
Oracle® Database
JSON-Relational Duality Developer's Guide

23ai
F57229-07
May 2024



Oracle Database JSON-Relational Duality Developer's Guide, 23ai

F57229-07

Copyright © 2023, 2024, Oracle and/or its affiliates.

Primary Author: Drew Adams

Contributors: Oracle JSON development, product management, and quality assurance teams.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, MySQL and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.



Contents

 Preface

Audience ix

Documentation Accessibility ix

Diversity and Inclusion x

Related Documents x

Conventions x

Code Examples xi

1   Overview of JSON-Relational Duality Views

1.1 The Use Case for JSON-Relational Duality Views 1-3

1.2 Map JSON Documents, Not Programming Objects 1-7

1.3 Duality-View Security: Simple, Centralized, Use-Case-Specific 1-9

1.4 Oracle Database: Converged, Multitenant, Backed By SQL 1-10

2   Introduction To Car-Racing Duality Views Example

2.1 Car-Racing Example, JSON Documents 2-2

2.2 Car-Racing Example, Entity Relationships 2-6

2.3 Car-Racing Example, Tables 2-8

2.4 Car-Racing Example, Duality Views 2-12

2.4.1 Creating Car-Racing Duality Views Using SQL 2-15

2.4.2 Creating Car-Racing Duality Views Using GraphQL 2-20

2.4.3 WHERE Clauses in Duality-View Tables 2-26

3   Updatable JSON-Relational Duality Views

3.1 Annotations (NO)UPDATE, (NO)INSERT, (NO)DELETE, To Allow/Disallow Updating
Operations 3-2

3.2 Annotation (NO)CHECK, To Include/Exclude Fields for ETAG Calculation 3-3

3.3 Database Privileges Needed for Duality-View Updating Operations 3-5

3.4 Rules for Updating Duality Views 3-5

iii



4   Using JSON-Relational Duality Views

4.1 Inserting Documents/Data Into Duality Views 4-3

4.2 Deleting Documents/Data From Duality Views 4-10

4.3 Updating Documents/Data in Duality Views 4-13

4.3.1 Trigger Considerations When Using Duality Views 4-24

4.4 Using Optimistic Concurrency Control With Duality Views 4-25

4.4.1 Using Duality-View Transactions 4-33

4.5 Using the System Change Number (SCN) of a JSON Document 4-37

4.6 Optimization of Operations on Duality-View Documents 4-39

4.7 Obtaining Information About a Duality View 4-41

5   Document-Identifier Field for Duality Views

6   JSON Data Stored in JSON-Relational Duality Views

6.1 Flex Columns: Duality-View Schema Flexibility and Evolution 6-4

7   From JSON To Duality

7.1 School Administration Example, Migrator Input Documents 7-3

7.2 JSON-To-Duality Converter 7-8

7.2.1 Before Using the Converter: Create Database Document Sets and JSON
Schemas 7-12

7.2.2 Overview of Using the JSON-To-Duality Converter 7-19

7.2.3 Using the Converter, Default Behavior 7-21

7.2.4 Using the Converter with useFlexFields:false 7-30

7.3 JSON-To-Duality Importer 7-34

7.3.1 Result of Importing After Default Conversion 7-35

7.3.2 Using the Importer, from useFlexFields:false Conversion 7-43

8   GraphQL Language Used for JSON-Relational Duality Views

8.1 Oracle GraphQL Directives for JSON-Relational Duality Views 8-4

8.1.1 Oracle GraphQL Directive @link 8-6

Index

iv



List of Examples

2-1 A Team Document 2-3

2-2 A Driver Document 2-3

2-3 A Car-Race Document 2-5

2-4 Creating the Car-Racing Tables 2-10

2-5 Creating Duality View TEAM_DV Using SQL 2-16

2-6 Creating Duality View DRIVER_DV, With Nested Team Information Using SQL 2-17

2-7 Creating Duality View DRIVER_DV, With Unnested Team Information Using SQL 2-17

2-8 Creating Duality View RACE_DV, With Nested Driver Information Using SQL 2-18

2-9 Creating Duality View RACE_DV, With Unnested Driver Information Using SQL 2-19

2-10 Creating Duality View TEAM_DV Using GraphQL 2-24

2-11 Creating Duality View DRIVER_DV Using GraphQL 2-24

2-12 Creating Duality View RACE_DV Using GraphQL 2-25

2-13 WHERE Clause Use in Duality View Definition (SQL) 2-27

2-14 WHERE Clause Use in Duality View Definition (GraphQL) 2-28

4-1 Inserting JSON Documents into Duality Views, Providing Primary-Key Fields — Using SQL 4-4

4-2 Inserting JSON Documents into Duality Views, Providing Primary-Key Fields — Using REST 4-6

4-3 Inserting JSON Data into Tables 4-8

4-4 Inserting a JSON Document into a Duality View Without Providing Primary-Key Fields —

Using SQL 4-8

4-5 Inserting a JSON Document into a Duality View Without Providing Primary-Key Fields —

Using REST 4-9

4-6 Deleting a JSON Document from Duality View RACE_DV — Using SQL 4-11

4-7 Deleting a JSON Document from Duality View RACE_DV — Using REST 4-12

4-8 Updating an Entire JSON Document in a Duality View — Using SQL 4-15

4-9 Updating an Entire JSON Document in a Duality View — Using REST 4-16

4-10 Updating Part of a JSON Document in a Duality View 4-17

4-11 Updating Interrelated JSON Documents — Using SQL 4-18

4-12 Updating Interrelated JSON Documents — Using REST 4-19

4-13 Attempting a Disallowed Updating Operation Raises an Error — Using SQL 4-21

4-14 Attempting a Disallowed Updating Operation Raises an Error — Using REST 4-21

4-15 Using a Trigger To Update Driver Points Based On Car-Race Position 4-22

4-16 Obtain the Current ETAG Value for a Race Document From Field etag — Using SQL 4-29

4-17 Obtain the Current ETAG Value for a Race Document From Field etag — Using REST 4-30

4-18 Using Function SYS_ROW_ETAG To Optimistically Control Concurrent Table Updates 4-30

4-19 Locking Duality-View Documents For Update 4-35

v



4-20 Using a Duality-View Transaction To Optimistically Update Two Documents Concurrently 4-35

4-21 Obtain the SCN Recorded When a Document Was Fetched 4-37

4-22 Retrieve a Race Document As Of the Moment Another Race Document Was Retrieved 4-38

4-23 Using DBMS_JSON_SCHEMA.DESCRIBE To Show JSON Schemas Describing

Duality Views 4-43

5-1 Document Identifier Field _id: Primary-Key Column Value 5-1

5-2 Document Identifier Field _id: Object Value 5-1

7-1 Student Document Set (Migrator Input) 7-3

7-2 Teacher Document Set (Migrator Input) 7-5

7-3 Course Document Set (Migrator Input) 7-6

7-4 Create an Oracle Document Set (Course) From a JSON Dump File. 7-13

7-5 Create a JSON Schema For Course Input Document Set 7-13

7-6 Create JSON Data Guides For Student and Course Document Set 7-14

7-7 JSON Data Guide For Input Student Document Set 7-14

7-8 JSON Data Guide For Input Course Document Set 7-16

7-9 Infer Database Objects and Generate Their DDL (Configured With Flex Columns) 7-22

7-10 DDL Generated For Tables (useFlexFields:true) 7-23

7-11 DDL Generated For Duality Views (useFlexFields:true) 7-25

7-12 SQL DDL Code For Duality-View Creations (useFlexFields:true) 7-27

7-13 Create a JSON Schema for the Course Duality View 7-28

7-14 Infer Database Objects and Generate Their DDL (Configured Without Flex Columns) 7-31

7-15 DDL Generated For Tables (useFlexFields:false) 7-31

7-16 DDL Generated For Duality Views (useFlexFields:false) 7-32

7-17 Create Error-Log Tables for Duality Views 7-34

7-18 Import Documents Into Duality Views 7-35

7-19 Student Document Set (Migrator Output, useFlexFields:true) 7-35

7-20 Teacher Document Set (Migrator Output, useFlexFields:true) 7-39

7-21 Course Document Set (Migrator Output, useFlexFields:true) 7-40

7-22 Show Error Log Entries for Student Import (useFlexFields:false) 7-43

7-23 Show Error Log Entries for Teacher Import (useFlexFields:false) 7-44

7-24 Show Error Log Entries for Course Import (useFlexFields:false) 7-45

8-1 Creating Duality View DRIVER_DV1, With Nested Driver Information 8-5

8-2 Creating Table TEAM_W_LEAD With LEAD_DRIVER Column 8-7

8-3 Creating Duality Views TEAM_DV2 With LEAD_DRIVER, Showing GraphQL

Directive @link 8-8

8-4 Creating Duality View DRIVER_DV2, Showing GraphQL Directive @link 8-8

vi



List of Figures

2-1 Car-Racing Example, Directed Entity-Relationship Diagram (1) 2-7

2-2 Car-Racing Example, Directed Entity-Relationship Diagram (2) 2-10

2-3 Car-Racing Example, Table-Dependency Graph 2-21

4-1 Optimistic Concurrency Control Process 4-27

8-1 Car-Racing Example With Team Leader, Table-Dependency Graph 8-7

vii



List of Tables

8-1 Scalar Types: Oracle JSON, GraphQL, and SQL 8-2

viii



Preface

This manual describes the creation and use of JSON views of relational data stored in Oracle
Database. This gives the same data a JSON-relational duality: it's organized both relationally
and hierarchically. The manual covers how to create, query, and update such views, which
automatically entails updating the underlying relational data.

• Audience

• Documentation Accessibility

• Diversity and Inclusion

• Related Documents
Oracle and other resources related to this developer’s guide are listed.

• Conventions

• Code Examples
The code examples in this book are for illustration only. In many cases, however, you can
copy and paste parts of examples and run them in your environment.

Audience
JSON-Relational Duality Developer's Guide is intended for developers building applications
that use JSON documents whose content is based on relational data stored in Oracle
Database.

An understanding of both JavaScript Object Language (JSON) and some relational database
concepts is helpful when using this manual. Many examples provided here are in Structured
Query Language (SQL). A working knowledge of SQL is presumed.

Some familiarity with the GraphQL language and REST (REpresentational State Transfer) is
also helpful. Examples of creating JSON-relational duality views are presented using SQL
and, alternatively, a subset of GraphQL. Examples of updating and querying JSON
documents that are supported by duality views are presented using SQL and, alternatively,
REST requests.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

ix

https://graphql.org/
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs


Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having
a diverse workforce that increases thought leadership and innovation. As part of our
initiative to build a more inclusive culture that positively impacts our employees,
customers, and partners, we are working to remove insensitive terms from our
products and documentation. We are also mindful of the necessity to maintain
compatibility with our customers' existing technologies and the need to ensure
continuity of service as Oracle's offerings and industry standards evolve. Because of
these technical constraints, our effort to remove insensitive terms is ongoing and will
take time and external cooperation.

Related Documents
Oracle and other resources related to this developer’s guide are listed.

• Oracle Database JSON Developer’s Guide

• Product page Oracle Database API for MongoDB and book Oracle Database API
for MongoDB

• Product page Oracle REST Data Services (ORDS) and book Oracle REST Data
Services Developer's Guide

• Oracle Database SQL Language Reference

• Oracle Database PL/SQL Language Reference

• Oracle Database PL/SQL Packages and Types Reference

• Oracle Database Concepts

• Oracle Database Error Messages Reference. Oracle Database error message
documentation is available only as HTML. If you have access to only printed or
PDF Oracle Database documentation, you can browse the error messages by
range. Once you find the specific range, use the search (find) function of your Web
browser to locate the specific message. When connected to the Internet, you can
search for a specific error message using the error message search feature of the
Oracle Database online documentation.

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register online
before using OTN; registration is free and can be done at OTN Registration.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

Preface

x

https://docs.oracle.com/en/database/oracle/mongodb-api/
https://docs.oracle.com/en/database/oracle/oracle-rest-data-services/


Convention Meaning

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Code Examples
The code examples in this book are for illustration only. In many cases, however, you can
copy and paste parts of examples and run them in your environment.

• Pretty Printing of JSON Data
To promote readability, especially of lengthy or complex JSON data, output is sometimes
shown pretty-printed (formatted) in code examples.

• Reminder About Case Sensitivity
JSON is case-sensitive. SQL is case-insensitive, but names in SQL code are implicitly
uppercase.

Pretty Printing of JSON Data
To promote readability, especially of lengthy or complex JSON data, output is sometimes
shown pretty-printed (formatted) in code examples.

Reminder About Case Sensitivity
JSON is case-sensitive. SQL is case-insensitive, but names in SQL code are implicitly
uppercase.

When examining the examples in this book, keep in mind the following:

• SQL is case-insensitive, but names in SQL code are implicitly uppercase, unless you
enclose them in double quotation marks (").

• JSON is case-sensitive. You must refer to SQL names in JSON code using the correct
case: uppercase SQL names must be written as uppercase.

For example, if you create a table named my_table in SQL without using double quotation
marks, then you must refer to it in JSON code as "MY_TABLE".

Preface

xi



1
Overview of JSON-Relational Duality Views

Duality views combine the advantages of using JSON documents with those of the relational
model, while avoiding the limitations of each. JSON-relational duality underpins collections
of documents with relational storage: active, updatable, hierarchical documents are based on
a foundation of normalized relations.

• A single JSON document can represent an application object directly, capturing the
hierarchical relations among its components. A JSON document is standalone: self-
contained and self-describing — no outside references, no need to consult an outside
schema. There's no decomposition, which means that JSON is schema-flexible: you can
easily add and remove fields, and change their type, as required by application changes.

However, relationships among documents are not represented by the documents
themselves; the application must code relationships separately, as part of its logic. In
particular, values that are part of one document cannot be shared by others. This leads to
data duplication across different documents (whether of the same kind or different kinds),
which in turn can introduce inconsistencies when documents are updated.

• The relational model decomposes application objects ("business objects") into
normalized tables, which are explicitly related but whose content is otherwise
independent. This independence allows for flexible and efficient data combination
(joining) that is rigorously correct and reliable.

This avoids inconsistencies and other problems with data duplication, but it burdens
application developers with defining a mapping between their application objects and
relational tables. Application changes can require schema changes to tables, which can
hinder agile development. As a result, developers often prefer to work with document-
centric applications.

A JSON-relational duality view exposes data stored in relational database tables as JSON
documents. The documents are materialized — generated on demand, not stored as such.
Duality views give your data both a conceptual and an operational duality: it's organized both
relationally and hierarchically. You can base different duality views on data that's stored in
one or more of the same tables, providing different JSON hierarchies over the same, shared
data.

This means that applications can access (create, query, modify) the same data as a set of
JSON documents or as a set of related tables and columns, and both approaches can be
employed at the same time.

• Document-centric applications can use document APIs, such as Oracle Database API for
MongoDB and Oracle REST Data Services (ORDS), or they can use SQL/JSON1

functions. You can manipulate documents realized by duality views in the ways you're
used to, using your usual drivers, frameworks, tools, and development methods. In
particular, applications can use any programming languages — JSON documents are the
lingua franca.

• Other applications, such as database analytics, reporting, and machine learning, can
make use of the same data directly, relationally (as a set of table rows and columns),

1 SQL/JSON is specified in ISO/IEC 9075-2:2016, Information technology—Database languages—SQL— Part 2:
Foundation (SQL/Foundation). Oracle SQL/JSON support is closely aligned with the JSON support in this SQL Standard.

1-1

https://docs.oracle.com/en/database/oracle/mongodb-api/
https://docs.oracle.com/en/database/oracle/mongodb-api/
https://docs.oracle.com/en/database/oracle/oracle-rest-data-services/


using languages such as SQL, PL/SQL, C, and JavaScript. You need not adapt an
existing database feature or code that makes use of table data to instead use
JSON documents.

A JSON-relational duality view directly defines and reflects the structure of JSON
documents of a given kind (structure and field types). The view is based on underlying
database tables, which it joins automatically to realize documents of that kind.

Columns of SQL data types other than JSON in an underlying table produce scalar
JSON values in the documents supported by the view. Columns of the SQL data type
JSON can produce JSON values of any kind (scalar, object, or array) in the documents,
and the JSON data can be schemaless or JSON Schema-based (to enforce particular
document shapes and field types). See Car-Racing Example, Tables for the column
data types allowed in a table underlying a duality view.

JSON fields produced from an underlying table can be included in any JSON objects
in a duality-view document. When you define the view you specify where to include
them, and whether to do so individually or to nest them in their own object. By default,
nested objects are used.2

A duality view can be read-only or completely or partially updatable, depending on how
you define it. You can define a duality view and its updatability declaratively (what/
where, not how), using SQL or a subset of the GraphQL language.

When you modify a duality view — to insert, delete, or update JSON documents, the
relevant relational (table) data underlying the view is automatically updated
accordingly.

We say that a duality view supports a set of JSON documents of a particular kind
(structure and typing), to indicate both (1) that the documents are generated — not
stored as such — and (2) that updates to the underlying table data are likewise
automatically reflected in the documents.

Even though a set of documents (supported by the same or different duality views)
might be interrelated because of shared data, an application can simply read a
document, modify it, and write it back. The database detects the document changes
and makes the necessary modifications to all underlying table rows. When any of
those rows underlie other duality views, those other views and the documents they
support automatically reflect the changes as well.

Conversely, if you modify data in tables that underlie one or more duality views then
those changes are automatically and immediately reflected in the documents
supported by those views.

The data is the same; there are just dual ways to view/access it.

Duality views give you both document advantages and relational advantages:

• Document: Straightforward application development (programming-object
mappings, get/put access, common interchange format)

• Relational: Consistency, space efficiency, normalization (flexible data combination/
composition/aggregation)

• The Use Case for JSON-Relational Duality Views
The motivation behind JSON-relational duality views is presented.

2 You use keyword UNNEST in the SQL view definition, or directive @unnest in the GraphQL view definition, to
include fields directly. See Car-Racing Example, Duality Views.

Chapter 1

1-2

https://json-schema.org/
https://graphql.org/


• Map JSON Documents, Not Programming Objects
A JSON-relational duality view declaratively defines a mapping between JSON
documents and relational data. That's better than mapping programming objects to
relational data.

• Duality-View Security: Simple, Centralized, Use-Case-Specific
Duality views give you better data security. You can control access and operations at any
level.

• Oracle Database: Converged, Multitenant, Backed By SQL
If you use JSON-relational duality views then your application can take advantage of the
benefits of a converged database.

See Also:

• Product page Oracle REST Data Services (ORDS) and book Oracle REST
Data Services Developer's Guide

• Validating JSON Documents with a JSON Schema for information about using
JSON schemas to constrain or validate JSON data

• json-schema.org for information about JSON Schema

1.1 The Use Case for JSON-Relational Duality Views
The motivation behind JSON-relational duality views is presented.

Suppose the following:

• You have, or you will develop, one or more applications that are document-centric; that
is, they use JSON documents as their primary data. For the most part, you want your
applications to be able to manipulate (query, update) documents in the ways you're used
to, using your usual drivers, frameworks, tools, development methods, and programming
languages.

• You want the basic structure of the various kinds of JSON documents your application
uses to remain relatively stable.

• Some kinds of JSON documents that you use, although of different overall structure,
have some parts that are the same. These documents, although hierarchical (trees), are
interrelated by some common parts. Separately each is a tree, but together they
constitute a graph.

• You want your applications to be able to take advantage of all of the advanced
processing, high performance, and security features offered by Oracle Database.

In such a case you can benefit from defining and storing your application data using Oracle
Database JSON-relational duality views. You can likely benefit in other cases, as well — for
example, cases where only some of these conditions apply. As a prime motivation behind the
introduction of duality views, this case helps present the various advantages they have to
offer.

Shared Data

An important part of the duality-view use case is that there are some parts of different JSON
documents that you want to remain the same. Duplicating data that should always be the

Chapter 1
The Use Case for JSON-Relational Duality Views

1-3

https://docs.oracle.com/en/database/oracle/oracle-rest-data-services/
https://json-schema.org/


same is not only a waste. It ultimately presents a nightmare for application
maintenance and evolution. It requires your application to keep the common parts
synced.

The unspoken problem presented by document-centric applications is that a JSON
document is only hierarchical. And no single hierarchy fits the bill for everything, even
for the same application.

Consider a scheduling application involving students, teachers, and courses. A student
document contains information about the courses the student is enrolled in. A teacher
document contains information about the courses the teacher teaches. A course
document contains information about the students enrolled in the course. The problem
is that the same information is present in multiple kinds of documents, in the same or
different forms. And it's left to applications that use these documents to manage this
inherent sharing.

With duality views these parts can be automatically shared, instead of being
duplicated. Only what you want to be shared is shared. An update to such shared data
is reflected everywhere it's used. This gives you the best of both worlds: the world of
hierarchical documents and the world of related and shared data.

There's no reason your application should itself need to manage whatever other
constraints and relations are required among various parts of different documents.
Oracle Database can handle that for you. You can specify that information once and
for all, declaratively.

Here's an example of different kinds of JSON documents that share some parts. This
example of car-racing information is used throughout this documentation.

• A driver document records information about a particular race-car driver: driver
name; team name; racing points earned; and a list of races participated in, with the
race name and the driver position.

• A race document records information about a particular race: its name, number of
laps, date, podium standings (top three drivers), and a list of the drivers who
participated, with their positions.

• A team document records information about a racing team: its name, points
earned, and a list of its drivers.

See Also:

Car-Racing Example, JSON Documents

Stable Data Structure and Types

Another important part of the duality-view use case is that the basic structure and field
types of your JSON documents should respect their definitions and remain relatively
stable.

Duality views enforce this stability automatically. They do so by being based on
normalized tables, that is, tables whose content is independent of each other (but
which may be related to each other).

You can define just which document parts need to respect your document design in
this way, and which parts need not. Parts that need not have such stable structure and

Chapter 1
The Use Case for JSON-Relational Duality Views

1-4



typing can provide document and application flexibility: their underlying data is of Oracle SQL
data type JSON (native binary JSON).

No restrictions are imposed on these pliable parts by the duality view. (But because they are
of JSON data type they are necessarily well-formed JSON data.) The data isn't structured or
typed according to the tables underlying the duality view. But you can impose any number of
structure or type restrictions on it separately, using JSON Schema (see below).

An example of incorporating stored JSON-type data directly into a duality view, as part of its
definition, is column podium of the race table that underlies part of the race_dv duality view
used in the Formula 1 car-racing example in this documentation.3

Like any other column, a JSON-type column can be shared among duality views, and thus
shared among different kinds of JSON documents. (Column podium is not shared; it is used
only for race documents.) See JSON Data Stored in JSON-Relational Duality Views for
information about storing JSON-type columns in tables that underlie a duality view.

JSON data can be totally schemaless, with structure and typing that's unknown or susceptible
to frequent change. Or you can impose a degree of definition on it by requiring it to conform
to a particular JSON schema. A JSON schema is a JSON document that describes other
JSON documents. Using JSON Schema you can define and control the degree to which your
documents and your application are flexible.

Being based on database tables, duality views themselves of course enforce a particular kind
of structural and typing stability: tables are normalized, and they store a particular number of
columns, which are each of a particular SQL data type. But you can use JSON Schema to
enforce detailed document shape and type integrity in any number of ways on a JSON-type
column — ways that are specific to the JSON language.

Because a duality view definition imposes some structure and field typing on the documents it
supports, it implicitly defines a JSON schema. This schema is a description of the documents
that reflects only what the duality view itself prescribes. It is available in column JSON_SCHEMA
of static dictionary views DBA_JSON_DUALITY_VIEWS, USER_JSON_DUALITY_VIEWS, and
ALL_JSON_DUALITY_VIEWS. You can also see the schema using PL/SQL function
DBMS_JSON_SCHEMA.describe.

Duality views compose separate pieces of data by way of their defined relations. They give
you precise control over data sharing, by basing JSON documents on tables whose data is
separate from but related to that in other tables.

Both normalizing and JSON Schema-constraining make data less flexible, which is
sometimes what you want (stable document shape and field types) and sometimes not what
you want.

Oracle Database provides a full spectrum of flexibility and control for the use of JSON
documents. Duality views can incorporate JSON-type columns to provide documents with
parts that are flexible: not normalized and (by default) not JSON Schema-constrained. See 
JSON Data Stored in JSON-Relational Duality Views for information about controlling the
schema flexibility of duality views.

Your applications can also use whole JSON documents that are stored as a column of JSON
data type, not generated by a duality view. Applications can interact in exactly the same ways
with data in a JSON column and data in a duality view — in each case you have a set of
JSON documents.

3 See Example 2-4 and Example 2-9.

Chapter 1
The Use Case for JSON-Relational Duality Views

1-5

https://json-schema.org/


Those ways of interacting with your JSON data include (1) document-store
programming using APIs such as Oracle Database API for MongoDB and Oracle
REST Data Services (ORDS), and (2) SQL/JSON programming using SQL, PL/SQL,
C, or JavaScript.

Enforcing structural and type stability means defining what that means for your
particular application. This isn't hard to do. You just need to identify (1) the parts of
your different documents that you want to be truly common, that is, to be shared, (2)
what the data types of those shared parts must be, and (3) what kind of updating, if
any, they're allowed. Specifying this is what it means to define a JSON-relational
duality view.

Existing relational data has already undergone data analysis and factoring, so it's
straightforward to define duality views that are based on any existing relational data.
This means it's easy to adapt or define a document-centric application that reuses
existing relational data as a set of JSON documents. This alone is a considerable
advantage of the duality between relational and JSON data. The wide world of
relational data is available to you as sets of JSON documents.

Related Topics

• Using JSON-Relational Duality Views
You can insert (create), update, delete, and query documents or parts of
documents supported by a duality view. You can list information about a duality
view.

• Obtaining Information About a Duality View
You can obtain information about a duality view, its underlying tables, their
columns, and key-column links, using static data dictionary views. You can also
obtain a JSON-schema description of a duality view, which includes a description
of the structure and JSON-language types of the JSON documents it supports.

• Introduction To Car-Racing Duality Views Example
Data for Formula 1 car races is used here to present the features of JSON-
relational duality views. This use-case example starts from an analysis of the kinds
of JSON documents needed. It then defines corresponding entities and their
relationships, relational tables, and duality views built on those tables.

• JSON Data Stored in JSON-Relational Duality Views
Columns of JSON data type stored in tables underlying a duality view can produce
JSON values of any kind (scalar, object, array) in the documents supported by the
view. This stored JSON data can be schemaless or JSON Schema-based (to
enforce particular shapes and types of field values).

• Flex Columns: Duality-View Schema Flexibility and Evolution
A flex column in a table underlying a JSON-relational duality view lets you add and
redefine fields of the document object produced by that table. This provides a
certain kind of schema flexibility to a duality view, and to the documents it
supports.

Chapter 1
The Use Case for JSON-Relational Duality Views

1-6

https://docs.oracle.com/en/database/oracle/mongodb-api/
https://docs.oracle.com/en/database/oracle/oracle-rest-data-services/
https://docs.oracle.com/en/database/oracle/oracle-rest-data-services/


See Also:

• JSON Schema in Oracle Database JSON Developer’s Guide

• Using JSON to Implement Flexfields (video, 24 minutes)

• Product page Oracle Database API for MongoDB and book Oracle Database
API for MongoDB.

• Product page Oracle REST Data Services (ORDS) and book Oracle REST
Data Services Developer's Guide

1.2 Map JSON Documents, Not Programming Objects
A JSON-relational duality view declaratively defines a mapping between JSON documents
and relational data. That's better than mapping programming objects to relational data.

If you use an object-relational mapper (ORM) or an object-document mapper (ODM), or
you're familiar with their concepts, then this topic might help you better understand the
duality-view approach to handling the "object-relational impedance mismatch" problem.

Duality views could be said to be a kind of ORM: they too map hierarchical object data to/
from relational data. But they're fundamentally different from existing ORM approaches.

Duality views centralize the persistence format of application objects for both server-side and
client-side applications — all clients, regardless of language or framework. The persistence
model presents two aspects for the same data: table and document. Server-side code can
manipulate relational data in tables; client-side code can manipulate a set of documents.

Client code need only convert its programming objects to/from JSON, which is familiar and
easy. A duality view automatically persists JSON as relational data. There's no need for any
separate mapper — the duality view is the mapping.

The main points in this regard are these:

• Map JSON documents; don't map programming objects!

With duality views, the only objects you map to relational data are JSON documents. You
could say that a duality view is a document-relational mapping (DRM), or a JSON-
relational mapping (JRM).

A duality view doesn't lock you into using, or adapting to, any particular language (for
mapping or for application programming). It's just JSON documents, all the way down
(and up and around). And it's all relational data — same dual thing!

• Map declaratively!

A duality view is a mapping — there's no need for a mapper. You define duality views as
declarative maps between JSON documents and relational tables. That's all. No
procedural programming.

• Map inside the database!

A duality view is a database object. There's no tool-generated SQL code to tune.
Application operations on documents are optimally executed inside the database.

Chapter 1
Map JSON Documents, Not Programming Objects

1-7

https://youtu.be/vYw9p_4aGJM
https://docs.oracle.com/en/database/oracle/mongodb-api/
https://docs.oracle.com/en/database/oracle/oracle-rest-data-services/
https://en.wikipedia.org/wiki/Object%E2%80%93relational_impedance_mismatch


No separate mapping language or tools, no programming, no deploying, no
configuring, no setting-up anything. Everything about the mapping itself is
available to any database feature and any application — a duality view is just a
special kind of database view.

This also means fewer round trips between application and database, supporting
read consistency and providing better performance.

• Define rules for handling parts of documents declaratively, not in application code.

Duality views define which document parts are shared, and whether and how they
can be updated. The same rule validation/enforcement is performed,
automatically, regardless of which application or language requests an update.

• Use any programming language or tool to access and act on your documents —
anything you like. Use the same documents with different applications, in different
programming languages, in different ways,….

• Share the same data in multiple kinds of documents.

Create a new duality view anytime, to combine things from different tables.
Consistency is maintained automatically. No database downtime, no
compilation,.... The new view just works (immediately), and so do already existing
views and apps. Duality views are independent, even when parts of their
supported documents are interdependent (shared).

• Use lockless/optimistic concurrency control.

No need to lock data and send multiple SQL statements, to ensure transactional
semantics for what's really a single application operation. (There's no generated
SQL to send to the database.)

A duality view maps parts of one or more tables to JSON documents that the view
defines — it need not map every column of a table. Documents depend directly on the
mapping (duality view), and only indirectly on the underlying tables. This is part of the
duality: presenting two different views — not only views of different things (tables,
documents) but typically of somewhat different content. Content-wise, a document
combines subsets of table data.

This separation/abstraction is seen clearly in the fact that not all columns of a table
underlying a duality view need be mapped to its supported documents. But it also
means that some changes to an underlying table, such as the addition of a column,
are automatically prevented from affecting existing documents, simply by the mapping
(view definition) not reflecting those changes. This form of table-level schema
evolution requires no changes to existing duality views, documents, or applications.

On the other hand, if you want to update an application, to reflect some table-level
changes, then you change the view definition to take those changes into account in
whatever way you like. This application behavior change can be limited to documents
that are created after the view-definition change.

Alternatively, you can create a new duality view that directly reflects the changed table
definitions. You can use that view with newer versions of the application while
continuing to use the older view with older versions of the app. This way, you can
avoid having to upgrade all clients at the same time, limiting downtime.

In this case, schema evolution for underlying tables leads to schema evolution for the
supported documents. An example of this might be the deletion of a table column
that's mapped to a document field. This would likely lead to a change in application
logic and document definition.

Chapter 1
Map JSON Documents, Not Programming Objects

1-8



Related Topics

• Duality-View Security: Simple, Centralized, Use-Case-Specific
Duality views give you better data security. You can control access and operations at any
level.

1.3 Duality-View Security: Simple, Centralized, Use-Case-
Specific

Duality views give you better data security. You can control access and operations at any
level.

Security control is centralized. Like everything else about duality views, it is defined, verified,
enforced, and audited in the database. This contrasts strongly with trying to secure your data
in each application. You control access to the documents supported by a duality-view the
same way you control access to other database objects: using privileges, grants, and roles.

Duality-view security is use-case-specific. Instead of according broad visibility at the table
level, a duality view exposes only relevant columns of data from its underlying tables. For
example, an application that has access to a teacher view, which contains some student
data, won't have access to private student data, such as social-security number or address.

Beyond exposure/visibility, a duality view can declaratively define which data can be updated,
in which ways. A student view could allow a student name to be changed, while a teacher
view would not allow that. A teacher-facing application could be able to change a course
name, but a student-facing application would not. See Updatable JSON-Relational Duality
Views and Updating Documents/Data in Duality Views.

You can combine the two kinds of security control, to control who/what can do what to which
fields:

• Create similar duality views that expose slightly different sets of columns as document
fields. That is, define views intended for different groups of actors. (The documents
supported by a duality view are not stored as such, so this has no extra cost.)

• Grant privileges and roles, to selectively let different groups of users/apps access
different views.

Contrast this declarative, in-database, field-level access control with having to somehow —
with application code or using an object-relational mapper (ORM) — prevent a user or
application from being able to access and update all data in a given table or set of
documents.

The database automatically detects document changes, and updates only the relevant table
rows. And conversely, table updates are automatically reflected in the documents they
underlie. There's no mapping layer outside the database, no ORM intermediary to call upon
to remap anything.

And client applications can use JSON documents directly. There's no need for a mapper to
connect application objects and classes to documents and document types.

Multiple applications can also update documents or their underlying tables concurrently.
Changes to either are transparently and immediately reflected in the other. In particular,
existing SQL tools can update table rows at the same time applications update documents
based on those rows. Document-level consistency, and table row-level consistency, are
guaranteed together.

Chapter 1
Duality-View Security: Simple, Centralized, Use-Case-Specific

1-9



And this secure concurrency can be lock-free, and thus highly performant. See Using
Optimistic Concurrency Control With Duality Views.

Particular Oracle Database security features that you can use JSON-relational duality
views with include Transparent Data Encryption (TDE), Data Redaction, and Virtual
Private Database.

Related Topics

• Map JSON Documents, Not Programming Objects
A JSON-relational duality view declaratively defines a mapping between JSON
documents and relational data. That's better than mapping programming objects to
relational data.

1.4 Oracle Database: Converged, Multitenant, Backed By
SQL

If you use JSON-relational duality views then your application can take advantage of
the benefits of a converged database.

These benefits include the following:

• Native (binary) support of JavaScript Object Notation (JSON) data. This includes
updating, indexing, declarative querying, generating, and views

• Advanced security, including auditing and fine-grained access control using roles
and grants

• Fully ACID (atomicity, consistency, isolation, durability) transactions across
multiple documents and tables

• Standardized, straightforward JOINs with all sorts of data (including JSON)

• State-of-the-art analytics, machine-learning, and reporting

Oracle Database is a converged, multimodel database. It acts like different kinds of
databases rolled into one, providing synergy across very different features, supporting
different workloads and data models.

Oracle Database is polyglot. You can seamlessly join and manipulate together data of
all kinds, including JSON data, using multiple application languages.

Oracle Database is multitenant. You can have both consolidation and isolation, for
different teams and purposes. You get a single, common approach for security,
upgrades, patching, and maintenance. (If you use an Autonomous Oracle Database,
such as Autonomous JSON Database, then Oracle takes care of all such database
administration responsibilities. An autonomous database is self-managing, self-
securing, self-repairing, and serverless. And there's Always Free access to an
autonomous database.)

The standard, declarative language SQL underlies processing on Oracle Database.
You might develop your application using a popular application-development language
together with an API such as Oracle Database API for MongoDB or Oracle REST Data
Services (ORDS), but the power of SQL is behind it all, and that lets your app play well
with everything else on Oracle Database.

Chapter 1
Oracle Database: Converged, Multitenant, Backed By SQL

1-10

https://docs.oracle.com/en/cloud/paas/autonomous-json-database/index.html
https://docs.oracle.com/en/cloud/paas/autonomous-database/adbsa/autonomous-always-free.html#GUID-03F9F3E8-8A98-4792-AB9C-F0BACF02DC3E
https://docs.oracle.com/en/database/oracle/mongodb-api/
https://docs.oracle.com/en/database/oracle/oracle-rest-data-services/
https://docs.oracle.com/en/database/oracle/oracle-rest-data-services/


2
Introduction To Car-Racing Duality Views
Example

Data for Formula 1 car races is used here to present the features of JSON-relational duality
views. This use-case example starts from an analysis of the kinds of JSON documents
needed. It then defines corresponding entities and their relationships, relational tables, and
duality views built on those tables.

Note:

An alternative approach to creating duality views is available to migrate an
application that has existing sets of related documents, so that it uses duality views.

For that you can use the JSON-to-duality migrator, which automatically infers and
generates the appropriate duality views. No need to manually analyze the different
kinds of documents to discover implicit entities and relationships, and then define
and populate the relevant duality views and their underlying normalized tables.

The migrator does all of that for you. By default, whatever document parts can be
shared within or across views are shared, and the views are defined for maximum
updatability.

See From JSON To Duality.

For the car-racing example we suppose a document-centric application that uses three kinds
of JSON documents: driver, race, and team. Each of these kinds shares some data with
another kind. For example:

• A driver document includes, in its information about a driver, identification of the driver's
team and information about the races the driver has participated in.

• A race document includes, in its information about a particular race, information about the
podium standings (first-, second-, and third-place winners), and the results for each driver
in the race. Both of these include driver and team names. The racing data is for a single
season of racing.

• A team document includes, in its information about a team, information about the drivers
on the team.

Operations the application might perform on this data include the following:

• Adding or removing a driver, race, or team to/from the database

• Updating the information for a driver, race, or team

• Adding a driver to a team, removing a driver from a team, or moving a driver from one
team to another

• Adding race results to the driver and race information

2-1



The intention in this example is that all common information be shared, so that, say,
the driver with identification number 302 in the driver duality view is the same as driver
number 302 in the team view.

You specify the sharing of data that's common between two duality views by defining
relations between them. You do this by specifying primary and foreign keys for the
tables that underlie the duality views.

When you define a given duality view you can control whether it's possible to insert
into, delete from, or update the documents supported by the view and, overriding
those constraints, whether it's possible to insert, delete, or update a given field in a
supported document. By default, a duality view is read-only: no inserting, deleting, or
updating documents.

• Car-Racing Example, JSON Documents
The car-racing example has three kinds of documents: a team document, a driver
document, and a race document.

• Car-Racing Example, Entity Relationships
Driver, car-race, and team entities are presented, together with the relationships
among them. You define entities that correspond to your application documents in
order to help you determine the tables needed to define the duality views for your
application.

• Car-Racing Example, Tables
Normalized entities are modeled as database tables. Entity relationships are
modeled as links (constraints) between primary-key and foreign-key columns.
Tables team, driver, and race are used to implement the duality views that
provide and support the team, driver, and race JSON documents used by the car-
racing application.

• Car-Racing Example, Duality Views
Team, driver, and race duality views provide and support the team, driver, and race
JSON documents used by a car-racing application.

See Also:

• Working with JSON Relational Duality Views using SQL, a SQL script
that mirrors the examples in this document

• Formula One (Wikipedia)

2.1 Car-Racing Example, JSON Documents
The car-racing example has three kinds of documents: a team document, a driver
document, and a race document.

A document supported by a duality view always includes, at its top (root) level, a
document-identifier field, _id, that corresponds to the primary-key columns of the
tables that underlie the view. See Document-Identifier Field for Duality Views. (In the
car-racing example each such table has a single primary-key column.)

The following naming convention is followed in this documentation:

Chapter 2
Car-Racing Example, JSON Documents

2-2

https://github.com/oracle-samples/oracle-db-examples/blob/main/json-relational-duality/DualityViewTutorial.sql
https://en.wikipedia.org/wiki/Formula_One


• The document-identifier field (_id) of each kind of document (team, driver, or race)
corresponds to the root-table primary-key column of the duality view that supports those
documents. For example, field _id of a team document corresponds to primary-key
column team_id of table team, which is the root table underlying duality view team_dv.

• Documents of one kind (e.g. team), supported by one duality view (e.g. team_dv) can
include other fields named ...Id (e.g. driverId), which represent foreign-key references
to primary-key columns in tables underlying other duality views — columns that contain
data that's shared. For example, in a team document, field driverId represents a foreign
key that refers to the document-identifier field (_id) of a driver document.

Note:

Only the application-logic document content, or payload of each document, is
shown here. That is, the documents shown here do not include the automatically
generated and maintained, top-level field _metadata (whose value is an object with
fields etag and asof). However, this document-handling field is always included in
documents supported by a duality view. See Car-Racing Example, Duality Views for
information about field _metadata.

Example 2-1    A Team Document

A team document includes information about the drivers on the team, in addition to
information that's relevant to the team but not necessarily relevant to its drivers.

• Top-level field _id uniquely identifies a team document. It is the document-identifier field.
Column team_id of table team corresponds to this field; it is the table's primary key.

• The team information that's not shared with driver documents is in field _id and top-level
fields name and points.

• The team information that's shared with driver documents is in fields driverId, name, and
points, under field driver. The value of field driverId is that of the document-identifier
field (_id) of a driver document.

{"_id"    : 302,
 "name"   : "Ferrari",
 "points" : 300,
 "driver" : [ {"driverId" : 103,
               "name"     : "Charles Leclerc",
               "points"   : 192},
              {"driverId" : 104,
               "name"     : "Carlos Sainz Jr",
               "points"   : 118} ]}

Example 2-2    A Driver Document

A driver document includes identification of the driver's team and information about the races
the driver has participated in, in addition to information that's relevant to the driver but not
necessarily relevant to its team or races.

Chapter 2
Car-Racing Example, JSON Documents

2-3



• Top-level field _id uniquely identifies a driver document. It is the document-
identifier field. Column driver_id of the driver table corresponds to this field; it is
that table's primary key.

• The driver information that's not shared with race or team documents is in fields
_id, name, and points.

• The driver information that's shared with race documents is in field race. The
value of field raceId is that of the document-identifier field (_id) of a race
document.

• The driver information that's shared with a team document is in fields such as
teamId, whose value is that of the document-identifier field (_id) of a team
document.

Two alternative versions of a driver document are shown, with and without nested
team and race information.

Driver document, with nested team and race information:

Field teamInfo contains the nested team information (fields teamId and name). Field
raceInfo contains the nested race information (fields raceId and name).

{"_id"      : 101,
 "name"     : "Max Verstappen",
 "points"   : 258,
 "teamInfo" : {"teamId" : 301, "name" : "Red Bull"},
 "race"     : [ {"driverRaceMapId" : 3,
                 "raceInfo"        : {"raceId" : 201,
                                      "name"   : "Bahrain Grand Prix"},
                 "finalPosition"   : 19},
                {"driverRaceMapId" : 11,
                 "raceInfo"        : {"raceId" : 202,
                                      "name"   : "Saudi Arabian Grand Prix"},
                 "finalPosition"   : 1} ]}

Driver document, without nested team and race information:

Fields teamId and team are not nested in a teamInfo object. Fields raceId and name
are not nested in a raceInfo object.

{"_id"      : 101,
 "name"     : "Max Verstappen",
 "points"   : 25,
 "teamId"   : 301,
 "team"     : "Red Bull",
 "race"     : [ {"driverRaceMapId" : 3,
                 "raceId"          : 201,
                 "name"            : "Bahrain Grand Prix",
                 "finalPosition"   : 19},
                {"driverRaceMapId" : 11,
                 "raceId"          : 202,
                 "name"            : "Saudi Arabian Grand Prix",
                 "finalPosition"   : 1} ]}

Chapter 2
Car-Racing Example, JSON Documents

2-4



Example 2-3    A Car-Race Document

A race document includes, in its information about a particular race, information about the
podium standings (first, second, and third place), and the results for each driver in the race.
The podium standings include the driver and team names. The result for each driver includes
the driver's name.

Both of these include driver and team names.

