. When the database is later unquiesced, the
session is resumed, and the blocked action is processed.

• To place a database into a quiesced state, issue the following SQL statement:

ALTER SYSTEM QUIESCE RESTRICTED;
Once all non-DBA sessions become inactive, the ALTER SYSTEM QUIESCE RESTRICTED
statement completes, and the database is in a quiesced state. In an Oracle Real Application
Clusters environment, this statement affects all instances, not just the one that issues the
statement.

The ALTER SYSTEM QUIESCE RESTRICTED statement may wait a long time for active sessions
to become inactive. You can determine the sessions that are blocking the quiesce operation
by querying the V$BLOCKING_QUIESCE view. This view returns only a single column: SID
(Session ID). You can join it with V$SESSION to get more information about the session, as
shown in the following example:

select bl.sid, user, osuser, type, program
from v$blocking_quiesce bl, v$session se
where bl.sid = se.sid;

If you interrupt the request to quiesce the database, or if your session terminates unusually
before all active sessions are quiesced, then Oracle Database automatically reverses any
partial effects of the statement.

For queries that are carried out by successive multiple Oracle Call Interface (OCI) fetches,
the ALTER SYSTEM QUIESCE RESTRICTED statement does not wait for all fetches to finish. It
only waits for the current fetch to finish.

For both dedicated and shared server connections, all non-DBA logins after this statement is
issued are queued by the Database Resource Manager, and are not allowed to proceed. To
the user, it appears as if the login is hung. The login will resume when the database is
unquiesced.

The database remains in the quiesced state even if the session that issued the statement
exits. A DBA must log in to the database to issue the statement that specifically unquiesces
the database.

Chapter 15
Starting Up and Shutting Down a CDB

15-47

Note:

You cannot perform a cold backup when the database is in the quiesced
state, because Oracle Database background processes may still perform
updates for internal purposes even while the database is quiesced. In
addition, the file headers of online data files continue to appear to be
accessible. They do not look the same as if a clean shutdown had been
performed. However, you can still take online backups while the database is
in a quiesced state.

See Also:

• Oracle Database Reference for more information about the
V$BLOCKING_QUIESCE view

• Oracle Database Reference for more information about the V$SESSION
view

Restoring the System to Normal Operation
When you restore the system to normal operation, all non-DBA activity is allowed to
proceed.

• To restore the database to normal operation, issue the following SQL statement:

ALTER SYSTEM UNQUIESCE;
In an Oracle Real Application Clusters environment, this statement is not required to
be issued from the same session, or even the same instance, as that which quiesced
the database. If the session issuing the ALTER SYSTEM UNQUIESCE statement
terminates unusually, then the Oracle Database server ensures that the unquiesce
operation completes.

Viewing the Quiesce State of an Instance
You can view the quiesce state of an instance by querying the V$INSTANCE view.

To view the quiesce state of an instance:

• Query the ACTIVE_STATE column of the V$INSTANCE view.

The column has one of these values:

• NORMAL: Normal unquiesced state.

• QUIESCING: Being quiesced, but some non-DBA sessions are still active.

• QUIESCED: Quiesced; no non-DBA sessions are active or allowed.

Chapter 15
Starting Up and Shutting Down a CDB

15-48

Suspending and Resuming a Database
The ALTER SYSTEM SUSPEND statement halts all input and output (I/O) to data files (file header
and file data) and control files. The suspended state lets you back up a database without I/O
interference. When the database is suspended all preexisting I/O operations are allowed to
complete and any new database accesses are placed in a queued state. Use the ALTER
SYSTEM RESUME statement to resume normal database operations.

To suspend database operations:

• Run the ALTER SYSTEM SUSPEND statement.

To resume database operations:

• Run the ALTER SYSTEM RESUME statement.

The suspend command is not specific to an instance. In an Oracle Real Application Clusters
environment, when you issue the suspend command on one system, internal locking
mechanisms propagate the halt request across instances, thereby quiescing all active
instances in a given cluster. However, if a new instance is started while another instance is
being suspended, then the new instance is not suspended.

The SUSPEND and RESUME commands can be issued from different instances. For example, if
instances 1, 2, and 3 are running, and you issue an ALTER SYSTEM SUSPEND statement from
instance 1, then you can issue a RESUME statement from instance 1, 2, or 3 with the same
effect.

The suspend/resume feature is useful in systems that allow you to mirror a disk or file and
then split the mirror, providing an alternative backup and restore solution. If you use a system
that cannot split a mirrored disk from an existing database while writes are occurring, then
you can use the suspend/resume feature to facilitate the split.

The suspend/resume feature is not a suitable substitute for normal shutdown operations,
because copies of a suspended database can contain uncommitted updates.

Note:

Do not use the ALTER SYSTEM SUSPEND statement as a substitute for placing a
tablespace in hot backup mode. Precede any database suspend operation by an
ALTER TABLESPACE BEGIN BACKUP statement.

The following statements illustrate ALTER SYSTEM SUSPEND/RESUME usage. The V$INSTANCE
view is queried to confirm database status.

SQL> ALTER SYSTEM SUSPEND;
System altered
SQL> SELECT DATABASE_STATUS FROM V$INSTANCE;
DATABASE_STATUS

SUSPENDED

SQL> ALTER SYSTEM RESUME;
System altered
SQL> SELECT DATABASE_STATUS FROM V$INSTANCE;
DATABASE_STATUS

Chapter 15
Starting Up and Shutting Down a CDB

15-49

ACTIVE

See Also:

Oracle Database Backup and Recovery User's Guide for details about
backing up a database using the database suspend/resume feature

Delaying Instance Abort
The INSTANCE_ABORT_DELAY_TIME initialization parameter specifies the amount of time,
in seconds, to delay shutting down a database when an error causes the instance to
abort.

Some errors cause the Oracle database instance to abort. You can use the
INSTANCE_ABORT_DELAY_TIME initialization parameter to specify the amount of time to
delay shutting down the instance. A database administrator can use the delay time to
get information about the error and minimize problems that can result when an
instance aborts. For example, a database administrator might use the delay time to get
diagnostics, redirect connections using Transparent Application Failover (TAF), and
flush the buffer cache. A message is written to the alert log when a delayed abort is
initiated.

Caution:

Do not set the INSTANCE_ABORT_DELAY_TIME value too high. Since the
instance is closing because of an error, some processes or resources might
be corrupted or unavailable, which can make complex actions impossible.

To delay instance abort:

• Set the INSTANCE_ABORT_DELAY_TIME initialization parameter to the number of
seconds to delay shutting down an instance when an error causes it to abort.

This parameter is set to 0 by default.

Example 15-10 Setting the INSTANCE_ABORT_DELAY_TIME Initialization
Parameter

ALTER SYSTEM SET INSTANCE_ABORT_DELAY_TIME=60;

Modifying a CDB at the System Level
You can set initialization parameters at the CDB level. In some cases, you can
override these parameters at the PDB level.

• About System-Level Modifications of a CDB
The ALTER SYSTEM SET statement dynamically sets an initialization parameter in
one or more containers.

Chapter 15
Modifying a CDB at the System Level

15-50

• Modifying a CDB with ALTER SYSTEM
To modify a CDB at the system level, use the ALTER SYSTEM statement.

About System-Level Modifications of a CDB
The ALTER SYSTEM SET statement dynamically sets an initialization parameter in one or more
containers.

A CDB uses an inheritance model for initialization parameters in which PDBs inherit
initialization parameter values from the root. In this case, inheritance means that the value of
a specific parameter in the root applies to a specific PDB.

A PDB can override the root setting for some parameters. In such cases, a PDB has an
inheritance property for each initialization parameter that is either true or false. The
inheritance property is true for a parameter when the PDB inherits the root's value for the
parameter; otherwise, the property is false.

The inheritance property for some parameters must be true. For other parameters, when the
current container is the PDB, you can change the inheritance property by running the ALTER
SYSTEM SET statement. If V$SYSTEM_PARAMETER.ISPDB_MODIFIABLE is TRUE for an initialization
parameter, then the inheritance property can be false for the parameter.

When the current container is the root, the CONTAINER clause of the ALTER SYSTEM SET
statement controls which PDBs inherit the parameter value being set. The CONTAINER clause
has the following syntax:

CONTAINER = { CURRENT | ALL }

The following settings are possible:

• CURRENT
The parameter setting applies only to the current container. This is the default setting for
CONTAINER. When the current container is the root, the parameter setting applies to the
root and to any PDB with an inheritance property of true for the parameter.

• ALL
The parameter setting applies to all containers in the CDB, including the root and all
PDBs. Specifying ALL sets the inheritance property to true for the parameter in all PDBs.

See Also:

"About the Current Container" for more information about the CONTAINER clause and
rules that apply to it

Modifying a CDB with ALTER SYSTEM
To modify a CDB at the system level, use the ALTER SYSTEM statement.

Prerequisites

The current user must have the commonly granted ALTER SYSTEM privilege.

Chapter 15
Modifying a CDB at the System Level

15-51

To use ALTER SYSTEM SET in the root in a CDB:

1. In SQL*Plus, ensure that the current container is the root.

2. Run the ALTER SYSTEM SET statement.

Note:

To change the inheritance property for a parameter in a PDB from false to
true, run the ALTER SYSTEM RESET statement to reset the parameter when the
current container is the PDB. The following sample statement resets the
OPEN_CURSORS parameter:

ALTER SYSTEM RESET OPEN_CURSORS SCOPE = SPFILE;

Example 15-11 Setting an Initialization Parameter for All Containers

This ALTER SYSTEM SET statement sets the OPEN_CURSORS initialization parameter to
200 for the all containers and sets the inheritance property to TRUE in each PDB.

ALTER SYSTEM SET OPEN_CURSORS = 200 CONTAINER = ALL;

Example 15-12 Setting an Initialization Parameter for the Root

This ALTER SYSTEM SET statement sets the OPEN_CURSORS initialization parameter to
200 for the root and for PDBs with an inheritance property of true for the parameter.

ALTER SYSTEM SET OPEN_CURSORS = 200 CONTAINER = CURRENT;

See Also:

• "Modifying a PDB at the System Level"

• Oracle Database SQL Language Reference for more information about
the ALTER SYSTEM SET statement

Modifying Containers When Connected to the CDB Root
You can modify the entire CDB or the root with the ALTER DATABASE statement.

• About Container Modification When Connected to CDB Root
The ALTER DATABASE statement modifies a CDB. When you are connected to the
CDB root, the ALTER PLUGGABLE DATABASE statement can modify the open mode of
one or more PDBs.

Chapter 15
Modifying Containers When Connected to the CDB Root

15-52

• Modifying an Entire CDB Using ALTER DATABASE
You can use the ALTER DATABASE statement to modify an entire CDB, including the root
and all PDBs. Most ALTER DATABASE statements modify the entire CDB.

• Setting the Undo Mode in a CDB Using ALTER DATABASE
When local undo is enabled, each container has its own undo tablespace for every
instance in which it is open. When local undo is disabled, there is one undo tablespace
for the entire CDB.

• Modifying the CDB Root Using ALTER DATABASE
To modify only the root of a CDB, use the ALTER DATABASE statement.

About Container Modification When Connected to CDB Root
The ALTER DATABASE statement modifies a CDB. When you are connected to the CDB root,
the ALTER PLUGGABLE DATABASE statement can modify the open mode of one or more PDBs.

The behavior of ALTER DATABASE and ALTER PLUGGABLE DATABASE depends on which
container you are connected to when you use the statement:

• Connected as a common user to CDB root

When an ALTER DATABASE statement with the RENAME GLOBAL_NAME clause modifies the
domain of a CDB, it affects the domain of each PDB with a domain that defaults to that of
the CDB. The ALTER PLUGGABLE DATABASE statement with the pdb_change_state clause
modifies the open mode of one or more PDBs.

• Connected to a PDB

In this case, the ALTER DATABASE and ALTER PLUGGABLE DATABASE statements modify the
current PDB only.

The following table lists which containers are modified by clauses in ALTER DATABASE and
ALTER PLUGGABLE DATABASE statements.

Chapter 15
Modifying Containers When Connected to the CDB Root

15-53

Table 15-3 Statements That Modify Containers in a CDB

Modify Entire CDB Modify Root Only Modify One or More PDBs

When connected as a common user
whose current container is the root,
ALTER DATABASE statements with
the following clauses modify the
entire CDB:

• startup_clauses
• recovery_clauses
• logfile_clauses
• controlfile_clauses
• standby_database_clauses
• instance_clauses
• security_clause
• RENAME GLOBAL_NAME clause

• ENABLE BLOCK CHANGE
TRACKING clause

• DISABLE BLOCK CHANGE
TRACKING clause

When connected as a common user
whose current container is the root,
ALTER DATABASE statements with
the following clauses modify the root
only:

• database_file_clauses
• DEFAULT EDITION clause

• DEFAULT TABLESPACE clause

• DEFAULT TEMPORARY
TABLESPACE clause

ALTER DATABASE statements with
the following clauses modify the root
and set default values for PDBs:

• flashback_mode_clause
• SET DEFAULT {BIGFILE|

SMALLFILE} TABLESPACE
clause

• set_time_zone_clause
You can use these clauses to set
nondefault values for specific PDBs.

When connected as a common user
whose current container is the root,
ALTER PLUGGABLE DATABASE
statements with the following clause
can modify the open mode of one or
more PDBs:

• pdb_change_state
When the current container is a
PDB, ALTER PLUGGABLE
DATABASE statements with this
clause can modify the open mode of
the current PDB.

When connected as a common user
whose current container is the root,
ALTER PLUGGABLE DATABASE
statements with the following clause
can preserve or discard the open
mode a PDB when the CDB
restarts:

• pdb_save_or_discard_state

See Also:

• "About the Current Container"

• "Modifying a PDB at the Database Level"

• Oracle Database SQL Language Reference

Modifying an Entire CDB Using ALTER DATABASE
You can use the ALTER DATABASE statement to modify an entire CDB, including the root
and all PDBs. Most ALTER DATABASE statements modify the entire CDB.

For a list of statements that modify the entire CDB rather than the root or individual
PDBs, see the "Modify Entire CDB" column of "About Container Modification When
Connected to CDB Root".

Prerequisites

To modify an entire CDB, the following prerequisites must be met:

• The current user must be a common user with the ALTER DATABASE privilege.

• To use an ALTER DATABASE statement with a recovery_clause, the current user
must have the SYSDBA administrative privilege commonly granted. In this case, you
must exercise this privilege using AS SYSDBA at connect time.

Chapter 15
Modifying Containers When Connected to the CDB Root

15-54

To modify an entire CDB:

1. In SQL*Plus, ensure that the current container is the root.

2. Use an ALTER DATABASE statement with a clause that modifies an entire CDB.

Example 15-13 Backing Up the Control File for a CDB

The following ALTER DATABASE statement uses a recovery_clause to back up a control file.

ALTER DATABASE BACKUP CONTROLFILE TO '+DATA/dbs/backup/control.bkp';

Example 15-14 Adding a Redo Log File to a CDB

The following ALTER DATABASE statement uses a logfile_clause to add redo log files.

ALTER DATABASE cdb ADD LOGFILE
 GROUP 4 ('/u01/logs/orcl/redo04a.log','/u02/logs/orcl/redo04b.log')
 SIZE 100M BLOCKSIZE 512 REUSE;

See Also:

Oracle Database SQL Language Reference

Setting the Undo Mode in a CDB Using ALTER DATABASE
When local undo is enabled, each container has its own undo tablespace for every instance
in which it is open. When local undo is disabled, there is one undo tablespace for the entire
CDB.

• About the CDB Undo Mode
You can configure a CDB to use local undo in every container or to use shared undo
(default) for the entire CDB.

• Configuring a CDB to Use Local Undo Mode
You can change a CDB to local undo mode by issuing an ALTER DATABASE LOCAL UNDO
ON statement and restarting the database.

• Configuring a CDB to Use Shared Undo Mode
To change a CDB to use shared undo mode, use an ALTER DATABASE LOCAL UNDO OFF
statement.

About the CDB Undo Mode
You can configure a CDB to use local undo in every container or to use shared undo (default)
for the entire CDB.

A CDB runs either in local or shared undo mode. The undo mode applies to the entire CDB.
Therefore, every container either uses shared undo or local undo.

You can specify the undo mode of a CDB during CDB creation in the ENABLE PLUGGABLE
DATABASE clause of the CREATE DATABASE statement. If you do not specify the UNDO clause,

Chapter 15
Modifying Containers When Connected to the CDB Root

15-55

then shared undo mode is the default. You can change the undo mode of a CDB after
it is created by issuing an ALTER DATABASE statement and restarting the CDB.

To determine the current CDB undo mode, run the following query in the CDB root:

SELECT PROPERTY_NAME, PROPERTY_VALUE
FROM DATABASE_PROPERTIES
WHERE PROPERTY_NAME = 'LOCAL_UNDO_ENABLED';

If the query returns TRUE for the PROPERTY_VALUE, then the CDB is in local undo mode.
Otherwise, the CDB is in shared undo mode.

• About Local Undo Mode
Local undo mode means that each container has its own undo tablespace for
every instance in which it is open.

• About Shared Undo Mode
Shared undo mode means that only one active undo tablespace exists for a
single-instance CDB. For an Oracle RAC CDB, there is one active undo
tablespace for each instance.

About Local Undo Mode
Local undo mode means that each container has its own undo tablespace for every
instance in which it is open.

In this mode, Oracle Database automatically creates an undo tablespace for every
container in the CDB. For an Oracle RAC CDB, there is one active undo tablespace
for each instance for each PDB in local undo mode.

Local undo mode provides increased isolation for each container and improves the
efficiency of some operations, such as unplugging the container or performing point-in-
time recovery on the container. In addition, local undo mode is required for some
operations to be supported, such as relocating a PDB or cloning a PDB that is in open
read/write mode.

When a CDB is in local undo mode, the following applies:

• Any user who has the appropriate privileges for the current container can create
an undo tablespace for the container.

• Undo tablespaces are visible in static data dictionary views and dynamic
performance (V$) views in every container in the CDB.

See Also:

Oracle Database SQL Language Reference for information about the
required privileges

About Shared Undo Mode
Shared undo mode means that only one active undo tablespace exists for a single-
instance CDB. For an Oracle RAC CDB, there is one active undo tablespace for each
instance.

Chapter 15
Modifying Containers When Connected to the CDB Root

15-56

When a CDB is in shared undo mode, the following applies:

• Only a common user who has the appropriate privileges and whose current container is
the CDB root can create an undo tablespace.

• When the current container is not the CDB root, an attempt to create an undo tablespace
fails and returns an error.

• Undo tablespaces are visible in static data dictionary views and dynamic performance
(V$) views when the current container is the CDB root. Undo tablespaces are visible only
in dynamic performance views when the current container is a PDB, an application root,
or an application PDB.

Note:

• When you change the undo mode of a CDB, the new undo mode applies to an
individual container the first time the container is opened after the change.

• When you change the undo mode of a CDB, containers in the CDB cannot flash
back to a time or SCN that is prior to the change.

Configuring a CDB to Use Local Undo Mode
You can change a CDB to local undo mode by issuing an ALTER DATABASE LOCAL UNDO ON
statement and restarting the database.

When a CDB is in local undo mode, each container has its own undo tablespace for every
instance in which it is open. Oracle Database automatically creates an undo tablespace in
any container in the CDB that does not have one. If a PDB without an undo tablespace is
cloned, relocated, or plugged into a CDB that is configured to use local undo mode, then
Oracle Database automatically creates an undo tablespace for the PDB the first time it is
opened.

When a CDB is changed from shared undo mode to local undo mode, Oracle Database
creates the required undo tablespaces automatically.

1. If the CDB instance is open, then shut it down.

2. Start up the CDB instance in OPEN UPGRADE mode. For example:

STARTUP UPGRADE
3. In SQL*Plus, ensure that the current container is the CDB root. For example, enter the

following:

SHOW CON_NAME

CON_NAME

CDB$ROOT

Chapter 15
Modifying Containers When Connected to the CDB Root

15-57

4. Query the current undo mode of the CDB:

SELECT PROPERTY_NAME, PROPERTY_VALUE
FROM DATABASE_PROPERTIES
WHERE PROPERTY_NAME = 'LOCAL_UNDO_ENABLED';

5. To enable local undo, issue the following SQL statement:

ALTER DATABASE LOCAL UNDO ON;
6. Shut down and restart the CDB instance.

7. Optional: Manually create an undo tablespace in the PDB seed.

While Oracle Database creates an undo tablespace in the PDB seed automatically
in local undo mode, you might want to control the size and configuration of the
undo tablespace by creating an undo tablespace manually. To ensure the PDBs
created from the PDB seed use the manually-created undo tablespace and not the
automatically-created undo tablespace, you must set the UNDO_TABLESPACE
initialization parameter to the manually-created undo tablespace, or drop the
automatically-created undo tablespace.

a. In SQL*Plus, ensure that the current container is the root.

b. Place the PDB seed in open read/write mode:

ALTER PLUGGABLE DATABASE PDB$SEED OPEN READ WRITE FORCE;
c. Switch container to the PDB seed:

ALTER SESSION SET CONTAINER=PDB$SEED;
d. Create an undo tablespace in the PDB seed. For example:

CREATE UNDO TABLESPACE seedundots1
 DATAFILE 'seedundotbs_1a.dbf'
 SIZE 10M AUTOEXTEND ON
 RETENTION GUARANTEE;

e. Switch container to the root:

ALTER SESSION SET CONTAINER=CDB$ROOT;
f. Place the PDB seed in open read-only mode:

ALTER PLUGGABLE DATABASE PDB$SEED OPEN READ ONLY FORCE;

Configuring a CDB to Use Shared Undo Mode
To change a CDB to use shared undo mode, use an ALTER DATABASE LOCAL UNDO OFF
statement.

1. If the CDB instance is open, then shut it down.

2. Start up the CDB instance in OPEN UPGRADE mode. For example:

STARTUP UPGRADE

Chapter 15
Modifying Containers When Connected to the CDB Root

15-58

3. In SQL*Plus, ensure that the current container is the CDB root. For example, enter the
following:

SHOW CON_NAME

CON_NAME

CDB$ROOT

4. Optionally, query the current undo mode of the CDB:

SELECT PROPERTY_NAME, PROPERTY_VALUE
FROM DATABASE_PROPERTIES
WHERE PROPERTY_NAME = 'LOCAL_UNDO_ENABLED';

5. To turn off local undo, issue the following SQL statement:

ALTER DATABASE LOCAL UNDO OFF;
6. Shut down and restart the CDB instance.

When in shared undo mode, the CDB ignores any local undo tablespaces that were created
when it was in local undo mode. Oracle recommends that you delete the unused local undo
tablespaces.

Modifying the CDB Root Using ALTER DATABASE
To modify only the root of a CDB, use the ALTER DATABASE statement.

When the current container is the root, some ALTER DATABASE statements modify the root
without directly modifying any of the PDBs. See the "Modify Root Only" column of Table 15-3
for a list of these statements.

Some statements set the defaults for the PDBs in the CDB. You can overwrite these defaults
for a PDB by using the ALTER PLUGGABLE DATABASE statement.

Prerequisites

To modify the root, the current user must have the ALTER DATABASE privilege in the root.

To modify the root:

1. In SQL*Plus, ensure that the current container is the root.

2. Run an ALTER DATABASE statement with a clause that modifies the root.

The following examples modify the root.

A user whose current container is the root that is not explicitly assigned a tablespace uses
the default tablespace for the root. The tablespace specified in the ALTER DATABASE
statement must exist in the root.

After executing this statement, the default type of subsequently created tablespaces in the
root is bigfile. This setting is also the default for PDBs.

The tablespace or tablespace group specified in the ALTER DATABASE statement must exist in
the root.

Chapter 15
Modifying Containers When Connected to the CDB Root

15-59

Example 15-15 Changing the Default Tablespace for the Root

This ALTER DATABASE statement uses a DEFAULT TABLESPACE clause to set the default
tablespace to root_tbs for the root.

ALTER DATABASE DEFAULT TABLESPACE root_tbs;

Example 15-16 Bringing a Data File Online for the Root

This ALTER DATABASE statement uses a database_file_clause to bring the /u02/oracle/
cdb_01.dbf data file online.

ALTER DATABASE DATAFILE '/u02/oracle/cdb_01.dbf' ONLINE;

Example 15-17 Changing the Default Tablespace Type for the Root

This ALTER DATABASE statement uses a SET DEFAULT TABLESPACE clause to change
the default tablespace type to bigfile for the root.

ALTER DATABASE SET DEFAULT BIGFILE TABLESPACE;

Example 15-18 Changing the Default Temporary Tablespace for the Root

This ALTER DATABASE statement uses a DEFAULT TEMPORARY TABLESPACE clause to set
the default temporary tablespace to root_temp for the root.

ALTER DATABASE DEFAULT TEMPORARY TABLESPACE root_temp;

See Also:

• "Modifying a PDB at the Database Level"

• Oracle Database SQL Language Reference

Executing SQL in a Different Container
To execute SQL in a different container, use the CONTAINERS clause for DML or the
CONTAINER clause for DDL.

• Issuing DML Statements on a Container in a CDB
A DML (data manipulation language) statement issued in a CDB or application
root can modify a different container in the CDB. In addition, you can specify a
default container target for DML statements.

• Executing DDL Statements in a CDB
In a CDB, you can execute a data definition language (DDL) statement in the
current container or in all containers.

Chapter 15
Executing SQL in a Different Container

15-60

• Running Oracle-Supplied SQL Scripts in a CDB
You can use the catcon.pl script to run Oracle-supplied SQL or SQL scripts within a
CDB. You can run the script against any specified containers.

• Executing Code in Containers Using the DBMS_SQL Package
When you are executing PL/SQL code in a container in a CDB, and you want to execute
one or more SQL statements in a different container, use the DBMS_SQL package to switch
containers.

Issuing DML Statements on a Container in a CDB
A DML (data manipulation language) statement issued in a CDB or application root can
modify a different container in the CDB. In addition, you can specify a default container target
for DML statements.

• About Issuing DML Statements on a Container in a CDB
DML statements can affect database objects in a specified container in a CDB.

• Specifying the Default Container for DML Statements in a CDB
To specify the default container for DML statements in a CDB, issue the ALTER DATABASE
statement with the CONTAINERS DEFAULT TARGET clause.

About Issuing DML Statements on a Container in a CDB
DML statements can affect database objects in a specified container in a CDB.

The container is specified by container ID. Because the container ID can appear in more than
one location, the database uses the following order of precedence:

1. The CON_ID specified in the WHERE clause of a DML statement

2. The CONTAINERS_DEFAULT_TARGET database property

3. The current container, which is either the CDB root or application root

In a CDB root or an application root, a DML statement that includes the CONTAINERS clause
can modify a table or view in a single container in the CDB or application container. To use
the CONTAINERS clause, specify the table or view being modified in the CONTAINERS clause and
the container ID affected in the WHERE clause.

You can specify a target container in an INSERT VALUES statement by specifying a value for
CON_ID in the VALUES clause. Also, you can specify a target container in an UPDATE or DELETE
statement by specifying a CON_ID predicate in the WHERE clause. For example, the following
DML statement updates the sales.customers table in the container with a CON_ID of 7:

UPDATE CONTAINERS(sales.customers) ctab
 SET ctab.city_name='MIAMI'
 WHERE ctab.CON_ID=7
 AND CUSTOMER_ID=3425;

The following restrictions apply to the CONTAINERS clause:

• The specified schema must exist both in the container specified by CON_ID and in the
CDB or application root where the statement is executed.

• The value specified for the CON_ID in the WHERE clause must refer to a PDB, application
root, or application PDB within the CDB.

Chapter 15
Executing SQL in a Different Container

15-61

• INSERT as SELECT statements where the target of the INSERT is in CONTAINERS() is
not supported.

• A multitable INSERT statement where the target of the INSERT is in CONTAINERS() is
not supported.

• DML statements using the CONTAINERS clause require that the database listener is
configured using TCP (instead of IPC) and that the PORT and HOST values are
specified for each target PDB using the PORT and HOST clauses, respectively.

Specifying the Default Container for DML Statements in a CDB
To specify the default container for DML statements in a CDB, issue the ALTER
DATABASE statement with the CONTAINERS DEFAULT TARGET clause.

When a DML statement is issued in a CDB root without specifying containers in the
WHERE clause, the DML statement affects the default container for the CDB. The default
container can be any container in the CDB, including the CDB root, a PDB, an
application root, or an application PDB. Only one default container is allowed.

The CONTAINERS_DEFAULT_TARGET database property sets the default container. By
default, this property is not set. You can determine the default target containers for a
CDB by running the following query:

SELECT PROPERTY_VALUE
FROM DATABASE_PROPERTIES
WHERE PROPERTY_NAME='CONTAINERS_DEFAULT_TARGET';

1. In SQL*Plus, ensure that the current container is the CDB root or application root.

The current user must have the commonly granted ALTER DATABASE privilege.

2. Run the ALTER DATABASE statement with the CONTAINERS DEFAULT TARGET clause.

Example 15-19 Specifying the Default Container for DML Statements in a CDB

This example specifies that PDB1 is the default container for DML statements in the
CDB.

ALTER DATABASE CONTAINERS DEFAULT TARGET = (PDB1);

Example 15-20 Clearing the Default Container

This example clears the default container setting. When it is not set, the default
container is the CDB root.

ALTER DATABASE CONTAINERS DEFAULT TARGET = NONE;

Executing DDL Statements in a CDB
In a CDB, you can execute a data definition language (DDL) statement in the current
container or in all containers.

• About Executing DDL Statements in a CDB
In a CDB, some DDL statements can apply to all containers or to the current
container only.

Chapter 15
Executing SQL in a Different Container

15-62

• Executing a DDL Statement in the Current Container
Specify CURRENT in the CONTAINER clause of a DDL statement to execute the statement in
the current container.

• Executing a DDL Statement in All Containers in a CDB
Specify ALL in the CONTAINER clause of a DDL statement to execute the statement in all
containers in a CDB.

About Executing DDL Statements in a CDB
In a CDB, some DDL statements can apply to all containers or to the current container only.

To specify which containers are affected, use the CONTAINER clause:

CONTAINER = { CURRENT | ALL }

The following settings are possible:

• CURRENT means that the statement applies only to the current container.

• ALL means that the statement applies to all containers in the CDB, including the root and
all PDBs.

The following restrictions apply to the CONTAINER clause in DDL statements:

• The restrictions described in "About the Current Container".

• You can use the CONTAINER clause only with the DDL statements listed in Table 15-4.

Table 15-4 DDL Statements and the CONTAINER Clause in a CDB

DDL Statement CONTAINER = CURRENT CONTAINER = ALL

CREATE USER Creates a local user in the current
PDB.

Creates a common user.

ALTER USER Alters a local user in the current
PDB.

Alters a common user.

CREATE ROLE Creates a local role in the current
PDB.

Creates a common role.

GRANT Grants a privilege in the local
container to a local user, common
user, or local role.

The SET CONTAINER privilege can
be granted to a user-created
common user in the current PDB.

Grants a system privilege or object
privilege on a common object to a
common user or common role. The
specified privilege is granted to the
user or role across the entire CDB.

Chapter 15
Executing SQL in a Different Container

15-63

Table 15-4 (Cont.) DDL Statements and the CONTAINER Clause in a CDB

DDL Statement CONTAINER = CURRENT CONTAINER = ALL

REVOKE Revokes a privilege in the local
container from a local user, common
user, or local role.

This statement can revoke only a
privilege granted with CURRENT
specified in the CONTAINER clause
from the specified user or role in the
local container. The statement does
not affect privileges granted with ALL
specified in the CONTAINER clause.

The SET CONTAINER privilege can
be revoked from a user-created
common user in the current PDB.

Revokes a system privilege or object
privilege on a common object from a
common user or common role. The
specified privilege is revoked from
the user or role across the entire
CDB.

This statement can revoke only a
privilege granted with ALL specified
in the CONTAINER clause from the
specified common user or common
role. The statement does not affect
privileges granted with CURRENT
specified in the CONTAINER clause.
However, any privileges granted
locally that depend on the privilege
granted commonly that is being
revoked are also revoked.

All other DDL statements apply to the current container only.

In addition to the usual rules for user, role, and profile names, the following rules and
best practices apply when you create a user, role, or profile in a CDB:

• It is best practice for common user, role, and profile names to start with a prefix to
avoid naming conflicts between common users, roles, and profiles and local users,
roles, and profiles. You specify this prefix with the COMMON_USER_PREFIX
initialization parameter in the CDB root. By default, the prefix is C## or c## in the
CDB root.

• In an application container, it is best practice for application common user, role,
and profile names to start with a prefix to avoid naming conflicts between
application common users, roles, and profiles and local users, roles, and profiles.
You specify this prefix with the COMMON_USER_PREFIX initialization parameter in the
application root. By default, the prefix is NULL in an application root.

• When the COMMON_USER_PREFIX initialization parameter is set in an application root,
the setting applies to the application common user, role, and profile names in the
application container. The prefix can be different in the CDB root and in an
application root, and the prefix can be different in different application containers.

• Common user, role, and profile names must consist only of ASCII characters. This
restriction does not apply to application common user, role, and profile names.

• Local user, role, and profile names cannot start with the prefix specified for
common users with the COMMON_USER_PREFIX initialization parameter.

• Local user, role, and profile names cannot start with C## or c##.

• Regardless of the value of COMMON_USER_PREFIX in the CDB root, application
common user, role, and profile names cannot start with C## or c##.

• Application common user, role, and profile names cannot start with the prefix
specified for common users with the COMMON_USER_PREFIX initialization parameter.

Chapter 15
Executing SQL in a Different Container

15-64

See Also:

• "Modifying a CDB with ALTER SYSTEM" for information about using the ALTER
SYSTEM statement in a CDB

• Oracle Database SQL Language Reference

• Oracle Database Concepts

• Oracle Database Security Guide for more information about managing users in
a CDB

• Oracle Database Reference for more information about the
COMMON_USER_PREFIX initialization parameter

Executing a DDL Statement in the Current Container
Specify CURRENT in the CONTAINER clause of a DDL statement to execute the statement in the
current container.

The supported DDL statements are listed in Table 15-4.

The current user must be granted the required privileges to execute the DDL statement in the
current container. For example, to create a user, the current user must be granted the CREATE
USER system privilege in the current container.

To execute a DDL statement in the current container:

1. In SQL*Plus, access a container.

See "Accessing a Container in a CDB with SQL*Plus".

2. Execute the DDL statement with CONTAINER set to CURRENT.

A local user's user name cannot start with the prefix specified by the COMMON_USER_PREFIX
initialization parameter. By default, in the CDB root, the prefix is C## or c##. An application
root can specify its own prefix for an application container. In addition, a common user's
name must consist only of ASCII characters. The specified tablespace must exist in the PDB.

Example 15-21 Creating Local User in a PDB

This example creates the local user testpdb in the current PDB.

CREATE USER testpdb IDENTIFIED BY password
 DEFAULT TABLESPACE pdb1_tbs
 QUOTA UNLIMITED ON pdb1_tbs
 CONTAINER = CURRENT;

Executing a DDL Statement in All Containers in a CDB
Specify ALL in the CONTAINER clause of a DDL statement to execute the statement in all
containers in a CDB.

The supported DDL statements are listed in Table 15-4.

The following prerequisites must be met:

Chapter 15
Executing SQL in a Different Container

15-65

• The current user must be a common user.

• The current user must be granted the required privileges commonly to execute the
DDL statement. For example, to create a user, the current user must be granted
the CREATE USER system privilege commonly.

To execute a DDL statement in all containers in a CDB:

1. In SQL*Plus, ensure that the current container is the root.

See "About Container Access in a CDB".

2. Execute the DDL statement with CONTAINER set to ALL.

A common user's user name must start with the prefix specified by the
COMMON_USER_PREFIX initialization parameter. By default, in the CDB root, the prefix is
C## or c##. An application root can specify its own prefix for an application container. In
addition, a common user's name must consist only of ASCII characters. The specified
tablespace must exist in the root and in all PDBs.

Example 15-22 Creating Common User in a CDB

This example creates the common user c##testcdb.

CREATE USER c##testcdb IDENTIFIED BY password
 DEFAULT TABLESPACE cdb_tbs
 QUOTA UNLIMITED ON cdb_tbs
 CONTAINER = ALL;

Running Oracle-Supplied SQL Scripts in a CDB
You can use the catcon.pl script to run Oracle-supplied SQL or SQL scripts within a
CDB. You can run the script against any specified containers.

• About Running Oracle-Supplied SQL Scripts in a CDB
In a CDB, the catcon.pl script is the best way to run SQL scripts and SQL
statements.

• Syntax and Parameters for catcon.pl
The catcon.pl script is a Perl script that must be run at an operating system
prompt.

• Running the catcon.pl Script
Examples illustrate running the catcon.pl script.

About Running Oracle-Supplied SQL Scripts in a CDB
In a CDB, the catcon.pl script is the best way to run SQL scripts and SQL
statements.

An Oracle Database installation includes several SQL scripts. These scripts perform
operations such as creating data dictionary views and installing options.

The catcon.pl script can run scripts in the root and in specified PDBs in the correct
order, and it generates log files that you can view to confirm that the SQL script or SQL
statement did not generate unexpected errors. It also starts multiple processes and
assigns new scripts to them as they finish running scripts previously assigned to them.

Chapter 15
Executing SQL in a Different Container

15-66

Note:

Unless you exclude the PDB seed when you run catcon.pl, the SQL script or SQL
statement is run on the PDB seed.

Syntax and Parameters for catcon.pl
The catcon.pl script is a Perl script that must be run at an operating system prompt.

The catcon.pl script has the following syntax and parameters:

$ORACLE_HOME/perl/bin/perl $ORACLE_HOME/rdbms/admin/catcon.pl
[--usr username[/password]]
[--int_usr username[/password]]
[--script_dir directory]
[--log_dir directory]
[{--incl_con|--excl_con} container]
[--echo]
[--spool]
[--error_logging { ON | errorlogging-table-other-than-SPERRORLOG }]
[--app_con application_root]
[--no_set_errlog_ident]
[--diag]
[-ignore_unavailable_pdbs]
[--verbose]
[--force_pdb_mode pdb_mode]
[--num_procs number]
[--user_scripts]
[--recover]
--log_file_base log_file_name_base
-- { SQL_script [arguments] | --x'SQL_statement' }

Ensure that --x SQL_statement is preceded by -- if it follows any single-letter parameter. If
--x SQL_statement is preceded by a script name or another --x SQL_statement, then do not
precede it with --. Also, note that the SQL statement must be inside single quotation marks.

Command line parameters to SQL scripts can be introduced using --p. Interactive (or secret)
parameters to SQL scripts can be introduced using --P.

To view the help for the catcon.pl script, change directories to $ORACLE_HOME/perl/bin/,
and then run the following command:

perl $ORACLE_HOME/rdbms/admin/catcon.pl --help

The following table describes the catcon.pl parameters. A parameter is optional unless it is
indicated that it is required.

The short parameter names in the following table are for backward compatibility. Some
parameters do not have short names.

Chapter 15
Executing SQL in a Different Container

15-67

Table 15-5 catcon.pl Parameters

Parameter Short Name Description

--usr -u Specifies the user name and password to connect to the root and
the specified PDBs. Specify a common user with the required
privileges to run the SQL script or the SQL statement. The default is
"/ AS SYSDBA". If no password is supplied, then catcon.pl
prompts for a password.

--int_usr -U Specifies the user name and password to connect to the root and
the specified PDBs. Specify a common user with the required
privileges to perform internal tasks, such as querying CDB
metadata. The default is / AS SYSDBA. If no password is supplied,
then catcon.pl prompts for a password.

--script_dir -d Directory that contains the SQL script. The default is the current
directory.

--log_dir -l Directory into which catcon.pl writes log files. The default is the
current directory.

{--incl_con|--
excl_con}

{-c|-C} The containers in which the SQL script is run or is not run.

The --incl_con parameter lists the containers in which the SQL
script is run.

The --excl_con parameter lists the containers in which the SQL
script is not run.

Specify containers in a space-delimited list of PDB names enclosed
in single quotation marks.

The --incl_con and --excl_con parameters are mutually
exclusive.

When this parameter is used, the --app_con parameter cannot be
used.

--echo -e Sets echo ON while running the script. The default is echo OFF.

--spool -s Spools the output of every script into a file with the following name:

log-file-name-base_script-name-without-
extension_[container-name-if-any].default-
extension

--error_logging -E When set to ON, the default error logging table is used. ON is the
default setting. When set to ON, errors are written to the table
SPERRORLOG in the current schema in each container in which the
SQL script runs. If this table does not exist in a container, then it is
created automatically.

When a table other than SPERRORLOG is specified, errors are written
to the specified table. The table must exist in each container in
which the SQL script runs, and the current user must have the
necessary privileges to perform DML operations on the table in
each of these containers.

See SQL*Plus User's Guide and Reference for more information
about the error logging table.

Chapter 15
Executing SQL in a Different Container

15-68

Table 15-5 (Cont.) catcon.pl Parameters

Parameter Short Name Description

--app_con -F Specify an application root. The scripts are run in the application
root and in the application PDBs that are plugged into the
application root.

When this parameter is used, the --incl_con and --excl_con
parameters cannot be used.

--no_set_errlog_ident -I Do not issue a SET ERRORLOGGING identifier. This option is
intended for cases in which the SET ERRORLOGGING identifier is
already set and should not be overwritten.

--diag -g Turns on the generation of debugging information.

--verbose -v Turns on verbose output.

--
ignore_unavailable_pd
bs

-f Ignore PDBs that are closed or, if the --incl_con or --excl_con
option is used, do not exist and process only open PDBs that were
specified explicitly or implicitly.

When this option is not specified and some specified PDBs do not
exist or are not open, an error is returned and none of the
containers are processed.

--force_pdb_mode n/a The required open mode for all PDBs against which the scripts are
run. Specify one of the following values:

• UNCHANGED
• READ WRITE
• READ ONLY
• UPGRADE
• DOWNGRADE
When a value other than UNCHANGED is specified, all of the PDBs
against which the script is run are changed to the specified open
mode. If a PDB is open in a different mode, then the PDB is closed
and re-opened in the specified mode. After all of the scripts are run,
each PDB is restored to its original open mode.

When UNCHANGED, the default, is specified, the open mode of the
PDBs is not changed.

--num_procs -n Specifies how many SQL*Plus processes catcon.pl will spawn to
execute statements and/or scripts supplied by the caller. This
overrides the number that would be spawned by catcon.pl based
on number of PDBs in a CDB and the value of the CPU_COUNT
initialization parameter.

--user_scripts -S Specifies that all scripts and/or statements supplied by the caller will
not run in CDB$ROOT, PDB$SEED, or App Root Clones. All objects,
such as tables and views, created by the scripts and/or statements
will not be marked as Oracle-maintained.

--recover -R Causes catcon.pl to attempt to recover if a SQL*Plus process that
it spawned ends unexpectedly. When this parameter is not
specified, catcon.pl does not attempt to recover the process and
closes.

--log_file_base -b (Required) The base name for log file names.

Chapter 15
Executing SQL in a Different Container

15-69

Running the catcon.pl Script
Examples illustrate running the catcon.pl script.

If a SQL script or SQL statement run by catcon.pl performs data manipulation
language (DML) or data definition language (DDL) operations, then the containers
being modified must be in read/write mode.

To run the catcon.pl script:

1. Open a command line prompt.

2. Run the catcon.pl script and specify one or more SQL scripts or SQL statements:

cd $ORACLE_HOME/perl/bin/
perl $ORACLE_HOME/rdbms/admin/catcon.pl parameters SQL_script
perl $ORACLE_HOME/rdbms/admin/catcon.pl parameters -- --
xSQL_statement

Example 15-23 Running the catblock.sql Script in All Containers in a CDB

The following example runs the catblock.sql script in all of the containers of a CDB
(the backslash indicates line continuation):

$ORACLE_HOME/perl/bin/perl $ORACLE_HOME/rdbms/admin/catcon.pl \
--usr SYS --script_dir $ORACLE_HOME/rdbms/admin \
--log_file_base catblock_output catblock.sql

The following parameters are specified:

• The --usr parameter specifies that SYS user runs the script in each container.

• The --script_dir parameter specifies that the SQL script is in the $ORACLE_HOME/
rdbms/admin directory.

• The --log_file_base parameter specifies that the base name for log file names is
catblock_output.

Default parameter values are used for all other parameters. Neither the --incl_con
nor the --excl_con parameter is specified. Therefore, catcon.pl runs the script in all
containers by default.

Example 15-24 Running the catblock.sql Script in Specific PDBs

The following example runs the catblock.sql script in the hrpdb and salespdb PDBs
in a CDB.

$ORACLE_HOME/perl/bin/perl $ORACLE_HOME/rdbms/admin/catcon.pl \
--usr SYS --int_usr SYS --script_dir $ORACLE_HOME/rdbms/admin \
--log_dir '/disk1/script_output' --incl_con 'HRPDB SALESPDB' \
--log_file_base catblock_output catblock.sql

The following parameters are specified:

• The --usr parameter specifies that SYS user runs the script in each container.

Chapter 15
Executing SQL in a Different Container

15-70

• The --int_usr parameter specifies that SYS user performs internal tasks.

• The --script_dir parameter specifies that the SQL script is in the $ORACLE_HOME/rdbms/
admin directory.

• The --log_dir parameter specifies that the output files are placed in the /disk1/
script_output directory.

• The --incl_con parameter specifies that the SQL script is run in the hrpdb and salespdb
PDBs. The script is not run in any other containers in the CDB.

• The --log_file_base parameter specifies that the base name for log file names is
catblock_output.

Example 15-25 Running the catblock.sql Script in All Containers Except for Specific
PDBs

The following example runs the catblock.sql script in all of the containers in a CDB except
for the hrpdb and salespdb PDBs.

$ORACLE_HOME/perl/bin/perl $ORACLE_HOME/rdbms/admin/catcon.pl \
--usr SYS --script_dir $ORACLE_HOME/rdbms/admin \
--log_dir '/disk1/script_output' --excl_con 'HRPDB SALESPDB' \
--log_file_base catblock_output catblock.sql

The following parameters are specified:

• The --usr parameter specifies that SYS user runs the script in each container.

• The --script_dir parameter specifies that the SQL script is in the $ORACLE_HOME/rdbms/
admin directory.

• The --log_dir parameter specifies that the output files are placed in the /disk1/
script_output directory.

• The --excl_con parameter specifies that the SQL script is run in all of the containers in
the CDB except for the hrpdb and salespdb PDBs.

• The --log_file_base parameter specifies that the base name for log file names is
catblock_output.

Example 15-26 Running a SQL Script with Command Line Parameters

The following example runs the custom_script.sql script in all of the containers of a CDB.

cd $ORACLE_HOME/perl/bin/
perl $ORACLE_HOME/rdbms/admin/catcon.pl --usr SYS --script_dir /u01/scripts \
--log_file_base custom_script_output custom_script.sql '--phr' \
'--PEnter password for user hr:'

The following parameters are specified:

• The --usr parameter specifies that SYS user runs the script in each container.

• The --script_dir parameter specifies that the SQL script is in the /u01/scripts directory.

• The --log_file_base parameter specifies that the base name for log file names is
custom_script_output.

• The --p parameter specifies hr for a command line parameter

Chapter 15
Executing SQL in a Different Container

15-71

• The --P parameter specifies an interactive parameter that prompts for the
password of user hr.

Default parameter values are used for all other parameters. Neither the -incl_con nor
the -excl_con parameter is specified. Therefore, catcon.pl runs the script in all
containers by default.

Example 15-27 Running a SQL Statement in All Containers in a CDB

The following example runs a SQL statement in all of the containers of a CDB.

cd $ORACLE_HOME/perl/bin/
perl $ORACLE_HOME/rdbms/admin/catcon.pl --usr SYS --echo \
--log_file_base select_output -- --x"SELECT * FROM DUAL"

The following parameters are specified:

• The --usr parameter specifies that SYS user runs the script in each container.

• The --echo parameter shows output for the SQL statement.

• The --log_file_base parameter specifies that the base name for log file names is
select_output.

• The SQL statement SELECT * FROM DUAL is inside quotation marks and is
preceded by --x. Because --x is preceded by a parameter (--log_file_base), it
must be preceded by --.

Default parameter values are used for all other parameters. Neither the -incl_con nor
the -excl_con parameter is specified. Therefore, catcon.pl runs the SQL statement in
all containers by default.

See Also:

• "Modifying the Open Mode of PDBs"

• Oracle Database Administrator’s Guide for information about the
catblock.sql script

• Oracle Database SQL Language Reference for more information about
SQL scripts

Executing Code in Containers Using the DBMS_SQL Package
When you are executing PL/SQL code in a container in a CDB, and you want to
execute one or more SQL statements in a different container, use the DBMS_SQL
package to switch containers.

For example, you can use the DBMS_SQL package to switch containers when you need
to perform identical actions in more than one container.

The following are considerations for using DBMS_SQL to switch containers:

• A transaction cannot span multiple containers.

Chapter 15
Executing SQL in a Different Container

15-72

If the set of actions you must perform in the target container requires a transaction, then
consider using an autonomous transaction and perform a commit or rollback as the last
action.

• SET ROLE statements are not allowed.

Example 15-28 Performing Identical Actions in More Than One Container

This example includes a PL/SQL block that creates the identact table in the hr schema in
two PDBs (pdb1 and pdb2). The example also inserts a row into the identact table in both
PDBs.

DECLARE
 c1 INTEGER;
 rowcount INTEGER;
 taskList VARCHAR2(32767) :=
 'DECLARE
 PRAGMA AUTONOMOUS TRANSACTION;
 BEGIN
 -- Create the hr.identact table.
 EXECUTE IMMEDIATE
 ''CREATE TABLE hr.identact
 (actionno NUMBER(4) NOT NULL,
 action VARCHAR2 (10))'';
 EXECUTE IMMEDIATE
 ''INSERT INTO identact VALUES(1, 'ACTION1')'';
 -- A commit is required if the tasks include DML.
 COMMIT;
 EXCEPTION
 WHEN OTHERS THEN
 -- If there are errors, then drop the table.
 BEGIN
 EXECUTE IMMEDIATE ''DROP TABLE identact'';
 EXCEPTION
 WHEN OTHERS THEN
 NULL;
 END;
 END;';
 TYPE containerListType IS TABLE OF VARCHAR2(128) INDEX BY PLS_INTEGER;
 containerList containerListType;
BEGIN
 containerList(1) := 'PDB1';
 containerList(2) := 'PDB2';
 c1 := DBMS_SQL.OPEN_CURSOR;
 FOR conIndex IN containerList.first..containerList.last LOOP
 DBMS_OUTPUT.PUT_LINE('Creating in container: ' ||
containerList(conIndex));
 DBMS_SQL.PARSE(
 c => c1 ,
 statement => taskList,
 language_flag => DBMS_SQL.NATIVE,
 edition => NULL,
 apply_crossedition_trigger => NULL,
 fire_apply_trigger => NULL,
 schema => 'HR',
 container => containerList(conIndex));

Chapter 15
Executing SQL in a Different Container

15-73

 rowcount := DBMS_SQL.EXECUTE(c=>c1);
 END LOOP;
 DBMS_SQL.CLOSE_CURSOR(c=>c1);
END;
/

See Also:

• Oracle Database PL/SQL Packages and Types Reference for more
information about the DBMS_SQL package

• Oracle Database PL/SQL Language Reference for more information
about autonomous transactions

Monitoring Containers in a CDB
You can view metadata about CDBs, PDBs, and application containers using
SQL*Plus or SQL Developer.

• About CDB and Container Information in Views
In a CDB, the metadata for data dictionary tables and view definitions is stored
only in the root.

• Viewing Information About the Containers in a CDB
The V$CONTAINERS view provides information about all containers in a CDB,
including the root and all PDBs.

• Viewing Information About PDBs
The CDB_PDBS view and DBA_PDBS view provide information about the PDBs
associated with a CDB, including the status of each PDB.

• Viewing the Open Mode of Each PDB
The V$PDBS view provides information about the PDBs associated with the current
database instance.

• Querying Container Data Objects
In the root, container data objects can show information about database objects
(such as tables and users) contained in the root and in PDBs. Access to PDB
information is controlled by the common user's CONTAINER_DATA attribute.

• Querying Across Containers with the CONTAINERS Clause
The CONTAINERS clause enables you to query tables and views across all
containers in a CDB. It also enables you to query application common objects
across all containers in an application container.

• Determining the Current Container ID or Name
You can determine your current container ID or container name in a CDB.

• Listing the Modifiable Initialization Parameters in PDBs
In a CDB, some initialization parameters apply to the root and to all PDBs. When
such an initialization parameter is changed, it affects the entire CDB. You can set
other initialization parameters to different values in each container.

Chapter 15
Monitoring Containers in a CDB

15-74

Related Topics

• Tools for a Multitenant Environment
You can use various tools to configure and administer a multitenant environment.

About CDB and Container Information in Views
In a CDB, the metadata for data dictionary tables and view definitions is stored only in the
root.

Each container, including each PDB, application root, and application PDB, has its own set of
data dictionary tables and views for the objects contained in the container. Because each
container can contain different data and schema objects, containers can display different
metadata in data dictionary views, even when querying the same view in each container. For
example, metadata about tables displayed in the DBA_TABLES view can be different in two
different containers because the containers can contain different tables. An internal
mechanism called a metadata link enables a container to access the metadata for these
views in the root.

If a dictionary table stores information that pertains to the whole CDB, instead of for each
container, then the metadata and the data displayed in a data dictionary view are stored in
the root. For example, Automatic Workload Repository (AWR) data can be stored in the root,
and this data is displayed in some data dictionary views, such as the
DBA_HIST_ACTIVE_SESS_HISTORY view. An internal mechanism called a data link enables a
container to access both the metadata and the data for these types of views in the root.

• About Viewing Information When the Current Container Is Not the CDB Root
When the current container is a PDB, an application root, or an application PDB, the data
dictionary views show metadata for the current container only.

• About Viewing Information When the Current Container Is the CDB Root
When the current container is the CDB root, a common user can view data dictionary
information for the CDB root and for PDBs, application roots, and application PDBs by
querying container data objects.

• Views for a CDB
You can query a set of views for information about a CDB and its PDBs.

See Also:

Oracle Database Concepts for more information about dictionary access in
containers, metadata links, and data links

About Viewing Information When the Current Container Is Not the CDB Root
When the current container is a PDB, an application root, or an application PDB, the data
dictionary views show metadata for the current container only.

Also, in a container that is not the CDB root, CDB_ views only show information about
database objects visible through the corresponding DBA_ view.

Chapter 15
Monitoring Containers in a CDB

15-75

About Viewing Information When the Current Container Is the CDB Root
When the current container is the CDB root, a common user can view data dictionary
information for the CDB root and for PDBs, application roots, and application PDBs by
querying container data objects.

A container data object is a table or view that can contain data pertaining to the
following:

• One or more containers

• The CDB as a whole

• One or more containers and the CDB as a whole

Container data objects include V$, GV$, CDB_, and some Automatic Workload
Repository DBA_HIST* views. A common user's CONTAINER_DATA attribute determines
which containers are visible in container data objects.

In a CDB, for every DBA_ view, there is a corresponding CDB_ view. All CDB_ views are
container data objects, but most DBA_ views are not.

Each container data object contains a CON_ID column that identifies the container for
each row returned. Table 15-6 describes the meanings of the values in the CON_ID
column.

Table 15-6 CON_ID Column in Container Data Objects

Value in CON_ID
Column

Description

0 The data pertains to the entire CDB

1 The data pertains to the CDB root

2 The data pertains to the PDB seed

3 - 4,098 The data pertains to a PDB, an application root, or an application PDB

Each container has its own container ID.

The following views behave differently from other [G]V$ views:

• [G]V$SYSSTAT
• [G]V$SYS_TIME_MODEL
• [G]V$SYSTEM_EVENT
• [G]V$SYSTEM_WAIT_CLASS
When queried from the CDB root, these views return instance-wide data, with 0 in the
CON_ID column for each row returned. However, you can query equivalent views that
behave the same as other container data objects. The following views can return
specific data for each container in a CDB: [G]V$CON_SYSSTAT,
[G]V$CON_SYS_TIME_MODEL, [G]V$CON_SYSTEM_EVENT, and
[G]V$CON_SYSTEM_WAIT_CLASS.

Chapter 15
Monitoring Containers in a CDB

15-76

Note:

• When querying a container data object, the data returned depends on whether
containers are open and on the privileges granted to the user running the query.

• In an Oracle Real Application Clusters (Oracle RAC) environment, the data
returned by container data objects might vary based on the instance to which a
session is connected.

• When a container is opened in restricted mode, it is ignored in queries on CDB_
views.

See Also:

• "About the Current Container"

• Oracle Database Security Guide for detailed information about container data
objects

Views for a CDB
You can query a set of views for information about a CDB and its PDBs.

Table 15-7 describes data dictionary views that are useful for monitoring a CDB and its PDBs.

Table 15-7 Views for a CDB

View Description More Information

Container data objects, including:

• V$ views

• GV$ views

• CDB_ views

• DBA_HIST* views

Container data objects can display
information about multiple PDBs.
Each container data object includes
a CON_ID column to identify
containers.

There is a CDB_ view for each
corresponding DBA_ view.

"Querying Container Data Objects"

Oracle Database Security Guide

{CDB|DBA}_PDBS Displays information about the PDBs
associated with the CDB, including
the status of each PDB.

"Viewing Information About PDBs"

Oracle Database Reference

CDB_PROPERTIES Displays the permanent properties
of each container in a CDB.

Oracle Database Reference

{CDB|DBA}_PDB_HISTORY Displays the history of each PDB. Oracle Database Reference

{CDB|DBA}_CONTAINER_DATA Displays information about the user-
level and object-level
CONTAINER_DATA attributes
specified in the CDB.

Oracle Database Reference

{CDB|DBA}_HIST_PDB_INSTANCE Displays the PDBs and instances in
the Workload Repository.

Oracle Database Reference

Chapter 15
Monitoring Containers in a CDB

15-77

Table 15-7 (Cont.) Views for a CDB

View Description More Information

{CDB|DBA}_PDB_SAVED_STATES Displays information about the
current saved PDB states in the
CDB.

Oracle Database Reference

"Preserving or Discarding the Open
Mode of PDBs When the CDB
Restarts"

{CDB|DBA}_APPLICATIONS Describes all applications in an
application container.

"Viewing Information About
Applications"

{CDB|DBA}_APP_STATEMENTS Describes all statements from
application installation, upgrade, and
patch operations in an application
container.

"Viewing Information About
Application Statements"

{CDB|DBA}_APP_PATCHES Describes all application patches in
an application container.

"Viewing Information About
Application Patches"

{CDB|DBA}_APP_ERRORS Describes all application error
messages generated in an
application container.

"Viewing Information About
Application Errors"

{CDB|DBA}_CDB_RSRC_PLANS Displays information about all the
CDB resource plans.

Oracle Database Reference

{CDB|
DBA}_CDB_RSRC_PLAN_DIRECTIVES

Displays information about all the
CDB resource plan directives.

Oracle Database Reference

PDB_ALERTS Contains descriptions of reasons for
PDB alerts.

Oracle Database Reference

PDB_PLUG_IN_VIOLATIONS Displays information about
incompatibilities between a PDB and
the CDB to which it belongs. This
view is also used to display
information generated by executing
DBMS_PDB.CHECK_PLUG_COMPATIB
ILITY.

Oracle Database Reference

"Plugging In an Unplugged PDB"

{USER|ALL|DBA|CDB}_OBJECTS Displays information about database
objects, and the SHARING column
shows whether a database object is
a metadata-linked object, a data-
linked object, an extended data-
linked object, or a standalone object
that is not linked to another object.

Oracle Database Reference

{ALL|DBA|CDB}_SERVICES Displays information about database
services, and the PDB column shows
the name of the PDB associated
with each service.

Oracle Database Reference

{USER|ALL|DBA|CDB}_VIEWS
{USER|ALL|DBA|CDB}_TABLES

The CONTAINER_DATA column
shows whether the view or table is a
container data object.

Oracle Database Reference

{USER|ALL|DBA|CDB}_USERS The COMMON column shows whether
a user is a common user or a local
user.

Oracle Database Reference

Chapter 15
Monitoring Containers in a CDB

15-78

Table 15-7 (Cont.) Views for a CDB

View Description More Information

{USER|ALL|DBA|CDB}_ROLES
{USER|ALL|DBA|CDB}_COL_PRIVS
{USER|ALL}_COL_PRIVS_MADE
{USER|ALL}_COL_PRIVS_RECD
{USER|ALL}_TAB_PRIVS_MADE
{USER|ALL}_TAB_PRIVS_RECD
{USER|DBA|CDB}_SYS_PRIVS
{USER|DBA|CDB}_ROLE_PRIVS
ROLE_TAB_PRIVS
ROLE_SYS_PRIVS

The COMMON column shows whether
a role or privilege is commonly
granted or locally granted.

Oracle Database Reference

{USER|ALL|DBA|CDB}_ARGUMENTS
{USER|ALL|DBA|CDB}_CLUSTERS
{USER|ALL|DBA|
CDB}_CONSTRAINTS
{ALL|DBA|CDB}_DIRECTORIES
{USER|ALL|DBA|
CDB}_IDENTIFIERS
{USER|ALL|DBA|CDB}_LIBRARIES
{USER|ALL|DBA|CDB}_PROCEDURES
{USER|ALL|DBA|CDB}_SOURCE
{USER|ALL|DBA|CDB}_SYNONYMS
{USER|ALL|DBA|CDB}_VIEWS

The ORIGIN_CON_ID column shows
the ID of the container from which
the row originates.

Oracle Database Reference

[G]V$DATABASE Displays information about the
database from the control file. If the
database is a CDB, then CDB-
related information is included.

Oracle Database Reference

[G]V$CONTAINERS Displays information about the
containers associated with the
current CDB, including the root and
all PDBs.

"Viewing Information About the
Containers in a CDB"

Oracle Database Reference

[G]V$PDBS Displays information about the PDBs
associated with the current CDB,
including the open mode of each
PDB.

"Viewing the Open Mode of Each
PDB"

Oracle Database Reference

[G]V$PDB_INCARNATION Displays information about all PDB
incarnations. Oracle creates a new
PDB incarnation whenever a PDB is
opened with the RESETLOGS option.

Oracle Database Reference

[G]V$SYSTEM_PARAMETER
[G]V$PARAMETER

Displays information about
initialization parameters, and the
ISPDB_MODIFIABLE column shows
whether a parameter can be
modified for a PDB.

"Listing the Modifiable Initialization
Parameters in PDBs"

Oracle Database Reference

Chapter 15
Monitoring Containers in a CDB

15-79

Table 15-7 (Cont.) Views for a CDB

View Description More Information

V$DIAG_ALERT_EXT
[G]V$DIAG_APP_TRACE_FILE
[G]V$DIAG_OPT_TRACE_RECORDS
V$DIAG_SESS_OPT_TRACE_RECORDS
V$DIAG_SESS_SQL_TRACE_RECORDS
[G]V$DIAG_SQL_TRACE_RECORDS
[G]V$DIAG_TRACE_FILE
[G]V$DIAG_TRACE_FILE_CONTENTS

Displays trace file and alert file data
for the current container in a CDB.

Oracle Database SQL Tuning Guide

V$DIAG_INCIDENT
V$DIAG_PROBLEM

Displays information about problems
and incidents for the current
container in a CDB.

Oracle Database Reference

Viewing Information About the Containers in a CDB
The V$CONTAINERS view provides information about all containers in a CDB, including
the root and all PDBs.

To view this information, the query must be run by a common user whose current
container is the root. When the current container is a PDB, this view only shows
information about the current PDB.

To view information about the containers in a CDB:

1. In SQL*Plus, ensure that the current container is the root.

See "About Container Access in a CDB".

2. Query the V$CONTAINERS view.

Example 15-29 Viewing Identifying Information About Each Container in a CDB

COLUMN NAME FORMAT A8

SELECT NAME, CON_ID, DBID, CON_UID, GUID FROM V$CONTAINERS ORDER BY
CON_ID;

Sample output:

NAME CON_ID DBID CON_UID GUID
-------- ---------- ---------- ----------

CDB$ROOT 1 659189539 1
C091A6F89C7572A1E0436797E40AC78D
PDB$SEED 2 4026479912 4026479912
C091AE9C00377591E0436797E40AC138
HRPDB 3 3718888687 3718888687
C091B6B3B53E7834E0436797E40A9040
SALESPDB 4 2228741407 2228741407
C091FA64EF8F0577E0436797E40ABE9F

Chapter 15
Monitoring Containers in a CDB

15-80

See Also:

• "Users, Roles, and Objects in a Multitenant Environment"

• "About the Current Container"

• "Determining the Current Container ID or Name"

• Oracle Database Reference

Viewing Information About PDBs
The CDB_PDBS view and DBA_PDBS view provide information about the PDBs associated with a
CDB, including the status of each PDB.

To view this information, the query must be run by a common user whose current container is
the root. When the current container is a PDB, all queries on these views return no results.

To view information about PDBs:

1. In SQL*Plus, ensure that the current container is the root.

See "Accessing a Container in a CDB with SQL*Plus".

2. Query the CDB_PDBS or DBA_PDBS view.

Example 15-30 Viewing Container ID, Name, and Status of Each PDB

COLUMN PDB_NAME FORMAT A15

SELECT PDB_ID, PDB_NAME, STATUS FROM DBA_PDBS ORDER BY PDB_ID;

Sample output:

 PDB_ID PDB_NAME STATUS
---------- --------------- -------------
 2 PDB$SEED NORMAL
 3 HRPDB NORMAL
 4 SALESPDB NORMAL

See Also:

"About the Current Container"

Viewing the Open Mode of Each PDB
The V$PDBS view provides information about the PDBs associated with the current database
instance.

