
Oracle® XML Developer's Kit
Programmer's Guide

23ai
F47012-03
May 2024

Oracle XML Developer's Kit Programmer's Guide, 23ai

F47012-03

Copyright © 1999, 2024, Oracle and/or its affiliates.

Primary Authors: Apoorva Srinivas, Drew Adams, Lance Ashdown, Janis Greenberg, Sheila Moore, Sue
Pelski

Contributors: Nipun Agarwal, Geeta Arora, Vikas Arora, Thomas Baby, Janet Blowney, Dan Chiba, Steve
Ding, Mark Drake, Beda Hammerschmidt, Bill Han, Roza Leyderman, Dmitry Lychagin, Valarie Moore, Steve
Muench, Ravi Murthy, Maxim Orgiyan, Mark Scardina, Helen Slattery, Joshua Spiegel, Asha Tarachandani,
Jinyu Wang, Simon Wong, Tim Yu, Kongyi Zhou

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, MySQL and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xxxv

Documentation Accessibility xxxv

Related Documents xxxv

Examples xxxvi

Conventions xxxvi

 Changes in This Release

Desupported Feature xxxvii

Deprecated Features xxxvii

1 Introduction to Oracle XML Developer's Kit

1.1 Overview of XDK 1-1

1.2 XDK Components 1-3

1.2.1 XML Parsers 1-4

1.2.2 XSLT Processors 1-5

1.2.3 XML Schema Processors 1-5

1.2.4 XML Class Generators 1-6

1.2.5 XML Pipeline Processor 1-7

1.2.6 Oracle XML SQL Utility 1-7

1.2.6.1 XML Document Representations 1-8

1.2.6.2 Using XSU with an XML Class Generator 1-8

1.2.7 TransX Utility Overview 1-9

1.2.8 XSQL Pages Publishing Framework 1-9

1.2.9 SOAP Services 1-10

1.2.10 XSLT Virtual Machine 1-10

1.3 Generating XML Documents Using XDK 1-11

1.3.1 XML Document Generation with Java 1-11

1.3.2 XML Document Generation with C 1-12

1.3.3 XML Document Generation with C++ 1-13

1.4 Development Tools and Frameworks for XDK 1-14

iii

1.4.1 Oracle JDeveloper 1-15

1.4.2 Oracle Data Provider for .NET 1-16

1.5 About Installing XDK 1-17

2 Security Considerations for Oracle XML Developer's Kit

2.1 Implementing Security for Java 2-1

2.1.1 Securing XSLT Processing with Oracle XML Developer's Kit 2-1

2.1.2 Using the Oracle XML Parser Safely 2-2

2.2 Implementing Security for C 2-4

2.3 Security for C++ 2-5

Part I Oracle XML Developer's Kit for C

3 Getting Started with Oracle XML Developer's Kit for C

3.1 Installing XDK for C Components 3-1

3.2 Configuring the UNIX Environment for XDK for C Components 3-3

3.2.1 XDK for C Component Dependencies on UNIX 3-3

3.2.2 Setting Up XDK for C Environment Variables on UNIX 3-4

3.2.3 Testing the XDK for C Runtime Environment on UNIX 3-4

3.2.4 Setting Up and Testing the XDK C Compile-Time Environment on UNIX 3-5

3.2.4.1 Testing the XDK for C Compile-Time Environment on UNIX 3-5

3.2.5 Verifying the XDK for C Component Version on UNIX 3-6

3.3 Configuring the Windows Environment for XDK C Components 3-6

3.3.1 XDK for C Component Dependencies on Windows 3-6

3.3.2 Setting Up XDK for C Environment Variables on Windows 3-7

3.3.3 Testing the XDK for C Runtime Environment on Windows 3-7

3.3.4 Setting Up and Testing the XDK for C Compile-Time Environment on Windows 3-8

3.3.4.1 Testing the XDK for C Compile-Time Environment on Windows 3-8

3.3.5 Using the XDK for C Components and Visual C++ in Microsoft Visual Studio 3-9

3.3.5.1 Setting a Path for a Project in Visual C++ on Windows 3-9

3.3.5.2 Setting the Library Path in Visual C++ on Windows 3-10

3.4 Overview of the Unified C API 3-12

3.5 Globalization Support for the XDK for C Components 3-13

4 Using the XSLT and XVM Processors for C

4.1 XSLT XVM Processor 4-1

4.1.1 XVM Usage Example 4-1

4.1.2 Using the XVM Processor Command-Line Utility 4-3

iv

4.1.3 Accessing the XVM Processor for C 4-3

4.2 XSLT Processor for XDK for C 4-3

4.2.1 XSLT Processor Usage Example 4-4

4.2.2 XPath Processor Usage Example 4-4

4.2.3 Using the C XSLT Processor Command-Line Utility 4-5

4.2.4 Accessing Oracle XSLT processor for C 4-6

4.3 Using the Demo Files Included with the Software 4-6

4.3.1 Building the C Demo Programs for XSLT 4-7

5 Using the XML Parser for C

5.1 Introduction to the XML Parser for C 5-1

5.1.1 Prerequisites for Using the XML Parser for C 5-1

5.1.2 Standards and Specifications for the XML Parser for C 5-1

5.2 Using the XML Parser API for C 5-2

5.2.1 Overview of the Parser API for C 5-2

5.2.1.1 XML Parser for C Data Types 5-3

5.2.1.2 XML Parser for C Defaults 5-4

5.2.2 XML Parser for C Calling Sequence 5-4

5.2.3 Using the XML Parser for C: Basic Process 5-6

5.2.4 Running the XML Parser for C Demo Programs 5-8

5.2.5 Using the C XML Parser Command-Line Utility 5-9

5.2.5.1 Using the XML Parser Command-Line Utility: Example 5-10

5.3 Using the DOM API for C 5-11

5.3.1 Controlling the Data Encoding of XML Documents for the C API 5-11

5.3.2 Using NULL-Terminated and Length-Encoded C API Functions 5-12

5.3.3 Handling Errors with the C API 5-13

5.4 Using orastream Functions 5-13

5.5 Using the SAX API for C 5-17

5.6 Using the XML Pull Parser for C 5-17

5.6.1 Using Basic XML Pull Parsing Capabilities 5-17

5.6.1.1 XML Event Context 5-17

5.6.1.2 About the XML Event Context 5-18

5.6.2 Parsing Multiple XML Documents 5-18

5.6.3 ID Callback 5-19

5.6.4 Error Handling for the XML Pull Parser 5-19

5.6.4.1 Parser Errors 5-19

5.6.4.2 Programming Errors 5-20

5.6.5 Sample Pull Parser Application 5-20

5.7 Using OCI and the XDK for C API 5-22

5.7.1 Using XMLType Functions and Descriptions 5-22

v

5.7.2 Initializing an XML Context for Oracle XML DB 5-23

5.7.3 Creating XMLType Instances on the Client 5-23

5.7.4 Operating on XML Data in the Database Server 5-24

5.7.5 Using OCI and the XDK for C API: Examples 5-24

6 Using Binary XML with C

6.1 Introduction to Binary XML for C 6-1

6.2 Prerequisites for Using Binary XML with C 6-1

6.3 Binary XML Storage Format – C 6-1

7 Using the XML Schema Processor for C

7.1 Oracle XML Schema Processor for C 7-1

7.1.1 Oracle XML Schema for C Features 7-1

7.1.2 Standards Conformance for Oracle XML Schema Processor for C 7-2

7.1.3 XML Schema Processor for C: Supplied Software 7-2

7.2 Using the C XML Schema Processor Command-Line Utility 7-3

7.3 XML Schema Processor for C Usage Diagram 7-3

7.4 How to Run XML Schema for C Sample Programs 7-4

7.5 What Is the Streaming Validator? 7-5

7.5.1 Using Transparent Mode 7-5

7.5.1.1 Error Handling in Transparent Mode 7-5

7.5.1.2 Streaming Validator Example 7-6

7.5.2 Using Opaque Mode 7-7

7.5.2.1 Error Handling in Opaque Mode 7-7

7.5.2.2 Example of Opaque Mode Application 7-7

7.5.3 Using Function XmlSchemaLoad() With an Existing DOM 7-8

7.5.4 Validation Options 7-9

8 Determining XML Differences Using C

8.1 Overview of XMLDiff in C 8-1

8.1.1 Process Flow for XMLDiff 8-1

8.2 Using XmlDiff 8-1

8.2.1 User Options for Comparison Optimization 8-1

8.2.2 User Option for Hashing 8-2

8.2.3 How XmlDiff Looks at Input Documents 8-2

8.2.4 Using the XmlDiff Command-Line Utility 8-2

8.2.5 Sample Input Document 8-3

8.2.6 Sample Xdiff Instance Document 8-4

8.2.7 Output Model and XML Processing Instructions 8-5

vi

8.2.8 Xdiff Operations 8-6

8.2.9 Format of Xdiff Instance Document 8-7

8.2.10 Xdiff Schema 8-7

8.2.11 Using XMLDiff in an Application 8-9

8.2.12 Customized Output 8-11

8.3 Using XmlPatch 8-12

8.3.1 Using the XmlPatch Command-Line Utility 8-12

8.3.2 Using XmlPatch in an Application 8-12

8.4 Using XmlHash 8-13

8.4.1 Invoking XmlDiff and XmlPatch 8-15

9 Using SOAP with the Oracle XML Developer's Kit for C

9.1 Introduction to SOAP for C 9-1

9.1.1 SOAP Messaging Overview 9-1

9.1.1.1 SOAP Message Format 9-2

9.1.2 Using SOAP Clients 9-4

9.1.3 Using SOAP Servers 9-4

9.2 SOAP C Functions 9-5

9.3 SOAP Example 1: Sending an XML Document 9-6

9.4 SOAP Example 2: A Response Asking for Clarification 9-12

9.5 SOAP Example 3: Using POST 9-14

Part II Oracle XML Developer's Kit for Java

10

Unified Java API for XML

10.1 Overview of Unified Java API for XML 10-1

10.2 Component Unification 10-1

10.3 About Moving to the Unified Java API 10-2

10.3.1 Java DOM APIs for XMLType Classes 10-2

10.3.2 Extension APIs 10-3

10.3.3 Document Creation Java APIs 10-3

11

Getting Started with Oracle XML Developer's Kit for Java

11.1 Installing XDK for Java Components 11-1

11.2 XDK for Java Component Dependencies 11-2

11.3 Setting Up the XDK for Java Environment 11-5

11.3.1 Setting Up XDK for Java Environment Variables for UNIX 11-5

11.3.2 Testing the XDK for Java Environment on UNIX 11-7

vii

11.3.3 Setting Up XDK for Java Environment Variables for Windows 11-7

11.3.4 Testing the XDK for Java Environment on Windows 11-9

11.4 Verifying the XDK (Java) Version 11-9

12

XML Parsing for Java

12.1 Introduction to XML Parsing for Java 12-1

12.1.1 Prerequisites for Parsing with Java 12-1

12.1.2 Standards and Specifications for XML Parsing for Java 12-1

12.1.3 Large Node Handling 12-2

12.1.4 XML Parsing in Java: Overview 12-2

12.1.5 DOM in XML Parsing 12-4

12.1.5.1 DOM Creation 12-4

12.1.6 SDOM 12-4

12.1.6.1 Pluggable DOM Support 12-5

12.1.6.2 Lazy Materialization 12-5

12.1.6.3 Configurable DOM Settings 12-5

12.1.6.4 DOM Support for Fast Infoset 12-6

12.1.7 SAX in the XML Parser 12-6

12.1.8 JAXP in the XML Parser 12-7

12.1.9 Namespace Support in the XML Parser 12-7

12.1.10 Validation in the XML Parser 12-8

12.1.11 Compression in the XML Parser 12-10

12.2 Using XML Parsing for Java: Overview 12-11

12.2.1 Using the XML Parser for Java: Basic Process 12-11

12.2.2 Running the XML Parser for Java Demo Programs 12-12

12.2.3 Using the Java XML Parser Command-Line Utility (oraxml) 12-14

12.3 Parsing XML with DOM 12-15

12.3.1 Using the DOM API for Java 12-15

12.3.2 DOM Parser Architecture 12-15

12.3.3 Performing Basic DOM Parsing 12-16

12.3.4 Creating SDOM 12-20

12.3.4.1 Using SDOM 12-20

12.3.4.2 Using Lazy Materialization 12-21

12.3.4.3 Using Configurable DOM Settings 12-24

12.3.4.4 Using Fast Infoset with SDOM 12-25

12.3.4.5 SDOM Applications 12-26

12.3.4.6 XDK Java DOM Improvements 12-27

12.3.5 Performing DOM Operations with Namespaces 12-27

12.3.6 Performing DOM Operations with Events 12-29

12.3.7 Performing DOM Operations with Ranges 12-30

viii

12.3.8 Performing DOM Operations with TreeWalker 12-31

12.4 Parsing XML with SAX 12-33

12.4.1 Using the SAX API for Java 12-33

12.4.2 Performing Basic SAX Parsing 12-36

12.4.3 Performing Basic SAX Parsing with Namespaces 12-38

12.4.4 Performing SAX Parsing with XMLTokenizer 12-39

12.5 Parsing XML with JAXP 12-41

12.5.1 JAXP Structure 12-41

12.5.2 Using the SAX API Through JAXP 12-41

12.5.3 Using the DOM API Through JAXP 12-42

12.5.4 Transforming XML Through JAXP 12-42

12.5.5 Parsing with JAXP 12-43

12.5.6 Performing Basic Transformations with JAXP 12-45

12.6 Compressing and Decompressing XML 12-46

12.6.1 Compressing a DOM Object 12-46

12.6.2 Decompressing a DOM Object 12-46

12.6.3 Compressing a SAX Object 12-47

12.6.4 Decompressing a SAX Object 12-48

12.7 Tips and Techniques for Parsing XML 12-48

12.7.1 Extracting Node Values from a DOM Tree 12-49

12.7.2 Merging Documents with appendChild() 12-50

12.7.3 Parsing DTDs 12-51

12.7.3.1 Loading External DTDs 12-51

12.7.3.2 Caching DTDs with setDoctype 12-52

12.7.4 Handling Character Sets with the XML Parser 12-53

12.7.4.1 Detecting the Encoding of an XML File on the Operating System 12-54

12.7.4.2 Preventing Distortion of XML Stored in an NCLOB Column 12-54

12.7.4.3 Writing an XML File in a Nondefault Encoding 12-55

12.7.4.4 Parsing XML Stored in Strings 12-55

12.7.4.5 Parsing XML Documents with Accented Characters 12-56

12.7.4.6 Handling Special Characters in Tag Names 12-56

13

Using Binary XML with Java

13.1 Introduction to Binary XML for Java 13-1

13.1.1 Binary XML Storage Format – Java 13-1

13.1.2 Binary XML Processors 13-1

13.2 Models for Using Binary XML 13-2

13.2.1 Usage Terminology for Binary XML 13-2

13.2.2 Standalone Model 13-2

13.2.3 Client/Server Model 13-2

ix

13.2.4 Web Services Model With Repository 13-3

13.2.5 Web Services Model Without Repository 13-3

13.3 Components of Binary XML for Java 13-3

13.3.1 Binary XML Encoding 13-4

13.3.2 Binary XML Decoding 13-5

13.4 Binary XML Vocabulary Management 13-5

13.4.1 Schema Management 13-5

13.4.1.1 Schema Registration for Binary XML Vocabulary Management 13-5

13.4.1.2 Schema Identification 13-6

13.4.1.3 Schema Annotations 13-6

13.4.1.4 User-Level Annotations 13-6

13.4.1.5 System-Level Annotations 13-6

13.4.2 Token Management 13-6

13.5 Using the Java Binary XML Package 13-6

13.5.1 Binary XML Encoder 13-7

13.5.1.1 Schema-Less Option 13-7

13.5.1.2 Inline-Token Option 13-8

13.5.2 Binary XML Decoder 13-8

13.5.3 Schema Registration Overview 13-9

13.5.4 Resolving xsi:schemaLocation 13-9

13.5.5 Binary XML 13-9

13.5.6 Persistent Storage of Metadata 13-10

14

Using the XSLT Processor for Java

14.1 Introduction to the XSLT Processor 14-1

14.1.1 Prerequisites for Using the XSLT Processor for Java 14-1

14.1.2 Standards and Specifications for the XSLT Processor for Java 14-1

14.1.3 XML Transformation with XSLT 1.0 and 2.0 14-2

14.2 Using the XSLT Processor for Java: Overview 14-3

14.2.1 Using the XSLT Processor for Java: Basic Process 14-3

14.2.2 Running the XSLT Processor Demo Programs 14-4

14.2.3 Using the XSLT Processor Command-Line Utility 14-6

14.2.3.1 Using the XSLT Processor Command-Line Utility: Example 14-7

14.3 Transforming XML 14-8

14.3.1 Performing Basic XSL Transformation 14-8

14.3.2 Getting DOM Results from an XSL Transformation 14-10

14.4 Programming with Oracle XSLT Extensions 14-11

14.4.1 Overview of Oracle XSLT Extensions 14-11

14.4.2 Specifying Namespaces for XSLT Extension Functions 14-11

14.4.3 Using Static and Nonstatic Java Methods in XSLT 14-12

x

14.4.4 Using Constructor Extension Functions 14-13

14.4.5 Using Return Value Extension Functions 14-13

14.5 Tips and Techniques for Transforming XML 14-15

14.5.1 Merging XML Documents with XSLT 14-15

14.5.2 Creating an HTML Input Form Based on the Columns in a Table 14-16

15

Using the XQuery Processor for Java

15.1 Introduction to the XQuery Processor for Java 15-1

15.2 XQJ Entity Resolution 15-2

15.2.1 Resolution of Documents for fn:doc 15-2

15.2.2 Resolution of External XQuery Functions 15-4

15.2.3 Resolution of Imported XQuery Modules 15-7

15.2.4 Resolution of XML Schemas Imported by an XQuery Query 15-9

15.2.5 Prefabricated Entity Resolvers for XQuery 15-11

15.2.6 Resolution of Other Types of Entity 15-12

15.3 XQuery Output Declarations 15-12

15.4 Improving Application Performance and Scalability with XQuery 15-15

15.4.1 Streaming Query Evaluation 15-15

15.4.2 External Storage 15-17

15.4.3 Thread Safety for XQJ 15-18

15.5 Performing Updates 15-19

15.6 Oracle XQuery Functions and Operators 15-21

15.6.1 Oracle XQuery Functions for Duration, Date, and Time 15-21

15.6.1.1 ora-fn:date-from-string-with-format 15-21

15.6.1.2 ora-fn:date-to-string-with-format 15-22

15.6.1.3 ora-fn:dateTime-from-string-with-format 15-22

15.6.1.4 ora-fn:dateTime-to-string-with-format 15-23

15.6.1.5 ora-fn:time-from-string-with-format 15-24

15.6.1.6 ora-fn:time-to-string-with-format 15-24

15.6.1.7 Format Argument 15-25

15.6.1.8 Locale Argument 15-25

15.6.2 Oracle XQuery Functions for Strings 15-25

15.6.2.1 ora-fn:pad-left 15-26

15.6.2.2 ora-fn:pad-right 15-27

15.6.2.3 ora-fn:trim 15-28

15.6.2.4 ora-fn:trim-left 15-28

15.6.2.5 ora-fn:trim-right 15-28

15.7 Standards and Specifications for the XQuery Processor for Java 15-29

15.7.1 Optional XQuery Features 15-29

xi

15.7.2 Implementation-Defined Items 15-30

16

Using XQuery API for Java to Access Oracle XML DB

16.1 Introduction to Oracle XML DB Support for XQJ 16-1

16.1.1 Prerequisites for Using XQJ to Access Oracle XML DB 16-1

16.2 Examples: Using XQJ to Query Oracle XML DB 16-2

16.3 XQJ Support for Oracle XML DB 16-5

16.3.1 Other Oracle XML DB XQJ Support Limitations 16-7

16.4 XQJ Performance Considerations for Use with Oracle XML DB 16-7

17

Using the XML Schema Processor for Java

17.1 Introduction to XML Validation 17-1

17.1.1 Prerequisites for Using the XML Schema Processor for Java 17-1

17.1.2 Standards and Specifications for the XML Schema Processor for Java 17-1

17.1.3 XML Validation with DTDs 17-1

17.1.3.1 DTD Samples in XDK 17-2

17.1.4 XML Validation with XML Schemas 17-3

17.1.4.1 XML Schema Samples in XDK 17-3

17.1.5 Differences Between XML Schemas and DTDs 17-5

17.2 Using the XML Schema Processor: Overview 17-6

17.2.1 Using the XML Schema Processor for Java: Basic Process 17-7

17.2.2 Running the XML Schema Processor Demo Programs 17-9

17.2.3 Using the XML Schema Processor Command-Line Utility 17-12

17.2.3.1 Using oraxml to Validate Against a Schema 17-12

17.2.3.2 Using oraxml to Validate Against a DTD 17-12

17.3 Validating XML with XML Schemas 17-13

17.3.1 Validating Against Internally Referenced XML Schemas 17-13

17.3.2 Validating Against Externally Referenced XML Schemas 17-14

17.3.3 Validating a Subsection of an XML Document 17-15

17.3.4 Validating XML from a SAX Stream 17-16

17.3.5 Validating XML from a DOM 17-17

17.3.6 Validating XML from Designed Types and Elements 17-18

17.4 Tips and Techniques for Programming with XML Schemas 17-20

17.4.1 Overriding the Schema Location with an Entity Resolver 17-20

17.4.2 Converting DTDs to XML Schemas 17-22

18

Using the JAXB Class Generator

18.1 Introduction to the JAXB Class Generator 18-1

18.1.1 Prerequisites for Using the JAXB Class Generator 18-1

xii

18.1.2 Standards and Specifications for the JAXB Class Generator 18-1

18.1.3 JAXB Class Generator Features 18-2

18.1.4 Marshalling and Unmarshalling with JAXB 18-2

18.1.5 Validation with JAXB 18-3

18.1.6 JAXB Customization 18-3

18.2 Using the JAXB Class Generator: Overview 18-4

18.2.1 Using the JAXB Processor: Basic Process 18-4

18.2.2 Running the XML Schema Processor Demo Programs 18-7

18.2.3 Using the JAXB Class Generator Command-Line Utility 18-8

18.2.3.1 Using the JAXB Class Generator Command-Line Utility: Example 18-9

18.2.4 JAXB Features Not Supported in XDK 18-10

18.3 Processing XML with the JAXB Class Generator 18-10

18.3.1 Binding Complex Types 18-10

18.3.1.1 Defining the Schema to Validate sample3.xml 18-10

18.3.1.2 Generating and Compiling the Java Classes 18-12

18.3.1.3 Processing the XML Data in sample3.xml 18-13

18.3.2 Customizing a Class Name in a Top-Level Element 18-14

18.3.2.1 Defining the Schema to Validate schema10.xml 18-14

18.3.2.2 Generating and Compiling the Java Classes 18-16

18.3.2.3 Processing the XML Data in sample10.xml 18-17

19

Using the XML Pipeline Processor for Java

19.1 Introduction to the XML Pipeline Processor 19-1

19.1.1 Prerequisites for Using the XML Pipeline Processor for Java 19-1

19.1.2 Standards and Specifications for the XML Pipeline Processor for Java 19-1

19.1.3 Multistage XML Processing 19-2

19.1.4 Customized Pipeline Processes 19-3

19.2 Using the XML Pipeline Processor for Java: Overview 19-4

19.2.1 Using the XML Pipeline Processor for Java: Basic Process 19-4

19.2.2 Running the XML Pipeline Processor Demo Programs 19-7

19.2.3 Using the XML Pipeline Processor Command-Line Utility 19-9

19.3 Processing XML in a Pipeline 19-9

19.3.1 Creating a Pipeline Document 19-9

19.3.1.1 Example of a Pipeline Document 19-10

19.3.2 Writing a Pipeline Processor Application 19-11

19.3.3 Writing a Pipeline Error Handler 19-13

20

Determining XML Differences Using Java

20.1 Overview of XML Diffing Utilities for Java 20-1

xiii

20.2 User Options for the Java XML Diffing Library 20-2

20.3 Using Java XML Diffing Methods to Find Differences 20-3

20.3.1 About the append-node Operation 20-4

20.3.2 About the insert-node-before Operation 20-5

20.3.3 About the delete-node Operation 20-6

20.4 Invoking diff and difftoDoc Methods in a Java Application 20-7

20.5 Using Java XML hash and equal Methods to Identify and Compare Inputs 20-10

20.6 Diff Output Schema 20-11

21

Using the XML SQL Utility

21.1 Introduction to the XML SQL Utility (XSU) 21-1

21.1.1 Prerequisites for Using the XML SQL Utility (XSU) 21-1

21.1.2 XSU Features 21-1

21.1.3 XSU Restrictions 21-2

21.2 Using the XML SQL Utility: Overview 21-2

21.2.1 Using XSU: Basic Process 21-2

21.2.1.1 Generating XML with the XSU Java API: Basic Process 21-3

21.2.1.2 Performing DML with the XSU Java API: Basic Process 21-4

21.2.2 Installing XSU 21-6

21.2.2.1 XSU in the Database 21-6

21.2.2.2 XSU in an Application Server 21-7

21.2.2.3 XSU in a Web Server 21-8

21.2.3 Running the XSU Demo Programs 21-9

21.2.4 Using the XSU Command-Line Utility 21-11

21.2.4.1 Generating XML with the XSU Command-Line Utility 21-13

21.2.4.2 Generating XMLType Data with the XSU Command-Line Utility 21-14

21.2.4.3 Performing DML with the XSU Command-Line Utility 21-14

21.3 Programming with the XSU Java API 21-14

21.3.1 Generating a String with OracleXMLQuery 21-15

21.3.1.1 Running the testXMLSQL Program 21-15

21.3.2 Generating a DOM Tree with OracleXMLQuery 21-16

21.3.3 Paginating Results with OracleXMLQuery 21-16

21.3.3.1 Limiting the Number of Rows in the Result Set 21-16

21.3.3.2 Keeping an Object Open for the Duration of the User's Session 21-17

21.3.3.3 Paginating Results with OracleXMLQuery: Example 21-18

21.3.4 Generating Scrollable Result Sets 21-18

21.3.5 Generating XML from Cursor Objects 21-19

21.3.6 Inserting Rows with OracleXMLSave 21-20

21.3.6.1 Inserting XML into All Columns with OracleXMLSave 21-20

21.3.6.2 Inserting XML into a Subset of Columns with OracleXMLSave 21-21

xiv

21.3.7 Updating Rows Using OracleXMLSave 21-22

21.3.7.1 Updating Key Columns Using OracleXMLSave 21-22

21.3.7.2 Updating a Column List Using OracleXMLSave 21-24

21.3.8 Deleting Rows using XSU 21-25

21.3.8.1 Deleting by Row with OracleXMLSave 21-25

21.3.8.2 Deleting by Key with OracleXMLSave 21-26

21.3.9 Handling XSU Java Exceptions 21-27

21.3.9.1 Getting the Parent Exception 21-27

21.3.9.2 Raising a No Rows Exception 21-28

21.4 Tips and Techniques for Programming with XSU 21-28

21.4.1 How XSU Maps Between SQL and XML 21-29

21.4.1.1 Default SQL-to-XML Mapping 21-29

21.4.1.2 Default XML-to-SQL Mapping 21-31

21.4.1.3 Customizing Generated XML 21-32

21.4.2 How XSU Processes SQL Statements 21-34

21.4.2.1 How XSU Queries the Database 21-34

21.4.2.2 How XSU Inserts Rows 21-34

21.4.2.3 How XSU Updates Rows 21-35

21.4.2.4 How XSU Deletes Rows 21-35

21.4.2.5 How XSU Commits After DML 21-36

22

Using the TransX Utility

22.1 Introduction to the TransX Utility 22-1

22.1.1 Prerequisites for Using the TransX Utility 22-1

22.1.2 TransX Utility Features 22-2

22.1.2.1 Simplified Multilingual Data Loading 22-2

22.1.2.2 Simplified Data Format Support and Interface 22-2

22.1.2.3 Additional TransX Utility Features 22-3

22.2 Using the TransX Utility: Overview 22-3

22.2.1 Using the TransX Utility: Basic Process 22-3

22.2.2 Running the TransX Utility Demo Programs 22-6

22.2.3 Using the TransX Command-Line Utility 22-8

22.2.3.1 TransX Utility Command-Line Options 22-8

22.2.3.2 TransX Utility Command-Line Parameters 22-9

22.3 Loading Data with the TransX Utility 22-10

22.3.1 Storing Messages in the Database 22-10

22.3.2 Creation of a Data Set in a Predefined Format 22-11

22.3.2.1 Format of the Input XML Document 22-11

22.3.2.2 Specifying Translations in a Data Set 22-14

22.3.3 Loading the Data 22-16

xv

22.3.4 Querying the Data 22-17

23

Data Loading Format (DLF) Specification

23.1 Introduction to DLF 23-1

23.1.1 Naming Conventions for DLF 23-1

23.1.1.1 Elements and Attributes 23-1

23.1.1.2 Values 23-2

23.1.1.3 File Extensions 23-2

23.2 General Structure of DLF 23-2

23.2.1 Tree Structure of DLF 23-2

23.3 DLF Specifications 23-4

23.3.1 XML Declaration in DLF 23-5

23.3.2 Entity References in DLF 23-5

23.3.3 Elements in DLF 23-5

23.3.3.1 Top-Level Table Element 23-6

23.3.3.2 Translation Elements 23-6

23.3.3.3 Lookup Key Elements 23-6

23.3.3.4 Metadata Elements 23-7

23.3.3.5 Data Elements 23-8

23.3.4 Attributes in DLF 23-8

23.3.4.1 DLF Attributes 23-9

23.3.4.2 XML Namespace Attributes 23-12

23.4 DLF Examples 23-12

23.4.1 Minimal DLF Document 23-13

23.4.2 Typical DLF Document 23-13

23.4.3 Localized DLF Document 23-15

24

Using the XSQL Pages Publishing Framework

24.1 Introduction to the XSQL Pages Publishing Framework 24-1

24.1.1 Prerequisites for Using the XSQL Pages Publishing Framework 24-2

24.2 Using the XSQL Pages Publishing Framework: Overview 24-2

24.2.1 Using the XSQL Pages Framework: Basic Process 24-2

24.2.2 Setting Up the XSQL Pages Framework 24-5

24.2.2.1 Creating and Testing XSQL Pages with Oracle JDeveloper 24-5

24.2.2.2 Setting the CLASSPATH for XSQL Pages 24-6

24.2.2.3 Configuring the XSQL Servlet Container 24-7

24.2.2.4 Setting Up the Connection Definitions 24-7

24.2.3 Running the XSQL Pages Demo Programs 24-8

24.2.3.1 Setting Up the XSQL Demos 24-10

xvi

24.2.3.2 Running the XSQL Demos 24-11

24.2.4 Using the XSQL Pages Command-Line Utility 24-12

24.3 Generating and Transforming XML with XSQL Servlet 24-13

24.3.1 Composing XSQL Pages 24-13

24.3.1.1 Using Bind Parameters 24-14

24.3.1.2 Using Lexical Substitution Parameters 24-16

24.3.1.3 Providing Default Values for Bind and Substitution Parameters 24-17

24.3.1.4 How the XSQL Page Processor Handles Different Types of Parameters 24-19

24.3.2 Producing Datagrams from SQL Queries 24-19

24.3.3 Transforming XML Datagrams into an Alternative XML Format 24-20

24.3.4 Transforming XML Datagrams into HTML for Display 24-23

24.4 Using XSQL in Java Programs 24-24

24.5 XSQL Pages Tips and Techniques 24-26

24.5.1 XSQL Pages Limitations 24-26

24.5.2 Hints for Using the XSQL Servlet 24-26

24.5.2.1 Specifying a DTD While Transforming XSQL Output to a WML
Document 24-26

24.5.2.2 Testing Conditions in XSQL Pages 24-27

24.5.2.3 Passing a Query Result to the WHERE Clause of Another Query 24-27

24.5.2.4 Handling Multivalued HTML Form Parameters 24-28

24.5.2.5 Invoking PL/SQL Wrapper Procedures to Generate XML Datagrams 24-29

24.5.2.6 Accessing Contents of Posted XML 24-30

24.5.2.7 Changing Database Connections Dynamically 24-30

24.5.2.8 Retrieving the Name of the Current XSQL Page 24-30

24.5.3 Resolving Common XSQL Connection Errors 24-31

24.5.3.1 Receiving "Unable to Connect" Errors 24-31

24.5.3.2 Receiving "No Posted Document to Process" When Using HTTP POST 24-31

24.5.4 Security Considerations for XSQL Pages 24-32

24.5.4.1 Installing Your XSQL Configuration File in a Safe Directory 24-32

24.5.4.2 Disabling Default Client Stylesheet Overrides 24-32

24.5.4.3 Protecting Against the Misuse of Substitution Parameters 24-32

25

Using the XSQL Pages Publishing Framework: Advanced Topics

25.1 Customizing the XSQL Configuration File Name 25-1

25.2 Controlling How Stylesheets Are Processed 25-2

25.2.1 Overriding Client Stylesheets 25-2

25.2.2 Controlling the Content Type of the Returned Document 25-2

25.2.3 Assigning the Stylesheet Dynamically 25-3

25.2.4 Processing XSLT Stylesheets in the Client 25-4

25.2.5 Providing Multiple Stylesheets 25-4

25.3 Working with Array-Valued Parameters 25-6

xvii

25.3.1 Supplying Values for Array-Valued Parameters 25-6

25.3.2 Setting Array-Valued Page or Session Parameters from Strings 25-7

25.3.3 Binding Array-Valued Parameters in SQL and PL/SQL Statements 25-8

25.4 Setting Error Parameters on Built-In Actions 25-10

25.4.1 Using Conditional Logic with Error Parameters 25-11

25.4.2 Formatting XSQL Action Handler Errors 25-11

25.5 Including XMLType Query Results in XSQL Pages 25-12

25.6 Handling Posted XML Content 25-14

25.6.1 Understanding XML Posting Options 25-15

25.7 Producing PDF Output with the FOP Serializer 25-17

25.8 Performing XSQL Customizations 25-18

25.8.1 Writing Custom XSQL Action Handlers 25-18

25.8.1.1 Implementing the XSQLActionHandler Interface 25-19

25.8.1.2 Using Multivalued Parameters in Custom XSQL Actions 25-22

25.8.2 Implementing Custom XSQL Serializers 25-22

25.8.2.1 Techniques for Using a Custom Serializer 25-23

25.8.2.2 Assigning a Short Name to a Custom Serializer 25-24

25.8.3 Using a Custom XSQL Connection Manager for JDBC Data Sources 25-25

25.8.4 Writing Custom XSQL Connection Managers 25-26

25.8.4.1 Accessing Authentication Information in a Custom Connection Manager 25-27

25.8.5 Implementing a Custom XSQLErrorHandler 25-27

25.8.6 Providing a Custom XSQL Logger Implementation 25-28

Part III Oracle XML Developer's Kit for C++

26

Getting Started with Oracle XML Developer's Kit for C++

26.1 Installing XDK for C++ Components 26-1

26.2 Configuring the UNIX Environment for XDK for C++ Components 26-1

26.2.1 XDK for C++ Component Dependencies on UNIX 26-1

26.2.2 Setting Up XDK for C++ Environment Variables on UNIX 26-2

26.2.3 Testing the XDK for C++ Runtime Environment on UNIX 26-2

26.2.4 Setting Up and Testing the XDK for C++ Compile-Time Environment on UNIX 26-2

26.2.4.1 Testing the XDK for C++ Compile-Time Environment on UNIX 26-2

26.2.5 Verifying the XDK for C++ Component Version on UNIX 26-3

26.3 Configuring the Windows Environment for XDK for C++ Components 26-3

26.3.1 XDK for C++ Component Dependencies on Windows 26-3

26.3.2 Setting Up XDK for C++ Environment Variables on Windows 26-3

26.3.3 Testing the XDK for C++ Runtime Environment on Windows 26-3

26.3.4 Setting Up and Testing the XDK for C++ Compile-Time Environment on
Windows 26-4

xviii

26.3.4.1 Testing the XDK for C++ Compile-Time Environment on Windows 26-4

26.3.5 Using the XDK for C++ Components with Visual C/C++ 26-4

27

Overview of the Unified C++ Interfaces

27.1 What Is the Unified C++ API? 27-1

27.2 Accessing the C++ Interface 27-1

27.3 OracleXML Namespace 27-1

27.3.1 OracleXML Interfaces 27-2

27.4 Ctx Namespace 27-2

27.4.1 OracleXML Data Types 27-2

27.4.2 Ctx Interfaces 27-2

27.5 IO Namespace 27-3

27.5.1 IO Data Types 27-3

27.5.2 IO Interfaces 27-3

27.6 Tools Package 27-3

27.6.1 Tools Interfaces 27-4

27.7 Error Message Files 27-4

28

Using the XML Parser for C++

28.1 Introduction to Oracle XML Parser for C++ 28-1

28.2 DOM Namespace 28-1

28.2.1 DOM Data Types 28-2

28.2.2 DOM Interfaces 28-2

28.2.3 DOM Traversal and Range Data Types 28-3

28.2.4 DOM Traversal and Range Interfaces 28-3

28.3 Parser Namespace 28-3

28.3.1 GParser Interface 28-4

28.3.2 DOMParser Interface 28-4

28.3.3 SAXParser Interface 28-4

28.3.3.1 SAX Event Handlers 28-4

28.4 Thread Safety for the XML Parser for C++ 28-4

28.5 XML Parser for C++ Usage 28-4

28.6 XML Parser for C++ Default Behavior 28-4

28.7 C++ Sample Files 28-5

29

Using the XSLT Processor for C++

29.1 Accessing XSLT for C++ 29-1

29.2 XSL Namespace 29-1

29.2.1 XSL Interfaces 29-1

xix

29.3 XSLT for C++ DOM Interface Usage 29-2

29.4 Invoking XSLT for C++ 29-2

29.4.1 Command-Line Usage 29-2

29.4.2 Writing C++ Code to Use Supplied APIs 29-3

29.5 Using the Sample Files Included with the Software 29-3

30

Using the XML Schema Processor for C++

30.1 Oracle XML Schema Processor for C++ 30-1

30.1.1 Oracle XML Schema for C++ Features 30-1

30.1.1.1 Online Documentation 30-2

30.1.2 Standards Conformance for Oracle XML Schema Processor for C++ 30-2

30.2 XML Schema Processor API 30-2

30.2.1 Invoking XML Schema Processor for C++ 30-2

30.3 Running the Provided XML Schema for C++ Sample Programs 30-3

31

Using the XPath Processor for C++

31.1 XPath Interfaces 31-1

31.2 Sample Programs 31-1

32

Using the XML Class Generator for C++

32.1 Accessing the XML C++ Class Generator 32-1

32.2 Using the XML C++ Class Generator 32-1

32.2.1 External DTD Parsing 32-1

32.3 Using the XML C++ Class Generator Command-Line Utility 32-1

32.3.1 Input to the XML C++ Class Generator 32-2

32.4 Using the XML C++ Class Generator Examples 32-2

32.4.1 XML C++ Class Generator Example 1: XML — Input File to Class Generator,
CG.xml 32-3

32.4.2 XML C++ Class Generator Example 2: DTD — Input File to Class Generator,
CG.dtd 32-3

32.4.3 XML C++ Class Generator Example 3: CG Sample Program 32-4

Part IV Oracle XML Developer's Kit Reference

33

XSQL Pages Reference

33.1 XSQL Configuration File Parameters 33-2

33.2.1 <xsql:action> 33-7

xx

33.2.2 <xsql:delete-request> 33-9

33.2.3 <xsql:dml> 33-10

33.2.4 <xsql:if-param> 33-11

33.2.5 <xsql:include-owa> 33-13

33.2.6 <xsql:include-param> 33-14

33.2.7 <xsql:include-posted-include-posted> 33-15

33.2.8 <xsql:include-request-params> 33-16

33.2.9 <xsql:include-xml> 33-17

33.2.10 <xsql:include-xsql> 33-19

33.2.11 <xsql:insert-param> 33-21

33.2.12 <xsql:insert-request> 33-22

33.2.13 <xsql:query> 33-23

33.2.14 <xsql:ref-cursor-function> 33-26

33.2.15 <xsql:set-cookie> 33-28

33.2.16 <xsql:set-page-param> 33-30

33.2.17 <xsql:set-session-param> 33-32

33.2.18 <xsql:set-stylesheet-param> 33-34

33.2.19 <xsql:update-request> 33-36

34

Oracle XML Developer's Kit Standards

34.1 XML Standards Supported by XDK 34-1

34.1.1 Summary of XML Standards Supported by XDK 34-1

34.1.2 XML Standards for XDK for Java 34-2

34.1.2.1 DOM Standard for XDK for Java 34-2

34.1.2.2 XSLT Standard for XDK for Java 34-3

34.1.2.3 JAXB Standard for XDK for Java 34-3

34.1.2.4 Pipeline Definition Language Standard for XDK for Java 34-4

34.2 Character Sets Supported by XDK 34-4

34.2.1 Character Sets Supported by XDK for Java 34-4

34.2.2 Character Sets Supported by XDK for C 34-5

A XDK for Java XML Error Messages

A.1 XML Parser Error Messages A-1

A.2 DOM Error Messages A-11

A.3 XSLT Error Messages A-16

A.4 XPath Error Messages A-18

A.5 XML Schema Validation Error Messages A-23

A.6 Schema Representation Constraint Error Messages A-34

A.7 Schema Component Constraint Error Messages A-39

xxi

A.8 XSQL Server Pages Error Messages A-49

A.9 XML Pipeline Error Messages A-49

A.10 JAXB Error Messages A-51

B XDK for Java TXU Error Messages

B.1 DLF Error Messages B-1

B.2 TransX Informational Messages B-3

B.3 TransX Error Messages B-3

B.4 Assertion Error Messages B-4

C XDK for Java XSU Error Messages

C.1 Generic Error Messages C-1

C.2 Query Error Messages C-2

C.3 DML Error Messages C-3

D Oracle XML Developer's Kit JavaBeans (Deprecated)

D.1 Introduction to XDK JavaBeans D-1

D.1.1 Prerequisites for Using XDK JavaBeans D-1

D.1.2 Standards and Specifications for XDK JavaBeans D-2

D.1.3 XDK JavaBeans Features D-2

D.1.3.1 DOMBuilder D-2

D.1.3.2 XSLTransformer D-3

D.1.3.3 DBAccess D-3

D.1.3.4 XMLDBAccess D-3

D.1.3.5 XMLDiff D-4

D.1.3.6 XMLCompress D-4

D.1.3.7 XSDValidator D-5

D.2 Using XDK JavaBeans: Overview D-5

D.2.1 Using XDK JavaBeans: Basic Process D-5

D.2.1.1 Using the DOMBuilder JavaBean: Basic Process D-5

D.2.1.2 Using the XSLTransformer JavaBean: Basic Process D-8

D.2.1.3 Using the XMLDBAccess JavaBean: Basic Process D-9

D.2.1.4 Using the XMLDiff JavaBean: Basic Process D-11

D.2.2 Running XDK JavaBean Demo Programs D-13

D.2.2.1 Running sample1 D-16

D.2.2.2 Running sample2 D-17

D.2.2.3 Running sample3 D-17

D.2.2.4 Running sample4 D-17

D.2.2.5 Running sample5 D-18

xxii

D.2.2.6 Running sample6 D-19

D.2.2.7 Running sample7 D-19

D.2.2.8 Running sample8 D-19

D.2.2.9 Running sample9 D-20

D.2.2.10 Running sample10 D-20

D.3 Processing XML with XDK JavaBeans D-20

D.3.1 Processing XML Asynchronously with the DOMBuilder and XSLTransformer
Beans D-21

D.3.1.1 Parsing the Input XSLT Stylesheet D-22

D.3.1.2 Processing the XML Documents Asynchronously D-23

D.3.2 Comparing XML Documents with the XMLDiff JavaBean D-25

D.3.2.1 Comparing the XML Files and Generating a Stylesheet D-26

Glossary

Index

xxiii

List of Examples

1-1 Oracle XML Developer's Kit Components 1-18

2-1 Improving Safety of Java Code that Uses an XML Parser 2-3

3-1 Oracle XML Developer's Kit for C Libraries, Header Files, Utilities, and Demos 3-2

3-2 Editing an Oracle XML Developer's Kit for C Make.bat File on Windows 3-9

5-1 NSExample.xml 5-11

5-2 xml.out 5-11

5-3 Using orastream Functions 5-15

5-4 XML Event Context 5-18

5-5 Sample Pull Parser Application Example 5-20

5-6 Sample Document to Parse 5-21

5-7 Events Generated by Parsing a Sample Document 5-21

5-8 Constructing a Schema-Based Document with the DOM API 5-24

5-9 Modifying a Database Document with the DOM API 5-26

7-1 Streaming Validator in Transparent Mode 7-6

7-2 Example of Streaming Validator in Opaque Mode 7-7

7-3 XmlSchemaLoad() Example 7-8

7-4 Example of Streaming Validator Using New Options 7-9

8-1 book1.xml 8-3

8-2 Sample Xdiff Instance Document 8-4

8-3 Xdiff Schema: xdiff.xsd 8-7

8-4 XMLDiff Application 8-10

8-5 Customized XMLDiff Output 8-11

8-6 Sample Application for XmlPatch 8-13

8-7 XmlHash Program 8-14

9-1 SOAP Request Message 9-3

9-2 SOAP Response Message 9-3

9-3 SOAP C Functions Defined in xmlsoap.h 9-5

9-4 Example 1 SOAP Message 9-7

9-5 Example 1 SOAP C Client 9-8

9-6 Example 2 SOAP Message 9-12

9-7 Example 2 SOAP C Client 9-13

9-8 Example 3 SOAP Message 9-15

9-9 Example 3 SOAP C Client 9-15

11-1 Oracle XML Developer's Kit for Java Libraries, Utilities, and Demos 11-2

11-2 Testing the Oracle XML Developer's Kit for Java Environment on UNIX 11-7

xxiv

11-3 Testing the Oracle XML Developer's Kit for Java Environment on Windows 11-9

11-4 XDKVersion.java 11-9

12-1 Sample XML Document 12-3

12-2 Sample XML Document Without Namespaces 12-8

12-3 Sample XML Document with Namespaces 12-8

12-4 Extracting Contents of a DOM Tree with selectNodes() 12-49

12-5 Incorrect Use of appendChild() 12-50

12-6 Merging Documents with appendChild 12-51

12-7 DTDSample.java 12-52

12-8 Converting XML in a String 12-55

12-9 Parsing a Document with Accented Characters 12-56

14-1 math.xml 14-7

14-2 math.xsl 14-7

14-3 math.htm 14-8

14-4 Using a Static Function in an XSLT Stylesheet 14-12

14-5 Using a Constructor in an XSLT Stylesheet 14-13

14-6 gettitle.xsl 14-14

14-7 msg_w_num.xml 14-15

14-8 msg_w_text.xml 14-15

14-9 msgmerge.xsl 14-15

14-10 msgmerge.xml 14-16

15-1 Simple Query Using XQJ 15-2

15-2 books.xml 15-3

15-3 books.xq 15-3

15-4 Executing a Query with a Custom Entity Resolver 15-3

15-5 trim.xq 15-5

15-6 Defining the Implementation of an External XQuery Function 15-5

15-7 Binding an External Function to a Java Static Method 15-6

15-8 math.xq 15-7

15-9 main.xq 15-8

15-10 Executing a Query that Imports a Library Module 15-8

15-11 size.xsd 15-9

15-12 size.xq 15-9

15-13 Executing an XQuery Query that Imports an XML Schema 15-9

15-14 Executing a Query with a Prefabricated File Resolver 15-11

15-15 Accessing the Values of Option Declarations 15-13

15-16 Using Option Declarations When Serializing a Query Result 15-14

xxv

15-17 books2.xq 15-16

15-18 Facilitating Streaming Evaluation 15-16

15-19 Configuring the XQuery Processor to Use External Storage 15-17

15-20 configuration.xml 15-19

15-21 update.xq 15-20

15-22 Updated File configuration.xml 15-20

15-23 Executing the Updating Query update.xq 15-20

16-1 Using XQJ to Query an XML DB Table with XQuery 16-3

16-2 Using XQJ to Query the XML DB Repository with XQuery 16-4

17-1 family.dtd 17-2

17-2 family.xml 17-2

17-3 report.xml 17-3

17-4 report.xsd 17-4

17-5 Using oraxml to Validate Against a Schema 17-12

17-6 Using oraxml to Validate Against a DTD 17-12

18-1 sample3.xml 18-11

18-2 sample3.xsd 18-11

18-3 Address.java 18-12

18-4 sample10.xml 18-15

18-5 sample10.xsd 18-15

18-6 BusinessType.java 18-16

19-1 pipedoc.xml 19-10

20-1 Appending a Node 20-5

20-2 Inserting a Node 20-6

20-3 Deleting a Node 20-6

20-4 Getting a diff as a Document from a Java Application 20-8

20-5 Getting a diff Using DiffOpReceiver from a Java Application 20-9

20-6 Diff Output Schema: xdiff.xsd 20-11

21-1 Specifying skipRows and maxRows on the Command Line 21-17

21-2 upd_emp.xml 21-23

21-3 XSU-Generated Sample Document 21-30

21-4 customer.xml 21-33

21-5 createRelSchema.sql 21-33

22-1 Structure of Table translated_messages 22-10

22-2 Query of translated_messages 22-10

22-3 example.xml 22-11

22-4 example.xml with a Language Attribute 22-13

xxvi

22-5 dateTime Row 22-14

22-6 example_es.xml 22-15

22-7 example_es.xml with a Language Attribute 22-15

22-8 txdemo1.java 22-17

23-1 DLF Tree Structure 23-3

23-2 Minimal DLF Document 23-13

23-3 Sample DLF Document 23-13

23-4 DLF with Localization 23-15

24-1 Sample XSQL Page 24-1

24-2 Connection Definitions Section of XSQLConfig.xml 24-8

24-3 Sample XSQL Page in AvailableFlightsToday.xsql 24-14

24-4 Wrapping the <xsql:query> Element 24-14

24-5 Bind Variables in CustomerPortfolio.xsql 24-15

24-6 Bind Variables with Action Elements in CustomerPortfolio.xsql 24-15

24-7 Lexical Substitution Parameters for Rows and Columns in DevOpenBugs.xsql 24-16

24-8 Lexical Substitution Parameters for Connections and Stylesheets in DevOpenBugs.xsql 24-17

24-9 Setting a Default Value 24-18

24-10 Setting Multiple Default Values 24-18

24-11 Defaults for Bind Variables 24-18

24-12 Bind Variables with No Defaults 24-18

24-13 Industry Standard Formats in flight-list.xsl 24-22

24-14 Stylesheet Association in flight-list.xsl 24-22

24-15 Query Results in flight-display.xsl 24-24

24-16 XSQLRequestSample Class 24-25

24-17 Conditional Statements in XSQL Pages 24-27

24-18 Passing Values Among SQL Queries 24-27

24-19 Handling Multivalued Parameters 24-28

24-20 Using Multivalued Page Parameters in a SQL Statement 24-28

24-21 addmult PL/SQL Procedure 24-29

24-22 addmultwrapper PL/SQL Procedure 24-29

24-23 addmult.xsql 24-30

24-24 Getting the Name of the Current XSQL Page 24-31

25-1 empToExcel.xsl 25-3

25-2 emp_test.xsql 25-4

25-3 emp_test_dynamic.xsql 25-4

25-4 Multiple <?xml-stylesheet ?> Processing Instructions 25-5

25-5 Using an Array-Valued Parameter in an XSQL Page 25-7

xxvii

25-6 testTableFunction 25-10

25-7 XSQL Page with Array-Valued Parameters 25-10

25-8 Using an Array-Valued Parameter to Restrict Rows 25-10

25-9 Setting an Error Parameter 25-11

25-10 Achieving Conditional Behavior with an Error Parameter 25-11

25-11 XSLT Stylesheet 25-12

25-12 Aggregating a Dynamically-Constructed XML Document 25-13

25-13 Movie XML Document 25-13

25-14 Using XPath to Extract an Aggregate List 25-14

25-15 Including an XMLType Query Result 25-14

25-16 Using XSQL Bind Variables in an XPath Expression 25-14

25-17 XML Document Generated from HTML Form 25-16

25-18 Source Code for FOP Serializer 25-17

25-19 MyIncludeXSQLHandler.java 25-21

25-20 Testing for the Servlet Request 25-22

25-21 Custom Serializer 25-23

25-22 Assigning Short Names to Custom Serializers 25-24

25-23 Writing a Dynamic GIF Image 25-24

25-24 myErrorHandler class 25-28

25-25 SampleCustomLogger Class 25-28

25-26 SampleCustomLoggerFactory Class 25-29

25-27 Registering a Custom Logger Factory 25-29

xxviii

List of Figures

1-1 Sample XML Processor 1-3

1-2 XML Parsers for Java, C, and C++ 1-4

1-3 Oracle JAXB Class Generator 1-6

1-4 XSU Processes SQL Queries and Returns the Result as XML 1-8

1-5 XSQL Pages Publishing Framework 1-9

1-6 XSLT Virtual Machine 1-10

1-7 Sample XML Processor Built with Java Oracle XML Developer's Kit Components 1-12

1-8 Generating XML Documents Using Oracle XML Developer's Kit C Components 1-13

1-9 Generating XML Documents Using Oracle XML Developer's Kit C++ Components 1-14

1-10 Oracle XML Developer's Kit Tools and Frameworks 1-15

3-1 The Property Pages 3-10

3-2 Setting the Include Path in Visual C++ 3-10

3-3 Setting the Static Library Path in Visual C++ 3-11

3-4 Setting the Names of the Libraries in Visual C++ Project 3-11

5-1 XML Parser for C Calling Sequence 5-5

7-1 XML Schema Processor for C Usage Diagram 7-4

11-1 Oracle XML Developer's Kit for Java Component Dependencies for JDK 5 11-3

12-1 XML Parser Process 12-3

12-2 Comparing DOM (Tree-Based) and SAX (Event-Based) APIs 12-7

12-3 XML Parser for Java 12-11

12-4 Basic Architecture of the DOM Parser 12-16

12-5 Using the SAXParser Class 12-35

12-6 SAX Parsing with JAXP 12-41

12-7 DOM Parsing with JAXP 12-42

13-1 Binary XML Encoding 13-8

13-2 Binary XML Decoder 13-9

14-1 Using the XSLT Processor for Java 14-4

17-1 XML Schema Processor for Java 17-8

18-1 JAXB Class Generator for Java 18-6

19-1 Pipeline Processing 19-2

19-2 Using the Pipeline Processor for Java 19-5

21-1 Generating XML with XSU 21-3

21-2 Storing XML in the Database Using XSU 21-5

21-3 Running XSU in the Database 21-7

21-4 Running XSU in the Middle Tier 21-8

xxix

21-5 Running XSU in a Web Server 21-8

22-1 Basic Process of a TransX Application 22-4

24-1 XSQL Pages Framework Architecture 24-3

24-2 Web Access to XSQL Pages 24-4

24-3 XSQL Home Page 24-12

24-4 XML Result from XSQL Page (AvailableFlightsToday.xsql) Query 24-20

24-5 Exploring flight-list.dtd with XML Authority 24-21

24-6 XSQL Page Results in XML Format 24-22

24-7 Using an XSLT Stylesheet to Render HTML 24-23

D-1 DOMBuilder JavaBean Usage D-7

D-2 XSLTransformer JavaBean Usage D-9

D-3 XMLDBAccess JavaBean Usage D-10

D-4 XMLDiff JavaBean Usage D-12

xxx

List of Tables

1-1 Overview of Oracle XML Developer's Kit Components 1-1

1-2 XDK for Java Components for Generating XML 1-11

3-1 Dependent Libraries of Oracle XML Developer's Kit for C Components on UNIX 3-3

3-2 UNIX Environment Settings for Oracle XML Developer's Kit for C Components 3-4

3-3 Oracle XML Developer's Kit for C/C++ Utilities on UNIX 3-4

3-4 Header Files in the Oracle XML Developer's Kit for C Compile-Time Environment 3-5

3-5 Dependent Libraries of Oracle XML Developer's Kit for C Components on Windows 3-6

3-6 Windows Environment Settings for Oracle XML Developer's Kit for C Components 3-7

3-7 Oracle XML Developer's Kit for C/C++ Utilities on Windows 3-7

3-8 Summary of Oracle XML Developer's Kit for C APIs 3-12

4-1 XSLT Processor for C: Command Line Options 4-5

4-2 XSLT for C Demo Files 4-6

5-1 Interfaces for XML, DOM, and SAX APIs 5-2

5-2 Data Types Used in the XML Parser for C 5-3

5-3 C Parser Demos 5-8

5-4 C XML Parser Command-Line Options 5-9

5-5 NULL-Terminated and Length-Encoded C API Functions 5-13

5-6 XMLType Functions 5-22

7-1 XML Schema Processor for C: Supplied Files in $ORACLE_HOME 7-2

7-2 XML Schema Processor for C: Supplied Libraries 7-2

7-3 XML Schema for C Samples Provided 7-4

8-1 XmlDiff Command-Line Options for the C Language 8-2

8-2 Xdiff Operation Attributes 8-6

8-3 XmlPatch for C Command-Line Options 8-12

10-1 Deprecated XDB Package Classes and Their Unified Java API Equivalents 10-2

10-2 Deprecated XMLType Methods and Their Unified Java API Equivalents 10-3

10-3 XMLDocument Output Based on KIND and CONNECTION 10-3

11-1 Java Libraries for Oracle XML Developer's Kit for Java Components 11-3

11-2 UNIX Environment Variables for Oracle XML Developer's Kit for Java Components 11-5

11-3 Oracle XML Developer's Kit for Java UNIX Utilities 11-6

11-4 Windows Environment Variables for Oracle XML Developer's Kit for Java Components 11-7

11-5 Oracle XML Developer's Kit for Java Windows Utilities 11-8

12-1 XML Parser for Java Validation Modes 12-9

12-2 XML Compression with DOM and SAX 12-10

12-3 Java Parser Demos 12-12

xxxi

12-4 oraxml Command-Line Options 12-14

12-5 DOMParser Configuration Methods 12-18

12-6 Some Interfaces Implemented by XMLDocument 12-19

12-7 Methods for Getting and Manipulating DOM Tree Nodes 12-19

12-8 ACCESS_MODE Attribute Values 12-25

12-9 Range Class Methods 12-30

12-10 Static Fields in the NodeFilter Interface 12-31

12-11 TreeWalker Interface Methods 12-32

12-12 SAX 2.0 Handler Interfaces 12-34

12-13 SAX 2.0 Helper Classes 12-34

12-14 SAXParser Methods for Registering Event Handlers 12-36

12-15 XMLTokenizer Methods 12-40

12-16 JAXP Packages 12-41

14-1 XSLT Processor Sample Files 14-4

14-2 Command-Line Options for oraxsl 14-6

14-3 XSLProcessor Methods 14-9

14-4 XMLDocumentFragment Methods 14-10

15-1 Descriptions of Various Types of Entity 15-12

15-2 XQJ Implementation-Defined Items 15-30

15-3 XQuery Implementation-Defined Items 15-31

15-4 XQuery Update Facility Implementation-Defined Items 15-33

15-5 Default Initial Values for the Static Context 15-34

16-1 OXQDDataSource Properties 16-5

16-2 Oracle XML DB Support for Optional XQJ Features 16-6

17-1 Feature Comparison Between XML Schema and DTD 17-5

17-2 oracle.xml.parser.schema Classes 17-7

17-3 XML Schema Sample Files 17-9

18-1 javax.xml.bind Classes and Interfaces 18-4

18-2 JAXB Class Generator Demos 18-7

18-3 orajaxb Command-Line Options 18-9

19-1 Methods in Class oracle.xml.pipeline.controller.Process 19-3

19-2 Classes in oracle.xml.pipeline.processes 19-4

19-3 PipelineProcessor Methods 19-6

19-4 Pipeline Processor Sample Files 19-7

19-5 orapipe Command-Line Options 19-9

19-6 PipelineErrorHandler Methods 19-13

21-1 XSU Sample Files 21-9

xxxii

21-2 getXML Options 21-11

21-3 putXML Options 21-13

22-1 TransX Utility Features 22-3

22-2 TransX Configuration Methods 22-5

22-3 TransX Utility Sample Files 22-6

22-4 TransX Utility Command-Line Options 22-8

22-5 TransX Utility Command-Line Parameters 22-9

22-6 <column> Attributes 22-12

22-7 date and dateTime Formats 22-13

23-1 Notation for Occurrence of Attributes and Elements 23-3

23-2 Entity References 23-5

23-3 DLF Elements 23-6

23-4 Top-Level Table Element 23-6

23-5 Translation Elements 23-6

23-6 Lookup Key Elements 23-7

23-7 Metadata Elements 23-7

23-8 Data Elements 23-8

23-9 Attributes 23-8

23-10 DLF Attributes 23-9

23-11 XML Namespace Attributes 23-12

24-1 XSQL Servlet Demos 24-8

25-1 Pseudo-Attributes for <?xml-stylesheet ?> 25-5

25-2 Helpful Methods in the XSQLActionHandlerImpl Class 25-19

26-1 Header Files in the XDK for C++ Compile-Time Environment 26-2

28-1 XML Parser for C++ Sample Files 28-5

29-1 XSLT for C++ Sample Files 29-3

30-1 XML Schema Processor for C++ Command-Line Options 30-2

30-2 XML Schema Processor for C++ Samples Provided 30-3

32-1 C++ Class Generator Options 32-1

32-2 XML C++ Class Generator Files 32-2

33-1 Built-In XSQL Elements and Action Handler Classes 33-1

33-2 XSQL Configuration File Settings 33-2

33-3 Attributes for <xsql:delete-request> 33-9

33-4 Attributes for <xsql:dml> 33-10

33-5 Attributes for <xsql:if-param> 33-12

33-6 Attributes for <xsql:include-owa> 33-13

33-7 Attributes for <xsql:include-xml> 33-18

xxxiii

33-8 Attributes for <xsql:include-xsql> 33-19

33-9 Attributes for <xsql:insert-param> 33-21

33-10 Attributes for <xsql:insert-request> 33-23

33-11 Attributes for <xsql:query> 33-24

33-12 Attributes for <xsql:set-cookie> 33-28

33-13 Attributes for <xsql:set-page-param> 33-31

33-14 Attributes for <xsql:set-session-param> 33-33

33-15 Attributes for <xsql:set-stylesheet-param> 33-35

33-16 Attributes for <xsql:update-request> 33-36

34-1 Summary of XML Standards Supported by Oracle XML Developer's Kit 34-1

D-1 javax.xml.async DOM-Related Classes and Interfaces D-6

D-2 javax.xml.async XSL-Related Classes and Interfaces D-8

D-3 XMLDBAccess Methods D-10

D-4 XMLDiff Methods D-11

D-5 JavaBean Sample Java Source Files D-13

D-6 JavaBean Sample Files D-15

xxxiv

Preface

This document describes the Oracle XML Developer's Kit (XDK). It provides detailed
information about various language components, including Extensible Markup Language
(XML), Java, C, and C++.

Audience
This document is for application developers who use the language components of the XDK to
generate and store XML data in either a database or a document outside the database.
Examples and sample applications are provided where possible. This document assumes
familiarity with XML and either Java, C, or C++.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents
Oracle resources that are related to this document are listed.

For more information, see these resources:

• Oracle XML DB Developer’s Guide

• Oracle Database XML C API Reference

• Oracle Database XML C++ API Reference

• Oracle Database XML Java API Reference

• Oracle Database Advanced Queuing User's Guide

• XDK on Oracle Technology Network

For additional information about XML, see:

• W3C XML specifications

• XML.com, a broad collection of XML resources and commentary

• Annotated XML Specification

xxxv

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

• XML.org, hosted by OASIS as a resource to developers of purpose-built XML
languages,

Examples
Many examples in this document use the Oracle Database sample database schemas
or are otherwise provided with your software.

For information about how the sample schemas, see Oracle Database Sample
Schemas.

Examples that are provided with the software can be found in these directories:

• $ORACLE_HOME/xdk/demo/java/
• $ORACLE_HOME/xdk/demo/c/
• $ORACLE_HOME/xdk/java/sample/
• $ORACLE_HOME/rdbms/demo

Conventions
The text conventions that are used in this document are described.

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

xxxvi

Changes in This Release

This is a summary of important changes in Oracle XML Developer's Kit Programmer's Guide.

Desupported Feature
The following is the desupported feature in Oracle XML Developer's Kit Programmer's Guide
for Oracle Database Release 23ai.

Desupport of Oracle Database Extensions for .NET

Oracle Database Extensions for .NET is a feature of Oracle Database on Microsoft Windows
that enables you to use stored procedures and functions written in a language managed
by .NET, such as C#.

Oracle Database hosts the Microsoft Common Language Runtime (CLR) in an external
process, outside of the Oracle Database process. Application developers can write stored
procedures and functions using any .NET compliant language, such as C# and VB.NET, and
use these .NET stored procedures in the database, in the same manner as other PL/SQL or
Java stored procedures. .NET stored procedures can be called from PL/SQL packages,
procedures, functions, and triggers; from SQL statements; or from anywhere a PL/SQL
procedure or function can be called.

Migration options include:

• Moving the .NET code (assemblies) into a middle tier

• Using the External Procedures feature to have the external process load and execute
the .NET assembly

• Rewriting the stored procedures using PL/SQL or Java

Deprecated Features
This section lists the deprecated features in XML Developer's Kit Programmer's Guide for
Oracle Database Release 23ai.

Oracle recommends that you do not use deprecated features/values in new applications.
Support for deprecated features is for backward compatibility only.

Deprecation of XML DB Repository

The Oracle XML DB Repository is deprecated with Oracle Database 23ai.

Oracle recommends that you replace any functionality used in XML DB Repository with
alternative technologies.

xxxvii

Deprecation of DBMS_XMLGEN PL/SQL Package

The PL/SQL package DBMS_XMLGEN is deprecated in Oracle Database 23ai.

DBMS_XMLGEN is a non-standard Oracle-proprietary package that is provided to
generate and convert XML documents from SQL queries or with PL/SQL. This
package is deprecated, and can be desupported in a future release. Oracle
recommends that you use SQL/XML operators to generate XML from relational
columns instead. Using ANSI SQL/XML operators for any generation and modification
of XML documents provides a standardized and future-proof way to work with XML
documents.

Deprecation of Unstructured XML Indexes

Unstructured XML indexes are deprecated in Oracle Database 23ai.

Unstructured XML indexes are deprecated and superseded by XML search indexes.
Oracle recommends that you use XML search indexes or structured XML indexes.

Changes in This Release

xxxviii

1
Introduction to Oracle XML Developer's Kit

Oracle XML Developer's Kit (XDK) is introduced.

1.1 Overview of XDK
Oracle XML Developer’s Kit (XDK) is a versatile set of components that enables you to build
and deploy C, C++, and Java software programs that process Extensible Markup Language
(XML). You can assemble these components into an XML application that serves your
business needs.

Note:

If you are using XDK with PL/SQL and migrating from Oracle Database Release 8.1
or 9.2, Oracle strongly recommends that you use database character set
AL32UTF8. Otherwise, problems can arise when PL/SQL processes XML data that
contains escaped entities.

Oracle XML Developer's Kit (XDK) supports Oracle XML DB, which is a set of technologies
used for storing and processing XML in Oracle Database. You can use XDK with Oracle XML
DB to build applications that run in Oracle Database. You can also use XDK independently of
Oracle XML DB.

Dates and timestamps in generated XML are in the formats specified by XML Schema. See
Oracle XML DB Developer's Guide.

XDK is fully supported by Oracle and comes with a commercial redistribution license. The
standard installation of Oracle Database includes XDK.

Table 1-1 briefly describes the XDK components, tells which programming languages they
support, and directs you to the sections of this document that explain how to use them.

Table 1-1 Overview of Oracle XML Developer's Kit Components

Component Description Languages See

XML parser Creates and parses XML with industry
standard Simple API for XML (SAX) and
Document Object Model (DOM)
interfaces.

Java, C, C+
+

• XML Parsing for Java
• Using the XML Parser for C
• Using the XML Parser for

C++

XML Compressor Enables binary compression and
decompression of XML documents. The
XML compressor is built into the XML
parser for Java.

Java Compressing and
Decompressing XML

1-1

Table 1-1 (Cont.) Overview of Oracle XML Developer's Kit Components

Component Description Languages See

Java API for XML
Processing (JAXP)

Enables Java applications to use SAX,
DOM, XML Schema processor,
Extensible Stylesheet Language
Transformations (XSLT) processors, or
alternative processors.

Java Parsing XML with JAXP

XSLT Processor Transforms XML into other text-based
formats such as Hypertext Markup
Language (HTML).

Java, C, C+
+

• Using the XSLT Processor
for Java

• Using the XSLT and XVM
Processors for C

• Using the XSLT Processor
for C++

XQuery Processor for
Java

Enables Java applications to query,
transform, and update XML directly in
the Java Virtual Machine (JVM).

Java Using the XQuery Processor for
Java

XML Schema Processor Validates schemas, allowing use of
simple and complex XML data types.

Java, C, C+
+

• Using the XML Schema
Processor for Java

• Using the XML Schema
Processor for C

• Using the XML Schema
Processor for C++

XML class generator Generates Java or C++ classes from
document type definitions (DTDs) or
XML schemas so that you can send
XML data from web forms or
applications. The Java implementation
supports Java Architecture for XML
Binding (JAXB).

Java, C++ • Using the JAXB Class
Generator

• Using the XML Class
Generator for C++

XML Pipeline Processor Applies XML processes specified in a
declarative XML Pipeline document.

Java Using the XML Pipeline
Processor for Java

XML JavaBeans Provides bean encapsulations of XDK
components for easy use of Integrated
Development Environment (IDE), Java
Server Pages (JSP), and applets.

Java Oracle XML Developer's Kit
JavaBeans (Deprecated)

XML Diffing Library for
Java

Enables pure Java programs in the
middle tier to exchange XMLDiff output
with C programs or programs that use
Oracle Database to perform XMLDiff
operations.

Java Determining XML Differences
Using Java

XML SQL Utility (XSU) Generates XML documents, DTDs, and
Schemas from structured query
language (SQL) queries. Maps any SQL
query result to XML or the reverse. XSU
Java classes are mirrored by PL/SQL
packages.

Java,
PL/SQL

Using the XML SQL Utility

TransX Utility Loads translated seed data and
messages into the database using XML.

Java Using the TransX Utility

XSQL servlet Combines XML, SQL, and XSLT in the
server to deliver dynamic web content.

Java Using the XSQL Pages
Publishing Framework

Chapter 1
Overview of XDK

1-2

Table 1-1 (Cont.) Overview of Oracle XML Developer's Kit Components

Component Description Languages See

Oracle SOAP Server Provides a lightweight Simple Object
Access Protocol (SOAP) messaging
protocol for sending and receiving
requests and responses across the
Internet.

C Using SOAP with the Oracle
XML Developer's Kit for C

XSLT XVM Processor Provides a high-performance XSLT
transformation engine that supports
compiled XSL stylesheets.

C, C++ XSLT XVM Processor

See Also:

• XDK Components for fuller descriptions of many components in Table 1-1

• Oracle XML Developer's Kit Standards to learn about XDK support for XML-
related standards

1.2 XDK Components
You can use XDK components in your programs to perform various types of XML processing.

Figure 1-1 shows a hypothetical XML processor that performs these tasks:

• Parse XML

• Validate XML against a DTD or XML schema

• Transform an XML document into another XML document by applying an XSLT
stylesheet

• Generate Java and C++ classes from input XML schemas and DTDs

Figure 1-1 Sample XML Processor

X
M

L
�

P
a

rs
e

r

X
M

L
�

S
c

h
e

m
a

�
V

a
li

d
a

to
r

S
A

X
X

S
L

T
�

P
ro

c
e

s
s

o
r

D
O

M
X

M
L

�
D

o
c

u
m

e
n

ts

X
M

L
�

C
o

m
p

re
s

s
o

r
C

o
m

p
re

s
s

e
d

�
X

M
L

J
A

X
B

 o
r�

C
+

+
 C

la
s

s
�

G
e

n
e

ra
to

r

X
M

L
�

S
c

h
e

m
a

X
M

L
�

O
u

tp
u

t

T
ra

n
s

fo
rm

e
d

�
X

M
L

J
a
v
a

 o
r

C
+

+
 A

p
p

li
c

a
ti

o
n C

+
+

 o
r�

J
a

v
a

�
C

la
s

s
e

s

X
S

L

S
ty

le
s

h
e

e
t

Chapter 1
XDK Components

1-3

1.2.1 XML Parsers
An XML parser reads an XML document and determines the structure and properties
of the data. It breaks the data into parts and provides them to other XDK components.

An XML parser can programmatically access the parsed XML data with these APIs:

• SAX

Use a SAX API to serially access the data element by element. You can register
event handlers with a SAX parser and invoke callback methods when certain
events are encountered.

• DOM

Use a DOM API to represent the XML document as an in-memory tree and
manipulate or navigate it.

XDK includes XML parsers for Java, C, and C++. Each parser includes support for
both DOM and SAX APIs.

The XML parser for Java supports version 1.2 of Java API for XML Processing
(JAXP), which is a standard API that enables use of DOM, SAX, XML Schema, and
XSLT independently of a processor implementation. Thus, you can change the
implementation of XML processors without impacting your programs.

The XML compressor is integrated into the XML parser for Java. It provides element-
level XML compression and decompression with DOM and SAX interfaces. The XML
compressor compresses XML documents without losing the structural and hierarchical
information of the DOM tree. After parsing an XML document, you can serialize it with
either DOM or SAX to a binary stream and then reconstruct it later.

You can use the XML compressor to reduce the size of XML message payloads,
thereby increasing throughput. When used within applications as the internal XML
document access, it significantly reduces memory usage while maintaining fast
access.

Figure 1-2 shows the functionality of the XDK parsers for Java, C, and C++.

Figure 1-2 XML Parsers for Java, C, and C++

X
M

L
 P

a
rs

e
r

fo
r

C
+

+

X
M

L
 P

a
rs

e
r

fo
r

C

X
M

L
 P

a
rs

e
r

fo
r

J
a
v
a

X
M

L

d
o

c
u

m
e
n

t
o

r
D

T
D

D
O

M
 /
 S

A
X

 f
o

r
C

+
+

D
O

M
 /
 S

A
X

 f
o

r
C

D
O

M
 /
 S

A
X

 f
o

r
J
a
v
a

C
+

+
 A

p
p

li
c
a
ti

o
n

C
 A

p
p

li
c
a
ti

o
n

J
a
v
a
 A

p
p

li
c
a
ti

o
n

P
a
rs

e
rs

Related Topics

• XML Parsing for Java
Extensible Markup Language (XML) parsing for Java is described.

Chapter 1
XDK Components

1-4

• Using the XML Parser for C
An explanation is given of how to use the Extensible Markup Language (XML) parser for
C.

• Using the XML Parser for C++
An explanation is given of how to use the Extensible Markup Language (XML) parser for
C++.

1.2.2 XSLT Processors
XSLT is a stylesheet language that enables processors to transform one XML document into
another. An XSLT document is a stylesheet that contains template rules that govern such a
transformation. XDK enables XSLT transformation of XML data inside and outside the
database on any operating system.

Each Oracle XML parser includes an integrated XSLT processor for transforming XML data
using XSLT stylesheets. Using the XSLT processor, you can transform XML documents to
XML, to Extensible Hypertext Markup Language (XHTML), or to almost any other text format.

Related Topics

• Using the XSLT Processor for Java
An explanation is given of how to use the Extensible Stylesheet Language
Transformation (XSLT) processor for Java.

• Using the XSLT and XVM Processors for C
An explanation is given of how to use the Extensible Stylesheet Language
Transformation (XSLT) and XSLT Virtual Machine (XVM) processors for C.

• Using the XSLT Processor for C++
An explanation is given of how to use the Extensible Stylesheet Language
Transformation (XSLT) processor for C++.

See Also:

Specifications and other information are found on the W3C site at The Extensible
Stylesheet Language Family (XSL)

1.2.3 XML Schema Processors
The XML Schema language, created by the W3C, describes the content and structure of
XML documents in XML itself.

An XML schema contains rules that define validity for an XML application—this is its principal
advantage over a DTD.

An XML schema specifies a set of built-in data types (such as string, float, and date). Users
can derive their own data types from the built-in data types. For example, the schema can
restrict dates to those after the year 2000 or specify a list of legal values.

XDK includes XML Schema processors for Java, C, and C++.

Chapter 1
XDK Components

1-5

Related Topics

• Using the XML Schema Processor for Java
Topics here cover how to use the Extensible Markup Language (XML) schema
processor for Java.

• Using the XML Schema Processor for C
An explanation is given of how to use the Extensible Markup Language (XML)
schema processor for C.

• Using the XML Schema Processor for C++
An explanation is given of how to use the Extensible Markup Language (XML)
schema processor for C++.

1.2.4 XML Class Generators
An XML class generator takes a parsed XML schema or DTD as input and generates
Java or C++ source class files as output. XDK includes both the Java Architecture for
XML Binding (JAXB) class generator and the C++ class generator.

JAXB is a Java API and set of tools that maps XML data to Java objects, and the
reverse. Because JAXB presents an XML document to a Java program in a Java
format, you can write Java programs that process XML data without using a SAX
parser or writing callback methods. Each Java object derives from an instance of the
schema component in the input XML document. JAXB does not directly support DTDs,
but you can convert a DTD to an XML schema that JAXB can use. The XML class
generator for C++ directly supports both DTDs and XML Schemas.

As an example of how to use JAXB, you can write a Java program that uses
generated Java classes to build XML documents gradually. Suppose that you write an
XML schema for use by a human resources department and a Java program that
responds to users who change their personal data. The program can use JAXB to
construct an XML confirmation document in a piecemeal fashion, which an XSLT
processor can transform into XHTML and deliver to a browser.

Figure 1-3 Oracle JAXB Class Generator
X

M
L

�
D

o
c

u
m

e
n

t

O
ra

c
le

 J
A

X
B

�
C

la
s

s
 G

e
n

e
ra

to
r

J
a

v
a

 A
p

p
li

c
a

ti
o

n

X
M

L

S
c

h
e

m
a

X
M

L
 P

a
rs

e
r

fo
r

J
a

v
a

J
c

J
c

J
c

J
c

J
a

v
a

 c
la

s
s

e
s

 b
a

s
e

d

o
n

 X
M

L
 S

c
h

e
m

a

(o
n

e
 c

la
s

s
 p

e
r

e
le

m
e

n
t)

X
M

L
 �

S
c

h
e

m
a

Chapter 1
XDK Components

1-6

Related Topics

• Using the JAXB Class Generator
An explanation is given of how to use the Java Architecture for XML Binding (JAXB) class
generator.

• Using the XML Class Generator for C++
Topics here explain how to use the Extensible Markup Language (XML) class generator
for C++.

1.2.5 XML Pipeline Processor
The XML Pipeline Definition Language is an XML vocabulary for describing the processing
relationships between XML resources. Oracle XML Pipeline processor conforms to the XML
Pipeline Definition Language 1.0 standard.

The XML Pipeline processor takes as input an XML pipeline document (which defines the
relationship between processes) and executes the pipeline processes according to the
derived dependencies. For example, the input document can specify that the program must
first validate an input XML document and then, if it is valid, transform it.

The XML pipeline processor helps Java developers by replacing custom Java code with a
simple declarative XML syntax for building XML processing applications.

Related Topics

• Using the XML Pipeline Processor for Java
An explanation is given of how to use the Extensible Markup Language (XML) pipeline
processor for Java.

1.2.6 Oracle XML SQL Utility
Oracle XML SQL Utility (XSU) is a set of Java class libraries that you can use to render the
results of SQL queries into canonical XML or to load data from an XML document into an
existing database schema or view.

You can use XSU for these tasks:

• Automatically and dynamically render the results of arbitrary SQL queries into canonical
XML.

XSU supports queries over richly structured, user-defined object types and object views,
including XMLType. XSU transforms relational data into XML like this:

– Columns become top-level elements.

– Scalar values become elements with text-only content.

– Object types become elements with attributes appearing as subelements.

– Collections are mapped to lists of elements.

• Load data from an XML document into an existing database schema or view.

Figure 1-4 shows how XSU processes SQL queries and returns the results as an XML
document.

Chapter 1
XDK Components

1-7

Figure 1-4 XSU Processes SQL Queries and Returns the Result as XML

S
Q

L
 o

r
O

b
je

c
t

Q
u

e
ri

e
s

X
M

L
 D

o
c

u
m

e
n

t
o

f
Q

u
e

ry
 R

e
s

u
lt

s
 a

s
 a

s

tr
in

g
 o

r
D

O
M

 t
re

e

X
M

L
-S

Q
L

 U
ti

li
ty

fo

r
J

a
v

a

O
ra

c
leS
to

re
 a

n
d

 r
e

tr
ie

v
e

X

M
L

 d
o

c
u

m
e

n
ts

in

 t
h

e
 d

a
ta

b
a

s
e

1.2.6.1 XML Document Representations
XSU representations in which you can generate an XML document are described,
along with their typical use cases.

XML Document Representation When to Use This Representation

String When returning the XML document to a requester

In-memory DOM tree When operating on the XML programmatically (for
example, when transforming it with the XSLT processor by
using DOM methods to search or modify the XML)

Series of SAX events When retrieving XML, especially large documents or
result sets

1.2.6.2 Using XSU with an XML Class Generator
You can use XSU to generate an XML schema that is based on the relational schema
of an underlying table or view that you are querying. You can use the generated XML
schema as input to the JAXB class generator or the C++ class generator.

You can then write code that uses the generated classes to create the infrastructure
behind a web-based form. Based on this infrastructure, the form can capture user data
and create an XML document compatible with the database schema. A program can
write the XML directly to the corresponding table or object view without further
processing.

Related Topics

• Using the XML SQL Utility
An explanation is given of how to use the Extensible Markup Language (XML)
SQL Utility (XSU).

Chapter 1
XDK Components

1-8

1.2.7 TransX Utility Overview
The Oracle TransX utility enables you to populate a database with multilingual XML data. The
utility uses a data format that is intuitive for both developers and translators and uses a
validation capability that is less error-prone than previous techniques.

The TransX utility is an application of XSU that loads translated seed data and messages into
a database schema. For populating a database with data in multiple languages, the TransX
utility provides functionality that you would otherwise have to develop with XSU.

Related Topics

• Using the TransX Utility
An explanation is given of how to use the TransX utility to transfer XML data to a
database.

1.2.8 XSQL Pages Publishing Framework
The XSQL pages publishing framework (XSQL servlet) is a server component that takes an
XSQL file (an XML file with a specific structure and grammar) and produces dynamic XML
documents from one or more SQL queries of data objects.

Figure 1-5 shows how you can invoke the XSQL servlet.

Figure 1-5 XSQL Pages Publishing Framework

Database

Browser

User

XML-formatted
SQL queries

Query result
transformed
by XSL
stylesheet

Java Web
Server XSQL Servlet

XML parser
with XSLT
processor

XML SQL
utility

Servlet running in
Oracle Database

The XSQL servlet uses the Oracle XML parser to process the XSQL file, passing XSLT
processing statements to its internal processor while passing parameters and SQL queries
between the tags to XSU. Results from those queries are received as XML-formatted text or
a Java Database Connectivity (JDBC) ResultSet object. If necessary, you can further
transform the query results by using the built-in XSLT processor.

One example of an XSQL servlet is a page that contains a query of flight schedules for an
airline with a bind variable for the airport name. The user can pass an airport name as a
parameter in a web form. The servlet binds the parameter value in its database query and
transforms the output XML into HTML for display in a browser.

Chapter 1
XDK Components

1-9

Related Topics

• Using the XSQL Pages Publishing Framework
An explanation is given of how to use the basic features of the XSQL pages
publishing framework.

1.2.9 SOAP Services
Simple Object Access Protocol (SOAP) is a platform-independent messaging protocol
that lets programs access services, objects, and servers. Oracle SOAP Services is
published and executed through the web. It provides the standard XML message
format for all programs.

SOAP Services lets you use XDK to develop messaging, remote procedure calls
(RPC), and web service programs using XML standards.

Related Topics

• Using SOAP with the Oracle XML Developer's Kit for C
An explanation is given of how to use Simple Object Access Protocol (SOAP) with
the Oracle XML Developer's Kit (XDK) for C.

1.2.10 XSLT Virtual Machine
The XSLT Virtual Machine (XVM) for C/C++ is the software implementation of a CPU
designed to run compiled XSLT code. To run this code, you must compile XSLT
stylesheets into byte code that the XVM engine understands.

Figure 1-6 shows how the XVM processes XML and XSL.

Figure 1-6 XSLT Virtual Machine

X
M

L

X
S

L

X
S

L
T

�
C

o
m

p
il

e
r

X
S

L
T

�
V

ir
tu

a
l�

M
a

c
h

in
e

H
T

M
L

S
V

G

W
M

L

C
S

S

X
M

L

XDK includes an XSLT compiler that is compliant with the XSLT 1.0 standard. The
compilation can occur at runtime or be stored for runtime retrieval. Applications
perform transformations faster, and with higher throughput, because the stylesheet
does not need parsing and the templates are applied using an index lookup instead of
an XML operation.

Chapter 1
XDK Components

1-10

1.3 Generating XML Documents Using XDK
XDK lets you map the structure of an XML document to a relational schema. You can use
XDK to create XML documents from database tables and insert XML-tagged data into tables.
Each XDK programming language supports the development of programs that generate XML
documents from relational data.

1.3.1 XML Document Generation with Java
The XDK components for generating XML documents with Java are XSL, XSU, JDBC, JAXB,
JavaBeans, and XSLT.