• Top-level field _id uniquely identifies a race document. It is the document-identifier field.
Column race_id of the race table corresponds to this field; it is that table's primary key.

• The race information that's not shared with driver or team documents is in fields _id, name
(top-level), laps, date, time, and position.

• The race information that's shared with driver documents is in fields such as driverId,
whose value is that of the document-identifier field (_id) of a driver document.

• The race information that's shared with team documents is in field team (under winner,
firstRunnerUp, and secondRunnerUp, which are under podium).

Two alternative versions of a race document are shown, with and without nested driver
information.

Race document, with nested driver information:

{"_id"    : 201,
 "name"   : "Bahrain Grand Prix",
 "laps"   : 57,
 "date"   : "2022-03-20T00:00:00",
 "podium" : {"winner"         : {"name" : "Charles Leclerc",
                                 "team" : "Ferrari",
                                 "time" : "02:00:05.3476"},
             "firstRunnerUp"  : {"name" : "Carlos Sainz Jr",
                                 "team" : "Ferrari",
                                 "time" : "02:00:15.1356"},
             "secondRunnerUp" : {"name" : "Max Verstappen",
                                 "team" : "Red Bull",
                                 "time" : "02:01:01.9253"}},
 "result" : [ {"driverRaceMapId" : 3,
               "position"        : 1,
               "driverInfo"      : {"driverId" : 103,
                                    "name"     : "Charles Leclerc"},
              {"driverRaceMapId" : 4,
               "position"        : 2,
               "driverInfo"      : {"driverId" : 104,
                                    "name"     : "Carlos Sainz Jr"},
              {"driverRaceMapId" : 9,
               "position"        : 3,
               "driverInfo"      : {"driverId" : 101,
                                    "name"     : "Max Verstappen"},
              {"driverRaceMapId" : 10,
               "position"        : 4,
               "driverInfo"      : {"driverId" : 102,
                                    "name"     : "Sergio Perez"} ]}

Chapter 2
Car-Racing Example, JSON Documents

2-5



Race document, without nested driver information:

{"_id"    : 201,
 "name"   : "Bahrain Grand Prix",
 "laps"   : 57,
 "date"   : "2022-03-20T00:00:00",
 "podium" : {"winner"         : {"name" : "Charles Leclerc",
                                 "team" : "Ferrari",
                                 "time" : "02:00:05.3476"},
             "firstRunnerUp"  : {"name" : "Carlos Sainz Jr",
                                 "team" : "Ferrari",
                                 "time" : "02:00:15.1356"},
             "secondRunnerUp" : {"name" : "Max Verstappen",
                                 "team" : "Red Bull",
                                 "time" : "02:01:01.9253"}},
 "result" : [ {"driverRaceMapId" : 3,
               "position"        : 1,
               "driverId"        : 103,
               "name"            : "Charles Leclerc"},
              {"driverRaceMapId" : 4,
               "position"        : 2,
               "driverId"        : 104,
               "name"            : "Carlos Sainz Jr"},
              {"driverRaceMapId" : 9,
               "position"        : 3,
               "driverId"        : 101,
               "name"            : "Max Verstappen"},
              {"driverRaceMapId" : 10,
               "position"        : 4,
               "driverId"        : 102,
               "name"            : "Sergio Perez"} ]}

Related Topics

• Document-Identifier Field for Duality Views
A document supported by a duality view always includes, at its top (root) level, a
document-identifier field, _id, which corresponds to the primary-key columns of
the root table that underlies the view. The field value can take different forms.

2.2 Car-Racing Example, Entity Relationships
Driver, car-race, and team entities are presented, together with the relationships
among them. You define entities that correspond to your application documents in
order to help you determine the tables needed to define the duality views for your
application.

From the documents to be used by your application you can establish entities and their
relationships. Each entity corresponds to a document type: driver, race, team.

Unlike the corresponding documents, the entities we use have no content overlap —
they're normalized. The content of an entity (what it represents) is only that which is
specific to its corresponding document type; it doesn't include anything that's also part
of another document type.

Chapter 2
Car-Racing Example, Entity Relationships

2-6



• The driver entity represents only the content of a driver document that's not in a race or
team document. It includes only the driver's name and points, corresponding to document
fields name and points.

• The race entity represents only the content of a race document that's not in a driver
document or a team document. It includes only the race's name, number of laps, date,
and podium information, corresponding to document fields name, laps, date, and podium.

• The team entity represents only the content of a team document that's not in a document
or race document. It includes only the team's name and points, corresponding to
document fields name and points.

Two entities are related according to their cardinality. There are three types of such
relationships:1

One-to-one (1:1)
An instance of entity A can only be associated with one instance of entity B. For example, a
driver can only be on one team.

One-to-many (1:N)
An instance of entity A can be associated with one or more instances of entity B. For
example, a team can have many drivers.

Many-to-many (N:N)
An instance of entity A can be associated with one or more instances of entity B, and
conversely. For example, a race can have many drivers, and a driver can participate in many
races.

See Also:

Entity-relationship model

A many-to-one (N:1) relationship is just a one-to-many relationship looked at from the
opposite viewpoint. We use only one-to-many.

See Figure 2-1. An arrow indicates the relationship direction, with the arrowhead pointing to
the second cardinality. For example, the 1:N arrow from entity team to entity driver points
toward driver, to show that one team relates to many drivers.

Figure 2-1    Car-Racing Example, Directed Entity-Relationship Diagram (1)

A driver can only be associated with one team (1:1). A team can be associated with multiple
drivers (1:N). A driver can be associated with multiple races (N:N). A race can be associated
with multiple drivers (N:N).

1 In the notation used here, N does not represent a number; it's simply an abbreviation for "many", or more precisely, "one
or more".

Chapter 2
Car-Racing Example, Entity Relationships

2-7

https://en.wikipedia.org/wiki/Entity%E2%80%93relationship_model


Related Topics

• Car-Racing Example, Duality Views
Team, driver, and race duality views provide and support the team, driver, and race
JSON documents used by a car-racing application.

• Car-Racing Example, Tables
Normalized entities are modeled as database tables. Entity relationships are
modeled as links (constraints) between primary-key and foreign-key columns.
Tables team, driver, and race are used to implement the duality views that
provide and support the team, driver, and race JSON documents used by the car-
racing application.

See Also:

Database normalization (Wikipedia)

2.3 Car-Racing Example, Tables
Normalized entities are modeled as database tables. Entity relationships are modeled
as links (constraints) between primary-key and foreign-key columns. Tables team,
driver, and race are used to implement the duality views that provide and support the
team, driver, and race JSON documents used by the car-racing application.

The normalized entities have no content overlap. But we need the database tables that
implement the entities to overlap logically, in the sense of a table referring to some
content that is stored in another table. To realize this we add columns that are linked to
other tables using foreign-key constraints. It is these foreign-key relations among
tables that implement their sharing of common content.

The tables used to define a duality view must satisfy these requirements (otherwise an
error is raised when you try to create the view):

• The top-level (root) table for the view must have a primary key, composed of one
or more columns that together uniquely identify a table row. This prevents any
ambiguity that could arise from using a NULLable unique key or a unique key that
has some NULL columns.

The primary-key column values correspond to the value of the document-identifier
field, _id, of the JSON document that the table is designed to support — see 
Document-Identifier Field for Duality Views. (There is only one primary-key column
for each of the tables used in the car-racing example.)

• Each of the other tables used to define a duality view must also have a primary
key or a unique key. A unique key is a set of one or more columns that uniquely
identify a row in the table. If there is no primary key then at least one column of the
unique key must not be NULL.

• Each primary key and each unique key must have a unique index defined on it.
Oracle recommends that you also define an index on each foreign-key column.
References (links) between primary and foreign keys must be defined, but they
need not be enforced.

Chapter 2
Car-Racing Example, Tables

2-8

https://en.wikipedia.org/wiki/Database_normalization


Note:

Primary and unique indexes are generally created implicitly when you define
primary-, and unique-key integrity constraints. But this is not guaranteed, and
indexes can be dropped after their creation. It's up to you to ensure that the
necessary indexes are present. See Creating Indexes in Oracle Database
Administrator’s Guide.

Like unique keys, primary keys and foreign keys can be composite: composed of multiple
columns. In this documentation we generally speak of them as single-column keys, but keep
this possibility in mind wherever keys are mentioned.

In general, a value in a foreign-key column can be NULL. Besides the above requirements, if
you want a foreign-key column to not be NULLable, then mark it as NOT NULL in the table
definition.

In the car-racing example, entities team, driver, and race are implemented by tables team,
driver, and race, which have the following columns:

• team table:

– team_id — primary key

– name — unique key

– points
• driver table:

– driver_id — primary key

– name — unique key

– points
– team_id — foreign key that links to column team_id of table team

• race table:

– race_id — primary key

– name — unique key (so the table has no duplicate rows: there can't be two races with
the same name)

– laps
– race_date
– podium

The logic of the car-racing application mandates that there be only one team with a given
team name, only one driver with a given driver name, and only one race with a given race
name, so column name of each of these tables is made a unique key. (This in turn means that
there is only one team document with a given name field value, only one driver document with
a given name, and only one race document with a given name.)

Table driver has an additional column, team_id, which is data that's logically shared with
table team (it corresponds to document-identifier field _id of the team document). This
sharing is defined by declaring the column to be a foreign key in table driver, which links to
(primary-key) column team_id of table team. That link implements both the 1:1 relationship
from driver to team and the 1:N relationship from team to driver.

Chapter 2
Car-Racing Example, Tables

2-9



But what about the other sharing: the race information in a driver document that's
shared with a race document, and the information in a race document that's shared
with a driver document or with a team document?

That information sharing corresponds to the many-to-many (N:N) relationships
between entities driver and race. The database doesn't implement N:N relationships
directly. Instead, we need to add another table, called a mapping table (or an
associative table), to bridge the relationship between tables driver and race. A
mapping table includes, as foreign keys, the primary-key columns of the two tables
that it associates.

An N:N entity relationship is equivalent to a 1:N relationship followed by a 1:1
relationship. We use this equivalence to implement an N:N entity relationship using
database tables, by adding mapping table driver_race_map between tables driver
and race.

Figure 2-2 is equivalent to Figure 2-1. Intermediate entity d-r-map is added to expand
each N:N relationship to a 1:N relationship followed by a 1:1 relationship.2

Figure 2-2    Car-Racing Example, Directed Entity-Relationship Diagram (2)

Mapping table driver_race_map implements intermediate entity d-r-map. It has the
following columns:

• driver_race_map_id — primary key

• race_id — (1) foreign key that links to primary-key column race_id of table race
and (2) unique key (so the table has no duplicate rows: there can't be two entries
for the same driver for a particular race)

• driver_id — foreign key that links to primary-key column driver_id of table
driver

• position
Together with the relations defined by their foreign-key and primary-key links, the car-
racing tables form a dependency graph. This is shown in Figure 2-3.

Example 2-4    Creating the Car-Racing Tables

This example creates each table with a primary-key column, whose values are
automatically generated as a sequence of integers, and a unique-key column, name.
This implicitly also creates unique indexes on the primary-key columns. The example
also creates foreign-key indexes.

Column podium of table race has data type JSON. Its content is flexible: it need not
conform to any particular structure or field types. Alternatively, its content could be
made to conform to (that is, validate against) a particular JSON schema.

CREATE TABLE team

2 In the notation used here, N does not represent a number; it's simply an abbreviation for "many", or more
precisely, "one or more".

Chapter 2
Car-Racing Example, Tables

2-10

https://json-schema.org/


  (team_id    INTEGER GENERATED BY DEFAULT ON NULL AS IDENTITY,
   name       VARCHAR2(255) NOT NULL UNIQUE,
   points     INTEGER NOT NULL,
   CONSTRAINT team_pk PRIMARY KEY(team_id));

CREATE TABLE driver 
  (driver_id  INTEGER GENERATED BY DEFAULT ON NULL AS IDENTITY,
   name       VARCHAR2(255) NOT NULL UNIQUE,
   points     INTEGER NOT NULL,
   team_id    INTEGER,
   CONSTRAINT driver_pk PRIMARY KEY(driver_id),
   CONSTRAINT driver_fk FOREIGN KEY(team_id) REFERENCES team(team_id));

CREATE TABLE race
  (race_id    INTEGER GENERATED BY DEFAULT ON NULL AS IDENTITY,
   name       VARCHAR2(255) NOT NULL UNIQUE,
   laps       INTEGER NOT NULL,
   race_date  DATE,
   podium     JSON,
   CONSTRAINT race_pk PRIMARY KEY(race_id));

-- Mapping table, to bridge the tables DRIVER and RACE.
--
CREATE TABLE driver_race_map
  (driver_race_map_id INTEGER GENERATED BY DEFAULT ON NULL AS IDENTITY,
   race_id            INTEGER NOT NULL,
   driver_id          INTEGER NOT NULL,
   position           INTEGER,
   CONSTRAINT driver_race_map_uk  UNIQUE (race_id, driver_id),
   CONSTRAINT driver_race_map_pk  PRIMARY KEY(driver_race_map_id),
   CONSTRAINT driver_race_map_fk1 FOREIGN KEY(race_id)
                                    REFERENCES race(race_id),
   CONSTRAINT driver_race_map_fk2 FOREIGN KEY(driver_id)
                                    REFERENCES driver(driver_id));
-- Create foreign-key indexes
--
CREATE INDEX driver_fk_idx ON driver (team_id);
CREATE INDEX driver_race_map_fk1_idx ON driver_race_map (race_id);
CREATE INDEX driver_race_map_fk2_idx ON driver_race_map (driver_id);

Chapter 2
Car-Racing Example, Tables

2-11



Note:

Primary-key, unique-key, and foreign-key integrity constraints must be
defined for the tables that underlie duality views (or else an error is raised),
but they need not be enforced.

In some cases you might know that the conditions for a given constraint are
satisfied, so you don't need to validate or enforce it. You might nevertheless
want the constraint to be present, to improve query performance. In that
case, you can put the constraint in the RELY state, which asserts that the
constraint is believed to be satisfied. See RELY Constraints in a Data
Warehouse in Oracle Database Data Warehousing Guide.

You can also make a foreign key constraint DEFERRABLE, which means that
the validity check is done at the end of a transaction. See Deferrable
Constraints in Oracle Database Concepts

Note:

The SQL data types allowed for a column in a table underlying a duality view
are BINARY_DOUBLE, BINARY_FLOAT, BLOB, BOOLEAN, CHAR, CLOB, DATE, JSON,
INTERVAL DAY TO SECOND, INTERVAL YEAR TO MONTH, NCHAR, NCLOB, NUMBER,
NVARCHAR2, VARCHAR2, RAW, TIMESTAMP, TIMESTAMP WITH TIME ZONE, and
VECTOR. An error is raised if you specify any other column data type.

Related Topics

• Car-Racing Example, Entity Relationships
Driver, car-race, and team entities are presented, together with the relationships
among them. You define entities that correspond to your application documents in
order to help you determine the tables needed to define the duality views for your
application.

• Car-Racing Example, Duality Views
Team, driver, and race duality views provide and support the team, driver, and race
JSON documents used by a car-racing application.

See Also:

• JSON Schema in Oracle Database JSON Developer’s Guide

• CREATE TABLE in Oracle Database SQL Language Reference

2.4 Car-Racing Example, Duality Views
Team, driver, and race duality views provide and support the team, driver, and race
JSON documents used by a car-racing application.

Chapter 2
Car-Racing Example, Duality Views

2-12



The views are based on the data in the related tables driver, race, and team, which underlie
the views driver_dv, race_dv, and team_dv, respectively, as well as mapping table
driver_race_map, which underlies views driver_dv and race_dv.

A duality view supports JSON documents, each of which has a top-level JSON object. You
can interact with a duality view as if it were a table with a single column of JSON data type.

A duality view and its corresponding top-level JSON object provides a hierarchy of JSON
objects and arrays, which are defined in the view definition using nested SQL subqueries.
Data gathered from a subquery is joined to data gathered from a parent subquery or the root
table by a relationship between a primary or unique key in the parent and a foreign key in the
child subquery's WHERE clause.

You can create a regular, read-only SQL view using SQL/JSON generation functions directly,
without creating a duality view (see Read-Only Views Based On JSON Generation in Oracle
Database JSON Developer’s Guide).

A duality view is a JSON generation view that has a limited structure, expressly designed so
that your applications can update the view, and in so doing automatically update the
underlying tables. All duality views share the same limitations that allow for this, even those
that are read-only.

Note:

For input of data types CLOB and BLOB to SQL/JSON generation functions, an empty
instance is distinguished from SQL NULL. It produces an empty JSON string ("").
But for input of data types VARCHAR2, NVARCHAR2, and RAW, Oracle SQL treats an
empty (zero-length) value as NULL, so do not expect such a value to produce a
JSON string.

A column of data in a table underlying a duality view is used as input to SQL/JSON
generation functions to generate the JSON documents supported by the view. An
empty value in the column can thus result in either an empty string or a SQL NULL
value, depending on the data type of the column.

A duality view has only one payload column, named DATA, of JSON data type, which is
generated from underlying table data. Each row of a duality view thus contains a single JSON
object, the top-level object of the view definition. This object acts as a JSON document
supported by the view.

In addition to the payload document content, that is, the application content per se, a
document's top-level object always has the automatically generated and maintained
document-handling field _metadata. Its value is an object with these fields:

• etag — A unique identifier for a specific version of the document, as a string of
hexadecimal characters.

This identifier is constructed as a hash value of the document content (payload), that is,
all document fields except field _metadata. (More precisely, all fields whose underlying
columns are implicitly or explicitly annotated CHECK, meaning that those columns
contribute to the ETAG value.)

This ETAG value lets an application determine whether the content of a particular version
of a document is the same as that of another version. This is used, for example, to

Chapter 2
Car-Racing Example, Duality Views

2-13



implement optimistic concurrency. See Using Optimistic Concurrency Control With
Duality Views.

• asof — The latest system change number (SCN) for the JSON document, as a
JSON number. This records the last logical point in time at which the document
was generated.

The SCN can be used to query other database objects (duality views, tables) at
the exact point in time that a given JSON document was retrieved from the
database. This provides consistency across database reads. See Using the
System Change Number (SCN) of a JSON Document

Besides the payload column DATA, a duality view also contains two hidden columns,
which you can access from SQL:

• ETAG — This 16-byte RAW column holds the ETAG value for the current row of
column DATA. That is, it holds the data used for the document metadata field etag.

• RESID — This variable-length RAW column holds an object identifier that uniquely
identifies the document that is the content of the current row of column DATA. The
column value is a concatenated binary encoding of the primary-key columns of the
root table.

You can create duality views using SQL or a subset of the GraphQL language.

• Creating Car-Racing Duality Views Using SQL
Team, driver, and race duality views for the car-racing application are created
using SQL.

• Creating Car-Racing Duality Views Using GraphQL
Team, driver, and race duality views for the car-racing application are created
using GraphQL.

• WHERE Clauses in Duality-View Tables
When creating a JSON-relational duality view, you can use simple tests in WHERE
clauses to not only join underlying tables but to select which table rows are used to
generate JSON data. This allows fine-grained control of the data to be included in
a JSON document supported by a duality view.

Related Topics

• Car-Racing Example, JSON Documents
The car-racing example has three kinds of documents: a team document, a driver
document, and a race document.

• Car-Racing Example, Entity Relationships
Driver, car-race, and team entities are presented, together with the relationships
among them. You define entities that correspond to your application documents in
order to help you determine the tables needed to define the duality views for your
application.

• Car-Racing Example, Tables
Normalized entities are modeled as database tables. Entity relationships are
modeled as links (constraints) between primary-key and foreign-key columns.
Tables team, driver, and race are used to implement the duality views that
provide and support the team, driver, and race JSON documents used by the car-
racing application.

Chapter 2
Car-Racing Example, Duality Views

2-14

https://graphql.org/


• Updatable JSON-Relational Duality Views
Applications can update JSON documents supported by a duality view, if you define the
view as updatable. You can specify which kinds of updating operations (update, insertion,
and deletion) are allowed, for which document fields, how/when, and by whom. You can
also specify which fields participate in ETAG hash values.

• Using Optimistic Concurrency Control With Duality Views
You can use optimistic/lock-free concurrency control with duality views, writing JSON
documents or committing their updates only when other sessions haven't modified them
concurrently.

• Using the System Change Number (SCN) of a JSON Document
A system change number (SCN) is a logical, internal, database time stamp. Metadata
field asof records the SCN for the moment a document was retrieved from the database.
You can use the SCN to ensure consistency when reading other data.

• Obtaining Information About a Duality View
You can obtain information about a duality view, its underlying tables, their columns, and
key-column links, using static data dictionary views. You can also obtain a JSON-schema
description of a duality view, which includes a description of the structure and JSON-
language types of the JSON documents it supports.

See Also:

• CREATE JSON RELATIONAL DUALITY VIEW in Oracle Database SQL
Language Reference

• Generation of JSON Data Using SQL in Oracle Database JSON Developer’s
Guide for information about SQL/JSON functions json_object, json_array,
and json_arrayagg, and the syntax JSON {…} and JSON […]

• JSON Data Type Constructor in Oracle Database JSON Developer’s Guide

• System Change Numbers (SCNs) in Oracle Database Concepts

2.4.1 Creating Car-Racing Duality Views Using SQL
Team, driver, and race duality views for the car-racing application are created using SQL.

The SQL statements here that define the car-racing duality views use a simplified syntax
which makes use of the JSON-type constructor function, JSON, as shorthand for using SQL/
JSON generation functions to construct (generate) JSON objects and arrays. JSON {…} is
simple syntax for using function json_object, and JSON […] is simple syntax for using
function json_array or json_arrayagg.

Occurrences of JSON {…} and JSON […] that are embedded within other such occurrences
can be abbreviated as just {…} and […], it being understood that they are part of an
enclosing JSON generation function.

The arguments to generation function json_object are definitions of individual JSON-object
members: a field name, such as points, followed by a colon (:) or keyword IS, followed by
the defining field value (for example, 110) — 'points' : 110 or 'points' IS 110. Note that
the JSON field names are enclosed with single-quote characters (').

Chapter 2
Car-Racing Example, Duality Views

2-15



Some of the field values are defined directly as column values from the top-level table
for the view: table driver (alias d) for view driver_dv, table race (alias r) for view
race_dv, and table team (alias t) for view team_dv. For example: 'name' : d.name, for
view driver_dv defines the value of field name as the value of column name of the
driver table.

Other field values are defined using a subquery (SELECT ...) that selects data from one
of the other tables. That data is implicitly joined, to form the view data.

Some of the subqueries use the syntax JSON {…}, which defines a JSON object with
fields defined by the definitions enclosed by the braces ({, }). For example, JSON
{'_id' : r.race_id, 'name' : r.name} defines a JSON object with fields _id and
name, defined by the values of columns race_id and name, respectively, from table r
(race).

Other subqueries use the syntax JSON […], which defines a JSON array whose
elements are the values that the subquery returns, in the order they are returned. For
example, [ SELECT JSON {…} FROM driver WHERE ... ] defines a JSON array
whose elements are selected from table driver where the given WHERE condition
holds.

Duality views driver_dv and race_dv each nest data from the mapping table
driver_race_map. Two versions of each of these views are defined, one of which
includes a nested object and the other of which, defined using keyword UNNEST,
flattens that nested object to just include its fields directly. For view driver_dv the
nested object is the value of field teamInfo. For view race_dv the nested object is the
value of field driverInfo. (If you like, you can use keyword NEST to make explicit the
default behavior of nesting.)

In most of this documentation, the car-racing examples use the view and document
versions without these nested objects.

Nesting is the default behavior for fields from tables other than the root table.
Unnesting is the default behavior for fields from the root table. You can use keyword
NEST if you want to make the default behavior explicit — see Example 8-1 for an
example. Note that you cannot nest fields that correspond to primary-key columns of
the root table; an error is raised if you try.

Example 2-5    Creating Duality View TEAM_DV Using SQL

This example creates a duality view where the team objects look like this — they
contain a field driver whose value is an array of nested objects that specify the
drivers on the team:

{"_id" : 301, "name" : "Red Bull", "points" : 0, "driver" : [...]}

(The view created is the same as that created using GraphQL in Example 2-10.)

CREATE JSON RELATIONAL DUALITY VIEW team_dv AS
  SELECT JSON {'_id'   : t.team_id,
               'name'   : t.name,
               'points' : t.points,
               'driver' :
                 [ SELECT JSON {'driverId' : d.driver_id,
                                'name'     : d.name,
                                'points'   : d.points WITH NOCHECK}

Chapter 2
Car-Racing Example, Duality Views

2-16



                     FROM driver d WITH INSERT UPDATE
                     WHERE d.team_id = t.team_id ]}
  FROM team t WITH INSERT UPDATE DELETE;

Example 2-6    Creating Duality View DRIVER_DV, With Nested Team Information Using SQL

This example creates a duality view where the driver objects look like this — they contain a
field teamInfo whose value is a nested object with fields teamId and (team) name:

{"_id"      : 101,
 "name"     : "Max Verstappen",
 "points"   : 0,
 "teamInfo" : {"teamId" : 103, "name" : "Red Bull"},
 "race"     : [...]}

CREATE JSON RELATIONAL DUALITY VIEW driver_dv AS
  SELECT JSON {'_id'     : d.driver_id,
               'name'     : d.name,
               'points'   : d.points,
               'teamInfo' :
                 (SELECT JSON {'teamId' : t.team_id,
                               'name'   : t.name WITH NOCHECK}
                    FROM team t WITH NOINSERT NOUPDATE NODELETE
                    WHERE t.team_id = d.team_id),
               'race'     :
                 [ SELECT JSON {'driverRaceMapId' : drm.driver_race_map_id,
                                'raceInfo'        :
                                  (SELECT JSON {'raceId' : r.race_id,
                                                'name'   : r.name}
                                     FROM race r WITH NOINSERT NOUPDATE NODELETE
                                     WHERE r.race_id = drm.race_id),
                                'finalPosition'   : drm.position}
                    FROM driver_race_map drm WITH INSERT UPDATE NODELETE
                    WHERE drm.driver_id = d.driver_id ]}
    FROM driver d WITH INSERT UPDATE DELETE;

Example 2-7    Creating Duality View DRIVER_DV, With Unnested Team Information Using SQL

This example creates a duality view where the driver objects look like this — they don't
contain a field teamInfo whose value is a nested object with fields teamId and name. Instead,
the data from table team is incorporated at the top level, with the team name as field team.

{"_id"    : 101,
 "name"   : "Max Verstappen",
 "points" : 0,
 "teamId" : 103,
 "team"  : "Red Bull",
 "race"   : [...]}

Instead of using 'teamInfo' : to define top-level field teamInfo with an object value resulting
from the subquery of table team, the view definition precedes that subquery with keyword

Chapter 2
Car-Racing Example, Duality Views

2-17



UNNEST, and it uses the data from column name as the value of field team. In all other
respects, this view definition is identical to that of Example 2-6.

(The view created is the same as that created using GraphQL in Example 2-11.)

CREATE JSON RELATIONAL DUALITY VIEW driver_dv AS
  SELECT JSON {'_id'     : d.driver_id,
               'name'     : d.name,
               'points'   : d.points,
               UNNEST
                 (SELECT JSON {'teamId' : t.team_id,
                               'team'   : t.name WITH NOCHECK}
                    FROM team t WITH NOINSERT NOUPDATE NODELETE
                    WHERE t.team_id = d.team_id),
               'race'     :
                 [ SELECT JSON {'driverRaceMapId' : drm.driver_race_map_id,
                                UNNEST
                                  (SELECT JSON {'raceId' : r.race_id,
                                                'name'   : r.name}
                                     FROM race r WITH NOINSERT NOUPDATE NODELETE
                                     WHERE r.race_id = drm.race_id),
                                'finalPosition'   : drm.position}
                    FROM driver_race_map drm WITH INSERT UPDATE NODELETE
                    WHERE drm.driver_id = d.driver_id ]}
    FROM driver d WITH INSERT UPDATE DELETE;

Note that if for some reason you wanted (non-primary-key) fields from the root table,
driver, to be in a nested object, you could do that. For example, this would nest fields
name and points in a driverInfo object: You could optionally use keyword NEST
before field driverInfo, to make the default behavior of nesting more explicit.

CREATE JSON RELATIONAL DUALITY VIEW driver_dv AS
  SELECT JSON {'_id'        : d.driver_id,
               'driverInfo' : {'name'   : d.name,
                               'points' : d.points},
               UNNEST (SELECT JSON {...}),
               'race'        : ...}
    FROM driver d;

You cannot nest primary-key fields of the root table. In this case, that means field _id.

Example 2-8    Creating Duality View RACE_DV, With Nested Driver Information Using SQL

This example creates a duality view where the objects that are the elements of array
result look like this — they contain a field driverInfo whose value is a nested object
with fields driverId and name:

{"driverRaceMapId" : 3,
 "position" : 1,
 "driverInfo" : {"driverId" : 103, "name" : "Charles Leclerc"}}

CREATE JSON RELATIONAL DUALITY VIEW race_dv AS
  SELECT JSON {'_id'   : r.race_id,

Chapter 2
Car-Racing Example, Duality Views

2-18



               'name'   : r.name,
               'laps'   : r.laps WITH NOUPDATE,
               'date'   : r.race_date,
               'podium' : r.podium WITH NOCHECK,
               'result' :
                 [ SELECT JSON {'driverRaceMapId' : drm.driver_race_map_id,
                                'position'        : drm.position,
                                'driverInfo'      :
                                  (SELECT JSON {'driverId' : d.driver_id,
                                                'name'     : d.name}
                                     FROM driver d WITH NOINSERT UPDATE NODELETE
                                     WHERE d.driver_id = drm.driver_id)}
                     FROM driver_race_map drm WITH INSERT UPDATE DELETE
                     WHERE drm.race_id = r.race_id ]}
    FROM race r WITH INSERT UPDATE DELETE;

Example 2-9    Creating Duality View RACE_DV, With Unnested Driver Information Using SQL

This example creates a duality view where the objects that are the elements of array result
look like this — they don't contain a field driverInfo whose value is a nested object with
fields driverId and name:

{"driverId" : 103, "name" : "Charles Leclerc", "position" : 1}

Instead of using 'driverInfo' : to define top-level field driverInfo with an object value
resulting from the subquery of table driver, the view definition precedes that subquery with
keyword UNNEST. In all other respects, this view definition is identical to that of Example 2-8.

(The view created is the same as that created using GraphQL in Example 2-12.)

CREATE JSON RELATIONAL DUALITY VIEW race_dv AS
  SELECT JSON {'_id'   : r.race_id,
               'name'   : r.name,
               'laps'   : r.laps WITH NOUPDATE,
               'date'   : r.race_date,
               'podium' : r.podium WITH NOCHECK,
               'result' :
                 [ SELECT JSON {'driverRaceMapId' : drm.driver_race_map_id,
                                'position'        : drm.position,
                                UNNEST
                                  (SELECT JSON {'driverId' : d.driver_id,
                                                'name'     : d.name}
                                     FROM driver d WITH NOINSERT UPDATE NODELETE
                                     WHERE d.driver_id = drm.driver_id)}
                     FROM driver_race_map drm WITH INSERT UPDATE DELETE
                     WHERE drm.race_id = r.race_id ]}
    FROM race r WITH INSERT UPDATE DELETE;

Chapter 2
Car-Racing Example, Duality Views

2-19



See Also:

CREATE JSON RELATIONAL DUALITY VIEW in Oracle Database SQL
Language Reference

2.4.2 Creating Car-Racing Duality Views Using GraphQL
Team, driver, and race duality views for the car-racing application are created using
GraphQL.

GraphQL is an open-source, general query and data-manipulation language that can
be used with various databases. A subset of GraphQL syntax and operations are
supported by Oracle Database for creating JSON-relational duality views. GraphQL
Language Used for JSON-Relational Duality Views describes the supported subset of
GraphQL. It introduces syntax and features that are not covered here.

GraphQL queries and type definitions are expressed as a GraphQL document. The
GraphQL examples shown here, for creating the car-racing duality views, are similar to
the SQL examples. The most obvious difference is just syntactic.

The more important differences are that with a GraphQL definition of a duality view you
don't need to explicitly specify these things:

• Nested scalar subqueries.

• Table links between foreign-key columns and primary-key (or unique-key)
columns, as long as a child table has only one foreign key to its parent table.3

• The use of SQL/JSON generation functions (or their equivalent syntax
abbreviations).

This information is instead all inferred from the graph/dependency relations that are
inherent in the overall duality-view definitions. The tables underlying a duality view
form a directed dependency graph by virtue of the relations among their primary (or
unique) keys and foreign keys. A foreign key from one table, T-child, to another table,
T-parent, results in a graph edge (an arrow) directed from node T-child to node T-
parent.

You don't need to construct the dependency graph determined by a set of tables; that's
done automatically (implicitly) when you define a duality view. But it can sometimes
help to visualize it.

An edge (arrow) of the graph links a table with a foreign key to the table whose
primary key is the target of that foreign key. For example, an arrow from node (table)
driver to node (table) team indicates that a foreign key of table driver is linked to a
primary key of table team. In Figure 2-3, the arrows are labeled with the foreign and
primary keys.

3 The only time you need to explicitly use a foreign-key link in GraphQL is when there is more than one foreign-key
relation between two tables or when a table has a foreign key that references the same table. In such a case, you
use an @link directive to specify the link. See Oracle GraphQL Directives for JSON-Relational Duality Views.

Chapter 2
Car-Racing Example, Duality Views

2-20



Figure 2-3    Car-Racing Example, Table-Dependency Graph

driver_race_map

race driver

team

team_id (PK)

team_id (FK)

driver_id (PK)

driver_id (FK)race_id (FK)

race_id (PK)

FK: Foreign Key

Legend:

PK: Primary Key

The GraphQL code that defines a JSON-relational duality view takes the form of a GraphQL
query (without the surrounding query { … } code), which specifies the graph structure,
based on the dependency graph, which is used by the view. A GraphQL duality-view
definition specifies, for each underlying table, the columns that are used to generate the
JSON fields in the supported JSON documents.

In GraphQL, a view-defining query is represented by a GraphQL object schema, which, like
the dependency graph on which it's based, is constructed automatically (implicitly). You never
need to construct or see either the dependency graph or the GraphQL object schema that's
used to create a duality view, but it can help to know something about each of them.

A GraphQL object schema is a set of GraphQL object types, which for a duality-view
definition are based on the tables underlying the view.

The GraphQL query syntax for creating a duality view reflects the structure of the table-
dependency graph, and it's based closely on the object-schema syntax. (One difference is
that the names used are compatible with SQL.)

In an object schema, and thus in the query syntax, each GraphQL object type (mapped from
a table) is named by a GraphQL field (not to be confused with a field in a JSON object). And
each GraphQL field can optionally have an alias.

A GraphQL query describes a graph, where each node specifies a type. The syntax for a
node in the graph is a (GraphQL) field name followed by its object type. If the field has an
alias then that, followed by a colon (:), precedes the field name. An object type is
represented by braces ({ ... }) enclosing a subgraph. A field need not be followed by an
object type, in which case it is scalar.

The syntax of GraphQL is different from that of SQL. In particular, the syntax of names
(identifiers) is different. In a GraphQL duality-view definition, any table and column names
that are not allowed directly as GraphQL names are mapped to names that are. But simple,

Chapter 2
Car-Racing Example, Duality Views

2-21



all-ASCII alphanumeric table and column names, such as those of the car-racing
example, can be used directly in the GraphQL definition of a duality view.

For example:

• driverId : driver_id

Field driver_id preceded by alias driverId .

• driver : driver {driverId : driver_id,
                 name     : name,
                 points   : points}

Field driver preceded by alias driver and followed by an object type that has
field driver_id, with alias driverId, and fields name and points, each with an
alias named the same as the field.

• driver {driverId : driver_id,
        name,
        points}

Equivalent to the previous example. Aliases that don't differ from their
corresponding field names can be omitted.

In the object type that corresponds to a table, each column of the table is mapped
to a scalar GraphQL field with the same name as the column.

Note:

In each of those examples, alias driverId would be replaced by alias _id, if
used as a document-identifier field, that is, if driver is the root table and
driver_id is its primary-key column.

Note:

In GraphQL commas (,) are not syntactically or semantically significant;
they're optional, and are ignored. For readability, in this documentation we
use commas within GraphQL {…}, to better suggest the corresponding
JSON objects in the supported documents.

In a GraphQL definition of a duality view there's no real distinction between a node that
contributes a single object to a generated JSON document and a node that contributes
an array of such objects. You can use just { … } to specify that the node is a GraphQL
object type, but that doesn't imply that only a single JSON object results from it in the
supported JSON documents.

However, to have a GraphQL duality-view definition more closely reflect the JSON
documents that the view is designed to support, you can optionally enclose a node
that contributes an array of objects in brackets ([, ]).

Chapter 2
Car-Racing Example, Duality Views

2-22



For example, you can write [{…},…] instead of just {…},…, to show that this part of a definition
produces an array of driver objects. This convention is followed in this documentation.

Keep in mind that this is only for the sake of human readers the code; the brackets are
optional, where they make sense. But if you happen to use them where they don't make
sense then a syntax error is raised, to help you see your mistake.

You use the root table of a duality view as the GraphQL root field of the view definition. For
example, for the duality view that defines team documents, you start with table team as the
root: you write team {…}.

Within the { … } following a type name (such as team), which for a duality view definition is a
table name, you specify the columns from that table that are used to create the generated
JSON fields.

You thus use column names as GraphQL field names. By default, these also name the JSON
fields you want generated.

If the name of the JSON field you want is the not same as that of the column (GraphQL field)
that provides its value, you precede the column name with the name of the JSON field you
want, separating the two by a colon (:). That is, you use a GraphQL alias to specify the
desired JSON field name.

For example, driverId : driver_id means generate JSON field driverId from the data in
column driver_id. In GraphQL terms, driverId is an alias for (GraphQL) field driver_id.

• Using driver_id alone means generate JSON field driver_id from the column with that
name.

• Using driverId : driver_id means generate JSON field driverId from the data in
column driver_id. In GraphQL terms, driverId is an alias for the GraphQL field
driver_id.

When constructing a GraphQL query to create a duality view, you add a GraphQL field for
each column in the table-dependency graph that you want to support a JSON field.

In addition, for each table T used in the duality view definition:

• For each foreign-key link from T to a parent table T-parent, you add a field named T-
parent to the query, to allow navigation from T to T-parent. This link implements a one-to-
one relationship: there is a single parent T-parent.

• For each foreign-key link from a table T-child to T, you add a field named T-child to the
query, to allow navigation from T to T-child. This link implements a one-to-many
relationship: there can be multiple children of type T-child.

Unnesting (flattening) of intermediate objects is the same as for a SQL definition of a duality
view, but instead of SQL keyword UNNEST you use GraphQL directive @unnest. (All of the
GraphQL duality-view definitions shown here use @unnest.)

In GraphQL you can introduce an end-of-line comment with the hash/number-sign character,
#: it and the characters following it on the same line are commented out.

Chapter 2
Car-Racing Example, Duality Views

2-23



Example 2-10    Creating Duality View TEAM_DV Using GraphQL

This example creates a duality view supporting JSON documents where the team
objects look like this — they contain a field driver whose value is an array of nested
objects that specify the drivers on the team:

{"_id" : 301, "name" : "Red Bull", "points" : 0, "driver" : [...]}

(The view created is the same as that created using SQL in Example 2-5.)

CREATE JSON RELATIONAL DUALITY VIEW team_dv AS
  team @insert @update @delete
    {_id    : team_id,
     name   : name,
     points : points,
     driver : driver @insert @update
       [ {driverId : driver_id,
          name     : name,
          points   : points @nocheck} ]};

Example 2-11    Creating Duality View DRIVER_DV Using GraphQL

This example creates a duality view supporting JSON documents where the driver
objects look like this — they don't contain a field teamInfo whose value is a nested
object with fields teamId and name. Instead, the data from table team is incorporated at
the top level, with the team name as field team.

{"_id"      : 101,
 "name"     : "Max Verstappen",
 "points"   : 0,
 "teamId"   : 103,
 "team"     : "Red Bull",
 "race"     : [...]}

Two versions of the view creation are shown here. For simplicity, a first version has no
annotations declaring updatability or ETAG-calculation exclusion.

CREATE JSON RELATIONAL DUALITY VIEW driver_dv AS
  driver
    {_id       : driver_id,
     name      : name,
     points    : points,
     team @unnest
       {teamId : team_id,
        name   : name},
     race      : driver_race_map
                   [ {driverRaceMapId : driver_race_map_id,
                      race @unnest
                        {raceId       : race_id,
                         name         : name},
                      finalPosition   : position} ]};

Chapter 2
Car-Racing Example, Duality Views

2-24



The second version of the view creation has updatability and ETAG @nocheck annotations. (It
creates the same view as that created using SQL in Example 2-7.)

CREATE JSON RELATIONAL DUALITY VIEW driver_dv AS
  driver @insert @update @delete
    {_id       : driver_id,
     name      : name,
     points    : points,
     team @noinsert @noupdate @nodelete
       @unnest
       {teamId : team_id,
        name   : name @nocheck},
     race      : driver_race_map @insert @update @nodelete
                   [ {driverRaceMapId : driver_race_map_id,
                      race @noinsert @noupdate @nodelete
                        @unnest
                        {raceId : race_id,
                         name   : name},
                      finalPosition   : position} ]};

Example 2-12    Creating Duality View RACE_DV Using GraphQL

This example creates a duality view supporting JSON documents where the objects that are
the elements of array result look like this — they don't contain a field driverInfo whose
value is a nested object with fields driverId and name:

{"driverId" : 103, "name" : "Charles Leclerc", "position" : 1}

Two versions of the view creation are shown here. For simplicity, a first version has no
annotations declaring updatability or ETAG-calculation exclusion.

CREATE JSON RELATIONAL DUALITY VIEW race_dv AS
  race
    {_id    : race_id,
     name   : name,
     laps   : laps,
     date   : race_date,
     podium : podium,
     result : driver_race_map
       [ {driverRaceMapId : driver_race_map_id,
          position        : position,
          driver
            @unnest
            {driverId : driver_id,
             name     : name}} ]};

The second version of the view creation has updatability and ETAG @nocheck annotations. (It
creates the same view as that created using SQL in Example 2-9.)

CREATE JSON RELATIONAL DUALITY VIEW race_dv AS
  race @insert @update @delete
    {_id    : race_id,
     name   : name,

Chapter 2
Car-Racing Example, Duality Views

2-25



     laps   : laps @noupdate,
     date   : race_date,
     podium : podium @nocheck,
     result : driver_race_map @insert @update @delete
       [ {driverRaceMapId : driver_race_map_id,
          position        : position,
          driver @noinsert @update @nodelete
            @unnest
            {driverId : driver_id,
             name     : name}} ]};

Related Topics

• Creating Car-Racing Duality Views Using SQL
Team, driver, and race duality views for the car-racing application are created
using SQL.

• GraphQL Language Used for JSON-Relational Duality Views
GraphQL is an open-source, general query and data-manipulation language that
can be used with various databases. A subset of GraphQL syntax and operations
are supported by Oracle Database for creating JSON-relational duality views.

See Also:

• https://graphql.org/

• GraphQL on Wikipedia

• CREATE JSON RELATIONAL DUALITY VIEW in Oracle Database SQL
Language Reference

2.4.3 WHERE Clauses in Duality-View Tables
When creating a JSON-relational duality view, you can use simple tests in WHERE
clauses to not only join underlying tables but to select which table rows are used to
generate JSON data. This allows fine-grained control of the data to be included in a
JSON document supported by a duality view.

As one use case, you can create multiple duality views whose supported JSON
documents contain different data, depending on values in discriminating table
columns.

For example, using the same underlying table, ORDERS, of purchase orders you could
define duality views open_orders and shipped_orders, with the first view selecting
rows with clause WHERE order_status="open" from the table and the second view
selecting rows with WHERE order_status="shipped".