You can query this view to determine the open mode of each PDB. For each PDB that is
open, this view can also show when the PDB was last opened. A common user can query

Chapter 15
Monitoring Containers in a CDB

15-81

this view when the current container is the root or a PDB. When the current container
is a PDB, this view only shows information about the current PDB.

To view the open status of each PDB:

1. In SQL*Plus, access a container.

See "Accessing a Container in a CDB with SQL*Plus".

2. Query the V$PDBS view.

Example 15-31 Viewing the Name and Open Mode of Each PDB

COLUMN NAME FORMAT A15
COLUMN RESTRICTED FORMAT A10
COLUMN OPEN_TIME FORMAT A30

SELECT NAME, OPEN_MODE, RESTRICTED, OPEN_TIME FROM V$PDBS;

Sample output:

NAME OPEN_MODE RESTRICTED OPEN_TIME
--------------- ---------- ---------- ------------------------------
PDB$SEED READ ONLY NO 21-MAY-12 12.19.54.465 PM
HRPDB READ WRITE NO 21-MAY-12 12.34.05.078 PM
SALESPDB MOUNTED NO 22-MAY-12 10.37.20.534 AM

See Also:

• "Modifying the Open Mode of PDBs with ALTER PLUGGABLE
DATABASE"

• "Modifying the Open Mode of PDBs"

• "Modifying a PDB with the ALTER PLUGGABLE DATABASE Statement"

• "About the Current Container"

Querying Container Data Objects
In the root, container data objects can show information about database objects (such
as tables and users) contained in the root and in PDBs. Access to PDB information is
controlled by the common user's CONTAINER_DATA attribute.

For example, CDB_ views are container data objects. See "About Viewing Information
When the Current Container Is the CDB Root" and Oracle Database Security Guide for
more information about container data objects.

Each container data object contains a CON_ID column that shows the container ID of
each PDB in the query results. You can view the PDB name for a container ID by
querying the DBA_PDBS view.

To use container data objects to show information about multiple PDBs:

1. In SQL*Plus, ensure that the current container is the root.

See "About Container Access in a CDB".

Chapter 15
Monitoring Containers in a CDB

15-82

2. Query the container data object to show the desired information.

Note:

When a query contains a join of a container data object and a non-container data
object, and the current container is the root, the query returns data for the entire
CDB only (CON_ID = 0).

Example 15-32 Showing the Tables Owned by Specific Schemas in Multiple PDBs

This example queries the DBA_PDBS view and the CDB_TABLES view from the root to show the
tables owned by hr user and oe user in the PDBs associated with the CDB. This query
returns only rows where the PDB has an ID greater than 2 (p.PDB_ID > 2) to avoid showing
the users in the CDB root and PDB seed.

COLUMN PDB_NAME FORMAT A15
COLUMN OWNER FORMAT A15
COLUMN TABLE_NAME FORMAT A30

SELECT p.PDB_ID, p.PDB_NAME, t.OWNER, t.TABLE_NAME
 FROM DBA_PDBS p, CDB_TABLES t
 WHERE p.PDB_ID > 2 AND
 t.OWNER IN('HR','OE') AND
 p.PDB_ID = t.CON_ID
 ORDER BY p.PDB_ID;

Sample output:

 PDB_ID PDB_NAME OWNER TABLE_NAME
---------- --------------- --------------- ------------------------------
 3 HRPDB HR COUNTRIES
 3 HRPDB HR JOB_HISTORY
 3 HRPDB HR EMPLOYEES
 3 HRPDB HR JOBS
 3 HRPDB HR DEPARTMENTS
 3 HRPDB HR LOCATIONS
 3 HRPDB HR REGIONS
 4 SALESPDB OE PRODUCT_INFORMATION
 4 SALESPDB OE INVENTORIES
 4 SALESPDB OE ORDERS
 4 SALESPDB OE ORDER_ITEMS
 4 SALESPDB OE WAREHOUSES
 4 SALESPDB OE CUSTOMERS
 4 SALESPDB OE SUBCATEGORY_REF_LIST_NESTEDTAB
 4 SALESPDB OE PRODUCT_REF_LIST_NESTEDTAB
 4 SALESPDB OE PROMOTIONS
 4 SALESPDB OE PRODUCT_DESCRIPTIONS

This sample output shows the PDB hrpdb has tables in the hr schema and the PDB
salespdb has tables in the oe schema.

Chapter 15
Monitoring Containers in a CDB

15-83

Example 15-33 Showing the Users in Multiple PDBs

This example queries the DBA_PDBS view and the CDB_USERS view from the root to show
the users in each PDB. The query uses p.PDB_ID > 2 to avoid showing the users in
the CDB root and the PDB seed.

COLUMN PDB_NAME FORMAT A15
COLUMN USERNAME FORMAT A30

SELECT p.PDB_ID, p.PDB_NAME, u.USERNAME
 FROM DBA_PDBS p, CDB_USERS u
 WHERE p.PDB_ID > 2 AND
 p.PDB_ID = u.CON_ID
 ORDER BY p.PDB_ID;

Sample output:

 PDB_ID PDB_NAME USERNAME
---------- --------------- ------------------------------
 .
 .
 .
 3 HRPDB HR
 3 HRPDB OLAPSYS
 3 HRPDB MDSYS
 3 HRPDB ORDSYS
 .
 .
 .
 4 SALESPDB OE
 4 SALESPDB CTXSYS
 4 SALESPDB MDSYS
 4 SALESPDB EXFSYS
 4 SALESPDB OLAPSYS
 .
 .
 .

Example 15-34 Showing the Data Files for Each PDB in a CDB

This example queries the DBA_PDBS and CDB_DATA_FILES views to show the name and
location of each data file for all of the PDBs in a CDB, including the PDB seed.

COLUMN PID FORMAT 999
COLUMN PDB_NAME FORMAT A8
COLUMN FILE_ID FORMAT 9999
COLUMN TABLESPACE_NAME FORMAT A10
COLUMN FILE_NAME FORMAT A45

SELECT p.PDB_ID AS PID, p.PDB_NAME, d.FILE_ID, d.TABLESPACE_NAME,
d.FILE_NAME
 FROM DBA_PDBS p, CDB_DATA_FILES d

Chapter 15
Monitoring Containers in a CDB

15-84

 WHERE p.PDB_ID = d.CON_ID
 ORDER BY p.PDB_ID;

Sample output:

PID PDB_NAME FILE_ID TABLESPACE FILE_NAME
--- -------- ------- ---------- --
 2 PDB$SEED 6 SYSAUX /disk1/oracle/dbs/pdbseed/cdb1_ax.f
 2 PDB$SEED 5 SYSTEM /disk1/oracle/dbs/pdbseed/cdb1_db.f
 3 HRPDB 9 SYSAUX /disk1/oracle/dbs/hrpdb/hrpdb_ax.f
 3 HRPDB 8 SYSTEM /disk1/oracle/dbs/hrpdb/hrpdb_db.f
 3 HRPDB 13 USER /disk1/oracle/dbs/hrpdb/hrpdb_usr.dbf
 4 SALESPDB 15 SYSTEM /disk1/oracle/dbs/salespdb/salespdb_db.f
 4 SALESPDB 16 SYSAUX /disk1/oracle/dbs/salespdb/salespdb_ax.f
 4 SALESPDB 18 USER /disk1/oracle/dbs/salespdb/salespdb_usr.dbf

Example 15-35 Showing the Temp Files in a CDB

This example queries the CDB_TEMP_FILES view to show the name and location of each temp
file in a CDB, as well as the tablespace that uses the temp file.

COLUMN CON_ID FORMAT 999
COLUMN FILE_ID FORMAT 9999
COLUMN TABLESPACE_NAME FORMAT A15
COLUMN FILE_NAME FORMAT A45

SELECT CON_ID, FILE_ID, TABLESPACE_NAME, FILE_NAME
 FROM CDB_TEMP_FILES
 ORDER BY CON_ID;

Sample output:

CON_ID FILE_ID TABLESPACE_NAM FILE_NAME
------ ------- -------------- ---
 1 1 TEMP /disk1/oracle/dbs/t_tmp1.f
 2 2 TEMP /disk1/oracle/dbs/pdbseed/t_tmp1.f
 3 3 TEMP /disk1/oracle/dbs/hrpdb/t_hrpdb_tmp1.f
 4 4 TEMP /disk1/oracle/dbs/salespdb/t_salespdb_tmp1.f

Example 15-36 Showing the Services Associated with PDBs

This example queries the CDB_SERVICES view to show the PDB name, network name, and
container ID of each service associated with a PDB.

COLUMN NETWORK_NAME FORMAT A30
COLUMN PDB FORMAT A15
COLUMN CON_ID FORMAT 999

SELECT PDB, NETWORK_NAME, CON_ID FROM CDB_SERVICES
 WHERE PDB IS NOT NULL AND
 CON_ID > 2
 ORDER BY PDB;

Chapter 15
Monitoring Containers in a CDB

15-85

Sample output:

PDB NETWORK_NAME CON_ID
--------------- ------------------------------ ------
HRPDB hrpdb.example.com 3
SALESPDB salespdb.example.com 4

See Also:

• "About the Current Container"

• Oracle Database Security Guide for detailed information about container
data objects

• Oracle Database Reference

Querying Across Containers with the CONTAINERS Clause
The CONTAINERS clause enables you to query tables and views across all containers in
a CDB. It also enables you to query application common objects across all containers
in an application container.

• About Querying Across Containers with the CONTAINERS Clause
The CONTAINERS clause enables you to query across containers in a CDB.

• Querying User-Created Tables and Views Across All Containers
The CONTAINERS clause enables you to query user-created tables and views
across all containers. This clause enables queries from the CDB root to display
data in tables or views that exist in all open PDBs in a CDB.

• Querying Application Common Objects Across Application PDBs
The CONTAINERS clause enables you to query application common objects across
all PDBs in an application container. Queries from the application root display data
in objects that exist in all open PDBs in the container.

About Querying Across Containers with the CONTAINERS Clause
The CONTAINERS clause enables you to query across containers in a CDB.

The CONTAINERS clause enables you to query user-created tables and views across all
containers in a CDB. This clause enables queries from the CDB root to display data in
tables or views that exist in all open containers in a CDB.

The CONTAINERS clause also enables you to query application common objects, such
as tables and views, across all application PDBs in an application container. This
clause enables queries from the application root to display data in tables or views that
exist in all open application PDBs in the application container.

The CONTAINERS clause exposes three implicitly generated columns:

• CON_ID: The ID of the container from which the row is retrieved.

Chapter 15
Monitoring Containers in a CDB

15-86

• CON$NAME: The name of the container from which the row is retrieved. This is a hidden
column.

• CDB$NAME: The name of the CDB from which the row is retrieved. In the absence of a
proxy PDB or a CDB fleet, all rows will have the same value for CDB$NAME. This is a
hidden column.

When the CONTAINERS clause is evaluated, each container is treated as a partition; therefore,
the plan output for a query using the CONTAINERS clause includes a partition iterator. Partition
pruning can be used to restrict the set of containers that is accessed during query execution.
The pruning predicate may be specified either on the CON_ID column or the CON$NAME column,
both of which are implicitly generated for a CONTAINERS clause.

Evaluation of the CONTAINERS clause makes use of parallel execution processes. Each
container is assigned to a parallel execution process (P00*) and the process switches into the
container to execute a recursive SQL statement on the base table or view. The base table or
view is the object whose name is passed as an argument to the CONTAINERS clause.

The CONTAINERS_PARALLEL_DEGREE initialization parameter can control the degree of
parallelism of a query involving the CONTAINERS clause. If the value of
CONTAINERS_PARALLEL_DEGREE is lower than 65535 (the default), then the specified value is
used.

When the CONTAINERS_PARALLEL_DEGREE initialization parameter is set to the default value
(65535), queries that use the CONTAINERS clause are parallel by default. The default degree of
parallelism is calculated with the following formula:

max(min(cpu_count,number_of_open_containers),#instances)

In addition, you can pass a DEFAULT_PDB_HINT hint in the CONTAINERS clause. The hint is
passed in the query that is run in each container.

The columns accessed by the recursive SQL statement are determined by the columns of the
CONTAINERS clause accessed in the query. Predicates in the query using the CONTAINERS
clause may be pushed down to the recursive SQL and evaluated within each container,
significantly reducing the number of rows that need to be processed as a post filter on the
CONTAINERS clause.

You can force the recursive SQL that results from a query that includes the CONTAINERS
clause to be parallel by using the DEFAULT_PDB_HINT clause of a CONTAINERS hint or by using
automatic degree of parallelism. However, parallel statement queuing is not possible for
recursive SQL that results from a query that includes the CONTAINERS clause.

Columns of the following types are removed if they exist in a table specified in a CONTAINERS
clause:

• The following user-defined types: object types, varrays, REFs, and nested tables

• The following Oracle-supplied types: ANYTYPE, ANYDATASET, URI types,
SDO_TOPO_GEOMETRY, SDO_GEORASTER, and Expression

Chapter 15
Monitoring Containers in a CDB

15-87

Note:

• When a container is opened in restricted mode, it is ignored by the
CONTAINERS clause.

• When the CONTAINERS clause is used and an error is returned by a
container, the query does not return results from the container that raised
the error, and the error is not returned. For example, you cannot select a
BFILE column from a remote table into a local variable. If a query that
does this uses the CONTAINERS clause and includes local and remote
containers, then the query returns results for the local containers, but not
the remote containers, and no error is returned.

See Also:

• "About the Current Container"

• Oracle Database SQL Language Reference for more information about
the CONTAINERS clause and the CONTAINERS hint

• Oracle Database Security Guide for detailed information about container
data objects

• Oracle Database Reference for more information about the
CONTAINERS_PARALLEL_DEGREE initialization parameter

• Oracle Database Data Warehousing Guide for more information about
automatic degree of parallelism and parallel statement queuing

Querying User-Created Tables and Views Across All Containers
The CONTAINERS clause enables you to query user-created tables and views across all
containers. This clause enables queries from the CDB root to display data in tables or
views that exist in all open PDBs in a CDB.

Prerequisites

The tables and views, or synonyms of them, specified in the CONTAINERS clause must
exist in the CDB root and in all other containers.

To use the CONTAINERS clause to query tables and views across all containers:

1. In SQL*Plus, access a container.

To view data in multiple containers, ensure that the current container is the CDB
root.

See "About Container Access in a CDB".

2. Run a query that includes the CONTAINERS clause.

Chapter 15
Monitoring Containers in a CDB

15-88

Example 15-37 Querying a Table Owned by a Common User Across All Containers

This example makes the following assumptions:

• An organization has several PDBs, and each PDB is for a different department in the
organization.

• Each PDB has an employees table that tracks the employees in the department, but the
table in each PDB contains different employees.

• The CDB root also has an empty employees table.

• The employees table in each container is owned by the same common user.

With the CDB root as the current container and the common user that owns the table as the
current user, run the following query with the CONTAINERS clause to return all employees in the
employees table in all PDBs:

SELECT * FROM CONTAINERS(employees);

Example 15-38 Querying a Table Owned by Local Users Across All Containers

This example makes the following assumptions:

• An organization has several PDBs, and each PDB is for a different department in the
organization.

• Each PDB has an hr.employees table that tracks the employees in the department, but
the table in each PDB contains different employees.

• The CDB root also has an empty employees table owned by a common user.

To run a query that returns all employees in all PDBs, first connect to each PDB as a
common user, and create a view with the following statement:

CREATE OR REPLACE VIEW employees AS SELECT * FROM hr.employees;

The common user that owns the view must be the same common user that owns the
employees table in the CDB root. After you run this statement in each PDB, the common user
has a view named employees in each PDB.

With the CDB root as the current container and the common user as the current user, run the
following query with the CONTAINERS clause to return all employees in the hr.employees table
in all PDBs:

SELECT * FROM CONTAINERS(employees);

You can also query the view in specific containers. For example, the following SQL statement
queries the view in the containers with a CON_ID of 3 and 4:

SELECT * FROM CONTAINERS(employees) WHERE CON_ID IN(3,4);

Chapter 15
Monitoring Containers in a CDB

15-89

Note:

You can also use the CONTAINERS clause to query Oracle-supplied tables and
views. When running the query, ensure that the current user is the owner of
the table or view, or create a view using the CONTAINERS clause and grant
SELECT privilege on the view to the appropriate users.

See Also:

• "About the Current Container"

• Oracle Database SQL Language Reference for more information about
the CONTAINERS clause

• Oracle Database Security Guide for detailed information about container
data objects

Querying Application Common Objects Across Application PDBs
The CONTAINERS clause enables you to query application common objects across all
PDBs in an application container. Queries from the application root display data in
objects that exist in all open PDBs in the container.

The CONTAINERS clause is most useful for metadata-linked application common
objects. With metadata-linked application common objects, the structure is the same in
all containers in an application container, but the data is different. You can use the
CONTAINERS clause to view the data in a metadata-linked application common object in
multiple application PDBs. The benefits are similar for extended data-linked objects.
The CONTAINERS clause uses parallel execution to execute the query across the
distinct application PDBs hosted in the application root.

To use the CONTAINERS clause to query tables and views across all application
PDBs:

1. In SQL*Plus, access the application root.

See "About Container Access in a CDB".

2. Run a query that includes the CONTAINERS clause.

Chapter 15
Monitoring Containers in a CDB

15-90

Note:

You can enable the CONTAINERS_DEFAULT attribute for a table or view in an
application root. When this attribute is enabled, the CONTAINERS clause is used for
queries and DML statements on the database object by default, and the CONTAINERS
clause is not required in the SQL statements. To enable the CONTAINERS_DEFAULT
attribute for a table or view in an application root, run the ALTER TABLE or CREATE OR
REPLACE VIEW statement with the ENABLE CONTAINERS_DEFAULT clause.

Example 15-39 Querying an Application Common Object Across All Application
PDBs

This example makes the following assumptions:

• An organization has several application PDBs, and each application PDB is for a different
department in the organization.

• Each application PDB has an employees table that tracks the employees in the
department, but the table in each application PDB contains different employees.

• The application root also has an empty employees table.

• The employees table in each container is owned by the same common user.

• A company has multiple tenants that use an application in an application container, and
each tenant has its own application PDB.

• The company uses metadata-linked application common objects to keep the structure of
the data the same in all application PDBs, but the data is different in each application
PDB.

• Each application PDB has a metadata-linked sales.customers table that stores
information about each tenant’s customers.

With the application root as the current container and the application common user that owns
the table as the current user, run the following query with the CONTAINERS clause to return all
customers in the sales.customers table in all application PDBs:

SELECT * FROM CONTAINERS(sales.customers);

See Also:

• "About Application Common Objects"

• "About the Current Container"

• Oracle Database SQL Language Reference for more information about the
CONTAINERS clause

• Oracle Database Security Guide for detailed information about container data
objects

Chapter 15
Monitoring Containers in a CDB

15-91

Determining the Current Container ID or Name
You can determine your current container ID or container name in a CDB.

To determine the current container ID:

• Run the following SQL*Plus command:

SHOW CON_ID
To determine the current container name:

• Run the following SQL*Plus command:

SHOW CON_NAME
In addition, you can use the functions listed in Table 15-8 to determine the container
ID, container name, DBID, GUID, and UID of a container.

Table 15-8 Functions That Return Container Information

Function Description

CON_NAME_TO_ID('container_na
me')

Returns the container ID based on the container's name.

CON_DBID_TO_ID(container_dbid
)

Returns the container ID based on the container's DBID.

CON_UID_TO_ID(container_uid) Returns the container ID based on the container's unique
identifier (UID).

CON_GUID_TO_ID(container_guid
)

Returns the container ID based on the container's globally
unique identifier (GUID).

CON_ID_TO_CON_NAME(container
_id)

Returns the container name based on the container ID.

CON_ID_TO_DBID(container_id) Returns the container's DBID based on the container ID.

CON_ID_TO_GUID(container_id) Returns the container's globally unique identifier (GUID)
based on the container ID.

CON_ID_TO_UID(container_id) Returns the container’s unique identifier (UID) based on the
container ID.

The V$CONTAINERS view shows the name, DBID, UID, and GUID for each container in
a CDB.

Example 15-40 Returning the Container ID Based on the Container Name

SELECT CON_NAME_TO_ID('HRPDB') FROM DUAL;

Example 15-41 Returning the Container ID Based on the Container DBID

SELECT CON_DBID_TO_ID(2226957846) FROM DUAL;

Example 15-42 Returning the Container Name Based on the Container ID

SELECT CON_ID_TO_CON_NAME(4) FROM DUAL;

Chapter 15
Monitoring Containers in a CDB

15-92

See Also:

• "About a Multitenant Environment"

• "About the Current Container"

• "Viewing Information About the Containers in a CDB"

• Oracle Database Reference for more information about the V$CONTAINERS view

Listing the Modifiable Initialization Parameters in PDBs
In a CDB, some initialization parameters apply to the root and to all PDBs. When such an
initialization parameter is changed, it affects the entire CDB. You can set other initialization
parameters to different values in each container.

For example, you might have a parameter set to one value in the root, set to another value in
one PDB, and set to yet another value in a second PDB.

The query in this section lists the initialization parameters that you can set independently in
each PDB.

To list the initialization parameters that are modifiable in each container:

1. In SQL*Plus, access a container.

See "About Container Access in a CDB".

2. Run the following query:

SELECT NAME FROM V$SYSTEM_PARAMETER
 WHERE ISPDB_MODIFIABLE = 'TRUE'
 ORDER BY NAME;

If an initialization parameter listed by this query is not set independently for a PDB, then the
PDB inherits the parameter value of the root.

• Viewing the History of PDBs
The CDB_PDB_HISTORY view shows the history of the PDBs in a CDB. It provides
information about when and how each PDB was created and other information about
each PDB's history.

See Also:

• "Modifying a CDB with ALTER SYSTEM"

• "Modifying a PDB at the System Level"

Chapter 15
Monitoring Containers in a CDB

15-93

Viewing the History of PDBs
The CDB_PDB_HISTORY view shows the history of the PDBs in a CDB. It provides
information about when and how each PDB was created and other information about
each PDB's history.

To view the history of each PDB:

1. In SQL*Plus, ensure that the current container is the root.

See "Accessing a Container in a CDB with SQL*Plus".

2. Query CDB_PDB_HISTORY view.

Example 15-43 Viewing the History of PDBs

This example shows the following information about each PDB's history:

• The DB_NAME field shows the CDB that contained the PDB.

• The CON_ID field shows the container ID of the PDB.

• The PDB_NAME field shows the name of the PDB in one of its incarnations.

• The OPERATION field shows the operation performed in the PDB's history.

• The OP_TIMESTAMP field shows the date on which the operation was performed.

• If the PDB was cloned in an operation, then the CLONED_FROM_PDB field shows the
PDB from which the PDB was cloned.

COLUMN DB_NAME FORMAT A10
COLUMN CON_ID FORMAT 999
COLUMN PDB_NAME FORMAT A15
COLUMN OPERATION FORMAT A16
COLUMN OP_TIMESTAMP FORMAT A10
COLUMN CLONED_FROM_PDB_NAME FORMAT A15

SELECT DB_NAME, CON_ID, PDB_NAME, OPERATION, OP_TIMESTAMP, CLONED_FROM_PDB_NAME
 FROM CDB_PDB_HISTORY
 WHERE CON_ID > 2
 ORDER BY CON_ID;

Sample output:

DB_NAME CON_ID PDB_NAME OPERATION OP_TIMESTA CLONED_FROM_PDB
---------- ------ --------------- ---------------- ---------- ---------------
NEWCDB 3 HRPDB CREATE 10-APR-12 PDB$SEED
NEWCDB 4 SALESPDB CREATE 17-APR-12 PDB$SEED
NEWCDB 5 TESTPDB CLONE 30-APR-12 SALESPDB

Note:

When the current container is a PDB, the CDB_PDB_HISTORY view shows the
history of the current PDB only. A local user whose current container is a
PDB can query the DBA_PDB_HISTORY view and exclude the CON_ID column
from the query to view the history of the current PDB.

Chapter 15
Monitoring Containers in a CDB

15-94

See Also:

"About the Current Container"

Chapter 15
Monitoring Containers in a CDB

15-95

16
Administering PDBs

Administering PDBs includes tasks such as connecting to a PDB, modifying a PDB, and
managing services associated with PDBs.

• About PDB Administration
Administering a pluggable database (PDB) involves a subset of the tasks required to
administer a CDB.

• Managing Connections to a PDB
You manage connections for a PDB in the same way as for a CDB, with some special
considerations.

• Modifying a PDB at the System Level
You can use the ALTER SYSTEM statement to modify a PDB.

• Modifying a PDB at the Database Level
You can modify a PDB using the ALTER PLUGGABLE DATABASE statement.

• Modifying the Open Mode of PDBs
You can modify the open mode of a PDB by using the ALTER PLUGGABLE DATABASE SQL
statement or the SQL*Plus STARTUP command.

Related Topics

• Tools for a Multitenant Environment
You can use various tools to configure and administer a multitenant environment.

About PDB Administration
Administering a pluggable database (PDB) involves a subset of the tasks required to
administer a CDB.

In this subset of tasks, most are the same for a PDB and a CDB, but differences exist. For
example, there are differences when you modify the open mode of a PDB. Also, a PDB
administrator is limited to managing a single PDB and cannot manage other PDBs in the
multitenant container database (CDB).

• Tasks Common to PDBs and CDBs
Most administrative tasks are the same for a PDB and a CDB.

• Tasks Specific to CDBs
Some administrative tasks cannot be performed when the current container is a PDB.

See Also:

"Modifying a PDB at the Database Level" for more information about changing the
open mode of the current PDB

16-1

Tasks Common to PDBs and CDBs
Most administrative tasks are the same for a PDB and a CDB.

When you are administering a PDB, you can modify the PDB with an ALTER DATABASE,
ALTER PLUGGABLE DATABASE, or ALTER SYSTEM statement. You can also execute DDL
statements on the PDB. The following table describes some of these tasks common to
a PDB and CDB.

Table 16-1 Administrative Tasks Common to PDBs and CDBs

Task Description Additional Information

Managing tablespaces You can create, modify, and drop
tablespaces for a PDB. You can
specify a default tablespace and
default tablespace type for each
PDB. Also, there is a default
temporary tablespace for each PDB.
You optionally can create additional
temporary tablespaces for use by
individual PDBs.

"Modifying a PDB at the Database
Level"

Oracle Database Administrator’s
Guide for information about
managing tablespaces

Managing data files and temp files Each PDB has its own data files.
You can manage data files and temp
files in the same way that you would
manage them for a CDB. You can
also limit the amount of storage
used by the data files for a PDB by
using the STORAGE clause in a
CREATE PLUGGABLE DATABASE or
ALTER PLUGGABLE DATABASE
statement.

"Modifying a PDB at the Database
Level"

Oracle Database Administrator’s
Guide for information about
managing data files and temp files

Managing schema objects You can create, modify, and drop
schema objects in a PDB in the
same way that you would in a CDB.
You can also create triggers that fire
for a specific PDB.

When you manage database links in
a CDB, the root has a unique global
database name, and so does each
PDB. The global name of the root is
defined by the DB_NAME and
DB_DOMAIN initialization parameters.
The global database name of a PDB
is defined by the PDB name and the
DB_DOMAIN initialization parameter.
The global database name of each
PDB must be unique within the
domain.

Oracle Database Administrator’s
Guide for more information about
schema objects

Oracle Database Administrator’s
Guide
Oracle Database PL/SQL Language
Reference for information about
creating triggers in a CDB

Tasks Specific to CDBs
Some administrative tasks cannot be performed when the current container is a PDB.

Chapter 16
About PDB Administration

16-2

The following tasks are performed by a common user for the entire CDB or for the CDB root
when the current container is the root:

• Starting up and shutting down a CDB instance

• Modifying the CDB or the root with an ALTER DATABASE statement

• Modifying the CDB or the root with an ALTER SYSTEM statement

• Executing data definition language (DDL) statements on a CDB or the root

• Managing the following components:

– Processes

– Memory

– Errors and alerts

– Diagnostic data

– Control files

– The online redo log and the archived redo log files

– Undo

• Creating, plugging in, unplugging, and dropping PDBs

A common user whose current container is the root can also change the open mode of one or
more PDBs. Similarly, a common user or local user whose current container is a PDB can
change the open mode of the current PDB.

See Also:

• "About the Current Container"

• " Administering a CDB" for more information about this task and other tasks
related to administering a CDB or the root

Managing Connections to a PDB
You manage connections for a PDB in the same way as for a CDB, with some special
considerations.

• Connecting to a PDB
You can use several techniques to connect to a PDB with the SQL*Plus CONNECT
command.

• Managing Services for PDBs
You can create, modify, or remove services for a PDB.

• Modifying the Listener Settings of a Referenced PDB
A PDB that is referenced by a proxy PDB is called a referenced PDB.

Chapter 16
Managing Connections to a PDB

16-3

Connecting to a PDB
You can use several techniques to connect to a PDB with the SQL*Plus CONNECT
command.

This section assumes that you understand how to connect to a CDB in SQL*Plus.

You can use the following techniques to connect to a PDB with the SQL*Plus CONNECT
command:

• Local connection with operating system authentication

• Database connection using easy connect

• Database connection using a net service name

Prerequisites

The following prerequisites must be met:

• The user connecting to the PDB must be granted the CREATE SESSION privilege in
the PDB.

• To connect to a PDB as a user that does not have SYSDBA, SYSOPER, SYSBACKUP, or
SYSDG administrative privilege, the PDB must be open.

Note:

This section assumes that the user connecting to the PDB using a local user
account. You can also connect to the PDB as a common user, and you can
connect to the root as a common user and switch to the PDB.

To connect to a PDB using the SQL*Plus CONNECT command:

1. Configure your environment so that you can open SQL*Plus.

2. Start SQL*Plus with the /NOLOG argument:

sqlplus /nolog

3. Issue a CONNECT command using easy connect or a net service name to connect to
the PDB.

To connect to a PDB, connect to a service with a PDB property.

Example 16-1 Connecting to a PDB in SQL*Plus Using the PDB's Net Service
Name

The following command connects to the hr user using the hrapp service. The hrapp
service has a PDB property for the hrpdb PDB. This example assumes that the client is
configured to have a net service name for the hrapp service.

CONNECT hr@hrapp

Chapter 16
Managing Connections to a PDB

16-4

See Also:

• "Modifying the Open Mode of PDBs" and "Modifying a PDB at the Database
Level" for information about changing the open mode of a PDB.

• "About Container Access in a CDB" for information about connecting to a PDB
as a common user

• "Managing Services for PDBs"

• Oracle Database Administrator’s Guide for information about connecting to the
database with SQL*Plus

Managing Services for PDBs
You can create, modify, or remove services for a PDB.

• About Services for PDBs
Each PDB has a default service, but you can create your own using SRVCTL or
DBMS_SERVICE.

• Managing Services for a PDB Using SRVCTL and DBMS_SERVICE
You can create, modify, or remove a service with a PDB property.

See Also:

Oracle Database Administrator’s Guide

About Services for PDBs
Each PDB has a default service, but you can create your own using SRVCTL or
DBMS_SERVICE.

• The PDB Property
The PDB property associates a service with a PDB. When a client connects to a service
with a PDB property, the current container for the connection is the PDB.

• Default and User-Defined Services
Creating a PDB creates a new default service for the PDB automatically.

• Tools for Managing Services
Oracle recommends using the SRVCTL utility to create and modify services. Alternatively,
you can use the DBMS_SERVICE package.

The PDB Property
The PDB property associates a service with a PDB. When a client connects to a service with a
PDB property, the current container for the connection is the PDB.

The PDB property is required only when you do either of the following:

• Create a service

Chapter 16
Managing Connections to a PDB

16-5

• Modify the PDB property of a service

You do not specify a PDB property when you start, stop, or remove a service. Also, you
do not need to specify a PDB property when you modify a service without modifying its
PDB property.

You can view the PDB property for a service by querying the ALL_SERVICES data
dictionary view. Alternatively, when using the SRVCTL utility, you can use the srvctl
config service command.

See Also:

"About the Current Container"

Default and User-Defined Services
Creating a PDB creates a new default service for the PDB automatically.

Each database service name must be unique in a CDB, and each database service
name must be unique within the scope of all the CDBs whose instances are reached
through a specific listener. The default service has the same name as the PDB. You
cannot manage this service, which you should only use for administrative tasks.

Always use user-defined services for applications. The reason is that you can
customize user-defined services to fit the requirements of your applications. Oracle
recommends that you not use the default PDB service for applications.

Note:

Do not associate a service with a proxy PDB.

In an Oracle Clusterware environment, you must create an Oracle Clusterware
resource for each service that is created for the PDB. When your database is being
managed by Oracle Restart or Oracle Clusterware, and when you use the SRVCTL
utility to start a service with a PDB property for a PDB that is closed, the PDB is
opened in read/write mode on the nodes where the service is started. However,
stopping a PDB service does not change the open mode of the PDB.

When you unplug or drop a PDB, the services of the unplugged or dropped PDB are
not removed automatically. You can remove these services manually.

See Also:

• "Modifying a PDB with the ALTER PLUGGABLE DATABASE Statement"
for information about changing the open mode of a PDB

• "Creating a Proxy PDB That References an Application Root Replica"

Chapter 16
Managing Connections to a PDB

16-6

Tools for Managing Services
Oracle recommends using the SRVCTL utility to create and modify services. Alternatively,
you can use the DBMS_SERVICE package.

SRVCTL

If your single-instance database is being managed by Oracle Restart or your Oracle RAC
database is being managed by Oracle Clusterware, then use the Server Control (SRVCTL)
utility to create, modify, or remove the service.

To create a service for a PDB using the SRVCTL utility, use the add service command and
specify the PDB in the -pdb parameter. If you do not specify -pdb, then the service is
associated with the root.

To modify the PDB property of a service using the SRVCTL utility, use the modify service
command and specify the PDB in the -pdb parameter. To remove a service for a PDB using
the SRVCTL utility, use the remove service command.

You can use other SRVCTL commands to manage the service, such as the start service,
stop service, and relocate service commands, even if they do not include the -pdb
parameter.

The PDB name is not validated when you create or modify a service with the SRVCTL utility.
However, an attempt to start a service with invalid PDB name results in an error.

DBMS_SERVICE

If your database is not being managed by Oracle Restart or Oracle Clusterware, then use the
DBMS_SERVICE package to create or remove a database service.

DBMS_SERVICE exists at the root level and in each PDB. It is owned and executed by SYS at
each level. A PDB administrator cannot stop, relocate, or test the connection for a service
that is owned by another PDB.

When you create a service with the DBMS_SERVICE package, the PDB property of the service is
set to the current container. Therefore, to create a service with a PDB property set to a specific
PDB using the DBMS_SERVICE package, run the CREATE_SERVICE procedure when the PDB is
the current container. If you create a service using the CREATE_SERVICE procedure when the
current container is the root, then the service is associated with the root.

You cannot modify the PDB property of a service with the DBMS_SERVICE package. However,
you can remove a service in one PDB and create a similar service in a different PDB. In this
case, the new service has the PDB property of the PDB in which it was created.

You can also use other DBMS_SERVICE subprograms to manage the service, such as the
START_SERVICE and STOP_SERVICE procedures. You can use
DBMS_SERVICE.*_CONNECTION_TEST procedures to check the health of a database connection
during planned maintenance. Use the DELETE_SERVICE procedure to remove a service.

Chapter 16
Managing Connections to a PDB

16-7

See Also:

• "Example 15-36"

• Oracle Database Administrator’s Guide for information about configuring
automatic restart of an Oracle database

• Oracle Database PL/SQL Packages and Types Reference for
information about the DBMS_SERVICE package

• Oracle Real Application Clusters Administration and Deployment Guide
for information about creating services in an Oracle Real Application
Clusters (Oracle RAC) environment

Managing Services for a PDB Using SRVCTL and DBMS_SERVICE
You can create, modify, or remove a service with a PDB property.

To manage a service with a PDB property using the SRVCTL utility:

1. Log in to the host computer with the correct user account.

2. Ensure that you run SRVCTL from the correct Oracle home.

3. Perform one of the following operations:

• To create or modify a service, run the add service command, and specify the
PDB in the -pdb parameter.

• To modify the PDB property of a service, run the modify service command,
and specify the PDB in the -pdb parameter.

• To remove a service, run the remove service command.

To create or remove a service for a PDB using the DBMS_SERVICE package:

1. In SQL*Plus, ensure that the current container is a PDB.

See "Connecting to a PDB".

2. Run the appropriate subprogram in the DBMS_SERVICE package.

Note:

If your database is being managed by Oracle Restart or Oracle Clusterware,
then use the SRVCTL utility to manage services. Do not use the
DBMS_SERVICE package.

Example 16-2 Creating a Service for a PDB Using the SRVCTL Utility

This example adds the salesrep service for the PDB salespdb in the CDB with
DB_UNIQUE_NAME mycdb:

srvctl add service -db mycdb -service salesrep -pdb salespdb

Chapter 16
Managing Connections to a PDB

16-8

Example 16-3 Modifying the PDB Property of a Service Using the SRVCTL Utility

This example modifies the salesrep service in the CDB with DB_UNIQUE_NAME mycdb to
associate the service with the hrpdb PDB:

srvctl modify service
 -db mycdb
 -service salesrep
 -pdb hrpdb

Example 16-4 Relocating a Service in Oracle RAC Using the SRVCTL Utility

You can use the relocate service command to relocate a service from one Oracle RAC
instance, where the service is currently running, to another instance, where it can run. This
technique applies both to services for administrator-managed databases as well as singleton
services for policy-managed databases.

The following command relocates service svc1 from Oracle RAC instance cdb_inst1, where
it is currently running, to instance cdb_inst2, where it is currently not running:

srvctl relocate service
 db cdb
 service svc1
 oldinst cdb_inst1
 newinst cdb_inst2
 –drain_timeout NNN
 –stopoption immediate

The following command performs the same operation for a policy-managed database:

srvctl relocate service
 db cdb
 service svc1
 currentnode cdb_inst1
 targetnode cdb_inst2
 –drain_timeout NNN
 –stopoption immediate

Example 16-5 Removing a Service Using the SRVCTL Utility

This example removes the salesrep service in the CDB with DB_UNIQUE_NAME mycdb:

srvctl remove service
 -db mycdb
 -service salesrep

Example 16-6 Creating a Service for a PDB Using the DBMS_SERVICE Package

This example creates the salesrep service for the current PDB:

BEGIN
 DBMS_SERVICE.CREATE_SERVICE(
 service_name => 'salesrep',

Chapter 16
Managing Connections to a PDB

16-9

 network_name => 'salesrep.example.com');
END;
/

The PDB property of the service is set to the current container. For example, if the
current container is the salespdb PDB, then the PDB property of the service is
salespdb.

Example 16-7 Removing a Service Using the DBMS_SERVICE Package

This example removes the salesrep service in the current PDB.

BEGIN
 DBMS_SERVICE.DELETE_SERVICE(
 service_name => 'salesrep');
END;
/

See Also:

• "Example 15-36"

• Oracle Database PL/SQL Packages and Types Reference for
information about the DBMS_SERVICE package

• Oracle Real Application Clusters Administration and Deployment Guide
for information about managing services in an Oracle Real Application
Clusters (Oracle RAC) environment

Modifying the Listener Settings of a Referenced PDB
A PDB that is referenced by a proxy PDB is called a referenced PDB.

When the port or host name changes for the listener of the referenced PDB, you must
modify the listener settings of the referenced PDB so that its proxy PDBs continue to
function properly.

• Altering the Listener Host Name of a Referenced PDB
When the host name of the listener for a referenced PDB changes, you must run
an ALTER PLUGGABLE DATABASE CONTAINERS HOST statement to reset the host
name of the referenced PDB so that its proxy PDBs continue to function properly.

• Altering the Listener Port Number of a Referenced PDB
When the port number of the listener for a referenced PDB changes, you must run
an ALTER PLUGGABLE DATABASE CONTAINERS PORT statement to reset the port
number of the referenced PDB so that its proxy PDBs continue to function
properly.

Related Topics

• Creating a PDB as a Proxy PDB
You can create a PDB as a proxy PDB by referencing it in a remote CDB.

Chapter 16
Managing Connections to a PDB

16-10

Altering the Listener Host Name of a Referenced PDB
When the host name of the listener for a referenced PDB changes, you must run an ALTER
PLUGGABLE DATABASE CONTAINERS HOST statement to reset the host name of the referenced
PDB so that its proxy PDBs continue to function properly.

A proxy PDB uses a database link to establish communication with its referenced PDB during
PDB creation. After communication is established, the proxy PDB communicates directly with
the referenced PDB without using the database link used during PDB creation, and the
database link can be dropped. When the listener host name changes for the referenced PDB,
each proxy PDB must reestablish communication with its referenced PDB.

Beginning with Oracle Database 19c, version 19.10, you can execute the ALTER PLUGGABLE
DATABASE CONTAINERS HOST command in the CDB root, an application root, or a PDB by
including the PDB name.

The current user must have the ALTER DATABASE system privilege, and the privilege must be
either commonly granted or locally granted in the PDB.

1. In SQL*Plus, ensure that the current container is the referenced PDB.

See "Connecting to a PDB".

2. Run an ALTER PLUGGABLE DATABASE CONTAINERS HOST statement and specify the new
host name, or include the RESET keyword to return the host name to its default setting,
which is the host name of the referenced PDB.

3. Drop and re-create the proxy PDBs that reference the referenced PDB to reestablish
communication for each proxy PDB and its referenced PDB.

Example 16-8 Altering the Listener Host Name of a Referenced PDB

This example changes the host name for the referenced PDB to myhost.example.com.

ALTER PLUGGABLE DATABASE CONTAINERS HOST='myhost.example.com';

Example 16-9 Resetting the Listener Host Name to the Default Value

This example resets the host name for the referenced PDB to its default value. The default
value is the host name of the referenced PDB.

ALTER PLUGGABLE DATABASE CONTAINERS HOST RESET;

See Also:

• "Creating a PDB as a Proxy PDB"

• "HOST Clause"

Chapter 16
Managing Connections to a PDB

16-11

Example 16-10 Using the PDB Name When Altering the Listener Host Name

This example changes the host name for the PDB named PDB01 to
myhost.example.com.

ALTER PLUGGABLE DATABASE PDB01 CONTAINERS HOST='myhost.example.com';

Altering the Listener Port Number of a Referenced PDB
When the port number of the listener for a referenced PDB changes, you must run an
ALTER PLUGGABLE DATABASE CONTAINERS PORT statement to reset the port number of
the referenced PDB so that its proxy PDBs continue to function properly.

A proxy PDB uses a database link to establish communication with its referenced PDB
during PDB creation. After communication is established, the proxy PDB
communicates directly with the referenced PDB without using the database link used
during PDB creation, and the database link can be dropped. When the listener port
number changes for the referenced PDB, each proxy PDB must re-establish
communication with its referenced PDB.

Beginning with Oracle Database 19c, version 19.10, you can execute the ALTER
PLUGGABLE DATABASE CONTAINERS PORT command in the CDB root, an application root,
or a PDB by including the PDB name.

The current user must have the ALTER DATABASE system privilege, and the privilege
must be either commonly granted or locally granted in the PDB.

1. In SQL*Plus, ensure that the current container is the referenced PDB.

2. Run an ALTER PLUGGABLE DATABASE CONTAINERS PORT statement and specify the
new port number, or include the RESET keyword to return the port number to its
default setting, which is 1521.

3. Drop and re-create the proxy PDBs that reference the referenced PDB to re-
establish communication for each proxy PDB and its referenced PDB.

Example 16-11 Altering the Listener Port Number of a Referenced PDB

This example changes the port number for the referenced PDB to 1543.

ALTER PLUGGABLE DATABASE CONTAINERS PORT=1543;

Example 16-12 Resetting the Listener Port Number to the Default Value

This example resets the port number for the referenced PDB to its default value. The
default value for the port number is 1521.

ALTER PLUGGABLE DATABASE CONTAINERS PORT RESET;

Example 16-13 Using the PDB Name When Altering the Listener Port Number

This example changes the port number for the PDB named PDB01 to 1543.

ALTER PLUGGABLE DATABASE PDB01 CONTAINERS PORT=1543;

Chapter 16
Managing Connections to a PDB

16-12

Related Topics

• Connecting to a PDB
You can use several techniques to connect to a PDB with the SQL*Plus CONNECT
command.

• Creating a PDB as a Proxy PDB
You can create a PDB as a proxy PDB by referencing it in a remote CDB.

• PORT Clause
The PORT clause of the CREATE PLUGGABLE DATABASE statement specifies the port number
of the listener for the PDB being created.

Modifying a PDB at the System Level
You can use the ALTER SYSTEM statement to modify a PDB.

• About System-Level Modifications of a PDB
The ALTER SYSTEM statement can dynamically alter a PDB. You can issue an ALTER
SYSTEM statement when you want to change the way a PDB operates.

• Modifying a PDB with ALTER SYSTEM
To modify a PDB at the system level, use the ALTER SYSTEM statement.

About System-Level Modifications of a PDB
The ALTER SYSTEM statement can dynamically alter a PDB. You can issue an ALTER SYSTEM
statement when you want to change the way a PDB operates.

When the current container is a PDB, you can run the following ALTER SYSTEM statements:

• ALTER SYSTEM FLUSH { SHARED_POOL | BUFFER_CACHE | FLASH_CACHE }
• ALTER SYSTEM { ENABLE | DISABLE } RESTRICTED SESSION
• ALTER SYSTEM SET USE_STORED_OUTLINES
• ALTER SYSTEM { SUSPEND | RESUME }
• ALTER SYSTEM CHECKPOINT
• ALTER SYSTEM CHECK DATAFILES
• ALTER SYSTEM REGISTER
• ALTER SYSTEM { KILL | DISCONNECT } SESSION
• ALTER SYSTEM SET initialization_parameter (for a subset of initialization parameters)

All other ALTER SYSTEM statements affect the entire CDB and must be run by a common user
in the root.

The ALTER SYSTEM SET initialization_parameter statement can modify only some
initialization parameters for PDBs. All initialization parameters can be set for the root. For any
initialization parameter that is not set explicitly for a PDB, the PDB inherits the parameter
value from the root.

Chapter 16
Modifying a PDB at the System Level

16-13

You can modify an initialization parameter for a PDB when the ISPDB_MODIFIABLE
column is TRUE for the parameter in the V$SYSTEM_PARAMETER view. The following query
lists all initialization parameters that are modifiable for a PDB:

SELECT NAME
FROM V$SYSTEM_PARAMETER
WHERE ISPDB_MODIFIABLE='TRUE'
ORDER BY NAME;

When the current container is a PDB, run the ALTER SYSTEM SET
initialization_parameter statement to modify the PDB. The statement does not
affect the root or other PDBs. The following table describes the behavior of the SCOPE
clause when you use a server parameter file (SPFILE) and run the ALTER SYSTEM SET
statement on a PDB.

SCOPE Setting Behavior

MEMORY The initialization parameter setting is changed in memory and takes effect
immediately in the PDB. The new setting affects only the PDB.

The setting reverts to the value set in the root in the any of the following
cases:

• An ALTER SYSTEM SET statement sets the value of the parameter in
the root with SCOPE equal to BOTH or MEMORY, and the PDB is closed
and re-opened. The parameter value in the PDB is not changed if
SCOPE is equal to SPFILE, and the PDB is closed and re-opened.

• The PDB is closed and re-opened.
• The CDB is shut down and re-opened.

SPFILE The initialization parameter setting is changed for the PDB and stored
persistently. The new setting takes effect in any of the following cases:

• The PDB is closed and re-opened.
• The CDB is shut down and re-opened.
In these cases, the new setting affects only the PDB.

BOTH The initialization parameter setting is changed in memory, and it is changed
for the PDB and stored persistently. The new setting takes effect
immediately in the PDB and persists after the PDB is closed and re-opened
or the CDB is shut down and re-opened. The new setting affects only the
PDB.

When a PDB is unplugged from a CDB, the values of the initialization parameters that
were specified for the PDB with SCOPE=BOTH or SCOPE=SPFILE are added to the PDB's
XML metadata file. These values are restored for the PDB when it is plugged in to a
CDB.

Note:

A text initialization parameter file (PFILE) cannot contain PDB-specific
parameter values.

Chapter 16
Modifying a PDB at the System Level

16-14

See Also:

• "Unplugging a PDB from a CDB"

• "About the Current Container"

• "Modifying a CDB with ALTER SYSTEM"

• Oracle Database SQL Language Reference

Modifying a PDB with ALTER SYSTEM
To modify a PDB at the system level, use the ALTER SYSTEM statement.

Prerequisites

The current user must be granted the following privileges, which must be either commonly
granted or locally granted in the PDB:

• CREATE SESSION
• ALTER SYSTEM

To use ALTER SYSTEM to modify a PDB:

1. In SQL*Plus, ensure that the current container is a PDB.

See "Connecting to a PDB".

2. Run the ALTER SYSTEM statement.

Example 16-14 Enable Restricted Sessions in a PDB

To restrict sessions in a PDB, issue the following statement:

ALTER SYSTEM ENABLE RESTRICTED SESSION;

Example 16-15 Changing the Statistics Gathering Level for the PDB

This ALTER SYSTEM statement sets the STATISTICS_LEVEL initialization parameter to ALL for
the current PDB:

ALTER SYSTEM SET STATISTICS_LEVEL = ALL SCOPE = MEMORY;

See Also:

• "Modifying a CDB with ALTER SYSTEM"

• Oracle Database SQL Language Reference

Chapter 16
Modifying a PDB at the System Level

16-15

Modifying a PDB at the Database Level
You can modify a PDB using the ALTER PLUGGABLE DATABASE statement.

• About PDB-Level Modifications
The ALTER PLUGGABLE DATABASE for a PDB is analogous to the ALTER DATABASE
for a CDB.

• Modifying a PDB with the ALTER PLUGGABLE DATABASE Statement
To modify the attributes of a single PDB, use the ALTER PLUGGABLE DATABASE
statement.

• Changing the Global Database Name of a PDB
You can change the global database name of a PDB with the ALTER PLUGGABLE
DATABASE RENAME GLOBAL_NAME TO statement.

• Managing Refreshable Clone PDBs
A refreshable clone PDB is a read-only clone that can periodically synchronize
with its source PDB.

About PDB-Level Modifications
The ALTER PLUGGABLE DATABASE for a PDB is analogous to the ALTER DATABASE for a
CDB.

Note:

An ALTER DATABASE statement issued when the current container is a PDB
that includes clauses that are supported for an ALTER PLUGGABLE DATABASE
statement have the same effect as the corresponding ALTER PLUGGABLE
DATABASE statement. However, these statements cannot include clauses that
are specific to PDBs, such as the pdb_storage_clause, the
pdb_change_state_clause, the logging_clause, and the
pdb_recovery_clause.

• Storage Clauses
Use ALTER PLUGGABLE DATABASE to configure storage at the PDB level.

• Logging and Recovery Clauses
Use ALTER PLUGGABLE DATABASE to set logging and recovery and recovery modes
at the PDB level.

• Miscellaneous Clauses
You can use ALTER PLUGGABLE DATABASE to modify the open mode, global name,
time zone, and default edition.

Storage Clauses
Use ALTER PLUGGABLE DATABASE to configure storage at the PDB level.

The following clauses of ALTER PLUGGABLE DATABASE modify PDB storage:

Chapter 16
Modifying a PDB at the Database Level

16-16

• database_file_clauses

These clauses work the same as they would in an ALTER DATABASE statement, but the
statement applies to the current PDB.

• DEFAULT TABLESPACE clause

For users created while the current container is a PDB, this clause specifies the default
tablespace for the user if the default tablespace is not specified in the CREATE USER
statement.

• DEFAULT TEMPORARY TABLESPACE clause

For users created while the current container is a PDB, this clause specifies the default
temporary tablespace for the user if the default temporary tablespace is not specified in
the CREATE USER statement.

• SET DEFAULT { BIGFILE | SMALLFILE } TABLESPACE clause

This clause changes the default type of subsequently created tablespaces in the PDB to
either bigfile or smallfile. This clause works the same as it would in an ALTER DATABASE
statement, but it applies to the current PDB.

• pdb_storage_clause

This clause sets a limit on the amount of storage used by all tablespaces that belong to a
PDB. This limit applies to the total size of all data files and temp files comprising
tablespaces that belong to the PDB.

This clause can also set a limit on the amount of storage that can be used by unified
audit OS spillover (.bin format) files in the PDB. If the limit is reached, then no additional
storage is available for these files.

This clause can also set a limit on the amount of storage in a shared temporary
tablespace that can be used by sessions connected to the PDB. If the limit is reached,
then no additional storage in the shared temporary tablespace is available to sessions
connected to the PDB.

Logging and Recovery Clauses
Use ALTER PLUGGABLE DATABASE to set logging and recovery and recovery modes at the PDB
level.

logging_clause

Note:

This clause is available starting with Oracle Database 12c Release 1 (12.1.0.2).

This clause specifies the logging attribute of the PDB. The logging attribute controls whether
certain DML operations are logged in the redo log file (LOGGING) or not (NOLOGGING).

You can use this clause to specify one of the following attributes:

• LOGGING indicates that any future tablespaces created within the PDB will be created with
the LOGGING attribute by default. You can override this default logging attribute by
specifying NOLOGGING at the schema object level, in a CREATE TABLE statement for
example.

Chapter 16
Modifying a PDB at the Database Level

16-17

• NOLOGGING indicates that any future tablespaces created within the PDB will be
created with the NOLOGGING attribute by default. You can override this default
logging attribute by specifying LOGGING at the schema object level, in a CREATE
TABLE statement for example.

The specified attribute is used to establish the logging attribute of tablespaces created
within the PDB if the logging_clause is not specified in the CREATE TABLESPACE
statement.

The DBA_PDBS view shows the current logging attribute for a PDB.

Note:

The PDB must be open in restricted mode to use this clause.

pdb_force_logging_clause

Note:

This clause is available starting with Oracle Database 12c Release 1
(12.1.0.2).

This clause places a PDB into force logging or force nologging mode or takes a PDB
out of force logging or force nologging mode.

You can use this clause to specify one of the following attributes:

• ENABLE FORCE LOGGING places the PDB in force logging mode, which causes all
changes in the PDB, except changes in temporary tablespaces and temporary
segments, to be logged. Force logging mode cannot be overridden at the schema
object level.

PDB-level force logging mode takes precedence over and is independent of any
NOLOGGING or FORCE LOGGING settings you specify for individual tablespaces in the
PDB and any NOLOGGING settings you specify for individual database objects in the
PDB.

ENABLE FORCE LOGGING cannot be specified if a PDB is in force nologging mode.
DISABLE FORCE NOLOGGING must be specified first.

• DISABLE FORCE LOGGING takes a PDB which is currently in force logging mode out
of that mode. If the PDB is not in force logging mode currently, then specifying
DISABLE FORCE LOGGING results in an error.

• ENABLE FORCE NOLOGGING places the PDB in force nologging mode, which causes
no changes in the PDB to be logged. Force nologging mode cannot be overridden
at the schema object level.

CDB-wide force logging mode supersedes PDB-level force nologging mode. PDB-
level force nologging mode takes precedence over and is independent of any
LOGGING or FORCE LOGGING settings you specify for individual tablespaces in the
PDB and any LOGGING settings you specify for individual database objects in the
PDB.

Chapter 16
Modifying a PDB at the Database Level

16-18

ENABLE FORCE NOLOGGING cannot be specified if a PDB is in force logging mode. DISABLE
FORCE LOGGING must be specified first.

• DISABLE FORCE NOLOGGING takes a PDB that is currently in force nologging mode out of
that mode. If the PDB is not in force nologging mode currently, then specifying DISABLE
FORCE NOLOGGING results in an error.

The DBA_PDBS view shows whether a PDB is in force logging or force nologging mode.

Note:

The PDB must be open in restricted mode to use this clause.

pdb_recovery_clause

Note:

This clause is available starting with Oracle Database 12c Release 1 (12.1.0.2).

ALTER PLUGGABLE DATABASE DISABLE RECOVERY takes the data files that belong to the PDB
offline and disables recovery of the PDB. The PDB data files are not part of any recovery
session until it is enabled again. Any new data files created while recovery is disabled are
created as unnamed files for the PDB.

ALTER PLUGGABLE DATABASE ENABLE RECOVERY brings the data files that belong to the PDB
online and marks the PDB for active recovery. Recovery sessions include these files.

Check the recovery status of a PDB by querying the RECOVERY_STATUS column in the V$PDBS
view.

See Also:

• Oracle Data Guard Concepts and Administration for more information about the
pdb_recovery_clause.

• Oracle Database Administrator’s Guide for information about controlling the
writing of redo records

• Oracle Database SQL Language Reference for more information about the
logging attribute

Miscellaneous Clauses
You can use ALTER PLUGGABLE DATABASE to modify the open mode, global name, time zone,
and default edition.

When the current container is a PDB, an ALTER PLUGGABLE DATABASE statement with any of
the following clauses modifies the PDB:

Chapter 16
Modifying a PDB at the Database Level

16-19

• pdb_change_state_clause

This clause changes the open mode of the current PDB.

If you specify the optional RESTRICTED keyword, then the PDB is accessible only to
users with the RESTRICTED SESSION privilege in the PDB.

Specifying FORCE in this clause changes semantics of the ALTER PLUGGABLE
DATABASE statement so that, in addition to opening a PDB that is currently closed, it
can be used to change the open mode of a PDB that is already open.

• RENAME GLOBAL_NAME clause

This clause changes the unique global database name for the PDB. The new
global database name must be different from that of any container in the CDB.
When you change the global database name of a PDB, the PDB name is changed
to the name before the first period in the global database name.

You must change the PDB property of database services used to connect to the
PDB when you change the global database name.

• set_time_zone_clause

This clause works the same as it would in an ALTER DATABASE statement, but it
applies to the current PDB.

• DEFAULT EDITION clause

This clause works the same as it would in an ALTER DATABASE statement, but it
applies to the current PDB. Each PDB can use edition-based redefinition, and
editions in one PDB do not affect editions in other PDBs. In a multitenant
environment in which each PDB has its own application, you can use edition-
based redefinition independently for each distinct application.

See Also:

• "Managing Services for PDBs"

• "Modifying the Open Mode of PDBs with ALTER PLUGGABLE
DATABASE"

Modifying a PDB with the ALTER PLUGGABLE DATABASE Statement
To modify the attributes of a single PDB, use the ALTER PLUGGABLE DATABASE
statement.

When the current container is a PDB, an ALTER PLUGGABLE DATABASE statement
modifies the PDB. The modifications overwrite the defaults set for the root in the PDB.
The modifications do not affect the CDB root or other PDBs.

Prerequisites

The following prerequisites must be met:

• To change the open mode of the PDB from mounted to opened or from opened to
mounted, the current user must have SYSDBA, SYSOPER, SYSBACKUP, or SYSDG
administrative privilege. The privilege must be either commonly granted or locally

Chapter 16
Modifying a PDB at the Database Level

16-20

granted in the PDB. The user must exercise the privilege using AS sys_privilege_name
at connect time.

• For all other operations performed using the ALTER PLUGGABLE DATABASE statement, the
current user must have the ALTER DATABASE system privilege, and the privilege must be
either commonly granted or locally granted in the PDB.

• To close a PDB, the PDB must be open.

Note:

This section does not cover changing the global database name of a PDB using the
ALTER PLUGGABLE DATABASE statement.

To modify a PDB:

1. In SQL*Plus, ensure that the current container is a PDB.

2. Run an ALTER PLUGGABLE DATABASE statement.

Example 16-16 Changing the Open Mode of a PDB

• This ALTER PLUGGABLE DATABASE statement changes the open mode of the current PDB
to mounted.

ALTER PLUGGABLE DATABASE CLOSE IMMEDIATE;

• The following statement changes the open mode of the current PDB to open read-only.

ALTER PLUGGABLE DATABASE OPEN READ ONLY;

• A PDB must be in mounted mode to change its open mode to hybrid read only unless
you specify the FORCE keyword.

The following statement changes the open mode of the current PDB from mounted or
open read-only to open read/write.

ALTER PLUGGABLE DATABASE OPEN HYBRID READ ONLY;

• A PDB must be in mounted mode to change its open mode to read-only or read/write
unless you specify the FORCE keyword.

The following statement changes the open mode of the current PDB from mounted or
open read-only to open read/write.

ALTER PLUGGABLE DATABASE OPEN FORCE;

• The following statement changes the open mode of the current PDB from mounted to
migrate.

ALTER PLUGGABLE DATABASE OPEN UPGRADE;

Chapter 16
Modifying a PDB at the Database Level

16-21

Example 16-17 Bringing a Data File Online for a PDB

This ALTER PLUGGABLE DATABASE statement uses a database_file_clause to bring
the /u03/oracle/pdb1_01.dbf data file online.

ALTER PLUGGABLE DATABASE DATAFILE '/u03/oracle/pdb1_01.dbf' ONLINE;

Example 16-18 Changing the Default Tablespaces for a PDB

• This ALTER PLUGGABLE DATABASE statement uses a DEFAULT TABLESPACE clause to
set the default tablespace to pdb1_tbs for the PDB.

ALTER PLUGGABLE DATABASE DEFAULT TABLESPACE pdb1_tbs;

• This ALTER PLUGGABLE DATABASE statement uses a DEFAULT TEMPORARY
TABLESPACE clause to set the default temporary tablespace to pdb1_temp for the
PDB.

ALTER PLUGGABLE DATABASE DEFAULT TEMPORARY TABLESPACE pdb1_temp;

The tablespace or tablespace group specified in the ALTER PLUGGABLE DATABASE
statement must exist in the PDB. Users whose current container is a PDB that are not
explicitly assigned a default tablespace or default temporary tablespace use the
default tablespace or default temporary tablespace for the PDB.

Example 16-19 Changing the Default Tablespace Type for a PDB

This ALTER DATABASE statement uses a SET DEFAULT TABLESPACE clause to change
the default tablespace type to bigfile for the PDB.

ALTER PLUGGABLE DATABASE SET DEFAULT BIGFILE TABLESPACE;

Example 16-20 Setting Storage Limits for a PDB

• This statement sets the storage limit for all tablespaces that belong to a PDB to
two gigabytes.

ALTER PLUGGABLE DATABASE STORAGE(MAXSIZE 2G);

• This statement specifies that there is no storage limit for the tablespaces that
belong to the PDB.

ALTER PLUGGABLE DATABASE STORAGE(MAXSIZE UNLIMITED);

• This statement specifies that there is no storage limit for the tablespaces that
belong to the PDB and that there is no storage limit for the shared temporary
tablespace that can be used by sessions connected to the PDB.

ALTER PLUGGABLE DATABASE STORAGE UNLIMITED;

Chapter 16
Modifying a PDB at the Database Level

16-22

Example 16-21 Setting the Logging Attribute of a PDB

With the PDB open in restricted mode, this statement specifies the NOLOGGING attribute for the
PDB:

ALTER PLUGGABLE DATABASE NOLOGGING;

Example 16-22 Setting the Force Logging Mode of a PDB

This statement enables force logging mode for the PDB:

ALTER PLUGGABLE DATABASE ENABLE FORCE LOGGING;

Example 16-23 Setting the Default Edition for a PDB

This example sets the default edition for the current PDB to PDB1E3.

ALTER PLUGGABLE DATABASE DEFAULT EDITION = PDB1E3;

See Also:

• "About PDB-Level Modifications" for information about the clauses that modify
the attributes of a single PDB

• "Changing the Global Database Name of a PDB"

• Oracle Database SQL Language Reference for more information about the
ALTER PLUGGABLE DATABASE statement

• Oracle Database Development Guide for a complete discussion of edition-
based redefinition

Changing the Global Database Name of a PDB
You can change the global database name of a PDB with the ALTER PLUGGABLE DATABASE
RENAME GLOBAL_NAME TO statement.

When you change the global database name of a PDB, the new global database name must
be different from that of any container in the CDB.

Prerequisites

The following prerequisites must be met:

• The current user must have the ALTER DATABASE system privilege, and the privilege must
be either commonly granted or locally granted in the PDB.

• For an Oracle Real Application Clusters (Oracle RAC) database, the PDB must be open
on the current instance only. The PDB must be closed on all other instances.

• The PDB being modified must be opened on the current instance in read/write mode with
RESTRICTED specified so that it is accessible only to users with RESTRICTED SESSION
privilege in the PDB.

Chapter 16
Modifying a PDB at the Database Level

16-23

To change the global database name of a PDB:

1. In SQL*Plus, ensure that the current container is a PDB.

2. Run an ALTER PLUGGABLE DATABASE RENAME GLOBAL_NAME TO statement.

The following example changes the global database name of the PDB to
salespdb.example.com:

ALTER PLUGGABLE DATABASE RENAME GLOBAL_NAME TO salespdb.example.com;

3. Close the PDB.

4. Open the PDB in read/write mode.

When you change the global database name of a PDB, the PDB name is changed to
the first part of the new global name, which is the part before the first period. Also,
Oracle Database changes the name of the default database service for the PDB
automatically. Oracle Database also changes the PDB property of all database services
in the PDB to the new global name of the PDB. You must close the PDB and open it in
read/write mode for Oracle Database to complete the integration of the new PDB
service name into the CDB.

Oracle Net Services must be configured properly for clients to access database
services. You might need to alter your Oracle Net Services configuration because of
the PDB name change.

See Also:

• "Connecting to a PDB"

• "Managing Services for PDBs" for information about PDBs and database
services

Managing Refreshable Clone PDBs
A refreshable clone PDB is a read-only clone that can periodically synchronize with
its source PDB.

• Refreshing a PDB
You can refresh a PDB that was created as a refreshable clone.

• Switching Over a Refreshable Clone PDB
You can switch the roles of a source PDB and its refreshable clone PDB.

Refreshing a PDB
You can refresh a PDB that was created as a refreshable clone.