Figure 1-7 shows how to use XDK for Java components to generate XML documents from
relational data. For generating an XML document from a SQL query, you have a choice of
three components, which are labeled A, B, and C. The components that your program can
use to further process the XML document are labeled D, E, and F.

Table 1-2 describes the XDK for Java components.

Table 1-2 XDK for Java Components for Generating XML

Component Label in Figure 1-7 Description

XSQL
Servlet

A Includes XSU and the XML parser

XSU B Includes XML parser

JDBC C Sends output data to the XML parser

JAXB D Generates Java class files that correspond to an input
XML Schema

JavaBeans E Can compare an XML document with another XML
document

XSLT F Transforms the XML document into XHTML with an XSLT
stylesheet

Chapter 1
Generating XML Documents Using XDK

1-11

Figure 1-7 Sample XML Processor Built with Java Oracle XML Developer's Kit Components

X
S

Q
L

 S
e
rv

le
t

O
ra

c
le

 d
a
ta

b
a
s
e

X
M

L
 d

o
c
u

m
e
n

ts
 s

to
re

d
:�

·
A

s
 s

in
g
le

 o
b
je

c
t
w

it
h
 t
a
g
s

in

 C
L
O

B
 o

r
B

L
O

B

·
A

s
 d

a
ta

 d
is

tr
ib

u
te

d

u
n
ta

g
g
e
d
 a

c
ro

s
s
 t
a
b
le

s

·
V

ia
 v

ie
w

s
 t
h
a
t
c
o
m

b
in

e

th

e
 d

o
c
u
m

e
n
ts

 a
n
d
 d

a
ta

X
M

L
 S

Q
L

U
ti
lit

y

D
a
ta

 O
u

t
Q

u
e
ry

 I
n

B
ro

w
s
e
r

/

A
p

p
li
c
a
ti

o
n

D
T

D
 o

r
X

M
L

S
c
h
e
m

a

·
P

a
rs

e
d
 D

T
D

o
b
je

c
ts

·
P

a
rs

e
d
 H

T
M

L

X
M

L

P
a
rs

e
r

J
A

X
B

�
C

la
s
s

G
e
n
e
ra

to
r

J
a
v
a
B

e
a
n
s

F
o

rm
a
tt

e
d

a
n

d
 c

u
s
to

m
iz

e
d

X

M
L

 D
o

c
u

m
e
n

t

X
M

L
 D

o
c
u

m
e
n

t
w

it
h

 o
r

w
it

h
o

u
t

a
 D

T
D

 o
r

X

M
L

 S
c
h

e
m

a

C
h
e
c
k
s
 f
o
r

e
rr

o
rs

X
S

L
T

P

ro
c
e
s
s
o
r

In
te

g
ra

te
d
 i
n

J
d
e
v
e
lo

p
e
r

X
S

L

S
ty

le
s
h

e
e
t

S
Q

L
 Q

u
e
ry

X
M

L

P
a
rs

e
r

X
S

L
T

 A
P

I
is

in

 t
h
e
 X

M
L

P
a
rs

e
r

C
re

a
te

s
 J

a
v
a

s
o
u
rc

e
 f
ile

s

B
D E F

C

A

O
b
je

c
t-

R

e
la

ti
o
n
a
l

d
a
ta

O
ra

c
le

 t
e
x
t

L
O

B
s

J
D

B
C

D
o
m

 o
r

S
tr

in
g

S
tr

e
a
m

D
o
m

 o
r

S
a
x

X
M

L
 D

o
c
u
m

e
n
t
fr

o
m

L
O

B
 /
 X

M
L
 T

y
p
e

X
M

L
 P

a
rs

e
r

is
 w

it
h
in

 u
s
e
r

a
p
p
lic

a
ti
o
n

X
M

L
,
H

T
M

L
,
T

e
x
t

X
M

L
 S

Q
L

 U
ti

li
ty

X
M

L

P
a
rs

e
r

1.3.2 XML Document Generation with C
An overview is presented of generating XML documents using XDK for C components.

Figure 1-8 shows how to use XDK for C components to generate XML documents
from relational data. For component descriptions, see Table 1-1.

Chapter 1
Generating XML Documents Using XDK

1-12

Figure 1-8 Generating XML Documents Using Oracle XML Developer's Kit C Components

O
ra

c
le

 d
a

ta
b

a
s

e

X
M

L
 d

o
c

u
m

e
n

ts
 s

to
re

d
:�

·
A

s
 s

in
g

le
 o

b
je

c
t

w
it
h

 t
a

g
s

in

 C
L

O
B

 o
r

B
L

O
B

·
A

s
 d

a
ta

 d
is

tr
ib

u
te

d

u

n
ta

g
g

e
d

 a
c
ro

s
s
 t

a
b

le
s

·
V

ia
 v

ie
w

s
 t

h
a

t
c
o

m
b

in
e

th
e

 d
o

c
u

m
e

n
ts

 a
n

d
 d

a
ta

D
T

D
 o

r
X

M
L

S

c
h

e
m

a

·
P

a
rs

e
d

 D
T

D

o

b
je

c
ts

·

P
a

rs
e

d
 H

T
M

L

F
o

rm
a

tt
e

d

a
n

d
 c

u
s

to
m

iz
e

d

X
M

L
 D

o
c

u
m

e
n

t

X
M

L
 D

o
c

u
m

e
n

t
w

it
h

 o
r

w
it

h
o

u
t

a

 D
T

D
 o

r
X

M
L

S

c
h

e
m

a

X
S

L
T

P

ro
c
e

s
s
o

r

X
S

L

S
ty

le
s

h
e

e
t

S
Q

L

Q
u

e
ry

X
M

L

P
a

rs
e

r

X
S

L
T

 A
P

I
is

in

 t
h

e
 X

M
L

P

a
rs

e
r

O
b

je
c
t

R

e
la

ti
o

n
a

l
d

a
ta

O
ra

c
le

T

e
x
t

L
O

B
s

S
tr

e
a

m
D

O
M

 o
r

S
a

x

X
M

L
 P

a
rs

e
r

is

w
it
h

in
 t

h
e

 u
s
e

r
a

p
p

lic
a

ti
o

n

B
ro

w
s

e
r

/

A
p

p
li

c
a

ti
o

n

X
M

L

O
C

I
o

r

P
ro

*C
/C

+
+

S
tr

e
a

m

X
M

L
 D

o
c
u

m
e

n
t

fr
o

m
 L

O
B

 /
 X

M
L
T

y
p

e

To develop a C program that processes an XML document:

1. Send SQL queries to the database by using either the Oracle Call Interface (OCI) or
Pro*C/C++ Precompiler. Your program must leverage the Oracle XML DB XML view
functionality.

2. Process the resulting XML data with the XML parser or from the CLOB as an XML
document.

3. Either transform the XML document with the XSLT processor, send it to an XML-enabled
browser, or send it to a software program for further processing.

1.3.3 XML Document Generation with C++
An overview is presented of generating XML documents using XDK for C++ components.

Figure 1-9 shows how to use XDK for C++ components to generate XML documents from
relational data. For component descriptions, see Table 1-1.

Chapter 1
Generating XML Documents Using XDK

1-13

Figure 1-9 Generating XML Documents Using Oracle XML Developer's Kit C++ Components

O
ra

c
le

 d
a

ta
b

a
s

e

X
M

L
 d

o
c

u
m

e
n

ts
 s

to
re

d
:�

·
A

s
 s

in
g

le
 o

b
je

c
t

w
it
h

 t
a

g
s

in

 C
L

O
B

 o
r

B
L

O
B

·

A
s
 d

a
ta

 d
is

tr
ib

u
te

d

u

n
ta

g
g

e
d

 a
c
ro

s
s
 t

a
b

le
s

·
V

ia
 v

ie
w

s
 t

h
a

t
c
o

m
b

in
e

th
e

 d
o

c
u

m
e

n
ts

 a
n

d
 d

a
ta

D
T

D
 o

r
X

M
L

 S
c
h

e
m

a

·
P

a
rs

e
d

 D
T

D

o

b
je

c
ts

·

P
a

rs
e

d
 H

T
M

L

F
o

rm
a

tt
e

d

a
n

d
 c

u
s

to
m

iz
e

d

X
M

L
 D

o
c

u
m

e
n

t

X
M

L
 D

o
c

u
m

e
n

t
w

it
h

 o
r

w
it

h
o

u
t

a

 D
T

D
 o

r
X

M
L

S

c
h

e
m

a

X
S

L
T

P

ro
c
e

s
s
o

r

X
S

L

S
ty

le
s

h
e

e
t

S
Q

L

Q
u

e
ry

X
M

L

T
y
p

e

X
S

L
T

 A
P

I
is

in

 t
h

e
 X

M
L

P

a
rs

e
r

O
b

je
c
t

R

e
la

ti
o

n
a

l
d

a
ta

O
ra

c
le

T

e
x
t

L
O

B
s

S
tr

e
a

m
D

O
M

 o
r

S
a

x

X
M

L
 D

o
c
u

m
e

n
t

fr
o

m
 L

O
B

X
M

L
 P

a
rs

e
r

is

w
it
h

in
 t

h
e

 u
s
e

r
a

p
p

lic
a

ti
o

n

O
C

C
I

o
r

P

ro
*C

/C
+

+

C
la

s
s

G
e

n
e

ra
to

r
C

h
e

c
k
s
 f

o
r

e
rr

o
rs

 C

re
a
te

s
 C

+
+

s
o
u
rc

e
 f
ile

s

B
ro

w
s

e
r

/

A
p

p
li

c
a

ti
o

n

X
M

L

To develop a C++ program that processes an XML document:

1. Send SQL queries to the database by using either the Oracle C++ Call Interface
(OCCI) or the Pro*C/C++ Precompiler.

2. Process the resulting XML data with the XML parser or from the CLOB as an XML
document.

3. Either transform the XML document with the XSLT processor, send it to an XML-
enabled browser, or send it to a software program for further processing.

1.4 Development Tools and Frameworks for XDK
Some tools and frameworks that you can use to develop software programs that use
XDK components are presented.

Figure 1-10 illustrates this.

Chapter 1
Development Tools and Frameworks for XDK

1-14

Figure 1-10 Oracle XML Developer's Kit Tools and Frameworks

Oracle Database

XML Data stored:
· In relational tables
· As XML documents in XMLType

Object
Relational
data Oracle

Text

XML Doc in CLOB or XMLType

To search and retrieve
XML documents stored
in CLOBS

Middle Tier:
· Oracle Application Server
· Apache Server
· Java-enabled web server

Programming APIs:
Support for
Java, C, and C++

XDK

XML
Documents

Web
Interface

SQL Query

Business Data Exchange with
XML (data stored in or out of
database in relational tables
or LOBs)

Content and Document
management with XML
(XML documents stored
in or out of database)

XML Application in
the database or
middle tier

JDBC, OCI,
OCCI, or

Pro*C/C++

Oracle Development Tools

B2B or B2C
XML Messaging

Using AQ
IDAP

Browser /
Application

For example, you can use Oracle JDeveloper to write a Java client that can query the
database, generate XML, and perform additional processing. An employee can then use this
program to send a query to Oracle Database. The program can transfer XML documents to
XML-based business solutions for data exchange with other users, content and data
management, and so forth.

1.4.1 Oracle JDeveloper
Oracle JDeveloper is a Java Platform, Enterprise Edition (Java EE) development
environment with end-to-end support for developing, debugging, and deploying e-business
applications. It provides a comprehensive set of integrated tools that support the complete
development life cycle, from source code control, modeling, and coding through debugging,
testing, profiling, and deployment.

Oracle JDeveloper simplifies development by providing deployment tools to create Java EE
components such as:

• Applets

• JavaBeans

Chapter 1
Development Tools and Frameworks for XDK

1-15

• Java Server Pages (JSP)

• Servlets

• Enterprise JavaBeans (EJB)

Oracle JDeveloper also provides a public API to extend and customize the
development environment and integrate it with external products.

XDK is integrated into Oracle JDeveloper, offering many ways to manage XML. For
example, you can use the XSQL Servlet to perform these tasks:

• Query and manipulate database information

• Generate XML documents

• Transform XML with XSLT stylesheets

• Deliver XML on the web

Oracle JDeveloper has an integrated XML schema-driven code editor for working on
XML Schema-based documents such as XML schemas and XSLT stylesheets. By
specifying the schema for a certain language, the editor can help you create a
document in that markup language. The Code Insight feature can list valid alternatives
for XML elements or attributes in the document.

Oracle JDeveloper simplifies the task of working simultaneously with Java application
code and XML data and documents. It features drag-and-drop XML development
modules such as:

• Color-coded syntax highlighting for XML

• Built-in syntax checking for XML and XSL

• Editing support for XML schema documents

• XSQL Pages and Servlet support

• Oracle XML parser for Java

• XSLT processor

• XDK for JavaBeans components

• XSQL Page Wizard

• XSQL Action Handlers

• Schema-driven XML editor

See Also:

Oracle JDeveloper on OTN for links to Oracle JDeveloper documentation
and tutorials

1.4.2 Oracle Data Provider for .NET
Oracle Data Provider for .NET (ODP.NET) is an implementation of a .NET data
provider for Oracle Database. It uses Oracle native APIs to provide fast, reliable
access to Oracle data and features from any .NET application. It uses and inherits
classes and interfaces from the Microsoft .NET Framework Class Library.

Chapter 1
Development Tools and Frameworks for XDK

1-16

You can use ODP.NET and XDK to extract data from relational and object-relational tables
and views as XML documents. You can also use XML documents for insert, update, and
delete operations on the database server. ODP.NET supports XML natively in the database
through Oracle XML DB.

ODP.NET supports XML with features that:

• Store XML data natively in the database server as the Oracle native type XMLType.

• Access relational and object-relational data as XML data from database instances into a
Microsoft .NET environment and process the XML with the Microsoft .NET framework.

• Save changes to the database server with XML data.

For the ODP.NET application developer, features include:

• Enhancements to the OracleCommand, OracleConnection, and OracleDataReader
classes

• XML-specific classes:

– OracleXmlType
– OracleXmlStream
– OracleXmlQueryProperties
– OracleXmlSaveProperties

See Also:

Oracle Data Provider for .NET Developer's Guide for Microsoft Windows

1.5 About Installing XDK
The standard installation of Oracle Database includes XDK (all of its components).

Caution:

Using the components of Oracle XML Developer’s Kit (XDK) to build software
programs enables some powerful but potentially dangerous features, such as
external entity expansion and recursive expansion. Refer to Security Considerations
for Oracle XML Developer's Kit for information about how to use XDK securely.

This section assumes that:

• You installed Oracle Database from either a CD-ROM or an archive that you downloaded
from the Oracle Technology Network (OTN).

The Oracle Database CD-ROM installs XDK by default.

• You installed the XDK demo programs from the Oracle Database Examples media.

Example 1-1 shows how your Oracle Database home directory looks after you have installed
Oracle Database and the XDK demo programs.

Chapter 1
About Installing XDK

1-17

The directory that contains XDK is called XDK home. Set the value of environment
variable $XDK_HOME (UNIX) or %XDK_HOME% (Windows) to the xdk directory in your
Oracle home directory. For example, you can use csh on UNIX to set the XDK home
directory with this command:

setenv XDK_HOME $ORACLE_HOME/xdk

Example 1-1 Oracle XML Developer's Kit Components

- $ORACLE_HOME: Oracle home directory
 | - bin: includes XDK executables
 | - lib: includes XDK libraries
 | - jlib: includes Globalization Support libraries for the XDK
 | - nls: includes binary files used as part of globalization support
 | - xdk: XDK scripts, message files, documentation, and demos
 readme.html
 | - admin: SQL scripts and XSL Servlet Configuration
 file (XSQLConfig.xml)
 | - demo: sample programs (installed from Oracle Database
Examples media)
 | - c
 | - cpp
 | - java
 | - jsp
 | - doc: release notes and readme
 content.html
 index.html
 license.html
 title.html
 | - cpp
 | - images
 | - java
 | - include: header files
 | - mesg: error message files

Related Topics

• Installing XDK for Java Components
XDK for Java components are included with Oracle Database. This chapter
assumes that you installed XDK with Oracle Database and installed the demo
programs from the Oracle Database Examples media.

• Installing XDK for C Components
XDK for C components are the building blocks for reading, manipulating,
transforming, and validating Extensible Markup Language (XML). The XDK for C
components are included with Oracle Database.

• Installing XDK for C++ Components
The XDK for C++ components are included with Oracle Database.

Chapter 1
About Installing XDK

1-18

2
Security Considerations for Oracle XML
Developer's Kit

The security measures to be taken when using software programs that are built using XDK
are explained in this chapter.

2.1 Implementing Security for Java
The process to implement security for Java programs.

2.1.1 Securing XSLT Processing with Oracle XML Developer's Kit
Before using Oracle XML Developer’s Kit for XSLT processing, you need to secure it by
setting some configuration options.

You must enable secure processing for both the XSLProcessor API and the JAXP transformer
API, as follows.

• Use this Java code to enable the secure processing mode for XSLProcessor:

processor.setAttribute(XMLConstants.FEATURE_SECURE_PROCESSING,
Boolean.TRUE);

• Use this Java code to enable the secure processing mode for SAXTransformerFactory of
the JAXP transformer API:

factory.setFeature(XMLConstants.FEATURE_SECURE_PROCESSING, true);

Together, those settings improve XML-parsing security in the following ways:

• The settings block access to external resources, by default.

Developers can then use org.xml.sax.EntityResolver or
javax.xml.transform.URIResolver to resolve include and import elements in an XSL
stylesheet. They can use Java interface URIResolver to provide XPath or XSLT functions
access to trusted external resources.

• The settings block the use of Java reflection to execute Java code.

Developers can convert trusted Java classes to interface
javax.xml.xpath.XPathFunction and use interface
javax.xml.xpath.XPathFunctionResolver to resolve them.

• The settings limit recursive entity expansion.

This helps avoid a common denial-of-service attack from excessive resource
consumption.

2-1

Note:

Although this can limit recursive entity expansion, XDK cannot limit
resource consumption during XML transformation. An XSL stylesheet
can include an infinite loop or otherwise consume resources
extravagantly. For this reason, XSL stylesheets must not be accepted
from untrusted sources or external entities. Test all stylesheets used, to
ensure that they do not consume excessive resources.

In addition, Oracle recommends that all code that performs XSLT processing of data or
files obtained from users or from external, untrusted entities check that secure
processing is enabled for both the XSLProcessor API and the JAXP transformer API.
Not doing this opens a security vulnerability. After the XSL processor has been
secured, accessing external resources and running Java extension functions is not
allowed.

Arbitrary Security Exemptions

If you want to arbitrarily override security restrictions, you can use the following
options:

• Perform any of the following modifications to allow access to some external
sources:

– Set URIResolver to either SAXTransformerFactory or XSLProcessor, using the
method setURIResolver().

– Set EntityResolver to XSLProcessor using the method
setEntityResolver().

• Use the Java interface oracle.xml.xslt.XSLSecurityManager to register a list of
Java classes and methods with which you can use Java reflection extension
functions.

• Register XSLSecurityManager using the XSLProcessor method setAttribute() to
run an extension function that you know to be safe:

processor.setAttribute(XSLProcessor.SECURITY_MANAGER,
securityManager);

• Use a simple API on XSLSecurityManager to implement a the list of Java classes
and methods:

boolean checkExtensionFunction(String className, String fnName);

2.1.2 Using the Oracle XML Parser Safely
Like many XML parsers, by default the XDK parser tries to resolve external
references. An attacker can exploit this behavior to perform XML External Entity (XXE)
and XML Entity Expansion (XEE) attacks. To avoid this vulnerability, disable the use of
arbitrary references to external resources, and disable unconstrained entity expansion.

• To implement a global security setting, which blocks all parsers that are created
within the system from using external entities, set the Java system property
oracle.xdkjava.security.resolveEntityDefault to false.

Chapter 2
Implementing Security for Java

2-2

• To block entity expansion for a particular parser, or to limit the number of levels of entity
expansion, set the attribute XMLParser.RESOLVE_ENTITY_DEFAULT, or
XMLParser.ENTITY_EXPANSION_DEPTH to the parser.
For example:

DOMParser domParser = new DOMParser(); // Extend
oracle.xml.parser.v2.XMLParser
domParser.setAttribute(DOMParser.EXPAND_ENTITYREF, false); // Do
not expand entity references
domParser.setAttribute(DOMParser.DTD_OBJECT, dtdObj); // dtdObj is an
instance of oracle.xml.parser.v2.DTD
domParser.setAttribute(DOMParser.ENTITY_EXPANSION_DEPTH, 2); // Allow
only one level of recursive entity expansion

• Alternately, you can run setSecureProcessing() which sets the EXPAND_ENTITYREF,
DTD_OBJECT and ENTITY_EXPANSION_DEPTH attributes by default.

domParser.setSecureProcessing()// Set all the above attributes

• If you use JAXP to enable XML parsing, then set FEATURE_SECURE_PROCESSING to true for
DocumentBuilderFactory or SAXParserFactory. This blocks the expansion of external
entities, limits entity expansion to a depth of 11, and limits the entity expansion count to
64000.

my_factory.setFeature(XMLConstants.FEATURE_SECURE_PROCESSING, true);

See Also:

XML External Entity (XXE) Prevention Cheat Sheet

Example 2-1 Improving Safety of Java Code that Uses an XML Parser

This Java snippet blocks resolution of external entities, limits the number of entity-expansion
levels, and limits the number of entity expansions.

 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
 dbf.setNamespaceAware(true);
 dbf.setXIncludeAware(false);
 dbf.setExpandEntityReferences(false); // Disable expanding of entities
 try {
 dbf.setFeature(XMLConstants.FEATURE_SECURE_PROCESSING, true);
 } catch (Throwable e) {
 //handle old parser version
 ...
 }
 DocumentBuilder dp = dbf.newDocumentBuilder();
 // Make resolveEntity throw an exception
 // (If you need to support external references,
 // then resolve publicId only against trusted values)
 dp.setEntityResolver(new EntityResolver() {

Chapter 2
Implementing Security for Java

2-3

https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Prevention_Cheat_Sheet

 public InputSource resolveEntity(String publicId, String systemId)
 throws DOMException, IOException {
 throw new DOMException((short)0, "Security Violation");
 }
 });
...

2.2 Implementing Security for C
The process to implement security for C programs.

Block Insecure Accesses

Usually, there are two sets of XDK C APIs that take the risks of the XXE attack: one
set uses the function LpxInitEncoded()and the other set uses the function
XmlCreate()or XmlCreateNew()
For LpxInitEncoded(), feed the flags LPX_FLAG_URL_DONT_OPEN and
LPX_FLAG_FILE_DONT_OPEN into the parser API to block external resource accesses.

For example:

LpxBufferParse (ctx,
 (oratext *) buf,
 (size_t) lstlen (buf),
 (oratext *) "UTF-8", (lx_langid) 0, (lxglo *) 0,
 LPX_FLAG_URL_DONT_OPEN | LPX_FLAG_FILE_DONT_OPEN);

For XmlCreate()or XmlCreateNew(), set the parameter no_ri_open to TRUE when
creating the context xctx. This setting will block insecure accesses for parser APIs
which use xctx.

For example:

xctx = XmlCreateNew(&xerr, (oratext *) "test",
 (oratext **)NULL, 0, (oratext *)NULL,
 "data_encoding", “AL32UTF8”,
 "input_encoding", "AL32UTF8",
 "no_ri_open", "TRUE", /* disallow URI resolution
*/
 "error_handler", test_errmsg,
 NULL);

The parameter no_ri_open can also be set to TRUE in DOM APIs to block insecure
accesses. Setting this flag in DOM APIs ensures that security is enforced even when
this flag is not set in XmlCreate().

For example:

doc = XmlLoadDom(xctx, &xerr,
 "file", filename,
 "discard_whitespace", TRUE,
 "validate", TRUE,

Chapter 2
Implementing Security for C

2-4

 "no_ri_open", TRUE, /* disallow URI resolution */
 NULL);

Allow Arbitrary Accesses

When users want to allow arbitrary references to external resources or make the accesses
under their own control, they can implement the following steps:

1. Set no_ri_open to FALSE in the locations shown in the previous examples.

2. Develop customized open, read and close callback functions and initialize an OraSteam
using these functions.

3. Override access to xctx with OraSteam
For example:

ostream = OraStreamInit(actx, (oratext *)"test", &oerr,
 "open", http_open,
 "read", http_read,
 "close", http_close,
 NULL);
xerr = XmlAccess(xctx, XML_ACCESS_HTTP, ostream);

The code creates an instance of ostream by providing three callbacks. The created stream
will override the access inside xctx using XmlAccess. xctx is used when calling APIs such as
XmlLoadDom. Hence, the user has the option to create rules based on which they can access
external resources.

2.3 Security for C++
By default, C++ APIs block accesses to external resources – thereby ensuring security.
However, users can override this security restriction and allow arbitrary references to external
resources based on their discretion.

The xmlctx.hpp header file uses the CXmlCtx(bool no_ri_open) API to initialize the xctx
context and set the parameter no_ri_open. When the no_ri_open parameter is set to true,
parser APIs that use xctx will not be able to access external resources. When the
no_ri_open parameter is set to false, parser APIs that use xctx will be able to access
external resources.

By default, parser APIs that use xctx cannot access external resources. To allow access, set
the no_ri_open parameter to false as shown below:

xctx = CXmlCtx(FALSE); /* allow URI resolution */

Caution:

Allowing access to external resources can cause XML External Entity (XXE) and
XML Entity Expansion (XEE) attacks. The user should be cautions when overriding
the security restriction and allowing access to external resources.

Chapter 2
Security for C++

2-5

Part I
Oracle XML Developer's Kit for C

An explanation is given of how to use Oracle XML Developer's Kit (XDK) to develop C
applications.

3
Getting Started with Oracle XML Developer's
Kit for C

An explanation is given of how to get started with Oracle XML Developer's Kit (XDK) for C.

3.1 Installing XDK for C Components
XDK for C components are the building blocks for reading, manipulating, transforming, and
validating Extensible Markup Language (XML). The XDK for C components are included with
Oracle Database.

Caution:

Using the components of Oracle XML Developer’s Kit (XDK) to build software
programs enables some powerful but potentially dangerous features, such as
external entity expansion and recursive expansion. Refer to Security Considerations
for Oracle XML Developer's Kit for information about how to use XDK securely.

This chapter assumes that you have installed XDK with Oracle Database and also installed
the demo programs on the Oracle Database Examples media. See About Installing XDK for
installation instructions and a description of the XDK directory structure.

The following set of examples shows the UNIX directory structure for the XDK demos and the
libraries used by the XDK components. The subdirectories contain sample programs and
data files for the XDK for C components.

Example 3-1 lists the main directories under the Oracle home directory for C.

The contents of each subdirectory under this main directory are listed individually.

The bin directory contains these components:

 schema
 xml
 xmlcg
 xsl
 xvm

The lib directory contains these components:

 libcore21.a
 libcoresh21.so
 libnls21.a
 libunls21.dll

3-1

 libxml21.a
 libxmlsh21.a

The xdk directory contains this demo subdirectory:

 | demo/
 | - c/
 | - dom/
 | - parser/
 | - sax/
 | - schema/
 | - webdav/
 | - xslt/
 | - xsltvm/

The /xdk/demo/c subdirectories contain sample programs and data files for XDK for C
components. The chapters in Oracle XML Developer's Kit for C explain how to use
these programs to gain an understanding of the most important C features.

The xdk directory also contains this include subdirectory:

 | include/
 oratypes.h
 oraxml.h
 oraxmlcg.h
 oraxsd.h
 xml.h
 xmlerr.h
 xmlotn.h
 xmlproc.h
 xmlsch.h
 xmlxptr.h
 xmlxsl.h
 xmlxvm.h

Table 3-4 in Setting Up and Testing the XDK C Compile-Time Environment on UNIX
describes the C header files.

Example 3-1 Oracle XML Developer's Kit for C Libraries, Header Files, Utilities,
and Demos

- $ORACLE_HOME
 | - bin/
 | - lib/
 | - xdk/

Related Topics

• Overview of XDK
Oracle XML Developer’s Kit (XDK) is a versatile set of components that enables
you to build and deploy C, C++, and Java software programs that process
Extensible Markup Language (XML). You can assemble these components into an
XML application that serves your business needs.

Chapter 3
Installing XDK for C Components

3-2

3.2 Configuring the UNIX Environment for XDK for C
Components

Topics here include component dependencies, environment variables, the runtime and
compile-time environments, and the component version.

3.2.1 XDK for C Component Dependencies on UNIX
The C libraries described in this section are located in $ORACLE_HOME/lib.

XDK for C and C++ components are contained in this library:

libxml21.a

The following XKD components are contained in the library:

• XML parser, which checks an XML document for well-formedness, optionally validates it
against a document type definition (DTD) or XML Schema, and supports Document
Object Model (DOM) and Simple API for XML (SAX) interfaces for programmatic access

• Extensible Stylesheet Language Transformation (XSLT) processor, which transforms an
XML document into another XML document

• XSLT compiler, which compiles XSLT stylesheets into byte code for use by the XSLT
Virtual Machine (XSLT VM)

• XSLTVM, which is an XSLT transformation engine

• XML Schema processor, which validates XML files against an XML schema

Table 3-1 describes the Common Oracle Runtime Environment (CORE) and Globalization
Support libraries on which XDK for C components (UNIX) depend.

Table 3-1 Dependent Libraries of Oracle XML Developer's Kit for C Components on
UNIX

Component Library Description

CORE library libcore21.a Contains the C runtime functions that enable
portability across platforms.

CORE Dynamic linking
library

libcoresh21.so C runtime library that supports dynamic linking on
UNIX platforms.

Globalization Support
common library

libnls21.dll Supports the 8-bit encoding of Unicode (UTF-8), 16-
bit encoding of Unicode (UTF-16), and ISO-8859-1
character sets. This library depends on the
environment to locate encoding and message files.

Globalization Support
library for Unicode

libunls21.a Supports the character sets described in Oracle
Database Globalization Support Guide. This library
depends on the environment to locate encoding and
message files.

Chapter 3
Configuring the UNIX Environment for XDK for C Components

3-3

3.2.2 Setting Up XDK for C Environment Variables on UNIX
The UNIX environment variables required for use with XDK for C components is
described.

Table 3-2 UNIX Environment Settings for Oracle XML Developer's Kit for C Components

Variable Description Setting

$ORA_NLS10 Sets the location of the Globalization
Support character-encoding definition
files. The encoding files represent a
subset of character sets available in
Oracle Database.

Set to the location of the Globalization Support data
files. Set the variable:

setenv ORA_NLS10 $ORACLE_HOME/nls/data

$ORA_XML_MESG Sets the location of the XML error
message files. Files ending in .msb are
machine-readable and required at run
time. Files ending in .msg are human-
readable and contain cause and action
descriptions for each error.

Set to the path of the mesg directory. For example:

setenv ORA_XML_MESG $ORACLE_HOME/xdk/mesg

$PATH Sets the location of the XDK for C
executables.

Set the PATH:

setenv PATH ${PATH}:${ORACLE_HOME}/bin

3.2.3 Testing the XDK for C Runtime Environment on UNIX
You can test XDK for C in your UNIX runtime environment by running a number of
utilities.

These utilities are described in Table 3-3.

Table 3-3 Oracle XML Developer's Kit for C/C++ Utilities on UNIX

Executable Directory Description

schema $ORACLE_HOME/bin C XML Schema validator

xml $ORACLE_HOME/bin C XML parser

xmlcg $ORACLE_HOME/bin C++ class generator

xvm $ORACLE_HOME/bin C XVM processor

Run these utilities with no options to display the usage help. Run the utilities with the -
hh flag for complete usage information.

Related Topics

• Using the C XML Schema Processor Command-Line Utility
You can call XML Schema processor for C as an executable by invoking bin/
schema in the install area.

• Using the C XML Parser Command-Line Utility
The xml utility, which is located in $ORACLE_HOME/bin (UNIX) or %ORACLE_HOME%
\bin (Windows), is a command-line interface that parses XML documents. It
checks for both well-formedness and validity.

Chapter 3
Configuring the UNIX Environment for XDK for C Components

3-4

• Using the XML C++ Class Generator Command-Line Utility
The standalone class generator can be called as an executable by invoking bin/xmlcg.

• Using the XVM Processor Command-Line Utility
The XVM processor is accessed from the command-line using command xvm.

3.2.4 Setting Up and Testing the XDK C Compile-Time Environment on
UNIX

How to set up and test the XDK C compile-time UNIX environment is described.

Table 3-4 describes the header files required for compilation of XDK for C components.
These files are located in $ORACLE_HOME/xdk/include. Your runtime environment must be set
up before you can compile your code.

Table 3-4 Header Files in the Oracle XML Developer's Kit for C Compile-Time
Environment

Header File Description

oratypes.h Includes the private Oracle C data types.

oraxml.h Includes the Oracle9i XML Open Reporting Application (ORA) data types and the
public ORA APIs included in libxml.a (only for backward compatibility). Use
xml.h instead.

oraxmlcg.h Includes the C APIs for the C++ class generator (only for backward compatibility).

oraxsd.h Includes the Oracle9i XML schema definition (XSD) validator data types and
application programming interfaces (APIs), for backward compatibility only.

xml.h Handles the unified DOM APIs transparently, whether you use them through
Oracle Call Interface (OCI) or standalone. It replaces oraxml.h, which is
deprecated.

xmlerr.h Includes the XML errors and their numbers.

xmlotn.h Includes the other headers depending on whether you compile standalone or use
OCI.

xmlproc.h Includes the Oracle XML data types and XML public parser APIs in libxml21.a.

xmlsch.h Includes the Oracle XSD validator public APIs.

xmlptr.h Includes the XPointer data types and APIs, which are not currently documented or
supported.

xmlxsl.h Includes the XSLT processor data types and public APIs.

xmlxvm.h Includes the XSLT compiler and VM data types and public APIs.

3.2.4.1 Testing the XDK for C Compile-Time Environment on UNIX
The simplest way to test XDK for C in your compile-time environment is to run the make utility
on the sample programs, which are located on the Examples media rather than on the Oracle
Database CD.

After installing the demos, they are located in $ORACLE_HOME/xdk/demo/c. A README in the
same directory provides compilation instructions and usage notes.

Build and run the sample programs by executing these commands at the system prompt:

Chapter 3
Configuring the UNIX Environment for XDK for C Components

3-5

cd $ORACLE_HOME/xdk/demo/c
make

3.2.5 Verifying the XDK for C Component Version on UNIX
How to determine which version of XDK you have is explained.

To get the version of XDK you are working with, change to directory $ORACLE_HOME/lib
and run this command:

strings libxml21.a | grep -i developers

3.3 Configuring the Windows Environment for XDK C
Components

Topics here include component dependencies, setting environment variables, testing
the runtime environment, setting up and testing the compile-time environment, and
Visual C++ in Microsoft Visual Studio.

3.3.1 XDK for C Component Dependencies on Windows
The C libraries described in this section are located in %ORACLE_HOME%\bin.

XDK for C components are contained in this library:

libxml21.dll

The following XDK components are contained in the library:

• XML parser

• XSLT processor

• XSLT compiler

• XSLT VM

• XML Schema processor

Table 3-5 describes the Oracle CORE and Globalization Support libraries on which
XDK for C components (Windows) depend.

Table 3-5 Dependent Libraries of Oracle XML Developer's Kit for C
Components on Windows

Component Library Description

CORE library libcore21.dll Contains the runtime functions that enable
portability across platforms.

Globalization Support
common library

libnls21.dll Supports the UTF-8, UTF-16, and ISO-8859-1
character sets. This library depends on the
environment to find encoding and message files.

Chapter 3
Configuring the Windows Environment for XDK C Components

3-6

Table 3-5 (Cont.) Dependent Libraries of Oracle XML Developer's Kit for C
Components on Windows

Component Library Description

Globalization Support
library for Unicode

libunls21.dll Supports the character sets described in Oracle
Database Globalization Support Guide. This
library depends on the environment to find
encoding and message files.

3.3.2 Setting Up XDK for C Environment Variables on Windows
The Windows environment variables required for use with the XDK for C components are
described.

Table 3-6 Windows Environment Settings for Oracle XML Developer's Kit for C Components

Variable Description Setting

%ORA_NLS10% Sets the location of the Globalization
Support character-encoding definition
files. The encoding files represent a
subset of character sets available in
Oracle Database.

This variable must be set to the location of the
Globalization Support data files. Set the variable:

set ORA_NLS10=%ORACLE_HOME%\nls\data

%ORA_XML_MESG% Sets the location of the XML error
message files. Files ending in .msb are
machine-readable and required at run
time. Files ending in .msg are human-
readable and contain cause and action
descriptions for each error.

Set to the path of the mesg directory. For example:

set ORA_XML_MESG=%ORACLE_HOME%\xdk\mesg

%PATH% Sets the location of the XDK for C data
definition languages (DLLs) and
executables.

Set the PATH:

path %path%;%ORACLE_HOME%\bin

3.3.3 Testing the XDK for C Runtime Environment on Windows
You can test XDK in your Microsoft Windows runtime environment by running a number of
utilities.

These are described in Table 3-7.

Table 3-7 Oracle XML Developer's Kit for C/C++ Utilities on Windows

Executable Directory Description

schema.exe %ORACLE_HOME%\bin C XML Schema validator

See also Using the C XML Schema Processor Command-Line Utility

xml.exe %ORACLE_HOME%\bin C XML parser

See also Using the C XML Parser Command-Line Utility

xmlcg.exe %ORACLE_HOME%\bin C++ class generator

See also Using the XML C++ Class Generator Command-Line Utility

Chapter 3
Configuring the Windows Environment for XDK C Components

3-7

Table 3-7 (Cont.) Oracle XML Developer's Kit for C/C++ Utilities on Windows

Executable Directory Description

xvm.exe %ORACLE_HOME%\bin C XVM processor

See also Using the XVM Processor Command-Line Utility

Run these utilities with no options to display the usage help. Run the utilities with the -
hh flag for complete usage information.

Related Topics

• Using the C XML Schema Processor Command-Line Utility
You can call XML Schema processor for C as an executable by invoking bin/
schema in the install area.

• Using the C XML Parser Command-Line Utility
The xml utility, which is located in $ORACLE_HOME/bin (UNIX) or %ORACLE_HOME%
\bin (Windows), is a command-line interface that parses XML documents. It
checks for both well-formedness and validity.

• Using the XML C++ Class Generator Command-Line Utility
The standalone class generator can be called as an executable by invoking bin/
xmlcg.

• Using the XVM Processor Command-Line Utility
The XVM processor is accessed from the command-line using command xvm.

3.3.4 Setting Up and Testing the XDK for C Compile-Time
Environment on Windows

You must set up your runtime environment before you can compile your code.

Table 3-4 in the section Setting Up and Testing the XDK C Compile-Time Environment
on UNIX describes the header files required for compilation of the C components on
Windows. The relative file names are the same on both UNIX and Windows
installations.

On Windows the header files are located in %ORACLE_HOME%\xdk\include.

3.3.4.1 Testing the XDK for C Compile-Time Environment on Windows
You can test XDK for C in your compile-time environment by compiling the demo
programs.

These are located in %ORACLE_HOME%\xdk\demo\c after you install them from the Oracle
Database Examples media. A README file in the same directory provides compilation
instructions and usage notes. Before you compile the demo programs, edit the
Make.bat files as described in Editing the Make.bat Files on Windows.

3.3.4.1.1 Editing the Make.bat Files on Windows
Each subfolder of folder %ORACLE_HOME%\xdk\demo\c contains a file Make.bat. Update
the Make.bat file in each folder by adding the path of the libraries and the header files

Chapter 3
Configuring the Windows Environment for XDK C Components

3-8

to the compile command. You need not edit the paths in section :LINK because /
libpath:%ORACLE_HOME%\lib already points to the C libraries.

The section of a Make.bat file in Example 3-2 uses bold text to show the path that you must
include.

Example 3-2 Editing an Oracle XML Developer's Kit for C Make.bat File on Windows

:COMPILE
set filename=%1
cl -c -Fo%filename%.obj %opt_flg% /DCRTAPI1=_cdecl /DCRTAPI2=_cdecl /nologo /Zl
/Gy /DWIN32 /D_WIN32 /DWIN_NT /DWIN32COMMON /D_DLL /D_MT /D_X86_=1
/Doratext=OraText -I. -I..\..\..\include -I%ORACLE_HOME%\xdk\include %filename%.c
goto :EOF

:LINK
set filename=%1
link %link_dbg% /out:..\..\..\..\bin\%filename%.exe
/libpath:%ORACLE_HOME%\lib /libpath:..\..\..\..\lib
%filename%.obj oraxml21.lib user32.lib kernel32.lib msvcrt.lib ADVAPI32.lib
oldnames.lib winmm.lib

3.3.4.1.2 Setting the XDK for C Compiler Path on Windows
How to set the path for the cl.exe compiler on Microsoft Windows is described.

Demo file make.bat assumes that you are using the cl.exe compiler, which is freely available
with the Microsoft .NET Framework Software Development Kit (SDK).

To set the path for the cl.exe compiler on Microsoft Windows, follow these steps:

1. In the Start menu, select Settings and then Control Panel.

2. Double-click System.

3. In the System Properties dialogue box, select the Advanced tab and click
Environment Variables.

4. In System variables, select Path and click Edit.

5. Append the path of cl.exe to the %PATH% variable and click OK.

Build and run the sample programs by executing these commands at the system prompt:

cd $ORACLE_HOME/xdk/demo/c
make

3.3.5 Using the XDK for C Components and Visual C++ in Microsoft Visual
Studio

You can set up a project with a Visual C++ template and use it for the demos included in
XDK.

3.3.5.1 Setting a Path for a Project in Visual C++ on Windows
Follow these steps to set the path for a project:

1. Open a project in Visual C++ and include the *.c files for your project.

2. Navigate to the Project menu and select Properties.

Chapter 3
Configuring the Windows Environment for XDK C Components

3-9

3. When Property Pages appear, expand Configuration Properties and select VC+
+ Directories.

4. Under General on the right side, select Include Directories.

Figure 3-1 The Property Pages

5. Click the arrow at the end of the line, and select the second line, which reads
<Edit...>.

6. When the Include Directories window appears, click New Line from the tool bar
and enter this include path, %ORACLE_HOME%\xdk\include, as shown in the
example in Figure 3-2 and click OK.

Figure 3-2 Setting the Include Path in Visual C++

3.3.5.2 Setting the Library Path in Visual C++ on Windows
Follow these steps to set the library path for a project:

1. Open a project in Visual C++ and include the *.c files for your project.

2. Navigate to the Project menu and select Properties.

3. When Property Pages appear, expand Configuration Properties and select VC+
+ Directories.

Chapter 3
Configuring the Windows Environment for XDK C Components

3-10

4. Under General on the right side, select Library Directories.

5. Click the arrow at the end of the line, and select the second line which reads <Edit...>.

6. When the Library Directories window appears, click New Line from the tool bar and enter
this library path, %ORACLE_HOME%\lib, as shown in the example in Figure 3-3 and click
OK.

Figure 3-3 Setting the Static Library Path in Visual C++

7. After setting the paths for the static libraries in %ORACLE_HOME%\lib, navigate to the
Project menu and select Properties.

8. In the Properties Page, select and expand Linker under Configuration Properties, and
select Input.

9. Select Additional Dependencies and click the arrow at the end of the line. Select the
second line which reads <Edit...>.

10. Enter these additional dependencies: oraxml21.lib, oraxmlg21.lib, and oraxsd21.lib
as shown in Figure 3-4 and click OK.

Figure 3-4 Setting the Names of the Libraries in Visual C++ Project

Chapter 3
Configuring the Windows Environment for XDK C Components

3-11

3.4 Overview of the Unified C API
The unified C API is a programming interface that unifies the functionality required by
both XDK for C and Oracle XML DB. This API is used primarily by XSLT and XML
Schema.

As shown in Table 3-4, the unified C API is declared in the xml.h header file. Table 3-8
summarizes the XDK for C APIs. See Oracle Database XML C API Reference for
complete documentation.

Table 3-8 Summary of Oracle XML Developer's Kit for C APIs

Package Purpose

Callback APIs Define macros that declare functions (or function pointers) for XML callbacks.

DOM APIs Parse and manipulate XML documents with DOM. The API follows the DOM
2.0 standard as closely as possible, although it changes some names when
mapping from the objected-oriented DOM specification to the flat C
namespace. For example, the overloaded getName() methods become
getAttrName().

Range APIs Create and manipulate Range objects.

SAX APIs Enable event-based XML parsing with SAX.

Schema APIs Assemble multiple XML schema documents into a single schema that can be
used to validate a specific instance document.

Traversal APIs Enable document traversal and navigation of DOM trees.

XML APIs Define an XML processor in terms of how it must read XML data and the
information it must provide to the application.

XPath APIs Process XPath-related types and interfaces.

XPointer APIs Locate nodes in an XML document.

XSLT APIs Perform XSL processing.

XSLTVM APIs Implement a virtual machine that can run compiled XSLT code.

The API accomplishes the unification of the functions by conforming contexts. A top-
level XML context (xmlctx) shares common information between cooperating XML
components. This context defines information about:

• Data encoding

• Error message language

• Low-level allocation callbacks

An application needs this information before it can parse a document and provide
programmatic access through DOM or SAX interfaces.

Both XDK for C and Oracle XML DB require different startup and tear-down functions
for the top-level and service contexts. The initialization function takes implementation-
specific arguments and returns a conforming context.

The unification is made possible by using conforming contexts. A conforming context
means that the returned context must begin with a xmlctx; it may have any additional
implementation-specific parts after the standard header.

Chapter 3
Overview of the Unified C API

3-12

After an application gets xmlctx, it uses unified DOM invocations, all of which take an xmlctx
as the first argument.

3.5 Globalization Support for the XDK for C Components
The XDK for C parser supports over 300 IANA character sets.

These character sets include those listed in Character Sets Supported by XDK for C.

Considerations when working with character sets:

• Oracle recommends that you use Internet Assigned Numbers Authority (IANA) character
set names for interoperability with other XML parsers.

• XML parsers are required only to support UTF-8 and UTF-16, so these character sets are
preferable.

• The default input encoding ("incoding") is UTF-8. If an input document's encoding is not
self-evident (by HTTP character set, Byte Order Mark (BOM), XMLDecl, and so on), then
the default input encoding is assumed. Oracle recommends that you set the default
encoding explicitly if using only single byte character sets such as US-ASCII or any of the
ISO-8859 character sets because single-byte performance is fastest. The flag
XML_FLAG_FORCE_INCODING specifies that the default input encoding is always applied to
input documents, ignoring any BOM or XMLDecl. Nevertheless, a protocol declaration
such as HTTP character set is always honored.

• Choose the data encoding for DOM and SAX ("outcoding") carefully. Single-byte
encodings are the fastest, but can represent only a very limited set of characters. Next
fastest is Unicode (UTF-16), and slowest are the multibyte encodings such as UTF-8. If
input data cannot be converted to the outcoding without loss, then an error occurs. For
maximum utility, use a Unicode-based outcoding because Unicode can represent any
character. If outcoding is not specified, then it defaults to the incoding of the first
document parsed.

Chapter 3
Globalization Support for the XDK for C Components

3-13

4
Using the XSLT and XVM Processors for C

An explanation is given of how to use the Extensible Stylesheet Language Transformation
(XSLT) and XSLT Virtual Machine (XVM) processors for C.

Note:

Use the unified C application programming interface (API) for Oracle XML
Developer's Kit (XDK) and Oracle XML DB applications. Older, nonunified C
functions are deprecated and supported only for backward compatibility. They will
be removed in a future release.

The unified C API is described in Using the XML Parser for C.

4.1 XSLT XVM Processor
The Oracle XVM package includes the XSLT compiler and the XVM. This package
implements the XSLT language as specified in the World Wide Web Consortium (W3C)
Recommendation of 16 November 1999.

Implementing the XSLT compiler and the XVM enables compilation of XSLT (Version 1.0) into
bytecode format, which is executed by the virtual machine. XVM is the software
implementation of a CPU designed to run compiled XSLT code. The virtual machine assumes
a compiler compiling XSLT stylesheets to a sequence of bytecodes or machine instructions
for the XSLT CPU. The bytecode program is a platform-independent sequence of 2-byte
units. It can be stored, cached, and run on different XVMs. The XVM uses the bytecode
programs to transform XML instance documents. This approach clearly separates compile-
time from runtime computations and specifies a uniform way of exchanging data between
instructions.

The benefits of this approach are:

• An XSLT stylesheet can be compiled, saved in a file, and reused often, even on different
platforms.

• The XVM is significantly faster and uses less memory than other XSLT processors.

• The bytecodes are language independent. There is no difference between code
generated from a C or C++ XSLT compiler.

4.1.1 XVM Usage Example
A typical scenario of using the package APIs is described.

1. Create and use an XML meta-context object.

xctx = XmlCreate(&err,...);
2. Create and use an XSLT compiler object.

4-1

comp = XmlXvmCreateComp(xctx);
3. Compile an XSLT stylesheet or XPath expression and store or cache the resulting

bytecode.

code = XmlXvmCompileFile(comp, xslFile, baseuri, flags, &err);

or

code = XmlXvmCompileDom (comp, xslDomdoc, flags, &err);

or

code = XmlXvmCompileXPath (comp, xpathexp, namespaces, &err);
4. Create and use an XVM object. The explicit stack size setting is needed when

XVM terminates with a Stack Overflow message or when smaller memory
footprints are required. See XmlXvmCreate().

vm = XmlXvmCreate(xctx, "StringStack", 32, "NodeStack", 24, NULL);
5. Set the output (optional). Default is a stream.

err = XmlXvmSetOutputDom (vm, NULL);

or

err = XmlXvmSetOutputStream(vm, &xvm_stream);

or

err = XmlXvmSetOutputSax(vm, &xvm_callback, NULL);
6. Set a stylesheet bytecode to the XVM object. Can be repeated with other

bytecode.

len = XmlXvmGetBytecodeLength(code, &err);
err = XmlXvmSetBytecodeBuffer(vm, code, len);

or

err = XmlXvmSetBytecodeFile (vm, xslBytecodeFile);
7. Transform an instance XML document or evaluate a compiled XPath expression.

Can be repeated with the same or other XML documents.

err = XmlXvmTransformFile(vm, xmlFile, baseuri);

or

err = XmlXvmTransformDom (vm, xmlDomdoc);

or

obj = (xvmobj*)XmlXvmEvaluateXPath (vm, code, 1, 1, node);
8. Get the output tree fragment (if DOM output is set at Step 5).

node = XmlXvmGetOutputDom (vm);
9. Delete the objects.

XmlXvmDestroy(vm);
XmlXvmDestroyComp(comp);
XmlDestroy(xctx);

Chapter 4
XSLT XVM Processor

4-2

4.1.2 Using the XVM Processor Command-Line Utility
The XVM processor is accessed from the command-line using command xvm.

xvm

Usage:

xvm options xslfile xmlfile

xvm options xpath xmlfile

Options:

-c Compile xslfile. The bytecode is in "xmlfile.xvm".
-ct Compile xslfile and transform xmlfile.
-t Transform xmlfile using bytecode from xslfile.
-xc Compile xpath. The bytecode is in "code.xvm".
-xct Compile and evaluate xpath with xmlfile.
-xt Evaluate XPath bytecode from xpath with xmlfile.

Examples:

xvm -ct db.xsl db.xml
xvm -t db.xvm db.xml
xvm -xct "doc/employee[15]/family" db.xml

4.1.3 Accessing the XVM Processor for C
Oracle XVM Processor for C is part of the standard installation of Oracle Database.

See Also:

• Oracle Database XML C API Reference, XSLTVM APIs for C

• XDK on OTN

4.2 XSLT Processor for XDK for C
The Oracle XSL/XPath package implements the XSLT language as specified in the W3C
Recommendation of 16 November 1999. The package includes the XSLT 1.0 processor and
XPath 1.0 Processor. The Oracle implementation of the XSLT processor follows the common
design approach of melding compiler and processor into one object.

See Also:

• XSL Transformations (XSLT)

• XML Path Language (XPath)

Chapter 4
XSLT Processor for XDK for C

4-3

4.2.1 XSLT Processor Usage Example
A typical scenario of using the package APIs is presented.

1. Create and use an XML meta-context object.

xctx = XmlCreate(&err,...);

2. Parse the XSLT stylesheet.

xslDomdoc = XmlLoadDom(xctx, &err, "file", xslFile, "base_uri",
baseuri, NULL);

3. Create an XSLT processor for the stylesheet

xslproc = XmlXslCreate (xctx, xslDomdoc, baseuri, &err);

4. Parse the instance XML document.

xmlDomdoc = XmlLoadDom(xctx, &err, "file", xmlFile, "base_uri",
baseuri, NULL);

5. Set the output (optional). Default is Document Object Model (DOM).

err = XmlXslSetOutputStream(xslproc, &stream);

6. Transform the XML document. This step can be repeated with the same or other
XML documents.

err = XmlXslProcess (xslproc, xmlDomdoc, FALSE);

7. Get the output (if DOM).

node = XmlXslGetOutput(xslproc);

8. Delete objects.

XmlXslDestroy(xslproc);
XmlDestroy(xctx);

4.2.2 XPath Processor Usage Example
A typical scenario of using the package APIs is described.

Follow these steps:

1. Create and use an XML meta-context object.

xctx = XmlCreate(&err,...);
2. Parse the XML document or get the current node from already existing DOM.

node = XmlLoadDom(xctx, &err, "file", xmlFile, "base_uri", baseuri, NULL);

Chapter 4
XSLT Processor for XDK for C

4-4

3. Create an XPath processor.

xptproc = XmlXPathCreateCtx(xctx, NULL, node, 0, NULL);
4. Parse the XPath expression.

exp = XmlXPathParse (xptproc, xpathexpr, &err);
5. Evaluate the XPath expression.

obj = XmlXPathEval(xptproc, exp, &err);
6. Delete the objects.

XmlXPathDestroyCtx (xptproc);
XmlDestroy(xctx);

4.2.3 Using the C XSLT Processor Command-Line Utility
You can call the C Oracle XSLT processor as an executable by invoking bin/xsl.

xsl [switches] stylesheet instance
or
xsl -f [switches] [document filespec]

If no stylesheet is provided, no output is generated. If there is a stylesheet, but no output file,
output goes to stdout.

Table 4-1 lists the command line options.

Table 4-1 XSLT Processor for C: Command Line Options

Option Description

-B BaseUri Set the Base URI for XSLT processor: BaseUri of http://pqr/
xsl.txt resolves pqr.txt to http://pqr/pqr.txt

-e encoding Specify default input file encoding (-ee to force).

-E encoding Specify DOM or Simple API for XML (SAX) encoding.

-f File—interpret as filespec, not Universal Resource Identifier (URI).

-G xptrexprs Evaluates XPointer schema examples given in a file.

-h Help—show this usage. (Use -hh for more options.)

-hh Show complete options list.

-i n Number of times to iterate the XSLT processing.

-l language Language for error reporting.

-o XSLoutfile Specifies output file of XSLT processor.

Chapter 4
XSLT Processor for XDK for C

4-5

Table 4-1 (Cont.) XSLT Processor for C: Command Line Options

Option Description

-v Version—display parser version then exit.

-V var value Test top-level variables in C XSLT.

-w White Space—preserve all white space.

-W Warning—stop parsing after a warning.

4.2.4 Accessing Oracle XSLT processor for C
Oracle XSLT processor for C is part of the standard installation of Oracle Database.

See Also:

• Oracle Database XML C API Reference, XSLT APIs for C

• Oracle Database XML C API Reference, XPath APIs for C

• XDK on OTN

4.3 Using the Demo Files Included with the Software
Directory $ORACLE_HOME/xdk/demo/c/parser/ contains several XML applications that
show how to use the XSLT for C.

Table 4-2 XSLT for C Demo Files

Sample File Name Description

XSLSample.c Source for XSLSample program.

XSLSample.std Expected output from XSLSample.

class.xml XML file that can be used with XSLSample.

iden.xsl Stylesheet that can be used with XSLSample.

cleo.xml XML version of Shakespeare's play.

XVMSample.c Sample usage of XVM and compiler. It takes two file names as
input—XML file and XSLT stylesheet file.

XVMXPathSample.c Sample usage of XVM and compiler. It takes XML file name and
XPath expression as input. Generates the result of the evaluated
XPath expression.

Chapter 4
Using the Demo Files Included with the Software

4-6

Table 4-2 (Cont.) XSLT for C Demo Files

Sample File Name Description

XSLXPathSample.c Sample usage of XSL/XPath processor. It takes XML file name
and XPath expression as input. Generates the result of the
evaluated XPath expression.

4.3.1 Building the C Demo Programs for XSLT
Change directories to the demo directory and read the README file. That file explains how to
build the sample programs according to your operating system.

Here is the usage of XSLT processor sample XSLSample, which takes two files as input, the
XML file and the XSLT stylesheet:

XSLSample xmlfile xslss

Chapter 4
Using the Demo Files Included with the Software

4-7

5
Using the XML Parser for C

An explanation is given of how to use the Extensible Markup Language (XML) parser for C.

5.1 Introduction to the XML Parser for C
Topics here include prerequisites and standards for the XML parser for C.

See Also:

Introduction to XML Parsing for Java for a generic introduction to XML parsing with
Document Object Model (DOM) and Simple API for XML (SAX). Much of the
information in the introduction is language-independent and applies equally to C.

5.1.1 Prerequisites for Using the XML Parser for C
The Oracle XML parser for C reads an XML document and uses DOM or SAX application
programming interfaces (APIs) to provide programmatic access to its content and structure.
You can use the parser in validating or nonvalidating mode. A pull parser is also available.

This chapter assumes that you are familiar with these technologies:

• Document Object Model (DOM). DOM is an in-memory tree representation of the
structure of an XML document.

• Simple API for XML (SAX). SAX is a standard for event-based XML parsing.

• Using the XML Pull Parser for C. Pull Parser uses XML events.

• document type definition (DTD). An XML DTD defines the legal structure of an XML
document.

• XML Schema. Like a DTD, an XML schema defines the legal structure of an XML
document.

• XML Namespaces. Namespaces are a mechanism for differentiating element and
attribute names.

If you require a general introduction to the preceding technologies, consult the XML
resources listed in Related Documents.

5.1.2 Standards and Specifications for the XML Parser for C
The standards and specifications for the XDK XML parser are described.

• XML 1.0 is a W3C Recommendation. The Oracle XML Developer's Kit (XDK) for C API
provides full support for XML 1.0 (Second Edition).

5-1

• The DOM Level 1, Level 2, and Level 3 specifications are World Wide Web
Consortium (W3C) Recommendations. The XDK for C API provides full support for
DOM Level 1 and 2, but no support for Level 3.

• SAX is available in version 1.0, which is deprecated, and 2.0. SAX is not a W3C
specification. The XDK for C API provides full support for both SAX 1.0 and 2.0.

• XML Namespaces is a W3C Recommendation.

Related Topics

• Oracle XML Developer's Kit Standards
A description is given of the Oracle XML Developer's Kit (XDK) standards.

5.2 Using the XML Parser API for C
Oracle XML parser for C checks if an XML document is well-formed, and optionally
validates it against a DTD. Your application can access the parsed data through the
DOM or SAX APIs.

5.2.1 Overview of the Parser API for C
The core of the XML parsing API are the XML, DOM, and SAX APIs.

Table 5-1 describes the interfaces for these APIs. See Oracle Database XML C API
Reference for the complete API documentation.

Table 5-1 Interfaces for XML, DOM, and SAX APIs

Package Interfaces Function Name Convention

XML This package implements a single XML interface. The interface defines
functions for these tasks:

• Creating and destroying contexts. A top-level XML context
(xmlctx) shares common information between cooperating XML
components.

• Creating and parsing XML documents and DTDs.

Function names begin with
the string Xml.

See Oracle Database XML C
API Reference for API
documentation.

Chapter 5
Using the XML Parser API for C

5-2

Table 5-1 (Cont.) Interfaces for XML, DOM, and SAX APIs

Package Interfaces Function Name Convention

DOM This package provides programmatic access to parsed XML. The
package implements these interfaces:

• Attr defines get and set functions for XML attributes.

• CharacterData defines functions for manipulating character
data.

• Document defines functions for creating XML nodes, getting
information about an XML document, and setting the DTD for a
document.

• DocumentType defines get functions for DTDs.

• Element defines get and set functions for XML elements.

• Entity defines get functions for XML entities.

• NamedNodeMap defines get functions for named nodes.

• Node defines get and set functions for XML nodes.

• NodeList defines functions that free a node list and get a node
from a list.

• Notation defines functions that get the system and public ID
from a node.

• ProcessingInstruction defines get and set functions for
processing instructions.

• Text defines a function that splits a text node into two.

Function names begin with
the string XmlDom.

See Oracle Database XML C
API Reference for API
documentation.

SAX This package provides programmatic access to parsed XML. The
package implements the SAX interface, which defines functions that
receive notifications for SAX events.

Function names begin with
the string XmlSax.

See Oracle Database XML C
API Reference for API
documentation.

XML Pull
Parser

XML events is a representation of an XML document which is similar to
SAX events in that the document is represented as a sequence of
events like start tag, end tag, comment, and so on. The difference is
that SAX events are driven by the parser (producer) and XML events
are driven by the application (consumer).

Function names begin with
the string XmlEv.

See Oracle Database XML C
API Reference for API
documentation.

5.2.1.1 XML Parser for C Data Types
The data types used in the XML parser for C are described.

See Oracle Database XML C API Reference for the complete list of data types for XDK for C.

Table 5-2 Data Types Used in the XML Parser for C

Data Type Description

oratext String pointer

xmlctx Master XML context

xmlsaxcb SAX callback structure (SAX only)

ub4 32-bit (or larger) unsigned integer

uword Native unsigned integer

Chapter 5
Using the XML Parser API for C

5-3

5.2.1.2 XML Parser for C Defaults
The defaults for the XML parser for C are described.

These are the defaults:

• Character set encoding is 8-bit encoding of Unicode (UTF-8). If all your documents
are ASCII, then setting the encoding to US-ASCII increases performance.

• The parser prints messages to stderr unless an error handler is provided.

• The parser checks inputs documents for well-formedness but not validity. You can
set the property "validate" to validate the input.

Note:

Oracle recommends that you set the default encoding explicitly if using
only single byte character sets (such as US-ASCII or any of the
ISO-8859 character sets) for faster performance than is possible with
multibyte character sets such as UTF-8.

• The parser conforms with the XML 1.0 specification when processing white space,
that is, the parser reports all white space to the application but indicates which
white space can be ignored. However, some applications may prefer to set the
property "discard-white space," which discards all white space between an end-
element tag and this start-element tag.

See Also:

• Oracle Database XML C API Reference for the DOM, SAX, pull parser,
and callback APIs.

5.2.2 XML Parser for C Calling Sequence
The calling sequence for the XML parser for C is illustrated.

Chapter 5
Using the XML Parser API for C

5-4

Figure 5-1 XML Parser for C Calling Sequence

error callbacks

XmlCreate()error handler set SAX callback set

xml input file, buffer,
db, URL, . . .

XmlDestroy()

XmlEvNext()

SAX completes

DOM document

SAX:
callbacks invoked another

XmlEvCleanPPCtx()

XML Event Get API DOM:
query, edit, . . .

XmlEvLoadPPDoc()

XmlEvCreatePPCtx()

DOM constructed

Pull Parser Completes�
XmlEvDestroyPPCtx()

another

XmlFreeDocument()

OR

XmlLoadSax()�
or

XmlLoadDom()�

Chapter 5
Using the XML Parser API for C

5-5

5.2.3 Using the XML Parser for C: Basic Process
The basic process for using the XML parser for C is described.

Perform these steps in your application:

1. Initialize the parsing process with the XmlCreate() function. The following sample
code fragment is from DOMNamespace.c:

xmlctx *xctx;
...
xctx = XmlCreate(&ecode, (oratext *) "namespace_xctx", NULL);

2. Parse the input item, which can be an XML document or string buffer.

If you are parsing with DOM, invoke the XmlLoadDom() function. The following
sample code fragment is from DOMNamespace.c:

xmldocnode *doc;
...
doc = XmlLoadDom(xctx, &ecode, "file", DOCUMENT,
 "validate", TRUE, "discard_whitespace", TRUE,
NULL);

If you are parsing with SAX, invoke the XmlLoadSax() function. The following
sample code fragment is from SAXNamespace.c:

xmlerr ecode;
...
ecode = XmlLoadSax(xctx, &sax_callback, &sc, "file", DOCUMENT,
 "validate", TRUE, "discard_whitespace", TRUE,
NULL);

If you are using the pull parser, then include these steps to create the event
context and load the document to parse:

evctx = XmlEvCreatePPCtx(xctx, &xerr, NULL);
XmlEvLoadPPDoc(xctx, evctx, "File", input_filenames[i], 0, NULL);

3. If you are using the DOM interface, then include these steps:

• Use the XmlLoadDom() function to invoke XmlDomGetDocElem(). This step
invokes other DOM functions, which are typically node or print functions that
output the DOM document, as required. The following sample code fragment
is from DOMNamespace.c:

printElements(xctx, XmlDomGetDocElem(xctx, doc));

Chapter 5
Using the XML Parser API for C

5-6

• Invoke the XmlFreeDocument() function to clean up any data structures created
during the parse process. The following sample code fragment is from
DOMNamespace.c:

XmlFreeDocument(xctx, doc);

If you are using the SAX interface, then include these steps:

• Process the results of the invocation of XmlLoadSax() with a callback function, such
as:

xmlsaxcb saxcb = {
 UserStartDocument, /* user's own callback functions */
 UserEndDocument,
 /* ... */
};

if (XmlLoadSax(xctx, &saxcb, NULL, "file", "some_file.xml", NULL) !=
0)
 /* an error occured */

• Register the callback functions. You can set any of the SAX callback functions to
NULL if not needed.

If you are using the pull parser, iterate over the events using:

cur_event = XmlEvNext(evctx);

Use the Get APIs to get information about that event.

4. Use XmlFreeDocument() to clean up the memory and structures used during a parse. The
program does not free memory allocated for parameters passed to the SAX callbacks or
for nodes and data stored with the DOM parse tree until you invoke XMLFreeDocument()
or XMLDestroy(). The following sample code fragment is from DOMNamespace.c:

XmlFreeDocument(xctx, doc);

Either return to Step 2 or proceed to the next step.

For the pull parser invoke XmlEvCleanPPCtx() to release memory and structures used
during the parse. The application can invoke XmlEvLoadPPDoc() again to parse another
document. Or, it can invoke XMLEvDestroyPPCtx() after which the pull parser context
cannot be used again.

XmlEvCleanPPCtx(xctx, evctx);
...
XmlEvDestroyPPCtx(xctx, evctx);

5. Terminate the parsing process with XmlDestroy(). The following sample code fragment is
from DOMNamespace.c:

(void) XmlDestroy(xctx);

Chapter 5
Using the XML Parser API for C

5-7

If threads fork off somewhere in the sequence of invocations between initialization
and termination, the application produces unpredictable behavior and results.

You can use the memory callback functions XML_ALLOC_F and XML_FREE_F for your own
memory allocation. If you do, then specify both functions.

Related Topics

• Using the XML Pull Parser for C
The XML Pull Parser is an implementation of the XML Events interface. The XML
Pull Parser and the SAX parser are similar, but using the Pull Parser, the
application (consumer) drives the events, while in SAX, the parser (producer)
drives the events.

5.2.4 Running the XML Parser for C Demo Programs
The $ORACLE_HOME/xdk/demo/c/ (UNIX) and %ORACLE_HOME%\xdk\demo\c (Windows)
directories include several XML applications that show how to use the XML parser for
C with the DOM and SAX interfaces.

Table 5-3 describes the demos.

The make utility compiles the source file fileName.c to produce the demo program
fileName and the output file fileName.out . The fileName.std is the expected output.

Table 5-3 C Parser Demos

Directory Contents Demos

dom DOMNamespace.c
DOMSample.c
FullDom.c
FullDom.xml
NSExample.xml
Traverse.c
XPointer.c
class.xml
cleo.xml
pantry.xml

The following demo programs use the DOM API:

• The DOMNamespace program uses Namespace extensions to the DOM API. It
prints out all elements and attributes of NSExample.xml along with full
namespace information.

• The DOMSample program uses DOM APIs to display an outline of Cleopatra,
that is, the XML elements ACT and SCENE. The cleo.xml document contains
the XML version of Shakespeare's The Tragedy of Antony and Cleopatra.

• The FullDom program shows sample usage of the full DOM interface. It
exercises all the invocations. The program accepts FullDom.xml, which shows
the use of entities, as input.

• The Traverse program shows the use of DOM iterators, tree walkers, and
ranges. The program accepts the class.xml document, which describes a
college Calculus course, as input.

• The XPointer program shows the use of the XML Pointer Language by
locating the children of the <pantry> element in pantry.xml.

sax NSExample.xml
SAXNamespace.c
SAXSample.c
cleo.xml

The following demo programs use the SAX APIs:

• The SAXNamespace program uses namespace extensions to the SAX API. It
prints out all elements and attributes of NSExample.xml along with full
namespace information.

• The SAXSample program uses SAX APIs to show all lines in the play Cleopatra
containing a given word. If you do not specify a word, then it uses the word
"death." The cleo.xml document contains the XML version of Shakespeare's
The Tragedy of Antony and Cleopatra.

You can find documentation that describes how to compile and run the sample
programs in the README in the same directory. The basic steps are:

Chapter 5
Using the XML Parser API for C

5-8

1. Change into the $ORACLE_HOME/xdk/demo/c directory (UNIX) or %ORACLE_HOME%
\xdk\demo\c directory (Windows).

2. Make sure that your environment variables are set as described in Setting Up XDK for C
Environment Variables on UNIX and Setting Up XDK for C Environment Variables on
Windows.

3. Run make (UNIX) or Make.bat (Windows) at the system prompt. The make utility changes
into each demo subdirectory and runs make to do this:

a. Compiles the C source files with the cc utility. For example, the Makefile in
the $ORACLE_HOME/xdk/demo/c/dom directory includes these line:

$(CC) -o DOMSample $(INCLUDE) $@.c $(LIB)
b. Runs each demo program and redirects the output to a file. For example, the

Makefile in the $ORACLE_HOME/xdk/demo/c/dom directory includes this line:

./DOMSample > DOMSample.out
4. Compare the *.std files to the *.out files for each program. The *.std file contains the

expected output for each program. For example, DOMSample.std contains the expected
output from running DOMSample.

5.2.5 Using the C XML Parser Command-Line Utility
The xml utility, which is located in $ORACLE_HOME/bin (UNIX) or %ORACLE_HOME%\bin
(Windows), is a command-line interface that parses XML documents. It checks for both well-
formedness and validity.

To use xml ensure that your environment is set up as described in Setting Up XDK for C
Environment Variables on UNIX and Setting Up XDK for C Environment Variables on
Windows.

Use this syntax on the command line to invoke xml. Use xml.exe for Windows:

xml [options] [document URI]
xml -f [options] [document filespec]

Table 5-4 describes the command-line options.

Table 5-4 C XML Parser Command-Line Options

Option Description

-B BaseURI Sets the base URI for the XSLT processor. The base URI of http://pqr/
xsl.txt resolves pqr.txt to http://pqr/pqr.txt.

-c Checks well-formedness, but performs no validation.

-e encoding Specifies default input file encoding ("incoding").

-E encoding Specifies DOM/SAX encoding ("outcoding").

-f file Interprets the file as filespec, not URI.

-G xptr_exprs Evaluates XPointer scheme examples given in a file.

-h Shows usage help and basic list of command-line options.

-hh Shows complete list command-line options.

-i n Specifies the number of times to iterate the XSLT processing.

Chapter 5
Using the XML Parser API for C

5-9

Table 5-4 (Cont.) C XML Parser Command-Line Options

Option Description

-l language Specifies the language for error reporting.

-n Traverses the DOM and reports the number of elements, as shown in this
sample output:

ELEMENT 1
 PCDATA 1
 DOC 1
 TOTAL 3 * 60 = 180

-o XSLoutfile Specifies the output file of the XSLT processor.

-p Prints the document/DTD structures after the parse. For example, the root
element <greeting>hello</greeting> is printed as:

+---ELEMENT greeting
 +---PCDATA "hello"

-P Prints the document from the root element. For example, the root element
<greeting>hello</greeting> is printed as:

<greeting>hello</greeting>

-PP Prints from the root node (DOC) and includes the XML declaration.

-PE encoding Specifies the encoding for -P or -PP output.

-PX Includes the XML declaration in the output.

-s stylesheet Specifies the XSLT stylesheet.

-v Displays the XDK parser version, and then exits.

-V var value Tests top-level variables in CXSLT.

-w Preserves all white space.

-W Stops parsing after a warning.

-x Exercises the SAX interface and prints the document, as shown in this
sample output:

StartDocument
XMLDECL version='1.0' encoding=FALSE
<greeting>
 "hello"
</greeting>
EndDocument

5.2.5.1 Using the XML Parser Command-Line Utility: Example
You can test xml documents using the various XML files located in $ORACLE_HOME/xdk/
demo/c.

Example 5-1 displays the contents of NSExample.xml.

Chapter 5
Using the XML Parser API for C

5-10

You can parse this file, count the number of elements, and display the DOM tree as shown in
this example:

xml -np NSEample.xml > xml.out

Example 5-2shows the output.

Example 5-1 NSExample.xml

<!DOCTYPE doc [
<!ELEMENT doc (child*)>
<!ATTLIST doc xmlns:nsprefix CDATA #IMPLIED>
<!ATTLIST doc xmlns CDATA #IMPLIED>
<!ATTLIST doc nsprefix:a1 CDATA #IMPLIED>
<!ELEMENT child (#PCDATA)>
]>
<doc nsprefix:a1 = "v1" xmlns="http://www.w3c.org"
 xmlns:nsprefix="http://www.oracle.com">
<child>
This element inherits the default Namespace of doc.
</child>
</doc>

Example 5-2 xml.out

 ELEMENT 2
 PCDATA 1
 DOC 1
 DTD 1
 ELEMDECL 2
 ATTRDECL 3
 TOTAL 10 * 112 = 1120
+---ELEMENT doc [nsprefix:a1='v1'*, xmlns='http://www.w3c.org'*,
xmlns:nsprefix=
'http://www.oracle.com'*]
 +---ELEMENT child
 +---PCDATA "
This element inherits the default Namespace of doc.
"

5.3 Using the DOM API for C
Topics here include controlling encoding for XML documents, using NULL-terminated and
length-encoded functions, and handling errors.

5.3.1 Controlling the Data Encoding of XML Documents for the C API
XML data occurs in many encodings. You can control the XML encoding in various ways.

• Specify a default encoding to assume for files that are not self-describing

• Specify the presentation encoding for DOM or SAX

Chapter 5
Using the DOM API for C

5-11

• Re-encode when a DOM is serialized

Input XML data is always encoded. Some encodings are entirely self-describing, such
as 16-bit encoding of Unicode (UTF-16), which requires a specific Byte Order Mark
(BOM) before the start of the actual data. The XMLDecl or Multipurpose Internet Mail
Extensions (MIME) header of the document can also specify an encoding. If the
application cannot determine the specific encoding, then it applies the default input
encoding. If you do not provide a default, then the application assumes UTF-8 on
ASCII platforms and UTF-EBCDIC on EBCDIC platforms.

The API makes a provision for cases when the encoding data of the input document is
corrupt. For example, suppose an ASCII document with an XMLDecl of
encoding=ascii is blindly converted to EBCDIC. The new EBCDIC document contains
(in EBCDIC) an XMLDecl that incorrectly claims the document is ASCII. The correct
behavior for a program that is re-encoding XML data is to regenerate but not convert
the XMLDecl. The XMLDecl is metadata, not data itself. This rule is often ignored,
however, which causes corrupt documents. To work around this problem, the API
provides an additional flag that enables you to forcibly set the input encoding, thereby
overcoming an incorrect XMLDecl.

The precedence rules for determining input encoding are:

1. Forced encoding as specified by the user

Note:

Forced encoding can cause a fatal error if there is a conflict. For
example, the input document is UTF-16 and starts with a UTF-16 BOM,
but the user specifies a forced UTF-8 encoding. In this case, the parser
objects about the conflict.

2. Protocol specification (HTTP header, and so on)

3. XMLDecl specification

4. User's default input encoding

5. The default, which is UTF-8 on ASCII platforms or UTF-E on EBCDIC platforms

After the application has determined the input encoding, it can parse the document
and present the data. You are allowed to choose the presentation encoding; the data is
in that encoding regardless of the original input encoding.

When an application writes back a DOM in serialized form, it can choose at that time
to re-encode the presentation data. Thus, you can place the serialized document in
any encoding.

5.3.2 Using NULL-Terminated and Length-Encoded C API Functions
The native string representation in C is null-terminated. Thus, the primary DOM
interface takes and returns null-terminated strings. When stored in table form,
however, Oracle XML DB data is not null-terminated but length-encoded.
Consequently, XDK provides an additional set of length-encoded APIs for the high-
frequency cases to improve performance.

In particular, the DOM functions in Table 5-5 have dual APIs.

Chapter 5
Using the DOM API for C

5-12

Table 5-5 NULL-Terminated and Length-Encoded C API Functions

NULL-Terminated API Length-Encoded API

XmlDomGetNodeName() XmlDomGetNodeNameLen()
XmlDomGetNodeLocal() XmlDomGetNodeLocalLen()
XmlDomGetNodeURI() XmlDomGetNodeURILen()
XmlDomGetNodeValue() XmlDomGetNodeValueLen()
XmlDomGetAttrName() XmlDomGetAttrNameLen()
XmlDomGetAttrLocal() XmlDomGetAttrLocalLen()
XmlDomGetAttrURI() XmlDomGetAttrURILen()
XmlDomGetAttrValue() XmlDomGetAttrValueLen()

5.3.3 Handling Errors with the C API
The C API functions typically either return a numeric error code (0 for success, nonzero on
failure), or pass back an error code through a variable. In all cases, the API stores error
codes. Your application can retrieve the most recent error by invoking the
XmlDomGetLastError() function.

By default, the functions output error messages to stderr. However, you can register an error
message callback at initialization time. When an error occurs, the application invokes the
registered callback and does not print an error.

5.4 Using orastream Functions
The orastream function API is an interface that enables you to stream large chunks of data
out of a node instead of getting it all in one piece. Nodes of greater than 64 KB are thus
accessible.

The orastream API represents a generic input or output stream. This interface is available to
XDK users through xml.h and is defined by the orastream data structure and a set of
functions that implement the interface. The creator of the stream passes a list of stream
function addresses, along with a stream context to OraStreamInit. This function returns an
instance of an orastream structure.

Several stream properties are specified at the time of initialization. If read or write is provided,
the stream operates in byte mode using OraStreamRead() and OraStreamWrite(). If
"read_char" or "write_char" is provided, the stream operates in character mode using
OraStreamReadChar() and OraStreamWriteChar(). In character mode only complete
characters are read or written and are never split over buffer boundaries.

A stream context is used to represent the state of the orastream and it persists for the lifetime
of a stream.

Just like the input or output streams in Java, a source or a sink for the data is always
specified. Output streams store the address of the external stream or object where they must
populate the data. Similarly, input streams store the address of the object that is read.

Here are the orastream functions:

Chapter 5
Using orastream Functions

5-13

struct orastream;
typedef struct orastream orastream;
typedef ub4 oraerr; /* Error code: zero is success, non-zero is failure */

/* Initialize (Create) & Destroy (Terminate) stream object */

orastream *OraStreamInit(void *sctx, void *sid, oraerr *err, ...);
oraerr OraStreamTerm(orastream *stream);

/* Set or Change SID (streamID) for stream (returns old stream ID through osid)*/

oraerr OraStreamSid(orastream *stream, void *sid, void **osid);

/* Is a stream readable or writable? */

boolean OraStreamReadable(orastream *stream);
boolean OraStreamWritable(orastream *stream);

/* Open & Close stream */

oraerr OraStreamOpen(orastream *stream, ubig_ora *length);
oraerr OraStreamClose(orastream *stream);

/* Read | Write byte stream */

oraerr OraStreamRead(orastream *stream, oratext *dest, ubig_ora size,
 oratext **start, ubig_ora *nread, ub1 *eoi);
oraerr OraStreamWrite(orastream *stream, oratext *src, ubig_ora size,
 ubig_ora *nwrote);

/* Read | Write char stream */

oraerr OraStreamReadChar(orastream *stream, oratext *dest, ubig_ora size,
 oratext **start, ubig_ora *nread, ub1 *eoi);
oraerr OraStreamWriteChar(orastream *stream, oratext *src, ubig_ora size,
 ubig_ora *nwrote);

/* Return handles for stream */

orastreamhdl *OraStreamHandle(orastream *stream);

/* Returns status: if the stream object is currently opened or not */

boolean OraStreamIsOpen(orastream *stream);

The stream error codes are:

#define ORASTREAM_ERR_NULL_POINTER 1 /* NULL pointer given */
#define ORASTREAM_ERR_BAD_STREAM 2 /* invalid stream object */
#define ORASTREAM_ERR_WRONG_DECTION 3 /* tried wrong-direction I/O */
#define ORASTREAM_ERR_UNKNOWN_PROPERTY 4 /* unknown creation prop */
#define ORASTREAM_ERR_NO_DIRECTION 5 /* neither read nor write? */
#define ORASTREAM_ERR_BI_DIRECTION 6 /* both read any write? */
#define ORASTREAM_ERR_NOT_OPEN 7 /* stream not open */
#define ORASTREAM_ERR_WRONG_MODE 8 /* wrote byte/char mode */
/* --- Open errors --- */
#define ORASTREAM_ERR_CANT_OPEN 10 /* can't open stream */
/* --- Close errors --- */
#define ORASTREAM_ERR_CANT_CLOSE 20 /* can't close stream */

Chapter 5
Using orastream Functions

5-14

See Also:

Oracle Database XML C API Reference for reference information such as
parameter definitions in the orastream API

Example 5-3 Using orastream Functions

int test_read()
{
 xmlctx *xctx = NULL;
 oratext *barray, *docName = "NSExample.xml";
 orastream* ostream = (orastream *) 0;
 xmlerr ecode = 0;
 ub4 wcount = 0;
 ubig_ora destsize, nread;
 oraerr oerr = 0;
 ub1 eoi = 0;
 nread = destsize = 1024;
 if (!(xctx = XmlCreateNew(&ecode, (oratext *)"stream_xctx", NULL, wcount,
 NULL)))
 {
 printf("Failed to create XML context, error %u\n", (unsigned)ecode);
 return -1;
 }

 barray = XmlAlloc(xctx, sizeof(oratext) * destsize);

 /* open function should be specified in order to read correctly. */
 if (!(ostream = OraStreamInit(NULL,docName, (oraerr *)&ecode,
 "open", fileopen,
 "read", fileread,
 NULL)))
 {
 printf("Failed to initialize OrsStream, error %u\n",(unsigned)ecode);
 return -1;
 }

 /* check readable and writable */
 if (OraStreamReadable(ostream))
 printf("ostream is readable\n");
 else
 printf("ostream is not readable\n");

 if (OraStreamWritable(ostream))
 printf("ostream is writable\n");
 else
 printf("ostream is not writable\n");

 if (oerr = OraStreamRead(ostream, barray, destsize, &barray, &nread, &eoi))
 {
 printf("Failed to read due to orastream was not open, error %u\n", oerr);
 }

 /* open orastream */
 OraStreamOpen(ostream, NULL);

 /* read document */
 OraStreamRead(ostream, barray, destsize, &barray, &nread, &eoi);

Chapter 5
Using orastream Functions

5-15

 OraStreamTerm(ostream);

 XmlDestroy(xctx);
 return 0;
}
ORASTREAM_OPEN_F(fileopen, sctx, sid, hdl, length)
{
 FILE *fh = NULL;

 printf("Opening orastream %s...\n", (oratext *)sid);

 if (sid && ((fh= fopen(sid, "r")) != NULL))
 {
 printf("Opening orastream %s...\n", (oratext *)sid);
 }
 else
 {
 printf("Failed to open input file.\n");
 return -1;
 }

 /* store file handle generically, NULL means stdout */
 hdl->ptr_orastreamhdl = fh;

 return XMLERR_OK;
}

ORASTREAM_READ_F(fileread, sctx, sid, hdl,
 dest, size, start, nread, eoi)
{
 FILE *fh = NULL;
 int i =0;
 printf("Reading orastream %s ...\n", (oratext *)sid);

 // read data from file to dest
 if ((fh = (FILE *) hdl->ptr_orastreamhdl) != NULL)
 *nread = fread(dest, 1, size, fh);
 printf("Read %d bytes from orastream...\n", (int) *nread);

 *eoi = (*nread < size);
 if (start)
 *start = dest;

 printf("printing document ...\n");
 for(i =0; i < *nread; i++)
 printf("%c", (char)dest[i]);
 printf("\nend ...\n");
 return ORAERR_OK;
}

Chapter 5
Using orastream Functions

5-16

5.5 Using the SAX API for C
To use SAX, initialize an xmlsaxcb structure with function pointers and pass it to
XmlLoadSax(). You can also include a pointer to a user-defined context structure, which you
pass to each SAX function.

See Also:

Oracle Database XML C API Reference for the SAX callback structure

5.6 Using the XML Pull Parser for C
The XML Pull Parser is an implementation of the XML Events interface. The XML Pull Parser
and the SAX parser are similar, but using the Pull Parser, the application (consumer) drives
the events, while in SAX, the parser (producer) drives the events.

Both the XML Pull Parser and SAX represent the document as a sequence of events, with
start tags, end tags, and comments. XML Pull Parser gives control to the application by
exposing a simple set of APIs and an underlying set of events. Methods such as XmlEvNext
allow an application to ask for (or pull) the next event, rather than handling the event in a
callback, as in SAX. Thus, the application has more procedural control over XML processing.
Also, the application can decide to stop further processing, unlike a SAX application, which
parses the entire document.