But note that columns used in the test of a WHERE clause in a duality view need not be
used to populate any fields of the supported JSON documents. For example, the
selected purchase-order documents for views open_orders and shipped_orders need
not have any fields that use values of column order_status.

Chapter 2
Car-Racing Example, Duality Views

2-26

https://graphql.org/
https://en.wikipedia.org/wiki/GraphQL


Each WHERE clause used in a duality-view definition must contain the keywords WITH CHECK
OPTION. This prohibits any changes to the table that would produce rows that are not included
by the WHERE clause test. See CREATE VIEW in Oracle Database SQL Language Reference.

The WHERE clauses you can use in duality-view definitions must be relatively simple — only
the following constructs can be used:

• Direct comparison of column values with values of other columns of the same underlying
table, or with literal values. For example, height > width, height > 3.14. Only ANSI
SQL comparison operators are allowed: =, <>, <, <=, >, >=.

• A (non-aggregation) SQL expression using a column value, or a Boolean combination of
such expressions. For example, upper(department) = 'SALES', salary < 100 and
bonus < 15.

• Use of SQL JSON constructs: functions and conditions such as json_value and
json_exists, as well as simple dot-notation SQL syntax.

In particular, a WHERE clause in a duality-view definition cannot contain the following
(otherwise, an error is raised).

• Use of a PL/SQL subprogram.

• Comparison with the result of a subquery. For example, t.salary > (SELECT max_sal
FROM max_sal_table WHERE jobcode=t.job).

• Reference to a column in an outer query block.

• Use of a bind variable. For example, salary = :var1.

• Use of an aggregation operator. For example, sum(salary) < 100.

• Use of multiple-column operations. For example, salary + bonus < 10000.

• Use of OR between a join condition and another test, in a subquery. Such use would make
the join condition optional. For example, e.deptno=d.deptno OR e.job='MANAGER' — in
this case, e.deptno=d.deptno is the join condition. (However, OR can be used this way in
the top-level/outermost query.)

Example 2-13    WHERE Clause Use in Duality View Definition (SQL)

This example defines duality view race_dv_medal, which is similar to view race_dv
(Example 2-9). It differs in that (1) it uses an additional WHERE-clause test to limit field result
to the first three race positions (first, second, and third place) and (2) it includes only races
more recent than 2019.

CREATE JSON RELATIONAL DUALITY VIEW race_dv_medal AS
  SELECT JSON {'_id'    : r.race_id,
               'name'   : r.name,
               'laps'   : r.laps WITH NOUPDATE,
               'date'   : r.race_date,
               'podium' : r.podium WITH NOCHECK,
               'result' :
                 [ SELECT JSON {'driverRaceMapId' : drm.driver_race_map_id,
                                'position'        : drm.position,
                                UNNEST
                                  (SELECT JSON {'driverId' : d.driver_id,
                                                'name'     : d.name}
                                     FROM driver d WITH NOINSERT UPDATE NODELETE
                                     WHERE d.driver_id = drm.driver_id)}

Chapter 2
Car-Racing Example, Duality Views

2-27



                     FROM driver_race_map drm WITH INSERT UPDATE DELETE
                     WHERE drm.race_id = r.race_id
                           AND drm.position <= 3 WITH CHECK OPTION ]}
    FROM race r WITH INSERT UPDATE DELETE
    WHERE r.race_date >= to_date('01-JAN-2020') WITH CHECK OPTION;

Example 2-14    WHERE Clause Use in Duality View Definition (GraphQL)

This example defines duality view race_dv_medal using GraphQL. It is equivalent to
creating the view using SQL as in Example 2-13.

The view is similar to view race_dv (Example 2-12). It differs in that (1) it uses an
additional WHERE-clause test to limit field result to the first three race positions (first,
second, and third place) and (2) it includes only races more recent than 2019.

CREATE JSON RELATIONAL DUALITY VIEW race_dv_medal AS
  race @insert @update @delete
       @where (sql: "race_date >= to_date('01-JAN-2020')")
  {_id    : race_id,
   name   : name,
   laps   : laps @noupdate,
   date   : race_date,
   podium : podium @nocheck,
   result : driver_race_map @insert @update @delete
                            @where (sql: "position <= 3")
     {driverRaceMapId : driver_race_map_id,
      position        : position,
      driver @noupdate @nodelete @noinsert
        @unnest
        {driverId : driver_id,
         name     : name}}};

Chapter 2
Car-Racing Example, Duality Views

2-28



3
Updatable JSON-Relational Duality Views

Applications can update JSON documents supported by a duality view, if you define the view
as updatable. You can specify which kinds of updating operations (update, insertion, and
deletion) are allowed, for which document fields, how/when, and by whom. You can also
specify which fields participate in ETAG hash values.

A duality view does not, itself, store any data; all of the data that underlies its supported
JSON documents (which are generated) is stored in tables underlying the view. But it's often
handy to think of that table data as being stored in the view. Similarly, for a duality view to be
updatable means that you can update some or all of the data in its tables, and so you can
update some or all of the fields in its supported documents.

An application can update a complete document, replacing the existing document. Or it can
update only particular fields, in place.

An application can optionally cause an update to be performed on a document only if the
document has not been changed from some earlier state — for example, it's unchanged
since it was last retrieved from the database.

An application can optionally cause some actions to be performed automatically after an
update, using database triggers.

• Annotations (NO)UPDATE, (NO)INSERT, (NO)DELETE, To Allow/Disallow Updating
Operations
Keyword UPDATE means that the annotated data can be updated. Keywords INSERT and
DELETE mean that the fields/columns covered by the annotation can be inserted or
deleted, respectively.

• Annotation (NO)CHECK, To Include/Exclude Fields for ETAG Calculation
You declaratively specify the document parts to use for checking the state/version of a
document when performing an updating operation, by annotating the definition of the
duality view that supports such a document.

• Database Privileges Needed for Duality-View Updating Operations
The kinds of operations an application can perform on the data in a given duality view
depend on the database privileges accorded the view owner and the database user
(database schema) with which the application connects to the database.

• Rules for Updating Duality Views
When updating documents supported by a duality view, some rules must be respected.

Related Topics

• Car-Racing Example, Duality Views
Team, driver, and race duality views provide and support the team, driver, and race JSON
documents used by a car-racing application.

• Using Optimistic Concurrency Control With Duality Views
You can use optimistic/lock-free concurrency control with duality views, writing JSON
documents or committing their updates only when other sessions haven't modified them
concurrently.

3-1



• Deleting Documents/Data From Duality Views
You can delete a JSON document from a duality view directly, or you can delete
data from the tables that underlie a duality view. Examples illustrate these
possibilities.

3.1 Annotations (NO)UPDATE, (NO)INSERT, (NO)DELETE,
To Allow/Disallow Updating Operations

Keyword UPDATE means that the annotated data can be updated. Keywords INSERT
and DELETE mean that the fields/columns covered by the annotation can be inserted or
deleted, respectively.

Various updating operations (insert, delete, update) can be allowed on the data of a
duality view. You specify which operations are allowed when you create the view, using
table and column annotations. The operations allowed are based on annotations of its
root table and other tables or their columns, as follows:

• The data of a duality view is insertable or deletable if its root table is annotated
with keyword INSERT or DELETE, respectively.

• A duality view is updatable if any table or column used in its definition is
annotated with keyword UPDATE.

By default, duality views are read-only: no table data used to define a duality view can
be modified through the view. This means that the data of the duality view itself is, by
default, not insertable, deletable, or updatable. The keywords NOUPDATE, NOINSERT, and
NODELETE thus pertain by default for all FROM clauses defining a duality view.

You can specify table-level updatability for a given FROM clause by following the table
name with keyword WITH followed by one or more of the keywords: (NO)UPDATE,
(NO)INSERT, and (NO)DELETE. Table-level updatability defines that of all columns
governed by the same FROM clause, except for any that have overriding column-level
(NO)UPDATE annotations. (Column-level overrides table-level.)

You can specify that a column-level part of a duality view (corresponding to a JSON-
document field) is updatable using annotation WITH after the field–column (key–value)
specification, followed by keyword UPDATE or NOUPDATE. For example, 'name' :
r.name WITH UPDATE specifies that field name and column r.name are updatable, even
if table r is declared with NOUPDATE.

For example, in Example 2-6 and Example 2-7:

• None of the fields/columns for table team can be inserted, deleted or updated
(WITH NOINSERT NOUPDATE NODELETE) — team fields _id and name. Similarly, for
the fields/columns for table race: race fields _id and name, hence also raceInfo,
can't be inserted, deleted or updated.

• All of the fields/columns for mapping table driver_race_map can be inserted and
updated, but not deleted (WITH INSERT UPDATE NODELETE) — fields _id and
finalPosition.

• All of the fields/columns for table driver can be inserted, updated, and deleted
(WITH INSERT UPDATE DELETE) — driver fields _id, name, and points.

In duality views driver_dv and team_dv there are only table-level updatability
annotations (no column-level annotations). In view race_dv, however, field laps

Chapter 3
Annotations (NO)UPDATE, (NO)INSERT, (NO)DELETE, To Allow/Disallow Updating Operations

3-2



(column laps of table race) has annotation WITH NOUPDATE, which overrides the table-level
updating allowance for columns of table race — you cannot change the number of laps
defined for a given race.

Related Topics

• JSON Data Stored in JSON-Relational Duality Views
Columns of JSON data type stored in tables underlying a duality view can produce JSON
values of any kind (scalar, object, array) in the documents supported by the view. This
stored JSON data can be schemaless or JSON Schema-based (to enforce particular
shapes and types of field values).

3.2 Annotation (NO)CHECK, To Include/Exclude Fields for
ETAG Calculation

You declaratively specify the document parts to use for checking the state/version of a
document when performing an updating operation, by annotating the definition of the duality
view that supports such a document.

When an application updates a document it often needs to make sure that the version/state
of the document being updated hasn't somehow changed since the document was last
retrieved from the database.

One way to implement this is using optimistic concurrency control, which is lock-free. By
default, every document supported by a duality view records a document-state signature in
the form of an ETAG field, etag. The field value is constructed as a hash value of the
document content and some other information, and it is automatically renewed each time a
document is retrieved.

When your application writes a document that it has updated locally, the database
automatically computes an up-to-date ETAG value for the current state of the stored
document, and it checks this value against the etag value embedded in the document to be
updated (sent by your application).

If the two values don't match then the update operation fails. In that case, your application
can then retrieve the latest version of the document from the database, modify it as needed
for the update (without changing the new value of field etag), and try again to write the (newly
modified) document. See Using Optimistic Concurrency Control With Duality Views.

By default, all fields of a document contribute to the calculation of the value of field etag. To
exclude a given field from participating in this calculation, annotate its column with keyword
NOCHECK (following WITH, just as for the updatability annotations). In the same way as for
updatability annotations, you can specify NOCHECK in a FROM clause, to have it apply to all
columns affected by that clause. In that case, you can use CHECK to annotate a given column,
to exclude it from the effect of the table-level NOCHECK.

If an update operation succeeds, then all changes it defines are made, including any changes
for a field that doesn't participate in the ETAG calculation, thus overwriting any changes for
that field that might have been made in the meantime. That is, the field that is not part of the
ETAG calculation is not ignored for the update operation.

For example, field team of view driver_dv is an object with the driver's team information, and
field name of this team object is annotated NOCHECK in the view definition. This means that the
team name doesn't participate in computing an ETAG value for a driver document.

Chapter 3
Annotation (NO)CHECK, To Include/Exclude Fields for ETAG Calculation

3-3



Because the team name doesn't participate in a driver-document ETAG calculation,
changes to the team information in the document are not taken into account. Table
team is marked NOUPDATE in the definition of view driver_dv, so ignoring its team
information when updating a driver document is not a problem.

But suppose table team were instead marked UPDATE. In that case, updating a driver
document could update the driver's team information, which means modifying data in
table team.

Suppose also that a driver's team information was changed externally somehow since
your application last read the document for that driver — for example, the team was
renamed from "OLD Team Name" to "NEW Team Name".

Then updating that driver document would not fail because of the team-name conflict
(it could fail for some other reason, of course). The previous change to "NEW Team
Name" would simply be ignored; the team name would be overwritten by the name value
specified in the driver-document update operation (likely "OLD Team Name").

You can avoid this problem (which can only arise if table team is updatable through a
driver document) by simply omitting the team name from the document or document
fragment that you provide in the update operation.

Similarly, field driver of a team document is an array of driver objects, and field
points of those objects is annotated NOCHECK (see Example 2-5), so changes to that
field by another session (from any application) don't prevent updating a team
document. (The same caveat, about a field that's not part of the ETAG calculation not
being ignored for the update operation, applies here.)

A duality view as a whole has its documents ETAG-checked if no column is, in effect,
annotated NOCHECK. If all columns are NOCHECK, then no document field contributes to
ETAG computation. This can improve performance, the improvement being more
significant for larger documents. Use cases where you might want to exclude a duality
view from all ETAG checking include these:

• An application has its own way of controlling concurrency, so it doesn't need a
database ETAG check.

• An application is single-threaded, so no concurrent modifications are possible.

You can use PL/SQL function DBMS_JSON_SCHEMA.describe to see whether a duality
view has its documents ETAG-checked. If so, top-level array field properties contains
the element "check".

Related Topics

• Rules for Updating Duality Views
When updating documents supported by a duality view, some rules must be
respected.

• JSON Data Stored in JSON-Relational Duality Views
Columns of JSON data type stored in tables underlying a duality view can produce
JSON values of any kind (scalar, object, array) in the documents supported by the
view. This stored JSON data can be schemaless or JSON Schema-based (to
enforce particular shapes and types of field values).

Chapter 3
Annotation (NO)CHECK, To Include/Exclude Fields for ETAG Calculation

3-4



3.3 Database Privileges Needed for Duality-View Updating
Operations

The kinds of operations an application can perform on the data in a given duality view depend
on the database privileges accorded the view owner and the database user (database
schema) with which the application connects to the database.

You can thus control which applications/users can perform which actions on which duality
views, by granting users the relevant privileges.

An application invokes database operations as a given database user. But updating
operations (including insertions and deletions) on duality views are carried out as the view
owner.

To perform the different kinds of operations on duality-view data, a user (or an application
connected as a user) needs to be granted the following privileges on the view:

• To query the data: privilege SELECT WITH GRANT OPTION
• To insert documents (rows): privilege INSERT WITH GRANT OPTION
• To delete documents (rows): privilege DELETE WITH GRANT OPTION
• To update documents (rows): privilege UPDATE WITH GRANT OPTION
In addition, the owner of the view needs the same privileges on each of the relevant tables,
that is, all tables annotated with the corresponding keyword. For example, for insertion the
view owner needs privilege INSERT WITH GRANT OPTION on all tables that are annotated in
the view definition with INSERT.

When an operation is performed on a duality view, the necessary operations on the tables
underlying the view are carried out as the view owner, regardless of which user or application
is accessing the view and requesting the operation. For this reason, those accessing the view
do not, themselves, need privileges on the underlying tables.

See also Updating Rule 1.

3.4 Rules for Updating Duality Views
When updating documents supported by a duality view, some rules must be respected.

1. If a document-updating operation (update, insertion, or deletion) is attempted, and the
required privileges are not granted to the current user or the view owner, then an error is
raised at the time of the attempt. (See Database Privileges Needed for Duality-View
Updating Operations for the relevant privileges.)

2. If an attempted document-updating operation (update, insertion, or deletion) violates any
constraints imposed on any tables underlying the duality view, then an error is raised.
This includes primary-key, unique, NOT NULL, referential-integrity, and check constraints.

3. If a document-updating operation (update, insertion, or deletion) is attempted, and the
view annotations don't allow for that operation, then an error is raised at the time of the
attempt.

4. When inserting a document into a duality view, the document must contain all fields that
both (1) contribute to the document's ETAG value and (2) correspond to columns of a
(non-root) table that are marked update-only or read-only in the view definition. In

Chapter 3
Database Privileges Needed for Duality-View Updating Operations

3-5



addition, the corresponding column data must already exist in the table. If these
conditions aren't satisfied then an error is raised.

The values of all fields that correspond to read-only columns also must match the
corresponding column values in the table. Otherwise, an error is raised.

For example, in duality view race_dv the use of the driver table is update-only
(annotated WITH NOINSERT UPDATE NODELETE). When inserting a new race
document, the document must contain the fields that correspond to driver table
columns driver_id and name, and the driver table must already contain data that
corresponds to the driver information in that document.

Similarly, if the driver table were marked read-only in view race_dv (instead of
update-only), then the driver information in the input document would need to be
the same as the existing data in the table.

5. When deleting an object that's linked to its parent with a one-to-many primary-to-
foreign-key relationship, if the object does not have annotation DELETE then it is not
cascade-deleted. Instead, the foreign key in each row of the object is set to NULL
(assuming that the foreign key does not have a non-NULLable constraint).

For example, the driver array in view team_dv is NODELETE (implicitly, since it's not
annotated DELETE). If you delete a team from view team_dv then the corresponding
row is deleted from table team.

But the corresponding rows in the driver table are not deleted. Instead, each
such row is unlinked from the deleted team by setting the value of its foreign key
column team_id to SQL NULL.

Similarly, as a result no driver documents are deleted. But their team information is
removed. For the version of the driver duality view that nests team information, the
value of field teamInfo is set to the empty object ({}). For the version of the driver
view that unnests that team information, each of the team fields, teamId and team,
is set to JSON null.

What would happen if the use of table driver in the definition of duality view
team_dv had the annotation DELETE, allowing deletion? In that case, when deleting
a given team all of its drivers would also be deleted. This would mean both
deleting those rows from the driver table and deleting all corresponding driver
documents.

6. In an update operation that replaces a complete document, all fields defined by the
view as contributing to the ETAG value (that is, all fields to which annotation CHECK
applies) must be included in the new (replacement) document. Otherwise, an error
is raised.

Note that this rule applies also to the use of Oracle SQL function json_transform
when using operator KEEP or REMOVE. If any field contributing to the ETAG value is
removed from the document then an error is raised.

7. If a duality view has an underlying table with a foreign key that references a
primary or unique key of the same view, then a document-updating operation
(update, insertion, or deletion) cannot change the value of that primary or unique
key. An attempt to do so raises an error.

8. If a document-updating operation (update, insertion, or deletion) involves updating
the same row of an underlying table then it cannot change anything in that row in
two different ways. Otherwise, an error is raised.

Chapter 3
Rules for Updating Duality Views

3-6



For example, this insertion attempt fails because the same row of the driver table (the
row with primary-key driver_id value 105) cannot have its driver name be both "George
Russell" and "Lewis Hamilton".

INSERT INTO team_dv VALUES
  ('{"_id"   : 303,
     "name"   : "Mercedes",
     "points" : 0,
     "driver" : [ {"driverId" : 105,
                   "name"     : "George Russell",
                   "points"   : 0},
                  {"driverId" : 105,
                   "name"     : "Lewis Hamilton",
                   "points"   : 0} ]}');

9. If the etag field value embedded in a document sent for an updating operation (update,
insertion, or deletion) doesn't match the current database state then an error is raised.

10. If a document-updating operation (update, insertion, or deletion) affects two or more
documents supported by the same duality view, then all changes to the data of a given
row in an underlying table must be compatible (match). Otherwise, an error is raised. For
example, for each driver this operation tries to set the name of the first race
($.race[0].name) to the driver's name ($.name).

UPDATE driver_dv
  SET data = json_transform(data,
                            SET '$.race[0].name' =
                            json_value(data, '$.name'));

ERROR at line 1:ORA-42605:
Cannot update JSON Relational Duality View 'DRIVER_DV':
cannot modify the same row of the table 'RACE' more than once.

Chapter 3
Rules for Updating Duality Views

3-7



4
Using JSON-Relational Duality Views

You can insert (create), update, delete, and query documents or parts of documents
supported by a duality view. You can list information about a duality view.

Document-centric applications typically manipulate JSON documents directly, using either
SQL/JSON functions or a client API such as Oracle Database API for MongoDB, Simple
Oracle Document Access (SODA), or Oracle REST Data Services (ORDS). Database
applications and features, such as analytics, reporting, and machine-learning, can manipulate
the same data using SQL, PL/SQL, JavaScript, or C (Oracle Call Interface).

SQL and other database code can also act directly on data in the relational tables that
underlie a duality view, just as it would act on any other relational data. This includes
modification operations. Changes to data in the underlying tables are automatically reflected
in the documents provided by the duality view. Example 4-3 illustrates this.

The opposite is also true, so acting on either the documents or the data underlying them
affects the other automatically. This reflects the duality between JSON documents and
relational data provided by a duality view.

Operations on tables that underlie a document view automatically affect documents
supported by the view, as follows:

• Insertion of a row into the root (top-level) table of a duality view inserts a new document
into the view. For example, inserting a row into the driver table inserts a driver document
into view driver_dv.

However, since table driver provides only part of the data in a driver document, only the
document fields supported by that table are populated; the other fields in the document
are missing or empty.

• Deletion of a row from the root table deletes the corresponding document from the view.

• Updating a row in the root table updates the corresponding document.

As with insertion of a row, only the document fields supported by that table data are
updated; the other fields are not changed.

Note:

An update of documents supported by a JSON-relational duality view, or of the table
data underlying them, is reported by SQL as having updated some rows of data,
even if the content of that data is not changed. This is standard SQL behavior. A
successful update operation is always reported as having updated the rows it
targets. This also reflects the fact that there can be triggers or row-transformation
operators that accompany an update operation and that, themselves, can change
the data.

Operations on duality views themselves include creating, dropping (deleting), and listing
them, as well as listing other information about them.

4-1

https://docs.oracle.com/en/database/oracle/mongodb-api/
https://docs.oracle.com/en/database/oracle/simple-oracle-document-access/index.html
https://docs.oracle.com/en/database/oracle/simple-oracle-document-access/index.html
https://docs.oracle.com/en/database/oracle/oracle-rest-data-services/


• See Car-Racing Example, Duality Views for examples of creating duality views.

• You can drop (delete) an existing duality view as you would drop any view, using
SQL command DROP VIEW.

Duality views are independent, though they typically contain documents that have
some shared data. For example, you can drop duality view team_dv without that
having any effect on duality view driver_dv. Duality views do depend on their
underlying tables, however.

Caution:

Do not drop a table that underlies a duality view, as that renders the view
unusable.

• You can use static data dictionary views to obtain information about existing duality
views. See Obtaining Information About a Duality View.

Note:

Unless called out explicitly to be otherwise:

• The examples here do not depend on each other in any way. In
particular, there is no implied sequencing among them.

• Examples here that make use of duality views use the views defined in 
Car-Racing Example, Duality Views that are defined using UNNEST: 
Example 2-5, Example 2-7, and Example 2-9.

• Examples here that make use of tables use the tables defined in Car-
Racing Example, Tables.

• Inserting Documents/Data Into Duality Views
You can insert a JSON document into a duality view directly, or you can insert data
into the tables that underlie a duality view. Examples illustrate these possibilities.

• Deleting Documents/Data From Duality Views
You can delete a JSON document from a duality view directly, or you can delete
data from the tables that underlie a duality view. Examples illustrate these
possibilities.

• Updating Documents/Data in Duality Views
You can update a JSON document in a duality view directly, or you can update
data in the tables that underlie a duality view. You can update a document by
replacing it entirely, or you can update only some of its fields. Examples illustrate
these possibilities.

• Using Optimistic Concurrency Control With Duality Views
You can use optimistic/lock-free concurrency control with duality views, writing
JSON documents or committing their updates only when other sessions haven't
modified them concurrently.

Chapter 4

4-2



• Using the System Change Number (SCN) of a JSON Document
A system change number (SCN) is a logical, internal, database time stamp. Metadata
field asof records the SCN for the moment a document was retrieved from the database.
You can use the SCN to ensure consistency when reading other data.

• Optimization of Operations on Duality-View Documents
Operations on documents supported by a duality view — in particular, queries — are
automatically rewritten as operations on the underlying table data. This optimization
includes taking advantage of indexes. Because the underlying data types are fully known,
implicit runtime type conversion can generally be avoided.

• Obtaining Information About a Duality View
You can obtain information about a duality view, its underlying tables, their columns, and
key-column links, using static data dictionary views. You can also obtain a JSON-schema
description of a duality view, which includes a description of the structure and JSON-
language types of the JSON documents it supports.

See Also:

• DROP VIEW in Oracle Database SQL Language Reference

• Product page Oracle Database API for MongoDB and book Oracle Database
API for MongoDB.

• Product page Oracle REST Data Services (ORDS) and book Oracle REST
Data Services Developer's Guide

4.1 Inserting Documents/Data Into Duality Views
You can insert a JSON document into a duality view directly, or you can insert data into the
tables that underlie a duality view. Examples illustrate these possibilities.

Note:

Unless called out explicitly to be otherwise:

• The examples here do not depend on each other in any way. In particular, there
is no implied sequencing among them.

• Examples here that make use of duality views use the views defined in Car-
Racing Example, Duality Views that are defined using UNNEST: Example 2-5, 
Example 2-7, and Example 2-9.

• Examples here that make use of tables use the tables defined in Car-Racing
Example, Tables.

Inserting data (a row) into the root table that underlies one or more duality views creates a
new document that is supported by each of those views. Only the fields of the view that are
provided by that table are present in the document — all other fields are missing.

Chapter 4
Inserting Documents/Data Into Duality Views

4-3

https://docs.oracle.com/en/database/oracle/mongodb-api/
https://docs.oracle.com/en/database/oracle/oracle-rest-data-services/


For example, inserting a row into table race inserts a document into view race_dv
(which has table race as its root table), and that document contains race-specific
fields; field result is missing, because it's derived from tables driver and
driver_race_map, not race.

When inserting a document into a duality view, its field values are automatically
converted to the required data types for the corresponding table columns. For
example, a JSON field whose value is a supported ISO 8601 date-time format is
automatically converted to a value of SQL type DATE, if DATE is the type of the
corresponding column. If the type of some field cannot be converted to the required
column type then an error is raised.

The value of a field that corresponds to a JSON-type column in an underlying table
undergoes no such type conversion. When inserting a textual JSON document you
can use the JSON type constructor with keyword EXTENDED, together with extended
objects to provide JSON-language scalar values of Oracle-specific types, such as
date. For example, you can use a textual field value such as {"$oracleDate" :
"2022-03-27"} to produce a JSON-type date value. (You can of course use the same
technique to convert textual data to a JSON-type that you insert directly into an
underlying table column.)

Tip:

To be confident that a document you insert is similar to, or compatible with,
the existing documents supported by a duality view, use the JSON schema
that describes those documents as a guide when you construct the
document. You can obtain the schema from column JSON_SCHEMA in one of
the static dictionary views *_JSON_DUALITY_VIEWS, or by using PL/SQL
function DBMS_JSON_SCHEMA.describe. See Obtaining Information About a
Duality View.

You can omit any fields you don't really care about or for which you don't
know an appropriate value. But to avoid runtime errors it's a good idea to
include all fields included in array "required" of the JSON schema.

See Also:

• JSON Data Type Constructor

• Textual JSON Objects That Represent Extended Scalar Values in Oracle
Database JSON Developer’s Guide

Example 4-1    Inserting JSON Documents into Duality Views, Providing Primary-Key Fields —
Using SQL

This example inserts three documents into view team_dv and three documents into
view race_dv. The primary-key fields, named _id, are provided explicitly.

The values of field date of the race documents here are ISO 8601 date-time strings.
They are automatically converted to SQL DATE values, which are inserted into the

Chapter 4
Inserting Documents/Data Into Duality Views

4-4



underlying race table, because the column of table race that corresponds to field date has
data type DATE.

In this example, only rudimentary, placeholder values are provided for fields/columns points
(value 0) and podium (value {}). These serve to populate the view and its tables initially,
defining the different kinds of races, but without yet recording actual race results.

Because points field/column values for individual drivers are shared between team
documents/tables and driver documents/tables, updating them in one place automatically
updates them in the other. The fields/columns happen to have the same names for these
different views, but that's irrelevant. What matters are the relations among the duality views,
not the field/column names.

Like insertions (and deletions), updates can be performed directly on duality views or on their
underlying tables (see Example 4-3).

The intention in the car-racing example is for points and podium field values to be updated
(replaced) dynamically as the result of car races. That updating is part of the presumed
application logic.

Also assumed as part of the application logic is that a driver's position in a given race
contributes to the accumulated points for that driver — the better a driver's position, the
more points accumulated. That too can be taken care of by application code. Alternatively it
can be taken care of using, for example, a BEFORE INSERT trigger on either duality view
race_dv or mapping-table driver_race_map (see Example 4-15).

-- Insert team documents into TEAM_DV, providing primary-key field _id.
INSERT INTO team_dv VALUES ('{"_id"   : 301,
                              "name"   : "Red Bull",
                              "points" : 0,
                              "driver" : [ {"driverId" : 101,
                                            "name"     : "Max Verstappen",
                                            "points"   : 0},
                                           {"driverId" : 102,
                                            "name"     : "Sergio Perez",
                                            "points"   : 0} ]}');

INSERT INTO team_dv VALUES ('{"_id"   : 302,
                              "name"   : "Ferrari",
                              "points" : 0,
                              "driver" : [ {"driverId" : 103,
                                            "name"     : "Charles Leclerc",
                                            "points"   : 0},
                                           {"driverId" : 104,
                                            "name"     : "Carlos Sainz Jr",
                                            "points"   : 0} ]}');

INSERT INTO team_dv VALUES ('{"_id"   : 303,
                              "name"   : "Mercedes",
                              "points" : 0,
                              "driver" : [ {"driverId" : 105,
                                            "name"     : "George Russell",
                                            "points"   : 0},
                                           {"driverId" : 106,
                                            "name"     : "Lewis Hamilton",
                                            "points"   : 0} ]}');

Chapter 4
Inserting Documents/Data Into Duality Views

4-5



-- Insert race documents into RACE_DV, providing primary-key field _id.
INSERT INTO race_dv VALUES ('{"_id"   : 201,
                              "name"   : "Bahrain Grand Prix",
                              "laps"   : 57,
                              "date"   : "2022-03-20T00:00:00",
                              "podium" : {}}');

INSERT INTO race_dv VALUES ('{"_id"   : 202,
                              "name"   : "Saudi Arabian Grand Prix",
                              "laps"   : 50,
                              "date"   : "2022-03-27T00:00:00",
                              "podium" : {}}');

INSERT INTO race_dv VALUES ('{"_id"   : 203,
                              "name"   : "Australian Grand Prix",
                              "laps"   : 58,
                              "date"   : "2022-04-09T00:00:00",
                              "podium" : {}}');

Example 4-2    Inserting JSON Documents into Duality Views, Providing Primary-Key Fields —
Using REST

This example uses Oracle REST Data Services (ORDS) to do the same thing as 
Example 4-1. For brevity it inserts only one document into duality view team_dv and
one document into race view race_dv. The database user (schema) that owns the
example duality views is shown here as user JANUS.

Insert a document into view team_dv:

curl --request POST \
  --url http://localhost:8080/ords/janus/team_dv/ \
  --header 'Content-Type: application/json' \
  --data '{"_id"   : 302,
           "name"   : "Ferrari",
           "points" : 0,
           "driver" : [ {"driverId" : 103,
                         "name"     : "Charles Leclerc",
                         "points"   : 0},
                        {"driverId" : 104,
                         "name"     : "Carlos Sainz Jr",
                         "points"   : 0} ]}'

Response:

201 Created

{"_id"      : 302,
 "_metadata" : {"etag" : "DD9401D853765859714A6B8176BFC564",
                "asof" : "0000000000000000"},
 "name"      : "Ferrari",
 "points"    : 0,
 "driver"    : [ {"driverId" : 103,
                  "name"     : "Charles Leclerc",

Chapter 4
Inserting Documents/Data Into Duality Views

4-6



                  "points"   : 0},
                 {"driverId" : 104,
                  "name"     : "Carlos Sainz Jr",
                  "points"   : 0}],
 "links"     : [ {"rel"  : "self",
                  "href" : "http://localhost:8080/ords/janus/team_dv/302"},
                 {"rel"  : "describedby",
                  "href" :
                   "http://localhost:8080/ords/janus/metadata-catalog/team_dv/item"},
                 {"rel"  : "collection",
                  "href" : "http://localhost:8080/ords/janus/team_dv/"} ]}

Insert a document into view race_dv:

curl --request POST \
  --url http://localhost:8080/ords/janus/race_dv/ \
  --header 'Content-Type: application/json' \
  --data '{"_id"   : 201,
           "name"   : "Bahrain Grand Prix",
           "laps"   : 57,
           "date"   : "2022-03-20T00:00:00",
           "podium" : {}}'

Response:

201 Created
{"_id"      : 201,
 "_metadata" : {"etag" : "2E8DC09543DD25DC7D588FB9734D962B",
                "asof" : "0000000000000000"},
 "name"      : "Bahrain Grand Prix",
 "laps"      : 57,
 "date"      : "2022-03-20T00:00:00",
 "podium"    : {},
 "result"    : [],
 "links"     : [ {"rel"  : "self",
                  "href" : "http://localhost:8080/ords/janus/race_dv/201"},
                 {"rel"  : "describedby",
                  "href" :
                   "http://localhost:8080/ords/janus/metadata-catalog/race_dv/item"},
                 {"rel"  : "collection",
                  "href" : "http://localhost:8080/ords/janus/race_dv/"} ]}

Chapter 4
Inserting Documents/Data Into Duality Views

4-7



Note:

For best performance, configure Oracle REST Data Services (ORDS) to
enable the metadata cache with a timeout of one second:

cache.metadata.enabled = true
cache.metadata.timeout = 1

See Configuring REST-Enabled SQL Service Settings in Oracle REST Data
Services Installation and Configuration Guide.

See Also:

Support for JSON-Relational Duality View in Oracle REST Data Services
Developer's Guide

Example 4-3    Inserting JSON Data into Tables

This example shows an alternative to inserting JSON documents into duality views. It
inserts JSON data into tables team and race.

The inserted data corresponds to only part of the associated documents — the part
that's specific to the view type. Each table has columns only for data that's not covered
by another table (the tables are normalized).

Because the table data is normalized, the table-row insertions are reflected
everywhere that data is used, including the documents supported by the views.

Here too, as in Example 4-1, the points of a team and the podium of a race are given
rudimentary (initial) values.

INSERT INTO team VALUES (301, 'Red Bull', 0);
INSERT INTO team VALUES (302, 'Ferrari',  0);
   
INSERT INTO race
  VALUES (201, 'Bahrain Grand Prix',       57, DATE '2022-03-20', '{}');
INSERT INTO race
  VALUES (202, 'Saudi Arabian Grand Prix', 50, DATE '2022-03-27', '{}');
INSERT INTO race
  VALUES (203, 'Australian Grand Prix',    58, DATE '2022-04-09', '{}');

Example 4-4    Inserting a JSON Document into a Duality View Without Providing Primary-Key
Fields — Using SQL

This example inserts a driver document into duality view driver_dv, without providing
the primary-key field (_id). The value of this field is automatically generated (because

Chapter 4
Inserting Documents/Data Into Duality Views

4-8



the underlying primary-key column is defined using INTEGER GENERATED BY DEFAULT ON NULL
AS IDENTITY). The example then prints that generated field value.

-- Insert a driver document into DRIVER_DV, without providing a primary-key
--  field (_id).  The field is provided automatically, with a
--  generated, unique numeric value.
-- SQL/JSON function json_value is used to return the value into bind
--  variable DRIVERID.
VAR driverid NUMBER;
INSERT INTO driver_dv dv VALUES ('{"name"   : "Liam Lawson",
                                   "points" : 0,
                                   "teamId" : 301,
                                   "team" : "Red Bull",
                                   "race"   : []}')
  RETURNING json_value(DATA, '$._id') INTO :driverid;

SELECT json_serialize(data PRETTY) FROM driver_dv d
  WHERE d.DATA.name = 'Liam Lawson';

{"_id"      : 7,
 "_metadata" : {"etag" : "F9D9815DFF27879F61386CFD1622B065",
                "asof" : "00000000000C20CE"},
 "name"      : "Liam Lawson",
 "points"    : 0,
 "teamId"    : 301,
 "team"      : "Red Bull",
 "race"      : []}

Example 4-5    Inserting a JSON Document into a Duality View Without Providing Primary-Key Fields —
Using REST

This example uses Oracle REST Data Services (ORDS) to do the same thing as 
Example 4-4. The database user (schema) that owns the example duality views is shown
here as user JANUS.

curl --request POST \
  --url http://localhost:8080/ords/janus/driver_dv/ \
  --header 'Content-Type: application/json' \
  --data '{"name"   : "Liam Lawson",
           "points" : 0,
           "teamId" : 301,
           "team"   : "Red Bull",
           "race"   : []}'

Response:

201 Created
{"_id"      : 7,
 "_metadata" : {"etag" : "F9EDDA58103C3A601CA3E0F49E1949C6",
                "asof" : "00000000000C20CE"},
 "name"      : "Liam Lawson",

Chapter 4
Inserting Documents/Data Into Duality Views

4-9



 "points"    : 0,
 "teamId"    : 301,
 "team"      : "Red Bull",
 "race"      : [],
 "links"     :
  [ {"rel"  : "self",
     "href" : "http://localhost:8080/ords/janus/driver_dv/23"},
    {"rel"  : "describedby",
     "href" : "http://localhost:8080/ords/janus/metadata-catalog/driver_dv/item"},
    {"rel"  : "collection",
     "href" : "http://localhost:8080/ords/janus/driver_dv/"} ]}

Note:

For best performance, configure Oracle REST Data Services (ORDS) to
enable the metadata cache with a timeout of one second:

cache.metadata.enabled = true
cache.metadata.timeout = 1

See Configuring REST-Enabled SQL Service Settings in Oracle REST Data
Services Installation and Configuration Guide.

Related Topics

• Updatable JSON-Relational Duality Views
Applications can update JSON documents supported by a duality view, if you
define the view as updatable. You can specify which kinds of updating operations
(update, insertion, and deletion) are allowed, for which document fields, how/
when, and by whom. You can also specify which fields participate in ETAG hash
values.

See Also:

Support for JSON-Relational Duality View in Oracle REST Data Services
Developer's Guide

4.2 Deleting Documents/Data From Duality Views
You can delete a JSON document from a duality view directly, or you can delete data
from the tables that underlie a duality view. Examples illustrate these possibilities.

Chapter 4
Deleting Documents/Data From Duality Views

4-10



Note:

Unless called out explicitly to be otherwise:

• The examples here do not depend on each other in any way. In particular, there
is no implied sequencing among them.

• Examples here that make use of duality views use the views defined in Car-
Racing Example, Duality Views that are defined using UNNEST: Example 2-5, 
Example 2-7, and Example 2-9.

• Examples here that make use of tables use the tables defined in Car-Racing
Example, Tables.

Deleting a row from a table that is the root (top-level) table of one or more duality views
deletes the documents that correspond to that row from those views.

Example 4-6    Deleting a JSON Document from Duality View RACE_DV — Using SQL

This example deletes the race document with _id1 value 202 from the race duality view,
race_dv. (This is one of the documents with race name Saudi Arabian GP.)

The corresponding rows are deleted from underlying tables race and driver_race_map (one
row from each table).

Nothing is deleted from the driver table, however, because in the race_dv definition table
driver is annotated with NODELETE (see Updating Rule 5.) Pretty-printing documents for
duality views race_dv and driver_dv shows the effect of the race-document deletion.

SELECT json_serialize(DATA PRETTY) FROM race_dv;
SELECT json_serialize(DATA PRETTY) FROM driver_dv;

DELETE FROM race_dv dv WHERE dv.DATA."_id".numberOnly() = 202;

SELECT json_serialize(DATA PRETTY) FROM race_dv;
SELECT json_serialize(DATA PRETTY) FROM driver_dv;

The queries before and after the deletion show that only this race document was deleted —
no driver documents were deleted:

{"_id"      : 202,
 "_metadata" : {"etag" : "7E056A845212BFDE19E0C0D0CD549EA0",
                "asof" : "00000000000C20B1"},
 "name"      : "Saudi Arabian Grand Prix",
 "laps"      : 50,
 "date"      : "2022-03-27T00:00:00",
 "podium"    : {},
 "result"    : []}

1 This example uses SQL simple dot notation. The occurrence of _id is not within a SQL/JSON path expression, so it
must be enclosed in double-quote characters ("), because of the underscore character (_).

Chapter 4
Deleting Documents/Data From Duality Views

4-11



Example 4-7    Deleting a JSON Document from Duality View RACE_DV — Using REST

This examples uses Oracle REST Data Services (ORDS) to do the same thing as 
Example 4-6. The database user (schema) that owns the example duality views is
shown here as user JANUS.

curl --request GET \
  --url http://localhost:8080/ords/janus/race_dv/
curl --request GET \
  --url http://localhost:8080/ords/janus/driver_dv/

curl --request DELETE \
  --url http://localhost:8080/ords/janus/race_dv/202

Response from DELETE:

200 OK
{"rowsDeleted" : 1}

Using a GET request on each of the duality views, race_dv and driver_dv, both before
and after the deletion shows that only this race document was deleted — no driver
documents were deleted:

{"_id"      : 202,
 "_metadata" : {"etag" : "7E056A845212BFDE19E0C0D0CD549EA0",
                "asof" : "00000000000C20B1"},
 "name"      : "Saudi Arabian Grand Prix",
 "laps"      : 50,
 "date"      : "2022-03-27T00:00:00",
 "podium"    : {},
 "result"    : [],
 "links"     : [ {"rel"  : "self",
                  "href" : "http://localhost:8080/ords/janus/race_dv/202"} ]} ],

Note:

For best performance, configure Oracle REST Data Services (ORDS) to
enable the metadata cache with a timeout of one second:

cache.metadata.enabled = true
cache.metadata.timeout = 1

See Configuring REST-Enabled SQL Service Settings in Oracle REST Data
Services Installation and Configuration Guide.

Related Topics

• Updatable JSON-Relational Duality Views
Applications can update JSON documents supported by a duality view, if you
define the view as updatable. You can specify which kinds of updating operations

Chapter 4
Deleting Documents/Data From Duality Views

4-12



(update, insertion, and deletion) are allowed, for which document fields, how/when, and
by whom. You can also specify which fields participate in ETAG hash values.

See Also:

Support for JSON-Relational Duality View in Oracle REST Data Services
Developer's Guide

4.3 Updating Documents/Data in Duality Views
You can update a JSON document in a duality view directly, or you can update data in the
tables that underlie a duality view. You can update a document by replacing it entirely, or you
can update only some of its fields. Examples illustrate these possibilities.

Note:

Unless called out explicitly to be otherwise:

• The examples here do not depend on each other in any way. In particular, there
is no implied sequencing among them.

• Examples here that make use of duality views use the views defined in Car-
Racing Example, Duality Views that are defined using UNNEST: Example 2-5, 
Example 2-7, and Example 2-9.

• Examples here that make use of tables use the tables defined in Car-Racing
Example, Tables.

Note:

In a general sense, "updating" includes update, insert, and delete operations. This
topic is only about update operations, which modify one or more existing documents
or their underlying tables. Insert and delete operations are covered in topics 
Inserting Documents/Data Into Duality Views and Deleting Documents/Data From
Duality Views, respectively.

An update operation on a duality view can update (that is, replace) complete documents, or it
can update the values of one or more fields of existing objects. An update to an array-valued
field can include the insertion or deletion of array elements.

An update operation cannot add or remove members (field–value pairs) of any object that's
explicitly defined by a duality view. For the same reason, an update can't add or remove
objects, other than what the view definition provides for.

Any such update would represent a change in the view definition, which specifies the
structure and typing of the documents it supports. If you need to make this kind of change
then you must redefine the view; you can do that using CREATE OR REPLACE JSON
RELATIONAL DUALITY VIEW.

Chapter 4
Updating Documents/Data in Duality Views

4-13



On the other hand, a JSON value defined by an underlying column that's of data type
JSON is, by default, unconstrained — any changes to it are allowed, as long as the
resulting JSON is well-formed. Values that correspond to a JSON-type column in an
underlying table are constrained only by a JSON schema, if any, that applies to that
column.