When you refresh a PDB manually, changes made to the source PDB since the last
refresh are propagated to the PDB being refreshed. You can manually refresh a PDB
that is configured for automatic refresh.

Chapter 16
Modifying a PDB at the Database Level

16-24

Prerequisites

To refresh a PDB, the PDB must have been created as a clone with the REFRESH MODE
MANUAL or REFRESH MODE EVERY minutes clause included.

1. In SQL*Plus, ensure that the current container is the PDB you want to refresh.

2. If the PDB is not closed, then close the PDB. For example, issue the following SQL
statement:

ALTER PLUGGABLE DATABASE CLOSE IMMEDIATE;
3. Issue the following SQL statement:

ALTER PLUGGABLE DATABASE REFRESH;
Related Topics

• About Refreshable Clone PDBs
The CREATE PLUGGABLE DATABASE ... REFRESH MODE statement clones a source PDB
and configures the clone to be refreshable. Refreshing the clone PDB updates it with
redo accumulated since the last redo log apply.

Switching Over a Refreshable Clone PDB
You can switch the roles of a source PDB and its refreshable clone PDB.

The following statement performs a switchover:

ALTER PLUGGABLE DATABASE refresh_mode FROM clonepdb@dblink SWITCHOVER;

You must not specify REFRESH MODE NONE for refresh_mode. The database link specified in
the FROM clause must point to the root of the CDB in which the clone PDB resides.

After the switchover completes, the source PDB becomes the refreshable clone PDB, which
can only be opened in READ ONLY mode.

Prerequisites

You must meet the following prerequisites:

• You must be connected to the source PDB when you issue ALTER PLUGGABLE
DATABASE ... SWITCHOVER.

• If the source PDB and clone PDB are in separate CDBs, then the user specified in the
database link must have the same name and password in the source PDB and clone
PDB.

To switch the roles of the source and clone PDBs:

1. In SQL*Plus or SQL Developer, log in to the source PDB.

2. Execute the ALTER PLUGGABLE DATABASE refresh_mode FROM clonepdb@dblink
SWITCHOVER statement.

After the statement completes, the currently connected PDB is now the refreshable clone
PDB.

Chapter 16
Modifying a PDB at the Database Level

16-25

3. Optionally, refresh the clone PDB:

ALTER PLUGGABLE DATABASE REFRESH;

Example 16-24 Switching Over a Refreshable Clone PDB

This example assumes that your data center contains CDBs named cdb1 and cdb2.
The PDB named cdb1_pdb1 resides in cdb1. You want to create a refreshable clone of
this PDB in cdb2 and name it cdb1_pdb1_ref. Your goal is to switch over
cdb1_pdb1_ref so that it becomes the source PDB and cdb1_pdb1 becomes the clone
PDB.

1. In SQL*Plus, connect to cdb1 as a user with administrator privileges, and then
ensure sure that cdb1_pdb1 is open in read/write mode (sample output included):

CONNECT SYS@cdb1 AS SYSDBA
Enter password: *******

ALTER PLUGGABLE DATABASE ALL CLOSE;
ALTER PLUGGABLE DATABASE cdb1_pdb1 OPEN READ WRITE;
SHOW PDBS;

 CON_ID CON_NAME OPEN MODE RESTRICTED
---------- ------------------------------ ---------- ----------
 2 PDB$SEED READ ONLY NO
 3 CDB1_PDB1 READ WRITE NO

2. Create a common user named c##u1 (replace pwd with a user-specified
password):

DROP USER c##u1 CASCADE;
CREATE USER c##u1 IDENTIFIED BY pwd;
GRANT CREATE SESSION, RESOURCE, CREATE ANY TABLE, UNLIMITED
TABLESPACE TO c##u1 CONTAINER=ALL;
GRANT CREATE PLUGGABLE DATABASE TO c##u1 CONTAINER=ALL;
GRANT SYSOPER TO c##u1 CONTAINER=ALL;

3. Set the container to cdb1_pdb1, and then create a table t1 to use for testing
(sample output included):

ALTER SESSION SET CONTAINER = cdb1_pdb1;
CREATE TABLE t1(n1 NUMBER);
INSERT INTO t1 VALUES(1);
COMMIT;
SELECT * FROM t1;

 N1

 1

Chapter 16
Modifying a PDB at the Database Level

16-26

4. Connect to cdb2 as a user with administrator privileges, and then create the common
user named c##u1 (replace pwd with a user-specified password):

CONNECT SYS@cdb2 AS SYSDBA
Enter password: *******

DROP USER c##u1 CASCADE;
CREATE USER c##u1 IDENTIFIED BY pwd;
GRANT CREATE SESSION, RESOURCE, CREATE ANY TABLE, UNLIMITED TABLESPACE TO
c##u1 CONTAINER=ALL;
GRANT CREATE PLUGGABLE DATABASE TO c##u1 CONTAINER=ALL;
GRANT SYSOPER TO c##u1 CONTAINER=ALL;

Now cdb1 and cdb2 both have a common user with the same name (c##u1) and
password.

5. Create a database link to cdb1.

The following command specifies user c##u1, password pwd, and service name cdb1:

CREATE DATABASE LINK cdb1_datalink CONNECT TO c##u1 IDENTIFIED BY pwd
USING 'cdb1';

6. Create the manually refreshable PDB named cdb1_pdb1_ref.

The following statement specifies the database link cdb1_datalink and the file
destination /dsk1/df:

CREATE PLUGGABLE DATABASE cdb1_pdb1_ref FROM cdb1_pdb1@cdb1_datalink
 CREATE_FILE_DEST='/dsk1/df'
 REFRESH MODE MANUAL;

7. Refresh cdb1_pdb1_ref:

ALTER SESSION SET CONTAINER = cdb1_pdb1_ref;
ALTER PLUGGABLE DATABASE REFRESH;

8. Query t1 to check that the refreshable clone PDB contains the correct contents (sample
output included):

ALTER PLUGGABLE DATABASE OPEN READ ONLY;
SELECT * FROM t1;

 N1

 1

9. Connect to cdb1 as a user with administrator privileges, and then create a database link
to cdb2:

CONNECT SYS@cdb1 AS SYSDBA
Enter password: *******

Chapter 16
Modifying a PDB at the Database Level

16-27

CREATE DATABASE LINK cdb2_datalink CONNECT TO c##u1 IDENTIFIED BY
pwd USING 'cdb2';

The preceding statement specifies user c##u1, password pwd, and service name
cdb2.

10. Set the container to cdb1_pdb1, and then switch over so that cdb1_pdb1_ref is the
primary PDB and the current PDB is the clone:

ALTER SESSION SET CONTAINER = cdb1_pdb1;
ALTER PLUGGABLE DATABASE
 REFRESH MODE MANUAL
 FROM cdb1_pdb1_ref@cdb2_datalink
 SWITCHOVER;

11. Query t1 to check that the current PDB, which is now the refreshable clone PDB,
contains the correct contents (sample output included):

ALTER PLUGGABLE DATABASE OPEN READ ONLY;
SELECT * FROM t1;

 N1

 1

12. Connect to cdb2 as a user with administrator privileges, set the container to the
new source PDB cdb1_pdb1_ref, and then insert a new row into table t1 (sample
output included):

CONNECT SYS@cdb2 AS SYSDBA
Enter password: *******

ALTER SESSION SET CONTAINER = cdb1_pdb1_ref;
SELECT * FROM t1;

 N1

 1

INSERT INTO t1 VALUES(2);
COMMIT;
SELECT * FROM t1;

 N1

 1
 2

13. Connect to cdb1 as a user with administrator privileges, set the container to
cdb1_pdb1 (which is the new clone), refresh it, and then query t1:

CONNECT SYS@cdb1 AS SYSDBA
Enter password: *******

Chapter 16
Modifying a PDB at the Database Level

16-28

ALTER SESSION SET CONTAINER = cdb1_pdb1;
ALTER PLUGGABLE DATABASE CLOSE IMMEDIATE;
ALTER PLUGGABLE DATABASE REFRESH;
ALTER PLUGGABLE DATABASE OPEN READ ONLY;
SELECT * FROM t1;

 N1

 1
 2

The preceding output shows that the clone cdb1_pdb1 was refreshed from the source
cdb1_pdb1_ref.

Modifying the Open Mode of PDBs
You can modify the open mode of a PDB by using the ALTER PLUGGABLE DATABASE SQL
statement or the SQL*Plus STARTUP command.

• About the Open Mode of a PDB
When a PDB is mounted, you can open it in read/write, read-only, hybrid read-only or
MIGRATE mode. You can also mount a PDB without opening it.

• Modifying the Open Mode of PDBs with ALTER PLUGGABLE DATABASE
You can modify the open mode of PDBs with the ALTER PLUGGABLE DATABASE statement
with a pdb_change_state clause.

• Setting Read-Only Access for a PDB User
You can set the access of a local user to a PDB to READ ONLY or READ WRITE with the
ALTER USER or CREATE USER statement.

• Preserving or Discarding the Open Mode of PDBs When the CDB Restarts
You can preserve the open mode of one or more PDBs when the CDB restarts by using
the ALTER PLUGGABLE DATABASE SQL statement with a pdb_save_or_discard_state
clause.

• Altering the Open Mode of a PDB Using STARTUP and SHUTDOWN
When the current container is a PDB, you can use the SQL*Plus STARTUP command to
open the PDB and the SQL*Plus SHUTDOWN command to close the PDB.

• Starting and Stopping PDBs in Oracle RAC
You can use SRVCTL commands to manage PDBs.

About the Open Mode of a PDB
When a PDB is mounted, you can open it in read/write, read-only, hybrid read-only or
MIGRATE mode. You can also mount a PDB without opening it.

• Summary of PDB Open Modes
Depending on the options that you specify in ALTER PLUGGABLE DATABASE OPEN, the PDB
opens in different modes.

• Opening a Pluggable Database in Hybrid Read-Only Mode
Hybrid Read Only open mode is a special open mode in which PDB operates as Read
Write as well as Read Only depending on which user is connected.

Chapter 16
Modifying the Open Mode of PDBs

16-29

• Clauses for Changing the Open State of PDBs
To change the open mode of a PDB when the current container is the CDB root,
specify the pdb_change_state clause of ALTER PLUGGABLE DATABASE.

• Compatibility Checks When a PDB Is Opened
When a PDB is opened, Oracle Database checks the compatibility of the PDB with
the CDB.

• How to Disable or Enable Replay Upgrade
By default, the Oracle Multitenant Replay Upgrade (Replay Upgrade) method is
enabled for upgrades on PDBs and CDBs. However, you can enable or disable the
use of the Replay Upgrade method.

Summary of PDB Open Modes
Depending on the options that you specify in ALTER PLUGGABLE DATABASE OPEN, the
PDB opens in different modes.

You can view the current open mode of PDBs by querying the V$PDBS.OPEN_MODE
column. The following table describes the possible PDB open modes.

Table 16-2 PDB Mount and Open Modes

Mode Description Notes

Read/Write When you run ALTER PLUGGABLE
DATABASE OPEN READ WRITE,
the PDB allows queries and user
transactions to proceed and allows
users to generate redo logs.

This is the default open mode
except when a PDB belongs to a
physical standby database.

If you specify the optional
RESTRICTED keyword, then the
PDB is accessible only to users
with the RESTRICTED SESSION
privilege in the PDB. If you also
specify FORCE, then all sessions
connected to the PDB that do not
have the RESTRICTED SESSION
privilege in the PDB are
terminated, and their transactions
are rolled back.

Read-Only When you run ALTER PLUGGABLE
DATABASE OPEN READ ONLY, the
PDB allows queries but not user
changes.

This is the default open mode
when a PDB belongs to a physical
standby database.

Database administrators can
create, modify, or drop common
users and roles in the CDB. The
CDB applies these changes to the
PDB when its open mode is
changed to read/write mode.
Before the changes are applied,
descriptions of common users and
roles in the PDB might be different
from the descriptions in the rest of
the CDB.

If you specify the optional
RESTRICTED keyword, then the
PDB is accessible only to users
with the RESTRICTED SESSION
privilege in the PDB. If you also
specify FORCE, then all sessions
connected to the PDB that do not
have the RESTRICTED SESSION
privilege in the PDB are
terminated, and their transactions
are rolled back.

Chapter 16
Modifying the Open Mode of PDBs

16-30

Table 16-2 (Cont.) PDB Mount and Open Modes

Mode Description Notes

Hybrid Read-only When you run ALTER PLUGGABLE
DATABASE OPEN HYBRID READ
ONLY, the PDB allows common
users to issuing DML and user
transactions to proceed and allows
these users to generate redo logs.

Common users shall successfully
execute DDL, DML and DCL
statements.

Both Common and Local users
shall successfully execute DQL
statements (Queries and any other
Read operations)

Local users shall fail to execute
DDL, DML and DCL statements.
Any Write operation by Local user
shall fail

Migrate When you run ALTER PLUGGABLE
DATABASE OPEN UPGRADE, the
PDB is in MIGRATE mode. You can
run database upgrade scripts on
the PDB.

If you specify the optional
RESTRICTED keyword, then the
PDB is accessible only to users
with the RESTRICTED SESSION
privilege in the PDB.

Mounted When you run ALTER PLUGGABLE
DATABASE CLOSE in an open PDB,
then the PDB is mounted. The
PDB does not allow changes to
any objects. In this state, the PDB
is accessible only to database
administrators. The PDB cannot
read from or write to data files.
Information about the PDB is
removed from memory caches.
Consistent backups of the PDB are
supported.

Database administrators can
create, modify, or drop common
users and roles in the CDB. The
CDB applies these changes to the
PDB when its open mode is
changed to read/write mode.
Before the changes are applied,
descriptions of common users and
roles in the PDB might be different
from the descriptions in the rest of
the CDB.

See Also:

Oracle Database SQL Language Reference to learn more about the ALTER
PLUGGABLE DATABASE OPEN command

Important:

Do not set the PDB state in Oracle Real Application Clusters (Oracle RAC)
deployments. Setting the PDB state for Oracle RAC conflicts with the database
agent running PDB open/close operations.

Opening a Pluggable Database in Hybrid Read-Only Mode
Hybrid Read Only open mode is a special open mode in which PDB operates as Read Write
as well as Read Only depending on which user is connected.

Chapter 16
Modifying the Open Mode of PDBs

16-31

Opening a pluggable database in hybrid read-only mode enables you to query an open
database while eliminating any potential for online data content changes.

• When a CDB Common user connects to a PDB open in Hybrid Read Only mode,
the PDB appears to be open in Read Write mode. Write to PDB would be
permitted to Common user.

• When a PDB Local user or Application Common user connects to that PDB, it
appears to be open in Read Only mode.

The benefit of using the hybrid read-only mode is that it enables database and
application administrators to patch and maintain an application in a safe mode for
open PDBs without the risk of local users, including higher privileged ones, interfering
with the ongoing maintenance operation of the PDB.

The following statement opens a database in read-only mode:

ALTER DATABASE OPEN HYBRID READ ONLY;

Table 16-3 Effective Open Mode in User Session

Open Mode Effective open mode
in user session -
CDB common user

Effective open mode
in user session -
Application common
use

Effective open mode
in user session -
PDB local user

Read Write Read Write Read Write Read Write

Read Only Read Only Read Only Read Only

Hybrid Read Only Read Write Read Only Read Only

See Also:

Oracle Database SQL Language Reference for more information about the
ALTER PLUGGABLE DATABASE statement

Clauses for Changing the Open State of PDBs
To change the open mode of a PDB when the current container is the CDB root,
specify the pdb_change_state clause of ALTER PLUGGABLE DATABASE.

• OPEN and CLOSE Clauses
READ WRITE is the default for ALTER PLUGGABLE DATABASE OPEN unless a PDB
being opened belongs to a CDB used as a physical standby database, in which
case READ ONLY is the default.

• SERVICES Clause
You can use the services clause to specify the services that are started when a
single PDB is opened.

• INSTANCES Clause
In an Oracle RAC CDB, you can use the instances clause to specify the instances
on which the PDB is modified.

Chapter 16
Modifying the Open Mode of PDBs

16-32

https://docs.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/21/multi&id=SQLRF008

• The RELOCATE Clause
In an Oracle Real Application Clusters environment, use RELOCATE to instruct the
database to reopen the PDB on a different Oracle RAC instance.

• To Set the Priority of a PDB
Use the ALTER PLUGGABLE DATABASE <databasename> Priority <value> set the
priority.

OPEN and CLOSE Clauses
READ WRITE is the default for ALTER PLUGGABLE DATABASE OPEN unless a PDB being opened
belongs to a CDB used as a physical standby database, in which case READ ONLY is the
default.

Note:

Note:

When a priority is set for any of the PDBs The PDBs will open in priority order the
lowest priority (1) going first.

When you specify PDBs to open or close, you can do the following:

• List one or more PDBs.

• Specify ALL to modify all PDBs.

• Specify ALL EXCEPT to modify all PDBs, except for the PDBs listed.

The following table describes the clauses of the ALTER PLUGGABLE DATABASE statement that
modify the mode of a PDB.

Table 16-4 ALTER PLUGGABLE DATABASE Clauses That Modify the Mode of a PDB

Clause Description

OPEN READ WRITE
[RESTRICTED] [FORCE]

Opens the PDB in read/write mode.

When RESTRICTED is specified, the PDB is accessible only to users with
RESTRICTED SESSION privilege in the PDB. All sessions connected to the PDB
that do not have RESTRICTED SESSION privilege on it are terminated, and their
transactions are rolled back.

When FORCE is specified, the statement opens a PDB that is currently closed
and changes the open mode of a PDB that is in open read-only mode.

OPEN READ
ONLY[RESTRICTED] [FORCE]

Opens the PDB in read-only mode.

When RESTRICTED is specified, the PDB is accessible only to users with
RESTRICTED SESSION privilege in the PDB. All sessions connected to the PDB
that do not have RESTRICTED SESSION privilege on it are terminated.

When FORCE is specified, the statement opens a PDB that is currently closed
and changes the open mode of a PDB that is in open read/write mode.

OPEN HYBRID READ ONLY
[RESTRICTED][FORCE]

Opens the PDB in hybrid read-only mode

Chapter 16
Modifying the Open Mode of PDBs

16-33

Table 16-4 (Cont.) ALTER PLUGGABLE DATABASE Clauses That Modify the Mode of a PDB

Clause Description

OPEN UPGRADE [RESTRICTED] Opens the PDB in migrate mode.

When RESTRICTED is specified, the PDB is accessible only to users with
RESTRICTED SESSION privilege in the PDB.

CLOSE [IMMEDIATE|ABORT] Places the PDB in mounted mode.

The CLOSE statement is the PDB equivalent of the SQL*Plus SHUTDOWN
command. If you do not specify IMMEDIATE or ABORT, then the PDB is shut
down with the normal mode.

When IMMEDIATE is specified, this statement is the PDB equivalent of the
SQL*Plus SHUTDOWN IMMEDIATE command.

If the CDB is in ARCHIVELOG mode, and if ABORT is specified, then the PDB is
forcefully closed. The PDB data files are not checkpointed or accessed during
this process. If other instances have the PDB open, then an available instance
performs instance recovery automatically. During this time, access to the PDB
on other instances may observe a brown-out time. If no instance has the PDB
open, then the next PDB open may cause automatic media recovery. If
automatic media recovery fails (for example, because of inaccessible files), then
you must manually recover the PDB before opening it.

If the PDB keystore was in an open state, then ALTER PLUGGABLE DATABASE
CLOSE does not close it. To close the keystore, run the ADMINISTER KEY
MANAGEMENT SET KEYSTORE CLOSE IDENTIFIED BY "pdb_ks_pwd"
command.

SERVICES Clause
You can use the services clause to specify the services that are started when a single
PDB is opened.

The clause has the following variations:

• List one or more services in the services clause in the following form:

SERVICES = ('service_name' [,'service_name'] …)

• Specify ALL in the services clause to start all PDB’s services, as in the following
example:

SERVICES = ALL

• Specify ALL EXCEPT in the services clause to start all PDB’s services, except for
the services listed, in the following form:

SERVICES = ALL EXCEPT('service_name' [,'service_name'] …)

• Specify NONE in the services clause to start only the PDB’s default service and
none of the other PDB’s services, as in the following example:

SERVICES = NONE

Chapter 16
Modifying the Open Mode of PDBs

16-34

NONE is the default setting for the services clause. A PDB’s default service is always
started, regardless of the setting for the services clause.

INSTANCES Clause
In an Oracle RAC CDB, you can use the instances clause to specify the instances on which
the PDB is modified.

You can close a PDB in some instances and leave it open in others. The instances clause
has the following variations:

• List one or more instances in the instances clause in the following form:

INSTANCES = ('instance_name' [,'instance_name'] …)

• Specify ALL in the instances clause to modify the PDB in all running instances, as in the
following example:

INSTANCES = ALL

• Specify ALL EXCEPT in the instances clause to modify the PDB in all instances, except for
the instances listed, in the following form:

INSTANCES = ALL EXCEPT('instance_name' [,'instance_name'] …)

The RELOCATE Clause
In an Oracle Real Application Clusters environment, use RELOCATE to instruct the database to
reopen the PDB on a different Oracle RAC instance.

You can use the following options:

• Specify NORELOCATE, the default, to close the PDB in the current instance.

• Specify RELOCATE TO and specify an instance name to reopen the PDB in the specified
instance.

• Specify RELOCATE to reopen the PDB on a different instance that is selected by Oracle
Database.

Note:

If both the services clause and the instances clause are specified in the same ALTER
PLUGGABLE DATABASE statement, then the specified services are started on the
specified instances.

To Set the Priority of a PDB
Use the ALTER PLUGGABLE DATABASE <databasename> Priority <value> set the priority.

PDB priority concept is introduced in Oracle Databse 23ai for different operations, including
open, state restoration and upgrade.

Chapter 16
Modifying the Open Mode of PDBs

16-35

Note: the PRIORITY clause was introduced in Oracle Database12cR2 to enable you
to specify a priority for upgrading PDBs (ALTER PLUGGABLE DATABASE xxx
UPGRADE PRIORITY n;). This syntax was documented in the Oracle Database
Upgrade Guide.

To manage different kinds of PDBs, the following ordering rules are applied:

• PDBs are processed in an ascending order of priority. A PDB with a lower priority
value will be processed before a PDB with a higher priority value.

• PDBs with the same priority may be processed in any order. However, if App
PDBs and the App Root have the same priority or have no priority, App PDBs will
still be opened after the App Root.- PDBs have no priority are considered to be the
lowest priority.

• PDB priority for a given PDB is applicable to all RAC instances, i.e, priority is NOT
specific to a given RAC instance.

• Priority will not be copied from source PDB to target PDB by plug/unplug or
refreshable clone.

• App PDBs cannot have a higher priority than App Root.

• App Root Clones have the same priority as App Roots, and cannot be explicitly
given a PDB priority.

• CDB$ROOT and PDB$SEED are exempt for PDB priority, their priority is
determined internally by Oracle RDBMS.

The priority is determined by the integer value assigned. A priority of 1 being the first
PDB opened or upgraded, followed by other PDBs in ascending priority order. If no
priority is assigned all PDBs can be processed in any order. All PDBs with the same
priority will be processed in any order.

ALTER PLUGGABLE DATABASE <PDB name> PRIORITY <value>

where

• PDB name is required

• PRIORITY <value> - <value> is an integer between 1 and 4096

How priority affects the behavior the following statements

• ALTER PLUGGABLE DATABASE x OPEN ...

• ALTER PLUGGABLE DATABASE x CLOSE ...

• ALTER PLUGGABLE DATABASE x SAVE STATE ...

Where x is ALL or a list of PDBs or the ALL EXCEPT clause - basically any syntax that
specifies more than one PDB.

When a OPEN statement applies to more than one PDB, the priority ordering rules are
applied.

Compatibility Checks When a PDB Is Opened
When a PDB is opened, Oracle Database checks the compatibility of the PDB with the
CDB.

Opening a PDB upgrades it automatically when a version mismatch occurs between
the PDB and the CDB root. The Replay Upgrade on PDB Open optimization, which is

Chapter 16
Modifying the Open Mode of PDBs

16-36

the default, avoids manual error correction by re-executing statements stored in capture
tables. The mechanism is the same used in application synchronization. Oracle Database
21c uses Replay Upgrade on PDB Open in the following scenarios:

• You plug in a PDB that was unplugged from a CDB in a previous release. When the PDB
is opened, the database automatically performs a Replay Upgrade.

• A CDB from a previous release was upgraded to Oracle Database 21c, but a PDB in the
CDB was not upgraded. If you open this PDB without the OPEN UPGRADE option, then the
CDB automatically performs a Replay Upgrade of the PDB.

The Replay Upgrade on PDB Open feature requires that database properties
PDB_UPGRADE_SYNC and UPGRADE_PDB_ON_OPEN be set to the default value of true. If either
property is false, then a classic upgrade is required before you can open the PDB. If a
problem occurs during replay upgrade or classic upgrade, then the CDB records a
compatibility violation.

A compatibility violation is either of the following:

• Warning

The database records the warning in the alert log, and then opens the PDB normally
without displaying a warning message.

• Error

The database displays a message when the PDB is opened stating that the PDB was
altered with errors, and records the errors in the alert log. You must correct the condition
that caused each error. When there are errors, the PDB is opened, but access to the
PDB is limited to users with RESTRICTED SESSION privilege so that the compatibility
violations can be addressed. You can view descriptions of violations by querying the
PDB_PLUG_IN_VIOLATIONS view.

See Also:

• "Modifying the Open Mode of PDBs" to learn how to modify the open mode of
one or more PDBs when the current container is the root

• Oracle Database Reference to learn about the PDB_PLUG_IN_VIOLATIONS view

How to Disable or Enable Replay Upgrade
By default, the Oracle Multitenant Replay Upgrade (Replay Upgrade) method is enabled for
upgrades on PDBs and CDBs. However, you can enable or disable the use of the Replay
Upgrade method.

To disable the Parallel Upgrade Utility (catctl.pl) default of performing a Replay Upgrade,
run the following command, on either CDB$ROOT or a particular PDB:

ALTER DATABASE UPGRADE SYNC OFF

To re-enable the Replay Upgrade behavior, enter the following command

ALTER DATABASE UPGRADE SYNC ON

Chapter 16
Modifying the Open Mode of PDBs

16-37

You can also select a non-replay upgrade by setting the Parallel Upgrade Utility
(catctl.pl) parameter -t, which forces a non-replay upgrade that uses the classic
scripting method.

Note:

You can manage use of the Replay Upgrade method on the entire CDB, or
on individual PDBs, depending on whether you are connected to CDB$ROOT,
or to a particular PDB:

• If UPGRADE SYNC is set to OFF in CDB$ROOT, then the Replay Upgrade
method is not used for any PDBs plugged into the CDB.

• If UPGRADE SYNC is set to ON in CDB$ROOT, but set to OFF for a PDB, then
the Replay Upgrade method is not used for the PDB where UPGRADE
SYNC is OFF, but the Replay Upgrade method is used for all other PDBs
plugged into the CDB.

• If UPGRADE SYNC is set to ON in CDB$ROOT, and set to ON for all PDBs (the
default), then the Replay Upgrade method is used for all PDBs plugged
into the CDB.

Modifying the Open Mode of PDBs with ALTER PLUGGABLE
DATABASE

You can modify the open mode of PDBs with the ALTER PLUGGABLE DATABASE
statement with a pdb_change_state clause.

Prerequisites

To change the open mode of PDBs with the ALTER PLUGGABLE DATABASE statement,
you must meet the following prerequisites:

• The current user must have one of the following administrative privileges, which
must be either commonly granted or locally granted in the PDB:

– SYSDBA, exercised using AS SYSDBA at connect time

– SYSOPER, exercised using AS SYSOPER at connect time

– SYSBACKUP, exercised using SYSBACKUP at connect time

– SYSDG, exercised using AS SYSDG at connect time

Note:

You can modify the open mode of a PDB when the current container is
the PDB.

• When RESTRICTED SESSION is enabled, you must specify RESTRICTED when a PDB
is opened.

Chapter 16
Modifying the Open Mode of PDBs

16-38

• In an Oracle RAC CDB, if a PDB is open in one or more Oracle RAC instances, then it
can be opened in additional instances. However, the PDB must be opened in the same
mode as in the instances in which it is already open. A PDB can be closed in some
instances and opened on others.

To place PDBs in a target mode with the ALTER PLUGGABLE DATABASE statement, you must
meet the requirements described in the following table.

Table 16-5 Modifying the Open Mode of PDBs with ALTER PLUGGABLE DATABASE

Target Mode
of PDBs

ALL
Keyword
Included

FORCE
Keyword
Included

Required Mode for the Root Required Mode for Each PDB
Being Modified

Read/write Yes Yes Read/write Mounted, read-only, or read/
write

Read/write Yes No Read/write Mounted or read/write

Read/write No Yes Read/write Mounted, read-only, or read/
write

Read/write No No Read/write Mounted

Read-only Yes Yes Read-only or read/write Mounted, read-only, or read/
write

Read-only Yes No Read-only or read/write Mounted or read-only

Read-only No Yes Read-only or read/write Mounted, read-only, or read/
write

Read-only No No Read-only or read/write Mounted

Hybrid Read-
only

Yes Yes Read-only or read/write

Hybrid Read-
only

Yes No Read-only or read/write Mounted, read-only, or read/
write

Hybrid Read-
only

No Yes Read-only or read/write Mounted or read-only

Hybrid Read-
only

No No Read-only or read/write Mounted, read-only, or read/
write

Migrate Yes Not applicable Read-only or read/write Mounted

Migrate No Not applicable Read-only or read/write Mounted

Mounted Yes Not applicable Read-only or read/write Mounted, read-only, migrate, or
read/write

Mounted No Not applicable Read-only or read/write Read-only, migrate, or read/write

To modify the open mode:

1. In SQL*Plus, ensure that the current container is the root.

See "About Container Access in a CDB".

2. Run an ALTER PLUGGABLE DATABASE statement with a pdb_change_state clause.

Chapter 16
Modifying the Open Mode of PDBs

16-39

Example 16-25 Changing the Open Mode of Listed PDBs

This statement changes the open mode of PDBs salespdb and hrpdb to open in read/
write mode.

ALTER PLUGGABLE DATABASE salespdb, hrpdb
 OPEN READ WRITE;

This statement changes the open mode of PDB salespdb to open in read-only mode.
RESTRICTED specifies that the PDB is accessible only to users with RESTRICTED
SESSION privilege in the PDB.

ALTER PLUGGABLE DATABASE salespdb
 OPEN READ ONLY RESTRICTED;

This statement changes the open mode of PDB salespdb to open in migrate mode:

ALTER PLUGGABLE DATABASE salespdb
 OPEN UPGRADE;

Example 16-26 Changing the Open Mode of All PDBs

Run the following query to display the open mode of each PDB associated with a
CDB:

SELECT NAME, OPEN_MODE FROM V$PDBS WHERE CON_ID > 2;

NAME OPEN_MODE
------------------------------ ----------
HRPDB READ WRITE
SALESPDB MOUNTED
DWPDB MOUNTED

Notice that hrpdb is already in read/write mode. To change the open mode of salespdb
and dwpdb to open in read/write mode, use the following statement:

ALTER PLUGGABLE DATABASE ALL
 OPEN READ WRITE;

The hrpdb PDB is not modified because it is already in open read/write mode. The
statement does not return an error because two PDBs are in mounted mode and one
PDB (hrpdb) is in the specified mode (read/write). Similarly, the statement does not
return an error if all PDBs are in mounted mode.

However, if any PDB is in read-only mode, then the statement returns an error. To
avoid an error and open all PDBs in the CDB in read/write mode, specify the FORCE
keyword:

ALTER PLUGGABLE DATABASE ALL
 OPEN READ WRITE FORCE;

Chapter 16
Modifying the Open Mode of PDBs

16-40

With the FORCE keyword included, all PDBs are opened in read/write mode, including PDBs in
read-only mode.

Example 16-27 Changing the Open Mode of All PDBs Except for Listed Ones

This statement changes the mode of all PDBs except for salespdb and hrpdb to mounted
mode.

ALTER PLUGGABLE DATABASE ALL EXCEPT salespdb, hrpdb
 CLOSE IMMEDIATE;

Note:

An ALTER PLUGGABLE DATABASE statement modifying the open mode of a PDB is
instance-specific. Therefore, if this statement is issued when connected to an
Oracle RAC instance, then it affects the open mode of the PDB only in that
instance.

See Also:

• "Clauses for Changing the Open State of PDBs"

• "Modifying a PDB at the Database Level" for information about modifying the
other attributes of a PDB

• Oracle Database Administrator’s Guide for information about database modes
and their uses

• Oracle Database SQL Language Reference

• Oracle Database Concepts for more information about shutdown modes

Setting Read-Only Access for a PDB User
You can set the access of a local user to a PDB to READ ONLY or READ WRITE with the ALTER
USER or CREATE USER statement.

To set read-only access for a PDB user

You can set read-only access to a PDB user using the READ ONLY clause in ALTER USER or
CREATE USER statements. After read-only access is enabled for a PDB user, whenever that
user connects to the PDB, the session operates as if the database is open in read-only mode
and the user cannot perform any write operation. This statement can be executed by anyone
with the ALTER USER or CREATE USER privilege. Note that you can view the state of a local user
in the *_USERS view.

Chapter 16
Modifying the Open Mode of PDBs

16-41

Example 16-28 Enabling Read-Only Access for a PDB User

To enable read-only access for a PDB local user, use the ALTER USER statement with
the READ ONLY clause. You can use the READ ONLY clause with the CREATE USER
statement also.

alter user user1 read only;

Example 16-29 Revoking Read-Only Access for a PDB User with the READ
WRITE Clause

To revoke read-only access for a PDB local user, use the ALTER USER statement with
the READ WRITE clause.

alter user user1 read write;

Example 16-30 Setting Read-Only Access for a PDB User with the CREATE USER
Clause

To set read-only access for a PDB local user, you can also use the READ ONLY clause
with the CREATE USER statement.

create user u1 identified by u1 read only;

See Also:

• CREATE USER

• ALTER USER

• About Privileges and Roles

• Configuring Hybrid Read-Only Users

Preserving or Discarding the Open Mode of PDBs When the CDB
Restarts

You can preserve the open mode of one or more PDBs when the CDB restarts by
using the ALTER PLUGGABLE DATABASE SQL statement with a
pdb_save_or_discard_state clause.

You can do this in the following way:

• Specify SAVE STATE to preserve the PDBs' mode when the CDB is restarted.

For example, if a PDB is in open read/write mode before the CDB is restarted,
then the PDB is in open read/write mode after the CDB is restarted; if a PDB is in
mounted mode before the CDB is restarted, then the PDB is in mounted mode
after the CDB is restarted.

Chapter 16
Modifying the Open Mode of PDBs

16-42

• Specify DISCARD STATE to ignore the PDBs' open mode when the CDB is restarted.

When DISCARD STATE is specified for a PDB, the PDB is always mounted after the CDB is
restarted.

You can specify which PDBs to modify in the following ways:

• List one or more PDBs.

• Specify ALL to modify all PDBs.

• Specify ALL EXCEPT to modify all PDBs, except for the PDBs listed.

For an Oracle RAC CDB, you can use the instances clause in the
pdb_save_or_discard_state clause to specify the instances on which a PDB's open mode is
preserved in the following ways:

• List one or more instances in the instances clause in the following form:

INSTANCES = ('instance_name' [,'instance_name'] …)

• Specify ALL in the instances clause to modify the PDB in all running instances, as in the
following example:

INSTANCES = ALL

• Specify ALL EXCEPT in the instances clause to modify the PDB in all instances, except for
the instances listed, in the following form:

INSTANCES = ALL EXCEPT('instance_name' [,'instance_name'] …)

For a PDB in an Oracle RAC CDB, SAVE STATE and DISCARD STATE only affect the mode of
the current instance. They do not affect the mode of other instances, even if more than one
instance is specified in the instances clause.

To issue an ALTER PLUGGABLE DATABASE SQL statement with a pdb_save_or_discard_state
clause, the current user must have the ALTER DATABASE privilege in the root.

You can check the saved states for the PDBs in a CDB by querying the
DBA_PDB_SAVED_STATES view.

To preserve or discard a PDB's open mode when the CDB restarts:

1. In SQL*Plus, ensure that the current container is the root.

See "About Container Access in a CDB".

2. Run an ALTER PLUGGABLE DATABASE statement with a pdb_save_or_discard_state clause.

The following examples either preserve or discard the open mode of one or more PDBs when
the CDB restarts.

Example 16-31 Preserving the Open Mode of a PDB When the CDB Restarts

This statement preserves the open mode of the salespdb when the CDB restarts.

ALTER PLUGGABLE DATABASE salespdb SAVE STATE;

Chapter 16
Modifying the Open Mode of PDBs

16-43

Example 16-32 Discarding the Open Mode of a PDB When the CDB Restarts

This statement discards the open mode of the salespdb when the CDB restarts.

ALTER PLUGGABLE DATABASE salespdb DISCARD STATE;

Example 16-33 Preserving the Open Mode of All PDBs When the CDB Restarts

This statement preserves the open mode of all PDBs when the CDB restarts.

ALTER PLUGGABLE DATABASE ALL SAVE STATE;

Example 16-34 Preserving the Open Mode of Listed PDBs When the CDB
Restarts

This statement preserves the open mode of the salespdb and hrpdb when the CDB
restarts.

ALTER PLUGGABLE DATABASE salespdb, hrpdb SAVE STATE;

Example 16-35 Preserving the Open Mode of All PDBs Except for Listed Ones
When the CDB Restarts

This statement preserves the open mode of all PDBs except for salespdb and hrpdb.

ALTER PLUGGABLE DATABASE ALL EXCEPT salespdb, hrpdb SAVE STATE;

Altering the Open Mode of a PDB Using STARTUP and SHUTDOWN
When the current container is a PDB, you can use the SQL*Plus STARTUP command to
open the PDB and the SQL*Plus SHUTDOWN command to close the PDB.

• About Modifying the Open Mode of PDBs with the SQL*Plus STARTUP Command
When the current container is the root, the STARTUP PLUGGABLE DATABASE
command can open a single PDB.

• Starting Up a PDB Using the STARTUP Command
When the current container is a PDB, the SQL*Plus STARTUP command opens the
PDB.

• Modifying the Open Mode of PDBs with the SQL*Plus STARTUP Command
You can use the STARTUP PLUGGABLE DATABASE command to open a single PDB.

• Shutting Down a PDB Using the SHUTDOWN Command
When the current container is a PDB, the SQL*Plus SHUTDOWN command closes
the PDB.

About Modifying the Open Mode of PDBs with the SQL*Plus STARTUP
Command

When the current container is the root, the STARTUP PLUGGABLE DATABASE command
can open a single PDB.

Chapter 16
Modifying the Open Mode of PDBs

16-44

Use the following options of the STARTUP PLUGGABLE DATABASE command to open a PDB:

• FORCE
Closes an open PDB before re-opening it in read/write mode. When this option is
specified, no other options are allowed.

• RESTRICT
Enables only users with the RESTRICTED SESSION system privilege in the PDB to access
the PDB.

If neither OPEN READ WRITE nor OPEN READ ONLY is specified, then the PDB is opened in
read-only mode when the CDB to which it belongs is a physical standby database.
Otherwise, the PDB is opened in read/write mode.

• OPEN open_pdb_options

Opens the PDB in either read/write mode or read-only mode. You can specify OPEN READ
WRITE or OPEN READ ONLY. When you specify OPEN without any other options, READ WRITE
is the default.

The following prerequisites must be met:

• The current user must have SYSDBA, SYSOPER, SYSBACKUP, or SYSDG administrative
privilege, and the privilege must be either commonly granted or locally granted in the
PDB. The user must exercise the privilege using AS SYSDBA, AS SYSOPER, AS SYSBACKUP,
or AS SYSDG, respectively, at connect time.

• When RESTRICTED SESSION is enabled, RESTRICT must be specified when a PDB is
opened.

In addition, to place PDBs in a target mode with the STARTUP PLUGGABLE DATABASE command,
you must meet the requirements described in the following table.

Table 16-6 Modifying the Open Mode of a PDB with STARTUP PLUGGABLE DATABASE

Target Mode of the PDB FORCE Option Included Required Mode for the
Root

Required Mode of the
PDB Being Modified

Read/write Yes Read/write Mounted, read-only, or
read/write

Read/write No Read/write Mounted

Read-only No Read-only or read/write Mounted

Note:

You can also use the STARTUP command to modify the open mode of a PDB when
the current container is the PDB.

Chapter 16
Modifying the Open Mode of PDBs

16-45

See Also:

• "Starting Up a PDB Using the STARTUP Command"

• "Modifying the Open Mode of PDBs with the SQL*Plus STARTUP
Command"

Starting Up a PDB Using the STARTUP Command
When the current container is a PDB, the SQL*Plus STARTUP command opens the
PDB.

Use the following options of the STARTUP command to open a PDB:

• FORCE
Closes an open PDB before re-opening it in read/write mode. When this option is
specified, no other options are allowed.

• RESTRICT
Enables only users with the RESTRICTED SESSION system privilege in the PDB to
access the PDB.

If neither OPEN READ WRITE nor OPEN READ ONLY is specified and RESTRICT is
specified, then the PDB is opened in read-only mode when the CDB to which it
belongs is a physical standby database. Otherwise, the PDB is opened in read/
write mode.

• OPEN open_pdb_options
Opens the PDB in either read/write mode or read-only mode. Specify OPEN READ
WRITE or OPEN READ ONLY. When RESTRICT is not specified, READ WRITE is always
the default.

To issue the STARTUP command when the current container is a PDB, the following
prerequisites must be met:

• The current user must have SYSDBA, SYSOPER, SYSBACKUP, or SYSDG administrative
privilege, and the privilege must be either commonly granted or locally granted in
the PDB. The user must exercise the privilege using AS SYSDBA, AS SYSOPER, AS
SYSBACKUP, or AS SYSDG, respectively, at connect time.

• Excluding the use of the FORCE option, the PDB must be in mounted mode to open
it.

• To place a PDB in mounted mode, the PDB must be in open read-only or open
read/write mode.

To modify a PDB with the STARTUP command:

1. In SQL*Plus, ensure that the current container is a PDB.

2. Run the STARTUP command.

Example 16-36 Opening a PDB in Read/Write Mode with the STARTUP
Command

STARTUP OPEN

Chapter 16
Modifying the Open Mode of PDBs

16-46

Example 16-37 Opening a PDB in Read-Only Mode with the STARTUP Command

STARTUP OPEN READ ONLY

Example 16-38 Opening a PDB in Read-Only Restricted Mode with the STARTUP
Command

STARTUP RESTRICT OPEN READ ONLY

Example 16-39 Opening a PDB in Read/Write Mode with the STARTUP Command and
the FORCE Option

This example assumes that the PDB is currently open. The FORCE option closes the PDB and
then opens it in the read/write mode.

STARTUP FORCE

See Also:

• "About the Current Container"

• "Connecting to a PDB".

• Oracle Database Administrator’s Guide for information about starting up a
database

• SQL*Plus User's Guide and Reference

Modifying the Open Mode of PDBs with the SQL*Plus STARTUP Command
You can use the STARTUP PLUGGABLE DATABASE command to open a single PDB.

To modify a PDB with the STARTUP PLUGGABLE DATABASE command:

1. In SQL*Plus, ensure that the current container is the root.

See "About Container Access in a CDB".

2. Run the STARTUP PLUGGABLE DATABASE command.

Note:

When the current container is the root, the SQL*Plus SHUTDOWN command always
shuts down the CDB instance. It cannot be used to close individual PDBs.

Example 16-40 Opening a PDB in Read/Write Mode with the STARTUP Command

STARTUP PLUGGABLE DATABASE hrpdb OPEN

Chapter 16
Modifying the Open Mode of PDBs

16-47

Example 16-41 Opening a PDB in Read/Write Restricted Mode with the
STARTUP Command

STARTUP PLUGGABLE DATABASE hrpdb RESTRICT

Example 16-42 Opening a PDB in Read-Only Restricted Mode with the
STARTUP Command

STARTUP PLUGGABLE DATABASE hrpdb OPEN READ ONLY RESTRICT

Example 16-43 Opening a PDB in Read-Only Mode with the STARTUP
Command

STARTUP PLUGGABLE DATABASE hrpdb OPEN READ ONLY

Example 16-44 Opening a PDB in Read/Write Mode with the STARTUP
Command and the FORCE Option

This example assumes that the hrpdb PDB is currently open. The FORCE option closes
the PDB and then opens it in the read/write mode.

STARTUP PLUGGABLE DATABASE hrpdb FORCE

See Also:

• "About Modifying the Open Mode of PDBs with the SQL*Plus STARTUP
Command"

• "Altering the Open Mode of a PDB Using STARTUP and SHUTDOWN"
for information about using the STARTUP or SHUTDOWN command when the
current container is a PDB

• Oracle Database Administrator’s Guide

• SQL*Plus User's Guide and Reference

Shutting Down a PDB Using the SHUTDOWN Command
When the current container is a PDB, the SQL*Plus SHUTDOWN command closes the
PDB.

After the SHUTDOWN command is issued on a PDB successfully, it is in mounted mode.

The following SHUTDOWN modes are possible:

• When you specify SHUTDOWN only, then the PDB is shut down with the normal
mode.

• When you specify SHUTDOWN IMMEDIATE, the PDB is shut down with the immediate
mode.

Chapter 16
Modifying the Open Mode of PDBs

16-48

• When you specify SHUTDOWN ABORT, the PDB is forcefully closed.

For a single-instance CDB, PDB media recovery is required when you specify SHUTDOWN
ABORT. For an Oracle Real Application Clusters (Oracle RAC) CDB, PDB media recovery
is required if the SHUTDOWN ABORT command closes the last open instance.

Note that if the PDB keystore was in an open state, then issuing SHUTDOWN at the PDB level
does not close it. To close the keystore, run the ADMINISTER KEY MANAGEMENT SET KEYSTORE
CLOSE IDENTIFIED BY "pdb_ks_pwd" command.

Prerequisites

To issue the SHUTDOWN command when the current container is a PDB, the following
prerequisites must be met:

• The current user must have SYSDBA, SYSOPER, SYSBACKUP, or SYSDG administrative
privilege, and the privilege must be either commonly granted or locally granted in the
PDB. The user must exercise the privilege using AS SYSDBA, AS SYSOPER, AS SYSBACKUP,
or AS SYSDG, respectively, at connect time.

• To close a PDB, the PDB must be open.

To modify a PDB with the SHUTDOWN command:

1. In SQL*Plus, ensure that the current container is a PDB.

2. Run the SHUTDOWN command.

Note:

• When the current container is a PDB, the SHUTDOWN command only closes the
PDB, not the CDB instance.

• There is no SHUTDOWN command for a PDB that is equivalent to SHUTDOWN
TRANSACTIONAL for a CDB.

Example 16-45 Closing a PDB with the SHUTDOWN IMMEDIATE Command

SHUTDOWN IMMEDIATE

See Also:

• "About the Current Container"

• "Connecting to a PDB"

• "Modifying the Open Mode of PDBs with ALTER PLUGGABLE DATABASE"

• Oracle Database Administrator’s Guide for more information about shutdown
modes

• SQL*Plus User's Guide and Reference

Chapter 16
Modifying the Open Mode of PDBs

16-49

Starting and Stopping PDBs in Oracle RAC
You can use SRVCTL commands to manage PDBs.

Note:

Starting with Oracle Database 21c, installation of non-CDB Oracle Database
architecture is no longer supported. The policy-managed database
deployment option is desupported in Oracle Database 23ai.

Starting with Oracle Database 21c, PDBs are a resource managed by Oracle
Clusterware. Consider a admin-managed CDB called raccont that has a PDB called
spark.

Note:

If you attempt to create the service without first creating the PDB, then you
will get an error message indicating you must create the PDB resource first.

If the spark PDB was created with cardinality set to 1, or 2, or ALL, then if you create a
service named plug for the PDB, the service can use the –cardinality argument, too.
If the spark PDB was created without specifying the -cardinality argument, then
new services you create for the PDB use the -preferred or -available arguments,
not the –cardinality argument.

Because PDBs are managed as an Oracle Clusterware resource, typical Oracle RAC-
based management practices apply. For this reason, if the PDB spark has AUTOMATIC
management policy, then the PDB is started when CDB starts. Similarly, if the PDB
spark is in the online state when Oracle Clusterware is shut down on a server hosting
this service and the management policy is set to MANUAL, then the PDB is restored to
its original state after the restart of Oracle Clusterware on this server. The default PDB
management policy is derived from the management policy of its CDB.

To start a Pluggable Database:

$ srvctl start pdb -db db_name -pdb pdb_name [-startoption
start_options]

To start a Pluggable Database on specific nodes:

$ srvctl start pdb -db db_name -pdb pdb_name -node node_list
 [-startoption start_options]

Chapter 16
Modifying the Open Mode of PDBs

16-50

To stop a PDB and all its services on all nodes within a database using the IMMEDIATE
option:

$ srvctl stop pdb -db db_name -pdb pdb_name -stopoption IMMEDIATE -
drain_timeout 0
 -stopsvcoption IMMEDIATE

To stop a Pluggable Database on specific nodes:

$ srvctl stop pdb -db db_name -pdb pdb_name -node node_list
 [-stopoption stop_options] [-stopsvcoption stop_service_options
 [-drain_timeout timeout]

If you do not want the spark PDB to restart when the Oracle RAC database is restarted on
all, or on a specific node, use the following command:

srvctl disable pdb -db raccont -pdb spark [-node node_name]

To view the status of the PDB service plug, use the following command:

srvctl status service -db raccont -service plug -verbose

To view the status of the PDB spark, use the following command:

srvctl status pdb -db raccont -pdb spark -detail

To modify the configuration of the PDB, use the following command:

srvctl modify pdb -db db_unique_name -pdb pdb_name
 [-cardinality {num_of_instances | ALL}]
 [-maxcpu max_cpu_usage] [-mincpuunit min_cpu_usage]
 [-rank rank] [-startoption start_options]
 [-stopoption stop_options] [-policy policy]

Note:

You can modify the -cardinality parameter only if you had set the -cardinality
parameter when creating the PDB.

Related Topics

• Oracle Real Application Clusters Administration and Deployment Guide

Chapter 16
Modifying the Open Mode of PDBs

16-51

17
Administering an Application Container

You can install and administer the applications installed in application containers.

Note:

You can complete the tasks in this chapter using SQL*Plus or Oracle SQL
Developer.

• Overview of Applications in an Application Container
Within an application container, an application is the named, versioned set of common
data and metadata stored in the application root.

• About Modifying an Application Root
The ALTER DATABASE statement can modify an application root. The ALTER PLUGGABLE
DATABASE statement can modify the open mode of application PDBs.

• Managing Applications in an Application Container
You install, upgrade, or patch an application in an application container.

• Managing Application Common Objects
Application common objects are shared, user-created database objects in an application
container. Application common objects are created in an application root.

• Issuing DML Statements on Containers in an Application Container
A DML statement issued in an application root can modify one or more containers in the
application container. In addition, you can specify one or more default container targets
for DML statements.

• Partitioning by PDB with Container Maps
Container maps enable the partitioning of data at the application PDB level when the data
is not physically partitioned at the table level.

• Viewing Information About Applications in Application Containers
Several views provide information about the applications in application containers in a
CDB.

Related Topics

• Creating and Removing Application Containers and Seeds
You can create application containers and application seeds in several different ways.
You can also remove application containers from a CDB, and you can remove application
seeds from application containers.

• Tools for a Multitenant Environment
You can use various tools to configure and administer a multitenant environment.

Overview of Applications in an Application Container
Within an application container, an application is the named, versioned set of common data
and metadata stored in the application root.

17-1

In the context of an application container, the term “application” means “master
application definition.” For example, the application might include definitions of tables,
views, and packages.

• About Application Container Administration
Some aspects of administering an application container are similar to
administering the CDB root and the CDB as a whole, while other aspects are
similar to administering a PDB.

• Application Maintenance
In this context, application maintenance refers to installing, uninstalling,
upgrading, or patching an application.

• Migration of an Existing Application
You can migrate an application that is installed in a PDB to either an application
root or to an application PDB.

• Implicitly Created Applications
In addition to user-created applications, application containers can also contain
implicitly created applications.

• Application Synchronization
Within an application PDB, synchronization is the user-initiated update of the
application to the latest version and patch in the application root.

About Application Container Administration
Some aspects of administering an application container are similar to administering
the CDB root and the CDB as a whole, while other aspects are similar to administering
a PDB.

Administering an application container is similar to administering a CDB because you
can manage both the application root and the application PDBs that are plugged into
the application root. However, administering an application container is also similar to
managing a PDB because changes to the application container do not affect other
application containers or PDBs in the CDB.

The following table describes administrative tasks for application containers that are
similar to administrative tasks that manage a CDB or CDB root.

Chapter 17
Overview of Applications in an Application Container

17-2

Table 17-1 Application Container Administrative Tasks Similar to Those of a CDB

Administrative Task Description More Information

Configuring application common
users and commonly granted
privileges

Application common users and
privileges are similar to common
users and commonly granted
privileges in a CDB root, but in
an application container,
common users and commonly
granted privileges only exist
within the containers of the
application container. These
containers include the
application root, application
PDBs that belong to the
application root, and an optional
application seed that belongs to
the application root.

Oracle Database Security Guide

Creating application containers A common user whose current
container is the CDB root can
create application containers that
are plugged into the CDB root by
specifying the AS APPLICATION
CONTAINER clause in the CREATE
PLUGGABLE DATABASE
statement. The database files
must be Oracle Managed Files.

"Creating Application Containers"

Creating application PDBs A common user whose current
container is the application root
can create application PDBs that
are plugged into the application
root.

"Creating PDBs and Application
Containers"

Switching to containers A common user with the proper
privileges can switch between
containers in an application
container, including the
application root, application
PDBs that belong to the
application root, and an optional
application seed that belongs to
the application root.

"Switching to a Container Using
the ALTER SESSION Statement"

Issuing ALTER SYSTEM SET
statements

The ALTER SYSTEM SET
statement can dynamically set
an initialization parameter in one
or more containers in an
application container.

"Modifying a CDB with ALTER
SYSTEM"

Issuing data definition language
(DDL) statements

In an application container, some
DDL statements can apply to all
containers in the application
container or to the current
container only.

"Modifying Application Common
Objects with DDL Statements"

The following table describes administrative tasks for application containers that are similar to
administrative tasks that manage a PDB.

Chapter 17
Overview of Applications in an Application Container

17-3

Table 17-2 Application Container Administrative Tasks Similar to Those of a
PDB

Administrative Task Description More Information

Connecting to the application
root

The application root has its
own service name, and users
can connect to the application
root in the same way that they
connect to a PDB. Similarly,
each application PDB has its
own service name, and the
application seed has its own
service name.

"Accessing a Container in a
CDB"

Issuing the ALTER
PLUGGABLE DATABASE
statement

An ALTER PLUGGABLE
DATABASE statement can
modify an application root,
application PDB, and
application seed in the same
way it modifies a PDB. For
example, an administrator can
open or close an application
root with an ALTER
PLUGGABLE DATABASE
statement.

"Modifying Containers When
Connected to the CDB Root"

"Modifying a PDB at the
Database Level"

Issuing the SQL*Plus
STARTUP and SHUTDOWN
commands

SQL*Plus STARTUP and
SHUTDOWN commands operate
on an application root,
application PDB, and
application seed in the same
way that they operate on a
PDB.

"Modifying the Open Mode of
PDBs"

Issuing the ALTER SYSTEM
statements

An ALTER SYSTEM statement
operates on an application
root, application PDB, and
application seed in the same
way that it operates on a PDB.

"Modifying a CDB with ALTER
SYSTEM"

"Modifying a PDB at the
System Level"

Managing tablespaces Administrators can create,
modify, and drop tablespaces
for an application root and for
application PDBs. Each
container has its own
tablespaces.

"About Managing Tablespaces
in a CDB"

Managing data files and temp
files

Administrators can create,
modify, and drop data files and
temp files for an application
root and for application PDBs.
Each container has its own
files.

Oracle Database
Administrator’s Guide for
information about managing
data files and temp files

Chapter 17
Overview of Applications in an Application Container

17-4

Table 17-2 (Cont.) Application Container Administrative Tasks Similar to Those
of a PDB

Administrative Task Description More Information

Managing schema objects You can create, modify, and
drop schema objects in an
application root and in each
application PDB in the same
way that you would in a PDB.
You can also create triggers
that fire for a specific
application root or application
PDB.

However, application
containers support application
common objects, which can be
shared between the containers
in an application container.
Application common objects
cannot be created in PDBs.

"Managing Application
Common Objects"

• Transparent Data Encryption and Application Containers
Best Practices to use TDE with Application Containers.

Transparent Data Encryption and Application Containers
Best Practices to use TDE with Application Containers.

Note:

If Transparent Data Encryption is enabled in the application root, then an external
password store must be configured."

If TDE is enabled in Application Root, then our recommendation is to configure a SEPS
(Secure External Password Store) keystore to store the password for the TDE wallet. If a
SEPS keystore is configured, then the APPLICATION BEGIN UPGRADE statement does not need
a KEYSTORE clause. The Application Root Clone will then be created with the KEYSTORE
IDENTIFIED BY EXTERNAL STORE clause.

If a SEPS keystore is not configured, then the APPLICATION BEGIN UPGRADE statement needs
to include a 'KEYSTORE IDENTIFIED BY <password>' clause, otherwise creation of the
Application Root Clone will fail. If the clause is specified, then the Application Root Clone will
be created with the 'KEYSTORE IDENTIFIED BY <password>' clause.

Whether or not a SEPS keystore is configured, the TDE wallet should always be configured
as an auto-login wallet. This is so that the wallet is opened automatically in Application Root
Clone on access. Without an auto-login wallet, customer does not have a way to open the
wallet in the Application Root Clone as SET CONTAINER to it and connections to it are
disallowed.

Chapter 17
Overview of Applications in an Application Container

17-5

Related Topics

• Transparent Data Encryption
Transparent Data Encryption enables encryption of database columns before
storing them in the data file, or enables encryption of entire tablespaces.

• A Secure External Password Store
Consider using client-side Oracle wallets to reduce exposing authentication and
signing credentials over networks.

Application Maintenance
In this context, application maintenance refers to installing, uninstalling, upgrading,
or patching an application.

An application must have a name and version number. This combination of properties
determines which maintenance operations you can perform. In all maintenance
operations, you perform the following steps:

1. Begin by executing the ALTER PLUGGABLE DATABASE ... APPLICATION statement
with the BEGIN INSTALL, BEGIN UPGRADE, or BEGIN PATCH clauses.

2. Execute statements to alter the application.

3. End by executing the ALTER PLUGGABLE DATABASE ... APPLICATION statement
with the END INSTALL, END UPGRADE, or END PATCH clauses.

As the application evolves, the application container maintains all versions and patch
changes.

Note:

"About Application Management"

• About Application Maintenance
Perform application installation, upgrade, and patching operations using an ALTER
PLUGGABLE DATABASE APPLICATION statement.

• Application Installation
An application installation is the initial creation of a master application definition.
A typical installation creates user accounts, tables, and PL/SQL packages.

• Application Upgrade
An application upgrade is a major change to an installed application.

• Application Patch
An application patch is a minor change to an application.

About Application Maintenance
Perform application installation, upgrade, and patching operations using an ALTER
PLUGGABLE DATABASE APPLICATION statement.

The basic steps for application maintenance are as follows:

1. Log in to the application root.

Chapter 17
Overview of Applications in an Application Container

17-6

2. Begin the operation with an ALTER PLUGGABLE DATABASE APPLICATION ... BEGIN
statement in the application root.

3. Execute the application maintenance statements.

4. End the operation with an ALTER PLUGGABLE DATABASE APPLICATION ... END statement.

Perform the maintenance using scripts, SQL statements, or GUI tools.

See Also:

"About Application Management"

Application Installation
An application installation is the initial creation of a master application definition. A typical
installation creates user accounts, tables, and PL/SQL packages.

To install the application, specify the following in the ALTER PLUGGABLE DATABASE
APPLICATION statement:

• Name of the application

• Application version number

Example 17-1 Installing an Application

This example assumes that you are logged in to the application container named
saas_sales_ac as. The example installs an application named saas_sales_app at version
1.0. Note that you specify the version with a string rather than a number. The application
creates an application common user named saas_sales_adm, grants necessary privileges,
and then connects to the application root as this user. This user creates a metadata-linked
table named sales_mlt.

-- Begin the install of saas_sales_app
ALTER PLUGGABLE DATABASE APPLICATION saas_sales_app BEGIN INSTALL '1.0';

-- Create the tablespace for the app
CREATE TABLESPACE saas_sales_tbs DATAFILE SIZE 100M AUTOEXTEND ON NEXT 10M
MAXSIZE 200M;

-- Create the user account saas_sales_adm, which will own the application
CREATE USER saas_sales_adm IDENTIFIED BY manager CONTAINER=ALL;

-- Grant necessary privileges to this user account
GRANT CREATE SESSION, DBA TO saas_sales_adm;

-- Make the tablespace that you just created the default for saas_sales_adm
ALTER USER saas_sales_adm DEFAULT TABLESPACE saas_sales_tbs;

-- Now connect as the application owner
CONNECT saas_sales_adm/manager@saas_sales_ac

-- Create a metadata-linked table

Chapter 17
Overview of Applications in an Application Container

17-7

CREATE TABLE saas_sales_adm.sales_mlt SHARING=METADATA
(YEAR NUMBER(4),
 REGION VARCHAR2(10),
 QUARTER VARCHAR2(4),
 REVENUE NUMBER);

-- End the application installation
ALTER PLUGGABLE DATABASE APPLICATION saas_sales_app END INSTALL '1.0';

PDB synchronization is the user-initiated update of an application PDB with the
application in the application root. After you synchronize the application PDBs with the
saas_sales_app application, each application PDB will contain an empty table named
products_mlt. An application can connect to an application PDB, and then insert
PDB-specific rows into this table.

See Also:

• "Application Synchronization"

• "Installing an Application in an Application Container with Automated
Propagation"

Application Upgrade
An application upgrade is a major change to an installed application.

Typically, an upgrade changes the physical architecture of the application. For
example, an upgrade might add new user accounts, tables, and packages, or alter the
definitions of existing objects.

To upgrade the application, you must specify the following in the ALTER PLUGGABLE
DATABASE APPLICATION statement:

• Name of the application

• Old application version number

• New application version number

Example 17-2 Upgrading an Application Using the Automated Technique

In this example, you connect to the application root as an administrator, and then
upgrade the application saas_sales_app from version 1.0 to version 2.0. The upgrade
creates a data-linked table named countries_dlt, and then adds rows to it. It also
creates an extended data-linked table named zipcodes_edt, and then adds rows to it.

-- Begin an upgrade of the app
ALTER PLUGGABLE DATABASE APPLICATION saas_sales_app
 BEGIN UPGRADE '1.0' to '2.0';

-- Connect as app owner to app root
CONNECT saas_sales_adm/manager@saas_sales_ac

Chapter 17
Overview of Applications in an Application Container

17-8

-- Create data-linked table named countries_dlt
CREATE TABLE countries_dlt SHARING=DATA
(country_id NUMBER,
 country_name VARCHAR2(20));

-- Insert records into countries_dlt
INSERT INTO countries_dlt VALUES(1, 'USA');
INSERT INTO countries_dlt VALUES(44, 'UK');
INSERT INTO countries_dlt VALUES(86, 'China');
INSERT INTO countries_dlt VALUES(91, 'India');

-- Create an extended data-linked table named zipcodes_edt
CREATE TABLE zipcodes_edt SHARING=EXTENDED DATA
(code VARCHAR2(5),
 country_id NUMBER,
 region VARCHAR2(10));

-- Load rows into zipcodes_edt
INSERT INTO zipcodes_edt VALUES ('08820','1','East');
INSERT INTO zipcodes_edt VALUES ('10005','1','East');
INSERT INTO zipcodes_edt VALUES ('44332','1','North');
INSERT INTO zipcodes_edt VALUES ('94065','1','West');
INSERT INTO zipcodes_edt VALUES ('73301','1','South');
COMMIT;

-- End app upgrade
ALTER PLUGGABLE DATABASE APPLICATION saas_sales_app END UPGRADE TO '2.0';

• How an Application Upgrade Works
During an application upgrade, the application remains available. To make this availability
possible, Oracle Database clones the application root.

• Applications at Different Versions
Different application PDBs might use different versions of the application.

See Also:

"Upgrading Applications in an Application Container"

How an Application Upgrade Works
During an application upgrade, the application remains available. To make this availability
possible, Oracle Database clones the application root.

The following figure gives an overview of the application upgrade process.

Chapter 17
Overview of Applications in an Application Container

17-9

Figure 17-1 Application Upgrade

Application Root v1.0

Application Root v1.0 Application Root Clone v1.0

Application Root Clone v1.0Application Root v2.0

Application Root Clone v1.0Application Root v2.0

Application PDBs

Application PDBs

Application PDBs

Application PDB
at v1.0

Synchronized
Application PDBs

1

2

3

4

Before upgrade

End upgrade

After synchronization

Begin upgrade

An upgrade occurs as follows:

1. In the initial state, the application root has an application in a specific version.

Chapter 17
Overview of Applications in an Application Container

17-10

2. The user executes the ALTER PLUGGABLE DATABASE APPLICATION BEGIN UPGRADE
statement, and then issues the application upgrade statements.

During the upgrade, the database automatically does the following:

• Clones the application root

For example, if the saas_sales_app application is at version 1.0 in the application
root, then the clone is also at version 1.0

• Points the application PDBs to the application root clone

The clone is in read-only mode. The application remains available to the application
PDBs.