5.6.1 Using Basic XML Pull Parsing Capabilities
The steps required to use the XML Pull Parser are described.

1. Invoke XmlCreate to initialize the XML meta-context.

2. Initialize the Pull Parser context by invoking the XmlEvCreatePPCtx function, which
creates and returns the event context.

The XmlEvCreatePPCtx function supports all the properties supported by XmlLoadDom and
XmlLoadSax, plus some additional ones.

The XmlEvCreatePPCtx and XmlEvCreatePPCtxVA functions are fully implemented.

3. Ensure that the event context is passed to all subsequent invocations of the Pull Parser.

4. Terminate the Pull Parser context by invoking the XmlEvDestoryPPCtx function, to clean
up memory.

5. Destroy the XML meta-context by invoking the XmlDestoryCtx function.

5.6.1.1 XML Event Context
The XML event context structure is shown.

Chapter 5
Using the SAX API for C

5-17

Example 5-4 XML Event Context

typedef struct {
 void *ctx_xmlevctx; /* implementation specific
context */
 xmlevdisp *disp_xmlevctx; /* dispatch table */
 ub4 checkword_xmlevctx; /* checkword for integrity
check */
 ub4 flags_xmlevctx; /* mode; default:
expand_entity */
 struct xmlevctx *input_xmlevctx; /* input xmlevctx; chains the
XML Event
 context */
} xmlevctx;

5.6.1.2 About the XML Event Context
Each XML Pull Parser is allowed to create its own context and implement its own API
functions.

• Dispatch Table

The dispatch table, disp_xmlevctx, contains one pointer for each API function,
except for the XmlEvCreatePPCtx, XmlEvCreatePPCtxVA, XmlEvDestoryPPCtx,
XmlEvLoadPPDoc, and XmlEvCleanPPCtx functions.

When the event context is created, the pointer disp_xmlevctx is initialized with the
address of that static table.

• Implementation-Specific Event Context

The field ctx_xmlevctx must be initialized with the address of the context specific
to this invocation of the particular implementation. The implementation-specific
event context is of type *void, so that it can differ for different applications.

• Input Event Context

Each Pull Parser can specify an input event context, xmlevctx. This field enables
the parser to chain multiple event producers. As a result, if a dispatch function is
specified as NULL in a context, the application uses the next non-null dispatch
function in the chain of input event contexts. The base xmlevctx must ensure that
all dispatch function pointers are non-null.

5.6.2 Parsing Multiple XML Documents
After creating and initializing the XML Event Context, an application can parse multiple
documents using repeated invocations of XmlEvLoadPPDoc and XmlEvCleanPPCtx.

The properties defined by the application during the XML Event Context creation
cannot be changed for each invocation of the XmlLoadPPDoc function. to change the
properties, destroy the event context and then re-create it.

After XmlEvCleanPPCtx cleans up the internal structure of the current parser, the event
context can be reused to parse another document.

Chapter 5
Using the XML Pull Parser for C

5-18

5.6.3 ID Callback
You can provide a callback to convert text-based names to 8-byte identifiers (IDs).

Callback Function Signature

typedef sb8 (*xmlev_id_cb_funcp)(void *ctx , ub1 type, ub1 *token, ub4 tok_len,
 sb8 nmspid, boolean isAttribute);

Return Value

sb8: an 8-byte ID.

Arguments

• *ctx: The implementation context.

• type: The type, which is indicated by this enumeration:

typedef enum
{
 XML_EVENT_ID_URI,
 XML_EVENT_ID_QNAME,
}xmlevidtype;

• *token and tok_len: The actual text to be converted.

• nmspid: The namespace ID.

• isAttribute: A Boolean value indicating an attribute.

Internally, the XmlEvGetTagId and XmlEvGetAttrID APIs invoke this callback twice, once to
fetch the namespace ID and once to fetch the actual ID of the tag or the attribute Qname.

The XmlEvGetTagUriID and XmlEvGetAttrUriID functions invoke this callback once to get the
ID of the corresponding Universal Resource Identifier (URI).

If a callback is not supplied, an error XML_ERR_EVENT_NOIDCBK is returned when these APIs
are used.

5.6.4 Error Handling for the XML Pull Parser
Error handling for the XML Pull Parser is described.

5.6.4.1 Parser Errors
Errors raised by the parser are described.

The XML Pull Parser returns the message XML_EVENT_FATAL_ERROR when it throws an error
because the input document is malformed. Function XmlEvGetError is provided to get the
error number and message.

During the XmlEvCreatePPCtx operation, any error handler supplied by the application during
XmlCreate is overridden. The application must invoke the XmlErrSetHandler function after
the XmlEvDestroyPPCtx operation to restore the original callback.

Chapter 5
Using the XML Pull Parser for C

5-19

5.6.4.2 Programming Errors
To handle programmatic errors. XDK provides a callback that the application can
supply when creating an event context. This callback is invoked when the application
invokes an illegal API.

The callback signature is:

typedef void (* xmlev_err_cb_funcp)(xmlctx *xctx, xmlevctx *evctx,
 xmlevtype cur_event);

An example of an illegal API invocation is:

XmlEvGetName cannot be called for the XML_EVENT_CHARACTERS event.

5.6.5 Sample Pull Parser Application
A sample pull parser application, a document to be parsed, and a list of the events that
the application generates from the document are presented.

Example 5-5 shows the sample application code.

Example 5-6 shows the sample document to be parsed.

Example 5-7 shows the sequence of events generated when the attribute events
property is FALSE and the expand entities properties is TRUE.

Example 5-5 Sample Pull Parser Application Example

include "xml.h"
include "xmlev.h"
...
xmlctx *xctx;
xmlevctx *evtcx;
if (!(xctx = XmlCreate(&xerr, (oratext *) "test")))
{
 printf("Failed to create XML context, error %u\n", (unsigned) xerr);
 return -1;
}
...
if(!(evctx = XmlEvCreatePPCtx(xctx, &xerr, NULL)))
{
 printf("Failed to create EVENT context, error %u\n", (unsigned) xerr);
 return -1;
 }
for(i = 0; i < numDocs; i++)
{
 if (xerr = XmlEvLoadPPDoc(xctx, evctx, "file", input_filenames[i], 0, NULL)
 {
 printf("Failed to load the document, error %u\n", (unsigned) xerr);
 return -1;
 }
...
 for(;;)
 {
 xmlevtype cur_event;
 cur_event = XmlEvNext(evctx);
 switch(cur_event)
 {

Chapter 5
Using the XML Pull Parser for C

5-20

 case XML_EVENT_FATAL_ERROR:
 XmlEvGetError(evctx, (oratext **)&errmsg);
 printf("Error %s\n", errmsg);
 return;
 case XML_EVENT_START_ELEMENT:
 printf("<%s>", XmlEvGetName0(evctx));
 break;
 case XML_EVENT_END_DOCUMENT:
 printf("<%s>", XmlEvGetName0(evctx));
 return;
 }
 }
 XmlEvCleanPPCtx(xctx, evctx);
}
XmlEvDestroyPPCtx(xctx, evctx);
XmlDestroy(xctx);

Example 5-6 Sample Document to Parse

<!DOCTYPE doc [
<!ENTITY ent SYSTEM "file:attendees.txt">
<!ELEMENT doc ANY>
<!ELEMENT meeting (topic, date, publishAttendees)>
<!ELEMENT publishAttendees (#PCDATA)>
<!ELEMENT topic (#PCDATA)>
<!ELEMENT date (#PCDATA)>
]>
<!-- Begin Document -->
<doc>
 <!-- Info about the meeting -->
 <meeting>
 <topic>Group meeting</topic>
 <date>April 25, 2005</date>
 <publishAttendees>&ent;</publishAttendees>
 </meeting>
</doc>
<!-- End Document -->

Example 5-7 Events Generated by Parsing a Sample Document

XML_EVENT_START_DOCUMENT
XML_EVENT_START_DTD
XML_EVENT_PE_DECLARATION
XML_EVENT_ELEMENT_DECLARATION
XML_EVENT_ELEMENT_DECLARATION
XML_EVENT_ELEMENT_DECLARATION
XML_EVENT_ELEMENT_DECLARATION
XML_EVENT_ELEMENT_DECLARATION
XML_EVENT_END_DTD
XML_EVENT_COMMENT
XML_EVENT_START_ELEMENT
XML_EVENT_SPACE
XML_EVENT_COMMENT
XML_EVENT_SPACE
XML_EVENT_START_ELEMENT
XML_EVENT_START_ELEMENT
XML_EVENT_CHARACTERS
XML_EVENT_END_ELEMENT
XML_EVENT_START_ELEMENT
XML_EVENT_CHARACTERS
XML_EVENT_END_ELEMENT

Chapter 5
Using the XML Pull Parser for C

5-21

XML_EVENT_START_ELEMENT
XML_EVENT_START_ENTITY
XML_EVENT_CHARACTERS
XML_EVENT_END_ENTITY
XML_EVENT_END_ELEMENT
XML_EVENT_END_ELEMENT
XML_EVENT_SPACE
XML_EVENT_END_ELEMENT
XML_EVENT_COMMENT
XML_EVENT_END_DOCUMENT

5.7 Using OCI and the XDK for C API
This section describes accessing XDK for C functions from Oracle Call Interface (OCI).

5.7.1 Using XMLType Functions and Descriptions
You can use the C API for XML with XMLType columns in the database. An Oracle Call
Interface (OCI) program can access XML data stored in a table by initializing the
values of OCI handles.

This applies to handles such as these:

• Environment handle

• Service handle

• Error handle

• Optional parameters

The program can pass these input values to the function OCIXmlDbInitXmlCtx(),
which returns an XML context. After the program invokes the C API, the function
OCIXmlDbFreeXmlCtx() frees the context.

Table 5-6 XMLType Functions

Function Name Description

XmlCreateDocument() Create empty XMLType instance

XmlLoadDom() and so on Create from a source buffer

XmlXPathEvalexpr() and family Extract an XPath expression

XmlXslProcess() and family Transform using an Extensible Stylesheet Language
Transformation (XSLT) stylesheet

XmlXPathEvalexpr() and family Check if an XPath exists

XmlDomIsSchemaBased() Is document schema-based?

XmlDomGetSchema() Get schema information

XmlDomGetNodeURI() Get document namespace

XmlSchemaValidate() Validate using schema

Cast (void *) to (xmldocnode *) Get DOM from XMLType
Cast (xmldocnode *) to (void *) Get XMLType from DOM

Chapter 5
Using OCI and the XDK for C API

5-22

5.7.2 Initializing an XML Context for Oracle XML DB
An XML context is a required parameter in each C DOM API function. This opaque context
encapsulates information pertaining to data encoding, error message language, and so on.
The contents of this XML context are different for XDK applications and for Oracle XML DB
applications.

Note:

Do not use an XML context for XDK in an Oracle XML DB application, or an XML
context for Oracle XML DB in an XDK application.

For Oracle XML DB, the two OCI functions that initialize and free an XML context have these
prototypes:

xmlctx *OCIXmlDbInitXmlCtx (OCIEnv *envhp, OCISvcCtx *svchp, OCIError *errhp,
 ocixmldbparam *params, ub4 num_params);

void OCIXmlDbFreeXmlCtx (xmlctx *xctx);

See Also:

• Oracle Call Interface Programmer's Guide for reference material on the
functions

• Oracle Call Interface Programmer's Guide for a discussion about OCI support
for XML

• Oracle Database XML C API Reference for reference information on the DOM
APIs

5.7.3 Creating XMLType Instances on the Client
You can construct new XMLType instances on the client by using the XmlLoadDom()
invocations.

Follow these basic steps:

1. You must initialize the xmlctx, as showd in the example in Using the DOM API for C.

2. You can construct the XML data itself from these sources:

• User buffer

• Local file

• URI

The return value from these is an (xmldocnode *), which you can use in the rest of the
common C API.

3. You can cast the (xmldocnode *) to a (void *) and directly provide it as the bind value if
required.

Chapter 5
Using OCI and the XDK for C API

5-23

You can construct empty XMLType instances by invoking XmlCreateDocument(). This
function would be equivalent to an OCIObjectNew() for other types. You can operate
on the (xmldocnode *) returned by the preceding invocation and finally cast it to a
(void *) if it must be provided as a bind value.

5.7.4 Operating on XML Data in the Database Server
You can operate on XML data in Oracle Database using OCI statements. You can bind
and define XMLType values using xmldocnode and use OCI statements to extract XML
data from the database. You can use this data directly in C DOM functions or bind
values directly to SQL statements.

5.7.5 Using OCI and the XDK for C API: Examples
Examples show how to use the DOM API to construct and save an XML schema-
based document and to modify a database document.

Example 5-8 shows how to construct a schema-based document with the DOM API
and save it to the database. You must include the header files xml.h and ocixmldb.h.

Example 5-9 shows how to get a document from the database and modify it with the
DOM API.

Example 5-8 Constructing a Schema-Based Document with the DOM API

#include <xml.h>
#include <ocixmldb.h>
static oratext tlpxml_test_sch[] = "<TOP xmlns='example1.xsd'\n\
xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' \n\
xsi:schemaLocation='example1.xsd example1.xsd'/>";

void example1()
{
 OCIEnv *envhp;
 OCIError *errhp;
 OCISvcCtx *svchp;
 OCIStmt *stmthp;
 OCIDuration dur;
 OCIType *xmltdo;

 xmldocnode *doc;
 ocixmldbparam params[1];
 xmlnode *quux, *foo, *foo_data;
 xmlerr err;

 /* Initialize envhp, svchp, errhp, dur, stmthp */
 /* */

 /* Get an xml context */
 params[0].name_ocixmldbparam = XCTXINIT_OCIDUR;
 params[0].value_ocixmldbparam = &dur;
 xctx = OCIXmlDbInitXmlCtx(envhp, svchp, errhp, params, 1);

 /* Start processing */

Chapter 5
Using OCI and the XDK for C API

5-24

 printf("Supports XML 1.0: %s\n",
 XmlHasFeature(xctx, (oratext *) "xml", (oratext *) "1.0") ? "YES" :
"NO");

 /* Parsing a schema-based document */
 if (!(doc = XmlLoadDom(xctx, &err, "buffer", tlpxml_test_sch,
 "buffer_length", sizeof(tlpxml_test_sch)-1,
 "validate", TRUE, NULL)))
 {
 printf("Parse failed, code %d\n");
 return;
 }

 /* Create some elements and add them to the document */
 top = XmlDomGetDocElem(xctx, doc);
 quux = (xmlnode *) XmlDomCreateElem(xctx ,doc, (oratext *) "QUUX");
 foo = (xmlnode *) XmlDomCreateElem(xctx, doc, (oratext *) "FOO");
 foo_data = (xmlnode *) XmlDomCreateText(xctx, doc, (oratext *)"foo's
data");
 foo_data = XmlDomAppendChild(xctx, (xmlnode *) foo, (xmlnode *)
foo_data);
 foo = XmlDomAppendChild(xctx, quux, foo);
 quux = XmlDomAppendChild(xctx, top, quux);

 XmlSaveDom(xctx, &err, top, "stdio", stdout, NULL);
 XmlSaveDom(xctx, &err, doc, "stdio", stdout, NULL);

 /* Insert the document to my_table */
 ins_stmt = "insert into my_table values (:1)";

 status = OCITypeByName(envhp, errhp, svchp, (const text *) "SYS",
 (ub4) strlen((char *)"SYS"), (const text *) "XMLTYPE",
 (ub4) strlen((char *)"XMLTYPE"), (CONST text *) 0,
 (ub4) 0, dur, OCI_TYPEGET_HEADER,
 (OCIType **) &xmltdo)) ;

 if (status == OCI_SUCCESS)
 {
 exec_bind_xml(svchp, errhp, stmthp, (void *)doc, xmltdo, ins_stmt));
 }

 /* free xml ctx */
 OCIXmlDbFreeXmlCtx(xctx);
}

/*--*/
/* execute a sql statement which binds xml data */
/*--*/
sword exec_bind_xml(svchp, errhp, stmthp, xml, xmltdo, sqlstmt)
OCISvcCtx *svchp;
OCIError *errhp;
OCIStmt *stmthp;
void *xml;
OCIType *xmltdo;
OraText *sqlstmt;

Chapter 5
Using OCI and the XDK for C API

5-25

{
 OCIBind *bndhp1 = (OCIBind *) 0;
 OCIBind *bndhp2 = (OCIBind *) 0;
 sword status = 0;
 OCIInd ind = OCI_IND_NOTNULL;
 OCIInd *indp = &ind;

 if(status = OCIStmtPrepare(stmthp, errhp, (OraText *)sqlstmt,
 (ub4)strlen((char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT)) {
 return OCI_ERROR;
 }

 if(status = OCIBindByPos(stmthp, &bndhp1, errhp, (ub4) 1, (dvoid *)
0,
 (sb4) 0, SQLT_NTY, (dvoid *) 0, (ub2 *)0,
 (ub2 *)0, (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT)) {
 return OCI_ERROR;
 }

 if(status = OCIBindObject(bndhp1, errhp, (CONST OCIType *) xmltdo,
 (dvoid **) &xml, (ub4 *) 0, (dvoid **) &indp, (ub4 *)
0)) {
 return OCI_ERROR;
 }

 if(status = OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0, (ub4)
OCI_DEFAULT)) {
 return OCI_ERROR;
 }

 return OCI_SUCCESS;
}

Example 5-9 Modifying a Database Document with the DOM API

#include <xml.h>
#include <ocixmldb.h>
sword example2()
{
 OCIEnv *envhp;
 OCIError *errhp;
 OCISvcCtx *svchp;
 OCIStmt *stmthp;
 OCIDuration dur;
 OCIType *xmltdo;

 xmldocnode *doc;
 xmlnodelist *item_list; ub4 ilist_l;
 ocixmldbparam params[1];
 text *sel_xml_stmt = (text *)"SELECT xml_col FROM my_table";
 ub4 xmlsize = 0;
 sword status = 0;

Chapter 5
Using OCI and the XDK for C API

5-26

 OCIDefine *defnp = (OCIDefine *) 0;

 /* Initialize envhp, svchp, errhp, dur, stmthp */
 /* ... */

 /* Get an xml context */
 params[0].name_ocixmldbparam = XCTXINIT_OCIDUR;
 params[0].value_ocixmldbparam = &dur;
 xctx = OCIXmlDbInitXmlCtx(envhp, svchp, errhp, params, 1);

 /* Start processing */
 if(status = OCITypeByName(envhp, errhp, svchp, (const text *) "SYS",
 (ub4) strlen((char *)"SYS"), (const text *) "XMLTYPE",
 (ub4) strlen((char *)"XMLTYPE"), (CONST text *) 0,
 (ub4) 0, dur, OCI_TYPEGET_HEADER,
 (OCIType **) xmltdo_p)) {
 return OCI_ERROR;
 }

 if(!(*xmltdo_p)) {
 printf("NULL tdo returned\n");
 return OCI_ERROR;
 }

 if(status = OCIStmtPrepare(stmthp, errhp, (OraText *)selstmt,
 (ub4)strlen((char *)selstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT)) {
 return OCI_ERROR;
 }

 if(status = OCIDefineByPos(stmthp, &defnp, errhp, (ub4) 1, (dvoid *) 0,
 (sb4) 0, SQLT_NTY, (dvoid *) 0, (ub2 *)0,
 (ub2 *)0, (ub4) OCI_DEFAULT)) {
 return OCI_ERROR;
 }

 if(status = OCIDefineObject(defnp, errhp, (OCIType *) *xmltdo_p,
 (dvoid **) &doc,
 &xmlsize, (dvoid **) 0, (ub4 *) 0)) {
 return OCI_ERROR;
 }

 if(status = OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0, (ub4)
OCI_DEFAULT)) {
 return OCI_ERROR;
 }

 /* We have the doc. Now we can operate on it */
 printf("Getting Item list...\n");

 item_list = XmlDomGetElemsByTag(xctx,(xmlelemnode *) elem,(oratext
*)"Item");
 ilist_l = XmlDomGetNodeListLength(xctx, item_list);
 printf(" Item list length = %d \n", ilist_l);

Chapter 5
Using OCI and the XDK for C API

5-27

 for (i = 0; i < ilist_l; i++)
 {
 elem = XmlDomGetNodeListItem(xctx, item_list, i);
 printf("Elem Name:%s\n", XmlDomGetNodeName(xctx, fragelem));
 XmlDomRemoveChild(xctx, fragelem);
 }

 XmlSaveDom(xctx, &err, doc, "stdio", stdout, NULL);

 /* free xml ctx */
 OCIXmlDbFreeXmlCtx(xctx);

 return OCI_SUCCESS;
}

Chapter 5
Using OCI and the XDK for C API

5-28

6
Using Binary XML with C

An explanation is given of how to use binary Extensible Markup Language (binary XML) with
C.

6.1 Introduction to Binary XML for C
Client-side processing of Extensible Markup Language (XML) data can use either XMLType
data stored in the database, including data in binary XML format, or transient data that is not
in the database.

6.2 Prerequisites for Using Binary XML with C
This chapter assumes that you are familiar with the XML Parser for C, the basic concepts of
binary XML, and the OCI (Oracle Call Interface). Only the OCI API can be used for
programming in C with binary XML.

Related Topics

• Using the XML Parser for C
An explanation is given of how to use the Extensible Markup Language (XML) parser for
C.

• Using Binary XML with Java
Topics here explain how to use Binary XML with Java.

See Also:

• Oracle XML DB Developer’s Guide

• Oracle Call Interface Programmer's Guide

6.3 Binary XML Storage Format – C
Binary XML is an optimized format for XML. It includes encoding and decoding of XML
documents, from text to binary and binary to text. Binary XML is XML Schema-aware, but it
can also be used for XML data that is not based on an XML schema.

A binary XML processor is a component that processes and transforms binary XML format
into text and XML text into binary XML format.

The mid-tier and client tiers can produce, consume, and process XML in binary XML format.
The C application fetches data from Oracle XML DB Repository, performs updates on the
XML using DOM, and stores it back in the database. Or an XML document is created or input
on the client and XSLT, XQuery, and other utilities can be used on it. Then the output XML is

6-1

saved in Oracle XML DB. Further details of concepts and reference pages for OCI
functions are described in the Oracle Call Interface Programmer's Guide.

Chapter 6
Binary XML Storage Format – C

6-2

7
Using the XML Schema Processor for C

An explanation is given of how to use the Extensible Markup Language (XML) schema
processor for C.

Note:

Use the unified C application programming interface (API) for Oracle XML
Developer's Kit (XDK) and Oracle XML DB applications. Older, nonunified C
functions are deprecated and supported only for backward compatibility. They will
be removed in a future release.

The unified C API is described in Overview of the Unified C API.

7.1 Oracle XML Schema Processor for C
The XML Schema processor for C is a companion component to the Extensible Markup
Language (XML) parser for C that allows support for simple and complex data types in XML
applications.

The XML Schema processor for C supports the World Wide Web Consortium (W3C) XML
Schema Recommendation. This makes writing custom applications that process XML
documents straightforward, and means that a standards-compliant XML Schema processor is
part of XDK on every operating system where Oracle Database is ported.

The XML Schema processor enables validation of XML and retrieval of metadata. It can be
called by itself or through the XML Parser for C.

See Also:

XML Parsing for Java, for more information about XML Schema and why you would
want to use XML Schema.

7.1.1 Oracle XML Schema for C Features
The features of the Oracle XML Schema processor for C are described.

Features:

• Supports simple and complex types

• Built on XML parser for C

• Supports the W3C XML Schema Recommendation

7-1

See Also:

• Oracle Database XML C API Reference "Schema APIs for C"

• $ORACLE_HOME/xdk/demo/c/schema/ - sample code

7.1.2 Standards Conformance for Oracle XML Schema Processor for
C

The standards to which the XML Schema Processor for C conforms are listed.

• W3C recommendation for Extensible Markup Language (XML) 1.0

• W3C recommendation for Document Object Model (DOM) Level 1.0

• W3C recommendation for Namespaces in XML

• W3C recommendation for XML Schema

7.1.3 XML Schema Processor for C: Supplied Software
The software supplied for the XML Schema Processor for C is described.

Table 7-1 XML Schema Processor for C: Supplied Files in $ORACLE_HOME

Directory and Files Description

bin schema processor executable, schema
lib XML/XSL/Schema & support libraries

nls/data Globalization Support data files

xdk/demo/c/schema example usage of the Schema processor

xdk/include header files

xdk/mesg error message files

xdk/readme.html introductory file

Table 7-2 lists the included libraries in directory lib.

Table 7-2 XML Schema Processor for C: Supplied Libraries

Included Library Description

libxml21.a XML parser, Extensible Stylesheet Language Transformation
(XSLT) processor, XML Schema processor

libcore21.a Common Oracle Runtime Environment (CORE) functions

libnls21.a Globalization Support

Chapter 7
Oracle XML Schema Processor for C

7-2

7.2 Using the C XML Schema Processor Command-Line Utility
You can call XML Schema processor for C as an executable by invoking bin/schema in the
install area.

The executable takes two arguments:

• XML instance document

• Optionally, a default schema

XML Schema processor for C can also be invoked by writing code using the supplied APIs.
The code must be compiled using the headers in the include subdirectory and linked against
the libraries in the lib subdirectory. See Makefile in the xdk/demo/c/schema subdirectory for
details on how to build your program.

Error message files in different languages are provided in the mesg/ subdirectory.

7.3 XML Schema Processor for C Usage Diagram
The calling sequence for the XML Schema processor for C is presented.

Figure 7-1illustrates the calling sequence, which is as follows:

1. The initialize call is invoked once at the beginning of a session; it returns a schema
context which is used throughout the session.

2. Schema documents to be used in the session are loaded in advance.

3. The instance document to be validated is first parsed with the XML parser.

4. The top of the XML element subtree for the instance is then passed to the schema
validate function.

5. If no explicit schema is defined in the instance document, any loaded schemas are used.

6. More documents can then be validated using the same schema context.

7. When the session is over, the Schema tear-down function is called, which releases all
memory allocated for the loaded schemas.

Chapter 7
Using the C XML Schema Processor Command-Line Utility

7-3

Figure 7-1 XML Schema Processor for C Usage Diagram

X
m

lS
c

h
e

m
a
L

o
a

d
()

X
m

lS
c

h
e

m
a

D
e

s
tr

o
y

()

V
a

li
d

a
ti

o
n

 R
e

s
u

lt
s

X
m

lS
c

h
e

m
a

V
a

li
d

a
te

()

P
a

rs
e
d

 X
M

L
 D

o
c

 I
n

p
u

t

X
m

lS
c

h
e

m
a

S
e

tV
a

li
d

a
te

O
p

ti
o

n
s
()

X
m

lS
c
h

e
m

a
C

re
a

te
()

7.4 How to Run XML Schema for C Sample Programs
Directory xdk/demo/c/schema contains sample XML Schema applications that show
how to use Oracle XML Schema processor with its API. These sample files are
described here.

Table 7-3 XML Schema for C Samples Provided

Sample File Description

Makefile Makefile to build the sample programs and run them, verifying
correct output.

xsdtest.c Program which invokes the XML Schema for C API

car.{xsd,xml,std} Sample schema, instance document, and expected output
respectively, after running xsdtest on them.

aq.{xsd,xml,std} Second sample schema, instance document, and expected output
respectively, after running xsdtest on them.

pub.{xsd,xml,std} Third sample schema, instance document, and expected output
respectively, after running xsdtest on them.

To build the sample programs, run make.

To build the programs and run them, comparing the actual output to expected output:

Chapter 7
How to Run XML Schema for C Sample Programs

7-4

make sure

7.5 What Is the Streaming Validator?
The streaming validator uses XML Events, which is a representation of an XML document
that is similar to Simple API for XML (SAX) Events. XML events has a start tag, end tag, and
comment. The producer drives the SAX events and the consumer drives the XML events.

The streaming validator shares software with the older schema validator and derives most
functionality from it. Memory overhead is less than for the DOM representation used in the
older validator. Only one pass is made over the document. The streaming validator was
introduced in Oracle Database 11g Release 1 (11.1).

There are two modes of streaming validation:

• Transparent mode—events are returned to the application.

• Opaque mode—events are not returned to the application but an error indicating success
or failure of the document validation process is returned.

Before document validation, the regular validation context must be created, and the relevant
schema must be loaded using this context. Then XML event context for pull parser (or for
another event producer) must be created. This event context is then given to the streaming
validator, so that it can request events from the producer.

Passing in a schema DOM to the XmlSchemaLoad API is also supported.

7.5.1 Using Transparent Mode
Basic use of transparent mode is described.

An application starts by invoking XmlEvCreateSVCtx(). This invocation creates and returns an
event context of type xmlctx, which must be passed on all subsequent invoking the
streaming validator. The event context created must be terminated by invoking
XmlEvDestroyCtx().

After creation of the event context, the application repeatedly advances validation to the next
event by invoking XmlEvNext(), which returns the type of the next event. Additional API
interfaces allow the application to retrieve information relevant to the last event.

7.5.1.1 Error Handling in Transparent Mode
There is no notion of a valid event. Validity is the property of a document and not of the
individual items and events of the document.

The errors are:

• XML_EVENT_FATAL_ERROR—When the producer of XML events reports this error, the
streaming validator returns this event back to the application and stops the validation
process.

• XML_EVENT_ERROR—The streaming validator returns this event to the application when a
validation error occurs. The application can then invoke XmlEvGetError() to get more
information about the error.

If the application does not receive any XML_EVENT_ERROR or XML_EVENT_FATAL_ERROR events,
the document is valid. Therefore, the application must handle these events and not ignore
them.

Chapter 7
What Is the Streaming Validator?

7-5

These errors are not cached and the associated information is not available for later
retrieval.

7.5.1.2 Streaming Validator Example
A streaming validator example in transparent mode is presented.

Example 7-1 Streaming Validator in Transparent Mode

include "xmlev.h"
...
xmlevctx *ppevtcx, *svevctx;
xmlctx *xctx
xsdctx *sctx;

if (!(xctx = XmlCreate(&xerr, (oratext *) "test")))
 printf("Failed to create XML context, error %u\n",
 (unsigned) xerr);
...
if (!(sctx = XmlSchemaCreate(xctx, &xerr, NULL)))
 printf("Failed to create schema context, error %u\n",
 (unsigned) xerr);

...
If (xerr = XmlSchemaLoad(sctx, "my_schema.xsd", NULL))
 printf("Failed to load schema, error %u\n",
 (unsigned) xerr);

if(!(ppevctx = XmlEvCreatePPCtx(xctx, &xerr, NULL)))
 printf("Failed to create EVENT context, error %u\n",
 (unsigned) xerr);

if(xerr = XmlEvLoadPPDoc(xctx, ppevctx, "file", "test.xml", 0, NULL))
 printf("Failed to load Document, error %u\n",
 (unsigned) xerr);

...
If(!(svevctx = XmlEvCreateSVCtx(xctx, sctx, ppevctx, &xerr)))
 printf("Failed to create SVcontext, error %u\n",
 (unsigned) xerr);
...
for(;;)
{
 xmlevtype cur_event;
 cur_event = XmlEvNext(svevctx);
 switch(cur_event)
 {
 case XML_EVENT_FATAL_ERROR:
 printf("FATAL ERROR");
 /* error processing goes here */
 return;
 case XML_EVENT_ERROR:
 XmlEvGetError(svevctx, oratext *msg);
 printf("Validation Failed, Error %s\n", msg);
 break;
 case XML_EVENT_START_ELEMENT:
 printf("<%s>", XmlEvGetName(svevctx));
 break;
...
 case XML_EVENT_END_DOCUMENT:

Chapter 7
What Is the Streaming Validator?

7-6

 printf("END DOCUMENT");
 return;
 }
}
...
XmlEvDestroySVCtx(svevctx);
XmlSchemaDestroy(sctx);
XmlEvDestroyCtx(ppevctx);
XmlDestroyCtx(xctx);

7.5.2 Using Opaque Mode
In opaque mode, the streaming validator reads the instance document to be validated as a
sequence of events from the producer, but it does not pass the events to the application
(consumer). It returns XMLERR_OK on success and an error number on failure.

After the schema has been loaded and the XML events context has been initialized, an
application can validate the document in this mode by invoking XmlEvSchemaValidate(). The
signature of this function takes a pointer to the events context. The declaration is:

xmlerr XmlEvSchemaValidate(xmlctx *xctx, xsdctx *sctx, xmlevctx *evctx,
 oratext **errmsg);
/* Returns (xmlerr), the error code */

7.5.2.1 Error Handling in Opaque Mode
When the streaming validator encounters an error, XmlEvSchemaValidate() returns an error
number. This could be because of a parse error or a validation error. The application can then
use the existing XmlEvGetError APIs to get the error message.

The error message is parameterized and typically has all of the errors leading up to the point
where the streaming validator terminated.

7.5.2.2 Example of Opaque Mode Application
An example of opaque mode application is presented.

Example 7-2 Example of Streaming Validator in Opaque Mode

include "xmlev.h"
...
xmlevctx *ppevtcx;
xmlctx *xctx;
xsdctx *sctx;
oratext **errmsg;
xmlerr xerr;

if (!(xctx = XmlCreate(&xerr, (oratext *) "test"))
 printf("Failed to create XML context, error %u\n", (unsigned) xerr);
...
if (!(sctx = XmlSchemaCreate(xctx, &xerr, NULL)))
 printf("Failed to create schema context, error %u\n", (unsigned) xerr);

...
if (xerr = XmlSchemaLoad(sctx, "my_schema.xsd", NULL))
 printf("Failed to load schema, error %u\n", (unsigned) xerr);

Chapter 7
What Is the Streaming Validator?

7-7

if(!(ppevctx = XmlEvCreatePPCtx(xctx, &xerr, NULL)))
 printf("Failed to create EVENT context, error %u\n", (unsigned) xerr);

if(xerr = XmlEvLoadPPDoc(xctx, ppevctx, "file", "test.xml", 0, NULL))
 printf("Failed to load Document, error %u\n", (unsigned) xerr);

if((xerr = XmlEvSchemaValidate(xctx, sctx, ppevctx, errmsg)))
{
 printf("Validation Failed, Error: %s\n", errmsg);
}
...
XmlSchemaDestroy(sctx);
XmlEvDestroyCtx(ppevctx);
XmlDestroyCtx(xctx);

7.5.3 Using Function XmlSchemaLoad() With an Existing DOM
Function XmlSchemaLoad() accepts two fixed arguments and a set of variable
properties. The first argument is the schema context; the second is the URL location of
the schema document.

Starting with Oracle Database 11g Release 1 (11.1), you can use property
schema_dom_callback to provide access to the schema DOM given a URL. The
property is a callback function provided by the application. If supplied, the schema load
function uses this callback to access the DOM for the main schema and to access any
included, imported, or redefined schemas.

The callback signature is as follows:

typedef xmldocnode* (*xmlsch_dom_callback) (xmlctx *xctx, oratext *uri,
 xmlerr *xerr);

The callback accepts a URI (the schema load function passes in the URI of the
document desired) and returns the document node. Example 7-3 illustrates this.

Example 7-3 XmlSchemaLoad() Example

include "xmlev.h"
...
xmlctx *xctx;
xsdctx *sctx;
xmldocnode *doc;

if (!(xctx = XmlCreate(&xerr, (oratext *) "test"))
 printf("Failed to create XML context, error %u\n", (unsigned) xerr);
...
if (!(sctx = XmlSchemaCreate(xctx, &xerr, NULL)))
 printf("Failed to create schema context, error %u\n", (unsigned) xerr);
...
If (xerr = XmlSchemaLoad(sctx, schema_uri, "schema_dom_callback", func1, NULL))
 printf("Failed to load schema, error %u\n", (unsigned) xerr);
...
XmlSchemaDestroy(sctx);
XmlDestroyCtx(xctx);

Chapter 7
What Is the Streaming Validator?

7-8

7.5.4 Validation Options
You can supply options to the validation process using XmlSchemaSetValidateOptions().

For example:

XmlSchemaSetValidateOptions(scctx, "ignore_id_constraint", (boolean)TRUE,
NULL);

The options are:

• ignore_id_constraint (existing before Oracle Database 11g Release 1 (11.1))

• ignore_sch_location (existing before Oracle Database 11g Release 1 (11.1))

• ignore_par_val_rest (existing before Oracle Database 11g Release 1 (11.1))

• ignore_pattern_check: When this property is TRUE, the streaming validator ignores
pattern-facet checks. The default is FALSE.

• no_events_for_defaults: When this property is TRUE, the streaming validator does not
return events for default values added to the instance document. This option can be used
only in the transparent case.

Example 7-4 Example of Streaming Validator Using New Options

include "xmlev.h"
...
xmlevctx *ppevtcx;
xmlctx *xctx;
xsdctx *sctx;
xmlerr xerr;
oratext **errmsg;

if (!(xctx = XmlCreate(&xerr, (oratext *) "test"))
 printf("Failed to create XML context, error %u\n", (unsigned) xerr);
...
if (!(sctx = XmlSchemaCreate(xctx, &xerr, NULL)))
 printf("Failed to create schema context, error %u\n", (unsigned) xerr);
...
If (xerr = XmlSchemaLoad(sctx, "my_schema.xsd", NULL))
 printf("Failed to load schema, error %u\n", (unsigned) xerr);
if(!(ppevctx = XmlEvCreatePPCtx(xctx, &xerr, "file", "test.xml", NULL)))
 printf("Failed to create EVENT context, error %u\n", (unsigned) xerr);

if(xerr = XmlEvLoadPPDoc(xctx, ppevctx, "file", "test.xml", 0, NULL))
 printf("Failed to load Document, error %u\n", (unsigned) xerr);

XmlSchemaSetValidateOptions(sctx, "ignore_id_constraint", TRUE,
 "ignore_pattern_facet", TRUE, NULL);
if((xerr = XmlEvSchemaValidate(xctx,sctx, ppevctx, errmsg)))
{
 printf("Validation Failed, Error: %s\n", errmsg);
}
...

Chapter 7
What Is the Streaming Validator?

7-9

XmlSchemaDestroy(sctx);
XmlEvDestroyCtx(ppevctx);
XmlDestroyCtx(xctx);

Chapter 7
What Is the Streaming Validator?

7-10

8
Determining XML Differences Using C

An explanation is given of how to determine the differences between two Extensible Markup
Language (XML) inputs and apply the differences as a patch to one of the XML documents.

8.1 Overview of XMLDiff in C
You can use Oracle XmlDiff to determine the differences between two similar XML
documents. It generates an Xdiff instance document that indicates the differences. The
Xdiff document is an XML document that conforms to an XML schema, the Xdiff schema.

You can then use XmlPatch, which takes the Xdiff instance document and applies the
changes to other documents. You can use this process to apply the same changes to a large
number of XML documents.

XmlDiff supports only the Document Object Model (DOM) application programming interface
(API) for input and output.

XmlPatch also supports the DOM for the input and patch documents.

You can use XmlDiff and XmlPatch through a C API or a command-line tool. They are
exposed by two structured query language (SQL) functions.

An XmlHash C API is provided to compute the hash value of an XML tree or subtree. If hash
values of two trees or subtrees are equal, the trees are identical to a very high probability.

8.1.1 Process Flow for XMLDiff
The XMLDiff process flow is described.

1. The two input documents are compared by XmlDiff.

2. XmlDiff creates a Xdiff instance document.

3. The application can pass the Xdiff instance document to XmlPatch, if this is required.

4. XmlPatch can apply the differences captured from the comparison to other documents as
specified by the application.

8.2 Using XmlDiff
XmlDiff compares the trees that represent two input documents, to determine their
differences. Both input documents must use the same character-set encoding. The Xdiff
(output) instance document has the same encoding as the data encoding (DOM encoding) of
the input documents.

8.2.1 User Options for Comparison Optimization
There are two optimization options for comparison: global and local optimization.

8-1

• Global Optimization—Default

The whole document trees are compared.

• Local Optimization

Comparison is at the sibling level. Local optimization compares siblings under the
corresponding parents from two trees.

Global optimization can take more time and space for large documents but always
produces the smallest set of differences (the optimal difference). Local optimization is
much faster, but may not produce the optimal difference.

8.2.2 User Option for Hashing
Hashing generally speeds up global optimization with a small possible loss in quality.
Hashing improves the quality of the difference output, with local optimization. Using
different hash levels may generate both local and global differences. You can specify
the use of hashing for both local and global optimization.

To specify hashing, provide the hashLevel parameter. If hashLevel is greater than 1,
then only the DOMHash values are used for comparing all subtrees at depth >=
hashLevel of difference. If the hash values are equal, then the subtrees are presumed
to be equal.

8.2.3 How XmlDiff Looks at Input Documents
How XmlDiff handles input documents is described.

XmlDiff ignores differences in the order of attributes while doing the comparison.

XmlDiff ignores DocType declarations. Files are not validated against the document
type definition (DTD).

XmlDiff ignores any differences in the namespace prefixes if the namespace prefixes
refer to the same namespace Universal Resource Identifier (URI). Otherwise, if two
nodes have the same local name and content but differ in namespace URI, these
differences are indicated.

Note:

XmlDiff operates on its input documents in a nonschema-based way. It does
not operate on elements or attributes in a type-aware manner.

8.2.4 Using the XmlDiff Command-Line Utility
The command-line options for utility XmlDiff are described.

Table 8-1 XmlDiff Command-Line Options for the C Language

Option Description

-e encoding Specify default input-file encoding. If no encoding is specified in
XML file, this encoding is assumed for input.

Chapter 8
Using XmlDiff

8-2

Table 8-1 (Cont.) XmlDiff Command-Line Options for the C Language

Option Description

-E encoding Specify output/data encoding. DOMs and the Xdiff instance
document are created in this encoding. Default is 8-bit encoding
of Unicode (UTF-8).

-h hashLevel Specify the hash level. 0 means none.

If greater than 1, starting depth to use hashing for subtrees.

-g Set global optimization (default).

-l Set local optimization.

-p Show this usage help.

-u Disable update operation.

8.2.5 Sample Input Document
A sample input XML document is presented.

Example 8-1 is a sample XML document that you can use to explain updates resulting from
using both XmlDiff and XmlPatch. It is followed by some hypothetical changes.

Assume that there is another file, book2.xml, that looks just like Example 8-1 except that it
causes these actions:

• Deletes "The Eleventh Commandment", a delete-node operation.

• Changes the country code for the "C++ Primer" to US from USA, an update-node
operation.

• Adds a description to "Emperor's New Mind", an append-node operation.

• Adds the edition to "Evening News", an insert-node-before operation.

• Updates the price of "Evening News", an update-node operation.

Example 8-1 book1.xml

<?xml version="1.0"?>
<booklist xmlns="http://booklist.oracle.com">
 <book>
 <title>Twelve Red Herrings</title>
 <author>Jeffrey Archer</author>
 <publisher>Harper Collins</publisher>
 <price>7.99</price>
 </book>
 <book>
 <title language="English">The Eleventh Commandment</title>
 <author>Jeffrey Archer</author>
 <publisher>McGraw Hill</publisher>
 <price>3.99</price>
 </book>
 <book>
 <title language="English" country="USA">C++ Primer</title>
 <author>Lippmann</author>

Chapter 8
Using XmlDiff

8-3

 <publisher>Harper Collins</publisher>
 <price>4.99</price>
 </book>
 <book>
 <title>Emperor's New Mind</title>
 <author>Roger Penrose</author>
 <publisher>Oxford Publishing Company</publisher>
 <price>15.9</price>
 </book>
 <book>
 <title>Evening News</title>
 <author>Arthur Hailey</author>
 <publisher>MacMillan Publishers</publisher>
 <price>9.99</price>
 </book>
</booklist>

8.2.6 Sample Xdiff Instance Document
A sample Xdiff instance document is presented.

This section shows the Xdiff instance document produced by the comparison of these
two XML files described in the previous section. The sections that follow explain the
XML processing instructions and the operations on this document.

You can invoke XmlDiff:

> xmldiff book1.xml book2.xml

You can also examine the sample application for arguments and flags.

Example 8-2 Sample Xdiff Instance Document

<?xml version="1.0" encoding="UTF-8"?>
<xd:xdiff xsi:schemaLocation="http://xmlns.oracle.com/xdb/xdiff.xsd
xmlns:xd="http://xmlns.oracle.com/xdb/xdiff.xsd" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance"
xmlns:oraxdfns_0="http://booklist.oracle.com">
 <?oracle-xmldiff operations-in-docorder="true" output-
model="snapshot"
 diff-algorithm="global"?>
 <xd:delete-node xd:node-type="element" xd:xpath="/oraxdfns_0
 :booklist[1]/oraxdfns_0:book[2]"/>
 <xd:update-node xd:node-type="attribute"
 xd:parent-xpath="/oraxdfns_0:booklist[1]/oraxdfns_0:book[3]/
oraxdfns_0
 :title[1]" xd:attr-local="country">
 <xd:content>US</xd:content>
 </xd:update-node>
 <xd:append-node xd:node-type="element" xd:parent-xpath="/oraxdfns_0
 :booklist[1]/oraxdfns_0:book[4]">
 <xd:content>
 <oraxdfns_0:description> This is a classic </
oraxdfns_0:description>
 </xd:content>

Chapter 8
Using XmlDiff

8-4

 </xd:append-node>
 <xd:insert-node-before xd:node-type="element" xd:xpath="/oraxdfns_0
 :booklist[1]/oraxdfns_0:book[5]/oraxdfns_0:author[1]">
 <xd:content>
 <oraxdfns_0:edition>Hardcover</oraxdfns_0:edition>
 </xd:content>
 </xd:insert-node-before>
 <xd:update-node xd:node-type="text" xd:xpath="/oraxdfns_0
 :booklist[1]/oraxdfns_0:book[5]/oraxdfns_0:price[1]/text()[1]">
 <xd:content>12.99</xd:content>
 </xd:update-node>
</xd:xdiff>

8.2.7 Output Model and XML Processing Instructions
The Xdiff instance document uses some XML processing instructions (shown in bold in the
previous section) that are used to represent certain aspects of the differencing process.

See Xdiff Schema. These instructions and related options are:

• operations-in-docorder: Options are true or false:

– true—The Xdiff instance document refers to the nodes from the first document in
the same order as in the document.

– false—The Xdiff instance document does not refer to the nodes from the first
document in the same order as in the document.

The output of global optimization meets the operations-in-docorder requirement, but
local optimization does not.

• output-model: Options are:

– snapshot—Xmldiff generates output in snapshot model and follows the UNIX diff
model. Each operation uses XPath as if no operations have been applied to the input
document. This is the default. XmlPatch can handle this model only if operations-
in-docorder is set to true and the XPaths are simple. Simple XPaths require a child
axis, no wild cards, and must use positional predicates, such as /root[1]/child[2]/
text()[2].

– current—Each operation uses XPath as if all operations up to the previous one have
been applied to the input document. Even though XmlDiff does not generate
differences in the current model, XmlPatch can handle a hand-crafted diff document
in the current model

• diff-algorithm: Options indicate which optimization generated the differences.

– Global optimization

– Local optimization

Related Topics

• User Options for Comparison Optimization
There are two optimization options for comparison: global and local optimization.

Chapter 8
Using XmlDiff

8-5

8.2.8 Xdiff Operations
XmlDiff captures differences using operations indicated by the Xdiff instance
document. The XmlDiff operations are described.

Table 8-2 Xdiff Operation Attributes

Attribute Description

parent-path or xpath Specifies the XPATH location of the parent node of the operand
node or the XPATH location of node.

node-type Specifies the type of the operand node.

content Child element that specifies the new subtree or value appended
or inserted.

The Xdiff operations, presented in the Xdiff instance document, are:

• append-node:

The append-node element specifies that a node of the given type is added as the
last child of the given parent.

• insert-node-before:

The insert-node-before element specifies that a node of the given type is
inserted before the given reference node.

• delete-node:

The delete-node element specifies that the node be deleted along with all its
children. You can use this element to delete elements, comments, and so on.

• update-node:

update-node specifies that the value associated with the node with the given
XPath expression is updated to the new value, which is specified. Content is the
value for a text node. The value of an attribute is the value for an attribute node.

– Update for Text Nodes:

* Generation of update node operations can be turned off by the user.

* The value of an attribute is the value for an attribute node.

* update-node is generated for text nodes only by global optimization.

– Update for Elements:

* XmlDiff does not generate update operations for element nodes.

You can either manually modify the Xdiff instance document to create an
update operation that works with XmlPatch, or provide a totally hand-
written Xdiff instance document. All children of the element operated on
by the update are deleted. Any new subtree specified under the content
node is imported.

Chapter 8
Using XmlDiff

8-6

8.2.9 Format of Xdiff Instance Document
The output of XmlDiff, the Xdiff instance document, is an XML document that conforms to
the Xdiff XML schema. The output document contains a sequence of operations describing
the differences between the two input documents. If you apply the differences to the first
document, you obtain the second document.

8.2.10 Xdiff Schema
An Xdiff XML schema, to which an Xdiff instance document (output) adheres, is presented.

Example 8-3 Xdiff Schema: xdiff.xsd

<schema targetNamespace="http://xmlns.oracle.com/xdb/xdiff.xsd"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:xd="http://xmlns.oracle.com/xdb/xdiff.xsd"
 version="1.0" elementFormDefault="qualified"
 attributeFormDefault="qualified">
 <annotation>
 <documentation xml:lang="en">
 Defines the structure of XML documents that capture the difference
 between two XML documents. Changes that are not supported by Oracle
 XmlDiff may not be expressible in this schema.

 'oracle-xmldiff' PI in Xdiff document:

 We use 'oracle-xmldiff' PI to describe certain aspects of the diff.
 The PI denotes values for 'operations-in-docorder' and 'output-model'.
 The output of XmlDiff has the PI always. If the user hand-codes a
diff doc
 then it must also have the PI in it as the first child of top level
xdiff
 element, to be able to call XmlPatch.

 operations-in-docorder:
 Can be either 'true' or 'false'.
 If true, the operations in the diff document refer to the
 elements of the input doc in the same order as document order. Output
of
 global algorithm meets this requirement while local does not.

 output-model:
 output models for representing the diff. Can be either 'Snapshot' or
 'Current'.

 Snapshot model:
 Each operation uses Xpaths as if no operations
 have been applied to the input document. (like UNIX diff)
 This is the model used in the output of XmlDiff. XmlPatch works with
 this (and the current model too).
 For XmlPatch to handle this model, "operations-in-docorder" must be
 true and the Xpaths must be simple. (see XmlDif C API documentation).

Chapter 8
Using XmlDiff

8-7

 Current model:
 Each operation uses Xpaths as if all operations till the
previous one
 have been applied to the input document. Works with XmlPatch
even if
 the 'operations-in-docorder' criterion is not met and the
xpaths are
 not simple.
 <!-- Example:
 <?oracle-xmldiff operations-in-docorder="true" output-
model=
 "snapshot" diff-algorithm="global"?>
 -->
 </documentation>
 </annotation>
 <!-- Enumerate the supported node types -->
 <simpleType name="xdiff-nodetype">
 <restriction base="string">
 <enumeration value="element"/>
 <enumeration value="attribute"/>
 <enumeration value="text"/>
 <enumeration value="cdata"/>
 <enumeration value="entity-reference"/>
 <enumeration value="entity"/>
 <enumeration value="processing-instruction"/>
 <enumeration value="notation"/>
 <enumeration value="comment"/>
 </restriction>
 </simpleType>

 <element name="xdiff">
 <complexType>
 <choice minOccurs="0" maxOccurs="unbounded">
 <element name="append-node">
 <complexType>
 <sequence>
 <element name="content" type="anyType"/>
 </sequence>
 <attribute name="node-type" type="xd:xdiff-
nodetype"/>
 <attribute name="xpath" type="string"/>
 <attribute name="parent-xpath" type="string"/>
 <attribute name="attr-local" type="string"/>
 <attribute name="attr-nsuri" type="string"/>
 </complexType>
 </element>

 <element name="insert-node-before">
 <complexType>
 <sequence>
 <element name="content" type="anyType"/>
 </sequence>
 <attribute name="xpath" type="string"/>
 <attribute name="node-type" type="xd:xdiff-
nodetype"/>

Chapter 8
Using XmlDiff

8-8

 </complexType>
 </element>

 <element name="delete-node">
 <complexType>
 <attribute name="node-type" type="xd:xdiff-
nodetype"/>
 <attribute name="xpath" type="string"/>
 <attribute name="parent-xpath" type="string"/>
 <attribute name="attr-local" type="string"/>
 <attribute name="attr-nsuri" type="string"/>
 </complexType>
 </element>
 <element name="update-node">
 <complexType>
 <sequence>
 <element name="content" type="anyType"/>
 </sequence>
 <attribute name="node-type" type="xd:xdiff-
nodetype"/>
 <attribute name="parent-xpath" type="string"/>
 <attribute name="xpath" type="string"/>
 <attribute name="attr-local" type="string"/>
 <attribute name="attr-nsuri" type="string"/>
 </complexType>
 </element>
 <element name="rename-node">
 <complexType>
 <sequence>
 <element name="content" type="anyType"/>
 </sequence>
 <attribute name="xpath" type="string"/>
 <attribute name="node-type" type="xd:xdiff-
nodetype"/>
 </complexType>
 </element>
 </choice>
 <attribute name="xdiff-version" type="string"/>
 </complexType>
 </element>
</schema>

8.2.11 Using XMLDiff in an Application
In an application, XmlDiff takes the source types and locations of the input documents as
arguments. The source type can be a URL, file, orastream and stream context pointers,
buffer, and buffer_length pointers or the pointer to a DOM document element (docelement).

XmlDiff returns the document node for the DOM for the Xdiff instance document.

XmlDiff builds the DOM for the two documents, if they are not already provided as DOM,
before performing a comparison.

Chapter 8
Using XmlDiff

8-9

See Also:

Oracle Database XML C API Reference for the C API for the flags that
control the behavior of XmlDiff

Example 8-4 XMLDiff Application

include <xmldf.h>
...
xmlctx *xctx;
xmldocnode *doc1, *doc2, *doc3;
uword hash_level;
oratext *s, *inp1 = "book1.xml", *inp2="book2.xml";
xmlerr err;
ub4 flags;

flags = 0; /* defaults : global algorithm */
hash_level = 0; /* no hashing */
/* create XML meta context */
if (!(xctx = XmlCreate(&err, (oratext *) "XmlDiff", NULL)))
{
 printf("Failed to create XML context, error %u\n",
(unsigned) err);
err_exit("Exiting");
}
/* Load the two input files */
if (!(doc1 = XmlLoadDom(xctx, &err, "file", inp1, "discard_whitespace", TRUE,
 NULL)))
{
 printf("Parsing first file failed, error %u\n", (unsigned)err);
 err_exit((oratext *)"Exiting.");
}
if (!(doc2 = XmlLoadDom(xctx, &err, "file", inp2, "discard_whitespace", TRUE,
 NULL)))
{
 printf("Parsing second file failed, error %u\n", (unsigned)err);
 err_exit((oratext *)"Exiting.");
}

/* run XmlDiff on the DOM trees. */

doc3 = XmlDiff(xctx, &err, flags, XMLDF_SRCT_DOM, doc1, NULL, XMLDF_SRCT_DOM,
 doc2, NULL,hash_level, NULL);

if(!doc3)
 printf("XmlDiff Failed, error %u\n", (unsigned)err);
else
{
if(err != XMLERR_OK)
printf("XmlDiff returned error %u\n", (unsigned)err);
/* Now we have the DOM tree in doc3 which represent the Diff */
...
}

XmlFreeDocument(xctx, doc1);
XmlFreeDocument(xctx, doc2);
XmlFreeDocument(xctx, doc3);
XmlDestroy(xctx);

Chapter 8
Using XmlDiff

8-10

8.2.12 Customized Output
A customized output builder stores differences in any format suitable to the application. You
can create your own customized output builder, rather than using the default Xdiff instance
document, which is generated by XmlDiff and that conforms to the Xdiff schema.

To create a customized output builder, you must provide a callback that can be called after
XmlDiff determines the differences. The differences are passed to the callback as an array of
xmdlfop. The callback may be called multiple times as the differences are being generated.

Using a customized output builder may perform better than using the default, because it does
not have to maintain the internal state necessary for XPath generation.

By default, XmlDiff captures the differences in XML conforming to the Xdiff schema. If
necessary, plug in your own output builder. The differences are represented as an array
xmldfop. You must write an output builder callback function. The function signature is:

xmlerr(*xdfobcb)(void *uctx, xmldfop *escript, ub4 escript_siz);

uctx is the user specific context.

escript is the array of size escript_siz:

diff[escript_siz]

mctx is the memory context.

Supply this memory context through properties to XmlDiff(). Use this memory context to
allocate escript. You must later free escript.

Invoke the output builder callback after the differences have been found which happens even
before the invocation of XmlDiff() returns. The output builder callback can be called multiple
times.

Example 8-5 Customized XMLDiff Output

 /* Sample useage: */
 ...
 #include <orastruc.h> / * for 'oraprop' * /
 ...
 static oraprop diff_props[] = {
 ORAPROP(XMLDF_PROPN_CUSTOM_OB, XMLDF_PROPI_CUSTOM_OB, POINTER),
 ORAPROP(XMLDF_PROPN_CUSTOM_OBMCX, XMLDF_PROPI_CUSTOM_OBMCX, POINTER),
 ORAPROP(XMLDF_PROPN_CUSTOM_OBUCX, XMLDF_PROPI_CUSTOM_OBUCX, POINTER),
 { NULL }
 };
 ...
 oramemctx *mymemctx;
 ...
 xmlerr myob(void *uctx, xmldfop *escript, ub4 escript_siz)
 {
 /* process diff which is available in escript * /

 /* free escript - the caller has to do this * /
 OraMemFree(mymemctx, escript);
 }

 main()
 {

Chapter 8
Using XmlDiff

8-11

 ...
 myctxt *myctx;

 diff_props[0].value_oraprop.p_oraprop_v = myob;
 diff_props[1].value_oraprop.p_oraprop_v = mymemctx;
 diff_props[2].value_oraprop.p_oraprop_v = myctx;
 XmlDiff(xctx, &err, 0, doc1, NULL, 0, doc2, NULL, 0, diff_props);
 ...

8.3 Using XmlPatch
XmlPatch takes an Xdiff instance document, generated by XmlDiff or created by
another mechanism, and follows the instructions in the Xdiff instance document to
modify other XML documents.

8.3.1 Using the XmlPatch Command-Line Utility
Command-line options for utility XmlPatch are described.

Table 8-3 XmlPatch for C Command-Line Options

Option Description

-e encoding Specify default input-file encoding. If no encoding is specified in
XML file, this encoding is assumed for input.

-E encoding Specify output/data encoding. DOMs and patched document are
created in this encoding. Default is UTF-8.

-i Interpret file names as URLs.

-h Show this usage help.

8.3.2 Using XmlPatch in an Application
XmlPatch takes the source types and locations of the input document and the diff
document as arguments. The source type can be a URL, file, orastream and stream
context pointers, buffer and buffer_length pointers, or the pointer to a DOM
document element (docelement).

See Also:

Oracle Database XML C API Reference for the C API for the flags that
control the behavior of XmlPatch

The modes that were set by the Xdiff schema affect how XmlPatch works.

If the output-model is Snapshot, XmlPatch only works if operations-in-docorder is
TRUE.

If the output-model is Current, it is not necessary that operations-in-docorder be
set to TRUE.

Chapter 8
Using XmlPatch

8-12

Example 8-6 Sample Application for XmlPatch

...
#include <xmldf.h>
...
xmlctx *xctx;
xmldocnode *doc1, *doc2;
oratext *s;
oratext *inp1 = "book1.xml"; /* input document */
oratext *inp2 = "diff.xml", /* diff document */
xmlerr err;

/* create XML meta context */
if (!(xctx = XmlCreate(&err, (oratext *) "XmlPatch", NULL)))
{
 printf("Failed to create XML context, error %u\n",
(unsigned) err);
err_exit("Exiting");
}
/* Load the two input files */
if (!(doc1 = XmlLoadDom(xctx, &err, "file", inp1, "discard_whitespace", TRUE,
 NULL)))
{
 printf("Parsing first file failed, error %u\n", (unsigned)err);
 err_exit((oratext *)"Exiting.");
}
if (!(doc2 = XmlLoadDom(xctx, &err, "file", inp2, "discard_whitespace", TRUE,
 NULL)))
{
 printf("Parsing second file failed, error %u\n", (unsigned)err);
 err_exit((oratext *)"Exiting.");
}

/* call XmlPatch */
if(!XmlPatch(xctx, &err, 0, XMLDF_SRCT_DOM, doc1, NULL, XMLDF_SRCT_DOM,
 doc2, NULL, NULL));

 printf("XmlPatch Failed, error %u\n", (unsigned)err);
else
{
if(err != XMLERR_OK)
printf("XmlPatch returned error %u\n", (unsigned)err);
/* Now we have the patched document in doc1 */
...
}

XmlFreeDocument(xctx, doc1);
XmlFreeDocument(xctx, doc2);
XmlDestroy(xctx);

8.4 Using XmlHash
XmlHash computes a hash value for an XML tree. If the hash values of two trees are equal, it
is probable that they are the same XML. You can use XmlHash to do a quick comparison to
see if an XML tree is already in the database.

You can run XmlDiff again, if necessary, on any matches, to be absolutely certain there is a
match. You can compute the hash value of the new document and query the database for it.

Example 8-7 shows a sample program that uses XmlHash.

Chapter 8
Using XmlHash

8-13

Example 8-7 XmlHash Program

sword main(sword argc, char *argv[])
{
 xmlctx *xctx;
 xmldfsrct srct;
 oratext *data_encoding, *input_encoding, *s, *inp1;
 ub1 flags;
 xmlerr err;
 ub4 num_args;
 xmlhasht digest;
 flags = 0; /* defaults */
 srct = XMLDF_SRCT_FILE;
 inp1 = "somexml.xml";
 xctx = XmlCreate(&err, (oratext *) "XmlHash", NULL);

 if (!xctx)
 {
 /* handle error with creating xml context and exit */
 ...
 }

 /* run XmlHash */
 err = XmlHash(xctx, &digest, 0, srct, inp1, NULL, NULL);
 if(err)
 printf("XmlHash returned error:%d \n", err);
 else
 txdfha_pd(digest);

 XmlDestroy(xctx);

 return (sword)err;
}

/* print bytes in xml hash */
static void txdfha_pd(xmlhasht digest)
{
 ub4 i;

 for(i = 0; i < digest.l_xmlhasht; i++)
 printf("%x ", digest.d_xmlhasht[i]);

 printf("\n");
}

Chapter 8
Using XmlHash

8-14

8.4.1 Invoking XmlDiff and XmlPatch
XmlDiff and XmlPatch can be called as command-line tools and from the C language. They
are also available as SQL functions.

See Also:

• Oracle Database SQL Language Reference XMLDiff
• Oracle Database SQL Language Reference, XMLPatch

Chapter 8
Using XmlHash

8-15

9
Using SOAP with the Oracle XML Developer's
Kit for C

An explanation is given of how to use Simple Object Access Protocol (SOAP) with the Oracle
XML Developer's Kit (XDK) for C.

See Also:

Oracle XML DB Developer’s Guide

9.1 Introduction to SOAP for C
SOAP is an Extensible Markup Language (XML) protocol for exchanging structured and
typed information between peers using HTTP and HTTPS in a distributed environment. Only
HTTP 1.0 is supported in XDK for Oracle Database 10g Release 2.

SOAP has three parts:

• The SOAP envelope which defines how to present what is in the message, who must
process the message, and whether that processing is optional or mandatory.

• A set of serialization and deserialization rules for converting application data types to and
from XML.

• A SOAP remote procedure call (RPC) that defines calls and responses.

Note:

RPC and serialization/deserialization are not supported in this release.

SOAP is operating system and language-independent because it is XML-based. This chapter
presents the C implementation of the functions that read and write the SOAP message.

SOAP Version 1.2 is the definition of an XML-based message which is specified as an XML
Infoset (an abstract data set, it could be XML 1.0) that gives a description of the message
contents. Version 1.1 is also supported.

9.1.1 SOAP Messaging Overview
SOAP is a lightweight protocol for sending and receiving requests and responses across the
Internet. Because it is based on XML and transport protocols such as HTTP, it is not blocked
by most firewalls. SOAP is independent of operating system, implementation language, and
object model.

9-1

The power of SOAP is its ability to act as the glue between heterogeneous software
components. For example, Visual Basic clients can invoke Common Object Request
Broker Architecture (CORBA) services running on UNIX computers; Macintosh clients
can invoke Perl objects running on Linux.

SOAP messages have these parts:

• An envelope that contains the message, defines how to process the message and
who processes it, and whether processing is optional or mandatory. The Envelope
element is required.

• A set of encoding rules that describe the data types for the application. These
rules define a serialization mechanism that converts the application data types to
and from XML.

• A remote procedure call (RPC) request and response convention. This required
element is called a body element. The Body element contains a first subelement
whose name is the name of a method. This method request element contains
elements for each input and output parameter. The element names are the
parameter names. RPC is not currently supported in this release.

SOAP is independent of any transport protocol. Nevertheless, SOAP used over HTTP
for remote service invocation has emerged as a standard for delivering programmatic
content over the Internet.

Besides being independent of transfer protocol, SOAP is also independent of
operating system. In other words, SOAP enables programs to communicate even
when they are written in different languages and run on different operating systems.

9.1.1.1 SOAP Message Format
Types of SOAP messages are described.

• Requests for a service, including input parameters

• Responses from the requested service, including return value and output
parameters

• Optional fault elements containing error codes and information

In a SOAP message, the payload contains the XML-encoded data. The payload
contains no processing information. In contrast, the message header may contain
processing information.

9.1.1.1.1 SOAP Requests
SOAP requests are described.

In SOAP requests, the XML payload contains several elements that include:

• Root element

• Method element

• Header elements (optional)

Example 9-1 shows the format of a sample SOAP message request. A
GetLastTradePrice SOAP request is sent to a StockQuote service. The request
accepts a string parameter representing the company stock symbol and returns a float
representing the stock price in the SOAP response.

Chapter 9
Introduction to SOAP for C

9-2

Example 9-1 SOAP Request Message

POST /StockQuote HTTP/1.0
Host: www.stockquoteserver.com
Content-Type: application/soap+xml; charset="utf-8"
Content-Length: nnnn
SOAPAction: "Some-URI"

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://www.w3.org/2003/05/soap-envelope"
 SOAP-ENV:encodingStyle="http://www.w3.org/2003/05/soap-encoding/">
 <SOAP-ENV:Body>
 <m:GetLastTradePrice xmlns:m="Some-URI">
 <symbol>ORCL</symbol>
 <m:GetLastTradePrice>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

In Example 9-1, the XML document is the SOAP message. The <SOAP-ENV:Envelope>
element is the top-level element of the XML document. The payload is represented by the
method element <m:GetLastTradePrice>. XML namespaces distinguish SOAP identifiers
from application-specific identifiers.

The first line of the header specifies that the request uses HTTP as the transport protocol:

POST /StockQuote HTTP/1.1

Because SOAP is independent of transport protocol, the rules governing XML payload format
are independent of the use of HTTP for transport of the payload. This HTTP request points to
the URI /StockQuote. Because the SOAP specification is silent on the issue of component
activation, the code behind this URI determines how to activate the component and invoke
the GetLastTradePrice method.

9.1.1.1.2 Example of a SOAP Response
An example of a SOAP response is presented.

Example 9-2 shows the format of the response to the request in Example 9-1. Element
<Price> contains the stock price for ORCL requested by the first message.

The messages shown in Example 9-1 and Example 9-2 show two-way SOAP messaging,
that is, a SOAP request that is answered by a SOAP response. A one-way SOAP message
does not require a SOAP message in response.

Example 9-2 SOAP Response Message

HTTP/1.0 200 OK
Content-Type: application/soap+xml; charset="utf-8"
Content-Length: nnnn

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://www.w3.org/2003/05/soap-envelope"
 SOAP-ENV:encodingStyle="http://www.w3.org/2003/05/soap-encoding/">
 <SOAP-ENV:Body>
 <m:GetLastTradePriceResponse xmlns:m="Some-URI">
 <Price>13.5</Price>
 </m:GetLastTradePriceResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Chapter 9
Introduction to SOAP for C

9-3

9.1.2 Using SOAP Clients
SOAP clients are user-written applications that generate XML documents. The
documents make a request for a SOAP service and handle a SOAP response. The
SOAP implementation in XDK handles requests from any client that sends a valid
SOAP request.

The SOAP client application programming interface (API) has these features:

• Supports a synchronous invocation model for requests and responses

• Facilitates the writing of client applications to make SOAP requests

• Encapsulates the creation of the SOAP request and the details of sending the
request over the underlying transport protocol

• Supports a pluggable transport, allowing the client to easily change the transport
(available transports include HTTP and HTTPS, but only HTTP 1.0 is supported in
this release)

A SOAP client must perform these steps to make a request and receive a response:

1. Gather all parameters that are needed to invoke a service.

2. Create a SOAP service request message, which is an XML message that is built
according to the SOAP protocol. It contains all the values of all input parameters
encoded in XML. This process is called serialization.

3. Submit the request to a SOAP server using a transport protocol that is supported
by the SOAP server.

4. Receive a SOAP response message.

5. Determine the success or failure of the request by handling the SOAP Fault
element.

6. Convert the returned parameter from XML to native data type. This process is
called deserialization.

7. Use the result as needed.

9.1.3 Using SOAP Servers
The steps performed by a SOAP server when executing a SOAP service request are
described.

1. The SOAP server receives the service request.

2. The server parses the XML request and then decides whether to execute or reject
the message.

3. If the message is executed, then the server determines whether the requested
service exists.

4. The server converts all input parameters from XML into data types that the service
understands.

5. The server invokes the service.

6. The server converts the return parameter to XML and generates a SOAP
response message.

Chapter 9
Introduction to SOAP for C

9-4

7. The server sends the response message back to the caller.

9.2 SOAP C Functions
The SOAP C implementation uses the xml.h header. A context of type xmlctx must be
created before a SOAP context can be created.

HTTP aspects of SOAP are hidden from the user. SOAP endpoints are specified as a couple
(binding, endpoint) where binding is of type xmlsoapbind and the endpoint is a (void *)
depending on the binding. Currently, only one binding is supported, XMLSOAP_BIND_HTTP. For
HTTP binding, the endpoint is an (OraText *) URL.

The SOAP layer creates and transports SOAP messages between endpoints, and
decomposes received SOAP messages.

The C functions are declared in xmlsoap.h. Here is the beginning of that header file:

See Also:

Oracle Database XML C API Reference for the C SOAP APIs

Example 9-3 SOAP C Functions Defined in xmlsoap.h

 FILE NAME
 xmlsoap.h - XML SOAP APIs

 FILE DESCRIPTION
 XML SOAP Public APIs

 PUBLIC FUNCTIONS
 XmlSoapCreateCtx - Create and return a SOAP context
 XmlSoapDestroyCtx - Destroy a SOAP context

 XmlSoapCreateConnection - Create a SOAP connection object
 XmlSoapDestroyConnection - Destroy a SOAP connection object

 XmlSoapCall - Send a SOAP message & wait for reply

 XmlSoapCreateMsg - Create and return an empty SOAP message
 XmlSoapDestroyMsg - Destroy a SOAP message created
 w/XmlSoapCreateMsg

 XmlSoapGetEnvelope - Return a SOAP message's envelope
 XmlSoapGetHeader - Return a SOAP message's envelope header
 XmlSoapGetBody - Return a SOAP message's envelope body

 XmlSoapAddHeaderElement - Adds an element to a SOAP header
 XmlSoapGetHeaderElement - Gets an element from a SOAP header

 XmlSoapAddBodyElement - Adds an element to a SOAP message body
 XmlSoapGetBodyElement - Gets an element from a SOAP message body

 XmlSoapSetMustUnderstand - Set mustUnderstand attr for SOAP hdr elem
 XmlSoapGetMustUnderstand - Get mustUnderstand attr from SOAP hdr elem

 XmlSoapSetRole - Set role for SOAP header element

Chapter 9
SOAP C Functions

9-5

 XmlSoapGetRole - Get role from SOAP header element

 XmlSoapSetRelay - Set relay Header element property
 XmlSoapGetRelay - Get relay Header element property

 XmlSoapSetFault - Set Fault in SOAP message
 XmlSoapHasFault - Does SOAP message have a Fault?
 XmlSoapGetFault - Return Fault code, reason, and details

 XmlSoapAddFaultReason - Add additional Reason to Fault
 XmlSoapAddFaultSubDetail - Add additional child to Fault Detail
 XmlSoapGetReasonNum - Get number of Reasons in Fault element
 XmlSoapGetReasonLang - Get a lang of a reasons with a
 particular iindex.

 XmlSoapError - Get error message(s)

*/

#ifndef XMLSOAP_ORACLE
define XMLSOAP_ORACLE

ifndef XML_ORACLE
include <xml.h>
endif

/*---
 Package SOAP - Simple Object Access Protocol APIs

 W3C: "SOAP is a lightweight protocol for exchange of information
 in a decentralized, distributed environment. It is an XML based
 protocol that consists of three parts: an envelope that defines a
 framework for describing what is in a message and how to process
 it, a set of encoding rules for expressing instances of
 application-defined datatypes, and a convention for representing
 remote procedure calls and responses."
 Atachments are allowed only in Soap 1.1
 In Soap 1.2 body may not have other elements if Fault is present.

 Structure of a SOAP message:

 [SOAP message (XML document)
 [SOAP envelope
 [SOAP header?
 element*
]
 [SOAP body
 (element* | Fault)?
]
]
]
---*/
...

9.3 SOAP Example 1: Sending an XML Document
An XML document is presented that shows a request to a travel company for a
reservation on a plane flight from New York to Los Angeles for John Smith. A simple
example creates the XML document, sends it, receives and decomposes a reply.
There is some minimal error checking.

Chapter 9
SOAP Example 1: Sending an XML Document

9-6

The DEBUG option is shown for correcting anomalies. The program may not work on all
operating systems. To send this XML document, the first client C program follows these
steps:

1. After declaring variables in main(), an XML context, xctx, is created using XmlCreate()
and the context is then used to create a SOAP context, ctx, using XmlSoapCreateCtx().

2. To construct the message, XmlSoapCreateMsg() is called and returns an empty SOAP
message.

3. The header is constructed using XmlSoapAddHeaderElement(), XmlSoapSetRole(),
XmlSoapSetMustUnderstand(), and XmlDomAddTextElem() to fill in the envelope with text.

4. The body elements are created by XmlSoapAddBodyElement(), XmlDomCreateElemNS(),
and a series of invocations of XmlDomAddTextElem(). Then XmlDomAppendChild()
completes the section of the body specifying the New York to Los Angeles flight.

5. The return flight is built in an analogous way. The lodging is added with another
XmlSoapAddBodyElement() invocation.

6. The connection must be created next with XmlSoapCreateConnection(), specifying HTTP
binding (the only binding available now) and an endpoint URL.

7. The function XmlSoapCall() sends the message over the defined connection with the
SOAP server, and then waits for the reply.

8. The message reply is returned in the form of another SOAP message. This is done with
XmlSaveDom() and XmlSoapHasFault() used with XmlSoapGetFault() to check for a fault
and analyze the fault. The fault is parsed into its parts, which is output in this example.

9. If there was no fault returned, this is followed by XmlSoapGetBody() to return the
envelope body. XmlSaveDom() completes the analysis of the returned message.

10. To clean up, use XmlSoapDestroyMsg() on the message and on the reply,
XmlDestroyCtx() to destroy the SOAP context, and XmlDestroy() to destroy the XML
context.

Example 9-4 Example 1 SOAP Message

<?xml version='1.0' ?>
<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">
 <env:Header>
 <m:reservation xmlns:m="http://travelcompany.example.org/reservation"
 env:role="http://www.w3.org/2003/05/soap-envelope/role/next"
 env:mustUnderstand="true">
 <m:reference>uuid:093a2da1-q345-739r-ba5d-pqff98fe8j7d</m:reference>
 <m:dateAndTime>2001-11-29T13:20:00.000-05:00</m:dateAndTime>
 </m:reservation>
 <n:passenger xmlns:n="http://mycompany.example.com/employees"
 env:role="http://www.w3.org/2003/05/soap-envelope/role/next"
 env:mustUnderstand="true">
 <n:name>John Smith</n:name>
 </n:passenger>
 </env:Header>
 <env:Body>
 <p:itinerary
 xmlns:p="http://travelcompany.example.org/reservation/travel">
 <p:departure>
 <p:departing>New York</p:departing>

Chapter 9
SOAP Example 1: Sending an XML Document

9-7

 <p:arriving>Los Angeles</p:arriving>
 <p:departureDate>2001-12-14</p:departureDate>
 <p:departureTime>late afternoon</p:departureTime>
 <p:seatPreference>aisle</p:seatPreference>
 </p:departure>
 <p:return>
 <p:departing>Los Angeles</p:departing>
 <p:arriving>New York</p:arriving>
 <p:departureDate>2001-12-20</p:departureDate>
 <p:departureTime>mid-morning</p:departureTime>
 <p:seatPreference/>
 </p:return>
 </p:itinerary>
 <q:lodging
 xmlns:q="http://travelcompany.example.org/reservation/hotels">
 <q:preference>none</q:preference>
 </q:lodging>
 </env:Body>
</env:Envelope>

Example 9-5 Example 1 SOAP C Client

#ifndef S_ORACLE
include <s.h>
#endif

#ifndef XML_ORACLE
include <xml.h>
#endif

#ifndef XMLSOAP_ORACLE
include <xmlsoap.h>
#endif

#define MY_URL "http://my_url.com"

/* static function declaration */
static xmlerr add_ns_decl(xmlsoapctx *ctx, xmlctx *xctx, xmlelemnode
*elem,
 oratext *pfx, oratext *uri);

sb4 main(sword argc, char *argv[])
{
 xmlctx *xctx;
 xmlerr xerr;
 xmlsoapctx *ctx;
 oratext *url;
 xmlsoapcon *con;

 xmldocnode *msg1, *reply, *msg2, *msg3;
 xmlelemnode *res, *pas, *pref, *itin, *departure, *ret, *lodging;
 xmlelemnode *departing, *arriving, *trans, *text, *charge, *card,

Chapter 9
SOAP Example 1: Sending an XML Document

9-8

*name;
 xmlelemnode *body, *header;
 boolean has_fault;
 oratext *code, *reason, *lang, *node, *role;
 xmlelemnode *detail;
 oratext *comp_uri = "http://travelcompany.example.org/";
 oratext *mres_uri = "http://travelcompany.example.org/reservation";
 oratext *trav_uri = "http://travelcompany.example.org/reservation/
travel";
 oratext *hotel_uri = "http://travelcompany.example.org/reservation/
hotels";
 oratext *npas_uri = "http://mycompany.example.com/employees";

 oratext *tparty_uri = "http://thirdparty.example.org/transaction";
 oratext *estyle_uri = "http://example.com/encoding";
 oratext *soap_style_uri = "http://www.w3.org/2003/05/soap-encoding";
 oratext *estyle = "env:encodingStyle";
 oratext *finance_uri = "http://mycompany.example.com/financial";

 if (!(xctx = XmlCreate(&xerr, (oratext *)"SOAP_test",NULL)))
 {
 printf("Failed to create XML context, error %u\n", (unsigned) xerr);
 return EX_FAIL;
 }
 /* Create SOAP context */
 if (!(ctx = XmlSoapCreateCtx(xctx, &xerr, (oratext *) "example", NULL)))
 {
 printf("Failed to create SOAP context, error %u\n", (unsigned)
xerr);
 return EX_FAIL;
 }

 /* EXAMPLE 1 */
 /* construct message */
 if (!(msg1 = XmlSoapCreateMsg(ctx, &xerr)))
 {
 printf("Failed to create SOAP message, error %u\n", (unsigned) xerr);
 return xerr;
 }
 res = XmlSoapAddHeaderElement(ctx, msg1, "m:reservation", mres_uri,
&xerr);
 xerr = XmlSoapSetRole(ctx, res, XMLSOAP_ROLE_NEXT);
 xerr = XmlSoapSetMustUnderstand(ctx, res, TRUE);
 (void) XmlDomAddTextElem(xctx, res, mres_uri, "m:reference",
 "uuid:093a2da1-q345-739r-ba5d-pqff98fe8j7d");
 (void) XmlDomAddTextElem(xctx, res, mres_uri, "m:dateAndTime",
 "2001-11-29T13:20:00.000-05:00");
 pas = XmlSoapAddHeaderElement(ctx, msg1, "n:passenger", npas_uri, &xerr);
 xerr = XmlSoapSetRole(ctx, pas, XMLSOAP_ROLE_NEXT);
 xerr = XmlSoapSetMustUnderstand(ctx, pas, TRUE);
 (void) XmlDomAddTextElem(xctx, pas, npas_uri, "n:name",
 "John Smith");
 /* Fill body */

Chapter 9
SOAP Example 1: Sending an XML Document

9-9

 /* Itinerary */
 itin = XmlSoapAddBodyElement(ctx, msg1, "p:itinerary", trav_uri,
&xerr);
 /* Departure */
 departure = XmlDomCreateElemNS(xctx, msg1, trav_uri,
"p:departure");
 (void) XmlDomAddTextElem(xctx, departure, trav_uri,
 "p:departing","New York");
 (void) XmlDomAddTextElem(xctx, departure, trav_uri,
 "p:arriving", "Los Angeles");
 (void) XmlDomAddTextElem(xctx, departure, trav_uri,
 "p:departureDate", "2001-12-14");
 (void) XmlDomAddTextElem(xctx, departure, trav_uri,
 "p:departureTime", "late afternoon");
 (void) XmlDomAddTextElem(xctx, departure, trav_uri,
 "p:seatPreference", "aisle");
 XmlDomAppendChild(xctx, itin, departure);

 /* Return */
 ret = XmlDomCreateElemNS(xctx, msg1, trav_uri, "p:return");
 (void) XmlDomAddTextElem(xctx, ret, trav_uri,
 "p:departing", "Los Angeles");
 (void) XmlDomAddTextElem(xctx, ret, trav_uri,
 "p:arriving", "New York");
 (void) XmlDomAddTextElem(xctx, ret, trav_uri,
 "p:departureDate", "2001-12-20");
 (void) XmlDomAddTextElem(xctx, ret, trav_uri,
 "p:departureTime", "mid-morning");
 pref = XmlDomCreateElemNS(xctx, msg1, trav_uri,
"p:seatPreference");
 (void) XmlDomAppendChild(xctx, ret, pref);
 XmlDomAppendChild(xctx, itin, ret);

 /* Lodging */
 lodging = XmlSoapAddBodyElement(ctx, msg1, "q:lodging", hotel_uri,
&xerr);
 (void) XmlDomAddTextElem(xctx, lodging, hotel_uri,
 "q:preference", "none");

#ifdef DEBUG
 /* dump the message in debug mode */
 printf("Message:\n");
 XmlSaveDom(xctx, &xerr, msg1, "stdio", stdout, "indent_step", 1,
NULL);
#endif

/* END OF EXAMPLE 1 */

 /* create connection */
 url = MY_URL;
 if (!(con = XmlSoapCreateConnection(ctx, &xerr, XMLSOAP_BIND_HTTP,
 url, NULL, 0, NULL, 0,
 "XTest: baz", NULL)))
 {
 printf("Failed to create SOAP connection, error %u\n",

Chapter 9
SOAP Example 1: Sending an XML Document

9-10

(unsigned) xerr);
 return xerr;
 }

 reply = XmlSoapCall(ctx, con, msg1, &xerr);
 XmlSoapDestroyConnection(ctx, con);

 if (!reply)
 {
 printf("Call failed, no message returned.\n");
 return xerr;
 }

#ifdef DEBUG
 printf("Reply:\n");
 XmlSaveDom(xctx, &xerr, reply, "stdio", stdout, NULL);
#endif

 printf("\n==== Header:\n ");
 header = XmlSoapGetHeader(ctx, reply, &xerr);
 if (!header)
 {
 printf("NULL\n");
 }
 else
 XmlSaveDom(xctx, &xerr, header, "stdio", stdout, NULL);

 /* check for fault */
 has_fault = XmlSoapHasFault(ctx, reply, &xerr);
 if(has_fault)
 {
 lang = NULL;
 xerr = XmlSoapGetFault(ctx, reply, &code, &reason, &lang,
 &node, &role, &detail);
 if (xerr)
 {
 printf("error getting Fault %d\n", xerr);
 return EX_FAIL;
 }
 if(code)
 printf(" Code -- %s\n", code);
 else
 printf(" NO Code\n");
 if(reason)
 printf(" Reason -- %s\n", reason);
 else
 printf(" NO Reason\n");
 if(lang)
 printf(" Lang -- %s\n", lang);
 else
 printf(" NO Lang\n");
 if(node)
 printf(" Node -- %s\n", node);
 else

Chapter 9
SOAP Example 1: Sending an XML Document

9-11

 printf(" NO Node\n");
 if(role)
 printf(" Role -- %s\n", role);
 else
 printf(" NO Role\n");
 if(detail)
 {
 printf(" Detail\n");
 XmlSaveDom(xctx, &xerr, detail, "stdio", stdout, NULL);
 printf("\n");
 }
 else
 printf(" NO Detail\n");

 }
 else
 {
 body = XmlSoapGetBody(ctx, reply, &xerr);
 printf("==== Body:\n ");
 if (!body)
 {
 printf("NULL\n");
 return EX_FAIL;
 }
 XmlSaveDom(xctx, &xerr, body, "stdio", stdout, NULL);
 }
 (void) XmlSoapDestroyMsg(ctx, reply);
 (void) XmlSoapDestroyMsg(ctx, msg1);
 (void) XmlSoapDestroyCtx(ctx);
 XmlDestroy(xctx);
}

9.4 SOAP Example 2: A Response Asking for Clarification
A travel company wants to know which New York airport a traveller, John Smith, will
depart from: JFK, EWR, or LGA. It sends a response message that asks for such
clarification.