See Also:

JSON Schema in Oracle Database JSON Developer’s Guide

Updating a row of a table that underlies one or more duality views updates all
documents (supported by any duality view) that have data corresponding to (that is,
taken from) data in that table row. (Other data in the updated documents is
unchanged.)

Note:

An update of documents supported by a JSON-relational duality view, or of
the table data underlying them, is reported by SQL as having updated some
rows of data, even if the content of that data is not changed. This is standard
SQL behavior. A successful update operation is always reported as having
updated the rows it targets. This also reflects the fact that there can be
triggers or row-transformation operators that accompany an update operation
and that, themselves, can change the data.

Note:

In general, if you produce SQL character data of a type other than
NVARCHAR2, NCLOB, and NCHAR from a JSON string, and if the character set of
that target data type is not Unicode-based, then the conversion can undergo
a lossy character-set conversion for characters that can't be represented in
the character set of that SQL type.

Chapter 4
Updating Documents/Data in Duality Views

4-14



Tip:

Trying to update a document without first reading it from the database can result in
several problems, including lost writes and runtime errors due to missing or invalid
fields.

When updating, follow these steps:

1. Fetch the document from the database.

2. Make changes to a local copy of the document.

3. Try to save the updated local copy to the database.

4. If the update attempt (step 3) fails because of a concurrent modification or an
ETAG mismatch, then repeat steps 1-3.

See also Using Optimistic Concurrency Control With Duality Views.

Example 4-8    Updating an Entire JSON Document in a Duality View — Using SQL

This example replaces the race document in duality view race_dv whose primary-key field,
_id, has value 201. It uses SQL operation UPDATE to do this, setting that row of the single
JSON column (DATA) of the view to the new value.

It selects and serializes/pretty-prints the document before and after the update operation
using SQL/JSON function json_value and Oracle SQL function json_serialize, to show the
change. The result of serialization is shown only partially here.

The new, replacement JSON document includes the results of the race, which includes the
race date, the podium values (top-three placements), and the result values for each driver.

SELECT json_serialize(DATA PRETTY)
  FROM race_dv WHERE json_value(DATA, '$._id.numberOnly()') = 201;

UPDATE race_dv
  SET DATA = ('{"_id"      : 201,
                "_metadata" : {"etag" : "2E8DC09543DD25DC7D588FB9734D962B"},
                "name"      : "Bahrain Grand Prix",
                "laps"      : 57,
                "date"      : "2022-03-20T00:00:00",
                "podium"    : {"winner"         : {"name" : "Charles Leclerc",
                                                   "time" : "01:37:33.584"},
                               "firstRunnerUp"  : {"name" : "Carlos Sainz Jr",
                                                   "time" : "01:37:39.182"},
                               "secondRunnerUp" : {"name" : "Lewis Hamilton",
                                                   "time" : "01:37:43.259"}},
                "result"    : [ {"driverRaceMapId" : 3,
                                 "position"        : 1,
                                 "driverInfo"      :
                                   {"driverId" : 103,
                                    "name"     : "Charles Leclerc"}},
                                {"driverRaceMapId" : 4,
                                 "position"        : 2,
                                 "driverInfo"      :
                                   {"driverId" : 104,

Chapter 4
Updating Documents/Data in Duality Views

4-15



                                    "name"     : "Carlos Sainz Jr"}},
                                {"driverRaceMapId" : 9,
                                 "position"        : 3,
                                 "driverInfo"      :
                                   {"driverId" : 106,
                                   "name"      : "Lewis Hamilton"}},
                                {"driverRaceMapId" : 10,
                                 "position"        : 4,
                                 "driverInfo"      :
                                   {"driverId" : 105,
                                    "name"     : "George Russell"}} ]}')
    WHERE json_value(DATA, '$._id.numberOnly()') = 201;

COMMIT;

SELECT json_serialize(DATA PRETTY)
  FROM race_dv WHERE json_value(DATA, '$._id.numberOnly()') = 201;

Example 4-9    Updating an Entire JSON Document in a Duality View — Using REST

This examples uses Oracle REST Data Services (ORDS) to do the same thing as 
Example 4-8. The database user (schema) that owns the example duality views is
shown here as user JANUS.

curl --request PUT \
  --url http://localhost:8080/ords/janus/race_dv/201 \
  --header 'Content-Type: application/json' \
  --data '{"_id"      : 201,
           "_metadata" : {"etag":"2E8DC09543DD25DC7D588FB9734D962B"},
           "name"      : "Bahrain Grand Prix",
           "laps"      : 57,
           "date"      : "2022-03-20T00:00:00",
           "podium"    : {"winner"         : {"name" : "Charles Leclerc",
                          "time"           : "01:37:33.584"},
                          "firstRunnerUp"  : {"name" : "Carlos Sainz Jr",
                                              "time" : "01:37:39.182"},
                          "secondRunnerUp" : {"name" : "Lewis Hamilton",
                                              "time" : "01:37:43.259"}},
           "result"    : [ {"driverRaceMapId" : 3,
                            "position"        : 1,
                            "driverInfo"      : {"driverId" : 103,
                                                 "name"     : "Charles Leclerc"}},
                           {"driverRaceMapId" : 4,
                            "position"        : 2,
                            "driverInfo"      : {"driverId" : 104,
                                                 "name"     : "Carlos Sainz Jr"}},
                           {"driverRaceMapId" : 9,
                            "position"        : 3,
                            "driverInfo"      : {"driverId" : 106,
                                                 "name"     : "Lewis Hamilton"}},
                           {"driverRaceMapId" : 10,
                            "position"        : 4,
                            "driverInfo"      : {"driverId" : 105,
                                                 "name"     : "George Russell"}} ]}'

Chapter 4
Updating Documents/Data in Duality Views

4-16



Response:

200 OK
{"_id"      : 201,
 "name"      : "Bahrain Grand Prix",
 "laps"      : 57,
 "date"      : "2022-03-20T00:00:00",
 "podium"    : {"winner"         : {"name": "Charles Leclerc",
                                    "time": "01:37:33.584"},
                ...},
 "result"    : [ {"driverRaceMapId" : 3, ...} ],
 ...}

Note:

For best performance, configure Oracle REST Data Services (ORDS) to enable the
metadata cache with a timeout of one second:

cache.metadata.enabled = true
cache.metadata.timeout = 1

See Configuring REST-Enabled SQL Service Settings in Oracle REST Data
Services Installation and Configuration Guide.

See Also:

Support for JSON-Relational Duality View in Oracle REST Data Services
Developer's Guide

Example 4-10    Updating Part of a JSON Document in a Duality View

This example replaces the value of field name of each race document in duality view race_dv
whose field name matches the LIKE pattern Bahr%. It uses SQL operation UPDATE and Oracle
SQL function json_transform to do this. The new, replacement document is the same as the
one replaced, except for the value of field name.

Operation SET of function json_transform is used to perform the partial-document update.

The example selects and serializes/pretty-prints the documents before and after the update
operation using SQL/JSON function json_value and Oracle SQL function json_serialize.
The result of serialization is shown only partially here, and in the car-racing example as a
whole there is only one document with the matching race name.

SELECT json_serialize(DATA PRETTY)
  FROM race_dv WHERE json_value(DATA, '$.name') LIKE 'Bahr%';

UPDATE race_dv dv
  SET DATA = json_transform(DATA, SET '$.name' = 'Blue Air Bahrain Grand Prix')

Chapter 4
Updating Documents/Data in Duality Views

4-17



    WHERE dv.DATA.name LIKE 'Bahr%';
 
COMMIT;

SELECT json_serialize(DATA PRETTY)
  FROM race_dv WHERE json_value(DATA, '$.name') LIKE 'Bahr%';

Note that replacing the value of an existing field applies also to fields, such as field
podium of view race_dv, which correspond to an underlying table column of data-type
JSON.

Note:

Field etag is not passed as input when doing a partial-document update, so
no ETAG-value comparison is performed by the database in such cases.
This means that you cannot use optimistic concurrency control for partial-
document updates.

Example 4-11    Updating Interrelated JSON Documents — Using SQL

Driver Charles Leclerc belongs to team Ferrari, and driver George Russell belongs to
team Mercedes. This example swaps these two drivers between the two teams, by
updating the Mercedes and Ferrari team documents.

Because driver information is shared between team documents and driver documents,
field teamID of the driver documents for those two drivers automatically gets updated
appropriately when the team documents are updated.

Alternatively, if it were allowed then we could update the driver documents for the two
drivers, to change the value of teamId. That would simultaneously update the two
team documents. However, the definition of view driver_dv disallows making any
changes to fields that are supported by table team. Trying to do that raises an error, as
shown in Example 4-13.

-- Update (replace) entire team documents for teams Mercedes and Ferrari,
-- to swap drivers Charles Leclerc and George Russell between the teams.
-- That is, redefine each team to include the new set of drivers. 
UPDATE team_dv dv
  SET DATA = ('{"_id"       : 303,
                "_metadata" : {"etag" : "039A7874ACEE6B6709E06E42E4DC6355"},
                "name"      : "Mercedes",
                "points"    : 40,
                "driver"    : [ {"driverId" : 106,
                                 "name"     : "Lewis Hamilton",
                                 "points"   : 15},
                                {"driverId" : 103,
                                 "name"     : "Charles Leclerc",
                                 "points"   : 25} ]}')
    WHERE dv.DATA.name LIKE 'Mercedes%';

UPDATE team_dv dv
  SET DATA = ('{"_id"       : 302,

Chapter 4
Updating Documents/Data in Duality Views

4-18



                "_metadata" : {"etag" : "DA69DD103E8BAE95A0C09811B7EC9628"},
                "name"      : "Ferrari",
                "points"    : 30,
                "driver"    : [ {"driverId" : 105,
                                 "name"     : "George Russell",
                                 "points"   : 12},
                                {"driverId" : 104,
                                 "name"     : "Carlos Sainz Jr",
                                 "points"   : 18} ]}')
    WHERE dv.DATA.name LIKE 'Ferrari%';

COMMIT;

-- Show that the driver documents reflect the change of team
-- membership made by updating the team documents.
SELECT json_serialize(DATA PRETTY) FROM driver_dv dv
  WHERE dv.DATA.name LIKE 'Charles Leclerc%';

SELECT json_serialize(DATA PRETTY) FROM driver_dv dv
  WHERE dv.DATA.name LIKE 'George Russell%';

Example 4-12    Updating Interrelated JSON Documents — Using REST

This examples uses Oracle REST Data Services (ORDS) to do the same thing as 
Example 4-11. It updates teams Mercedes and Ferrari by doing PUT operations on
team_dv/303 and team_dv/302, respectively. The database user (schema) that owns the
example duality views is shown here as user JANUS.

curl --request PUT \
  --url http://localhost:8080/ords/janus/team_dv/303 \
  --header 'Content-Type: application/json' \
  --data '{"_id"       : 303,
           "_metadata" : {"etag":"438EDE8A9BA06008C4DE9FA67FD856B4"},
           "name"      : "Mercedes",
           "points"    : 40,
           "driver"    : [ {"driverId" : 106,
                            "name"     : "Lewis Hamilton",
                            "points"   : 15},
                           {"driverId" : 103,
                            "name"     : "Charles Leclerc",
                            "points"   : 25} ]}'

You can use GET operations to check that the driver documents reflect the change of team
membership made by updating the team documents. The URLs for this are encoded versions
of these:

• http://localhost:8080/ords/janus/driver_dv/?q={"name":{"$eq":"Charles
Leclerc"}}

Chapter 4
Updating Documents/Data in Duality Views

4-19



• http://localhost:8080/ords/janus/driver_dv/?q={"name":{"$eq":"George
Russell"}}

curl --request GET \
  --url 'http://localhost:8080/ords/janus/driver_dv/?
q=%7B%22name%22%3A%7B%22%24eq%22%3A%22Charles%20Leclerc%22%7D%7D'

Response:

200 OK
{"items" : [ {"_id"    : 103,
              "name"   : "Charles Leclerc",
              "points" : 25,
              "teamId" : 303,
              "team"   : "Mercedes",...} ],
 ...)

curl --request GET \
  --url 'http://localhost:8080/ords/janus/driver_dv/?
q=%7B%22name%22%3A%7B%22%24eq%22%3A%22George%20Russell%22%7D%7D'

Response:

200 OK
{"items" : [ {"_id"    : 105,
              "name"   : "George Russell",
              "points" : 12,
              "teamId" : 302,
              "team"   : "Ferrari",...} ],
 ...)

Note:

For best performance, configure Oracle REST Data Services (ORDS) to
enable the metadata cache with a timeout of one second:

cache.metadata.enabled = true
cache.metadata.timeout = 1

See Configuring REST-Enabled SQL Service Settings in Oracle REST Data
Services Installation and Configuration Guide.

See Also:

Support for JSON-Relational Duality View in Oracle REST Data Services
Developer's Guide

Chapter 4
Updating Documents/Data in Duality Views

4-20



Example 4-13    Attempting a Disallowed Updating Operation Raises an Error — Using SQL

This example tries to update a field for which the duality view disallows updating, raising an
error. (Similar behavior occurs when attempting disallowed insert and delete operations.)

The example tries to change the team of driver Charles Leclerc to team Ferrari, using view
driver_dv. This violates the definition of this part of that view, which disallows updates to any
fields whose underlying table is team:

(SELECT JSON {'_id' : t.team_id,
              'team'   : t.name WITH NOCHECK}
   FROM team t WITH NOINSERT NOUPDATE NODELETE

UPDATE driver_dv dv
  SET DATA = ('{"_id"       : 103,
                "_metadata" : {"etag" : "E3ACA7412C1D8F95D052CD7D6A3E90C9"},
                "name"      : "Charles Leclerc",
                "points"    : 25,
                "teamId"    : 303,
                "team"      : "Ferrari",
                "race"      : [ {"driverRaceMapId" : 3,
                                 "raceId"          : 201,
                                 "name"            : "Bahrain Grand Prix",
                                 "finalPosition"   : 1} ]}')
  WHERE dv.DATA._id = 103;

UPDATE driver_dv dv
*
ERROR at line 1:
ORA-40940: Cannot update field 'team' corresponding to column 'NAME' of table
'TEAM' in JSON Relational Duality View 'DRIVER_DV': Missing UPDATE annotation
or NOUPDATE annotation specified.

Note that the error message refers to column NAME of table TEAM.

Example 4-14    Attempting a Disallowed Updating Operation Raises an Error — Using
REST

This examples uses Oracle REST Data Services (ORDS) to do the same thing as 
Example 4-13. The database user (schema) that owns the example duality views is shown
here as user JANUS.

curl --request PUT \
  --url http://localhost:8080/ords/janus/driver_dv/103 \
  --header 'Accept: application/json' \
  --header 'Content-Type: application/json' \
  --data '{"_id"       : 103,
           "_metadata" : {"etag":"F7D1270E63DDB44D81DA5C42B1516A00"},
           "name"      : "Charles Leclerc",
           "points"    : 25,
           "teamId"    : 303,
           "team"      : "Ferrari",
           "race"      : [ {"driverRaceMapId" : 3,

Chapter 4
Updating Documents/Data in Duality Views

4-21



                            "raceId"          : 201,
                            "name"            : "Bahrain Grand Prix",
                            "finalPosition"   : 1} ]}'

Response:

HTTP/1.1 412 Precondition Failed
{
       "code": "PredconditionFailed",
    "message": "Predcondition Failed",
       "type": "tag:oracle.com,2020:error/PredconditionFailed",
   "instance": "tag:oracle.com,2020:ecid/LVm-2DOIAFUkHzscNzznRg"
}

Note:

For best performance, configure Oracle REST Data Services (ORDS) to
enable the metadata cache with a timeout of one second:

cache.metadata.enabled = true
cache.metadata.timeout = 1

See Configuring REST-Enabled SQL Service Settings in Oracle REST Data
Services Installation and Configuration Guide.

See Also:

Support for JSON-Relational Duality View in Oracle REST Data Services
Developer's Guide

Example 4-15    Using a Trigger To Update Driver Points Based On Car-Race
Position

Part of the car-racing application logic is to dynamically increment the accumulated
points for each driver in a race by the driver's position in that race.

An alternative to implementing this logic using application code is to define it as part of
the definition of the application data, using, for example, a BEFORE INSERT trigger on
duality view race_dv or on mapping-table driver_race_map. This example does the
latter.

Each row of table driver_race_map is processed when the trigger fires, which is just
before each insert of data into the table. When a row is processed, pseudorecord NEW
(referenced as :NEW) has the new value for the row. For example, :NEW.position is
the new value of the driver's position in the given race.

CREATE OR REPLACE TRIGGER driver_race_map_trigger
  BEFORE INSERT ON driver_race_map

Chapter 4
Updating Documents/Data in Duality Views

4-22



  FOR EACH ROW
  DECLARE
    v_points  INTEGER;
    v_team_id INTEGER;
BEGIN
  SELECT team_id INTO v_team_id FROM driver
    WHERE driver_id = :NEW.driver_id;
  IF    :NEW.position = 1 THEN
    v_points := 25;
  ELSIF :NEW.position = 2 THEN
    v_points := 18;
  ELSIF :NEW.position = 3 THEN
    v_points := 15;
  ELSIF :NEW.position = 4 THEN
    v_points := 12;
  ELSIF :NEW.position = 5 THEN
    v_points := 10;
  ELSIF :NEW.position = 6 THEN
    v_points := 8;
  ELSIF :NEW.position = 7 THEN
    v_points := 6;
  ELSIF :NEW.position = 8 THEN
    v_points := 4;
  ELSIF :NEW.position = 9 THEN
    v_points := 2;
  ELSIF :NEW.position = 10 THEN
    v_points := 1;
  ELSE
    v_points := 0;
  END IF;

  UPDATE driver SET points = points + v_points
    WHERE driver_id = :NEW.driver_id;
  UPDATE team   SET points = points + v_points
    WHERE team_id = v_team_id;
END;
/

• Trigger Considerations When Using Duality Views
Triggers that modify data in tables underlying duality views can be problematic.
Guidelines are presented for avoiding problems. As a general rule, in a trigger body avoid
changing values of primary-key columns and columns that contribute to the ETAG value
of a duality view.

Related Topics

• Updatable JSON-Relational Duality Views
Applications can update JSON documents supported by a duality view, if you define the
view as updatable. You can specify which kinds of updating operations (update, insertion,
and deletion) are allowed, for which document fields, how/when, and by whom. You can
also specify which fields participate in ETAG hash values.

Chapter 4
Updating Documents/Data in Duality Views

4-23



See Also:

• DML Triggers in Oracle Database PL/SQL Language Reference

• Correlation Names and Pseudorecords in Oracle Database PL/SQL
Language Reference

4.3.1 Trigger Considerations When Using Duality Views
Triggers that modify data in tables underlying duality views can be problematic.
Guidelines are presented for avoiding problems. As a general rule, in a trigger body
avoid changing values of primary-key columns and columns that contribute to the
ETAG value of a duality view.

For any trigger that you create on a table underlying a duality view, Oracle
recommends the following. Otherwise, although no error is raised when you create the
trigger, an error can be raised when it is fired. There are two problematic cases to
consider. ("firing <DML>" here refers to a DML statement that results in the trigger
being fired.)

• Case 1: The trigger body changes the value of a primary-key column, using
correlation name (pseudorecord) :NEW. For example, a trigger body
contains :NEW.zipcode = 94065.

Do not do this unless the firing <DML> sets the column value to NULL. Primary-key
values must never be changed (except from a NULL value).

• Case 2 (rare): The trigger body changes the value of a column in a different table
from the table being updated by the firing <DML>, and that column contributes to
the ETAG value of a duality view — any duality view.

For example:

– The firing <DML> is UPDATE emp SET zipcode = '94065' WHERE emp_id =
'40295';.

– The trigger body contains the DML statement UPDATE dept SET budget =
10000 WHERE dept_id = '592';.

– Table dept underlies some duality view, and column dept.budget contributes
to the ETAG value of that duality view.

This is because updating such a column changes the ETAG value of any
documents containing a field corresponding to the column. This interferes with
concurrency control, which uses such values to guard against concurrent
modification. An ETAG change from a trigger is indistinguishable from an ETAG
change from another, concurrent session.

Chapter 4
Updating Documents/Data in Duality Views

4-24



See Also:

• DML Triggers in Oracle Database PL/SQL Language Reference

• Correlation Names and Pseudorecords in Oracle Database PL/SQL Language
Reference

4.4 Using Optimistic Concurrency Control With Duality Views
You can use optimistic/lock-free concurrency control with duality views, writing JSON
documents or committing their updates only when other sessions haven't modified them
concurrently.

Optimistic concurrency control at the document level uses embedded ETAG values in field
etag, which is in the object that is the value of field _metadata.

Note:

Unless called out explicitly to be otherwise:

• The examples here do not depend on each other in any way. In particular, there
is no implied sequencing among them.

• Examples here that make use of duality views use the views defined in Car-
Racing Example, Duality Views that are defined using UNNEST: Example 2-5, 
Example 2-7, and Example 2-9.

• Examples here that make use of tables use the tables defined in Car-Racing
Example, Tables.

Document-centric applications sometimes use optimistic concurrency control to prevent lost
updates, that is, to manage the problem of multiple database sessions interfering with each
other by modifying data they use commonly.

Optimistic concurrency for documents is based on the idea that, when trying to persist (write)
a modified document, the currently persisted document content is checked against the
content to which the desired modification was applied (locally). That is, the current persistent
state/version of the content is compared with the app's record of the persisted content as last
read.

If the two differ, that means that the content last read is stale. The application then retrieves
the last-persisted content, uses that as the new starting point for modification — and tries to
write the newly modified document. Writing succeeds only when the content last read by the
app is the same as the currently persisted content.

This approach generally provides for high levels of concurrency, with advantages for
interactive applications (no human wait time), mobile disconnected apps (write attempts using
stale documents are canceled), and document caching (write attempts using stale caches are
canceled).

Chapter 4
Using Optimistic Concurrency Control With Duality Views

4-25

https://en.wikipedia.org/wiki/Optimistic_concurrency_control
https://en.wikipedia.org/wiki/Concurrency_control
https://en.wikipedia.org/wiki/Concurrency_control


The lower the likelihood of concurrent database operations on the same data, the
greater the efficacy of optimistic concurrency. If there is a great deal of contention for
the same data then you might need to use a different concurrency-control technique.

In a nutshell, this is the general technique you use in application code to implement
optimistic concurrency:

1. Read some data to be modified. From that read, record a local representation of
the unmodified state of the data (its persistent, last-committed state).

2. Modify the local copy of the data.

3. Write (persist) the modified data only if the now-current persistent state is the
same as the state that was recorded.

In other words: you ensure that the data is still unmodified, before persisting the
modification. If the data was modified since the last read then you try again, repeating
steps 1–3.

For a JSON document supported by a duality view, you do this by checking the
document's etag field, which is in the object that is the value of top-level field
_metadata.

The ETAG value in field etag records the document content that you want checked for
optimistic concurrency control.

By default, it includes all of the document content per se, that is, the document
payload. Field _metadata (whose value includes field etag) is not part of the payload;
it is always excluded from the ETAG calculation.

In addition to field metadata, you can exclude selected payload fields from ETAG
calculation — data whose modification you decide is unimportant to concurrency
control. Changes to that data since it was last read by your app then won't prevent an
updating operation. (In relational terms this is like not locking specific columns within a
row that is otherwise locked.)

Document content that corresponds to columns governed by a NOCHECK annotation in a
duality-view definition does not participate in the calculation of the ETAG value of
documents supported by that view. All other content participates in the calculation. The
ETAG value is based only on the underlying table columns that are (implicitly or
explicitly) marked CHECK. See Annotation (NO)CHECK, To Include/Exclude Fields for
ETAG Calculation.

Here's an example of a race document, showing field _metadata, with its etag field,
followed by the document payload. See Car-Racing Example, Duality Views for more
information about document metadata.

{"_metadata" : {"etag" : "E43B9872FC26C6BB74922C74F7EF73DC",
                         "asof" : "00000000000C20BA"},
 "_id" : 201, "name" : "Bahrain Grand Prix", ...}

Oracle ETAG concurrency control is thus value-based, or content-based. Conflicting
updates are detected by examining, in effect, the content of the data itself.

• Read/get operations automatically update field etag, which records the current
persistent state of the CHECKable document content as an HTTP ETAG hash value.

• Write/put operations automatically reject a document if its etag value doesn't
match that of the current persistent (last-committed) data. That is, Oracle

Chapter 4
Using Optimistic Concurrency Control With Duality Views

4-26

https://en.wikipedia.org/wiki/HTTP_ETag


Database raises an error if the data has been modified since your last read, so your
application need only check for a write error to decide whether to repeat steps 1–3.

Figure 4-1 illustrates the process.

Figure 4-1    Optimistic Concurrency Control Process

Application Database

2
Change

1
GET

PUT

3

 ifSTOP

ETAG

mismatch

etag:
E43B9....

etag:
E43B9....

Basing concurrency control on the actual persisted data/content is more powerful and more
reliable than using locks or surrogate information such as document version numbers and
timestamps.

Because they are value-based, Oracle ETAGs automatically synchronize updates to data in
different documents. And they automatically ensure consistency between document updates
and direct updates to underlying tables — document APIs and SQL applications can update
the same data concurrently.

Steps 2 (modify locally) and 3 (write) are actually combined. When you provide the modified
document for an update operation you include the ETAG value returned by a read operation,
as the value of modified document's etag field.

An attempted update operation fails if the current content of the document in the database is
different from that etag field value, because it means that something has changed the
document in the database since you last read it. If the operation fails, then you try again: read
again to get the latest ETAG value, then try again to update using that ETAG value in field
etag.

Chapter 4
Using Optimistic Concurrency Control With Duality Views

4-27



For example, suppose that two different database sessions, S1 and S2, update the
same document, perhaps concurrently, for the race named Bahrain Grand Prix
(_id=201), as follows:

• Session S1 performs the update of Example 4-8 or Example 4-9, filling in the race
results (fields laps, date, podium and results).

• Session S2 performs the update of Example 4-10, which renames the race to Blue
Air Bahrain Grand Prix.

Each session can use optimistic concurrency for its update operations, to ensure that
what it modifies is the latest document content, by repeating the following two steps
until the update operation (step 2) succeeds, and then COMMIT the change.

1. Read (select) the document. The value of field etag of the retrieved document
encodes the current (CHECKable) content of the document in the database.

Example 4-16 and Example 4-17 illustrate this.

2. Try to update the document, using the modified content but with field etag as
retrieved in step 1.

For session S1, the update operation is Example 4-8 or Example 4-9. For session
S2, it is Example 4-10.

Failure of an update operation because the ETAG value doesn't match the current
persistent (last-committed) state of the document raises an error.

Here is an example of such an error from SQL:

UPDATE race_dv
*
ERROR at line 1:
ORA-42699: Cannot update JSON Relational Duality View 'RACE_DV': The ETAG of
document with ID 'FB03C2030200' in the database did not match the ETAG passed
in.

Here is an example of such an error from REST. The ETAG value provided in the If-
Match header was not the same as what is in the race document.

Response: 412 Precondition Failed

{"code"     : "PredconditionFailed",
 "message"  : "Predcondition Failed",
 "type"     : "tag:oracle.com,2020:error/PredconditionFailed",
 "instance" : "tag:oracle.com,2020:ecid/y2TAT5WW9pLZDNu1icwHKA"}

If multiple operations act concurrently on two documents that have content
corresponding to the same underlying table data, and if that content participates in the
ETAG calculation for its document, then at most one of the operations can succeed.
Because of this an error is raised whenever an attempt to concurrently modify the
same underlying data is detected. The error message tells you that a conflicting
operation was detected, and if possible it tells you the document field for which the
conflict was detected.

Chapter 4
Using Optimistic Concurrency Control With Duality Views

4-28



JSON-relational duality means you can also use ETAGs with table data, for lock-free row
updates using SQL. To do that, use function SYS_ROW_ETAG, to obtain the current state of a
given set of columns in a table row as an ETAG hash value.

Function SYS_ROW_ETAG calculates the ETAG value for a row using only the values of
specified columns in the row: you pass it the names of all columns that you want to be sure
no other session tries to update concurrently. This includes the columns that the current
session intends to update, but also any other columns on whose value that updating
operation logically depends for your application. (The order in which you pass the columns to
SYS_ROW_ETAG as arguments is irrelevant.)

The example here supposes that two different database sessions, S3 and S4, update the
same race table data, perhaps concurrently, for the race whose _id is 201, as follows:

• Session S3 tries to update column podium, to publish the podium values for the race.

• Session S4 tries to update column name, to rename the race to Blue Air Bahrain Grand
Prix.

Each of the sessions could use optimistic concurrency control to ensure that it updates the
given row without interference. For that, each would (1) obtain the current ETAG value for the
row it wants to update, and then (2) attempt the update, passing that ETAG value. If the
operation failed then it would repeat those steps — it would try again with a fresh ETAG
value, until the update succeeded (at which point it would commit the update).

Example 4-16    Obtain the Current ETAG Value for a Race Document From Field etag — Using SQL

This example selects the document for the race with _id 201. It serializes the native binary
JSON-type data to text, and pretty-prints it. The ETAG value, in field etag of the object that is
the value of top-level field _metadata, encodes the current content of the document.

You use that etag field and its value in the modified document that you provide to an update
operation.

SELECT json_serialize(DATA PRETTY)
  FROM race_dv WHERE json_value(DATA, '$._id,numberOnly()') = 201;

JSON_SERIALIZE(DATAPRETTY)
--------------------------
{ 
  "_metadata" :
  { "etag" : "E43B9872FC26C6BB74922C74F7EF73DC",
    "asof" : "00000000000C20BA"
  },
  "_id" : 201,
  "name" : "Bahrain Grand Prix",
  "laps" : 57,
  "date" : "2022-03-20T00:00:00",
  "podium" :
  {
  },
  "result" :
  [
  ]
}
1 row selected.

Chapter 4
Using Optimistic Concurrency Control With Duality Views

4-29



Example 4-17    Obtain the Current ETAG Value for a Race Document From Field etag — Using
REST

This examples uses Oracle REST Data Services (ORDS) to do the same thing as 
Example 4-16. The database user (schema) that owns the example duality views is
shown here as user JANUS.

curl --request GET \
  --url http://localhost:8080/ords/janus/race_dv/201

Response:

{"_id"    : 201,
 "name"      : "Bahrain Grand Prix",
 "laps"      : 57,
 "date"      : "2022-03-20T00:00:00",
 ...
 "_metadata" : {"etag": "20F7D9F0C69AC5F959DCA819F9116848",
                "asof": "0000000000000000"},
 "links"     : [ {"rel": "self",
                  "href": "http://localhost:8080/ords/janus/race_dv/201"},
                 {"rel": "describedby",
                  "href": "http://localhost:8080/ords/janus/metadata-catalog/race_dv/
item"},
                 {"rel": "collection",
                  "href": "http://localhost:8080/ords/janus/race_dv/"} ]}

Note:

For best performance, configure Oracle REST Data Services (ORDS) to
enable the metadata cache with a timeout of one second:

cache.metadata.enabled = true
cache.metadata.timeout = 1

See Configuring REST-Enabled SQL Service Settings in Oracle REST Data
Services Installation and Configuration Guide.

Example 4-18    Using Function SYS_ROW_ETAG To Optimistically Control Concurrent Table
Updates

Two database sessions, S3 and S4, try to update the same row of table race: the row
where column race_id has value 201.

For simplicity, we show optimistic concurrency control only for session S3 here; for
session S4 we show just a successful update operation for column name.

In this scenario:

1. Session S3 passes columns name, race_date, and podium to function
SYS_ROW_ETAG, under the assumption that (for whatever reason) while updating

Chapter 4
Using Optimistic Concurrency Control With Duality Views

4-30



column podium, S3 wants to prevent other sessions from changing any of columns name,
race_date, and podium.

2. Session S4 updates column name, and commits that update.

3. S3 tries to update column podium, passing the ETAG value it obtained. Because of S4's
update of the same row, this attempt fails.

4. S3 tries again to update the row, using a fresh ETAG value. This attempt succeeds, and
S3 commits the change.

-- S3 gets ETAG based on columns name, race_date, and podium.
SELECT SYS_ROW_ETAG(name, race_date, podium)
  FROM race WHERE race_id = 201;

SYS_ROW_ETAG(NAME,RACE_DATE,PODIUM)
-----------------------------------
201FC3BA2EA5E94AA7D44D958873039D

-- S4 successfully updates column name of the same row.
UPDATE race SET name = 'Blue Air Bahrain Grand Prix'
  WHERE race_id = 201;

1 row updated.

-- S3 unsuccessfully tries to update column podium.
--    It passes the ETAG value, to ensure it's OK to update.
UPDATE race SET podium = 
                '{"winner"         : {"name" : "Charles Leclerc",
                                      "time" : "01:37:33.584"},
                  "firstRunnerUp"  : {"name" : "Carlos Sainz Jr",
                                      "time" : "01:37:39.182"},
                  "secondRunnerUp" : {"name" : "Lewis Hamilton",
                                      "time" : "01:37:43.259"}}'
  WHERE race_id = 201

Chapter 4
Using Optimistic Concurrency Control With Duality Views

4-31



    AND SYS_ROW_ETAG(name, race_date, podium) =
          '201FC3BA2EA5E94AA7D44D958873039D';

0 rows updated.

-- S4 commits its update.
COMMIT;

Commit complete.

-- S3 gets a fresh ETAG value, and then tries again to update.
SELECT SYS_ROW_ETAG(name, race_date, podium)
  FROM race WHERE race_id = 201;

SYS_ROW_ETAG(NAME,RACE_DATE,PODIUM)
-----------------------------------
E847D5225C7F7024A25A0B53A275642A

UPDATE race SET podium = 
                '{"winner"         : {"name" : "Charles Leclerc",
                                      "time" : "01:37:33.584"},
                  "firstRunnerUp"  : {"name" : "Carlos Sainz Jr",
                                      "time" : "01:37:39.182"},
                  "secondRunnerUp" : {"name" : "Lewis Hamilton",
                                      "time" : "01:37:43.259"}}'
  WHERE race_id = 201
    AND SYS_ROW_ETAG(name, race_date, podium) =
          'E847D5225C7F7024A25A0B53A275642A';

1 row updated.

COMMIT;

Commit complete.

-- The data now reflects S4's name update and S3's podium update.
SELECT name, race_date, podium FROM race WHERE race_id = 201;

NAME   RACE_DATE   PODIUM
-------------------------
Blue Air Bahrain Grand Prix
20-MAR-22
{"winner":{"name":"Charles Leclerc","time":"01:37:33.584"},"firstRunnerUp":{"nam

Chapter 4
Using Optimistic Concurrency Control With Duality Views

4-32



e":"Carlos Sainz Jr","time":"01:37:39.182"},"secondRunnerUp":{"name":"Lewis Hami
lton","time":"01:37:43.259"}}

1 row selected.

• Using Duality-View Transactions
You can use a special kind of transaction that's specific to duality views to achieve
optimistic concurrency control over multiple successive updating (DML) operations on
JSON documents. You commit the series of updates only if other sessions have not
modified the same documents concurrently.

Related Topics

• Updatable JSON-Relational Duality Views
Applications can update JSON documents supported by a duality view, if you define the
view as updatable. You can specify which kinds of updating operations (update, insertion,
and deletion) are allowed, for which document fields, how/when, and by whom. You can
also specify which fields participate in ETAG hash values.

• Car-Racing Example, Duality Views
Team, driver, and race duality views provide and support the team, driver, and race JSON
documents used by a car-racing application.

See Also:

Support for JSON-Relational Duality View in Oracle REST Data Services
Developer's Guide

4.4.1 Using Duality-View Transactions
You can use a special kind of transaction that's specific to duality views to achieve optimistic
concurrency control over multiple successive updating (DML) operations on JSON
documents. You commit the series of updates only if other sessions have not modified the
same documents concurrently.

Using Optimistic Concurrency Control With Duality Views describes the use of document
ETAG values to control concurrency optimistically for a single updating (DML) operation.

But what if you want to perform multiple updates, together as unit, somehow ensuring that
another session doesn't modify the unchanged parts of the updated documents between your
updates, that is, before you commit?

As one way to do that, you can lock one or more documents in one or more duality views, for
the duration of the multiple update operations. You do that by SELECTing FOR UPDATE the
corresponding rows of JSON-type column DATA from the view(s). Example 4-19 illustrates this.
But doing that locks each of the underlying tables, which can be costly.

You can instead perform multiple update operations on duality-view documents optimistically
using a special kind of transaction that's specific to duality views. The effect is as if the
documents (rows of column DATA of the view) are completely locked, but they're not. Locks
are taken only for underlying table rows that get modified; unmodified rows remain unlocked
throughout the transaction. Your changes are committed only if nothing has changed the
documents concurrently.

Chapter 4
Using Optimistic Concurrency Control With Duality Views

4-33



Another, concurrent session can modify the documents between your updates, but if
that happens before the transaction is committed then the commit operation fails, in
which case you just try again.

A duality-view transaction provides repeatable reads: all reads during a transaction run
against a snapshot of the data that's taken when the transaction begins.

Within your transaction, before its update operations, you check that each of the
documents you intend to update is up-to-date with respect to its currently persisted
values in the database. This validation is called registering the document.
Registration of a document verifies that an ETAG value you obtained by reading the
document is up-to-date. If this verification fails then you roll back the transaction and
start over.

To perform a multiple-operation transaction on duality views you use PL/SQL code
with these procedures from package DBMS_JSON_DUALITY:

• begin_transaction — Begin the transaction. This effectively takes a "snapshot" of
the state of the database. All updating operations in the transaction are based on
this snapshot.

• register — Check that the ETAG value of a document as last read matches that
of the document in the database at the start of the transaction; raise an error
otherwise. In other words, ensure that the ETAG value that you're going to use
when updating the document is correct as of the transaction beginning.

If you last read a document and obtained its ETAG value before the transaction
began, then that value isn't necessarily valid for the transaction. The commit
operation can't check for changes that might have occurred before the transaction
began. If you last read a document before the transaction began then call
register, to be sure that the ETAG value you use for the document is valid at the
outset.

Procedure register identifies the documents to check using an object identifier
(OID), which you can obtain by querying the duality view's hidden column RESID.
As an alternative to reading a document to obtain its ETAG value you can query
the duality view's hidden column ETAG.

• commit_transaction — Commit the multiple-update transaction. Validate the
documents provided for update against their current state in the database, by
comparing the ETAG values. Raise an error if the ETAG of any of the documents
submitted for update has been changed by a concurrent session during the
transaction.

You call the procedures in this order: begin_transaction, register,
commit_transaction. Call register immediately after you call begin_transaction.

The overall approach is the same as that you use with a single update operation, but
extended across multiple operations. You optimistically try to make changes to the
documents in the database, and if some concurrent operation interferes then you start
over and try again with a new transaction.

1. If anything fails (an error is raised) during a transaction then you roll it back
(ROLLBACK) and begin a new transaction, calling begin_transaction again.

In particular, if a document registration fails or the transaction commit fails, then
you need to start over with a new transaction.

Chapter 4
Using Optimistic Concurrency Control With Duality Views

4-34



2. At the beginning of the new transaction, read the document again, to get its ETAG value
as of the database state when the transaction began, and then call register again.

Repeat steps 1 and 2 until there are no errors.

Example 4-19    Locking Duality-View Documents For Update

This example locks the Mercedes and Ferrari team rows of the generated JSON-type DATA
column of duality view team_dv until the next COMMIT by the current session.

The FOR UPDATE clause locks the entire row of column DATA, which means it locks an entire
team document. This in turn means that it locks the relevant rows of each underlying table.

SELECT DATA FROM team_dv dv
  WHERE dv.DATA.name LIKE 'Mercedes%'
  FOR UPDATE;

SELECT DATA FROM team_dv dv
  WHERE dv.DATA.name LIKE 'Ferrari%'
  FOR UPDATE;

See Also:

• FOR UPDATE in topic SELECT in Oracle Database SQL Language Reference

• Simulating Current OF Clause with ROWID in Oracle Database PL/SQL
Language Reference for information about SELECT … FOR UPDATE

Example 4-20    Using a Duality-View Transaction To Optimistically Update Two Documents
Concurrently

This example uses optimistic concurrency with a duality-view transaction to update the
documents in duality view team_dv for teams Mercedes and Ferrari. It swaps drivers Charles
Leclerc and George Russell between the two teams. After the transaction both team
documents (supported by duality-view team_dv) and driver documents (supported by duality-
view driver_dv) reflect the driver swap.

We read the documents, to obtain their document identifiers (hidden column RESID) and their
current ETAG values. The ETAG values are obtained here as the values of metadata field
etag in the retrieved documents, but we could alternatively have just selected hidden column
ETAG.

SELECT RESID, DATA FROM team_dv dv
  WHERE dv.DATA.name LIKE 'Mercedes%';

RESID
-----
DATA
----
FB03C2040400
{"_id" : 303,
 "_metadata":

Chapter 4
Using Optimistic Concurrency Control With Duality Views

4-35



  {"etag" : "039A7874ACEE6B6709E06E42E4DC6355",
   "asof" : "00000000001BE239"},
 "name" : "Mercedes",
 ...}

SELECT RESID, DATA FROM team_dv dv
  WHERE dv.DATA.name LIKE 'Ferrari%';

RESID
-----
DATA
----
FB03C2040300
{"_id" : 303,
 "_metadata":
  {"etag" : "C5DD30F04DA1A6A390BFAB12B7D4F700",
   "asof" : "00000000001BE239"},
 "name" : "Ferrari",
 ...}

We begin the multiple-update transaction, then register each document to be updated,
ensuring that it hasn't changed since we last read it. The document ID and ETAG
values read above are passed to procedure register.

If an ETAG is out-of-date, because some other session updated a document between
our read and the transaction beginning, then a ROLLBACK is needed, followed by
starting over with begin_transaction (not shown here).

BEGIN
  DBMS_JSON_DUALITY.begin_transaction();
  DBMS_JSON_DUALITY.register('team_dv',
                             hextoraw('FB03C2040400'),
                             hextoraw('039A7874ACEE6B6709E06E42E4DC6355'));
  DBMS_JSON_DUALITY.register('team_dv',
                             hextoraw('FB03C2040300'),
                             hextoraw('C5DD30F04DA1A6A390BFAB12B7D4F700'));

Perform the updating (DML) operations: replace the original documents with
documents that have the drivers swapped.

  UPDATE team_dv dv
    SET DATA = ('{"_id" : 303,
                  "name"   : "Mercedes",
                  "points" : 40,
                  "driver" : [ {"driverId" : 106,
                                "name"     : "Lewis Hamilton",
                                "points"   : 15},
                               {"driverId" : 103,
                                "name"     : "Charles Leclerc",
                                "points"   : 25} ]}')
      WHERE dv.DATA.name LIKE 'Mercedes%';

Chapter 4
Using Optimistic Concurrency Control With Duality Views

4-36



  UPDATE team_dv dv
    SET DATA = ('{"_id" : 302,
                  "name"   : "Ferrari",
                  "points" : 30,
                  "driver" : [ {"driverId" : 105,
                                "name"     : "George Russell",
                                "points"   : 12},
                               {"driverId" : 104,
                                "name"     : "Carlos Sainz Jr",
                                "points"   : 18} ]}')
      WHERE dv.DATA.name LIKE 'Ferrari%';

Commit the transaction.

  DBMS_JSON_DUALITY.commit_transaction();
END;

4.5 Using the System Change Number (SCN) of a JSON
Document

A system change number (SCN) is a logical, internal, database time stamp. Metadata field
asof records the SCN for the moment a document was retrieved from the database. You can
use the SCN to ensure consistency when reading other data.

SCNs order events that occur within the database, which is necessary to satisfy the ACID
(atomicity, consistency, isolation, and durability) properties of a transaction.