3. The user executes the ALTER PLUGGABLE DATABASE APPLICATION END UPGRADE
statement.

At this stage, the application PDBs are still pointing to the application root clone, and the
original application root is at a new version. For example, if the saas_sales_app
application is at version 1.0 in the application root, then the upgrade might bring it to
version 2.0. The application root clone, however, remains at version 1.0.

4. Optionally, the user synchronizes the application PDBs with the upgraded application root
by issuing ALTER PLUGGABLE DATABASE APPLICATION statement with the SYNC clause.

For example, after the synchronization, some application PDBs are plugged in to the
application root at version 2.0. However, the application root clone continues to support
application PDBs that must stay on version 1.0, or any new application PDBs that are
plugged in to the application root at version 1.0.

See Also:

• "Application Synchronization"

• "Upgrading Applications in an Application Container"

Applications at Different Versions
Different application PDBs might use different versions of the application.

For example, one application PDB might have version 1.0 of the saas_sales_app. In the
same application container, another application PDB has version 2.0 of this application.

A use case is a SaaS application provided to different customers. If each customer has its
own application PDB, then some customers might wait longer to upgrade the application. In
this case, some application PDBs may use the latest version of the application, whereas
other application PDBs use an older version.

See Also:

"Upgrading Applications in an Application Container" to learn more about
applications at different versions

Chapter 17
Overview of Applications in an Application Container

17-11

Application Patch
An application patch is a minor change to an application.

Typical examples of application patching include bug fixes and security patches. New
functions and packages are permitted within a patch.

In general, destructive operations are not permitted. For example, a patch cannot
include DROP statements, or ALTER TABLE statements that drop a column or change a
data type.

Just as the Oracle Database patching process restricts the kinds of operations
permitted in an Oracle Database patch, the application patching process restricts the
operations permitted in an application patch. If a fix includes an operation that raises
an “operation not supported in an application patch” error, then perform an application
upgrade instead.

Note:

You cannot patch an application when another application patch or upgrade
is in progress.

To patch the application, specify the application name and patch number in the ALTER
PLUGGABLE DATABASE APPLICATION statement. Optionally, you can specify an
application minimum version.

Example 17-3 Patching an Application Using the Automated Technique

In this example, SYSTEM logs in to the application root, and then patches the application
saas_sales_app at version 1.0 or greater. Patch 101 logs in to the application
container as saas_sales_adm, and then creates a metadata-linked PL/SQL function
named get_total_revenue.

ALTER PLUGGABLE DATABASE APPLICATION saas_sales_app BEGIN PATCH 101
MINIMUM VERSION '1.0';

-- Connect to the saas_sales_ac container as saas_sales_adm, who owns
the application
CONNECT saas_sales_adm/*******@saas_sales_ac

-- Now install the get_total_revenue() function
CREATE FUNCTION get_total_revenue SHARING=METADATA (p_year IN NUMBER)
RETURN SYS_REFCURSOR
AS
c1_cursor SYS_REFCURSOR;
BEGIN
OPEN c1_cursor FOR
 SELECT a.year,sum(a.revenue)
 FROM containers(sales_data) a
 WHERE a.year = p_year
 GROUP BY a.year;
RETURN c1_cursor;

Chapter 17
Overview of Applications in an Application Container

17-12

END;
/

-- End the patch
ALTER PLUGGABLE DATABASE APPLICATION saas_sales_app END PATCH 101;

See Also:

"Patching Applications in an Application Container"

Migration of an Existing Application
You can migrate an application that is installed in a PDB to either an application root or to an
application PDB.

Typical reasons for migrating a preexisting application include the following:

• Applications that use an installation program

Some applications use an installation program rather than a script. In this case, you can
run the installation program in a new application root, and then use the
DBMS_PDB_ALTER_SHARING package to set the objects to the appropriate sharing mode:
METADATA, DATA, or EXTENDED DATA. The root automatically propagates the changes to the
application PDBs. Oracle Database creates a statement log of the installation, so PDBs
with previous application versions can be plugged into the application root.

• Applications that are defined separately in each PDB

Some applications are defined in each PDB, but no application container exists. In this
case, you can update the installation script to set the appropriate sharing mode. You
create an application root, and then create the master application definition in this root.
You can adopt the existing PDBs as application PDBs by plugging them into the
application root, and then running a SQL script to replace the full definitions with
references to the common definitions.

For example, you can migrate an application installed in a PDB plugged into an Oracle
Database 12c CDB to an application container in an Oracle Database 18c CDB.

See Also:

• "About Application Management" to learn how to migrate an existing application

• Oracle Database PL/SQL Packages and Types Reference to learn more about
the DBMS_PDB_ALTER_SHARING package

Implicitly Created Applications
In addition to user-created applications, application containers can also contain implicitly
created applications.

Chapter 17
Overview of Applications in an Application Container

17-13

An application is created implicitly in an application root when an application common
user operation is issued with a CONTAINER=ALL clause without being preceded by an
ALTER PLUGGABLE DATABASE BEGIN statement.

Application common user operations include operations such as creating a common
user with a CREATE USER statement or altering a common user with an ALTER USER
statement. The database automatically names an implicit application APP$guid, where
guid is the global unique ID of the application root. An implicit application is created
when the application root is opened for the first time.

See Also:

"Synchronizing Applications in an Application PDB" to learn more about
implicitly created applications

Application Synchronization
Within an application PDB, synchronization is the user-initiated update of the
application to the latest version and patch in the application root.

When an application is installed, upgraded, patched, or uninstalled in an application
root, the changes do not automatically propagate to the application PDBs. You must
synchronize the PDBs manually. When connected to an application PDB, you can
synchronize one or more applications by issuing ALTER PLUGGABLE DATABASE
APPLICATION ... SYNC.

• Synchronization of a Single Application
If you specify one application name before SYNC, then the database synchronizes
only the specified application.

• Synchronization of Multiple Applications
You can list multiple applications by name or specify the ALL keyword.

Synchronization of a Single Application
If you specify one application name before SYNC, then the database synchronizes only
the specified application.

The following statement, executed in an application PDB, synchronizes apexapp with
the application PDB:

ALTER PLUGGABLE DATABASE APPLICATION apexapp SYNC;

You can use the SYNC TO PATCH patchnum clause to synchronize the application to a
specific patch number. This following statement synchronizes an application named
saas_sales_app to patch 100 in the application PDB:

ALTER PLUGGABLE DATABASE APPLICATION saas_sales_app SYNC TO PATCH 100;

Chapter 17
Overview of Applications in an Application Container

17-14

To synchronize the application to a specific application version, use SYNC TO version. This
following statement synchronizes an application named saas_sales_app to version 2.0 in the
application PDB:

ALTER PLUGGABLE DATABASE APPLICATION saas_sales_app SYNC TO '2.0';

Synchronization of Multiple Applications
You can list multiple applications by name or specify the ALL keyword.

Applications Specified by Name

If you list multiple application names before SYNC, then the database synchronizes the
specified applications. The following example synchronizes both apexapp and ordsapp:

ALTER PLUGGABLE DATABASE APPLICATION apexapp, ordsapp SYNC;

When specifying multiple applications by name, the SYNC TO PATCH patchno and SYNC TO
version clauses are not supported.

Applications Specified by ALL

If you specify ALL SYNC, then the database synchronizes all applications, including those
implicitly created. The following statement synchronizes all applications:

ALTER PLUGGABLE DATABASE APPLICATION ALL SYNC;

You can synchronize all except a specified subset of applications, as in the following
statement:

ALTER PLUGGABLE DATABASE APPLICATION ALL EXCEPT apexapp, ordsapp SYNC;

When using ALL, the SYNC TO PATCH patchno and SYNC TO version clauses are not
supported.

Order of Replay During Synchronization

When specifying multiple applications using ALL or a list of names, the replay order for
application BEGIN and END blocks is the same as the capture order. Assume that you upgrade
applications in the following order:

1. apexapp from 1.0 to 2.0
2. ordsapp from 1.0 to 2.0
3. apexapp from 2.0 to 3.0
The statement ALTER PLUGGABLE DATABASE APPLICATION apexapp, ordsapp SYNC replays
the statements in the same sequence. If objects in apexapp and ordsapp depend on one
another, then the ordering of replay is important for functional correctness. Executing ALTER
PLUGGABLE DATABASE APPLICATION apexapp SYNC and then ALTER PLUGGABLE DATABASE
APPLICATION ordsapp SYNC would replay statements in the following sequence:

1. apexapp from 1.0 to 2.0

Chapter 17
Overview of Applications in an Application Container

17-15

2. apexapp from 2.0 to 3.0
3. ordsapp from 1.0 to 2.0

See Also:

"Synchronizing Applications in an Application PDB"

About Modifying an Application Root
The ALTER DATABASE statement can modify an application root. The ALTER PLUGGABLE
DATABASE statement can modify the open mode of application PDBs.

The following table lists which containers are modified by clauses in ALTER DATABASE
and ALTER PLUGGABLE DATABASE statements issued in an application root. The table
also lists statements that are not allowed in an application root.

Note:

Statements issued when the current container is the application root never
affect the CDB root or PDBs that do not belong to the current application
root.

Chapter 17
About Modifying an Application Root

17-16

Table 17-3 Statements That Modify Containers in an Application Root

Modify Application Root Only Modify One or More Application
PDBs

Cannot Be Issued in an
Application Root

When connected as an application
common user whose current
container is the application root,
ALTER DATABASE statements with
the following clauses modify the
application root only:

• database_file_clauses
• DEFAULT EDITION clause

• DEFAULT TABLESPACE clause

• DEFAULT TEMPORARY
TABLESPACE clause

ALTER DATABASE statements with
the following clauses modify the
application root and set default values
for application PDBs:

• flashback_mode_clause
• SET DEFAULT {BIGFILE |

SMALLFILE} TABLESPACE
clause

• set_time_zone_clause
You can use these clauses to set
nondefault values for specific
application PDBs.

When connected as an application
common user whose current
container is the application root,
ALTER PLUGGABLE DATABASE
statements with the following clause
can modify the open mode of one or
more application PDBs:

• pdb_change_state
When the current container is an
application PDB, ALTER PLUGGABLE
DATABASE statements with this
clause can modify the open mode of
the current application PDB.

When connected as an application
common user whose current
container is the application root,
ALTER PLUGGABLE DATABASE
statements with the following clause
can preserve or discard the open
mode an application PDB when the
CDB restarts:

• pdb_save_or_discard_state

When connected as an application
common user whose current
container is the application root,
ALTER DATABASE statements with
the following clauses are not
allowed:

• startup_clauses
• recovery_clauses
• logfile_clauses
• controlfile_clauses
• standby_database_clauses
• instance_clauses
• security_clause
• RENAME GLOBAL_NAME clause

• ENABLE BLOCK CHANGE
TRACKING clause

• DISABLE BLOCK CHANGE
TRACKING clause

See Also:

• "About the Current Container"

• "Modifying a PDB at the Database Level"

• Oracle Database SQL Language Reference

Managing Applications in an Application Container
You install, upgrade, or patch an application in an application container.

You can also uninstall an application from an application container. You perform these
operations in the application root. The application container propagates the application
changes to the application PDBs when the application PDBs synchronize with the application
in the application root.

• About Application Management
In an application container, an application is a named, versioned set of application
metadata and common data. The application is stored in the application root.

• Installing Applications in an Application Container
You can install an application in an application container.

Chapter 17
Managing Applications in an Application Container

17-17

• Upgrading Applications in an Application Container
Major changes to an application constitute application upgrades. You can upgrade
an application in an application container.

• Patching Applications in an Application Container
Minor changes to an application constitute application patches.

• Migrating an Existing Application to an Application Container
You can migrate an application that is installed in a PDB to an application
container.

• Synchronizing Applications in an Application PDB
Synchronizing an application updates the application in the application PDB to the
latest version and patch in the application root.

• Synchronizing an Application Root Replica with a Proxy PDB
When application containers in different CDBs have the same application, their
application roots can be kept synchronized by creating a master application root, a
replica application root, and a proxy PDB.

• Setting the Compatibility Version of an Application
The compatibility version of an application is the earliest version of the application
possible for the application PDBs that belong to the application container.

• Performing Bulk Inserts During Application Install, Upgrade, and Patch Operations
SQL*Loader is the only supported utility for bulk inserts into tables during
application install, upgrade, and patch operations. Only conventional path loads
are supported for bulk inserts during application install, upgrade, and patch
operations.

• Uninstalling Applications from an Application Container
You can uninstall an application in an application container.

Related Topics

•

About Application Management
In an application container, an application is a named, versioned set of application
metadata and common data. The application is stored in the application root.

In this context, the term “application” means “application back-end.” Application
common objects include user accounts, tables, PL/SQL packages, and so on. You can
share an application with the application PDBs that belong to the application root.
When you perform application changes, application PDBs can synchronize with the
application in the application root.

• Basic Steps of Application Maintenance
You can install, upgrade, and patch an application in an application root.

• Application Versions
The application container also manages the versions of the application and the
patches to the application.

• Application Module Names and Service Names
The application module name is set by the DBMS_APPLICATION_INFO.SET_MODULE
procedure or the equivalent OCI attribute setting.

Chapter 17
Managing Applications in an Application Container

17-18

Basic Steps of Application Maintenance
You can install, upgrade, and patch an application in an application root.

You must issue an ALTER PLUGGABLE DATABASE ... BEGIN statement to start the operation
and an ALTER PLUGGABLE DATABASE ... END statement to end the operation. You can issue
these statements in the same user session or in different user sessions.

The following is the typical process for creating and maintaining an application in an
application container:

1. Create the application container.

2. Install the application in the application root using ALTER PLUGGABLE DATABASE ...
BEGIN INSTALL.

This step includes creating the application data model and configuring the application
common users and application common objects.

Note:

SQL*Loader is the only supported utility for bulk inserts into tables during
application install, upgrade, and patch operations.

3. Create the application PDBs in the application root.

4. Synchronize each application PDB that should install the application with the application
root. The statement is ALTER PLUGGABLE DATABASE APPLICATION ... SYNC.

5. Load the data for each application PDB.

6. Maintain the application. Upgrade using ALTER PLUGGABLE DATABASE ... BEGIN
UPGRADE, and patch using ALTER PLUGGABLE DATABASE ... BEGIN PATCH.

7. Synchronize application PDBs that should apply changes from upgrades and patches.

8. Add new application PDBs whenever necessary.

9. If necessary, uninstall the application using ALTER PLUGGABLE DATABASE ... BEGIN
UNINSTALL.

See Also:

• "Creating Application Containers"

• Oracle Database Security Guide to learn how to audit application maintenance
operations

Application Versions
The application container also manages the versions of the application and the patches to the
application.

Chapter 17
Managing Applications in an Application Container

17-19

The application container manages versions as follows:

• When you install an application, you must specify the application version number.

• When you upgrade an application, you must specify the old application version
number and the new application version number.

• When you patch an application, you must specify the minimum application version
number for the patch and the patch number.

As the application evolves, the application container maintains all of the versions and
patch changes that you apply.

You can also configure the application container so that different application PDBs use
different application versions. For example, if you provide an application to various
customers, and each customer has its own application PDB, some customers might
wait longer to upgrade the application. In this case, some application PDBs can use
the latest version of the application, whereas other application PDBs can use an older
version of the application.

Application Module Names and Service Names
The application module name is set by the DBMS_APPLICATION_INFO.SET_MODULE
procedure or the equivalent OCI attribute setting.

The module name is necessary during application maintenance because of other
activity that might be occurring in the database. For example, statements issued by
background processes should not be captured in the application capture tables. Also,
other users might execute statements that are unrelated to the application. A module
name check distinguishes what should be captured from what should not be captured.
Only sessions whose module name matches the module name of the session where
APPLICATION BEGIN was issued are considered for capture.

Query DBA_APPLICATIONS to determine the module name of the session in which
APPLICATION BEGIN was executed:

SELECT app_capture_module FROM dba_applications WHERE app_name='APEX';

Some clauses, such as the SHARING clause, are valid only when issued between an
ALTER PLUGGABLE DATABASE ... BEGIN statement and an ALTER PLUGGABLE
DATABASE ... END statement. For these clauses, if the module name for a session
does not match, then this session is not included in between the BEGIN and END
statements, causing statements that include the clause to fail with ORA-65021 or other
errors.

The most common cause for a module name mismatch is the default module name.
For example, SQL*Plus sets a default module name when a connection is made to the
database. A connection as a SYSDBA user results in one default module name (for
example, sqlplus@host1 (TNS V1-V3)), whereas a connection as a non-SYSDBA user
results in a different default module name (for example, SQL*Plus). When SYSDBA and
non-SYSDBA users are both performing maintenance, you must explicitly set the module
name in each session to the same value, and not rely the default settings in SQL*Plus.

Additionally, for the statement to be captured the service name of the session
executing a statement should match the service name of the session where

Chapter 17
Managing Applications in an Application Container

17-20

APPLICATION BEGIN was executed. Query DBA_APPLICATIONS to determine the service name
of the session in which APPLICATION BEGIN was executed:

SELECT app_capture_service FROM dba_applications WHERE app_name='APEX';

Example 17-4 Checking the Session's Module Name

This example shows how the default module name changes depending on whether the
connected user has SYSDBA privileges.

SQL> CONNECT / AS SYSDBA
Connected.

SQL> select module from v$session where audsid =
SYS_CONTEXT('USERENV','sessionid');

MODULE
--
sqlplus@host1 (TNS V1-V3)

SQL> CONNECT dba1
Password: *************
Connected.

SQL> select module from v$session where audsid =
SYS_CONTEXT('USERENV','sessionid');

MODULE
--
SQL*Plus

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn how to set the
application module name

Installing Applications in an Application Container
You can install an application in an application container.

• About Installing Applications in an Application Container
You issue ALTER PLUGGABLE DATABASE APPLICATION statements to install an application
in the application root.

• Installing an Application in an Application Container with Automated Propagation
In automated propagation, the application is installed in the application PDBs that
synchronize with the application in the application root.

Chapter 17
Managing Applications in an Application Container

17-21

About Installing Applications in an Application Container
You issue ALTER PLUGGABLE DATABASE APPLICATION statements to install an
application in the application root.

You install the application in the application root only. Application PDBs that
synchronize with the application install the application automatically. With the
automated method, you can perform the installation using one or more of the following
techniques: scripts, SQL statements, and graphical user interface tools.

Start of the installation with an ALTER PLUGGABLE DATABASE APPLICATION BEGIN
INSTALL statement and the end of the install with an ALTER PLUGGABLE DATABASE
APPLICATION END INSTALL statement. Each installation must be associated with an
application name and version number, which are specified in the ALTER PLUGGABLE
DATABASE APPLICATION statements.

Related Topics

• Running Oracle-Supplied SQL Scripts in a CDB
You can use the catcon.pl script to run Oracle-supplied SQL or SQL scripts within
a CDB. You can run the script against any specified containers.

Installing an Application in an Application Container with Automated
Propagation

In automated propagation, the application is installed in the application PDBs that
synchronize with the application in the application root.

Prerequisites

You must meet the following prerequisites:

• The current user must have the ALTER PLUGGABLE DATABASE system privilege, and
the privilege must be commonly granted in the application root.

• The application root must be in open read/write.

To install an application using automated propagation:

1. In SQL*Plus or SQL Developer, ensure that the current container is a PDB.

2. Run the ALTER PLUGGABLE DATABASE APPLICATION BEGIN INSTALL statement in
the following form:

ALTER PLUGGABLE DATABASE APPLICATION application_name BEGIN INSTALL
'application_version_number';

For example, run the following statement if the application_name is salesapp and
the application_version_number is 4.2:

ALTER PLUGGABLE DATABASE APPLICATION salesapp BEGIN INSTALL '4.2';

3. Install the application using scripts, SQL statements, or graphical user interface
tools.

Chapter 17
Managing Applications in an Application Container

17-22

4. Run the ALTER PLUGGABLE DATABASE APPLICATION END INSTALL statement in the
following form:

ALTER PLUGGABLE DATABASE APPLICATION application_name END INSTALL
'application_version_number';

For example, run the following statement if the application_name is salesapp and the
application_version_number is 4.2:

ALTER PLUGGABLE DATABASE APPLICATION salesapp END INSTALL '4.2';

Note:

Ensure that the application_name and application_version_number match in
the ALTER PLUGGABLE DATABASE APPLICATION BEGIN INSTALL statement and
theALTER PLUGGABLE DATABASE APPLICATION END INSTALL statement.

5. Synchronize all of the application PDBs that must install the application by issuing an
ALTER PLUGGABLE DATABASE APPLICATION statement with the SYNC clause.

Related Topics

• Accessing a Container in a CDB
Access a container in a CDB with SQL*Plus by issuing a CONNECT or ALTER SESSION
command.

• Synchronizing Applications in an Application PDB
Synchronizing an application updates the application in the application PDB to the latest
version and patch in the application root.

Upgrading Applications in an Application Container
Major changes to an application constitute application upgrades. You can upgrade an
application in an application container.

• About Upgrading Applications in an Application Container
You issue ALTER PLUGGABLE DATABASE APPLICATION statements to upgrade an
application in the application root.

• Upgrading an Application in an Application Container
After an upgrade, application changes caused by the upgrade propagate to the
application PDBs that synchronize with the application root.

About Upgrading Applications in an Application Container
You issue ALTER PLUGGABLE DATABASE APPLICATION statements to upgrade an application in
the application root.

• Purpose of Application Upgrade
You can upgrade the application definition once in the application root so that other
application PDBs can synchronize with the upgraded definition.

Chapter 17
Managing Applications in an Application Container

17-23

• How an Application Upgrade Works
When you upgrade an application, Oracle Database automatically clones the
application root.

• User Interface for Application Upgrade
To upgrade an application definition in the application root, use the ALTER
PLUGGABLE DATABASE APPLICATION ... UPGRADE command.

Related Topics

• Running Oracle-Supplied SQL Scripts in a CDB
You can use the catcon.pl script to run Oracle-supplied SQL or SQL scripts within
a CDB. You can run the script against any specified containers.

Purpose of Application Upgrade
You can upgrade the application definition once in the application root so that other
application PDBs can synchronize with the upgraded definition.

Application PDBs do not automatically inherit the upgraded application definition in the
application root. Application PDBs synchronize with an application in the root when
you manually run an ALTER PLUGGABLE DATABASE statement with the SYNC clause. You
can upgrade using one or more of the following techniques: scripts, SQL statements,
and graphical user interface tools.

How an Application Upgrade Works
When you upgrade an application, Oracle Database automatically clones the
application root.

During the upgrade, application PDBs point to the root clone. Applications continue to
run during the upgrade. Application PDBs can perform DML on metadata-linked and
extended data-linked tables and views. Application PDBs can query metadata-linked
objects, extended data-linked objects, and data-linked objects.

After the upgrade, the application root clone remains and continues to support any
application PDB that still use the preupgrade version of the application in the root
clone. Application PDBs that upgrade are pointed to the upgraded application root.
Application PDBs that do not upgrade might continue to use the clone, and application
PDBs that are plugged into the application root might also use the same application
version as the root clone.

Note:

Unlike an application upgrade, a patch does not create an application root
clone. If an application PDB is not synchronized after a patch, then queries
are directed to the application root, which has already been patched.

The following figure illustrates the application upgrade process.

Chapter 17
Managing Applications in an Application Container

17-24

Figure 17-2 Upgrading Applications in an Application Container

Application Root v1.0

Application Root v1.0 Application Root Clone v1.0

Application Root Clone v1.0Application Root v2.0

Application Root Clone v1.0Application Root v2.0

Application PDBs

Application PDBs

Application PDBs

Application PDB
at v1.0

Synchronized
Application PDBs

1

2

3

4

Before upgrade

End upgrade

After synchronization

Begin upgrade

Chapter 17
Managing Applications in an Application Container

17-25

Note:

When the application root is in any open mode, the application root clone is
in read-only mode. When the application root is closed, the application root
clone is also closed.

User Interface for Application Upgrade
To upgrade an application definition in the application root, use the ALTER PLUGGABLE
DATABASE APPLICATION ... UPGRADE command.

Start the upgrade with an ALTER PLUGGABLE DATABASE APPLICATION BEGIN UPGRADE
statement and end with an ALTER PLUGGABLE DATABASE APPLICATION END UPGRADE
statement. Each upgrade must be associated with an application name, starting
version number, and ending version number, which are specified in the ALTER
PLUGGABLE DATABASE APPLICATION statements.

Note:

If Transparent Data Encryption is enabled in the application root, then an
external password store must be configured.

Upgrading an Application in an Application Container
After an upgrade, application changes caused by the upgrade propagate to the
application PDBs that synchronize with the application root.

Prerequisites

• The CDB must be in local undo mode.

• The current user must have the ALTER PLUGGABLE DATABASE system privilege, and
the privilege must be commonly granted in the application root.

• The application root must be in open read/write.

• If Transparent Data Encryption is enabled in the application root, then an external
password store must be configured.

To upgrade an application in an application container:

1. In SQL*Plus or SQL Developer, ensure that the current container is the application
root.

2. Run the ALTER PLUGGABLE DATABASE APPLICATION BEGIN UPGRADE statement in
the following form:

ALTER PLUGGABLE DATABASE APPLICATION application_name BEGIN UPGRADE
'application_start_version_number' TO
'application_end_version_number';

Chapter 17
Managing Applications in an Application Container

17-26

For example, run the following statement if the application_name is salesapp, the
application_start_version_number is 4.2, and the application_end_version_number is 4.3:

ALTER PLUGGABLE DATABASE APPLICATION salesapp BEGIN UPGRADE '4.2' TO
'4.3';

3. Upgrade the application using scripts, SQL statements, or graphical user interface tools.

4. Run the ALTER PLUGGABLE DATABASE APPLICATION END UPGRADE statement in the
following form:

ALTER PLUGGABLE DATABASE APPLICATION application_name END UPGRADE TO
'application_end_version_number';

For example, run the following statement if the application_name is salesapp and the
application_end_version_number is 4.3:

ALTER PLUGGABLE DATABASE APPLICATION salesapp END UPGRADE TO '4.3';

Note:

Ensure that the application_name and application_end_version_number match
in the ALTER PLUGGABLE DATABASE APPLICATION BEGIN UPGRADE statement and
the ALTER PLUGGABLE DATABASE APPLICATION END UPGRADE statement.

5. Synchronize all of the application PDBs that must upgrade the application by issuing an
ALTER PLUGGABLE DATABASE APPLICATION statement with the SYNC clause.

Related Topics

• Accessing a Container in a CDB
Access a container in a CDB with SQL*Plus by issuing a CONNECT or ALTER SESSION
command.

• Synchronizing Applications in an Application PDB
Synchronizing an application updates the application in the application PDB to the latest
version and patch in the application root.

• Setting the Undo Mode in a CDB Using ALTER DATABASE
When local undo is enabled, each container has its own undo tablespace for every
instance in which it is open. When local undo is disabled, there is one undo tablespace
for the entire CDB.

Patching Applications in an Application Container
Minor changes to an application constitute application patches.

Examples of minor changes can include bug fixes and security patches. You can patch an
application in an application container.

• About Patching Applications in an Application Container
To patch an application in the application root, issue ALTER PLUGGABLE DATABASE
APPLICATION statements.

Chapter 17
Managing Applications in an Application Container

17-27

• Patching an Application in an Application Container with Automated Propagation
Application changes for the patch are propagated to the application PDBs that
synchronize with the application in the application root.

About Patching Applications in an Application Container
To patch an application in the application root, issue ALTER PLUGGABLE DATABASE
APPLICATION statements.

You patch the application in the application root only. The application PDBs that
synchronize with the application apply the changes. You can perform the patch using
one or more of the following techniques: scripts, SQL statements, and graphical user
interface tools.

The patch is restricted to a small set of operations. In general, destructive operations,
such as dropping a table, are not allowed in a patch. If you attempt to patch an
application, and the operation raises an “operation not supported in an application
patch” error, then upgrade the application instead of patching it to make the necessary
changes.

Note:

Unlike an application upgrade, a patch does not create an application root
clone. If an application PDB is not synchronized after a patch, then queries
are directed to the application root, which has already been patched.

Indicate the start of the patch with an ALTER PLUGGABLE DATABASE APPLICATION BEGIN
PATCH statement and the end of the patch with an ALTER PLUGGABLE DATABASE
APPLICATION END PATCH statement. Each patch must be associated with an
application name, starting version number, and ending version number. Specify these
values in the ALTER PLUGGABLE DATABASE APPLICATION statements.

Related Topics

• Running Oracle-Supplied SQL Scripts in a CDB
You can use the catcon.pl script to run Oracle-supplied SQL or SQL scripts within
a CDB. You can run the script against any specified containers.

• Upgrading Applications in an Application Container
Major changes to an application constitute application upgrades. You can upgrade
an application in an application container.

Patching an Application in an Application Container with Automated
Propagation

Application changes for the patch are propagated to the application PDBs that
synchronize with the application in the application root.

Prerequisites

The following prerequisites must be met:

Chapter 17
Managing Applications in an Application Container

17-28

• The current user must have the ALTER PLUGGABLE DATABASE system privilege, and the
privilege must be commonly granted in the application root.

• The application root must be in open read/write mode.

1. In SQL*Plus, ensure that the current container is the application root.

2. Run the ALTER PLUGGABLE DATABASE APPLICATION BEGIN PATCH statement in the
following form:

ALTER PLUGGABLE DATABASE APPLICATION application_name
 BEGIN PATCH patch_number
 MINIMUM VERSION 'minimum_application_version_number';

For example, run the following statement if the application_name is salesapp, the
patch_number is 987654, and the minimum_application_version_number is 4.2:

ALTER PLUGGABLE DATABASE APPLICATION salesapp
 BEGIN PATCH 987654 MINIMUM VERSION '4.2';

The minimum_application_version_number indicates the minimum application version at
which an application installation must be before the patch can be applied to it.

3. Patch the application using scripts, SQL statements, and graphical user interface tools.

4. Run the ALTER PLUGGABLE DATABASE APPLICATION END PATCH statement in the following
form:

ALTER PLUGGABLE DATABASE APPLICATION application_name
 END PATCH patch_number;

For example, run the following statement if the application_name is salesapp and the
patch_number is 987654:

ALTER PLUGGABLE DATABASE APPLICATION salesapp END PATCH 987654;

Note:

Ensure that the application_name and patch_number match in the ALTER
PLUGGABLE DATABASE APPLICATION BEGIN PATCH statement and the ALTER
PLUGGABLE DATABASE APPLICATION END PATCH statement.

5. Synchronize all of the application PDBs that must patch the application by issuing an
ALTER PLUGGABLE DATABASE APPLICATION statement with the SYNC clause.

Related Topics

• Accessing a Container in a CDB
Access a container in a CDB with SQL*Plus by issuing a CONNECT or ALTER SESSION
command.

• Synchronizing Applications in an Application PDB
Synchronizing an application updates the application in the application PDB to the latest
version and patch in the application root.

Chapter 17
Managing Applications in an Application Container

17-29

Migrating an Existing Application to an Application Container
You can migrate an application that is installed in a PDB to an application container.

You can migrate the application to the application root or to an application PDB. For
example, you might migrate an application installed in a PDB plugged into an Oracle
Database 12c Release 2 (12.2) CDB to an application container in an Oracle
Database 18c CDB.

• About Migrating an Existing Application to an Application Container
You can migrate an application to an application root by creating an application
root using an existing PDB.

• Creating an Application Root Using an Existing PDB
Migrate an application that is installed in a PDB by copying the PDB to an
application container.

• Creating an Application PDB Using an Existing PDB
After migrating an existing application to an application root, you can use an
existing PDB that uses the application to create an application PDB.

About Migrating an Existing Application to an Application Container
You can migrate an application to an application root by creating an application root
using an existing PDB.

If the application is installed in more than one PDB, then you can use one of the PDBs
to create the application root. You can use one of the methods available for copying a
PDB to an application root, such as cloning the PDB or plugging in the PDB as an
application root.

When common users, roles, or profiles exist in the PDB used to create the application
root, you must run procedures in the DBMS_PDB package to associate them with the
application. When an application root created from a PDB is first opened, each local
user, role, and profile is marked as common. The procedures in the DBMS_PDB package
associate the user, role, or profile with the application. Therefore, all DDL operations
on the user, role, or profile must subsequently be done within an application
BEGIN...END block of this application.

When shared database objects exist in the application root, you must run procedures
in the DBMS_PDB package to associate the database objects with the application as
application common objects. Therefore, all DDL operations on the application common
objects must subsequently be done within an application BEGIN...END block of this
application.

After the application root is in place, you can create application PDBs in the new
application container using the existing PDBs. The application PDBs that you create
must contain the application objects, including their data. Additional steps are
necessary to synchronize the application version and patch number and to establish
shared database objects in the application PDBs.

Scenario with One Hundred PDBs Running the Same Application

Assume that you currently have one hundred PDBs that are running the same
application, and you want to migrate these PDBs to an application container. These
PDBs have the application common objects and common users, roles, and profiles

Chapter 17
Managing Applications in an Application Container

17-30

required by the application. To migrate the PDBs to an application container, follow these
steps:

1. Choose one of the PDBs, and use the instructions in "Creating an Application Root Using
an Existing PDB" to create the application root with this PDB.

As part of this step, you associate the database objects, users, roles, and profiles with
the application by running procedures in the DBMS_PDB package.

2. Use the instructions in "Creating an Application PDB Using an Existing PDB" to create
one hundred application PDBs using the PDBs that are running the application.

See Also:

• "Creating an Application Container"

• "Installing an Application in an Application Container with Automated
Propagation"

• Oracle Database PL/SQL Packages and Types Reference to learn more about
DBMS_PDB

Creating an Application Root Using an Existing PDB
Migrate an application that is installed in a PDB by copying the PDB to an application
container.

Prerequisites

An Oracle Database 12c Release 2 (12.2) or later CDB must exist.

1. In the CDB, create the application root by cloning the existing PDB, relocating the
existing PDB, or by unplugging and plugging in the existing PDB.

The new application root must contain all database objects used by the application.

2. With the application root as the current container, start an application installation
operation by issuing an ALTER PLUGGABLE DATABASE ... BEGIN INSTALL statement.

3. Optional: Query the COMMON column in the DBA_USERS, DBA_ROLES, and DBA_PROFILES
views to determine which users, roles, and profiles are common.

4. Run the following procedures in the DBMS_PDB package to associate users, roles. and
profiles with the application:

• Run the SET_USER_EXPLICIT procedure to set application common users.

• Run the SET_ROLE_EXPLICIT procedure to set application common roles.

• Run the SET_PROFILE_EXPLICIT procedure to set application common profiles.

If you do not have EXECUTE privilege on the DBMS_PDB package, then you can run these
procedures in the DBMS_PDB_ALTER_SHARING package.

5. Optional: With the application root as the current container, query the SHARING column in
the DBA_OBJECTS view to determine which database objects are shared.

6. Run the following procedures in the DBMS_PDB package to associate database objects
with the application:

Chapter 17
Managing Applications in an Application Container

17-31

• Run the SET_DATA_LINKED procedure to set data-linked application common
objects.

• Run the SET_METADATA_LINKED procedure to set metadata-linked application
common objects.

• Run the SET_EXT_DATA_LINKED procedure to set extended data-linked
application common objects.

If you do not have EXECUTE privilege on the DBMS_PDB package, then you can run
these procedures in the DBMS_PDB_ALTER_SHARING package.

7. End the application installation operation by issuing an ALTER PLUGGABLE
DATABASE ... END INSTALL statement.

8. Optional: Rerun the queries that you ran previously to ensure that the sharing
properties of the database objects are correct and that the common properties of
the users, roles, and profiles are correct.

9. Optional: If existing PDBs use the application, then create application PDBs using
these existing PDBs.

See "Creating an Application PDB Using an Existing PDB".

Related Topics

• Creating an Application Container
You can create an application container using the CREATE PLUGGABLE DATABASE
statement with the AS APPLICATION CONTAINER clause.

• Managing Applications in an Application Container
You install, upgrade, or patch an application in an application container.

• Oracle Database PL/SQL Packages and Types Reference

Creating an Application PDB Using an Existing PDB
After migrating an existing application to an application root, you can use an existing
PDB that uses the application to create an application PDB.

Prerequisites

You must meet the following prerequisites:

• An Oracle Database 12c Release 2 (12.2) or later CDB must exist, and the
application root to which the application PDB will belong must exist.

• The PDB must contain all application common objects used by the application.

• The application must be installed in the application root.

1. In the application root, create the application PDB by cloning the existing PDB or
by unplugging and plugging in the existing PDB.

Violations will be reported during PDB creation.

2. Connect to or switch to the new PDB as a user with the required privileges.

3. Run the pdb_to_apppdb.sql script in the ORACLE_HOME/rdbms/admin directory.

The script automatically synchronizes the application PDB with the application
root.

Chapter 17
Managing Applications in an Application Container

17-32

4. Optional: Query the SHARING column in the DBA_OBJECTS view to ensure that the sharing
properties of the database objects are correct.

5. Optional: Query the COMMON column in the DBA_USERS, DBA_ROLES, and DBA_PROFILES
views to ensure that the common properties of the users, roles, and profiles are correct.

Related Topics

• Creating PDBs and Application Containers
To create PDBs and application containers, use the CREATE PLUGGABLE DATABASE
command.

Synchronizing Applications in an Application PDB
Synchronizing an application updates the application in the application PDB to the latest
version and patch in the application root.

Installing, upgrading, patching, or uninstalling an application in an application root does not
change its application PDBs until they are synchronized. When the application PDB is the
current container, synchronize manually using one of the following forms of ALTER PLUGGABLE
DATABASE APPLICATION ... SYNC:

• Synchronize a single application as follows, where app1 is the name of the application:

ALTER PLUGGABLE DATABASE APPLICATION app1 SYNC;

Optionally, specify SYNC TO PATCH patchno to synchronize app1 to the specified patch,
and SYNC TO version to synchronize app1 to the specified version.

• Synchronize multiple applications as follows, where app1 and app2 are the names of
different applications:

ALTER PLUGGABLE DATABASE APPLICATION app1, app2 SYNC;

• Synchronize all applications as follows:

ALTER PLUGGABLE DATABASE APPLICATION ALL SYNC;

• Synchronize all applications except a specified subset as follows, where app1 and app2
are the applications to be excluded:

ALTER PLUGGABLE DATABASE APPLICATION ALL EXCEPT app1, app2 SYNC;

Prerequisites and Restrictions

• The current user must have ALTER PLUGGABLE DATABASE system privilege.

• When specifying multiple applications using ALL or a list of names, the SYNC TO clause is
not supported.

• Specifying multiple applications using ALL or a list of names replays application BEGIN
and END blocks in the order in which they were captured. When applications depend on
one another, synchronizing them in a single statement is necessary for functional
correctness.

1. In SQL*Plus, ensure that the current container is the application PDB.

Chapter 17
Managing Applications in an Application Container

17-33

2. Run an ALTER PLUGGABLE DATABASE APPLICATION statement with the SYNC clause.

Example 17-5 Synchronizing a Specific Application in an Application PDB

This example synchronizes an application named salesapp in an application PDB with
the latest application changes in the application root.

ALTER PLUGGABLE DATABASE APPLICATION salesapp SYNC;

Example 17-6 Synchronizing an Application to a Specified Patch

This example synchronizes an application named salesapp in an application PDB to
patch 100.

ALTER PLUGGABLE DATABASE APPLICATION salesapp SYNC TO PATCH 100;

Example 17-7 Synchronizing an Application to a Specified Application Release

This example synchronizes an application named salesapp in an application PDB to
release 2.0 of the application.

ALTER PLUGGABLE DATABASE APPLICATION salesapp SYNC TO '2.0';

Example 17-8 Synchronizing Multiple Applications in an Application PDB

This example synchronizes the applications salesapp and eusalesapp in an
application PDB with the latest application changes in the application root.

ALTER PLUGGABLE DATABASE APPLICATION salesapp, eusalesapp SYNC;

Example 17-9 Synchronizing All Applications in an Application PDB

This example synchronizes all of the applications in an application PDB with the latest
application changes in the application root.

ALTER PLUGGABLE DATABASE APPLICATION ALL SYNC;

Example 17-10 Synchronizing All Applications Minus a Subset

This example synchronizes all of the applications in an application PDB except for
salesapp.

ALTER PLUGGABLE DATABASE APPLICATION ALL EXCEPT salesapp SYNC;

Example 17-11 Synchronizing Implicitly Created Applications in an Application
PDB

This example synchronizes all of the implicitly-created applications in an application
PDB with the latest application changes to the implicitly created applications in the
application root.

ALTER PLUGGABLE DATABASE APPLICATION APP$CON SYNC;

Chapter 17
Managing Applications in an Application Container

17-34

Synchronizing an Application Root Replica with a Proxy PDB
When application containers in different CDBs have the same application, their application
roots can be kept synchronized by creating a master application root, a replica application
root, and a proxy PDB.

• About Synchronizing an Application Root Replica with a Proxy PDB
A proxy PDB can synchronize an application root and a replica of the application root.

• Creating a Proxy PDB That References an Application Root Replica
When multiple application containers run the same application, the application in the
application containers can be kept synchronized using proxy PDBs.

About Synchronizing an Application Root Replica with a Proxy PDB
A proxy PDB can synchronize an application root and a replica of the application root.

An application might be installed in several application containers. Installing, upgrading, and
patching the application are more efficient when you use proxy PDBs.

In this configuration, one application container has the master application root. The master
application root is where you install, upgrade, and patch the application. Application root
replicas are exact copies of the master application root. Each application root replica is
referenced by a proxy PDB in the master application root.

When a proxy PDB is synchronized with the application changes in the master application
root, it propagates the changes to its referenced application root replica. After the application
root replica is synchronized, application PDBs that are plugged into the application root
replica can synchronize with the replica and in this way receive the changes.

The following figure shows a configuration that synchronizes an application root replica using
a proxy PDB.

Chapter 17
Managing Applications in an Application Container

17-35

Figure 17-3 Synchronizing an Application Root Replica with a Proxy PDB

Proxy PDB’s SYSTEM
and SYSAUX Files

Application Root Replica’s
SYSTEM and SYSAUX Files

Copy to New Location

CREATE PLUGGABLE DATABASE ... AS PROXY ... FROM

Database
Link

Reference

CDB

Seed
(PDB$SEED)

Root (CDB$ROOT)

Application
Seed

PDBs and Application Containers

Application
Container

Application PDBs

Application Root Replica

CDB

Seed
(PDB$SEED)

Root (CDB$ROOT)

Application
Seed

PDBs and Application Containers

Application
Container

Application PDBs

Proxy
PDB

Master Application Root

Chapter 17
Managing Applications in an Application Container

17-36

In addition, when an application root replica is configured and has its own application PDBs,
a query that includes the CONTAINERS clause in the master application root can return data
from the current application container and from the application container with the application
root replica. The query can show results from the application root replica and from any open
application PDBs plugged into the replica.

See Also:

"Querying Application Common Objects Across Application PDBs"

Creating a Proxy PDB That References an Application Root Replica
When multiple application containers run the same application, the application in the
application containers can be kept synchronized using proxy PDBs.

1. Create the application container with the master application root by using a CREATE
PLUGGABLE DATABASE statement.

Install the application in the application container now or later.

2. Create the application container with the application root replica in one of the following
ways:

• Create an empty application container using any supported method.

• Clone the master application root.

If the port of the listener used by the application root replica is not 1521, then a PORT
clause is required during creation. If the host of the application root replica is different
from the host of the master application root, then a HOST clause is required during
creation.

This application root replica will be referenced by the proxy PDB.

3. In the master application root, create a proxy PDB that references the application root
replica that you created in the previous step.

4. Open and synchronize the proxy PDB.

When the proxy PDB is synchronized, it propagates the changes in the master
application root to the application root replica.

5. Optional: In the master application root, modify the application by installing, upgrading, or
patching it.

6. Optional: Synchronize the proxy PDB with the application changes in the master
application root by running the ALTER PLUGGABLE DATABASE APPLICATION statement with
the SYNC clause.

When the proxy PDB is synchronized, it propagates the changes in the master
application root to the application root replica.

Example 17-12 Synchronizing an Application Root Replica with a Proxy PDB

This example assumes that two CDBs exist: hqdb and depdb. The goal is to keep the same
application synchronized in an application container in each CDB. To accomplish this goal,
this example configures the following application containers:

Chapter 17
Managing Applications in an Application Container

17-37

• The hqdb CDB contains the application container with the master application root
called msappcon.

– An application called sampleapp is installed in the msappcon master application
root.

– The msappcon application root contains two application PDBs named mspdb1
and mspdb2.

– The msappcon application root also contains a proxy PDB named prxypdb that
references the application root replica in the other CDB.

• The depdb CDB contains the application container with the application root replica
called depappcon.

– An application called sampleapp is propagated from the proxy PDB prxypdb in
the msappcon master application root and installed in the depappcon master
application root.

– The depappcon application root contains two application PDBs named deppdb1
and deppdb2.

This example shows how changes to the sampleapp application in the msappcon
master application root are applied to the application PDBs in both CDBs when the
application PDBs are synchronized.

1. Create the application container with the master application root in the hqdb CDB.

a. In SQL*Plus, ensure that the current container is the hqdb CDB root.

b. Create the application container from the PDB seed with the following
statement:

CREATE PLUGGABLE DATABASE msappcon
 AS APPLICATION CONTAINER
 ADMIN USER msappconadm IDENTIFIED BY password
 STORAGE (MAXSIZE 2G)
 DEFAULT TABLESPACE appcontbs
 DATAFILE '/disk1/oracle/dbs/mssappcon/msappcon01.dbf' SIZE
250M
 AUTOEXTEND ON
 FILE_NAME_CONVERT = ('/disk1/oracle/dbs/pdbseed/',
 '/disk1/oracle/dbs/msappcon/');

c. Open the new master application root in read/write mode:

ALTER PLUGGABLE DATABASE msappcon OPEN;

2. Install an application in the master application root.

a. Change container to the master application root:

ALTER SESSION SET CONTAINER=msappcon;

b. Begin the application installation:

ALTER PLUGGABLE DATABASE APPLICATION sampleapp BEGIN INSTALL
'1.0';

Chapter 17
Managing Applications in an Application Container

17-38

c. Install the application.

For example, you can create database objects:

CREATE TABLE apptb SHARING=METADATA
 (id NUMBER(6),
 widget_name VARCHAR2(20));

d. End the application installation:

ALTER PLUGGABLE DATABASE APPLICATION sampleapp END INSTALL '1.0';

3. Create and synchronize one or more application PDBs in the master application root.

a. In SQL*Plus, ensure that the current container is the master application root.

b. Create application PDBs in the master application root.

For example, create two application PDBs from the PDB seed:

CREATE PLUGGABLE DATABASE mspdb1 ADMIN USER mspdb1admin IDENTIFIED BY
password
 STORAGE (MAXSIZE 2G)
 DEFAULT TABLESPACE mspdb1tbs
 DATAFILE '/disk1/oracle/dbs/mspdb1/mspdb101.dbf' SIZE 250M
 AUTOEXTEND ON
 FILE_NAME_CONVERT = ('/disk1/oracle/dbs/pdbseed/',
 '/disk1/oracle/dbs/mspdb1/');

CREATE PLUGGABLE DATABASE mspdb2 ADMIN USER mspdb2admin IDENTIFIED BY
password
 STORAGE (MAXSIZE 2G)
 DEFAULT TABLESPACE mspdb2tbs
 DATAFILE '/disk1/oracle/dbs/mspdb2/mspdb201.dbf' SIZE 250M
 AUTOEXTEND ON
 FILE_NAME_CONVERT = ('/disk1/oracle/dbs/pdbseed/',
 '/disk1/oracle/dbs/mspdb2/');

c. Open both application PDBs:

ALTER PLUGGABLE DATABASE mspdb1 OPEN;
ALTER PLUGGABLE DATABASE mspdb2 OPEN;

d. Synchronize the application PDBs with the master application root:

ALTER SESSION SET CONTAINER=mspdb1;
ALTER PLUGGABLE DATABASE APPLICATION sampleapp SYNC;

ALTER SESSION SET CONTAINER=mspdb2;
ALTER PLUGGABLE DATABASE APPLICATION sampleapp SYNC;

4. Create the application container with the application root replica in the depdb CDB.

a. In SQL*Plus, ensure that the current container is the depdb CDB root.

Chapter 17
Managing Applications in an Application Container

17-39

b. Create the application container from the PDB seed with the following
statement:

CREATE PLUGGABLE DATABASE depappcon
 AS APPLICATION CONTAINER
 ADMIN USER depappconadm IDENTIFIED BY password
 STORAGE (MAXSIZE 2G)
 DEFAULT TABLESPACE appcontbs
 DATAFILE '/disk2/oracle/dbs/depsappcon/depappcon01.dbf' SIZE
250M
 AUTOEXTEND ON
 FILE_NAME_CONVERT = ('/disk2/oracle/dbs/pdbseed/',
 '/disk2/oracle/dbs/depappcon/');

Note:

• If the port of the listener used by the application root replica is
not 1521, then a PORT clause is required.

• If the host of the application root replica is different from the host
of the master application root, then a HOST clause is required.

c. Open the new application root replica in read/write mode:

ALTER PLUGGABLE DATABASE depappcon OPEN;

5. Create and synchronize the proxy PDB in the master application root.

a. In SQL*Plus, ensure that the current container is the master application root.

b. Create a database link to the application root replica:

CREATE PUBLIC DATABASE LINK depappcon
 CONNECT TO depappconadm IDENTIFIED BY password USING
'depappcon';

c. Create the proxy PDB:

CREATE PLUGGABLE DATABASE prxypdb AS PROXY
 FROM depappcon@depappcon
 FILE_NAME_CONVERT = ('/disk2/oracle/dbs/depsappcon/',
 '/disk1/oracle/dbs/prxypdb/');

d. Open the proxy PDB:

ALTER PLUGGABLE DATABASE prxypdb OPEN;

e. Synchronize the proxy PDB with the master application root:

ALTER SESSION SET CONTAINER=prxypdb;
ALTER PLUGGABLE DATABASE APPLICATION sampleapp SYNC;

Chapter 17
Managing Applications in an Application Container

17-40

6. Create and synchronize one or more application PDBs in the application root replica.

a. Change container to the application root replica:

ALTER SESSION SET CONTAINER=depappcon;

b. Create application PDBs in the application root replica.

For example, create two application PDBs from the PDB seed:

CREATE PLUGGABLE DATABASE deppdb1
 ADMIN USER deppdb1admin IDENTIFIED BY password
 STORAGE (MAXSIZE 2G)
 DEFAULT TABLESPACE deppdb1tbs
 DATAFILE '/disk2/oracle/dbs/deppdb1/deppdb101.dbf' SIZE 250M
 AUTOEXTEND ON
 FILE_NAME_CONVERT = ('/disk2/oracle/dbs/pdbseed/',
 '/disk2/oracle/dbs/deppdb1/');

CREATE PLUGGABLE DATABASE deppdb2 ADMIN USER deppdb2admin IDENTIFIED
BY password
 STORAGE (MAXSIZE 2G)
 DEFAULT TABLESPACE deppdb2tbs
 DATAFILE '/disk2/oracle/dbs/deppdb2/deppdb201.dbf' SIZE 250M
 AUTOEXTEND ON
 FILE_NAME_CONVERT = ('/disk2/oracle/dbs/pdbseed/',
 '/disk2/oracle/dbs/deppdb2/');

c. Open both application PDBs:

ALTER PLUGGABLE DATABASE deppdb1 OPEN;
ALTER PLUGGABLE DATABASE deppdb2 OPEN;

d. Synchronize the application PDBs with the master application root:

ALTER SESSION SET CONTAINER=deppdb1;
ALTER PLUGGABLE DATABASE APPLICATION sampleapp SYNC;

ALTER SESSION SET CONTAINER=deppdb2;
ALTER PLUGGABLE DATABASE APPLICATION sampleapp SYNC;

7. Check the structure of the apptb table in an application PDB in the application root
replica.

a. From the application root replica, switch containers to the deppdb1 application PDB:

ALTER SESSION SET CONTAINER=deppdb1;

b. Describe the apptb table:

desc apptb

Chapter 17
Managing Applications in an Application Container

17-41

Your output is similar to the following:

 Name Null? Type
 ------------------------------- -------- ------------
 ID NUMBER(6)
 WIDGET_NAME VARCHAR2(20)

8. In the master application root, upgrade the application.

a. Change container to the master application root:

ALTER SESSION SET CONTAINER=msappcon;

b. Begin the application upgrade.

ALTER PLUGGABLE DATABASE APPLICATION sampleapp
 BEGIN UPGRADE '1.0' TO '1.1';

c. Modify the application.

For example, add a row to the apptb table:

ALTER TABLE apptb ADD (widget_type VARCHAR2(30));

d. End the application upgrade:

ALTER PLUGGABLE DATABASE APPLICATION sampleapp END UPGRADE TO
'1.1';

9. Synchronize the proxy PDB with the master application root:

ALTER SESSION SET CONTAINER=prxypdb;
ALTER PLUGGABLE DATABASE APPLICATION sampleapp SYNC;

10. Synchronize the application PDBs in the application root replica and check for the
application upgrade.

a. Synchronize the application PDBs:

ALTER SESSION SET CONTAINER=deppdb1;
ALTER PLUGGABLE DATABASE APPLICATION sampleapp SYNC;

ALTER SESSION SET CONTAINER=deppdb2;
ALTER PLUGGABLE DATABASE APPLICATION sampleapp SYNC;

b. From the application root replica, switch containers to the deppdb1 application
PDB:

ALTER SESSION SET CONTAINER=deppdb1;

c. Describe the apptb table:

desc apptb

Chapter 17
Managing Applications in an Application Container

17-42

Your output is similar to the following:

 Name Null? Type
 ------------------------------- -------- ------------
 ID NUMBER(6)
 WIDGET_NAME VARCHAR2(20)
 WIDGET_TYPE VARCHAR2(30)

Notice that the change in the application upgrade is reflected in the output because
the widget_type column has been added to the apptb table.

Related Topics

• Creating Application Containers
You can create application containers in several different ways, including using the PDB
seed, cloning an existing PDB, and plugging in an unplugged PDB by using the CREATE
PLUGGABLE DATABASE statement.

• Creating a PDB as a Proxy PDB
You can create a PDB as a proxy PDB by referencing it in a remote CDB.

• Managing Applications in an Application Container
You install, upgrade, or patch an application in an application container.

• Synchronizing Applications in an Application PDB
Synchronizing an application updates the application in the application PDB to the latest
version and patch in the application root.

Setting the Compatibility Version of an Application
The compatibility version of an application is the earliest version of the application possible
for the application PDBs that belong to the application container.

The compatibility version is enforced when the compatibility version is set and when an
application PDB is created. If there are application root clones that resulted from application
upgrades, then all application root clones that correspond to versions earlier than the
compatibility version are implicitly dropped.

You specify the compatibility version of an application by issuing one of the following SQL
statements when the application root is the current container:

• ALTER PLUGGABLE DATABASE APPLICATION application_name SET COMPATIBILITY
VERSION 'application_version_number';
application_name is the name of the application, and application_version_number is the
earliest compatible version.

• ALTER PLUGGABLE DATABASE APPLICATION application_name SET COMPATIBILITY
VERSION CURRENT;
application_name is the name of the application. The current version is the version of the
application in the application root.

Chapter 17
Managing Applications in an Application Container

17-43

Note:

You cannot plug in an application PDB that uses an application version
earlier than the compatibility setting of the application container.

1. In SQL*Plus, ensure that the current container is the application root.

2. Run an ALTER PLUGGABLE DATABASE APPLICATION SET COMPATIBILITY VERSION
statement.

Example 17-13 Setting the Compatibility Version to a Specific Version Number

This example sets the compatibility version for an application named salesapp to
version 4.2.

ALTER PLUGGABLE DATABASE APPLICATION salesapp
 SET COMPATIBILITY VERSION '4.2';

Example 17-14 Setting the Compatibility Version to the Current Application
Version

This example sets the compatibility version for an application named salesapp to the
current application version.

ALTER PLUGGABLE DATABASE APPLICATION salesapp
 SET COMPATIBILITY VERSION CURRENT;

See Also:

"About Upgrading Applications in an Application Container" for information
about application root clones

Performing Bulk Inserts During Application Install, Upgrade, and Patch
Operations

SQL*Loader is the only supported utility for bulk inserts into tables during application
install, upgrade, and patch operations. Only conventional path loads are supported for
bulk inserts during application install, upgrade, and patch operations.

The correct SQL*Loader module name must be specified between the ALTER
PLUGGABLE DATABASE APPLICATION BEGIN and the ALTER PLUGGABLE DATABASE
APPLICATION END statements. The module name is SQL Loader Conventional Path
Load.

1. In SQL*Plus, ensure that the current container is the application root.

Chapter 17
Managing Applications in an Application Container

17-44

2. Set the correct module by running the following procedure:

BEGIN
 DBMS_APPLICATION_INFO.SET_MODULE(
 'SQL Loader Conventional Path Load', '');
END;

This module must remain set for the entire application install, upgrade, or patch
operation.

3. Run the ALTER PLUGGABLE DATABASE APPLICATION BEGIN statement for beginning an
application installation, upgrade, or patch.

For example, if you are performing the bulk insert as part of an application installation,
then run the ALTER PLUGGABLE DATABASE APPLICATION BEGIN INSTALL statement in the
following form:

ALTER PLUGGABLE DATABASE APPLICATION application_name
 BEGIN INSTALL 'application_version_number';

4. Perform the conventional path load with SQL*Loader.

5. Run the ALTER PLUGGABLE DATABASE APPLICATION END statement for ending an
application installation, upgrade, or patch.

For example, if you are performing the bulk insert as part of an application installation,
then run the ALTER PLUGGABLE DATABASE APPLICATION END INSTALL statement in the
following form:

ALTER PLUGGABLE DATABASE APPLICATION application_name
 END INSTALL 'application_version_number';

Note:

Ensure that the application_name and application_version_number match in
the ALTER PLUGGABLE DATABASE APPLICATION BEGIN INSTALL statement and
the ALTER PLUGGABLE DATABASE APPLICATION END INSTALL statement.

6. Synchronize all application PDBs that must include these application changes by issuing
an ALTER PLUGGABLE DATABASE APPLICATION statement with the SYNC clause.

Example 17-15 Performing a Conventional Path Load During an Application
Installation

In this example, the conventional path load is performed in an application root.

1. In SQL*Plus, switch to the application root.

ALTER SESSION SET CONTAINER=cdb1_approot1;

2. Set the correct module.

BEGIN
 DBMS_APPLICATION_INFO.SET_MODULE(

Chapter 17
Managing Applications in an Application Container

17-45

 'SQL Loader Conventional Path Load', '');
END;

3. Start the application installation.

ALTER PLUGGABLE DATABASE APPLICATION APP1 BEGIN INSTALL '1';

4. Use SQL*Loader to perform the conventional path load.

HOST sqlldr u1/u1@cdb1_approot1 control=my_bulk_load.ctl -
rows=3 log=my_bulk_load.log

5. End the application installation.

ALTER PLUGGABLE DATABASE APPLICATION APP1 END INSTALL '1';

See Also:

Oracle Database Utilities for information about SQL*Loader

Uninstalling Applications from an Application Container
You can uninstall an application in an application container.

• About Uninstalling Applications from an Application Container
You issue ALTER PLUGGABLE DATABASE APPLICATION statements to uninstall an
application from the application root.

• Uninstalling an Application from an Application Container
To uninstall an application in from application container, run the ALTER PLUGGABLE
DATABASE APPLICATION BEGIN UNINSTALL statement to begin the uninstallation
and the ALTER PLUGGABLE DATABASE APPLICATION END UNINSTALL statement to
end it. The application uninstalled from the application PDBs that synchronize with
the application in the application root.

About Uninstalling Applications from an Application Container
You issue ALTER PLUGGABLE DATABASE APPLICATION statements to uninstall an
application from the application root.

You uninstall the application from the application root only, and application PDBs that
synchronize with the application uninstall the application automatically. The uninstall
operation can be done with one or more of the following: scripts, SQL statements, and
graphical user interface tools.

You must indicate the start of the uninstallation with an ALTER PLUGGABLE DATABASE
APPLICATION BEGIN UNINSTALL statement and the end of the uninstallation with an
ALTER PLUGGABLE DATABASE APPLICATION END UNINSTALL statement. Each
uninstallation must be associated with an application name and version number, which
are specified in the ALTER PLUGGABLE DATABASE APPLICATION statements.

Chapter 17
Managing Applications in an Application Container

17-46

Uninstalling an application does not remove the application from the data dictionary. It marks
the application as UNINSTALLED so that upgrade, patch, and uninstall of the application is
disallowed.

Destructive changes to application objects are allowed during application uninstallation.
Applications running in an application PDB continue to function during uninstallation and after
the application is uninstalled from the application root. The application can continue to
function in the application PDB because the ALTER PLUGGABLE DATABASE APPLICATION BEGIN
UNINSTALL statement creates a clone of the application root called an application root clone.
An application root clone serves as a metadata repository for old versions of application
objects, so that application PDBs that have not been synchronized with latest version of the
application can continue to function. Because the clone is created while the application PDB
is open, local undo must be configured at the CDB level before an application can be
uninstalled.

Note:

An application upgrade also creates an application root clone.

See Also:

• "About Upgrading Applications in an Application Container" for information
about application root clones

• "Running Oracle-Supplied SQL Scripts in a CDB"

Uninstalling an Application from an Application Container
To uninstall an application in from application container, run the ALTER PLUGGABLE DATABASE
APPLICATION BEGIN UNINSTALL statement to begin the uninstallation and the ALTER
PLUGGABLE DATABASE APPLICATION END UNINSTALL statement to end it. The application
uninstalled from the application PDBs that synchronize with the application in the application
root.

The following prerequisites must be met:

• The CDB must be in local undo mode.

• The current user must have the ALTER PLUGGABLE DATABASE system privilege, and the
privilege must be commonly granted in the application root.

• The application root must be in open read/write mode.

1. In SQL*Plus, ensure that the current container is the application root.

2. Run the ALTER PLUGGABLE DATABASE APPLICATION BEGIN UNINSTALL statement in the
following form:

ALTER PLUGGABLE DATABASE APPLICATION application_name BEGIN UNINSTALL;
For example, run the following statement if the application_name is salesapp:

ALTER PLUGGABLE DATABASE APPLICATION salesapp BEGIN UNINSTALL;

Chapter 17
Managing Applications in an Application Container

17-47

3. Uninstall the application using scripts, SQL statements, or graphical user interface
tools.

4. Run the ALTER PLUGGABLE DATABASE APPLICATION END UNINSTALL statement in
the following form:

ALTER PLUGGABLE DATABASE APPLICATION application_name END UNINSTALL;
For example, run the following statement if the application_name is salesapp:

ALTER PLUGGABLE DATABASE APPLICATION salesapp END UNINSTALL;

Note:

Ensure that the application_name matches in the ALTER PLUGGABLE
DATABASE APPLICATION BEGIN UNINSTALL statement and theALTER
PLUGGABLE DATABASE APPLICATION END UNINSTALL statement.

5. Synchronize all of the application PDBs that must uninstall the application by
issuing an ALTER PLUGGABLE DATABASE APPLICATION statement with the SYNC
clause.

See Also:

• "Accessing a Container in a CDB"

• "Synchronizing Applications in an Application PDB"

• "Setting the Undo Mode in a CDB Using ALTER DATABASE"

Managing Application Common Objects
Application common objects are shared, user-created database objects in an
application container. Application common objects are created in an application root.

• About Application Common Objects
Application common objects are created in an application root and are shared with
the application PDBs that belong to the application root.

• Restrictions for Application Common Objects
Some restrictions apply to application common objects.

• Creating Application Common Objects
You create an application common object in an application root either by ensuring
that the DEFAULT_SHARING initialization parameter is set to the correct value or by
including the SHARING clause in the CREATE SQL statement.

• Issuing DML Statements on Application Common Objects
The rules are different for issuing DML statements on metadata-linked, data-
linked, and extended data-linked application common objects.

• Modifying Application Common Objects with DDL Statements
When you modify an application common object in an application root with certain
DDL statements, you must modify the object between ALTER PLUGGABLE DATABASE

Chapter 17
Managing Application Common Objects

17-48

APPLICATION BEGIN and ALTER PLUGGABLE DATABASE APPLICATION END statements, and
application PDBs must synchronize with the application to apply the changes.

About Application Common Objects
Application common objects are created in an application root and are shared with the
application PDBs that belong to the application root.

There are three types of application common object: metadata-linked, data-linked, and
extended data-linked. The following types of database objects can be application common
objects:

• Analytic views

• Attribute dimensions

• Directories

• External procedure libraries

• Hierarchies

• Java classes, resources, and sources

• Object tables, types, and views

• Sequences

• Packages, stored functions, and stored procedures

• Synonyms

• Tables (including global temporary tables)

• Triggers

• Views

• Creation of Application Common Objects
Create application common objects by issuing a CREATE statement when the current
container is the application root and specifying the SHARING clause.

• About Metadata-Linked Application Common Objects
For metadata-linked application common objects, the metadata for the object is stored
once in the application root.

• About Data-Linked Application Common Objects
For data-linked application common objects, both the metadata and the data for the
object is stored once in the application root. A data link in each application PDB that
belongs to the application root enables the application PDBs to share the metadata and
data of the object.

• About Extended Data-Linked Application Common Objects
For an extended data-linked object, each application PDB can create its own data while
sharing the common data in the application root. Only data stored in the application root
is common for all application PDBs.

Creation of Application Common Objects
Create application common objects by issuing a CREATE statement when the current container
is the application root and specifying the SHARING clause.

Chapter 17
Managing Application Common Objects

17-49

You can specify the sharing attribute by including the SHARING clause in the CREATE
statement or by setting the DEFAULT_SHARING initialization parameter in the application
root. When you set the DEFAULT_SHARING initialization parameter, the setting is the
default sharing attribute for all database objects of a supported type created in the
application root. However, when a SHARING clause is included in a CREATE statement,
its setting overrides the setting for the DEFAULT_SHARING initialization parameter.