To send this XML document as a SOAP message, substitute this code block for the
lines beginning with /* EXAMPLE 1 */ and ending with /* END OF EXAMPLE 1 */ in
Example 9-5

Example 9-6 Example 2 SOAP Message

<?xml version='1.0' ?>
<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">
 <env:Header>
 <m:reservation xmlns:m="http://travelcompany.example.org/
reservation"
 env:role="http://www.w3.org/2003/05/soap-envelope/role/next"
 env:mustUnderstand="true">
 <m:reference>uuid:093a2da1-q345-739r-ba5d-pqff98fe8j7d</m:reference>
 <m:dateAndTime>2001-11-29T13:35:00.000-05:00</m:dateAndTime>
 </m:reservation>

Chapter 9
SOAP Example 2: A Response Asking for Clarification

9-12

 <n:passenger xmlns:n="http://mycompany.example.com/employees"
 env:role="http://www.w3.org/2003/05/soap-envelope/role/next"
 env:mustUnderstand="true">
 <n:name>John Smith</n:name>
 </n:passenger>
 </env:Header>
 <env:Body>
 <p:itineraryClarification
 xmlns:p="http://travelcompany.example.org/reservation/travel">
 <p:departure>
 <p:departing>
 <p:airportChoices>
 JFK LGA EWR
 </p:airportChoices>
 </p:departing>
 </p:departure>
 <p:return>
 <p:arriving>
 <p:airportChoices>
 JFK LGA EWR
 </p:airportChoices>
 </p:arriving>
 </p:return>
 </p:itineraryClarification>
 </env:Body>
</env:Envelope>

Example 9-7 Example 2 SOAP C Client

#define XMLSOAP_MAX_NAME 1024

/* we need this function for examples 2 and 3 */
static xmlerr add_ns_decl(xmlsoapctx *ctx, xmlctx *xctx, xmlelemnode *elem,
 oratext *pfx, oratext *uri)
{
 oratext *aq, aqbuf[XMLSOAP_MAX_NAME];
 xmldocnode *doc;
 oratext *xmlns = "xmlns:";

 /* if no room for "xmlns:usersprefix\0" then fail now */
 if ((strlen((char *)pfx) + strlen((char *)xmlns)) >
 sizeof(aqbuf))
 return EX_FAIL;
 (void) strcpy((char *)aqbuf, (char *)xmlns);
 strcat((char *)aqbuf, (char *)pfx);
 doc = XmlDomGetOwnerDocument(xctx, elem);
 aq = XmlDomSaveString(xctx, doc, aqbuf);
 XmlDomSetAttrNS(xctx, elem, uri, aq, uri);
 return XMLERR_OK;
}

 /* EXAMPLE 2 */
 /* construct message */
 if (!(msg2 = XmlSoapCreateMsg(ctx, &xerr)))

Chapter 9
SOAP Example 2: A Response Asking for Clarification

9-13

 {
 printf("Failed to create SOAP message, error %u\n",
(unsigned) xerr);
 return xerr;
 }
 res = XmlSoapAddHeaderElement(ctx, msg2, "m:reservation",
mres_uri, &xerr);
 xerr = XmlSoapSetRole(ctx, res, XMLSOAP_ROLE_NEXT);
 xerr = XmlSoapSetMustUnderstand(ctx, res, TRUE);
 (void) XmlDomAddTextElem(xctx, res, mres_uri, "m:reference",
 "uuid:093a2da1-q345-739r-ba5d-pqff98fe8j7d");
 (void) XmlDomAddTextElem(xctx, res, mres_uri, "m:dateAndTime",
 "2001-11-29T13:35:00.000-05:00");
 pas = XmlSoapAddHeaderElement(ctx, msg2, "n:passenger", npas_uri,
&xerr);
 xerr = XmlSoapSetRole(ctx, pas, XMLSOAP_ROLE_NEXT);
 xerr = XmlSoapSetMustUnderstand(ctx, pas, TRUE);
 (void) XmlDomAddTextElem(xctx, pas, npas_uri, "n:name",
 "John Smith");
 /* Fill body */
 /* Itinerary */
 itin = XmlSoapAddBodyElement(ctx, msg2, "p:itineraryClarification",
 trav_uri, &xerr);
 /* Departure */
 departure = XmlDomCreateElemNS(xctx, msg2, trav_uri,
"p:departure");
 departing = XmlDomCreateElem(xctx, msg2, "p:departing");
 (void) XmlDomAddTextElem(xctx, departing, trav_uri,
 "p:airportChoices", "JFK LGA EWR");
 (void) XmlDomAppendChild(xctx, departure, departing);
 XmlDomAppendChild(xctx, itin, departure);

 /* Return */
 ret = XmlDomCreateElemNS(xctx, msg2, trav_uri, "p:return");
 arriving = XmlDomCreateElemNS(xctx, msg2, trav_uri, "p:arriving");
 (void) XmlDomAddTextElem(xctx, arriving, trav_uri,
 "p:airportChoices", "JFK LGA EWR");
 XmlDomAppendChild(xctx, ret, arriving);
 XmlDomAppendChild(xctx, itin, ret);

#ifdef DEBUG
 XmlSaveDom(xctx, &xerr, msg2, "stdio", stdout, "indent_step", 1,
NULL);
#endif

9.5 SOAP Example 3: Using POST
An example sends credit card information for John Smith as an XML document using
method POST. XmlSoapCall() writes the HTTP header that precedes the XML
message in the example.

The C Client includes this code block which is substituted like the second example in
Example 9-5:

Chapter 9
SOAP Example 3: Using POST

9-14

Example 9-8 Example 3 SOAP Message

POST /Reservations HTTP/1.0
Host: travelcompany.example.org
Content-Type: application/soap+xml; charset="utf-8"
Content-Length: nnnn

<?xml version='1.0' ?>
<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope" >
 <env:Header>
 <t:transaction
 xmlns:t="http://thirdparty.example.org/transaction"
 env:encodingStyle="http://example.com/encoding"
 env:mustUnderstand="true" >5</t:transaction>
 </env:Header>
 <env:Body>
 <m:chargeReservation
 env:encodingStyle="http://www.w3.org/2003/05/soap-encoding"
 xmlns:m="http://travelcompany.example.org/">
 <m:reservation xmlns:m="http://travelcompany.example.org/reservation">
 <m:code>FT35ZBQ</m:code>
 </m:reservation>
 <o:creditCard xmlns:o="http://mycompany.example.com/financial">
 <n:name xmlns:n="http://mycompany.example.com/employees">
 John Smith
 </n:name>
 <o:number>123456789099999</o:number>
 <o:expiration>2005-02</o:expiration>
 </o:creditCard>
 </m:chargeReservation>
 </env:Body>
</env:Envelope>

Example 9-9 Example 3 SOAP C Client

#define XMLSOAP_MAX_NAME 1024

/* we need this function for examples 2 and 3 */
static xmlerr add_ns_decl(xmlsoapctx *ctx, xmlctx *xctx, xmlelemnode *elem,
 oratext *pfx, oratext *uri)
{
 oratext *aq, aqbuf[XMLSOAP_MAX_NAME];
 xmldocnode *doc;
 oratext *xmlns = "xmlns:";

 /* if no room for "xmlns:usersprefix\0" then fail now */
 if ((strlen((char *)pfx) + strlen((char *)xmlns)) >
 sizeof(aqbuf))
 return EX_FAIL;
 (void) strcpy((char *)aqbuf, (char *)xmlns);
 strcat((char *)aqbuf, (char *)pfx);
 doc = XmlDomGetOwnerDocument(xctx, elem);
 aq = XmlDomSaveString(xctx, doc, aqbuf);
 XmlDomSetAttrNS(xctx, elem, uri, aq, uri);

Chapter 9
SOAP Example 3: Using POST

9-15

 return XMLERR_OK;
}

 /* EXAMPLE 3 */
 if (!(msg3 = XmlSoapCreateMsg(ctx, &xerr)))
 {
 printf("Failed to create SOAP message, error %u\n", (unsigned)
xerr);
 return xerr;
 }
 trans = XmlSoapAddHeaderElement(ctx,msg3, "t:transaction",
tparty_uri, &xerr);
 xerr = XmlSoapSetMustUnderstand(ctx, trans, TRUE);
 XmlDomSetAttr(xctx, trans, estyle, estyle_uri);
 text = XmlDomCreateText(xctx, msg3, "5");
 XmlDomAppendChild(xctx, trans, text);

 /* Fill body */
 /* Charge Reservation */
 charge =
XmlSoapAddBodyElement(ctx,msg3,"m:chargeReservation",comp_uri,&xerr);
 XmlDomSetAttr(xctx, charge, estyle, soap_style_uri);
 res = XmlDomCreateElemNS(xctx, msg3, mres_uri, "m:reservation");
 if (add_ns_decl(ctx, xctx, res, "m", mres_uri))
 return EX_FAIL;
 (void) XmlDomAddTextElem(xctx, res, mres_uri,
 "m:code", "FT35ZBQ");
 (void) XmlDomAppendChild(xctx, charge, res);

 /* create card elem with namespace */
 card = XmlDomCreateElemNS(xctx, msg3, finance_uri, "o:creditCard");
 if (add_ns_decl(ctx, xctx, card, "o", finance_uri))
 return EX_FAIL;
 name = XmlDomAddTextElem(xctx, card, npas_uri,
 "n:name", "John Smith");
 /* add namespace */
 if (add_ns_decl(ctx, xctx, name, "n", npas_uri))
 return EX_FAIL;
 (void) XmlDomAddTextElem(xctx, card, finance_uri,
 "o:number", "123456789099999");
 (void) XmlDomAddTextElem(xctx, card, finance_uri,
 "o:expiration", "2005-02");
 (void) XmlDomAppendChild(xctx, charge, card);

#ifdef DEBUG
 XmlSaveDom(xctx, &xerr, msg3, "stdio", stdout, "indent_step", 1,
NULL);
#endif

Chapter 9
SOAP Example 3: Using POST

9-16

Part II
Oracle XML Developer's Kit for Java

This part explains how to use Oracle XML Developer's Kit (XDK) to develop Java
applications.

10
Unified Java API for XML

The Unified Java application program interface (API) for Extensible Markup Language (XML)
is presented. The APIs that are unified for Oracle XML DB and Oracle XML Developer's Kit
(XDK) are described.

10.1 Overview of Unified Java API for XML
With the Unified Java API for XML, you can use the core Java DOM APIs required by both
Oracle XML DB and XDK. You can also use the new Java classes that provide extra
functionality that is built on top of the Java DOM API.

Unified Java API for XML combines the functionality required by both Oracle XML DB and
XDK. Oracle XML DB implements the Java Document Object Model (DOM) API using the
Java package oracle.xdb.dom and XDK implements it using the oracle.xml.parser.v2
package.

You can use Unified Java API regardless of where your XML data resides (within the
database or outside it), because Unified Java API uses a session pool model of connection
management. If you do not specify the connection type as thick (which uses OCI APIs and is
C-based) or thin (which uses Java Database Connectivity (JDBC) APIs and is purely Java-
based), then a Java DOM API is used to connect to a local document object that resides
outside the database.

See Also:

Oracle Database XML Java API Reference for information about the
oracle.xml.parser.v2 package

10.2 Component Unification
Some components that were supported only by the thick connection or only by the thin
connection have been unified in Unified Java API for XML.

Those that were supported only by the thin connection and have been unified include the
following:

• DOM Parser

• Java API for XML Processing (JAXP) Transformer

• XML SQL Utility (XSU)

• Extensible Stylesheet Language Transformation (XSLT)

10-1

10.3 About Moving to the Unified Java API
Unified Java API provides new Java classes that replace the old oracle.xdb.dom Java
classes. All classes in the oracle.xdb.dom package are deprecated. If you are using
deprecated classes, you must migrate to Unified Java API and use
oracle.xml.parser.v2 classes instead.

10.3.1 Java DOM APIs for XMLType Classes
The Java DOM APIs for XMLType classes are listed, together with their deprecated
equivalents.

Table 10-1 lists the oracle.xdb.dom package classes that were deprecated in Oracle
Database 11g Release 1 (11.1) and their Unified Java API for XML equivalents.

Table 10-1 Deprecated XDB Package Classes and Their Unified Java API
Equivalents

Deprecated
oracle.xdb.dom.* Class

Equivalent oracle.xml.parser.v2 (Unified Java API)
Class

XDBAttribute XMLAttr
XDBBinaryDocument None

XDBCData XMLCDATA
XDBCharData CharData
XDBComment XMLComment
XDBDocFragment XMLDocumentFragment
XDBDocument XMLDocument
XDBDocumentType DTD
XDBDOMException XMLDomException
XDBDomImplementation XMLDomImplementation
XDBDOMNotFoundErrException None

XDBElement XMLElement
XDBEntity XMLEntity
XDBEntityReference XMLEntityReference
XDBNamedNodeMap XMLAttrList
XDBNode XMLNode
XDBNotation XMLNotation
XDBNotImplementedException None

XDBProcInst XMLPI
XDBText XMLText

When you use the Java DOM API to retrieve XML data, you get either an XMLDocument
instance (if the connection is thin) or an XDBDocument instance with method getDOM()
and an XMLDocument instance with method getDocument(). Both XMLDocument and

Chapter 10
About Moving to the Unified Java API

10-2

XDBDocument are instances of the World Wide Web Consortium (W3C) DOM interface. The
getDOM() method and XDBDocument class have been deprecated in the Unified Java API for
XML.

Table 10-2 lists the deprecated XMLType methods and their Unified Java API equivalents.

Table 10-2 Deprecated XMLType Methods and Their Unified Java API Equivalents

Deprecated oracle.xdb.XMLType API Equivalent oracle.xdb.XMLType (Unified Java) API

getDOM() getDocument()
public XMLType createXML(...) public XMLType createXML(..., int kind) where

kind is either XMLDocument.THICK or XMLDocument.THIN

10.3.2 Extension APIs
In addition to the W3C Recommendation, the Unified Java API for XML implementation
provides extension APIs that extend the W3C DOM APIs. You can use the Oracle-specific
extension APIs for performing basic functions (like connecting to a database) and
performance enhancement.

XMLDocument is a class that represents the DOM for the instantiated XML document. Retrieve
the XMLType value from the XML document using the XMLType constructor that takes a
Document argument. For example:

XMLType createXML(Connection conn, Document domdoc)

To dereference a node manually—that is, to explicitly dereference a document fragment from
the DOM tree—use the freeNode() extension API in the oracle.xml.parser.v2 package
(XMLNode class).

10.3.3 Document Creation Java APIs
A Java API that creates an XMLDocument must create either a thin document or a thick
document. Because a thick document needs a Connection object to establish communication
with the database, each document creation API is extended to accept a Connection object.

For an XMLType.createXML API, you must specify a Connection type, which determines the
type of object. Old document creation APIs (provided only for backward compatibility), create
thin (pure Java) objects unless you specify otherwise.

Table 10-3 lists the XMLDocument output, based on KIND and CONNECTION.

Table 10-3 XMLDocument Output Based on KIND and CONNECTION

XMLDocument.KIND XMLDocument.CONNECTION XMLDocument

XMLDocument.THICK Thick or KPRB connection Thick DOM

XMLDocument.THICK Thin or no connection Exception

XMLDocument.THIN Any connection type Thin DOM

Chapter 10
About Moving to the Unified Java API

10-3

Table 10-3 (Cont.) XMLDocument Output Based on KIND and CONNECTION

XMLDocument.KIND XMLDocument.CONNECTION XMLDocument

Not specified Any connection type Non-XMLType APIs: Thin DOM

XMLType.createXML APIs:
Determined by connection type—
Thick DOM for OCI or KPRB
connection, and Thin DOM for Thin
connection.

These objects, methods, and classes are available for document creation in the unified
Java API:

• DOMParser object and parse() method

Use the DOMParser object and parse() method to parse XML documents. You
must specify object type—thick or thin. For a thick object, you must also provide
the Connection type, using the DOMParser.setAttribute() API. For example:

DOMParser parser = new oracle.xml.parser.v2.DOMParser();
parser.setAttribute(XMLDocument.KIND, XMLDocument.THICK);
parser.setAttribute(XMLDocument.CONNECTION, conn);

• DocumentBuilder object and DocumentBuilderFactory class

Use the DocumentBuilder object to parse XML documents using the Java-specific
API, JAXP.

You must create a DOM parser factory with the DocumentBuilderFactory class.
DocumentBuilder builds DOM from input SAX events, taking the Connection from
a property set on the DocumentBuilderFactory. For example:

DocumentBuilderFactory.setAttribute(XMLDocument.CONNECTION, conn);
DocumentBuilderFactory.setAttribute(XMLDocument.KIND,XMLDocument.THICK);

DocumentBuilderFactory passes the connection to the DOMParser object that
creates the document from these APIs:

DocumentBuilder.newDocument()
DocumentBuilder parse(InputStream)
DocumentBuilder parse(InputStream, int)
DocumentBuilder.parse(InputSource)

• XSU methods

Each XSU method returns an XMLDocument to the user. You can specify whether
the user wants a thick or thin object. For example:

OracleXMLUtil util = new OracleXMLUtil(...);
util.setAttribute(XMLDocument.KIND, XMLDocument.THICK);
util.setAttribute(XMLDocument.CONNECTION, conn);
Document doc = util.getXMLDOMFromStruct(struct, enc);

OracleXMLQuery query = new OracleXMLQuery(...);
query.setAttribute(XMLDocument.KIND, XMLDocument.THICK);
query.setAttribute(XMLDocument.CONNECTION, conn);
Document doc = query.getXMLDOM (root, meta);

OracleXMLDocGenDOM dgd = new OracleXMLDocGenDOM(...);

Chapter 10
About Moving to the Unified Java API

10-4

dgd.setAttribute(XMLDocument.KIND, XMLDocument.THICK);
dgd.setAttribute(XMLDocument.CONNECTION, conn);
Document doc = dgd.getXMLDocumentDOM(struct, enc);

• XMLType methods

You can use the XMLType.createXML method to specify the type of the document (thin or
thick) that you want the getDocument() method to get. In this example, the connection is
inferred from OPAQUE:

XMLType xt = XMLType.createXML(orset.getOPAQUE(1), XMLDocument.THICK);
Document doc = xt.getDocument();

Note:

You cannot specify the type of an XMLType object returned by
ResultSet.getObject(). The object type is determined by the Connection used in
the JDBC call that fetches the ResultSet from the XMLType column.

Chapter 10
About Moving to the Unified Java API

10-5

11
Getting Started with Oracle XML Developer's
Kit for Java

How to get started with XDK for Java is described.

11.1 Installing XDK for Java Components
XDK for Java components are included with Oracle Database. This chapter assumes that you
installed XDK with Oracle Database and installed the demo programs from the Oracle
Database Examples media.

Caution:

Using the components of Oracle XML Developer’s Kit (XDK) to build software
programs enables some powerful but potentially dangerous features, such as
external entity expansion and recursive expansion. Refer to Security Considerations
for Oracle XML Developer's Kit for information about how to use XDK securely.

For a description of the XDK directory structure, see About Installing XDK.

Example 11-1 lists the main directories under the Oracle home directory for Java (This is the
UNIX directory structure.) The contents of the subdirectories are listed individually, after the
example.

The bin directory contains these components:

 orajaxb
 orapipe
 oraxml
 oraxsl
 transx

The lib directory contains these JAR and ZIP files:

 classgen.jar
 jdev-rt.zip
 oraclexsql.jar
 transx.zip
 xml.jar
 xml2.jar
 xmldemo.jar
 xmlmesg.jar
 xmlparserv2.jar
 xschema.jar
 xsqlserializers.jar
 xsu12.jar

The jlib directory contains these JAR files:

11-1

 orai18n.jar
 orai18n-collation.jar
 orai18n-mapping.jar
 orai18n-utility.jar

The jdbc directory contains this lib subdirectory:

 | - lib/
 ojdbc6.jar

The rdbms directory contains this jlib subdirectory:

 | - jlib/
 xdb.jar

And, the xdk directory contains this demo subdirectory:

 | demo/
 | - java/
 | - classgen/
 | - jaxb/
 | - parser/
 | - pipeline/
 | - schema/
 | - transviewer/
 | - tranxs/
 | - xsql/
 | - xsu/

The /xdk/demo/java subdirectories contain sample programs and data files for XDK
for Java components. The chapters in Oracle XML Developer's Kit for Java explain
how to use these programs to learn about the most important Java features.

See Also:

Table 1-1 for descriptions of individual XDK for Java components

Example 11-1 Oracle XML Developer's Kit for Java Libraries, Utilities, and
Demos

- $ORACLE_HOME
 | - bin/
 | - lib/
 | - jlib/
 | - jdbc/
 | - rdbms/
 | - xdk/

11.2 XDK for Java Component Dependencies
The dependencies of XDK for Java components when using Java Development Kit
(JDK) are described.

XDK for Java components are certified and supported with JDK versions 5 and 6.
Earlier versions of Java are no longer supported. Figure 11-1 shows the dependencies
of XDK for Java components when using JDK 5.

Chapter 11
XDK for Java Component Dependencies

11-2

Figure 11-1 Oracle XML Developer's Kit for Java Component Dependencies for JDK 5

C
la

s
s
 G

e
n

e
ra

to
r

(
x
m
l
.
j
a
r
)

J
D

B
C

 D
ri

v
e
r

(
o
j
d
b
c
5
.
j
a
r
)

W
e
b

 S
e
rv

e
r

w

it
h

J
a
v
a
 S

e
rv

le
t�

S
u

p
p

o
rt

X
M

L
 P

a
rs

e
r

/
X

S
L

 P
ro

c
e
s
s
o

r
/
X

M
L

 P
ip

e
li
n

e
 /
 �

J
A

X
P

 /
 X

M
L

 S
c
h

e
m

a
 P

ro
c
e
s
s
o

r
�

/
X

M
L

 C
o

m
p

re
s
s
o

r
/
J
A

X
B

�
(x
m
l
p
a
r
s
e
r
v
2
.
j
a
r
,

x
m
l
m
e
s
g
.
j
a
r
,

�

x
m
l
.
j
a
r
)

J
D

K

X
M

L
 S

Q
L

 U
ti

li
ty

(
x
s
u
1
2
.
j
a
r
,

x
d
b
.
j
a
r
)

T
ra

n
s
X

 U
ti

li
ty

(
x
m
l
.
j
a
r
)

J
a
v
a
B

e
a
n

s

(
x
m
l
d
e
m
o
.
j
a
r
,

x
m
l
.
j
a
r
)

X
S

Q
L

 S
e
rv

le
t

(
x
m
l
.
j
a
r
)

G
lo

b
a
li
z
a
ti

o
n

 S
u

p
p

o
rt

�
(o
r
a
i
1
8
n
.
j
a
r
,

�

o
r
a
i
1
8
n
-
c
o
l
l
a
t
i
o
n
.
j
a
r
,

�

o
r
a
i
1
8
n
-
m
a
p
p
i
n
g
.
j
a
r
,

o
r
a
i
1
8
n
-
u
t
i
l
i
t
y
.
j
a
r
)

XDK for Java components need the libraries in Table 11-1. Some of the libraries are not
specific to XDK, but are shared among other Oracle Database components.

Table 11-1 Java Libraries for Oracle XML Developer's Kit for Java Components

Library Directory Includes . . .

classgen.jar $ORACLE_HOME/lib Extensible Markup Language (XML) class
generator for Java runtime classes.

Note: This library is maintained only for backward
compatibility. Use the Java Architecture for XML
Binding (JAXB) class generator in xml.jar
instead.

jdev-rt.zip $ORACLE_HOME/lib Java graphical user interface (GUI) libraries for use
when working with the demos with the Java
Development Environment (JDE).

ojdbc6.jar $ORACLE_HOME/jdbc/lib Oracle Java Database Connectivity (JDBC) drivers
for Java 6. This Java Archive (JAR) depends on
orai18n.jar for character set support if you use
a multibyte character set other than 8-bit encoding
of Unicode (UTF-8), ISO8859-1, or JA16SJIS.

oraclexsql.jar $ORACLE_HOME/lib Most of the XSQL Servlet classes needed to
construct XSQL pages.

Note: This JAR is superseded by xml.jar and is
retained only for backward compatibility.

orai18n.jar $ORACLE_HOME/jlib Globalization support for JDK 1.2 or above. It is a
wrapper of all other Globalization JARs and
includes character set converters. If you use a
multibyte character set other than UTF-8,
ISO8859-1, or JA16SJIS, then put this archive in
your CLASSPATH so that JDBC can convert the
character set of the input file to the database
character set when loading XML files with XML
SQL Utility (XSU), TransX Utility, or XSQL Servlet.

Chapter 11
XDK for Java Component Dependencies

11-3

Table 11-1 (Cont.) Java Libraries for Oracle XML Developer's Kit for Java Components

Library Directory Includes . . .

orai18n-collation.jar $ORACLE_HOME/jlib Globalization collation features: the OraCollator
class and the lx3*.glb and lx4001[0-9].glb
files.

orai18n-mapping.jar $ORACLE_HOME/jlib Globalization locale and character set name
mappings: the OraResourceBundle class and
lx4000[0-9].glb files. This archive is used
mainly by products that need only locale name
mapping tables.

orai18n-utility.jar $ORACLE_HOME/jlib Globalization locale objects: the OraLocaleInfo
class, the OraNumberFormat and OraDateFormat
classes, and the lx[01]*.glb files.

transx.zip $ORACLE_HOME/lib TransX Utility classes.

Note: This archive is superseded by xml.jar and
is retained only for backward compatibility.

xdb.jar $ORACLE_HOME/rdbms/jlib Classes needed by xml.jar to access XMLType,
classes needed to access Oracle XML DB
Repository, and XMLType Document Object Model
(DOM) classes for manipulation of the DOM tree.

xml.jar $ORACLE_HOME/lib JAXB and Pipeline Processor classes and classes
from these libraries:

• oraclexsql.jar
• xsqlserializers.jar
• transx.jar

xmldemo.jar $ORACLE_HOME/lib The visual JavaBeans: XMLTreeView,
XMLTransformPanel, XMLSourceView, and
DBViewer.

xmlmesg.jar $ORACLE_HOME/lib Support for using XML parser with a language
other than English.

xmlparserv2.jar $ORACLE_HOME/lib Application programming interfaces (APIs) for:

• DOM and Simple API for XML (SAX) parsers
• XML Schema processor
• Extensible Stylesheet Language

Transformation (XSLT) processor
• XML compression
• Java API for XML Processing (JAXP)
• Utility functionality such as

XMLSAXSerializer and asynchronous DOM
Builder

This library includes xschema.jar.

xschema.jar $ORACLE_HOME/lib XML Schema classes contained in
xmlparserv2.jar.

Note: This JAR file is retained only for backward
compatibility.

xsqlserializers.jar $ORACLE_HOME/lib Classes that XSQL Servlet needs for serialized
output such as PDF.

Note: This archive is superseded by xml.jar and
is retained only for backward compatibility.

Chapter 11
XDK for Java Component Dependencies

11-4

Table 11-1 (Cont.) Java Libraries for Oracle XML Developer's Kit for Java Components

Library Directory Includes . . .

xsu12.jar $ORACLE_HOME/lib Classes that implement XSU. These classes
depend on xdb.jar for XMLType access.

See Also:

• Oracle Database Globalization Support Guide to learn about the Globalization
Support libraries

• Oracle Database JDBC Developer’s Guide to learn about the JDBC libraries

• Oracle XML DB Developer’s Guide to learn about Oracle XML DB

11.3 Setting Up the XDK for Java Environment
You can set up the XDK for Java environment using either an environment variable or a
command-line option.

To set up the XDK for Java environment, do either of the following:

• During Oracle Database installation of XDK, manually set the $CLASSPATH (UNIX) or
%CLASSPATH% (Windows) environment variables.

• When compiling and running Java programs at the command line, set the -classpath
option.

11.3.1 Setting Up XDK for Java Environment Variables for UNIX
The UNIX environment variables needed by XDK for Java components are described.

Table 11-2 UNIX Environment Variables for Oracle XML Developer's Kit for Java Components

Variable Description

$CLASSPATH Includes:

.:${CLASSPATHJ}:${ORACLE_HOME}/lib/xmlparserv2.jar:
${ORACLE_HOME}/lib/xsu12.jar:${ORACLE_HOME}/lib/xml.jar

Note: A period (.) to represent the current directory is optional.

$CLASSPATHJ For JDK 5, set:

CLASSPATHJ=${ORACLE_HOME}/jdbc/lib/ojdbc6.jar:${ORACLE_HOME}/jlib/
orai18n.jar

Certain character sets need orai18n.jar.

$JAVA_HOME Installation directory for the Java JDK, Standard Edition. Modify the path that links to the
Java SDK.

Chapter 11
Setting Up the XDK for Java Environment

11-5

Table 11-2 (Cont.) UNIX Environment Variables for Oracle XML Developer's Kit for Java
Components

Variable Description

$LD_LIBRARY_PATH For OCI JDBC connections:

${ORACLE_HOME}/lib:${LD_LIBRARY_PATH}

$PATH ${JAVA_HOME}/bin

After setting up the XDK for Java environment on UNIX, you can use the command-
line utilities described in Table 11-3.

Table 11-3 Oracle XML Developer's Kit for Java UNIX Utilities

Executable/Class Directory/JAR Description

xsql $ORACLE_HOME/bin XSQL command-line utility. The script executes the
oracle.xml.xsql.XSQLCommandLine class. Edit
this shell script for your environment before use.

OracleXML $ORACLE_HOME/lib/xsu12.jar XSU command-line utility

orajaxb $ORACLE_HOME/bin JAXB command-line utility

orapipe $ORACLE_HOME/bin Pipeline command-line utility

oraxml $ORACLE_HOME/bin XML parser command-line utility

oraxsl $ORACLE_HOME/bin XSLT processor command-line utility

transx $ORACLE_HOME/bin TransX command-line utility

Related Topics

• Using the XSQL Pages Command-Line Utility
XDK includes a command-line Java interface that runs the XSQL page processor.
You can process any XSQL page with the XSQL command-line utility.

• Using the XSU Command-Line Utility
XDK includes a command-line Java interface for XSU. XSU command-line options
are provided through the Java class OracleXML.

• Using the JAXB Class Generator Command-Line Utility
XDK includes orajaxb, which is a command-line Java interface that generates
Java classes from input XML schemas. Shell scripts $ORACLE_HOME/bin/orajaxb
and %ORACLE_HOME%\bin\orajaxb.bat execute class oracle.xml.jaxb.orajaxb.

• Using the XML Pipeline Processor Command-Line Utility
The command-line interface for the XML Pipeline processor is named orapipe.
The Pipeline processor is packaged with Oracle Database. By default, the Oracle
Universal Installer installs the utility on disk in $ORACLE_HOME/bin.

• Using the Java XML Parser Command-Line Utility (oraxml)
The oraxml utility, which is located in $ORACLE_HOME/bin (UNIX) or %ORACLE_HOME%
\bin (Windows), is a command-line interface that parses XML documents. It
checks for both well-formedness and validity.

Chapter 11
Setting Up the XDK for Java Environment

11-6

• Using the XSLT Processor Command-Line Utility
XDK includes oraxsl, which is a command-line Java interface that can apply a stylesheet
to multiple XML documents. The $ORACLE_HOME/bin/oraxsl and %ORACLE_HOME%
\bin\oraxsl.bat shell scripts execute the oracle.xml.jaxb.oraxsl class.

• Using the TransX Command-Line Utility
TransX utility is packaged with Oracle Database. By default, the Oracle Universal Installer
installs the utility on disk.

11.3.2 Testing the XDK for Java Environment on UNIX
A UNIX shell script is provided to test the XDK Java environment.

If your environment is set up correctly, then the UNIX shell script in Example 11-2 generates
version and usage information for the utilities in Table 11-3.

Example 11-2 Testing the Oracle XML Developer's Kit for Java Environment on UNIX

#!/usr/bin/tcsh
echo;echo "BEGIN TESTING";echo
echo;echo "now testing the XSQL utility...";echo
xsql
echo; echo "now testing the XSU utility...";echo
java OracleXML
echo;echo "now testing the JAXB utility...";echo
orajaxb -version
echo;echo "now testing the Pipeline utility...";echo
orapipe -version
echo;echo "now testing the XSLT Processor utility...";echo
oraxsl
echo;echo "now testing the TransX utility...";echo
transx
echo;echo "END TESTING"

11.3.3 Setting Up XDK for Java Environment Variables for Windows
The Microsoft Windows environment variables needed by XDK for Java components are
described.

Table 11-4 describes the Windows environment variables that the XDK for Java components
need.

Table 11-4 Windows Environment Variables for Oracle XML Developer's Kit for Java
Components

Variable Notes

%CLASSPATH% Includes:

.;%CLASSPATHJ%;%ORACLE_HOME%\lib\xmlparserv2.jar;
%ORACLE_HOME%\lib\xsu12.jar;%ORACLE_HOME%\lib\xml.jar;
%ORACLE_HOME%\lib\xmlmesg.jar;%ORACLE_HOME%\lib\oraclexsql.jar

Note: A single period "." to represent the current directory is not required, but may be useful.

Chapter 11
Setting Up the XDK for Java Environment

11-7

Table 11-4 (Cont.) Windows Environment Variables for Oracle XML Developer's Kit for Java
Components

Variable Notes

%CLASSPATHJ% For JDK 5, set:

CLASSPATHJ=%ORACLE_HOME%\jdbc\lib\ojdbc6.jar:%ORACLE_HOME%
\lib\orai18n.jar

The orai18n.jar is needed to support certain character sets.

%JAVA_HOME% Installation directory for the Java software developer's kit (SDK), Standard Edition. Modify the
path that links to the Java SDK.

%PATH% %JAVA_HOME%\bin

After setting up the XDK for Java environment on Windows, you can use the
command-line utilities described in Table 11-5.

Table 11-5 Oracle XML Developer's Kit for Java Windows Utilities

Batch File/Class Directory/JAR Description

xsql.bat %ORACLE_HOME%\bin XSQL command-line utility. The batch file executes
the oracle.xml.xsql.XSQLCommandLine class.
Edit the batch file for your environment before use.

OracleXML %ORACLE_HOME%\lib\xsu12.jar XSU command-line utility

orajaxb.bat %ORACLE_HOME%\bin JAXB command-line utility

orapipe.bat %ORACLE_HOME%\bin Pipeline command-line utility

oraxml.bat %ORACLE_HOME%\bin XML parser command-line utility

oraxsl.bat %ORACLE_HOME%\bin XSLT processor command-line utility

transx.bat %ORACLE_HOME%\bin TransX command-line utility

Related Topics

• Using the XSQL Pages Command-Line Utility
XDK includes a command-line Java interface that runs the XSQL page processor.
You can process any XSQL page with the XSQL command-line utility.

• Using the XSU Command-Line Utility
XDK includes a command-line Java interface for XSU. XSU command-line options
are provided through the Java class OracleXML.

• Using the JAXB Class Generator Command-Line Utility
XDK includes orajaxb, which is a command-line Java interface that generates
Java classes from input XML schemas. Shell scripts $ORACLE_HOME/bin/orajaxb
and %ORACLE_HOME%\bin\orajaxb.bat execute class oracle.xml.jaxb.orajaxb.

• Using the XML Pipeline Processor Command-Line Utility
The command-line interface for the XML Pipeline processor is named orapipe.
The Pipeline processor is packaged with Oracle Database. By default, the Oracle
Universal Installer installs the utility on disk in $ORACLE_HOME/bin.

Chapter 11
Setting Up the XDK for Java Environment

11-8

• Using the Java XML Parser Command-Line Utility (oraxml)
The oraxml utility, which is located in $ORACLE_HOME/bin (UNIX) or %ORACLE_HOME%\bin
(Windows), is a command-line interface that parses XML documents. It checks for both
well-formedness and validity.

• Using the XSLT Processor Command-Line Utility
XDK includes oraxsl, which is a command-line Java interface that can apply a stylesheet
to multiple XML documents. The $ORACLE_HOME/bin/oraxsl and %ORACLE_HOME%
\bin\oraxsl.bat shell scripts execute the oracle.xml.jaxb.oraxsl class.

• Using the TransX Command-Line Utility
TransX utility is packaged with Oracle Database. By default, the Oracle Universal Installer
installs the utility on disk.

11.3.4 Testing the XDK for Java Environment on Windows
An Microsoft Windows script is provided for testing the XDK for Java environment.

If your environment is set up correctly, then you can run the commands in Example 11-3 at
the system prompt to generate version and usage information for the utilities in Table 11-5.

Example 11-3 Testing the Oracle XML Developer's Kit for Java Environment on
Windows

xsql.bat
java OracleXML
orajaxb.bat -version
orapipe.bat -version
oraxsl.bat
transx.bat

11.4 Verifying the XDK (Java) Version
You can use javac to check your XDK version.

To see which version of XDK you have installed, use javac to compile the Java code shown
in Example 11-4.

After compilation, run the program on the operating system command line:

java XDKVersion

The result is similar to:

You are using version:
Oracle XML Developers Kit 11.1.0.6.0 - Production

Example 11-4 XDKVersion.java

//
// XDKVersion.java
//
import java.net.URL;
import oracle.xml.parser.v2.XMLParser;
public class XDKVersion
{
 static public void main(String[] argv)
 {
 System.out.println("You are using version: ");

Chapter 11
Verifying the XDK (Java) Version

11-9

 System.out.println(XMLParser.getReleaseVersion());
 }
}

Chapter 11
Verifying the XDK (Java) Version

11-10

12
XML Parsing for Java

Extensible Markup Language (XML) parsing for Java is described.

12.1 Introduction to XML Parsing for Java
XML parsing for Java is described.

12.1.1 Prerequisites for Parsing with Java
An Oracle XML parser reads an XML document and uses either a Document Object Model
(DOM) application programming interface (API) or Simple API for XML (SAX) to access to its
content and structure. You can parse in either validating or nonvalidating mode.

This chapter assumes that you are familiar with these technologies:

• Document Object Model (DOM): An in-memory tree representation of the structure of an
XML document.

• Simple API for XML (SAX): A standard for event-based XML parsing.

• Java API for XML Processing (JAXP): A standard interface for processing XML with Java
applications that supports the DOM and SAX standards.

• document type definition (DTD): A set of rules that defines the valid structure of an XML
document.

• XML Schema: A World Wide Web Consortium (W3C) recommendation that defines the
valid structure of data types in an XML document.

• XML Namespaces: A mechanism for differentiating element and attribute names within
an XML document.

• binary XML: An XML representation that uses the compact schema-aware format, in
which both scalable and nonscalable DOMs can save XML documents.

For more information, see the list of XML resources in the Related Documents.

12.1.2 Standards and Specifications for XML Parsing for Java
The DOM Level 1, Level 2, and Level 3 specifications are W3C Recommendations.

See Document Object Model (DOM) Technical Reports for the W3C DOM specifications.

SAX is available in version 1.0 (deprecated) and 2.0. SAX is not a W3C specification. See
SAX Project.

XML Namespaces are a W3C Recommendation. See Namespaces in XML 1.0 (Third
Edition).

12-1

See Also:

Oracle XML DB Developer’s Guide

JAXP is a standard API that enables the use of DOM, SAX, XML Schema, and
Extensible Stylesheet Language Transformation (XSLT), independent of processor
implementation.

See Also:

Oracle XML Developer's Kit Standards, for information about standards
supported by Oracle XML Developer's Kit (XDK)

12.1.3 Large Node Handling
DOM Stream access to XML nodes is done by Procedural Language/Structured Query
Language (PL/SQL) and Java APIs. Nodes in an XML document can now far exceed
64 KB. Thus Joint Photographic Experts Group (JPEG), Word, PDF, rich text format
(RTF), and HTML documents can be more readily stored.

See Also:

Oracle XML DB Developer’s Guide for complete details on the Java large
node capabilities

12.1.4 XML Parsing in Java: Overview
XMLParser is the abstract base class for the XML parser for Java. An instantiated
parser invokes the parse() method to read an XML document. XMLDOMImplementation
factory methods provide another way to parse binary XML to create scalable DOM.

Figure 12-1 shows the basic parsing process, using XMLParser. The figure does not
apply to XMLDOMImplementation().

Chapter 12
Introduction to XML Parsing for Java

12-2

Figure 12-1 XML Parser Process

P
a
rs

e
d

D
a
ta

S
to

ra
g

e
 U

n
it

s

(e
n

ti
ti

e
s
)

U
n
p
a
rs

e
d

D
a
ta

C
h
a
ra

c
te

rs

C
h
a
ra

c
te

r
D

a
ta

M
a
rk

u
p

X
M

L

d
o

c
u

m
e
n

t

X
M

L
 P

a
rs

e
r

(P
ro

c
e
s
s
o

r)

C
o
n
te

n
t
a
n
d
 S

tr
u
c
tu

re
R

e
a
d
s

These APIs provide a Java application with access to a parsed XML document:

• DOM API

DOM API parses XML documents and builds a tree representation of the documents in
memory. To parse with DOM API, use either a DOMParser object or the
XMLDOMImplementation interface factory methods to create a pluggable, scalable DOM
(SDOM).

• SAX API

SAX API processes an XML document as a stream of events, which means that a
program cannot access random locations in a document. To parse with SAX API, use a
SAXParser object.

• JAXP

JAXP is a Java-specific API that supports DOM, SAX, and Extensible Stylesheet
Language (XSL). To parse with JAXP, use a DocumentBuilder or SAXParser object.

Subsequent topics use the sample XML document in Example 12-1 to show the differences
among DOM, SAX, and JAXP.

Example 12-1 Sample XML Document

<?xml version="1.0"?>
 <EMPLIST>

Chapter 12
Introduction to XML Parsing for Java

12-3

 <EMP>
 <ENAME>MARY</ENAME>
 </EMP>
 <EMP>
 <ENAME>SCOTT</ENAME>
 </EMP>
 </EMPLIST>

12.1.5 DOM in XML Parsing
DOM API builds an in-memory tree representation of the XML document. DOM API
provides classes and methods to navigate and process the tree.

For example, given the document described in Example 12-1, the DOM API creates
the in-memory tree shown in Figure 12-2.

The important aspects of DOM API are:

• DOM API provides a familiar tree structure of objects, making it easier to use than
the SAX API.

• The tree can be manipulated. For example, elements can be reordered and
renamed, and both elements and attributes can be added and deleted.

• Interactive applications can store the tree in memory, where users can access and
manipulate it.

• XKD includes DOM API extensions that support XPath. (Although the DOM
standard does not support XPath, most XPath implementations use DOM.)

• XDK supports SDOM. For details, see SDOM.

12.1.5.1 DOM Creation
In XDK for Java, there are three ways to create a DOM: parse a document using
DOMParser, use an XMLDOMImplementation factory method (creates a scalable DOM),
or use an XMLDocument constructor (uncommon).

12.1.6 SDOM
XDK supports pluggable, scalable DOM (SDOM). This support relieves problems of
memory inefficiency, limited scalability, and lack of control over the DOM configuration.
SDOM creation and configuration are mainly supported using the
XMLDOMImplementation class.

Important aspects of SDOM are:

• SDOM can use plug-in external XML in its existing forms.

Plug-in XML data can be in different forms—binary XML, XMLType, third-party
DOM, and so on. SDOM need not replicate external XML in an internal
representation. SDOM is created on top of plug-in XML data through the Reader
and InfosetWriter abstract interfaces.

• SDOM has transient nodes.

Nodes are created only if they are accessed and are freed if they are not used.

• SDOM can use binary XML as both input and output.

Chapter 12
Introduction to XML Parsing for Java

12-4

SDOM can interact with data in two ways:

– Through the abstract InfosetReader and InfosetWriter interfaces.

To read and write BinXML data, users can use the BinXML implementation of
InfosetReader and InfosetWriter. To read and write in other forms of XML infoset,
users can use their own implementations.

– Through an implementation of the InfosetReader and InfosetWriter adaptor for
BinXMLStream.

Related Topics

• Using Binary XML with Java
Topics here explain how to use Binary XML with Java.

12.1.6.1 Pluggable DOM Support
Pluggable DOM lets you split the DOM API from the data layer. The DOM API is separated
from the data by the InfosetReader and InfosetWriter interfaces. Using pluggable DOM,
you can easily move XML data from one processor to another.

The DOM API includes unified standard APIs on top of the data to support node access,
navigation, update processes, and searching capability.

Related Topics

• Using SDOM
How to use SDOM is described.

12.1.6.2 Lazy Materialization
Using lazy materialization, XDK creates only nodes that are accessed and frees unused
nodes from memory. Applications can process very large XML documents with improved
scalability.

Related Topics

• Using Lazy Materialization
Using lazy materialization, you can plug in an empty DOM, which can pull in data when
needed and free (dereference) nodes when they are no longer needed. SDOM supports
either manual or automatic node dereferencing.

12.1.6.3 Configurable DOM Settings
DOM configurations can be made to suit different applications. You can configure the DOM
with different access patterns such as read-only, streaming, transient update, and shadow
copy, achieving maximum memory use and performance in your applications.

Related Topics

• Using Configurable DOM Settings
When you create a DOM using class XMLDOMImplementation, you can configure the DOM
for different applications and achieve maximum efficiency by using method
setAttribute.

Chapter 12
Introduction to XML Parsing for Java

12-5

12.1.6.4 DOM Support for Fast Infoset
Fast Infoset, developed by Oracle, is a compact binary XML format that represents the
XML Infoset. This format has become the international standard ITU-T SG 17 and
ISO/IEC JTC1 SC6. The Fast Infoset representation of XML Infoset is popular within
the Java XML and Web Service communities.

Fast Infoset provides these benefits in comparison with other formats:

• It is more compact, parses faster, and serializes better than XML text.

• It encodes and decodes faster than parsing of XML text, and Fast Infoset
documents are generally 20 to 60 percent smaller than the corresponding XML
text.

• It leads other binary XML formats in performance and compression ratio, and
handles small to large documents in a more balanced manner.

SDOM is the XDK DOM configuration that supports scalability. It is built on top of
serialized binary data to provide a DOM API to applications like XPath and XSLT.
SDOM has an open plug-in architecture that reads binary data through an abstract API
InfosetReader. The InfosetReader API allows SDOM to decode the binary data going
forward, remember the start location of the nodes, and search a location to decode
from there. This support enables SDOM to free nodes that are not in use and re-create
those nodes from binary data when they are needed. When binary data is stored
externally, such as in a file or a BLOB, SDOM is highly scalable.

Related Topics

• Using Fast Infoset with SDOM
The Fast Infoset to XDK/J model lets you use Fast Infoset techniques while
working with XML content in Java.

12.1.7 SAX in the XML Parser
Unlike DOM, SAX is event-based, so SAX API does not build in-memory tree
representations of input documents. SAX API processes the input document element
by element and can report events and significant data to callback methods in the
application.

For example, given the document described in Example 12-1, the SAX API parses it
as the series of linear events shown in Figure 12-2.

The important aspects of SAX API are:

• It is useful for search operations and other programs that need not manipulate an
XML tree.

• It does not consume significant memory resources.

• It is faster than DOM when retrieving XML documents from a database.

Chapter 12
Introduction to XML Parsing for Java

12-6

Figure 12-2 Comparing DOM (Tree-Based) and SAX (Event-Based) APIs

<
E

M
P

>
<

E
M

P
>

<
E

M
P

L
IS

T
>

<
E

N
A

M
E

>
<

E
N

A
M

E
>

M
A

R
Y

S
C

O
T

T

T
h

e
 D

O
M

 i
n

te
r
fa

c
e

 c
r
e

a
te

s
 a

T
R

E
E

 s
tr

u
c

tu
r
e

 b
a

s
e

d
 o

n
 t

h
e

X
M

L
 D

o
c

u
m

e
n

t
X

M
L

 D
o

c
u

m
e

n
t

<
?
x
m
l

v
e
r
s
i
o
n

=

"
1
.
0
"
?
>

<
E
M
P
L
I
S
T
>

<
E
M
P
>

<
E
N
A
M
E
>
M
A
R
Y
<
/
E
N
A
M
E
>

<
/
E
M
P
>

<
E
M
P
>

<
E
N
A
M
E
>
S
C
O
T
T
<
/
E
N
A
M
E
>

<
/
E
M
P
>

<
/
E
M
P
L
I
S
T
>

T
h

e
 S

A
X

 i
n

te
r
fa

c
e

 c
r
e

a
te

s

a
 s

e
r
ie

s
 o

f
li

n
e

a
r
 e

v
e

n
ts

b
a

s
e

d
 o

n
 t

h
e

 X
M

L

d
o

c
u

m
e

n
t

U
s
e

fu
l
fo

r
a

p
p

lic
a

ti
o

n
s
 s

u
c
h

a

s
 s

e
a

rc
h

 a
n

d
 r

e
tr

ie
v
a

l
th

a
t

d
o

n

o
t

c
h

a
n

g
e

 t
h

e
 "

X
M

L
 t

re
e

".

U
s
e

fu
l
fo

r
a

p
p

lic
a

ti
o

n
s
 t

h
a

t
in

c
lu

d
e

c
h

a
n

g
e

s
 e

g
.

re
o

rd
e

ri
n

g
,

a
d

d
in

g
,

o
r

d
e

le
ti
n

g
 e

le
m

e
n

ts
.

s
t
a
r
t

d
o
c
u
m
e
n
t

 s
t
a
r
t

e
l
e
m
e
n
t
:

E
M
P
L
I
S
T

s
t
a
r
t

e
l
e
m
e
n
t
:

E
M
P

s
t
a
r
t

e
l
e
m
e
n
t
:

E
N
A
M
E

c
h
a
r
a
c
t
e
r
s
:

M
A
R
Y

e
n
d

e
l
e
m
e
n
t
:

E
N
A
M
E

e
n
d

e
l
e
m
e
n
t
:

E
M
P

 s
t
a
r
t

e
l
e
m
e
n
t
:

E
M
P

s
t
a
r
t

e
l
e
m
e
n
t
:

E
N
A
M
E

c
h
a
r
a
c
t
e
r
s
:

S
C
O
T
T

e
n
d

e
l
e
m
e
n
t
:

E
N
A
M
E

e
n
d

e
l
e
m
e
n
t
:

E
M
P

 e
n
d

e
l
e
m
e
n
t
:

E
M
P
L
I
S
T

e
n
d

d
o
c
u
m
e
n
t

12.1.8 JAXP in the XML Parser
JAXP lets you plug in an implementation of the SAX or DOM parser. The SAX and DOM APIs
provided by XDK are examples of vendor-specific implementations supported by JAXP. The
main advantage of JAXP is that it lets you write interoperable applications.

An application that uses features available through JAXP can very easily switch the
implementation.

The main disadvantage of JAXP is that it runs more slowly than vendor-specific APIs. Also,
JAXP lacks several features that Oracle-specific APIs provide. Some Oracle-specific features
are available through the JAXP extension mechanism, but an application that uses these
extensions loses the flexibility of switching implementation.

12.1.9 Namespace Support in the XML Parser
Namespaces can help you avoid name collisions between elements or attributes in XML
documents.

Example 12-2 is an XML document that uses the <address> tag for both a company address
and an employee address. An XML processor cannot distinguish between a company
address and an employee address.

Example 12-3 is an XML document that uses these namespaces to distinguish between
company and employee <address> tags:

http://www.oracle.com/employee
http://www.oracle.com/company

Example 12-3 associates the com prefix with the first namespace and the emp prefix with the
second namespace.

When parsing documents that use namespaces, it is helpful to remember these terms:

Chapter 12
Introduction to XML Parsing for Java

12-7

• Namespace URI is the URI assigned to xmlns. In Example 12-3, http://
www.oracle.com/employee and http://www.oracle.com/company are namespace
URIs.

• Namespace prefix is a namespace identifier declared with xmlns. In
Example 12-3, emp and com are namespace prefixes.

• Local name is the name of an element or attribute without the namespace prefix.
In Example 12-3, employee and company are local names.

• Qualified name is the local name plus the prefix. In Example 12-3, emp:employee
and com:company are qualified names.

• Expanded name is the result of substituting the namespace URI for the
namespace prefix. In Example 12-3, http://www.oracle.com/employee:employee
and http://www.oracle.com/company:company are expanded element names.

Example 12-2 Sample XML Document Without Namespaces

<?xml version='1.0'?>
<addresslist>
 <company>
 <address>500 Oracle Parkway,
 Redwood Shores, CA 94065
 </address>
 </company>
 <!-- ... -->
 <employee>
 <lastname>King</lastname>
 <address>3290 W Big Beaver
 Troy, MI 48084
 </address>
 </employee>
 <!-- ... -->
</addresslist>

Example 12-3 Sample XML Document with Namespaces

<?xml version='1.0'?>
<addresslist>
<!-- ... -->
 <com:company
 xmlns:com="http://www.oracle.com/company">
 <com:address>500 Oracle Parkway,
 Redwood Shores, CA 94065
 </com:address>
 </com:company>
 <!-- ... -->
 <emp:employee
 xmlns:emp="http://www.oracle.com/employee">
 <emp:lastname>King</emp:lastname>
 <emp:address>3290 W Big Beaver
 Troy, MI 48084
 </emp:address>
</emp:employee>

12.1.10 Validation in the XML Parser
To parse an XML document, invoke the parse() method. Typically, you invoke
initialization and termination methods in association with the parse() method.

Chapter 12
Introduction to XML Parsing for Java

12-8

The parser mode can be either validating or nonvalidating. In validating mode, the parser
determines whether the document conforms to the specified DTD or XML schema. In
nonvalidating mode, the parser checks only for well-formedness. To set the parser mode,
invoke the setValidationMode() method defined in oracle.xml.parser.v2.XMLParser.

Table 12-1 shows the setValidationMode() flags that you can use in the XDK parser.

Table 12-1 XML Parser for Java Validation Modes

Name Value The XML Parser . . .

Nonvalidating mode NONVALIDATING Verifies that the XML is well-formed and parses the data.

DTD validating mode DTD_VALIDATION Verifies that the XML is well-formed and validates the XML
data against the DTD. The DTD defined in the <!
DOCTYPE> declaration must be relative to the location of
the input XML document.

Schema validation
mode

SCHEMA_VALIDATION Validates the XML Document according to the XML
schema specified for the document.

LAX validation mode SCHEMA_LAX_VALIDATION Tries to validate part or all of the instance document if it
can find the schema definition. It does not raise an error if
it cannot find the definition. See the sample program
XSDLax.java in the schema directory.

Strict validation mode SCHEMA_STRICT_VALIDATIO
N

Tries to validate the whole instance document, raising
errors if it cannot find the schema definition or if the
instance does not conform to the definition.

Partial validation mode PARTIAL_VALIDATION Validates all or part of the input XML document according
to the DTD, if present. If the DTD is not present, then the
parser is set to nonvalidating mode.

Auto validation mode AUTO_VALIDATION Validates all or part of the input XML document according
to the DTD or XML schema, if present. If neither is
present, then the parser is set to nonvalidating mode.

In addition to setting the validation mode with setValidationMode(), you can use the
oracle.xml.parser.schema.XSDBuilder class to build an XML schema and then configure
the parser to use it by invoking the XMLParser.setXMLSchema() method. In this case, the
XML parser automatically sets the validation mode to SCHEMA_STRICT_VALIDATION and
ignores the schemaLocation and noNamespaceSchemaLocation attributes. You can also
change the validation mode to SCHEMA_LAX_VALIDATION. The XMLParser.setDoctype()
method is a parallel method for DTDs, but unlike setXMLSchema() it does not alter the
validation mode.

See Also:

• Using the XML Schema Processor for Java to learn about validation

• Oracle Database XML Java API Reference to learn about the XMLParser and
XSDBuilder classes

Chapter 12
Introduction to XML Parsing for Java

12-9

12.1.11 Compression in the XML Parser
You can use the XML compressor, which is implemented in the XML parser, to
compress and decompress XML documents. The compression algorithm is based on
tokenizing the XML tags.

The assumption is that any XML document repeats some tags, so tokenizing these
tags gives considerable compression. The degree of compression depends on the
type of document: the larger the tags and the lesser the text content, the better the
compression.

The Oracle XML parser generates a binary compressed output from either an in-
memory DOM tree or SAX events generated from an XML document. Table 12-2
describes the two types of compression.

Table 12-2 XML Compression with DOM and SAX

Type Description Compression APIs

DOM-based The goal is to reduce the size of the XML
document without losing the structural and
hierarchical information of the DOM tree. The
parser serializes an in-memory DOM tree,
corresponding to a parsed XML document,
and generates a compressed XML output
stream. The serialized stream regenerates
the DOM tree when read back.

Use the writeExternal() method to generate
compressed XML and the readExternal() method
to reconstruct it. The methods are in the
oracle.xml.parser.v2.XMLDocument class.

SAX-based The SAX parser generates a compressed
stream when it parses an XML file. SAX
events generated by the SAX parser are
handled by the SAX compression utility,
which generates a compressed binary
stream. When the binary stream is read
back, the SAX events are generated.

To generate compressed XML, instantiate
oracle.xml.comp.CXMLHandlerBase by passing
an output stream to the constructor. Pass the object
to SAXParser.setContentHandler() and then
execute the parse() method. Use the
oracle.xml.comp.CXMLParser class to
decompress the XML.

Note: CXMLHandlerBase implements both SAX 1.0
and 2.0, but because 1.0 is deprecated, Oracle
recommends that you use the 2.0 API.

The compressed streams generated from DOM and SAX are compatible; that is, you
can use the compressed stream generated from SAX to generate the DOM tree and
the reverse. As with XML documents in general, you can store the compressed XML
data output in the database as a BLOB data item.

When a program parses a large XML document and creates a DOM tree in memory, it
can affect performance. You can compress an XML document into a binary stream by
serializing the DOM tree. You can regenerate the DOM tree without validating the XML
data in the compressed stream. You can treat the compressed stream as a serialized
stream, but the data in the stream is more controlled and managed than the
compression implemented by Java default serialization.

Chapter 12
Introduction to XML Parsing for Java

12-10

Note:

Oracle Text cannot search a compressed XML document. Decompression reduces
performance. If you are transferring files between client and server, then Hypertext
Transfer Protocol (HTTP) compression can be easier.

12.2 Using XML Parsing for Java: Overview
The fundamental component of any XML development is XML parsing. XML parsing for Java
is a standalone XML component that parses an XML document (and possibly also a
standalone DTD or XML schema) so that your program can process it.

Note:

You can use the parser with any supported Java Virtual Machine (JVM). With
Oracle 9i or later, you can load the parser into the database and use the internal
Oracle JVM. For other database versions, run the parser in an external JVM and
connect to a database through JDBC.

12.2.1 Using the XML Parser for Java: Basic Process
Thd basic process of using the XML Parser for Java is described.

Figure 12-3 shows how to use the XML parser in a typical XML processing application.

Figure 12-3 XML Parser for Java

O
ri

g
in

a
l

X
M

L

D
o

c
u

m
e
n

t

P
a
rs

e
d

 X
M

L

P
a
rs

e
d

 X
S

L

X
S

L

S
ty

le
s
h

e
e
t

D
O

M
 o

r
S

A
X

�
P

a
rs

e
r

D
T

D

X
M

L
�

S
c
h

e
m

a

The basic process of the application shown in Figure 12-3 is:

1. The DOM or SAX parser parses input XML documents. For example, the program can
parse XML data documents, DTDs, XML schemas, and XSL stylesheets.

Chapter 12
Using XML Parsing for Java: Overview

12-11

2. If you implement a validating parser, then the processor attempts to validate the
XML data document against any supplied DTDs or XML schemas.

See Also:

Oracle Database XML Java API Reference for XML parser classes and
methods

12.2.2 Running the XML Parser for Java Demo Programs
Demo programs for the XML parser for Java are included in $ORACLE_HOME/xdk/demo/
java/parser.

The demo programs are distributed among the subdirectories described in Table 12-3.

Table 12-3 Java Parser Demos

Directory Contents These programs ...

common class.xml
DemoUtil.java
empl.xml
family.dtd
family.xml
iden.xsl
NSExample.xml
traversal.xml

Provide XML files and Java programs for general use with the
XML parser. For example, you can use the XSLT stylesheet
iden.xsl to achieve an identity transformation of the XML
files. DemoUtil.java implements a helper method to create
a URL from a file name, and is used by many other demo
programs.

comp DOMCompression.java
DOMDeCompression.java
SAXCompression.java
SAXDeCompression.java
SampleSAXHandler.java
sample.xml
xml.ser

Show DOM and SAX compression:

• DOMCompression.java compresses a DOM tree.

• DOMDeCompression.java reads back a DOM from a
compressed stream.

• SAXCompression.java compresses the output from a
SAX parser.

• SAXDeCompression.java regenerates SAX events from
the compressed stream.

• SampleSAXHandler.java shows use of a handler to
handle the events thrown by the SAX DeCompressor.

dom AutoDetectEncoding.java
DOM2Namespace.java
DOMNamespace.java
DOMRangeSample.java
DOMSample.java
EventSample.java
I18nSafeXMLFileWritingSample.java
NodeIteratorSample.java
ParseXMLFromString.java
TreeWalkerSample.java

Show uses of the DOM API:

• DOM2Namespace.java shows how to use DOM Level 2.0
APIs.

• DOMNamespace.java shows how to use Namespace
extensions to DOM APIs.

• DOMRangeSample.java shows how to use DOM Range
APIs.

• DOMSample.java shows basic use of the DOM APIs.

• EventSample.java shows how to use DOM Event
APIs.

• NodeIteratorSample.java shows how to use DOM
Iterator APIs.

• TreeWalkerSample.java shows how to use DOM
TreeWalker APIs.

Chapter 12
Using XML Parsing for Java: Overview

12-12

Table 12-3 (Cont.) Java Parser Demos

Directory Contents These programs ...

jaxp JAXPExamples.java
age.xsl
general.xml
jaxpone.xml
jaxpone.xsl
jaxpthree.xsl
jaxptwo.xsl
oraContentHandler.java

Show various uses of the JAXP:

• JAXPExamples.java provides a few examples of how to
use the JAXP 1.1 API to run the Oracle engine.

• oraContentHandler.java implements a SAX content
handler. The program invokes methods such as
startDocument(), endDocument(),
startElement(), and endElement() when it
recognizes an XML tag.

sax SAX2Namespace.java
SAXNamespace.java
SAXSample.java
Tokenizer.java

Show various uses of the SAX APIs:

• SAX2Namespace.java shows how to use SAX 2.0.

• SAXNamespace.java shows how to use namespace
extensions to SAX APIs.

• SAXSample.java shows basic use of the SAX APIs.

• Tokenizer.java shows how to use the XMLToken
interface APIs. The program implements the XMLToken
interface, which must be registered with the
setTokenHandler() method. A request for XML tokens
is registered with the setToken() method. During
tokenizing, the parser does not validate the document
and does not include or read internal/external utilities.

xslt XSLSample.java
XSLSample2.java
match.xml
match.xsl
math.xml
math.xsl
number.xml
number.xsl
position.xml
position.xsl
reverse.xml
reverse.xsl
string.xml
string.xsl
style.txt
variable.xml
variable.xsl

Show the transformation of documents with XSLT:

• XSLSample.java shows how to use the XSL processing
capabilities of the Oracle XML parser. It transforms an
input XML document with a given input stylesheet. This
demo builds the result of XSL transformations as a
DocumentFragment and so does not support
xsl:output features.

• XSLSample2.java transforms an input XML document
with a given input stylesheet. The demo streams the
result of the XSL transformation and so supports
xsl:output features.

See Also: Running the XSLT Processor Demo Programs

Documentation for how to compile and run the sample programs is located in the README file.
The basic procedure is:

1. Change into the $ORACLE_HOME/xdk/demo/java/parser directory (UNIX) or
%ORACLE_HOME%\xdk\demo\java\parser directory (Windows).

2. Set up your environment as described in Setting Up the XDK for Java Environment.

3. Change into each of these subdirectories and run make (UNIX) or Make.bat (Windows) at
the command line. For example:

cd comp;make;cd ..
cd jaxp;make;cd ..

Chapter 12
Using XML Parsing for Java: Overview

12-13

cd sax;make;cd ..
cd dom;make;cd ..
cd xslt;make;cd ..

The make file compiles the source code in each directory, runs the programs, and
writes the output for each program to a file with an *.out extension.

4. You can view the *.out files to view the output for the programs.

12.2.3 Using the Java XML Parser Command-Line Utility (oraxml)
The oraxml utility, which is located in $ORACLE_HOME/bin (UNIX) or %ORACLE_HOME%\bin
(Windows), is a command-line interface that parses XML documents. It checks for
both well-formedness and validity.

To use oraxml, ensure that:

• Your CLASSPATH is set up as described in Setting Up the XDK for Java
Environment, and your CLASSPATH environment variable references the
xmlparserv2.jar file.

• Your PATH environment variable can find the Java interpreter that comes with your
version of the Java Development Kit (JDK).

Table 12-4 lists the oraxml command-line options.

Table 12-4 oraxml Command-Line Options

Option Purpose

-help Prints the help message

-version Prints the release version

-novalidate fileName Checks whether the input file is well-formed

-dtd fileName Validates the input file with DTD Validation

-schema fileName Validates the input file with Schema Validation

-log logfile Writes the errors to the output log file

-comp fileName Compresses the input XML file

-decomp fileName Decompresses the input compressed file

-enc fileName Prints the encoding of the input file

-warning Shows warnings

For example, change into the $ORACLE_HOME/xdk/demo/java/parser/common directory.
You can validate the document family.xml against family.dtd by executing this
command on the command line:

oraxml -dtd -enc family.xml

The output is:

The encoding of the input file: UTF-8

The input XML file is parsed without errors using DTD validation mode.

Chapter 12
Using XML Parsing for Java: Overview

12-14

12.3 Parsing XML with DOM
The W3C standard library org.w3c.dom defines the Document class and classes for the
components of a DOM. The Oracle XML parser includes the standard DOM APIs and
complies with the W3C DOM recommendation.

Along with org.w3c.dom, Oracle XML parsing includes classes that implement the DOM APIs
and extends them to provide features such as printing document fragments and retrieving
namespace information.

12.3.1 Using the DOM API for Java
Java classes that you can use to implement DOM-based components in your XML
application are described.

Use these classes:

• oracle.xml.parser.v2.DOMParser
This class implements an XML 1.0 parser according to the W3C recommendation.
Because DOMParser extends XMLParser, all methods of XMLParser are available to
DOMParser.

• oracle.xml.parser.v2.XMLDOMImplementation
This class contains factory methods used to create SDOM.

You can also use the DOMNamespace and DOM2Namespace classes, which are sample programs
included in $ORACLE_HOME/xdk/demo/java/parser/dom.

Related Topics

• DOM Parser Architecture
The architecture of the DOM Parser is described.

• Creating SDOM
How to create and use a pluggable, scalable DOM (SDOM) is explained.

12.3.2 DOM Parser Architecture
The architecture of the DOM Parser is described.

Chapter 12
Parsing XML with DOM

12-15

Figure 12-4 Basic Architecture of the DOM Parser

fi
le

,
s

tr
in

g

b
u

ff
e

r,
 o

r
U

R
L

x
m

l
in

p
u

t

n
e

w

D
O

M
P

a
rs

e
r(

)

X
M

L
P

a
rs

e
r.

p

a
rs

e
()

X
M

L
P

a
rs

e
r.

g

e
tD

o
c

u
m

e
n

t

D
T

D
 i

n
p

u
t

X
M

L
P

a
rs

e
r.

p

a
rs

e
D

T
D

()

A

v
a

il
a

b
le

 p
ro

p
e

rt
ie

s
:

·
s
e

tV
a

lid
a

ti
o

n
M

o
d

e

[d

e
fa

u
lt
 =

 n
o

t]

·
s
e

tP
re

s
e

rv
e

W
h

it
e

s
p

a
c
e

[d
e

fa
u

lt
 =

 t
ru

e
]

·
s
e

tD
o

c
ty

p
e

[s
p

e
c
if
y
 D

T
D

 t
o

 u
s
e

 f
o

r
�

p

a
rs

in
g

]
·

s
e

tB
a

s
e

U
R

L

[r

e
fe

rs
 o

th
e

r
lo

c
a

ti
o

n
s
 t

o

b

a
s
e

 l
o

c
a

ti
o

n
 i
f

re
a

d
in

g

fr

o
m

 o
u

ts
id

e
 s

o
u

rc
e

]

·
s
h

o
w

W
a

rn
in

g
s

D
O

M

d
o

c
u

m
e

n
t

T
y

p
ic

a
ll

y
 N

o
d

e

c
la

s
s

 m
e

th
o

d
s

T
o

 p
ri

n
t,

 u
s

e
 t

h
e

p

ri
n

t(
)

m
e

th
o

d
.

T

h
is

 i
s

 a

n
o

n
s

ta
n

d
a

rd

D
O

M
 m

e
th

o
d

X
M

L
P

a
rs

e
r.

g

e
tD

o
c

u
m

e
n

t-

T
y

p
e

()

D
T

D

o
b

je
c

t

D
O

M
P

a
rs

e
r.

re

s
e

t(
)

A
p

p
ly

 o
th

e
r

D
O

M
 m

e
th

o
d

s

X
D

K
 f

o
r

J
a
v
a
:

X
M

L
 P

a
rs

e
r

fo
r

J
a
v
a
 —

 D
O

M
 P

a
rs

e
r(

)

12.3.3 Performing Basic DOM Parsing
DOMSample.java shows the basic steps for parsing an input XML document and
accessing it through a DOM. DOMSample.java receives an XML file as input, parses it,
and prints the elements and attributes in the DOM tree.

The steps, which provide possible methods and interfaces that you can use, are:

1. Create a DOMParser object (a parser) by invoking the DOMParser() constructor.

The code in DOMSample.java is:

DOMParser parser = new DOMParser();
2. Configure the parser properties, using the methods in Table 12-5.

This code fragment from DOMSample.java specifies the error output stream, sets
the validation mode to DTD validation, and enables warning messages:

parser.setErrorStream(System.err);
parser.setValidationMode(DOMParser.DTD_VALIDATION);
parser.showWarnings(true);

Chapter 12
Parsing XML with DOM

12-16

3. Parse the input XML document by invoking the parse() method, which builds a tree of
Node objects in memory.

This code fragment from DOMSample.java parses an instance of the java.net.URL class:

parser.parse(url);

The XML input can be a file, a string buffer, or a URL. As the following code fragment
shows, DOMSample.java accepts a file name as a parameter and invokes the createURL
helper method to construct a URL object that can be passed to the parser:

public class DOMSample
{
 static public void main(String[] argv)
 {
 try
 {
 if (argv.length != 1)
 {
 // Must pass in the name of the XML file.
 System.err.println("Usage: java DOMSample filename");
 System.exit(1);
 }
 ...
 // Generate a URL from the filename.
 URL url = DemoUtil.createURL(argv[0]);
 ...

4. Invoke getDocument() to get a handle to the root of the in-memory DOM tree, which is an
XMLDocument object.

You can use this handle to access every part of the parsed XML document. The
XMLDocument class implements the interfaces in Table 12-6.

The code fragment from DOMSample.java is:

XMLDocument doc = parser.getDocument();
5. Get and manipulate DOM nodes of the retrieved document by invoking XMLDocument

methods in Table 12-7.

This code fragment from DOMSample.java uses the DOMParser.print() method to print
the elements and attributes of the DOM tree:

System.out.print("The elements are: ");
printElements(doc);

System.out.println("The attributes of each element are: ");
printElementAttributes(doc);

The following code fragment from DOMSample.java implements the printElements()
method, which invokes getElementsByTagName() to get a list of all the elements in the
DOM tree. Then the code loops through the list, invoking getNodeName() to print the
name of each element:

static void printElements(Document doc)
{
 NodeList nl = doc.getElementsByTagName("*");
 Node n;

 for (int i=0; i<nl.getLength(); i++)
 {

Chapter 12
Parsing XML with DOM

12-17

 n = nl.item(i);
 System.out.print(n.getNodeName() + " ");
 }

 System.out.println();
}

The following code fragment from DOMSample.java implements the
printElementAttributes() method, which invokes
Document.getElementsByTagName() to get a list of all the elements in the DOM
tree. Then the code loops through the list, invoking Element.getAttributes() to
get the list of attributes for the element and invoking Node.getNodeName() to get
the attribute name and Node.getNodeValue() to get the attribute value:

static void printElementAttributes(Document doc)
{
 NodeList nl = doc.getElementsByTagName("*");
 Element e;
 Node n;
 NamedNodeMap nnm;

 String attrname;
 String attrval;
 int i, len;

 len = nl.getLength();

 for (int j=0; j < len; j++)
 {
 e = (Element)nl.item(j);
 System.out.println(e.getTagName() + ":");
 nnm = e.getAttributes();

 if (nnm != null)
 {
 for (i=0; i<nnm.getLength(); i++)
 {
 n = nnm.item(i);
 attrname = n.getNodeName();
 attrval = n.getNodeValue();
 System.out.print(" " + attrname + " = " + attrval);
 }
 }
 System.out.println();
 }
}

6. Reset the parser state by invoking the reset() method. The parser is now ready
to parse a new document.

Table 12-5 summarizes the DOMParser configuration methods.

Table 12-5 DOMParser Configuration Methods

Method Purpose

setBaseURL() Sets the base URL for loading external entities and DTDs.
Invoke this method if the XML document is an InputStream.

setDoctype() Specifies the DTD to use when parsing.

Chapter 12
Parsing XML with DOM

12-18

Table 12-5 (Cont.) DOMParser Configuration Methods

Method Purpose

setErrorStream() Creates an output stream for the output of errors and warnings.

setPreserveWhitespace() Instructs the parser to preserve the white space in the input
XML document.

setValidationMode() Sets the validation mode of the parser. Table 12-1 describes
the flags that you can use with this method.

showWarnings() Specifies whether the parser prints warnings.

Table 12-6 summarizes the interfaces that the XMLDocument class implements.

Table 12-6 Some Interfaces Implemented by XMLDocument

Interface What Interface Defines

org.w3c.dom.Node A single node in the document tree and methods to access and
process the node.

org.w3c.dom.Document A Node that represents the entire XML document.

org.w3c.dom.Element A Node that represents an XML element.

Table 12-7 summarizes the methods for getting and manipulating DOM tree nodes.

Table 12-7 Methods for Getting and Manipulating DOM Tree Nodes

Method Purpose

getAttributes() Generates a NamedNodeMap containing the attributes of this node (if
it is an element) or null otherwise.

getElementsbyTagName() Retrieves recursively all elements that match a given tag name under
a certain level. This method supports the * tag, which matches any
tag. Invoke getElementsByTagName("*") through the handle to
the root of the document to generate a list of all elements in the
document.

getExpandedName() Gets the expanded name of the element. This method is specified in
the NSName interface.

getLocalName() Gets the local name for this element. If an element name is
<E1:locn xmlns:E1="http://www.oracle.com/"/>, then locn
is the local name.

getNamespaceURI() Gets the namespace URI of this node, or null if it is unspecified. If
an element name is <E1:locn xmlns:E1="http://
www.oracle.com/"/>, then http://www.oracle.com is the
namespace URI.

getNodeName() Gets the name of a node in the DOM tree.

getNodeValue() Gets the value of this node, depending on its type. This node is in the
Node interface.

getPrefix() Gets the namespace prefix for an element.

Chapter 12
Parsing XML with DOM

12-19

Table 12-7 (Cont.) Methods for Getting and Manipulating DOM Tree Nodes

Method Purpose

getQualifiedName() Gets the qualified name for an element. If an element name is
<E1:locn xmlns:E1="http://www.oracle.com/"/>, then
E1:locn is the qualified name..

getTagName() Gets the name of an element in the DOM tree.

12.3.4 Creating SDOM
How to create and use a pluggable, scalable DOM (SDOM) is explained.

12.3.4.1 Using SDOM
How to use SDOM is described.

SDOM has the DOM API split from the data. The underlying data can be either internal
data or plug-in data, and both can be in binary XML.

Internal data is XML text that has not been parsed. To be plugged in, internal data
must be saved as binary XML and then parsed by the DOMParser. The parsed binary
XML can be then be plugged into the InfoSetReader of the DOM API layer. The
InfosetReader argument is the interface to the underlying XML data.

Plug-in data is XML text that has been parsed, and can therefore be transferred from
one processor to another.

To create an SDOM, you plug in XML data through the InfosetReader API on an
XMLDOMImplementation object. For example:

public Document createDocument(InfosetReader reader) throws
DOMException

The InfosetReader API is implemented on top of BinXMLStream. Optional adaptors for
other forms of XML data (such as dom4j, JDOM, or Java Database Connectivity
(JDBC)) may also be supported. You can also plug in your own implementations.

InfosetReader serves as the interface between the scalable DOM API layer and the
underlying data. It is a generic, stream-based pull API that accesses XML data. The
InfosetReader retrieves sequential events from the XML stream and queries the state
and data from these events. The following code scans the XML data and retrieves the
QNames and attributes of all elements:

InfosetReader reader;
While (reader.hasNext())
{
 reader.next();
 if (reader.getEventType() == START_ELEMENT)
 {
 QName name = reader.getQName();
 TypedAttributeList attrList = reader.getAttributeList();

Chapter 12
Parsing XML with DOM

12-20

 }
}

12.3.4.1.1 InfosetReader Options
Options supported by the InfosetReader API are presented.

These are the supported operations:

• Copying (Optional, but InfosetReader from BinXMLStream always supports it)

To support shadow copying of DOM across documents, you can create a new copy of
InfosetReader to ensure thread safety, using the Clone method. For more information,
see Using Shadow Copy.

• Moving Focus (Optional)

To support lazy materialization, the InfosetReader may have the ability to move focus to
any location specified by offset:

If (reader.hasSeekSupport())
 reader.seek(offset);

For more information, see Using Lazy Materialization

12.3.4.1.2 InfosetWriter
InfosetWriter is an extension of the InfosetReader API that supports data writing. XDK
implements InfosetWriter on top of binary XML. You cannot modify this implementation.

12.3.4.1.3 Saving XML Text as Binary XML
To create a scalable DOM from XML text, you must save the XML text as either binary XML
or references to binary XML before you can run DOMParser on it. To save the XML text as
binary XML, set the doc.save argument to false.

XMLDocument doc;
InfosetWriter writer;
doc.save(writer, false);
writer.close();

If you know that the data source is available for deserialization, then you can save the section
reference of binary XML instead of the actual data by setting the doc.save argument to true.

Related Topics

• Using Binary XML with Java
Topics here explain how to use Binary XML with Java.

12.3.4.2 Using Lazy Materialization
Using lazy materialization, you can plug in an empty DOM, which can pull in data when
needed and free (dereference) nodes when they are no longer needed. SDOM supports
either manual or automatic node dereferencing.

Chapter 12
Parsing XML with DOM

12-21

12.3.4.2.1 Pulling Data on Demand
The plug-in DOM architecture creates an empty DOM, which contains a single
Document node as the root of the tree. The rest of the DOM tree can be expanded later
if it is accessed.

A node can have unexpanded child and sibling nodes, but its parent and ancestors are
always expanded. Each node maintains the InfoSetReader.Offset property of the
next node so that the DOM can pull additional data to create the next node.

Depending on access method type, DOM nodes can expand more than the set of
nodes returned:

Access Method Description

DOM Navigation Allows access to neighboring nodes such as first child, last child,
parent, previous sibling, or next sibling. If node creation is needed,
it is done in document order.

Identifier (ID) Indexing A DTD or XML schema can specify nodes with the type ID. If the
DOM supports ID indexing, those nodes can be directly retrieved
using the index. In scalable DOM, retrieval by index does not cause
the expansion of all previous nodes, but their ancestor nodes are
materialized.

XPath Expressions XPath evaluation can cause materialization of all intermediate
nodes in memory. For example, the descendent axis '//' expands
the whole subtree, although some nodes might be released after
evaluation.

12.3.4.2.2 Using Automatic Node Dereferencing
DOM navigation support requires additional links between nodes. In automatic
dereferencing mode, weak links can be automatically dereferenced during garbage
collection. To use automatic node dereferencing, set the PARTIAL_DOM attribute to
Boolean.TRUE.

Node release depends on link importance. Links to parent nodes cannot be dropped,
because ancestors provide context for in-scope namespaces and it is difficult to
retrieve dropped parent nodes using streaming APIs such as InfosetReader.

In an SDOM tree, links to parent and previous sibling nodes are strong and links to
child and following sibling nodes are weak. When the JVM frees the nodes, references
to them are still available in the underlying data so they can be re-created if needed.

12.3.4.2.3 Using Manual Node Dereferencing
Manual node dereferencing is described.

In manual dereferencing mode, there are no weak references. The application must
explicitly dereference document fragments from the DOM tree. If an application
processes the data in a deterministic order, then Oracle recommends avoiding the
extra overhead of repeatedly releasing and re-creating nodes.

To use manual node dereferencing, set the attribute PARTIAL_DOM to Boolean.FALSE
and create the SDOM with plug-in XML data.

Chapter 12
Parsing XML with DOM

12-22

To manually dereference a node from all other nodes, invoke freeNode(). For example:

Element root = doc.getDocumentElement();
 Node item = root.getFirstChild();
While (item != null)
{
 processItem(item);
 Node tmp = item;
 item = item.getNextSibling();
 ((XMLNode)tmp).freeNode();
}

Dereferencing a node does not remove it from the SDOM tree. The node can still be
accessed and re-created from its parent, previous, and following siblings. However, after a
node is dereferenced, a variable that holds the node throws an error when accessing the
node.

Note:

The freeNode invocation has no effect on a nonscalable DOM.

12.3.4.2.4 Using Shadow Copy
Shadow copy avoids data replication by letting DOM nodes share their data.

Cloning, a common operation in XML processing, can be done lazily with SDOM. That is, the
copy method creates only the root node of the fragment being copied, and the subtree is
expanded only on demand.

DOM nodes themselves are not shared; their underlying data is shared. The DOM
specification requires that the clone and its original have different node identities and different
parent nodes.

12.3.4.2.5 Incorporating DOM Updates
The DOM API supports update operations such as adding and deleting nodes and setting,
deleting, changing, and inserting values.

When a DOM is created by plugging in XML data, the underlying data is considered external
to the DOM. DOM updates are visible from the DOM APIs but the data source remains the
same. Normal update operations are available and do not interfere with each other.

To make a modified DOM persistent, you must explicitly save the DOM. Saving merges the
changes with the original data and serializes the data in persistent storage. If you do not save
a modified DOM explicitly, the changes are lost when the transaction ends.

12.3.4.2.6 Using the PageManager Interface to Support Internal Data
How to use the PageManager interface to let the SDOM use back-end storage for binary data.

When XML text is parsed with DOMParser and configured to create an SDOM, internal data is
cached in the form of binary XML, and the DOM API layer is built on top of the internal data.
This provides increased scalability, because the binary XML is more compact than DOM
nodes.

Chapter 12
Parsing XML with DOM

12-23

For additional scalability, the SDOM can use back-end storage for binary data through
the PageManager interface. Then, binary data can be swapped out of memory when not
in use.

This code shows how to use the PageManager interface:

DOMParser parser = new DOMParser();
parser.setAttribute(PARTIAL_DOM, Boolean.TRUE); //enable SDOM
parser.setAttribute(PAGE_MANAGER, new FilePageManager("pageFile"));
...
// DOMParser other configuration
parser.parse(fileURL);
XMLDocument doc = parser.getDocument();

If you do not use the PageManager interface, then the parser caches the whole
document as binary XML.

12.3.4.3 Using Configurable DOM Settings
When you create a DOM using class XMLDOMImplementation, you can configure the
DOM for different applications and achieve maximum efficiency by using method
setAttribute.

public void setAttribute(String name, Object value) throws
IllegalArgumentException

For SDOM, invoke setAttribute for the PARTIAL_DOM and ACCESS_MODE attributes.

Note:

New attribute values always affect the next DOM, not the current one.
Therefore, you can use instances of XMLDOMImplementation to create DOMs
with different configurations.

12.3.4.3.1 PARTIAL_DOM Attribute
Attribute PARTIAL_DOM determines whether the created DOM is partial, that is, scalable.
When it has the value TRUE, the DOM is scalable (that is, nodes that are not in use are
freed and re-created when needed). When it has the value FALSE, the created DOM is
not scalable.

12.3.4.3.2 ACCESS_MODE Attribute
Attribute ACCESS_MODE (which applies to both SDOM and nonscalable DOM) controls
access to the created DOM.

The attribute values, from least to most restrictive, are shown in Table 12-8.

Chapter 12
Parsing XML with DOM

12-24

Table 12-8 ACCESS_MODE Attribute Values

Value DOM Access Performance Advantage

UPDATEABLE All update operations allowed. This is the default
value, for backward compatibility with the XDK
DOM implementation.

READ_ONLY No DOM update operations allowed. Node creation
(for example, cloning) is allowed only if the new
nodes are not added to the DOM tree.

Write buffer is not created.

FORWARD_READ Forward navigation (for example,
getFirstChild().getNextSibling() and
getLastChild()) and access to parent and
ancestor nodes is allowed; backward navigation
(for example, getPreviousSibling()) is not
allowed.

Previous-sibling links are not
created.

STREAM_READ Limited to the stream of nodes in document order,
similar to SAX event access.

The current node is the last node that was
accessed in document order. Applications can hold
nodes in variables and revisit them, but using the
DOM method to access any node before the
current node (except a parent or ancestor) causes
an error. For example:

• This is allowed, although the parent is before
the current node:

Node parent =
currentNode.getParentNode();

• This causes an error unless the current node
is the first child of the parent:

Node child = parent.getFirstChild();
• Accessing element attributes is always

allowed:

Attribute attr =
parent.getFirstAttribute();

DOM maintains only parent
links, not node locations;
therefore, it need not re-
create freed nodes.

12.3.4.4 Using Fast Infoset with SDOM
The Fast Infoset to XDK/J model lets you use Fast Infoset techniques while working with XML
content in Java.

Note:

Use Fast Infoset only for input. For output, use CSX or XTI.