Example 4-21    Obtain the SCN Recorded When a Document Was Fetched

This example fetches from the race duality view, race_dv, a serialized representation of the
race document identified by _id value 201.2 The SCN is the value of field asof, which is in
the object that is the value of field _metadata. It records the moment when the document is
fetched.

SELECT json_serialize(DATA PRETTY) FROM race_dv rdv
  WHERE rdv.DATA."_id" = 201;

Result:

JSON_SERIALIZE(DATAPRETTY)
--------------------------
{"_id"       : 201,
 "_metadata" :
  {
    "etag" : "F6906A8F7A131C127FAEF32CA43AF97A",
    "asof" : "00000000000C4175"
  },
 "name"      : "Blue Air Bahrain Grand Prix",
 "laps"      : 57,

2 This example uses SQL simple dot notation. The occurrence of _id is not within a SQL/JSON path expression, so it
must be enclosed in double-quote characters ("), because of the underscore character (_).

Chapter 4
Using the System Change Number (SCN) of a JSON Document

4-37



 "date"      : "2022-03-20T00:00:00",
 "podium"    : {...},
 "result"    : [ {...} ]
}

1 row selected.

Example 4-22    Retrieve a Race Document As Of the Moment Another Race
Document Was Retrieved

This example fetches the race document identified by raceId value 203 in the state
that corresponds to the SCN of race document 201 (see Example 4-21).

SELECT json_serialize(DATA PRETTY) FROM race_dv
  AS OF SCN to_number('00000000000C4175', 'XXXXXXXXXXXXXXXX')
  WHERE json_value(DATA, '$._id') = 203;

Result:

JSON_SERIALIZE(DATAPRETTY)
--------------------------
{"_id"       : 203,
 "_metadata" :
  {
    "etag" : "EA6E1194C012970CA07116EE1EF167E8",
    "asof" : "00000000000C4175"
  },
  
 "name"      : "Australian Grand Prix",
 "laps"      : 58,
 "date"      : "2022-04-09T00:00:00",
 "podium"    : {...},
 "result"    : [ {...} ]
}

1 row selected.

Related Topics

• Car-Racing Example, Duality Views
Team, driver, and race duality views provide and support the team, driver, and race
JSON documents used by a car-racing application.

See Also:

• System Change Numbers in Oracle Database Concepts

• Introduction to Transactions in Oracle Database Concepts

Chapter 4
Using the System Change Number (SCN) of a JSON Document

4-38



4.6 Optimization of Operations on Duality-View Documents
Operations on documents supported by a duality view — in particular, queries — are
automatically rewritten as operations on the underlying table data. This optimization includes
taking advantage of indexes. Because the underlying data types are fully known, implicit
runtime type conversion can generally be avoided.

Querying a duality view — that is, querying its supported JSON documents — is similar to
querying a table or view that has a single column, named DATA, of JSON data type. (You can
also query a duality view's hidden columns, ETAG and RESID — see Car-Racing Example,
Duality Views.)

For queries that use values from JSON documents in a filter predicate (using SQL/JSON
condition json_exists) or in the SELECT list (using SQL/JSON function json_value), the
construction of intermediate JSON objects (for JSON-type column DATA) from underlying
relational data is costly and unnecessary. When possible, such queries are optimized
(automatically rewritten) to directly access the data stored in the underlying columns.

This avoidance of document construction greatly improves performance. The querying
effectively takes place on table data, not JSON documents. Documents are constructed only
when actually needed for the query result.

Some queries cannot be rewritten, however, for reasons including these:

• A query path expression contains a descendant path step (..), which descends
recursively into the objects or arrays that match the step immediately preceding it (or into
the context item if there is no preceding step).

• A filter expression in a query applies to only some array elements, not to all ([*]). For
example, [3] applies to only the fourth array element; [last] applies only to the last
element.

• A query path expression includes a negated filter expression. See Negation in Path
Expressions in Oracle Database JSON Developer’s Guide.

For duality-view queries using SQL/JSON functions json_value, json_query, and
json_exists, if you set parameter JSON_EXPRESSION_CHECK to ON then if a query cannot be
automatically rewritten an error is raised that provides the reason for this.

JSON_EXPRESSION_CHECK can also be useful to point out simple typographical mistakes. It
detects and reports JSON field name mismatches in SQL/JSON path expressions or dot-
notation syntax.

You can set parameter JSON_EXPRESSION_CHECK using (1) the database initialization file
(init.ora), (2) an ALTER SESSION or ALTER SYSTEM statement, or (3) a SQL query hint (/*+
opt_param('json_expression_check', 'on') */, to turn it on). See 
JSON_EXPRESSION_CHECK in Oracle Database Reference.

In some cases your code might explicitly call for type conversion, and in that case rewrite
optimization might not be optimal, incurring some unnecessary runtime overhead. This can
be the case for SQL/JSON function json_value, for example. By default, its SQL return type
is VARCHAR2. If the value is intended to be used for an underlying table column of type NUMBER,
for example, then unnecessary runtime type conversion can occur.

For this reason, for best performance Oracle recommends as a general guideline that you
use a RETURNING clause or a type-conversion SQL/JSON item method, to indicate that a

Chapter 4
Optimization of Operations on Duality-View Documents

4-39



document field value doesn't require runtime type conversion. Specify the same type
for it as that used in the corresponding underlying column.

For example, field _id in a race document corresponds to column race_id in the
underlying race table, and that column has SQL type NUMBER. When using json_value
to select or test field _id you therefore want to ensure that it returns a NUMBER value.

The second of the following two queries generally outperforms the first, because the
first returns VARCHAR2 values from json_value, which are then transformed at run time,
to NUMBER and DATE values. The second uses type-conversion SQL/JSON item method
numberOnly() and a RETURNING DATE clause, to indicate to the query compiler that the
SQL types to be used are NUMBER and DATE. (Using a type-conversion item method is
equivalent to using the corresponding RETURNING type.)

SELECT json_value(DATA, '$.laps'),
       json_value(DATA, '$.date')
  FROM race_dv
  WHERE json_value(DATA, '$._id') = 201;

SELECT json_value(DATA, '$.laps.numberOnly()'),
       json_value(DATA, '$.date' RETURNING DATE)
  FROM race_dv
  WHERE json_value(DATA, '$._id.numberOnly()') = 201;

The same general guideline applies to the use of the simple dot-notation syntax.
Automatic optimization typically takes place when dot-notation syntax is used in a
WHERE clause: the data targeted by the dot-notation expression is type-cast to the type
of the value with which the targeted data is being compared. But in some cases it's not
possible to infer the relevant type at query-compilation time — for example when the
value to compare is taken from a SQL/JSON variable (e.g. $a) whose type is not
known until run time. Add the relevant item method to make the expected typing clear
at query-compile time.

The second of the following two queries follows the guideline. It generally outperforms
the first one, because the SELECT and ORDER BY clauses use item methods
numberOnly() and dateOnly() to specify the appropriate data types.3

SELECT t.DATA.laps, t.DATA."date"
  FROM race_dv t
  WHERE t.DATA."_id" = 201
  ORDER BY t.DATA."date";

SELECT t.DATA.laps.numberOnly(), t.DATA."date".dateOnly()
  FROM race_dv t
  WHERE t.DATA."_id".numberOnly() = 201
  ORDER BY t.DATA."date".dateOnly();

3 This example uses SQL simple dot notation. The occurrence of _id is not within a SQL/JSON path expression,
so it must be enclosed in double-quote characters ("), because of the underscore character (_).

Chapter 4
Optimization of Operations on Duality-View Documents

4-40



See Also:

• Item Method Data-Type Conversion in Oracle Database JSON Developer’s
Guide

• Item Methods and JSON_VALUE RETURNING Clause in Oracle Database
JSON Developer’s Guide

4.7 Obtaining Information About a Duality View
You can obtain information about a duality view, its underlying tables, their columns, and key-
column links, using static data dictionary views. You can also obtain a JSON-schema
description of a duality view, which includes a description of the structure and JSON-
language types of the JSON documents it supports.

Static Dictionary Views For JSON Duality Views

You can obtain information about existing duality views by checking static data dictionary
views DBA_JSON_DUALITY_VIEWS, USER_JSON_DUALITY_VIEWS, and ALL_JSON_DUALITY_VIEWS.4

Each of these dictionary views includes the following for each duality view:

• The view name and owner

• The root table name and owner

• Name of the JSON-type column

• Whether each of the operations insert, delete, and update is allowed on the view

• Whether the view is read-only

• Whether the view is valid

• The JSON schema that describes the JSON column

You can list the tables that underlie duality views, using dictionary views
DBA_JSON_DUALITY_VIEW_TABS, USER_JSON_DUALITY_VIEW_TABS, and
ALL_JSON_DUALITY_VIEW_TABS. Each of these dictionary views includes the following for a
duality view:

• The view name and owner

• The table name and owner

• Whether each of the operations insert, delete, and update is allowed on the table

• Whether the table is read-only

• Whether the table has a flex column

• Whether the table is the root table of the view

• A number that identifies the table in the duality view

• a number that identifies the parent table in the view

• The relationship of the table to its parent table: whether it is nested within its parent, or it
is the target of an outer or an inner join

4 You can also use PL/SQL function DBMS_JSON_SCHEMA.describe to obtain a duality-view description.

Chapter 4
Obtaining Information About a Duality View

4-41



You can list the columns of the tables that underlie duality views, using dictionary
views DBA_JSON_DUALITY_VIEW_TAB_COLS, USER_JSON_DUALITY_VIEW_TAB_COLS, and
ALL_JSON_DUALITY_VIEW_TAB_COLS. Each of these dictionary views includes the view
and table names and owners, whether the table is the root table, a number that
identifies the table in the view, and the following information about each column in the
table:

• The column name, data type, and maximum number of characters (for a character
data type)

• The JSON key name

• Whether each of the operations insert, delete, and update is allowed on the
column

• Whether the column is read-only

• Whether the column is a flex column

• The position of the column in a primary-key specification (if relevant)

• The position of the column in an ETAG specification (if relevant)

• The position of the column in an ORDER BY clause of a call to function
json_arrayagg (or equivalent) in the duality-view definition (if relevant)

You can list the links associated with duality views, using dictionary views
DBA_JSON_DUALITY_VIEW_LINKS, USER_JSON_DUALITY_VIEW_LINKS, and
ALL_JSON_DUALITY_VIEW_LINKS. Links are from primary or unique keys to foreign keys,
or conversely. Each of these dictionary views includes the following for each link:

• The name and owner of the view

• The name and owner of the parent table of the link

• The name and owner of the child table of the link

• The names of the columns on the from and to ends of the link

• The join type of the link

• The name of the JSON key associated with the link

See Also:

Static Data Dictionary Views in Oracle Database Reference

JSON Description of a JSON-Relational Duality View

A JSON schema specifies the structure and JSON-language types of JSON data. It
can serve as a summary description of an existing set of JSON documents, or it can
serve as a specification of what is expected or allowed for a set of JSON documents.
The former use case is that of a schema obtained from a JSON data guide. The latter
use case includes the case of a JSON schema that describes the documents
supported by a duality view.

You can use PL/SQL function DBMS_JSON_SCHEMA.describe to obtain a JSON schema
that describes the JSON documents supported by a duality view. (This same
document is available in column JSON_SCHEMA of static dictionary views

Chapter 4
Obtaining Information About a Duality View

4-42



DBA_JSON_DUALITY_VIEWS, USER_JSON_DUALITY_VIEWS, and ALL_JSON_DUALITY_VIEWS — see 
Static Dictionary Views For JSON Duality Views.)

This JSON schema includes three kinds of information:

1. Information about the duality view that supports the documents.

This includes the database schema (user) that owns the view (field dbObject) and the
allowed operations on the view (field dbObjectProperties).

2. Information about the columns of the tables that underlie the duality view.

This includes domain names (field dbDomain), primary keys (field dbPrimaryKey), foreign
keys (field dbForeignKey), whether flex columns exist ( field additionalProperties), and
column data-type restrictions (for example, field maxLength for strings and field
sqlPrecision for numbers).

3. Information about the allowed structure and JSON-language typing of the documents.

This information can be used to validate data to be added to, or changed in, the view. It's
available as the value of top-level schema-field properties, and it can be used as a
JSON schema in its own right.

Example 4-23 uses DBMS_JSON_SCHEMA.describe to describe each of the duality views of the
car-racing example: driver_dv, race_dv, and team_dv.

Example 4-23    Using DBMS_JSON_SCHEMA.DESCRIBE To Show JSON Schemas Describing Duality
Views

This example shows, for each car-racing duality view, a JSON schema that describes the
JSON documents supported by the view.

The value of top-level JSON-schema field properties is itself a JSON schema that can be
used to validate data to be added to, or changed in, the view. The other top-level properties
describe the duality view that supports the documents.

The database schema/user that created, and thus owns, each view is indicated with a
placeholder value here (shown in italics). This is reflected in the value of field dbObject,
which for a duality view is the view name qualified by the database-schema name of the view
owner. For example, assuming that database user/schema team_dv_owner created duality
view team_dv, the value of field dbObject for that view is team_dv_owner.team_dv.

(Of course, these duality views could be created, and thus owned, by the same database
user/schema. But they need not be.)

Array field dbObjectProperties specifies the allowed operations on the duality view itself:

• check means that at least one field in each document is marked CHECK, and thus
contributes to ETAG computation.

• delete means you can delete existing documents from the view.

• insert means you can insert documents into the view.

• update means you can update existing documents in the view.

Field type specifies a standard JSON-language nonscalar type: object or array. Both fields
type and extendedType are used to specify scalar JSON-language types.

Native binary JSON data (OSON format) extends the JSON language by adding scalar types,
such as date, that correspond to SQL data types and are not part of the JSON standard.
These Oracle-specific scalar types are always specified with extendedType.

Chapter 4
Obtaining Information About a Duality View

4-43



Field items specifies the element type for an array value. The fields of each JSON
object in a supported document are listed under schema field properties for that
object. All document fields are underlined here.

(All you need to create the JSON schema is function DBMS_JSON_SCHEMA.describe. It's
use here is wrapped with SQL/JSON function json_serialize just to pass keyword
PRETTY, which causes the output to be pretty-printed.)

-- Duality View TEAM_DV
SELECT json_serialize(DBMS_JSON_SCHEMA.describe('TEAM_DV') PRETTY)
  AS team_dv_json_schema;

TEAM_DV_JSON_SCHEMA
-------------------
{"title"                : "TEAM_DV",
 "dbObject"             : "TEAM_DV_OWNER.TEAM_DV",
 "dbObjectType"         : "dualityView",
 "dbObjectProperties"   : [ "insert", "update", "delete", "check" ],
 "type"                 : "object",
 "properties"           : {"_id"          :
                           {"extendedType"      : "number",
                            "sqlScale"          : 0,
                            "generated"         : true,
                            "dbFieldProperties" : [ "check" ]},
                           "_metadata"    : {"etag" : {"extendedType" : "string",
                                                       "maxLength"    : 200},
                                             "asof" : {"extendedType" : "string",
                                                       "maxLength"    : 20}},
                           "dbPrimaryKey" : [ "_id" ],
                           "name"         : {"extendedType"      : "string",
                                             "maxLength"         : 255,
                                             "dbFieldProperties" : [ "update",
                                                                     "check" ]},
                           "points"       : {"extendedType"      : "number",
                                             "sqlScale"          : 0,
                                             "dbFieldProperties" : [ "update",
                                                                     "check" ]},
                           "driver"       :
                           {"type"  : "array",
                            "items" :
                            {"type"                 : "object",
                             "properties"           :
                             {"dbPrimaryKey" : [ "driverId" ],
                              "name          :
                              {"extendedType"      : "string",
                               "maxLength"         : 255,
                               "dbFieldProperties" : [ "update", "check" ]},
                              "points"       :
                              {"extendedType"      : "number",
                               "sqlScale"          : 0,
                               "dbFieldProperties" : [ "update" ]},
                              "driverId"     : {"extendedType"      : "number",
                                                "sqlScale"          : 0,
                                                "generated"         : true,

Chapter 4
Obtaining Information About a Duality View

4-44



                                                "dbFieldProperties" : [ "check" ]}},
                             "required"             : [ "name",
                                                        "points",
                                                        "driverId" ],
                             "additionalProperties" : false}}},
 "required"             : [ "name", "points", "_id" ],
 "additionalProperties" : false}

1 row selected.

-- Duality View DRIVER_DV
SELECT json_serialize(DBMS_JSON_SCHEMA.describe('DRIVER_DV') PRETTY)
  AS driver_dv_json_schema;

DRIVER_DV_JSON_SCHEMA
---------------------
{"title"                : "DRIVER_DV",
 "dbObject"             : "DRIVER_DV_OWNER.DRIVER_DV",
 "dbObjectType"         : "dualityView",
 "dbObjectProperties"   : [ "insert", "update", "delete", "check" ],
 "type"                 : "object",
 "properties"           : {"_id"          : {"extendedType"      : "number",
                                             "sqlScale"          : 0,
                                             "generated"         : true,
                                             "dbFieldProperties" : [ "check" ]},
                           "_metadata"    : {"etag" : {"extendedType" : "string",
                                                       "maxLength"    : 200},
                                             "asof" : {"extendedType" : "string",
                                                       "maxLength"    : 20}},
                           "dbPrimaryKey" : [ "_id" ],
                           "name"         : {"extendedType"      : "string",
                                             "maxLength"         : 255,
                                             "dbFieldProperties" : [ "update", "check" ]},
                           "points"       : {"extendedType"      : "number",
                                             "sqlScale"          : 0,
                                             "dbFieldProperties" : [ "update", "check" ]},
                           "team"         : {"extendedType"  : "string",
                                             "maxLength"     : 255},
                           "teamId"       : {"extendedType"      : "number",
                                             "sqlScale"          : 0,
                                             "generated"         : true,
                                             "dbFieldProperties" : [ "check" ]},
                           "race"         : {"type"  : "array",
                                             "items" :
                                             {"type"                 : "object",
                                              "properties"           :
                                              {"dbPrimaryKey"    : [ "driverRaceMapId" ],
                                               "finalPosition"   :
                                               {"extendedType"      : [ "number",
                                                                        "null" ],
                                                "sqlScale"          : 0,
                                                "dbFieldProperties" : [ "update",
                                                                        "check" ]},

Chapter 4
Obtaining Information About a Duality View

4-45



                                               "driverRaceMapId" :
                                               {"extendedType"      : "number",
                                                "sqlScale"          : 0,
                                                "generated"         : true,
                                                "dbFieldProperties" : [ "check" ]},
                                               "name"            :
                                               {"extendedType"      : "string",
                                                "maxLength"         : 255,
                                                "dbFieldProperties" : [ "check" ]},
                                               "raceId"          :
                                               {"extendedType"      : "number",
                                                "sqlScale"          : 0,
                                                "generated"         : true,
                                                "dbFieldProperties" : [ "check" ] }},
                                              "required"             :
                                              [ "driverRaceMapId", "name", "raceId" ],
                                              "additionalProperties" : false}}},
 "required"             : [ "name", "points", "_id", "team", "teamId" ],
 "additionalProperties" : false}
1 row selected.

-- Duality View RACE_DV
SELECT json_serialize(DBMS_JSON_SCHEMA.describe('RACE_DV') PRETTY)
  AS race_dv_json_schema;

RACE_DV_JSON_SCHEMA
-------------------
{"title"              : "RACE_DV",
 "dbObject"           : "RACE_DV_OWNER.RACE_DV",
 "dbObjectType"       : "dualityView",
 "dbObjectProperties" : [ "insert", "update", "delete", "check" ],
 "type"               : "object",
 "properties"         : {"_id"       : {"extendedType"      : "number",
                                        "sqlScale"          : 0,
                                        "generated"         : true,
                                        "dbFieldProperties" : [ "check" ]},
                         "_metadata" : {"etag" : {"extendedType" : "string",
                                                  "maxLength"    : 200},
                                        "asof" : {"extendedType" : "string",
                                                  "maxLength"    : 20}},
                         "dbPrimaryKey" : [ "_id" ],
                         "laps"      : {"extendedType"      : "number",
                                        "sqlScale"          : 0,
                                        "dbFieldProperties" : [ "check" ]},
                         "name"      : {"extendedType"      : "string",
                                        "maxLength"         : 255,
                                        "dbFieldProperties" : [ "update", "check" ]},
                         "podium"    : {"dbFieldProperties" : [ "update" ]},
                         "date"      : {"extendedType"      : "date",
                                        "dbFieldProperties" : [ "update", "check" ]},
                         "result"    : {"type"  : "array",
                                        "items" :
                                        {"type"                 : "object",

Chapter 4
Obtaining Information About a Duality View

4-46



                                         "properties"           :
                                         {"dbPrimaryKey"    : [ "driverRaceMapId" ],
                                          "position"        :
                                          {"extendedType"      : "number",
                                           "sqlScale"          : 0,
                                           "dbFieldProperties" : [ "update",
                                                                   "check" ]},
                                          "driverRaceMapId" :
                                          {"extendedType"      : "number",
                                           "sqlScale"          : 0,
                                           "generated"         : true,
                                           "dbFieldProperties" : [ "check" ]},
                                          "name"            :
                                          {"extendedType"      : "string",
                                           "maxLength"         : 255,
                                           "dbFieldProperties" : [ "update",
                                                                   "check" ]},
                                          "driverId"        :
                                          {"extendedType"      : "number",
                                           "sqlScale"          : 0,
                                           "generated"         : true,
                                           "dbFieldProperties" : [ "check" ]}},
                                         "required"             : [ "driverRaceMapId",
                                                                    "name",
                                                                    "driverId" ],
                                         "additionalProperties" : false}}},
 "required"             : [ "laps", "name", "_id" ],
 "additionalProperties" : false}
1 row selected.

Related Topics

• Car-Racing Example, Duality Views
Team, driver, and race duality views provide and support the team, driver, and race JSON
documents used by a car-racing application.

• Before Using the Converter: Create Database Document Sets and JSON Schemas
Before using the JSON-to-duality converter you need to create JSON-type document sets
in Oracle Database from the original external document sets. The input to the converter
for each set of documents is an Oracle Database table with a single column of JSON data
type.

Chapter 4
Obtaining Information About a Duality View

4-47



See Also:

• JSON Schemas Generated with DBMS_JSON_SCHEMA.DESCRIBE in
Oracle Database JSON Developer’s Guide

• JSON Schema

• JSON Data Guide in Oracle Database JSON Developer’s Guide

• ALL_JSON_DUALITY_VIEWS in Oracle Database Reference

• ALL_JSON_DUALITY_VIEW_TABS in Oracle Database Reference

• ALL_JSON_DUALITY_VIEW_TAB_COLS in Oracle Database Reference

• ALL_JSON_DUALITY_VIEW_LINKS in Oracle Database Reference

Chapter 4
Obtaining Information About a Duality View

4-48

https://json-schema.org/


5
Document-Identifier Field for Duality Views

A document supported by a duality view always includes, at its top (root) level, a document-
identifier field, _id, which corresponds to the primary-key columns of the root table that
underlies the view. The field value can take different forms.

Often there is only one such primary-key column. If there is than one then we sometimes
speak of the primary key being composite.

• If there is only one primary-key column then you use that as the value of field _id when
you define the duality view.

• Alternatively, you can use an object as the value of field _id. The members of the object
specify fields whose values are the primary-key columns.

If there is only one primary-key column, you can nevertheless use an object value for
_id; doing so lets you provide a meaningful field name.

Example 5-1    Document Identifier Field _id: Primary-Key Column Value

A single primary-key column, race_id, is used as the value of field _id.

CREATE JSON RELATIONAL DUALITY VIEW race_dv AS
  SELECT JSON {'_id'    : r.race_id,
               'name'   : r.name,
               'laps'   : r.laps WITH NOUPDATE,
               'date'   : r.race_date,
               'podium' : r.podium WITH NOCHECK,
               'result' : ...}
  FROM race;

A document supported by the view would look like this: {"_id" : 1,…}.

Example 5-2    Document Identifier Field _id: Object Value

The field value is an object with a single member, which maps the single primary-key column,
race_id, to a meaningful field name, raceId.

CREATE JSON RELATIONAL DUALITY VIEW race_dv AS
  SELECT JSON {'_id'    : {'raceId' : r.race_id},
               'name'   : r.name,
               'laps'   : r.laps WITH NOUPDATE,
               'date'   : r.race_date,
               'podium' : r.podium WITH NOCHECK,
               'result' : ...}
  FROM race;

A document supported by the view would look like this: {"_id" : {"raceId" : 1},...}.

5-1



An alternative car-racing design might instead use a race table that has multiple
primary key columns, say race_id and date:

CREATE JSON RELATIONAL DUALITY VIEW race_dv AS
  SELECT JSON {'_id'    : {'raceId' : r.race_id, 'date' : r.race_date},
               'name'   : r.name,
               'laps'   : r.laps WITH NOUPDATE,
               'podium' : r.podium WITH NOCHECK,
               'result' : ...}
  FROM race;

In that case, a document supported by the view would look like this: {"_id" :
{"raceId" : 1, "date" : "2022-03-20T00:00:00"},...}.

Related Topics

• Car-Racing Example, JSON Documents
The car-racing example has three kinds of documents: a team document, a driver
document, and a race document.

See Also:

Mongo DB API Collections Supported by JSON-Relational Duality Views

in Oracle Database API for MongoDB

Chapter 5

5-2



6
JSON Data Stored in JSON-Relational Duality
Views

Columns of JSON data type stored in tables underlying a duality view can produce JSON
values of any kind (scalar, object, array) in the documents supported by the view. This stored
JSON data can be schemaless or JSON Schema-based (to enforce particular shapes and
types of field values).

Whether to store some of the data underlying a duality view as JSON type and, if so, whether
to enforce its structure and typing, are design choices to consider when defining the view.

By storing some JSON data that contributes to the JSON documents supported by
(generated by) a duality view, you can choose the granularity and complexity of the building
blocks that define the view. Put differently, you can choose the degree of normalization you
want for the underlying data. Different choices involve different tradeoffs.

A JSON-relational duality view supports a set of JSON documents based on underlying table
data. The JSON documents are automatically generated from this table data as needed.

A document-centric application accesses, updates, and otherwise uses the JSON documents
supported by a duality view as if they were stored in its single, JSON-type column —
applications see only a column of JSON documents.

At the same time, a relational/table-centric application can access, update, and otherwise use
the same underlying table data directly. Duality: changes to either documents or table data
are automatically reflected in the other (and this is the case across multiple documents and
tables that share data).

Typically, the table data underlying a duality view is completely normalized, and thus the table
columns contain only values of scalar SQL data types.

Complete normalization gives you the most flexibility in terms of combining data from multiple
tables to support different kinds of duality view (more generally, in terms of combining some
table data with other table data, outside of any use for duality views).

And in an important particular use case, it lets you access the data in existing relational
tables from a document-centric application, as JSON documents.

On the other hand, the greater the degree of normalization, the more tables you have, which
means more decomposition when inserting JSON data and more joining when querying it. If
an application typically accesses complex objects as a whole then greater normalization can
thus negatively impact performance.

You can also think of the building-block columns in the tables that underlie a duality view as
providing the ingredients, and think of the duality-view definition as providing the recipe, for
producing JSON documents of a particular kind (structure and typing).

A cooking recipe need not be "from scratch", using only simple, basic ingredients. On the
other hand, nor does a recipe need to be as simple as just adding water to a preassembled/
prepackaged "mix". There's a range of possibilities for each ingredient, from basic (an egg) to
complex (a cake mix).

6-1



For example, if a recipe calls for "salad dressing" as one of its ingredients, that can
come ready-made from a bottle or you can create it by combining more-basic
ingredients such as olive oil and vinegar. And an ingredient for composing the salad-
dressing ingredient might itself be complex (prepackaged), such as mayonnaise,
mustard, or a prepared mix of spices.

The same is true for the ingredients used to define/implement a duality view and the
JSON documents that it supports.

When a table underlying a duality view is completely normalized as SQL scalar values,
the recipe ingredients are as simple and basic as possible (scalar values are atomic:
indivisible).

But some (or even all) of the table columns can instead store JSON-type data, which
can be scalar or complex. Sometimes it makes sense to include whole (small) JSON
documents, stored in the duality view, as part of the larger, generated documents. This
amounts to using some complex ingredients in your duality-view recipe.

With Oracle Database you can store JSON data (documents) in a column of JSON data
type, and you can selectively update any parts of those documents (any fields), or
replace whole documents at a time.

This is also true of the data in a stored JSON-type column that's used to define part of a
duality view. And like any other column in an underlying table, a JSON-type column can
be shared among different duality views, and thus be shared in their different resulting
(generated) JSON documents.

By default, a JSON document is free-form: its structure and typing are not defined by,
or forced to conform to, any given pattern/schema. In this case, applications can easily
change the shape and types of the documents as needed.

On the other hand, you can impose typing and structure on the data in a JSON-type
column, using JSON Schema. JSON Schema gives you a full spectrum of control:

1. From fields whose values are completely undefined to fields whose values are
strictly defined.

2. From scalar JSON values to large, complex JSON objects and arrays.

3. From simple type definitions to combinations of JSON-language types. For
example:

• A value that satisfies anyOf, allOf, or oneOf a set of JSON schemas

• A value that does not satisfy a given JSON schema

As an example at one end of the type spectrum, a tiny JSON schema can be applied
to a JSON-type column to require its data to be of a particular JSON-language scalar
type.

A corresponding Oracle JSON-language scalar type exists for each SQL scalar type
that can be used in a duality-view definition. Consequently, JSON-schema typing can
be just as fine-grained as SQL typing.

For example, if applied to a JSON-type column as a check constraint, this JSON
schema allows only values that are JSON strings: {"type": "string"}. The effect is
similar to that of using a column of SQL type VARCHAR2.

Chapter 6

6-2



This JSON schema allows only values that are JSON dates (an Oracle JSON-language
scalar type): {"extendedType": "date"}.1 The effect is similar to that of using a column of
SQL type DATE.

And this JSON schema allows only values that are JSON strings or numbers: {"type":
[ "string", "number" ]}. SQL has no type that corresponds to this.

Note:

Using, in a duality-view definition, a JSON-type column that's constrained by a JSON
schema to hold only data of a particular JSON scalar type (date, string, etc.) that
corresponds to a SQL scalar type has the same effect on the JSON documents
supported by the view as using a column of the corresponding SQL scalar type
(DATE, VARCHAR2, etc.).

However, code that acts directly on such stored JSON-type data won't necessarily
recognize and take into account this correspondence. The SQL type of the data is,
after all, JSON, not DATE, VARCHAR2, etc. To extract a JSON scalar value as a value of
a SQL scalar data type, code needs to use SQL/JSON function json_value. See 
SQL/JSON Function JSON_VALUE in Oracle Database JSON Developer’s Guide.

Let's summarize some of the tradeoffs between using basic ingredients (SQL scalar columns)
and possibly complex ingredients (JSON-type columns) in a table underlying a duality view:

1. Flexibility of combination. For the finest-grain combination, use completely normalized
tables, whose columns are all SQL scalars.

2. Flexibility of document type and structure. For maximum flexibility of JSON field values at
any given time, and thus also for changes over time (evolution), use JSON-type columns
with no JSON-schema constraints.

3. Granularity of field definition. The finest granularity requires a column for each JSON
field, regardless of where the field is located in documents supported by the duality view.
(The field value could nevertheless be a JSON object or array, if the column is JSON-
type.)

If it makes sense for your application to share some complex JSON data among different
kinds of documents, and if you expect to have no need for combining only parts of that
complex data with other documents or, as SQL scalars, with relational data, then consider
using JSON data type for the columns underlying that complex data.

In other words, in such a use case consider sharing JSON documents, instead of sharing the
scalar values that constitute them. In still other words, consider using more complex
ingredients in your duality-view recipe.

Note that the granularity of column data — how complex the data in it can be — also
determines the granularity of updating operations and ETAG-checking (for optimistic
concurrency control). The smallest unit for such operations is an individual column underlying
a duality view; it's impossible to annotate individual fields inside a JSON-type column.

Update operations can selectively apply to particular fields contained in the data of a given
JSON-type column, but control of which update operations can be used with a given view is
defined at the level of an underlying column or whole table — nothing smaller. So if you need
finer grain updating or ETAG-checking then you need to break out the relevant parts of the
JSON data into their own JSON-type columns.1 The field name is extendedType rather than type because date is not a standard JSON-language scalar type.

Chapter 6

6-3



• Flex Columns: Duality-View Schema Flexibility and Evolution
A flex column in a table underlying a JSON-relational duality view lets you add and
redefine fields of the document object produced by that table. This provides a
certain kind of schema flexibility to a duality view, and to the documents it
supports.

Related Topics

• The Use Case for JSON-Relational Duality Views
The motivation behind JSON-relational duality views is presented.

• Annotations (NO)UPDATE, (NO)INSERT, (NO)DELETE, To Allow/Disallow
Updating Operations
Keyword UPDATE means that the annotated data can be updated. Keywords
INSERT and DELETE mean that the fields/columns covered by the annotation can be
inserted or deleted, respectively.

• Annotation (NO)CHECK, To Include/Exclude Fields for ETAG Calculation
You declaratively specify the document parts to use for checking the state/version
of a document when performing an updating operation, by annotating the definition
of the duality view that supports such a document.

See Also:

• Validating JSON Documents with a JSON Schema for information about
using JSON schemas to constrain or validate JSON data

• json-schema.org for information about JSON Schema

6.1 Flex Columns: Duality-View Schema Flexibility and
Evolution

A flex column in a table underlying a JSON-relational duality view lets you add and
redefine fields of the document object produced by that table. This provides a certain
kind of schema flexibility to a duality view, and to the documents it supports.

Any tables underlying a duality view can have any number of JSON-type columns. At
most one JSON column per table can be designated as a flex column at each position
where that table is used in the view definition. If a given table is used only at one place
in a view definition (a typical case) then only one flex column for the table can be used.
If the same table is used in N different places in a view definition, then N different flex
columns for the table can be designated at those places.2

In any table, a JSON column generally provides for flexible data: by default, its typing
and structure are not constrained/specified in any way (for example, by a JSON
schema).

The particularity of a JSON column that's designated as a flex column for a duality
view is this:

2 As an unusual case, you can even designate the same flex column for different document places where some
columns of a given table are used. Those different places in the same document then share the fields stored in
that flex column.

Chapter 6
Flex Columns: Duality-View Schema Flexibility and Evolution

6-4

https://json-schema.org/


• The column value must be a JSON object or SQL NULL.

This means that it must be declared as type JSON (OBJECT), not just JSON. Otherwise, an
error is raised when you try to use that column in a duality-view definition.

(This restriction doesn't apply to a nonflex JSON-type column; its value can be any JSON
value: scalar, array, or object.)

• On read, the object stored in a flex column is unnested: its fields are unpacked into the
resulting document object.

That is, the stored object is not included as such, as the value of some field in the object
produced by the flex column's table. Instead, each of the stored object's fields is included
in that document object.

(Any value — object, array, or scalar — in a nonflex JSON-type column is just included as
is; an object is not unnested.)

For example, if the object in a given row of the flex column for table tab1 has fields foo
and bar then, in the duality-view document that corresponds to that row, the object
produced from tab1 also contains those fields, foo and bar.

• On write, the fields from the document object are packed back into the stored object, and
any fields not supported by other columns are automatically added to the flex column.
That is, an unrecognized field "overflows" into the object in the JSON flex column.

For example, if a new field toto is added to a document object corresponding to a table
that has a flex column, then on insertion of the document if field toto isn't already
supported by the table then field toto is added to the flex-column's object.

Note:

To require a nonflex JSON-type column to hold only object values (or SQL NULL) you
can define it using the modified data type JSON (OBJECT), or you can use a JSON-
Schema VALIDATE check constraint of {"type":"object"}. See Validating JSON
Data with a JSON Schema in Oracle Database JSON Developer’s Guide.

More generally, you can require a nonflex JSON-type column to hold only scalar,
object, or array JSON values, or any combination of those. And you can restrict
scalar values to be of a specific type, such as a string or a date. For example, if the
column type is JSON (OBJECT, SCALAR DATE) then it allows only values that are
objects or dates.

A column designated as flex for a duality view is such (is flex) only for the view. For the table
that it belongs to, it's just an ordinary JSON-type column, except that the value in each row
must be a single JSON object or SQL NULL.

Different duality views can thus define different flex columns (that is, with different names) for
the same table, each view's flex column suiting that view's own purposes, providing fields for
the documents that only it supports.

Chapter 6
Flex Columns: Duality-View Schema Flexibility and Evolution

6-5



Note:

If for some reason you actually want two or more duality views to share a flex
column, then just give the flex column the same name when defining each
view.

However, this is generally not what you want.

Unlike nonflex columns, which are dedicated to individual fields that are
specified explicitly in a view's definition, a flex column holds the data for
multiple fields that are unknown to the view definition. A flex column is
essentially a free pass for unrecognized incoming fields at certain locations
in a document (that's its purpose: provide flexibility).

On write, an unrecognized field is stored in a flex column (of the table
relevant to the field's location in the document). If two views with the same
underlying table share a flex column there, then incoming fields
unrecognized by either view get stored in that column, and on read those
fields are exposed in the documents for both views.

Because a flex column's object is unnested on read, adding its fields to those
produced by the other columns in the table, and because a JSON column is by default
schemaless, changes to flex-column data can change the structure of the resulting
document object, as well as the types of some of its fields.

In effect, the typing and structure of a duality view's supported documents can change/
evolve at any level, by providing a flex column for the table supporting the JSON
object at that level.

You can change the typing and structure of a duality view's documents by modifying
flex-column data directly, through the column's table. More importantly, you can do so
simply by inserting or updating documents with fields that don't correspond to
underlying relational columns. Any such fields are automatically added to the
corresponding flex columns. Applications are thus free to create documents with any
fields they like, in any objects whose underlying tables have a flex column.

However, be aware that unnesting the object from a flex column can lead to name
conflicts between its fields and those derived from the other columns of the same
table. Such conflicts cannot arise for JSON columns that don't serve as flex columns.

For this reason, if you don't need to unnest a stored JSON object — if it's sufficient to
just include the whole object as the value of a field — then don't designate its column
as flex. Use a flex column where you need to be able to add fields to a document
object that's otherwise supported by relational columns.

The value of any row of a flex column must be a JSON object or the SQL value NULL.

SQL NULL and an empty object ({}) behave the same, except that they typically
represent different contributions to the document ETAG value. (You can annotate a flex
column with NOCHECK to remove its data from ETAG calculation. You can also use
column annotation [NO]UPDATE, [NO]CHECK on a flex column.)

In a duality-view definition you designate a JSON-type column as being a flex column
for the view by following the column name in the view definition with keywords AS FLEX
in SQL or with annotation @flex in GraphQL.

Chapter 6
Flex Columns: Duality-View Schema Flexibility and Evolution

6-6



For example, in this GraphQL definition of duality view dv1, column t1_json_col of table
table1 is designated as a flex column. The fields of its object value are included in the
resulting document as siblings of field1 and field2. (JSON objects have undefined field
order, so the order in which a table's columns are specified in a duality-view definition doesn't
matter.)

CREATE JSON RELATIONAL DUALITY VIEW dv1 AS
  table1 @insert @update @delete
    {_id       : id_col,
     t1_field1 : col_1,
     t1_json_col @flex,
     t1_field2 : col_2};

When a table underlies multiple duality views, those views can of course use some or all of
the same columns from the table. A given column from such a shared table can be
designated as flex, or not, for any number of those views.

The fact that a column is used in a duality view as a flex column means that if any change is
made directly to the column value by updating its table then the column value must still be a
JSON object (or SQL NULL).

It also means that if the same column is used in a table that underlies another duality view,
and it's not designated as a flex column for that view, then for that view the JSON fields
produced by the column are not unpacked in the resulting documents; in that view the JSON
object with those fields is included as such. In other words, designation as a flex column is
view-specific.

You can tell whether a given table underlying a duality view has a flex column by checking
BOOLEAN column HAS_FLEX_COL in static dictionary views *_JSON_DUALITY_VIEW_TABS. You can
tell whether a given column in an underlying table is a flex column by checking BOOLEAN
column IS_FLEX_COL in static dictionary views *_JSON_DUALITY_VIEW_TAB_COLS. See 
ALL_JSON_DUALITY_VIEW_TABS and ALL_JSON_DUALITY_VIEW_TAB_COLS in Oracle
Database Reference.

The data in both flex and nonflex JSON columns in a table underlying a duality view can be
schemaless, and it is so by default.

But you can apply JSON schemas to any JSON-type columns used anywhere in a duality-view
definition, to remove their flexibility ("lock" them). You can also impose a JSON schema on
the documents generated/supported by a duality view.

Because the fields of an object in a flex column are unpacked into the resulting document, if
you apply a JSON schema to a flex column the effect is similar to having added a separate
column for each of that object's fields to the flex column's table using DML.

In effect, by applying a JSON schema you change the logical structure of the data, and thus
the structure of the documents supported by the view. You remove schema flexibility, but you
don't change the storage structure (tables).

See Also:

Using JSON to Implement Flexfields (video, 24 minutes)

Chapter 6
Flex Columns: Duality-View Schema Flexibility and Evolution

6-7

https://youtu.be/vYw9p_4aGJM


Field Naming Conflicts Produced By Flex Columns

Because fields in a flex column are unpacked into an object that also has fields
provided otherwise, field name conflicts can arise. There are multiple ways this can
happen, including these:

• A table underlying a duality view gets redefined, adding a new column. The duality
view gets redefined, giving the JSON field that corresponds to the new column the
same name as a field already present in the flex column for the same table.

Problem: The field name associated with a nonflex column would be the same as
a field in the flex-column data.

• A flex column is updated directly (that is, not by updating documents supported by
the view), adding a field that has the same name as a field that corresponds in the
view definition to another column of the same underlying table.

Problem: The field name associated with a nonflex column is also used in the flex-
column data.

• Two duality views, dv1 and dv2, share an underlying table, using the same column,
jcol, as flex. Only dv1 uses nonflex column, foocol from the table, naming its
associated field foo.

Data is inserted into dv1, populating column foocol. This can happen by inserting
a row into the table or by inserting a document with field foo into dv1.

A JSON row with field foo is added to the flex column, by inserting a document
into dv2.

Problem: View dv2 has no problem. But for view dv1 field-name foo is associated
with a nonflex column and is also used in the flex-column data.

It's not feasible for the database to prevent such conflicts rom arising, but you can
specify the behavior you prefer for handling them when they detected during a read
(select, get, JSON generation) operation. (All such conflicts are detected during a
read.)

You do this using the following keywords at the end of a flex-column declaration. Note
that in all cases that don't raise an error, any field names in conflict are read from
nonflex columns — that is, priority is always given to nonflex columns.

Chapter 6
Flex Columns: Duality-View Schema Flexibility and Evolution

6-8



GraphQL SQL Behavior

(conflict: KEEP_NESTED) KEEP [NESTED] ON [NAME] CONFLICT
(Keywords NESTED and NAME are optional.)

Any field names in conflict are
read from nonflex columns.
Field _nameConflicts (a
reserved name) is added, with
value an object whose
members are the conflicting
names and their values, taken
from the flex column.

This is the default behavior.

For example, if for a given
document nonflex field
quantity has value 100, and
the flex-column data has field
quantity with value "314",
then nonflex field quantity
would keep its value 100, and
field _nameConflicts would
be created or modified to
include the member
"quantity":314.

(conflict: ARRAY) ARRAY ON [NAME] CONFLICT
(Keyword NAME is optional.)

Any field names in conflict are
read from nonflex columns.
The value of each name that
has a conflict is changed in its
nonflex column to be an array
whose elements are the
values: one from the nonflex
column and one from the flex-
column data, in that order.

For example, if for a given
document nonflex field
quantity has value 100, and
the flex-column data has field
quantity with value "314",
then nonflex field quantity
would have its value changed
to the array [100,314].

(conflict: IGNORE) IGNORE ON [NAME] CONFLICT
(Keyword NAME is optional.)

Any field names in conflict are
read from nonflex columns.
The same names are ignored
from the flex column.