You can specify one of the following for the sharing attribute:

• METADATA: A metadata link shares the database object’s metadata, but its data is
unique to each container. These database objects are referred to as metadata-
linked application common objects. This setting is the default.

• DATA: A data link shares the database object, and its data is the same for all
containers in the application container. Its data is stored only in the application
root. These database objects are referred to as data-linked application common
objects.

• EXTENDED DATA: An extended data link shares the database object, and its data in
the application root is the same for all containers in the application container.
However, each application PDB in the application container can store data that is
unique to the application PDB. For this type of database object, data is stored in
the application root and, optionally, in each application PDB. These database
objects are referred to as extended data-linked application common objects.

• NONE: The database object is not shared.

For most types of application common objects, the only valid settings for the SHARING
clause are METADATA and NONE. The following types of application common objects
allow additional settings for the SHARING clause:

• For tables (excluding object tables), the SHARING clause can be set to METADATA,
DATA, EXTENDED DATA, or NONE. For object tables, only METADATA or NONE is valid.

• For views (excluding object views), the SHARING clause can be set to METADATA,
DATA, EXTENDED DATA, or NONE. For object views, only METADATA or NONE is valid.

• For sequences, the SHARING clause can be set to METADATA, DATA, or NONE.

With a metadata-linked sequence, each application PDB has its own sequence.
When the metadata-linked sequence is incremented using the NEXTVAL
pseudocolumn in one application PDB, it does not affect the value of the sequence
in the other application PDBs in the application container.

With a data-linked sequence, each application PDB shares the same sequence in
the application root. When the metadata-linked sequence is incremented using the
NEXTVAL pseudocolumn in one application PDB, all other application PDBs in the
same application container also see the change.

Application common objects can be created or changed only as part of an application
installation, upgrade, or patch. An application PDB applies changes to application
common objects when it synchronizes with the application that made the changes. If
an application PDB is closed when an application common object is created, dropped,
or modified, then the appropriate changes are applied in the application PDB when it is
opened and synchronized with the application.

The names of application common objects must not conflict with those of local
database objects in any of the application PDBs that belong to the application root or
Oracle-supplied common objects in the CDB root. If a newly opened application PDB
contains a local database object whose name conflicts with that of an application

Chapter 17
Managing Application Common Objects

17-50

common object, then the application PDB is opened in RESTRICTED mode. In this case, you
must resolve the naming conflict before the application PDB can be opened in normal mode.

About Metadata-Linked Application Common Objects
For metadata-linked application common objects, the metadata for the object is stored once
in the application root.

A metadata link in each application PDB that belongs to the application root enables the
application PDBs to share the metadata for the object, including the object name and
structure. The data for the object is unique to each container, including the application root
and each application PDB that belongs to the application root.

Data definition language (DDL) operations on a metadata-linked application common object
can be run in the application root only as part of an application installation, upgrade, or patch.
However, the data can be modified in an application PDB using normal data manipulation
language (DML) operations.

For example, consider a company with several regional offices. The company wants the
structure of the information about employees to be consistent, but each office has different
employees. If this company has a human resources application in an application container, it
can create a separate application PDB for each regional office and use a metadata-linked
table to store employee information. The data structure of the table, such as the columns, is
the same in the application PDB for each regional office, but the employee data is different.

Another example might involve a company that builds and maintains a sales application that
is used by several different businesses. Each business uses the same sales application, but
the data for each business is different. For example, each business has different customers
and therefore different customer data. To ensure that each client uses the same data
structure for its application, the company might create an application container with
metadata-linked application common objects. Each business that uses the sales application
has its own application PDB, and the data structure is the same in each application PDB, but
the data is different.

About Data-Linked Application Common Objects
For data-linked application common objects, both the metadata and the data for the object is
stored once in the application root. A data link in each application PDB that belongs to the
application root enables the application PDBs to share the metadata and data of the object.

DDL operations on a data-linked application common object can be run in the application root
only as part of an application installation, upgrade, or patch. In addition, the data can be
modified using normal DML operations only in the application root. The data cannot be
modified in application PDBs.

For example, consider a company with several regional offices. The company wants the
information about the products they sell, such as the product names and descriptions, to be
consistent at all of the regional offices. If this company has a sales application in an
application container, then it can create a separate application PDB for each regional office
and use a data-linked table to store product information. Each application PDB can query the
product information, and the product information is consistent at each regional office.

Data-linked application common objects are also useful for data that is standard and does not
change. For example, a table that stores the postal codes for a country might be a data-
linked application common object in an application container. All of the application PDBs
access the same postal code data in the application root.

Chapter 17
Managing Application Common Objects

17-51

Note:

If the data-linked application common object is part of a configuration that
synchronizes an application root replica with a proxy PDB, then DML
operations on a data-linked object in the application root can be done outside
of an application action, but the DML operation is not automatically
propagated to the application root replication through the proxy PDB. If you
want the DML operation to be propagated to the application root replica, then
the DML operation on a data-linked object in the application root must be
done within an application installation, upgrade, or patch.

About Extended Data-Linked Application Common Objects
For an extended data-linked object, each application PDB can create its own data
while sharing the common data in the application root. Only data stored in the
application root is common for all application PDBs.

DDL operations on an extended data-linked application common object can be run in
the application root only as part of an application installation, upgrade, or patch.
However, the data can be modified in the application root or in an application PDB
using normal DML operations.

For example, a sales application in an application container might support several
application PDBs, and all of the application PDBs need the postal codes in the United
States for shipping purposes. In this case the postal codes can be stored in the
application root so that all of the application PDBs can access it. However, one
application PDB also makes sales in Canada, and this application PDB requires the
postal codes for the United States and Canada. This one application PDB can store
the postal codes for Canada in an extended data-linked object in the application PDB
instead of in the application root.

Note:

• Tables and views are the only types of database objects that can be
extended data-linked objects.

• If the extended data-linked application common object is part of a
configuration that synchronizes an application root replica with a proxy
PDB, then DML operations on an extended data-linked object in the
application root can be done outside of an application action, but the
DML operation is not automatically propagated to the application root
replication through the proxy PDB. If you want the DML operation to be
propagated to the application root replica, then the DML operation on an
extended data-linked object in the application root must be done within
an application installation, upgrade, or patch.

Restrictions for Application Common Objects
Some restrictions apply to application common objects.

Chapter 17
Managing Application Common Objects

17-52

Queries on application common objects can return data from a container that is not the
current container. For example, when the current container is an application root, queries that
include the CONTAINERS clause can return data from application PDBs for metadata-linked
application common objects. Also, when the current container is an application PDB, queries
on data-linked and extended data-linked application common objects return data that resides
in the application root.

Columns of the following types return no data in queries that return data from a container
other than the current container:

• The following user-defined types: object types, varrays, REFs, and nested tables

• The following Oracle-supplied types: ANYTYPE, ANYDATASET, URI types,
SDO_TOPO_GEOMETRY, SDO_GEORASTER, and Expression

In addition, queries on object tables and object views return no data from containers other
than the current container.

Related Topics

• Querying Application Common Objects Across Application PDBs
The CONTAINERS clause enables you to query application common objects across all
PDBs in an application container. Queries from the application root display data in objects
that exist in all open PDBs in the container.

Creating Application Common Objects
You create an application common object in an application root either by ensuring that the
DEFAULT_SHARING initialization parameter is set to the correct value or by including the
SHARING clause in the CREATE SQL statement.

You can create a metadata-linked object, an extended data-linked, or a data-linked object in
an application root as part of an application installation, upgrade, or patch. An application
PDB applies changes to application common objects when it synchronizes with the
application in the application root.

1. In SQL*Plus, ensure that the current container is the application root.

The current user must have the privileges required to create the database object.

2. Run the ALTER PLUGGABLE DATABASE APPLICATION BEGIN statement for beginning an
application installation, upgrade, or patch.

For example, if you are creating the application common object as part of an application
installation, then run the ALTER PLUGGABLE DATABASE APPLICATION BEGIN INSTALL
statement in the following form:

ALTER PLUGGABLE DATABASE APPLICATION application_name
 BEGIN INSTALL 'application_version_number';

3. Create the application common object and specify its sharing attribute in one of the
following ways:

• Ensure that the DEFAULT_SHARING initialization parameter is set to the desired sharing
attribute in the application root, and issue the CREATE SQL statement to create the
database object.

• Issue the CREATE SQL statement, and include the SHARING clause set to METADATA,
DATA, or EXTENDED DATA.

Chapter 17
Managing Application Common Objects

17-53

When a SHARING clause is included in a SQL statement, it takes precedence over
the value specified in the DEFAULT_SHARING initialization parameter. For example, if
the DEFAULT_SHARING initialization parameter is set to METADATA in the application
root, and a database object is created with SHARING set to DATA, then the database
object is created as a data-linked database object.

Note:

Once a database object is created, its sharing attribute cannot be
changed.

4. Run the ALTER PLUGGABLE DATABASE APPLICATION END statement for ending an
application installation, upgrade, or patch.

For example, if you are creating the application common object as part of an
application installation, then run the ALTER PLUGGABLE DATABASE APPLICATION END
INSTALL statement in the following form:

ALTER PLUGGABLE DATABASE APPLICATION application_name
 END INSTALL 'application_version_number';

Note:

Ensure that the application_name and application_version_number
match in the ALTER PLUGGABLE DATABASE APPLICATION BEGIN INSTALL
statement and the ALTER PLUGGABLE DATABASE APPLICATION END
INSTALL statement.

5. Synchronize all of the application PDBs that must apply these changes by issuing
an ALTER PLUGGABLE DATABASE APPLICATION statement with the SYNC clause with
the application PDB as the current container.

Example 17-16 Setting the DEFAULT_SHARING Initialization Parameter

This example sets the DEFAULT_SHARING initialization parameter to DATA both in
memory and in the SPFILE. When a database object that supports sharing is created
in the application root, and no SHARING clause is included in the CREATE SQL
statement, the database object uses the sharing attribute specified in the
DEFAULT_SHARING initialization parameter.

ALTER SYSTEM SET DEFAULT_SHARING=DATA SCOPE=BOTH;

Example 17-17 Creating a Metadata-Linked Object

This example creates the employees_md metadata-linked table by including the
SHARING=METADATA clause. The application_name is salesapp and the
application_version_number is 4.2, and the object is created during application
installation.

ALTER PLUGGABLE DATABASE APPLICATION salesapp BEGIN INSTALL '4.2';
CREATE TABLE employees_md SHARING=METADATA

Chapter 17
Managing Application Common Objects

17-54

 (employee_id NUMBER(6),
 first_name VARCHAR2(20),
 last_name VARCHAR2(25) CONSTRAINT emp_last_name_nn_demo NOT NULL,
 email VARCHAR2(25) CONSTRAINT emp_email_nn_demo NOT NULL,
 phone_number VARCHAR2(20),
 hire_date DATE DEFAULT SYSDATE
 CONSTRAINT emp_hire_date_nn_demo NOT NULL,
 job_id VARCHAR2(10) CONSTRAINT emp_job_nn_demo NOT NULL,
 salary NUMBER(8,2) CONSTRAINT emp_salary_nn_demo NOT NULL,
 commission_pct NUMBER(2,2),
 manager_id NUMBER(6),
 department_id NUMBER(4),
 dn VARCHAR2(300),
 CONSTRAINT emp_salary_min_demo CHECK (salary > 0),
 CONSTRAINT emp_email_uk_demo UNIQUE (email));
ALTER PLUGGABLE DATABASE APPLICATION salesapp END INSTALL '4.2';

Example 17-18 Creating a Data-Linked Object

This example creates the product_descriptions_ob data-linked table by including the
SHARING=DATA clause. The application_name is salesapp and the
application_version_number is 4.2, and the object is created during application installation.

ALTER PLUGGABLE DATABASE APPLICATION salesapp BEGIN INSTALL '4.2';
CREATE TABLE product_descriptions_ob SHARING=DATA (
 product_id NUMBER(6),
 language_id VARCHAR2(3),
 translated_name NVARCHAR2(50)
 CONSTRAINT translated_name_nn NOT NULL,
 translated_description NVARCHAR2(2000)
 CONSTRAINT translated_desc_nn NOT NULL);
ALTER PLUGGABLE DATABASE APPLICATION salesapp END INSTALL '4.2';

Example 17-19 Creating an Extended Data-Linked Object

This example creates the postalcodes extended data-linked table by including the EXTENDED
keyword and the SHARING clause. The application_name is salesapp and the
application_version_number is 4.2, and the object is created during application installation.

ALTER PLUGGABLE DATABASE APPLICATION salesapp BEGIN INSTALL '4.2';
CREATE TABLE postalcodes SHARING=EXTENDED DATA
 (code VARCHAR2(7),
 country_id NUMBER,
 place_name VARCHAR2(20));
ALTER PLUGGABLE DATABASE APPLICATION salesapp END INSTALL '4.2';

Example 17-20 Creating an Object That Is Not Shared in an Application Root

This example creates the departments_ns table and specifies that it is not a shared common
application object by including the SHARING=NONE clause. After creation, this database object
can be accessed only in the application root.

CREATE TABLE departments_ns SHARING=NONE
 (department_id NUMBER(4),

Chapter 17
Managing Application Common Objects

17-55

 department_name VARCHAR2(30) CONSTRAINT dept_name_nn NOT NULL,
 manager_id NUMBER(6),
 location_id NUMBER(4),
 dn VARCHAR2(300));

Note:

The ALTER PLUGGABLE DATABASE APPLICATION BEGIN and END statements
are not required when you create an object that is not a shared common
object. However, if you create an object that is not shared in between ALTER
PLUGGABLE DATABASE APPLICATION BEGIN and END statements, then the
object is created in application PDBs that synchronize with the application.

Related Topics

• Managing Applications in an Application Container
You install, upgrade, or patch an application in an application container.

• Synchronizing Applications in an Application PDB
Synchronizing an application updates the application in the application PDB to the
latest version and patch in the application root.

Issuing DML Statements on Application Common Objects
The rules are different for issuing DML statements on metadata-linked, data-linked,
and extended data-linked application common objects.

• Issuing DML on Metadata-Linked Common Objects
You can issue DML on metadata-linked application objects as normal.

• Issuing DML on Data-Linked Common Objects
For data-linked application objects, issue DML as normal in the application root.
For extended data-linked application objects, issue DML as normal in the
application root and in application PDBs.

Related Topics

• Managing Applications in an Application Container
You install, upgrade, or patch an application in an application container.

• Synchronizing Applications in an Application PDB
Synchronizing an application updates the application in the application PDB to the
latest version and patch in the application root.

• Synchronizing an Application Root Replica with a Proxy PDB
When application containers in different CDBs have the same application, their
application roots can be kept synchronized by creating a master application root, a
replica application root, and a proxy PDB.

Issuing DML on Metadata-Linked Common Objects
You can issue DML on metadata-linked application objects as normal.

For metadata-linked application common objects, the object definitions are the same in
all application PDBs, but the data is different. Users and applications can issue DML

Chapter 17
Managing Application Common Objects

17-56

statements on these objects in the same way as for ordinary database objects. The DML only
affects the current container.

• Querying Using the CONTAINERS Clause
For metadata-linked objects, the CONTAINERS clause enables you to query a table or view
across all PDBs in an application container.

• Setting the Default Container or DML
You can set the CONTAINERS_DEFAULT attribute on any metadata-linked object so that
DML issued in the application root is wrapped in the CONTAINERS clause by default.

Querying Using the CONTAINERS Clause
For metadata-linked objects, the CONTAINERS clause enables you to query a table or view
across all PDBs in an application container.

For metadata-linked objects, the CONTAINERS clause is useful when DML is run in the
application root. The query performs a UNION ALL, returning all rows from the object in the
root and all open application PDBs (except those in RESTRICTED mode).

To query a subset of the PDBs, specify the CON_ID or CON$NAME in predicate. If the queried
table or view does not already contain a CON_ID column, then the query adds a CON_ID
column to the query result, which identifies the container whose data a given row represents.

Prerequisites

Note the following prerequisites:

• To query data in an application container, you must be a common user connected to the
application root.

• The table or view must exist in the application root and all PDBs in the application
container.

• The table or view must be in your own schema. It is not necessary to specify schema, but
if you do, then you must specify your own schema.

To query a metadata-linked object in an application container:

1. Log in to the application root as an application common user.

2. Specify the CONTAINERS clause in a SELECT statement.

For example, the following statement counts the number of rows in the sh.customers
table in the root and every application PDB (sample output included):

SELECT c.CON_ID, COUNT(*)
FROM CONTAINERS(sh.customers) c
GROUP BY c.CON_ID
ORDER BY 1;

 CON_ID COUNT(*)
---------- ----------
 3 20002
 6 426
 8 7232

Chapter 17
Managing Application Common Objects

17-57

Setting the Default Container or DML
You can set the CONTAINERS_DEFAULT attribute on any metadata-linked object so that
DML issued in the application root is wrapped in the CONTAINERS clause by default.

Set ENABLE CONTAINERS_DEFAULT in either an ALTER TABLE or ALTER VIEW statement.
The CONTAINERS_DEFAULT column in the DBA_TABLES and DBA_VIEWS views shows
whether the database object is enabled for the CONTAINERS clause by default.

To set the default container for DML involving a metadata-linked table or view:

1. Log in to the application root as an application common user.

2. Issue an ALTER TABLE or ALTER VIEW statement with the ENABLE
CONTAINERS_DEFAULT clause in the application root.

The following statement sets the default container for sh.customers:

ALTER TABLE sh.customers ENABLE CONTAINERS_DEFAULT;

After setting this attribute, queries and DML statements issued in the application
root use the CONTAINERS clause by default for sh.customers.

Issuing DML on Data-Linked Common Objects
For data-linked application objects, issue DML as normal in the application root. For
extended data-linked application objects, issue DML as normal in the application root
and in application PDBs.

For data-linked application objects, DML in the application root affects the data
accessible by all PDBs in the application container. You cannot issue DML on data-
linked application objects in application PDBs.

For extended data-linked application objects, DML in the application root affects the
data accessible by all PDBs in the application container. DML in an application PDB
only affects data that is unique to the application PDB.

Consider an application root that has data-linked or extended data-linked objects.
Also, assume that this root is the master for application root replicas synchronized with
proxy PDBs. In this case, DML only synchronizes with the replicas when DML occurs
during an application installation, upgrade, or patch. Specifically, DML must occur in
the root between ALTER PLUGGABLE DATABASE APPLICATION ... {BEGIN|END}
statements. Other DML applies only to the current root and is not synchronized with
root replicas.

To issue DML for an application common object that is not part of an application
root replica configuration:

1. Connect to the appropriate container in the application container as a user with the
privileges required to issue DML statements on the database object.

2. Issue DML statements normally.

Chapter 17
Managing Application Common Objects

17-58

To issue DML for a data-linked or extended data-linked object that is part of an
application root replica configuration:

1. In SQL*Plus, ensure that the current container is the master application root in the
application root replica in the configuration.

The current user must have the privileges required to issue the DML statements on the
database object.

2. Run the ALTER PLUGGABLE DATABASE APPLICATION ... BEGIN statement for beginning
an application installation, upgrade, or patch.

If you are modifying the application common object as part of an application upgrade,
then issue the upgrade statement in the following form:

ALTER PLUGGABLE DATABASE APPLICATION application_name BEGIN UPGRADE
 'application_start_version_number' TO
 'application_end_version_number';

For example, run the following statement if the application_name is salesapp, the
application_start_version_number is 4.2, and the application_end_version_number is 4.3:

ALTER PLUGGABLE DATABASE APPLICATION salesapp
 BEGIN UPGRADE '4.2' TO '4.3';

3. Issue the DML statements on the data-linked application common object.

4. Run the ALTER PLUGGABLE DATABASE APPLICATION ... END statement.

For example, if you are modifying the application common object as part of an application
upgrade, then run the statement in the following form:

ALTER PLUGGABLE DATABASE APPLICATION application_name END UPGRADE
 TO 'application_end_version_number';

For example, run the following statement if the application_name is salesapp, the
application_start_version_number is 4.2, and the application_end_version_number is 4.3:

ALTER PLUGGABLE DATABASE APPLICATION salesapp END UPGRADE TO '4.3';

Note:

Ensure that the application_name and application_end_version_number match
in the ALTER PLUGGABLE DATABASE APPLICATION BEGIN UPGRADE statement and
ALTER PLUGGABLE DATABASE APPLICATION END UPGRADE statements.

5. To synchronize all application PDBs that must apply these changes, issue an ALTER
PLUGGABLE DATABASE APPLICATION statement with the SYNC clause when the application
PDB is the current container.

Chapter 17
Managing Application Common Objects

17-59

Modifying Application Common Objects with DDL Statements
When you modify an application common object in an application root with certain DDL
statements, you must modify the object between ALTER PLUGGABLE DATABASE
APPLICATION BEGIN and ALTER PLUGGABLE DATABASE APPLICATION END statements,
and application PDBs must synchronize with the application to apply the changes.

You can alter a metadata-linked object or a data-linked object in an application root.
You run an ALTER, RENAME, or DROP SQL statement on the database object to perform a
DDL change.

1. In SQL*Plus, ensure that the current container is the application root.

The current user must have the privileges required to make the planned changes
to the database object.

2. Run the ALTER PLUGGABLE DATABASE APPLICATION BEGIN statement for beginning
an application installation, upgrade, or patch.

For example, if you are modifying the application common object as part of an
application upgrade, then run the ALTER PLUGGABLE DATABASE APPLICATION BEGIN
UPGRADE statement in the following form:

ALTER PLUGGABLE DATABASE APPLICATION application_name BEGIN UPGRADE
 'application_start_version_number' TO
'application_end_version_number';

For example, run the following statement if the application_name is salesapp, the
application_start_version_number is 4.2, and the application_end_version_number
is 4.3:

ALTER PLUGGABLE DATABASE APPLICATION salesapp BEGIN UPGRADE
 '4.2' TO '4.3';

3. Modify the application common object with the DDL statement.

For example, an ALTER TABLE statement might add a column to a table.

4. Run the ALTER PLUGGABLE DATABASE APPLICATION END statement for ending an
application installation, upgrade, or patch.

For example, if you are modifying the application common object as part of an
application upgrade, then run the ALTER PLUGGABLE DATABASE APPLICATION END
UPGRADE statement in the following form:

ALTER PLUGGABLE DATABASE APPLICATION application_name END UPGRADE
 TO 'application_end_version_number';

For example, run the following statement if the application_name is salesapp and
the application_end_version_number is 4.3:

ALTER PLUGGABLE DATABASE APPLICATION salesapp END UPGRADE TO '4.3';

Chapter 17
Managing Application Common Objects

17-60

Note:

Ensure that the application_name and application_end_version_number match
in the ALTER PLUGGABLE DATABASE APPLICATION BEGIN UPGRADE statement and
the ALTER PLUGGABLE DATABASE APPLICATION END UPGRADE statement.

5. Synchronize all of the application PDBs that must apply these changes by issuing an
ALTER PLUGGABLE DATABASE APPLICATION statement with the SYNC clause with the
application PDB as the current container.

Related Topics

• Managing Applications in an Application Container
You install, upgrade, or patch an application in an application container.

• Synchronizing Applications in an Application PDB
Synchronizing an application updates the application in the application PDB to the latest
version and patch in the application root.

Issuing DML Statements on Containers in an Application
Container

A DML statement issued in an application root can modify one or more containers in the
application container. In addition, you can specify one or more default container targets for
DML statements.

• About Issuing DML Statements on Containers in an Application Container
DML statements can affect database objects in more than one container in an application
container.

• Specifying the Default Container for DML Statements in an Application Container
To specify the default container for DML statements in an application container, issue the
ALTER PLUGGABLE DATABASE statement with the CONTAINERS DEFAULT TARGET clause.

About Issuing DML Statements on Containers in an Application Container
DML statements can affect database objects in more than one container in an application
container.

In an application root, a single DML statement that includes the CONTAINERS clause can
modify a table or view in one or more containers in the application container. To use the
CONTAINERS clause, specify the table or view being modified in the CONTAINERS clause and the
containers in the WHERE clause. A target container can be specified in an INSERT VALUES
statement by specifying a value for CON_ID in the VALUES clause. Also, a target container can
be specified in an UPDATE or DELETE statement by specifying a CON_ID predicate in the WHERE
clause.

For example, the following DML statement updates the sales.customers table in the
containers with a CON_ID of 7 or 8:

UPDATE CONTAINERS(sales.customers) ctab
 SET ctab.city_name='MIAMI'

Chapter 17
Issuing DML Statements on Containers in an Application Container

17-61

 WHERE ctab.CON_ID IN(7,8) AND
 CUSTOMER_ID=3425;

The values specified for the CON_ID in the WHERE clause must be for containers in the
current application container.

You can specify default target containers for DML operations. If a DML statement does
not specify values for the CON_ID in the WHERE clause, then the target containers of the
DML operation are those specified in the database property
CONTAINERS_DEFAULT_TARGET in the application root. When issued in an application
root, the following DML statement modifies the default target containers for the
application container:

UPDATE CONTAINERS(sales.customers) ctab
 SET ctab.city_name='MIAMI'
 WHERE CUSTOMER_ID=3425;

By default, the default target containers in an application container include all of its
application PDBs but not its application root or application seed. You can determine
the default target containers for an application container by running the following
query:

SELECT PROPERTY_VALUE
FROM DATABASE_PROPERTIES
WHERE PROPERTY_NAME='CONTAINERS_DEFAULT_TARGET';

In addition, you can enable the CONTAINERS_DEFAULT attribute for a table or view in an
application root. When this attribute is enabled, the CONTAINERS clause is used for
queries and DML statements on the database object by default, and the CONTAINERS
clause does not need to be specified in the SQL statements. To enable the
CONTAINERS_DEFAULT attribute for a table or view in an application root, run the an
ALTER TABLE or ALTER VIEW statement with the ENABLE CONTAINERS_DEFAULT clause.

The following restrictions apply to the CONTAINERS clause:

• The CONTAINERS DEFAULT TARGET clause does not affect SELECT statements.

• INSERT as SELECT statements where the target of the INSERT is in CONTAINERS() is
not supported.

• A multitable INSERT statement where the target of the INSERT is in CONTAINERS() is
not supported.

• DML statements using the CONTAINERS clause require that the database listener is
configured using TCP (instead of IPC) and that the PORT and HOST values are
specified for each target PDB using the PORT and HOST clauses, respectively.

Related Topics

• About Application Common Objects
Application common objects are created in an application root and are shared with
the application PDBs that belong to the application root.

Chapter 17
Issuing DML Statements on Containers in an Application Container

17-62

Specifying the Default Container for DML Statements in an Application
Container

To specify the default container for DML statements in an application container, issue the
ALTER PLUGGABLE DATABASE statement with the CONTAINERS DEFAULT TARGET clause.

When a DML statement is issued in an application root without specifying containers in the
WHERE clause, the DML statement affects the default container for the application container.
The default container can be any container in the application container, including the
application root or an application PDB. Only one default container is allowed.

1. In SQL*Plus, ensure that the current container is the application root.

The current user must have the commonly granted ALTER PLUGGABLE DATABASE privilege.

2. Run the ALTER PLUGGABLE DATABASE statement with the CONTAINERS DEFAULT TARGET
clause.

Example 17-21 Specifying the Default Container for DML Statements in an
Application Container

This example specifies that APDB1 is the default container for DML statements in the
application container.

ALTER PLUGGABLE DATABASE CONTAINERS DEFAULT TARGET = (APDB1);

Example 17-22 Clearing the Default Container

This example clears the default container setting. When it is not set, the default container is
the application root.

ALTER PLUGGABLE DATABASE CONTAINERS DEFAULT TARGET = NONE;

Partitioning by PDB with Container Maps
Container maps enable the partitioning of data at the application PDB level when the data is
not physically partitioned at the table level.

• About Container Maps
A container map is a database property that specifies a partitioned map table defined in
an application root.

• Creating a Container Map
Create a container map by creating a map object and setting the CONTAINER_MAP
database property to the map object.

About Container Maps
A container map is a database property that specifies a partitioned map table defined in an
application root.

Use a container map to partition the data in metadata-linked objects. Container maps
partition data in application PDBs based on a commonly-used column.

Chapter 17
Partitioning by PDB with Container Maps

17-63

For example, you might create a metadata-linked table named countries_mlt (with a
column cname) that stores different data in each application PDB. The map table
named pdb_map_tbl partitions by list on the cname column. The partitions amer_pdb,
euro_pdb, and asia_pdb correspond to the names of the application PDBs.

A container map can define a logical partition key on a column for a common object.
Because the container is resolved internally based on the container map, this mapping
removes the requirement to define a query with a CON_ID predicate or use the
CONTAINERS clause in the query.

Some types of row-based consolidation use a tenant ID with a single PDB that
contains multiple tenants. Container maps are useful for migrating to a configuration
that uses a different PDB for each tenant.

• Map Objects
The map object is the partitioned table.

• List-Partitioned Container Map: Example
This example uses a container map to route queries to PDBs that store data for a
geographical region.

• Range-Partitioned Container Map: Example
This example uses a container map to route queries to PDBs that store data for a
particular department.

Map Objects
The map object is the partitioned table.

The names of the partitions in the map table match the names of the application PDBs
in the application container. The metadata-linked object is not physically partitioned at
the table level, but it can be queried using the partitioning strategy used by the
container map.

To associate the map table with the metadata-linked table, specify the map table in
ALTER PLUGGABLE DATABASE ... CONTAINER_MAP while connected to the application
root. You can create no more than one container map in an application container. You
cannot create container maps in the CDB root.

Note:

• Data must be loaded into the PDB tables in a manner that is consistent
with the partitions defined in map object.

• When there are changes to the application PDBs in an application
container, the map object is not synchronized automatically to account
for these changes. For example, an application PDB that is referenced in
a map object can be unplugged, renamed, or dropped. The map object
must be updated manually to account for such changes.

Starting in Oracle Database 18c, for a CONTAINERS() query to use a map, the
partitioning column in the map table does not need to match a column in the metadata-
linked table. Assume that the table sh.sales is enabled for the container map
pdb_map_tbl, and cname is the partitioning column for the map table. Even though

Chapter 17
Partitioning by PDB with Container Maps

17-64

sh.sales does not include a cname column, the map table routes the following query to the
appropriate PDB: SELECT * FROM CONTAINERS(sh.sales) WHERE cname = 'US' ORDER BY
time_id.

List-Partitioned Container Map: Example
This example uses a container map to route queries to PDBs that store data for a
geographical region.

The following illustration of an application root shows a map object, a metadata-linked table,
and a query on the metadata-linked table. The query is executed in the appropriate
application PDB.

Figure 17-4 Container Map

Application Container

AMER EURO ASIA

Metadata-Linked Table oe.cmtb

COUNTRY VALUE

EX35

NR104

PD98

MEXICO

GERMANY

JAPAN

.

.

.

Map Object

(Single-Column Partitioned Table)

COUNTRY

US

MEXICO

CANADA

AMER Partition

UK

FRANCE

GERMANY

INDIA

CHINA

JAPAN

Query:

SELECT value FROM oe.cmtb WHERE country='GERMANY';

EURO Partition

ASIA Partition

Application Root

Executed in the EURO
Application PDB

The illustration shows an application container with three application PDBs named AMER,
EURO, and ASIA. The PDBs store data for the corresponding regions. A metadata-linked table
named oe.cmtb stores information for an application. This table has a COUNTRY column. For
this partitioning strategy, partition by list is used to create a map object that creates a partition

Chapter 17
Partitioning by PDB with Container Maps

17-65

for each region. The country value, which is GERMANY in the query shown in the
illustration, determines the region, which is EURO.

See Also:

"Creating a Container Map" for a detailed description of this example

Range-Partitioned Container Map: Example
This example uses a container map to route queries to PDBs that store data for a
particular department.

Consider another example that uses a range-partitioned table for the map object. The
following SQL statement creates the map object in the application root:

CREATE TABLE app_con_admin.conmap (
 department_id NUMBER NOT NULL)
PARTITION BY RANGE (department_id) (
PARTITION apppdb1 VALUES LESS THAN (100),
PARTITION apppdb2 VALUES LESS THAN (200),
PARTITION apppdb3 VALUES LESS THAN (300));

This map object partitions data in the application PDBs apppdb1, apppdb2, and
apppdb3 based on the commonly-used column department_id. The following SQL
statement sets the CONTAINER_MAP database property to the app_con_admin.conmap
table in the application root:

ALTER PLUGGABLE DATABASE SET CONTAINER_MAP='app_con_admin.conmap';

Queries that use container maps produce similar results to queries that use the
CONTAINERS clause. For example, the following queries return similar results:

SELECT employee_id
FROM CONTAINERS(hr.employees)
WHERE department_id = 10
AND CON_ID IN (44);

SELECT employee_id
FROM hr.employees
WHERE department_id = 10;

As shown in the first query with the CONTAINERS clause, when the query only pertains
to a single application PDB, the query must specify the container ID of this application
PDB in the WHERE clause. This requirement might cause application changes.

The second query uses the container map, replacing the CONTAINERS clause. The
second query does not specify the container because the container map directs the
query to the correct application PDB. Queries that use container maps are generally
more efficient than queries that use the CONTAINERS clause.

Chapter 17
Partitioning by PDB with Container Maps

17-66

The container map must be created by a common user with ALTER DATABASE system
privilege. Queries run against an object that is enabled for container map. Query privileges
are determined by privileges granted on the object.

Creating a Container Map
Create a container map by creating a map object and setting the CONTAINER_MAP database
property to the map object.

The map object is a partitioned table in which each partition name matches the name of an
application PDB in an application container.

Prerequisites

To create a container map, you must meet the following prerequisites:

• Before creating a container map, an application container with application PDBs must
exist in the CDB.

• The application container must have at least one application installed in it.

To create a container map:

1. In SQL*Plus, ensure that the current container is the application root.

2. Set the CONTAINER_MAP database property to the map object.

In the following statement, replace map_table_schema with the owner of the table, and
replace map_table_name with the name of the table:

ALTER DATABASE SET CONTAINER_MAP = 'map_table_schema.map_table_name';

3. Start an application installation, upgrade, or patch.

4. If the metadata-linked table that will be used by the container map does not exist, then
create it.

5. Enable the container map for the table to be queried by issuing an ALTER TABLE ...
ENABLE CONTAINER_MAP statement.

6. Ensure that the table to be queried is enabled for the CONTAINERS clause by issuing an
ALTER TABLE ... ENABLE CONTAINERS_DEFAULT statement.

7. End the application installation, upgrade, or patch started previously.

Example 17-23 Creating and Using a Container Map

This example creates a simple application that uses a container map. Assume that an
application container has three application PDBs named AMER, EURO, and ASIA. The
application PDBs store data for the different regions (America, Europe, and Asia,
respectively). A metadata-linked table stores information for an application and has a COUNTRY
column. For this partitioning strategy, partition by list is used to create a map object that
creates a partition for each region, and the country value is used to determine the region.

1. In SQL*Plus, ensure that the current container is the application root.

2. Create the map object.

CREATE TABLE salesadm.conmap (country VARCHAR2(30) NOT NULL)
PARTITION BY LIST (country) (

Chapter 17
Partitioning by PDB with Container Maps

17-67

 PARTITION AMER VALUES ('US','MEXICO','CANADA'),
 PARTITION EURO VALUES ('UK','FRANCE','GERMANY'),
 PARTITION ASIA VALUES ('INDIA','CHINA','JAPAN')
);

3. Set the CONTAINER_MAP database property to the map object.

ALTER PLUGGABLE DATABASE SET CONTAINER_MAP='salesadm.conmap';

4. Begin an application installation.

ALTER PLUGGABLE DATABASE APPLICATION salesapp BEGIN INSTALL '1.0';

5. Create a metadata-linked table that will be queried using the container map.

CREATE TABLE oe.cmtb SHARING=METADATA (
 value VARCHAR2(30),
 country VARCHAR2(30));

6. Enable the container map for the table to be queried.

ALTER TABLE oe.cmtb ENABLE CONTAINER_MAP;

7. Ensure that the table to be queried is enabled for the CONTAINERS clause.

ALTER TABLE oe.cmtb ENABLE CONTAINERS_DEFAULT;

8. End the application installation.

ALTER PLUGGABLE DATABASE APPLICATION salesapp END INSTALL '1.0';

9. Switch session into each application PDB and synchronize it.

ALTER SESSION SET CONTAINER=amer;
ALTER PLUGGABLE DATABASE APPLICATION salesapp SYNC;

ALTER SESSION SET CONTAINER=euro;
ALTER PLUGGABLE DATABASE APPLICATION salesapp SYNC;

ALTER SESSION SET CONTAINER=asia;
ALTER PLUGGABLE DATABASE APPLICATION salesapp SYNC;

10. Insert values into the oe.cmtb table in each application PDB based on the
partitioning strategy.

ALTER SESSION SET CONTAINER=amer;
INSERT INTO oe.cmtb VALUES ('AMER VALUE','US');
INSERT INTO oe.cmtb VALUES ('AMER VALUE','MEXICO');
INSERT INTO oe.cmtb VALUES ('AMER VALUE','CANADA');
COMMIT;

ALTER SESSION SET CONTAINER=euro;
INSERT INTO oe.cmtb VALUES ('EURO VALUE','UK');

Chapter 17
Partitioning by PDB with Container Maps

17-68

INSERT INTO oe.cmtb VALUES ('EURO VALUE','FRANCE');
INSERT INTO oe.cmtb VALUES ('EURO VALUE','GERMANY');
COMMIT;

ALTER SESSION SET CONTAINER=asia;
INSERT INTO oe.cmtb VALUES ('ASIA VALUE','INDIA');
INSERT INTO oe.cmtb VALUES ('ASIA VALUE','CHINA');
INSERT INTO oe.cmtb VALUES ('ASIA VALUE','JAPAN');
COMMIT;

11. Switch session into the application root and query the data using the container map.

ALTER SESSION SET CONTAINER=sales;

SELECT value FROM oe.cmtb WHERE country='MEXICO';

SELECT value FROM oe.cmtb WHERE country='GERMANY';

SELECT value FROM oe.cmtb WHERE country='JAPAN';

The output for the first query should be AMER VALUE, the output for the second query
should be EURO VALUE, and the output for the third query should be ASIA VALUE. These
values illustrate that the container map is working correctly.

Viewing Information About Applications in Application
Containers

Several views provide information about the applications in application containers in a CDB.

• Viewing Information About Applications
The DBA_APPLICATIONS view provides information about the applications in an application
container.

• Viewing Information About Application Status
The DBA_APP_PDB_STATUS view provides information about the status of the applications
in an application container. It can show the status of each application in each application
PDB.

• Viewing Information About Application Statements
The DBA_APP_STATEMENTS view provides information about SQL statements issued during
application installation, upgrade, and patch operations

• Viewing Information About Application Versions
The DBA_APP_VERSIONS view provides information about the versions for applications in
an application container.

• Viewing Information About Application Patches
The DBA_APP_PATCHES view provides information about the patches for applications in an
application container.

• Viewing Information About Application Errors
The DBA_APP_ERRORS view provides information about errors raised when an application
PDB synchronizes with an application in the application root.

Chapter 17
Viewing Information About Applications in Application Containers

17-69

• Listing the Shared Database Objects in an Application Container
The DBA_OBJECTS view can list the shared database objects in an application
container.

• Listing the Extended Data-Linked Objects in an Application Container
The DBA_TABLES and DBA_VIEWS views can list the extended data-linked objects in
an application container.

Related Topics

• Creating and Removing Application Containers and Seeds
You can create application containers and application seeds in several different
ways. You can also remove application containers from a CDB, and you can
remove application seeds from application containers.

• Administering an Application Container
You can install and administer the applications installed in application containers.

Viewing Information About Applications
The DBA_APPLICATIONS view provides information about the applications in an
application container.

Note:

The DBA_APPLICATIONS view provides information about the application in the
current container only. To view information about applications in all of the
application PDBs in the current application container, query the
DBA_APP_PDB_STATUS with the application root as the current container.

To view information about the applications in an application container:

1. In SQL*Plus, access the application root of the application container.

2. Query the DBA_APPLICATIONS view.

Example 17-24 Viewing Details About the Applications in an Application
Container

This query shows the name, the latest version, and the status of each user-created
application in the application container.

COLUMN APP_NAME FORMAT A15
COLUMN APP_VERSION FORMAT A15
COLUMN APP_STATUS FORMAT A15

SELECT APP_NAME, APP_VERSION, APP_STATUS
FROM DBA_APPLICATIONS
WHERE APP_IMPLICIT='N';

Chapter 17
Viewing Information About Applications in Application Containers

17-70

The following sample output shows the salesapp application:

APP_NAME APP_VERSION APP_STATUS
--------------- --------------- ---------------
SALESAPP 1.2 NORMAL

Note:

Oracle Database creates some applications implicitly when an application common
user operation is issued with a CONTAINER=ALL clause outside of ALTER PLUGGABLE
DATABASE APPLICATION BEGIN/END statements. The sample query excludes
implicitly-created applications by specifying APP_IMPLICIT='N' in the WHERE clause.

Related Topics

• Administering an Application Container
You can install and administer the applications installed in application containers.

• Synchronizing Applications in an Application PDB
Synchronizing an application updates the application in the application PDB to the latest
version and patch in the application root.

Viewing Information About Application Status
The DBA_APP_PDB_STATUS view provides information about the status of the applications in an
application container. It can show the status of each application in each application PDB.

The view can show the status of an application in an application PDB even if the application
PDB is closed.

Note:

When queried from the application root, the DBA_APP_PDB_STATUS view provides
information about the applications in all application PDBs in the current application
container. To view information about the application in the current container only,
query the DBA_APPLICATIONS view.

To view information about the application status in an application container:

1. In SQL*Plus, access the application root of the application container.

See "About Container Access in a CDB".

2. Query the DBA_APP_PDB_STATUS view.

Example 17-25 Viewing Information About Application Status

This query shows the name of the application PDB, the name of the application, the version
number of the application, and the status of the application.

COLUMN PDB_NAME FORMAT A15
COLUMN APP_NAME FORMAT A15
COLUMN APP_VERSION FORMAT A20

Chapter 17
Viewing Information About Applications in Application Containers

17-71

COLUMN APP_STATUS FORMAT A12

SELECT p.PDB_NAME, s.APP_NAME, s.APP_VERSION, s.APP_STATUS
 FROM DBA_PDBS p, DBA_APP_PDB_STATUS s
 WHERE p.CON_UID = s.CON_UID;

Your output is similar to the following:

PDB_NAME APP_NAME APP_VERSION APP_STATUS
--------------- --------------- -------------------- ------------
SALES1 SALESAPP 4.2 NORMAL

Note:

The status of an application can be NORMAL in an application PDB even when
the application has not been synchronized to the latest version. Other
statuses might indicate that an operation is in progress or that an operation
encountered a problem. For example, the status UPGRADING might indicate
that an upgrade of the application is in progress in the application PDB, or it
might indicate that an error was encountered when the application PDB tried
to upgrade an application.

See Also:

"Administering an Application Container"

Viewing Information About Application Statements
The DBA_APP_STATEMENTS view provides information about SQL statements issued
during application installation, upgrade, and patch operations

Oracle Database records all of the SQL statements issued during application
installation, upgrade, and patch operations, and you can view the history of these
statements by querying the DBA_APP_STATEMENTS view.

To view information about the SQL statements issued during application
operations:

1. In SQL*Plus, access the application root of the application container.

See "About Container Access in a CDB".

2. Query the DBA_APP_STATEMENTS view.

Chapter 17
Viewing Information About Applications in Application Containers

17-72

Example 17-26 Viewing Information About Application Statements

This query shows the statement ID, capture time, SQL statement, and application name for
the SQL statements for applications in the application container.

SET LONG 8000
SET PAGES 8000
COLUMN STATEM_ID FORMAT NNNNN
COLUMN CAPTURE_TIME FORMAT A12
COLUMN APP_STATEMENT FORMAT A36
COLUMN APP_NAME FORMAT A15

SELECT STATEMENT_ID AS STATEM_ID, CAPTURE_TIME, APP_STATEMENT, APP_NAME
FROM DBA_APP_STATEMENTS
ORDER BY STATEMENT_ID;

Your output is similar to the following:

STATEM_ID CAPTURE_TIME APP_STATEMENT APP_NAME
--------- ------------ ------------------------------------ ---------------
 1 30-AUG-15 SYS APP$1E87C094764
 1142FE0534018F8
 0AA6C5
 2 30-AUG-15 ALTER PLUGGABLE DATABASE APPLICATION APP$1E87C094764
 APP$CON BEGIN INSTALL '1.0' 1142FE0534018F8
 0AA6C5
 3 30-AUG-15 ALTER PLUGGABLE DATABASE APPLICATION APP$1E87C094764
 APP$CON END INSTALL '1.0' 1142FE0534018F8
 0AA6C5
 4 30-AUG-15 SYS SALESAPP
 5 30-AUG-15 ALTER PLUGGABLE DATABASE APPLICATION SALESAPP
 salesapp BEGIN INSTALL '1.0'
 6 30-AUG-15 CREATE TABLE oe.cmtb SHARING=METADAT SALESAPP
 A (
 value VARCHAR2(30),
 country VARCHAR2(30))
 7 30-AUG-15 CREATE TABLE conmap (SALESAPP
 country VARCHAR2(30) NOT NULL)
 PARTITION BY LIST (country) (
 PARTITION AMER VALUES ('US','MEXICO'
 ,'CANADA'),
 PARTITION EURO VALUES ('UK','FRANCE'
 ,'GERMANY'),
 PARTITION ASIA VALUES ('INDIA','CHIN
 A','JAPAN'))
 8 30-AUG-15 ALTER TABLE oe.cmtb ENABLE CONTAINER SALESAPP
 _MAP
 9 30-AUG-15 ALTER PLUGGABLE DATABASE APPLICATION SALESAPP
 salesapp END INSTALL '1.0'
.
.
.

Chapter 17
Viewing Information About Applications in Application Containers

17-73

Note:

Oracle Database creates some applications implicitly when an application
common user operation is issued with a CONTAINER=ALL clause outside of
ALTER PLUGGABLE DATABASE APPLICATION BEGIN/END statements. The
names of these applications begin with APP$, and the sample output shows
these applications.

See Also:

• "Administering an Application Container"

• "Synchronizing Applications in an Application PDB"

Viewing Information About Application Versions
The DBA_APP_VERSIONS view provides information about the versions for applications in
an application container.

Oracle Database records the versions for each application in an application container.

To view information about the application versions in an application container:

1. In SQL*Plus, access the application root of the application container.

See "About Container Access in a CDB".

2. Query the DBA_APP_VERSIONS view.

Example 17-27 Viewing Information About Application Versions

This query shows the name of the application that was versioned, the version number,
and the comment for the version.

COLUMN APP_NAME FORMAT A15
COLUMN APP_VERSION FORMAT A20
COLUMN APP_VERSION_COMMENT FORMAT A25

SELECT APP_NAME, APP_VERSION, APP_VERSION_COMMENT
 FROM DBA_APP_VERSIONS;

Your output is similar to the following:

APP_NAME APP_VERSION APP_VERSION_COMMENT
--------------- -------------------- -------------------------
SALESAPP 1.0 Sales Application

Chapter 17
Viewing Information About Applications in Application Containers

17-74

See Also:

"Administering an Application Container"

Viewing Information About Application Patches
The DBA_APP_PATCHES view provides information about the patches for applications in an
application container.

Oracle Database records the patches for each application in an application container.

To view information about the application patches in an application container:

1. In SQL*Plus, access the application root of the application container.

See "About Container Access in a CDB".

2. Query the DBA_APP_PATCHES view.

Example 17-28 Viewing Information About Application Patches

This query shows the name of the application that was patched, the patch number, the
minimum application version for the patch, and the status of the patch for each patch in the
application container.

COLUMN APP_NAME FORMAT A15
COLUMN PATCH_NUMBER FORMAT NNNNNNNN
COLUMN PATCH_MIN_VERSION FORMAT A10
COLUMN PATCH_STATUS FORMAT A15

SELECT APP_NAME, PATCH_NUMBER, PATCH_MIN_VERSION, PATCH_STATUS
 FROM DBA_APP_PATCHES;

Your output is similar to the following:

APP_NAME PATCH_NUMBER PATCH_MIN_ PATCH_STATUS
--------------- ------------ ---------- ---------------
SALESAPP 1 1.2 INSTALLED

See Also:

"Administering an Application Container"

Chapter 17
Viewing Information About Applications in Application Containers

17-75

Viewing Information About Application Errors
The DBA_APP_ERRORS view provides information about errors raised when an
application PDB synchronizes with an application in the application root.

An application PDB issues the ALTER PLUGGABLE DATABASE APPLICATION statement
with the SYNC clause. You can view errors raised during the last synchronization for
each application by querying the DBA_APP_ERRORS view. You can view errors raised
during the last 10 synchronizations for each application by querying the
DBA_APP_ERRORS_HISTORY view.

To view information about errors raised during application synchronization:

1. In SQL*Plus, access the application root of the application container.

See "About Container Access in a CDB".

2. Query the DBA_APP_ERRORS view or the DBA_APP_ERRORS_HISTORY view.

Example 17-29 Viewing Details About Errors Raised During Application
Synchronization

This query shows the application name, the SQL statement that raised the error, the
error number, and the error message for errors raised during application
synchronization.

SET LONG 8000
SET PAGES 8000
COLUMN APP_NAME FORMAT A15
COLUMN APP_STATEMENT FORMAT A36
COLUMN ERRORNUM FORMAT NNNNNNNN
COLUMN ERRORMSG FORMAT A20

SELECT APP_NAME, APP_STATEMENT, ERRORNUM, ERRORMSG
 FROM DBA_APP_ERRORS;

See Also:

"Administering an Application Container"

Listing the Shared Database Objects in an Application Container
The DBA_OBJECTS view can list the shared database objects in an application container.

Shared database objects are metadata-linked application common objects, data-linked
application common objects, and extended data-linked application common objects.

To list the shared database objects in an application container:

1. In SQL*Plus, access the application root of the application container.

See "About Container Access in a CDB".

Chapter 17
Viewing Information About Applications in Application Containers

17-76

2. Query the DBA_OBJECTS view and specify the SHARING column.

Example 17-30 Listing the User-Created Shared Database Objects in an Application
Container

This query shows the owner and name of the user-created shared database objects in the
application container. It also shows whether each shared database object is a metadata-
linked application common object or a data-linked application common object. The query
excludes Oracle-supplied shared database objects.

COLUMN OWNER FORMAT A15
COLUMN OBJECT_NAME FORMAT A25
COLUMN SHARING FORMAT A13

SELECT OWNER, OBJECT_NAME, SHARING
 FROM DBA_OBJECTS WHERE SHARING != 'NONE'
 AND ORACLE_MAINTAINED = 'N';

Your output is similar to the following:

OWNER OBJECT_NAME SHARING
--------------- ------------------------- -------------
SALESADM CONMAP METADATA LINK
OE PRODUCT_DESCRIPTIONS_OB DATA LINK
OE CMTB METADATA LINK

See Also:

"Managing Application Common Objects"

Listing the Extended Data-Linked Objects in an Application Container
The DBA_TABLES and DBA_VIEWS views can list the extended data-linked objects in an
application container.

An extended data-linked object is a special type of data-linked object for which each
application PDB can create its own specific data while sharing the common data in the
application root. Only the data stored in the application root is common for all application
PDBs.

To list the extended data-linked objects in an application container:

1. In SQL*Plus, access the application root of the application container.

See "About Container Access in a CDB".

2. Query the DBA_TABLES or DBA_VIEWS view and specify the EXTENDED_DATA_LINK='YES' in
the WHERE clause.

Chapter 17
Viewing Information About Applications in Application Containers

17-77

Example 17-31 Listing the Extended Data-Linked Tables in an Application
Container

This query shows the owner and name of the extended data-linked tables in the
application container.

COLUMN OWNER FORMAT A20
COLUMN TABLE_NAME FORMAT A30

SELECT OWNER, TABLE_NAME FROM DBA_TABLES WHERE
EXTENDED_DATA_LINK='YES';

Your output is similar to the following:

OWNER TABLE_NAME
-------------------- ------------------------------
SALESADM ZIPCODES

See Also:

"Managing Application Common Objects"

Chapter 17
Viewing Information About Applications in Application Containers

17-78

Part IV
Database Configuration Assistant Command
Reference for Silent Mode

This section provides detailed information about the syntax and options for the Database
Configuration Assistant (DBCA) silent mode commands.

• DBCA Overview
This chapter gives an overview of DBCA command-line syntax, templates, and user
authentication.

• DBCA Silent Mode Commands
This section lists all the DBCA silent mode commands along with their syntax and
parameter description.

• DBCA Exit Codes
The outcome of running DBCA commands in silent mode is reported as an exit code.

18
DBCA Overview

This chapter gives an overview of DBCA command-line syntax, templates, and user
authentication.

• DBCA Command-Line Syntax Overview
This section provides an overview of the command-line syntax of DBCA in silent mode.

• About DBCA Templates
You can use DBCA to create a database from a template supplied by Oracle or from a
template that you create.

• Database User Authentication in DBCA Commands Using Oracle Wallet
You can use Oracle wallet as a secure external password store for authenticating
database users in DBCA silent mode commands.

DBCA Command-Line Syntax Overview
This section provides an overview of the command-line syntax of DBCA in silent mode.

DBCA silent mode has the following command syntax:

dbca [-silent] [command [options]] [-h|-help]

Note:

On Windows, you must run DBCA as an Administrator if user access control (UAC)
is enabled.

The following table describes the DBCA silent mode command syntax.

Table 18-1 DBCA Silent Mode Command Syntax Description

Option Description

-silent Specify -silent to run DBCA in silent mode.

In silent mode, DBCA uses values that you specify as command-
line options to create or modify a database.

command options Specify a DBCA command and valid options for the command.

18-1

Table 18-1 (Cont.) DBCA Silent Mode Command Syntax Description

Option Description

-h | -help Displays help for DBCA.

You can display help for a specific command by entering the
following:

dbca command -help

For example, to display the help for the -createDatabase
command, enter the following:

dbca -createDatabase -help

The following example illustrates how to create a database with the silent mode of
DBCA:

dbca -silent -createDatabase -templateName General_Purpose.dbc
 -gdbname oradb.example.com
 -sid oradb
 -characterSet AL32UTF8
 -memoryPercentage 30

Enter SYSTEM user password:
password
Enter SYS user password:
password
Copying database files
1% complete
3% complete
...

To ensure completely silent operation, you can redirect stdout to a file. If you do this,
however, you may have to supply passwords for the administrative users in command-
line arguments or the response file.

Note:

If you use Oracle wallet as a secure external password store for storing
passwords for the administrative users, then you do not have to supply
passwords for these users in the command-line arguments or in the
response file. See "Database User Authentication in DBCA Commands
Using Oracle Wallet" for more information.

To view brief help for DBCA command-line arguments, enter the following command:

dbca -help

For more detailed argument information, including defaults, view the response file
template found on your distribution media. See the Oracle Database installation guide
for your platform to get information about the name and location of the response file
template.

Chapter 18
DBCA Command-Line Syntax Overview

18-2

See Also:

"DBCA Silent Mode Commands"

About DBCA Templates
You can use DBCA to create a database from a template supplied by Oracle or from a
template that you create.

A DBCA template is an XML file that contains information required to create a database.
Oracle ships templates for the following two workload types:

• General purpose OR online transaction processing

• Data warehouse

Select the template suited to the type of workload your database will support. If you are not
sure which to choose, then use the "General purpose OR online transaction processing"
template. You can also create custom templates to meet your specific workload requirements.

Note:

The General Purpose or online transaction processing template and the data
Warehouse template create a database with the COMPATIBLE initialization parameter
set to 12.1.0.2.0.

Database User Authentication in DBCA Commands Using
Oracle Wallet

You can use Oracle wallet as a secure external password store for authenticating database
users in DBCA silent mode commands.

Oracle wallet is a secure software container external to Oracle Database, which can be used
to store authentication credentials of Oracle Database users. You can use the following
DBCA silent mode command parameters to use Oracle wallet for authenticating database
users:

• useWalletForDBCredentials : Specify true to use Oracle wallet for database user
authentication, else specify false. Default is false.

If true is specified, then provide the following additional parameters:

– dbCredentialsWalletLocation: Directory in which the Oracle wallet files are stored.

– (Optional) dbCredentialsWalletPassword: Password for the Oracle wallet account
user. If the Oracle wallet is auto-login enabled, then you need not specify this
password.

You can store the following keys and associated passwords in the Oracle wallet that can be
used by DBCA in silent mode for authenticating users:

• oracle.dbsecurity.sysPassword: SYS user password

Chapter 18
About DBCA Templates

18-3

• oracle.dbsecurity.systemPassword: SYSTEM user password

• oracle.dbsecurity.pdbAdminPassword: Pluggable database (PDB) administrator
password

• oracle.dbsecurity.dbsnmpPassword: DBSNMP user password

• oracle.dbsecurity.asmsnmpPassword: ASMSNMP user password

• oracle.dbsecurity.lbacsysPassword: LBACSYS user password

• oracle.dbsecurity.sysdbaUserPassword: SYSDBA role user password for the
database that you are creating or configuring

• oracle.dbsecurity.oracleHomeUserPassword: Oracle home user password

• oracle.dbsecurity.dvUserPassword: Oracle Data Vault user password

• oracle.dbsecurity.dvAccountManagerPassword: Oracle Data Vault account
manager password

• oracle.dbsecurity.emPassword: Enterprise Manager administrator password

• oracle.dbsecurity.asmPassword: ASM user password

• oracle.dbsecurity.asmsysPassword: ASMSYS user password

• oracle.dbsecurity.walletPassword: Oracle wallet account user password for
authenticating with a directory service

• oracle.dbsecurity.userDNPassword: Directory service user password

• oracle.dbsecurity.srcDBsysdbaUserPassword: SYSDBA role user password for
the database that you are using as a source to perform certain operations, such as
duplicating a database

• oracle.dbsecurity.dbLinkUserPassword: Database link user password

Note:

If you are using Oracle Unified Directory (OUD), then the OUD account passwords
should be stored in the wallet using the following keys:

• oracle.dbsecurity.walletPassword
• oracle.dbsecurity.userDNPassword

See Also:

Oracle Database Security Guide for information about configuring Oracle
wallet as a secure external password store using the mkstore command-line
utility

Chapter 18
Database User Authentication in DBCA Commands Using Oracle Wallet

18-4

19
DBCA Silent Mode Commands

This section lists all the DBCA silent mode commands along with their syntax and parameter
description.

• addInstance
The addInstance command adds a database instance to an administrator-managed
Oracle RAC database.

• configureDatabase
The configureDatabase command configures a database.

• configureDataguard
The configureDataguard command configure Oracle Data Guard.

• configurePluggableDatabase
The configurePluggableDatabase command configures a pluggable database (PDB).

• convertToRAC
The convertToRAC command converts a single-instance database to a one-node Oracle
RAC database.

• createCloneTemplate
The createCloneTemplate command creates a clone (seed) database template from an
existing database.

• createDatabase
The createDatabase command creates a database.

• createDuplicateDB
The createDuplicateDB command creates a duplicate of an Oracle database.

• createPDBSnapshot
The createPDBSnapshot command creates a snapshot from a PDB.

• createPluggableDatabase
The createPluggableDatabase command creates a pluggable database (PDB) in a
multitenant container database (CDB).

• createTemplateFromDB
The createTemplateFromDB command creates a database template from an existing
database.

• createTemplateFromTemplate
The createTemplateFromTemplate command creates a database template from an
existing database template.

• createTrueCache
The createTrueCache command configures True Cache. Run this command on the True
Cache node.

• deleteDatabase
The deleteDatabase command deletes a database.

19-1

• deleteInstance
The deleteInstance command deletes a database instance from an administror-
managed Oracle RAC database.

• deletePDBSnapshot
The deletePDBSnapshot command deletes a PDB snapshot.

• deletePluggableDatabase
The deletePluggableDatabase command deletes a PDB.

• deleteTemplate
The deleteTemplate command deletes a database template.

• executePrereqs
The executePrereqs command executes the prerequisites checks and reports the
results. This command can be used to check the environment before running dbca
to create a database.

• generateScripts
The generateScripts command generates scripts, which can be used to create a
database.

• moveDatabase
The moveDatabase command moves a database from one source Oracle home to
the target Oracle home.

• relocatePDB
The relocatePDB command relocates a PDB from a remote CDB to a local CDB.

• unplugDatabase
The unplugDatabase command unplugs a pluggable database (PDB) from a
multitenant container database (CDB).

addInstance
The addInstance command adds a database instance to an administrator-managed
Oracle RAC database.

Syntax and Parameters

Use the dbca -addInstance command with the following syntax:

dbca -addInstance
 -gdbName global_database_name
 -nodeName database_instance_node_name
 [-updateDirService {true | false}
 -dirServiceUserName directory_service_user_name
 -dirServicePassword directory_service_user_password]
 [-instanceName database_instance_name]
 [-sysDBAUserName SYSDBA_user_name]
 [-sysDBAPassword SYSDBA_user_password]
 [-useWalletForDBCredentials {true | false}
 -dbCredentialsWalletPassword wallet_account_password
 -dbCredentialsWalletLocation wallet_files_directory]

Chapter 19
addInstance

19-2

Table 19-1 addInstance Parameters

Parameter Required/
Optional

Description

-gdbName
global_database_name

Required Global database name in the form
database_name.domain_name.

-nodeName
database_instance_node_
name

Required Node name of the database instance.

-instanceName
database_instance_name

Optional Database instance name.

-sysDBAUserName
SYSDBA_user_name

Optional User name of the database user having the SYSDBA privileges.

-sysDBAPassword
SYSDBA_user_password

Optional Password of the database user having the SYSDBA privileges.

-updateDirService
{true | false}

Optional Specify true to register the database with a directory service,
else specify false.

When true is specified, the following additional parameters
are required:

• -dirServiceUserName: User name for the directory
service.

• —dirServicePassword: Password for the directory
service user.

-
useWalletForDBCredentia
ls
{true | false}

Optional Specify true to use Oracle Wallet for database credentials,
else specify false. Default is false.

When true is specified, the following additional parameters
can be provided:

• -dbCredentialsWalletPassword: Password for the
Oracle Wallet account.

• -dbCredentialsWalletLocation: Directory location
for the Oracle Wallet files.

Note:
If you are using Oracle Unified Directory (OUD), then the OUD
passwords should be stored in the wallet using the following
keys:

• oracle.dbsecurity.walletPassword
• oracle.dbsecurity.userDNPassword

configureDatabase
The configureDatabase command configures a database.

Syntax and Parameters

Use the dbca -configureDatabase command with the following syntax:

-configureDatabase
 -sourceDB database_unique_name_for_RAC database_or_SID__for_single_instance_database
 [-addDBOption Specify any of the following DB Options as a comma-separated list: JSERVER |
ORACLE_TEXT | CWMLITE | SPATIAL | OMS | DV]

Chapter 19
configureDatabase

19-3

 [-configureOML4PY Configure OML4Py in the database]
 [-enableOml4pyEmbeddedExecution Specify true to enable embedded Python execution]
 [-oml4pyConfigTablespace Specify the tablespace to be used for OracleOML4Py
configuration]
 [-configureOracleR Configure Oracle R in the database]
 [-oracleRConfigTablespace Specify the tablespace to be used for Oracle R
configuration]
 [-configureTDE true | false Specify true to configure TDE wallet]
 [-encryptPDBTablespaces Specify ALL to encrypt all Tablespaces or a comma separated
list of name:value pairs with tablespace encryption to true/false]
 [-encryptTablespaces Specify ALL to encrypt all Tablespaces or A comma separated
list of name:value pairs with tablespace encryption to true/false]
 [-pdbTDEPassword Specify password for PDB TDE wallet]
 [-primaryDBTdeWallet Specify the location for TDE wallet of primary database]
 [-sourcePdbTDEPassword Specify password for source PDB TDE wallet and it is used
only in creation of PDB from existing PDB which has TDE wallet]
 [-sourceTdeWalletPassword Specify password for source database TDE wallet]
 [-tdeAlgorithm Specify the TDE Algorithm Type]
 [-tdeWalletLoginType Specify the TDE Wallet Login Type PASSWORD | AUTO_LOGIN |
LOCAL_AUTO_LOGIN. Default is PASSWORD for SI and AUTO_LOGIN is default for RAC]
 [-tdeWalletModeForPDB Type of keystore either UNITED or ISOLATED. Default is UNITED]
 [-tdeWalletPassword Specify password for TDE wallet]
 [-tdeWalletPathInTarFile value]
 [-tdeWalletRoot Specify the location for TDE wallet root init parameter]
 [-dvConfiguration true | false Specify true to configure and enable database vault]
 -dvUserName Specify database vault owner user name
 -dvUserPassword Specify database vault owner password
 [-dvAccountManagerName Specify separate database vault account manager]
 [-dvAccountManagerPassword Specify database vault account manager password]
 [-exportTDEKeys Export TDE master encryption keys]
 [-tdeKeysFilePath Location to export TDE master encryption keys]
 [-tdeKeysFileSecret Secret to export TDE master encryption keys]
 [-tdeWalletPassword Specify password for TDE wallet]
 [-moveDatabaseFiles Move database files from one storage location to other]
 -datafileDestination Destination directory for all database files
 -sourceDB Database unique name for RAC database or SID for single instance database
 [-initParams Comma separated list of name=value pairs]
 [-initParamsEscapeChar Specify escape character for comma when a specific
initParam has multiple values]
 [-recoveryAreaDestination Destination directory for all recovery files]
 [-recoveryAreaSize Fast Recovery Area Size in MB]
 [-recoveryAreaSize Fast Recovery Area Size in MB]
 [-useOMF true | false Specify true to use Oracle-Managed Files]
 [-olsConfiguration true | false Specify true to configure and enable Oracle Label
Security]
 [-prepareTrueCacheConfigFile | -configureTrueCacheInstanceService | -
cleanupTrueCacheService]
 [-prepareTrueCacheConfigFile Option to prepare config file for creating true cache]
 -sourceDB Database unique name for RAC database or SID for single instance database
 [-tdeWalletPassword Specify password for TDE wallet]
 [-trueCacheBlobLocation Location to create the config file]
 [-configureTrueCacheInstanceService Option to configure true cache service and update
database service property]
 -serviceName Database service name to update true cache service property
 -sourceDB Database unique name for RAC database or SID for single instance database
 -trueCacheConnectString EZCONNECT string to connect to true cache
 -trueCacheServiceName True cache service name
 [-pdbName Pluggable database name]
 [-cleanupTrueCacheInstanceService Option to cleanup true cache service and update
primary database service property]
 -serviceName Database service name to update true cache service property

Chapter 19
configureDatabase

19-4

 -sourceDB Database unique name for RAC database or SID for single instance database
 -trueCacheConnectString EZCONNECT string to connect to true cache service. For example
"host:port/servicename"
 -trueCacheServiceName True cache service name
 [-pdbName Pluggable database name]
 [-registerWithDirService | -unregisterWithDirService | -regenerateDBPassword]
 [-registerWithDirService true | false]
 -dirServiceUserName User name for directory service
 [-databaseCN Database common name]
 [-dirServiceCertificatePath Path to the certificate file to use when configuring SSL
between database and directory service]
 [-dirServicePassword Password for directory service]
 [-dirServiceUser SamAccountName in case of configuring Oracle Active Directory]
 [-ldapDirectoryAccessType PASSWORD | SSL]
 [-useSYSAuthForLDAPAccess true | false]
 [-walletPassword Password for database wallet]
 [-unregisterWithDirService true | false]
 -dirServiceUserName User name for directory service
 [-dirServicePassword Password for directory service]
 [-walletPassword password for database wallet]
 [-regenerateDBPassword true | false]
 [-runDatapatch database runDatapatch - patches the database]
 -sourceDB database unique name for RAC database or SID for single instance database
 [-pdbsToRunDatapatch Option to run datapatch only on given PDBs]
 [-skipClosedPDBs flag to skip the datapatch on closed PDBs]
 [-skipPDBs comma-separated list of PDBs to be skipped for current operation]
 [-sysDBAPassword password for sysDBAUserName user name]
 [-sysDBAUserName User name with SYSDBA privileges]
 [-tdeWalletPassword password_for_TDE_wallet]
 [-useWalletForDBCredentials true | false specify true to load database credentials from wallet]
 -dbCredentialsWalletLocation path of the directory containing the wallet files
 [-dbCredentialsWalletPassword password to open wallet with auto login disabled]

Table 19-2 configureDatabase Parameters

Parameter Required/
Optional

Description

-sourceDB database_sid Required The database system identifier (SID) of the database being
configured.