This example uses a serializer to encode XML data into a FastInfoset BinaryStream:

public com.sun.xml.fastinfoset.sax.SAXDocumentSerializer getSAXDocumentSerializer();
public com.sun.xml.fastinfoset.stax.StAXDocumentSerializer getStAXDocumentSerializer();

Chapter 12
Parsing XML with DOM

12-25

The class oracle.xml.scalable.BinaryStream is the data management component
that provides buffer management and an abstract paged I/O view to support decoding
for different types of data storage.

The InfosetReader from BinaryStream is the implementation of
oracle.xml.scalable.InfosetReader for the DOM to read data from binary. The
implementation extends the basic decoder sun.com.xml.fasterinfoset.Decoder and
adds support for seek and skip operations.

You can use Fast Infoset with Streaming API for XML (StAX) and SAX to create a
DOM. To create an SDOM, you can use the routines from the preceding example and
those in this example:

String xmlFile, fiFile;
FileInputStream xin = new FileInputStream(new File(xmlFile));
XML_SAX_FI figen = new XML_SAX_FI();
FileOutputStream outfi = new FileOutputStream(new File(fiFile));
figen.parse(xin, outfi);
outfi.close();

import oracle.xml.scalable.BinaryStream;

BinaryStream stream = BinaryStream.newInstance(SUN_FI);
stream.setFile(new File(fiFile));
InfosetReader reader = stream.getInfosetReader();
XMLDOMImplementation dimp = new XMLDOMImplementation();
dimp.setAttribute(XMLDocument.SCALABLE_DOM, Boolean.TRUE);
XMLDocument doc = (XMLDocument) dimp.createDocument(reader);

12.3.4.5 SDOM Applications
Applications that create and use an SDOM are presented.

This application creates and uses an SDOM:

XMLDOMImplementation domimpl = new XMLDOMImplementation();
domimpl.setAttribute(XMLDocument.SCALABLE_DOM, Boolean.TRUE);
domimpl.setAttribute(XMLDocument.ACCESS_MODE,XMLDocument.UPDATEABLE);
XMLDocument scalableDoc = (XMLDocument) domimpl.createDocument(reader);

The following application creates and uses an SDOM based on binary XML, which is
described in Using Binary XML with Java:

BinXMLProcessor proc = BinXMLProcessorFactory.createProcessor();
BinXMLStream bstr = proc.createBinXMLStream();
BinXMLEncoder enc = bstr.getEncoder();
enc.setProperty(BinXMLEncoder.ENC_SCHEMA_AWARE, false);

SAXParser parser = new SAXParser();
parser.setContentHandler(enc.getContentHandler());
parser.setErrorHandler(enc.getErrorHandler());
parser.parse(BinXMLUtil.createURL(xmlfile));

BinXMLDecoder dec = bstr.getDecoder();
InfosetReader reader = dec.getReader();
XMLDOMImplementation domimpl = new XMLDOMImplementation();

Chapter 12
Parsing XML with DOM

12-26

domimpl.setAttribute(XMLDocument.SCALABLE_DOM, Boolean.TRUE);
XMLDocument currentDoc = (XMLDocument) domimpl.createDocument(reader);

12.3.4.6 XDK Java DOM Improvements
XDK supports the DOM Level 3 Core specification, a recommendation of the W3C.

See Also:

Document Object Model (DOM) Level 3 Core Specification for more information
about DOM Level 3

12.3.5 Performing DOM Operations with Namespaces
DOM2Namespace.java shows a simple use of the parser and namespace extensions to the
DOM APIs. The program receives an XML document, parses it, and prints the elements and
attributes in the document.

This section includes some code from the DOM2Namespace.java program. For more detail,
see the program itself.

The first four steps of Performing Basic DOM Parsing, from parser creation to the
getDocument() invocation, are basically the same for DOM2Namespace.java. The principal
difference is in printing the DOM tree (Step 5). The DOM2Namespace.java program does this
instead:

// Print document elements
printElements(doc);

// Print document element attributes
System.out.println("The attributes of each element are: ");
printElementAttributes(doc);

The printElements() method implemented by DOM2Namespace.java invokes
getElementsByTagName() to get a list of all the elements in the DOM tree. It then loops
through each item in the list and casts each Element to an nsElement. For each nsElement it
invokes nsElement.getPrefix() to get the namespace prefix, nsElement.getLocalName() to
get the local name, and nsElement.getNamespaceURI() to get the namespace URI:

static void printElements(Document doc)
{
 NodeList nl = doc.getElementsByTagName("*");
 Element nsElement;
 String prefix;
 String localName;
 String nsName;

 System.out.println("The elements are: ");
 for (int i=0; i < nl.getLength(); i++)
 {
 nsElement = (Element)nl.item(i);

 prefix = nsElement.getPrefix();
 System.out.println(" ELEMENT Prefix Name :" + prefix);

Chapter 12
Parsing XML with DOM

12-27

 localName = nsElement.getLocalName();
 System.out.println(" ELEMENT Local Name :" + localName);

 nsName = nsElement.getNamespaceURI();
 System.out.println(" ELEMENT Namespace :" + nsName);
 }
 System.out.println();
}

The printElementAttributes() method invokes Document.getElementsByTagName()
to get a NodeList of the elements in the DOM tree. It then loops through each element
and invokes Element.getAttributes() to get the list of attributes for the element as
special list called a NamedNodeMap. For each item in the attribute list it invokes
nsAttr.getPrefix() to get the namespace prefix, nsAttr.getLocalName() to get the
local name, and nsAttr.getValue() to get the value:

static void printElementAttributes(Document doc)
{
 NodeList nl = doc.getElementsByTagName("*");
 Element e;
 Attr nsAttr;
 String attrpfx;
 String attrname;
 String attrval;
 NamedNodeMap nnm;
 int i, len;

 len = nl.getLength();

 for (int j=0; j < len; j++)
 {
 e = (Element) nl.item(j);
 System.out.println(e.getTagName() + ":");

 nnm = e.getAttributes();

 if (nnm != null)
 {
 for (i=0; i < nnm.getLength(); i++)
 {
 nsAttr = (Attr) nnm.item(i);

 attrpfx = nsAttr.getPrefix();
 attrname = nsAttr.getLocalName();
 attrval = nsAttr.getNodeValue();

 System.out.println(" " + attrpfx + ":" + attrname + " = "
 + attrval);
 }
 }
 System.out.println();
 }
}

Chapter 12
Parsing XML with DOM

12-28

12.3.6 Performing DOM Operations with Events
EventSample.java shows how to register events with an event listener. For example, adding
a node to a specified DOM element triggers an event, which causes the listener to print
information about the event.

This section includes some code from the EventSample.java program. For more detail, see
the program itself.

The EventSample.java program follows these steps:

1. Instantiate an event listener.

When a registered change triggers an event, the event is passed to the event listener,
which handles it. This code fragment from EventSample.java shows the implementation
of the listener:

eventlistener evtlist = new eventlistener();
...
class eventlistener implements EventListener
{
 public eventlistener(){}
 public void handleEvent(Event e)
 {
 String s = " Event "+e.getType()+" received " + "\n";
 s += " Event is cancelable :"+e.getCancelable()+"\n";
 s += " Event is bubbling event :"+e.getBubbles()+"\n";
 s += " The Target is " + ((Node)(e.getTarget())).getNodeName() + "\n\n";
 System.out.println(s);
 }
}

2. Instantiate a new XMLDocument and then invoke getImplementation() to retrieve a
DOMImplementation object.

Invoke the hasFeature() method to determine which features this implementation
supports, as this code fragment from EventSample.java does:

XMLDocument doc1 = new XMLDocument();
DOMImplementation impl = doc1.getImplementation();

System.out.println("The impl supports Events "+
 impl.hasFeature("Events", "2.0"));
System.out.println("The impl supports Mutation Events "+
 impl.hasFeature("MutationEvents", "2.0"));

3. Register desired events with the listener. This code fragment from EventSample.java
registers three events on the document node:

doc1.addEventListener("DOMNodeRemoved", evtlist, false);
doc1.addEventListener("DOMNodeInserted", evtlist, false);
doc1.addEventListener("DOMCharacterDataModified", evtlist, false);

This code fragment from EventSample.java creates a node of type XMLElement and then
registers three events on the node:

XMLElement el = (XMLElement)doc1.createElement("element");
...
el.addEventListener("DOMNodeRemoved", evtlist, false);
el.addEventListener("DOMNodeRemovedFromDocument", evtlist, false);

Chapter 12
Parsing XML with DOM

12-29

el.addEventListener("DOMCharacterDataModified", evtlist, false);
...

4. Perform actions that trigger events, which are then passed to the listener for
handling, as this code fragment from EventSample.java does:

att.setNodeValue("abc");
el.appendChild(el1);
el.appendChild(text);
text.setNodeValue("xyz");
doc1.removeChild(el);

12.3.7 Performing DOM Operations with Ranges
According to the W3C DOM specification, a range identifies a range of content in a
Document, DocumentFragment, or Attr. The range selects the content between a pair
of boundary points that correspond to the start and end of the range.

Table 12-9 describes range methods accessible through XMLDocument.

Table 12-9 Range Class Methods

Method Description

cloneContents() Duplicates the contents of a range

deleteContents() Deletes the contents of a range

getCollapsed() Returns TRUE is the range is collapsed

getEndContainer() Gets the node within which the range ends

getStartContainer() Gets the node within which the range starts

selectNode() Selects a node and its contents

selectNodeContents() Selects the contents of a node

setEnd() Sets the attributes describing the end of a range

setStart() Sets the attributes describing the start of a range

The DOMRangeSample.java program shows some operations that you can perform with
ranges. This section includes some code from the DOMRangeSample.java program. For
more detail, see the program itself.

The first four steps of the Performing Basic DOM Parsing, from parser creation to the
getDocument() invocation, are the same for DOMRangeSample.java. Then, the
DOMRangeSample.java program follows these steps:

1. After invoking getDocument() to create the XMLDocument, create a range object
with createRange() and invoke setStart() and setEnd() to set its boundaries, as
this code fragment from DOMRangeSample.java does:

XMLDocument doc = parser.getDocument();
...
Range r = (Range) doc.createRange();
XMLNode c = (XMLNode) doc.getDocumentElement();

// set the boundaries
r.setStart(c,0);
r.setEnd(c,1);

Chapter 12
Parsing XML with DOM

12-30

2. Invoke XMLDocument methods to get information about the range and manipulate its
contents.

This code fragment from DOMRangeSample.java selects and prints the contents of the
current node:

r.selectNodeContents(c);
System.out.println(r.toString());

This code fragment clones and prints the contents of a range:

XMLDocumentFragment df =(XMLDocumentFragment) r.cloneContents();
df.print(System.out);

This code fragment gets and prints the start and end containers for the range:

c = (XMLNode) r.getStartContainer();
System.out.println(c.getText());
c = (XMLNode) r.getEndContainer();
System.out.println(c.getText());

12.3.8 Performing DOM Operations with TreeWalker
XDK implements the NodeFilter and TreeWalker interfaces, which are defined by the W3C
DOM Level 2 Traversal and Range specification.

A node filter is an object that can filter out certain types of Node objects. For example, it can
filter out entity reference nodes but accept element and attribute nodes. You create a node
filter by implementing the NodeFilter interface and then passing a Node object to the
acceptNode() method. Typically, the acceptNode() method implementation invokes
getNodeType() to get the type of the node and compares it to static variables such as
ELEMENT_TYPE, ATTRIBUTE_TYPE, and so forth, and then returns one of the static fields listed in
Table 12-10, based on what it finds.

Table 12-10 Static Fields in the NodeFilter Interface

Field Description

FILTER_ACCEPT Accepts the node. Navigation methods defined for NodeIterator or TreeWalker
return this node.

FILTER_REJECT Rejects the node. Navigation methods defined for NodeIterator or TreeWalker
do not return this node. For TreeWalker, the children of this node are also
rejected. NodeIterator treats FILTER_REJECT as a synonym for FILTER_SKIP.

FILTER_SKIP Skips this single node. Navigation methods defined for NodeIterator or
TreeWalker do not return this node. For both NodeIterator and TreeWalker,
children of this node are considered.

You can use a TreeWalker object to traverse a document tree or subtree, using the view of
the document defined by the whatToShow flag and filters of the TreeWalker object.

To create a TreeWalker object, use the XMLDocument.createTreeWalker() method,
specifying:

• A root node for the tree or subtree

• A flag that governs the type of nodes to include in the logical view

• A node filter (optional)

Chapter 12
Parsing XML with DOM

12-31

• A flag that determines whether to include entity references and their descendents

Table 12-11 describes methods in the org.w3c.dom.traversal.TreeWalker interface.

Table 12-11 TreeWalker Interface Methods

Method Description

firstChild() Moves the tree walker to the first visible child of the current node and returns
the new node. If the current node has no visible children, then the method
returns null and retains the current node.

getRoot() Gets the root node of the tree walker (specified when the TreeWalker object
was created).

lastChild() Moves the tree walker to the last visible child of the current node and returns
the new node. If the current node has no visible children, then the method
returns null and retains the current node.

nextNode() Moves the tree walker to the next visible node in document order relative to
the current node and returns the new node.

The TreeWalkerSample.java program shows some operations that you can perform
with node filters and tree walkers. This section includes some code from the
TreeWalkerSample.java program. For more detail, see the program itself.

The first four steps of the Performing Basic DOM Parsing, from parser creation to the
getDocument() invocation, are the same for TreeWalkerSample.java. The, the
TreeWalkerSample.java program follows these steps:

1. Create a node filter object.

The acceptNode() method in the nf class, which implements the NodeFilter
interface, invokes getNodeType() to get the type of node, as this code fragment
from TreeWalkerSample.java does:

NodeFilter n2 = new nf();
...
class nf implements NodeFilter
{
 public short acceptNode(Node node)
 {
 short type = node.getNodeType();

 if ((type == Node.ELEMENT_NODE) || (type == Node.ATTRIBUTE_NODE))
 return FILTER_ACCEPT;
 if ((type == Node.ENTITY_REFERENCE_NODE))
 return FILTER_REJECT;
 return FILTER_SKIP;
 }
}

2. Invoke the XMLDocument.createTreeWalker() method to create a tree walker.

This code fragment from TreeWalkerSample.java uses the root node of the
XMLDocument as the root node of the tree walker and includes all nodes in the tree:

XMLDocument doc = parser.getDocument();
...
TreeWalker tw =
doc.createTreeWalker(doc.getDocumentElement(),NodeFilter.SHOW_ALL,n2,true);

Chapter 12
Parsing XML with DOM

12-32

3. Get the root element of the TreeWalker object, as this code fragment from
TreeWalkerSample.java does:

XMLNode nn = (XMLNode)tw.getRoot();
4. Traverse the tree.

This code fragment from TreeWalkerSample.java walks the tree in document order by
invoking the TreeWalker.nextNode() method:

while (nn != null)
{
 System.out.println(nn.getNodeName() + " " + nn.getNodeValue());
 nn = (XMLNode)tw.nextNode();
}

This code fragment from TreeWalkerSample.java walks the left depth of the tree by
invoking the firstChild() method:

 while (nn != null)
 {
 System.out.println(nn.getNodeName() + " " + nn.getNodeValue());
 nn = (XMLNode)tw.firstChild();
 }

You can walk the right depth of the tree by invoking the lastChild() method.

12.4 Parsing XML with SAX
Simple API for XML (SAX) is a standard interface for event-based XML parsing.

12.4.1 Using the SAX API for Java
The interfaces and classes of the SAX API, which is released in a Level 1 and Level 2
version, are described.

These are the interfaces and classes:

• Interfaces implemented by the Oracle XML parser

• Interfaces that your application must implement (see Table 12-12)

• Standard SAX classes

• SAX 2.0 helper classes in the org.xml.sax.helper package (see Table 12-13)

• Demonstration classes in the nul package

Table 12-12 lists and describes the SAX 2.0 interfaces that your application must implement.

Chapter 12
Parsing XML with SAX

12-33

Table 12-12 SAX 2.0 Handler Interfaces

Interface Description

ContentHandler Receives notifications from the XML parser. Implements the major event-
handling methods startDocument(), endDocument(),
startElement(), and endElement(), which are invoked when the XML
parser identifies an XML tag. Implements the methods characters()
and processingInstruction(), which are invoked when the XML
parser encounters the text in an XML element or an inline processing
instruction.

DeclHandler Receives notifications about DTD declarations in the XML document.

DTDHandler Processes notations and unparsed (binary) entities.

EntityResolver Supports redirection of URIs in documents. Implements the method
resolveEntity(), which is invoked when the XML parser must identify
data identified by a URI.

ErrorHandler Handles parser errors. Implements the methods error(),
fatalError(), and warning(), which the program invokes in response
to various parsing errors.

LexicalHandler Receives notifications about lexical information, such as comments and
character data (CDATA) section boundaries.

Table 12-13 lists and describes the SAX 2.0 helper classes.

Table 12-13 SAX 2.0 Helper Classes

Class Description

AttributeImpl Makes a persistent copy of an AttributeList.

DefaultHandler Base class with default implementations of the interfaces in
Table 12-12.

LocatorImpl Makes a persistent snapshot of the values of a Locator at a specified
point in the parse.

NamespaceSupport Supports XML namespaces.

XMLFilterImpl Base class used by applications that modify the stream of events.

XMLReaderFactory Supports loading SAX parsers dynamically.

Figure 12-5 shows how to create a SAX parser and use it to parse an input document.

Chapter 12
Parsing XML with SAX

12-34

Figure 12-5 Using the SAXParser Class

fi
le

,
s

tr
in

g
 b

u
ff

e
r,

o

r
U

R
L

x
m

l
in

p
u

t

n
e

w

S
A

X
P

a
rs

e
r(

)

.p
a
rs

e
()

C
a

ll
b

a
c

k

m
e

th
o

d
s

M
e

th
o

d
s

·

s
e

tV
a

lid
a

ti
o

n
M

o
d

e

·
s
e

tP
re

s
e

rv
e

W
h

it
e

s
p

a
c
e

·

s
e

tD
o

c
ty

p
e

·

s
e

tB
a

s
e

U
R

L

·
s
e

tC
o

n
te

n
tH

a
n

d
le

r
·

s
e

tD
T

D
H

a
n

d
le

r
·

s
e

tE
n

ti
ty

 R
e

s
o

lv
e

r
·

s
e

tE
rr

o
rH

a
n

d
le

r

X
M

L
 P

a
rs

e
r

fo
r

J
a

v
a

:
S

A
X

P
a

rs
e

r(
)

The basic steps for parsing an input XML document with SAX are:

1. Create a SAXParser object and configure its properties.

For example, set the validation mode. For configuration methods, see Table 12-5.

2. Instantiate an event handler.

Your application must implement the handler interfaces in Table 12-12.

3. Register your event handlers with the XML parser.

This step enables the parser to invoke the correct methods when a given event occurs.
For information about SAXParser methods for registering event handlers, see
Table 12-14.

4. Parse the input document with the SAXParser.parse() method.

All SAX interfaces are assumed to be synchronous: the parse method must not return
until parsing is complete. Readers must wait for an event-handler callback to return
before reporting the next event.

When the SAXParser.parse() method is invoked, the program invokes one of several
callback methods implemented in the application. The methods are defined by the
ContentHandler, ErrorHandler, DTDHandler, and EntityResolver interfaces
implemented in the event handler. For example, the application can invoke the
startElement() method when a start element is encountered.

Table 12-14 lists and describes the SAXParser methods for registering event handlers and
explains when to use them. An application can register a new or different handler in the
middle of a parse; the SAX parser must begin using the newly registered handler
immediately.

Chapter 12
Parsing XML with SAX

12-35

Table 12-14 SAXParser Methods for Registering Event Handlers

Method Description

setContentHandler() Registers a content event handler with an application.

The org.xml.sax.DefaultHandler class implements the
org.xml.sax.ContentHandler interface.

setDTDHandler() Registers a DTD event handler with an application.

If the application does not register a DTD handler, DTD events
reported by the SAX parser are silently ignored.

setErrorHandler() Registers an error event handler with an application.

If the application does not register an error handler, all error events
reported by the SAX parser are silently ignored; however, normal
processing may not continue. Oracle highly recommends that all
SAX applications implement an error handler to avoid unexpected
bugs.

setEntityResolver() Registers an entity resolver with an application.

If the application does not register an entity resolver, the
XMLReader performs its own default resolution.

12.4.2 Performing Basic SAX Parsing
SAXSample.java shows the basic steps of SAX parsing. The SAXSample class extends
HandlerBase. The program receives an XML file as input, parses it, and prints
information about the contents of the file.

The SAXSample.java program follows these steps (which are illustrated with code
fragments from the program):

1. Store the Locator:

Locator locator;

The Locator associates a SAX event with a document location. The SAX parser
provides location information to the application by passing a Locator instance to
the setDocumentLocator() method in the content handler. The application can use
the object to get the location of any other content handler event in the XML source
document.

2. Instantiate a new event handler.:

SAXSample sample = new SAXSample();
3. Instantiate the SAX parser and configure it:

Parser parser = new SAXParser();
((SAXParser)parser).setValidationMode(SAXParser.DTD_VALIDATION);

The preceding code sets the mode to DTD validation.

4. Register event handlers with the SAX parser:

parser.setDocumentHandler(sample);
parser.setEntityResolver(sample);
parser.setDTDHandler(sample);
parser.setErrorHandler(sample);

Chapter 12
Parsing XML with SAX

12-36

You can use the registration methods in the SAXParser class, but you must implement the
event handler interfaces yourself.

Here is part of the DocumentHandler interface implementation:

public void setDocumentLocator (Locator locator)
{
 System.out.println("SetDocumentLocator:");
 this.locator = locator;
}
public void startDocument()
{
 System.out.println("StartDocument");
}
public void endDocument() throws SAXException
{
 System.out.println("EndDocument");
}
public void startElement(String name, AttributeList atts)
 throws SAXException
{
 System.out.println("StartElement:"+name);
 for (int i=0;i<atts.getLength();i++)
 {
 String aname = atts.getName(i);
 String type = atts.getType(i);
 String value = atts.getValue(i);
 System.out.println(" "+aname+"("+type+")"+"="+value);
 }
}
...

The following code implements the EntityResolver interface:

public InputSource resolveEntity (String publicId, String systemId)
 throws SAXException
{
 System.out.println("ResolveEntity:"+publicId+" "+systemId);
 System.out.println("Locator:"+locator.getPublicId()+" locator.getSystemId()+
 " "+locator.getLineNumber()+" "+locator.getColumnNumber());
 return null;
}

The following code implements the DTDHandler interface:

public void notationDecl (String name, String publicId, String systemId)
{
 System.out.println("NotationDecl:"+name+" "+publicId+" "+systemId);
}
public void unparsedEntityDecl (String name, String publicId,
 String systemId, String notationName)
{
 System.out.println("UnparsedEntityDecl:"+name + " "+publicId+" "+
 systemId+" "+notationName);
}

The following code implements the ErrorHandler interface:

public void warning (SAXParseException e)
 throws SAXException
{
 System.out.println("Warning:"+e.getMessage());

Chapter 12
Parsing XML with SAX

12-37

}
public void error (SAXParseException e)
 throws SAXException
{
 throw new SAXException(e.getMessage());
}
public void fatalError (SAXParseException e)
 throws SAXException
{
 System.out.println("Fatal error");
 throw new SAXException(e.getMessage());
}

5. Parse the input XML document:

parser.parse(DemoUtil.createURL(argv[0]).toString());

The preceding code converts the document to a URL and then parses it.

12.4.3 Performing Basic SAX Parsing with Namespaces
SAX2Namespace.java implements an event handler named XMLDefaultHandler as a
subclass of the org.xml.sax.helpers.DefaultHandler class.

The easiest way to implement the ContentHandler interface is to extend the
org.xml.sax.helpers.DefaultHandler class. The DefaultHandler class provides
some default behavior for handling events, although the typical behavior is to do
nothing.

SAX2Namespace.java overrides methods only for relevant events. Specifically, the
XMLDefaultHandler class implements only two methods: startElement() and
endElement(). Whenever SAXParser encounters a new element in the XML document,
it triggers the startElement event, and the startElement() method prints the
namespace information for the element.

The SAX2Namespace.java sample program follows these steps (which are illustrated
with code fragments from the program):

1. Instantiate a new event handler of type DefaultHandler:

DefaultHandler defHandler = new XMLDefaultHandler();
2. Create a SAX parser and set its validation mode:

Parser parser = new SAXParser();
((SAXParser)parser).setValidationMode(SAXParser.DTD_VALIDATION);

The preceding code sets the mode to DTD validation.

3. Register event handlers with the SAX parser:

parser.setContentHandler(defHandler);
parser.setEntityResolver(defHandler);
parser.setDTDHandler(defHandler);
parser.setErrorHandler(defHandler);

The preceding code registers handlers for the input document, the DTD, entities,
and errors.

The following code shows the XMLDefaultHandler implementation. The
startElement() and endElement() methods print the qualified name, local name,

Chapter 12
Parsing XML with SAX

12-38

and namespace URI for each element (for an explanation of these terms, see
Table 12-7).

class XMLDefaultHandler extends DefaultHandler
{
 public void XMLDefaultHandler(){}
 public void startElement(String uri, String localName,
 String qName, Attributes atts)
 throws SAXException
 {
 System.out.println("ELEMENT Qualified Name:" + qName);
 System.out.println("ELEMENT Local Name :" + localName);
 System.out.println("ELEMENT Namespace :" + uri);

 for (int i=0; i<atts.getLength(); i++)
 {
 qName = atts.getQName(i);
 localName = atts.getLocalName(i);
 uri = atts.getURI(i);

 System.out.println(" ATTRIBUTE Qualified Name :" + qName);
 System.out.println(" ATTRIBUTE Local Name :" + localName);
 System.out.println(" ATTRIBUTE Namespace :" + uri);

 // You can get the type and value of the attributes either
 // by index or by the Qualified Name.

 String type = atts.getType(qName);
 String value = atts.getValue(qName);

 System.out.println(" ATTRIBUTE Type :" + type);
 System.out.println(" ATTRIBUTE Value :" + value);

 System.out.println();

 }
 }
 public void endElement(String uri, String localName,
 String qName) throws SAXException
 {
 System.out.println("ELEMENT Qualified Name:" + qName);
 System.out.println("ELEMENT Local Name :" + localName);
 System.out.println("ELEMENT Namespace :" + uri);
 }
}

4. Parse the input XML document:

parser.parse(DemoUtil.createURL(argv[0]).toString());

The preceding code converts the document to a URL and then parses it.

12.4.4 Performing SAX Parsing with XMLTokenizer
You can create a simple SAX parser as a instance of the XMLTokenizer class and use the
parser to tokenize the input XML.

Table 12-15 lists useful methods in the class.

Chapter 12
Parsing XML with SAX

12-39

Table 12-15 XMLTokenizer Methods

Method Description

setToken() Registers a new token for XML tokenizer.

setErrorStream() Registers a output stream for errors

tokenize() Tokenizes the input XML

SAX parsers with Tokenizer features must implement the XMLToken interface. The
callback method for XMLToken is token(), which receives an XML token and its
corresponding value and performs an action. For example, you can implement
token() so that it prints the token name followed by the value of the token.

The Tokenizer.java sample program accepts an XML document as input, parses it,
and prints a list of the XML tokens. The program implements a doParse() method that
follows these steps (which are illustrated with code fragments from the program):

1. Create a URL from the input XML stream:

URL url = DemoUtil.createURL(arg);
2. Create an XMLTokenizer parser:

parser = new XMLTokenizer ((XMLToken)new Tokenizer());
3. Register an output error stream:

parser.setErrorStream (System.out);
4. Register tokens with the parser:

parser.setToken (STagName, true);
parser.setToken (EmptyElemTag, true);
parser.setToken (STag, true);
parser.setToken (ETag, true);
parser.setToken (ETagName, true);
...

5. Tokenize the XML document:

parser.tokenize (url);

The token() callback method determines the action to take upon encountering a
particular token. The following code is part of the implementation of this method:

public void token (int token, String value)
{
 switch (token)
 {
 case XMLToken.STag:
 System.out.println ("STag: " + value);
 break;
 case XMLToken.ETag:
 System.out.println ("ETag: " + value);
 break;
 case XMLToken.EmptyElemTag:
 System.out.println ("EmptyElemTag: " + value);
 break;
 case XMLToken.AttValue:
 System.out.println ("AttValue: " + value);

Chapter 12
Parsing XML with SAX

12-40

 break;
 ...
 default:
 break;
 }
}

12.5 Parsing XML with JAXP
JAXP lets your Java program use the SAX and DOM parsers and the XSLT processor.

12.5.1 JAXP Structure
JAXP consists of abstract classes that provide a thin layer for parser pluggability. Oracle
implemented JAXP based on the Sun reference implementation.

Table 12-16 lists and describes the packages that comprise JAXP.

Table 12-16 JAXP Packages

Package Description

javax.xml.parsers Provides standard APIs for DOM 2.0 and SAX 1.0 parsers.
Contains vendor-neutral factory classes, including
SAXParser and a DocumentBuilder. DocumentBuilder
creates a DOM-compliant Document object.

javax.xml.transform Defines the generic APIs for processing XML transformation
and performing a transformation from a source to a result.

javax.xml.transform.dom Provides DOM-specific transformation APIs.

javax.xml.transform.sax Provides SAX2-specific transformation APIs.

javax.xml.transform.stream Provides stream- and URI-specific transformation APIs.

12.5.2 Using the SAX API Through JAXP
You can rely on the factory design pattern to create new SAX parser engines with JAXP.

Figure 12-6 shows the basic process.

Figure 12-6 SAX Parsing with JAXP

X
M

L

S
A

X
�

P
a

rs
e

r

B
u

s
in

e
s

s
�

L
o

g
ic

S
A

X
�

P
a

rs
e

r�
F

a
c

to
ry

D
o

c
u

m
e
n

t
H

a
n

d
le

r

E
rr

o
r

H
a

n
d

le
r

D
T

D
 H

a
n

d
le

r

E
n

ti
ty

 R
e

s
o

lv
e

r

E
v

e
n

ts

Chapter 12
Parsing XML with JAXP

12-41

The basic steps for parsing with SAX through JAXP are:

1. Create a new SAX parser factory with the SAXParserFactory class.

2. Configure the factory.

3. Create a new SAX parser (SAXParser) object from the factory.

4. Set the event handlers for the SAX parser.

5. Parse the input XML documents.

12.5.3 Using the DOM API Through JAXP
You can rely on the factory design pattern to create new DOM document builder
engines with JAXP.

Figure 12-7 shows the basic process.

Figure 12-7 DOM Parsing with JAXP

X
M

L

D
O

M
�

D
o

c
u

m
e

n
t�

B
u

il
d

e
r

B
u

s
in

e
s

s
�

L
o

g
ic

D
o

c
u

m
e

n
t�

B
u

il
d

e
r�

F
a

c
to

ry

E
rr

o
r

H
a

n
d

le
r

E
n

ti
ty

 R
e

s
o

lv
e

r

D
O

M
�

T
re

e

The basic steps for parsing with DOM through JAXP are:

1. Create a new DOM parser factory with the DocumentBuilderFactory class.

2. Configure the factory.

3. Create a new DOM builder (DocumentBuilder) object from the factory.

4. Set the error handler and entity resolver for the DOM builder.

5. Parse the input XML documents.

12.5.4 Transforming XML Through JAXP
The basic steps for transforming XML through JAXP are described.

The steps are:

1. Create a new transformer factory with the TransformerFactory class.

2. Configure the factory.

3. Create a new transformer from the factory and specify an XSLT stylesheet.

4. Configure the transformer.

Chapter 12
Parsing XML with JAXP

12-42

5. Transform the document.

12.5.5 Parsing with JAXP
The JAXPExamples.java program shows the basic steps of parsing with JAXP.

The program implements these methods and uses them to parse and perform additional
processing on XML files in the /jaxp directory:

• basic()
• identity()
• namespaceURI()
• templatesHandler()
• contentHandler2contentHandler()
• contentHandler2DOM()
• reader()
• xmlFilter()
• xmlFilterChain()
The program creates URLs for the sample XML files jaxpone.xml and jaxpone.xsl and then
invokes the preceding methods in sequence. The basic design of the demo is as follows (to
save space, only the basic() method is shown):

public class JAXPExamples
{
 public static void main(String argv[])
 throws TransformerException, TransformerConfigurationException,
 IOException, SAXException,
ParserConfigurationException,
 FileNotFoundException
 {
 try {
 URL xmlURL = createURL("jaxpone.xml");
 String xmlID = xmlURL.toString();
 URL xslURL = createURL("jaxpone.xsl");
 String xslID = xslURL.toString();
 //
 System.out.println("--- basic ---");
 basic(xmlID, xslID);
 System.out.println();
 ...
 } catch(Exception err) {
 err.printStackTrace();
 }
 }
 //
 public static void basic(String xmlID, String xslID)
 throws TransformerException, TransformerConfigurationException
 {
 TransformerFactory tfactory = TransformerFactory.newInstance();
 Transformer transformer = tfactory.newTransformer(new StreamSource(xslID));
 StreamSource source = new StreamSource(xmlID);
 transformer.transform(source, new StreamResult(System.out));
 }

Chapter 12
Parsing XML with JAXP

12-43

...
}

The reader() method in the program JAXPExamples.java shows a simple technique
for parsing an XML document with SAX, using these steps (which are illustrated with
code fragments from the program):

1. Create a new instance of a TransformerFactory and cast it to a
SAXTransformerFactory:

TransformerFactory tfactory = TransformerFactory.newInstance();
SAXTransformerFactory stfactory = (SAXTransformerFactory)tfactory;

2. Create an XML reader by creating a StreamSource object from a stylesheet and
passing it to the factory method newXMLFilter():

URL xslURL = createURL("jaxpone.xsl");
String xslID = xslURL.toString();
...
StreamSource streamSource = new StreamSource(xslID);
XMLReader reader = stfactory.newXMLFilter(streamSource);

newXMLFilter() returns an XMLFilter object that uses the specified Source as the
transformation instructions.

3. Create a content handler and register it with the XML reader:

ContentHandler contentHandler = new oraContentHandler();
reader.setContentHandler(contentHandler);

The preceding code creates an instance of the class oraContentHandler by
compiling the oraContentHandler.java program in the demo directory.

The following code shows part of the implementation of the oraContentHandler
class:

public class oraContentHandler implements ContentHandler
{
 private static final String TRADE_MARK = "Oracle 9i ";

 public void setDocumentLocator(Locator locator)
 {
 System.out.println(TRADE_MARK + "- setDocumentLocator");
 }

 public void startDocument()
 throws SAXException
 {
 System.out.println(TRADE_MARK + "- startDocument");
 }

 public void endDocument()
 throws SAXException
 {
 System.out.println(TRADE_MARK + "- endDocument");
 }
 ...

4. Parse the input XML document by passing the InputSource to the
XMLReader.parse() method:

Chapter 12
Parsing XML with JAXP

12-44

InputSource is = new InputSource(xmlID);
reader.parse(is);

12.5.6 Performing Basic Transformations with JAXP
You can use JAXP to perform basic transformations.

JAXP can transform these types of input:

• XML documents

• XSL stylesheets

• ContentHandler class defined in oraContentHandler.java
Here are some examples of using JAXP to perform basic transformations:

• You can use the identity() method to perform a transformation in which the output XML
document and the input XML document are the same.

• You can use the xmlFilterChain() method to apply three stylesheets in a chain.

• You can transform any class of the interface Source into a class of the interface Result
(DOMSource to DOMResult, StreamSource to StreamResult, SAXSource to SAXResult, and
so on).

The basic() method in the program JAXPExamples.java shows how to perform a basic XSLT
transformation, using these steps (which are illustrated with code fragments from the
program):

1. Create a new instance of a TransformerFactory:

TransformerFactory tfactory = TransformerFactory.newInstance();
2. Create a new XSL transformer from the factory and specify the stylesheet to use for the

transformation:

URL xslURL = createURL("jaxpone.xsl");
String xslID = xslURL.toString();
...
Transformer transformer = tfactory.newTransformer(new StreamSource(xslID));

In the preceding code, the stylesheet is jaxpone.xsl.

3. Set the stream source to the input XML document:

URL xmlURL = createURL("jaxpone.xml");
String xmlID = xmlURL.toString();
...
StreamSource source = new StreamSource(xmlID);

In the preceding code, the stream source is jaxpone.xml.

4. Transform the document from a StreamSource to a StreamResult:

transformer.transform(source, new StreamResult(System.out));

Chapter 12
Parsing XML with JAXP

12-45

12.6 Compressing and Decompressing XML
XDK lets you use SAX or DOM to parse XML and then write the parsed data to a
compressed binary stream. XDK also lets you reverse the process, decompressing the
binary stream to reconstruct the XML data.

12.6.1 Compressing a DOM Object
DOMCompression.java shows the basic steps of DOM compression. The most
important DOM compression method is XMLDocument.writeExternal(), which saves
the state of the object by creating a binary compressed stream with information about
the object.

The DOMCompression.java program uses these steps (which are illustrated with code
fragments from the program):

1. Create a DOM parser, parse an input XML document, and get the DOM
representation:

public class DOMCompression
{
 static OutputStream out = System.out;
 public static void main(String[] args)
 {
 XMLDocument doc = new XMLDocument();
 DOMParser parser = new DOMParser();
 try
 {
 parser.setValidationMode(XMLParser.SCHEMA_VALIDATION);
 parser.setPreserveWhitespace(false);
 parser.retainCDATASection(true);
 parser.parse(createURL(args[0]));
 doc = parser.getDocument();
 ...

For a description of this technique, see Performing Basic DOM Parsing.

2. Create a FileOutputStream and wrap it in an ObjectOutputStream for
serialization:

OutputStream os = new FileOutputStream("xml.ser");
ObjectOutputStream oos = new ObjectOutputStream(os);

3. Serialize the object to the file by invoking XMLDocument.writeExternal():

doc.writeExternal(oos);

This method saves the state of the object by creating a binary compressed stream
with information about this object.

12.6.2 Decompressing a DOM Object
DOMDeCompression.java shows the basic steps of DOM decompression. The most
important DOM decompression method is XMLDocument.readExternal(), which reads

Chapter 12
Compressing and Decompressing XML

12-46

the information that the writeExternal() method wrote (the compressed stream) and
restores the object.

The DOMDeCompression.java program uses these steps (which are illustrated with code
fragments from the program):

1. Create a file input stream for the compressed file and wrap it in an ObjectInputStream:

InputStream is;
ObjectInputStream ois;
...
is = new FileInputStream("xml.ser");
ois = new ObjectInputStream(is);

The preceding code creates a FileInputStream from the compressed file created in
Compressing a DOM Object.

2. Create a new XML document object to contain the decompressed data:

XMLDocument serializedDoc = null;
serializedDoc = new XMLDocument();

3. Read the compressed file by invoking XMLDocument.readExternal():

serializedDoc.readExternal(ois);
serializedDoc.print(System.out);

The preceding code data and prints it to System.out.

12.6.3 Compressing a SAX Object
SAXCompression.java shows the basic steps of parsing a file with SAX and writing the
compressed stream to a file. The important class is CXMLHandlerBase, which is a SAX
Handler that compresses XML data based on SAX events.

To use SAX compression, implement this interface and register it with the SAX parser by
invoking Parser.setDocumentHandler().

The SAXCompression.java program uses these steps (which are illustrated with code
fragments from the program):

1. Create a FileOutputStream and wrap it in an ObjectOutputStream:

String compFile = "xml.ser";
FileOutputStream outStream = new FileOutputStream(compFile);
ObjectOutputStream out = new ObjectOutputStream(outStream);

2. Create the SAX event handler:

CXMLHandlerBase cxml = new CXMLHandlerBase(out);

The CXMLHandlerBase class implements the ContentHandler, DTDHandler,
EntityResolver, and ErrorHandler interfaces.

3. Create the SAX parser:

SAXParser parser = new SAXParser();
4. Configure the SAX parser:

Chapter 12
Compressing and Decompressing XML

12-47

parser.setContentHandler(cxml);
parser.setEntityResolver(cxml);
parser.setValidationMode(XMLConstants.NONVALIDATING);

The preceding code sets the content handler, entity resolver, and validation mode.

Note:

Although oracle.xml.comp.CXMLHandlerBase implements both
DocumentHandler and ContentHandler interfaces, Oracle recommends
using the SAX 2.0 ContentHandler interface.

5. Parse the XML:

parser.parse(url);

The SAXCompression.java program writes the serialized data to the
ObjectOutputStream.

12.6.4 Decompressing a SAX Object
SAXDeCompression.java shows the basic steps of reading the serialized data from the
file that SAXCompression.java wrote. The important class is CXMLParser, which is an
XML parser that regenerates SAX events from a compressed stream.

The SAXDeCompression.java program follows these steps (which are illustrated with
code fragments from the program):

1. Create a SAX event handler:

SampleSAXHandler xmlHandler = new SampleSAXHandler();
2. Create the SAX parser by instantiating the CXMLParser class:

CXMLParser parser = new CXMLParser();

The CXMLParser class implements the regeneration of XML documents from a
compressed stream by generating SAX events from them.

3. Set the event handler for the SAX parser:

parser.setContentHandler(xmlHandler);
4. Parse the compressed stream and generate the SAX events:

parser.parse(args[0]);

The preceding code receives a file name from the command line and parses the
XML.

12.7 Tips and Techniques for Parsing XML
A few parsing tips and techniques are listed.

Chapter 12
Tips and Techniques for Parsing XML

12-48

12.7.1 Extracting Node Values from a DOM Tree
You can use the selectNodes() method in the XMLNode class to extract content from a DOM
tree or subtree based on the select patterns allowed by XSL.

You can use the optional second parameter of selectNodes() to resolve namespace
prefixes; that is, to return the expanded namespace URL when given a prefix. The
XMLElement class implements NSResolver, so a reference to an XMLElement object can be
sent as the second parameter. XMLElement resolves the prefixes based on the input
document. You can use the NSResolver interface to override the namespace definitions.

The sample code in Example 12-4 shows how to use selectNodes().

To test the program, create a file with the code in Example 12-4, and then compile it in
the $ORACLE_HOME/xdk/demo/java/parser/common directory. Pass the file name family.xml
to the program as a parameter to traverse the <family> tree. The output is similar to this:

% java selectNodesTest family.xml
Sarah
Bob
Joanne
Jim

Now run the following code to determine the values of the memberid attributes of all <member>
elements in the document:

% java selectNodesTest family.xml //member/@memberid
m1
m2
m3
m4

Example 12-4 Extracting Contents of a DOM Tree with selectNodes()

//
// selectNodesTest.java
//
import java.io.*;
import oracle.xml.parser.v2.*;
import org.w3c.dom.Node;
import org.w3c.dom.Element;
import org.w3c.dom.Document;
import org.w3c.dom.NodeList;

public class selectNodesTest
{
 public static void main(String[] args)
 throws Exception
 {
 // supply an xpath expression
 String pattern = "/family/member/text()";
 // accept a filename on the command line
 // run the program with $ORACLE_HOME/xdk/demo/java/parser/common/family.xml
 String file = args[0];

 if (args.length == 2)
 pattern = args[1];

 DOMParser dp = new DOMParser();

Chapter 12
Tips and Techniques for Parsing XML

12-49

 dp.parse(DemoUtil.createURL(file)); // include createURL from DemoUtil
 XMLDocument xd = dp.getDocument();
 XMLElement element = (XMLElement) xd.getDocumentElement();
 NodeList nl = element.selectNodes(pattern, element);
 for (int i = 0; i < nl.getLength(); i++)
 {
 System.out.println(nl.item(i).getNodeValue());
 } // end for
 } // end main
} // end selectNodesTest

12.7.2 Merging Documents with appendChild()
How to merge XML documents using XMLElement.appendChild() is described.

To write a program that lets a user complete a client-side Java form and get an XML
document, your Java program can contain these variables:

String firstname = "Gianfranco";
String lastname = "Pietraforte";

To insert this information into an XML document, you can use either of these
techniques:

• Create an XML document in a string and then parse it. For example:

String xml = "<person><first>"+firstname+"</first>"+
 "<last>"+lastname+"</last></person>";
DOMParser d = new DOMParser();
d.parse(new StringReader(xml));
Document xmldoc = d.getDocument();

• Use DOM APIs to construct an XML document, creating elements and then
appending them to one another. For example:

Document xmldoc = new XMLDocument();
Element e1 = xmldoc.createElement("person");
xmldoc.appendChild(e1);
Element e2 = xmldoc.createElement("firstname");
e1.appendChild(e2);
Text t = xmldoc.createText("Larry");
e2.appendChild(t);

You can use the second technique only on a single DOM tree.

Example 12-5 uses two trees—the owner document of e1 is xmldoc1 and the owner
document of e2 is xmldoc2. The appendChild() method works only within a single
tree. Therefore, invoking XMLElement.appendChild() raises a DOM exception of
WRONG_DOCUMENT_ERR.

To copy and paste a DOM document fragment or a DOM node across different XML
documents, use the XMLDocument.importNode() method (introduced in DOM 2) and
the XMLDocument.adoptNode() method (introduced in DOM 3). The comments in
Example 12-6 show this technique.

Example 12-5 Incorrect Use of appendChild()

XMLDocument xmldoc1 = new XMLDocument();
XMLElement e1 = xmldoc1.createElement("person");
XMLDocument xmldoc2 = new XMLDocument();

Chapter 12
Tips and Techniques for Parsing XML

12-50

XMLElement e2 = xmldoc2.createElement("firstname");
e1.appendChild(e2);

Example 12-6 Merging Documents with appendChild

XMLDocument doc1 = new XMLDocument();
XMLElement element1 = doc1.createElement("person");
XMLDocument doc2 = new XMLDocument();
XMLElement element2 = doc2.createElement("firstname");
// element2 = doc1.importNode(element2);
// element2 = doc1.adoptNode(element2);
element1.appendChild(element2);

12.7.3 Parsing DTDs
You can use load and parse a DTD.

12.7.3.1 Loading External DTDs
The procedure for loading and parsing a DTD is presented.

If you invoke the DOMParser.parse() method to parse the XML document as an
InputStream, then use the DOMParser.setBaseURL() method to recognize external DTDs
within your Java program. DOMParser.setBaseURL() points to a location where the DTDs are
exposed.

The procedure for loading and parsing a DTD is:

1. Load the DTD as an InputStream.

For example, this code validates documents against the /mydir/my.dtd external DTD:

InputStream is = MyClass.class.getResourceAsStream("/mydir/my.dtd");

The preceding code opens ./mydir/my.dtd in the first relative location in the CLASSPATH
where it can be found, including the JAR file if it is in the CLASSPATH.

2. Create a DOM parser and set the validation mode.

For example:

DOMParser d = new DOMParser();
d.setValidationMode(DTD_VALIDATION);

3. Parse the DTD.

For example, this code passes the InputStream object to the DOMParser.parseDTD()
method:

d.parseDTD(is, "rootelementname");
4. Get the document type and then set it.

For example, in this code, the getDoctype() method gets the DTD object and the
setDoctype() method sets the DTD to use for parsing:

d.setDoctype(d.getDoctype());

Alternatively, you can invoke the parseDTD() method to parse a DTD file separately and
get a DTD object:

Chapter 12
Tips and Techniques for Parsing XML

12-51

d.parseDTD(new FileReader("/mydir/my.dtd"));
DTD dtd = d.getDoctype();
parser.setDoctype(dtd);

5. Parse the input XML document:

d.parse("mydoc.xml");

12.7.3.2 Caching DTDs with setDoctype
The XML parser for Java provides for DTD caching in validation and nonvalidation
modes through the DOMParser.setDoctype() method. After you set the DTD with this
method, the parser caches it for further parsing.

Note:

DTD caching is optional, and is not enabled automatically.

Suppose that your program must parse several XML documents with the same DTD.
After you parse the first XML document, you can get the DTD from the parser and set
it. For example:

DOMParser parser = new DOMParser();
DTD dtd = parser.getDoctype();
parser.setDoctype(dtd);

Example 12-7 invokes DOMParser.setDoctype() to cache the DTD.

If the cached DTD object is used only for validation, then set the
DOMParser.USE_DTD_ONLY_FOR_VALIDATION attribute:

parser.setAttribute(DOMParser.USE_DTD_ONLY_FOR_VALIDATION,Boolean.TRUE);

Otherwise, the XML parser copies the DTD object and adds it to the resulting DOM
tree.

Example 12-7 DTDSample.java

/**
 * DESCRIPTION
 * This program illustrates DTD caching.
 */

import java.net.URL;
import java.io.*;
import org.xml.sax.InputSource;
import oracle.xml.parser.v2.*;

public class DTDSample
{
 static public void main(String[] args)
 {
 try
 {
 if (args.length != 3)
 {
 System.err.println("Usage: java DTDSample dtd rootelement xmldoc");

Chapter 12
Tips and Techniques for Parsing XML

12-52

 System.exit(1);
 }

 // Create a DOM parser
 DOMParser parser = new DOMParser();

 // Configure the parser
 parser.setErrorStream(System.out);
 parser.showWarnings(true);

 // Create a FileReader for the DTD file specified on the command
 // line and wrap it in an InputSource
 FileReader r = new FileReader(args[0]);
 InputSource inSource = new InputSource(r);

 // Create a URL from the command-line argument and use it to set the
 // system identifier
 inSource.setSystemId(DemoUtil.createURL(args[0]).toString());

 // Parse the external DTD from the input source. The second argument is
 // the name of the root element.
 parser.parseDTD(inSource, args[1]);
 DTD dtd = parser.getDoctype();

 // Create a FileReader object from the XML document specified on the
 // command line
 r = new FileReader(args[2]);

 // Wrap the FileReader in an InputSource,
 // create a URL from the filename,
 // and set the system identifier
 inSource = new InputSource(r);
 inSource.setSystemId(DemoUtil.createURL(args[2]).toString());

 // ********************
 parser.setDoctype(dtd);
 // ********************

 parser.setValidationMode(DOMParser.DTD_VALIDATION);
 // parser.setAttribute
 // (DOMParser.USE_DTD_ONLY_FOR_VALIDATION,Boolean.TRUE);
 parser.parse(inSource);

 // Get the DOM tree and print
 XMLDocument doc = parser.getDocument();
 doc.print(new PrintWriter(System.out));

 }
 catch (Exception e)
 {
 System.out.println(e.toString());
 }
 }
}

12.7.4 Handling Character Sets with the XML Parser
Topics for handling character sets with the parser are introduced.

Chapter 12
Tips and Techniques for Parsing XML

12-53

12.7.4.1 Detecting the Encoding of an XML File on the Operating System
Use the XML parser to detect the character encoding of an XML file stored on your file
system.

When reading an XML file stored on the operating system, do not use the FileReader
class. Instead, use the XML parser to detect the character encoding of the document
automatically. Given a binary FileInputStream with no external encoding information,
the parser automatically determines the character encoding based on the byte-order
mark and encoding declaration of the XML document. You can parse any well-formed
document in any supported encoding with the sample code in the
AutoDetectEncoding.java demo, which is located in $ORACLE_HOME/xdk/demo/java/
parser/dom.

Note:

Include the proper encoding declaration in your document, according to the
specification. setEncoding() cannot set the encoding for your input
document. setEncoding() is used with oracle.xml.parser.v2.XMLDocument
to set the correct encoding for printing.

12.7.4.2 Preventing Distortion of XML Stored in an NCLOB Column
To avoid distortion of XML data that is stored in an NCLOB column, use methods
getUnicodeStream() and getBinaryStream(), or print the data to ensure that its
characters are not distorted before they are sent to the parser.

Suppose that you load XML into a national character large object (NCLOB) column of a
database using 8-bit encoding of Unicode (UTF-8), and the XML contains two UTF-8
multibyte characters:

G(0xc2,0x82)otingen, Br(0xc3,0xbc)ck_W

You write a Java stored function that does this:

1. Uses the default connection object to connect to the database.

2. Runs a SELECT query.

3. Gets the oracle.jdbc.OracleResultSet object.

4. Invokes the OracleResultSet.getCLOB() method.

5. Invokes the getAsciiStream() method on the CLOB object.

6. Executes this code to get the XML into a DOM object:

DOMParser parser = new DOMParser();
parser.setPreserveWhitespace(true);
parser.parse(istr);
// istr getAsciiStream XMLDocument xmldoc = parser.getDocument();

The program throws an exception stating that the XML contains an invalid UTF-8
encoding even though the character (0xc2, 0x82) is valid UTF-8. The problem is that
the character can be distorted when the program invokes the

Chapter 12
Tips and Techniques for Parsing XML

12-54

OracleResultSet.getAsciiStream() method. To solve this problem, invoke the
getUnicodeStream() and getBinaryStream() methods instead of getAsciiStream(). If this
technique does not work, then try to print the characters to ensure that they are not distorted
before they are sent to the parser when you invoke DOMParser.parse(istr).

12.7.4.3 Writing an XML File in a Nondefault Encoding
A technique is introduced to avoid problems that can be introduced when writing XML files
that contain characters that are not available in the default character encoding.

UTF-8 encoding is popular for XML documents, but UTF-8 is not usually the default file
encoding of Java. Using a Java class in your program that assumes the default file encoding
can cause problems.

For example, the Java class FileWriter depends on the default character encoding of the
runtime environment. If you use the FileWriter class when writing XML files that contain
characters that are not available in the default character encoding, then the output file can
suffer parsing errors or data loss.

To avoid such problems, use the technique shown in the
I18nSafeXMLFileWritingSample.java program in $ORACLE_HOME/xdk/demo/java/parser/
dom.

You cannot use System.out.println() to output special characters. You must use a binary
output stream that is encoding-aware, such as OutputStreamWriter. Construct an
OutputStreamWriter and use the write(char[], int, int) method to print, as in this
example:

/* Java encoding string for ISO8859-1*/
OutputStreamWriter out = new OutputStreamWriter(System.out, "8859_1");
OutputStreamWriter.write(...);

12.7.4.4 Parsing XML Stored in Strings
To parse an XML document contained in a String, you must first convert the string to an
InputStream or InputSource object.

Example 12-8 converts a string of XML (referenced by xmlDoc) to a byte array, converts the
byte array to a ByteArrwayInputStream, and then parses it.

You can convert the XMLDocument object created in the previous code back to a string by
wrapping a StringWriter in a PrintWriter. This example shows this technique:

To convert the XMLDocument object created in Example 12-8 back to a string, you can wrap a
StringWriter in a PrintWriter:

StringWriter sw = new StringWriter();
PrintWriter pw = new PrintWriter(sw);
doc.print(pw);
String YourDocInString = sw.toString();

ParseXMLFromString.java, which is located in $ORACLE_HOME/xdk/demo/java/parser/dom, is
a complete program that creates an XML document as a string and parses it.

Example 12-8 Converting XML in a String

// create parser
DOMParser parser=new DOMParser();

Chapter 12
Tips and Techniques for Parsing XML

12-55

// create XML document in a string
String xmlDoc =
 "<?xml version='1.0'?>"+
 "<hello>"+
 " <world/>"+
 "</hello>";
// convert string to bytes to stream
byte aByteArr [] = xmlDoc.getBytes();
ByteArrayInputStream bais = new ByteArrayInputStream(aByteArr,0,aByteArr.length);
// parse and get DOM tree
DOMParser.parse(bais);
XMLDocument doc = parser.getDocument();

12.7.4.5 Parsing XML Documents with Accented Characters
Tips for parsing XML documents that contain accented characters are presented.

Example 12-9 shows one way to parse an XML document with accented characters
(such as é).

When you try to parse the XML file, the parser might throw an "Invalid UTF-8
encoding" exception. The encoding is a scheme used to write the Unicode character
number representation to disk. If you explicitly set the encoding to UTF-8 or do not
specify the encoding, then the parser interprets an accented character—which has an
ASCII value greater than 127—as the first byte of a UTF-8 multibyte sequence. If the
subsequent bytes do not form a valid UTF-8 sequence, then you get an error.

The error means that your XML editor did not save the file with UTF-8 encoding. The
editor might have saved the file with ISO-8859-1 (Western European ASCII) encoding.
Adding the following element to the top of an XML document does not cause your
editor to write the bytes representing the file to disk with UTF-8 encoding:

<?xml version="1.0" encoding="UTF-8"?>

One solution is to read accented characters in their hexadecimal or decimal format
within the XML document; for example, Ù. If you prefer not to use this technique,
then you can set the encoding based on the character set that you were using when
you created the XML file (for example, ISO-8859-1).

Example 12-9 Parsing a Document with Accented Characters

DOMParser parser=new DOMParser();
parser.setPreserveWhitespace(true);
parser.setErrorStream(System.err);
parser.setValidationMode(false);
parser.showWarnings(true);
parser.parse (new FileInputStream(new File("file_with_accents.xml")));

12.7.4.6 Handling Special Characters in Tag Names
Tips for handling special characters in XML element names are presented.

If a tag (element) name contains special characters (&, $, and #, and so on), then the
parser issues an error about invalid characters.

If you are creating a new XML document, choose tag names that have no invalid
NameChar characters. For example, if you want to name the tags after companies, and
one company has the name A&B, then instead of the invalid tag <A&B>, choose <A_B>,
<AB>, or <A_AND_B>.

Chapter 12
Tips and Techniques for Parsing XML

12-56

If you are generating XML from external data sources such as database tables, then:

• XML 1.0 does not address this problem.

• In XML 1.1, the data type XMLType addresses this problem by providing the
setConvertSpecialChars and convert functions in the DBMS_XMLGEN package.

You can use these functions to control the use of special characters in structured query
language (SQL) names and XML names. The SQL-to-XML name-mapping functions
escape invalid XML NameChar characters in the format of _XHHHH_, where HHHH is the
Unicode value of the invalid character. For example, table name V$SESSION is mapped to
XML name V_X0024_SESSION.

Escaping invalid characters provides a way to serialize names so that they can be
reloaded somewhere else.

Chapter 12
Tips and Techniques for Parsing XML

12-57

13
Using Binary XML with Java

Topics here explain how to use Binary XML with Java.

13.1 Introduction to Binary XML for Java
Binary XML makes it possible to encode and decode between XML text and compressed
binary XML. Application programming interfaces (APIs) are provided on top of Binary XML for
direct consumption by the XML applications. Compression and decompression of fragments
of an XML document facilitate incremental processing.

This chapter assumes that you are familiar with the XML Parser for Java.

Related Topics

• XML Parsing for Java
Extensible Markup Language (XML) parsing for Java is described.

13.1.1 Binary XML Storage Format – Java
Binary XML is a compact XML-Schema-aware encoding of XML data, but it can be used with
XML data that is not based on an XML schema. You can also use binary XML for XML data
which is outside the database (in a client-side application, for instance). Binary XML allows
for encoding and decoding of XML documents, from text to binary and binary to text. Binary
XML is post-parse persistent XML with native database data types.

XMLType tables and columns can be created using the binary XML storage option. The XML
data in binary format can be accessed and manipulated by all the existing structured query
language (SQL) operators and functions and Procedural Language/Structured Query
Language (PL/SQL) APIs that operate on XMLType.

Binary XML provides more efficient database storage, updating, indexing, query performance,
and fragment extraction than unstructured storage. It can store data and metadata together,
or separately.

See Also:

Oracle XML DB Developer’s Guide for a discussion of all the storage models in
Oracle XML DB.

13.1.2 Binary XML Processors
A binary XML processor is an abstract term for a component that processes and transforms
binary XML into text and XML text into binary XML. It can also provide a cache for storing
schemas. A binary XML processor can originate or receive network protocol requests.

13-1

The base class for a binary XML processor is BinXMLProcessor.

13.2 Models for Using Binary XML
There are several models for using binary XML in applications. These subsections
describe the terminology and the models for using binary XML.

13.2.1 Usage Terminology for Binary XML
Terms related to binary XML usage are described.

• doc-id: Each encoded XML document is identified by a unique doc-id. It is either a
16-byte Global User identifier (GUID) or an opaque sequence of bytes like a URL.

• token table: When a text XML document does not have a schema associated with
it, then a token (or symbol) table is used to minimize space for repeated items.

• vocabulary id: Can be a schema-id or a namespace Universal Resource Identifier
(URI) for a token table.

• schema-id: A unique opaque binary identifier for a schema scoped to the binary
XML processor. The schema-id is unique for a binary XML processor and is
identifiable only within the scope of that binary XML processor. The schema-id
remains constant even when the schema is evolved. A schema-id represents the
entire set of schema documents, including imported and included schemas.

• schema version: Every annotated schema has a version number associated with
it. The version number is specified as part of the system level annotations. It is
incremented by the binary XML processor when a schema is evolved (that is, a
new version of the same schema is registered with the binary XML processor).

• partial validity: Binary XML stream encoding using schema implies at least partial
validity with the schema. Partial validity implies no validation for unique keys,
keyrefs, identifiers (IDs), or DTD attributes such as IDREF.

13.2.2 Standalone Model
This is the simplest usage scenario for binary XML. There is a single binary XML
processor.

The only repository available is the local in-memory vocabulary cache that is not
persistent and is available only for the life of the binary XML processor. All schemas
must be registered in advance with the binary XML Processor before the encoding, or
they can be registered automatically when the XML Processor sees the
xsi:SchemaLocation tag. For decoding, the schema is already available in the
vocabulary cache.

13.2.3 Client/Server Model
In a client-server scenario, the binary XML processor is connected to a database using
Java Database Connectivity (JDBC). It is assumed that the XML schema is registered
with the database before encoding.

Here is an example of how to achieve that:

BEGIN
 DBMS_XMLSCHEMA.registerSchema(

Chapter 13
Models for Using Binary XML

13-2

 SCHEMAURL =>
 'http://xmlns.oracle.com/xdb/documentation/purchaseOrder.xsd',
 SCHEMADOC =>
 bfilename('XMLDIR','purchaseOrder.xsd'),
 CSID => nls_charset_id('AL32UTF8'),
 GENTYPES => FALSE,
 OPTIONS => REGISTER_BINARYXML);
END;
/

Unless a separate connection is specified for data (using associateDataConnection()) it is
assumed that all data and metadata is stored and retrieved using a single connection for
encoding and decoding.

13.2.4 Web Services Model With Repository
In this scenario there are multiple clients, each running a binary XML processor. One
encodes and another decodes. There is a common repository (that is not necessarily a
database) connected to all the clients for metadata storage. It can be a file system or some
other repository.

The first binary XML processor ensures that the schema is registered with the repository
before performing the encoding, or the schema might be automatically registered using the
xsi:schemaLocation tag at the time of encoding. The second binary XML processor is used
for decoding, is not aware of the location of the schema, and fetches the schema from the
repository.

If the first binary XML processor registers a schema and the second binary XML processor
registers the same schema in the repository, the binary XML processor does not compile the
schema, but simply returns the vocabulary-id of the existing compiled schema in the local
vocabulary cache.

The BinXMLProcessor is not thread-safe, so multiple threads or clients accessing the
repository must implement their own thread safety scheme.

13.2.5 Web Services Model Without Repository
In this scenario, there are multiple clients, each running a binary XML processor. Encoding
and decoding can happen on different clients. There is no common metadata repository.

The encoder must ensure that the binary data passed to the next client is independent of
schema: that is, has inline token definitions. This can be achieved by setting schemaAware =
false and inlineTokenDefs = true, using the setProperty() method, during encoding.
While decoding, there is no schema required.

13.3 Components of Binary XML for Java
The components of binary XML for Java are described.

These are the components:

• Binary XML encoding—The binary XML encoder converts XML 1.0 infoset to binary XML.

• Binary XML decoding—The binary XML decoder converts binary XML to XML infoset.

• Binary XML vocabulary management, which includes schema management and token
management.

Chapter 13
Components of Binary XML for Java

13-3

13.3.1 Binary XML Encoding
The encoder is created from a BinXMLStream. It takes XML text as input, and it outputs
the encoded binary XML to the BinXMLStream. It reads the XML text using streaming
SAX. The encoding of the XML text is based on the results of parsing the XML text.

Set the schemaAware flag on the encoder that specifies whether the encoding is
schema-aware or schema-less.

For schema-aware encoding, the encoder determines whether the schema with the
specified schema URL has been registered with the vocabulary manager. For a
repository-based or a database-based processor, the encoder queries the repository
or the database for the compiled schema based on the schema URL. If the schema is
available in the database, it is fetched from the repository or database in the binary
XML format and registered with the local vocabulary manager. The vocabulary is
schema.

Also set a flag to indicate that the encoding produces a binary XML stream that is
independent of a schema. In this case, the resulting binary XML stream contains all
token definitions inline and is not dependent on schema or external token sets.

If the encoding is schema-aware, the encoder uses the data type information from the
schema object for more efficient encoding of the SAX stream. There is a default
encoding data type associated with each schema built-in data type. Binary XML
stream encoding using a schema implies at least partial validity with the schema (For
partial validity there is no validation for unique key, or keyref, or ID, or DTD attributes
such as IDREF). If the data is known to be completely valid with a schema, the
encoded binary XML stream stores this information.

See Also:

Oracle XML DB Developer’s Guide for tables of the binary encoding data
types and their mappings from XML schema data types

If there is no schema associated with the text XML, then integer token ids are
generated for repeated items in the text XML. Creating a token table of token ids and
token definitions is an important compression technique. The token definitions are
stored as token tables in the vocabulary cache. If the property for inline token
definitions is set, then the token definitions are present inline.

Another property on the encoder is specifying PSVI (Post-Schema-Validated Infoset)
information as part of the binary stream. If this is set to true then PSVI information can
be accessed using XDK extension APIs for PSVI on DOM. If psvi = true then the
input XML is fully validated with the schema. If psvi is false then PSVI information is
not included in the output binary stream. The default is false.

Related Topics

• Token Management
Token sets can be fetched from the database or metadata repository, cached in
the local vocabulary manager, and used for decoding. While encoding, token sets
can be pushed to the repository for persistence.

Chapter 13
Components of Binary XML for Java

13-4

13.3.2 Binary XML Decoding
The binary XML decoder converts binary XML to XML infoset. The decoder is created from
the BinXMLStream; it reads binary XML from this stream and outputs SAX events or provide a
pull style InfosetReader API for reading the decoded XML.

If an XML schema is associated with the BinXMLStream, the binary XML decoder retrieves the
associated schema object from the vocabulary cache, using the vocabulary id before
decoding. If the schema is not available in the vocabulary cache and the connection
information to the server is available, then the schema is fetched from the server.

If no schema is associated with BinXMLStream, then the token definitions can be either inline
in the BinXMLStream or stored in a token set. If tokens of a corresponding namespace are not
stored in the local vocabulary cache, then the token set is fetched from the repository.

13.4 Binary XML Vocabulary Management
The binary XML processors are of different types depending on where the metadata (schema
or token sets) are located—either local binary XML processor or repository binary XML
processor.

13.4.1 Schema Management
For metadata persistence, Oracle recommends that you use the DB Binary XML processor.
In this case, schemas and token sets are registered with the database. The vocabulary
manager fetches the schema or token sets from the database and cache it in the local
vocabulary cache for encoding and decoding.

If you must use a persistent metadata repository that is not a database, you can plug in your
own metadata repository. You must implement the interface for communicating with this
repository, BinXMLMetadataProvider.

Related Topics

• Binary XML
A binary XML processor can communicate with the database for various types of binary
XML operations involving storage and retrieval of binary XML schemas, token sets, and
binary XML streams.

13.4.1.1 Schema Registration for Binary XML Vocabulary Management
Register XML schemas locally with the local binary XML processor. It contains a vocabulary
manager that maintains all XML schemas submitted by a user for the duration of its
existence. The vocabulary manager associated with a local binary XML processor does not
provide for XML schema persistence.

If you register the same XML schema again (same schema location and same target
namespace) then it is not parsed, and the existing vocabulary identifier is returned.

If a new XML schema with the same target namespace and a different schema location is
registered, then the existing XML schema definition is augmented with the new schema
definitions. In case of conflict, an error is raised.

Chapter 13
Binary XML Vocabulary Management

13-5

13.4.1.2 Schema Identification
Each schema is identified by a vocabulary id. The vocabulary id is in the scope of the
processor and is unique within the processor. Any document that validates with a
schema is required to validate with a latest version of the schema.

13.4.1.3 Schema Annotations
Binary XML Schema annotations can appear only within element <xsd:appInfo> in an
XML schema. The vocabulary manager interprets user-level and system-level
annotations during XML schema registration. All other schema annotations, such as
database-related annotations, are ignored.

13.4.1.4 User-Level Annotations
User-level annotations are specified by a user before registration.

encodingType—This annotation can be used within a xsd:element, xsd:attribute or
xsd:simpleType elements. It indicates the data type to be used for encoding the node
value of the element or attribute. For strings, there is support only for 8-bit encoding of
Unicode (UTF-8) encoding in this release.

13.4.1.5 System-Level Annotations
The vocabulary manager adds system-level annotations at the time of registration. You
cannot overwrite them.

13.4.2 Token Management
Token sets can be fetched from the database or metadata repository, cached in the
local vocabulary manager, and used for decoding. While encoding, token sets can be
pushed to the repository for persistence.

Token definitions can also be included as part of the binary XML stream by setting a
flag on the encoder.

13.5 Using the Java Binary XML Package
Use of the binary XML package is described.

A BinXMLStream class represents the binary XML stream. The different storage
locations defined for the binary XML stream are:

• InputStream—stream for reading.

• OutputStream—stream for writing.

• URL—stream for reading.

• File—stream for read and write.

• BLOB—stream for reading and writing.

• Byte array—stream for reading and writing.

• In memory—stream for reading and writing.

Chapter 13
Using the Java Binary XML Package

13-6

The BinXMLStream object specifies the type of storage during creation.

A BinXMLStream object can be created from a BinXMLProcessor factory. This factory can be
initialized with a JDBC connection (for remote metadata access), connection pool, URL or a
PageManagerPool (for lazy in-memory storage). BinXMLEncoder and BinXMLDecoder can be
created from the BinXMLStream for encoding or decoding.

Here is an example of creating a processor without a repository, registering a schema,
encoding XML SAX events into schema-aware binary format, and storing in a file:

BinXMLProcessor proc = BinXMLProcessorFactory.createProcessor();
proc.registerSchema(schemaURL);
BinXMLStream outbin = proc.createBinaryStream(outFile);
BinXMLEncoder enc = outbin.getEncoder();
enc.setSchemaAware(true);
ContentHandler hdlr = enc.getContentHandler();

In addition to getting the ContentHandler, you can also get the other handlers, such as:

LexicalHandler lexhdlr = enc.getLexicalHandler();
DTDHandler dtdhdlr = encenc.getDTDHandler();
DeclHandler declhdlr = enc.getDeclHandler();
ErrorHandler errhdlr = enc.getErrorHandler();

Use hdlr in the application that generates the SAX events.

2. Here is an example of creating a processor with a database repository, decoding a
schema-aware binary stream and reading the decoded XML using pull API. The schema is
fetched from the database repository for decoding.

DBBinXMLMetadataProvider dbrep =
 BinXMLMetadataProviderFactory.createDBMetadataProvider();
BinXMLProcessor proc = BinXMLProcessorFactory.createProcessor(dbrep);
BinXMLStream inpbin = proc.createBinaryStream(blob);
BinXMLDecoder dec = inpbin.getDecoder();
InfosetReader xmlreader = dec.getReader();

Use xmlreader to read XML in a pull-style from the decoder.

13.5.1 Binary XML Encoder
The encoder takes XML input, which is parsed and read using SAX events, and outputs
binary XML.

13.5.1.1 Schema-Less Option
You can specify the schema-aware or the schema-less option before encoding. The default is
schema-less encoding.

If the schema-aware option is set, then the encoding is done based on schema(s) specified in
the instance document. The annotated schemas used for encoding are also required at the
time of decoding. If the schema-less option is specified, then the encoding is independent of

Chapter 13
Using the Java Binary XML Package

13-7

schemas, but the tokens are inline by default. To override the default, set Inline-
token = false.

13.5.1.2 Inline-Token Option
You can set an option to create a binary XML stream with inline token definitions
before encoding. If inlining is turned off then you must ensure that the encoder or
decoder processors use the same metadata repository. By default, token definition is
inline.

Flag Inline-token is ignored if the schema-aware option is turned on.

Figure 13-1 Binary XML Encoding

D
a
ta

b
a
s
e
 /

m
e
ta

d
a
ta

re

p
o

s
it

o
ry

V
o

c
a
b

u
la

ry
�

M
a
n

a
g

e
r

B
in

a
ry

 X
M

L

E
n

c
o

d
e
r

S
c
h
e
m

a
S

c
h
e
m

a
 U

R
L
 /

T
o
k
e
n
 s

e
t

S
c
h
e
m

a

B
in

a
ry

 X
M

L
�

S
tr

e
a
m

S
A

X
�

E
v
e
n

ts

P
u

ll

A
P

I

X
M

L

13.5.2 Binary XML Decoder
The binary XML decoder takes a binary XML stream as input and generates SAX
Events as output, or it provides a pull interface to read the decoded XML. For an XML
schema-aware binary XML stream, the binary XML decoder interacts with the
vocabulary manager to extract the schema information.

If the vocabulary manager does not contain the required schema, and the processor is
of type binary XML with a valid JDBC connection, then the remote schema is fetched
from the database or the metadata repository based on the vocabulary id in the binary
XML stream to be decoded. Similarly, the set of token definitions can be fetched from
the database or the metadata repository.

Chapter 13
Using the Java Binary XML Package

13-8

Figure 13-2 Binary XML Decoder

D
a
ta

b
a
s
e
 /

m
e
ta

d
a
ta

re

p
o

s
it

o
ry

V
o

c
a
b

u
la

ry
�

M
a
n

a
g

e
r

B
in

a
ry

 X
M

L

D
e
c
o

d
e
r

S
c
h
e
m

a
 /

T
o
k
e
n
 s

e
t

V
o
c
a
b
u
la

ry

Id

S
c
h
e
m

a

S
A

X
�

E
v
e
n

ts
P

u
ll

A
P

I

X
M

L

B
in

a
ry

�
X

M
L

13.5.3 Schema Registration Overview
You register an XML schema with the Binary XML Processor. The schema is a text file that
can contain user-level annotations. As part of the registration process, the processor adds
system-level annotations. The resulting annotated schema is then processed by the Schema
Builder to build an XML schema object.

This XML schema object is stored in the vocabulary cache. The vocabulary cache assigns a
unique vocabulary id for each XML schema object, which is returned as output. The
annotated DOM representation of the XML schema is sent to the binary XML encoder.

13.5.4 Resolving xsi:schemaLocation
How xsi:schemaLocation is resolved is described.

During encoding, if schemaAware is true and the property ImplcitSchemaRegistration is
true, then the first xsi:schemaLocation tag present in the root element of an XML instance
document automatically registers that schema in the local vocabulary manager. No other
schemaLocation tags are explicitly registered. If the processor is database-oriented then the
schema is also registered in the database; similarly for any metadata repository based
processor.

If the encoding is set to schemaAware is false or ImplcitSchemaRegistration is false, then
all xsi:schemaLocation tags are ignored by the encoder.

13.5.5 Binary XML
A binary XML processor can communicate with the database for various types of binary XML
operations involving storage and retrieval of binary XML schemas, token sets, and binary
XML streams.

A DBBinXMLMetadataProvider object is either instantiated with a dedicated JDBC connection
or a connection pool to access vocabulary information such as schema and token set. The
processor is also associated with one or more data connections to access XML data.

Database communication is involved in these ways:

Chapter 13
Using the Java Binary XML Package

13-9

1. Extracting compiled binary XML schema using the vocabulary ID or the schema
URL

To retrieve a compiled binary XML schema for encoding, the database is queried
based on the schema URL. For decoding the binary XML schema, fetch it from the
database based on the vocabulary ID.

2. Storing noncompiled binary XML schema using the schema URL and retrieving
the vocabulary id.

When the xsi:schemaLocation tag is encountered during encoding, the schema is
registered in the database for persistent storage in the database. The vocabulary
id associated with the schema, and the binary version of the compiled schema is
retrieved from the database; the compiled schema object is built and stored in the
local cache using the vocabulary id returned from the database.

3. Retrieving a binary token set using namespace URL.

If a binary stream to be decoded is associated with token tables for decoding,
these are fetched from the database using the metadata connection.

4. Storing binary token set using namespace URL

If the XML text has been encoded without a schema, then it produces a token set
of token definitions. These token tables can be stored persistently in the database.
The metadata connection is used for transferring the token set to the database.

5. Binary XML stream with remote storage option

It is your responsibility to create a table containing an XMLType column with binary
XML for storing the result of encoding and retrieving the binary XML for decoding.
Communication with the database can be achieved with Oracle Net Services and
JDBC. Fetch the XMLType object from the output result set of the JDBC query. The
BinXMLStream for reading the binary data or for writing out binary data can be
created from the XMLType object. The XMLType class must be extended to support
reading and writing of binary XML data.

13.5.6 Persistent Storage of Metadata
You can provide persistent back-end storage for metadata.

A local vocabulary manager and cache stores metadata information in memory for the
life of the BinXMLProcessor. You can plug in your own back-end storage for metadata
by implementing interface BinXMLMetadataProvider and plugging it into the
BinXMLProcessor. Currently only one metadata provider for each processor is
supported.

You must code a FileBinXMLMetadataProvider that implements interface
BinXMLMetadataProvider. The encoder and decoder uses these APIs to access
metadata from the persisted back-end storage. Set up the configuration information for
the persistent storage: for example, root directory for a file system in
FileBinXMLMetadataProvider class. Instantiate FileBinXMLMetadataProvider and
plug it into the BinXMLProcessor.

Chapter 13
Using the Java Binary XML Package

13-10

14
Using the XSLT Processor for Java

An explanation is given of how to use the Extensible Stylesheet Language Transformation
(XSLT) processor for Java.

14.1 Introduction to the XSLT Processor
Topics include prerequisites, standards and specifications, and an overview of XML
transformation with XSLT.

14.1.1 Prerequisites for Using the XSLT Processor for Java
XSLT is a language, based on Extensible Markup Language (XML), that you can use to
transform one XML document into another text document. For example, you can use XSLT to
accept an XML data document as input, perform arithmetic calculations on element values in
the document, and generate an Extensible HyperText Markup Language (XHTML) document
that shows the calculation results.In XSLT, XPath is used to navigate and process elements in
the source node tree. XPath models an XML document as a tree made up of nodes; the
types of nodes in the XPath node tree correspond to the types of nodes in a DOM tree.

This chapter assumes that you are familiar with these World Wide Web Consortium (W3C)
standards:

• Extensible Stylesheet Language (XSL) and Extensible Stylesheet Language
Transformations (XSLT). For a general introduction to XSLT, see the XML resources
listed in Related Documents.

14.1.2 Standards and Specifications for the XSLT Processor for Java
The Oracle XML Developer's Kit (XDK) XSLT processor supports the XSLT2.0
recommendation.

XPath, which is the navigational language used by XSLT and other XML languages, is
available in two versions: XPath 2.0 and the XPath 1.0 Recommendation.

Related Topics

• Oracle XML Developer's Kit Standards
A description is given of the Oracle XML Developer's Kit (XDK) standards.

14-1

See Also:

• XSL Transformations (XSLT) Version 2.0

• XML Path Language (XPath) 2.0

• XML Path Language (XPath)

14.1.3 XML Transformation with XSLT 1.0 and 2.0
Oracle XML Developer's Kit (XDK) provides several useful features not included in
XSLT 1.0. To use XSLT 2.0, set the version attribute in your stylesheet.

<? xml-stylesheet version="2.0" ... ?>

Useful XSLT 2.0 features include these:

• User-defined functions

You can use the <xsl:function> declaration to define functions. This element
must have one name attribute to define the function name. The value of the name
attribute is a QName. The content of the <xsl:function> element is zero or more
xsl:param elements that specify the formal arguments of the function, followed by
a sequence constructor that defines the value returned by the function.

QName can have a null namespace, but user-defined functions must have a non-
null namespace. That is, if abc is defined as a namespace, then add is not a legal
user-defined function, but abc:add is.

• Grouping

You can use the <xsl:for-each-group> element, current-group() function, and
current-grouping-key() function to group items.

• Multiple result documents

You can use the <xsl:result-document> element to create a result tree. The
content of the <xsl:result-document> element is a sequence constructor for the
children of the document node of the tree.

For example, this element enables you to accept an XML document as input and
break it into separate documents. You can take an XML document that describes a
list of books and generate an XHTML document for each book. You can then
validate each output document.

• Temporary trees

Instead of representing the intermediate XSL transformation results and XSL
variables as strings, as in XSLT 1.0, you can store them as a set of document
nodes. The document nodes, which you can construct with the <xsl:variable>,
<xsl:param>, and <xsl:with-param> elements, are called temporary trees.

• Character mapping

In XSLT 1.0, you had to use the disable-output-escaping attribute of the
<xsl:text> and <xsl:value-of> elements to specify character escaping. In XSLT
2.0, you can declare mapping characters with an <xsl:character-map> element

Chapter 14
Introduction to the XSLT Processor

14-2

as a top-level stylesheet element. You can use this element to generate files with
reserved or invalid XML characters in the XSLT outputs, such as <, >, and &.

See Also:

XSL Transformations (XSLT) Version 2.0 for explanation and examples of XSLT 2.0
features

14.2 Using the XSLT Processor for Java: Overview
The XDK XSLT processor transforms an XML document into another text-based document,
with a format such as XML, HTML, XHTML, or plain text. You can invoke the processor
programmatically by using an application programming interface (API) or run it from the
command line.

The XSLT processor can perform these tasks:

• Reads one or more XSLT stylesheets. The processor can apply multiple stylesheets to a
single XML input document and generate different results.

• Reads one or more input XML documents. The processor can use a single stylesheet to
transform multiple XML input documents.

• Builds output documents by applying the rules in the stylesheet to the input XML
documents. The output is a Document Object Model (DOM) tree, output stream, or series
of Simple API for XML (SAX) events.

Whereas XSLT is a function-based language that generally requires a DOM of the input
document and stylesheet to perform the transformation, the XDK Java implementation of the
XSLT processor can use SAX to create a stylesheet object to perform transformations with
higher efficiency and fewer resources. You can reuse this stylesheet object to transform
multiple documents without reparsing the stylesheet.

14.2.1 Using the XSLT Processor for Java: Basic Process
The basic design of the XSLT processor for Java is presented.

Figure 14-1 illustrates this process.

See Also:

Oracle Database XML Java API Reference to learn about the XMLParser and
XSDBuilder classes

Chapter 14
Using the XSLT Processor for Java: Overview

14-3

Figure 14-1 Using the XSLT Processor for Java

Create an XML
document object

Write to an
output stream

Report as
SAX events

XSLT
Transformation

XSLProcessor

XSLProcessor
object methods:
•	 removeParam()

•	 resetParam()

•	 setParam()

•	 setBaseURL()

•	 setEntityResolver()

•	 setLocale()

XSL input

java.io.Reader
java.io.InputStream
XMLDocument
java.net.URL

XML input

XSL Stylesheet
object

14.2.2 Running the XSLT Processor Demo Programs
Demo programs for the XSLT processor for Java are included in $ORACLE_HOME/xdk/
demo/java/parser/xslt.

Table 14-1 describes the XML files and programs that you can use to test the XSLT
processor.

Table 14-1 XSLT Processor Sample Files

File Description

match.xml A sample XML document that you can use to test ID selection and pattern matching. Its
associated stylesheet is match.xsl.

match.xsl A sample stylesheet for use with match.xml. You can use it to test simple identity
transformations.

math.xml A sample XML data document that you can use to perform simple arithmetic. Its associated
stylesheet is math.xsl.

math.xsl A sample stylesheet for use with math.xml. The stylesheet outputs an HTML page with the
results of arithmetic operations performed on element values in math.xml.

number.xml A sample XML data document that you can use to test for source tree numbering. The
document describes the structure of a book.

Chapter 14
Using the XSLT Processor for Java: Overview

14-4

Table 14-1 (Cont.) XSLT Processor Sample Files

File Description

number.xsl A sample stylesheet for us with number.xml. The stylesheet outputs an HTML page that
calculates section numbers for the sections in the book described by number.xml.

position.xml A sample XML data document that you can use to test for position()=X in complex
patterns. Its associated stylesheet is position.xsl.

position.xsl A sample stylesheet for use with position.xml. The stylesheet outputs an HTML page
with the results of complex pattern matching.

reverse.xml A sample XML data document that you can use with reverse.xsl to traverse backward
through a tree.

reverse.xsl A sample stylesheet for us with reverse.xml. The stylesheet output the item numbers in
reverse.xml in reverse order.

string.xml A sample XML data document that you can use to test perform various string test and
manipulations. Its associated stylesheet is string.xsl.

string.xsl A sample stylesheet for us with string.xml. The stylesheet outputs an XML document that
displays the results of the string manipulations.

style.txt A stylesheet that provides the framework for an HTML page. The stylesheet is included by
number.xsl.

variable.xml A sample XML data document that you can use to test the use of XSL variables. The
document describes the structure of a book. Its associated stylesheet is variable.xsl.

variable.xsl A stylesheet for use with variable.xml. The stylesheet makes extensive use of XSL
variables.

XSLSample.java A sample application that offers a simple example of how to use the XSL processing
capabilities of the Oracle XSLT processor. The program transforms an input XML document
by using an input stylesheet. This program builds the result of XSL transformations as a
DocumentFragment and does not show xsl:output features.

Run this program with any XSLT stylesheet in the directory as a first argument and its
associated *.xml XML document as a second argument. For example, run the program
with variable.xsl and variable.xml or string.xsl and string.xml.

XSLSample2.java A sample application that offers a simple example of how to use the XSL processing
capabilities of the Oracle XSLT processor. The program transforms an input XML document
by using an input stylesheet. This program outputs the result to a stream and supports
xsl:output features. Like XSLSample.java, you can run it against any pair of XML data
documents and stylesheets in the directory.

Documentation for how to compile and run the sample programs is located in the README. The
basic steps are:

1. Change into the $ORACLE_HOME/xdk/demo/java/parser/xslt directory (UNIX) or
%ORACLE_HOME%\xdk\demo\java\parser\xslt directory (Windows).