(conflict: ERROR) ERROR ON [NAME] CONFLICT
(Keyword NAME is optional.)

An error is raised.

For example, this GraphQL flex declaration defines column extras as a flex column, and it
specifies that any conflicts that might arise from its field names are handled by simply
ignoring the problematic fields from the flex column data:

extras: JSON @flex (conflict: IGNORE)

Chapter 6
Flex Columns: Duality-View Schema Flexibility and Evolution

6-9



Note:

IGNORE ON CONFLICT and ARRAY ON CONFLICT are incompatible with ETAG-
checking. An error is raised if you try to create a duality view with a flex
column that is ETAG-checked and has either of these on-conflict
declarations.

Related Topics

• The Use Case for JSON-Relational Duality Views
The motivation behind JSON-relational duality views is presented.

Chapter 6
Flex Columns: Duality-View Schema Flexibility and Evolution

6-10



7
From JSON To Duality

The JSON-To-Duality Migrator can migrate one or more existing sets of JSON documents
to JSON-relational duality views. Its PL/SQL subprograms generate the views based on
implicit document-content relations (shared content). By default, document parts that can be
shared are shared, and the views are defined for maximum updatability.

Migration requires no supervision, but you should of course check the resulting duality views
and their supported documents to verify their adequacy to your needs. You can modify the
migration behavior to change the result.

There are two main use cases1 for the JSON-to-duality migrator:

• Migrate an existing application and its sets of JSON documents from a document
database to Oracle Database.

• Create a new application, based on knowledge of the different kinds of JSON documents
it will use (their structure and typing). The migrator can simplify this job, by automatically
creating the necessary duality views.

The migrator has two components:

• Converter: Create the database objects needed to support the original JSON
documents: duality views and their underlying tables and indexes.

• Importer: Import Oracle Database JSON-type document sets that correspond to the
original external documents into the duality views created by the converter.

Migration of existing stored document sets to sets supported by duality views consists of the
following operations. You use the converter for the first three, and the importer for the fourth.

1. Validate: Check whether the existing document sets can be converted to duality-view
support.

2. Normalize: Determine the relational tables needed for the duality views. Normalization is
both across and within document sets: equivalent data in different document sets is
shared by storing it in the same table.

3. Generate database objects:

a. Generate SQL scripts that create the necessary database objects: duality views and
their underlying tables and indexes.

b. Optionally edit the scripts, to change the conversion behavior or the names of the
views, tables, and indexes to be created.

c. Run the scripts to create the database objects.

4. Import: Import the existing documents into the duality views.

The converter is composed of these PL/SQL functions in package DBMS_JSON_DUALITY:

• infer_schema infers the JSON schema that represents all of the input document sets.

1 The migrator doesn't help with the third main use case of duality views: Reusing existing relational data (tables) for use in
JSON documents.

7-1



• generate_schema produces the code to create the required database objects for
each duality view.

• infer_and_generate_schema performs both operations.

The importer is PL/SQL procedure DMBS_JSON_DUALITY.import. It populates a duality
view created by the converter with the documents from the corresponding input
document set (more precisely, with the relational data needed to support such
documents).

To illustrate the use of the JSON-to-duality migrator we employ three small sets of
documents that could be used by a school-administration application: student, teacher,
and course documents. (A real application would of course likely have many more
documents in its document sets, and the documents might be complex.) The pre-
existing input document sets are shown in Example 7-1, Example 7-2, and 
Example 7-3.

Each of the document sets is loaded into a JSON-type column, data, of a temporary
transfer table from a document-database dump file of documents of a given kind (e.g.
student documents). The transfer-table names have suffix _tab (e.g., student_tab for
student documents). Column data is the only column in a transfer table.

The migrator creates the corresponding duality views (e.g. view student for student
documents) and populates them with the data from the transfer tables of stored
documents. Once this is done, and you've verified the adequacy of the duality views,
the transfer tables are no longer needed; you can drop them. The document sets are
then no longer stored as such; their now-normalized data is stored in the tables
underlying the duality views.

Note:

There's no guarantee that migration to duality views preserves all pre-
existing application data completely. In the process of normalization some
data may be transformed, cast to different data types, or truncated to respect
maximum size limits. Data that doesn't conform to the destination relational
schema might then be rejected during import.

You need to check that all data has been successfully imported, by running
verification tests and examining error logs.

You can ensure that your imported data is valid by comparing the documents
in an input document set with those supported by the corresponding duality
view, checking that the duality-view documents contain only the expected
fields and possibly additional fields, and that no fields are missing or modified
in unacceptable ways.

• School Administration Example, Migrator Input Documents
Existing student, teacher, and course document sets comprise the JSON-to-duality
migrator input for the school-administration example.

• JSON-To-Duality Converter
The converter can infer the inherent structure and typing of one or more sets of
stored documents, as a JSON schema. Using the schema it can provide code to
create the database objects needed to support the documents of each set: a
duality view and its underlying tables and indexes.

Chapter 7

7-2



• JSON-To-Duality Importer
The importer populates a duality view created by the converter with the documents stored
in a JSON-type document set (more precisely, with the relational data needed to support
such documents). Those stored documents correspond to a pre-existing external
document set.

7.1 School Administration Example, Migrator Input Documents
Existing student, teacher, and course document sets comprise the JSON-to-duality migrator
input for the school-administration example.

Note:

The document sets in the examples here are very small. In order to demonstrate
the handling of outlier (high-entropy) fields, we use a minFrequency migrator
configuration field value of 25, instead of the default value of 5.

A field is an outlier for a given document set if it occurs, or if any of its values
occurs with a given type, in less than minFrequency percent of the documents.

• An outlier field that occurs rarely is either (1) retained in a flex column of a table
underlying the duality view or (2) reported in an error log and not used in the
duality view, according to the value of configuration field useFlexFields.

• An outlier field whose value is rarely of a different type than usual is handled
differently. Import tries to convert any such values of a rare type to the expected
type for the field. Unsuccessful conversion is reported in an error log and the
field is not used in the duality view.

See Fields Specifying Configuration Parameters for Inference and Generation for
information about configuration fields minFrequency and useFlexFields.

Example 7-1    Student Document Set (Migrator Input)

These are the student documents that we assume comprise an existing external document
set that serves as input to the JSON-to-duality migrator. There are no outlier fields; that is,
there are no fields that are rare or whose values have rare types.

The documents all have the same fields, but note that field grade is of mixed type: string and
number. Neither type occurs rarely as a grade value, however (in less than 25% of the
student documents, 25 being the minFrequency value we use for the examples here).

{"studentId" : 1,
 "name"      : "Donald P.",
 "age"       : 20,
 "courses"   : [ {"courseNumber" : "MATH101",
                  "name"         : "Algebra",
                  "grade"        : 90},
                 {"courseNumber" : "CS101",
                  "name"         : "Algorithms",
                  "grade"        : 90},
                 {"courseNumber" : "CS102",
                  "name"         : "Data Structures",

Chapter 7
School Administration Example, Migrator Input Documents

7-3



                  "grade"        : "TBD"} ]}

{"studentId" : 2,
 "name"      : "Elena H.",
 "age"       : 21,
 "courses"   : [ {"courseNumber" : "MATH102",
                  "name"         : "Calculus",
                  "grade"        : 95},
                 {"courseNumber" : "CS101",
                  "name"         : "Algorithms",
                  "grade"        : 75},
                 {"courseNumber" : "CS102",
                  "name"         : "Data Structures",
                  "grade"        : "TBD"} ]}

{"studentId" : 3,
 "name"      : "Francis K.",
 "age"       : 20,
 "courses"   : [ {"courseNumber" : "MATH103",
                  "name"         : "Advanced Algebra",
                  "grade"        : 83} ]}

{"studentId" : 4,
 "name"      : "Georgia D.",
 "age"       : 19,
 "courses"   : [ {"courseNumber" : "MATH102",
                  "name"         : "Calculus",
                  "grade"        : 85},
                 {"courseNumber" : "CS101",
                  "name"         : "Algorithms",
                  "grade"        : 75},
                 {"courseNumber" : "MATH103",
                  "name"         : "Advanced Algebra",
                  "grade"        : 82} ]}

{"studentId" : 5,
 "name"      : "Hye E.",
 "age"       : 21,
 "courses"   : [ {"courseNumber" : "MATH101",
                  "name"         : "Algebra",
                  "grade"        : 97},
                 {"courseNumber" : "CS102",
                  "name"         : "Data Structures",
                  "grade"        : "TBD"} ]}

{"studentId" : 6,
 "name"      : "Ileana D.",
 "age"       : 21,
 "courses"   : [ {"courseNumber" : "MATH103",
                  "name"         : "Advanced Algebra",
                  "grade"        : 95}]}

{"studentId" : 7,
 "name"      : "Jatin S.",
 "age"       : 20,

Chapter 7
School Administration Example, Migrator Input Documents

7-4



 "courses"   : [ {"courseNumber" : "CS101",
                  "name"         : "Algorithms",
                  "grade"        : 85},
                 {"courseNumber" : "CS102",
                  "name"         : "Data Structures",
                  "grade"        : "TBD"} ]}

{"studentId" : 8,
 "name"      : "Katie H.",
 "age"       : 21,
 "courses"   : [ {"courseNumber" : "MATH103",
                  "name"         : "Advanced Algebra",
                  "grade"        : 90},
                 {"courseNumber" : "CS102",
                  "name"         : "Data Structures",
                  "grade"        : "TBD"} ]}

{"studentId" : 9,
 "name"      : "Luis F.",
 "age"       : 19,
 "courses"   : [ {"courseNumber" : "MATH102",
                  "name"         : "Calculus",
                  "grade"        : 95},
                 {"courseNumber" : "CS101",
                  "name"         : "Algorithms",
                  "grade"        : 75},
                 {"courseNumber" : "MATH103",
                  "name"         : "Advanced Algebra",
                  "grade"        : 85} ]}

{"studentId" : 10,
 "name"      : "Ming L.",
 "age"       : 20,
 "courses"   : [ {"courseNumber" : "MATH102",
                  "name"         : "Calculus",
                  "grade"        : 95} ]}

Compare this with the student document set migrated using the default conversion, 
Example 7-19. There are no differences, beyond the addition of fields needed for duality-view
support generally.

Example 7-2    Teacher Document Set (Migrator Input)

These are the teacher documents that we assume comprise an existing external document
set that serves as input to the JSON-to-duality migrator. There are no outlier fields; that is, no
fields are rare or have values with rare types.

The documents have the same fields, but note that field phoneNumber is of mixed type: string
and array (array of strings). Neither type occurs rarely as a phoneNumber value, however (in
less than 25% of the teacher documents, 25 being the minFrequency value we use for the
examples here).

Chapter 7
School Administration Example, Migrator Input Documents

7-5



(Note also that the value of one occurrence of field coursesTaught is an empty array.)

{"_id"           : 101,
 "name"          : "Abdul J.",
 "phoneNumber"   : [ "222-555-011", "222-555-012" ],
 "salary"        : 200000,
 "department"    : "Mathematics",
 "coursesTaught" : [ {"courseId"  : "MATH101",
                      "name"      : "Algebra",
                      "classType" : "Online"},
                     {"courseId"  : "MATH102",
                      "name"      : "Calculus",
                      "classType" : "In-person"} ]}

{"_id"           : 102,
 "name"          : "Betty Z.",
 "phoneNumber"   : "222-555-022",
 "salary"        : 300000,
 "department"    : "Computer Science",
 "coursesTaught" : [ {"courseId"  : "CS101",
                      "name"      : "Algorithms",
                      "classType" : "Online"},
                     {"courseId"  : "CS102",
                      "name"      : "Data Structures",
                      "classType" : "In-person"} ]}

{"_id"           : 103,
 "name"          : "Colin J.",
 "phoneNumber"   : [ "222-555-023" ],
 "salary"        : 220000,
 "department"    : "Mathematics",
 "coursesTaught" : [ {"courseId"  : "MATH103",
                      "name"      : "Advanced Algebra",
                      "classType" : "Online"} ]}

{"_id"           : 104,
 "name"          : "Natalie C.",
 "phoneNumber"   : "222-555-044",
 "salary"        : 180000,
 "department"    : "Computer Science",
 "coursesTaught" : []}

Compare this with the teacher document set migrated using the default conversion, 
Example 7-20. There are no differences, beyond the addition of fields needed for
duality-view support generally.

Example 7-3    Course Document Set (Migrator Input)

These are the course documents that we assume comprise an existing external
document set that serves as input to the JSON-to-duality migrator. There two outlier
fields, Notes and creditHours:

• Field Notes is an outlier because it occurs in only one course document (one out of
five, 20%, less than the minFrequency value of 25 that we use for the examples
here).

Chapter 7
School Administration Example, Migrator Input Documents

7-6



• Field creditHours is an outlier because it has a string value in less than 25% of the
documents; it has a number value in the other documents.

{"courseId"         : "MATH101",
 "name"             : "Algebra",
 "creditHours"      : 3,
 "students"         : [ {"studentId" : 1, "name" : "Donald P."},
                        {"studentId" : 5, "name" : "Hye E."} ],
 "teacher"          : {"teacherId" : 101, "name" : "Abdul J."},
 "Notes"            : "Prerequisite for Advanced Algebra"}

{"courseId"         : "MATH102",
 "name"             : "Calculus",
 "creditHours"      : 4,
 "students"         : [ {"studentId" : 2,  "name" : "Elena H."},
                        {"studentId" : 10, "name" : "Ming L."},
                        {"studentId" : 9,  "name" : "Luis F."},
                        {"studentId" : 4,  "name" : "Georgia D."} ],
 "teacher"          : {"teacherId" : 101,  "name" : "Abdul J."}}

{"courseId"         : "CS101",
 "name"             : "Algorithms",
 "creditHours"      : 5,
 "students"         : [ {"studentId" : 1, "name" : "Donald P."},
                        {"studentId" : 2, "name" : "Elena H."},
                        {"studentId" : 4, "name" : "Georgia D."},
                        {"studentId" : 9, "name" : "Luis F."},
                        {"studentId" : 7, "name" : "Jatin S."} ],
 "teacher"          : {"teacherId" : 102, "name" : "Betty Z."}}

{"courseId"         : "CS102",
 "name"             : "Data Structures",
 "creditHours"      : 3,
 "students"         : [ {"studentId" : 1, "name" : "Donald P."},
                        {"studentId" : 2, "name" : "Elena H."},
                        {"studentId" : 5, "name" : "Hye E."},
                        {"studentId" : 7, "name" : "Jatin S."},
                        {"studentId" : 8, "name" : "Katie H."} ],
 "teacher"          : {"teacherId" : 102, "name" : "Betty Z."}}

{"courseId"         : "MATH103",
 "name"             : "Advanced Algebra",
 "creditHours"      : "3",
 "students"         : [ {"studentId" : 3, "name" : "Francis K."},
                        {"studentId" : 4, "name" : "Georgia D."},
                        {"studentId" : 8, "name" : "Katie H."},
                        {"studentId" : 9, "name" : "Luis F."},
                        {"studentId" : 6, "name" : "Ileana D."} ],
 "teacher"          : {"teacherId" : 103, "name" : "Colin J."}}

Compare this with the course document set migrated using the default conversion, 
Example 7-21. There are no differences, beyond the addition of fields needed for duality-view
support generally. In particular, outlier fields Notes (rare) and creditHours (rare type) are

Chapter 7
School Administration Example, Migrator Input Documents

7-7



both present after migration, Notes because it is stored in a flex column, and
creditHours because its outlier value for course MATH103 is converted from the string
"3" to the number 3.

Related Topics

• Flex Columns: Duality-View Schema Flexibility and Evolution
A flex column in a table underlying a JSON-relational duality view lets you add and
redefine fields of the document object produced by that table. This provides a
certain kind of schema flexibility to a duality view, and to the documents it
supports.

• Result of Importing After Default Conversion
The result of importing the student, teacher, and course document sets from the
transfer tables after default conversion (in particular with useFlexFields:true) is
shown. All documents are successfully imported, with all of their fields.

7.2 JSON-To-Duality Converter
The converter can infer the inherent structure and typing of one or more sets of stored
documents, as a JSON schema. Using the schema it can provide code to create the
database objects needed to support the documents of each set: a duality view and its
underlying tables and indexes.

Overview of JSON-To-Duality Converter

The converter is composed of these PL/SQL functions in package
DBMS_JSON_DUALITY:

• infer_schema: Infer a relational schema that represents the documents in the
existing document sets.

– Input: A JSON object whose members specify configuration parameters for the
inference operation — see Fields Specifying Configuration Parameters for
Inference and Generation.

– Output: a JSON Schema document that specifies the inferred relational
schema. If no such schema can be found then an error is raised saying that
the converter can't create duality views corresponding to the input document
sets.

• generate_schema: Produce the SQL data-definition language (DDL) scripts to
generate the necessary duality views and their underlying tables and indexes.

– Input: the JSON schema output from function infer_schema.

– Output: DDL scripts to create the needed database objects.

• infer_and_generate_schema: Do infer_schema and generate_schema together.

– Input: same as infer_schema.

– Output: same as generate_schema.

The generated code creates the appropriate duality views; their underlying tables;
primary, unique, and foreign key constraints; indexes; and default values — everything
needed to support the original document sets.

After you've run the generated code to create the database objects needed to support
a given document set, you can use the JSON-To-Duality Importer to populate the new

Chapter 7
JSON-To-Duality Converter

7-8



duality view with the documents (more precisely, with the relational data needed to support
the input document set).

Fields Specifying Configuration Parameters for Inference and Generation

The following configuration fields can be used in the JSON object that is passed to functions
infer_schema and infer_and_generate_schema for inferring the relational schema. All except
field tableNames are optional. The use of any other fields besides those listed here raises an
error.

Some of the field values are also used for the DDL generation provided by generate_schema
and infer_and_generate_schema. But for generate_schema this information is provided by a
PL/SQL parameter whose value is a JSON schema produced by infer_schema, not by such
fields.

• ingestLimit (Optional) — The maximum number of documents to be analyzed in each
document set.

The default value is 100,000.

• minFrequency (Optional) — The minimum frequency for a field not to be considered an
outlier (high-entropy).

More precisely, a field is an outlier for a given document set if it occurs, or if any of its
values occurs with a given type, in less than minFrequency percent of the documents.

For example, in the input course documents:

– Field Notes is an outlier because it occurs in less than minFrequency percent of the
documents.

– Field creditHours is an outlier because it has a string value in less than
minFrequency percent of the documents. (It has a number value in the other
documents.)

The default minFrequency value is 5, meaning that a field that occurs in less than five
percent of a view's documents, or a field that occurs with a value of some type in less
than five percent of a view's documents, is considered high-entropy.

How a rare field is handled is determined by the value of field useFlexFields.

Note:

In the examples presented here, which involve very few documents in each
document set, we use 25 as the minFrequency value, in order to demonstrate
the determination and handling of outliers.

• outputFormat (Optional) — A string whose value defines the format of the output data
definition language (DDL) script.

The default value is "executable", which means you can execute the DDL script directly:
it uses PL/SQL EXECUTE IMMEDIATE. The other possible value is "standalone", which
means you can use the DDL script in a SQL script that you run separately.

If the generated DDL is larger than 32K bytes then you must use "standalone; otherwise,
an error is raised when you use EXECUTE IMMEDIATE. An "executable" DDL script can be
too large if the input data sets are themselves very large or they have many levels of
nested values.

Chapter 7
JSON-To-Duality Converter

7-9



• sourceSchema (Optional) — A string whose value is the name of the database
schema (user) that owns the input tables (tableNames).

If not provided then the database schema used to identify the input tables is the
one that's current when the DDL is generated (not when it is executed).

• tableNames (Required) — An array of strings naming the Oracle Database transfer
tables that correspond to the original external document sets. Each table must
have a JSON-type column (it need not be named data), which stores the
documents of a given document set.

• tablespace (Optional) — A string whose value is the name of the tablespace to
use for all of the tables underlying the duality views.

If not provided then no tablespace is specified in the output DDL. This means that
the tablespace used is the one that's current at the time the DDL code is executed
(not when it is generated).

• targetSchema (Optional) — A string whose value is the name of the database
schema (user) that will own the output database views (viewNames).

If not provided then no database schema is specified in the output DDL; the
names of the database objects to be created are unqualified. This means that the
schema used is the one that's current at the time the DDL code is executed (not
when it is generated).

• updatability (Optional) — A Boolean value determining whether the duality
views to be generated are to be updatable (true) or not (false). When true,
annotations are set for maximum updatability of each view. When false all of the
views created are read-only.

The default value is true.

• useFlexFields (Optional) — A Boolean value determining whether flex columns
are to be added to the tables underlying the duality views. Flex columns are used
to store unrecognized fields in an incoming document to be inserted or updated.

When useFlexFields is true, for each duality view <view-name>, a flex column
named ora$<view-name>_flex is added to each table that directly underlies the
top-level fields of an object in the supported documents. (The fields stored in a
given flex column are unnested to that object.)

The default value is true.

Besides providing for that usual flex-column runtime behavior, when
useFlexFields is true the converter also places, in the flex columns, some fields
from the input document sets that can't be based on a scalar SQL column: (1)
fields that are outliers because they occur rarely, and (2) non-outlier fields of mixed
type (that is, with no type occurring rarely).2 When useFlexFields is false such
fields are simply reported in an error log and not used in the duality views.

• viewNames (Optional) — An array of strings naming the duality views to be created,
one for each document set.

If not provided then the tableNames with _duality appended are used as the view
names. For example the name of the view corresponding to the documents in
table foo defaults to foo_duality.

2 Mixed-type fields that are outliers because their values are only rarely of a different type than usual are not stored
in a flex column. Instead, import tries to convert the rare-type occurrences to the common type for the field.

Chapter 7
JSON-To-Duality Converter

7-10



If field viewNames is provided then its array length must be the same as that of field
tableNames; otherwise, an error is raised (not logged).

The Converter Can Add Some Duality-View Fields and Columns

In some cases the converter creates fields and columns for a duality view definition that are
not in the original document set.

• Document-identifer field _id is generated for each document, if it is not already present in
the input documents.

A duality view must have a top-level _id field (the document identifier), which
corresponds to the primary-key column(s) of the view's root table. If a document input to
the converter already has a top-level _id field, then its associated column is in the root
table and is chosen as the table's primary-key column.

• Document-handling field _metadata is generated and maintained for each document, to
record its content-hash version (ETAG) and its latest system change number (SCN). This
field is not part of the document content per se (payload) .

• Other generated field and column names always have the prefix ora$.

A duality view definition needs explicit fields for the primary-key columns of each of its
underlying tables, and this is another case where new fields are sometimes added.

This is the case for views course and student, which use an underlying mapping table,
mapping_table_course_root_to_student_root, which has two primary-key columns,
map_course_id and map_student_id. These have foreign-key references to the primary-key
columns, course_id and student_id, of the course and student tables, course_root and
student_root.

At the place where the mapping table is used in the view definitions, each of its primary-key
columns (map_course_id and map_student_id) must be present, with a field assigned to it.
These fields are present in the documents supported by the view. The converter uses prefix
ora$ for their names, with the remainder taken from the column names (converted to
camelCase, without underscore separators): ora$mapCourseId and ora$mapStudentId.

When configuration field useFlexFields is true, the converter adds flex columns to the
tables underlying the duality views it creates. Each flex column is named ora$<view-
name>_flex, where <view-name> is the name of the duality view where it is defined — see 
Fields Specifying Configuration Parameters for Inference and Generation. (You might mistake
this for a field name in the view definition, but it's a column name; the name does not appear
in the documents supported by the view.)

• Before Using the Converter: Create Database Document Sets and JSON Schemas
Before using the JSON-to-duality converter you need to create JSON-type document sets
in Oracle Database from the original external document sets. The input to the converter
for each set of documents is an Oracle Database table with a single column of JSON data
type.

• Overview of Using the JSON-To-Duality Converter
The converter takes, as input, tables student_tab, teacher_tab, and course_tab, with
JSON-type columns holding your original student, teacher, and course document sets. It
infers duality views student, teacher, and course and generates PL/SQL code to create
the views and their underlying relational data.

• Using the Converter, Default Behavior
The student-teacher-course use case is used to illustrate the use of the JSON-to-duality
converter with its default values (except for minFrequency). In particular, configuration

Chapter 7
JSON-To-Duality Converter

7-11



field useFlexFields is true. The database objects needed to support the
document sets are inferred and the DDL to construct them is generated.

• Using the Converter with useFlexFields:false
If you use the converter with configuration field useFlexFields set to false then,
during import, an error is logged for a field that can't be stored in a simple SQL
scalar column, instead of the field being stored in a flex column.

Related Topics

• Flex Columns: Duality-View Schema Flexibility and Evolution
A flex column in a table underlying a JSON-relational duality view lets you add and
redefine fields of the document object produced by that table. This provides a
certain kind of schema flexibility to a duality view, and to the documents it
supports.

7.2.1 Before Using the Converter: Create Database Document Sets
and JSON Schemas

Before using the JSON-to-duality converter you need to create JSON-type document
sets in Oracle Database from the original external document sets. The input to the
converter for each set of documents is an Oracle Database table with a single column
of JSON data type.

You can export JSON document sets from a document database and import them into
JSON-type columns using various tools provided by Oracle and document databases.
(MongoDB command-line tools mongoexport and mongoimport provide one way to do
this.)

We assume that each of the student, teacher, and course document sets has been
thus loaded into a JSON-type column, data, of a temporary transfer table (e.g.
course_tab for course documents) from a document-database dump file of documents
of the given kind (e.g. course documents). This is shown in Example 7-4.

The transfer tables for the input document sets are all you need to use the converter.
But it's a good idea to also create a JSON schema as a model, or template
representing each input document set. This provides an overview of a particular kind
of documents, in particular their structure and typing. Example 7-5 illustrates this for
the course document set in column course_tab.data.

Comparing a JSON schema for an input document set (in a transfer table) against a
JSON schema for the duality view that's expected to replace it can highlight fields that
the converter has identified as problematic, and that were thus relegated to a flex
column (or logged as errors, if useFlexFields was false). For example, you can
compare the schemas from Example 7-5 and Example 7-13.

It can also be worthwhile to create a JSON schema-format data guide for an input
document set. This is a JSON schema that can include statistical information about the
specific content; in particular, for each field, in what percentage of documents it
occurs, in what percentage of documents it has values of which types, and the range
of values for each type. Fields that are stored in a flex column generally have low
frequency or values of mixed type. See Example 7-6 and the resulting data guides, 
Example 7-7 and Example 7-8

Chapter 7
JSON-To-Duality Converter

7-12



Example 7-4    Create an Oracle Document Set (Course) From a JSON Dump File.

This example creates an Oracle Database external table, dataset_dump_course, from a
JSON dump file of a set of course documents, course.json. It then creates table course_tab
with JSON-type column data. Finally, it imports the course documents into temporary transfer
table course_tab, which can be used as input to the JSON-relational converter.

The documents in course_tab.data are those shown in Example 7-3.

(Similarly student and teacher document sets are loaded into transfer tables student_tab
and teacher_tab from external tables dataset_dump_student and dataset_dump_teacher
created from dump files student.json and teacher.json, respectively.)

CREATE TABLE dataset_dump_course (data JSON)
  ORGANIZATION EXTERNAL
    (TYPE ORACLE_BIGDATA
     ACCESS PARAMETERS (com.oracle.bigdata.fileformat = jsondoc)
     LOCATION (data_dir:'course.json'))
  PARALLEL
  REJECT LIMIT UNLIMITED;

CREATE TABLE course_tab AS SELECT * FROM dataset_dump_course;
SELECT json_serialize(data PRETTY) FROM course_tab;

Example 7-5    Create a JSON Schema For Course Input Document Set

This example uses PL/SQL function DBMS_JSON_SCHEMA.describe to create a JSON schema
that describes the input set of course documents, which are stored in transfer table
course_tab.3 The describe output is saved in table course_tab_schema.

(Some insignificant whitespace is removed from the JSON data shown here, to facilitate
readability.)

CREATE TABLE course_tab_schema AS
  SELECT DBMS_JSON_SCHEMA.describe('COURSE_TAB') AS data FROM DUAL;

SELECT json_serialize(data PRETTY ORDERED) FROM course_tab_schema;

{"dbObject" : "JANUS.COURSE_TAB",
 "dbObjectType" : "table",
 "title" : "COURSE_TAB",
 "type" : "object",
 "properties" :
   {"DATA" :
     {"allOf" :
       [ {"title" : "DATA",
          "type" : "object",
          "properties" :
            {"Notes"       : {"maxLength"    : 64,
                              "extendedType" : [ "string", "null" ]},
             "courseId"    : {"maxLength"    : 32,

3 JANUS is the database schema that owns the tables and views used in these examples.

Chapter 7
JSON-To-Duality Converter

7-13



                              "extendedType" : [ "string", "null" ]},
             "creditHours" : {"extendedType" : [ "number", "string", "null" ]},
             "name"        : {"maxLength"    : 32,
                              "extendedType" : [ "string", "null" ]},
             "students" :
               {"type"  : "array",
                "items" :
                  {"type"       : "object",
                   "properties" :
                     {"name"      : {"maxLength"    : 32,
                                     "extendedType" : [ "string", "null" ]},
                      "studentId" : {"extendedType" : "number"}}}},
             "teacher"  :
               {"type"       : "object",
                "properties" :
                  {"name"      : {"maxLength"    : 32,
                                  "extendedType" : [ "string", "null" ]},
                   "teacherId" : {"extendedType" : "number"}}}}} ]}}}

Example 7-6    Create JSON Data Guides For Student and Course Document Set

This example uses Oracle SQL function json_dataguide to create data guides for the
input student and course document sets. These are JSON schemas that can be used
to validate their documents.

Parameter DBMS_JSON.FORMAT_SCHEMA ensures that the data guide is usable for
validating. Parameter DBMS_JSON.PRETTY pretty-prints the result. Parameter
DBMS_JSON.GATHER_STATS provides the data guide with statistical fields such as
o:frequency, which specifies the percentage of documents in which a given field
occurs or has a given type of value.

SELECT json_dataguide(data,
                      DBMS_JSON.FORMAT_SCHEMA,
                      DBMS_JSON.PRETTY+DBMS_JSON.GATHER_STATS)
  FROM student_tab;

SELECT json_dataguide(data,
                      DBMS_JSON.FORMAT_SCHEMA,
                      DBMS_JSON.PRETTY+DBMS_JSON.GATHER_STATS)
  FROM course_tab;

The resulting data guides are presented in Example 7-7 and Example 7-8.

Example 7-7    JSON Data Guide For Input Student Document Set

This data guide summarizes the input set of student documents stored in transfer table
student_tab. (Some insignificant whitespace is removed here, to facilitate readability.)

{"type"            : "object",
 "o:length"        : 1,
 "o:frequency"     : 100,
 "o:last_analyzed" : "2024-04-05T23:43:33",
 "o:sample_size"   : 10,
 "properties"      :

Chapter 7
JSON-To-Duality Converter

7-14



   {"age"       :
      {"type"                    : "number",
       "o:length"                : 2,
       "o:preferred_column_name" : "age",
       "o:frequency"             : 100,
       "o:low_value"             : 19,
       "o:high_value"            : 21,
       "o:num_nulls"             : 0,
       "o:last_analyzed"         : "2024-04-05T23:43:33",
       "o:sample_size"           : 10},
    "name"      :
      {"type"                    : "string",
       "o:length"                : 16,
       "o:preferred_column_name" : "name",
       "o:frequency"             : 100,
       "o:low_value"             : "Donald P.",
       "o:high_value"            : "Ming L.",
       "o:num_nulls"             : 0,
       "o:last_analyzed"         : "2024-04-05T23:43:33",
       "o:sample_size"           : 10},
    "courses"   :
      {"type"                    : "array",
       "o:length"                : 1,
       "o:preferred_column_name" : "courses",
       "o:frequency"             : 100,
       "o:last_analyzed"         : "2024-04-05T23:43:33",
       "o:sample_size"           : 10,
       "items"                   :
         {"properties" :
            {"name"         :
               {"type"                    : "string",
                "o:length"                : 16,
                "o:preferred_column_name" : "name",
                "o:frequency"             : 100,
                "o:low_value"             : "Advanced Algebra",
                "o:high_value"            : "Data Structures",
                "o:num_nulls"             : 0,
                "o:last_analyzed"         : "2024-04-05T23:43:33",
                "o:sample_size"           : 10},
             "grade"        :
               {"oneOf" : [ {"type"                    : "number",
                             "o:length"                : 2,
                             "o:preferred_column_name" : "grade",
                             "o:frequency"             : 100,
                             "o:low_value"             : 75,
                             "o:high_value"            : 97,
                             "o:num_nulls"             : 0,
                             "o:last_analyzed"         : "2024-04-05T23:43:33",
                             "o:sample_size"           : 10},
                            {"type"                    : "string",
                             "o:length"                : 4,
                             "o:preferred_column_name" : "grade",
                             "o:frequency"             : 50,
                             "o:low_value"             : "TBD",
                             "o:high_value"            : "TBD",

Chapter 7
JSON-To-Duality Converter

7-15



                             "o:num_nulls"             : 0,
                             "o:last_analyzed"         : "2024-04-05T23:43:33",
                             "o:sample_size"           : 10} ]},
             "courseNumber" :
               {"type" : "string",
                "o:length" : 8,
                "o:preferred_column_name" : "courseNumber",
                "o:frequency" : 100,
                "o:low_value" : "CS101",
                "o:high_value" : "MATH103",
                "o:num_nulls" : 0,
                "o:last_analyzed" : "2024-04-05T23:43:33",
                "o:sample_size" : 10}}}},
    "studentId" :
      {
       "type" : "number",
       "o:length" : 2,
       "o:preferred_column_name" : "studentId",
       "o:frequency" : 100,
       "o:low_value" : 1,
       "o:high_value" : 10,
       "o:num_nulls" : 0,
       "o:last_analyzed" : "2024-04-05T23:43:33",
       "o:sample_size" : 10}}}

Note that field grade has a type that is either (1) a number, with o:frequency 100, or
(2) a string, with o:frequency 50. This means that a numeric grade appears in 100%
of the documents, and a string grade appears in 50% of the documents.

Field grade is thus a mixed-type field, and it is not an outlier: neither of its types is
used rarely across the document set, as determined by configuration parameter
minFrequency.

minFrequency tests the percentage of documents where a field of a given type is
present across the document set. With each of its types (number and string), field
grade is used in more than minFrequency percent of the student documents. This
presence amply satisfies the requirement of minimum presence across all documents.

As a non-outlier mixed-type field, grade is thus a good candidate for having its own
column of JSON data type, and of that column having its own JSON schema applied to
it as a validating check constraint, to require the value to always be either a string or a
number.

Example 7-8    JSON Data Guide For Input Course Document Set

This data guide summarizes the input set of student documents stored in transfer table
course_tab. (Some insignificant whitespace is removed, to facilitate readability.)

{"type"            : "object",
 "o:length"        : 1,
 "o:frequency"     : 100,
 "o:last_analyzed" : "2024-04-05T23:43:33",
 "o:sample_size"   : 5,
 "properties"      :
   {"name"     :

Chapter 7
JSON-To-Duality Converter

7-16



      {"type"                    : "string",
       "o:length"                : 16,
       "o:preferred_column_name" : "name",
       "o:frequency"             : 100,
       "o:low_value"             : "Advanced Algebra",
       "o:high_value"            : "Data Structures",
       "o:num_nulls"             : 0,
       "o:last_analyzed"         : "2024-04-05T23:43:33",
       "o:sample_size"           : 5},
    "Notes"    :
      {"type"                    : "string",
       "o:length"                : 64,
       "o:preferred_column_name" : "Notes",
       "o:frequency"             : 20,
       "o:low_value"             : "Prerequisite for Advanced Algebra",
       "o:high_value"            : "Prerequisite for Advanced Algebra",
       "o:num_nulls"             : 0,
       "o:last_analyzed"         : "2024-04-05T23:43:33",
       "o:sample_size"           : 5},
    "teacher"  :
      {"type"                    : "object",
       "o:length"                : 1,
       "o:preferred_column_name" : "teacher",
       "o:frequency"             : 100,
       "o:last_analyzed"         : "2024-04-05T23:43:33",
       "o:sample_size"           : 5,
       "properties"              :
         {"name"      :
            {"type"                    : "string",
             "o:length"                : 8,
             "o:preferred_column_name" : "name",
             "o:frequency"             : 100,
             "o:low_value"             : "Abdul J.",
             "o:high_value"            : "Colin J.",
             "o:num_nulls"             : 0,
             "o:last_analyzed"         : "2024-04-05T23:43:33",
             "o:sample_size"           : 5},
          "teacherId" :
            {"type"                    : "number",
             "o:length"                : 4,
             "o:preferred_column_name" : "teacherId",
             "o:frequency"             : 100,
             "o:low_value"             : 101,
             "o:high_value"            : 103,
             "o:num_nulls"             : 0,
             "o:last_analyzed"         : "2024-04-05T23:43:33",
             "o:sample_size"           : 5}}},
    "courseId" :
      {"type"                    : "string",
       "o:length"                : 8,
       "o:preferred_column_name" : "courseId",
       "o:frequency"             : 100,
       "o:low_value"             : "CS101",
       "o:high_value"            : "MATH103",
       "o:num_nulls"             : 0,

Chapter 7
JSON-To-Duality Converter

7-17



       "o:last_analyzed"         : "2024-04-05T23:43:33",
       "o:sample_size"           : 5},
    "students" :
      {"type"                    : "array",
       "o:length"                : 1,
       "o:preferred_column_name" : "students",
       "o:frequency"             : 100,
       "o:last_analyzed"         : "2024-04-05T23:43:33",
       "o:sample_size"           : 5,
       "items"                   :
         {"properties" :
            {"name"      :
               {"type"                    : "string",
                "o:length"                : 16,
                "o:preferred_column_name" : "name",
                "o:frequency"             : 100,
                "o:low_value"             : "Donald P.",
                "o:high_value"            : "Ming L.",
                "o:num_nulls"             : 0,
                "o:last_analyzed"         : "2024-04-05T23:43:33",
                "o:sample_size"           : 5},
             "studentId" :
               {"type"                    : "number",
                "o:length"                : 2,
                "o:preferred_column_name" : "studentId",
                "o:frequency"             : 100,
                "o:low_value"             : 1,
                "o:high_value"            : 10,
                "o:num_nulls"             : 0,
                "o:last_analyzed"         : "2024-04-05T23:43:33",
                "o:sample_size"           : 5}}}},
    "creditHours" :
      {"oneOf" :
         [ {"type"                    : "number",
            "o:length"                : 2,
            "o:preferred_column_name" : "creditHours",
            "o:frequency"             : 80,
            "o:low_value"             : 3,
            "o:high_value"            : 5,
            "o:num_nulls"             : 0,
            "o:last_analyzed"         : "2024-04-05T23:43:33",
            "o:sample_size"           : 5},
           {"type"                    : "string",
            "o:length"                : 1,
            "o:preferred_column_name" : "creditHours",
            "o:frequency"             : 20,
            "o:low_value"             : "3",
            "o:high_value"            : "3",
            "o:num_nulls"             : 0,
            "o:last_analyzed"         : "2024-04-05T23:43:33",
            "o:sample_size"           : 5} ]}}}

Chapter 7
JSON-To-Duality Converter

7-18



Field Notes occurs in only 20% of the documents (field o:frequency is 20), which (because
configuration field minFrequency is 25 for our examples) means it's an outlier field, and will
thus be removed from the data.

Field creditHours has a type that is either (1) a number, with o:frequency 80, or (2) a
string, with o:frequency 20. It is thus a mixed-type field. Because the string occurrence is
less than the value of configuration field minFrequency (25), it is also an outlier.

A field that doesn't occur rarely but has a type that occurs rarely is not removed from the
data. Instead, the importer tries to convert the string value to a number. In the course duality
view definition the underlying column for field creditHours course has SQL type NUMBER.

Because the string value "3" can be converted to a number (3), the outlier creditHours
occurrence is imported successfully, using the numeric value. If the string value were instead
"three" then the importer would raise an error, because that can't be converted to a number.

Related Topics

• Obtaining Information About a Duality View
You can obtain information about a duality view, its underlying tables, their columns, and
key-column links, using static data dictionary views. You can also obtain a JSON-schema
description of a duality view, which includes a description of the structure and JSON-
language types of the JSON documents it supports.

• Flex Columns: Duality-View Schema Flexibility and Evolution
A flex column in a table underlying a JSON-relational duality view lets you add and
redefine fields of the document object produced by that table. This provides a certain kind
of schema flexibility to a duality view, and to the documents it supports.

See Also:

• Migrate Application Data from MongoDB to Oracle Database in Oracle
Database API for MongoDB for information about using commands
mongoexport and mongoimport to migrate

• Loading External JSON Data in Oracle Database JSON Developer’s Guide for
loading data from a document-database dumpfile into Oracle Database

• Validating JSON Documents with a JSON Schema for information about using
JSON schemas to constrain or validate JSON data

• json-schema.org for information about JSON Schema

• JSON Data Guide in Oracle Database JSON Developer’s Guide

7.2.2 Overview of Using the JSON-To-Duality Converter
The converter takes, as input, tables student_tab, teacher_tab, and course_tab, with JSON-
type columns holding your original student, teacher, and course document sets. It infers
duality views student, teacher, and course and generates PL/SQL code to create the views
and their underlying relational data.

PL/SQL function DBMS_JSON_DUALITY.infer_schema infers the duality views and their
underlying tables; function DBMS_JSON_DUALITY.generate_schema generates the DDL to

Chapter 7
JSON-To-Duality Converter

7-19

https://json-schema.org/


create them; and function DBMS_JSON_DUALITY.infer_and_generate_schema does
both. We use infer_and_generate_schema here.

By default, configuration field useFlexFields is true, which means that fields that
can't be based on a scalar SQL column are stored in a flex column as JSON-type data.
Such fields, across a given document set, are either (1) outliers because they are
relatively rare, or (2) of mixed type but with no type used rarely. Mixed-type fields that
are outliers because their values are only rarely of a different type than usual are not
stored in a flex column. Instead, import tries to convert the rare-type occurrences to
the common type for the field.

After you run infer_and_generate_schema, find which, if any, of the original fields
appear to be missing because they will be stored in a flex column, that is, they aren't
associated with a non-JSON SQL column.

Then you can decide whether to leave them in the flex column, delete them, or change
their values (for example, so they always have the same scalar type. In particular, it's
good to identify which fields are outliers and which are not. Outliers are sometimes
accidental — a string numeral where you really wanted a number, for example. Non-
outlier mixed type fields (e.g. number and string) are more often intended as such, and
expected by an existing application.

A non-outlier field of mixed type is a good candidate to move out of a flex column into
its own JSON-type column. In effect, it has been normalized to a type (e.g. number-or-
string) that SQL doesn't have. You can enforce this regularity, if intended, by imposing
a small JSON schema on the column: a schema that just constrains the value to be
either a JSON number or a JSON string.

How do you find which fields appear to be missing, whether outlier or not? There are a
few ways:

• Examine the output DDL code, checking the original set of fields against the field
columns to be created.

If useFlexFields is true (the default) then fields for which there is no
corresponding column will be stored in a flex column. If it is false they'll simply be
missing from documents supported by the duality view.

• Compare a JSON schema that you create for an original document set against a
JSON schema that you create for the corresponding duality view. (This assumes
that you've already run the DDL to create the tables and views.)

For example, compare the schema for input table course_tab (Example 7-5) with
the schema for duality view course (Example 7-13).

If useFlexFields is true then the two schemas should be functionally equivalent.
If it is false then outlier and mixed-type fields will be missing from the JSON
schema for the duality view.

• Examine a schema-format JSON data guide created from an original document
set (e.g, input table student_tab).

Check the o:frequency value for each missing field, to see whether or not the field
is an outlier. Check also the type value for each missing field, to see whether or
not it is mixed-type.