-addDBOption
database_options

Optional Specify one or more of the following Oracle Database options
in the form of a comma separated list:

• JSERVER: Oracle JServer JAVA Virtual Machine

• ORACLE_TEXT: Oracle Text

• IMEDIA: Oracle Locator (fully supported) and Oracle
Multimedia (desupported)

• CWMLITE: Oracle OLAP with Oracle Warehouse Builder
(OWB)

• SPATIAL: Oracle Spatial and Graph

• OMS: Oracle Management Server

• APEX: Oracle Application Express

• DV: Oracle Database Vault

Example:

-addDBOption JSERVER,ORACLE_TEXT,OMS

Chapter 19
configureDatabase

19-5

Table 19-2 (Cont.) configureDatabase Parameters

Parameter Required/
Optional

Description

-configureOML4PY Optional Specify this parameter to configure Oracle Machine Learning
for Python in the database.

Additionally, you specify the following parameters:
• -oml4pyConfigTablespace to configure the tablespace

of OracleOML4Py configuration. The default tablespace is
SYSAUX.

• -enableOml4pyEmbeddedExecution to enable the
embedded Python component of Oracle Machine
Learning for Python. The default value is TRUE.

-configureOracleR Optional Specify this parameter to configure Oracle R in the database.

Additionally, you can specify the -
oracleRConfigTablespace parameter to assign a
tablespace for the Oracle R configuration, such as SYSAUX
tablespace.

-dvConfiguration
{true | false}

Optional Specify true to enable and configure Database Vault, or
specify false. Default is false.

When true is specified, the following additional Database
Vault parameters are required:

• -dvUserName: Specify the Database Vault owner
username.

• -dvUserPassword: Specify Database Vault owner
password.

• -dvAccountManagerName: Specify a separate Database
Vault account manager.

• -dvAccountManagerPassword: Specify the Database
Vault account manager password.

Chapter 19
configureDatabase

19-6

Table 19-2 (Cont.) configureDatabase Parameters

Parameter Required/
Optional

Description

-configureTDE{true |
false}

Optional Specify true to configure TDE wallet. Default is false.

When true is specified, the following additional parameters
can be provided:

• -encryptPDBTablespaces: Specify ALL to encrypt all
tablespaces or a comma-separated list of name:value
pairs with tablespace encryption to true or false. For
example: SYSTEM:true,SYSAUX:false.

• -encryptTablespaces: Specify ALL to encrypt all
tablespaces or a comma-separated list of name:value
pairs with tablespace encryption to true or false. For
example: SYSTEM:true,SYSAUX:false.

• -pdbTDEPassword: Password for the PDB TDE wallet.

• -primaryDBTdeWallet: Specify the location for TDE
wallet of primary database.

• -sourcePdbTDEPassword: Specify password for the
source PDB TDE wallet. This password is used only in the
creation of a PDB from an existing PDB which has TDE
wallet.

• -sourceTdeWalletPassword: Specify password for
source database TDE wallet.

• -tdeAlgorithm: Specify the TDE algorithm type.

• -tdeWalletLoginType: Specify the TDE wallet login
type, PASSWORD | AUTO_LOGIN | LOCAL_AUTO_LOGIN.
The default is PASSWORD for single-instance database and
AUTO_LOGIN for Oracle RAC database.

• -tdeWalletModeForPDB: Specify the type of keystore,
either UNITED or ISOLATED. Default is UNITED.

• -tdeWalletPassword: Specify password for TDE wallet.

• -tdeWalletPathInTarFile: Specify the TDE wallet
path in the tar file.

• -tdeWalletRoot: Specify the location for TDE wallet
root init parameter.

-exportTDEKeys Optional Specify this parameter to export TDE master encryption keys.

Specify the following additional parameters:

• -tdeKeysFilePath: Location to export TDE master
encryption keys

• -tdeKeysFileSecret: Secret to export TDE master
encryption keys

• -tdeWalletPassword: Specify the password for TDE
wallet

Chapter 19
configureDatabase

19-7

Table 19-2 (Cont.) configureDatabase Parameters

Parameter Required/
Optional

Description

-moveDatabaseFiles Optional Specify this parameter to move database files from one
storage location to another storage location. For example, to
move database files from ASM to FS, or from FS to ASM.

Specify the following additional parameters:

• -datafileDestination: Destination directory for all the
database files

• -sourceDB: Database system identifier (SID) for a single
instance database or database unique name for an
Oracle RAC database

• -initParams: Database initialization parameters in the
form of comma separated list of name=value pairs

Additionally, you can specify the -
initParamsEscapeChar parameter for using a specific
escape character between multiple values of an
initialization parameter. If an escape character is not
specified, backslash (/) is used as the default escape
character.

• -recoveryAreaDestination: Destination directory for
the Fast Recovery Area, which is a backup and recovery
area. Specify NONE to disable Fast Recovery Area.

Additionally, you can specify the Fast Recovery Area size
in megabytes using the parameter -recoveryAreaSize.
This parameter is optional.

• -useOMF: Specify true to use Oracle-Managed Files
(OMF), else specify false.

-olsConfiguration
{true | false}

Optional Specify true to enable and configure Oracle Label Security,
else specify false. Default is false.

When true is specified, you can additionally specify the -
configureWithOID parameter to configure Oracle Label
Security with Oracle Internet Directory (OID). This parameter
is optional.

-regenerateDBPassword
{true | false}

Optional Specify true to regenerate Oracle Internet Directory (OID)
server registration password, else specify false. Default is
false.

Chapter 19
configureDatabase

19-8

Table 19-2 (Cont.) configureDatabase Parameters

Parameter Required/
Optional

Description

-registerWithDirService
{true | false}

Optional Specify true to register with a Lightweight Directory Access
Protocol (LDAP) service, else specify false. Default is
false.

When true is specified, the following additional parameters
are required:

• -dirServiceUserName: User name for the LDAP
service.

• -dirServicePassword: Password for the LDAP service.

• -databaseCN: Database common name.

• -dirServiceCertificatePath: Directory service
certificate file path.

• -dirServiceUser: Directory service user name.

• -ldapDirectoryAccessType {PASSWORD | SSL}:
LDAP directory access type.

• -useSYSAuthForLDAPAccess {true | false}:
Specify whether to use SYS user authentication for LDAP
access.

• -walletPassword: Password for the database wallet.

-sysDBAPassword
SYSDBA_user_password

Optional Password of a user having SYSDBA privileges.

-sysDBAUserName
SYSDBA_user_name

Optional User name of a user having SYSDBA privileges.

-
unregisterWithDirServic
e
{true | false}

Optional Specify true to unregister with a Lightweight Directory
Access Protocol (LDAP) service, else specify false. Default
is false.

When true is specified, the following additional parameters
are required:

• -dirServiceUserName: User name for the LDAP
service.

• -dirServicePassword: Password for the LDAP service.

• -walletPassword: Password for the database wallet.

-tdeWalletPassword Optional Specify password for TDE wallet.

-
useWalletForDBCredentia
ls
{true | false}

Optional Specify true to use Oracle Wallet for database credentials,
else specify false. Default is false.

When true is specified, the following additional parameters
can be provided:

• -dbCredentialsWalletLocation: Directory location
for the Oracle Wallet files.

• -dbCredentialsWalletPassword: Password for the
Oracle Wallet account.

Note:
If you are using Oracle Unified Directory (OUD), then the OUD
passwords should be stored in the wallet using the following
keys:

• oracle.dbsecurity.walletPassword
• oracle.dbsecurity.userDNPassword

Chapter 19
configureDatabase

19-9

Table 19-2 (Cont.) configureDatabase Parameters

Parameter Required/
Optional

Description

--
prepareTrueCacheConfigF
ile

Required for True
Cache

Use this option to prepare a configuration BLOB file that
contains the primary database's password file or wallet.

Enter the following additional parameters for this option:

• -sourceDB: Enter the primary database system identifier
(SID) or database unique name (DB_UNIQUE_NAME).

• -tdeWalletPassword: If the primary database uses a
Transparent Data Encryption (TDE) wallet, enter the
password for the wallet. This parameter is optional.

• -trueCacheBlobLocation: Enter the path where you
want to save the configuration BLOB file on the primary
database. This parameter is optional.

-
configureTrueCacheInsta
nceService

Required for True
Cache

Use this option to configure the True Cache database
application service on the primary database and start the
service on True Cache.

Enter the following additional parameters for this option:

• -serviceName: Enter the primary database application
service name.

• -sourceDB: Enter the primary database SID or database
unique name (DB_UNIQUE_NAME).

• -trueCacheConnectString: Enter the Easy Connect
(EZConnect) string to connect to True Cache.

Example: host:port/service_name
• -trueCacheServiceName: Enter a name for the True

Cache database application service.
• -pdbName: Enter the primary pluggable database (PDB)

name. This parameter is optional.

-
cleanupTrueCacheInstanc
eService

Required for True
Cache

Use this option to remove the True Cache database
application services from the primary database configuration
if, for example, you delete True Cache.

Enter the following additional parameters for this option:

• -serviceName: Enter the primary database application
service name.

• -sourceDB: Enter the primary database SID or database
unique name (DB_UNIQUE_NAME).

• -trueCacheConnectString: Enter the Easy Connect
(EZConnect) string to connect to True Cache.

Example: host:port/service_name

Chapter 19
configureDatabase

19-10

Table 19-2 (Cont.) configureDatabase Parameters

Parameter Required/
Optional

Description

-runDatapatch
Database runDatapatch

Optional Specify the database on which to apply the data patch.

The following additional parameters are required:

• -sourceDB: Database unique name for Oracle RAC
database or SID for single-instance database for the data
patch.

• -pdbsToRunDatapatch: Option to run datapatch only on
given PDBs. For example pdb1,pdb2.

• -skipClosedPDBs: Flag to skip the data patch on closed
PDBs.

• -skipPDBs: A comma-separated list of PDBs to be
skipped for current operation.

configureDataguard
The configureDataguard command configure Oracle Data Guard.

Syntax and Parameters

Use the dbca -configureDataguard command with the following syntax:

dbca -configureDataguard
 -sourceDB
database_unique_name_for_RAC_database_or_SID_for_single_instance_database
 [-enableDGDebug option_to_enable_tracing_for dgmgrl_command]
 [-switchOver switch_over to_standby_db]
 [-targetStandbyDB value]

Table 19-3 configureDataguard Parameters

Parameter Required/
Optional

Description

-sourceDB
database_unique_name

Required Specifies the source database name.

-enableDGDebug Optional Option to enable tracing for dgmrl command.

-switchOver Optional Specifies the option to switchover to the standby database.

-targetStandbyDB Optional Specifies the target standby database.

Chapter 19
configureDataguard

19-11

configurePluggableDatabase
The configurePluggableDatabase command configures a pluggable database (PDB).

Syntax and Parameters

Use the dbca -configurePluggableDatabase command with the following syntax:

dbca -configurePluggableDatabase
 -pdbName pdb_name
 -sourceDB cdb_sid
 [-configureOML4PY
 [-oml4pyConfigTablespace tablespace_for_OML4PY_configuration]
 [-enableOml4pyEmbeddedExecution {true | false}]]
 [-configureOracleR
 [-oracleRConfigTablespace tablespace_for_Oracle_R_configuration]]
 [-dvConfiguration {true | false}
 -dvUserName Database_Vault_owner_name
 -dvUserPassword Database_Vault_owner_password
 [-dvAccountManagerName Database_Vault_account_manager_name]
 [-dvAccountManagerPassword
Database_Vault_account_manager_password]]
 [-lbacsysPassword LBACSYS_user_password]]
 [-olsConfiguration {true | false}
 [-configureWithOID configure_with_OID_flag]]
 [-pdbTimezone {{+|-}hh:mi|time_zone_region}]
 [-registerWithDirService | -unregisterWithDirService | -
regenerateDBPassword]
 [-registerWithDirService {true | false}
 -dirServiceUserName directory_service_user_name
 [-dirServicePassword directory_service_user_password]
 [-walletPassword wallet_password]
 [-databaseCN database_common_name]
 [-dirServiceCertificatePath certificate_file_path]
 [-dirServiceUser active_directory_account_user_name]]
 [-unregisterWithDirService {true | false}
 -dirServiceUserName directory_service_user_name
 [-dirServicePassword directory_service_user_password]
 [-walletPassword wallet_password]]
 [-regenerateDBPassword true | false]
 [-useWalletForDBCredentials {true | false}
 -dbCredentialsWalletPassword wallet_account_password
 -dbCredentialsWalletLocation wallet_files_directory]
 [-configurePDBSnapshot]
 [-snapshotIntervalInMins
interval_in_minutes_for_automatic_snapshot_creation]
 [-maxPDBSnapshots
maximum_number_of_snapshots_to_be_retained_during_automatic_snapshot_cr
eation]
 [-configureTDE true | false]
 [-encryptPDBTablespaces]
 [-encryptTablespaces]
 [-pdbTDEPassword password]

Chapter 19
configurePluggableDatabase

19-12

 [-primaryDBTdeWallet location_for_TDE_wallet_of_primary_database]
 [-sourcePdbTDEPassword password]
 [-sourceTdeWalletPassword password]
 [-tdeAlgorithm TDE_algorithm_type]
 [-tdeWalletLoginType TDE_wallet_login_type]
 [-tdeWalletModeForPDB type_of_keystore]
 [-tdeWalletPassword password]
 [-tdeWalletPathInTarFile value]
 [-tdeWalletRoot location_for_TDE_wallet_root_init_parameter]
 [-exportTDEKeys]
 [-tdeKeysFilePath location_to_export_TDE_master_encryption_keys]
 [-tdeKeysFileSecret secret_to_export_TDE_master_encryption_keys]
 [-tdeWalletPassword password_for_TDE_wallet]
 [-pdbInitParams comma_separated_list_of_pdb_specific_init_params]
 [-initParamsEscapeChar]

Table 19-4 configurePluggableDatabase Parameters

Parameter Required/
Optional

Description

-pdbName pdb_name Required Name of the PDB.

-sourceDB cdb_sid Required The database system identifier (SID) of the CDB.

-configureOML4PY Optional Specify this parameter to configure Oracle Machine Learning
for Python in the database.

Additionally, you specify the following parameters:
• -oml4pyConfigTablespace to configure the tablespace

of the PYQSYS schema for Oracle Machine Learning for
Python. The default tablespace is SYSAUX.

• -enableOml4pyEmbeddedExecution to enable the
embedded Python component of Oracle Machine
Learning for Python. The default value is TRUE.

-configureOracleR Optional Specify this parameter to configure Oracle R for the PDB.

Additionally, you can specify the -
oracleRConfigTablespace parameter to assign a
tablespace for the Oracle R configuration, for example,
SYSAUX tablespace.

-dvConfiguration {true |
false}

Optional Specify true to enable and configure Database Vault for the
PDB, else specify false. Default is false.

When true is specified, the following additional Database
Vault parameters are required:

• -dvUserName: Specify the Database Vault owner user
name.

• -dvUserPassword: Specify Database Vault owner
password.

• -dvAccountManagerName: Specify a separate Database
Vault account manager.

• -dvAccountManagerPassword: Specify the Database
Vault account manager password.

-lbacsysPassword Optional Specify the LBACSYS user password, if you want to configure
OLS with a directory service.

Chapter 19
configurePluggableDatabase

19-13

Table 19-4 (Cont.) configurePluggableDatabase Parameters

Parameter Required/
Optional

Description

-pdbInitParams Optional -pdbInitParams: Specify PDB specific initialization
parameters.Comma-separated list of name=value pairs.

-initParamsEscapeChar: Specify escape character for
comma when a specific initialization parameter has multiple
values. If the escape character is not specified, then backslash
is the default escape character.

-olsConfiguration {true
| false}

Optional Specify true to enable and configure Oracle Label Security
(OLS) for the PDB, else specify false. Default is false.

When true is specified, you can additionally specify the -
configureWithOID parameter to configure Oracle Label
Security (OLS) with Oracle Internet Directory (OID). This
parameter is optional.

-pdbTimezone{{+|-}hh:mi|
time_zone_region}

Optional Use this parameter to specify the time zone of the PDB.

You can specify the time zone in two ways:
• By specifying a displacement from UTC (Coordinated

Universal Time—formerly Greenwich Mean Time). The
valid range of hh:mi is -12:00 to +14:00.

• By specifying a time zone region. To see a listing of valid
time zone region names, query the TZNAME column of the
V$TIMEZONE_NAMES dynamic performance view.

-
registerWithDirService{t
rue | false}

Optional Specify true to register the PDB with a Lightweight Directory
Access Protocol (LDAP) service, else specify false. Default
is false.

When true is specified, the following additional parameters
can be provided:

• -dirServiceUserName: User name for the LDAP
service.

• -dirServicePassword: Password for the LDAP service
user.

• -walletPassword: Password for the database wallet.

• -databaseCN: Database common name.

• -dirServiceCertificatePath: Directory service
certificate file path.

• -dirServiceUser: Active Directory account user name.

unregisterWithDirService
{true | false}

Optional Specify true to unregister the PDB with the Lightweight
Directory Access Protocol (LDAP) service, else specify false.
Default is false.

When true is specified, the following additional parameters
can be provided:

• -dirServiceUserName: User name for the LDAP
service.

• -dirServicePassword: Password for the LDAP service
user.

• -walletPassword: Password for the database wallet.

Chapter 19
configurePluggableDatabase

19-14

Table 19-4 (Cont.) configurePluggableDatabase Parameters

Parameter Required/
Optional

Description

-
useWalletForDBCredential
s
{true | false}

Optional Specify true to use Oracle Wallet for database credentials,
else specify false. Default is false.

When true is specified, the following additional parameters
can be provided:

• -dbCredentialsWalletPassword: Password for the
Oracle Wallet account.

• -dbCredentialsWalletLocation: Directory location
for the Oracle Wallet files.

Note:
If you are using Oracle Unified Directory (OUD), then the OUD
passwords should be stored in the wallet using the following
keys:

• oracle.dbsecurity.walletPassword
• oracle.dbsecurity.userDNPassword

-
configurePDBSnapshot{tru
e | false}

Optional Specify true to configure automatic snapshot for a PDB.
Default is false.

When true is specified, the following additional parameters
can be provided:

• -snapshotIntervalInMins: Specify interval in minutes
for automatic snapshot creation.

• -maxPDBSnapshots: Specify maximum number of
snapshots to be retained during automatic snapshot
creation.

Chapter 19
configurePluggableDatabase

19-15

Table 19-4 (Cont.) configurePluggableDatabase Parameters

Parameter Required/
Optional

Description

-configureTDE{true |
false}

Optional Specify true to configure TDE wallet. Default is false.

When true is specified, the following additional parameters
can be provided:

• -encryptPDBTablespaces: Specify ALL to encrypt all
tablespaces or a comma-separated list of name:value
pairs with tablespace encryption to true or false. For
example: SYSTEM:true,SYSAUX:false.

• -encryptTablespaces: Specify ALL to encrypt all
tablespaces or a comma-separated list of name:value
pairs with tablespace encryption to true or false. For
example: SYSTEM:true,SYSAUX:false.

• -pdbTDEPassword: Password for the PDB TDE wallet.

• -primaryDBTdeWallet: Specify the location for TDE
wallet of primary database.

• -sourcePdbTDEPassword: Specify password for the
source PDB TDE wallet. This password is used only in the
creation of a PDB from an existing PDB which has TDE
wallet.

• -sourceTdeWalletPassword: Specify password for
source database TDE wallet.

• -tdeAlgorithm: Specify the TDE algorithm type.

• -tdeWalletLoginType: Specify the TDE wallet login
type, PASSWORD | AUTO_LOGIN | LOCAL_AUTO_LOGIN.
The default is PASSWORD for single-instance database and
AUTO_LOGIN for Oracle RAC database.

• -tdeWalletModeForPDB: Specify the type of keystore,
either UNITED or ISOLATED. Default is UNITED.

• -tdeWalletPassword: Specify password for TDE wallet.

• -tdeWalletPathInTarFile: Specify the TDE wallet
path in the tar file.

• -tdeWalletRoot: Specify the location for TDE wallet
root init parameter.

convertToRAC
The convertToRAC command converts a single-instance database to a one-node
Oracle RAC database.

Syntax and Parameters

Use the dbca -convertToRAC command with the following syntax:

dbca -convertToRAC
 -sourceDB database_unique_name_for_RAC
database_or_SID__for_single_instance_database
 [-sysPassword SYS_user_password]

Chapter 19
convertToRAC

19-16

Table 19-5 convertToRAC Parameters

Parameter Required/
Optional

Description

-sourceDB database_sid Required The database system identifier (SID) of the database being
configured.

-sysPassword
SYS_user_password

Optional SYS user password for the database.

createCloneTemplate
The createCloneTemplate command creates a clone (seed) database template from an
existing database.

Syntax and Parameters

Use the dbca -createCloneTemplate command with the following syntax:

dbca -createCloneTemplate
 -sourceSID source_database_sid
 -sourceDB source_database_name
 -templateName new_database_template_name
 [-promptForWalletPassword]
 [-backupTDEWalletAsAutoLogin true | false Specify true to backup the tde
wallet as AUTO_LOGIN]
 [-rmanParallelism parallelism_integer_value]
 [-maxBackupSetSizeInMB maximum_backup_set_size_in_MB]
 [-dataFileBackup {true | false}]
 [-maintainFileLocations true | false]
 [-datafileJarLocation data_files_backup_directory]
 [-sysDBAUserName SYSDBA_user_name]
 [-sysDBAPassword SYSDBA_user_password]
 [-tdeWalletPassword password]
 [-useWalletForDBCredentials {true | false}
 -dbCredentialsWalletPassword wallet_account_password
 -dbCredentialsWalletLocation wallet_files_directory]
 [-uploadToCloud
 -opcLibPath OPC_library_path
 -opcConfigFile OPC_configuration_file_name
 [-rmanEncryptionPassword rman_encryption_password]
 [-compressBackup { true | false }]
 [-walletPassword database_wallet_password]

Chapter 19
createCloneTemplate

19-17

Table 19-6 createCloneTemplate Parameters

Parameter Required/
Optional

Description

-sourceSID
source_database_sid
or

-sourceDB
source_database_name

Required Specify either the source database system identifier (SID) or
the source database name.

-templateName
new_database_template_n
ame

Required Name of the new database template.

-sysDBAUserName
SYSDBA_user_name

Optional User name of a user having the SYSDBA privileges.

-sysDBAPassword
SYSDBA_user_password

Optional Password of the user having the SYSDBA privileges.

-maxBackupSetSizeInMB
maximum_backup_set_size
_in_MB

Optional Maximum backup set size in megabytes.

-rmanParallelism
parallelism_integer_val
ue

Optional Parallelism integer value for RMAN operations.

-datafileJarLocation
data_files_backup_direc
tory

Optional Complete directory path to store data files as a backup in a
compressed format.

-
backupTDEWalletAsAutoLo
gin {true | false}

Optional Specify true to backup the TDE wallet as AUTO_LOGIN, else
specify false.

-dataFileBackup {true |
false}

Optional Specify true to take the data files backup, else specify
false.

-
useWalletForDBCredentia
ls
{true | false}

Optional Specify true to use Oracle Wallet for database credentials,
else specify false. Default is false.

When true is specified, the following additional parameters
can be provided:

• -dbCredentialsWalletPassword: Password for the
Oracle Wallet account.

• -dbCredentialsWalletLocation: Directory location
for the Oracle Wallet files.

Note:
If you are using Oracle Unified Directory (OUD), then the OUD
passwords should be stored in the wallet using the following
keys:

• oracle.dbsecurity.walletPassword
• oracle.dbsecurity.userDNPassword

Chapter 19
createCloneTemplate

19-18

Table 19-6 (Cont.) createCloneTemplate Parameters

Parameter Required/
Optional

Description

-uploadToCloud Optional Creates a clone template and uploads it to Oracle Cloud
Infrastructure. The structure and data of the database is
stored in the template. DBCA can then use this template to
create new databases.

To create a template to Oracle Cloud Infrastructure, you must
subscribe to the Oracle Database Backup Cloud Service and
install the Oracle Database Cloud Backup Module for OCI.
Recovery Manager (RMAN) creates a backup containing the
details of the clone template. The backup must be encrypted,
so you must provide the RMAN encryption password to
encrypt backups.

This option is only supported on Linux.

• opcLibPath: Directory in which the Oracle Database
Cloud Backup Module for OCI is stored. The backup
module is a system backup to tape (SBT) library that is
used to integrate on-premise databases with Oracle
Cloud Infrastructure. The file name is libopc.so on
Linux.

• opcConfigFile: Name, with complete location, of the
Oracle Database Cloud Backup Module for OCI
configuration file. This file is created when you install the
backup module.

• rmanEncryptionPassword: Password used to encrypt
the RMAN backups to Cloud that contian the clone
template.

See Administering Oracle Database Backup Cloud Service for
information about installing and configuring the backup
module.

-compressBackup Optional Compresses the backup containing the clone template files.

-walletPassword Optional Password of the TDE wallet that contains the keys used to
encrypt backups. Specify this parameter if Transparent Data
Encryption (TDE) must be used to encrypt backups.

-tdeWalletPassword Optional Password of the TDE wallet.

-maintainFileLocations Optional Specify whether you want to maintain file locations.

createDatabase
The createDatabase command creates a database.

Syntax and Parameters

Use the dbca -createDatabase command with the following syntax:

dbca -createDatabase
 -gdbName global_database_name
 -responseFile | (-gdbName,-templateName)
 -responseFile response_file_directory
 -templateName database_template_name
 [-adminManaged | -managementPolicy]
 [-adminManaged admin_managed_database]

Chapter 19
createDatabase

19-19

 [-managementPolicy [AUTOMATIC|RANK]]
 [-characterSet database_character_set]
 [-configureTDE true | false]
 [-encryptPDBTablespaces]
 [-encryptTablespaces]
 [-pdbTDEPassword password]
 [-primaryDBTdeWallet location_for_TDE_wallet_of_primary_database]
 [-sourcePdbTDEPassword password]
 [-sourceTdeWalletPassword password]
 [-tdeAlgorithm TDE_algorithm_type]
 [-tdeWalletLoginType TDE_wallet_login_type]
 [-tdeWalletModeForPDB type_of_keystore]
 [-tdeWalletPassword password]
 [-tdeWalletPathInTarFile value]
 [-tdeWalletRoot location_for_TDE_wallet_root_init_parameter]
 [-createAsContainerDatabase {true | false}
 [-numberOfPDBs number_of_pdbs]
 [-pdbName pdb_name]
 [-pdbStorageMAXSizeInMB maximum_storage_size_of_the_pdb]
 [-pdbStorageMAXTempSizeInMB maximum_temporary_storage_size_of_the_pdb]
 [-useLocalUndoForPDBs {true | false}]
 [-pdbAdminPassword pdb_administrator_password]
 [-pdbOptions pdb_options]]
 [-skipPdbServiceCreation flag to skip the pluggable database service
creation]
 [-createListener new_database_listener]
 [-customScripts list_of_custom_sql_scripts]
 [-databaseConfigType {SINGLE | RAC | RACONENODE}
 [-RACOneNodeServiceName service_name_for_RAC_One_Node_database]]
 [-databaseType {MULTIPURPOSE | DATA_WAREHOUSING | OLTP}]
 [-datafileDestination data_files_directory]
 [-datafileJarLocation data_files_backup_directory]
 [-dbOptions database_options]
 [-dvConfiguration {true | false}
 -dvUserName Database_Vault_owner_name
 -dvUserPassword Database_Vault_owner_password
 [-dvAccountManagerName Database_Vault_account_manager_name
 -dvAccountManagerPassword Database_Vault_account_manager_password]]
 [-emConfiguration {CENTRAL | NONE}
 [-dbsnmpPassword DBSNMP_user_password]
 [-omsHost Oracle_Management_Server_host_name]
 [-omsPort Oracle_Management_Server_port_number]
 [-emUser EM_administrator_user_name]
 [-emPassword EM_administrator_user_password]
 [-enableArchive {true | false}
 [-archiveLogMode {AUTO | MANUAL}]
 [-archiveLogDest archive_log_files_directory]]
 [-initParams initialization_parameters_list
 [-initParamsEscapeChar initialization_parameters_escape_character]]
 [-listeners listeners_list]
 [-memoryMgmtType {AUTO | AUTO_SGA | CUSTOM_SGA}]
 [-memoryPercentage | -totalMemory]
 [-memoryPercentage percentage_of_total_memory_to_assign_to_oracle_database]
 [-nationalCharacterSet database_national_character_set]
 [-nodelist database_nodes_list]
 [-olsConfiguration {true | false}
 [-oracleHomeUserName Oracle_Home_user_name]
 [-oracleHomeUserPassword Oracle_Home_user_password]
 [-recoveryAreaDestination recovery_files_directory
 [-recoveryAreaSize fast_recovery_area_size]]
 [-redoLogFileSize maximum_redo_log_file_size]

Chapter 19
createDatabase

19-20

 [-registerWithDirService {true | false}
 [-dirServiceUserName directory_service_user_name]
 [-dirServicePassword directory_service_password]
 [-databaseCN database_common_name]
 [-dirServiceCertificatePath certificate_file_path]
 [-dirServiceUser directory_service_user_name]
 [-ldapDirectoryAccessType ldap_directory_access_type]
 [-useSYSAuthForLDAPAccess use_sys_user_for_ldap_access_flag]
 [-walletPassword wallet_password]]
 [-runCVUChecks {true | false}]
 [-sid database_system_identifier]
 [-sysPassword SYS_user_password]
 [-systemPassword SYSTEM_user_password]
 [-templateFromCloud
 -opcLibPath OPC_library_path
 -opcConfigFile OPC_config_file_name
 [-rmanDecryptionPassword rman_decryption_password]]
 [-totalMemory total_memory_to_assign_to_oracle_database_in_MB]
 [-useOMF {true | false}]
 [-useWalletForDBCredentials { true | false}
 -dbCredentialsWalletLocation directory_containing_wallet_files
 [-dbCredentialsWalletPassword password_to_open_wallet]]
 [-variables variables_list]
 [-variablesFile variables_file]
 [-enableForceLogging {true | false}]
 [-enableTwoStagePatches specify this flag to enable two stage patches]
 [-rmanParallelism]
 [-sehaNodeList
node_names_separated_by_comma_for_Standard_Edition_High_Availability_database]
 [-sehaServiceName value]
 [-skipDatapatch]
 [-storageType FS | ASM | EXASCALE | PMEMFS]
 -datafileDestination | -pmemMountPointPath
 -datafileDestination destination_directory_for_all_database_files
 -pmemMountPointPath mounted_PMEM_file_store_mount_location
 [-pmemFSName PMEM_file_store_name]
 [-pmemFSSizeDefinition]
 [-asmsnmpPassword ASMSNMP_password_for_ASM_monitoring]
 [-useBigFileForTablespace true | false]

Table 19-7 createDatabase Parameters

Parameter Required/
Optional

Description

-gdbName
global_database_name

Required Global database name in the form
database_name.domain_name.

-responseFile
response_file_directory

Required Absolute directory path of the response file.

-templateName
database_template_name

Required Name of an existing database template in the default location
or the complete path to a database template that is not in the
default location.

-adminManaged Optional Administrator-managed database.

-characterSet
database_character_set

Optional Character set of the database.

Chapter 19
createDatabase

19-21

Table 19-7 (Cont.) createDatabase Parameters

Parameter Required/
Optional

Description

configureTDE Optional Specify true to configure TDE during the database creation.
Only software wallets are supported. You can create a wallet
for the entire CDB or for a PDB.

• -encryptPDBTablespaces: Specify ALL to encrypt all
tablespaces or a comma-separated list of name:value
pairs with tablespace encryption to true or false. For
example: SYSTEM:true,SYSAUX:false.

• -encryptTablespaces: Specify ALL to encrypt all
tablespaces or a comma-separated list of name:value
pairs with tablespace encryption to true or false. For
example: SYSTEM:true,SYSAUX:false.

• -pdbTDEPassword: Password for the PDB TDE wallet.

• primaryDBTdeWallet: This option is not applicable
when creating a database.

• -sourcePdbTDEPassword: Specify password for the
source PDB TDE wallet. This password is used only in the
creation of a PDB from an existing PDB which has TDE
wallet.

• sourceTdeWalletPassword: If the template that is
being used is from a database that uses encryption, or if
you are duplicating a database, specify the password of
the wallet in the source database.

• tdeWalletModeForPDB: Specify UNITED to create a
wallet for the entire CDB. Use ISOLATED to create a
wallet for a PDB.

• tdeAlgorithm: Algorithm used to encrypt data. Can be
one of the following: 3DES168, AES128, AES192,
AES256.

• tdeWalletLoginType: Type of software wallet.
PASSWORD or AUTO_LOGIN or LOCAL_AUTO_LOGIN.

• -tdeWalletPathInTarFile: Specify the TDE wallet
path in the tar file.

• -tdeWalletRoot: Specify the location for TDE wallet
root init parameter.

• tdeWalletPassword: The password used to open the
wallet. This parameter is mandatory.

Note: Isolated wallets are supported only in Oracle Cloud or
Exadata environments.

-enableTwoStagePatches Optional Specify this flag to enable two stage patches.

-skipPdbServiceCreation Optional Specify -skipPdbServiceCreation flag to skip the PDB
service creation.

Chapter 19
createDatabase

19-22

Table 19-7 (Cont.) createDatabase Parameters

Parameter Required/
Optional

Description

-
createAsContainerDataba
se
{true | false}

Optional Specify true to create a CDB. Specifying false is not
supported starting with Oracle Database Release 20.3.

When true is specified, the following additional parameters
are optional:

• -numberOfPDBs: Number of PDBs to create. The default
is 0 (zero).

• -pdbName: Base name of each PDB. A number is
appended to each name if -numberOfPDBs is greater
than 1. This parameter must be specified if -
numberOfPDBs is greater than 0 (zero).

• -pdbStorageMAXSizeInMB: Maximum storage size for
the PDBs in megabytes.

• -pdbStorageMAXTempSizeInMB: Maximum temporary
storage size for the PDBs in megabytes.

• -useLocalUndoForPDBs {true | false}: Specify
whether local undo should be used for the PDBs.

• -pdbAdminPassword: PDB administrator password.

• -pdbOptions: Specify PDB options as comma separated
list in name:value format.

Example: JSERVER:true, DV:false
-createListener
new_database_listener

Optional Database listener to register the database in the form
listener_name:port.

-customScripts
custom_scripts_list

Optional Specify a comma separated list of SQL scripts that needs to
be run after the database creation. The scripts are run in the
order they are listed.

-databaseConfigType
{SINGLE | RAC |
RACONENODE}

Optional Specify one of the following database configuration types:

• SINGLE: Single individual database.

• RAC: Oracle RAC database.

• RACONENODE: Oracle RAC One Node database.

For Oracle RAC One Node database, you can specify the
service name using the -RACOneNodeServiceName
parameter.

-databaseType
{MULTIPURPOSE |
DATA_WAREHOUSING |
OLTP}

Optional Specify MULTIPURPOSE if the database is for both OLTP and
data warehouse purposes.

Specify DATA_WAREHOUSING if the primary purpose of the
database is a data warehouse.

Specify OLTP if the primary purpose of the database is online
transaction processing.

-datafileDestination
data_files_directory

Optional Complete path to the location of the database data files.

-datafileJarLocation
data_files_backup_direc
tory

Optional Absolute directory path of the database backup data files
stored in a compressed RMAN backup format (files with .dfb
extensions).

Chapter 19
createDatabase

19-23

Table 19-7 (Cont.) createDatabase Parameters

Parameter Required/
Optional

Description

-dbOptions
database_options

Optional Specify database options as comma separated list of
name:value pairs.

Example: JSERVER:true,DV:false
-dvConfiguration
{true | false}

Optional Specify true to enable and configure Database Vault, else
specify false. Default is false.

When true is specified, the following additional Database
Vault parameters are required:

• -dvUserName: Specify Database Vault owner name.

• -dvUserPassword: Specify Database Vault owner
password.

• -dvAccountManagerName: Specify Database Vault
account manager name.

• -dvAccountManagerPassword: Specify Database Vault
account manager password.

-emConfiguration
{CENTRAL | NONE}

Optional Enterprise Manager configuration settings.

When CENTRAL is specified, specify the following additional
parameters:

• -dbsnmpPassword: DBSNMP user password.

• -omsHost: Oracle Management Server host name.

• -omsPort: Oracle Management Server port number.

• -emUser: User name for Enterprise Manager
administrator.

• -emPassword: Password for Enterprise Manager
administrator.

-enableArchive
{true | false}

Optional Specify true to enable log file archive, else specify false.
Default is false.

When true is specified, the following additional parameters
can be provided:

• -archiveLogMode {AUTO | MANUAL}: Specify either
the automatic archive mode or the manual archive mode.
Default is automatic archive mode.

• -archiveLogDest: Directory path for storing the archive
log files.

-initParams
initialization_paramete
rs_list

Optional A comma-separated list of name=value pairs of initialization
parameter values for the database.

You can additionally provide the -initParamsEscapeChar
parameter for using a specific escape character between
multiple values of an initialization parameter. If an escape
character is not specified, backslash (/) is used as the default
escape character.

-listeners
listeners_list

Optional A comma-separated list of listeners for the database.

Chapter 19
createDatabase

19-24

Table 19-7 (Cont.) createDatabase Parameters

Parameter Required/
Optional

Description

-managementPolicy Optional Use this parameter to set the database management policy.

Optionally, specify the management policy type:
• AUTOMATIC
• RANK
The default policy is -adminManaged.

-memoryMgmtType
{AUTO | AUTO_SGA |
CUSTOM_SGA}

Optional Specify one of the following memory management types:

• AUTO: Automatic memory management for SGA and
PGA.

• AUTO_SGA: Automatic shared memory management for
SGA.

• CUSTOM_SGA: Manual shared memory management for
SGA.

Note: If the total physical memory of a database instance is
greater than 4 GB, then you cannot specify the Automatic
Memory Management option AUTO during the database
installation and creation. Oracle recommends that you specify
the Automatic Shared Memory Management option AUTO_SGA
in such environments.

-memoryPercentage
percentage_of_total_mem
ory_to_assign_to_oracle
_database
or

-totalMemory
total_memory_to_assign_
to_oracle_database_in_M
B

Optional Specify either -memoryPercentage or -totalMemory.

• -memoryPercentage
The percentage of physical memory that can be used by
the database.

• -totalMemory.

Total amount of physical memory, in megabytes, that can
be used by the database.

-nationalCharacterSet
database_national_chara
cter_set

Optional National character set of the database.

-nodelist
database_nodes_list

Optional List of database nodes separated by comma.

-olsConfiguration
{true | false}

Optional Specify true to enable and configure Oracle Label Security
(OLS), else specify false. Default is false.

-oracleHomeUserName
Oracle_Home_user_name
-oracleHomeUserPassword
Oracle_Home_user_passwo
rd

Optional Oracle Home user name and password.

Chapter 19
createDatabase

19-25

Table 19-7 (Cont.) createDatabase Parameters

Parameter Required/
Optional

Description

-
recoveryAreaDestination
fast_recovery_area_dire
ctory

Optional Destination directory for the Fast Recovery Area, which is a
backup and recovery area. Specify NONE to disable Fast
Recovery Area.

Additionally, you can specify the Fast Recovery Area size in
megabytes using the parameter -recoveryAreaSize. This
parameter is optional.

-redoLogFileSize
maximum_size_of_redo_lo
g_file

Optional Size of each online redo log in megabytes.

-registerWithDirService
{true | false}

Optional Specify true to register with a Lightweight Directory Access
Protocol (LDAP) service, else specify false. Default is
false.

When true is specified, the following additional parameters
are required:

• -dirServiceUserName: Username for the LDAP
service.

• -dirServicePassword: Password for the LDAP service.

• -databaseCN: Database common name.

• -dirServiceCertificatePath: Directory path to the
certificate file to use when configuring SSL between the
database and the directory service.

• -dirServiceUser: Directory service user name.

• -ldapDirectoryAccessType {PASSWORD | SSL}:
LDAP directory access type.

• -useSYSAuthForLDAPAccess {true | false}:
Specify whether to use SYS user authentication for LDAP
acces.

• -walletPassword: Password for the database wallet.

-runCVUChecks
{true | false}

Optional Specify true to run Cluster Verification Utility checks
periodically for Oracle RAC databases, else specify false.
Default is false.

-sid
database_system_identif
ier

Optional Database system identifier (SID).

The SID uniquely identifies the instance that runs the
database. If it is not specified, then it defaults to the database
name.

Chapter 19
createDatabase

19-26

Table 19-7 (Cont.) createDatabase Parameters

Parameter Required/
Optional

Description

-storageType
{FS | ASM | EXASCALE |
PMEMFS}

Optional Specify the storage type of either FS or ASM.

• FS: File system storage type.

When FS is specified, your database files are managed by
the file system of your operating system. You can specify
the directory path where the database files are to be
stored using a database template or the -
datafileDestination parameter. Oracle Database can
create and manage the actual files.

• ASM: Oracle Automatic Storage Management (Oracle
ASM) storage type.

When ASM is specified, your database files are placed in
Oracle ASM disk groups. Oracle Database automatically
manages database file placement and naming.

When ASM is specified, you can also specify the
ASMSNMP password using the -asmsnmpPassword
parameter. This parameter is optional.

• EXASCALE: Oracle Exascale storage type.

• PMEMFS: PMEMFS storage type.

The following additional parameters can be provided:

• -datafileDestination: Destination directory for all
database files.

• -pmemMountPointPath: Mounted PMEM file store
mount location.

• -pmemFSName: PMEM file store name.

• -pmemFSSizeDefinition: PMEM file store size
definition. Specify value string such as
InitialSize:ExtendSize:MaxSize E.G: -
pmemFSSizeDefinition 8GB:16GB:100GB or -
pmemFSSizeDefinition 2TB:8TB:UNLIMITED

-sysPassword
SYS_user_password

Optional SYS user password for the new database.

-systemPassword
SYSTEM_user_password

Optional SYSTEM user password for the new database.

Chapter 19
createDatabase

19-27

Table 19-7 (Cont.) createDatabase Parameters

Parameter Required/
Optional

Description

-templateFromCloud Optional Creates a database using the clone template that is stored in
Oracle Cloud Infrastructure. This option is supported only for
Linux.

• opcLibPath: Directory in which the Oracle Database
Cloud Backup Module for OCI is stored. The backup
module is a system backup to tape (SBT) library that is
used to integrate an on-premise database with Oracle
Cloud Infrastructure.

You must install the Oracle Database Cloud Backup
Module for OCI before running this command.

• opcConfigFile: Name, with complete location, of the
Oracle Database Cloud Backup Module for OCI
configuration file. This file is created when you install the
backup module.

• rmanDecryptionPassword: Password that must be
used to decrypt the RMAN template file stored in Oracle
Cloud Infrastructure. This is the same password that was
used when creating an RMAN backup of the template.

See Administering Oracle Database Backup Cloud Service for
information about installing and configuring the backup
module.

-useOMF
{true | false}

Optional Specify true to use Oracle-Managed Files (OMF), else
specify false. Default is false.

-
useWalletForDBCredentia
ls
{true | false}

Optional Specify true to use Oracle Wallet for database credentials,
else specify false. Default is false.

When true is specified, the following additional parameters
can be provided:

• -dbCredentialsWalletLocation: Directory location
for the Oracle Wallet files.

• -dbCredentialsWalletPassword: Password for the
Oracle Wallet account.

Note:
If you are using Oracle Unified Directory (OUD), then the OUD
passwords should be stored in the wallet using the following
keys:

• oracle.dbsecurity.walletPassword
• oracle.dbsecurity.userDNPassword

-variables
variables_list

Optional A comma-separated list of name=value pairs for the variables
in the database template.

-variablesFile
variables_file

Optional Name of the variables file with the complete directory path in
the database template.

-enableForceLogging
{true | false}

Optional Specify true to enable force logging at database level else
specify false. Default is false.

-rmanParallelism Optional Specify the RMAN parallelism.

Chapter 19
createDatabase

19-28

Table 19-7 (Cont.) createDatabase Parameters

Parameter Required/
Optional

Description

-sehaNodeList Optional Specify the node names separated by comma for the
Standard Edition High Availability database.

Specify a value for the service name sehaServiceName.

-skipDatapatch Optional Specify the flag to skip data patch.

-
useBigFileForTablespace
{true | false}

Optional Specify true to enable bigfile property to all database
tablespace or a comma-separated list of tablespace
name:true|false pairs to enable or disable database
tablespace bigfile property. For example:
SYSTEM:false,SYSAUX:false,USERS:true.

Else, specify false. Default is false.

See Also:

Oracle Database Sample Schemas

createDuplicateDB
The createDuplicateDB command creates a duplicate of an Oracle database.

Prerequisites

The following are the prerequisites for using the createDuplicateDB command:

• The database to be duplicated is in the archivelog mode.

• If the database to be duplicated is in a remote server, then there must be connectivity
from the system where DBCA is running to the remote server.

Syntax and Parameters

Use the dbca -createDuplicateDB command with the following syntax:

dbca -createDuplicateDB
 -gdbName global_database_name
 -remoteDBConnString EZCONNECT string to connect to Source database for example
"host:port/servicename"
 -sid database_system_identifier
 [-initParams initialization_parameters
 [-initParamsEscapeChar initialization_parameters_escape_character]]
 [-sysPassword SYS_user_password]
 [-skipPDBs comma_separated_list_of_PDBs_to_be_skipped_for_current_operation]
 [-systemPassword SYSTEM_user_password]
 [-adminManaged admin managed database]
 [-nodelist database_nodes_list]
 [-datafileDestination data_files_directory]
 [-recoveryAreaDestination recovery_files_directory
 [-recoveryAreaSize fast_recovery_area_size]]
 [-rmanParallelism parallelism_value]

Chapter 19
createDuplicateDB

19-29

 [-rmanSectionSizeInGB value]
 [-databaseConfigType {SINGLE | RAC | RACONENODE}
 [-RACOneNodeServiceName service_name_for_RAC_One_Node_database]]
 [-dgTNSNamesoraFilePath location to create tnsnames.ora for Oracle Data
Guard configuration]
 [-standbyBlobFileLocFromPrimaryDB | -passwordFileFromPrimaryDB]
 [-standbyBlobFileLocFromPrimaryDB location of primary database blob file]
 [-passwordFileFromPrimaryDB password file location of primary database]
 [-primaryDBTdeWallet location for TDE wallet of primary database]
 [-standbyScanName | -standbyHostName]
 [-standbyScanName comma-separated list of SCAN names or SCAN IP addresses of
standby database for Oracle Data Guard configuration]
 [-standbyHostName comma-separated list of hostnames or IP addresses of
standby database host for Oracle Data Guard configuration for single-instance
database]
 [-standbyScanPort | -standbyListenerPort]
 [-standbyScanPort SCAN port of standby database for Oracle Data Guard
configuration]
 [-standbyListenerPort listener port of standby database for Oracle Data
Guard configuration]
 [-sysPassword SYS user password]
 [-systemPassword SYSTEM user password]
 [-useWalletForDBCredentials true | false specify true to load database
credentials from wallet]
 -dbCredentialsWalletLocation path of the directory containing the wallet
files
 [-dbCredentialsWalletPassword password to open wallet with auto login
disabled]
 [-createAsStandby
 [-dbUniqueName db_unique_name_for_standby_database]]
 [-customScripts custom_sql_scripts_to_run_after_database_creation]
 [-useWalletForDBCredentials {true | false}
 -dbCredentialsWalletPassword wallet_account_password
 -dbCredentialsWalletLocation wallet_files_directory]
 [-configureTDE true | false]
 [-pdbTDEPassword value]
 [-primaryDBTdeWallet value]
 [-encryptPDBTablespaces value]
 [-encryptTablespaces value]
 [-sourcePdbTDEPassword value]
 [-sourceTdeWalletPassword value]
 [-tdeWalletRoot tde_wallet_root_init_parameter]
 [-pdbTDEPassword pdb_tde_wallet_password]
 [-tdeWalletModeForPDB pdb_keystore_type]
 [-tdeWalletPathInTarFile value]
 [-tdeAlgorithm TDE_algorithm]
 [-tdeWalletLoginType type_of_wallet_login]
 [-sourcePdbTDEPassword source_pdb_TDE_wallet_password]
 [-tdeWalletPassword TDE_wallet_password]

Table 19-8 createDuplicateDB Parameters

Parameter Required/
Optional

Description

-gdbName
global_database_name

Required Global database name of the duplicate database in the form
database_name.domain_name.

Chapter 19
createDuplicateDB

19-30

Table 19-8 (Cont.) createDuplicateDB Parameters

Parameter Required/
Optional

Description

-remoteDBConnString
easy_db_connection_stri
ng

Required Easy connection string to connect to the database to be
duplicated. Easy connection string must be in the following
format:

"host[:port][/service_name][:server][/
instance_name]"

-sid
database_system_identif
ier

Required Database system identifier (SID) of the duplicate database.

The SID uniquely identifies the instance that runs the
database. If it is not specified, then it defaults to the database
name.

-initParams
initialization_paramete
rs_list

Optional A comma-separated list of name=value pairs of initialization
parameter values for the database.

You can additionally provide the -initParamsEscapeChar
parameter for using a specific escape character between
multiple values of an initialization parameter. If an escape
character is not specified, backslash (/) is used as the default
escape character.

-sysPassword
SYS_user_password

Optional SYS user password.

-adminManaged Optional Administrator-managed database.

Note: You can specify either policy-managed database or
administrator-managed database.

-nodelist
database_nodes_list

Optional For administrator-managed database, specify database nodes
separated by comma.

-dgTNSNamesoraFilePath
data_guard_location

Optional Specifies the location to create tnsnames.ora for configuration
of Oracle Data Guard.

-datafileDestination
data_files_directory

Optional Complete directory path for database data files.

-
recoveryAreaDestination
fast_recovery_area_dire
ctory

Optional Destination directory for the Fast Recovery Area, which is a
backup and recovery area. Specify NONE to disable Fast
Recovery Area.

Additionally, you can specify the Fast Recovery Area size in
megabytes using the parameter -recoveryAreaSize. This
parameter is optional.

-databaseConfigType
{SINGLE | RAC |
RACONENODE}

Optional Specify one of the following database configuration types:

• SINGLE: Single individual database.

• RAC: Oracle RAC database.

• RACONENODE: Oracle RAC One Node database.

For Oracle RAC One Node database, you can specify the
service name using the -RACOneNodeServiceName
parameter.

-
standbyBlobFileLocFromP
rimaryDB

Optional Specify the location of primary database blob file. You must
then specify the passwordFileFromPrimaryDB option, for
the password file location of primary database.

Specify primaryDBTdeWallet option for the location for TDE
wallet of primary database.

Chapter 19
createDuplicateDB

19-31

Table 19-8 (Cont.) createDuplicateDB Parameters

Parameter Required/
Optional

Description

-standbyScanName | -
standbyHostName

Optional Specify either of the options. Use the -standbyScanName
option to specify a comma-separated list of SCAN names or
SCAN IP addresses of standby database for Oracle Data
Guard configuration. Use the -standbyHostName option to
specify comma-separated list of host names or IP addresses
of standby database host for Oracle Data Guard configuration
in case of single-instance database.

-standbyScanPort | -
standbyListenerPort

Optional Specify either of the options. Use the -standbyScanPort
option to specify SCAN port of standby database for Oracle
Data Guard configuration. Use the -standbyHostName option
to specify listener port of standby database for Oracle Data
Guard configuration.

-createAsStandby Optional Specifies that the duplicate database is a standby database
for the primary database.

Optionally, use the -dbUniqueName parameter to set the
unique database name for the standby database. If the -
dbUniqueName parameter is not specified, then the value of
the DB_NAME initialization parameter is used.

-customScripts
custom_sql_scripts_to_r
un_after_database_creat
ion

Optional A comma separated list of SQL scripts that should be run after
the duplicate database is created. The scripts are run in the
order listed.

-
useWalletForDBCredentia
ls
{true | false}

Optional Specify true to use Oracle Wallet for database credentials,
else specify false. Default is false.

When true is specified, the following additional parameters
can be provided:

• -dbCredentialsWalletPassword: Password for the
Oracle Wallet account.

• -dbCredentialsWalletLocation: Directory location
for the Oracle Wallet files.

Note:
If you are using Oracle Unified Directory (OUD), then the OUD
passwords should be stored in the wallet using the following
keys:

• oracle.dbsecurity.walletPassword
• oracle.dbsecurity.userDNPassword

Chapter 19
createDuplicateDB

19-32

Table 19-8 (Cont.) createDuplicateDB Parameters

Parameter Required/
Optional

Description

configureTDE Optional Specify true to configure TDE during the database creation.
Only software wallets are supported. You can create a wallet
for the entire CDB or for a PDB.

• encryptPDBTablespaces: Specify ALL to encrypt all
tablespaces or a comma-separated list of name:value
pairs with tablespace encryption to true or false. For
example, SYSTEM:true,SYSAUX:false.

• encryptTablespaces: Specify ALL to encrypt all
tablespaces or a comma-separated list of name:value
pairs with tablespace encryption to true or false. For
example, SYSTEM:true,SYSAUX:false.

• pdbTDEPassword: Specify the TDE wallet password.

• primaryDBTdeWallet: This option is not applicable
when creating a database.

• sourcePdbTdeWalletPassword: If the template that is
being used is from a PDB database that uses encryption,
specify the password of the wallet in the source PDB
database.

• sourceTdeWalletPassword: If the template that is
being used is from a database that uses encryption,
specify the password of the wallet in the source database.

• tdeWalletModeForPDB: Specify UNITED to create a
wallet for the entire CDB. Use ISOLATED to create a
wallet for a PDB.

• tdeAlgorithm: Algorithm used to encrypt data. Can be
one of the following: 3DES168, AES128, AES192,
AES256.

• tdeWalletLoginType: Type of software wallet.
PASSWORD or AUTO_LOGIN or LOCAL_AUTO_LOGIN.

• tdeWalletPathInTarFile: Location in which the TDE
wallet is stored.

• tdeWalletPassword: The password used to open the
wallet. This parameter is mandatory.

• tdeWalletRoot: The location for the TDE wallet root
initialization parameters.

Note: Isolated wallets are supported only in Oracle Cloud or
Exadata environments.

-pdbTDEPassword Optional Specify password for PDB TDE wallet.

-sourcePdbTDEPassword Optional Specify password for source PDB TDE wallet. The password
is used only in the creation of a PDB from an existing PDB
which has a TDE wallet.

-tdeWalletPathInTarFile Optional Specify the TDE wallet path in a tar file.

-rmanParallelism
parallelism_value

Optional Specify the parallelism value.

-rmanSectionSizeInGB
value

Optional Specify the RMAN section size.

-skipPDBs Optional Specify a comma-separated list of PDBs to be skipped for the
current operation.

-systemPassword Optional Specify the SYSTEM user password.

Chapter 19
createDuplicateDB

19-33

Related Topics

• Oracle Data Guard Concepts and Administration

createPDBSnapshot
The createPDBSnapshot command creates a snapshot from a PDB.

Syntax and Parameters

Use the dbca -createPDBSnapshot command with the following syntax:

dbca -createPDBSnapshot
 -pdbName pdb_database_name
 -pdbSnapshotName pdb_snapshot_name
 -sourceDB
database_unique_name_for_RAC_database_or_SID_for_single_instance_databa
se

Table 19-9 createPDBSnapshot Parameters

Parameter Required/
Optional

Description

-pdbName
pdb_database_name

Required Specifies the PDB database name.

-pdbSnapshotName
pdb_snapshot_name

Required Specifies the PDB snapshot name.

-sourceDB
source_database

Required Specifies the name of the source database.

createPluggableDatabase
The createPluggableDatabase command creates a pluggable database (PDB) in a
multitenant container database (CDB).

Syntax and Parameters

Use the dbca -createPluggableDatabase command with the following syntax:

dbca -createPluggableDatabase
 -pdbName name_of_the_pdb_to_create
 -sourceDB cdb_sid
 [-configureTDE {true | false}
 [-primaryDBTdeWallet value]
 [-sourceTdeWalletPassword value]
 [-tdeWalletRoot tde_wallet_root_init_parameter]
 [-pdbTDEPassword pdb_tde_wallet_password]
 [-tdeWalletModeForPDB pdb_keystore_type]
 [-tdeAlgorithm TDE_algorithm]
 [-tdeWalletLoginType type_of_wallet_login]
 [-sourcePdbTDEPassword source_pdb_TDE_wallet_password]
 [-tdeWalletPassword TDE_wallet_password]]

Chapter 19
createPDBSnapshot

19-34

 [-tdeWalletPathInTarFile value]
 [-encryptPDBTablespaces ALL|tablespace_name:{true | false}]
 [-encryptTablespaces ALL|tablespace_name:{true | false}]
 [-createAsClone true | false Create PDB as clone]
 [-createFromRemotePDB Create a pluggable database from Remote PDB
clone operation]
 -remoteDBConnString EZCONNECT string to connect to Source
database for example "host:port/servicename"
 -remotePDBName Name of the pluggable database to clone/relocate
 [-createAsRefreshablePDB true|false]
 [-refreshInterval time interval in minutes to perform
automatic refresh of the PDB]
 [-refreshMode AUTO|MANUAL refresh mode of the pluggable
database]
 [-createNewPDBAdminUser to create a new PDB Administrator user]
 [-dbLinkName Name of the database link that connects to the
remote CDB]
 [-dbLinkUserPassword Common user password of a remote CDB, used
by database link to connect to remote CDB]
 [-dbLinkUsername Common user of a remote CDB, used by database
link to connect to remote CDB]
 [-excludePDBData value]
 [-excludePDBTablespaces value]
 [-pdbAdminPassword PDB Administrator user password, required
only while creating new PDB]
 [-pdbAdminUserName PDB Administrator user name, required only
while creating new PDB]
 [-pdbStorageMAXSizeInMB value]
 [-pdbStorageMAXTempSizeInMB value]
 [-remoteDBSYSDBAUserName User name with SYSDBA privileges of
remote database]
 [-remoteDBSYSDBAUserPassword Password for remoteDBSYSDBAUserName
user of remote database]
 [-remotePDBExportedTDEKeyFile value]
 [-remotePDBExportedTDEKeyPassword value]
 [-skipDatapatch Flag to skip the datapatch run]
 [-sysDBAPassword Password for sysDBAUserName user name]
 [-sysDBAUserName User name with SYSDBA privileges]
 [-updateDBBlockCacheSize option to enable application to set db
block cache size initialization parameters in order to support data copy
with different block size]
 [-createFromSnapshot | -snapshot]
 [-createFromSnapshot Specify this property to clone pdb from a pdb
snapshot]
 -pdbSnapshotName Specify pdb snapshot name
 [-copyDataFiles true|false]
 [-snapshot Specify this property to clone pdb by thin clone]
 [-createPDBFrom {DEFAULT | FILEARCHIVE | RMANBACKUP | USINGXML | PDB}
 [-pdbArchiveFile pdb_archive_file_name_with_directory_path]
 [-PDBBackUpfile pdb_backup_file_name_with_directory_path]
 [-PDBMetadataFile pdb_metadata_file_name_with_directory_path]
 [-pdbAdminUserName pdb_administrator_name]
 [-pdbAdminPassword pdb_administrator_password]
 [-createNewPDBAdminUser {true | false}]
 [-sourceFileNameConvert method_to_locate_pdb_files]

Chapter 19
createPluggableDatabase

19-35

 [-fileNameConvert names_of_pdb_files]
 [-pdbStorageMAXSizeInMB maximum_storage_size_for_the_pdb_in_MB]
 [-sourcePDBServiceConvertList comma_separated list of source pdb
services with new service name]
 [-pdbStorageMAXTempSizeInMB
maximum_temporary_storage_size_for_the_pdb_in_MB]
 [-workArea
directory_to_unzip_PDB_archive_files_for_FILEARCHIVE_option]
 [-copyPDBFiles {true | false}]
 [-sourcePDB name_of_the_pdb_to_clone]
 [-createPDBInStandby true|false]
 [-useBigFileForTablespace true | false]
 [-createUserTableSpace {true | false)]
 [-customScripts custom_sql_scripts_to_run_after_PDB_creation]
 [-dvConfiguration {true | false}
 -dvUserName Database_Vault_owner_name
 -dvUserPassword Database_Vault_owner_password
 [-dvAccountManagerName Database_Vault_account_manager_name]
 [-dvAccountManagerPassword
Database_Vault_account_manager_password]]
 [-enableAutomaticSnapshot option to enable automatic backup in a
pdb]
 -snapshotIntervalInMins interval in minutes for automatic
snapshot creation
 [-maxPDBSnapshots maximum number of snapshots to be
retained during automatic snapshot creation]
 [-lbacsysPassword LBACSYS_user_password]
 [-pdbInitParams Specify pdb specific init params.Comma separated
list of name=value pairs]
 [-initParamsEscapeChar Specify escape character for comma
when a specific initParam has multiple values]
 [-pdbNodelist value]
 [-pdbReadOnlyServiceName name of the PDB read-only service to be
created on Oracle Data Guard configuration]
 [-pdbServiceName name of the PDB service to be created]

 [-pdbDatafileDestination pdb_data_files_directory]
 [-pdbStorageMAXSizeInMB maximum_storage_size_for_the_pdb_in_MB]
 [-pdbStorageMAXTempSizeInMB
maximum_temporary_storage_size_for_the_pdb_in_MB]
 [-pdbTimezone {{+|-}hh:mi|time_zone_region}]
 [-pdbUseMultipleBackup number_of_pdb_backups_to_create]
 [-registerWithDirService {true | false}
 -dirServiceUserName directory_service_user_name
 [-dirServicePassword directory_service_user_password]
 [-databaseCN directory_service_database_common_name]
 [-dirServiceCertificatePath certificate_file_directory_path]
 [-dirServiceUser active_directory_account_user_name]
 [-walletPassword wallet_password]]
 [-skipPdbServiceCreation Flag to skip the Pluggable Database
service creation]
 [-useMetaDataFileLocation {true | false}]
 [-pdbTDEKeyTransportSecret value]
 [-useWalletForDBCredentials {true | false}

Chapter 19
createPluggableDatabase

19-36

 -dbCredentialsWalletPassword wallet_account_password
 -dbCredentialsWalletLocation wallet_files_directory]

Table 19-10 createPluggableDatabase Parameters

Parameter Required/
Optional

Description

-pdbName
name_of_the_pdb_to_crea
te

Required Name of the new PDB to create.

Note: For Oracle RAC databases, the PDB name must be
unique in the cluster.

-sourceDB
cdb_sid

Required The database system identifier (SID) of the CDB.

configureTDE Optional Specify true to configure TDE during the database creation.
Only software wallets are supported. You can create a wallet
for the entire CDB or for a PDB.