2. Make sure that your environment variables are set as described in Setting Up the XDK
for Java Environment

3. Run make (UNIX) or Make.bat (Windows) at the command line. The make file compiles
the source code and then runs the XSLSample and XSLSample2 programs for each *.xml
file and its associated *.xsl stylesheet. The program writes its output for each
transformation to *.out.

Chapter 14
Using the XSLT Processor for Java: Overview

14-5

4. You can view the *.out files to see the output for the XML transformations. You
can also run the programs on the command line as follows, where name is replaced
by match, math, and so forth:

java XSLSample name.xsl name.xml
java XSLSample2 name.xsl name.xml

For example, run the match.xml demos:

java XSLSample match.xsl match.xml
java XSLSample2 match.xsl match.xml

14.2.3 Using the XSLT Processor Command-Line Utility
XDK includes oraxsl, which is a command-line Java interface that can apply a
stylesheet to multiple XML documents. The $ORACLE_HOME/bin/oraxsl and
%ORACLE_HOME%\bin\oraxsl.bat shell scripts execute the oracle.xml.jaxb.oraxsl
class.

To use oraxsl ensure that your CLASSPATH is set as described in Setting Up the XDK
for Java Environment.

Use this syntax on the command line to invoke oraxsl:

oraxsl options source stylesheet result

The oraxsl utility expects a stylesheet, an XML file to transform, and an optional result
file. If you do not specify a result file, then the utility sends the transformed document
to standard output. If multiple XML documents must be transformed by a stylesheet,
then use the -l or -d options with the -s and -r options. These and other options are
described in Table 14-2.

Table 14-2 Command-Line Options for oraxsl

Option Description

-w Shows warnings. By default, warnings are turned off.

-e error_log Specifies file into which the program writes errors and warnings.

-l xml_file_list Lists files to be processed.

-d directory Specifies the directory that contains the files to transform. The default behavior is to
process all files in the directory. If only a subset of the files in that directory, for example,
one file, must be processed, then change this behavior by setting -l and specifying the
files that must be processed. You can also change the behavior by using the -x or -i
option to select files based on their extension.

-x source_extension Specifies extensions for the files to be excluded. Use this option with -d. The program
does not select any files with the specified extension.

-i source_extension Specifies extensions for the files to be included. Use this option with -d. The program
selects only files with the specified extension.

-s stylesheet Specifies the stylesheet. If you set -d or -l, then set -s to indicate the stylesheet to be
used. You must specify the complete path.

Chapter 14
Using the XSLT Processor for Java: Overview

14-6

Table 14-2 (Cont.) Command-Line Options for oraxsl

Option Description

-r result_extension Specifies the extension to use for results. If you set -d or -l, then set -r to specify the
extension to be used for the results of the transformation. So, if you specify the
extension out, the program transformed an input document doc to doc.out. By default,
the program places the results in the current directory. You can change this behavior by
using the -o option, which enables you to specify a directory for the results.

-o result_directory Specifies the directory in which to place results. You must set this option with the -r
option.

-p param_list Lists parameters.

-t num_of_threads Specifies the number of threads to use for processing. Using multiple threads can
provide performance improvements when processing multiple documents.

-v Generates verbose output. The program prints some debugging information and can
help in tracing any problems that are encountered during processing.

-debug Generates debugging output. By default, debug mode is disabled. A graphical user
interface (GUI) version of the XSLT debugger is available in Oracle JDeveloper.

14.2.3.1 Using the XSLT Processor Command-Line Utility: Example
You can test oraxsl on the various XML files and stylesheets in $ORACLE_HOME/xdk/demo/
java/parser/xslt.

Example 14-1 displays the contents of math.xml.

The XSLT stylesheet named math.xsl is shown in Example 14-2.

You can run the oraxsl utility on these files to produce HTML output as shown in this
example:

oraxsl math.xml math.xsl math.htm

The output file math.htm is shown in Example 14-3.

Example 14-1 math.xml

<?xml version="1.0"?>
<doc>
 <n1>5</n1>
 <n2>2</n2>
 <div>-5</div>
 <mod>2</mod>
</doc>

Example 14-2 math.xsl

<?xml version="1.0"?><xsl:stylesheet version="1.0" xmlns:xsl="http://
www.w3.org/1999/XSL/Transform">
 <xsl:template match="doc">
 <HTML>
 <H1>Test for mod.</H1>
 <HR/>

Chapter 14
Using the XSLT Processor for Java: Overview

14-7

 <P>Should say "1": <xsl:value-of select="5 mod 2"/></P>
 <P>Should say "1": <xsl:value-of select="n1 mod n2"/></P>
 <P>Should say "-1": <xsl:value-of select="div mod mod"/></P>
 <P><xsl:value-of select="div or ((mod)) | or"/></P>
 </HTML>
 </xsl:template>
</xsl:stylesheet

Example 14-3 math.htm

<HTML>
 <H1>Test for mod.</H1>
 <HR>
 <P>Should say "1": 1</P>
 <P>Should say "1": 1</P>
 <P>Should say "-1": -1</P>
 <P>true</P>
</HTML>

14.3 Transforming XML
Topics here include performing basic XSL transformation and getting DOM results
from a transformation.

14.3.1 Performing Basic XSL Transformation
The fundamental classes used by the XSLT processor are DOMParser and
XSLProcessor. The XSL2Sample.java demo program provides a good illustration of
how to use these classes to transform an XML document with an XSLT stylesheet.

Classes DOMParser and XSLProcessor are described in Using the XSLT Processor for
Java: Overview.

Use these basic steps to write Java programs that use the XSLT processor:

1. Create a DOM parser object that you can use to parse the XML data documents
and XSLT stylesheets. This code fragment from XSL2Sample.java shows how to
instantiate a parser:

XMLDocument xml, xsldoc, out;URL xslURL;URL xmlURL;
// ...
parser = new DOMParser();parser.setPreserveWhitespace(true);

By default, the parser does not preserve white space unless a DTD is used. It is
important to preserve white space because it enables XSLT white space rules to
determine how white space is handled.

Chapter 14
Transforming XML

14-8

2. Parse the XSLT stylesheet with the DOMParser.parse() method. this code fragment from
XSL2Sample.java shows how to perform the parse:

xslURL = DemoUtil.createURL(args[0]);
parser.parse(xslURL);
xsldoc = parser.getDocument();

3. Parse the XML data document with the DOMParser.parse() method. this code fragment
from XSL2Sample.java shows how to perform the parse:

xmlURL = DemoUtil.createURL(args[1]);
parser.parse(xmlURL);
xml = parser.getDocument();

4. Create a new XSLT stylesheet object. You can pass objects of these classes to the
XSLProcessor.newXSLStylesheet() method:

• java.io.Reader
• java.io.InputStream
• XMLDocument
• java.net.URL
For example, XSL2Sample.java shows how to create a stylesheet object from an
XMLDocument object:

XSLProcessor processor = new XSLProcessor();
processor.setBaseURL(xslURL);
XSLStylesheet xsl = processor.newXSLStylesheet(xsldoc);

5. Set the XSLT processor to display any warnings. For example, XSL2Sample.java invokes
the showWarnings() and setErrorStream() methods:

processor.showWarnings(true);
processor.setErrorStream(System.err);

6. Use the XSLProcessor.processXSL() method to apply the stylesheet to the input XML
data document. Table 14-3 lists some other available XSLProcessor methods.

Table 14-3 XSLProcessor Methods

Method Description

removeParam() Removes parameters.

resetParams() Resets all parameters.

setParam() Sets parameters for the transformation.

setBaseUrl() Sets a base URL for any relative references in the stylesheet.

setEntityResolver() Sets an entity resolver for any relative references in the stylesheet.

setLocale() Sets a locale for error reporting.

Chapter 14
Transforming XML

14-9

This code fragment from XSL2Sample.java shows how to apply the stylesheet to
the XML document:

processor.processXSL(xsl, xml, System.out);

7. Process the transformed output. You can transform the results by creating an XML
document object, writing to an output stream, or reporting SAX events.

This code fragment from XSL2Sample.java shows how to print the results:

processor.processXSL(xsl, xml, System.out);

See Also:

• XSL Transformations (XSLT)

• The Extensible Stylesheet Language Family (XSL)

Related Topics

• XML Parsing for Java
Extensible Markup Language (XML) parsing for Java is described.

14.3.2 Getting DOM Results from an XSL Transformation
Sample programs show how to obtain the results from an XSL transformation.

The XSLSample.java demo program shows how to generate an
oracle.xml.parser.v2.XMLDocumentFragment object as the result of an XSL
transformation. An XMLDocumentFragment is a lightweight Document object that extracts
a portion of an XML document tree. The XMLDocumentFragment class implements the
org.w3c.dom.DocumentFragment interface.

The XSL2Sample.java demo program shows how to generate a DocumentFragment
object. The basic steps for transforming XML are the same as those described in
Performing Basic XSL Transformation. The only difference is in the arguments passed
to the XSLProcessor.processXSL() method. This code fragment from
XSL2Sample.java shows how to create the DOM fragment and then print it to standard
output:

XMLDocumentFragment result = processor.processXSL(xsl, xml);
result.print(System.out);

Table 14-4 lists some XMLDocumentFragment methods you can use to manipulate the
object.

Table 14-4 XMLDocumentFragment Methods

Method Description

getAttributes() Gets a NamedNodeMap containing the attributes of this node (if it is
an Element) or null otherwise

getLocalName() Gets the local name for this element

Chapter 14
Transforming XML

14-10

Table 14-4 (Cont.) XMLDocumentFragment Methods

Method Description

getNamespaceURI() Gets the namespace URI of this element

getNextSibling() Gets the node immediately following the current node

getNodeName() Gets the name of the node

getNodeType() Gets a code that represents the type of the underlying object

getParentNode() Gets the parent of the current node

getPreviousSibling() Gets the node immediately preceding the current node

reportSAXEvents() Reports SAX events from a DOM tree

14.4 Programming with Oracle XSLT Extensions
Topics here include an overview, specifying namespaces for extension functions, using Java
methods, using constructor extension functions, and using return value extension functions.

14.4.1 Overview of Oracle XSLT Extensions
The XSLT 1.0 standard defines two kinds of extensions: extension elements and extension
functions. XDK provides extension functions for XSLT processing that enable users of the
XSLT processor to invoke any Java method from XSL expressions. When using Oracle XSLT
extensions, follow these guidelines:

• When you define an XSLT extension in a given programming language, you can use only
the XSLT stylesheet with XSLT processors that can invoke this extension. Thus, only the
Java version of the processor can invoke extension functions that are defined in Java.

• Use XSLT extensions only if the built-in XSL functions cannot solve a given problem.

• As explained in this section, the namespace of the extension class must start with the
proper URL.

These Oracle extension functions are especially useful:

• <ora:output>, you can use <ora:output> as a top-level element or in an XSL template.
If used as a top-level element, it is similar to the <xsl:output> extension function, except
that it has an additional name attribute. When used as a template, it has the additional
attributes use and href. This function is useful for creating multiple outputs from one XSL
transformation.

• <ora:node-set>, which converts a result tree fragment into a node-set. This function is
useful when you want to refer the existing text or intermediate text results in XSL for
further transformation.

14.4.2 Specifying Namespaces for XSLT Extension Functions
The Oracle Java extension functions belong to the namespace that corresponds to this
Universal Resource Identifier (URI): http://www.oracle.com/XSL/Transform/java/. An
extension function that belongs to this namespace refers to methods in the Java classname,

Chapter 14
Programming with Oracle XSLT Extensions

14-11

so that you can construct URIs in this format: http://www.oracle.com/XSL/
Transform/java/classname.

For example, you can use this namespace to invoke java.lang.String methods from
XSL expressions: http://www.oracle.com/XSL/Transform/java/java.lang.String.

Note:

When assigning the xsl prefix to a namespace, the correct URI is
xmlns:xsl="http://www.w3.org/1999/XSL/Transform". Any other URI fails
to give correct output.

14.4.3 Using Static and Nonstatic Java Methods in XSLT
If a Java method is a nonstatic method of a class then the first parameter is used as
the instance on which the method is invoked, and the rest of the parameters are
passed to the method. If the extension function is a static method, however, then all
the parameters of the extension function are passed as parameters to the static
function.

Example 14-4 shows how to use the java.lang.Math.ceil() method in an XSLT
stylesheet.

For example, you can create Example 14-4 as stylesheet ceil.xsl and then apply it to
any well-formed XML document. For example, run the oraxsl utility:

oraxsl ceil.xsl ceil.xsl ceil.out

The output document ceil.out has this content:

<?xml version = '1.0' encoding = 'UTF-8'?>
13

Note:

The XSL class loader recognizes only statically added JARs and paths in the
CLASSPATH and those specified by wrapper.classpath. Files added
dynamically are not visible to XSLT processor.

Example 14-4 Using a Static Function in an XSLT Stylesheet

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:math="http://www.oracle.com/XSL/Transform/java/java.lang.Math">
 <xsl:template match="/">
 <xsl:value-of select="math:ceil('12.34')"/>
 </xsl:template>
</xsl:stylesheet>

Chapter 14
Programming with Oracle XSLT Extensions

14-12

14.4.4 Using Constructor Extension Functions
The extension function new creates a new instance of a class and acts as the constructor.

Example 14-5 creates a new String object with the value Hello World, stores it in the XSL
variable str1, and then outputs it in uppercase.

For example, you can create this stylesheet as hello.xsl and apply it to any well-formed
XML document. For example, run the oraxsl utility:

oraxsl hello.xsl hello.xsl hello.out

The output document hello.out has this content:

<?xml version = '1.0' encoding = 'UTF-8'?>
HELLO WORLD

Example 14-5 Using a Constructor in an XSLT Stylesheet

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:jstring="http://www.oracle.com/XSL/Transform/java/java.lang.String">
 <xsl:template match="/">
 <!-- creates a new java.lang.String and stores it in the variable str1 -->
 <xsl:variable name="str1" select="jstring:new('HeLlO wOrLd')"/>
 <xsl:value-of select="jstring:toUpperCase($str1)"/>
 </xsl:template>
</xsl:stylesheet>

14.4.5 Using Return Value Extension Functions
The result of an extension function can be of any type, including the five types defined in XSL
and the additional simple XML Schema data types defined in XSLT 2.0:

• NodeSet
• Boolean
• String
• Number
• ResultTree
You can store these data types in variables or pass them to other extension functions. If the
result is one of the five types defined in XSL, it can be returned as the result of an XSL
expression.

The XSLT Processor supports overloading based on the number of parameters and type. The
processor performs implicit type conversion between the five XSL types as defined in XSL. It
performs type conversion implicitly among these data types, and also from NodeSet to these
data types:

• String
• Number
• Boolean
• ResultTree

Chapter 14
Programming with Oracle XSLT Extensions

14-13

Overloading based on two types that can be implicitly converted to each other is not
permitted. This overloading causes an error in XSL because String and Number can
be implicitly converted to each other:

• overloadme(int i){}
• overloadme(String s){}
Mapping between XSL data types and Java data types is done as follows:

String -> java.lang.String
Number -> int, float, double
Boolean -> boolean
NodeSet -> NodeList
ResultTree -> XMLDocumentFragment

The stylesheet in Example 14-6 parses the variable.xml document, which is located
in the directory $ORACLE_HOME/xdk/demo/java/parser/xslt, and retrieves the value of
the <title> child of the <chapter> element.

You can create Example 14-6 as gettitle.xsl and then run oraxsl:

oraxsl gettitle.xsl gettitle.xsl variable.out

The output document variable.out has this content:

<?xml version = '1.0' encoding = 'UTF-8'?>
The value of the title element is: Section Tests

Example 14-6 gettitle.xsl

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:parser = "http://www.oracle.com/XSL/Transform/java/
oracle.xml.parser.v2.DOMParser"
 xmlns:document =
 "http://www.oracle.com/XSL/Transform/java/oracle.xml.parser.v2.XMLDocument">

 <xsl:template match ="/">
 <!-- Create a new instance of the parser and store it in myparser variable --
>
 <xsl:variable name="myparser" select="parser:new()"/>

 <!-- Call an instance method of DOMParser. The first parameter is the object.
 The PI is equivalent to $myparser.parse('file:/my_path/variable.xml'). Note
 that you should replace my_path with the absolute path on your system. -->
 <xsl:value-of select="parser:parse($myparser, 'file:/my_path/
variable.xml')"/>

 <!-- Get the document node of the XML Dom tree -->
 <xsl:variable name="mydocument" select="parser:getDocument($myparser)"/>

 <!-- Invoke getelementsbytagname on mydocument -->
 <xsl:for-each select="document:getElementsByTagName($mydocument,'chapter')">
 The value of the title element is: <xsl:value-of select="docinfo/title" />
 </xsl:for-each>
 </xsl:template>
</xsl:stylesheet>

Chapter 14
Programming with Oracle XSLT Extensions

14-14

14.5 Tips and Techniques for Transforming XML
Topics here include using XSLT to merge XML documents and creating an HTML input form
based on the columns of a database table.

14.5.1 Merging XML Documents with XSLT
Examples show how to merge XML documents using XSLT.

Merging Documents with appendChild() discusses the DOM technique for merging
documents. If the merging operation is simple, then you can also use an XSLT-based
approach. For example, you might want to merge the XML documents shown in
Example 14-7 and Example 14-8.

Example 14-9 displays a sample stylesheet that merges the two XML documents based on
matching the <key/> element values.

Create the XML files in Example 14-7, Example 14-8, and Example 14-9 and run this at the
command line:

oraxsl msg_w_num.xml msgmerge.xsl msgmerge.xml

Example 14-10 shows the output document, which merges the data contained in
msg_w_num.xml and msg_w_text.xml.

This technique is not as efficient for larger files as an equivalent database join of two tables,
but it is useful if you have only XML files.

Example 14-7 msg_w_num.xml

<messages>
 <msg>
 <key>AAA</key>
 <num>01001</num>
 </msg>
 <msg>
 <key>BBB</key>
 <num>01011</num>
 </msg>
</messages>

Example 14-8 msg_w_text.xml

<messages>
 <msg>
 <key>AAA</key>
 <text>This is a Message</text>
 </msg>
 <msg>
 <key>BBB</key>
 <text>This is another Message</text>
 </msg>
</messages>

Example 14-9 msgmerge.xsl

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:output indent="yes"/>

Chapter 14
Tips and Techniques for Transforming XML

14-15

 <!-- store msg_w_text.xml in doc2 variable -->
 <xsl:variable name="doc2" select="document('msg_w_text.xml')"/>

 <!-- match each node in input xml document, that is, msg_w_num.xml -->
 <xsl:template match="@*|node()">
 <!-- copy the current node to the result tree -->
 <xsl:copy>
 <xsl:apply-templates select="@*|node()"/>
 </xsl:copy>
 </xsl:template>

 <!-- match each <msg> element in msg_w_num.xml -->
 <xsl:template match="msg">
 <xsl:copy>
 <xsl:apply-templates select="@*|node()"/>
 <!-- insert two spaces so indentation is correct in output document -->
 <xsl:text> </xsl:text>
 <!-- copy <text> node from msg_w_text.xml into result tree -->
 <text><xsl:value-of
 select="$doc2/messages/msg[key=current()/key]/text"/>
 </text>
 </xsl:copy>
 </xsl:template>
</xsl:stylesheet>

Example 14-10 msgmerge.xml

<?xml version = '1.0' encoding = 'UTF-8'?>
<messages>
 <msg>
 <key>AAA</key>
 <num>01001</num>
 <text>This is a Message</text>
 </msg>
 <msg>
 <key>BBB</key>
 <num>01011</num>
 <text>This is another Message</text>
 </msg>
</messages>

14.5.2 Creating an HTML Input Form Based on the Columns in a Table
To generate an HTML form for inputting data that uses column names from a database
table, you can use the XML SQL Utility (XSU) to get an XML document based on the
user_tab_columns table and then use XSLT to transform the XML into an HTML form.

1. Use XSU to generate an XML document based on the columns in the table. For
example, using the table hr.employees, you can run XSU from the command line:

java OracleXML getXML -user "hr/password"\
 "SELECT column_name FROM user_tab_columns WHERE table_name = 'EMPLOYEES'"

2. Save the XSU output as an XML file called emp_columns.xml. The XML looks like
this, with one <ROW> element corresponding to each column in the table (some
<ROW> elements have been removed to conserve space):

<?xml version = '1.0'?><ROWSET>
 <ROW num="1">
 <COLUMN_NAME>EMPLOYEE_ID</COLUMN_NAME>
 </ROW>

Chapter 14
Tips and Techniques for Transforming XML

14-16

 <ROW num="2">
 <COLUMN_NAME>FIRST_NAME</COLUMN_NAME>
 </ROW>
 <!-- rows 3 through 10 -->
 <ROW num="11">
 <COLUMN_NAME>DEPARTMENT_ID</COLUMN_NAME>
 </ROW>
</ROWSET>

3. Create an XSLT stylesheet to transform the XML into HTML. For example, create the
columns.xsl stylesheet:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:output method="html"/>
 <xsl:template match="/">
 <HTML>
 <xsl:apply-templates select="@*|node()"/>
 </HTML>
 </xsl:template>
 <xsl:template match="ROW">
 <xsl:value-of select="COLUMN_NAME"/>
 <xsl:text> </xsl:text>
 <INPUT NAME="{COLUMN_NAME}"/>

 </xsl:template>
</xsl:stylesheet>

4. Run the oraxsl utility to generate the HTML form. For example:

oraxsl emp_columns.xml columns.xsl emp_form.htm
5. Review the output HTML form, which has contents similar to these:

<HTML>
 EMPLOYEE_ID <INPUT NAME="EMPLOYEE_ID">

 FIRST_NAME <INPUT NAME="FIRST_NAME">

 LAST_NAME <INPUT NAME="LAST_NAME">

 EMAIL <INPUT NAME="EMAIL">

 PHONE_NUMBER <INPUT NAME="PHONE_NUMBER">

 HIRE_DATE <INPUT NAME="HIRE_DATE">

 JOB_ID <INPUT NAME="JOB_ID">

 SALARY <INPUT NAME="SALARY">

 COMMISSION_PCT <INPUT NAME="COMMISSION_PCT">

 MANAGER_ID <INPUT NAME="MANAGER_ID">

 DEPARTMENT_ID <INPUT NAME="DEPARTMENT_ID">

</HTML>

Chapter 14
Tips and Techniques for Transforming XML

14-17

15
Using the XQuery Processor for Java

An explanation is given of how to use the Oracle XML Developer's Kit (XDK) XQuery
processor for Java.

15.1 Introduction to the XQuery Processor for Java
XDK provides a standalone XQuery processor for use by Java applications. XQuery is the
World Wide Web Consortium (W3C) standard query language for Extensible Markup
Language (XML). Using XQuery to process XML within a Java application can improve
developer productivity and application performance.

Applications written with XQuery often require less code, run faster, and use less memory
than applications written fully in Java.

JSR 225: XQuery API for Java (XQJ) defines how queries can be executed from a Java
application. To use XQJ, your application must run with Java version 1.6. In addition, these
JAR files are required:

• jlib/oxquery.jar
• jlib/xqjapi.jar
• jlib/orai18n-mapping.jar
• lib/xmlparserv2.jar
• xdk/jlib/apache-xmlbeans.jar
The directory paths for these Java Archive (JAR) files are relative to the ORACLE_HOME
directory of your Oracle Database installation.

Example 15-1 shows how to execute a simple "Hello World" query using XQuery API for Java
(XQJ). Because the XQuery processor runs directly in the Java Virtual Machine (JVM), you
need no database or server to run this example. The example prints the output <hello-
world>2</hello-world>.

This chapter describes the features and extensions that are specific to the Oracle
implementation of XQuery. General information about XQuery and XQJ is documented
outside of this document.

See Also:

• Oracle Database XML Java API Reference, XQuery Packages, for the related
API documentation

• JSR-000225 XQuery API for Java

• XQuery 3.0: An XML Query Language

15-1

Note:

Oracle also implements XQuery and XQJ as part of Oracle XML DB. See
Using XQuery API for Java to Access Oracle XML DB for details about
Oracle XML DB.

Example 15-1 Simple Query Using XQJ

import javax.xml.xquery.XQConnection;
import javax.xml.xquery.XQException;
import javax.xml.xquery.XQPreparedExpression;
import javax.xml.xquery.XQSequence;

import oracle.xml.xquery.OXQDataSource;

public class HelloWorld {

 public static void main(String[] args) throws XQException {
 OXQDataSource ds = new OXQDataSource();
 XQConnection con = ds.getConnection();
 String query = "<hello-world>{1 + 1}</hello-world>";
 XQPreparedExpression expr = con.prepareExpression(query);
 XQSequence result = expr.executeQuery();

 // prints "<hello-world>2</hello-world>"
 System.out.println(result.getSequenceAsString(null));

 result.close();
 expr.close();
 con.close();
 }

}

15.2 XQJ Entity Resolution
XDK extends XQJ with an entity resolver framework for controlling how documents,
schemas, modules, collations, and external functions are obtained during query
processing. The examples in this section show how to use an entity resolver for
several types of entities.

See the class oracle.xml.xquery.OXQEntity in Oracle Database XML Java API
Reference for a complete list of the types of entities that the query processor can
request.

15.2.1 Resolution of Documents for fn:doc
The example in this section shows how you can use an entity resolver to determine
which document is returned by XQuery function fn:doc.

Example 15-2 displays the contents of books.xml.

Example 15-3 displays the contents of books.xq.

Example 15-4 shows how to execute the query books.xq with a custom entity resolver.

Chapter 15
XQJ Entity Resolution

15-2

The instance of MyEntityResolver is passed to the XQuery processor by setting it on the
connection. The XQuery processor invokes the entity resolver during query processing to get
the document to be returned by the fn:doc function.

Example 15-2 books.xml

<books>
 <book>
 <title>A Game of Thrones</title>
 <author><first>George</first><last>Martin</last></author>
 <price>10.99</price>
 </book>
 <book>
 <title>The Pillars of the Earth</title>
 <author><first>Ken</first><last>Follett</last></author>
 <price>7.99</price>
 </book>
</books>

Example 15-3 books.xq

for $book in fn:doc('books.xml')/books/book
where xs:decimal($book/price) gt 10.00
return
 $book/title

Example 15-4 Executing a Query with a Custom Entity Resolver

import java.io.File;
import java.io.FileInputStream;
import java.io.IOException;
import java.net.URI;

import javax.xml.xquery.XQConnection;
import javax.xml.xquery.XQException;
import javax.xml.xquery.XQPreparedExpression;
import javax.xml.xquery.XQSequence;
import javax.xml.xquery.XQStaticContext;

import oracle.xml.xquery.OXQConnection;
import oracle.xml.xquery.OXQDataSource;
import oracle.xml.xquery.OXQEntity;
import oracle.xml.xquery.OXQEntityKind;
import oracle.xml.xquery.OXQEntityLocator;
import oracle.xml.xquery.OXQEntityResolver;
import oracle.xml.xquery.OXQEntityResolverRequestOptions;
import oracle.xml.xquery.OXQView;

public class ResolveDocument {

 private static class MyEntityResolver extends OXQEntityResolver {
 @Override
 public OXQEntity resolveEntity(OXQEntityKind kind, OXQEntityLocator locator,
 OXQEntityResolverRequestOptions options) throws IOException {
 if (kind == OXQEntityKind.DOCUMENT) {
 URI systemId = locator.getSystemIdAsURI();
 if ("file".equals(systemId.getScheme())) {
 File file = new File(systemId);
 FileInputStream input = new FileInputStream(file);
 OXQEntity result = new OXQEntity(input);
 result.enlistCloseable(input);
 return result;
 }
 }
 return null;
 }

Chapter 15
XQJ Entity Resolution

15-3

 }

 public static void main(String[] args) throws XQException, IOException {
 OXQDataSource ds = new OXQDataSource();
 XQConnection con = ds.getConnection();

 // OXQView is used to access Oracle extensions on XQJ objects.
 OXQConnection ocon = OXQView.getConnection(con);
 ocon.setEntityResolver(new MyEntityResolver());

 File query = new File("books.xq");

 // Relative URIs are resolved against the base URI before invoking the entity resolver.
 // The relative URI 'books.xml' used in the query will be resolved against this URI.
 XQStaticContext ctx = con.getStaticContext();
 ctx.setBaseURI(query.toURI().toString());

 FileInputStream queryInput = new FileInputStream(query);
 XQPreparedExpression expr = con.prepareExpression(queryInput, ctx);
 queryInput.close();
 XQSequence result = expr.executeQuery();

 // Prints "<title>A Game of Thrones</title>"
 System.out.println(result.getSequenceAsString(null));

 result.close();
 expr.close();
 con.close();
 }
}

The example generates this output:

<title>A Game of Thrones</title>

15.2.2 Resolution of External XQuery Functions
You can use an entity resolver to define the implementation of an XQuery external
function.

For each external XQuery function that is declared in a query, the entity resolver is
called with the entity kind oracle.xml.xquery.OXQEntityKind.EXTERNAL_FUNCTION.
The oracle.xml.xquery.OXQEntityLocator instance that is passed in the call to the
entity resolver provides the name of the XQuery function and its argument types. The
entity resolver can then return any class that extends
oracle.xml.xquery.OXQFunctionEvaluator and has a public constructor. The XQuery
processor then instantiates the returned class. When the XQuery external function call
is evaluated, method evaluate() is invoked.

Example 15-5 displays an XQuery query that is the content of file trim.xq.

External XQuery function util:trim removes white space from the beginning and end
of a string value. This function is implemented in Java and called within the query.

Example 15-6 uses trim.xq and shows how to define the implementation of an
external XQuery function. The entity resolver in this example returns a class that
extends OXQFunctionEvaluator.

In some cases it is more convenient to return a Java static method instead of a class.
When a static method is returned, the query processor automatically maps the method
arguments and the return value to the XQuery data model, as defined by the XQJ
specification.

Chapter 15
XQJ Entity Resolution

15-4

Example 15-7 also runs trim.xq, but in this case the external function is bound to a Java
static method.

Example 15-5 trim.xq

declare namespace util = "http://example.com/util";

declare function util:trim($arg as xs:string) as xs:string external;

(: a string with surrounding white space :)
declare variable $input := " John Doe ";

<result>{util:trim($input)}</result>

Example 15-6 Defining the Implementation of an External XQuery Function

import java.io.FileInputStream;
import java.io.IOException;
import java.util.Collections;

import javax.xml.namespace.QName;
import javax.xml.xquery.XQConnection;
import javax.xml.xquery.XQException;
import javax.xml.xquery.XQPreparedExpression;
import javax.xml.xquery.XQSequence;

import oracle.xml.xquery.OXQConnection;
import oracle.xml.xquery.OXQDataSource;
import oracle.xml.xquery.OXQEntity;
import oracle.xml.xquery.OXQEntityKind;
import oracle.xml.xquery.OXQEntityLocator;
import oracle.xml.xquery.OXQEntityResolver;
import oracle.xml.xquery.OXQEntityResolverRequestOptions;
import oracle.xml.xquery.OXQFunctionContext;
import oracle.xml.xquery.OXQFunctionEvaluator;
import oracle.xml.xquery.OXQFunctionMetaData;
import oracle.xml.xquery.OXQView;

public class ResolveExternalFunction {

 public static class TrimFunction extends OXQFunctionEvaluator {
 @Override
 public XQSequence evaluate(OXQFunctionContext context, XQSequence[] params) throws XQException {
 XQConnection con = context.getConnection();
 XQSequence arg = params[0];
 String value = arg.getSequenceAsString(null);
 String trimmed = value.trim();
 return con.createSequence(Collections.singleton(trimmed).iterator());
 }
 }

 private static class MyEntityResolver extends OXQEntityResolver {
 @Override
 public OXQEntity resolveEntity(OXQEntityKind kind, OXQEntityLocator locator,
 OXQEntityResolverRequestOptions options) throws XQException, IOException {
 if (kind == OXQEntityKind.EXTERNAL_FUNCTION) {
 OXQFunctionMetaData metaData = (OXQFunctionMetaData)locator.getExtension();
 QName name = metaData.getName();
 int arity = metaData.getParameterTypes().length;
 if ("http://example.com/util".equals(name.getNamespaceURI()) &&
 "trim".equals(name.getLocalPart()) && arity == 1) {
 return new OXQEntity(TrimFunction.class);
 }
 }
 return null;
 }
 }

Chapter 15
XQJ Entity Resolution

15-5

 public static void main(String[] args) throws IOException, XQException {
 OXQDataSource ds = new OXQDataSource();
 XQConnection con = ds.getConnection();
 OXQConnection ocon = OXQView.getConnection(con);
 ocon.setEntityResolver(new MyEntityResolver());

 FileInputStream query = new FileInputStream("trim.xq");
 XQPreparedExpression expr = con.prepareExpression(query);
 query.close();

 XQSequence result = expr.executeQuery();

 System.out.println(result.getSequenceAsString(null));

 result.close();
 expr.close();
 con.close();
 }
}

The example prints this output: <result>John Doe</result>.

Example 15-7 Binding an External Function to a Java Static Method

import java.io.FileInputStream;
import java.io.IOException;
import java.lang.reflect.Method;

import javax.xml.namespace.QName;
import javax.xml.xquery.XQConnection;
import javax.xml.xquery.XQException;
import javax.xml.xquery.XQPreparedExpression;
import javax.xml.xquery.XQSequence;

import oracle.xml.xquery.OXQConnection;
import oracle.xml.xquery.OXQDataSource;
import oracle.xml.xquery.OXQEntity;
import oracle.xml.xquery.OXQEntityKind;
import oracle.xml.xquery.OXQEntityLocator;
import oracle.xml.xquery.OXQEntityResolver;
import oracle.xml.xquery.OXQEntityResolverRequestOptions;
import oracle.xml.xquery.OXQFunctionMetaData;
import oracle.xml.xquery.OXQView;

public class ResolveExternalFunction2 {

 public static String trim(String value) {
 return value.trim();
 }

 private static class MyEntityResolver extends OXQEntityResolver {
 @Override
 public OXQEntity resolveEntity(OXQEntityKind kind, OXQEntityLocator locator,
 OXQEntityResolverRequestOptions options) throws XQException, IOException {
 if (kind == OXQEntityKind.EXTERNAL_FUNCTION) {
 OXQFunctionMetaData metaData = (OXQFunctionMetaData)locator.getExtension();
 QName name = metaData.getName();
 int arity = metaData.getParameterTypes().length;
 if ("http://example.com/util".equals(name.getNamespaceURI()) &&
 "trim".equals(name.getLocalPart()) && arity == 1) {
 Method staticMethod = null;
 try {
 staticMethod = ResolveExternalFunction2.class.getMethod("trim", String.class);
 } catch (NoSuchMethodException e) {
 throw new IllegalStateException(e);
 }
 return new OXQEntity(staticMethod);
 }

Chapter 15
XQJ Entity Resolution

15-6

 }
 return null;
 }
 }

 public static void main(String[] args) throws IOException, XQException {
 OXQDataSource ds = new OXQDataSource();
 XQConnection con = ds.getConnection();
 OXQConnection ocon = OXQView.getConnection(con);
 ocon.setEntityResolver(new MyEntityResolver());

 FileInputStream query = new FileInputStream("trim.xq");
 XQPreparedExpression expr = con.prepareExpression(query);
 query.close();

 XQSequence result = expr.executeQuery();

 // Prints "<result>John Doe</result>"
 System.out.println(result.getSequenceAsString(null));

 result.close();
 expr.close();
 con.close();
 }
}

The example prints the same output as for Example 15-6: <result>John Doe</result>.

15.2.3 Resolution of Imported XQuery Modules
The entity resolver can locate the XQuery modules imported by an XQuery library module.

An XQuery library module provides functions and variables that can be imported by other
modules. For each imported module, the entity resolver is called with the entity kind
oracle.xml.xquery.OXQEntityKind.MODULE. Using the
oracle.xml.xquery.OXQEntityLocator instance, you can invoke the getSystemId() method
to get the location of the module being imported. If no location is provided in the module
import, you can invoke the method getNamespace() to get the target namespace of the
module. The entity resolver can then return the corresponding library module.

The example in this section shows how you can use an entity resolver to control the
resolution of XQuery library modules.

Example 15-8 displays the contents of math.xq.

Example 15-9 displays the contents of main.xq.

Example 15-10 shows how to execute a query that imports a library module.

The query main.xq imports the library module math.xq, and then invokes the function
math:circumference to compute the circumference of a circle.

Example 15-8 math.xq

module namespace math = "http://example.com/math";

declare variable $math:pi as xs:decimal := 3.14159265;

declare function math:circumference($diameter as xs:decimal) {
 $math:pi * $diameter
};

Chapter 15
XQJ Entity Resolution

15-7

Example 15-9 main.xq

import module namespace math = "http://example.com/math" at "math.xq";

math:circumference(6.54)

Example 15-10 Executing a Query that Imports a Library Module

import java.io.File;
import java.io.FileInputStream;
import java.io.IOException;
import java.net.URI;

import javax.xml.xquery.XQConnection;
import javax.xml.xquery.XQException;
import javax.xml.xquery.XQPreparedExpression;
import javax.xml.xquery.XQSequence;
import javax.xml.xquery.XQStaticContext;

import oracle.xml.xquery.OXQConnection;
import oracle.xml.xquery.OXQDataSource;
import oracle.xml.xquery.OXQEntity;
import oracle.xml.xquery.OXQEntityKind;
import oracle.xml.xquery.OXQEntityLocator;
import oracle.xml.xquery.OXQEntityResolver;
import oracle.xml.xquery.OXQEntityResolverRequestOptions;
import oracle.xml.xquery.OXQView;

public class ResolveLibraryModule {

 private static class MyEntityResolver extends OXQEntityResolver {
 @Override
 public OXQEntity resolveEntity(OXQEntityKind kind, OXQEntityLocator locator,
 OXQEntityResolverRequestOptions options) throws IOException {
 if (kind == OXQEntityKind.MODULE) {
 URI systemId = locator.getSystemIdAsURI();
 if (systemId != null && "file".equals(systemId.getScheme())) {
 File file = new File(systemId);
 FileInputStream input = new FileInputStream(file);
 OXQEntity result = new OXQEntity(input);
 result.enlistCloseable(input);
 return result;
 }
 }
 return null;
 }
 }

 public static void main(String[] args) throws XQException, IOException {
 OXQDataSource ds = new OXQDataSource();
 XQConnection con = ds.getConnection();

 // OXQView is used to access Oracle extensions on XQJ objects.
 OXQConnection ocon = OXQView.getConnection(con);
 ocon.setEntityResolver(new MyEntityResolver());

 File query = new File("main.xq");

 // Relative URIs are resolved against the base URI before invoking the entity resolver.
 // The relative URI 'math.xq' used in the query will be resolved against this URI.
 XQStaticContext ctx = con.getStaticContext();
 ctx.setBaseURI(query.toURI().toString());

 FileInputStream queryInput = new FileInputStream(query);
 XQPreparedExpression expr = con.prepareExpression(queryInput, ctx);
 queryInput.close();

 XQSequence result = expr.executeQuery();

Chapter 15
XQJ Entity Resolution

15-8

 // Prints the result: "20.546015931"
 System.out.println(result.getSequenceAsString(null));

 result.close();
 expr.close();
 con.close();
 }
}

The example generates this output:

20.546015931

15.2.4 Resolution of XML Schemas Imported by an XQuery Query
You can use an entity resolver to control which XML schema is imported by an XQuery query.

An XQuery schema import imports type definitions and declarations of elements and
attributes from an XML schema. You can use imported declarations and definitions in a query
to validate and test data instances.

Example 15-11 displays the contents of XML schema file size.xsd.

Example 15-12 displays the contents of XQuery file size.xq.

Example 15-13 shows how to execute a query that imports a schema.

size.xq uses the type shirt-size defined in size.xsd to test a list of values.

Example 15-11 size.xsd

<xs:schema
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://example.com/size">

 <xs:simpleType name="shirt-size">
 <xs:restriction base="xs:string">
 <xs:enumeration value="XS"/>
 <xs:enumeration value="S"/>
 <xs:enumeration value="M"/>
 <xs:enumeration value="L"/>
 <xs:enumeration value="XL"/>
 </xs:restriction>
 </xs:simpleType>

</xs:schema>

Example 15-12 size.xq

import schema namespace ns = "http://example.com/size" at "size.xsd";

for $size in ("S", "big", "XL", 42)
return
 if ($size castable as ns:shirt-size) then
 ns:shirt-size($size)
 else
 concat("INVALID:", $size)

Example 15-13 Executing an XQuery Query that Imports an XML Schema

import java.io.File;
import java.io.FileInputStream;

Chapter 15
XQJ Entity Resolution

15-9

import java.io.IOException;
import java.net.URI;

import javax.xml.xquery.XQConnection;
import javax.xml.xquery.XQException;
import javax.xml.xquery.XQPreparedExpression;
import javax.xml.xquery.XQSequence;
import javax.xml.xquery.XQStaticContext;

import oracle.xml.xquery.OXQConnection;
import oracle.xml.xquery.OXQDataSource;
import oracle.xml.xquery.OXQEntity;
import oracle.xml.xquery.OXQEntityKind;
import oracle.xml.xquery.OXQEntityLocator;
import oracle.xml.xquery.OXQEntityResolver;
import oracle.xml.xquery.OXQEntityResolverRequestOptions;
import oracle.xml.xquery.OXQView;

public class ResolveSchema {

 private static class MyEntityResolver extends OXQEntityResolver {
 @Override
 public OXQEntity resolveEntity(OXQEntityKind kind, OXQEntityLocator locator,
 OXQEntityResolverRequestOptions options) throws IOException {
 if (kind == OXQEntityKind.SCHEMA) {
 URI systemId = locator.getSystemIdAsURI();
 if (systemId != null && "file".equals(systemId.getScheme())) {
 File file = new File(systemId);
 FileInputStream input = new FileInputStream(file);
 OXQEntity result = new OXQEntity(input);
 result.enlistCloseable(input);
 return result;
 }
 }
 return null;
 }
 }

 public static void main(String[] args) throws XQException, IOException {
 OXQDataSource ds = new OXQDataSource();
 XQConnection con = ds.getConnection();

 // OXQView is used to access Oracle extensions on XQJ objects.
 OXQConnection ocon = OXQView.getConnection(con);
 ocon.setEntityResolver(new MyEntityResolver());

 File query = new File("size.xq");

 // Relative URIs are resolved against the base URI before invoking the entity resolver.
 // The relative URI 'math.xq' used in the query will be resolved against this URI.
 XQStaticContext ctx = con.getStaticContext();
 ctx.setBaseURI(query.toURI().toString());

 FileInputStream queryInput = new FileInputStream(query);
 XQPreparedExpression expr = con.prepareExpression(queryInput, ctx);
 queryInput.close();

 XQSequence result = expr.executeQuery();

 // Prints "S INVALID:big XL INVALID:42"
 System.out.println(result.getSequenceAsString(null));

 result.close();
 expr.close();
 con.close();
 }
}

The example prints this output: S INVALID:big XL INVALID:42.

Chapter 15
XQJ Entity Resolution

15-10

15.2.5 Prefabricated Entity Resolvers for XQuery
XDK includes several implementations of OXQEntityResolver that you can use for common
tasks such as file system and HTTP resolution. This can sometimes save you needing to
implement your own entity resolver.

Example 15-14 shows how you can run the query in Example 15-3 using a prefabricated file
resolver.

An instance of the factory oracle.xml.xquery.OXQFileResolverFactory is created from the
connection. Then, this factory is used to create an entity resolver that resolves schemas,
modules, and documents against the file system. By contrast with this example,
Example 15-4 uses the custom entity resolver MyEntityResolver to resolve only documents
against the file system.

XDK provides these entity resolver factories:

• oracle.xml.xquery.OXQFileResolverFactory: Creates an entity resolver that resolves
'file:' URIs for schema, module, and document locations.

• oracle.xml.xquery.OXQHttpResolverFactory: Creates an entity resolver that resolves
'http:' URIs for schema, module, and document locations.

• oracle.xml.xquery.OXQCompositeResolverFactory: Creates an entity resolver that
delegates requests to other entity resolvers. For any kind of request, the resolver returns
the first nonnull result it receives from one of the delegate resolvers.

• oracle.xml.xquery.OXQJavaResolverFactory: Creates an entity resolver that resolves
external functions and modules to Java static methods or classes.

See Also:

Oracle Database XML Java API Reference, package oracle.xml.xquery, for API
information about these factory interfaces

Example 15-14 Executing a Query with a Prefabricated File Resolver

import java.io.File;
import java.io.FileInputStream;
import java.io.IOException;

import javax.xml.xquery.XQConnection;
import javax.xml.xquery.XQException;
import javax.xml.xquery.XQPreparedExpression;
import javax.xml.xquery.XQSequence;
import javax.xml.xquery.XQStaticContext;

import oracle.xml.xquery.OXQConnection;
import oracle.xml.xquery.OXQDataSource;
import oracle.xml.xquery.OXQFileResolverFactory;
import oracle.xml.xquery.OXQView;

public class ResolverFactory {
 public static void main(String[] args) throws XQException, IOException {
 OXQDataSource ds = new OXQDataSource();
 XQConnection con = ds.getConnection();

 // OXQView is used to access Oracle extensions on XQJ objects.

Chapter 15
XQJ Entity Resolution

15-11

 OXQConnection ocon = OXQView.getConnection(con);
 OXQFileResolverFactory factory = ocon.createEntityResolverFactory(OXQFileResolverFactory.class);
 ocon.setEntityResolver(factory.createResolver());

 File query = new File("books.xq");

 // Relative URIs are resolved against the base URI before invoking the entity resolver.
 // The relative URI 'books.xml' used in the query will be resolved against this URI.
 XQStaticContext ctx = con.getStaticContext();
 ctx.setBaseURI(query.toURI().toString());

 FileInputStream queryInput = new FileInputStream(query);
 XQPreparedExpression expr = con.prepareExpression(queryInput, ctx);
 queryInput.close();

 XQSequence result = expr.executeQuery();

 // Prints "<title>A Game of Thrones</title>"
 System.out.println(result.getSequenceAsString(null));

 result.close();
 expr.close();
 con.close();
 }
}

The example prints this output: <title>A Game of Thrones</title>.

15.2.6 Resolution of Other Types of Entity
You can use the XQJ entity resolver to obtain other entities, besides documents,
schemas, modules, and external functions.

Table 15-1 describes these other entities.

Table 15-1 Descriptions of Various Types of Entity

OXQEntityKind Description

TEXT Result of fn:unparsed-text and fn:unparsed-text-lines.

ENVIRONMENT_VARIAB
LE

Result of fn:available-environment-variables and
fn:environment-variable.

DOCUMENT_TYPE Static type for function fn:doc.

COLLECTION Documents returned by fn:collection.

URI_COLLECTION URIs returned by fn:uri-collection.

XML_PARSER_FACTORY StAX implementation used for parsing XML data.

XML_ENTITY Used when a StAX parser needs to resolve an external XML
resource.

UPD_PUT Controls the behavior of fn:put.

COLLATION Controls the behavior of collation URIs.

For details on how these entity types are used, see class
oracle.xml.xquery.OXQEntity in Oracle Database XML Java API Reference.

15.3 XQuery Output Declarations
XQuery 3.0 defines output declarations, which you can use to set the values of
serialization parameters from within a query.

Chapter 15
XQuery Output Declarations

15-12

An output declaration is an option declaration in namespace http://www.w3.org/2010/xslt-
xquery-serialization. You use it in a query to declare and set serialization parameters on
the static context.

By default, these static context serialization parameters are ignored, but they can be
accessed using XQJ methods OXQPreparedExpression#getExpressionStaticContext() and
OXQStaticContext#getSerializationParameters().

Example 15-15 shows how to access the values of option declarations.

You can also use an option declaration when serializing the result of a query. Example 15-16
is similar to Example 15-15, but it uses the static context serialization parameters when
serializing the result of the query.

Note:

The URI value of option output:parameter-document is resolved to a document
using entity resolver OXQEntityResolver and entity kind OXQEntityKind#DOCUMENT
— see Resolution of Other Types of Entity.

Example 15-15 Accessing the Values of Option Declarations

import javax.xml.xquery.XQConnection;
import javax.xml.xquery.XQException;
import javax.xml.xquery.XQPreparedExpression;
import javax.xml.xquery.XQStaticContext;

import oracle.xml.xquery.OXQDataSource;
import oracle.xml.xquery.OXQPreparedExpression;
import oracle.xml.xquery.OXQSerializationParameters;
import oracle.xml.xquery.OXQStaticContext;
import oracle.xml.xquery.OXQView;

public class OptionDeclarations1 {

 public static void main(String[] args) throws XQException {
 OXQDataSource ds = new OXQDataSource();
 XQConnection con = ds.getConnection();
 String query =
 "declare option output:indent 'yes'; \n" +
 "declare option output:encoding 'UTF-16'; \n" +
 "<person><first>John</first><last>Doe</last></person>";

 XQPreparedExpression expr = con.prepareExpression(query);

 OXQPreparedExpression oexpr = OXQView.getPreparedExpression(expr);
 XQStaticContext ctx = oexpr.getExpressionStaticContext();
 OXQStaticContext octx = OXQView.getStaticContext(ctx);
 OXQSerializationParameters params =
octx.getSerializationParameters();

 System.out.println("indent=" + params.isIndent());
 System.out.println("encoding=" + params.getEncoding());

Chapter 15
XQuery Output Declarations

15-13

 expr.close();
 con.close();
 }
}

This produces the following output:

 indent=true
 encoding=UTF-16

Example 15-16 Using Option Declarations When Serializing a Query Result

package oracle.xml.xquery.examples.published;

import javax.xml.xquery.XQConnection;
import javax.xml.xquery.XQException;
import javax.xml.xquery.XQPreparedExpression;
import javax.xml.xquery.XQResultSequence;
import javax.xml.xquery.XQStaticContext;

import oracle.xml.xquery.OXQDataSource;
import oracle.xml.xquery.OXQPreparedExpression;
import oracle.xml.xquery.OXQSerializationParameters;
import oracle.xml.xquery.OXQStaticContext;
import oracle.xml.xquery.OXQView;

public class OptionDeclarations2 {

 public static void main(String[] args) throws XQException {
 OXQDataSource ds = new OXQDataSource();
 XQConnection con = ds.getConnection();
 String query =
 "declare option output:indent 'yes'; \n" +
 "declare option output:omit-xml-declaration 'no'; \n" +
 "<person><first>John</first><last>Doe</last></person>";

 XQPreparedExpression expr = con.prepareExpression(query);

 OXQPreparedExpression oexpr =
OXQView.getPreparedExpression(expr);
 XQStaticContext ctx = oexpr.getExpressionStaticContext();
 OXQStaticContext octx = OXQView.getStaticContext(ctx);
 OXQSerializationParameters params =
octx.getSerializationParameters();

 XQResultSequence result = expr.executeQuery();
 result.writeSequence(System.out, params.createProperties());
 result.close();

 expr.close();
 con.close();

Chapter 15
XQuery Output Declarations

15-14

 }
}

This produces the following output:

<?xml version="1.0" encoding="UTF-8"?>
<person>
 <first>John</first>
 <last>Doe</last>
</person>

15.4 Improving Application Performance and Scalability with
XQuery

The XDK XQuery processor provides several features for improving the performance and
scalability of your application.

15.4.1 Streaming Query Evaluation
The XDK XQuery processor for Java supports streaming evaluation for many types of
queries. Streaming evaluation requires a small amount of main memory, even when the input
XML is very large.

To facilitate streaming evaluation, the following actions are recommended:

• Set the binding mode on the static context to deferred mode (see the method
javax.xml.xquery.XQStaticContext.setBindingMode(int) in Oracle Database XML
Java API Reference). If the binding mode is not deferred, the input XML is fully
materialized when it is bound.

• Provide the input XML as an instance of java.io.InputStream, java.io.Reader, or
javax.xml.stream.XMLStreamReader. Input XML is provided to the query processor by
binding it to the expression, or by returning it from an entity resolver.

• Ensure that the javax.xml.xquery.XQSequence instance is consumed in a way that does
not require materialization:

– The string serialization methods getSequenceAsString(...) and
getItemAsString(...) produce data as a string that is held in memory. Instead, use
the writeSequence(...) or the writeItem(...) method to serialize the sequence.

– The getNode() method builds a Document Object Model (DOM) node that is held in
memory. Instead, consider using the getSequenceAsStream() or the
getItemAsStream() method to get a Streaming API for XML (StAX) stream.

– The getItem() method copies and materializes the current item in memory. Instead,
use methods directly on the java.xml.xquery.XQSequence instance to access the
current item (see the interface javax.xml.xquery.XQItemAccessor in Oracle
Database XML Java API Reference).

The code shown in this section invokes a query using XQJ in a way that does not prevent
streaming evaluation.

Example 15-17 displays the contents of books2.xq.

Chapter 15
Improving Application Performance and Scalability with XQuery

15-15

Example 15-18 sets up the query to enable streaming evaluation. The example writes
this output to file results.xml: <title>A Game of Thrones</title>.

The binding mode is set to the value BINDING_MODE_DEFERRED to avoid materializing
books.xml when it is bound to the prepared expression. Likewise, the result is written
to an output stream, and it is not materialized.

To simplify the example, the input file books.xml is small. Even if this file contained
millions of books, evaluating the query would require only a small maximum heap size
because only one book element is held in memory at one time. In contrast with the
query books.xq, shown in Example 15-3, the query books2.xq does not require you to
define an entity resolver. Both examples (books.xq and books2.xq) are streamable.

Example 15-17 books2.xq

declare variable $doc external;

for $book in $doc/books/book
where xs:decimal($book/price) gt 10.00
return
 $book/title

Example 15-18 Facilitating Streaming Evaluation

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;

import javax.xml.namespace.QName;
import javax.xml.xquery.XQConnection;
import javax.xml.xquery.XQConstants;
import javax.xml.xquery.XQException;
import javax.xml.xquery.XQPreparedExpression;
import javax.xml.xquery.XQSequence;
import javax.xml.xquery.XQStaticContext;

import oracle.xml.xquery.OXQDataSource;

public class Streaming {

 public static void main(String[] args) throws XQException, IOException {
 OXQDataSource ds = new OXQDataSource();
 XQConnection con = ds.getConnection();

 XQStaticContext ctx = con.getStaticContext();
 ctx.setBindingMode(XQConstants.BINDING_MODE_DEFERRED);
 con.setStaticContext(ctx);

 FileInputStream input = new FileInputStream("books.xml");
 FileInputStream query = new FileInputStream("books2.xq");
 FileOutputStream output = new FileOutputStream("result.xml");

 XQPreparedExpression expr = con.prepareExpression(query);
 query.close();
 expr.bindDocument(new QName("doc"), input, null, null);

 XQSequence result = expr.executeQuery();

 // Writes "<title>A Game of Thrones</title>" to file results.xml
 result.writeSequence(output, null);

 result.close();
 input.close();
 output.close();
 expr.close();

Chapter 15
Improving Application Performance and Scalability with XQuery

15-16

 con.close();
 }
}

15.4.2 External Storage
Depending on the query, the processor might have to store part of the input XML in main
memory during query evaluation.

For example, this scenario can occur in cases such as these:

• A sequence is sorted.

• The value bound to a variable is used multiple times.

• A path expression uses a reverse-axis step.

To reduce memory usage in such cases, you can configure the XQuery processor to use
external storage for materializing XML, rather than main memory. To enable the use of
external storage, set the data source property OXQConstants.USE_EXTERNAL_STORAGE to true,
and set an oracle.xml.scalable.PageManager instance on the dynamic context.

Note:

Using external storage can significantly reduce the amount of main memory that is
consumed during query processing. However, it can also reduce performance.

Example 15-19 shows how to enable the XQuery processor to use disk-based storage rather
than main memory when XML is materialized. The example writes this output to file
results.xml: <title>A Game of Thrones</title>.

Example 15-19 Configuring the XQuery Processor to Use External Storage

import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;

import javax.xml.namespace.QName;
import javax.xml.xquery.XQConnection;
import javax.xml.xquery.XQConstants;
import javax.xml.xquery.XQException;
import javax.xml.xquery.XQPreparedExpression;
import javax.xml.xquery.XQSequence;
import javax.xml.xquery.XQStaticContext;

import oracle.xml.scalable.FilePageManager;
import oracle.xml.xquery.OXQDataSource;
import oracle.xml.xquery.OXQPreparedExpression;
import oracle.xml.xquery.OXQView;

public class ExternalStorage {

 public static void main(String[] args) throws XQException, IOException {
 OXQDataSource ds = new OXQDataSource();
 ds.setProperty(OXQDataSource.USE_EXTERNAL_STORAGE, "true");

 XQConnection con = ds.getConnection();
 XQStaticContext ctx = con.getStaticContext();
 ctx.setBindingMode(XQConstants.BINDING_MODE_DEFERRED);
 con.setStaticContext(ctx);

Chapter 15
Improving Application Performance and Scalability with XQuery

15-17

 FileInputStream input = new FileInputStream("books.xml");
 FileInputStream query = new FileInputStream("books2.xq");
 FileOutputStream output = new FileOutputStream("results.xml");

 XQPreparedExpression expr = con.prepareExpression(query);
 query.close();
 expr.bindDocument(new QName("doc"), input, null, null);

 // Set a page manager that will be used by the XQuery processor if XML needs to be materialized
 OXQPreparedExpression oexpr = OXQView.getPreparedExpression(expr);
 File temporaryFile = File.createTempFile("books", ".pagefile");
 temporaryFile.deleteOnExit();
 oexpr.setPageManager(new FilePageManager(temporaryFile.getAbsolutePath()));

 XQSequence result = expr.executeQuery();

 // Writes to file results.xml: "<title>A Game of Thrones</title>"
 result.writeSequence(output, null);

 result.close();
 input.close();
 output.close();
 expr.close();
 con.close();
 }
}

15.4.3 Thread Safety for XQJ
The Oracle implementation of XQJ is not thread-safe. For example, an instance of
javax.xml.xquery.XQSequence must be accessed by only one thread. However, a
restricted form of thread safety is supported for managing instances of
javax.xml.xquery.XQConnection.

• An instance of XQConnection serves as a factory for creating instances of
XQExpression, XQPreparedExpression, XQItem, XQSequence, XQItemType, and
XQSequenceType. One thread can manage the creation of these objects for use by
other threads. For example, XQPreparedExpression instances created in one
thread by the same connection can be used in other threads. Each
XQPreparedExpression instance, however, must be executed by only one thread.
Any user-defined implementations of oracle.xml.xquery.OXQEntityResolver that
are specified must be thread-safe when expressions from the same connection
are evaluated concurrently.

• Method XQConnection.close() closes all XQExpression and
XQPreparedExpression instances that were obtained from the connection. Closing
those instances closes all XQResultSequence and XQResultItem instances
obtained from the expressions. Method XQConnection.close() can be called
while expressions obtained from the connection are being processed in other
threads. In that case, all registered resources held by the expressions (such as
java.io.InputStream and java.io.Reader) are closed. This contract assumes
that all registered resources support a thread-safe close method. For example,
many JDK implementations of java.io.Closeable satisfy this requirement. But,
many implementations of javax.xml.stream.XMLStreamReader do not provide a
thread-safe close method. Implementations without this support can give
unpredictable results if they are closed while a second thread is still reading (see
interface oracle.xml.xquery.OXQCloseable in Oracle Database XML Java API
Reference).

Chapter 15
Improving Application Performance and Scalability with XQuery

15-18

See Also:

Oracle Database XML Java API Reference, method
oracle.xml.xquery.OXQConnection.copyExpression(XQPreparedExpression)

15.5 Performing Updates
XDK extends XQJ with the ability to execute updating queries. XML documents can be read
as an instance of javax.xml.xquery.XQItem, and then modified using XQuery Update
Facility extensions.

This feature is disabled by default. You can enable it by setting the update mode on the
dynamic context to oracle.xml.xquery.OXQConstants.UPDATE_MODE_ENABLED.

Documents to be updated must be bound in deferred mode (see method
javax.xml.xquery.XQStaticContext.setBindingMode(int) in Oracle Database XML Java
API Reference). If the binding mode is not set to deferred, the input bindings are copied
before query execution. Thus, only the copy is updated.

The example in this section shows how you can modify an XML document using the XQuery
Update Facility.

Example 15-20 displays the contents of configuration.xml.

Example 15-21 displays the contents of update.xq.

Example 15-22 displays the contents of configuration.xml after an update.

Example 15-23 shows how execute the query update.xq.

In the example, these actions occur:

1. The XML file configuration.xml is read as an instance of javax.xml.xquery.XQItem.

2. The item is bound to the prepared expression for the query update.xq.

3. The query update.xq is executed.

4. The modified document is written to the file configuration.xml.

See Also:

• XQuery Update Facility 1.0

• Oracle Database XML Java API Reference, interface
oracle.xml.xquery.OXQDynamicContext

Example 15-20 configuration.xml

<configuration>
 <property>
 <name>hostname</name>
 <value>example.com</value>
 </property>

Chapter 15
Performing Updates

15-19

 <property>
 <name>timeout</name>
 <value>1000</value>
 </property>
</configuration>

Example 15-21 update.xq

declare variable $doc external;

let $timeout := $doc/configuration/property[name eq "timeout"]
return
 replace value of node $timeout/value
 with 2 * xs:integer($timeout/value)

Example 15-22 Updated File configuration.xml

<configuration>
 <property>
 <name>hostname</name>
 <value>example.com</value>
 </property>
 <property>
 <name>timeout</name>
 <value>2000</value>
 </property>
</configuration>

Example 15-23 Executing the Updating Query update.xq

import java.io.FileInputStream;
import java.io.IOException;
import java.io.FileOutputStream;

import javax.xml.namespace.QName;
import javax.xml.xquery.XQConnection;
import javax.xml.xquery.XQConstants;
import javax.xml.xquery.XQException;
import javax.xml.xquery.XQItem;
import javax.xml.xquery.XQPreparedExpression;
import javax.xml.xquery.XQStaticContext;

import oracle.xml.xquery.OXQConstants;
import oracle.xml.xquery.OXQDataSource;
import oracle.xml.xquery.OXQView;

public class UpdateDocument {
 public static void main(String[] args) throws XQException, IOException {
 OXQDataSource ds = new OXQDataSource();
 XQConnection con = ds.getConnection();

 XQStaticContext ctx = con.getStaticContext();
 // Set the binding mode to deferred so the document
 // item is not copied when it is bound.
 ctx.setBindingMode(XQConstants.BINDING_MODE_DEFERRED);
 con.setStaticContext(ctx);

 FileInputStream input = new FileInputStream("configuration.xml");
 XQItem doc = con.createItemFromDocument(input, null, null);
 input.close();

 System.out.println("Before update: \n" + doc.getItemAsString(null));

 FileInputStream query = new FileInputStream("update.xq");
 XQPreparedExpression expr = con.prepareExpression(query);
 query.close();

Chapter 15
Performing Updates

15-20

 expr.bindItem(new QName("doc"), doc);
 // Enable updates (disabled by default)
 OXQView.getDynamicContext(expr).setUpdateMode(OXQConstants.UPDATE_MODE_ENABLED);
 expr.executeQuery();

 System.out.println("After update: \n" + doc.getItemAsString(null));

 // Write the modified document back to the file
 FileOutputStream out = new FileOutputStream("configuration.xml");
 doc.writeItem(out, null);

 expr.close();
 con.close();
 }
}

15.6 Oracle XQuery Functions and Operators
Oracle supports the standard XQuery functions and operators, as well as some Oracle-
specific functions.

Oracle-specific XQuery functions use namespace http://xmlns.oracle.com/xdk/xquery/
function. Namespace prefix ora-fn is predeclared, and the module is automatically
imported.

Related Topics

• Standards and Specifications for the XQuery Processor for Java
The standards and specifications to which the XDK XQuery processor for Java conforms
are listed.

15.6.1 Oracle XQuery Functions for Duration, Date, and Time
You can manipulate durations, dates, and times in XQuery using Oracle XQuery functions.

The Oracle XQuery functions are in namespace http://xmlns.oracle.com/xdk/xquery/
function. Namespace prefixora-fn is predeclared, and the module is automatically
imported.

15.6.1.1 ora-fn:date-from-string-with-format
This Oracle XQuery function returns a new date value from a string according to a given
pattern.

Signature

ora-fn:date-from-string-with-format($format as xs:string?,
 $dateString as xs:string?,
 $locale as xs:string*)
 as xs:date?

ora-fn:date-from-string-with-format($format as xs:string?,
 $dateString as xs:string?)
 as xs:date?

Chapter 15
Oracle XQuery Functions and Operators

15-21

Parameters

$format: The pattern; see Format Argument

$dateString: An input string that represents a date

$locale: A one- to three-field value that represents the locale; see Locale Argument

Example

This example returns the specified date in the current time zone:

ora-fn:date-from-string-with-format("yyyy-MM-dd G", "2013-06-22 AD")

15.6.1.2 ora-fn:date-to-string-with-format
This Oracle XQuery function returns a date string with a given pattern.

Signature

ora-fn:date-to-string-with-format($format as xs:string?,
 $date as xs:date?,
 *$locale as xs:string?)
 as xs:string?

ora-fn:date-to-string-with-format($format as xs:string?,
 $date as xs:date?)
 as xs:string?

Parameters

$format: The pattern; see Format Argument

$date: The date

$locale: A one- to three-field value that represents the locale; see Locale Argument

Example

This example returns the string 2013-07-15:

ora-fn:date-to-string-with-format("yyyy-mm-dd", xs:date("2013-07-15"))

15.6.1.3 ora-fn:dateTime-from-string-with-format
This Oracle XQuery function returns a new date-time value from an input string,
according to a given pattern.

Signature

ora-fn:dateTime-from-string-with-format($format as xs:string?,
 $dateTimeString as xs:string?,
 $locale as xs:string?)
 as xs:dateTime?

ora-fn:dateTime-from-string-with-format($format as xs:string?,

Chapter 15
Oracle XQuery Functions and Operators

15-22

 $dateTimeString as xs:string?)
 as xs:dateTime?

Parameters

$format: The pattern; see Format Argument

$dateTimeString: The date and time

$locale: A one- to three-field value that represents the locale; see Locale Argument

Examples

This example returns the specified date and 11:04:00AM in the current time zone:

ora-fn:dateTime-from-string-with-format("yyyy-MM-dd 'at' hh:mm",
 "2013-06-22 at 11:04")

The next example returns the specified date and 12:00:00AM in the current time zone:

ora-fn:dateTime-from-string-with-format("yyyy-MM-dd G",
 "2013-06-22 AD")

15.6.1.4 ora-fn:dateTime-to-string-with-format
This Oracle XQuery function returns a date and time string with a given pattern.

Signature

ora-fn:dateTime-to-string-with-format($format as xs:string?,
 $dateTime as xs:dateTime?,
 $locale as xs:string?)
 as xs:string?

ora-fn:dateTime-to-string-with-format($format as xs:string?,
 $dateTime as xs:dateTime?)
 as xs:string?

Parameters

$format: The pattern; see Format Argument

$dateTime: The date and time

$locale: A one- to three-field value that represents the locale; see Locale Argument

Examples

This example returns the string 07 JAN 2013 10:09 PM AD:

ora-fn:dateTime-to-string-with-format("dd MMM yyyy hh:mm a G",
 xs:dateTime("2013-01-07T22:09:44"))

The next example returns the string "01-07-2013":

Chapter 15
Oracle XQuery Functions and Operators

15-23

ora-fn:dateTime-to-string-with-format("MM-dd-yyyy",
 xs:dateTime("2013-01-07T22:09:44"))

15.6.1.5 ora-fn:time-from-string-with-format
This Oracle XQuery function returns a new time value from an input string, according
to a given pattern.

Signature

ora-fn:time-from-string-with-format($format as xs:string?,
 $timeString as xs:string?,
 $locale as xs:string?)
 as xs:time?

ora-fn:time-from-string-with-format($format as xs:string?,
 $timeString as xs:string?)
 as xs:time?

Parameters

$format: The pattern; see Format Argument

$timeString: The time

$locale: A one- to three-field value that represents the locale; see Locale Argument

Example

This example returns 9:45:22 PM in the current time zone:

ora-fn:time-from-string-with-format("HH.mm.ss", "21.45.22")

The next example returns 8:07:22 PM in the current time zone:

fn-bea:time-from-string-with-format("hh:mm:ss a", "8:07:22 PM")

15.6.1.6 ora-fn:time-to-string-with-format
This Oracle XQuery function returns a time string with a given pattern.

Signature

ora-fn:time-to-string-with-format($format as xs:string?,
 $time as xs:time?,
 $locale as xs:string?)
 as xs:string?

ora-fn:time-to-string-with-format($format as xs:string?, $time as
xs:time?) as xs:string?

Parameters

$format: The pattern; see Format Argument

Chapter 15
Oracle XQuery Functions and Operators

15-24

$time: The time

$locale: A one- to three-field value that represents the locale; see Locale Argument

Examples

This example returns the string "10:09 PM":

ora-fn:time-to-string-with-format("hh:mm a", xs:time("22:09:44"))

The next example returns the string "22:09 PM":

ora-fn:time-to-string-with-format("HH:mm a", xs:time("22:09:44"))

15.6.1.7 Format Argument
The $format argument identifies the various fields that compose a date or time value.

15.6.1.8 Locale Argument
The $locale represents a specific geographic, political, or cultural region.

It is defined by up to three fields:

1. Language code: The ISO 639 alpha-2 or alpha-3 language code, or the registered
language subtags of up to eight letters. For example, en for English and ja for Japanese.

2. Country code: The ISO 3166 alpha-2 country code or the UN M.49 numeric-3 area
code. For example, US for the United States and 029 for the Caribbean.

3. Variant: Indicates a variation of the locale, such as a particular dialect. Order multiple
values in order of importance and separate them with an underscore (_). These values
are case sensitive.

See Also:

• Class Locale in Java Standard Edition 7 Reference

15.6.2 Oracle XQuery Functions for Strings
You can manipulate strings in XQuery using Oracle XQuery functions.

The Oracle XQuery functions are in namespace http://xmlns.oracle.com/xdk/xquery/
function. Namespace prefixora-fn is predeclared, and the module is automatically
imported.

Chapter 15
Oracle XQuery Functions and Operators

15-25

15.6.2.1 ora-fn:pad-left
Adds padding characters to the left of a string to create a fixed-length string. If the
input string exceeds the specified size, then it is truncated to return a substring of the
specified length. The default padding character is a space (ASCII 32).

Signature

ora-fn:pad-left($str as xs:string?,
 $size as xs:integer?,
 $pad as xs:string?)
 as xs:string?

ora-fn:pad-left($str as xs:string?,
 $size as xs:integer?)
 as xs:string?

Parameters

$str: The input string

$size: The desired fixed length, which is obtained by adding padding characters
to $str
$pad: The padding character

If either argument is an empty sequence, then the function returns an empty
sequence.

Examples

This example prefixes "01" to the input string up to the maximum of six characters.
The returned string is "010abc". The function returns one complete and one partial pad
character.

ora-fn:pad-left("abc", 6, "01")

The example returns only "ab" because the input string exceeds the specified fixed
length:

ora-fn:pad-left("abcd", 2, "01")

This example prefixes spaces to the string up to the specified maximum of six
characters. The returned string has a prefix of two spaces: " abcd":

ora-fn:pad-left("abcd", 6)

The next example returns only "ab" because the input string exceeds the specified
fixed length:

ora-fn:pad-left("abcd", 2)

Chapter 15
Oracle XQuery Functions and Operators

15-26

15.6.2.2 ora-fn:pad-right
Adds padding characters to the right of a string to create a fixed-length string. If the input
string exceeds the specified size, then it is truncated to return a substring of the specified
length. The default padding character is a space (ASCII 32).

Signature

ora-fn:pad-right($str as xs:string?,
 $size as xs:integer?,
 $pad as xs:string?)
 as xs:string?

ora-fn:pad-right($str as xs:string?,
 $size as xs:integer?)
 as xs:string?

Parameters

$str: The input string

$size: The desired fixed length, which is obtained by adding padding characters to $str
$pad: The padding character

If either argument is an empty sequence, then the function returns an empty sequence.

Examples

This example appends "01" to the input string up to the maximum of six characters. The
returned string is "abc010". The function returns one complete and one partial pad character.

ora-fn:pad-right("abc", 6, "01")

This example returns only "ab" because the input string exceeds the specified fixed length:

ora-fn:pad-right("abcd", 2, "01")

This example appends spaces to the string up to the specified maximum of six characters.
The returned string has a suffix of two spaces: "abcd ":

ora-fn:pad-right("abcd", 6)

The next example returns only "ab" because the input string exceeds the specified fixed
length:

ora-fn:pad-right("abcd", 2)

Chapter 15
Oracle XQuery Functions and Operators

15-27

15.6.2.3 ora-fn:trim
Removes any leading or trailing white space from a string.

Signature

ora-fn:trim($input as xs:string?) as xs:string?

Parameters

$input: The string to trim. If $input is an empty sequence, then the function returns an
empty sequence. Other data types trigger an error.

Example

This example returns the string "abc":

ora-fn:trim(" abc ")

15.6.2.4 ora-fn:trim-left
Removes any leading white space.

Signature

ora-fn:trim-left($input as xs:string?) as xs:string?

Parameters

$input: The string to trim. If $input is an empty sequence, then the function returns an
empty sequence. Other data types trigger an error.

Example

This example removes the leading spaces and returns the string "abc ":

ora-fn:trim-left(" abc ")

15.6.2.5 ora-fn:trim-right
Removes any trailing white space.

Signature

ora-fn:trim-right($input as xs:string?) as xs:string?

Parameters

$input: The string to trim. If $input is an empty sequence, then the function returns an
empty sequence. Other data types trigger an error.

Chapter 15
Oracle XQuery Functions and Operators

15-28

Example

This example removes the trailing spaces and returns the string " abc":

ora-fn:trim-left(" abc ")

15.7 Standards and Specifications for the XQuery Processor for
Java

The standards and specifications to which the XDK XQuery processor for Java conforms are
listed.

• XQuery 3.0: An XML Query Language

Note:

All XQuery 1.0 level features are supported. XQuery 3.0 level features are
supported except for the following: FLWOR window clause, FLWOR count
clause, namespace constructors, decimal format declarations, fn:format-
number, fn:format-integer, fn:format-date, fn:format-time, fn:path, and
higher order XQuery functions.

• XQuery Update Facility 1.0

• XQueryX 3.0, the XML syntax for XQuery 3.0

• JSR-000225 XQuery API for Java

Note:

The XDK XQuery processor for Java is not interoperable with other XQJ
implementations, including the Oracle XQJ implementation for Oracle XML DB.
(See JSR-225: XQuery API for Java for the meaning of interoperable.)

15.7.1 Optional XQuery Features
The XQuery specification defines certain features as optional. Links are provided to the
standards that specify those that are supported by XDK.

These are the optional features supported by XDK:

• Schema Import

• Validate Expressions

• Static Typing

• Static Typing for Update

• Modules

• Serialization

Chapter 15
Standards and Specifications for the XQuery Processor for Java

15-29

15.7.2 Implementation-Defined Items
The XQJ and XQuery specifications leave the definition of certain aspects up to the
implementation. The implementation-defined items for XDK are described briefly.

Table 15-2 summarizes the XQJ implementation-defined items.

Table 15-2 XQJ Implementation-Defined Items

Description Behavior

Class name of XQDataSource implementation oracle.xml.xquery.OXQDataSource.

Properties defined on OXQDataSource None. The username and password are silently ignored.

JDBC connection support JDBC connections are not supported.

Commands Not supported.

Cancelling of query execution with method
XQPreparedExpression.cancel()

Yes.

Serialization Yes.

Additional StAX or SAX events None.

User-defined schema types Yes.

Node identity, document order, and full-node context
preservation when a node is bound to an external
variable

Not preserved.

Login timeout Not supported.

Transactions Not supported. An exception is thrown if a transaction
method is called.

XQItemAccessor.getNodeUri() method behavior if
the input node is not a document node

Exception.

XQItemType.getTypeName() method for anonymous
types

A unique name.

XQItemType.getSchemaURI() method The schema URI is returned when a type is created from
XQJ. No otherwise.

XQDataFactory.createItemFromDocument() and
bindDocument() methods if the input is not a well-
formed XML document

Exception.

Additional error codes returned by class
XQQueryException

The qualified names of Oracle-specific error codes are
in the namespace http://xmlns.oracle.com/xdk/
xquery/errors.

ConnectionPoolXQDataSource,
PooledXQConnection, XQConnectionEvent,
XQConnectionEventListener interfaces

No.

XQDataSource.getConnection(java.sql.Connect
ion)

JDBC connections are not supported. An exception is
thrown if this method is called.

XQDataSource.getConnection(java.lang.String
, java.lang.String)

Same as getConnection(). Parameters are ignored.

Chapter 15
Standards and Specifications for the XQuery Processor for Java

15-30

Note:

XDK support for the features in Table 15-2 differs from the Oracle XML DB support
for them.

Table 15-3 summarizes the XQuery implementation-defined items.

Table 15-3 XQuery Implementation-Defined Items

Item Behavior

The version of Unicode that is used to construct
expressions

Depends on the version of Java used. Different Java
versions support different versions of Unicode.

The statically-known collations Unicode codepoint collation and collations derived from
classes java.text.Collator or
oracle.i18n.text.OraCollator.

The implicit time zone. Uses the default time zone, as determined by method
java.util.Calendar.getInstance().

The circumstances in which warnings are raised, and
the ways in which warnings are handled

None.

The method by which errors are reported to the
external processing environment

Exception javax.xml.xquery.XQException.

Whether the implementation is based on the rules of
XML 1.0 and XML Names, or the rules of XML 1.1 and
XML Names 1.1

1.0.

Any components of the static context or dynamic
context that are overwritten or augmented by the
implementation

See Table 15-5.

Which of the optional axes are supported by the
implementation, if the Full-Axis Feature is not
supported

Full support.

The default handling of empty sequences returned by
an ordering key (sortspec) in an order by clause (empty
least or empty greatest)

least.

The names and semantics of any extension
expressions (pragmas) recognized by the
implementation

None.

The names and semantics of any option declarations
recognized by the implementation

None.

Protocols (if any) by which parameters can be passed
to an external function, and the result of the function
can be returned to the invoking query

Defined by XQJ.

The process by which the specific modules to be
imported by a module import are identified, if the
Module feature is supported (includes processing of
location hints, if any)

Entity resolvers. See XQJ Entity Resolution.

Any static typing extensions supported by the
implementation, if the Static Typing feature is
supported

Strict mode (based on subtype) and optimistic mode
(based on type intersection). Optimistic mode is the
default.

Chapter 15
Standards and Specifications for the XQuery Processor for Java

15-31

Table 15-3 (Cont.) XQuery Implementation-Defined Items

Item Behavior

The means by which serialization is invoked, if the
Serialization feature is supported

Defined by XQJ.

The default values for the byte-order-mark,
encoding, media-type, normalization-form,
omit-xml-declaration, standalone, and version
parameters, if the Serialization feature is supported

See the interface
oracle.xml.xquery.OXQSerializationParameters
in Oracle Database XML Java API Reference.

Limits on ranges of values for various data types. Decimal and integer values have arbitrary precision.

The signatures of functions provided by the
implementation or via an implementation-defined API
(see the XQuery standard, section 2.1.1, Static
Context).

See Oracle XQuery Functions and Operators.

Any environment variables provided by the
implementation.

Entity resolvers. See XQJ Entity Resolution.

Any rules used for static typing (see the XQuery
standard, section 2.2.3.1, Static Analysis Phase).

Defaults to optimistic, pessimistic configurable.

Any serialization parameters provided by the
implementation (see the XQuery standard, section
2.2.4 Serialization).

See OXQSerializationParameters. See Oracle
Database XML Java API Reference.

The means by which the location hint for a serialization
parameter document identifies the corresponding XDM
instance (see the XQuery standard, section 2.2.4,
Serialization).

Entity resolvers, OXQEntityKind.DOCUMENT. See XQJ
Entity Resolution.

What error, if any, is returned if an external function's
implementation does not return the declared result type
(see the XQuery standard, section 2.2.5, Consistency
Constraints).

 XPTY0004.

Any annotations defined by the implementation, and
their associated behavior (see the XQuery standard,
section 4.15, Annotations).

You can use %ora-fn:context-item to allow the
context item of a function caller to be implicitly passed as
the first argument to the function.

For example, this query evaluates to e, f, g:

 declare %ora-fn:context-item
 function local:foo($arg as node()) {
 node-name($arg)
 };

(<e/>, <f/>)/local:foo(), local:foo(<g/>)

Any function assertions defined by the implementation. None.

The effect of function assertions understood by the
implementation on section 2.5.6.3. The judgment
subtype-assertions (AnnotationsA, AnnotationsB) .

Not applicable.

Any implementation-defined variables defined by the
implementation. (see the XQuery standard, section
3.1.2, Variable References).

None.

Chapter 15
Standards and Specifications for the XQuery Processor for Java

15-32

Table 15-3 (Cont.) XQuery Implementation-Defined Items

Item Behavior

The ordering associated with fn:unordered in the
implementation (see the XQuery standard, section
3.11, Ordered and Unordered Expressions).

It does not change the order of the input sequence.

Any additional information provided for try/catch by
variable err:additional (see the XQuery standard,
section 3.15, Try/Catch Expressions).

None.

The default boundary-space policy (see the XQuery
standard, section 4.3, Boundary-space Declaration).

strip.

The default collation (see the XQuery standard, section
4.4, Default Collation Declaration).

Unicode.

The default base URI (see the XQuery standard,
section 4.5, Base URI Declaration).

None.

Table 15-4 summarizes the XQuery Update Facility implementation-defined items.

Table 15-4 XQuery Update Facility Implementation-Defined Items

Item Behavior

The revalidation modes that are
supported by this implementation.

skip.

The default revalidation mode for this
implementation.

skip.

The mechanism (if any) by which an
external function can return an XDM
instance, or a pending update list, or both
to the invoking query.

Returning a pending update list from an external function is not
supported.

The semantics of fn:put(), including
the kinds of nodes accepted as operands
by this function.

Any node type is accepted. Storage of the node is determined by the
entity resolver. See class oracle.xml.xquery.OXQEntity in Oracle
Database XML Java API Reference, specifically the documentation for
entity kind UPD_PUT.

Table 15-5 summarizes the default initial values for the static context.

Chapter 15
Standards and Specifications for the XQuery Processor for Java

15-33

Table 15-5 Default Initial Values for the Static Context

Context Component Default Value

Statically known namespaces err=http://w3.org/2005/xqt-errors
fn=http://www.w3.org/2005/xpath-functions
local=http://www.w3.org/2005/xquery-local-functions
math=http://www.w3.org/2005/xpath-functions/math
ora-ext=http://xmlns.oracle.com/xdk/xquery/extension
ora-java=http://xmlns.oracle.com/xdk/xquery/java
ora-xml=http://xmlns.oracle.com/xdk/xquery/xml
ora-fn=http://xmlns.oracle.com/xdk/xquery/function
output=http://www.w3.org/2010/xslt-xquery-serialization
xml=http://www.w3.org/XML/1998/namespace
xs=http://www.w3.org/2001/XMLSchema
xsi=http://www.w3.org/2001/XMLSchema-instance
Prefixes that begin with ora- are reserved for use by Oracle. Additional
prefixes that begin with ora- may be added to the default statically known
namespaces in a future release.

Default element/type namespace No namespace.

Default function namespace fn.

In-scope schema types Built-in types in xs.

In-scope element declarations None.

In-scope attribute declarations None.

In-scope variables None.

Context item static type item().

Function signatures Functions in namespace fn, and constructors for built-in atomic types.

Statically known collations Unicode codepoint collation and collations derived from class
java.text.Collator or oracle.i18n.text.OraCollator.

Default collation Unicode codepoint collation:

http://www.w3.org/2005/xpath-functions/collation/
codepoint.

Construction mode preserve.

Ordering mode ordered.

Default order for empty sequences least.

Boundary-space policy strip.

Copy-namespaces mode preserve, no-inherit.

Base URI As defined in the standard.

Statically known documents None.

Statically known collections None.

Statically known default collection type node()*.

Serialization parameters Same as the defaults for OXQSerializationParameters. See Oracle
Database XML Java API Reference.

Chapter 15
Standards and Specifications for the XQuery Processor for Java

15-34

16
Using XQuery API for Java to Access Oracle
XML DB

An explanation is given of how to use the XQuery API for Java (XQJ) to access Oracle XML
DB.

16.1 Introduction to Oracle XML DB Support for XQJ
XQuery API for Java (XQJ), also known as JSR-225, provides an industry-standard way for
Java programs to access Extensible Markup Language (XML) data using XQuery. It lets you
evaluate XQuery expressions against XML data sources and process the results as XML
data.

Oracle provides two XQuery engines for evaluating XQuery expressions: one in Oracle XML
DB, for use with XML data in the database, and one in Oracle XML Developer's Kit (XDK), for
use with XML data outside the database. (See Using the XQuery Processor for Java for
information about the XQuery engine for XDK).

Oracle provides two different XQJ implementations for accessing these two XQuery engines.
Both implementations are part of XDK, enabling you to use XDK to access XML data with a
standard XQJ API whether that data resides in the database or elsewhere.

The queries executed by XQJ are written in standard World Wide Web Consortium (W3C)
XQuery 1.0 language, as supported by Oracle XML DB. A typical use case for this feature is
to access XML data stored in remote databases (in Oracle XML DB) from a local Java
program.

General information about XQuery and XQJ is documented outside of this document.

See Also:

• Oracle XML DB Developer’s Guide for more information about Oracle XML DB,
including details about XQuery capabilities and support in Oracle XML DB

• XQuery Packages in Oracle Database XML Java API Reference for the related
API documentation

• JSR-000225 XQuery API for Java, which is very concrete and has
understandable examples

16.1.1 Prerequisites for Using XQJ to Access Oracle XML DB
You need Java Runtime Environment 1.6 to use XQJ with Oracle XML DB. You also need
certain Java Archive (JAR) files to be either in your CLASSPATH environment variable or
passed using command-line option classpath.