Based on what you decide, make appropriate changes to the DDL, and run it to
generate the duality views you really want.

Chapter 7
JSON-To-Duality Converter

7-20



Related Topics

• Flex Columns: Duality-View Schema Flexibility and Evolution
A flex column in a table underlying a JSON-relational duality view lets you add and
redefine fields of the document object produced by that table. This provides a certain kind
of schema flexibility to a duality view, and to the documents it supports.

7.2.3 Using the Converter, Default Behavior
The student-teacher-course use case is used to illustrate the use of the JSON-to-duality
converter with its default values (except for minFrequency). In particular, configuration field
useFlexFields is true. The database objects needed to support the document sets are
inferred and the DDL to construct them is generated.

The input document sets are stored in database tables student_tab, teacher_tab, and
course_tab (field tableNames) in the current database schema (default). The duality views to
be generated are student, teacher, and course, respectively (field viewNames).

The default value of configuration field useFlexFields is true, which allows the resulting
duality views to support some scalar fields whose values don't consistently correspond to
single SQL scalar data types.

The minimum frequency (configuration field minFrequency value) used in the examples here
is 25 (not the default value of 5), so a field that occurs, or occurs with a value of a particular
type, in less than 25% of a view's documents is considered an outlier (high-entropy).

Note:

The document sets in the examples here are very small. In order to demonstrate
the handling of outlier (high-entropy) fields, we use a minFrequency migrator
configuration field value of 25, instead of the default value of 5.

A field is an outlier for a given document set if it occurs, or if any of its values
occurs with a given type, in less than minFrequency percent of the documents.

• An outlier field that occurs rarely is either (1) retained in a flex column of a table
underlying the duality view or (2) reported in an error log and not used in the
duality view, according to the value of configuration field useFlexFields.

• An outlier field whose value is rarely of a different type than usual is handled
differently. Import tries to convert any such values of a rare type to the expected
type for the field. Unsuccessful conversion is reported in an error log and the
field is not used in the duality view.

See Fields Specifying Configuration Parameters for Inference and Generation for
information about configuration fields minFrequency and useFlexFields.

If you execute the generated DDL code then the duality views, their underlying tables, and
indexes are created. You can then create a JSON schema describing each duality view and
compare that with the JSON schema that describes the corresponding input document set.

The JSON schema for the course document set (stored in transfer table course_tab) is
shown in Example 7-13. Comparing that with the JSON schema for the input course

Chapter 7
JSON-To-Duality Converter

7-21



document set, Example 7-5 shows that the document fields correspond, with the
exception of the two outlier fields Notes and creditHours:

• Field Notes is missing from the documents supported by the duality view. This is
because it occurs in less than minFrequency (25) percent of the documents.

• Field creditHours is not missing, but its type has changed from number or string
to just number. This is because (1) a string value is present in less than
minFrequency (25) percent of the documents and (2) the only string values are
numeric strings, which the duality view converts to numbers. (The single string
value is "3".)

Such comparison can help decide how you might want to change some of the
documents or whether and how you might want to change the configuration fields used
to infer and generate the database objects. For example, if you want to be sure to
preserve the rare occurrence of field Notes or the rare use of a string value for field
creditHours, then you can change the duality-view definition to give each of those
fields its own JSON-type column.

However, it's important to note that comparing JSON schemas between input and
output database objects (input transfer table and output duality view) is not the same
as comparing the input and output documents. Comparing JSON schemas can
suggest things you might want to change, but it isn't a substitute for comparing
documents. After you import the original documents into the duality views you can and
should compare documents.

When comparing JSON schemas for transfer table course_tab and duality view
course, or just by looking at the definition of view course, you'll notice that the
documents to be supported by the view also contain the generated fields _id,
ora$mapCourseId, and ora$mapStudentId. See The Converter Can Add Some Duality-
View Fields and Columns.

Example 7-9    Infer Database Objects and Generate Their DDL (Configured With
Flex Columns)

DECLARE
  schema_sql CLOB;
BEGIN
  schema_sql :=
   DBMS_JSON_DUALITY.infer_and_generate_schema(
     JSON('{"tableNames"   : [ "STUDENT_TAB", "TEACHER_TAB", 
"COURSE_TAB" ],
            "viewNames"    : [ "STUDENT", "TEACHER", "COURSE" ]
            "minFrequency" : 25}'));
  DBMS_OUTPUT.put_line('DDL Script: ');
  DBMS_OUTPUT.put_line(schema_sql);
END;
/

These optional fields are absent here:

• Field errorLog, which is anyway ignored because field useFlexFields is (by
default) true.

• Field ingestLimit, which means that its value is 100000 (default), so each
document set can have no more than 100,000 documents.

Chapter 7
JSON-To-Duality Converter

7-22



• Field outputFormat, which means that its value is executable (default), so the DDL script
can be executed directly using PL/SQL EXECUTE IMMEDIATE.

• sourceSchema, which means that the views are to be owned by the user (database
schema) that is logged in when infer_and_generate_schema is invoked, that is, when the
DDL code is generated.

• tablespace, which means that the tables underlying the views are to use the tablespace
that's current when the generated DDL code is executed.

• targetSchema, which means that the views are to be owned by the user (database
schema) logged in when the generated DDL code is executed.

• Field updatability, which means that its value is true (default), so the views are
created with maximum updatability.

• Field useFlexFields, which means that its value is true (default), so (1) fields that are
outliers because they aren't present in at least minFrequency percent of the documents of
a given type, and (2) non-outlier fields that are of mixed type but with each type used in at
least minFrequency percent of the documents, are stored in flex columns.

Note:

If you use configuration field outputFormat with a value of standalone, instead of
the default value of executable, then function infer_and_generate returns the
generated DDL as a SQL script without wrapping it with EXECUTE IMMEDIATE. That
can be handier, for example, if you want to modify the script.

The resulting DDL is shown in Example 7-10 and Example 7-11.

Example 7-10    DDL Generated For Tables (useFlexFields:true)

This is the DDL code (generated using configuration field useFlexFields:true) that creates
the tables underlying the duality views. It also creates foreign-key constraints and indexes.
The DDL that defines the views is shown in Example 7-11.

BEGIN 
EXECUTE IMMEDIATE 'CREATE TABLE map_course_root_to_student_root(
   map_course_id  varchar2(32)  DEFAULT ON NULL SYS_GUID(),
   map_student_id  number  GENERATED BY DEFAULT ON NULL AS IDENTITY,
   ora$course_flex  JSON (OBJECT),
   ora$student_flex  JSON (OBJECT),
   PRIMARY KEY(map_course_id,map_student_id)
)';

EXECUTE IMMEDIATE 'CREATE TABLE teacher_root(
   "_id"  number  GENERATED BY DEFAULT ON NULL AS IDENTITY,
   name  varchar2(32)  /* UNIQUE */,
   salary  number  /* UNIQUE */,
   department  varchar2(32),
   ora$course_flex  JSON (OBJECT),
   ora$teacher_flex  JSON (OBJECT),
   PRIMARY KEY("_id")
)';

Chapter 7
JSON-To-Duality Converter

7-23



EXECUTE IMMEDIATE 'CREATE TABLE course_root(
   name  varchar2(32)  /* UNIQUE */,
   course_id  varchar2(32)  DEFAULT ON NULL SYS_GUID(),
   class_type  varchar2(32),
   credit_hours  number,
   "_id_teacher_root"  number,
   ora$teacher_flex  JSON (OBJECT),
   ora$course_flex  JSON (OBJECT),
   PRIMARY KEY(course_id)
)';

EXECUTE IMMEDIATE 'CREATE TABLE student_root(
   age  number,
   name  varchar2(32)  /* UNIQUE */,
   student_id  number  GENERATED BY DEFAULT ON NULL AS IDENTITY,
   ora$course_flex  JSON (OBJECT),
   ora$student_flex  JSON (OBJECT),
   PRIMARY KEY(student_id)
)';

EXECUTE IMMEDIATE 'ALTER TABLE map_course_root_to_student_root
  ADD CONSTRAINT fk_map_course_root_to_student_root_to_course_root
    FOREIGN KEY (map_course_id) REFERENCES course_root(course_id)';
EXECUTE IMMEDIATE 'ALTER TABLE map_course_root_to_student_root
  ADD CONSTRAINT fk_map_course_root_to_student_root_to_student_root
    FOREIGN KEY (map_student_id) REFERENCES student_root(student_id)';

EXECUTE IMMEDIATE 'ALTER TABLE course_root
  ADD CONSTRAINT fk_course_root_to_teacher_root
    FOREIGN KEY ("_id_teacher_root") REFERENCES teacher_root("_id")';

EXECUTE IMMEDIATE 'CREATE INDEX IF NOT EXISTS
  fk_map_course_root_to_student_root_to_course_root_index
    ON map_course_root_to_student_root(map_course_id)';
EXECUTE IMMEDIATE 'CREATE INDEX IF NOT EXISTS
  fk_map_course_root_to_student_root_to_student_root_index
    ON map_course_root_to_student_root(map_student_id)';
EXECUTE IMMEDIATE 'CREATE INDEX IF NOT EXISTS
  fk_course_root_to_teacher_root_index
    ON course_root("_id_teacher_root")';
END;
/

For each duality view <view-name>, each table that directly underlies the top-level
fields of an object in the supported documents has a flex column named ora$<view-
name>_flex (because useFlexFields was implicitly true for the DDL generation).

Tables student_root and teacher_root have primary-key columns student_id and
_id, respectively.

Table course_root has primary-key column course_id. Its column _id_teacher_root
is a foreign key to column _id of table teacher_root, which is the primary key of that
table. Table course_root has an index on its foreign-key column, _id_teacher_root.

Chapter 7
JSON-To-Duality Converter

7-24



Table map_course_root_to_student_root is a mapping table between tables course_root
and student_root.

• Its primary key is a composite of its columns map_course_id and map_student_id.

• Its columns map_course_id and map_student_id are foreign keys to columns course_id
and student_id in tables course_root and student_root, respectively, which are the
primary-key columns of those tables.

• It has indexes on its two foreign-key columns.

Example 7-11    DDL Generated For Duality Views (useFlexFields:true)

This is the DDL code for the duality views. It is generated using useFlexFields:true. The
duality-view definitions here use GraphQL syntax. Equivalent SQL duality-view definitions are
shown in Example 7-12. The DDL that defines the underlying tables is shown in 
Example 7-10.

BEGIN
EXECUTE IMMEDIATE 'CREATE OR REPLACE JSON RELATIONAL DUALITY VIEW STUDENT AS 
student_root @insert @update @delete
{ 
  _id : student_id
  age
  name
  courses: map_course_root_to_student_root @insert @update @delete
  {
    ora$mapCourseId: course_id
    ora$mapStudentId: student_id
    ora$student_flex @flex
    course_root @unnest @update
    { 
      name
      courseNumber: course_id
    } 
  } 
  studentId @generated (path: "$._id")
  ora$student_flex @flex
}'; 

EXECUTE IMMEDIATE 'CREATE OR REPLACE JSON RELATIONAL DUALITY VIEW TEACHER AS 
teacher_root @insert @update @delete
{ 
  "_id"
  name
  salary
  department
  coursesTaught: course_root @insert @update @delete
  { 
    name
    courseId: course_id
    classType: class_type
    ora$teacher_flex @flex
  } 
  ora$teacher_flex @flex
}'; 

Chapter 7
JSON-To-Duality Converter

7-25



EXECUTE IMMEDIATE 'CREATE OR REPLACE JSON RELATIONAL DUALITY VIEW COURSE AS 
course_root @insert @update @delete
{ 
  _id : course_id
  name
  teacher: teacher_root @update
  { 
    name
    teacherId: "_id"
    ora$course_flex @flex
  } 
  courseId @generated (path: "$._id")
  students: map_course_root_to_student_root @insert @update @delete
  {
    ora$mapCourseId: course_id
    ora$mapStudentId: student_id
    ora$course_flex @flex
    student_root @unnest @update
    { 
      name
      studentId: student_id
    } 
  } 
  creditHours: credit_hours
  ora$course_flex @flex
}'; 

EXECUTE IMMEDIATE 'CREATE OR REPLACE TRIGGER INSERT_TRIGGER_STUDENT
  BEFORE INSERT
  ON STUDENT
  FOR EACH ROW
DECLARE 
  inp_jsonobj json_object_t;
BEGIN
  inp_jsonobj := json_object_t(:new.data);
  IF NOT inp_jsonobj.has(''_id'') 
  THEN 
    inp_jsonobj.put(''_id'', inp_jsonobj.get(''studentId''));
    :new.data := inp_jsonobj.to_json;
  END
IF;
END;'; 

EXECUTE IMMEDIATE 'CREATE OR REPLACE TRIGGER INSERT_TRIGGER_COURSE
  BEFORE INSERT
  ON COURSE
  FOR EACH ROW
DECLARE 
  inp_jsonobj json_object_t;
BEGIN
  inp_jsonobj := json_object_t(:new.data);
  IF NOT inp_jsonobj.has(''_id'') 
  THEN 
    inp_jsonobj.put(''_id'', inp_jsonobj.get(''courseId''));
    :new.data := inp_jsonobj.to_json;

Chapter 7
JSON-To-Duality Converter

7-26



  END IF;
END;'; 
END;
/

Views course and student each have a field (courseId and studentId, respectively) whose
value is not stored but is generated from the value of the view's field _id.

Views course and student each have a before-insert trigger (insert_trigger_course and
insert_trigger_student, respectively) that stores the value of an incoming field courseId or
studentId, respectively, in field _id.

Why? A duality view must have an _id field, which corresponds to the primary-key column(s)
of the root table that underlies it, but documents from the existing app instead have a
courseId or studentId. In views course and student those fields are always generated from
field _id, so inserting a document stores their values in field _id instead. (See Document-
Identifier Field for Duality Views.)

Example 7-12    SQL DDL Code For Duality-View Creations (useFlexFields:true)

For information, in case SQL is more familiar to you than GraphQL, this SQL DDL code is
equivalent to the GraphQL duality-view creation code shown in Example 7-10.

CREATE OR REPLACE JSON RELATIONAL DUALITY VIEW STUDENT AS
  SELECT JSON {'_id'     : s.student_id,
               'age'     : s.age,
               'name'    : s.name,
               'courses' :
                 [SELECT JSON {'ora$mapCourseId'  : m.map_course_id,
                               'ora$mapStudentId' : m.map_student_id,
                               m.ora$course_flex AS FLEX,
                               UNNEST
                               (SELECT JSON {'name'         : c.name,
                                             'courseNumber' : c.course_id}
                                  FROM course_root c WITH UPDATE
                                  WHERE c.course_id = m.map_course_id)}
                 FROM map_course_root_to_student_root m WITH INSERT UPDATE 
DELETE
                 WHERE s.student_id = m.map_student_id],
               'studentId' IS GENERATED USING PATH '$._id',
               s.ora$student_flex AS FLEX
               RETURNING JSON}
    FROM student_root s WITH INSERT UPDATE DELETE;

CREATE OR REPLACE JSON RELATIONAL DUALITY VIEW TEACHER AS
  SELECT JSON {'_id'           : t."_id",
               'name'          : t.name,
               'salary'        : t.salary,
               'department'    : t.department,
               'coursesTaught' :
                 [SELECT JSON {'name'      : c.name,
                               'courseId'  : c.course_id,
                               'classType' : c.class_type,
                               c.ora$course_flex AS FLEX}
                    FROM course_root c WITH INSERT UPDATE DELETE

Chapter 7
JSON-To-Duality Converter

7-27



                    WHERE c."_id_teacher_root" = t."_id"],
               t.ora$teacher_flex AS FLEX
               RETURNING JSON}
    FROM teacher_root t WITH INSERT UPDATE DELETE;

CREATE OR REPLACE JSON RELATIONAL DUALITY VIEW COURSE AS
  SELECT JSON {'_id'         : c.course_id,
               'name'        : c.name,
               'teacher'     : (SELECT JSON {'name'      : t.name,
                                             'teacherId' : t."_id",
                                             t.ora$teacher_flex AS 
FLEX}
                                  FROM teacher_root t WITH UPDATE
                                  WHERE t."_id" = 
c."_id_teacher_root"),
               'courseId' IS GENERATED USING PATH '$._id',
               'students'    :
                 [SELECT JSON {'ora$mapCourseId'  : m.map_course_id,
                               'ora$mapStudentId' : m.map_student_id,
                               m.ora$student_flex AS FLEX,
                               UNNEST
                               (SELECT JSON {'name'      : s.name,
                                             'studentId' : 
s.student_id}
                                  FROM student_root s WITH UPDATE
                                  WHERE s.student_id = 
m.map_student_id)}
                    FROM map_course_root_to_student_root m WITH INSERT 
UPDATE DELETE
                    WHERE c.course_id = m.map_course_id],
               'creditHours' : c.credit_hours,
               c.ora$course_flex AS FLEX
               RETURNING JSON
    }
    FROM course_root c WITH INSERT UPDATE DELETE;

Example 7-13    Create a JSON Schema for the Course Duality View

CREATE TABLE course_schema AS
  SELECT DBMS_JSON_SCHEMA.describe('COURSE') AS data FROM DUAL;

SELECT json_serialize(data PRETTY ORDERED) FROM course_schema;

(Some insignificant whitespace is removed from the JSON data shown here, to
facilitate readability.)

{"additionalProperties" : true,
 "dbObject" : "JANUS.COURSE",
 "dbObjectType" : "dualityView",
 "title" : "COURSE",
 "type" : "object",
 "properties" :
  {"_id"          :
     {"extendedType"      : "string",

Chapter 7
JSON-To-Duality Converter

7-28



      "dbAssign"          : true,
      "maxLength"         : 32,
      "dbFieldProperties" : [ "check" ]},
   "_metadata"    : {"asof" : {"extendedType" : "string",
                               "maxLength" : 20},
                      "etag" : {"extendedType" : "string",
                                "maxLength" : 200}},
   "courseId"     : {"dbFieldProperties" : [ "computed" ]},
   "creditHours"  : {"dbFieldProperties" : [ "update", "check" ],
                     "extendedType"      : [ "number", "null" ]},
   "name"         : {"maxLength"         : 32,
                     "dbFieldProperties" : [ "update", "check" ],
                     "extendedType"      : [ "string", "null" ]},
   "students"     :
     {"type" : "array",
      "items" :
        {"additionalProperties" : false,
         "type"                 : "object",
         "properties"           :
           {"name"             : {"maxLength"         : 32,
                                  "dbFieldProperties" : [ "update", "check" ],
                                  "extendedType"      : [ "string", "null" ]},
            "ora$mapCourseId"  : {"extendedType"      : "string",
                                  "dbAssign"         : true,
                                  "maxLength"         : 32,
                                  "dbFieldProperties" : [ "check" ]},
            "ora$mapStudentId" : {"extendedType"      : "number",
                                  "dbAssign"         : true,
                                  "dbFieldProperties" : [ "check" ]},
            "studentId"        : {"extendedType"      : "number",
                                  "dbAssign"         : true,
                                  "dbFieldProperties" : [ "check" ]},
            "dbPrimaryKey"     : [ "ora$mapCourseId", "ora$mapStudentId" ]},
         "required"             : [ "ora$mapCourseId",
                                    "ora$mapStudentId",
                                    "studentId" ]}},
   "teacher"      : {"additionalProperties" : true,
                     "type"                 : "object",
                     "properties"           :
                       {"name"         : {"maxLength"         : 32,
                                          "dbFieldProperties" : [ "update",
                                                                  "check" ],
                                          "extendedType"      : [ "string",
                                                                  "null" ]},
                        "teacherId"    :
                          {"extendedType"      : "number",
                           "dbAssign"         : true,
                           "dbFieldProperties" : [ "check" ]},
                        "dbPrimaryKey" : [ "teacherId" ]},
                     "required"             : [ "teacherId" ]},
   "dbPrimaryKey" : [ "_id" ]},
 "dbObjectProperties" : [ "insert", "update", "delete", "check" ],
 "required" : [ "_id" ]}

4

Chapter 7
JSON-To-Duality Converter

7-29



Any field not listed in the value of field required is optional; it need not be present in a
valid document supported by the duality view.

Field additionalProperties is a partner to its sibling field properties. If
additionalProperties is absent or is true, then documents supported by the view
can contain additional fields that are siblings of the fields listed in field properties.
Such additional fields are stored in a flex column; they are, in effect, not explicitly
specified in the duality-view definition. For each flex column in a duality-view definition
there is a true additionalProperties field (implicit if the field is absent) in its JSON
schema, and vice versa.

The JSON Schema fields with prefix db are Oracle-specific.

• Field dbFieldProperties is an array that specifies properties for a particular field.
These include annotations, such as "update" and "check", as well as "computed"
for a field whose value is generated, not stored. For example, field courseId is not
stored but is taken from the value of field _id (which is taken from column
course_id.

• Field dbAssign is true for a field, such as _id, ora$mapCourseId, and
ora$mapStudentId, that is not present in the original document set. These three
fields are present in the course documents because their values are the primary
keys for underlying tables.

• Field dbPrimaryKey declares that fields _id, ora$mapCourseId, ora$mapStudentId,
and teacherId are the primary-key fields.

Fields type and extendedType are important for comparing a duality-view JSON
schema with the schema for the corresponding input (transfer) table. The types should
generally correspond. When these fields have an array value it means that the type
can be any of the types listed in the array.

Note:

When the type of a field includes "null", either (1) the field value can be a
JSON null value or (2) the field can be absent. This is because a JSON
null value can correspond to a SQL NULL value, which indicates absence of
a value.

Related Topics

• Flex Columns: Duality-View Schema Flexibility and Evolution
A flex column in a table underlying a JSON-relational duality view lets you add and
redefine fields of the document object produced by that table. This provides a
certain kind of schema flexibility to a duality view, and to the documents it
supports.

7.2.4 Using the Converter with useFlexFields:false
If you use the converter with configuration field useFlexFields set to false then,
during import, an error is logged for a field that can't be stored in a simple SQL scalar
column, instead of the field being stored in a flex column.

Example 7-22, Example 7-23, and Example 7-24 illustrate this.4 JANUS is the database schema that owns the tables and views used in these examples.

Chapter 7
JSON-To-Duality Converter

7-30



Example 7-8 shows that fields Notes and creditHours are outliers for the document set,
Notes because it is rare, and creditHours because its value is sometimes of a rare type.

With useFlexFields true (the default value) field Notes is retained in course documents, by
being stored in a flex field. With useFlexFields false, however, the rare field is logged as an
error during import.

Example 7-14    Infer Database Objects and Generate Their DDL (Configured Without
Flex Columns)

This example is the same as Example 7-9, except that useFlexFields is false and
outputFormat is standalone.

DECLARE
  ddl_sql CLOB;
BEGIN
  ddl_sql :=
   DBMS_JSON_DUALITY.infer_and_generate_schema(
     JSON('{"tableNames"    : [ "STUDENT_TAB", "COURSE_TAB", "TEACHER_TAB" ],
            "viewNames"     : [ "STUDENT", "COURSE", "TEACHER" ],
            "useFlexFields" : false,
            "outputFormat"  : "standalone",
            "minFrequency"  : 25}'));
  DBMS_OUTPUT.put_line('DDL Script: ');
  DBMS_OUTPUT.put_line(ddl_sql);
END;
/

The resulting DDL is shown in Example 7-15and Example 7-16.

Example 7-15    DDL Generated For Tables (useFlexFields:false)

This is the DDL code (generated using configuration field useFlexFields:false) that creates
the tables underlying the duality views. It also creates foreign-key constraints and indexes. It
is the same as that shown in Example 7-10, except that there are no flex columns and the
code is standalone (not wrapped with EXECUTE IMMEDIATE). The DDL that defines the views is
shown in Example 7-16.

CREATE TABLE map_course_root_to_student_root(
   map_course_id  varchar2(32)  DEFAULT ON NULL SYS_GUID(),
   map_student_id  number  GENERATED BY DEFAULT ON NULL AS IDENTITY,
   PRIMARY KEY(map_course_id,map_student_id)
);

CREATE TABLE teacher_root(
   "_id"  number  GENERATED BY DEFAULT ON NULL AS IDENTITY,
   name  varchar2(32)  /* UNIQUE */,
   salary  number  /* UNIQUE */,
   department  varchar2(32),
   PRIMARY KEY("_id")
);

CREATE TABLE course_root(
   name  varchar2(32)  /* UNIQUE */,
   course_id  varchar2(32)  DEFAULT ON NULL SYS_GUID(),

Chapter 7
JSON-To-Duality Converter

7-31



   class_type  varchar2(32),
   credit_hours  number,
   "_id_teacher_root"  number,
   PRIMARY KEY(course_id)
);

CREATE TABLE student_root(
   age  number,
   name  varchar2(32)  /* UNIQUE */,
   student_id  number  GENERATED BY DEFAULT ON NULL AS IDENTITY,
   PRIMARY KEY(student_id)
);

ALTER TABLE map_course_root_to_student_root
  ADD CONSTRAINT fk_map_course_root_to_student_root_to_course_root
    FOREIGN KEY (map_course_id) REFERENCES course_root(course_id);
ALTER TABLE map_course_root_to_student_root
  ADD CONSTRAINT fk_map_course_root_to_student_root_to_student_root
    FOREIGN KEY (map_student_id) REFERENCES student_root(student_id);

ALTER TABLE course_root
  ADD CONSTRAINT fk_course_root_to_teacher_root
    FOREIGN KEY ("_id_teacher_root") REFERENCES teacher_root("_id");

CREATE INDEX IF NOT EXISTS
  fk_map_course_root_to_student_root_to_course_root_index
    ON map_course_root_to_student_root(map_course_id);
CREATE INDEX IF NOT EXISTS
  fk_map_course_root_to_student_root_to_student_root_index
    ON map_course_root_to_student_root(map_student_id);
CREATE INDEX IF NOT EXISTS
  fk_course_root_to_teacher_root_index
    ON course_root("_id_teacher_root");

Example 7-16    DDL Generated For Duality Views (useFlexFields:false)

This is the DDL code for the duality views. It is generated using useFlexFields:false.
It is the same as that shown in Example 7-11, except that there are no flex columns
and the code is standalone (not wrapped with EXECUTE IMMEDIATE). The DDL that
defines the underlying tables is shown in Example 7-15.

CREATE OR REPLACE JSON RELATIONAL DUALITY VIEW STUDENT AS 
student_root @insert @update @delete
{ 
  _id : student_id
  age
  name
  courses: map_course_root_to_student_root @insert @update @delete
  {
    ora$mapCourseId: map_course_id
    ora$mapStudentId: map_student_id
    course_root @unnest @update
    { 
      name
      courseNumber: course_id

Chapter 7
JSON-To-Duality Converter

7-32



    } 
  } 
  studentId @generated (path: "$._id")
}; 

CREATE OR REPLACE JSON RELATIONAL DUALITY VIEW TEACHER AS 
teacher_root @insert @update @delete
{ 
  "_id"
  name
  salary
  department
  coursesTaught: course_root @insert @update @delete
  { 
    name
    courseId: course_id
    classType: class_type
  } 
}; 

CREATE OR REPLACE JSON RELATIONAL DUALITY VIEW COURSE AS 
course_root @insert @update @delete
{ 
  _id : course_id
  name
  teacher: teacher_root @update
  { 
    name
    teacherId: "_id"
  } 
  courseId @generated (path: "$._id")
  students: map_course_root_to_student_root @insert @update @delete
  {
    ora$mapCourseId: map_course_id
    ora$mapStudentId: map_student_id
    student_root @unnest @update
    { 
      name
      studentId: student_id
    } 
  } 
  creditHours: credit_hours
}; 

CREATE OR REPLACE TRIGGER INSERT_TRIGGER_STUDENT
  BEFORE INSERT
  ON STUDENT
  FOR EACH ROW
DECLARE 
  inp_jsonobj json_object_t;
BEGIN
  inp_jsonobj := json_object_t(:new.data);
  IF NOT inp_jsonobj.has('_id') 
  THEN 
    inp_jsonobj.put('_id', inp_jsonobj.get('studentId'));

Chapter 7
JSON-To-Duality Converter

7-33



    :new.data := inp_jsonobj.to_json;
  END IF;
END; 
/

CREATE OR REPLACE TRIGGER INSERT_TRIGGER_COURSE
  BEFORE INSERT
  ON COURSE
  FOR EACH ROW
DECLARE 
  inp_jsonobj json_object_t;
BEGIN
  inp_jsonobj := json_object_t(:new.data);
  IF NOT inp_jsonobj.has('_id') 
  THEN 
    inp_jsonobj.put('_id', inp_jsonobj.get('courseId'));
    :new.data := inp_jsonobj.to_json;
  END IF;
END;
/

7.3 JSON-To-Duality Importer
The importer populates a duality view created by the converter with the documents
stored in a JSON-type document set (more precisely, with the relational data needed to
support such documents). Those stored documents correspond to a pre-existing
external document set.

The importer is PL/SQL procedure DMBS_JSON_DUALITY.import.

• Input: (1) An Oracle Database JSON document set, that is, a table with a single
JSON-type column containing documents of a given kind. (2) The name of a duality
view to populate.

• Output: (1) A duality view with its underlying tables filled with the relational data
that supports the same documents. (2) An error-log table that reports any
documents that could not be imported.

You use procedure import once for each document set to be migrated.

Example 7-17    Create Error-Log Tables for Duality Views

This example creates error-log tables, *_error_log, for each of the duality views
(argument dml_table_name).

BEGIN
DBMS_ERRLOG.create_error_log(
  dml_table_name     => 'STUDENT',
  err_log_table_name => 'STUDENT_ERR_LOG',
  skip_unsupported   => TRUE);
DBMS_ERRLOG.create_error_log(
  dml_table_name     => 'TEACHER',
  err_log_table_name => 'TEACHER_ERR_LOG',
  skip_unsupported   => TRUE);
DBMS_ERRLOG.create_error_log(
  dml_table_name     => 'COURSE',

Chapter 7
JSON-To-Duality Importer

7-34



  err_log_table_name => 'COURSE_ERR_LOG',
  skip_unsupported   => TRUE);
END;
/

Example 7-18    Import Documents Into Duality Views

This example uses PL/SQL procedure DBMS_JSON_DUALITY.import to import the JSON-type
documents from the temporary transfer tables, *_tab, into the duality views created by the
converter. It logs errors in the corresponding error-log tables, *_err_log.

EXEC DBMS_JSON_DUALITY.import(
  table_name   => 'STUDENT_TAB',
  view_name    => 'STUDENT',
  err_log_name => 'STUDENT_ERR_LOG');

EXEC DBMS_JSON_DUALITY.import(
  table_name   => 'TEACHER_TAB',
  view_name    => 'TEACHER',
  err_log_name => 'TEACHER_ERR_LOG');

EXEC DBMS_JSON_DUALITY.import(
  table_name   => 'COURSE_TAB',
  view_name    => 'COURSE',
  err_log_name => 'COURSE_ERR_LOG');

• Result of Importing After Default Conversion
The result of importing the student, teacher, and course document sets from the transfer
tables after default conversion (in particular with useFlexFields:true) is shown. All
documents are successfully imported, with all of their fields.

• Using the Importer, from useFlexFields:false Conversion
After trying to import, error-log tables are queried to show import errors and imported
documents.

See Also:

DBMS_ERRLOG in Oracle Database PL/SQL Packages and Types Reference for
information about procedure DBMS_ERRLOG.create_error_log

7.3.1 Result of Importing After Default Conversion
The result of importing the student, teacher, and course document sets from the transfer
tables after default conversion (in particular with useFlexFields:true) is shown. All
documents are successfully imported, with all of their fields.

Example 7-19    Student Document Set (Migrator Output, useFlexFields:true)

Compare this with the input student document set, Example 7-1, which had no outliers.
These are the only differences (ignoring field order, which is irrelevant):

Chapter 7
JSON-To-Duality Importer

7-35



• Document identifier field _id and document-state field _metadata have been
added. (Every document supported by a duality view has these fields.)

• Fields ora$mapCourseId and ora$mapStudentId have been added. These
correspond to the primary-key columns for underlying mapping table
mapping_table_course_root_to_student_root. Their values are the same as the
values of fields courseNumber and studentId, respectively.

There are no other differences. Note too that mixed-type field grade is unchanged, as
it is not an outlier.

{"_id"       : 1,
 "_metadata" : {"etag" : "FF114F6623DEC5C9AAC00DBD6D7BD113",
                "asof" : "0000000000D3AE9D"},
 "age"       : 20,
 "name"      : "Donald P.",
 "courses"   : [ {"ora$mapCourseId"  : "CS101",
                  "ora$mapStudentId" : 1,
                  "name"             : "Algorithms",
                  "courseNumber"     : "CS101",
                  "grade"            : 90},
                 {"ora$mapCourseId"  : "CS102",
                  "ora$mapStudentId" : 1,
                  "name"             : "Data Structures",
                  "courseNumber"     : "CS102",
                  "grade"            : "TBD"},
                 {"ora$mapCourseId"  : "MATH101",
                  "ora$mapStudentId" : 1,
                  "name"             : "Algebra",
                  "courseNumber"     : "MATH101",
                  "grade"            : 90} ],
 "studentId" : 1}

{"_id"       : 2,
 "_metadata" : {"etag" : "C41C0F97AA5D9D3D44461DDBF6A80134",
                "asof" : "0000000000D3AE9D"},
 "age"       : 21,
 "name"      : "Elena H.",
 "courses"   : [ {"ora$mapCourseId"  : "CS101",
                  "ora$mapStudentId" : 2,
                  "name"             : "Algorithms",
                  "courseNumber"     : "CS101",
                  "grade"            : 75},
                 {"ora$mapCourseId"  : "CS102",
                  "ora$mapStudentId" : 2,
                  "name"             : "Data Structures",
                  "courseNumber"     : "CS102",
                  "grade"            : "TBD"},
                 {"ora$mapCourseId"  : "MATH102",
                  "ora$mapStudentId" : 2,
                  "name"             : "Calculus",
                  "courseNumber"     : "MATH102",
                  "grade"            : 95} ],
 "studentId" : 2}

{"_id"       : 3,

Chapter 7
JSON-To-Duality Importer

7-36



 "_metadata" : {"etag" : "1212696D37E948584540C8D094A4CCD2",
                "asof" : "0000000000D3AE9D" },
 "age"       : 20,
 "name"      : "Francis K.",
 "courses"   : [ {"ora$mapCourseId"  : "MATH103",
                  "ora$mapStudentId" : 3,
                  "name"             : "Advanced Algebra",
                  "courseNumber"     : "MATH103",
                  "grade"            : 83}],
 "studentId" : 3}

{"_id"       : 4,
 "_metadata" : {"etag" : "9EB8289EEE3FB4FCB40DC43C89C672E0",
                "asof" : "0000000000D3AE9D"},
 "age"       : 19,
 "name"      : "Georgia D.",
 "courses"   : [ {"ora$mapCourseId"  : "CS101",
                  "ora$mapStudentId" : 4,
                  "name"             : "Algorithms",
                  "courseNumber"     : "CS101",
                  "grade"            : 75},
                 {"ora$mapCourseId"  : "MATH102",
                  "ora$mapStudentId" : 4,
                  "name"             : "Calculus",
                  "courseNumber"     : "MATH102",
                  "grade"            : 85},
                 {"ora$mapCourseId"  : "MATH103",
                  "ora$mapStudentId" : 4,
                  "name"             : "Advanced Algebra",
                  "courseNumber"     : "MATH103",
                  "grade"            : 82} ],
 "studentId" : 4}

{"_id"       : 5,
 "_metadata" : {"etag" : "B488D4BD590CEBFFB3614924BE6A08DF",
                "asof" : "0000000000D3AE9D"},
 "age"       : 21,
 "name"      : "Hye E.",
 "courses"   : [ {"ora$mapCourseId"  : "CS102",
                  "ora$mapStudentId" : 5,
                  "name"             : "Data Structures",
                  "courseNumber"     : "CS102",
                  "grade"            : "TBD"},
                 {"ora$mapCourseId"  : "MATH101",
                  "ora$mapStudentId" : 5,
                  "name"             : "Algebra",
                  "courseNumber"     : "MATH101",
                  "grade"            : 97} ],
 "studentId" : 5}

{"_id"       : 6,
 "_metadata" : {"etag" : "4BD59A74DA1E87D52E2601E243F3C766",
                "asof" : "0000000000D3AE9D"},
 "age"       : 21,
 "name"      : "Ileana D.",

Chapter 7
JSON-To-Duality Importer

7-37



 "courses"   : [ {"ora$mapCourseId"  : "MATH103",
                  "ora$mapStudentId" : 6,
                  "name"             : "Advanced Algebra",
                  "courseNumber"     : "MATH103",
                  "grade"            : 95} ],
 "studentId" : 6}

{"_id"       : 7,
 "_metadata" : {"etag" : "AB71BFC4F00303D2C5187110FB45B68D",
                "asof" : "0000000000D3AE9D"},
 "age"       : 20,
 "name"      : "Jatin S.",
 "courses"   : [ {"ora$mapCourseId"  : "CS101",
                  "ora$mapStudentId" : 7,
                  "name"             : "Algorithms",
                  "courseNumber"     : "CS101",
                  "grade"            : 85},
                 {"ora$mapCourseId"  : "CS102",
                  "ora$mapStudentId" : 7,
                  "name"             : "Data Structures",
                  "courseNumber"     : "CS102",
                  "grade"            : "TBD"} ],
 "studentId" : 7}

{
 "_id"       : 8,
 "_metadata" : {"etag" : "30A793B67F6104493F68EB21C4031124",
                "asof" : "0000000000D3AE9D"},
 "age"       : 21,
 "name"      : "Katie H.",
 "courses"   : [ {"ora$mapCourseId"  : "CS102",
                  "ora$mapStudentId" : 8,
                  "name"             : "Data Structures",
                  "courseNumber"     : "CS102",
                  "grade"            : "TBD"},
                 {"ora$mapCourseId"  : "MATH103",
                  "ora$mapStudentId" : 8,
                  "name"             : "Advanced Algebra",
                  "courseNumber"     : "MATH103",
                  "grade"            : 90} ],
 "studentId" : 8}

{"_id"       : 9,
 "_metadata" : {"etag" : "1DD20C7695C0C140DE3E8C169905CD42",
                "asof" : "0000000000D3AE9D"},
 "age"       : 19,
 "name"      : "Luis F.",
 "courses"   : [ {"ora$mapCourseId"  : "CS101",
                  "ora$mapStudentId" : 9,
                  "name"             : "Algorithms",
                  "courseNumber"     : "CS101",
                  "grade"            : 75},
                 {"ora$mapCourseId"  : "MATH102",
                  "ora$mapStudentId" : 9,
                  "name"             : "Calculus",

Chapter 7
JSON-To-Duality Importer

7-38



                  "courseNumber"     : "MATH102",
                  "grade" : 95},
                 {"ora$mapCourseId"  : "MATH103",
                  "ora$mapStudentId" : 9,
                  "name"             : "Advanced Algebra",
                  "courseNumber"     : "MATH103",
                  "grade"            : 85} ],
 "studentId" : 9}

{"_id"       : 10,
 "_metadata" : {"etag" : "80EED24536C8B116CBC4699F105BC44C",
                "asof" : "0000000000D3AE9D"},
 "age"       : 20,
 "name"      : "Ming L.",
 "courses"   : [ {"ora$mapCourseId"  : "MATH102",
                  "ora$mapStudentId" : 10,
                  "name"             : "Calculus",
                  "courseNumber"     : "MATH102",
                  "grade"            : 95} ],
 "studentId" : 10}

Example 7-20    Teacher Document Set (Migrator Output, useFlexFields:true)

Compare this with the input teacher document set, Example 7-2, which had no outliers.

The only difference (ignoring field order, which is irrelevant) is that document identifier field
_id and document-state field _metadata have been added. (Every document supported by a
duality view has these fields.)

{"_id"           : 101,
 "_metadata"     : {"etag" : "D26B25FBD1E012B9F616F9709163A959",
                    "asof" : "0000000000D3AE97"},
 "name"          : "Abdul J.",
 "salary"        : 200000,
 "department"    : "Mathematics",
 "coursesTaught" : [ {"name"      : "Algebra",
                      "courseId"  : "MATH101",
                      "classType" : "Online"},
                     {"name"      : "Calculus",
                      "courseId"  : "MATH102",
                      "classType" : "In-person"} ],
 "phoneNumber"   : [ "222-555-011", "222-555-012" ]}

{"_id"           : 102,
 "_metadata"     : {"etag" : "20ABE18E3496CB34DF4AD58BA8EBB0AD",
                    "asof" : "0000000000D3AE97"},
 "name"          : "Betty Z.",
 "salary"        : 300000,
 "department"    : "Computer Science",
 "coursesTaught" : [ {"name"      : "Algorithms",
                      "courseId"  : "CS101",
                      "classType" : "Online"},
                     {"name"      : "Data Structures",
                      "courseId"  : "CS102",
                      "classType" : "In-person"} ],

Chapter 7
JSON-To-Duality Importer

7-39



 "phoneNumber"   : "222-555-022"}

{"_id"           : 103,
 "_metadata"     : {"etag" : "13B4619BEDDC2350BBEE186AEF14F77D",
                    "asof" : "0000000000D3AE97"},
 "name"          : "Colin J.",
 "salary"        : 220000,
 "department"    : "Mathematics",
 "coursesTaught" : [ {"name"      : "Advanced Algebra",
                      "courseId"  : "MATH103",
                      "classType" : "Online"} ],
 "phoneNumber"   : [ "222-555-023" ]}

{"_id"           : 104,
 "_metadata"     : {"etag" : "28E826A38C4301AA292F1EE1793B83D1",
                    "asof" : "0000000000D3AE97"},
 "name"          : "Natalie C.",
 "salary"        : 180000,
 "department"    : "Computer Science",
 "coursesTaught" : [ ],
 "phoneNumber"   : "222-555-044"}

Example 7-21    Course Document Set (Migrator Output, useFlexFields:true)

Compare this with the input course document set, Example 7-3, which had two outlier
fields: Notes (rare) and creditHours (rare type). Both fields are present in the duality-
view documents, even though they were outliers. Field Notes is present because it is
stored in a flex column. Field creditHours is present because its outlier value for
course MATH103 was converted from the string "3" to the number 3.

The only difference from the input documents (ignoring field order, which is irrelevant)
is that document identifier field _id and document-state field _metadata have been
added. Every document supported by a duality view has these fields.