• -encryptPDBTablespaces: Specify ALL to encrypt all
tablespaces or a comma-separated list of name:value
pairs with tablespace encryption to true or false. For
example: SYSTEM:true,SYSAUX:false.

• -encryptTablespaces: Specify ALL to encrypt all
tablespaces or a comma-separated list of name:value
pairs with tablespace encryption to true or false. For
example: SYSTEM:true,SYSAUX:false.

• primaryDBTdeWallet: This option is not applicable
when creating a database.

• sourceTdeWalletPassword: If the template that is
being used is from a database that uses encryption, or if
you are duplicating a database, specify the password of
the wallet in the source database.

• sourcePdbTdeWalletPassword: If the template that is
being used is from a database that uses encryption, or if
you are duplicating a PDB, specify the password of the
wallet in the source PDB database.

• -tdeWalletPathInTarFile: Specify the TDE wallet
path in the tar file.

• tdeWalletModeForPDB: Specify UNITED to create a
wallet for the entire CDB. Use ISOLATED to create a
wallet for a PDB.

• tdeAlgorithm: Algorithm used to encrypt data. Can be
one of the following: 3DES168, AES128, AES192,
AES256.

• tdeWalletLoginType: Type of software wallet.
PASSWORD or AUTO_LOGIN or LOCAL_AUTO_LOGIN.

• tdeWalletLocation: Location in which the TDE wallet
is stored.

• tdeWalletPassword: The password used to open the
wallet. This parameter is mandatory.

• -tdeWalletRoot: Specify the location for TDE wallet
root init parameter.

Note: Isolated wallets are supported only in Oracle Cloud or
Exadata environments.

Chapter 19
createPluggableDatabase

19-37

Table 19-10 (Cont.) createPluggableDatabase Parameters

Parameter Required/
Optional

Description

-createAsClone
{true | false}

Optional Specify true if the files you plan to use to create the new PDB
are the same files that were used to create an existing PDB.
Specifying true ensures that Oracle Database generates
unique PDB DBID, GUID, and other identifiers expected for the
new PDB.

Specify false, the default, if the files you plan to use to create
the new PDB are not the same files that were used to create
an existing PDB.

Chapter 19
createPluggableDatabase

19-38

Table 19-10 (Cont.) createPluggableDatabase Parameters

Parameter Required/
Optional

Description

-createFromRemotePDB Optional Create a PDB by cloning a remote PDB.

Specify the following parameters:

• -remotePDBName: Name of the remote PDB to clone.

• -remoteDBConnString: Database connection string of
the remote PDB.

• -createAsRefreshablePDB: Value can be true or false.
Specify true to create the pluggable database as a
refreshable PDB.

• -refreshInterval: Specify time interval in minutes to
perform automatic refresh of the PDB.

• -refreshMode: AUTO|MANUAL Specify the refresh
mode of the pluggable database.

• -createNewPDBAdminUser: Specify this argument if a
new PDB Administrator user needs to be created after
plugging in PDB from Archive or File Set.

• -createPDBInStandby: Value can be true or false.
Specify true to create PDB in standby database.

• -enableAutomaticSnapshot: Option to enable
automatic backup in a PDB.

• -snapshotIntervalInMins: Specify interval in minutes
for automatic snapshot creation.

• -maxPDBSnapshots: Specify maximum number of
snapshots to be retained during automatic snapshot
creation.

• -pdbInitParams: Specify PDB specific initialization
parameters.Comma-separated list of name=value pairs.

• -initParamsEscapeChar: Specify escape character for
comma when a specific initialization parameter has
multiple values. If the escape character is not specified,
then backslash is the default escape character.

• -pdbNodelist: Specify the PDB nodelist.

• -skipPdbServiceCreation: Flag to skip the PDB
service creation.

• -pdbReadOnlyServiceName: Specify the name of the
PDB read-only service to be created on Oracle Data
Guard configuration.

• -pdbServiceName: Specify the name of the PDB service
to be created.

• -sysDBAUserName: Name of the SYSDBA user.

• -sysDBAPassword: Password of the SYSDBA user.

• -dbLinkName: Name of the database that connects to
the remote PDB.

• -dbLinkUsername: Name of the database link user of
the remote PDB.

• -dbLinkUserPassword: Password of the database link
user of the remote PDB.

• -excludePDBData: Specify if you want to exclude PDB
data.

Chapter 19
createPluggableDatabase

19-39

Table 19-10 (Cont.) createPluggableDatabase Parameters

Parameter Required/
Optional

Description

• -excludePDBTablespaces: Specify if you want to
exclude PDB tablespace.

• -pdbAdminPassword: Password of the PDB admin.

• -pdbAdminUserName: User name of the PDB admin.

• -remoteDBSYSDBAUserName: User name with SYSDBA
privileges of remote database.

• -remoteDBSYSDBAUserPassword: Password for remote
DB SYSDBA user of remote database.

• -remotePDBExportedTDEKeyFile: TDE key of the
remote PDB.

• -remotePDBExportedTDEKeyPassword: Password for
the TDE key of the remote PDB.

• -skipDatapatch: Flag to skip the data patch run.

• -sourcePDBServiceConvertList: Specify comma-
separated list of source PDB services with new service
name. For example,
service_1:new_service_1,service_2:new_service_2

• -updateDBBlockCacheSize: Option to enable
application to set db block cache size initialization
parameters in order to support data copy with different
block size.

Note:
• The database user of the local CDB must have the

CREATE PLUGGABLE DATABASE privileges in the root
container.

• The remote CDB must be in the local undo mode.
• The remote PDB must be in the archivelog mode.
• The database user of the remote PDB to which the

database link connects to must have the CREATE
PLUGGABLE DATABASE and CREATE SESSION privileges.

-createFromSnapshot | -
snapshot

Optional Create a PDB from a snapshot.

Specify the following parameters:

• -pdbSnapshotName: Name of the PDB snapshot.

• -copyDataFiles: Value can be true or false. Specify
true to skip snapshot copy.

Specify -snapshot option to clone a PDB by thin clone.

Chapter 19
createPluggableDatabase

19-40

Table 19-10 (Cont.) createPluggableDatabase Parameters

Parameter Required/
Optional

Description

-createPDBFrom
{DEFAULT | FILEARCHIVE
| RMANBACKUP | USINGXML
| PDB}

Optional Specify DEFAULT to create the PDB from the CDB's seed.
When you specify DEFAULT, the following additional
parameters are required:

• -pdbAdminUserName: The user name of the PDB's local
administrator.

• -pdbAdminPassword: The password for the PDB's local
administrator.

Specify FILEARCHIVE to create the PDB from an unplugged
PDB's files. When you specify FILEARCHIVE, the following
additional parameters are required:

• -pdbArchiveFile: Complete path and name for
unplugged PDB's archive file.

The archive file contains all of the files for the PDB,
including its XML metadata file and its data files. Typically,
the archive file has a .gz extension.

• -createNewPDBAdminUser: Specify true to create a
new PDB administrator or false to avoid creating a new
PDB administrator.

• -workArea: Specify the directory location where the PDB
archive files need to be unzipped.

Specify RMANBACKUP to create the PDB from a Recovery
Manager (RMAN) backup. When you specify RMANBACKUP, the
following additional parameters are required:

• -pdbBackUpfile: Complete path and name for the PDB
backup file.

• -pdbMetadataFile: Complete path and name for the
PDB's XML metadata file.

Specify USINGXML to create the PDB from an unplugged
PDB's XML metadata file. When you specify USINGXML, the
following additional parameter is required:

• -pdbMetadataFile: Complete path and name for the
PDB's XML metadata file.

Specify PDB to create a new PDB by cloning an existing PDB.
When you specify PDB, the following additional parameter is
required:

• -sourcePDB: Name of an existing PDB to clone.

Specify the following optional parameters, if required:

• -sourceFileNameConvert: This parameter specifies
how to locate PDB files listed in the PDB XML metadata
file.

See SOURCE_FILE_NAME_CONVERT clause of the CREATE
PLUGGABLE DATABASE statement described in Oracle
Multitenant Administrator's Guide.

• -fileNameConvert: This parameter specifies the names
of the PDB’s files.

See FILE_NAME_CONVERT clause of the CREATE
PLUGGABLE DATABASE statement described in Oracle
Multitenant Administrator's Guide.

Chapter 19
createPluggableDatabase

19-41

Table 19-10 (Cont.) createPluggableDatabase Parameters

Parameter Required/
Optional

Description

• -pdbStorageMAXSizeInMB: Specify the maximum
storage size for the PDB in megabytes.

See information about PDB storage described in Oracle
Multitenant Administrator's Guide.

• -pdbStorageMAXTempSizeInMB: Specify the maximum
temporary storage size for the PDB in megabytes.

• -copyPDBFiles {true | false}: Specify true if the
PDB data files need to be copied, else specify false.

-createUserTableSpace
{true | false}

Optional Specify true if a default user tablespace needs to be created
in the new PDB.

-customScripts
lcustom_sql_scripts_to_
run_after_PDB_creation

Optional Specify a list of custom SQL scripts to run after the PDB
creation.

-dvConfiguration
{true | false}

Optional Specify true to enable and configure Database Vault, else
specify false. Default is false.

When true is specified, the following additional Database
Vault parameters are required:

• -dvUserName: Specify the Database Vault owner name.

• -dvUserPassword: Specify Database Vault owner
password.

• -dvAccountManagerName: Specify a separate Database
Vault account manager name.

• -dvAccountManagerPassword: Specify the Database
Vault account manager password.

-lbacsysPassword
LBACSYS_user_password

Optional Specify the LBACSYS user password if you want to configure
OLS with a directory service.

-pdbDatafileDestination
pdb_data_files_director
y

Optional Compete directory path to the new PDB data files.

When this parameter is not specified, either Oracle Managed
Files or the PDB_FILE_NAME_CONVERT initialization parameter
specifies how to generate the names and locations of the files.
If you use both Oracle Managed Files and the
PDB_FILE_NAME_CONVERT initialization parameter, then
Oracle Managed Files takes precedence.

When this parameter is not specified, Oracle Managed Files is
not enabled, and the PDB_FILE_NAME_CONVERT initialization
parameter is not set, by default a path to a subdirectory with
the name of the PDB in the directory for the root's files is
used.

-pdbStorageMAXSizeInMB
maximum_storage_size_fo
r_the_pdb_in_MB

Optional Specify the maximum storage size for the PDB in megabytes.

Chapter 19
createPluggableDatabase

19-42

Table 19-10 (Cont.) createPluggableDatabase Parameters

Parameter Required/
Optional

Description

-
pdbStorageMAXTempSizeIn
MB
maximum_temporary_stora
ge_size_for_the_pdb_in_
MB

Optional Specify the maximum temporary storage size for the PDB in
megabytes.

-
pdbTimezone{{+|-}hh:mi|
time_zone_region}

Optional Use this parameter to specify the time zone of the PDB.

You can specify the time zone in two ways:
• By specifying a displacement from UTC (Coordinated

Universal Time—formerly Greenwich Mean Time). The
valid range of hh:mi is -12:00 to +14:00.

• By specifying a time zone region. To see a listing of valid
time zone region names, query the TZNAME column of the
V$TIMEZONE_NAMES dynamic performance view.

-pdbUseMultipleBackup
number_of_pdb_backups_t
o_create

Optional Specify the number of PDB backups to create.

-registerWithDirService
{true | false}

Optional Specify true to register the PDB with a Lightweight Directory
Access Protocol (LDAP) service, else specify false. Default
is false.

When true is specified, the following additional parameters
are required:

• -dirServiceUserName: User name for the LDAP
service.

• -dirServicePassword: Password for the LDAP service.

• -dirServiceUser: User name for the Active Directory
account.

• -dirServiceCertificatePath: Certificate file path of
the directory service.

• -databaseCN: Common name of the directory service
database.

• -walletPassword: Password for the database wallet.

-
useMetaDataFileLocation
{true | false}

Optional Specify true to use the data file path defined in XML
metadata file within a PDB archive when extracting data files.

Specify false, the default, to not use the data file path
defined in XML metadata file within a PDB archive when
extracting data files.

Chapter 19
createPluggableDatabase

19-43

Table 19-10 (Cont.) createPluggableDatabase Parameters

Parameter Required/
Optional

Description

-
useWalletForDBCredentia
ls
{true | false}

Optional Specify true to use Oracle Wallet for database credentials,
else specify false. Default is false.

When true is specified, the following additional parameters
can be provided:

• -dbCredentialsWalletLocation: Directory location
for the Oracle Wallet files.

• -dbCredentialsWalletPassword: Password for the
Oracle Wallet account.

Note:
If you are using Oracle Unified Directory (OUD), then the OUD
passwords should be stored in the wallet using the following
keys:

• oracle.dbsecurity.walletPassword
• oracle.dbsecurity.userDNPassword

-
pdbTDEKeyTransportSecre
t value

Required Name of the PDB TDE key transport secret.

createTemplateFromDB
The createTemplateFromDB command creates a database template from an existing
database.

Syntax and Parameters

Use the dbca -createTemplateFromDB command with the following syntax:

dbca -createTemplateFromDB
 -sourceDB source_database_sid
 -templateName new_database_template_name
 -sysDBAUserName SYSDBA_user_name
 -sysDBAPassword SYSDBA_user_password
 [-maintainFileLocations {true | false}]
 [-connectionString easy_connect_string]
 [-useWalletForDBCredentials {true | false}
 -dbCredentialsWalletPassword wallet_account_password
 -dbCredentialsWalletLocation wallet_files_directory]

Table 19-11 createTemplateFromDB Parameters

Parameter Required/
Optional

Description

-sourceDB
source_database_sid

Required The source database system identifier (SID).

Chapter 19
createTemplateFromDB

19-44

Table 19-11 (Cont.) createTemplateFromDB Parameters

Parameter Required/
Optional

Description

-templateName
new_database_template_n
ame

Required Name of the new database template.

-sysDBAUserName
SYSDBA_user_name

Optional User name of a user that has SYSDBA privileges.

-sysDBAPassword
SYSDBA_user_password

Optional Password of the user that has SYSDBA privileges.

-maintainFileLocations
{true | false}

Optional Specify true to use the file locations of the database in the
template.

Specify false, the default, to use different file locations in the
template. The file locations are determined by Oracle Flexible
Architecture (OFA).

-connectionString
easy_connect_string

Optional Easy connect string for connecting to a remote database in
the following format:

"host[:port][/service_name][:server][/
instance_name]"

-
useWalletForDBCredentia
ls
{true | false}

Optional Specify true to use Oracle Wallet for database credentials,
else specify false. Default is false.

When true is specified, the following additional parameters
can be provided:

• -dbCredentialsWalletPassword: Password for the
Oracle Wallet account.

• -dbCredentialsWalletLocation: Directory location
for the Oracle Wallet files.

Note:
If you are using Oracle Unified Directory (OUD), then the OUD
passwords should be stored in the wallet using the following
keys:

• oracle.dbsecurity.walletPassword
• oracle.dbsecurity.userDNPassword

createTemplateFromTemplate
The createTemplateFromTemplate command creates a database template from an existing
database template.

Syntax and Parameters

Use the dbca -createTemplateFromTemplate command with the following syntax:

dbca -createTemplateFromTemplate
 -sourcetemplateName existing_template_name
 -templateName new_template_name
 [-variables variables_list]
 [-characterSet database_character_set]
 [-nationalCharacterSet database_national_character_set]

Chapter 19
createTemplateFromTemplate

19-45

 [-recoveryAreaDestination fast_recovery_area_directory]
 -recoveryAreaSize fast_recovery_area_size]
 [-datafileDestination data_files_directory]
 [-useOMF {true | false}]
 [-datafileJarLocation database_backup_files_directory]
 [-memoryPercentage
percentage_of_total_memory_to_assign_to_oracle_database]
 [-totalMemory total_memory_to_assign_to_oracle_database]
 [-dbOptions database_options]
 [-variablesFile variables_file]
 [-redoLogFileSize redo_log_file_size]
 [-initParams initialization_parameters_list]
 [-initParamsEscapeChar
escape_character_for_initialization_parameters]
 [-storageType {FS | ASM | EXASCALE | PMEMFS}
 [-asmsnmpPassword ASMSNMP_password]
 -datafileDestination | -pmemMountPointPath
 -datafileDestination data_files_directory
 -pmemMountPointPath mounted PMEM File Store mount location
 [-pmemFSName PMEM File Store Name]
 [-pmemFSSizeDefinition PMEM File Store Size Definition]
 [-useBigFileForTablespace true | false]
 [-enableArchive {true | false}
 -archiveLogMode {AUTO | MANUAL}
 -archiveLogDest archive_logs_directory
 [-memoryMgmtType {AUTO | AUTO_SGA | CUSTOM_SGA}]
 [-useWalletForDBCredentials {true | false}
 -dbCredentialsWalletPassword wallet_account_password
 -dbCredentialsWalletLocation wallet_files_directory]

Table 19-12 createTemplateFromTemplate Parameters

Parameter Required/
Optional

Description

-sourceTemplateName
existing_template_name

Required Name of an existing database template in the default location
or the complete path to a database template that is not in the
default location.

-templateName
new_template_name

Required Name for a new database template.

-variables
variables_list

Optional A comma-separated list of name=value pairs for the variables
in the database template.

-characterSet
database_character_set

Optional Character set of the database.

-nationalCharacterSet
database_national_chara
cter_set

Optional National character set of the database.

-
recoveryAreaDestination
fast_recovery_area_dire
ctory

Optional Directory path for the Fast Recovery Area, which is a backup
and recovery area.

Chapter 19
createTemplateFromTemplate

19-46

Table 19-12 (Cont.) createTemplateFromTemplate Parameters

Parameter Required/
Optional

Description

-datafileDestination
data_files_directory

Optional Directory path for the data files.

-useOMF
{true | false}

Optional Specify true to use Oracle-Managed Files (OMF), else
specify false.

-datafileJarLocation
database_backup_files_d
irectory

Optional Location of the database offline backup (for clone database
creation only).

The data files for the seed database are stored in compressed
RMAN backup format in a file with a .dfb extension.

-memoryPercentage
percentage_of_total_mem
ory_to_assign_to_oracle
_database
or

-totalMemory
total_memory_to_assign_
to_oracle_database

Optional Specify either -memoryPercentage or -totalMemory .

• -memoryPercentage
The percentage of physical memory that can be used by
the database.

• -totalMemory
The amount of physical memory in megabytes that can be
used by the database.

-dbOptions
database_options

Optional Specify database options as comma separated list of
name:value pairs.

Example: JSERVER:true,DV:false
-variablesFile
variables_file

Optional File name with complete directory path to the file that contains
the variables and their values in the database template.

-redoLogFileSize
redo_log_file_size

Optional Size of each online redo log file in megabytes.

-initParams
initialization_paramete
rs_list

Optional A comma-separated list of name=value pairs of the database
initialization parameters and their values.

Chapter 19
createTemplateFromTemplate

19-47

Table 19-12 (Cont.) createTemplateFromTemplate Parameters

Parameter Required/
Optional

Description

-storageType
{FS | ASM | EXASCALE |
PMEMFS}

Optional Specify FS for file system and ASM for Oracle Automatic
Storage Management (Oracle ASM) system.

When FS is specified, your database files are managed by the
file system of your operating system. You specify the directory
path where the database files are to be stored using the -
datafileDestination parameter.

When ASM is specified, your database files are placed in the
Oracle ASM disk groups. Oracle Database automatically
manages database file placement and naming. You also
specify the ASMSNMP password for ASM monitoring using the -
asmsnmpPassword parameter.

EXASCALE: Oracle Exascale storage type.

PMEMFS: PMEMFS storage type.

The following additional parameters can be provided:

• -datafileDestination: Destination directory for all
database files.

• -pmemMountPointPath: Mounted PMEM file store
mount location.

• -pmemFSName: PMEM file store name.

• -pmemFSSizeDefinition: PMEM file store size
definition. Specify value string such as
InitialSize:ExtendSize:MaxSize E.G: -
pmemFSSizeDefinition 8GB:16GB:100GB or -
pmemFSSizeDefinition 2TB:8TB:UNLIMITED

-
useBigFileForTablespace
{true | false}

Optional Specify true to enable bigfile property to all database
tablespace or a comma-separated list of tablespace
name:true|false pairs to enable or disable database
tablespace bigfile property. For example:
SYSTEM:false,SYSAUX:false,USERS:true.

Else, specify false. Default is false.

-enableArchive
{true | false}

Optional Specify true to enable log file archive. Default is false.

When true is specified, the following additional parameters
can be provided:

• -archiveLogMode {AUTO | MANUAL}: Specify either
the automatic archive mode (AUTO) or the manual archive
mode (MANUAL). Default is automatic archive mode
(AUTO).

• -archiveLogDest: Directory path for storing the archive
log files.

Chapter 19
createTemplateFromTemplate

19-48

Table 19-12 (Cont.) createTemplateFromTemplate Parameters

Parameter Required/
Optional

Description

-memoryMgmtType
{AUTO | AUTO_SGA |
CUSTOM_SGA}

Optional Specify one of the following memory management types:

• AUTO: Automatic memory management for SGA and
PGA.

• AUTO_SGA: Automatic shared memory management for
SGA.

• CUSTOM_SGA: Manual shared memory management for
SGA.

Note: If the total physical memory of a database instance is
greater than 4 GB, then you cannot specify the Automatic
Memory Management option AUTO during the database
installation and creation. Oracle recommends that you specify
the Automatic Shared Memory Management option AUTO_SGA
in such environments.

-
useWalletForDBCredentia
ls
{true | false}

Optional Specify true to use Oracle Wallet for database credentials,
else specify false. Default is false.

When true is specified, the following additional parameters
can be provided:

• -dbCredentialsWalletPassword: Password for the
Oracle Wallet account.

• -dbCredentialsWalletLocation: Directory location
for the Oracle Wallet files.

Note:
If you are using Oracle Unified Directory (OUD), then the OUD
passwords should be stored in the wallet using the following
keys:

• oracle.dbsecurity.walletPassword
• oracle.dbsecurity.userDNPassword

createTrueCache
The createTrueCache command configures True Cache. Run this command on the True
Cache node.

Syntax and Parameters

Use the dbca -createTrueCache command with the following syntax:

dbca -createTrueCache
 -dbUniqueName true_cache_unique_name | -gdbName true_cache_global_name
 -sourceDBConnectionString primary_db_easy_connect_string
 -trueCacheBlobFromSourceDB true_cache_config_blob_path | -
passwordFileFromSourceDB password_file_path
 [-tdeWalletFromSourceDB tde_wallet_path]
 [-createListener new_database_listener]
 [-datafileDestination true_cache_control_file_path
 [-initParams initialization_parameters_list
 [-initParamsEscapeChar initialization_parameters_escape_character]]

Chapter 19
createTrueCache

19-49

 [-listeners listener_list]
 [-pgaAggregateTargetInMB pga_memory_size]
 [-sgaTargetInMB sga_memory_size]
 [-sid true_cache_sid]
 [-sourceTdeWalletPassword primary_db_wallet_password]
 [-tdeWalletLoginType {PASSWORD | AUTO_LOGIN | LOCAL_AUTO_LOGIN}]
 [-tdeWalletRoot tde_wallet_root_init_parameter]
 [-useWalletForDBCredentials {true | false}
 -dbCredentialsWalletLocation wallet_files_directory
 [-dbCredentialsWalletPassword wallet_account_password]]

Table 19-13 createTrueCache Parameters

Parameter Required/
Optional

Description

-dbUniqueName
true_cache_unique_name
or

-gdbName
true_cache_global_name

Required Enter either the unique name for this True Cache or the
global database name.

-sourceDBConnectionString
primary_db_easy_connect_stri
ng

Required Enter the Easy Connect (EZConnect) string to connect to
the primary database.

Example: host:port/service_name
Note: For Oracle RAC primary databases, set the -
sourceDBConnectionString parameter to SCAN:port/
service_name.

-trueCacheBlobFromSourceDB
true_cache_config_blob_path
or

-passwordFileFromSourceDB
password_file_path

Required Enter one of the following:

• The full path and file name for the configuration BLOB
file that contains the primary database's password file
or wallet. This is the path where the file is located on
the True Cache node.

• The path to the primary database's password file that
was copied to the True Cache node.

If you use -passwordFileFromSourceDB, you can also
enter the following additional parameter:

-tdeWalletFromSourceDB: Enter the path to the primary
database's Transparent Data Encryption (TDE) wallet file
that was copied to the True Cache node. You can copy and
use the TDE wallet file only if the primary (source)
database has TDE enabled. Otherwise, the wallet file isn't
required.

-createListener
new_database_listener

Optional Enter a new database listener to be created and to register
the database in the form LISTENER_NAME:PORT.

-datafileDestination
true_cache_control_file_path

Optional Enter the path to the location of the True Cache control
files.

Chapter 19
createTrueCache

19-50

Table 19-13 (Cont.) createTrueCache Parameters

Parameter Required/
Optional

Description

-initParams
initialization_parameters_li
st

Optional Enter a comma-separated list of name=value pairs with
additional initialization parameter values for this True
Cache.

You can also provide the -initParamsEscapeChar
parameter for using a specific escape character between
multiple values of an initialization parameter. If an escape
character is not specified, backslash (\) is used as the
default escape character.

-listeners
listeners_list

Optional Enter a comma-separated list of existing listeners that the
database can be configured with.

-pgaAggregateTargetInMB
pga_memory_size

Optional Enter a value in MB for the target aggregate Program
Global Area (PGA) memory to make available to all server
processes that are attached to this True Cache.

-sgaTargetInMB
sga_memory_size

Optional Enter a value in MB for the System Global Area (SGA)
memory size for this True Cache.

-sid
true_cache_sid

Optional Enter the system identifier (SID) for this True Cache.

-sourceTdeWalletPassword
primary_db_wallet_password

Optional If the primary database uses a TDE wallet, enter the
password for the wallet.

-tdeWalletLoginType
{PASSWORD | AUTO_LOGIN |
LOCAL_AUTO_LOGIN}

Optional If the primary database uses a TDE wallet, enter one of
the following wallet types:

• PASSWORD: This is the default for single instance
databases.

• AUTO_LOGIN: This is the default for Oracle RAC
instances.

• LOCAL_AUTO_LOGIN
-tdeWalletRoot
tde_wallet_root_init_paramet
er

Optional If the primary database uses a TDE wallet, enter the path
for the TDE wallet root initialization parameter.

-useWalletForDBCredentials
{true | false}

Optional If the primary database uses Oracle Wallet for database
credentials, enter true. The default is false.

If you enter true, also enter the following additional
parameters:

• -dbCredentialsWalletLocation: Enter the path of
the directory that contains the Oracle Wallet files.

• -dbCredentialsWalletPassword: Enter the
password for the Oracle Wallet account to open the
wallet with auto-login disabled. This parameter is
optional.

Chapter 19
createTrueCache

19-51

deleteDatabase
The deleteDatabase command deletes a database.

Syntax and Parameters

Use the dbca -deleteDatabase command with the following syntax:

dbca -deleteDatabase
 -sourceDB database_name_or_sid
 [-sysDBAUserName SYSDBA_user_name]
 [-sysDBAPassword SYSDBA_user_password]
 [-forceArchiveLogDeletion]
 [-deRegisterEMCloudControl
 [-omsHost Oracle_Management_Server_host_name
 -omsPort Oracle_Management_Server_port_number
 -emUser EM_administrator_user_name
 -emPassword EM_administrator_password]]
 [-unregisterWithDirService {true | false}
 -dirServiceUserName directory_service_user_name
 [-dirServicePassword directory_service_user_password
 [-walletPassword wallet_password]]
 [-sid database_system_identifier]
 [-tdeWalletPassword password_for_TDE_wallet]
 [-useWalletForDBCredentials {true | false}
 -dbCredentialsWalletPassword wallet_account_password
 -dbCredentialsWalletLocation wallet_files_directory]

Table 19-14 deleteDatabase Parameters

Parameter Required/
Optional

Description

-sourceDB
database_name_or_sid

Required Database unique name for an Oracle RAC database or
database system identifier (SID) for a single instance
database.

-sysDBAUserName
SYSDBA_user_name

Optional User name of the user having the SYSDBA privileges.

-sysDBAPassword
SYSDBA_password

Optional Password of the user having the SYSDBA privileges.

-tdeWalletPassword Optional Specify password for TDE wallet.

-
forceArchiveLogDeletion

Optional Specify this parameter to delete the database archive logs.

Chapter 19
deleteDatabase

19-52

Table 19-14 (Cont.) deleteDatabase Parameters

Parameter Required/
Optional

Description

-
deRegisterEMCloudContro
l

Optional Specify this parameter along with the following parameters to
unregister the database with Enterprise Manager Cloud
Control:

• -omsHost: Oracle Management Server host name.

• -omsPort: Oracle Management Server port number.

• -emUser: User name for Enterprise Manager
administrator.

• -emPassword: Password for Enterprise Manager
administrator.

-
unregisterWithDirServic
e {true | false}

Optional Specify this parameter along with the following parameters to
unregister the database with the directory service:

• -dirServiceUserName: User name for the directory
service.

• -dirServicePassword: Password for the directory
service user.

• -walletPassword: Password for the database wallet.

-sid
database_system_identif
ier

Optional Database system identifier (SID).

-
useWalletForDBCredentia
ls
{true | false}

Optional Specify true to use Oracle Wallet for database credentials,
else specify false. Default is false.

When true is specified, the following additional parameters
can be provided:

• -dbCredentialsWalletLocation: Directory location
for the Oracle Wallet files.

• -dbCredentialsWalletPassword: Password for the
Oracle Wallet account.

Note:
If you are using Oracle Unified Directory (OUD), then the OUD
passwords should be stored in the wallet using the following
keys:

• oracle.dbsecurity.walletPassword
• oracle.dbsecurity.userDNPassword

deleteInstance
The deleteInstance command deletes a database instance from an administror-managed
Oracle RAC database.

Syntax and Parameters

Use the dbca -deleteInstance command with the following syntax:

dbca -deleteInstance
 -gdbName global_database_name
 -instanceName database_instance_name
 [-nodeName database_instance_node_name]

Chapter 19
deleteInstance

19-53

 [-updateDirService {true | false}
 -dirServiceUserName directory_service_user_name
 -dirServicePassword directory_service_user_password]
 [-sysDBAUserName SYSDBA_user_name]
 [-sysDBAPassword SYSDBA_user_password]
 [-useWalletForDBCredentials {true | false}
 -dbCredentialsWalletPassword wallet_account_password
 -dbCredentialsWalletLocation wallet_files_directory]

Table 19-15 deleteInstance Parameters

Parameter Required/
Optional

Description

-gdbName
global_database_name

Required Global database name in the form
database_name.domain_name.

-instanceName
database_instance_name

Required Database instance name.

-nodeName
node_name_of_database_i
nstance

Optional Node name of the database instance.

-sysDBAUserName
SYSDBA_user_name

Optional User name of the database user having the SYSDBA privileges.

-sysDBAPassword
SYSDBA_user_password

Optional Password of the database user having the SYSDBA privileges.

-updateDirService
{true | false}

Optional Specify true to unregister the database with the directory
service, else specify false. Default is false.

When true is specified, the following additional parameters
are required:

• -dirServiceUserName: User name for the directory
service.

• —dirServicePassword: Password for the directory
service user.

-
useWalletForDBCredentia
ls
{true | false}

Optional Specify true to use Oracle Wallet for database credentials,
else specify false. Default is false.

When true is specified, the following additional parameters
can be provided:

• -dbCredentialsWalletPassword: Password for the
Oracle Wallet account.

• -dbCredentialsWalletLocation: Directory location
for the Oracle Wallet files.

Note:
If you are using Oracle Unified Directory (OUD), then the OUD
passwords should be stored in the wallet using the following
keys:

• oracle.dbsecurity.walletPassword
• oracle.dbsecurity.userDNPassword

Chapter 19
deleteInstance

19-54

deletePDBSnapshot
The deletePDBSnapshot command deletes a PDB snapshot.

Syntax and Parameters

Use the dbca -deletePDBSnapshot command with the following syntax:

dbca -deletePDBSnapshot
 -pdbName pdb_database_name
 -pdbSnapshotName pdb_snapshot_name
 -sourceDB
database_unique_name_for_RAC_database_or_SID_for_single_instance_database

Table 19-16 deletePDBSnapshot Parameters

Parameter Required/
Optional

Description

-pdbName
pdb_database_name

Required Specifies the PDB database name.

-pdbSnapshotName
pdb_snapshot_name

Required Specifies the PDB snapshot name.

-sourceDB
source_database

Required Specifies the name of the source database.

deletePluggableDatabase
The deletePluggableDatabase command deletes a PDB.

Syntax and Parameters

Use the dbca -deletePluggableDatabase command with the following syntax:

dbca -deletePluggableDatabase
 -sourceDB
database_unique_name_for_RAC_database_or_SID_for_single_instance_database
 -pdbName pdb_name
 [-sysDBAUserName SYSDBA_user_name]
 [-sysDBAPassword SYSDBA_user_password]
 [-tdeWalletPassword password_for_TDE_wallet]
 [-unregisterWithDirService {true | false}]
 -dirServiceUserName directory_service_user_name
 [-dirServicePassword directory_service_user_password]
 [-walletPassword wallet_password]
 [-useWalletForDBCredentials {true | false}]
 -dbCredentialsWalletPassword wallet_account_password
 [-dbCredentialsWalletLocation wallet_files_directory]

Chapter 19
deletePDBSnapshot

19-55

Table 19-17 deletePluggableDatabase Parameters

Parameter Required/
Optional

Description

-sourceDB cdb_sid Required The database system identifier (SID) of the CDB.

-pdbName pdb_name Required Name of the PDB to delete.

-
useWalletForDBCredentia
ls
{true | false}

Optional Specify true to use Oracle Wallet for database credentials,
else specify false. Default is false.

When true is specified, the following additional parameters
must be provided:

• -dbCredentialsWalletPassword (Optional): Password
for the Oracle Wallet account. If you omit this parameter,
DBCA prompts for the password.

• -dbCredentialsWalletLocation: Directory location
for the Oracle Wallet files.

Note:
If you are using Oracle Unified Directory (OUD), then the OUD
passwords should be stored in the wallet using the following
keys:

• oracle.dbsecurity.walletPassword
• oracle.dbsecurity.userDNPassword

-tdeWalletPassword Optional Specify password for TDE wallet.

-
unregisterWithDirServic
e {true | false}

Optional Specify this parameter along with the following parameters to
unregister the database with the directory service:

• -dirServiceUserName: User name for the directory
service.

• -dirServicePassword: Password for the directory
service user.

• -walletPassword: Password for the database wallet.

deleteTemplate
The deleteTemplate command deletes a database template.

Syntax and Parameters

Use the dbca -deleteTemplate command with the following syntax:

dbca -deleteTemplate
 -templateName name_of_an_existing_database_template
 [-templateFromCloud
 -opcLibPath OPC_library_path
 -opcConfigFile OPC_config_file_name
 [-rmanDecryptionPassword rman_decryption_password]]

Chapter 19
deleteTemplate

19-56

Table 19-18 deleteTemplate Parameters

Parameter Required/
Optional

Description

-templateName
name_of_an_existing_dat
abase_template

Required Name of an existing database template to delete. Specify an
existing template in default location or the complete template
path for database creation or provide a new template name for
template creation.

-templateFromCloud Optional Indicates that the template is a Cloud template.

• opcLibPath: Provide the directory containing the
odbsrmt.py script for the delete template operation or
provide the directory containing libopc.so.

• opcConfigFile: Specify the OPC configuration file.

• rmanDecryptionPassword: Password that must be
used to decrypt the RMAN template file stored in Oracle
Cloud Infrastructure. This is the same password that was
used when creating an RMAN backup of the template.

executePrereqs
The executePrereqs command executes the prerequisites checks and reports the results.
This command can be used to check the environment before running dbca to create a
database.

Syntax and Parameters

Use the dbca -executePrereqs command with the following syntax:

dbca -executePrereqs
 -databaseConfigType {SINGLE | RAC | RACONENODE}
 [-RACOneNodeServiceName RAC_node_service_name]
 [-nodelist database_nodes_list]

Table 19-19 executePrereqs Parameters

Parameter Required/
Optional

Description

-databaseConfigType
{SINGLE | RAC |
RACONENODE}

Required Specify one of the following database configuration types:

• SINGLE: Single individual database.

• RAC: Oracle RAC database.

• RACONENODE: Oracle RAC One Node database.

For Oracle RAC One Node database, you can specify the
service name using the -RACOneNodeServiceName
parameter.

-nodelist
database_nodes_list

Optional List of database nodes separated by comma.

Chapter 19
executePrereqs

19-57

generateScripts
The generateScripts command generates scripts, which can be used to create a
database.

Syntax and Parameters

Use the dbca -generateScripts command with the following syntax:

dbca -generateScripts
 -templateName database_template_name
 -gdbName global_database_name
 [-sid database_system_identifier]
 [-scriptDest sql_scripts_directory]
 [-createAsContainerDatabase {true | false}
 [-numberOfPDBs number_of_pdbs_to_create]
 [-pdbName pdb_name]
 [-pdbStorageMAXSizeInMB maximum_storage_size_of_the_pdb]
 [-pdbStorageMAXTempSizeInMB
maximum_temporary_storage_size_of_the_pdb]
 [-useLocalUndoForPDBs {true | false}]
 [-pdbAdminPassword pdb_administrator_password]
 [-pdbOptions pdb_options]
 [-sysPassword SYS_user_password]
 [-systemPassword SYSTEM_user_password]
 [-sehaNodeList
node_names_separated_by_comma_for_Standard_Edition_High_Availability_da
tabase]
 [-emConfiguration {CENTRAL | NONE}
 [-dbsnmpPassword DBSNMP_user_password]
 [-omsHost EM_Management_Server_host_name]
 [-omsPort EM_Management_Server_port_number]
 [-emUser EM_administrator_name]
 [-emPassword EM_administrator_password]
 [-dvConfiguration {true | false}
 -dvUserName Database_Vault_owner_user_name
 -dvUserPassword Database_Vault_owner_user_password
 [-dvAccountManagerName Database_Vault_account_manager_name
 -dvAccountManagerPassword
Database_Vault_account_manager_password]]
 [-olsConfiguration {true | false}
 [-configureWithOID configure_with_OID_flag]]
 [-datafileDestination data_files_directory]
 [-redoLogFileSize maximum_redo_log_file_size_in_MB]
 [-recoveryAreaDestination fast_recovery_area_directory
 [-recoveryAreaSize fast_recovery_area_size]]
 [-datafileJarLocation data_files_backup_directory]
 [-responseFile response_file_directory]
 [-storageType {FS | ASM}
 [-asmsnmpPassword ASMSNMP_password]
 -datafileDestination data_files_directory]
 [-runCVUChecks {true | false}]
 [-nodelist database_nodes_list]

Chapter 19
generateScripts

19-58

 [-enableArchive {true | false}
 [-archiveLogMode {AUTO | MANUAL}]
 [-archiveLogDest archive_log_files_directory]]
 [-memoryMgmtType {AUTO | AUTO_SGA | CUSTOM_SGA}]
 [-createListener new_database_listener_to_register_the_database_with]
 [-useOMF {true | false}]
 [-dbOptions database_options]
 [-customScripts custom_sql_scripts_to_run_after_database_creation]
 [-adminManaged]
 [-databaseConfigType {SINGLE | RAC | RACONENODE}
 [-RACOneNodeServiceName service_name_for_RAC_one_node_database]]
 [-characterSet database_character_set]
 [-nationalCharacterSet database_national_character_set]
 [-registerWithDirService {true | false}
 [-dirServiceUserName directory_service_user_name]
 [-dirServicePassword directory_service_user_password]
 [-databaseCN database_common_name]
 [-dirServiceCertificatePath certificate_file_path]
 [-dirServiceUser directory_service_user_name]
 [-ldapDirectoryAccessType ldap_directory_access_type]
 [-useSYSAuthForLDAPAccess use_sys_user_for_ldap_access_flag]
 [-walletPassword wallet_password]]
 [-listeners list_of_listeners_to_register_the_database_with]
 [-variablesFile variables_file]
 [-variables variables_list]
 [-initParams initialization_parameters_list
 [-initParamsEscapeChar initialization_parameters_escape_character]]
 [-sampleSchema {true | false}]
 [-memoryPercentage percentage_of_total_memory_to_assign_to_the_database]
 [-totalMemory total_memory_to_assign_to_the_database_in_MB]
 [-databaseType {MULTIPURPOSE | DATA_WAREHOUSING | OLTP}]
 [-useWalletForDBCredentials {true | false}
 -dbCredentialsWalletPassword wallet_account_password
 -dbCredentialsWalletLocation wallet_files_directory]
 [-storageType FS | ASM | EXASCALE | PMEMFS]
 -datafileDestination | -pmemMountPointPath
 -datafileDestination destination_directory_for_all_database_files
 -pmemMountPointPath mounted_PMEM_file_store_mount_location
 [-pmemFSName PMEM_file_store_name]
 [-pmemFSSizeDefinition]
 [-asmsnmpPassword ASMSNMP_password_for_ASM_monitoring]
 [-configureTDE <true | false>]
 [-encryptPDBTablespaces Specify ALL to encrypt all Tablespaces or
a comma separated list of name:value pairs with tablespace encryption to
true/false]
 [-encryptTablespaces Specify ALL to encrypt all Tablespaces or A
comma separated list of name:value pairs with tablespace encryption to true/
false]
 [-primaryDBTdeWallet value]
 [-sourceTdeWalletPassword value]
 [-tdeWalletRoot tde_wallet_root_init_parameter]
 [-pdbTDEPassword pdb_tde_wallet_password]
 [-tdeWalletModeForPDB pdb_keystore_type]
 [-tdeAlgorithm TDE_algorithm]
 [-tdeWalletLoginType type_of_wallet_login]

Chapter 19
generateScripts

19-59

 [-sourcePdbTDEPassword source_pdb_TDE_wallet_password]
 [-tdeWalletPassword TDE_wallet_password]
 [-tdeWalletPathInTarFile value]

Table 19-20 generateScripts Parameters

Parameter Required/
Optional

Description

-templateName
database_template_name

Required Name of an existing database template in the default location
or the complete path of a template that is not in the default
location.

-gdbName
global_database_name

Required Global database name in the form
database_name.domain_name.

-sid
database_system_identif
ier

Optional Database system identifier (SID).

The SID uniquely identifies the instance that runs the
database. If it is not specified, then it defaults to the database
name.

-scriptDest
scripts_directory

Optional Complete directory path to store the scripts.

-
createAsContainerDataba
se
{true | false}

Optional Specify true to create a CDB. Specifying false is not
supported starting with Oracle Database Release 21c.

When true is specified, the following optional parameters can
be provided:

• -numberOfPDBs: Number of PDBs to create. Default is 0
(zero).

• -pdbName: Name of each PDB. A number is appended to
each PDB name if -numberOfPDBs value is greater than
1. This parameter must be specified if -numberOfPDBs
value is greater than 0 (zero).

• -pdbStorageMAXSizeInMB: Maximum storage size for a
PDB in megabytes.

• -pdbStorageMAXTempSizeInMB: Maximum temporary
storage size for a PDB in megabytes.

• -useLocalUndoForPDBs {true | false}: Flag
indicating whether local undo should be used for the
PDBs.

• -pdbAdminPassword: PDB administrator password.

• -pdbOptions: PDB options in the form of comma
separated list. Each option must be specified in the
name:value format.

Example: JSERVER:true,DV:false
-sysPassword
SYS_user_password

Optional SYS user password for the new database.

-systemPassword
SYSTEM_user_password

Optional SYSTEM user password for the new database.

Chapter 19
generateScripts

19-60

Table 19-20 (Cont.) generateScripts Parameters

Parameter Required/
Optional

Description

-emConfiguration
{CENTRAL | NONE}

Optional Enterprise Manager configuration settings.

When CENTRAL is specified, specify the following additional
parameters:

• -dbsnmpPassword: DBSNMP user password.

• -omsHost: Oracle Management Server host name.

• -omsPort: Oracle Management Server port number.

• -emUser: User name for Enterprise Manager
administrator.

• -emPassword: Password for Enterprise Manager
administrator.

-dvConfiguration
{true | false}

Optional Specify true to enable and configure Database Vault, else
specify false. Default is false.

When true is specified, the following additional Database
Vault parameters are required:

• -dvUserName: Database Vault owner name.

• -dvUserPassword: Database Vault owner password.

• -dvAccountManagerName: Database Vault account
manager name.

• -dvAccountManagerPassword: Database Vault account
manager password.

-olsConfiguration
{true | false}

Optional Specify true to enable and configure Oracle Label Security
(OLS), else specify false. Default is false.

When true is specified, you can additionally specify the -
configureWithOID parameter to configure Oracle Label
Security (OLS) with Oracle Internet Directory (OID). This
parameter is optional.

-datafileDestination
data_files_directory

Optional Complete path to the location of the database's data files.

-redoLogFileSize
maximum_size_of_online_
redo_log

Optional Size of each online redo log file in megabytes.

-
recoveryAreaDestination
fast_recovery_area_dire
ctory

Optional Directory for the Fast Recovery Area, which is a backup and
recovery area. Specify NONE to disable the Fast Recovery
Area.

Additionally, you can specify the Fast Recovery Area size in
megabytes using the parameter -recoveryAreaSize. This
parameter is optional.

-datafileJarLocation
data_files_backup_direc
tory

Optional Directory of the database backup data files in a compressed
RMAN backup format (files with .dfb extensions).

-responseFile
response_file_directory

Optional Directory path of the response file.

Chapter 19
generateScripts

19-61

Table 19-20 (Cont.) generateScripts Parameters

Parameter Required/
Optional

Description

-storageType
{FS | ASM}

Optional Specify the storage type of either FS or ASM.

• FS: File system storage type.

When FS is specified, your database files are managed by
the file system of your operating system. You can specify
the directory path where the database files are to be
stored using a database template or the -
datafileDestination parameter. Oracle Database can
create and manage the actual files.

• ASM: Oracle Automatic Storage Management (Oracle
ASM) storage type.

When ASM is specified, your database files are placed in
Oracle ASM disk groups. Oracle Database automatically
manages database file placement and naming.

When ASM is specified, you can also specify the
ASMSNMP password using the -asmsnmpPassword
parameter. This parameter is optional.

-runCVUChecks
{true | false}

Optional Specify true to run Cluster Verification Utility checks
periodically for Oracle RAC databases, else specify false.
Default is false.

-nodelist
database_nodes_list

Optional List of database nodes separated by comma.

-enableArchive
{true | false}

Optional Specify true to enable log file archive, else specify false.
Default is false.

When true is specified, the following additional parameters
can be provided:

• -archiveLogMode {AUTO | MANUAL}: Specify either
the automatic archive mode or the manual archive mode.
Default is automatic archive mode.

• -archiveLogDest: Directory for storing the archive log
files.

-memoryMgmtType
{AUTO | AUTO_SGA |
CUSTOM_SGA}

Optional Specify one of the following memory management types:

• AUTO: Automatic memory management for SGA and
PGA.

• AUTO_SGA: Automatic shared memory management for
SGA.

• CUSTOM_SGA: Manual shared memory management for
SGA.

Note: If the total physical memory of a database instance is
greater than 4 GB, then you cannot specify the Automatic
Memory Management option AUTO during the database
installation and creation. Oracle recommends that you specify
the Automatic Shared Memory Management option AUTO_SGA
in such environments.

-createListener
new_database_listener

Optional Database listener to register the database with in the form
listener_name:port.

Chapter 19
generateScripts

19-62

Table 19-20 (Cont.) generateScripts Parameters

Parameter Required/
Optional

Description

-useOMF
{true | false}

Optional Specify true to use Oracle-Managed Files (OMF), else
specify false.

-dbOptions
database_options

Optional Specify database options as a comma separated list of
name:value pairs.

Example: JSERVER:true,DV:false
-customScripts
custom_sql_scripts_list

Optional Specify a comma separated list of SQL scripts that need to be
run after the database creation. The scripts are run in the
order they are listed.

-adminManaged Optional Administrator-managed database.

-databaseConfigType
{SINGLE | RAC |
RACONENODE}

Optional Specify one of the following database configuration types:

• SINGLE: Single individual database.

• RAC: Oracle RAC database.

• RACONENODE: Oracle RAC One Node database.

For Oracle RAC One Node database, you can specify the
service name using the -RACOneNodeServiceName
parameter.

-characterSet
database_character_set

Optional Character set of the database.

-nationalCharacterSet
database_national_chara
cter_set

Optional National character set of the database.

-registerWithDirService
{true | false}

Optional Specify true to register with a Lightweight Directory Access
Protocol (LDAP) service, else specify false. Default is
false.

When true is specified, the following additional parameters
are required:

• -dirServiceUserName: User name for the LDAP
service.

• -dirServicePassword: Password for the LDAP service.

• -databaseCN: Database common name.

• -dirServiceCertificatePath: Directory service
certificate file path.

• -dirServiceUser: Directory service user name.

• -ldapDirectoryAccessType {PASSWORD | SSL}:
LDAP directory access type.

• -useSYSAuthForLDAPAccess {true | false}:
Specify whether to use SYS user authentication for LDAP
acces.

• -walletPassword: Password for the database wallet.

-listeners
listeners_list

Optional A comma-separated list of listeners for the database.

-variablesFile
variables_file

Optional Directory path to the file that contains the variables and their
values for the database template.

Chapter 19
generateScripts

19-63

Table 19-20 (Cont.) generateScripts Parameters

Parameter Required/
Optional

Description

-variables
variables_list

Optional A comma-separated list of name=value pairs of variables for
the database template.

-initParams
initialization_paramete
rs_list

Optional A comma-separated list of name=value pairs of initialization
parameter values of the database.

You can additionally provide the -initParamsEscapeChar
parameter for using a specific escape character between
multiple values of an initialization parameter. If an escape
character is not specified, backslash (/) is used as the default
escape character.

-sampleSchema
{true | false}

Optional Specify true to include the HR sample schema (EXAMPLE
tablespace) in your database, else specify false. Default is
false.

Oracle guides and educational materials contain examples
based on the sample schemas. Oracle strongly recommends
that you do not install the sample schemas in a production
database.

-memoryPercentage
percentage_of_total_mem
ory_assigned_to_the_dat
abase

Optional The percentage of physical memory that can be used by the
database.

-totalMemory
total_memory_assigned_t
o_the_database_in_MB

Optional Total amount of physical memory, in megabytes, that can be
used by the database.

-databaseType
{MULTIPURPOSE |
DATA_WAREHOUSING |
OLTP}

Optional Specify MULTIPURPOSE if the database is for both OLTP and
data warehouse purposes.

Specify DATA_WAREHOUSING if the primary purpose of the
database is a data warehouse.

Specify OLTP if the primary purpose of the database is online
transaction processing.

-
useWalletForDBCredentia
ls
{true | false}

Optional Specify true to use Oracle Wallet for database credentials,
else specify false. Default is false.

When true is specified, the following additional parameters
can be provided:

• -dbCredentialsWalletLocation: Directory location
for the Oracle Wallet files.

• -dbCredentialsWalletPassword: Password for the
Oracle Wallet account.

Note:
If you are using Oracle Unified Directory (OUD), then the OUD
passwords should be stored in the wallet using the following
keys:

• oracle.dbsecurity.walletPassword
• oracle.dbsecurity.userDNPassword

Chapter 19
generateScripts

19-64

Table 19-20 (Cont.) generateScripts Parameters

Parameter Required/
Optional

Description

configureTDE Optional Specify true to configure TDE during the database creation.
Only software wallets are supported. You can create a wallet
for the entire CDB or for a PDB.

• primaryDBTdeWallet: This option is not applicable
when creating a database.

• sourceTdeWalletPassword: If the template that is
being used is from a database that uses encryption, or if
you are duplicating a database, specify the password of
the wallet in the source database.

• tdeWalletModeForPDB: Specify UNITED to create a
wallet for the entire CDB. Use ISOLATED to create a
wallet for a PDB.

• tdeAlgorithm: Algorithm used to encrypt data. Can be
one of the following: 3DES168, AES128, AES192,
AES256.

• tdeWalletLoginType: Type of software wallet.
PASSWORD or AUTO_LOGIN or LOCAL_AUTO_LOGIN.

• tdeWalletLocation: Location in which the TDE wallet
is stored.

• tdeWalletPassword: The password used to open the
wallet. This parameter is mandatory.

• -encryptPDBTablespaces: Specify ALL to encrypt all
tablespaces or a comma-separated list of name:value
pairs with tablespace encryption to true or false. For
example: SYSTEM:true,SYSAUX:false.

• -encryptTablespaces: Specify ALL to encrypt all
tablespaces or a comma-separated list of name:value
pairs with tablespace encryption to true or false. For
example: SYSTEM:true,SYSAUX:false.

• -tdeWalletPathInTarFile: Specify the TDE wallet
path in the tar file.

Note: Isolated wallets are supported only in Oracle Cloud or
Exadata environments.

-sehaNodeList Optional Specify the node names separated by comma for the
Standard Edition High Availability database.

Specify a value for the service name sehaServiceName.

Chapter 19
generateScripts

19-65

Table 19-20 (Cont.) generateScripts Parameters

Parameter Required/
Optional

Description

-storageType
{FS | ASM | EXASCALE |
PMEMFS}

Optional Specify the storage type of either FS or ASM.

• FS: File system storage type.

When FS is specified, your database files are managed by
the file system of your operating system. You can specify
the directory path where the database files are to be
stored using a database template or the -
datafileDestination parameter. Oracle Database can
create and manage the actual files.

• ASM: Oracle Automatic Storage Management (Oracle
ASM) storage type.

When ASM is specified, your database files are placed in
Oracle ASM disk groups. Oracle Database automatically
manages database file placement and naming.

When ASM is specified, you can also specify the
ASMSNMP password using the -asmsnmpPassword
parameter. This parameter is optional.

• EXASCALE: Oracle Exascale storage type.

• PMEMFS: PMEMFS storage type.

The following additional parameters can be provided:

• -datafileDestination: Destination directory for all
database files.

• -pmemMountPointPath: Mounted PMEM file store
mount location.

• -pmemFSName: PMEM file store name.

• -pmemFSSizeDefinition: PMEM file store size
definition. Specify value string such as
InitialSize:ExtendSize:MaxSize E.G: -
pmemFSSizeDefinition 8GB:16GB:100GB or -
pmemFSSizeDefinition 2TB:8TB:UNLIMITED

moveDatabase
The moveDatabase command moves a database from one source Oracle home to the
target Oracle home.

Syntax and Parameters

Use the dbca -moveDatabase command with the following syntax:

dbca -moveDatabase
 -sourceDB Database unique name for Oracle RAC database or SID for single-instance database
 [-continueWithDBDowntime Flag to indicate the move operation with database downtime when
there is only one active instance running]
 [-directoryPathsToCopy A comma-separated list of absolute directory paths that are to be
copied from source Oracle home to target Oracle home]
 [-drainTimeoutInSeconds Specify time in seconds to complete the resource draining while
stopping the database]
 [-filePathsToCopy A comma-separated list of absolute file paths that are to be copied from
source Oracle home to target Oracle home]

Chapter 19
moveDatabase

19-66

 [-listenersToMove A comma-separated list of listeners that are to be moved]
 [-nodeListForMove A comma-separated list of nodes if operation has to be performed on subset of
nodes]
 [-nonRolling Flag to indicate the database move would be performed by shutting down the database]
 [-oracleHomeUserPassword Oracle home user password]
 [-postMoveScripts A comma-separated list of scripts to be run post move database. The scripts are
run in the order they are listed]
 [-postRollbackScripts A comma-separated list of scripts to be run post move database rollback. The
scripts are run in the order they are listed]
 [-resume Resume the previous operation]
 [-sessionID Session id of the failed session]
 [-revert Revert the previous operation]
 [-sessionID Session id of the previous session]
 [-skipClosedPDBs Flag to skip the datapatch on closed PDBs]
 [-skipDatapatch Flag to skip the datapatch run]
 [-skipPDBs A comma-separated list of PDBs to be skipped for current operation.]
 [-sqlnetConfigPreference SOURCE | TARGET Specify the sqlnet.ora file move preference.]
 [-sysDBAPassword Password for sysDBAUserName user name]
 [-sysDBAUserName User name with SYSDBA privileges]
 [-continueWithDBDowntime Flag to indicate the move operation with database downtime when there is
only one active instance running]
 [-doNotEnableTwoStagePatches specify this flag to not enable two stage patches]
 [-errorOnMissingPatches Specify this flag to stop the move operation in case of missing patches in
target Oracle home]
 [-exceptionPatchList Specify the list of patch IDs to be ignored when checking missing patches
in target Oracle home]
 [-skipMissingPatchValidation Specify this flag to proceed with move operation in case of missing
patches in target Oracle home]

Table 19-21 moveDatabase Parameters

Parameter Required/
Optional

Description

-sourceDB database_sid Required Database unique name for Oracle RAC database or SID for
single-instance database.

-continueWithDBDowntime Optional Specifies the flag to indicate the move operation with
database downtime when there is only one active instance
running.

-directoryPathsToCopy Optional Specify the comma-separated list of absolute directory paths
that are to be copied from source Oracle home to target
Oracle home.

-drainTimeoutInSeconds Optional Specify time in seconds to complete the resource draining
while stopping the database.

-filePathsToCopy Optional Specify the A comma-separated list of absolute file paths that
are to be copied from source Oracle home to target Oracle
home.

-listenersToMove Optional Specify the comma-separated list of listeners that are to be
moved.

-nodeListForMove Optional Specify the comma-separated list of nodes if operation has to
be performed on subset of nodes.

-nonRolling Optional Specify the flag to indicate the database move would be
performed by shutting down the database.

-oracleHomeUserPassword Optional Specify the Oracle home user password.

Chapter 19
moveDatabase

19-67

Table 19-21 (Cont.) moveDatabase Parameters

Parameter Required/
Optional

Description

-postMoveScripts
SYSDBA_user_password

Optional Specify the comma-separated list of scripts to be run post
move database. The scripts are run in the order they are
listed.

Use the -postRollbackScripts SYSDBA_user_name option
to specify the comma-separated list of scripts to be run post
move database rollback. The scripts are run in the order they
are listed.

-resume Optional Resume the previous operation.

-sessionID Optional Specify the session ID of the failed session.

-revert Optional Revert the previous operation.

-skipClosedPDBs Optional Specify the flag to skip the datapatch on closed PDBs.

-skipDatapatch Optional Specify the flag to skip the datapatch run.

-continueWithDBDowntime Optional Specify the flag to indicate the move operation with database
downtime when there is only one active instance running.

-
doNotEnableTwoStagePatc
hes

Optional Specify this flag to not enable two stage patches.

-errorOnMissingPatches Optional Specify this flag to stop the move operation in case of missing
patches in target Oracle home.

Use the -exceptionPatchList option to specify the list of
patch IDs to be ignored when checking missing patches in
target Oracle home.

-
skipMissingPatchValidat
ion

Optional Specify this flag to proceed with move operation in case of
missing patches in target Oracle home.

-skipPDBs Optional Specify the comma-separated list of PDBs to be skipped for
current operation.

-sqlnetConfigPreference
{SOURCE | TARGET}

Optional Specify the sqlnet.ora file move preference.

-sysDBAPassword Optional Specify the password for sysDBAUserName user name.

-sysDBAUserName Optional Specify the user name with SYSDBA privileges.

relocatePDB
The relocatePDB command relocates a PDB from a remote CDB to a local CDB.

Prerequisites

The following are the prerequisites for running the relocatePDB command:

• The database user in the local PDB must have the CREATE PLUGGABLE DATABASE
privilege in the local CDB root container.

• The remote CDB must be in the local undo mode.

Chapter 19
relocatePDB

19-68

• The remote and local PDBs must be in the archivelog mode.

• The database user in the remote PDB that the database link connects to must have the
CREATE PLUGGABLE DATABASE, SESSION, and SYSOPER privileges.

• The local and remote PDBs must have the same options installed, or the remote PDB
must have a subset of the options installed on the local PDB.

Syntax and Parameters

Use the dbca -relocatePDB command with the following syntax:

dbca -relocatePDB
 -pdbName name_of_the_local_pdb_to_create
 -sourceDB database_name_of_the_local_pdb
 -remotePDBName name_of_the_remote_pdb_to_relocate
 -remoteDBConnString db_connection_string_of_the_remote_pdb
 [-configureTDE true | false Specify true to configure TDE wallet]
 [-encryptPDBTablespaces Specify ALL to encrypt all Tablespaces]
 [-encryptTablespaces Specify ALL to encrypt all Tablespaces]
 [-pdbTDEPassword Specify password for PDB TDE wallet]
 [-primaryDBTdeWallet Specify the location for TDE wallet of
primary database]
 [-sourcePdbTDEPassword Specify password for source PDB TDE
wallet and it is used only in creation of PDB from existing PDB which has
TDE wallet]
 [-sourceTdeWalletPassword Specify password for source database
TDE wallet]
 [-tdeAlgorithm Specify the TDE Algorithm Type]
 [-tdeWalletLoginType Specify the TDE Wallet Login Type, PASSWORD
| AUTO_LOGIN | LOCAL_AUTO_LOGIN Default is PASSWORD for SI and AUTO_LOGIN
is default for RAC]
 [-tdeWalletModeForPDB Type of keystore, either UNITED or
ISOLATED Default is UNITED]
 [-tdeWalletPassword Specify password for TDE wallet]
 [-tdeWalletPathInTarFile value]
 [-tdeWalletRoot Specify the location for TDE wallet root init
parameter]
 [-createNewPDBAdminUser Specify this argument if a new PDB
Administrator user needs to be created after plugging in PDB from Archive or
File Set]
 [-dbLinkName Name of the database link that connects to the remote
CDB]
 [-dbLinkUserPassword Common user password of a remote CDB, used by
database link to connect to remote CDB]
 [-dbLinkUsername Common user of a remote CDB, used by database link
to connect to remote CDB]
 [-pdbAdminPassword PDB Administrator user Password, required only
while creating new PDB]
 [-pdbAdminUserName PDB Administrator user name, required only while
creating new PDB]
 [-pdbInitParams Specify pdb specific init paramsComma separated list
of name=value pairs]
 [-initParamsEscapeChar Specify escape character for comma when a
specific initParam has multiple valuesIf the escape character is not
specified backslash is the default escape character]

Chapter 19
relocatePDB

19-69

 [-pdbNodelist value]
 [-pdbReadOnlyServiceName Specify the name of the PDB read-only
service to be created on dataguard configuration]
 [-pdbServiceName Specify the name of the PDB service to be
created]
 [-pdbStorageMAXSizeInMB value]
 [-pdbStorageMAXTempSizeInMB value]
 [-remoteDBSYSDBAUserName User name with SYSDBA privileges of
remote database]
 [-remoteDBSYSDBAUserPassword Password for
remoteDBSYSDBAUserName user of remote database]
 [-skipDatapatch Flag to skip the datapatch run]
 [-skipPdbServiceCreation Flag to skip the Pluggable Database
service creation]
 [-sourcePDBReadOnlyServices Comma-separated source PDB read
only services]
 [-sourcePDBServices Comma-separated source PDB services]
 [-sysDBAPassword Password for sysDBAUserName user name]
 [-sysDBAUserName User name with SYSDBA privileges]
 [-updateDBBlockCacheSize option to enable application to set
db block cache size initialization parameters in order to support data
copy with different block size]
 [-useWalletForDBCredentials true | false Specify true to load
database credentials from wallet]
 -dbCredentialsWalletLocation Path of the directory
containing the wallet files
 [-dbCredentialsWalletPassword Password to open wallet with
auto login disabled]

Table 19-22 relocatePDB Parameters

Parameter Required/
Optional

Description

-pdbName
name_of_the_local_pdb_t
o_create

Required Name of the local PDB to create after relocating the remote
PDB.

-sourceDB
database_name_of_the_lo
cal_pdb

Required Database name of the local PDB.

-remotePDBName
name_of_the_remote_pdb_
to_relocate

Required Name of the remote PDB to relocate.

-remoteDBConnString
db_connection_string_of
_the_remote_pdb

Required Database connection string of the remote PDB.

-sysDBAUserName
name_of_the_sysdba_user

Optional Name of the SYSDBA user.

-sysDBAPassword
password_of_the_sysdba_
user

Optional Password of the SYSDBA user.

Chapter 19
relocatePDB

19-70

Table 19-22 (Cont.) relocatePDB Parameters

Parameter Required/
Optional

Description

-dbLinkUsername
name_of_the_dblink_user
_of_the_remote_pdb

Optional Name of the database link user of the remote PDB.

-dbLinkUserPassword
password_of_the_dblink_
user_of_the_remote_pdb

Optional Password of the database link user of the remote PDB.

-configureTDE{true |
false}

Optional Specify true to configure TDE wallet. Default is false.

When true is specified, the following additional parameters
can be provided:

• -encryptPDBTablespaces: Specify ALL to encrypt all
tablespaces or a comma-separated list of name:value
pairs with tablespace encryption to true or false. For
example: SYSTEM:true,SYSAUX:false.

• -encryptTablespaces: Specify ALL to encrypt all
tablespaces or a comma-separated list of name:value
pairs with tablespace encryption to true or false. For
example: SYSTEM:true,SYSAUX:false.

• -pdbTDEPassword: Password for the PDB TDE wallet.

• -primaryDBTdeWallet: Specify the location for TDE
wallet of primary database.

• -sourcePdbTDEPassword: Specify password for the
source PDB TDE wallet. This password is used only in the
creation of a PDB from an existing PDB which has TDE
wallet.

• -sourceTdeWalletPassword: Specify password for
source database TDE wallet.

• -tdeAlgorithm: Specify the TDE algorithm type.

• -tdeWalletLoginType: Specify the TDE wallet login
type, PASSWORD | AUTO_LOGIN | LOCAL_AUTO_LOGIN.
The default is PASSWORD for single-instance database and
AUTO_LOGIN for Oracle RAC database.