16-1

The JAR files are as follows:

• The required JAR files listed in Introduction to the XQuery Processor for Java

• jdbc/lib/ojdbc6.jar
• rdbms/jlib/xdb6.jar
The directory paths for these JAR files are relative to the ORACLE_HOME directory of your
database installation.

16.2 Examples: Using XQJ to Query Oracle XML DB
Examples here show how you can use XQJ to query and retrieve data in Oracle XML
DB.

Example 16-1 shows how to use XQJ to query data from a table in Oracle XML DB. It
uses the WAREHOUSES table in the Order Entry (OE) database sample schema. The OE
sample schema contains XML documents with warehouse information in the
WAREHOUSES table. The WAREHOUSES table contains an XMLType column
warehouse_spec and other columns. (See the discussion about standard database
schemas in Oracle XML DB Developer’s Guide for more information about the data
used in this example.)

Specifically, Example 16-1 shows how to perform these steps:

1. Get an XQJ connection to Oracle XML DB.

Every program using XQJ to connect to Oracle XML DB must first create an
OXQDDataSource object. Then, OXQDDataSource must be initialized with the
required property values before getting an XQJ connection to the Oracle XML DB
instance.

2. Prepare an XQuery expression.

3. Submit the XQuery expression for evaluation.

4. Print each item in the resulting XQuery sequence.

In Example 16-1, the XQuery expression accesses the WAREHOUSES table through the
use of the Universal Resource Identifier (URI) scheme oradb. (See the discussion
about the URI scheme oradb in Oracle XML DB Developer’s Guide for more
information about using XQuery with XML DB to query table or view data.)

Example 16-1 also shows how to bind external variable values in XQJ. The query has
an external variable $x, which is used to filter the returned rows from the WAREHOUSES
table, by WAREHOUSE_ID.

Example 16-1 generates this output (reformatted for better readability):

<Warehouse><Building>Owned</Building><Area>25000</Area><Docks>2</Docks>
 <DockType>Rearload</DockType><WaterAccess>Y</WaterAccess>
 <RailAccess>N</RailAccess><Parking>Street</Parking>
 <VClearance>10 ft</VClearance></Warehouse>

<Warehouse><Building>Rented</Building><Area>50000</Area><Docks>1</Docks>
 <DockType>Sideload</DockType><WaterAccess>Y</WaterAccess>
 <RailAccess>N</RailAccess><Parking>Lot</Parking>
 <VClearance>12 ft</VClearance></Warehouse>

Chapter 16
Examples: Using XQJ to Query Oracle XML DB

16-2

Example 16-2 shows how to use XQJ to retrieve data from the Oracle XML DB repository.
This example assumes that two files, depts.xml and emps.xml, have been uploaded into the
XML DB repository under the folder /public. For example, you can use FTP to upload the
two files into the Oracle XML DB repository. (See the discussion about using the Oracle XML
DB repository in Oracle XML DB Developer’s Guide for more information about storing data
in and using the Oracle XML DB Repository.)

The content of depts.xml is:

depts.xml:

<?xml version="1.0"?>
 <depts>
 <dept deptno="10" dname="Administration"/>
 <dept deptno="20" dname="Marketing"/>
 <dept deptno="30" dname="Purchasing"/>
 </depts>

The content of emps.xml is:

emps.xml:

<?xml version="1.0"?>
 <emps>
 <emp empno="1" deptno="10" ename="John" salary="21000"/>
 <emp empno="2" deptno="10" ename="Jack" salary="310000"/>
 <emp empno="3" deptno="20" ename="Jill" salary="100001"/>
 </emps>

You can use the fn:doc and fn:collection functions to query the data in the Oracle XML
DB repository with XQuery. Example 16-2 shows how to use the fn:doc function within
XQuery to access the repository. (See the discussion about querying XML data in the Oracle
XML DB repository in Oracle XML DB Developer’s Guide for more information about using
these XQuery functions.)

Example 16-2 generates this output:

<emp ename="Jack" dept="Administration"/>
<emp ename="Jill" dept="Marketing"/>

Example 16-1 Using XQJ to Query an XML DB Table with XQuery

import oracle.xml.xquery.xqjdb.OXQDDataSource;

import javax.xml.xquery.XQItemType;
import javax.xml.xquery.XQResultSequence;
import javax.xml.xquery.XQConnection;
import javax.xml.xquery.XQPreparedExpression;
import javax.xml.namespace.QName;

public class example1
{
 public static void main(String argv[])
 {
 try
 {
 // Create a new OXQDDataSource for connecting to Oracle XML DB
 OXQDDataSource oxqDS = new OXQDDataSource();
 // Set appropriate connection information for the database instance.
 // Must use the thin driver
 oxqDS.setProperty("driver", "jdbc:oracle:thin");

Chapter 16
Examples: Using XQJ to Query Oracle XML DB

16-3

 oxqDS.setProperty("dbusername", "oe");
 oxqDS.setProperty("dbpassword", "oe");
 // Machine hostname
 oxqDS.setProperty("dbserver", "myserver");
 // Database instance port number
 oxqDS.setProperty("dbport", "6479");
 // Database instance port number
 oxqDS.setProperty("serviceName", "mydbinstance");
 XQConnection conn = oxqDS.getConnection();
 XQItemType itemTypeInt = conn.createAtomicType(XQItemType.XQBASETYPE_INT);
 XQPreparedExpression expr = conn.prepareExpression("declare variable $x as
 xs:int external; for $i in fn:collection('oradb:/OE/WAREHOUSES') where
 $i/ROW/WAREHOUSE_ID < $x return $i/ROW/WAREHOUSE_SPEC/Warehouse");
 expr.bindInt(new QName("x"), 3, itemTypeInt);
 XQResultSequence xqSeq = expr.executeQuery();
 while (xqSeq.next())
 System.out.println (xqSeq.getItemAsString(null));
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 }
}

Example 16-2 Using XQJ to Query the XML DB Repository with XQuery

import oracle.xml.xquery.xqjdb.OXQDDataSource;

import javax.xml.xquery.XQItemType;
import javax.xml.xquery.XQResultSequence;
import javax.xml.xquery.XQConnection;
import javax.xml.xquery.XQPreparedExpression;
import javax.xml.namespace.QName;

public class example2
{
 public static void main(String argv[])
 {
 try
 {
 // Create a new OXQDDataSource for connecting to Oracle XML DB
 OXQDDataSource oxqDS = new OXQDDataSource();
 // Set appropriate connection information for the database instance.
 // Must use the thin driver
 oxqDS.setProperty("driver", "jdbc:oracle:thin");
 oxqDS.setProperty("dbusername", "oe");
 oxqDS.setProperty("dbpassword", "oe");
 // Machine hostname
 oxqDS.setProperty("dbserver", "myserver");
 // Database instance port number
 oxqDS.setProperty("dbport", "6479");
 // Database instance port number
 oxqDS.setProperty("serviceName", "mydbinstance");
 XQConnection conn = oxqDS.getConnection();
 XQPreparedExpression expr = conn.prepareExpression("for $e in
 doc(\"/public/emps.xml\")/emps/emp let $d :=
 doc(\"/public/depts.xml\")//dept[@deptno = $e/@deptno]/@dname where
 $e/@salary > 100000 order by $e/@empno return
 <emp ename=\"{$e/@ename}\" dept=\"{$d}\"/>");
 XQResultSequence xqSeq = expr.executeQuery();

Chapter 16
Examples: Using XQJ to Query Oracle XML DB

16-4

 while (xqSeq.next())
 System.out.println (xqSeq.getItemAsString(null));
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 }
}

16.3 XQJ Support for Oracle XML DB
The two Oracle XQJ implementations differ in some respects. Oracle XML DB support for
XQJ is described.

Using the XQuery Processor for Java provides information about using XQJ to access the
mid-tier XQuery engine.

Table 16-1 describes the OXQDDataSource properties to be used for connection to Oracle
XML DB. To create an XQJ connection to Oracle XML DB, you must set the values for these
properties. You must set either the dbname or the serviceName property value, and all the
other OXQDDataSource property values listed in Table 16-1.

Table 16-1 OXQDDataSource Properties

Property Value Get Method Set Method

driver jdbc:oracle:thin getDriver setDriver
dbusername Database schema (user) name getDBUserName setDBUserName
dbpassword Password for database schema getDBPassword setDBPassword
dbserver Host name for the database instance getDBServer setDBServer
dbport Port number of the database instance for XQJ connection getDBPort setDBPort
dbname Database instance name (service id)1 getDBName setDBName
serviceNam
e

Service name1 getServiceName setServiceName

1 You can identify the database using either the service id or the service name.

Table 16-2 describes the Oracle XML DB support for optional XQJ features.

Note:

Oracle XML DB support for some XQJ features differs from their support by the
mid-tier XQuery engine. In particular, the Oracle XML DB XQJ implementation does
not support the use of user-defined types.

Chapter 16
XQJ Support for Oracle XML DB

16-5

Table 16-2 Oracle XML DB Support for Optional XQJ Features

XQJ Feature Oracle XML DB Support

Class name of XQDataSource implementation oracle.xml.xquery.xqjdb.OXQDDataSource
JDBC connections Not supported.

Properties defined on OXQDDataSource (connection
information)

See Table 16-1.

Commands Not supported.

XQPreparedExpression.cancel (cancelling of query
execution)

Not supported.

Serialization Only parameter method with value xml and
parameter encoding with value UTF-8 or UTF-16.

Additional StAX and SAX events Not supported.

User-defined schema types Not supported.

Node identity, document order, and full-node context
preservation when a node is bound to an external variable

Not supported.

Login timeout Not supported.

Transactions Not supported.

Behavior of XQItemAccessor method getNodeUri() when
the input node is not a document node

Return NULL.

Behavior of XQItemType method getTypeName() for
anonymous types

Return false.

Behavior of XQItemType method getSchemaURI() Return NULL or the schema URI provided during
type creation. Currently, the Oracle XML DB XQJ
implementation does not use the schema URI to
get type information, and user-defined types are
not supported.

Behavior of XQDataFactory methods
createItemFromDocument() and bindDocument() if the
input is not a well-formed XML document

Raise an exception.

Additional error codes returned from XQQueryException Not supported.

Interfaces ConnectionPoolXQDataSource,
PooledXQConnection, XQConnectionEvent,
XQConnectionEventListener

Not supported.

XQDataSource.getConnection(
 java.sql.Connection)

Not supported. (JDBC connections are not
supported.)

XQDataSource.getConnection(
 java.lang.String,
 java.lang.String)

Same as getConnection() with no arguments:
the arguments are ignored.

Chapter 16
XQJ Support for Oracle XML DB

16-6

See Also:

Oracle XML DB Developer’s Guide for information about using the XQuery
language with Oracle XML DB

16.3.1 Other Oracle XML DB XQJ Support Limitations
The limitations of Oracle XML DB support for XQJ are described. None of them apply to mid-
tier XQuery engine support for XQJ.

Oracle XML DB support for XQJ is limited in these ways:

• All Oracle XML DB XQuery support limitations apply to Oracle XML DB support for XQJ
as well.

• Only the XDK Document Object Model (DOM) is supported. Use of any other DOM can
cause errors.

• Do not expect the Oracle XML DB XQJ implementation to be interoperable with another
XQJ implementation, including the XDK Java implementation of XQJ. (See the XQJ
standard (JSR-225) for the meaning of "interoperable".)

• XQDataSource methods getLogWriter and setLogWriter have no effect (they are
ignored).

• XQStaticContent methods getBoundarySpacePolicy, setBoundarySpacePolicy,
getDefaultCollation, and setDefaultCollation have no effect (they are ignored).

• The copy namespaces mode for XQStaticContent methods
setCopyNamespacesModPreserve and setCopyNamespacesModeInherit has no effect (it is
ignored). The values used are always preserve and inherit, respectively.

• Use of XQDynamicContext methods to bind DocumentFragment objects is not supported.

• Values of type xs:duration are not supported. Using an XQDynamicContext method to
bind xs:duration, or accessing an xs:duration value, raises an error.

• The year of a xs:date, xs:dateTime, xs:gYear, and xs:gYearMonth value must be from
-4712 to 9999, inclusive. Using a year outside this range can raise an error or produce
unpredictable results.

16.4 XQJ Performance Considerations for Use with Oracle XML
DB

To fetch a sequence of items from the database, use XQResultSequence method next() to
retrieve a single item at a time; then use an XQItemAccessor method to fetch all data
corresponding to that item.

This provides better performance than using these whole-sequence fetch methods, which
each materialize the entire sequence before returning any data.

• getSequenceAsStream()
• getSequenceAsString(java.util.Properties props)
• writeSequence(java.io.OutputStream os, java.util.Properties props)

Chapter 16
XQJ Performance Considerations for Use with Oracle XML DB

16-7

• writeSequence(java.io.Writer ow, java.util.Properties props)
• writeSequenceToResult(javax.xml.transform.Result result)
• writeSequenceToSAX(org.xml.sax.ContentHandler saxhdlr)
For example, if you invoke getSequenceAsStream(), all of the XQuery result sequence
data is fetched from the database before the XMLStreamReader instance that is built
from it is returned to your program.

Be aware also that items themselves are not streamable: the item accessor methods
always materialize an entire item before outputting any part of it.

For inputting, all bind methods defined on XQDynamicContext fully materialize the input
data before passing it to the database.

For example, when you invoke bindDocument(javax.xml.namespace.QName varName,
javax.xml.stream.XMLStreamReader value, XQItemType type), all the data that is
referenced by the input XMLStreamReader instance is processed before the external
XQuery variable is bound to it.

Chapter 16
XQJ Performance Considerations for Use with Oracle XML DB

16-8

17
Using the XML Schema Processor for Java

Topics here cover how to use the Extensible Markup Language (XML) schema processor for
Java.

17.1 Introduction to XML Validation
Topics cover the different techniques for XML validation.

17.1.1 Prerequisites for Using the XML Schema Processor for Java
Prerequisites for using the XML schema processor are covered.

This section assumes that you have working knowledge of these technologies:

• document type definition (DTD). An XML document type definition (DTD) defines the
legal structure of an XML document.

• XML Schema language. XML Schema defines the legal structure of an XML document.

To learn more about these technologies, consult the XML resources in Related Documents.

17.1.2 Standards and Specifications for the XML Schema Processor for
Java

XML Schema is a World Wide Web Consortium (W3C) standard.

The Oracle XML Schema processor supports the W3C XML Schema specifications:

• XML Schema Part 0: Primer

• XML Schema Part 1: Structures

• XML Schema Part 2: Datatypes

Related Topics

• Oracle XML Developer's Kit Standards
A description is given of the Oracle XML Developer's Kit (XDK) standards.

17.1.3 XML Validation with DTDs
Document type definition (DTDs) were originally developed for SGML. XML DTDs are a
subset of those available in SGML and provide a mechanism for declaring constraints on
XML markup. XML DTDs enable the specification of:

• Which elements can be in your XML documents.

• The content model of an XML element, that is, whether the element contains only data or
has a set of subelements that defines its structure. DTDs can define whether a

17-1

subelement is optional or mandatory and whether it can occur only once or
multiple times.

• Attributes of XML elements. DTDs can also specify whether attributes are optional
or mandatory.

• Entities that are legal in your XML documents.

An XML DTD is not itself written in XML, but is a context-independent grammar for
defining the structure of an XML document. You can declare a DTD in an XML
document itself or in a separate file from the XML document.

Validation is the process by which you verify an XML document against its associated
DTD, ensuring that the structure, use of elements, and use of attributes are consistent
with the definitions in the DTD. Thus, applications that handle XML documents can
assume that the data matches the definition.

Using XDK, you can write an application that includes a validating XML parser; that is,
a program that parses and validates XML documents against a DTD. Depending on its
implementation, a validating parser may:

• Either stop processing when it encounters an error, or continue.

• Either report warnings and errors as they occur or in summary form at the end of
processing.

• Enable or disable validation mode

Most processors can enable or disable validation mode, but they must still process
entity definitions and other constructs of DTDs.

17.1.3.1 DTD Samples in XDK
An example DTD is shown, together with an example XML document that conforms to
that DTD.

Example 17-1 shows the contents of a DTD named family.dtd, which is located
in $ORACLE_HOME/xdk/demo/java/parser/common/. The <ELEMENT> tags specify the
legal nomenclature and structure of elements in the document, whereas the <ATTLIST>
tags specify the legal attributes of elements.

Example 17-2 shows the contents of an XML document named family.xml, which is
also located in $ORACLE_HOME/xdk/demo/java/parser/common/. The <!DOCTYPE>
element in family.xml specifies that this XML document conforms to the external DTD
named family.dtd.

Example 17-1 family.dtd

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT family (member*)>
<!ATTLIST family lastname CDATA #REQUIRED>
<!ELEMENT member (#PCDATA)>
<!ATTLIST member memberid ID #REQUIRED>
<!ATTLIST member dad IDREF #IMPLIED>
<!ATTLIST member mom IDREF #IMPLIED>

Example 17-2 family.xml

<?xml version="1.0" standalone="no"?>
<!DOCTYPE family SYSTEM "family.dtd">
<family lastname="Smith">

Chapter 17
Introduction to XML Validation

17-2

<member memberid="m1">Sarah</member>
<member memberid="m2">Bob</member>
<member memberid="m3" mom="m1" dad="m2">Joanne</member>
<member memberid="m4" mom="m1" dad="m2">Jim</member>
</family>

17.1.4 XML Validation with XML Schemas
Concepts involving validation using XML schemas are introduced.

The XML Schema language, also known as XML Schema Definition, was created by the
W3C to use XML syntax to describe the content and the structure of XML documents. An
XML schema is an XML document written in the XML Schema language. An XML schema
document contains rules describing the structure of an input XML document, called an
instance document. An instance document is valid if and only if it conforms to the rules of the
XML schema.

The XML Schema language defines such things as:

• Which elements and attributes are legal in the instance document

• Which elements can be children of other elements

• The order and number of child elements

• Data types for elements and attributes

• Default and fixed values for elements and attributes

A validating XML parser tries to determine whether an instance document conforms to the
rules of its associated XML schema. Using XDK you can write a validating parser that
performs this schema validation. Depending on its implementation, a validating parser may:

• Either stop processing when it encounters an error, or continue.

• Either report warnings and errors as they occur or in summary form at the end of
processing.

The processor must consider entity definitions and other constructs that are defined in a DTD
that is included by the instance document. The XML Schema language does not define what
must occurs when an instance document includes both an XML schema and a DTD. Thus,
the behavior of the application in such cases depends on the implementation.

17.1.4.1 XML Schema Samples in XDK
A sample XML document is shown which contains a purchase report that describes parts that
have been ordered in different regions. This document is located at $ORACLE_HOME/xdk/demo/
java/schema/report.xml. An XML schema document, report.xsd, which you can use to
validate report.xml, is also shown.

Among other things, the XML schema defines the names of the elements that are legal in the
instance document and the type of data that the elements can contain.

Example 17-3 report.xml

<purchaseReport
 xmlns="http://www.example.com/Report"
 xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.example.com/Report report.xsd"
 period="P3M" periodEnding="1999-12-31">

Chapter 17
Introduction to XML Validation

17-3

 <regions>
 <zip code="95819">
 <part number="872-AA" quantity="1"/>
 <part number="926-AA" quantity="1"/>
 <part number="833-AA" quantity="1"/>
 <part number="455-BX" quantity="1"/>
 </zip>
 <zip code="63143">
 <part number="455-BX" quantity="4"/>
 </zip>
 </regions>
 <parts>
 <part number="872-AA">Lawnmower</part>
 <part number="926-AA">Baby Monitor</part>
 <part number="833-AA">Lapis Necklace</part>
 <part number="455-BX">Sturdy Shelves</part>
 </parts>
</purchaseReport>

Example 17-4 report.xsd

<schema targetNamespace="http://www.example.com/Report"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:r="http://www.example.com/Report"
 elementFormDefault="qualified">
 <annotation>
 <documentation xml:lang="en">
 Report schema for Example.com
 Copyright 2000 Example.com. All rights reserved.
 </documentation>
 </annotation>
 <element name="purchaseReport">
 <complexType>
 <sequence>
 <element name="regions" type="r:RegionsType">
 <keyref name="dummy2" refer="r:pNumKey">
 <selector xpath="r:zip/r:part"/>
 <field xpath="@number"/>
 </keyref>
 </element>
 <element name="parts" type="r:PartsType"/>
 </sequence>
 <attribute name="period" type="duration"/>
 <attribute name="periodEnding" type="date"/>
 </complexType>
 <unique name="dummy1">
 <selector xpath="r:regions/r:zip"/>
 <field xpath="@code"/>
 </unique>
 <key name="pNumKey">
 <selector xpath="r:parts/r:part"/>
 <field xpath="@number"/>
 </key>
 </element>

Chapter 17
Introduction to XML Validation

17-4

 <complexType name="RegionsType">
 <sequence>
 <element name="zip" maxOccurs="unbounded">
 <complexType>
 <sequence>
 <element name="part" maxOccurs="unbounded">
 <complexType>
 <complexContent>
 <restriction base="anyType">
 <attribute name="number" type="r:SKU"/>
 <attribute name="quantity" type="positiveInteger"/>
 </restriction>
 </complexContent>
 </complexType>
 </element>
 </sequence>
 <attribute name="code" type="positiveInteger"/>
 </complexType>
 </element>
 </sequence>
 </complexType>
 <simpleType name="SKU">
 <restriction base="string">
 <pattern value="\d{3}-[A-Z]{2}"/>
 </restriction>
 </simpleType>
 <complexType name="PartsType">
 <sequence>
 <element name="part" maxOccurs="unbounded">
 <complexType>
 <simpleContent>
 <extension base="string">
 <attribute name="number" type="r:SKU"/>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 </sequence>
 </complexType>
</schema>

17.1.5 Differences Between XML Schemas and DTDs
The XML Schema language includes most of the capabilities of the DTD specification. An
XML schema serves a similar purpose to a DTD, but is more flexible in specifying document
constraints.

Table 17-1 compares some features between the two validation mechanisms.

Table 17-1 Feature Comparison Between XML Schema and DTD

Feature XML Schema DTD

Element nesting X X

Chapter 17
Introduction to XML Validation

17-5

Table 17-1 (Cont.) Feature Comparison Between XML Schema and DTD

Feature XML Schema DTD

Element occurrence constraints X X

Permitted attributes X X

Attribute types and default values X X

Written in XML X

Namespace support X

Built-In data types X

User-Defined data types X

Include/Import X

Refinement (inheritance) X

These reasons are probably the most persuasive for choosing XML schema validation
over DTD validation:

• The XML Schema language enables you to define rules for the content of
elements and attributes. You achieve control over content by using data types.
With XML Schema data types you can more easily perform actions such as:

– Declare which elements are to contain which types of data, for example,
positive integers in one element and years in another

– Process data obtained from a database

– Define restrictions on data, for example, a number between 10 and 20

– Define data formats, for example, dates in the form MM-DD-YYYY

– Convert data between different data types, for example, strings to dates

• Unlike DTD grammar, documents written in the XML Schema language are
themselves written in XML. Thus, you can perform these actions:

– Use your XML parser to parse your XML schema

– Process your XML schema with the XML Document Object Model (DOM)

– Transform your XML document with Extensible Stylesheet Language
Transformation (XSLT)

– Reuse your XML schemas in other XML schemas

– Extend your XML schema by adding elements and attributes

– Reference multiple XML schemas from the same document

17.2 Using the XML Schema Processor: Overview
The Oracle XML Schema processor is a SAX-based XML schema validator that you
can use to validate instance documents against an XML schema. The processor
supports both language example (LAX) and strict validation.

You can use the processor in these ways:

• Enable it in the XML parser

Chapter 17
Using the XML Schema Processor: Overview

17-6

• Use it with a DOM tree to validate whole or part of an XML document

• Use it as a component in a processing pipeline (like a content handler)

You can configure the schema processor in different ways depending on your requirements.
For example, you can:

• Use a fixed XML schema or automatically build a schema based on the schemaLocation
attributes in an instance document.

• Set XMLError and entityResolver to gain better control over the validation process.

• Determine how much of an instance document is to be validated. You can use any of the
validation modes specified in Table 12-1. You can also designate a type of element as the
root of validation.

17.2.1 Using the XML Schema Processor for Java: Basic Process
XDK packages that are important for applications that process XML schemas are described.

These are the important packages for applications that process XML schemas:

• oracle.xml.parser.v2, which provides APIs for XML parsing

• oracle.xml.parser.schema, which provides APIs for XML Schema processing

The most important classes in the oracle.xml.parser.schema package are described in
Table 17-2. These form the core of most XML schema applications.

Table 17-2 oracle.xml.parser.schema Classes

Class/Interface Description Methods

XMLSchema class Represents XML Schema
component model. An
XMLSchema object is a set of
XMLSchemaNodes that belong
to different target namespaces.
The XSDValidator class uses
XMLSchema for schema
validation or metadata.

The principal methods are:

• get methods such as getElement() and
getSchemaTargetNS() get information about the
XML schema

• printSchema() prints information about the XML
schema

XMLSchemaNode class Represents schema
components in a target
namespace, including type
definitions, element and
attribute delcarations, and
group and attribute group
definitions.

The principal methods are get methods such as
getElementSet() and
getAttributeDeclarations() get components of
the XML schema.

XSDBuilder class Builds an XMLSchema object
from an XML schema
document. The XMLSchema
object is a set of objects
(Infoset items) corresponding to
top-level schema declarations
and definitions. The schema
document is XML parsed and
converted to a DOM tree.

The principal methods are:

• build() creates an XMLSchema object.

• getObject() returns the XMLSchema object.

• setEntityResolver() sets an EntityResolver
for resolving imports and includes.

Chapter 17
Using the XML Schema Processor: Overview

17-7

Table 17-2 (Cont.) oracle.xml.parser.schema Classes

Class/Interface Description Methods

XSDValidator class Validates an instance XML
document against an XML
schema. When registered, an
XSDValidator object is
inserted as a pipeline node
between XMLParser and
XMLDocument events handlers.

The principal methods are:

• get methods such as getCurrentMode() and
getElementDeclaration()

• set methods such as setXMLProperty() and
setDocumentLocator()

• startDocument() receives notification of the
beginning of the document.

• startElement() receives notification of the
beginning of the element.

Figure 17-1 depicts the basic process of validating an instance document with the XML
Schema processor for Java.

Figure 17-1 XML Schema Processor for Java
X

M
L

�
S

c
h

e
m

a

X
M

L
�

S
c
h
e
m

a
�

O
b
je

c
t

X
M

L
�

In
s
ta

n
c
e

D
o

c
u

m
e
n

t

D
O

M
�

o
r�

S
A

X

P
a
rs

e
r

X
S

D
�

B
u
ild

e
r

P
S

V
�

+
 D

e
fa

u
lt

v
a
lu

e
S

c
h
e
m

a

V
a
lid

a
to

r
D

O
M

 B
u
ild

e
r

o
r

A
p
p
lic

a
ti
o
n

E
rr

o
r

M
e
s
s
a
g

e
s

The XML Schema processor performs these major tasks:

1. A builder (XSDBuilder object) assembles the XML schema from an input XML
schema document. Although instance documents and schemas need not exist
specifically as files on the operating system, they are commonly referred to as
files. They may exist as streams of bytes, fields in a database record, or
collections of XML Infoset "Information Items."

This task involves parsing the schema document into an object. The builder
creates the schema object explicitly or implicitly:

• In explicit mode, you pass in an XML schema when you invoke the processor.
Validating Against Externally Referenced XML Schemas explains how to build
the schema object in explicit mode.

Chapter 17
Using the XML Schema Processor: Overview

17-8

• In implicit mode, you do not pass in an XML schema when you invoke the processor
because the schema is internally referenced by the instance document. Validating
Against Internally Referenced XML Schemas explains how to create the schema
object in implicit mode.

2. The XML schema validator uses the schema object to validate the instance document.
This task has these steps:

a. A Simple API for XML (SAX) parser parses the instance document into SAX events,
which it passes to the validator.

b. The validator receives SAX events as input and validates them against the schema
object, sending an error message if it finds invalid XML components.

Validation in the XML Parser describes the validation modes that you can use when
validating the instance document. If you do not explicitly set a schema for validation
with the XSDBuilder class, then the instance document must have the correct
xsi:schemaLocation attribute pointing to the schema file. Otherwise, the program
does not perform the validation. If the processor encounters errors, it generates error
messages.

c. The validator sends input SAX events, default values, or post-schema validation
information to a DOM builder or application.

See Also:

• Oracle Database XML Java API Reference to learn about the XSDBuilder,
DOMParser, and SAXParser classes

• Using the XML Schema Processor for Java to learn about the XDK SAX and
DOM parsers

17.2.2 Running the XML Schema Processor Demo Programs
Demo programs for the XML Schema processor for Java are included in $ORACLE_HOME/xdk/
demo/java/schema.

Table 17-3 describes the XML files and programs that you can use to test the XML Schema
processor.

Table 17-3 XML Schema Sample Files

File Description

cat.xsd A sample XML schema used by the XSDSetSchema.java program to validate
catalogue.xml. The cat.xsd schema specifies the structure of a catalogue of books.

catalogue.xml A sample instance document that the XSDSetSchema.java program uses to validate
against the cat.xsd schema.

catalogue_e.xml A sample instance document used by the XSDSample.java program. When the program
tries to validate this document against the cat.xsd schema, it generates schema errors.

DTD2Schema.java This sample program converts a DTD (first argument) into an XML Schema and uses it to
validate an XML file (second argument).

Chapter 17
Using the XML Schema Processor: Overview

17-9

Table 17-3 (Cont.) XML Schema Sample Files

File Description

embeded_xsql.xsd The XML schema used by XSDLax.java. The schema defines the structure of an XSQL
page.

embeded_xsql.xml The instance document used by XSDLax.java.

juicer1.xml A sample XML document for use with xsdproperty.java. The XML schema that defines
this document is juicer1.xsd.

juicer1.xsd A sample XML schema for use with xsdproperty.java. This XML schema defines
juicer1.xml.

juicer2.xml A sample XML document for use with xsdproperty.java. The XML schema that defines
this document is juicer2.xsd.

juicer2.xsd A sample XML document for use with xsdproperty.java. This XML schema defines
juicer2.xml.

report.xml The sample XML file that XSDSetSchema.java uses to validate against the XML schema
report.xsd.

report.xsd A sample XML schema used by the XSDSetSchema.java program to validate the contents
of report.xml. The report.xsd schema specifies the structure of a purchase order.

report_e.xml When the program validates this sample XML file using XSDSample.java, it generates XML
Schema errors.

xsddom.java This program shows how to validate an instance document by get a DOM representation of
the document and using an XSDValidator object to validate it.

xsdent.java This program validates an XML document by redirecting the referenced schema in the
SchemaLocation attribute to a local version.

xsdent.xml This XML document describes a book. The file is used as an input to xsdent.java.

xsdent.xsd This XML schema document defines the rules for xsdent.xml. The schema document
contains a schemaLocation attribute set to xsdent-1.xsd.

xsdent-1.xsd The XML schema document referenced by the schemaLocation attribute in xsdent.xsd.

xsdproperty.java This demo shows how to configure the XML Schema processor to validate an XML
document based on a complex type or element declaration.

xsdsax.java This demo shows how to validate an XML document received as a SAX stream.

XSDLax.java This demo is the same as XSDSetSchema.java but sets the SCHEMA_LAX_VALIDATION
flag for LAX validation.

XSDSample.java This program is a sample driver that you can use to process XML instance documents.

XSDSetSchema.java This program is a sample driver to process XML instance documents by overriding the
schemaLocation. The program uses the XML Schema specification from cat.xsd to
validate the contents of catalogue.xml.

Documentation for how to compile and run the sample programs is located in the
README in the same directory. The basic steps are:

Chapter 17
Using the XML Schema Processor: Overview

17-10

1. Change into the $ORACLE_HOME/xdk/demo/java/schema directory (UNIX) or
%ORACLE_HOME%\xdk\demo\java\schema directory (Windows).

2. Run make (UNIX) or Make.bat (Windows) at the command line.

3. Add xmlparserv2.jar, xschema.jar, and the current directory to the CLASSPATH. These
JAR files are located in $ORACLE_HOME/lib (UNIX) and %ORACLE_HOME%\lib (Windows).
For example, you can set the CLASSPATH with the tcsh shell on UNIX:

setenv CLASSPATH
 "$CLASSPATH":$ORACLE_HOME/lib/xmlparserv2.jar:$ORACLE_HOME/lib/schema.jar:.

Note:

The XML Schema processor requires JDK version 1.2 or later, and it is usable
on any operating system with Java 1.2 support.

4. Run the sample programs with the XML files that are included in the directory:

• These examples use report.xsd to validate the contents of report.xml:

java XSDSample report.xml
java XSDSetSchema report.xsd report.xml

• This example validates an instance document in Lax mode:

java XSDLax embeded_xsql.xsd embeded_xsql.xml
• These examples use cat.xsd to validate the contents of catalogue.xml:

java XSDSample catalogue.xml
java XSDSetSchema cat.xsd catalogue.xml

• These examples generates error messages:

java XSDSample catalogue_e.xml
java XSDSample report_e.xml

• This example uses the schemaLocation attribute in xsdent.xsd to redirect the XML
schema to xsdent-1.xsd for validation:

java xsdent xsdent.xml xsdent.xsd
• This example generates a SAX stream from report.xml and validates it against the

XML schema defined in report.xsd:

java xsdsax report.xsd report.xml
• This example creates a DOM representation of report.xml and validates it against

the XML schema defined in report.xsd:

java xsddom report.xsd report.xml
• These examples configure validation starting with an element declaration or complex

type definition:

java xsdproperty juicer1.xml juicer1.xsd http://www.juicers.org \
juicersType false > juicersType.out

java xsdproperty juicer2.xml juicer2.xsd http://www.juicers.org \
Juicers true > juicers_e.out

Chapter 17
Using the XML Schema Processor: Overview

17-11

• This example converts a DTD (dtd2schema.dtd) into an XML schema and
uses it to validate an instance document (dtd2schema.xml):

java DTD2Schema dtd2schema.dtd dtd2schema.xml

17.2.3 Using the XML Schema Processor Command-Line Utility
You can use the XML parser command-line utility (oraxml) to validate instance
documents against XML schemas and DTDs.

See Also:

Using the Java XML Parser Command-Line Utility (oraxml) for information
about how to run oraxml .

17.2.3.1 Using oraxml to Validate Against a Schema
An example shows how you can validate document report.xml against the XML
schema report.xsd by invoking oraxml on the command line.

Example 17-5 Using oraxml to Validate Against a Schema

Invoke this command in directory $ORACLE_HOME/xdk/demo/java/schema:

oraxml -schema -enc report.xml

The expected output is:

The encoding of the input file: UTF-8
The input XML file is parsed without errors using Schema validation
mode.

17.2.3.2 Using oraxml to Validate Against a DTD
An example shows how you can validate document family.xml against the DTD
family.dtd by invoking oraxml on the command line.

Example 17-6 Using oraxml to Validate Against a DTD

Invoke this command in directory $ORACLE_HOME/xdk/demo/java/parser/common:

oraxml -dtd -enc family.xml

The expected output is:

The encoding of the input file: UTF-8
 The input XML file is parsed without errors using DTD validation mode.

Chapter 17
Using the XML Schema Processor: Overview

17-12

17.3 Validating XML with XML Schemas
Topics cover various ways to validate XML documents using XML schemas.

17.3.1 Validating Against Internally Referenced XML Schemas
$ORACLE_HOME/xdk/demo/java/schema/XSDSample.java shows how to validate against an
implicit XML Schema. The validation mode is implicit because the XML schema is referenced
in the instance document itself.

Follow the steps in this section to write programs that use the setValidationMode() method
of the oracle.xml.parser.v2.DOMParser class:

1. Create a DOM parser to use for the validation of an instance document. this code
fragment from XSDSample.java shows how to create the DOMParser object:

public class XSDSample
{
 public static void main(String[] args) throws Exception
 {
 if (args.length != 1)
 {
 System.out.println("Usage: java XSDSample <filename>");
 return;
 }
 process (args[0]);
 }

 public static void process (String xmlURI) throws Exception
 {
 DOMParser dp = new DOMParser();
 URL url = createURL(xmlURI);
 ...
 }
...
}

createURL() is a helper method that constructs a URL from a file name passed to the
program as an argument.

2. Set the validation mode for the validating DOM parser with the
DOMParser.setValidationMode() method. For example, XSDSample.java shows how to
specify XML schema validation:

dp.setValidationMode(XMLParser.SCHEMA_VALIDATION);
dp.setPreserveWhitespace(true);

3. Set the output error stream with the DOMParser.setErrorStream() method. For example,
XSDSample.java sets the error stream for the DOM parser object:

dp.setErrorStream (System.out);
4. Validate the instance document with the DOMParser.parse() method. You do not have to

create an XML schema object explicitly because the schema is internally referenced by
the instance document. For example, XSDSample.java validates the instance document:

try
{

Chapter 17
Validating XML with XML Schemas

17-13

 System.out.println("Parsing "+xmlURI);
 dp.parse(url);
 System.out.println("The input file <"+xmlURI+"> parsed without errors");
}
catch (XMLParseException pe)
{
 System.out.println("Parser Exception: " + pe.getMessage());
}
catch (Exception e)
{
 System.out.println("NonParserException: " + e.getMessage());
}

17.3.2 Validating Against Externally Referenced XML Schemas
$ORACLE_HOME/xdk/demo/java/schema/XSDSetSchema.java shows how to validate an
XML schema explicitly. The validation mode is explicit because you use the
XSDBuilder class to specify the schema to use for validation: the schema is not
specified in the instance document as in implicit validation.

Follow the basic steps in this section to write Java programs that use the build()
method of the oracle.xml.parser.schema.XSDBuilder class:

1. Build an XML schema object from the XML schema document with the
XSDBuilder.build() method. This code fragment from XSDSetSchema.java shows
how to create the object:

public class XSDSetSchema
{
 public static void main(String[] args) throws Exception
 {
 if (args.length != 2)
 {
 System.out.println("Usage: java XSDSample <schema_file>
<xml_file>");
 return;
 }

 XSDBuilder builder = new XSDBuilder();
 URL url = createURL(args[0]);

 // Build XML Schema Object
 XMLSchema schemadoc = (XMLSchema)builder.build(url);
 process(args[1], schemadoc);
 }
. . .

The createURL() method is a helper method that constructs a URL from the
schema document file name specified on the command line.

2. Create a DOM parser to use for validation of the instance document. This code
from XSDSetSchema.java shows how to pass the instance document file name and
XML schema object to the process() method:

public static void process(String xmlURI, XMLSchema schemadoc)throws
Exception{
 DOMParser dp = new DOMParser();
 URL url = createURL (xmlURI);
 . . .

Chapter 17
Validating XML with XML Schemas

17-14

3. Specify the schema object to use for validation with the DOMParser.setXMLSchema()
method. This step is not necessary in implicit validation mode because the instance
document already references the schema. For example, XSDSetSchema.java specifies
the schema:

dp.setXMLSchema(schemadoc);
4. Set the validation mode for the DOM parser object with the

DOMParser.setValidationMode() method. For example, XSDSample.java shows how to
specify XML schema validation:

dp.setValidationMode(XMLParser.SCHEMA_VALIDATION);
dp.setPreserveWhitespace(true);

5. Set the output error stream for the parser with the DOMParser.setErrorStream() method.
For example, XSDSetSchema.java sets it:

dp.setErrorStream (System.out);
6. Validate the instance document against the XML schema with the DOMParser.parse()

method. For example, XSDSetSchema.java includes this code:

try
{
 System.out.println("Parsing "+xmlURI);
 dp.parse (url);
 System.out.println("The input file <"+xmlURI+"> parsed without errors");
}
catch (XMLParseException pe)
{
 System.out.println("Parser Exception: " + pe.getMessage());
}
catch (Exception e)
{
 System.out.println ("NonParserException: " + e.getMessage());
}

17.3.3 Validating a Subsection of an XML Document
In LAX mode, you can validate parts of an XML document without validating all of it. LAX
parsing validates elements in a document that are declared in an associated XML schema.
The processor does not consider the instance document invalid if it contains no elements
declared in the schema.

By using LAX mode, you can define the schema only for the part of the XML to be validated.
The $ORACLE_HOME/xdk/demo/java/schema/XSDLax.java program shows how to use LAX
validation. The program follows the basic steps described in Validating Against Externally
Referenced XML Schemas:

1. Build an XML schema object from the user-specified XML schema document.

2. Create a DOM parser to use for validation of the instance document.

3. Specify the XML schema to use for validation.

4. Set the validation mode for the DOM parser object.

5. Set the output error stream for the parser.

6. Validate the instance document against the XML schema by invoking
DOMParser.parse().

Chapter 17
Validating XML with XML Schemas

17-15

To enable LAX validation, the program sets the validation mode in the parser to
SCHEMA_LAX_VALIDATION rather than to SCHEMA_VALIDATION. This code fragment from
XSDLax.java shows this technique:

dp.setXMLSchema(schemadoc);
dp.setValidationMode(XMLParser.SCHEMA_LAX_VALIDATION);
dp.setPreserveWhitespace (true);
. . .

You can test LAX validation by running the sample program:

java XSDLax embeded_xsql.xsd embeded_xsql.xml

17.3.4 Validating XML from a SAX Stream
$ORACLE_HOME/xdk/demo/java/schema/xsdsax.java shows how to validate an XML
document received as a SAX stream. You instantiate an XSDValidator and register it
with the SAX parser as the content handler.

Follow the steps in this section to write programs that validate XML from a SAX
stream:

1. Build an XML schema object from the user-specified XML schema document by
invoking the XSDBuilder.build() method. This code fragment shows how to
create the object:

XSDBuilder builder = new XSDBuilder();
URL url = XMLUtil.createURL(args[0]);

// Build XML Schema Object
XMLSchema schemadoc = (XMLSchema)builder.build(url);
process(args[1], schemadoc);
. . .

createURL() is a helper method that constructs a URL from the file name specified
on the command line.

2. Create a SAX parser (SAXParser object) to use for validation of the instance
document. This code fragment from saxxsd.java passes the handles to the XML
document and schema document to the process() method:

process(args[1], schemadoc);...public static void process(String xmlURI,
XMLSchema schemadoc)
throws Exception
{
 SAXParser dp = new SAXParser();
...

3. Configure the SAX parser. This code fragment sets the validation mode for the
SAX parser object with the XSDBuilder.setValidationMode() method:

dp.setPreserveWhitespace (true);
dp.setValidationMode(XMLParser.NONVALIDATING);

4. Create and configure a validator (XSDValidator object). This code fragment shows
this technique:

XMLError err;... err = new XMLError();
...
XSDValidator validator = new XSDValidator();

Chapter 17
Validating XML with XML Schemas

17-16

...
validator.setError(err);

5. Specify the XML schema to use for validation by invoking the
XSDBuilder.setXMLProperty() method. The first argument is the name of the property,
which is fixedSchema, and the second is the reference to the XML schema object. This
code fragment shows this technique:

validator.setXMLProperty(XSDNode.FIXED_SCHEMA, schemadoc);
...

6. Register the validator as the SAX content handler for the parser. This code fragment
shows this technique:

dp.setContentHandler(validator);
...

7. Validate the instance document against the XML schema by invoking the
SAXParser.parse() method. This code fragment shows this technique:

dp.parse (url);

17.3.5 Validating XML from a DOM
$ORACLE_HOME/xdk/demo/java/schema/xsddom.java shows how to validate an instance
document by get a DOM representation of the document and using an XSDValidator object
to validate it.

The xsddom.java program follows these steps:

1. Build an XML schema object from the user-specified XML schema document by invoking
the XSDBuilder.build() method. This code fragment shows how to create the object:

XSDBuilder builder = new XSDBuilder();
URL url = XMLUtil.createURL(args[0]);

XMLSchema schemadoc = (XMLSchema)builder.build(url);
process(args[1], schemadoc);

createURL() is a helper method that constructs a URL from the file name specified on
the command line.

2. Create a DOM parser (DOMParser object) to use for validation of the instance document.
This code fragment from domxsd.java passes the handles to the XML document and
schema document to the process() method:

process(args[1], schemadoc);...public static void process(String xmlURI, XMLSchema
schemadoc)
throws Exception
{
 DOMParser dp = new DOMParser();
 . . .

3. Configure the DOM parser. This code fragment sets the validation mode for the parser
object with the DOMParser.setValidationMode() method:

dp.setPreserveWhitespace (true);
dp.setValidationMode(XMLParser.NONVALIDATING);
dp.setErrorStream (System.out);

4. Parse the instance document. This code fragment shows this technique:

dp.parse (url);

Chapter 17
Validating XML with XML Schemas

17-17

5. Get the DOM representation of the input document. This code fragment shows this
technique:

XMLDocument doc = dp.getDocument();
6. Create and configure a validator (XSDValidator object). This code fragment shows

this technique:

XMLError err;... err = new XMLError();
...
XSDValidator validator = new XSDValidator();
...
validator.setError(err);

7. Specify the schema object to use for validation by invoking the
XSDBuilder.setXMLProperty() method. The first argument is the name of the
property, which in this example is fixedSchema, and the second is the reference to
the schema object. This code fragment shows this technique:

validator.setXMLProperty(XSDNode.FIXED_SCHEMA, schemadoc);
. . .

8. Get the root element (XMLElement) of the DOM tree and validate. This code
fragment shows this technique:

XMLElement root = (XMLElement)doc.getDocumentElement();
XMLElement copy = (XMLElement)root.validateContent(validator, true);
copy.print(System.out);

17.3.6 Validating XML from Designed Types and Elements
$ORACLE_HOME/xdk/demo/java/schema/xsdproperty.java shows how to configure the
XML Schema processor to validate an XML document based on a complex type or
element declaration.

The xsdproperty.java program follows these steps:

1. Create String objects for the instance document name, XML schema name, root
node namespace, root node local name, and specification of element or complex
type ("true" means the root node is an element declaration). This code fragment
shows this technique:

String xmlfile = args[0];
String xsdfile = args[1];
...
String ns = args[2]; //namespace for the root node
String nm = args[3]; //root node's local name
String el = args[4]; //true if root node is element declaration,
 // otherwise, the root node is a complex type

2. Create an XSD builder and use it to create the schema object. This code fragment
shows this technique:

XSDBuilder builder = new XSDBuilder();
URL url = XMLUtil.createURL(xsdfile);
XMLSchema schema;
...
schema = (XMLSchema) builder.build(url);

3. Get the node. Invoke different methods depending on whether the node is an
element declaration or a complex type:

Chapter 17
Validating XML with XML Schemas

17-18

• If the node is an element declaration, pass the local name and namespace to the
getElement() method of the schema object.

• If the node is an element declaration, pass the namespace, local name, and root
complex type to the getType() method of the schema object.

xsdproperty.java uses this control structure:

QxName qname = new QxName(ns, nm);
...
XSDNode nd;
...
if (el.equals("true"))
{
 nd = schema.getElement(ns, nm);
 /* process ... */
}
else
{
 nd = schema.getType(ns, nm, XSDNode.TYPE);
 /* process ... */
}

4. After getting the node, create a new parser and set the schema to the parser to enable
schema validation. This code fragment shows this technique:

DOMParser dp = new DOMParser();
URL url = XMLUtil.createURL (xmlURI);

5. Set properties on the parser and then parse the URL. Invoke the
schemaValidatorProperty() method:

a. Set the root element or type property on the parser to a fully qualified name.

For a top-level element declaration, set the property name to XSDNode.ROOT_ELEMENT
and the value to a QName, as showd by the process1() method.

For a top-level type definition, set the property name to XSDNode.ROOT_TYPE and the
value to a QName, as showd by the process2() method.

b. Set the root node property on the parser to an element or complex type node.

For an element node, set the property name to XSDNode.ROOT_NODE and the value to
an XSDElement node, as showd by the process3() method.

For a type node, set the property name to XSDNode.ROOT_NODE and the value to an
XSDComplexType node, as showd by the process3() method.

This code fragment shows the sequence of method invocation:

if (el.equals("true"))
{
 nd = schema.getElement(ns, nm);
 process1(xmlfile, schema, qname);
 process3(xmlfile, schema, nd);
}
else
{
 nd = schema.getType(ns, nm, XSDNode.TYPE);
 process2(xmlfile, schema, qname);
 process3(xmlfile, schema, nd);
}

The processing methods are implemented:

Chapter 17
Validating XML with XML Schemas

17-19

 static void process1(String xmlURI, XMLSchema schema, QxName qname)
 throws Exception
 {
 /* create parser... */
 dp.setXMLSchema(schema);
 dp.setSchemaValidatorProperty(XSDNode.ROOT_ELEMENT, qname);
 dp.setPreserveWhitespace (true);
 dp.setErrorStream (System.out);
 dp.parse (url);
 ...
 }

 static void process2(String xmlURI, XMLSchema schema, QxName qname)
 throws Exception
 {
 /* create parser...
*/

 dp.setXMLSchema(schema);
 dp.setSchemaValidatorProperty(XSDNode.ROOT_TYPE, qname);
 dp.setPreserveWhitespace (true);
 dp.setErrorStream (System.out);
 dp.parse (url);
 ...
 }

 static void process3(String xmlURI, XMLSchema schema, XSDNode node)
 throws Exception
 {
 /* create parser... */

 dp.setXMLSchema(schema);
 dp.setSchemaValidatorProperty(XSDNode.ROOT_NODE, node);
 dp.setPreserveWhitespace (true);
 dp.setErrorStream (System.out);
 dp.parse (url);
 ...
 }

17.4 Tips and Techniques for Programming with XML
Schemas

Topics include overriding schema location and converting a DTD to an XML schema.

17.4.1 Overriding the Schema Location with an Entity Resolver
When XSDBuilder builds a schema, it might need to include or import other schemas
that are specified as URLs in a schemaLocation attribute. In some situations, you

Chapter 17
Tips and Techniques for Programming with XML Schemas

17-20

might want to override the schema locations specified in <import> and supply the builder with
the required schema documents.

The xsdent.java demo described in Table 17-3 shows a case where a schema specified as
schemaLocation needs to be imported. The document element in xsdent.xml file contains
this attribute:

xsi:schemaLocation = "http://www.example.com/BookCatalogue
 xsdent.xsd">

The xsdent.xsd document contains these elements:

<schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.example.com/BookCatalogue"
 xmlns:catd = "http://www.example.com/Digest"
 xmlns:cat = "http://www.example.com/BookCatalogue"
 elementFormDefault="qualified">
<import namespace = "http://www.example.com/Digest"
 schemaLocation = "xsdent-1.xsd" />

As an example of wanting to override schema locations specified in <import> and supplying
the builder with the required schema documents, suppose that you have downloaded the
schemas documents from external web sites and stored them in a database. In such a
situation, you can set an entity resolver in the XSDBuilder. XSDBuilder passes the schema
location to the resolver, which returns an InputStream, Reader, or URL as an InputSource.
The builder can read the schema documents from the InputSource.

The xsdent.java program shows how you can override the schema location with an entity
resolver. You must implement the EntityResolver interface, instantiate the entity resolver,
and set it in the XML schema builder. In the demo code, sampleEntityResolver1 returns
InputSource as an InputStream whereas sampleEntityResolver2 returns InputSource as a
URL.

Follow these basic steps:

1. Create a new XML schema builder:

XSDBuilder builder = new XSDBuilder();

2. Set the builder to your entity resolver. An entity resolver is a class that implements the
EntityResolver interface. The purpose of the resolver is to enable the XML reader to
intercept any external entities before including them. This code fragment creates an entity
resolver and sets it in the builder:

builder.setEntityResolver(new sampleEntityResolver1());

The sampleEntityResolver1 class implements the resolveEntity() method. You can
use this method to redirect external system identifiers to local URIs. The source code is:

class sampleEntityResolver1 implements EntityResolver
{
 public InputSource resolveEntity (String targetNS, String systemId)
 throws SAXException, IOException
 {
 // perform any validation check if needed based on targetNS & systemId
 InputSource mySource = null;
 URL u = XMLUtil.createURL(systemId);
 // Create input source with InputStream as input
 mySource = new InputSource(u.openStream());

Chapter 17
Tips and Techniques for Programming with XML Schemas

17-21

 mySource.setSystemId(systemId);
 return mySource;
 }
}

The sampleEntityResolver1 class initializes the InputSource with a stream.

3. Build the XML schema object. This code shows this technique:

schemadoc = builder.build(url);
4. Validate the instance document against the XML schema. The program executes

this statement:

process(xmlfile, schemadoc);

The process() method creates a DOM parser, configures it, and invokes the
parse() method. The method is implemented:

public static void process(String xmlURI, Object schemadoc)
 throws Exception
{
 DOMParser dp = new DOMParser();
 URL url = XMLUtil.createURL (xmlURI);

 dp.setXMLSchema(schemadoc);
 dp.setValidationMode(XMLParser.SCHEMA_VALIDATION);
 dp.setPreserveWhitespace (true);
 dp.setErrorStream (System.out);
 try {
 dp.parse (url);
 ...
}

17.4.2 Converting DTDs to XML Schemas
Because of the power and flexibility of the XML Schema language, you may want to
convert your existing DTDs to XML schema documents. You can use XDK to perform
this transformation.

The $ORACLE_HOME/xdk/demo/java/schema/DTD2Schema.java program shows how to
convert a DTD. You can test the program:

java DTD2Schema dtd2schema.dtd dtd2schema.xml

Follow these basic steps to convert a DTD to an XML schema document:

1. Parse the DTD with the DOMParser.parseDTD() method. This code fragment from
DTD2Schema.java shows how to create the DTD object:

XSDBuilder builder = new XSDBuilder();
URL dtdURL = createURL(args[0]);
DTD dtd = getDTD(dtdURL, "abc");

The getDTD() method is implemented:

private static DTD getDTD(URL dtdURL, String rootName)
 throws Exception
{
 DOMParser parser = new DOMParser();
 DTD dtd;

Chapter 17
Tips and Techniques for Programming with XML Schemas

17-22

 parser.setValidationMode(true);
 parser.setErrorStream(System.out);
 parser.showWarnings(true);
 parser.parseDTD(dtdURL, rootName);
 dtd = (DTD)parser.getDoctype();
 return dtd;
}

2. Convert the DTD to an XML schema DOM tree with the DTD.convertDTD2Sdhema()
method. This code fragment from DTD2Schema.java shows this technique:

XMLDocument dtddoc = dtd.convertDTD2Schema();
3. Write the XML schema DOM tree to an output stream with the XMLDocument.print()

method. This code fragment from DTD2Schema.java shows this technique:

FileOutputStream fos = new FileOutputStream("dtd2schema.xsd.out");
dtddoc.print(fos);

4. Create an XML schema object from the schema DOM tree with the XSDBuilder.build()
method. This code fragment from DTD2Schema.java shows this technique:

XMLSchema schemadoc = (XMLSchema)builder.build(dtddoc, null);
5. Validate an instance document against the XML schema with the DOMParser.parse()

method. This code fragment from DTD2Schema.java shows this technique:

validate(args[1], schemadoc);

The validate() method is implemented:

DOMParser dp = new DOMParser();
URL url = createURL (xmlURI);
dp.setXMLSchema(schemadoc);
dp.setValidationMode(XMLParser.SCHEMA_VALIDATION);
dp.setPreserveWhitespace (true);
dp.setErrorStream (System.out);
try
{
 System.out.println("Parsing "+xmlURI);
 dp.parse (url);
 System.out.println("The input file <"+xmlURI+"> parsed without errors");
}
...

Chapter 17
Tips and Techniques for Programming with XML Schemas

17-23

18
Using the JAXB Class Generator

An explanation is given of how to use the Java Architecture for XML Binding (JAXB) class
generator.

Note:

Use the Java Architecture for XML Binding (JAXB) class generator for new
applications to take advantage of the object binding feature for Extensible Markup
Language (XML) data. The Oracle9i class generator for Java is deprecated. Oracle
Database 10g supports the Oracle9i class generator for backward compatibility.

18.1 Introduction to the JAXB Class Generator
Topics introducing the JAXB class generator include prerequisites, standards and
specifications, marshalling and unmarshalling, validation, and customization.

18.1.1 Prerequisites for Using the JAXB Class Generator
Prerequisites for using the JAXB class generator are listed.

This chapter assumes that you have some familiarity with these topics:

• Java Architecture for XML Binding (JAXB). For a more thorough introduction to JAXB
than is possible in this chapter, consult the XML resources listed in Related Documents.

• XML Schema language. See Using the XML Schema Processor for Java for an overview
and links to suggested reading.

18.1.2 Standards and Specifications for the JAXB Class Generator
The Oracle JAXB processor implements JSR-31, The Java Architecture for XML Binding
(JAXB), Version 1.0, which is a recommendation of the Java Community Process (JCP).

The Oracle XML Developer's Kit (XDK) implementation of the JAXB 1.0 specification does
not support these optional features:

• Javadoc generation

• Fail Fast validation

• External customization file

• XML Schema concepts described in section E.2 of the specification

18-1

Related Topics

• Oracle XML Developer's Kit Standards
A description is given of the Oracle XML Developer's Kit (XDK) standards.

18.1.3 JAXB Class Generator Features
The JAXB class generator for Java generates the interfaces and the implementation
classes corresponding to an XML Schema. Its principal advantage to Java developers
is automation of the mapping between XML documents and Java code, which enables
programs to use generated code to read, manipulate, and re-create XML data.

The Java classes, which can be extended, give the developer access to the XML data
without knowledge of the underlying XML data structure.

The Oracle JAXB class generator provides these advantages for XML application
development in Java:

• Speed

Because the schema-to-code conversion is automated, you can rapidly generate
Java code from an input XML schema.

• Ease of use

You can invoke generated get and set methods rather than code your own from
the start.

• Automated data conversion

You can automate the conversion of XML document data into Java data types.

• Customization

JAXB provides a flexible framework that enables you to customize the binding of
XML elements and attributes.

18.1.4 Marshalling and Unmarshalling with JAXB
JAXB is an application programming interface (API) and set of tools that maps XML
data to Java objects. JAXB simplifies access to an XML document from a Java
program by presenting the XML document to the program in a Java format.

You can use the JAXB API and tools to perform these basic tasks:

1. Generate and compile JAXB classes from an XML schema with the orajaxb
command-line utility.

To use the JAXB class generator to generate Java classes you must provide it with
an XML schema. Document type definitions (DTDs) are not supported by JAXB.
As explained in Converting DTDs to XML Schemas, however, you can use the
DTD2Schema program to convert a DTD to an XML schema. Afterwards, you can
use the JAXB class generator to generate classes from the schema.

The JAXB compiler generates Java classes that map to constraints in the source
XML schema. The classes implements get and set methods that you can use to
get and specify data for each type of element and attribute in the schema.

2. Process XML documents by instantiating the generated classes in a Java
program.

Chapter 18
Introduction to the JAXB Class Generator

18-2

Specifically, you can write a program that uses the JAXB binding framework to perform
these tasks:

a. Unmarshal the XML documents.

As explained in the JAXB specification, unmarshalling is defined as moving data from
an XML document to the Java-generated objects.

b. Validate the XML documents.

You can validate before or during the unmarshalling of the contents into the content
tree. You can also validate on demand by invoking the validation API on the Java
object. See Validation with JAXB.

c. Modify Java content objects.

The content tree of data objects represents the structure and content of the source
XML documents. You can use the set methods defined for a class to modify the
content of elements and attributes.

d. Marshal Java content objects back to XML.

In contrast to unmarshalling, marshalling is creating an XML document from Java
objects by traversing a content tree of instances of Java classes. You can serialize
the data to a Document Object Model (DOM) tree, Simple API for XML (SAX) content
handler, transformation result, or output stream.

18.1.5 Validation with JAXB
A Java content tree is considered valid with an XML schema when marshalling the tree
generates a valid XML document.

JAXB applications can perform validation in these circumstances:

• Unmarshalling-time validation that notifies the application of errors and warnings during
unmarshalling. If unmarshalling includes validation that is error-free, then the input XML
document and the Java content tree are valid.

• On-demand validation of a Java content tree initiated by the application.

• Fail-fast validation that gives immediate results while updating the Java content tree with
set and get methods. As specified in Standards and Specifications for the JAXB Class
Generator, fail-fast validation is an optional feature in the JAXB 1.0 specification that is
not supported in the XDK implementation of the JAXB class generator.

JAXB applications must be able to marshal a valid Java content tree, but they are not
required to ensure that the Java content tree is valid before invoking a marshalling API. The
marshalling process does not itself validate the content tree. Programs are required to throw
a javax/xml/bind/MarshalException when marshalling fails due to invalid content.

18.1.6 JAXB Customization
The declared element and type names in an XML schema do not always provide the most
useful Java class names. You can override the default JAXB bindings by using custom
binding declarations, which are described in the JAXB specification.

These declarations let you customize your generated JAXB classes beyond the XML-specific
constraints in an XML schema, to include Java-specific refinements such as class and
package name mappings.

You can annotate the schema to perform these customizations:

Chapter 18
Introduction to the JAXB Class Generator

18-3

• Bind XML names to user-defined Java class names

• Name the package, derived classes, and methods

• Choose which elements to bind to which classes

• Decide how to bind each attribute and element declaration to a property in the
appropriate content class

• Choose the type of each attribute-value or content specification

Several of the demos programs listed in Table 18-2 show JAXB customizations.

See Also:

Customizing a Class Name in a Top-Level Element for a detailed explanation
of a customization demo

18.2 Using the JAXB Class Generator: Overview
Topics here include the basic process of using the JAXB processor, running the XML
schema processor demo programs, and using the JAXB class generator command-
line utility.

18.2.1 Using the JAXB Processor: Basic Process
The XDK JAXB API basic process is described.

The XDK JAXB API exposes these packages:

• javax.xml.bind, which provides a runtime binding framework for client
applications including unmarshalling, marshalling, and validation

• javax.xml.bind.util, which provides useful client utility classes

The most important classes and interfaces in the javax.xml.bind package are
described in Table 18-1. These form the core of most JAXB applications.

Table 18-1 javax.xml.bind Classes and Interfaces

Class/Interface Description Methods

JAXBContext class Provides an abstraction for
managing the XML/Java
binding information necessary
to implement the JAXB binding
framework operations:
unmarshal, marshal, and
validate. A client application
gets new instances of this class
by invoking the
newInstance() method.

The principal methods are:

• newInstance() creates a JAXB content class.
Supply this method the name of the package
containing the generated classes.

• createMarshaller() creates a marshaller that
you can use to convert a content tree to XML.

• createUnmarshaller() creates an unmarshaller
that you can use to convert XML to a content tree.

• createValidator() creates a Validator object
that can validate a java content tree against its
source schema.

Chapter 18
Using the JAXB Class Generator: Overview

18-4

Table 18-1 (Cont.) javax.xml.bind Classes and Interfaces

Class/Interface Description Methods

Marshaller interface Governs the process of
serializing Java content trees
into XML data.

The principal methods are:

• getEventHandler() returns the current or default
event handler.

• getProperty() gets the property in the
underlying implementation of marshaller.

• marshal() marshals the content tree into a DOM,
SAX2 events, output stream, transformation result,
or Writer.

• setEventHandler() creates a Validator object
that validates a java content tree against its source
schema.

Unmarshaller
interface

Governs the process of
deserializing XML data into
newly created Java content
trees, optionally validating the
XML data as it is unmarshalled.

The principal methods are:

• getEventHandler() returns the current or default
event handler.

• getUnmarshallerHandler() returns an
unmarshaller handler object usable as a
component in an XML pipeline.

• isValidating() indicates whether the
unmarshaller is set to validate mode.

• setEventHandler() allows an application to
register a ValidationEventHandler.

• setValidating() specifies whether the
unmarshaller validates during unmarshal
operations.

• marshal() unmarshals XML data from the
specified file, URL, input stream, input source,
SAX, or DOM.

Validator interface Controls the validation of
content trees during run time.
Specifically, this interface
controls on-demand validation,
which enables clients to receive
data about validation errors and
warnings detected in the Java
content tree.

The principal methods are:

• getEventHandler() returns the current or default
event handler.

• setEventHandler() allows an application to
register a ValidationEventHandler.

• validate() validates Java content trees on-
demand at run time. This method can validate any
arbitrary subtree of the Java content tree.

• validateRoot() validates the Java content tree
rooted at rootObj. You can use this method to
validate an entire Java content tree.

Figure 18-1 depicts the process flow of a framework that uses the JAXB class generator.

Chapter 18
Using the JAXB Class Generator: Overview

18-5

Figure 18-1 JAXB Class Generator for Java

X
M

L
�

D
o

c
u

m
e
n

t

O
ra

c
le

 J
A

X
B

�
C

la
s
s
 G

e
n

e
ra

to
r

J
a
v
a
 A

p
p

li
c
a
ti

o
n

X
M

L

S
c
h

e
m

a

X
M

L
 P

a
rs

e
r

fo
r

J
a
v
a

J
c

J
c

J
c

J
c

J
a
v
a
 c

la
s
s
e
s
 b

a
s
e
d

o

n
 X

M
L

 S
c
h

e
m

a

(o
n

e
 c

la
s
s
 p

e
r

e
le

m
e
n

t)

X
M

L
 �

S
c
h

e
m

a

The basic stages of the process shown in Figure 18-1 are:

1. The XML parser parses the XML schema and sends the parsed data to the JAXB
class generator.

2. The class generator creates Java classes and interfaces based on the input XML
schema.

By default, one XML element or type declaration generates one interface and one
class. For example, if the schema defines an element named <anElement>, then
by default the JAXB class generator generates a source file named
AnElement.java and another named AnElementImpl.java. You can use customize
binding declarations to override the default binding of XML Schema components to
Java representations.

3. The Java compiler compiles the .java source files into class files. All of the
generated classes, source files, and application code must be compiled.

4. Your Java application uses the compiled classes and the binding framework to
perform these types of tasks:

• Create a JAXB context. You use this context to create the marshaller and
unmarshaller.

• Build object trees representing XML data that is valid against the XML
schema. You can perform this task by either unmarshalling the data from an
XML document that conforms to the schema or instantiating the classes.

• Access and modify the data.

• Optionally validate the modifications to the data relative to the constraints
expressed in the XML schema.

• Marshal the data to new XML documents.

Chapter 18
Using the JAXB Class Generator: Overview

18-6

See Also:

• Oracle Database XML Java API Reference for details of the JAXB API

• Processing XML with the JAXB Class Generator for detailed explanations of
JAXB processing

18.2.2 Running the XML Schema Processor Demo Programs
Demo programs for the JAXB class generator for Java are included in $ORACLE_HOME/xdk/
demo/java/jaxb.

Specifically, XDK includes the JAXB demos listed in Table 18-2.

Table 18-2 JAXB Class Generator Demos

Program Subdirectory within Oracle
Home

Demonstrates . . .

SampleApp1.java /xdk/demo/java/jaxb/
Sample1

The binding of top-level element and complexType
definitions in the sample1.xsd schema to Java classes.

SampleApp2.java /xdk/demo/java/jaxb/
Sample2

The binding of a top-level element with an inline
simpleType definition in the sample2.xsd schema.

SampleApp3.java /xdk/demo/java/jaxb/
Sample3

The binding of a top-level complexType element that is
derived by extension from another top-level
complexType definition. See Binding Complex Types for
a detailed explanation of this program.

SampleApp4.java /xdk/demo/java/jaxb/
Sample4

The binding of a content model within a complexType
that refers to a top-level named group.

SampleApp5.java /xdk/demo/java/jaxb/
Sample5

The binding of <choice> with maxOccurs unbounded
within a complexType.

SampleApp6.java /xdk/demo/java/jaxb/
Sample6

The binding of atomic data types.

SampleApp7.java /xdk/demo/java/jaxb/
Sample7

The binding a complexType definition in which
mixed="true".

SampleApp8.java /xdk/demo/java/jaxb/
Sample8

The binding of elements and types declared in two
different namespaces.

SampleApp9.java /xdk/demo/java/jaxb/
Sample9

The customization of a Java package name.

SampleApp10.jav
a

/xdk/demo/java/jaxb/
Sample10

The customization of class name in a top-level element.
See Customizing a Class Name in a Top-Level Element
for a detailed explanation of this program.

SampleApp11.jav
a

/xdk/demo/java/jaxb/
Sample11

The customization of class name of a local element
occurring in a repeating model group declared inside a
complexType element.

SampleApp12.jav
a

/xdk/demo/java/jaxb/
Sample12

The customization of the attribute name.

Chapter 18
Using the JAXB Class Generator: Overview

18-7

Table 18-2 (Cont.) JAXB Class Generator Demos

Program Subdirectory within Oracle
Home

Demonstrates . . .

SampleApp13.jav
a

/xdk/demo/java/jaxb/
Sample13

The javaType customization specified on a global
simpleType. The javaType customization specifies the
parse and print method declared on a user-defined class.

SampleApp14.jav
a

/xdk/demo/java/jaxb/
Sample14

The customization of the typesafe enum class name.

You can find documentation that describes how to compile and run the sample
programs in the README in the same directory. The basic steps are:

1. Change into the $ORACLE_HOME/xdk/demo/java/jaxb directory (UNIX) or
%ORACLE_HOME%\xdk\demo\java\jaxb directory (Windows).

2. Make sure that your environment variables are set as described in Setting Up the
XDK for Java Environment.

3. Run make (UNIX) or Make.bat (Windows) at the system prompt. The make utility
performs these sequential actions for each sample subdirectory:

a. Runs the orajaxb utility to generate Java class files based on an input XML
schema. For most of the demos, the output classfiles are written to the
generated subdirectory. For example, the make file performs these commands
for the sample1.xsd schema in the Sample1 subdirectory:

cd ./Sample1; $(JAVA_HOME)/bin/java -classpath "$(MAKE_CLASSPATH)" \
oracle.xml.jaxb.orajaxb -schema sample1.xsd -targetPkg generated; echo;

b. Runs the javac utility to compile the Java classes. For example, the make
utility performs these commands for the Java class files in the Sample1/
generated/ subdirectory:

cd ./Sample1/generated; $(JAVA_HOME)/bin/javac -classpath \
"$(MAKE_CLASSPATH)" *.java

c. Runs the javac utility to compile a sample Java application that uses the
classes compiled in the preceding step. For example, the make utility compiles
the SampleApp1.java program:

cd ./Sample1; $(JAVA_HOME)/bin/javac -classpath "$(MAKE_CLASSPATH)" \
SampleApp1.java

d. Runs the sample Java application and writes the results to a log file. For
example, the make utility executes the SampleApp1 class and writes the output
to sample1.out:

cd ./Sample1; $(JAVA_HOME)/bin/java -classpath "$(MAKE_CLASSPATH)"
\SampleApp1 > sample1.out

18.2.3 Using the JAXB Class Generator Command-Line Utility
XDK includes orajaxb, which is a command-line Java interface that generates Java
classes from input XML schemas. Shell scripts $ORACLE_HOME/bin/orajaxb and
%ORACLE_HOME%\bin\orajaxb.bat execute class oracle.xml.jaxb.orajaxb.

Chapter 18
Using the JAXB Class Generator: Overview

18-8

To use orajaxb ensure that your CLASSPATH is set as described in Setting Up the XDK for
Java Environment.

Table 18-3 lists the orajaxb command-line options.

Table 18-3 orajaxb Command-Line Options

Option Purpose

-help Prints the help message.

-version Prints the release version.

-outputdir OutputDir Specifies the directory in which to generate the Java source files. If the
schema has a namespace, then the program generates the java code in
the package (corresponding to the namespace) referenced from the
outputDir. By default, the current directory is the outputDir.

-schema SchemaFile Specifies the input XML schema.

-targetPkg targetPkg Specifies the target package name. This option overrides any binding
customization for package name, and also the default package name
algorithm defined in the JAXB specification.

-interface Generates only the interfaces.

-verbose Lists the generated classes and interfaces.

-defaultCus fileName Generates the default customization file.

-extension Allows vendor specific extensions and does not strictly follow the
compatibility rules specified in Appendix E.2 of the JAXB 1.0
specification. When specified, the program ignores JAXB 1.0
unsupported features such as notations, substitution groups, and any
attributes.

18.2.3.1 Using the JAXB Class Generator Command-Line Utility: Example
An example shows how to use the JAXB class generator command-line utility.

To test orjaxb, change to directory $ORACLE_HOME/xdk/demo/java/jaxb/Sample1. If you have
run make then the directory contains these files:

SampleApp1.class
SampleApp1.java
generated/
sample1.out
sample1.xml
sample1.xsd

File sample.xsd is the XML schema associated with XML document sample1.xml.
Subdirectory generated/ contains the classes generated from the input schema. You can test
orajaxb by deleting the contents of generated/ and regenerating the classes.

rm generated/*
orajaxb -schema sample1.xsd -targetPkg generated -verbose

Chapter 18
Using the JAXB Class Generator: Overview

18-9

The terminal displays this output:

generated/CType.java
generated/AComplexType.java
generated/AnElement.java
generated/RElemOfCTypeInSameNs.java
generated/RType.java
generated/RElemOfSTypeInSameNs.java

generated/CTypeImpl.java
generated/AComplexTypeImpl.java
generated/AnElementImpl.java
generated/RElemOfCTypeInSameNsImpl.java
generated/RTypeImpl.java
generated/RElemOfSTypeInSameNsImpl.java
generated/ObjectFactory.java

18.2.4 JAXB Features Not Supported in XDK
Features not supported by the XDK implementation of the JAXB specification are
described.

The XDK implementation of the JAXB specification does not support these features:

• Javadoc generation

• XML Schema component "any" and substitution groups

18.3 Processing XML with the JAXB Class Generator
Topics include binding complex types and customizing a class name in a top-level
element.

18.3.1 Binding Complex Types
Sample3.java shows how to bind a complex type definition to a Java content interface.
One complex type defined in the XML schema is derived by extension from another
complex type.

18.3.1.1 Defining the Schema to Validate sample3.xml
An XML schema, schema3.xsd, is defined for validating XML document schema3.xml.

Example 18-1 shows the XML data document that provides the input to the sample
application. The sample3.xml document describes the address of an employee.

The XML schema shown in Example 18-2 defines the structure that you use to
validate sample3.xml. The schema defines two complex types and one element, which
are defined:

• The first complex type, which is named Address, is a sequence of elements. Each
element in the sequence describes one part of the address: name, door number,
and so forth.

Chapter 18
Processing XML with the JAXB Class Generator

18-10

• The second complex type, which is named USAddress, uses the <extension
base="exp:Address"> element to extend Address by adding US-specific elements to the
Address sequence: state, zip, and so forth. The exp prefix specifies the http://
www.oracle.com/sample3/ namespace.

• The element is named myAddress and is of type exp:USAddress. The exp prefix specifies
the http://www.oracle.com/sample3/ namespace. In sample3.xml, the myAddress top-
level element, which is in namespace http://www.oracle.com/sample3/, conforms to
the schema definition.

Example 18-1 sample3.xml

<?xml version="1.0"?>
<myAddress xmlns = "http://www.oracle.com/sample3/"
 xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation = "http://www.oracle.com/sample3 sample3.xsd">
 <name>James Bond</name>
 <doorNumber>420</doorNumber>
 <street>Oracle parkway</street>
 <city>Redwood shores</city>
 <state>CA</state>
 <zip>94065</zip>
 <country>United States</country>
</myAddress>

Example 18-2 sample3.xsd

<?xml version="1.0"?>

<!-- Binding a complex type definition to java content interface
 The complex type definition is derived by extension
-->

<schema xmlns = "http://www.w3.org/2001/XMLSchema"
 xmlns:exp="http://www.oracle.com/sample3/"
 targetNamespace="http://www.oracle.com/sample3/"
 elementFormDefault="qualified">

 <complexType name="Address">
 <sequence>
 <element name="name" type="string"/>
 <element name="doorNumber" type="short"/>
 <element name="street" type="string"/>
 <element name="city" type="string"/>
 </sequence>
 </complexType>

 <complexType name="USAddress">
 <complexContent>
 <extension base="exp:Address">
 <sequence>
 <element name="state" type="string"/>
 <element name="zip" type="integer"/>
 <element name="country" type="string"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <element name="myAddress" type="exp:USAddress"/>

Chapter 18
Processing XML with the JAXB Class Generator

18-11

</schema>

18.3.1.2 Generating and Compiling the Java Classes
If you have an XML document and corresponding XML schema, then the next stage of
processing is to generate the Java classes from the XML schema.

You can use the JAXB command-line interface described in Using the JAXB Class
Generator Command-Line Utility to perform this task.

Assuming that your environment is set up as described in Setting Up the XDK for Java
Environment, you can create the source files in the generated package:

cd $ORACLE_HOME/xdk/demo/java/jaxb/Sample3
orajaxb -schema sample1.xsd -targetPkg generated

The preceding orajaxb command creates these source files in the ./generated/
subdirectory:

Address.java
AddressImpl.java
MyAddress.java
MyAddressImpl.java
ObjectFactory.java
USAddress.java
USAddressImpl.java

The complex types Address and USAddress each has two associated source files, as
does the element MyAddress. The source file named after the element contains the
interface; the file with the suffix Impl contains the class that implements the interface.
For example, Address.java contains the interface Address, whereas
AddressImpl.java contains the class that implements Address.

The content of the Address.java source file is shown in Example 18-3.

The Address complex type defined a sequence of elements: name, doorNumber,
street, and city. Consequently, the Address interface includes a get and set method
signature for each of the four elements. For example, the interface includes getName()
for retrieving data in the <name> element and setName() for modifying data in this
element.

You can compile the Java source files with javac:

cd $ORACLE_HOME/xdk/demo/java/jaxb/Sample3/generated
javac *.java

Example 18-3 Address.java

package generated;
public interface Address
{
 public void setName(java.lang.String n);
 public java.lang.String getName();
 public void setDoorNumber(short d);
 public short getDoorNumber();
 public void setStreet(java.lang.String s);
 public java.lang.String getStreet();
 public void setCity(java.lang.String c);

Chapter 18
Processing XML with the JAXB Class Generator

18-12

 public java.lang.String getCity();
}

18.3.1.3 Processing the XML Data in sample3.xml
Sample3.java unmarshals an XML data document, marshals it, and uses the generated
classes to print and modify the address data.

It shows how you can process the sample3.xml document by using the Java class files that
you generated in Generating and Compiling the Java Classes.

The Sample3.java program processes the data as follows:

1. Create strings for the XML data document file name and the name of the directory that
contains the generated classes. This name is the package name. For example:

String fileName = "sample3.xml";
String instancePath = "generated";

2. Instantiate a JAXB context by invoking JAXBContext.newInstance(). A client application
gets a new instance of this class by initializing it with a context path. The path contains a
list of Java package names that contain the interfaces available to the marshaller.
Thisthese statement shows this technique:

JAXBContext jc = JAXBContext.newInstance(instancePath);
3. Instantiate the unmarshaller. The Unmarshaller class governs the process of

deserializing XML data into newly created objects, optionally validating the XML data as it
is unmarshalled. Thisthese statement shows this technique:

Unmarshaller u = jc.createUnmarshaller();
4. Unmarshal the XML document. Invoke the Unmarshaller.unmarshal() method to

deserialize the sample3.xml document and return the content trees as an Object. You
can create a URL from the XML file name by invoking the fileToUrl() helper method.
This statement shows the technique:

Object obj = u.unmarshal(fileToURL(fileName));
5. Instantiate a marshaller. The Marshaller class governs the process of serializing Java

content trees back into XML data. Thisthese statement shows this technique:

Marshaller m = jc.createMarshaller();
6. Marshal the content tree. Invoke the Marshaller.marshal() method to marshal the

content tree Object returned by the unmarshaller. You can serialize the data to a DOM
tree, SAX content handler, transformation result, or output stream. This statement
serializes the XML data, including markup, as an output stream:

m.marshal(obj, System.out);

By default, the marshaller uses 8-bit encoding of Unicode (UTF-8) encoding when writing
XML data to an output stream.

7. Print the contents of the XML document. The program implements a process() method
that accepts the content tree and marshaller as parameters.

The first stage of processing prints the data in the XML document without the XML
markup. The method casts the Object generated by the marshaller into type MyAddress.
It proceeds to invoke a series of methods whose method names are constructed by
prefixing get to the name of an XML element. For example, to get the data in the <city>

Chapter 18
Processing XML with the JAXB Class Generator

18-13

element in Example 18-1, the program invokes getCity(). This code fragment
shows this technique:

public static void process(Object obj, Marshaller m) throws Throwable
{
 generated.MyAddress elem = (generated.MyAddress)obj;
 System.out.println();
 System.out.println(" My address is: ");
 System.out.println(" name: " + elem.getName() + "\n" +
 " doorNumber " + elem.getDoorNumber() + "\n" +
 " street: " + elem.getStreet() + "\n" +
 " city: " + elem.getCity() + "\n" +
 " state: " + elem.getState() + "\n" +
 " zip: " + elem.getZip() + "\n" +
 " country: " + elem.getCountry() + "\n" +
 "\n");
...

8. Change the XML data and print it. The process() method continues by invoking
set methods that are analogous to the preceding get methods. The name of each
set method is constructed by prefixing set to the name of an XML element. For
example, setCountry() changes the value in the <country> element. These
statements show this technique:

short num = 550;
elem.setDoorNumber(num);
elem.setCountry("India");
num = 10100;
elem.setZip(new java.math.BigInteger("100100"));
elem.setCity("Noida");
elem.setState("Delhi");

After changing the data, the program prints the data by invoking the same get
methods as in the previous step.

18.3.2 Customizing a Class Name in a Top-Level Element
The Sample10.java program shows one form of JAXB customization. The program
shows you can change the name of a class that corresponds to an element in the input
XML schema.

18.3.2.1 Defining the Schema to Validate schema10.xml
An XML schema, schema10.xsd, is defined for validating XML document
schema10.xml.

Example 18-4 shows the XML data document that provides the input to the sample
application. The sample10.xml document describes a business.

Example 18-5 shows the XML schema that defines the structure of sample10.xml. The
schema defines one complex type and one element as follows:

• The complex type, which is named businessType, is a sequence of elements.
Each element in the sequence describes a part of the business: title, owner, and
id.

• The element, which is named business, is of type biz:businessType. The biz
prefix specifies the http://jaxbcustomized/sample10/ namespace. In

Chapter 18
Processing XML with the JAXB Class Generator

18-14

sample10.xml, the business top-level element, which is in namespace http://
jaxbcustomized/sample10/, conforms to the schema definition.

Example 18-4 sample10.xml

<?xml version="1.0"?>
<business xmlns="http://jaxbcustomized/sample10/">
 <title>Software Development</title>
 <owner>Larry Peterson</owner>
 <id>45123</id>
</business>

Example 18-5 sample10.xsd

<?xml version="1.0"?>

<!-- Customization of class name in top level element -->

<schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://jaxbcustomized/sample10/"
 xmlns:biz="http://jaxbcustomized/sample10/"
 xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 jaxb:version="1.0"
 elementFormDefault="qualified">

 <element name="business" type="biz:businessType">
 <annotation>
 <appinfo>
 <jaxb:class name="myBusiness"/>
 </appinfo>
 </annotation>
 </element>

 <complexType name="businessType">
 <sequence>
 <element name="title" type="string"/>
 <element name="owner" type="string"/>
 <element name="id" type="integer"/>
 </sequence>
 </complexType>

</schema>

18.3.2.1.1 Customizing the Schema Binding
Binding customizations used in XML schema sample10.xsd are described.

The schema shown in Example 18-5 customizes the binding of the business element with an
inline binding declaration. The general form for inline customizations is:

<xs:annotation>
 <xs:appinfo>
 .
 .
 binding declarations
 .
 .
 </xs:appinfo>
</xs:annotation>

Chapter 18
Processing XML with the JAXB Class Generator

18-15

Example 18-5 uses the <class> binding declaration to bind a schema element to a
Java class name. You can use the declaration to customize the name for an interface
or the class that implements an interface. The JAXB class generator supports this
syntax for <class> customizations:

<class [name = "className"] >

The name attribute specifies the name of the derived Java interface. Example 18-5
contains this customization:

<jaxb:class name="myBusiness"/>

Thus, the schema binds the business element to the interface myBusiness rather than
to the interface business, which is the default.

18.3.2.2 Generating and Compiling the Java Classes
After you have an XML document and corresponding XML schema, the next stage is
to generate the Java classes from the XML schema. You can use the JAXB command-
line interface to perform this task.

If your environment is set up as described in Setting Up the XDK for Java
Environment, then you can create the source files in the generated package:

cd $ORACLE_HOME/xdk/demo/java/jaxb/Sample10
orajaxb -schema sample10.xsd

Because the preceding command does not specify a target package, the package
name is constructed from the target namespace of the schema, which is http://
jaxbcustomized/sample10/ . Consequently, the utility generates these source files in
the ./jaxbcustomized/sample10/ subdirectory:

BusinessType.java
BusinessTypeImpl.java
MyBusiness.java
MyBusinessImpl.java
ObjectFactory.java

The complex type businessType has two source files, BusinessType.java and
BusinessTypeImpl.java. Because of the JAXB customization, the business element
is bound to interface MyBusiness and implementing class MyBusinessImpl.

The content of the BusinessType.java source file is shown in Example 18-6.

The BusinessType complex type defined a sequence of elements: title, owner, and
id. Consequently, the Address interface includes a get and set method signature for
each of the elements. For example, the interface includes getTitle() for retrieving
data in the <title> element and setTitle() for modifying data in this element.

You can compile the Java source files with javac:

cd $ORACLE_HOME/xdk/demo/java/jaxb/Sample10/jaxbcustomized/sample10
javac *.java

Example 18-6 BusinessType.java

package jaxbcustomized.sample10;

public interface BusinessType

Chapter 18
Processing XML with the JAXB Class Generator

18-16

{
 public void setTitle(java.lang.String t);
 public java.lang.String getTitle();
 public void setOwner(java.lang.String o);
 public java.lang.String getOwner();
 public void setId(java.math.BigInteger i);
 public java.math.BigInteger getId();
}

18.3.2.3 Processing the XML Data in sample10.xml
Sample10.java unmarshals an XML document, prints its content, and marshals the XML to
standard output.