{"_id"         : "CS101",
 "_metadata"   : {"etag" : "DE3FFA623F6F7DB22B86D80419ED5853",
                  "asof" : "0000000000D3AE94"},
 "name"        : "Algorithms",
 "teacher"     : {"name"        : "Betty Z.",
                  "teacherId"   : 102},
 "students"    : [ {"ora$mapCourseId"  : "CS101",
                    "ora$mapStudentId" : 1,
                    "name"             : "Donald P.",
                    "studentId"        : 1},
                   {"ora$mapCourseId"  : "CS101",
                    "ora$mapStudentId" : 2,
                    "name"             : "Elena H.",
                    "studentId"        : 2},
                   {"ora$mapCourseId"  : "CS101",
                    "ora$mapStudentId" : 4,
                    "name"             : "Georgia D.",
                    "studentId"        : 4},
                   {"ora$mapCourseId"  : "CS101",
                    "ora$mapStudentId" : 7,
                    "name"             : "Jatin S.",

Chapter 7
JSON-To-Duality Importer

7-40



                    "studentId"        : 7},
                   {"ora$mapCourseId"  : "CS101",
                    "ora$mapStudentId" : 9,
                    "name"             : "Luis F.",
                    "studentId"        : 9} ],
 "creditHours" : 5,
 "courseId"    : "CS101"}

{"_id"         : "CS102",
 "_metadata"   : {"etag" : "81F7ED7E35A358E71EA7191C23A0C4C6",
                  "asof" : "0000000000D3AE94"},
 "name"        : "Data Structures",
 "teacher"     : {"name"        : "Betty Z.",
                  "teacherId"   : 102},
 "students"    : [ {"ora$mapCourseId"  : "CS102",
                    "ora$mapStudentId" : 1,
                    "name"             : "Donald P.",
                    "studentId"        : 1},
                   {"ora$mapCourseId"  : "CS102",
                    "ora$mapStudentId" : 2,
                    "name"             : "Elena H.",
                    "studentId"        : 2},
                   {"ora$mapCourseId"  : "CS102",
                    "ora$mapStudentId" : 5,
                    "name"             : "Hye E.",
                    "studentId"        : 5},
                   {"ora$mapCourseId"  : "CS102",
                    "ora$mapStudentId" : 7,
                    "name"             : "Jatin S.",
                    "studentId"        : 7},
                   {"ora$mapCourseId"  : "CS102",
                    "ora$mapStudentId" : 8,
                    "name"             : "Katie H.",
                    "studentId"        : 8} ],
 "creditHours" : 3,
 "courseId"    : "CS102"}

{"_id"         : "MATH101",
 "_metadata"   : {"etag" : "4D86BE05F9C44EC2D179C8879235B2B2",
                  "asof" : "0000000000D3AE94"},
 "name"        : "Algebra",
 "teacher"     : {"name"        : "Abdul J.",
                  "teacherId"   : 101},
 "students"    : [ {"ora$mapCourseId"  : "MATH101",
                    "ora$mapStudentId" : 1,
                    "name"             : "Donald P.",
                    "studentId"        : 1},
                   {"ora$mapCourseId"  : "MATH101",
                    "ora$mapStudentId" : 5,
                    "name"             : "Hye E.",
                    "studentId"        : 5} ],
 "creditHours" : 3,
 "Notes"       : "Prerequisite for Advanced Algebra",
 "courseId"    : "MATH101"}

Chapter 7
JSON-To-Duality Importer

7-41



{"_id"         : "MATH102",
 "_metadata"   : {"etag" : "78D456BD3DBF44385CDDB97989497387",
                  "asof" : "0000000000D3AE94"},
 "name"        : "Calculus",
 "teacher"     : {"name"        : "Abdul J.",
                  "teacherId"   : 101},
 "students"    : [ {"ora$mapCourseId"  : "MATH102",
                    "ora$mapStudentId" : 2,
                    "name"             : "Elena H.",
                    "studentId"        : 2},
                   {"ora$mapCourseId"  : "MATH102",
                    "ora$mapStudentId" : 4,
                    "name"             : "Georgia D.",
                    "studentId"        : 4},
                   {"ora$mapCourseId"  : "MATH102",
                    "ora$mapStudentId" : 9,
                    "name"             : "Luis F.",
                    "studentId"        : 9},
                   {"ora$mapCourseId"  : "MATH102",
                    "ora$mapStudentId" : 10,
                    "name"             : "Ming L.",
                    "studentId"        : 10} ],
 "creditHours" : 4,
 "courseId"    : "MATH102"}

{"_id"         : "MATH103",
 "_metadata"   : {"etag" : "135381BA439AB35714C8D6FDEA4AAC8E",
                  "asof" : "0000000000D3AE94"},
 "name"        : "Advanced Algebra",
 "teacher"     : {"name"        : "Colin J.",
                  "teacherId"   : 103},
 "students"    : [ {"ora$mapCourseId"  : "MATH103",
                    "ora$mapStudentId" : 3,
                    "name"             : "Francis K.",
                    "studentId"        : 3},
                   {"ora$mapCourseId"  : "MATH103",
                    "ora$mapStudentId" : 4,
                    "name"             : "Georgia D.",
                    "studentId"        : 4},
                   {"ora$mapCourseId"  : "MATH103",
                    "ora$mapStudentId" : 6,
                    "name"             : "Ileana D.",
                    "studentId"        : 6},
                   {"ora$mapCourseId"  : "MATH103",
                    "ora$mapStudentId" : 8},
                    "name"             : "Katie H.",
                    "studentId"        : 8,
                   {"ora$mapCourseId"  : "MATH103",
                    "ora$mapStudentId" : 9,
                    "name"             : "Luis F.",
                    "studentId"        : 9} ],
 "creditHours" : 3,
 "courseId"    : "MATH103"}

Chapter 7
JSON-To-Duality Importer

7-42



Related Topics

• School Administration Example, Migrator Input Documents
Existing student, teacher, and course document sets comprise the JSON-to-duality
migrator input for the school-administration example.

7.3.2 Using the Importer, from useFlexFields:false Conversion
After trying to import, error-log tables are queried to show import errors and imported
documents.

See Example 7-17 for the creation of the error-log tables used here, and Example 7-18 for
the use of DBMS_DUALITY_VIEW.import to import the document sets into the duality views.

Example 7-22    Show Error Log Entries for Student Import (useFlexFields:false)

This query selects the error messages for the student error log.

SELECT ora_err_number$,
       ora_err_mesg$,
       ora_err_tag$
  FROM student_err_log;

The same error is repeated ten times in the output, once for each failing student document
(only the first is shown here).

ORA_ERR_NUMBER$  ORA_ERR_MESG$  ORA_ERR_TAG$
--------------------------------------------
40944
ORA-40944: Cannot insert into JSON Relational Duality View 'STUDENT': The input
JSON document is invalid.
JZN-00651: field 'grade' is unknown or undefined
Import Error
...
10 rows selected.

This query selects the erroneous student documents from the transfer table.

SELECT * FROM "JANUS".student_tab
  WHERE ROWID IN (SELECT ora_err_rowid$ FROM student_err_log);

5

This is the output. Only the first document selected is shown (student Donald P.). The others
are similar. (The document is printed as a single line, but the line is split here for readability.)

DATA
----
{"studentId":1,"name":"Donald P.","age":20,
 "courses":[{"courseNumber":"MATH101","name":"Algebra",
             "grade":90},
            {"courseNumber":"CS101","name":"Algorithms",
             "grade":90},

5 JANUS is the database schema that owns the tables and views used in these examples.

Chapter 7
JSON-To-Duality Importer

7-43



            {"courseNumber":"CS102","name":"Data Structures",
             "grade":"TBD"}]}
...
10 rows selected.

Querying the student duality view shows that nothing was imported:

SELECT json_serialize(DATA PRETTY) FROM student;

no rows selected

Example 7-23    Show Error Log Entries for Teacher Import (useFlexFields:false)

This query selects the error messages for the teacher error log.

SELECT ora_err_number$,
       ora_err_mesg$,
       ora_err_tag$
  FROM teacher_err_log;

The same error is repeated four times in the output, once for each failing teacher
document (only the first is shown here).

ORA_ERR_NUMBER$  ORA_ERR_MESG$  ORA_ERR_TAG$
--------------------------------------------
40944
ORA-40944: Cannot insert into JSON Relational Duality View 'TEACHER': The input
JSON document is invalid.
JZN-00651: field 'phoneNumber' is unknown or undefined
Import Error
...
4 rows selected.

This query selects the erroneous teacher documents from the transfer table.

SELECT * FROM "JANUS".teacher_tab
  WHERE ROWID IN (SELECT ora_err_rowid$ FROM teacher_err_log);

This is the output. Only the first document selected is shown (teacher Abdul J.). The
others are similar. (The document is printed as a single line, but the line is split here for
readability.)

DATA
----
{"_id":101,"name":"Abdul J.",
 "phoneNumber":["222-555-011","222-555-012"],
 "salary":200000,"department":"Mathematics",
 "coursesTaught":
[{"courseId":"MATH101","name":"Algebra","classType":"Online"},
                  
{"courseId":"MATH102","name":"Calculus","classType":"In-person"}]}

Chapter 7
JSON-To-Duality Importer

7-44



...
4 rows selected.

Querying the teacher duality view shows that nothing was imported:

SELECT json_serialize(DATA PRETTY) FROM teacher;

no rows selected

Example 7-24    Show Error Log Entries for Course Import (useFlexFields:false)

This query selects the error messages for the course error log.

SELECT ora_err_number$,
       ora_err_mesg$,
       ora_err_tag$
  FROM course_err_log;

Only one document is logged as failing import, the document with rare field Notes.

ORA_ERR_NUMBER$  ORA_ERR_MESG$  ORA_ERR_TAG$
--------------------------------------------
40944
ORA-40944: Cannot insert into JSON Relational Duality View 'COURSE': The input
JSON document is invalid.
JZN-00651: field 'Notes' is unknown or undefined
Import Error

1 row selected.

This query selects the erroneous teacher documents from the transfer table.

SELECT * FROM "JANUS".course_tab
  WHERE ROWID IN (SELECT ora_err_rowid$ FROM course_err_log);

This is the output. Only the document with rare field Notes is selected. (The document is
printed as a single line, but the line is split here for readability.)

DATA
----
{"courseId":"MATH101","name":"Algebra","creditHours":3,
 "students":[{"studentId":1,"name":"Donald P."},
             {"studentId":5,"name":"Hye E."}],
 "teacher":{"teacherId":101,"name":"Abdul J."},
 "Notes":"Prerequisite for Advanced Algebra"}

1 row selected.

Chapter 7
JSON-To-Duality Importer

7-45



Querying the course duality view shows that four of the five course documents — all
except the one for MATH101 — were successfully imported. (The imported documents
aren't shown here, to conserve space.)

SELECT json_serialize(DATA PRETTY) FROM course;

...
4 rows selected.

See Also:

DBMS_ERRLOG in Oracle Database PL/SQL Packages and Types
Reference for information about procedure DBMS_ERRLOG.create_error_log

Chapter 7
JSON-To-Duality Importer

7-46



8
GraphQL Language Used for JSON-
Relational Duality Views

GraphQL is an open-source, general query and data-manipulation language that can be used
with various databases. A subset of GraphQL syntax and operations are supported by Oracle
Database for creating JSON-relational duality views.

This chapter describes this supported subset of GraphQL. It introduces syntax and features
that are not covered in Creating Car-Racing Duality Views Using GraphQL, which presents
some simple examples of creating duality views using GraphQL.

The Oracle syntax supported for creating duality views with GraphQL is a proper subset of
GraphQL as specified in Sections B.1, B.2, and B.3 of the GraphQL specification (October
2021), except that user-supplied names must follow satisfy some Oracle-specific rules
specified here.

The Oracle GraphQL syntax also provides some additional, optional features that facilitate
use with JSON-relational duality views. If you need to use GraphQL programmatically, and
you want to stick with the standard GraphQL syntax, you can do that. If you don't have that
need then you might find the optional syntax features convenient.

For readers familiar with GraphQL, the supported subset of the language does not include
these standard GraphQL constructs:

• Mutations and subscriptions. Queries are the only supported operations.

• Inline fragments. Only a predefined FragmentSpread syntax is supported.

• Type definitions (types interface, union, enum, and input object, as well as type
extensions). Only GraphQL Object and Scalar type definitions are supported.

• Variable definitions.

Using GraphQL to define a duality view has some advantages over using SQL to do so.
These are covered in Creating Car-Racing Duality Views Using GraphQL. In sum, the
GraphQL syntax is simpler and less verbose. Having to describe the form of supported
documents and their parts using explicit joins between results of JSON-generation
subqueries can be a bother and error prone.

Oracle GraphQL support for duality views includes these syntax extensions and
simplifications:

1. Scalar Types

Oracle Database supports additional GraphQL scalar types, which correspond to Oracle
JSON-language scalar types and to SQL scalar types. See Oracle GraphQL Scalar
Types.

2. Implicit GraphQL Field Aliasing

Unaliased GraphQL field names used in a duality-view definition are automatically taken
as aliases to the actual GraphQL field names. In effect, this is a shorthand convenience
for providing case-sensitive matching that corresponds to field names in the documents
supported by the duality view. See Implicit GraphQL Field Aliasing.

8-1



3. GraphQL Directives For Duality Views

Oracle GraphQL provides directives (@link, @[un]nest, and @flex), which specify
particular handling when defining duality views. See Oracle GraphQL Directives
for JSON-Relational Duality Views.

4. GraphQL Names in Duality-View Definitions

If the table and column names you use in a duality-view definition are directly
usable as standard GraphQL field names then they are used as is. This is the
case, for instance in the car-racing duality views.

More generally, a duality-view definition specifies a mapping between (1) JSON
field names, (2) GraphQL type and field names, and (3) SQL table and column
names. The first two are case-sensitive, whereas unquoted SQL names are case-
insensitive. Additionally, the characters allowed in names differ between GraphQL
and SQL.

For these reasons, Oracle relaxes and extends the unquoted GraphQL names
allowed in duality-view definitions.

See Names Used in GraphQL Duality-View Definitions.

Oracle GraphQL Scalar Types

Table 8-1 lists the Oracle-supported GraphQL scalar types that correspond to Oracle
JSON scalar types and to Oracle SQL scalar types. It lists both standard GraphQL
types and custom, Oracle-specific GraphQL types.

Table 8-1    Scalar Types: Oracle JSON, GraphQL, and SQL

Oracle JSON-Language
Scalar Type

GraphQL Scalar Type SQL Scalar Type

binary Binary (Oracle-specific) RAW or BINARY
date Date (Oracle-specific) DATE
day-second interval DaysecondInterval (Oracle-

specific)
INTERVAL DAY TO SECOND

double Float (standard GraphQL) BINARY_DOUBLE
float Float (standard GraphQL) BINARY_FLOAT
timestamp Timestamp (Oracle-specific) TIMESTAMP
vector Vector (Oracle-specific) VECTOR
timestamp with time zone TimestampWithTimezone

(Oracle-specific)
TIMESTAMP WITH TIME
ZONE

year-month interval YearmonthInterval (Oracle-
specific)

INTERVAL YEAR TO MONTH

Implicit GraphQL Field Aliasing

The body of a duality view definition is a GraphQL query. If a field name is used in that
query with no alias then it is matched case-insensitively to pick up the corresponding
GraphQL field name. In a standard GraphQL query such matching is case-sensitive.

This convenience feature essentially provides the unaliased field with an alias that has
the lettercase used in the view definition. The alias corresponds directly with the JSON

Chapter 8

8-2



field name used in supported documents. The actual GraphQL field name is derived from a
SQL table or column name:

For example, if a GraphQL field name is defined as myfield (lowercase), and a duality view-
creation query uses myField then the queried field is implicitly treated as if it were written
myField : myfield, and a JSON document supported by the view would have a JSON field
named myField.

Names Used in GraphQL Duality-View Definitions

Oracle relaxes and extends the unquoted GraphQL names allowed in duality-view definitions.
This is done to facilitate (1) specifying the field names of the JSON documents supported by
a duality view and (2) use of SQL identifier syntax (used for tables and columns) in GraphQL
names.

If none of the names you use in a GraphQL duality-view definition contain the period (dot)
character, (.) or need to be quoted, then the corresponding GraphQL schema is fully
compliant with the GraphQL standard. In this case, it should work with all existing GraphQL
tools.

Otherwise (the more typical case), it is not fully compliant. It can be used to create a JSON-
relational duality view, but it might not work correctly with some GraphQL tools.

Standard GraphQL names are restricted in these ways:

• They can only contain alphanumerical ASCII characters and underscore (_) characters.

• They cannot start with two underscore characters: __.

SQL names, if quoted, can contain any characters except double-quote (") (also called
quotation mark, code point 34) and null (code point 0). Unquoted SQL names can contain
alphanumeric characters (ASCII or not), underscores (_), number signs (#), and dollar signs
($). A fully qualified table name contains a period (dot) character (.), separating the database
schema (user) name from the table name.

The following rules apply to GraphQL names allowed in duality-view definitions. The last of
these rules applies to fully qualified SQL table names, that is, to names of the form <schema
name>.<table name>, which is composed of three parts: a database schema (user) name, a
period (dot) character (.), and a database table name. The other rules apply to SQL names
that don't contain a dot.

• The GraphQL name that corresponds to a quoted SQL name (identifier) is the same
quoted name.

For example, "this name" is the same for SQL and GraphQL.

• The GraphQL name that corresponds to an unquoted SQL name that is composed of
only ASCII alphanumeric or underscore (_) characters is the same as the SQL name,
except that:

– A GraphQL field name is lowercase.

For example, GraphQL field name MY_NAME corresponds to SQL name my_name.

– A GraphQL type name is capitalized.

For example, GraphQL type name My_name corresponds to SQL name MY_NAME.

• The GraphQL name that corresponds to an unquoted SQL name that has one or more
non-ASCII alphanumeric characters, number sign (#) characters, or dollar sign ($)

Chapter 8

8-3



characters is the same name, but uppercased and quoted. (In Oracle SQL, such a
name is treated case-insensitively, whether quoted or not.)

For example, GraphQL name "MY#NAME$4"corresponds to SQL name my#name$4
• The GraphQL name that corresponds to a fully qualified SQL table name, which

has the form <schema name>.<table name>, is the concatenation of (1) the
GraphQL name corresponding to <schema name>, (2) the period (dot) character
(.), and (3) the GraphQL name corresponding to <table name>. Note that the dot
is not quoted in the GraphQL name.

Examples for fully qualified SQL names:

– GraphQL name My_schema.Mytable corresponds to SQL name
MY_SCHEMA.MYTABLE.

– GraphQL name "mySchema".Mytable corresponds to SQL name
"mySchema".mytable.

– GraphQL name "mySchema"."my table" corresponds to SQL name
"mySchema"."my table".

– GraphQL name "Schema#3.Table$4" corresponds to SQL name
SCHEMA#3.TABLE$4.

• Oracle GraphQL Directives for JSON-Relational Duality Views
GraphQL directives are annotations that specify additional information or particular
behavior for a GraphQL schema. All of the Oracle GraphQL directives for defining
duality views apply to GraphQL fields.

Related Topics

• Creating Car-Racing Duality Views Using GraphQL
Team, driver, and race duality views for the car-racing application are created
using GraphQL.

• Flex Columns: Duality-View Schema Flexibility and Evolution
A flex column in a table underlying a JSON-relational duality view lets you add and
redefine fields of the document object produced by that table. This provides a
certain kind of schema flexibility to a duality view, and to the documents it
supports.

See Also:

Graph QL

8.1 Oracle GraphQL Directives for JSON-Relational Duality
Views

GraphQL directives are annotations that specify additional information or particular
behavior for a GraphQL schema. All of the Oracle GraphQL directives for defining
duality views apply to GraphQL fields.

A directive is a name with prefix @, followed in some cases by arguments.

Chapter 8
Oracle GraphQL Directives for JSON-Relational Duality Views

8-4

https://spec.graphql.org/October2021/


Oracle GraphQL for defining duality views provides the following directives:

• Directive @flex designates a JSON-type column as being a flex column for the duality
view. Use of this directive is covered in Flex Columns: Duality-View Schema Flexibility
and Evolution.

• Directives @nest and @unnest specify nesting and unnesting (flattening) of intermediate
objects in a duality-view definition. They correspond to SQL keywords NEST and UNNEST,
respectively.

By default, fields corresponding to root-table columns are unnested and those
corresponding to non-root-table columns are nested. Note that you cannot nest fields that
correspond to primary-key columns of the root table; an error is raised if you try.

Example 8-1 illustrates the use of @nest. See Creating Car-Racing Duality Views Using
GraphQL for examples that use @unnest.

• Directive @link disambiguates multiple foreign-key links between columns. See Oracle
GraphQL Directive @link.

• Directives @[no]update, @[no]insert, and @[no]delete serve as duality-view updating
annotations. They correspond to SQL annotation keywords [NO]UPDATE, [NO]INSERT, and
[NO]DELETE, which are described in Annotations (NO)UPDATE, (NO)INSERT,
(NO)DELETE, To Allow/Disallow Updating Operations.

• Directives @[no]check determine which duality-view parts contribute to optimistic
concurrency control. They correspond to SQL annotation keywords [NO]CHECK, which are
described in described in Creating Car-Racing Duality Views Using GraphQL.

Example 8-1    Creating Duality View DRIVER_DV1, With Nested Driver Information

This example creates duality view driver_dv1, which is the same as view driver_dv defined
with GraphQL in Example 2-11 and defined with SQL in Example 2-7, except that fields name
and points from columns of table driver are nested in a subobject that's the value of field
driverInfo.1 The specification of field driverInfo is the only difference between the
definition of view driver_dv1 and that of the original view, driver_dv.

The corresponding GraphQL and SQL definitions of driver_dv1 are shown.

CREATE JSON RELATIONAL DUALITY VIEW driver_dv1 AS
  driver
    {_id       : driver_id,
     driverInfo : driver @nest {name   : name,
                                points : points},
     name      : name,
     points    : points,
     team @unnest {teamId : team_id,
                   name   : name},
     race      : driver_race_map
                  [ {driverRaceMapId : driver_race_map_id,
                     race @unnest {raceId : race_id,
                                   name   : name},
                     finalPosition : position} ]};

1 Updating and ETAG-checking annotations are not shown here.

Chapter 8
Oracle GraphQL Directives for JSON-Relational Duality Views

8-5



Here is the corresponding SQL definition:

CREATE JSON RELATIONAL DUALITY VIEW driver_dv1 AS
  SELECT JSON {'_id'        : d.driver_id,
               'driverInfo' : {'name'   : d.name,
                               'points' : d.points},
               UNNEST
                 (SELECT JSON {'teamId' : t.team_id,
                               'team'   : t.name}
                    FROM team t
                    WHERE t.team_id = d.team_id),
               'race'     :
                 [ SELECT JSON {'driverRaceMapId' : drm.driver_race_map_id,
                                UNNEST
                                  (SELECT JSON {'raceId' : r.race_id,
                                                'name'   : r.name}
                                     FROM race r
                                     WHERE r.race_id = drm.race_id),
                                'finalPosition'   : drm.position}
                    FROM driver_race_map drm
                    WHERE drm.driver_id = d.driver_id ]}
    FROM driver d;

Table driver is the root table of the view, so its fields are all unnested in the view by
default, requiring the use of @nest in GraphQL to nest them.

(Fields from non-root tables are nested by default, requiring the explicit use of @unnest
(keyword UNNEST in SQL) to unnest them. This is the case for team fields teamId and
name as well as race fields raceId and name.)

• Oracle GraphQL Directive @link
GraphQL directive @link disambiguates multiple foreign-key links between
columns.

8.1.1 Oracle GraphQL Directive @link
GraphQL directive @link disambiguates multiple foreign-key links between columns.

Directive @link specifies a link between a foreign-key column and a primary-key or
unique-key column, in tables underlying a duality view. Usually the columns are for
different tables, but columns of the same table can also be linked, in which case the
foreign key is said to be self-referencing.

The fact that in general you need not explicitly specify foreign-key links is an
advantage that GraphQL presents over SQL for duality-view definition — it's less
verbose, as such links are generally inferred by the underlying table-dependency
graph.

The only time you need to explicitly use a foreign-key link in GraphQL is when there is
more than one foreign-key relation between two tables or when a table has a foreign
key that references the same table. In such a case, you use an @link directive to
specify a particular link: the foreign key and direction.

The team_w_lead table definition in Example 8-2 has a foreign-key link from column
lead_driver to driver table column driver_id. And the driver table has a foreign-

Chapter 8
Oracle GraphQL Directives for JSON-Relational Duality Views

8-6



key link from its column team_id to the team_w_lead table's primary-key column, team_id.

The table-dependency graph in Figure 8-1 shows these two dependencies. It's the same as
the graph in Figure 2-3, except that it includes the added link from table team_w_lead's
foreign-key column lead_driver to primary-key column driver_id of table driver.

The corresponding team duality-view definitions are in Example 8-3 and Example 8-4.

Figure 8-1    Car-Racing Example With Team Leader, Table-Dependency Graph

driver_race_map

race driver

team_w_lead

team_id (PK)lead_driver (FK)

team_id (FK)driver_id (PK)

driver_id (PK)

driver_id (FK)race_id (FK)

race_id (PK)

FK: Foreign Key

Legend:

PK: Primary Key

An @link directive requires a single argument, named to or from, which specifies, for a
duality-view field whose value is a nested object, whether to use (1) a foreign key of the table
whose columns define the nested object's fields — the to direction or (2) a foreign key of the
table whose columns define the nesting/enclosing object's fields — the from direction.

The value of a to or from argument is a GraphQL list of strings, where each string names a
single foreign-key column (for example, to : ["fkcol"]). A GraphQL list of more than one
string represents a compound foreign key, for example, to : ["fkcol1", "fkcol2"]). (A
GraphQL list corresponds to a JSON array. Commas are optional in GraphQL.)

Example 8-2    Creating Table TEAM_W_LEAD With LEAD_DRIVER Column

This example creates table team_w_lead, which is the same as table team in Example 2-4,
except that it has the additional column lead_driver, which is a foreign key to column
driver_id of table driver.

CREATE TABLE team_w_lead
  (team_id     INTEGER GENERATED BY DEFAULT ON NULL AS IDENTITY,
   name        VARCHAR2(255) NOT NULL UNIQUE,
   lead_driver INTEGER,
   points      INTEGER NOT NULL,
   CONSTRAINT team_pk PRIMARY KEY(team_id)
   CONSTRAINT lead_fk FOREIGN KEY lead_driver REFERENCES driver(driver_id));

Chapter 8
Oracle GraphQL Directives for JSON-Relational Duality Views

8-7



Table driver, in turn, has foreign-key column team_id, which references column
team_id of table team_w_lead. Because there are two foreign-key links between tables
team_w_lead and driver, the team and driver duality views that make use of these
tables need to use directive @link, as shown in Example 8-3 and Example 8-4.

Example 8-3    Creating Duality Views TEAM_DV2 With LEAD_DRIVER, Showing
GraphQL Directive @link

This example is similar to Example 2-10, but it uses table team_w_lead, defined in 
Example 8-2, which has foreign-key column lead_driver. Because there are two
foreign-key relations between tables team_w_lead and driver it's necessary to use
directive @link to specify which foreign key is used where.

The value of top-level JSON field leadDriver is a driver object provided by foreign-key
column lead_driver of table team_w_lead. The value of top-level field driver is a
JSON array of driver objects provided by foreign-key column team_id of table driver.

The @link argument for field leadDriver uses from because its value, lead_driver, is
the foreign-key column in table team_w_lead, which underlies the outer/nesting object.

The @link argument for field driver uses to because its value, team_id, is the
foreign-key column in table driver, which underlies the inner/nested object.

CREATE JSON RELATIONAL DUALITY VIEW team_dv2 AS
  team_w_lead
    {_id        : team_id,
     name       : name,
     points     : points,
     leadDriver : driver @link (from : ["lead_driver"])
       {driverId : driver_id,
        name     : name,
        points   : points},
     driver     : driver @link (to : ["team_id"]) 
       [ {driverId : driver_id,
          name     : name,
          points   : points} ]};

Example 8-4    Creating Duality View DRIVER_DV2, Showing GraphQL Directive
@link

This example is similar to Example 2-11, but it uses table team_w_lead, defined in 
Example 8-2, which has foreign-key column lead_driver. Because there are two
foreign-key relations between tables team_w_lead and driver it's necessary to use
directive @link to specify which foreign key is used where.

The @link argument for field team uses from because its value, team_id, is the
foreign-key column in table driver, which underlies the outer/nesting object.

CREATE JSON RELATIONAL DUALITY VIEW driver_dv2 AS
  driver
    {_id       : driver_id
     name      : name
     points    : points
     team      : team_w_lead
       @link (from: ["team_id"])

Chapter 8
Oracle GraphQL Directives for JSON-Relational Duality Views

8-8



       @unnest
       {teamId : team_id,
        name   : name}
     race      : driver_race_map
                   [ {driverRaceMapId : driver_race_map_id,
                      race @unnest
                        {raceId       : race_id,
                         name         : name}
                      finalPosition   : position} ]};

Chapter 8
Oracle GraphQL Directives for JSON-Relational Duality Views

8-9



Index

Symbols
_id field, document-identifier, 5-1
_metadata field, for document handling, 2-12,

4-25
_nameConflicts field, for flex-column conflicts,

6-4
@delete annotation (GraphQL), 2-20
@flex annotation, 6-4
@flex GraphQL directive, 8-4
@insert annotation (GraphQL), 2-20
@link GraphQL directive, 2-20, 8-4, 8-6
@nest GraphQL directive, 8-4
@unnest GraphQL directive, 2-20, 8-4
@update annotation (GraphQL), 2-20

Numerics
1:1 entity relationships, 2-6
1:N entity relationships, 2-6

A
ALL_JSON_DUALITY_VIEW_TAB_COLS view,

4-41
ALL_JSON_DUALITY_VIEW_TABS view, 4-41
ALL_JSON_DUALITY_VIEWS view, 4-41
annotations

@delete (GraphQL), 2-20
@flex (GraphQL), 6-4
@insert (GraphQL), 2-20
@update (GraphQL), 2-20
AS FLEX (SQL), 6-4
ETAG, 3-2, 6-1
updatability, 3-2, 6-1

application migration to using duality views, 7-1
AS FLEX annotation, 6-4
asof field, system change number (SCN)

ensuring read consistency, 4-37
asof field, vsystem change number (SCN), 2-12
associative table

See mapping table
automatic generation of duality views, 7-1

B
bracket, optional GraphQL syntax for duality view

defintion, 2-20
bridge table

See mapping table

C
car-racing example, 2-1

creating duality views with GraphQL, 2-20
creating duality views with SQL, 2-15
creating tables, 2-8
duality views, 2-12
entity relationships, 2-6

case-sensitivity
JSON and SQL, xi

CHECK annotation (ETAG calculation), 3-3
columns (hidden) for duality-view, ETAG and

object ID, 2-12
comment, GraphQL, 2-20
comparing JSON schemas of input and duality-

view document sets, 7-12
student-teacher-course example, 7-21

complex or simple underlying data, 6-1
composite primary and foreign keys, definition,

2-8
concurrency, controlling, 4-25, 4-33
content-based ETAG concurrency control,

definition, 4-25
converged database, definition, 1-10
converter, JSON-to-duality, 7-8

default behavior, 7-21
use with useFlexFields false, 7-30

course documents
input to JSON-to-duality migrator, 7-3
output from JSON-to-duality migrator, 7-35

course, student, and teacher documents
input to JSON-to-duality migrator, 7-3
output from JSON-to-duality migrator, 7-35

create_error_log procedure, DBMS_ERRLOG
PL/SQL package, 7-34

Index-1



D
d-r-map entity, 2-8
DATA JSON-type column for duality-view

documents, 2-12
DATA payload JSON-type column supported/

generated by a duality view, 2-12, 4-39
DBA_JSON_DUALITY_VIEW_TAB_COLS view,

4-41
DBA_JSON_DUALITY_VIEW_TABS view, 4-41
DBA_JSON_DUALITY_VIEWS view, 4-41
DBMS_ERRLOG.create_error_log PL/SQL

procedure, 7-34
DBMS_JSON_DUALITY.import PL/SQL

procedure, 7-34
DBMS_JSON_DUALITY.infer_and_generate_sch

ema PL/SQL function, 7-8
DBMS_JSON_DUALITY.infer_schema PL/SQL

function, 7-8
DBMS_JSON_SCHEMA.describe PL/SQL

function, 1-3, 4-41
DELETE annotation, 3-2
deleting documents, 4-10
describe PL/SQL function, package

DBMS_JSON_SCHEMA, 1-3, 4-41
directives, GraphQL

See GraphQL directives
document

deleting, 4-10
inserting, 4-3
optimizing operations, 4-39
querying, 4-39
updating, 4-13

document key
definition, 2-12

document migration to duality views, 7-1
document-handling field, _metadata, 2-12, 4-25
document-identifer field, _id, 5-1
document-identifier field, car-racing example, 2-2
document-relational mapping (DRM), definition,

1-7
document-version identifier (ETAG value), 2-12
document-version identifier (ETAG)

controlling concurrency, 4-25
document/table duality, definition, 1-1, 1-7
documents supported by a duality view,

definition, 1-1
documents, car-racing example, 2-2
driver and race mapping table, 2-8
driver document, 2-2
driver duality view, 2-12

creating with GraphQL, 2-20
creating with SQL, 2-15
JSON schema, 4-41

driver entity, 2-6

driver table, 2-8
driver_race_map table, 2-8
duality view, 1-1

definition, 1-1, 1-3
JSON schema, 4-41
motivation, 1-3
overview, 1-1
privileges needed for updating, 3-5
rules for updating, 3-5

duality view operations, 4-1
duality views for car-racing example, 2-12

creating with GraphQL, 2-20
creating with SQL, 2-15

duality, document/table, 1-7
definition, 1-1

dump file from a document database, loading
documents from, 7-12

E
entity relationships, 2-6
error logs, importing, 7-43
ETAG document-version identifier

controlling concurrency, 4-25
not used for partial updates, 4-13

etag field, version identifier, 2-12
controlling concurrency, 4-25

ETAG hash-value participation, defining, 3-3
ETAG hidden duality-view column for ETAG

value, 2-12, 4-33
ETAG table-row value, 4-25
ETAG value, document-version identifier, 2-12
evolution, schema, 6-4
exporting JSON document sets from a document

database, 7-12

F
fields, 2-12

_id, document-identifier, 5-1
_metadata, for document handling, 2-12,

4-25
_nameConflicts for flex-column conflicts, 6-4
asof, system change number (SCN), 2-12

ensuring read consistency, 4-37
etag, version identifier, 2-12

controlling concurrency, 4-25
flex column

in student-teacher-course example, 7-21
flex column, definition, 6-4
flex-column, field-naming conflicts, 6-4
flexibility, schema, 6-4
foreign key, definition, 2-8
Formula 1 example, 2-1

Index

Index-2



frequencies of fields used in a document set,
7-12

function SYS_ROW_ETAG, optimistic
concurrency control, 4-25

G
generation functions, SQL/JSON, 2-12
GraphQL

comment, 2-20
creating car-racing duality views, 2-20
creating duality views, 8-1
optional bracket syntax for duality view

defintion, 2-20
GraphQL directives, 8-4

@flex, 8-4
@link, 2-20, 8-4, 8-6
@nest, 8-4
@unnest, 2-20, 8-4

H
hidden duality-view columns for ETAG and object

ID, 2-12

I
import procedure, DBMS_JSON_DUALITY

PL/SQL package, 7-34
importer, JSON-to-duality, 7-34
importing JSON document sets from a document

database into JSON-type columns, 7-12
infer_and_generate_schema function,

DBMS_JSON_DUALITY PL/SQL
package, 7-8

infer_schema function, DBMS_JSON_DUALITY
PL/SQL package, 7-8

INSERT annotation, 3-2
inserting documents, 4-3
item methods, used to optimize operations, 4-39

J
JSON data guide for a document set, 7-12
JSON data type columns in duality-view tables,

1-1, 1-3, 6-1, 6-4
JSON documents, car-racing example, 2-2
JSON schema

use to validate JSON-column data, 1-3, 2-8,
6-1, 6-4

JSON Schema, 1-3, 4-13, 6-1, 6-4
description of duality view, 4-41

JSON schema, use to validate JSON-column
data, 4-13

JSON schemas for input and duality-view
document sets, 7-12

JSON_SCHEMA column, dictionary views for
duality views, 1-3, 4-41

json_transform SQL function, 4-13
json_value RETURNING clause, used to

optimize operations, 4-39
JSON-relational duality view

definition, 1-1, 1-3
JSON schema, 4-41
motivation, 1-3
overview, 1-1

JSON-relational duality views for car-racing
example, 2-12

creating with GraphQL, 2-20
creating with SQL, 2-15

JSON-relational mapping (JRM), definition, 1-7
JSON-to-duality converter, 7-8

default behavior, 7-21
ora$ prefix for fields and colums, 7-8, 7-19
use of transfer tables, 7-12
use with useFlexFields false, 7-30

JSON-to-duality importer, 7-34
JSON-to-Duality Migrator, 7-1
JSON-type column DATA, for duality-view

documents, 2-12
JSON-type payload column DATA, supported/

generated by a duality view, 2-12, 4-39

L
loading documents from a document-database

dump file, 7-12
lock-free (optimistic) concurrency control, 4-25

definition and overview, 3-3
duality-view transactions, 4-33

M
many-to-many entity relationships, 2-6

using mapping tables, 2-8
many-to-one entity relationships, 2-6
mapping objects/documents to relational, 1-7
mapping table for tables driver and race, 2-8
mapping table, definition, 2-8
migration of document sets to duality views, 7-1
MongoDB API, compatible document-identifier

field _id, 5-1
multitenant database, definition, 1-10

N
N:N entity relationships, 2-6

using mapping tables, 2-8
naming conflicts, flex column, 6-4

Index

Index-3



NEST SQL keyword, 2-15
NOCHECK annotation (ETAG calculation), 3-3
NODELETE annotation, 3-2
NOINSERT annotation, 3-2
normalization, degree/granularity, 6-1
normalized data, definition, 1-3
normalized entity, definition, 2-6
NOUPDATE annotation, 3-2

O
object-document mapping (ODM), 1-7
object-relational mapping (ORM), 1-7
ODM (object-document mapping), 1-7
one-to-one entity relationships, 2-6
operations on duality views, 4-1
operations on tables underlying duality views, 4-1
optimistic (lock-free) concurrency control, 4-25

definition and overview, 3-3
duality-view transactions, 4-33

optimization of document operations, 4-39
ora$ prefix for fields and colums, JSON-to-duality

converter, 7-8, 7-19
Oracle Database API for MongoDB, compatible

document-identifier field _id, 5-1
Oracle REST Data Services (ORDS)

deleting documents using REST, 4-10
inserting documents using REST, 4-3
updating documents using REST, 4-13

Oracle SQL function json_transform, 4-13
ORM (object-relational mapping), 1-7

P
payload JSON-type column DATA, supported/

generated by a duality view, 2-12, 4-39
payload of a JSON document, definition, 2-2,

2-12, 4-25
PL/SQL subprograms

DBMS_ERRLOG.create_error_log, 7-34
DBMS_JSON_DUALITY.generate_schema, 7-8
DBMS_JSON_DUALITY.import, 7-34
DBMS_JSON_DUALITY.infer_and_generate_schema,

7-8
DBMS_JSON_DUALITY.infer_schema, 7-8

polyglot database, definition, 1-10
predefined fields for duality views

See fields
pretty-printing

in book examples, xi
primary key, definition, 2-8
privileges needed for operations on duality-view

data, 3-5

Q
querying a duality view, 4-39

R
race and driver mapping table, 2-8
race document, 2-2
race duality view, 2-12

creating with GraphQL, 2-20
creating with SQL, 2-15
JSON schema, 4-41

race entity, 2-6
race table, 2-8
read consistency, ensuring, 4-37
relational mapping from objects/documents, 1-7
RESID hidden duality-view column for document

identifier, 2-12, 4-33
REST

deleting documents using, 4-10
inserting documents using, 4-3
updating documents using, 4-13

rules for updating duality views, 3-5

S
schema evolution, 6-4
schema flexibility, 6-4
schema, JSON

description of duality view, 4-41
use to validate JSON-column data, 1-3, 2-8,

4-13, 6-1, 6-4
school-administration documents

input to JSON-to-duality migrator, 7-3
output from JSON-to-duality migrator, 7-35

SCN
See system change number

secondary key, 2-8
security, 1-9
sharing JSON data among documents, 1-3, 6-1

foreign keys, 2-8
SQL function json_transform, 4-13
SQL/JSON function json_value, RETURNING

clause, used to optimize operations, 4-39
SQL/JSON generation functions, 2-12
SQL/JSON item methods, used to optimize

operations, 4-39
static dictionary views for duality views, 4-41
storing JSON data in underlying tables, 6-1
student documents

input to JSON-to-duality migrator, 7-3
output from JSON-to-duality migrator, 7-35

student, teacher, and course documents
input to JSON-to-duality migrator, 7-3
output from JSON-to-duality migrator, 7-35

Index

Index-4



support of documents by a duality view,
definition, 1-1

SYS_ROW_ETAG function, optimistic
concurrency control, 4-25

system change number (SCN) field, asof, 2-12
ensuring read consistency, 4-37

T
table operations, effect on supported documents,

4-1
tables

car-racing example, 2-8
deleting data, 4-10
inserting data, 4-3
updating data, 4-13

teacher documents
input to JSON-to-duality migrator, 7-3
output from JSON-to-duality migrator, 7-35

teacher, course, and student documents
input to JSON-to-duality migrator, 7-3
output from JSON-to-duality migrator, 7-35

team document, 2-2
team duality view, 2-12

creating with GraphQL, 2-20
creating with SQL, 2-15
JSON schema, 4-41

team entity, 2-6
team table, 2-8
transactions for duality views, 4-33
transfer tables, use with JSON-to-duality

converter, 7-12
triggers, guidelines, 4-24

type-conversion item methods, used to optimize
operations, 4-39

U
unique key, definition, 2-8
UNNEST SQL keyword, 2-15
updatability, defining, 3-2, 6-1
UPDATE annotation, 3-2
updating documents, 4-13
updating duality views

privileges needed, 3-5
rules, 3-5

USER_JSON_DUALITY_VIEW_TAB_COLS
view, 4-41

USER_JSON_DUALITY_VIEW_TABS view, 4-41
USER_JSON_DUALITY_VIEWS view, 4-41

V
value-based ETAG concurrency control,

definition, 4-25
version-identifier field, etag, 2-12

controlling concurrency, 4-25
view, duality

See duality view
views, static dictionary, 4-41

W
WHERE clauses, duality-view tables, 2-26

Index

Index-5


	Contents
	List of Examples
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documents
	Conventions
	Code Examples
	Pretty Printing of JSON Data
	Reminder About Case Sensitivity


	1 Overview of JSON-Relational Duality Views
	1.1 The Use Case for JSON-Relational Duality Views
	1.2 Map JSON Documents, Not Programming Objects
	1.3 Duality-View Security: Simple, Centralized, Use-Case-Specific
	1.4 Oracle Database: Converged, Multitenant, Backed By SQL

	2 Introduction To Car-Racing Duality Views Example
	2.1 Car-Racing Example, JSON Documents
	2.2 Car-Racing Example, Entity Relationships
	2.3 Car-Racing Example, Tables
	2.4 Car-Racing Example, Duality Views
	2.4.1 Creating Car-Racing Duality Views Using SQL
	2.4.2 Creating Car-Racing Duality Views Using GraphQL
	2.4.3 WHERE Clauses in Duality-View Tables


	3 Updatable JSON-Relational Duality Views
	3.1 Annotations (NO)UPDATE, (NO)INSERT, (NO)DELETE, To Allow/Disallow Updating Operations
	3.2 Annotation (NO)CHECK, To Include/Exclude Fields for ETAG Calculation
	3.3 Database Privileges Needed for Duality-View Updating Operations
	3.4 Rules for Updating Duality Views

	4 Using JSON-Relational Duality Views
	4.1 Inserting Documents/Data Into Duality Views
	4.2 Deleting Documents/Data From Duality Views
	4.3 Updating Documents/Data in Duality Views
	4.3.1 Trigger Considerations When Using Duality Views

	4.4 Using Optimistic Concurrency Control With Duality Views
	4.4.1 Using Duality-View Transactions

	4.5 Using the System Change Number (SCN) of a JSON Document
	4.6 Optimization of Operations on Duality-View Documents
	4.7 Obtaining Information About a Duality View

	5 Document-Identifier Field for Duality Views
	6 JSON Data Stored in JSON-Relational Duality Views
	6.1 Flex Columns: Duality-View Schema Flexibility and Evolution

	7 From JSON To Duality
	7.1 School Administration Example, Migrator Input Documents
	7.2 JSON-To-Duality Converter
	7.2.1 Before Using the Converter: Create Database Document Sets and JSON Schemas
	7.2.2 Overview of Using the JSON-To-Duality Converter
	7.2.3 Using the Converter, Default Behavior
	7.2.4 Using the Converter with useFlexFields:false

	7.3 JSON-To-Duality Importer
	7.3.1 Result of Importing After Default Conversion
	7.3.2 Using the Importer, from useFlexFields:false Conversion


	8 GraphQL Language Used for JSON-Relational Duality Views
	8.1 Oracle GraphQL Directives for JSON-Relational Duality Views
	8.1.1 Oracle GraphQL Directive @link


	Index