• -tdeWalletModeForPDB: Specify the type of keystore,
either UNITED or ISOLATED. Default is UNITED.

• -tdeWalletPassword: Specify password for TDE wallet.

• -tdeWalletPathInTarFile: Specify the TDE wallet
path in the tar file.

• -tdeWalletRoot: Specify the location for TDE wallet
root init parameter.

-createNewPDBAdminUser Optional Specify this argument if a new PDB Administrator user needs
to be created after plugging in PDB from Archive or File Set.

-dbLinkName Optional Name of the database that connects to the remote PDB.

-pdbAdminPassword Optional Specify PDB Administrator user password, required only while
creating new PDB.

-pdbAdminUserName Optional Specify PDB Administrator user name, required only while
creating new PDB.

Chapter 19
relocatePDB

19-71

Table 19-22 (Cont.) relocatePDB Parameters

Parameter Required/
Optional

Description

-pdbInitParams Optional Specify PDB specific initialization parameters as comma-
separated list of name=value pairs.

-initParamsEscapeChar: Specify escape character for
comma when a specific initialization parameter has multiple
values. If the escape character is not specified, then backslash
is the default escape character.

-pdbNodelist Optional Specify PDB node list.

-pdbReadOnlyServiceName Optional Specify the name of the PDB read-only service to be created
on Oracle Data Guard configuration.

-pdbServiceName Optional Specify the name of the PDB service.

-pdbStorageMAXSizeInMB Optional Specify the maximum storage size for the PDB in megabytes.

-
pdbStorageMAXTempSizeIn
MB

Optional Specify the maximum temporary storage size for the PDB in
megabytes.

-remoteDBSYSDBAUserName Optional Specify the user name with SYSDBA privileges of remote
database.

-
remoteDBSYSDBAUserPassw
ord

Optional Specify the password for remote DB SYSDBA user of remote
database.

-skipDatapatch Optional Flag to skip the data patch run.

-skipPdbServiceCreation Optional Flag to skip the PDB service creation.

-
sourcePDBReadOnlyServic
es

Optional Comma-separated source PDB read-only services.

-sourcePDBServices Optional Comma-separated source PDB services.

-updateDBBlockCacheSize Optional Option to enable application to set db block cache size
initialization parameters in order to support data copy with
different block size.

-
useWalletForDBCredentia
ls
{true | false}

Optional Specify true to use Oracle Wallet for database credentials,
else specify false. Default is false.

When true is specified, the following additional parameters
can be provided:

• -dbCredentialsWalletPassword: Password for the
Oracle Wallet account.

• -dbCredentialsWalletLocation: Directory location
for the Oracle Wallet files.

Chapter 19
relocatePDB

19-72

unplugDatabase
The unplugDatabase command unplugs a pluggable database (PDB) from a multitenant
container database (CDB).

Syntax and Parameters

Use the dbca -unplugDatabase command with the following syntax:

dbca -unplugDatabase
 -sourceDB cdb_sid
 -pdbName pdb_name
 [-maxBackupSetSizeInMB maximum_backup_set_size_in_MB]
 [-unregisterWithDirService {true | false}
 -dirServiceUserName directory_service_user_name
 -dirServicePassword directory_service_user_password
 -walletPassword wallet_password]
 [-archiveType {TAR | RMAN | NONE}
 [-rmanParallelism parallelism_integer_value]
 [-pdbArchiveFile pdb_archive_file_directory]
 [-PDBBackUpfile pdb_backup_file_directory]
 [-PDBMetadataFile pdb_metadata_file_directory]
 [-rmanParallelism parallelism_integer_value]]
 [-useWalletForDBCredentials {true | false}
 -dbCredentialsWalletPassword wallet_account_password
 -dbCredentialsWalletLocation wallet_files_directory]
 [-pdbTDEKeyTransportSecret value]
 [-tdeWalletPassword password for TDE wallet]

Table 19-23 unplugDatabase Parameters

Parameter Required/
Optional

Description

-sourceDB cdb_sid Required The database system identifier (SID) of the CDB.

-pdbName pdb_name Required Name of the PDB.

-maxBackupSetSizeInMB Optional Specifies the maximum backup set size in MB.

Chapter 19
unplugDatabase

19-73

Table 19-23 (Cont.) unplugDatabase Parameters

Parameter Required/
Optional

Description

-archiveType {TAR |
RMAN | NONE}

Optional Specify TAR to store the unplugged PDB files in a tar file.

Specify RMAN to store the unplugged PDB files in an RMAN
backup.

Specify NONE to store the unplugged PDB files without using a
tar file or an RMAN backup.

Specify any of the following parameters:

• -pdbArchiveFile: Specify absolute file path and name
for the PDB Archive file.

• -pdbBackUpfile: Specify absolute file path and name
for the PDB backup file when archive type is RMAN.
specify comma separated file paths, if there are multiple
backups to be taken when creating the PDB.

• -pdbMetadataFile: Specify absolute file path and name
for the PDB metadata file when archive type is RMAN or
NONE.

• -rmanParallelism: Specify the RMAN parallelism
integer value.

-
unregisterWithDirServic
e {true | false}

Optional Specify true to unregister the PDB from the LDAP service,
else specify false. Default is false.

When true is specified, the following additional parameters
are required:

• -dirServiceUserName: User name for the LDAP
service.

• -dirServicePassword: Password for the LDAP service
user.

• -walletPassword: Password for the database wallet.

-
useWalletForDBCredentia
ls
{true | false}

Optional Specify true to use Oracle Wallet for database credentials,
else specify false. Default is false.

When true is specified, the following additional parameters
can be provided:

• -dbCredentialsWalletPassword: Password for the
Oracle Wallet account.

• -dbCredentialsWalletLocation: Directory location
for the Oracle Wallet files.

Note:
If you are using Oracle Unified Directory (OUD), then the OUD
passwords should be stored in the wallet using the following
keys:

• oracle.dbsecurity.walletPassword
• oracle.dbsecurity.userDNPassword

-
pdbTDEKeyTransportSecre
t value

Required Name of the PDB TDE key transport secret.

-tdeWalletPassword
value

Required Specify the TDE wallet password.

Chapter 19
unplugDatabase

19-74

20
DBCA Exit Codes

The outcome of running DBCA commands in silent mode is reported as an exit code.

The following table shows the exit codes that DBCA returns to the operating system.

Table 20-1 Exit Codes for Database Configuration Assistant

Exit Code Description

0 Command execution successful

6 Command execution successful but with warnings

-1 Command execution failed

-2 Invalid input from user

-4 Command canceled by user

20-1

Glossary

application
Within an application root, an application is a named, versioned set of data and metadata
created by a common user. An application might include an application common user, an
application common object, or some multiple and combination of the preceding.

application common object
A shared database object created while connected to an application root. The metadata (for a
metadata-linked object) or data (for a data-linked common object) is shared by application
PDBs in the application container.

application common user
A common user created while connected to an application root. The metadata (for a
metadata-linked common object) or data (for a data-linked common object) is shared by
application PDBs in the application container.

application container
A named set of application PDBs plugged in to an application root. An application container
may contain an application seed.

application patch
In an application container, a small change to an application. Typical examples of patching
include bug fixes and security patches. An application upgrade begins and ends with an
ALTER PLUGGABLE DATABASE APPLICATION statement.

application PDB
A PDB that is plugged in to an application container.

application root
The root container within an application container. Every application container has exactly
one application root. An application root shares some characteristics with the CDB root,

Glossary-1

because it can contain common objects, and some characteristics with a PDB,
because it is created with the CREATE PLUGGABLE DATABASE statement.

application seed
An optional application PDB that serves as a template for creating other PDBs within
an application container. An application container includes 0 or 1 application seed.

application upgrade
In an application container, a major change to the physical architecture of an
application. An application upgrade begins and ends with an ALTER PLUGGABLE
DATABASE APPLICATION statement.

CDB
An Oracle Database installation that contains at least one PDB. Starting in Oracle
Database 21c, every Oracle database is a CDB.

CDB administrator
A database administrator who manages a CDB. A PDB administrator manages
individual PDBs within the CDB.

CDB fleet
A collection of different CDBs that can be managed as one logical CDB.

CDB restore point
In a CDB, a restore point that is created when connected to the root, and when the
FOR PLUGGABLE DATABASE clause is not specified. Unlike a PDB restore point, a
CDB restore point is usable by all PDBs.

CDB root
In a multitenant container database (CDB), a collection of schemas, schema objects,
and nonschema objects to which all PDBs belong. Every CDB has exactly one root
container, which stores the system metadata required to manage PDBs. All PDBs
belong to the CDB root.

clean restore point
A PDB restore point that is created when the PDB is closed. A Flashback PDB to a
clean restore point does not require restoring backups or creating a temporary
instance.

Glossary

Glossary-2

common object
An object that resides either in the CDB root or an application root that shares either data (a
data-linked common object) or metadata (a metadata-linked common object). All common
objects in the CDB root are Oracle-supplied. A common object in an application root is called
an application common object.

common user
In a multitenant container database (CDB), a database user that exists with the same identity
in multiple containers. A common user created in the CDB root has the same identity in every
existing and future PDB. A common user created in an application container has the same
identity in every existing and future application PDB in this application container.

container
In a multitenant container database (CDB), either the root or a PDB.

container data object
In a CDB, a table or view containing data pertaining to multiple containers and possibly the
CDB as a whole, along with mechanisms to restrict data visible to specific common users
through such objects to one or more containers. Examples of container data objects are
Oracle-supplied views whose names begin with V$ and CDB_.

cross-container operation
In a CDB, a DDL statement that affects the CDB itself, multiple containers, multiple common
users or roles, or a container other than the one to which the user is connected. Only a
common user connected to the root can perform cross-container operations.

data link
In a PDB, an internal mechanism that points to data (not metadata) in the root. For example,
AWR data resides in the root. Each PDB uses an object link to point to the AWR data in the
root, thereby making views such as DBA_HIST_ACTIVE_SESS_HISTORY and DBA_HIST_BASELINE
accessible in each separate container.

database consolidation
The general process of moving data from one or more non-CDBs into a multitenant container
database (CDB).

Glossary

Glossary-3

data-linked common object
A common object that exists either in the CDB root or an application root. The data,
rather than the metadata, is shared by any PDB that contains a data link that points to
the common object.

extended data-linked common object
A hybrid of a data-linked common object and a metadata-linked common object. For
an extended data-linked object, each application PDB can create its own PDB-specific
data while sharing the common data in the application root.

Fast Application Notification (FAN)
Applications can use FAN to enable rapid failure detection, balancing of connection
pools after failures, and re-balancing of connection pools when failed components are
repaired. The FAN notification process uses system events that Oracle Database
publishes when cluster servers become unreachable or if network interfaces fail.

hot cloning
Cloning a PDB while the source PDB is open in read/write mode.

lead CDB
In a CDB fleet, the central location for monitoring and managing several CDBs.

local undo mode
The use of a separate set of undo data files for each PDB in a CDB.

local user
In a multitenant container database (CDB), any user that is not a common user.

metadata link
In a PDB, an internal mechanism that points to a dictionary object definition stored in
the root. For example, the OBJ$ table in each PDB uses a metadata link to point to the
definition of OBJ$ stored in the root.

metadata-linked common object
A common object that exists either in the CDB root or an application root. The
metadata, rather than the data, is shared by any PDB that contains a metadata link
that points to the common object.

Glossary

Glossary-4

multitenant architecture
The architecture that enables an Oracle database to function as a multitenant container
database (CDB), which means that it can contain PDBs and application containers.

multitenant container database (CDB)
See CDB.

non-CDB
An Oracle database that is not a multitenant container database (CDB). Before Oracle
Database 12c, all databases were non-CDBs. Starting in Oracle Database 21c, every
database must be a CDB.

Oracle Multitenant
A database option that enables you to create multiple PDBs in a CDB.

PDB
In a multitenant container database (CDB), a portable collection of schemas, schema objects,
and nonschema objects that appears to an Oracle Net client as a separate database.

PDB administrator
A database administrator who manages one or more PDBs. A CDB administrator manages
the whole CDB.

PDB archive file
A compressed file that contains both PDB data files and an XML metadata file. You can
create a PDB by specifying the archive file, and thereby avoid copying the XML file and the
data files separately.

PDB lockdown profile
A security mechanism to restrict operations that are available to local users connected to a
specified PDB. A typical use is to limit the effect of a grant privilege. For example, you limit
the grant of ALTER SYSTEM to only those options whose names begin with PLSQL.

PDB performance profile
A specified share of system resources, CPU, parallel execution servers, and memory for a
PDB or set of PDBs.

Glossary

Glossary-5

PDB restore point
Within a CDB, a restore point that usable only for a specific PDB. In contrast, a CDB
restore point is usable by all PDBs.

PDB snapshot
A named, point-in-time copy of a PDB created using the ALTER PLUGGABLE DATABASE
SNAPSHOT command. At the file level, a PDB snapshot is an archive file containing the
contents of the PDB copy.

If the underlying file system supports sparse files, then the first snapshot is full, and
every subsequent snapshot is sparse.

PDB synchronization
The user-initiated update of the application in an application PDB to the latest version
and patch in the application root.

pluggable database (PDB)
See PDB.

proxy PDB
A PDB that references a PDB in a remote CDB using a database link. The remote
PDB is called a referenced PDB.

referenced PDB
The PDB that is referenced by a proxy PDB. A local PDB is in the same CDB as its
referenced PDB, whereas a remote PDB is in a different CDB.

refreshable clone PDB
A read-only clone that can periodically synchronize with its source PDB. Depending on
the value in the REFRESH MODE clause, the synchronization occurs either automatically
or manually.

resource plan
A container for resource plan directives that specify how resources are allocated to
resource consumer groups.

Glossary

Glossary-6

resource plan directive
A set of limits and controls for CPU, physical I/O, or logical I/O consumption for sessions in a
consumer group.

seed PDB
In a multitenant container database (CDB), a default pluggable database (PDB) that the
system uses as a template for user-created PDBs. A PDB seed is either the system-supplied
PDB$SEED or an application seed.

shared undo mode
In a single-instance CDB, only one active undo tablespace exists. For an Oracle RAC CDB,
one active undo tablespace exists for every instance.

snapshot copy PDB
A PDB that is created by running the CREATE PLUGGABLE DATABASE ... FROM ... SNAPSHOT
COPY command. A storage-managed snapshot is a copy of the underlying storage that is only
supported on specific file systems.

Note:

A storage-managed snapshot, which is used to make a snapshot copy PDB, is
different from a PDB-managed snapshot, which can be specified in a CREATE
PLUGGABLE DATABASE ... USING SNAPSHOT command. Storage-managed
snapshots are not involved in clones from PDB snapshots.

split mirror clone PDB
A PDB that is created by splitting a mirror in Oracle ASM.

system container
The container that includes the CDB root and all PDBs in the CDB.

unplugged PDB
A self-contained set of PDB data files, and an XML metadata file that specifies the locations
of the PDB files.

Glossary

Glossary-7

Index

Symbols
?, 3-23
@, 3-23

A
administrative accounts, 1-17
administrative users

password files, multitenant environment,
15-19

administrator privileges, 1-17
ALTER DATABASE statement, 15-13

application roots, 14-5, 17-16
CDBs, 15-53
database partially available to users, 15-39
MOUNT clause, 15-39
OPEN clause, 15-40
READ ONLY clause, 15-40

ALTER PLUGGABLE DATABASE statement,
15-53, 16-20, 17-16

DROP SNAPSHOT clause, 12-15
MATERIALIZE clause, 8-31
SET MAX_PDB_SNAPSHOTS clause, 12-7,

12-10
SNAPSHOT clause, 12-11, 12-13
SNAPSHOT COPY clause, 8-31
UNPLUG INTO clause, 13-1, 14-12, 14-21

ALTER SESSION statement
SET CONTAINER clause, 15-22
setting time zone, 4-10

ALTER SYSTEM statement
CDBs, 15-51
CONTAINER clause, 15-51
ENABLE RESTRICTED SESSION clause,

15-41
PDBs, 16-13
QUIESCE RESTRICTED, 15-47
RESUME clause, 15-49
SUSPEND clause, 15-49
UNQUIESCE, 15-48

application common objects, 1-21, 17-48, 17-49
CONTAINERS clause, 17-61
creation, 17-49, 17-53
DDL statements, 17-60

application common objects (continued)
DML statements, 17-56, 17-61
naming rules, 1-11
restrictions, 17-52

application containers
about, 14-2
administering, 17-1, 17-2
application common objects, 1-11, 1-21,

17-48, 17-53, 17-61
application PDBs, 14-6
application roots, 14-5, 17-31
application seeds, 14-6

creating, 14-16, 14-17
preparing for, 14-17

application synchronization, 17-14
application versions, 17-11
applications, 17-7, 17-8
applications created implicitly, 17-13
bulk inserts, 17-44
compatibility version, 17-43
container maps, 17-63

creating, 17-67
creating, 14-7, 14-9
DML statements, 17-61
dropping, 14-14
how an application upgrade works, 17-9
installing applications, 17-6, 17-7, 17-22
managing applications, 17-18
migrating an application, 17-13
migrating applications into, 17-30
patching applications, 17-12, 17-28
preparing for, 14-8
purpose, 14-2–14-4
SQL*Loader, 17-44
synchronizing applications, 17-33
synchronizing with proxy PDBs, 17-35
uninstalling applications, 17-46, 17-47
unplugging, 14-12
upgrading applications, 17-6, 17-8, 17-23
viewing extended data-linked objects, 17-77
viewing information about, 17-70
viewing patches, 17-74, 17-75
viewing shared objects, 17-76
viewing SQL statements, 17-72
viewing status, 17-71

Index-1

application containers (continued)
viewing synchronization errors, 17-76
views, 17-69

Application Continuity, 3-28
RESET_STATE, 4-42

application PDBs, 14-6
application synchronization, 17-14
cloning, 8-2
creating, 14-24, 17-32

application roots, 14-5
ALTER DATABASE statement, 17-16
ALTER PLUGGABLE DATABASE statement,

17-16
application PDBs

modifying, 17-16
creating, 17-31
modifying, 17-16

application seeds, 1-27, 14-6
creating, 14-16, 14-17
dropping, 14-23
preparing for, 14-17
unplugging, 14-21

applications
in application containers, 17-6–17-9

at different versions, 17-11
created implicitly, 17-13
migrating an application, 17-13
patching, 17-12, 17-28
synchronization, 17-14

uninstalling, 17-47
at-sign, 3-23
automatic undo management, 4-5
AVAILABILITY MAX clause, 9-7
AVAILABILITY NORMAL clause, 9-6

B
backups

after creating new CDBs, 3-24
batch jobs, authenticating users in, 3-27
bigfile tablespaces

setting database default, 4-9

C
catcdb.sql, 3-23
catcon.pl, 15-66
CDB

creating and configuring, 3-1
creating with DBCA, 3-2

CDB_PDB_HISTORY view, 15-94
CDB_PDBS view, 15-81
CDBs, 1-4, 1-10, 1

administering, 15-1
ALTER DATABASE statement, 15-53

CDBs (continued)
ALTER PLUGGABLE DATABASE statement,

15-53
ALTER SYSTEM statement, 15-51
application common objects, 1-11, 17-48,

17-49, 17-61
querying, 15-90

application containers, 14-2–14-4
application common objects, 17-49
application upgrades, 17-9
bulk inserts, 17-44
compatibility version, 17-43
creating, 14-7, 14-9
DML statements, 17-61
dropping, 14-14
installing applications, 17-6, 17-7, 17-22
migrating applications into, 17-30
patching applications, 17-28
preparing for, 14-8
synchronizing applications, 17-33
uninstalling applications, 17-46, 17-47
unplugging, 14-12
upgrading applications, 17-8, 17-23

application PDBs, 14-6
cloning, 8-2
creating, 14-24, 17-32

application seeds, 14-6
creating, 14-16
dropping, 14-23
preparing for, 14-17
unplugging, 14-21

backing up, 3-24
CDB fleets, 5-1, 5-3

CDB member, 5-4
lead CDB, 5-1, 5-4

common objects, 1-21
common roles, 1-20
common users, 1-13, 1-14

naming rules, 1-11
compatibility violations, 16-29
connecting to, 15-17

ALTER SESSION statement, 15-22
CONNECT command, 15-20

container data objects, 15-76
querying, 15-82

container maps, 17-63
containers, 15-61, 15-80
CONTAINERS clause, 15-88
creation, 1-26
current container, 15-2, 15-92
data definition language (DDL), 15-62
DBMS_SQL package, 15-72
default temporary tablespace, specifying, 4-6
DML statements, 15-61, 17-61
dropping, 4-61

Index

Index-2

CDBs (continued)
ENABLE PLUGGABLE DATABASE SEED

FILE_NAME_CONVERT clause, 3-8
ENABLE_PLUGGABLE_DATABASE

initialization parameter, 3-7
executing PL/SQL code, 15-72
initialization parameters, 15-93
local roles, 1-20
local users, 1-13, 1-18
modifying, 15-51, 15-53, 15-54
monitoring, 15-74
mounting a database, 15-36
Oracle Database Vault, 15-3
Oracle Managed Files, 3-9
PDB lockdown profiles, 15-15
PDB snapshots, 12-1

configuring automatic creation, 12-11
creating manually, 8-25, 12-13
dropping, 12-15
setting maximum number, 12-7, 12-10

PDB_FILE_NAME_CONVERT initialization
parameter, 3-9

PDBs
modifying, 15-53
refreshing, 16-24

plugging in PDBs
methods for, 6-2
preparing for, 6-21

prerequisites for, 2-1
root container

modifying, 15-59
seed PDBs, 1-27
snapshot copy PDBs, 8-28

materializing, 8-31
specifying control files, 4-20
SQL scripts, 15-66
standby database, 15-3
tasks for, 1-22
tools for, 1-25
Transparent Data Encryption, 15-3
undo mode, 3-11, 15-55
unplugging PDBs, 13-1
viewing information about, 15-74
views, 15-77

character sets, 2-5
CloneDB, 4-53
CLONEDB parameter, 8-1
clonedb.pl Perl script, 4-55
cloning

a database, 4-53
cloning a PDB, 8-1

local, 8-5, 8-6
refreshable clone PDBs, 8-19, 16-25
remote, 8-12, 8-14
using split mirrors, 8-32

cloning an application PDB, 8-2
column encryption, 3-27
common objects, 1-21
common roles, 1-20
common user accounts, 1-13

naming rules, 1-11
common users, 1-14

prefix, 15-63
COMMON_USER_PREFIX parameter, 15-63
commonality, principles of, 1-11
compatibility level, 4-24
COMPATIBLE Initialization Parameter, 4-24
configuring

a CDB, 3-1
CONNECT command

starting an instance, 15-33
CONNECT command, SQL*Plus

CDBs, 15-20
container data objects, 15-76

definition, 15-76
querying, 15-82

container maps, 17-63
creating, 17-67

CONTAINERS clause, 15-88, 15-90, 17-49,
17-61

CONTAINERS_DEFAULT attribute, 17-49
CONTAINERS_PARALLEL_DEGREE parameter,

15-88, 15-90
control files

default name, 4-20
mirroring, 4-20
overwriting existing, 4-20
specifying names before CDB creation, 4-20
unavailable during startup, 15-34

CONTROL_FILES initialization parameter
overwriting existing control files, 4-20
when creating a CDB, 4-20

CONTROLFILE REUSE clause, 4-20
CREATE DATABASE statement, 3-6

clauses, 4-2
DEFAULT TEMPORARY TABLESPACE

clause, 4-6
ENABLE PLUGGABLE DATABASE SEED

FILE_NAME_CONVERT clause, 3-8
ENABLE_PLUGGABLE_DATABASE

initialization parameter, 3-7
example of CDB creation, 3-17
password for SYS, 4-3
password for SYSTEM, 4-3
setting time zone, 4-10
specifying FORCE LOGGING, 4-11
UNDO TABLESPACE clause, 4-5
undo_mode_clause, 3-11

CREATE PFILE FROM MEMORY statement,
4-34

Index

Index-3

CREATE PLUGGABLE DATABASE statement,
1-27, 1-28

application containers, 14-2
AS PROXY clause, 1-36, 11-1
clauses, 6-13
DEFAULT TABLESPACE clause, 6-5
file locations, 6-7
HOST clause, 11-5
logging_clause, 16-16, 16-17
MAX_AUDIT_SIZE clause, 6-4
MAX_DIAG_SIZE clause, 6-4
NO DATA clause, 8-6
PATH_PREFIX clause, 6-11
PDB listener host name, 11-5
PDB listener port number, 11-5
pdb_force_logging_clause, 16-16
PORT clause, 11-6
REFRESH MODE clause, 8-19
RELOCATE clause, 1-34, 9-1, 9-9, 9-10
SERVICE_NAME_CONVERT clause, 6-12
SNAPSHOT COPY clause, 1-31, 8-1, 8-28
SNAPSHOT MODE clause, 12-8
source file locations, 10-4
SOURCE_FILE_DIRECTORY clause, 10-5
SOURCE_FILE_NAME_CONVERT clause,

10-4
STORAGE clause, 6-4
USER_TABLESPACES clause, 6-5
USING clause, 1-32, 10-6
USING SNAPSHOT clause, 8-25

CREATE ROLE statement, 1-20
CREATE_FILE_DEST clause, 6-10, 6-11, 8-10
creating

a CDB, 3-1
database services, 4-40

creating an application PDB, 17-32
creating CDBs

backing up the new CDB, 3-24
default temporary tablespace, specifying, 4-6
ENABLE_PLUGGABLE_DATABASE

initialization parameter, 3-7
example, 3-17
Oracle Managed Files, 3-9
overriding default tablespace type, 4-9
PDB_FILE_NAME_CONVERT initialization

parameter, 3-9
SEED FILE_NAME_CONVERT clause, 3-8
setting default tablespace type, 4-9
specifying bigfile tablespaces, 4-8, 4-9
UNDO TABLESPACE clause, 4-5
undo_mode_clause, 3-11
using Oracle Managed Files, 4-7
with DBCA, 3-2

creating PDBs, 6-1
current container, 15-2

D
data blocks

altering size of, 4-21
nonstandard block size, 4-21
specifying size of, 4-20
standard block size, 4-20

data definition language (DDL)
CDBs, 15-62

data dictionary, 1-17, 3-30
PDBs, 1-9

See also views, data dictionary
data files

unavailable when CDB is opened, 15-34
data manipulation language

CDBs, 15-61
data-linked application common objects, 14-7
data-linked common objects, 17-49
database

cloning, 4-53
cloning in a multitenant environment, 4-60
cloning with CloneDB, 4-53
cloning with Oracle ASM, 4-61
data dictionary views reference, 3-30
starting up, 15-26

database clouds, 4-41
database consolidation, 1-7
Database Resource Manager, 1-7

used for quiescing a database, 15-46
database services

about, 4-37
controlling automatic startup of, 15-32
creating, 4-40
data dictionary views, 4-43
managing application workloads with, 4-37

databases
administrative accounts, 1-17
altering availability, 15-39
mounting to an instance, 15-39
opening a closed database, 15-40
quiescing, 15-46
read-only, opening, 15-40
recovery, 15-38
restricting access, 15-41
resuming, 15-49
shutting down, 15-42
starting up, 1-17
suspending, 15-49
undo management, 4-5

DB_BLOCK_SIZE initialization parameter
setting, 4-20

DB_CREATE_FILE_DEST initialization
parameter, 6-10

DB_DOMAIN initialization parameter
setting for database creation, 4-18

Index

Index-4

DB_NAME initialization parameter
setting before database creation, 4-18

DBA_APP_ERRORS view, 17-76
DBA_APP_PATCHES view, 17-75
DBA_APP_PDB_STATUS view, 17-71
DBA_APP_STATEMENTS view, 17-72
DBA_APP_VERSIONS view, 17-74
DBA_APPLICATIONS view, 17-70
DBA_OBJECTS view, 17-31

shared objects, 17-76
DBA_PDB_SAVED_STATES view, 16-42
DBA_PDB_SNAPSHOTFILE view, 12-15
DBA_PDB_SNAPSHOTS view, 12-15
DBA_PROFILES view, 17-31
DBA_ROLES view, 17-31
DBA_TABLES view

extended data-linked objects, 17-77
DBA_USERS view, 17-31
DBCA

exit codes, 20-1
DBMS_CREDENTIAL package, 15-17
DBMS_PDB package, 6-2, 8-14, 17-31
DBMS_SQL package

CDBs, 15-72
DDL lock timeout, 4-22
DDL_LOCK_TIMEOUT initialization parameter,

4-22
DEFAULT TABLESPACE clause, 6-5
default temporary tablespaces

specifying at CDB creation, 4-6
specifying bigfile temp file, 4-9
specifying for root, 3-17, 3-21

distributed databases
database clouds, 4-41
Global Data Services, 4-41
starting a remote instance, 15-39

DROP DATABASE statement, 4-61
DROP PLUGGABLE DATABASE statement,

13-5, 14-14, 14-23

E
ENABLE PLUGGABLE DATABASE clause, 3-7
encryption, transparent data, 3-27
environment variables

ORACLE_SID, 3-11
errors

ORA-01090, 15-42
while starting a database, 15-37
while starting an instance, 15-37

exit codes
DBCA, 20-1

export operations
restricted mode and, 15-36

extended data-linked application common
objects, 14-7

extended data-linked objects, 17-49

F
fast recovery area

initialization parameters to specify, 4-19
FILE_NAME_CONVERT clause, 8-10
Flashback PDB, 15-15
fleets, CDB, 5-1, 5-3
FORCE LOGGING clause

CREATE DATABASE, 4-11
performance considerations, 4-13

G
GDS configuration, 4-41
Global Data Services, 4-41

H
HOST clause, 11-5

I
import operations

restricted mode and, 15-36
initialization parameter file, 4-14

about, 4-14
creating, 3-13
creating by copying and pasting from alert

log, 4-35
creating for database creation, 3-13
default locations, 15-29
editing before database creation, 4-13
individual parameter names, 4-18
sample, 4-16
search order, 15-29
server parameter file, 4-26

initialization parameters
about, 4-14
and database startup, 15-29
changing, 4-31
changing values, 4-31
clearing, 4-32
CONTROL_FILES, 4-20
DB_BLOCK_SIZE, 4-20
DB_DOMA, 4-18
DB_NAME, 4-18
PROCESSES, 4-22
resetting, 4-32
server parameter file and, 4-26, 4-36
setting, 4-31

Index

Index-5

initialization parameters (continued)
SPFILE, 4-30
UNDO_MANAGEMENT, 4-5
UNDO_TABLESPACE, 4-24

instance_abort_delay_time parameter, 15-50
instances

abort mode, 15-44
shutting down immediately, 15-43
shutting down normally, 15-43
transactional shutdown, 15-44

INTERNAL username
connecting for shutdown, 15-42

L
lead CDB, 5-1
LEAD_CDB database property, 5-4
LEAD_CDB_URI database property, 5-4
local roles, 1-20
local users, 1-13, 1-18
logging_clause, 16-16, 16-17

M
MAX_AUDIT_SIZE clause, 6-4
MAX_DIAG_SIZE clause, 6-4
MAX_PDB_SNAPSHOTS database property,

12-1
metadata-linked application common objects,

14-7
metadata-linked common objects, 17-49
mirrored files

control files, 4-20
mounting a CDB, 15-36
multitenant architecture, 1-10, 1

benefits, 1-7, 1-9
definition, 1-4

multitenant container databases
See CDBs

multitenant environment, 1-10

N
named user limits

setting initially, 4-25
NFS support, 3-29
NO DATA clause, 8-6
non-CDBs

cloning as PDBs, 1-28, 8-14
noncdb_to_pdb.sql script, 8-14

O
object quarantine, 15-50

open modes
PDBs, 16-29

ORA-01013 error message, 15-45
Oracle ASM, 6-10, 8-32
Oracle Data Guard

CDBs, 15-3
Oracle Database Vault

CDBs, 15-3
Oracle Enterprise Manager Cloud Control, 15-28
Oracle Managed Files, 3-9, 6-10

introduction, 4-7
Oracle Multitenant option, 1-1, 1
Oracle Universal Installer, 2-2
ORACLE_SID environment variable, 3-11
ORADIM

creating a database instance, 3-14
enabling automatic instance startup, 3-24

P
parameter files

See initialization parameter file
password

setting for SYSTEM account in CREATE
DATABASE statement, 4-3

setting SYS in CREATE DATABASE
statement, 4-3

PATH_PREFIX clause, 6-11, 8-10
PDB relocation

basic steps, 9-10
how it works, 9-4
user interface, 9-9

PDB snapshot carousel
about, 12-1
administering, 12-1
contents, 12-7
how it works, 12-5
purpose, 12-2
setting the maximum number of snapshots,

12-10
viewing snapshots, 12-15

PDB snapshots
viewing, 12-15

PDB_FILE_NAME_CONVERT initialization
parameter, 3-9, 8-14

pdb_force_logging_clause, 16-16, 16-17
PDB_OS_CREDENTIAL initialization parameter,

15-15, 15-17
PDB_PLUG_IN_VIOLATIONS view, 16-29
pdb_save_or_discard_state clause, 16-42
pdb_to_apppdb.sql script, 17-32
PDBs, 1-4, 1-10, 1

administering, 16-1
ALTER SYSTEM statement, 16-13
archive files, 1-32

Index

Index-6

PDBs (continued)
cloning, 1-28, 8-1
cloning application, 8-2
cloning local, 8-5, 8-6, 8-12
common users, 1-11
compatibility violations, 16-29
connecting to, 15-17, 16-4

ALTER SESSION statement, 15-22
CONNECT command, 15-20

consolidation of data into, 1-25
creating as proxies, 11-1
creating by plugging in, 10-6
creating from seed, 1-27, 7-1
creation, 1-26, 6-1
current container, 15-2
data dictionary, 1-9
DBMS_SQL package, 15-72
dropping, 13-5
encryption, 8-1
executing PL/SQL code, 15-72
flashback, 15-15
hot cloning, 8-1
instances_clause, 16-32
keystore, 8-1
lockdown profiles, 15-15
modifying, 16-16
moving, 9-1, 9-6, 9-7

how it works, 9-4
purpose, 9-4

open mode, 15-81, 16-29
preserving on restart, 16-42

plugging in, 10-1
methods for, 6-2
preparing for, 6-21

prerequisites for, 2-1
proxy, 1-26, 1-36, 11-4, 17-35
refreshable clone, 1-32
refreshing, 16-24
relocate_clause, 16-32
relocating, 1-34, 9-1, 9-6, 9-7, 9-10

how it works, 9-4
purpose, 9-4
user interface, 9-9

renaming, 16-23
services, 16-5
services_clause, 16-32
SHUTDOWN command, 16-44, 16-48
snapshot copy, 1-31, 8-28
snapshots, 8-31, 12-1, 12-5, 12-7, 12-8,

12-10, 12-11, 12-13, 12-15
STARTUP command, 16-44, 16-46, 16-47
tasks for, 1-22
tools for, 1-25
unplugged, 1-32
unplugging, 13-1

PDBs (continued)
views, 15-77

pluggable databases
See PDBs

plugging in unplugged PDBs, 10-6
PORT clause, 11-6
predefined user accounts, 3-26
privileges

RESTRICTED SESSION system privilege,
15-36

PROCESSES initialization parameter
setting before database creation, 4-22

proxy PDBs, 1-26, 1-36, 11-1
creating, 17-37
referenced PDB

altering listener host name, 16-11
altering listener port number, 16-12

synchronizing an application root replica,
17-35

Q
question mark, 3-23
quiescing a database, 15-46

R
read-only database

opening, 15-40
read-only databases

limitations, 15-40
RECOVER clause

STARTUP command, 15-38
Recovery Manager, 15-28

starting a database, 15-28
starting an instance, 15-28

redo log files
unavailable when database is opened, 15-34

REFRESH MODE clause, 8-19
refreshable clone PDBs, 1-32, 8-19

switchover, 16-25
relocating PDBs, 9-1

common listener network, 9-6
isolated listener network, 9-7
user interface, 9-9

REMOTE_RECOVERY_FILE_DEST parameter,
8-19

RESET_STATE, 4-42
RESTRICTED SESSION system privilege

restricted mode and, 15-36
RMAN

See Recovery Manager
roles

in a CDB, 1-20
local, 1-20

Index

Index-7

root container, 1-26
modifying, 15-59

S
Sample Schemas

description, 3-30
SCOPE clause, 4-32
scripts, authenticating users in, 3-27
security

PDBs, 15-15
SEED FILE_NAME_CONVERT clause, 3-8
seed PDB, 1-26
server parameter file

creating, 4-29
defined, 4-27
exporting, 4-34
migrating to, 4-28
recovering, 4-35
RMAN backup, 4-35
setting initialization parameter values, 4-30
SPFILE initialization parameter, 4-30
viewing parameter settings, 4-36

SERVICE_NAME_CONVERT clause, 6-12, 8-10
services

controlling automatic startup of, 15-32
PDBs, 16-5
role-based, 15-32

SET TIME_ZONE clause
ALTER SESSION, 4-10
CREATE DATABASE, 4-10

shutdown
default mode, 15-43

SHUTDOWN command
closing a PDB, 16-44
IMMEDIATE clause, 15-43
interrupting, 15-45
NORMAL clause, 15-43
PDBs, 16-48

single-instance
defined, 3-6

SNAPSHOT COPY clause, 1-31, 8-1, 8-28
snapshot copy PDBs, 1-31
SNAPSHOT MODE clause, 12-8
snapshots, PDB, 12-1

contents, 12-5
viewing, 12-15

SOURCE_FILE_DIRECTORY clause, 10-5
SOURCE_FILE_NAME_CONVERT clause, 10-4
SPFILE initialization parameter, 4-30
split mirror clone PDBs, 8-32
SQL scripts

CDBs, 15-66
SQL*Loader

application containers, 17-44

SQL*Plus
starting, 15-33
starting a database, 15-28
starting an instance, 15-28

SRVCTL stop option
default, 15-43

standard edition high availability
enabling, 4-46
guidelines, 4-45
relocating databases, 4-49

Standard Edition High Availability
adding nodes, 4-50

standby database
CDBs, 15-3

STANDBY_PDB_SOURCE_FILE_DBLINK
initialization parameter, 8-14

STANDBY_PDB_SOURCE_FILE_DIRECTORY
initialization parameter, 10-6

starting a CDB
when control files unavailable, 15-34
when redo logs unavailable, 15-34

starting a database, 15-26
forcing, 15-37
Oracle Enterprise Manager Cloud Control,

15-28
recovery and, 15-38
Recovery Manager, 15-28
restricted mode, 15-36
SQL*Plus, 15-28

starting an instance
automatically at system startup, 15-38
database closed and mounted, 15-36
forcing, 15-37
mounting and opening the database, 15-35
normally, 15-35
Oracle Enterprise Manager Cloud Control,

15-28
recovery and, 15-38
Recovery Manager, 15-28
remote instance startup, 15-39
restricted mode, 15-36
SQL*Plus, 15-28
when control files unavailable, 15-34
when redo logs unavailable, 15-34
without mounting a database, 15-36

startup
of database services, controlling, 15-32

STARTUP command
NOMOUNT clause, 3-17
PDBs, 16-46, 16-47
RECOVER clause, 15-38
starting a database, 15-28, 15-34
starting a PDB, 16-44

STORAGE clause, 6-4
switching over refreshable clone PDBs, 16-25

Index

Index-8

synchronizing applications, 17-33
SYS account

specifying password for CREATE
DATABASE statement, 4-3

SYS user name, 1-17
SYSAUX tablespace

about, 4-4
creating at database creation, 4-4
DATAFILE clause, 4-4

SYSTEM account
specifying password for CREATE

DATABASE, 4-3
SYSTEM tablespace

creating locally managed, 4-3
SYSTEM user name, 1-17

T
tablespaces

bigfile, 4-8
creating undo tablespace at database

creation, 4-5, 4-9
default temporary tablespace, creating, 4-6,

4-9
overriding default type, 4-9
setting default type, 4-9
single-file, 4-8, 4-9
SYSAUX creation, 4-4

time zone
files, 4-11
setting for database, 4-10

Transaction Guard, 3-28
Transparent Application Continuity

RESET_STATE, 4-42
Transparent Data Encryption, 3-27

CDBs, 15-3

U
undo mode

CDBs, 15-55
undo tablespaces, 15-13

specifying at database creation, 4-5, 4-9
specifying for CDBs, 3-17, 3-21

UNDO_MANAGEMENT initialization parameter,
4-5

undo_mode_clause, 3-11
UNDO_TABLESPACE initialization parameter

for undo tablespaces, 4-24
unplugging, 13-1, 14-12, 14-21
upgrades

database, 1-7
user accounts

predefined, 3-26
USER_TABLESPACES clause, 6-5
users

common, 1-11, 1-14
in a newly created database, 3-26
limiting number of, 4-25
predefined, 3-26
user name, specifying with CREATE USER

statement, 15-19
USING SNAPSHOT clause, 8-25

V
V$CLONEDFILE view, 4-60
V$CON_SYS_TIME_MODEL view, 15-76
V$CON_SYSSTAT view, 15-76
V$CON_SYSTEM_EVENT view, 15-76
V$CON_SYSTEM_WAIT_CLASS view, 15-76
V$CONTAINERS view, 15-80
V$PDBS view, 15-81, 16-17
V$TIMEZONE_NAMES view

time zone table information, 4-11
views

data dictionary
for database, 3-30

W
workloads

managing with database services, 4-37

Index

Index-9

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Introduction to Multitenant Administration
	Changes in Oracle Database Release 23ai for Oracle Multitenant Administrator’s Guide
	Hybrid read-only mode for pluggable databases
	Control PDB Open Order
	Oracle DBCA Support for Standard Edition High Availability

	Multitenant Architecture
	CDBs
	PDBs
	Application Containers

	Benefits of the Multitenant Architecture
	Benefits of Consolidating Data into a Single CDB
	Benefits of the Multitenant Architecture for Manageability

	Overview of Multitenant Administration
	Users, Roles, and Objects in a Multitenant Environment
	About Commonality in a CDB
	Principles of Commonality
	Namespaces in a CDB

	About Common and Local User Accounts
	Common User Accounts
	Characteristics of Common Users
	SYS and SYSTEM Accounts

	Local User Accounts

	Overview of Common and Local Roles in a CDB
	Common Roles in a CDB
	Local Roles in a CDB

	Common and Local Objects
	Separation of Duties in CDB and PDB Administration

	Tasks and Tools for a Multitenant Environment
	Tasks for a Multitenant Environment
	Tools for a Multitenant Environment

	Overview of Container Creation
	Creation of a CDB
	Creation of a PDB or Application Container
	Creation of a PDB by Cloning
	Creation of a PDB from a Seed
	Creation of a PDB by Cloning a PDB
	Clones from PDB Snapshots
	Snapshot Copy PDBs
	Refreshable Clone PDBs

	Creation of a PDB by Plugging In an Unplugged PDB
	Creation of a PDB by Relocating
	Creation of a PDB as a Proxy PDB

	Part I Creating CDBs
	2 Preparing to Create a CDB
	Prerequisites for a Multitenant Environment
	Deciding When to Create a CDB
	Deciding How to Configure the CDB
	Plan the PDBs
	Plan the Physical Layout
	Learn How to Manage Initialization Parameters
	Select the Character Set
	Default CDB Character Set
	Different Character Sets for CDB and PDBs

	Decide Which Time Zones to Support
	Select the Database and Redo Log Block Sizes
	Plan the SYSTEM and SYSAUX Tablespaces
	Plan the Temporary Tablespaces
	Choose the Undo Mode
	Plan the Services for Your Application
	Learn How to Start Up and Shut Down a CDB
	Plan for Oracle RAC

	3 Creating a CDB: Basic Steps
	Creating a CDB with DBCA
	About Creating a CDB with DBCA
	After Creating a CDB

	Creating a Database with the CREATE DATABASE Statement
	About CDB Creation with SQL Statements
	About Oracle RAC and Oracle ASM
	About Enabling PDBs
	About the Names and Locations of Files for the CDB Root and PDB$SEED
	The ENABLE PLUGGABLE DATABASE SEED FILE_NAME_CONVERT Clause
	Oracle Managed Files
	The PDB_FILE_NAME_CONVERT Initialization Parameter

	About the Attributes of the Data Files for PDB$SEED
	About the CDB Undo Mode

	Step 1: Specify an Instance Identifier (SID)
	Step 2: Ensure That the Required Environment Variables Are Set
	Step 3: Choose a Database Administrator Authentication Method
	Step 4: Create the Initialization Parameter File
	Step 5: (Windows Only) Create an Instance
	Step 6: Connect to the Instance
	Step 7: Create a Server Parameter File
	Step 8: Start the Database Instance
	Step 9: Issue the CREATE DATABASE Statement
	Creating a CDB Without Using Oracle Managed Files: Example
	Creating a CDB Using Oracle Managed Files: Example

	Step 10: Run Scripts to Build Data Dictionary Views
	Step 11: (Optional) Run Scripts to Install Additional Options
	Step 12: Back Up the Database
	Step 13: (Optional) Enable Automatic Instance Startup

	Considerations After Creating a CDB
	Database Security
	Transparent Data Encryption
	A Secure External Password Store
	Transaction Guard and Application Continuity
	File System Server Support in the Database
	The Oracle Database Sample Schemas

	Database Data Dictionary Views

	4 Creating a CDB: Advanced Topics
	Specifying CREATE DATABASE Statement Clauses
	About CREATE DATABASE Statement Clauses
	Protecting Your Database: Specifying Passwords for SYS and SYSTEM Users
	Creating a Locally Managed SYSTEM Tablespace
	Specify Data File Attributes for the SYSAUX Tablespace
	About the SYSAUX Tablespace

	Using Automatic Undo Management: Creating an Undo Tablespace
	Creating a Default Tablespace
	Creating a Default Temporary Tablespace
	Specifying Oracle Managed Files at Database Creation
	Supporting Bigfile Tablespaces During Database Creation
	Specifying the Default Tablespace Type
	Overriding the Default Tablespace Type

	Specifying the Database Time Zone and Time Zone File
	Setting the Database Time Zone
	About the Database Time Zone Files
	Specifying the Database Time Zone File

	Specifying FORCE LOGGING Mode
	Using the FORCE LOGGING Clause
	Performance Considerations of FORCE LOGGING Mode

	Specifying Initialization Parameters
	About Initialization Parameters and Initialization Parameter Files
	Sample Initialization Parameter File
	Text Initialization Parameter File Format
	Expressions in Initialization Parameter Settings

	Determining the Global Database Name
	DB_NAME Initialization Parameter
	DB_DOMAIN Initialization Parameter

	Specifying a Fast Recovery Area
	Specifying Control Files
	Specifying Database Block Sizes
	DB_BLOCK_SIZE Initialization Parameter
	Nonstandard Block Sizes

	Specifying the Maximum Number of Processes
	Specifying the DDL Lock Timeout
	Specifying the Method of Undo Space Management
	UNDO_MANAGEMENT Initialization Parameter
	UNDO_TABLESPACE Initialization Parameter

	Specifying the Database Compatibility Level
	About the COMPATIBLE Initialization Parameter

	Setting the License Parameter

	Managing Initialization Parameters Using a Server Parameter File
	What Is a Server Parameter File?
	Migrating to a Server Parameter File
	Server Parameter File Default Names and Locations
	Creating a Server Parameter File
	The SPFILE Initialization Parameter
	Changing Initialization Parameter Values
	About Changing Initialization Parameter Values
	Setting or Changing Initialization Parameter Values
	The SCOPE Clause in ALTER SYSTEM SET Statements

	Clearing Initialization Parameter Values
	Exporting the Server Parameter File
	Backing Up the Server Parameter File
	Recovering a Lost or Damaged Server Parameter File
	Methods for Viewing Parameter Settings

	Managing Application Workloads with Database Services
	Database Services
	About Database Services
	Database Services and Performance
	Oracle Database Features That Use Database Services
	Creating Database Services

	Global Data Services
	Reset Database Session State to Prevent Application State Leaks
	Database Service Data Dictionary Views

	Managing Standard Edition High Availability for Oracle Databases
	About Standard Edition High Availability
	Requirements for Using Standard Edition High Availability With Oracle Databases
	Enabling Standard Edition High Availability for Oracle Databases
	Create Standard Edition High Availability Database Using DBCA
	Relocating a Standard Edition High Availability Database to Another Node
	Adding a Node to a Standard Edition High Availability Database
	Removing a Configured Node from a Standard Edition High Availability Database
	Starting and Stopping Standard Edition High Availability Databases
	Deactivating Standard Edition High Availability for Oracle Databases

	Cloning a Database
	Cloning a Database with CloneDB in a Non-multitenant Environment
	About Cloning a Database with CloneDB
	Cloning a Database with CloneDB
	After Cloning a Database with CloneDB

	Cloning a Database in a Multitenant Environment
	Cloning a Database with Oracle Automatic Storage Management (Oracle ASM)

	Dropping a Database

	5 Configuring a CDB Fleet
	About CDB Fleets
	Purpose of a CDB Fleet
	Setting the Lead CDB in a CDB Fleet
	Designating a CDB Fleet Member

	Part II Creating PDBs and Application Containers
	6 Overview of PDB Creation
	Current Container and PDB Creation
	Techniques for Creating a PDB
	PDB Storage
	Storage Limits
	Default Tablespace
	User Tablespaces
	PDB File Locations
	FILE_NAME_CONVERT Clause
	CREATE_FILE_DEST Clause
	The PATH_PREFIX Clause
	Restrictions on PDB File Locations

	Service Name Conversion
	Summary of Clauses for Creating a PDB
	General Prerequisites for PDB Creation

	7 Creating a PDB from Scratch
	About Creating a PDB from Scratch
	Creating a PDB
	Creating a PDB: Examples
	Creating a PDB Using No Clauses: Example
	Creating a PDB and Granting Predefined Oracle Roles to the PDB Administrator: Example
	Creating a PDB Using Multiple Clauses: Example

	8 Cloning a PDB
	About Cloning a PDB
	How Cloning Works
	User Interface for PDB Cloning

	Cloning a Local PDB
	About Cloning a Local PDB
	Cloning a Local PDB: Basic Steps
	After Cloning a Local PDB
	Cloning a Local PDB: Examples
	Cloning a Local PDB Using No Clauses: Example
	Cloning a Local PDB Using DBCA: Example
	Cloning a Local PDB with the PATH_PREFIX Clause: Example
	Cloning a Local PDB Using the STORAGE Clause: Example
	Cloning a Local PDB with the NO DATA Clause: Example

	Cloning a Remote PDB
	About Cloning a Remote PDB
	Cloning a Remote PDB: Basic Steps
	After Cloning a Remote PDB
	Cloning a Remote PDB: Examples
	Cloning a Remote PDB Using No Clauses: Example
	Cloning a Remote PDB Using DBCA: Example

	About Refreshable Clone PDBs
	Purpose of Refreshable Clone PDBs
	Automatic and Manual Refresh Modes
	Requirements for Refreshable Clone PDBs
	Creating a Refreshable Clone PDB: Scenario
	About Creating Refreshable Clone PDBs with DBCA
	Creating a Refreshable Clone PDB Using DBCA: Example

	Cloning PDBs from PDB Snapshots
	About Cloning PDBs from PDB Snapshots
	PDB Snapshot Carousel
	Creation of a PDB with the USING SNAPSHOT Clause

	Cloning a PDB from a PDB Snapshot: Scenario

	Creating and Materializing Snapshot Copy PDBs
	About Snapshot Copy PDBs
	Storage Requirements for Snapshot Copy PDBs
	Restrictions for Snapshot Copy PDBs

	Creating a Snapshot Copy PDB: Scenario
	Materializing a Snapshot Copy PDB

	Creating a Split Mirror Clone PDB

	9 Relocating a PDB
	About PDB Relocation
	Purpose of PDB Relocation
	How PDB Relocation Works
	Server Session Draining When Relocating or Stopping PDBs
	Stages of PDB Relocation
	PDB Relocation in a Common Listener Network
	PDB Relocation in Isolated Listener Networks

	User Interface for PDB Relocation
	Relocating a PDB Using CREATE PLUGGABLE DATABASE
	Relocating a PDB: Examples
	Relocating a PDB from a Remote CDB
	Relocating a PDB Using DBCA: Example

	10 Plugging In an Unplugged PDB
	About PDB Plugin Operations
	About the XML File and Archive File
	Source File Locations When Plugging In an Unplugged PDB
	SOURCE_FILE_NAME_CONVERT Clause
	SOURCE_FILE_DIRECTORY Clause

	Plugging In an Unplugged PDB
	After Plugging in an Unplugged PDB
	Plugging in an Unplugged PDB: Examples

	11 Creating a PDB as a Proxy PDB
	About Creating a Proxy PDB
	Proxy PDBs and SQL Statements
	Proxy PDBs and Database Links
	Proxy PDBs and Authentication
	Proxy PDBs and the Listener
	HOST Clause
	PORT Clause

	Creating a Proxy PDB

	12 Administering a PDB Snapshot Carousel
	About PDB Snapshot Carousel
	Purpose of PDB Snapshot Carousel
	How PDB Snapshot Carousel Works
	Contents of a PDB Snapshot
	Contents of a PDB Snapshot Carousel

	User Interface for PDB Snapshot Carousel

	Setting the Maximum Number of Snapshots in a PDB Snapshot Carousel
	Configuring Automatic PDB Snapshots
	Creating PDB Snapshots Manually
	Dropping a PDB Snapshot
	Viewing Metadata for PDB Snapshots

	13 Removing a PDB
	Unplugging a PDB from a CDB
	About Unplugging a PDB
	Unplugging a PDB

	Dropping a PDB

	14 Creating and Removing Application Containers and Seeds
	About Application Containers
	Purpose of Application Containers
	Key Benefits of Application Containers
	Application Container Use Case: SaaS
	Application Containers Use Case: Logical Data Warehouse

	Application Root
	Application PDBs
	Application Seed

	Creating Application Containers
	About Creating an Application Container
	Preparing for Application Containers
	Creating an Application Container

	Unplugging an Application Container from a CDB
	About Unplugging an Application Container
	Unplugging an Application Container

	Dropping an Application Container
	Creating Application Seeds
	About Creating an Application Seed
	Preparing for an Application Seed
	Creating an Application Seed

	Unplugging an Application Seed from an Application Container
	About Unplugging an Application Seed
	Unplugging an Application Seed

	Dropping an Application Seed
	Creating an Application PDB

	Part III Administering a Multitenant Environment
	15 Administering a CDB
	About CDB Administration
	About the Current Container
	About Administrative Tasks in a CDB
	About Using Manageability Features in a CDB
	About Managing Tablespaces in a CDB
	About Managing Tablespaces in a CDB
	About Managing Temporary Tablespaces in a CDB

	About Managing Database Objects in a CDB
	About Flashing Back a PDB
	About Restricting PDB Users for Enhanced Security
	PDB Lockdown Profiles
	PDB_OS_CREDENTIAL Initialization Parameter

	Accessing Containers in a CDB
	About Container Access in a CDB
	Services in a CDB
	Session Limits in a CDB
	User Names in a Multitenant Environment
	How the Multitenant Option Affects Password Files for Administrative Users

	Accessing a Container in a CDB
	Connecting to a Container Using the SQL*Plus CONNECT Command
	Connecting to the CDB Root Using the SQL*Plus CONNECT Command
	Connecting to a PDB Using the SQL*Plus CONNECT Command

	Switching to a Container Using the ALTER SESSION Statement

	Starting Up and Shutting Down a CDB
	Starting Up a CDB
	About Database Startup Options
	Starting Up a Database Using SQL*Plus
	Starting Up a Database Using Recovery Manager
	Starting Up a Database Using Cloud Control
	Starting Up a Database Using SRVCTL

	Specifying Initialization Parameters at Startup
	About Initialization Parameter Files and Startup
	Starting Up with SQL*Plus with a Nondefault Server Parameter File
	Starting Up with SRVCTL with a Nondefault Server Parameter File

	About Automatic Startup of Database Services
	Preparing to Start Up an Instance
	Starting Up an Instance
	About Starting Up an Instance
	Starting an Instance, and Mounting and Opening a Database
	Starting an Instance Without Mounting a Database
	Starting an Instance and Mounting a Database
	Restricting Access to an Instance at Startup
	Forcing an Instance to Start
	Starting an Instance, Mounting a Database, and Starting Complete Media Recovery
	Automatic Database Startup at Operating System Start
	Starting Remote Instances

	Altering Database Availability
	Mounting a Database to an Instance
	Opening a Closed Database
	Opening a Database in Read-Only Mode
	Restricting Access to an Open Database

	Shutting Down a CDB
	About Shutting Down the Database
	Shutting Down with the Normal Mode
	Shutting Down with the Immediate Mode
	Shutting Down with the Transactional Mode
	Shutting Down with the Abort Mode
	Shutdown Timeout

	Quiescing a CDB
	About Quiescing a Database
	Placing a Database into a Quiesced State
	Restoring the System to Normal Operation
	Viewing the Quiesce State of an Instance

	Suspending and Resuming a Database
	Delaying Instance Abort

	Modifying a CDB at the System Level
	About System-Level Modifications of a CDB
	Modifying a CDB with ALTER SYSTEM

	Modifying Containers When Connected to the CDB Root
	About Container Modification When Connected to CDB Root
	Modifying an Entire CDB Using ALTER DATABASE
	Setting the Undo Mode in a CDB Using ALTER DATABASE
	About the CDB Undo Mode
	About Local Undo Mode
	About Shared Undo Mode

	Configuring a CDB to Use Local Undo Mode
	Configuring a CDB to Use Shared Undo Mode

	Modifying the CDB Root Using ALTER DATABASE

	Executing SQL in a Different Container
	Issuing DML Statements on a Container in a CDB
	About Issuing DML Statements on a Container in a CDB
	Specifying the Default Container for DML Statements in a CDB

	Executing DDL Statements in a CDB
	About Executing DDL Statements in a CDB
	Executing a DDL Statement in the Current Container
	Executing a DDL Statement in All Containers in a CDB

	Running Oracle-Supplied SQL Scripts in a CDB
	About Running Oracle-Supplied SQL Scripts in a CDB
	Syntax and Parameters for catcon.pl
	Running the catcon.pl Script

	Executing Code in Containers Using the DBMS_SQL Package

	Monitoring Containers in a CDB
	About CDB and Container Information in Views
	About Viewing Information When the Current Container Is Not the CDB Root
	About Viewing Information When the Current Container Is the CDB Root
	Views for a CDB

	Viewing Information About the Containers in a CDB
	Viewing Information About PDBs
	Viewing the Open Mode of Each PDB
	Querying Container Data Objects
	Querying Across Containers with the CONTAINERS Clause
	About Querying Across Containers with the CONTAINERS Clause
	Querying User-Created Tables and Views Across All Containers
	Querying Application Common Objects Across Application PDBs

	Determining the Current Container ID or Name
	Listing the Modifiable Initialization Parameters in PDBs
	Viewing the History of PDBs

	16 Administering PDBs
	About PDB Administration
	Tasks Common to PDBs and CDBs
	Tasks Specific to CDBs

	Managing Connections to a PDB
	Connecting to a PDB
	Managing Services for PDBs
	About Services for PDBs
	The PDB Property
	Default and User-Defined Services
	Tools for Managing Services

	Managing Services for a PDB Using SRVCTL and DBMS_SERVICE

	Modifying the Listener Settings of a Referenced PDB
	Altering the Listener Host Name of a Referenced PDB
	Altering the Listener Port Number of a Referenced PDB

	Modifying a PDB at the System Level
	About System-Level Modifications of a PDB
	Modifying a PDB with ALTER SYSTEM

	Modifying a PDB at the Database Level
	About PDB-Level Modifications
	Storage Clauses
	Logging and Recovery Clauses
	Miscellaneous Clauses

	Modifying a PDB with the ALTER PLUGGABLE DATABASE Statement
	Changing the Global Database Name of a PDB
	Managing Refreshable Clone PDBs
	Refreshing a PDB
	Switching Over a Refreshable Clone PDB

	Modifying the Open Mode of PDBs
	About the Open Mode of a PDB
	Summary of PDB Open Modes
	Opening a Pluggable Database in Hybrid Read-Only Mode
	Clauses for Changing the Open State of PDBs
	OPEN and CLOSE Clauses
	SERVICES Clause
	INSTANCES Clause
	The RELOCATE Clause
	To Set the Priority of a PDB

	Compatibility Checks When a PDB Is Opened
	How to Disable or Enable Replay Upgrade

	Modifying the Open Mode of PDBs with ALTER PLUGGABLE DATABASE
	Setting Read-Only Access for a PDB User
	Preserving or Discarding the Open Mode of PDBs When the CDB Restarts
	Altering the Open Mode of a PDB Using STARTUP and SHUTDOWN
	About Modifying the Open Mode of PDBs with the SQL*Plus STARTUP Command
	Starting Up a PDB Using the STARTUP Command
	Modifying the Open Mode of PDBs with the SQL*Plus STARTUP Command
	Shutting Down a PDB Using the SHUTDOWN Command

	Starting and Stopping PDBs in Oracle RAC

	17 Administering an Application Container
	Overview of Applications in an Application Container
	About Application Container Administration
	Transparent Data Encryption and Application Containers

	Application Maintenance
	About Application Maintenance
	Application Installation
	Application Upgrade
	How an Application Upgrade Works
	Applications at Different Versions

	Application Patch

	Migration of an Existing Application
	Implicitly Created Applications
	Application Synchronization
	Synchronization of a Single Application
	Synchronization of Multiple Applications

	About Modifying an Application Root
	Managing Applications in an Application Container
	About Application Management
	Basic Steps of Application Maintenance
	Application Versions
	Application Module Names and Service Names

	Installing Applications in an Application Container
	About Installing Applications in an Application Container
	Installing an Application in an Application Container with Automated Propagation

	Upgrading Applications in an Application Container
	About Upgrading Applications in an Application Container
	Purpose of Application Upgrade
	How an Application Upgrade Works
	User Interface for Application Upgrade

	Upgrading an Application in an Application Container

	Patching Applications in an Application Container
	About Patching Applications in an Application Container
	Patching an Application in an Application Container with Automated Propagation

	Migrating an Existing Application to an Application Container
	About Migrating an Existing Application to an Application Container
	Creating an Application Root Using an Existing PDB
	Creating an Application PDB Using an Existing PDB

	Synchronizing Applications in an Application PDB
	Synchronizing an Application Root Replica with a Proxy PDB
	About Synchronizing an Application Root Replica with a Proxy PDB
	Creating a Proxy PDB That References an Application Root Replica

	Setting the Compatibility Version of an Application
	Performing Bulk Inserts During Application Install, Upgrade, and Patch Operations
	Uninstalling Applications from an Application Container
	About Uninstalling Applications from an Application Container
	Uninstalling an Application from an Application Container

	Managing Application Common Objects
	About Application Common Objects
	Creation of Application Common Objects
	About Metadata-Linked Application Common Objects
	About Data-Linked Application Common Objects
	About Extended Data-Linked Application Common Objects

	Restrictions for Application Common Objects
	Creating Application Common Objects
	Issuing DML Statements on Application Common Objects
	Issuing DML on Metadata-Linked Common Objects
	Querying Using the CONTAINERS Clause
	Setting the Default Container or DML

	Issuing DML on Data-Linked Common Objects

	Modifying Application Common Objects with DDL Statements

	Issuing DML Statements on Containers in an Application Container
	About Issuing DML Statements on Containers in an Application Container
	Specifying the Default Container for DML Statements in an Application Container

	Partitioning by PDB with Container Maps
	About Container Maps
	Map Objects
	List-Partitioned Container Map: Example
	Range-Partitioned Container Map: Example

	Creating a Container Map

	Viewing Information About Applications in Application Containers
	Viewing Information About Applications
	Viewing Information About Application Status
	Viewing Information About Application Statements
	Viewing Information About Application Versions
	Viewing Information About Application Patches
	Viewing Information About Application Errors
	Listing the Shared Database Objects in an Application Container
	Listing the Extended Data-Linked Objects in an Application Container

	Part IV Database Configuration Assistant Command Reference for Silent Mode
	18 DBCA Overview
	DBCA Command-Line Syntax Overview
	About DBCA Templates
	Database User Authentication in DBCA Commands Using Oracle Wallet

	19 DBCA Silent Mode Commands
	addInstance
	configureDatabase
	configureDataguard
	configurePluggableDatabase
	convertToRAC
	createCloneTemplate
	createDatabase
	createDuplicateDB
	createPDBSnapshot
	createPluggableDatabase
	createTemplateFromDB
	createTemplateFromTemplate
	createTrueCache
	deleteDatabase
	deleteInstance
	deletePDBSnapshot
	deletePluggableDatabase
	deleteTemplate
	executePrereqs
	generateScripts
	moveDatabase
	relocatePDB
	unplugDatabase

	20 DBCA Exit Codes

	Glossary
	application
	application common object
	application common user
	application container
	application patch
	application PDB
	application root
	application seed
	application upgrade
	CDB
	CDB administrator
	CDB fleet
	CDB restore point
	CDB root
	clean restore point
	common object
	common user
	container
	container data object
	cross-container operation
	data link
	database consolidation
	data-linked common object
	extended data-linked common object
	Fast Application Notification (FAN)
	hot cloning
	lead CDB
	local undo mode
	local user
	metadata link
	metadata-linked common object
	multitenant architecture
	multitenant container database (CDB)
	non-CDB
	Oracle Multitenant
	PDB
	PDB administrator
	PDB archive file
	PDB lockdown profile
	PDB performance profile
	PDB restore point
	PDB snapshot
	PDB synchronization
	pluggable database (PDB)
	proxy PDB
	referenced PDB
	refreshable clone PDB
	resource plan
	resource plan directive
	seed PDB
	shared undo mode
	snapshot copy PDB
	split mirror clone PDB
	system container
	unplugged PDB

	Index