Sample10.java shows how you can process the data in the sample10.xml document by using
the class files that you generated in Generating and Compiling the Java Classes.

The Sample10.java program processes the XML data as follows:

1. Create strings for the XML data document file name and the name of the directory that
contains the generated classes. This name is the package name. For example:

String fileName = "sample10.xml";
String instancePath = "jaxbcustomized.sample10";

2. Instantiate a JAXB context by invoking the JAXBContext.newInstance() method. This
statement shows this technique:

JAXBContext jc = JAXBContext.newInstance(instancePath);
3. Create the unmarshaller. This statement shows this technique:

Unmarshaller u = jc.createUnmarshaller();
4. Unmarshal the XML document. The program unmarshals the document twice: it first

returns an Object and then uses a cast to return a MyBusiness object. This statement
shows this technique:

Object obj = u.unmarshal(fileToURL(fileName));
jaxbcustomized.sample10.MyBusiness bus =
 (jaxbcustomized.sample10.MyBusiness) u.unmarshal(fileToURL(fileName));

5. Print the contents of the XML document. The program invokes the get methods on the
MyBusiness object. This code fragment shows this technique:

System.out.println("My business details are: ");
System.out.println(" title: " + bus.getTitle());
System.out.println(" owner: " + bus.getOwner());
System.out.println(" id: " + bus.getId().toString());
System.out.println();

6. Create a marshaller. This statement shows this technique:

Marshaller m = jc.createMarshaller();
7. Configure the marshaller. You can invoke setProperty() to configure various properties

the marshaller. The JAXB_FORMATTED_OUTPUT constant specifies that the marshaller must
format the resulting XML data with line breaks and indentation. This statements show this
technique:

m.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT, new Boolean(true));
8. Marshal the content tree. This statement serializes the XML data, including markup, as

an output stream:

Chapter 18
Processing XML with the JAXB Class Generator

18-17

m.marshal(bus, System.out);

By default, the marshaller uses UTF-8 encoding when writing XML data to an
output stream.

Chapter 18
Processing XML with the JAXB Class Generator

18-18

19
Using the XML Pipeline Processor for Java

An explanation is given of how to use the Extensible Markup Language (XML) pipeline
processor for Java.

19.1 Introduction to the XML Pipeline Processor
Topics here include prerequisites, standards and specifications, multistage processing, and
customized pipeline processing.

19.1.1 Prerequisites for Using the XML Pipeline Processor for Java
Prerequisites for using the XML Pipeline processor are listed.

This chapter assumes that you are familiar with these topics:

• XML Pipeline Definition Language. This XML vocabulary enables you to describe the
processing relations between XML resources. For a more thorough introduction to the
Pipeline Definition Language, consult the XML resources listed in Related Documents.

• Document Object Model (DOM). DOM is an in-memory tree representation of the
structure of an XML document.

• Simple API for XML (SAX). SAX is a standard for event-based XML parsing.

• XML Schema language. See Using the XML Schema Processor for Java for an overview
and links to suggested reading.

19.1.2 Standards and Specifications for the XML Pipeline Processor for
Java

The Oracle XML Pipeline processor is based on the World Wide Web Consortium (W3C)
XML Pipeline Definition Language Version 1.0 Note. The W3C Note defines an XML
vocabulary rather than an application programming interface (API).

Pipeline Definition Language Standard for XDK for Java describes the differences between
the W3C Note and the Oracle XML Developer's Kit (XDK) implementation of the Oracle XML
Pipeline processor.

See Also:

• XML Pipeline Definition Language Version 1.0

• Table 34-1

19-1

19.1.3 Multistage XML Processing
The Oracle XML Pipeline processor is built on the XML Pipeline Definition Language.
The processor can take an input XML pipeline document and execute pipeline
processes according to derived dependencies.

A pipeline document, which is written in XML, specifies the processes to be executed
in a declarative manner. You can associate Java classes with processes by using the
<processdef/> element in the pipeline document.

Use the Pipeline processor for multistage processing, which occurs when you process
XML components sequentially or in parallel. The output of one stage of processing can
become the input of another stage of processing. You can write a pipeline document
that defines the inputs and outputs of the processes. Figure 19-1 shows a possible
pipeline sequence.

Figure 19-1 Pipeline Processing

X
M

L
O

u
t

X
M

L
�

P
a
rs

e
r

X
S

L
X

S
D

X
S

D

P
ro

c
e
s
s
o

r
X

S
L

�
P

ro
c
e
s
s
o

r
X

M
L

�
C

o
m

p
re

s
s
o

r

In addition to the XML Pipeline processor itself, XDK provides an API for processes
that you can pipe together in a pipeline document. Table 19-2 summarizes the classes
provided in the oracle.xml.pipeline.processes package.

The typical stages of processing XML in a pipeline are:

1. Parse the input XML documents. The oracle.xml.pipeline.processes package
includes DOMParserProcess for DOM parsing and SAXParserProcess for SAX
parsing.

2. Validate the input XML documents.

3. Serialize or transform the input documents. The Pipeline processor does not
enable you to connect the SAX parser to the Extensible Stylesheet Language
Transformation (XSLT) processor, which requires a DOM.

In multistage processing, SAX is ideal for filtering and searching large XML
documents. Use DOM to change or access XML content efficiently and dynamically.

See Also:

Processing XML in a Pipeline to learn how to write a pipeline document that
provides the input for a pipeline application

Chapter 19
Introduction to the XML Pipeline Processor

19-2

19.1.4 Customized Pipeline Processes
Class oracle.xml.pipeline.controller.Process is the base class for all pipeline process
definitions. The classes in package oracle.xml.pipeline.processes extend this base class.
To create a customized pipeline process, you must create a class that extends class Process.

At the minimum, every custom process must override the do-nothing initialize() and
execute() methods of the Process class. If the customized process accepts SAX events as
input, then it should override the SAXContentHandler() method to return the appropriate
ContentHandler that handles incoming SAX events. It should also override the
SAXErrorHandler() method to return the appropriate ErrorHandler. Table 19-1 provides
further descriptions of the preceding methods.

Table 19-1 Methods in Class oracle.xml.pipeline.controller.Process

Class Description

initialize() Initializes the process before execution.

Invoke getInput() to fetch a specific input object associated with the process
element and invoke supportType() to indicate the types of input supported.
Analogously, invoke getOutput() and supportType() for output.

execute() Executes the process.

Invoke getInParaValue(), getInput(), or getInputSource() to fetch the inputs
to the process. If a custom process outputs SAX events, then it should invoke the
getSAXContentHandler() and getSAXErrorHandler() methods in execute() to
get the SAX handlers of these processes in the pipeline:

Invoke setOutputResult(), getOutputStream(), getOutputWriter() or
setOutParam() to set the outputs or outparams generated by this process.

Invoke getErrorSource(), getErrorStream(), or getErrorDocument() to
access the pipeline error element associated with this process element. If an
exception occurs during execute(), invoke error() or info() to propagate it to the
PipelineErrorHandler.

SAXContentHandler() Returns the SAX ContentHandler.

If dependencies from other processes are not available, then return null. When
these dependencies are available, the method is executed till the end.

SAXErrorHandler() Returns the SAX ErrorHandler.

If you do not override this method, then the JAXB processor uses the default error
handler implemented by this class to handle SAX errors.

See Also:

Oracle Database XML Java API Reference for information about package
oracle.xml.pipeline.processes

Chapter 19
Introduction to the XML Pipeline Processor

19-3

19.2 Using the XML Pipeline Processor for Java: Overview
Topics here include the basic process, running the demo programs, and using the XML
pipeline processor command-line utility.

19.2.1 Using the XML Pipeline Processor for Java: Basic Process
The basic process of the XML Pipeline Processor for Java is described.

The XML Pipeline processor for Java is accessible through these packages:

• oracle.xml.pipeline.controller, which provides an XML Pipeline controller that
executes XML processes in a pipeline based on dependencies.

• oracle.xml.pipeline.processes, which provides wrapper classes for XML
processes that can be executed by the XML Pipeline controller. The
oracle.xml.pipeline.processes package contains the classes that you can use
to design a pipeline application framework. Each class extends the
oracle.xml.pipeline.controller.Process class.

Table 19-2 lists the components in the package. You can connect these
components and processes through a combination of the XML Pipeline processor
and a pipeline document.

Table 19-2 Classes in oracle.xml.pipeline.processes

Class Description

CompressReaderProcess Receives compressed XML and outputs parsed XML.

CompressWriterProcess Receives XML parsed with DOM or SAX and outputs compressed XML.

DOMParserProcess Parses incoming XML and outputs a DOM tree.

SAXParserProcess Parses incoming XML and outputs SAX events.

XPathProcess Accepts a DOM as input, uses an XPath pattern to select one or more nodes from
an XML Document or an XML DocumentFragment, and outputs a Document or
DocumentFragment.

XSDSchemaBuilder Parses an XML schema and outputs a schema object for validation. This process is
built into the XML Pipeline processor and builds schema objects used for validating
XML documents.

XSDValProcess Validates against a local schema, analyzes the results, and reports errors if
necessary.

XSLProcess Accepts DOM as input, applies an XSL stylesheet, and outputs the result of the
transformation.

XSLStylesheetProcess Receives an XSL stylesheet as a stream or DOM and creates an XSLStylesheet
object.

Figure 19-2 shows how to pass a pipeline document to a Java application that uses
the XML Pipeline processor, configure the processor, and execute the pipeline.

Chapter 19
Using the XML Pipeline Processor for Java: Overview

19-4

Figure 19-2 Using the Pipeline Processor for Java

Available parameters:

·	 PIPELINE_PARALLEL
·	 PIPELINE_SEQUENTIAL

Error handler�
must implement�
Pipeline Error�
Handler interface

Available methods:

·	 executePipeline()
·	 getExecutionMode()
·	 setErrorHandler()
·	 isForceSpecified()
·	 setExecutionModel()
·	 setForce()
·	 setPipelineDoc()

new�
PipelineProcessor()

XMLTreeView.
setXMLDocument

(doc)

XML Pipeline�
document

new�
FileReader()

new�
PipelineDoc()

setPipelineDoc()

setExecutionMode()

setErrorHandler()

executePipeline()

The basic steps are:

1. Instantiate a pipeline document, which forms the input to the pipeline execution. Create
the object by passing a FileReader to the constructor:

PipelineDoc pipe;
FileReader f;
pipe = new PipelineDoc((Reader)f, false);

2. Instantiate a pipeline processor. PipelineProcessor is the top-level class that executes
the pipeline. Table 19-3 describes some available methods.

Chapter 19
Using the XML Pipeline Processor for Java: Overview

19-5

Table 19-3 PipelineProcessor Methods

Method Description

executePipeline() Executes the pipeline based on the PipelineDoc set by
invoking setPipelineDoc().

getExecutionMode() Gets the type of execution mode: PIPELINE_SEQUENTIAL or
PIPELINE_PARALLEL.

setErrorHandler() Sets the error handler for the pipeline. This invocation is
mandatory to execute the pipeline.

setExecutionMode() Sets the execution mode. PIPELINE_PARALLEL is the default
and specifies that the processes in the pipeline must execute in
parallel. PIPELINE_SEQUENTIAL specifies that the processes in
the pipeline must execute sequentially.

setForce() Sets execution behavior. If TRUE, then the pipeline executes
regardless of whether the target is up-to-date with the pipeline
inputs.

setPipelineDoc() Sets the PipelineDoc object for the pipeline.

This statement instantiates the pipeline processor:

proc = new PipelineProcessor();

3. Set the processor to the pipeline document. For example:

proc.setPipelineDoc(pipe);

4. Set the execution mode for the processor and perform any other needed
configuration. For example, set the mode by passing a constant to
PipelineProcessor.setExecutionMode().

This statement specifies sequential execution:

proc.setExecutionMode(PipelineConstants.PIPELINE_SEQUENTIAL);

5. Instantiate an error handler. The error handler must implement the
PipelineErrorHandler interface. For example:

errHandler = new PipelineSampleErrHdlr(logname);

6. Set the error handler for the processor by invoking setErrorHandler(). For
example:

proc.setErrorHandler(errHandler);

7. Execute the pipeline. For example:

proc.executePipeline();

Chapter 19
Using the XML Pipeline Processor for Java: Overview

19-6

See Also:

Oracle Database XML Java API Reference to learn about the
oracle.xml.pipeline subpackages

Related Topics

• Creating a Pipeline Document
To use the Oracle XML Pipeline processor, you must create an XML document according
to the rules of the Pipeline Definition Language specified in the W3C Note. The W3C
specification defines the XML processing components and the inputs and outputs for
these processes.

19.2.2 Running the XML Pipeline Processor Demo Programs
Demo programs for the XML Pipeline processor are included in $ORACLE_HOME/xdk/demo/
java/pipeline.

Table 19-4 describes the XML files and Java source files that you can use to test the utility.

Table 19-4 Pipeline Processor Sample Files

File Description

README A text file that describes how to set up the Pipeline processor
demos.

PipelineSample.java A sample Pipeline processor application. The program takes
pipedoc.xml as its first argument.

PipelineSampleErrHdlr.java A sample program to create an error handler used by
PipelineSample.

book.xml A sample XML document that describes a series of books.
This document is specified as an input by pipedoc.xml,
pipedoc2.xml, and pipedocerr.xml.

book.xsl An XSLT stylesheet that transforms the list of books in
book.xml into an HTML table.

book_err.xsl An XSLT stylesheet specified as an input by the
pipedocerr.xml pipeline document. This stylesheet
contains an intentional error.

id.xsl An XSLT stylesheet specified as an input by the
pipedoc3.xml pipeline document.

items.xsd An XML schema document specified as an input by the
pipedoc3.xml pipeline document.

pipedoc.xml A pipeline document. This document specifies that process p1
must parse book.xml with DOM, process p2 must parse
book.xsl and create a stylesheet object, and process p3
must apply the stylesheet to the DOM to generate
myresult.html.

Chapter 19
Using the XML Pipeline Processor for Java: Overview

19-7

Table 19-4 (Cont.) Pipeline Processor Sample Files

File Description

pipedoc2.xml A pipeline document. This document specifies that process p1
must parse book.xml with SAX, process p2 must generate
compressed XML compxml from the SAX events, and process
p3 must regenerate the XML from the compressed stream as
myresult2.html.

pipedoc3.xml A pipeline document. This document specifies that a process
p5 must parse po.xml with DOM, process p1 must select a
single node from the DOM tree with an XPath expression,
process p4 must parse items.xsd and generate a schema
object, process p6 must validate the selected node against
the schema, process p3 must parse id.xsl and generate a
stylesheet object, and validated node to produce
myresult3.html.

pipedocerr.xml A pipeline document. This document specifies that process p1
must parse book.xml with DOM, process p2 must parse
book_err.xsl and generate a stylesheet object if it
encounters no errors and apply an inline stylesheet if it
encounters errors, and process p3 must apply the stylesheet
to the DOM to generate myresulterr.html. Because
book_err.xsl contains an error, the program must write the
text contents of the input XML to myresulterr.html.

po.xml A sample XML document that describes a purchase order.
This document is specified as an input by pipedoc3.xml.

Documentation for how to compile and run the sample programs is located in the
README. The basic steps are:

1. Change into the $ORACLE_HOME/xdk/demo/java/pipeline directory (UNIX) or
%ORACLE_HOME%\xdk\demo\java\pipeline directory (Windows).

2. Ensure that your environment variables are set as described in Setting Up the
XDK for Java Environment.

3. Run make (UNIX) or Make.bat (Windows) at the system prompt to generate class
files for PipelineSample.java and PipelineSampleErrHdler.java and run the
demo programs. The programs write output files to the log subdirectory.

Alternatively, you can run the demo programs manually by using this syntax:

java PipelineSample pipedoc pipelog [seq | para]

The pipedoc option specifies which pipeline document to use. The pipelog option
specifies the name of the pipeline log file, which is optional unless you specify seq
or para, in which case a file name is required. If you do not specify a log file, then
the program generates pipeline.log by default. The seq option processes
threads sequentially; para processes in parallel. If you specify neither seq or para,
then the default is parallel processing.

4. View the files generated from the pipeline, which are all named with the initial
string myresult, and the log files.

Chapter 19
Using the XML Pipeline Processor for Java: Overview

19-8

19.2.3 Using the XML Pipeline Processor Command-Line Utility
The command-line interface for the XML Pipeline processor is named orapipe. The Pipeline
processor is packaged with Oracle Database. By default, the Oracle Universal Installer
installs the utility on disk in $ORACLE_HOME/bin.

Before running the utility for the first time, ensure that your environment variables are set as
described in Setting Up the XDK for Java Environment. Run orapipe at the operating system
command line with this syntax:

orapipe options pipedoc

The pipedoc is the pipeline document, which is required. Table 19-5 describes the available
options for the orapipe utility.

Table 19-5 orapipe Command-Line Options

Option Purpose

-help Prints the help message

-log logfile Writes errors and messages to the specified log file. The default is
pipeline.log.

-noinfo Does not log informational items. The default is on.

-nowarning Does not log warnings. The default is on.

-validate Validates the input pipedoc with the pipeline schema. Validation is turned
off by default. If outparam feature is used, then validate fails with the
current pipeline schema because this is an additional feature.

-version Prints the release version.

-sequential Executes the pipeline in sequential mode. The default is parallel.

-force Executes pipeline even if target is up-to-date. By default no force is
specified.

-attr name value Sets the value of $name to the specified value. For example, if the attribute
name is source and the value is book.xml, then you can pass this value to
an element in the pipeline document: <input ... label="$source">.

19.3 Processing XML in a Pipeline
Topics here include creating a pipeline document, writing a pipeline processor application,
and writing a pipeline error handler.

19.3.1 Creating a Pipeline Document
To use the Oracle XML Pipeline processor, you must create an XML document according to
the rules of the Pipeline Definition Language specified in the W3C Note. The W3C
specification defines the XML processing components and the inputs and outputs for these
processes.

The XML Pipeline processor includes support for these XDK components:

• XML parser

Chapter 19
Processing XML in a Pipeline

19-9

• XML compressor

• XML Schema validator

• XSLT processor

19.3.1.1 Example of a Pipeline Document
The XML Pipeline processor executes a sequence of XML processing according to the
rules in the pipeline document and returns a result. The sample pipeline document that
is included in the demo directory is presented.

Example 19-1 pipedoc.xml

<pipeline xmlns="http://www.w3.org/2002/02/xml-pipeline"
 xml:base="http://example.org/">

 <param name="target" select="myresult.html"/>

 <processdef name="domparser.p"
 definition="oracle.xml.pipeline.processes.DOMParserProcess"/>
 <processdef name="xslstylesheet.p"
 definition="oracle.xml.pipeline.processes.XSLStylesheetProcess"/>
 <processdef name="xslprocess.p"
 definition="oracle.xml.pipeline.processes.XSLProcess"/>

 <process id="p2" type="xslstylesheet.p" ignore-errors="false">
 <input name="xsl" label="book.xsl"/>
 <outparam name="stylesheet" label="xslstyle"/>
 </process>

 <process id="p3" type="xslprocess.p" ignore-errors="false">
 <param name="stylesheet" label="xslstyle"/>
 <input name="document" label="xmldoc"/>
 <output name="result" label="myresult.html"/>
 </process>

 <process id="p1" type="domparser.p" ignore-errors="true">
 <input name="xmlsource" label="book.xml "/>
 <output name="dom" label="xmldoc"/>
 <param name="preserveWhitespace" select="true"></param>
 <error name="dom">
 <html xmlns="http://www/w3/org/1999/xhtml">
 <head>
 <title>DOMParser Failure!</title>
 </head>
 <body>
 <h1>Error parsing document</h1>
 </body>
 </html>
 </error>
 </process>

</pipeline>

19.3.1.1.1 Processes Specified in the Pipeline Document
The processes specified in the pipeline document are described.

Chapter 19
Processing XML in a Pipeline

19-10

In Example 19-1, three processes are called and associated with Java classes in the
oracle.xml.pipeline.processes package. The pipeline document uses element processdef
to make these associations:

• domparser.p is associated with the DOMParserProcess class

• xslstylesheet.p is associated with the XSLStylesheetProcess class

• xslprocess.p is associated with the XSLProcess class

19.3.1.1.2 Processing Architecture Specified in the Pipeline Document
The basic design of and the processing architecture of the pipeline are described.

The PipelineSample program accepts the pipedoc.xml document shown in Example 19-1 as
input along with XML documents book.xml and book.xsl. The basic design of the pipeline is:

1. Parse the incoming book.xml document and generate a DOM tree. This task is
performed by DOMParserProcess.

2. Parse book.xsl as a stream and generate an XSLStylesheet object. This task is
performed by XSLStylesheetProcess.

3. Receive the DOM of book.xml as input, apply the stylesheet object, and write the result
to myresult.html. This task is performed by XSLProcess.

Note these aspects of the processing architecture used in the pipeline document:

• The target information set, http://example.org/myresult.html, is inferred from the
default value of the target parameter and the xml:base setting.

• The process p2 has an input of book.xsl and an output parameter with the label
xslstyle, so it must run to produce the input for p3.

• The p3 process depends on input parameter xslstyle and document xmldoc.

• The p3 process has an output parameter with the label http://example.org/
myresult.html, so it must run to produce the target.

• The process p1 depends on input document book.xml and outputs xmldoc, so it must run
to produce the input for p3.

In Example 19-1, more than one order of processing can satisfy all of the dependencies.
Given the rules, the XML Pipeline processor must process p3 last but can process p1 and p2
in either order or process them in parallel.

19.3.2 Writing a Pipeline Processor Application
The PipelineSample.java source file shows a basic pipeline application.

You can use the application with any of the pipeline documents in Table 19-4 to parse and
transform an input XML document.

The basic steps of the program are:

1. Perform the initial setup. The program declares references of type FileReader (for the
input XML file), PipelineDoc (for the input pipeline document), and PipelineProcessor
(for the processor). The first argument is the pipeline document, which is required. If a
second argument is received, then it is stored in the logname String. This code fragment
shows this technique:

Chapter 19
Processing XML in a Pipeline

19-11

public static void main(String[] args)
{
 FileReader f;
 PipelineDoc pipe;
 PipelineProcessor proc;

 if (args.length < 1)
 {
 System.out.println("First argument needed, other arguments are ".
 "optional:");
 System.out.println("pipedoc.xml <output_log> <'seq'>");
 return;
 }
 if (args.length > 1)
 logname = args[1];
 ...

2. Create a FileReader object by passing the first command-line argument to the
constructor as the file name. For example:

f = new FileReader(args[0]);
3. Create a PipelineDoc object by passing the reference to the FileReader object.

This example casts the FileReader to a Reader and specifies no validation:

pipe = new PipelineDoc((Reader)f, false);
4. Instantiate an XML Pipeline processor. This statement instantiates the pipeline

processor:

proc = new PipelineProcessor();
5. Set the processor to the pipeline document. For example:

proc.setPipelineDoc(pipe);
6. Set the execution mode for the processor and perform any other configuration.

This code fragment uses a condition to determine the execution mode. If three or
more arguments are passed to the program, then it sets the mode to sequential or
parallel depending on which argument is passed. For example:

String execMode = null;
if (args.length > 2)
{
 execMode = args[2];
 if(execMode.startsWith("seq"))
 proc.setExecutionMode(PipelineConstants.PIPELINE_SEQUENTIAL);
 else if (execMode.startsWith("para"))
 proc.setExecutionMode(PipelineConstants.PIPELINE_PARALLEL);
}

7. Instantiate an error handler. The error handler must implement the
PipelineErrorHandler interface. The program uses the PipelineSampleErrHdler
shown in PipelineSampleErrHdlr.java. This code fragment shows this technique:

errHandler = new PipelineSampleErrHdlr(logname);
8. Set the error handler for the processor by invoking setErrorHandler(). This

statement shows this technique:

proc.setErrorHandler(errHandler);
9. Execute the pipeline. This statement shows this technique:

proc.executePipeline();

Chapter 19
Processing XML in a Pipeline

19-12

See Also:

Oracle Database XML Java API Reference to learn about the
oracle.xml.pipeline subpackages

19.3.3 Writing a Pipeline Error Handler
An application invoking the XML Pipeline processor must implement the
PipelineErrorHandler interface to handle errors received from the processor. Set the error
handler in the processor by invoking setErrorHandler(). When writing the error handler, you
can choose to throw an exception for different types of errors.

The oracle.xml.pipeline.controller.PipelineErrorHandler interface declares the
methods shown in Table 19-6, all of which return void.

Table 19-6 PipelineErrorHandler Methods

Method Description

error(java.lang.String msg, PipelineException e) Handles PipelineException errors.

fatalError(java.lang.String msg, PipelineException e) Handles fatal PipelineException
errors.

warning(java.lang.String msg, PipelineException e) Handles PipelineException
warnings.

info(java.lang.String msg) Prints optional, additional information
about errors.

The first three methods in Table 19-6 receive a reference to an
oracle.xml.pipeline.controller.PipelineException object. These methods of the
PipelineException class are especially useful:

• getExceptionType(), which gets the type of exception thrown

• getProcessId(), which gets the process ID where the exception occurred

• getMessage(), which returns the message string of this Throwable error

The PipelineSampleErrHdler.java source file implements a basic error handler for use with
the PipelineSample program. The basic steps are:

1. Implement a constructor. The constructor accepts the name of a log file and wraps it in a
FileWriter object:

PipelineSampleErrHdlr(String logFile) throws IOException
{
 log = new PrintWriter(new FileWriter(logFile));
}

2. Implement the error() method. This implementation prints the process ID, exception
type, and error message. It also increments a variable holding the error count. For
example:

public void error (String msg, PipelineException e) throws Exception
{
 log.println("\nError in: " + e.getProcessId());

Chapter 19
Processing XML in a Pipeline

19-13

 log.println("Type: " + e.getExceptionType());
 log.println("Message: " + e.getMessage());
 log.println("Error message: " + msg);
 log.flush();
 errCount++;
}

3. Implement the fatalError() method. This implementation follows the pattern of
error(). For example:

public void fatalError (String msg, PipelineException e) throws Exception
{
 log.println("\nFatalError in: " + e.getProcessId());
 log.println("Type: " + e.getExceptionType());
 log.println("Message: " + e.getMessage());
 log.println("Error message: " + msg);
 log.flush();
 errCount++;
}

4. Implement the warning() method. This implementation follows the basic pattern of
error() except it increments the warnCount variable rather than the errCount
variable. For example:

public void warning (String msg, PipelineException e) throws Exception
{
 log.println("\nWarning in: " + e.getProcessId());
 log.println("Message: " + e.getMessage());
 log.println("Error message: " + msg);
 log.flush();
 warnCount++;
}

5. Implement the info() method. Unlike the preceding methods, this method does
not receive a PipelineException reference as input. This implementation prints
the String received by the method and increments the value of the warnCount
variable:

public void info (String msg)
{
 log.println("\nInfo : " + msg);
 log.flush();
 warnCount++;
}

6. Implement a method to close the PrintWriter. This code implements the method
closeLog(), which prints the number of errors and warnings and invokes
PrintWriter.close():

public void closeLog()
{
 log.println("\nTotal Errors: " + errCount + "\nTotal Warnings: " +
 warnCount);
 log.flush();
 log.close();
}

Chapter 19
Processing XML in a Pipeline

19-14

See Also:

Oracle Database XML Java API Reference to learn about the
PipelineErrorHandler interface and the PipelineException class

Chapter 19
Processing XML in a Pipeline

19-15

20
Determining XML Differences Using Java

An explanation is given of how to determine the differences between two Extensible Markup
Language (XML) inputs, using the Java library included in the Oracle XML Developer's Kit
(XDK).

20.1 Overview of XML Diffing Utilities for Java
The Java XML diffing library includes diffing, hashing, and equality-comparison methods for
XML inputs in class XmlUtils of package oracle.xml.diff.

The Options class in the oracle.xml.diff package provides options that enable users to
control how the input is processed by the methods in the XmlUtils class (see User Options
for the Java XML Diffing Library). One of these supported options is white space
normalization, which is enabled by default.

The algorithm used by the XML diffing methods is specifically designed for the use case of
finding differences between two large XML documents (5 MB or more) within seconds, where
the minimal diff is not required. The minimal diff is the smallest possible set of changes which,
when applied to the first XML input, produces an output equivalent (identical) to the second
XML input. Known minimal diff algorithms require prohibitively large amounts of memory and
time for processing multimegabyte inputs. The algorithm used in the XML diff methods
produces best quality (as close to minimal as possible) diffs in the absence of recurring
identical subtrees in the XML inputs.

The Java XML diffing library provides several equivalent variants of each method to allow
XML inputs in different forms, including Document Object Model (DOM) nodes, files, and
input streams. Internally, the diffing, hashing, and equality comparisons operate on a DOM
tree. Input that is not in the form of a DOM tree is internally converted to a DOM tree. To
reduce computational overhead, Oracle recommends passing in DOM directly whenever
possible.

The Java XML diffing library includes methods to return the diff output as a DOM document,
or as a list of objects, each representing a diff operation. With the second option, you can
avoid the overhead of XML document generation. With the first option, the resulting
document conforms to the XML schema described in Diff Output Schema. The first option is
useful, for example, if the diff output must be stored as a log for future reference.

The hash methods provided by the Java XML diffing library compute the hash value of XML
input. If the hash values of the two XML inputs are equal, they are identical with a very high
probability.

The equal methods provided in the Java XML diffing library compare two inputs for equality.

To use the Java XML diffing library, your application must run with Java version 1.6 or later,
with any DOM implementation.

20-1

Note:

The application programming interface (API) components described in this
chapter are contained within the Java package oracle.xml.diff. For brevity,
fully qualified names are used only when necessary to avoid confusion.

See Oracle Database XML Java API Reference for more information about
the oracle.xml.diff package.

20.2 User Options for the Java XML Diffing Library
The Java XML diffing library supports two options, which you can set using methods in
the Options class of the oracle.xml.diff package. The Options object is passed in
directly to the diff, hash, and equal methods on each invocation.

• Text Node Normalization (enabled by default)

Text nodes are normalized in the DOM trees on which the diff, hash, and equal
methods operate. Text node normalization involves coalescing adjacent text
nodes, followed by stripping leading and trailing white space from the coalesced
nodes. Single text nodes have their leading and trailing white space stripped.
White-space-only text nodes are eliminated.

Normalization is performed within the library with minimal additional space, and
without modifying the provided XML inputs.

To perform your own normalization on the DOM inputs before passing them to the
library, you must invoke the method normalizeTextNodes(false) on the Options
object to turn off the default normalization.

Oracle does not recommend invoking the diff methods without performing some
type of normalization, either the default or your own. The diff quality suffers in the
presence of identical white space text nodes, which commonly occur in XML
documents.

• Ignoring Namespace Prefix Differences (enabled by default)

XML namespace prefix differences are ignored by the diff, hash, and equal
methods. For example, two DOM nodes are considered equal if they are identical
except for having different prefixes (even if the two different prefixes map to
Universal Resource Identifier (URI) of the same namespace. To configure the
library to treat different namespace prefixes as truly different, even if they map to
the same URI, you can invoke the method ignorePrefixDifferences(false) on
the Options object to turn off the default namespace prefix behavior.

See Also:

Oracle Database XML Java API Reference for details about the methods in
the Options class

Chapter 20
User Options for the Java XML Diffing Library

20-2

20.3 Using Java XML Diffing Methods to Find Differences
The Java XML dffing library provides various diff and diffToDoc methods in the XmlUtils
class of the oracle.xml.diff package. You can use these methods to compare two XML
inputs to determine if there are any differences between them.

The diffToDoc methods return the output as a DOM document that conforms to the schema
described in Diff Output Schema. The Java XML diffing library includes several equivalent
variants of these methods, which accept inputs in different forms (DOM nodes, files, and
others).

The Java XML diffing library includes an equivalent set of diff methods that enable you to
work on the diff output that is returned as a list of diff operation objects.

Because the DOM document that represents the diff does not need to be constructed, using
the diff methods is more efficient than using the difftoDoc methods. You should consider
using these methods whenever you do not need a representation of the diff in XML form. To
use the diff methods, you must create an implementation of the DiffOpReceiver interface,
and then pass it as a parameter to the diff methods. The DiffOpReceiver.receiveDiff
method receives the diff as a list of DiffOp objects.

The diff result, whether it is returned as a DOM document or as a list of DiffOps objects, can
be understood as a series of diff operations. The possible diff operations are:

• append-node

• insert-node-before

• delete-node

Applying the sequence of diff operations on the first DOM tree produces a tree that is
equivalent to the second DOM tree. For example, using these two XML inputs:

First input: <a>
Second input: <a><c/>
The diff result from comparing the first and second input is a list, with these two diff
operations:

delete-node /a[1]/b[1]
append-node <c/> to /a[1]

Deleting the node represented by the XPath expression /a/b in the first input, and then
appending <c/> to the node represented by the XPath expression /a in the first input
produces the result <a><c/>, which is equivalent to the second input.

When the diff operations are output to a DOM document by the domToDoc(…) method, they
rely on XPath expressions to indicate the node locations. These XPath locations refer to node
positions in the original first input. They do not reflect the applied diff operations.

Chapter 20
Using Java XML Diffing Methods to Find Differences

20-3

Note:

The Java XML diffing library does not support append-node, insert-node-
before, and delete-node operations for attribute nodes. Thus, when any
attributes of a node are changed, the change is shown as a delete of the
whole node, followed by the insert or the append of the new node with the
changed attributes.

For example, for these two inputs:

First input: <a attr1="val1">
Second input: <a attr2="val2"><b/
The diff consists of these two diff operations:

insert <a attr2="val2"> before /a[1]
delete /a[1]

Note:

This section uses XML document output to describe each diff operation.
Although they are not described here, diff operation results that are returned
programmatically are equivalent.

See Also:

Oracle Database XML Java API Reference for more information about the
DiffOpReceiver interface, and for details about the methods in the XmlUtils
class

20.3.1 About the append-node Operation
The append-node operation specifies that a given node is to be appended as the last
child of a particular first input node.

Example 20-1 shows an append-node operation that adds the highlighted node
<enumeration value="FL"/> to a document.

Invoking a diffToDoc(…) method, using the original document (without the highlighted
change) and the changed document as input produces this output:

<xd:append-node
 xd:parent-xpath="/schema[1]/simpleType[1]/restriction[1]"
 xd:node-type="element">
 <xd:content>
 <enumeration value="FL"/>

Chapter 20
Using Java XML Diffing Methods to Find Differences

20-4

 </xd:content>
</xd:append-node>

The append-node operation is represented by the <append-node> element in the preceding
output. This element specifies that a node of the given type is added as the last child of the
given first input parent node. The parent-xpath attribute specifies the parent node. The
node-type attribute specifies the type of the node to be appended. The <content> child
element specifies the node to be appended.

Alternatively, when the diff(…) methods are used, the append-node operation is accessible
in the DiffOpReceiver.receiverDiff(…) method as a DiffOp object. In this case, the
operation returns the actual references to the nodes in the two DOM trees involved in the diff
operation. The reference to the parent node in the first input is returned by invoking the
getParent() method of DiffOp. The reference to the node to be appended from the second
input is returned by invoking the getNew() method of DiffOp.

Example 20-1 Appending a Node

<schema>
…
 <simpleType name="USState">
 <restriction base="string">
 <enumeration value="NY"/>
 <enumeration value="TX"/>
 <enumeration value="CA"/>
 <enumeration value="FL"/>
 </restriction>
 </simpleType>
…
</schema>

20.3.2 About the insert-node-before Operation
The insert-node-before operation specifies that a given node is to be inserted before a
particular node in the first input.

Example 20-2 shows an insert-node-before operation that inserts the highlighted node <!-- A
type representing US States --> before the node <simpleType name="USState"> in a
document.

Invoking a diffToDoc(…) method, using the original document (without the highlighted
change) and the changed document as input produces this output:

<xd:insert-node-before xd:node-type="comment"
 xd:xpath="/schema[1]/simpleType[1]">
 <xd:content>
 <!-- A type representing US States -->
 </xd:content>
</xd:insert-node-before>

The insert-node-before operation is represented by the <insert-node-before> element in the
preceding output. This element specifies that a node of the given type is inserted before the
given first input node. The xpath attribute specifies the location of the first input node. The
node-type attribute specifies the type of the node to be inserted. The <content> child
element specifies the node to be inserted.

Alternatively, when the diff(…) methods are used, the insert-node-before operation is
accessible in the DiffOpReceiver.receiverDiff(…) method as a DiffOp object. In this case,

Chapter 20
Using Java XML Diffing Methods to Find Differences

20-5

the operation returns the actual references to the nodes in the two DOM trees involved
in the diff operation. The reference to the node before which to insert a node in the first
input is returned by invoking the getSibling() method of DiffOp. The reference to the
node to be inserted from the second input is returned by invoking the getNew()
method of DiffOp.

Example 20-2 Inserting a Node

<schema>
…
 <!-- A type representing US States -->
 <simpleType name="USState">
 <restriction base="string">
 <enumeration value="NY"/>
 <enumeration value="TX"/>
 <enumeration value="CA"/>
 </restriction>
 </simpleType>
…
</schema>

20.3.3 About the delete-node Operation
The delete-node operation specifies that a particular node (and its subtree) in the first
input is to be deleted.

Example 20-3 shows a delete-node operation that deletes the highlighted node
<element name="LineItems" maxOccurs="unbounded"> from a document.

Invoking a diffToDoc(…) method, using the original document (without the highlighted
change) and the changed document as input produces this output:

<xd:delete-node xd:node-type="element" xd:xpath=
 "/schema[1]/element[1]/complexType[1]/sequence[1]/element[1]/element[1]"/>

The delete-node operation is represented by the <delete-node> element in the
preceding output. This element specifies that a node of the given type is deleted. The
xpath attribute specifies the location of the first input node. The node-type attribute
specifies the type of the node to be deleted.

Alternatively, when the diff(…) methods are used, the delete-node operation is
accessible in the DiffOpReceiver.receiverDiff(…) method as a DiffOp object. In
this case, the operation returns the actual reference to the node in the first input DOM
tree. The reference to the node to be deleted from the first input is returned by
invoking getCurrent() method of DiffOp.

Example 20-3 Deleting a Node

<schema>
…
 <element name="PurchaseOrder">
 <complexType>
 <sequence>
 <element name="PO-Number" type="string">
 <element name="LineItems" maxOccurs="unbounded">
…
</schema>

Chapter 20
Using Java XML Diffing Methods to Find Differences

20-6

20.4 Invoking diff and difftoDoc Methods in a Java Application
Examples here show how to compare two inputs by invoking diff and diffToDoc methods
from a Java application.

Example 20-4 shows how to use the diffToDoc method to compare the input files doc and
doc1.

Continuing with this example, the two input files f1.xml and f2.xml contain the same data as
in Example 20-1.

This sample code displays the contents of f1.xml:

<schema>
 <simpleType name="USState">
 <restriction base="string">
 <enumeration value="NY"/>
 <enumeration value="TX"/>
 <enumeration value="CA"/>
 </restriction>
 </simpleType>
</schema>

And this sample code displays the contents of f2.xml:

<schema>
 <simpleType name="USState">
 <restriction base="string">
 <enumeration value="NY"/>
 <enumeration value="TX"/>
 <enumeration value="CA"/>
 <enumeration value="FL"/>
 </restriction>
 </simpleType>
</schema>

Assume that textDiff.java and the input files are in the current directory. Then enter these
commands to compile and run the example:

javac -classpath "xml.jar" textDiff.java
java –classpath “xml.jar:." textDiff f1.xml f2.xml

Serializing the resulting diffAsDom document produces this output:

<xd:xdiff xmlns:xd="http://xmlns.oracle.com/xdb/xdiff.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://
xmlns.oracle.com/xdb/xdiff.xsd http://xmlns.oracle.com/xdb/xdiff.xsd">
 <?oracle-xmldiff operations-in-docorder="true"
 output-model="snapshot" diff-algorithm="greedy-heuristic"?>
 <xd:append-node xd:node-type="element"
 xd:parent-xpath="/schema[1]/simpleType[1]/restriction[1]">
 <xd:content>
 <enumeration value="FL"/>
 </xd:content>
 </xd:append-node>
</xd:xdiff>

Chapter 20
Invoking diff and difftoDoc Methods in a Java Application

20-7

Example 20-5 shows how to use an implementation of the DiffOpReceiver interface to
process the diff returned from the comparison between two XML inputs as a list of
DiffOp objects.

Enter these commands to compile and run the example:

javac -classpath "xml.jar" progDiff.java
java –classpath “xml.jar:." progDiff f1.xml f2.xml

The example generates this output:

APPENDING NODE:
<enumeration value="FL"/>
TO THE PARENT NODE:
<restriction base="string">
 <enumeration value="NY"/>
 <enumeration value="TX"/>
 <enumeration value="CA"/>
</restriction>

Example 20-4 Getting a diff as a Document from a Java Application

import oracle.xml.diff.XmlUtils;
import oracle.xml.diff.Options;

import java.io.File;

import org.w3c.dom.Node;
import org.w3c.dom.Document;

import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.DocumentBuilder;

public class textDiff
{
 public static void main(String[] args) throws Exception
 {
 XmlUtils xmlUtils = new XmlUtils();

 //Parse the two input files
 DocumentBuilderFactory dbFactory =
 DocumentBuilderFactory.newInstance();
 dbFactory.setNamespaceAware(true);
 DocumentBuilder docBuilder =
 dbFactory.newDocumentBuilder();
 Node doc = docBuilder.parse(new File(args[0]));
 Node doc1 = docBuilder.parse(new File(args[1]));

 //Run the diff
 try
 {
 Document diffAsDom = xmlUtils.diffToDoc(doc,
 doc1, new Options());
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 }
}

Chapter 20
Invoking diff and difftoDoc Methods in a Java Application

20-8

Example 20-5 Getting a diff Using DiffOpReceiver from a Java Application

import oracle.xml.diff.DiffOp;
import oracle.xml.diff.DiffOpReceiver;

import java.util.List;
import java.util.Properties;

import java.io.File;

import org.w3c.dom.Node;

import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.DocumentBuilder;

public class progDiff
{
 public static void main(String[] args) throws Exception
 {
 XmlUtils xmlUtils = new XmlUtils();

 //Parse the two input files
 DocumentBuilderFactory dbFac =
 DocumentBuilderFactory.newInstance();
 dbFac.setNamespaceAware(true);
 DocumentBuilder docBuilder = dbFac.newDocumentBuilder();
 Node doc = docBuilder.parse(new File(args[0]));
 Node doc1 = docBuilder.parse(new File(args[1]));

 Options opt = new Options();

 //Instantiate the DiffOpReceiver. This is the object that
 //will receive DiffOps, ie diff operations that the XmlDiff
 //outputs. Each object represents either deletion or insert
 //or append of a node. In this DiffOpReceiverImpl
 //implementation (see below) of the DiffOpReceiver
 //interface, we simply print out each diff operation.
 DiffOpReceiver diffOpRec =
 new progDiff().new DiffOpReceiverImpl();
 xmlUtils.diff(doc, doc1, diffOpRec, opt);
 }

 class DiffOpReceiverImpl implements DiffOpReceiver
 {
 public void receiveDiff(List<DiffOp> diffOps)
 {
 try
 {
 for (int i = 0; i < diffOps.size(); i++)
 {
 DiffOp diffOperation= diffOps.get(i);

 //Delete operation, print out the deleted
 // node from the first tree
 if (diffOperation.getOpName() ==
 DiffOp.Name.DELETE)
 System.out.println ("DELETING NODE:\n" +
 XmlUtils.nodeToString(diffOperation.getCurrent(), false));

 //Insert operation. Print out the node
 //from the second tree to be inserted,

Chapter 20
Invoking diff and difftoDoc Methods in a Java Application

20-9

 //and the node from the first tree
 //before which the insertion will happen
 else if (diffOperation.getOpName() ==
 DiffOp.Name.INSERT_BEFORE_NODE)
 System.out.println ("INSERTING NODE:\n" +
 XmlUtils.nodeToString(diffOperation.getNew(), false) +
 "BEFORE NODE:\n" +
 XmlUtils.nodeToString(diffOperation.getSibling(), false));

 //Append as the last node of the parent.
 //Print out the node from the second tree
 //that will be appended, and the parent
 //node from the first tree to which the
 //former node will be appended as the
 //last child.
 else if (diffOperation.getOpName() ==
 DiffOp.Name.INSERT_BY_APPENDING)
 System.out.println ("APPENDING NODE:\n" +
 XmlUtils.nodeToString(diffOperation.getNew(), false) +
 "TO THE PARENT NODE:\n" +
 XmlUtils.nodeToString(diffOperation.getParent(), false));
 }
 }
 catch (Exception e)
 {
 System.err.println ("Error while printing out the
 diff result:" + e.getMessage());
 }
 }
 }
}

20.5 Using Java XML hash and equal Methods to Identify
and Compare Inputs

The Java XML diffing library provides hash methods to compute a hash value that
uniquely identifies the input, with a high probability. Because there is a very low
probability of a hash collision, there can be no guarantee that two inputs are identical
when their hash values match.

To check that two inputs are truly identical with absolute certainty, use the equal
methods. The equal methods process both inputs simultaneously, while checking
them for absolute equality.

The Java XML diffing library provides several equivalent variants of the hash and
equal methods that accept inputs in different forms (DOM nodes, files, and more).

See Also:

Oracle Database XML Java API Reference for details about the hash and
equal methods in the XmlUtils class

Chapter 20
Using Java XML hash and equal Methods to Identify and Compare Inputs

20-10

20.6 Diff Output Schema
The output schema xdiff.xsd, to which the Java XML diffing library conforms, is presented.

Example 20-6 Diff Output Schema: xdiff.xsd

<schema targetNamespace="http://xmlns.oracle.com/xdb/xdiff.xsd"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:xd="http://xmlns.oracle.com/xdb/xdiff.xsd"
 version="1.0" elementFormDefault="qualified"
 attributeFormDefault="qualified">
 <annotation>
 <documentation xml:lang="en">
 Defines the structure of XML documents that capture the difference
 between two XML inputs. Changes that are not supported by Oracle
 XmlDiff may not be expressible in this schema.

 'oracle-xmldiff' PI:

 We use 'oracle-xmldiff' PI to describe certain aspects of the diff.
 This should be the first element of top level xdiff element.

 version-number: version number of the XML diff schema

 output-model: output model for representing the diff. Currently, only
 the "snapshot" model is supported.

 Snapshot model:
 Each operation uses XPaths as if no operations
 have been applied to the input document.
 Default and works for both Xmldiff and XmlPatch.

 <!-- Example:
 <?oracle-xmldiff version-number = "1.0" output-model = "snapshot"?>
 -->
 </documentation>
 </annotation>
 <!-- Enumerate the supported node types -->
 <simpleType name="xdiff-nodetype">
 <restriction base="string">
 <enumeration value="element"/>
 <enumeration value="text"/>
 <enumeration value="cdata"/>
 <enumeration value="processing-instruction"/>
 <enumeration value="comment"/>
 </restriction>
 </simpleType>

 <element name="xdiff">
 <complexType>
 <choice minOccurs="0" maxOccurs="unbounded">

 <element name="append-node">
 <complexType>
 <sequence>
 <element name="content" type="anyType"/>
 </sequence>
 <attribute name="node-type" type="xd:xdiff-nodetype"/>
 <attribute name="parent-xpath" type="string"/>
 </complexType>
 </element>

 <element name="insert-node-before">
 <complexType>
 <sequence>
 <element name="content" type="anyType"/>

Chapter 20
Diff Output Schema

20-11

 </sequence>
 <attribute name="xpath" type="string"/>
 <attribute name="node-type" type="xd:xdiff-nodetype"/>

 </complexType>
 </element>

 <element name="delete-node">
 <complexType>
 <attribute name="node-type" type="xd:xdiff-nodetype"/>
 <attribute name="xpath" type="string"/>
 </complexType>
 </element>

 </choice>
 </complexType>
 </element>
</schema>

Chapter 20
Diff Output Schema

20-12

21
Using the XML SQL Utility

An explanation is given of how to use the Extensible Markup Language (XML) SQL Utility
(XSU).

21.1 Introduction to the XML SQL Utility (XSU)
XML SQL Utility (XSU) is an Oracle XML Developer's Kit (XDK) component that lets you
transfer XML data using Oracle SQL statements.

You can use XML SQL Utility (XSU) to perform these tasks:

• Transform data in object-relational database tables or views into XML. XSU can query the
database and return the result set as an XML document.

• Extract data from an XML document and use canonical mapping to insert the data into a
table or a view or update or delete values of the appropriate columns or attributes.

21.1.1 Prerequisites for Using the XML SQL Utility (XSU)
Prerequisites for using the XML SQL Utility (XSU) are covered.

This section assumes that you are familiar with these technologies:

• Oracle Database structured query language (SQL). XSU transfers XML to and from a
database through SELECT statements and data manipulation language (DML).

• Procedural Language/Structured Query Language (PL/SQL). XDK supplies a PL/SQL
application programming interface (API) for XSU that mirrors the Java API.

• Java Database Connectivity (JDBC). Java applications that use XSU to transfer XML to
and from a database require a JDBC connection.

21.1.2 XSU Features
The main features provided by XML SQL Utility (XSU) are described.

XSU:

• Dynamically generates document type definitions (DTDs) or XML schemas.

• Generates XML documents in their string or Document Object Model (DOM)
representations.

• Performs simple transformations during generation such as modifying default tag names
for each <ROW> element. You can also register an XSL transformation that XSU applies to
the generated XML documents as needed.

• Generates XML as a stream of Simple API for XML (SAX2) callbacks.

21-1

• Supports XML attributes during generation, which enables you to specify that a
particular column or group of columns maps to an XML attribute instead of an XML
element.

• Allows SQL-to-XML-tag escaping. Sometimes column names are not valid XML
tag names. To avoid this problem you can either alias all the column names or turn
on tag escaping.

• Supports XMLType columns in objects or tables.

• Inserts XML into relational database tables or views. When given an XML
document, XSU can also update or delete records from a database object.

21.1.3 XSU Restrictions
Some restrictions for using XSU are described.

• XSU can store data only in a single table. You can store XML across tables,
however, by using the Oracle Extensible Stylesheet Language Transformation
(XSLT) processor to transform a document into multiple documents and inserting
them separately. You can also define views over multiple tables and perform
insertions into the views. If a view is nonupdatable (because of complex joins),
then you can use INSTEAD OF triggers over the views to perform the inserts.

• You cannot use XSU to load XML data stored in attributes into a database
schema, but you can use an XSLT transformation to change the attributes into
elements.

• By default XSU is case-sensitive. You can either use the correct case, or specify
that case is to be ignored.

• XSU cannot generate a relational database schema from an input DTD.

• Inserting into XMLType tables using XSU is not supported. XMLType columns are
supported.

21.2 Using the XML SQL Utility: Overview
Topics here include basic XSU use, installing XSU, running the XSU demo programs,
and using the XSU command-line utility.

21.2.1 Using XSU: Basic Process
The basic process of using XSU is described.

XSU is accessible through Java classes OracleXMLQuery and OracleXMLSave in
package oracle.xml.sql.query. Use class OracleXMLQuery to generate XML from
relational data and class OracleXMLSave to perform DML.

You can write these types of XSU applications:

• Java programs that run inside the database and access the internal XSU Java API

• Java programs that run on the client and access the client-side XSU Java API

• PL/SQL programs that access XSU through PL/SQL packages

Chapter 21
Using the XML SQL Utility: Overview

21-2

21.2.1.1 Generating XML with the XSU Java API: Basic Process
Class OracleXMLQuery makes up the XML generation part of the XSU Java API.

Figure 21-1 shows the basic process for generating XML with XSU.

The basic steps in Figure 21-1 are:

Figure 21-1 Generating XML with XSU

J
D

B
C

 R
e
s
u
lt

S
e
t

X
M

L

S
tr

in
g

D
O

M

o
b
je

c
t

C
re

a
te

 J
D

B
C

C

o
n
n
e
c
ti
o
n

O
ra

c
le

X
M

L
Q

u
e
ry

in

s
ta

n
c
e

F
u
rt

h
e
r

p
ro

c
e
s
s
in

g

S
Q

L

Q
u
e
ry

S
Q

L

Q
u
e
ry

g
e
tX

M
L
D

O
M

g
e
tX

M
L
S

tr
in

g

1. Create a JDBC connection to the database. Normally, you establish a connection with the
DriverManager class, which manages a set of JDBC drivers. After the JDBC drivers are
loaded, invoke getConnection(). When it finds the right driver, this method returns a
Connection object that represents a database session. All SQL statements are executed
within the context of this session.

You have these options:

• Create the connection with the JDBC Oracle Call Interface (OCI) driver. This code
fragment shows this technique:

// import the Oracle driver class
import oracle.jdbc.*;
// load the Oracle JDBC driver
DriverManager.registerDriver(new oracle.jdbc.OracleDriver());
// create the connection
Connection conn =
 DriverManager.getConnection("jdbc:oracle:oci:@","hr","password");

The preceding example uses the default connection for the JDBC OCI driver.

• Create the connection with the JDBC thin driver. The thin driver is written in pure
Java and can be called from any Java program. This code fragment shows this
technique:

Connection conn =
 DriverManager.getConnection("jdbc:oracle:thin:@dlsun489:1521:ORCL",
 "hr","password");

The thin driver requires the host name (dlsun489), port number (1521), and the
Oracle system identifier (SID), ORCL. The database must have an active Transmission
Control Protocol/Internet Protocol (TCP/IP) listener.

• Use default connection used by the server-side internal JDBC driver. This driver runs
within a default session and default transaction context. You are already connected to
the database; your SQL operations are part of the default transaction. Thus, you do
not have to register the driver. Create the Connection object:

Connection conn = new oracle.jdbc.OracleDriver().defaultConnection ();

Chapter 21
Using the XML SQL Utility: Overview

21-3

Note:

OracleXMLDataSetExtJdbc is used only for Oracle JDBC, whereas
OracleXMLDataSetGenJdbc is used for non-Oracle JDBC. These classes
are in the oracle.xml.sql.dataset package.

2. Create an XML query object and assign it a SQL query. You create an
OracleXMLQuery Class instance by passing a SQL query to the constructor, as
shown in this example:

OracleXMLQuery qry = new OracleXMLQuery (conn, "SELECT * from EMPLOYEES");
3. Configure the XML query object by invoking OracleXMLQuery methods. This

example specifies that only 20 rows are to be included in the result set:

xmlQry.setMaxRows(20);
4. Return a DOM object or string by invoking OracleXMLQuery methods. For example,

get a DOM object:

XMLDocument domDoc = (XMLDocument)qry.getXMLDOM();

Get a string object:

String xmlString = qry.getXMLString();
5. Perform additional processing on the string or DOM as needed.

See Also:

• Oracle Database Java Developer’s Guide to learn about Oracle
JDBC

• Oracle Database XML Java API Reference to learn about
OracleXMLQuery methods

21.2.1.2 Performing DML with the XSU Java API: Basic Process
Use the OracleXMLSave class to insert, update, and delete XML in the database.

Figure 21-2 shows the basic process.

Chapter 21
Using the XML SQL Utility: Overview

21-4

Figure 21-2 Storing XML in the Database Using XSU

c
lo

s
e

R
E

G
IS

T
E

R

th
e

 t
a

b
le

s
e

t
th

e
 o

p
ti
o

n
s

in
s

e
rt

X

M
L

 i
n

to

ta
b

le

U
s

e
r

/
B

ro
w

s
e

r
/

C

li
e

n
t

/

A
p

p
li

c
a

ti
o

n

S
to

ri
n

g
 X

M
L

 i
n

 t
h

e
 D

a
ta

b
a

s
e

 U
s

in
g

 t
h

e
 X

M
L

 S
Q

L
 U

ti
li

ty

The basic steps in Figure 21-2 are:

1. Create a JDBC connection to the database. This step is identical to the first step
described in Generating XML with the XSU Java API: Basic Process.

2. Create an XML save object and assign it a table on which to perform DML. Pass a table
or view name to the constructor, as shown in this example:

OracleXMLSave sav = new OracleXMLSave(conn, "employees");
3. Specify the primary key columns. For example, this code specifies that employee_id is

the key column:

String [] keyColNames = new String[1];
keyColNames[0] = "EMPLOYEE_ID";
sav.setKeyColumnList(keyColNames);

4. Configure the XML save object by invoking OracleXMLSave methods. This example
specifies an update of the salary and job_id columns:

String[] updateColNames = new String[2];
updateColNames[0] = "SALARY";
updateColNames[1] = "JOB_ID";
sav.setUpdateColumnList(updateColNames); // set the columns to update

5. Invoke the insertXML(), updateXML(), or deleteXML() methods on the OracleXMLSave
object. This example shows an update:

// Assume that the user passes in this XML document as the first argument
sav.updateXML(sav.getURL(argv[0]));

When performing the DML, XSU performs these tasks:

a. Parses the input XML document.

b. Matches element names to column names in the target table or view.

Chapter 21
Using the XML SQL Utility: Overview

21-5

c. Converts the elements to SQL types and binds them to the appropriate
statement.

6. Close the OracleXMLSave object and deallocate all contexts associated with it, as
shown in this example:

sav.close();

See Also:

• Oracle Database Java Developer’s Guide to learn about JDBC

• Oracle Database XML Java API Reference to learn about
OracleXMLSave

21.2.2 Installing XSU
XSU is included as part of Oracle Database, along with the other XDK utilities.

XDK for Java Component Dependencies describes the XSU components and
dependencies.

By default, the Oracle Universal Installer installs XSU on disk and loads it into the
database. No user intervention is required. If you did not load XSU in the database
when installing Oracle, you can install XSU manually as follows:

1. Ensure that Oracle XML DB is installed (it is installed by default as part of Oracle
Database).

2. Load the xsu12.jar file into the database. This JAR file, which has a dependency
on xdb.jar for XMLType access, is described in Table 11-1.

3. Run the $ORACLE_HOME/rdbms/admin/dbmsxsu.sql script. This SQL script builds
the XSU PL/SQL API.

As explained in Using XSU: Basic Process, you do not have to load XSU into the
database to use it. XSU can reside in any tier that supports Java.

21.2.2.1 XSU in the Database
The typical architecture is shown for applications that use the XSU libraries installed in
the database.

Figure 21-3 illustrates this typical architecture. XML generated from XSU running in
the database can be placed in advanced queues in the database to be queued to
other systems or clients. You deliver the XML internally through stored procedures in
the database or externally through web servers or application servers.

In Figure 21-3 all lines are bidirectional. Because XSU can generate and save data,
resources can deliver XML to XSU running inside the database, which can then insert
it in the appropriate database tables.

Chapter 21
Using the XML SQL Utility: Overview

21-6

Figure 21-3 Running XSU in the Database

Other Database,
Messaging Systems, . . .

Web
Server

Middle Tier
Application
Server

Internet
SQL
Tables
and
Views

Advanced
Queuing
(AQ) Application

Logic

XML SQL Utility
(Java / PL/SQL)

XML*

XML*

Oracle

User

XML*XML*XML*

* XML, HTML,
 XHTML, VML, . . .

21.2.2.2 XSU in an Application Server
You can run XSU in an application server.

Your application architecture may require an application server in the middle tier. The
application tier can be a database or an application server that supports Java programs.

You can generate XML in the middle tier from SQL queries or ResultSets for various
reasons, for example, to integrate different JDBC data sources in the middle tier. In this case,
you can install XSU in your middle tier, thereby enabling your Java programs to make use of
XSU through its Java API.

Figure 21-4 shows a typical architecture for running XSU in a middle tier. In the middle tier,
data from JDBC sources is converted by XSU into XML and then sent to web servers or other
systems. Again, the process is bidirectional, which means that the data can be put back into
the JDBC sources (database tables or views) with XSU. If a database is used as the
application server, then you can use the PL/SQL front end instead of Java.

Chapter 21
Using the XML SQL Utility: Overview

21-7

Figure 21-4 Running XSU in the Middle Tier

O
th

e
r

D
a
ta

b
a
s
e
,

M
e
s
s
a
g

in
g

 S
y
s
te

m
s
,
.
.
.

W
e
b

S

e
rv

e
r

M
id

d
le

 T
ie

r

A
p

p
li
c
a
ti

o
n

 S
e
rv

e
r

o
r

O
ra

c
le

 D
a
ta

b
a
s
e
 (

J
a
v
a
 �

o
r

P
L

/S
Q

L
 f

ro
n

t
e
n

d
)

In
te

rn
e
t

S
Q

L

T
a
b
le

s

a
n
d

V
ie

w
s

A
p
p
lic

a
ti
o
n

L
o
g
ic

X
M

L
 S

Q
L
 U

ti
lit

y

(J
a
va

)

X
M

L
*

A
n

y

D
a
ta

b
a
s
e

U
s
e
r

S
Q

L
 d

a
ta

(v

ia
 J

D
B

C
)

X
M

L
*

X
M

L
*

*

 X
M

L
,
H

T
M

L
,

X

H
T

M
L
,
V

M
L
,
.
.
.

21.2.2.3 XSU in a Web Server
You can run XSU in a web server because the web server supports Java servlets.

Figure 21-5 shows XSU running in a web server.

Figure 21-5 Running XSU in a Web Server

W
e
b

 S
e
rv

e
r

(r
u

n
n

in
g

 S
e
rv

le
ts

)

In
te

rn
e
t

S
Q

L

T
a
b
le

s

a
n
d

V
ie

w
s

S
e
rv

le
ts

(X

S
Q

L
 s

e
rv

le
ts

)

X
M

L
 S

Q
L
 U

ti
lit

y

(J
a
va

)

A
n

y

D
a
ta

b
a
s
e

U
s
e
r

S
Q

L
 d

a
ta

(v

ia
 J

D
B

C
)

X
M

L
*

*

 X
M

L
,
H

T
M

L
,

X

H
T

M
L
,
V

M
L
,
.
.
.

You can write Java servlets that use XSU. XSQL Servlet is a standard servlet provided
by Oracle. It is built on top of XSU and provides a template-like interface to XSU
functionality. To perform XML processing in the web server and avoid intricate servlet
programming, you can use the XSQL Servlet.

Chapter 21
Using the XML SQL Utility: Overview

21-8

See Also:

• Oracle XML DB Developer’s Guide, especially the chapter on generating XML,
for examples on using XSU with XMLType

• Oracle Database XML Java API Reference to learn about the classes
OracleXMLQuery and OracleXMLSave

• Using the XSQL Pages Publishing Framework to learn about XSQL Servlet

21.2.3 Running the XSU Demo Programs
Demo programs for XSU are included in $ORACLE_HOME/xdk/demo/java/xsu.

Table 21-1 describes the XML files and programs that you can use to test XSU.

Table 21-1 XSU Sample Files

File Description

createObjRelSchema.sql A SQL script that sets up an object-relational schema and populates it. See
XML Mapping Against an Object-Relational Schema.

createObjRelSchema2.sql A SQL script that sets up an object-relational schema and populates it. See
Altering the Database Schema or SQL Query.

createRelSchema.sql A SQL script that creates a relational table and then creates a customer
view that contains a customer object on top of it. See Altering the Database
Schema or SQL Query.

customer.xml An XML document that describes a customer. See Altering the Database
Schema or SQL Query.

domTest.java A program that generates a DOM tree and then traverses it in document
order, printing the nodes one by one. See Generating a DOM Tree with
OracleXMLQuery.

index.txt A README that describes the programs in the demo directory.

mapColumnToAtt.sql A SQL script that queries the employees table, rendering employee_id as
an XML attribute. See Altering the Database Schema or SQL Query.

new_emp.xml An XML document that describes a new employee. See Running the
testInsert Program.

new_emp2.xml An XML document that describes a new employee. See Running the
testInsertSubset Program.

noRowsTest.java A program that throws an exception when there are no more rows. See
Raising a No Rows Exception.

pageTest.java A program that uses the JDBC ResultSet to generate XML one page at a
time. See Generating Scrollable Result Sets.

paginateResults.java A program that generates an XML page that paginates results. See
Paginating Results with OracleXMLQuery: Example.

refCurTest.java A program that generates XML from the results of the SQL query defined in
the testRefCur function. See Generating XML from Cursor Objects.

samp1.java A program that queries the scott.emp table, then generates an XML
document from the query results.

Chapter 21
Using the XML SQL Utility: Overview

21-9

Table 21-1 (Cont.) XSU Sample Files

File Description

samp10.java A program that inserts sampdoc.xml into the xmltest_tab1 table.

samp2.java A program that queries the scott.emp table, then generates an XML
document from the query results. This program demonstrates how you can
customize the generated XML document.

sampdoc.xml A sample XML data document that samp10.java inserts into the database.

samps.sql A SQL script that creates the xmltest_tab1 table used by samp10.java.

testDeleteKey.java A program that limits the number of elements used to identify a row, which
improves performance by caching the DELETE statement and batching
transactions. See Deleting by Key with OracleXMLSave.

testDeleteRow.java A program that accepts an XML document file name as input and deletes
the rows corresponding to the elements in the document. See Deleting by
Row with OracleXMLSave.

testException.java A sample program shown that throws a runtime exception and then gets the
parent exception by invoking Exception.getParentException(). See
Getting the Parent Exception.

testInsert.java A Java program that inserts XML values into all columns of the
hr.employees table. See Inserting XML into All Columns with
OracleXMLSave.

testInsertSubset.java A program shown that inserts XML data into a subset of columns. See
Inserting XML into a Subset of Columns with OracleXMLSave.

testRef.sql A PL/SQL script that creates a function that defines a REF cursor and
returns it. Every time the testRefCur function is called, it opens a cursor
object for the SELECT query and returns that cursor instance. See
Generating XML from Cursor Objects.

testUpdate.java A sample program that updates the hr.employees table by invoking the
OracleXMLSave.setKeyColumnList() method. See Updating Rows
Using OracleXMLSave.

testUpdateList.java Suppose you want to update only the salary and job title for each employee
and ignore the other information. If you know that all the elements to be
updated are the same for all ROW elements in the XML document, then you
can use the OracleXMLSave.setUpdateColumnNames() method to
specify the columns. See Updating a Column List Using OracleXMLSave.

testXMLSQL.java A sample program that uses XSU to generate XML as a String object.
This program queries the hr.employees table and prints the result set to
standard output. See Generating a String with OracleXMLQuery.

upd_emp.xml An XML document that contains updated salary and other information for a
series of employees. See Running the testUpdate Program.

upd_emp2.xml An XML document that contains updated salary and other information for a
series of employees. See Running the testUpdate Program.

updateEmployee.sql An XML document that contains new data for two employees. See Running
the testUpdateList Program.

The steps for running the demos are:

1. Change into the $ORACLE_HOME/xdk/demo/java/xsu directory (UNIX) or
%ORACLE_HOME%\xdk\demo\java\xsu directory (Windows).

Chapter 21
Using the XML SQL Utility: Overview

21-10

2. Ensure that your environment variables are set as described in Setting Up the XDK for
Java Environment. In particular, ensure that the Java classpath includes xsu12.jar for
XSU and ojdbc6.jar (Java 1.6) for JDBC. If you use a multibyte character set other than
UTF-8, ISO8859-1, or JA16SJIS, then place orai18n.jar in your classpath so that JDBC
can convert the character set of the input file to the database character set.

3. Compile the Java programs as shown in this example:

javac samp1.java samp2.java samp10.java
4. Connect to a database as user hr and run SQL script createRelSchema:

CONNECT hr
@$ORACLE_HOME/xdk/demo/java/xsu/createRelSchema

These sections describe the XSU demos in detail.

21.2.4 Using the XSU Command-Line Utility
XDK includes a command-line Java interface for XSU. XSU command-line options are
provided through the Java class OracleXML.

To use this API ensure that your Java classpath is set as described in Setting Up the XDK for
Java Environment.

To print usage information for XSU to standard output, run this command:

java OracleXML

To use XSU, invoke it with either the getXML or putXML parameter:

java OracleXML getXML options
java OracleXML putXML options

Table 21-2 describes the getXML options.

Table 21-2 getXML Options

getXML Option Description

-user "username/password" Specifies the user name and password to connect to the database.
The connect string is also specified. You can specify the user name
and password as part of the connect string.

-conn "JDBC_connect_string" Specifies the JDBC database connect string. By default the connect
string is: "jdbc:oracle:oci:@".

-withDTD Instructs the XSU to generate the DTD along with the XML document.

-withSchema Instructs the XSU to generate the schema along with the XML
document.

-rowsetTag tag_name Specifies the rowset tag, which is tag that encloses all the XML
elements corresponding to the records returned by the query. The
default rowset tag is <ROWSET>. If you specify an empty string ("") for
rowset, then XSU omits the rowset element.

-rowTag tag_name Specifies the row tag that encloses the data corresponding to a
database row. The default row tag is <ROW>. If you specify an empty
string ("") for the row tag, then XSU omits the row tag.

Chapter 21
Using the XML SQL Utility: Overview

21-11

Table 21-2 (Cont.) getXML Options

getXML Option Description

-rowIdAttr row_id_attribute_name Names the attribute of the ROW element that keeps track of the
cardinality of the rows. By default this attribute is num. If you specify an
empty string as the rowID attribute, then XSU omits the attribute.

-rowIdColumn row_Id_column_name Specifies that the value of a scalar column from the query is to be used
as the value of the rowID attribute.

-collectionIdAttr
collect_id_attr_name

Names the attribute of an XML list element that keeps track of the
cardinality of the elements of the list. The generated XML lists
correspond to either a cursor query, or collection. If you specify an
empty string ("") as the rowID attribute, then XSU omits the attribute.

-useTypeForCollElemTag Specifies the use type name for the column-element tag. By default
XSU uses the column-name_item.

-useNullAttrId Specifies the attribute NULL (TRUE/FALSE) to indicate the nullness of
an element.

-styleSheet stylesheet_URI Specifies the stylesheet in the XML processing instruction.

-stylesheetType stylesheet_type Specifies the stylesheet type in the XML processing instruction.

-setXSLT URI Specifies the XSLT stylesheet to apply to the XML document.

-setXSLTRef URI Sets the XSLT external entity reference.

-useLowerCase | -useUpperCase Generates lowercase or uppercase tag names. The default is to match
the case of the SQL object names from which the tags are generated.

-withEscaping Specifies the treatment of characters that are legal in SQL object
names but illegal in XML tags. If such a character is encountered, then
it is escaped so that it does not throw an exception.

-errorTag error tag_name Specifies the tag to enclose error messages that are formatted as
XML.

-raiseException Specifies that XSU must throw a Java exception. By default XSU
catches any error and produces the XML error.

-raiseNoRowsException Raises an exception if no rows are returned.

-useStrictLegalXMLCharCheck Performs strict checking on input data.

-maxRows maximum_rows Specifies the maximum number of rows to be retrieved and converted
to XML.

-skipRows number_of_rows_to_skip Specifies the number of rows to be skipped.

-encoding encoding_name Specifies the character set encoding of the generated XML.

-dateFormat date_format Specifies the date format for the date values in the XML document.

-fileName SQL_query_fileName |
SQL_query

Specifies the file name that contains the query or the query itself.

Table 21-3 describes the putXML options.

Chapter 21
Using the XML SQL Utility: Overview

21-12

Table 21-3 putXML Options

putXML Options Description

-user "username/password" Specifies the user name and password to connect to the database.
The connect string is also specified. You can specify the user name
and password as part of the connect string.

-conn "JDBC_connect_string" Specifies the JDBC database connect string. By default the connect
string is: "jdbc:oracle:oci:@".

-batchSize batching_size Specifies the batch size that controls the number of rows that are
batched together and inserted in a single trip to the database to
improve performance.

-commitBatch commit_size Specifies the number of inserted records after which a commit is to be
executed. If the autocommit is TRUE (the default), then setting
commitBatch has no consequence.

-rowTag tag_name Specifies the row tag, which is tag used to enclose the data
corresponding to a database row. The default row tag is <ROW>. If you
specify an empty string for the row tag, then XSU omits the row tag.

-dateFormat date_format Specifies the date format for the date values in the XML document.

-withEscaping Turns on reverse mapping if SQL to XML name escaping was used
when generating the doc.

-ignoreCase Makes the matching of the column names with tag names case
insensitive. For example, EmpNo matches with EMPNO if ignoreCase is
on.

-preserveWhitespace Preserves the white space in the inserted XML document.

-setXSLT URI Specifies the XSLT to apply to the XML document before inserting.

-setXSLTRef URI Sets the XSLT external entity reference.

-fileName file_name | -URL URL | -
xmlDoc xml_document

Specifies the XML document to insert: a local file, a URL, or an XML
document as a string on the command line.

table_name Specifies the name of the table to put the values into.

21.2.4.1 Generating XML with the XSU Command-Line Utility
To generate XML from the database schema use the getXML parameter.

For example, to generate an XML document by querying the employees table in the hr
schema, you can use this syntax:

java OracleXML getXML -user "hr/password" "SELECT * FROM employees"

The preceding command performs these tasks:

1. Connects to the current default database

2. Executes the specified SELECT query

3. Converts the SQL result set to XML

4. Prints the XML to standard output

The getXML parameter supports a wide range of options, which are explained in Table 21-2.

Chapter 21
Using the XML SQL Utility: Overview

21-13

21.2.4.2 Generating XMLType Data with the XSU Command-Line Utility
You can use XSU to generate XML from tables with XMLType columns.

Suppose that you run the demo script setup_xmltype.sql to create and populate the
parts table. You can generate XML from this table with XSU:

java OracleXML getXML -user "hr/password" -rowTag "Part" "SELECT * FROM parts"

The output of the command is shown below:

<?xml version = '1.0'?>
<ROWSET>
 <Part num="1">
 <PARTNO>1735</PARTNO>
 <PARTNAME>Gizmo</PARTNAME>
 <PARTDESC>
 <Description>
 <Title>Description of the Gizmo</Title>
 <Author>John Smith</Author>
 <Body>
 The Gizmo is <i>grand</i>.
 </Body>
 </Description>
 </PARTDESC>
 </Part>
</ROWSET>

21.2.4.3 Performing DML with the XSU Command-Line Utility
An example shows how to insert an XML document into a database table.

To insert an XML document called new_employees.xml into the hr.employees table,
use this syntax:

java OracleXML putXML -user "hr/password" -fileName "new_employees.xml" employees

The preceding command performs these tasks:

1. Connects to the current database as hr
2. Reads the XML document named new_emp.xml
3. Parses the XML document, matching the tags with column names

4. Inserts the values appropriately into the employees table

The getXML parameter supports a wide range of options, which are explained in
Table 21-2.

21.3 Programming with the XSU Java API
Topics here include using OracleXMLQuery and OracleXMLSave to perform various
operations, and handling XSU Java exceptions.

Chapter 21
Programming with the XSU Java API

21-14

21.3.1 Generating a String with OracleXMLQuery
The testXMLSQL.java demo program uses XSU to generate XML as a String object. The
program queries table hr.employees and prints the result set to standard output.

The testXMLSQL.java program follows these steps:

1. Register the JDBC driver and create a database connection. This code fragment uses the
OCI JDBC driver and connects with the user name hr:

import oracle.jdbc.*;...Connection conn = getConnection("hr","password");
...
private static Connection getConnection(String username, String password)
 throws SQLException
{
// register the JDBC driver
 DriverManager.registerDriver(new oracle.jdbc.OracleDriver());
// create the connection using the OCI driver
 Connection conn =
 DriverManager.getConnection("jdbc:oracle:oci:@",username,password);
 return conn;
}

2. Create an XML query object and initialize it with a SQL query. This code fragment
initializes the object with a SELECT statement on hr.employees:

OracleXMLQuery qry = new OracleXMLQuery(conn, "SELECT * FROM employees");
3. Get the query result set as a String object. The getXMLString() method transforms the

object-relational data specified in the constructor into an XML document. This example
shows this technique:

String str = qry.getXMLString();
4. Close the query object to release any resources, as shown in this code:

qry.close();

21.3.1.1 Running the testXMLSQL Program
The testXMLSQL program is described.

To run the testXMLSQL.java program perform these steps:

1. Compile testXMLSQL.java with javac.

2. Execute java testXMLSQL on the command line.

You must have the CLASSPATH pointing to this directory for the Java executable to find the
class. Alternatively, use visual Java tools such as Oracle JDeveloper to compile and run this
program. When run, this program prints out the XML file to the screen. This code shows
sample output with some rows edited out:

<?xml version = '1.0'?>
<ROWSET>
 <ROW num="1">
 <EMPLOYEE_ID>100</EMPLOYEE_ID>
 <FIRST_NAME>Steven</FIRST_NAME>
 <LAST_NAME>King</LAST_NAME>
 <EMAIL>SKING</EMAIL>
 <PHONE_NUMBER>515.123.4567</PHONE_NUMBER>

Chapter 21
Programming with the XSU Java API

21-15

 <HIRE_DATE>6/17/1987 0:0:0</HIRE_DATE>
 <JOB_ID>AD_PRES</JOB_ID>
 <SALARY>24000</SALARY>
 <DEPARTMENT_ID>90</DEPARTMENT_ID>
 </ROW>
<!-- ROW num="2" through num="107" ... -->
</ROWSET>

21.3.2 Generating a DOM Tree with OracleXMLQuery
To generate a DOM tree from the XML generated by XSU, you can directly request a
DOM document from XSU. This technique saves the overhead of creating a string
representation of the XML document and then parsing it to generate the DOM tree.

XSU invokes the Oracle XML parser to construct the DOM tree from the data values.
The domTest.java demo program generates a DOM tree and then traverses it in
document order, printing the nodes one by one.

The first two steps in the domTest.java program are the same as in the
testXMLSQL.java program described in Generating a String with OracleXMLQuery.
The program proceeds as follows:

1. Get the DOM by invoking getXMLDOM() method. The following example shows this
technique:

XMLDocument domDoc = (XMLDocument)qry.getXMLDOM();
2. Print the DOM tree. The following code prints to standard output:

domDoc.print(System.out);

You can also create a StringWriter and wrap it in a PrintWriter:

StringWriter s = new StringWriter(10000);
domDoc.print(new PrintWriter(s));
System.out.println(" The string version ---> \n"+s.toString());

After compiling the program, run it from the command line:

java domTest

21.3.3 Paginating Results with OracleXMLQuery
Topics here include limiting the rows in a result set, keeping an object open during a
user session, and paginating results using OracleXMLQuery.

21.3.3.1 Limiting the Number of Rows in the Result Set
Different ways to limit the number of rows in a result set are described.

In testXMLSQL.java and domTest.java, XSU generated XML from all rows returned by
the query. Suppose that you query a table that contains 1000 rows, but you want only
100 rows at a time. One approach is to execute one query to get the first 100 rows,
another to get the next 100 rows, and so on. With this technique you cannot skip the
first five rows of the query and then generate the result. To avoid these problems, use
these Java methods:

Chapter 21
Programming with the XSU Java API

21-16

• OracleXMLSave.setSkipRows() forces XSU to skip the desired number of rows before
starting to generate the result. The command-line equivalent to this method is the -
skipRows parameter.

• OracleXMLSave.setMaxRows() limits the number of rows converted to XML. The
command-line equivalent to this method is the -maxRows parameter.

Example 21-1 sets skipRows to a value of 5 and maxRows to a value of 1, which causes XSU
to skip the first 5 rows and then generate XML for the next row when querying the
hr.employees table.

The following shows sample output (only row 6 of the query result set is returned):

<?xml version = '1.0'?>
<ROWSET>
 <ROW num="6">
 <EMPLOYEE_ID>105</EMPLOYEE_ID>
 <FIRST_NAME>David</FIRST_NAME>
 <LAST_NAME>Austin</LAST_NAME>
 <EMAIL>DAUSTIN</EMAIL>
 <PHONE_NUMBER>590.423.4569</PHONE_NUMBER>
 <HIRE_DATE>6/25/1997 0:0:0</HIRE_DATE>
 <JOB_ID>IT_PROG</JOB_ID>
 <SALARY>4800</SALARY>
 <MANAGER_ID>103</MANAGER_ID>
 <DEPARTMENT_ID>60</DEPARTMENT_ID>
 </ROW>
</ROWSET>

Example 21-1 Specifying skipRows and maxRows on the Command Line

java OracleXML getXML -user "hr/password" -skipRows 5 -maxRows 1 \
 "SELECT * FROM employees"

21.3.3.2 Keeping an Object Open for the Duration of the User's Session
In some situations, you might want to keep a query object open for the duration of the user
session. You can handle such cases with the maxRows() method and the keepObjectOpen()
method.

Consider a web search engine that paginates search results. The first page lists 10 results,
the next page lists 10 more, and so on. To perform this task with XSU, request 10 rows at a
time and keep the ResultSet open so that the next time you ask XSU for more results, it
starts generating from where the last generation finished. If OracleXMLQuery creates a result
set from the SQL query string, then it typically closes the ResultSet internally because it
assumes no more results are required. Thus, you must invoke keepObjectOpen() to keep the
cursor active.

A different case requiring an open query object is when the number of rows or number of
columns in a row is very large. In this case, you can generate multiple small documents
rather than one large document.

Related Topics

• Paginating Results with OracleXMLQuery: Example
The paginateResults.java program shows how you can generate an XML page that
paginates results. The output XML displays only 20 rows of the hr table.

Chapter 21
Programming with the XSU Java API

21-17

21.3.3.3 Paginating Results with OracleXMLQuery: Example
The paginateResults.java program shows how you can generate an XML page that
paginates results. The output XML displays only 20 rows of the hr table.

The paginateResults.java program shows how you can generate an XML page that
paginates results. The output XML displays only 20 rows of the hr table.

The first step of the paginateResults.java program, which creates the connection, is
the same as in testXMLSQL.java. The program continues as follows:

1. Create a SQL statement object and initialize it with a SQL query. The following
code fragment sets two options in java.sql.ResultSet:

Statement stmt = conn.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,
 ResultSet.CONCUR_READ_ONLY);

2. Create the query as a string and execute it by invoking
Statement.executeQuery(). The return object is of type ResultSet. The following
example shows this technique:

String sCmd = "SELECT first_name, last_name FROM hr.employees";
ResultSet rs = stmt.executeQuery(sCmd);

3. Create the query object, as shown in this code:

OracleXMLQuery xmlQry = new OracleXMLQuery(conn, rs);
4. Configure the query object. The following code specifies that the query object is

open for the duration of the session. It also limits the number of rows returned to
20:

xmlQry.keepObjectOpen(true);
xmlQry.setRowsetTag("ROWSET");
xmlQry.setRowTag("ROW");
xmlQry.setMaxRows(20);

5. Retrieve the result as a String and print:

String sXML = xmlQry.getXMLString();
System.out.println(sXML);

After compiling the program, run it from the command line:

java paginateResults

21.3.4 Generating Scrollable Result Sets
You might want to perform a query and then retrieve a previous page of results from
within the result set. To enable scrolling, instantiate the Oracle.jdbc.ResultSet class.
You can use the ResultSet object to move back and forth within the result set and use
XSU to generate XML each time.

The pageTest.java program shows how to use the JDBC ResultSet to generate XML
a page at a time. Using ResultSet may be necessary in cases that are not handled
directly by XSU, for example, when setting the batch size and binding values.

The pageTest.java program creates a pageTest object and initializes it with a SQL
query. The constructor for the pageTest object performs these steps:

Chapter 21
Programming with the XSU Java API

21-18

1. Create a JDBC connection by invoking the same getConnection() method defined in
paginateResults.java:

Connection conn;
...
conn = getConnection("hr","password");

2. Create a statement:

Statement stmt;
...
stmt = conn.createStatement();

3. Execute the query passed to the constructor to get the scrollable result set. The following
code shows this technique:

ResultSet rset = stmt.executeQuery(sqlQuery);
4. Create a query object by passing references to the connection and result set objects to

the constructor. The following code fragment shows this technique:

OracleXMLQuery qry;
...
qry = new OracleXMLQuery(conn,rset);

5. Configure the query object. The following code fragment specifies that the query object
be kept open, and that it raise an exception when there are no more rows:

qry.keepObjectOpen(true);
qry.setRaiseNoRowsException(true);
qry.setRaiseException(true);

6. After creating the query object by passing it the string "SELECT * FROM employees", the
program loops through the result set. The getResult() method receives integer values
specifying the start row and end row of the set. It sets the maximum number of rows to
retrieve by calculating the difference of these values and then retrieves the result as a
string. The following while loop retrieves and prints ten rows at a time:

int i = 0;
while ((str = test.getResult(i,i+10))!= null)
{
 System.out.println(str);
 i+= 10;
}

After compiling the program, run it from the command line:

java pageTest

21.3.5 Generating XML from Cursor Objects
You can initialize a CallableStatement object, execute a PL/SQL function that returns a
cursor variable, get the OracleResultSet object, and send it to an OracleXMLQuery object to
obtain the desired XML data.

Class OracleXMLQuery provides XML conversion only for query strings or ResultSet objects.
If your program uses PL/SQL procedures that return REF cursors, then how do you perform
the conversion? You can use the ResultSet conversion mechanism described in Generating
Scrollable Result Sets.

REF cursors are references to cursor objects in PL/SQL. These cursor objects are SQL
statements over which a program can iterate to get a set of values. The cursor objects are

Chapter 21
Programming with the XSU Java API

21-19

converted into OracleResultSet objects in the Java world. In your Java program you
can initialize a CallableStatement object, execute a PL/SQL function that returns a
cursor variable, get the OracleResultSet object, and then send it to the
OracleXMLQuery object to get the desired XML.

Consider the testRef PL/SQL package defined in the testRef.sql script. It creates a
function that defines a REF cursor and returns it. Every time the testRefCur PL/SQL
function is called, it opens a cursor object for the SELECT query and returns that cursor
instance. To convert the object to XML, do this:

1. Run the testRef.sql script to create the testRef package in the hr schema.

2. Compile and run the refCurTest.java program to generate XML from the results
of the SQL query defined in the testRefCur function.

To apply the stylesheet, you can use the applyStylesheet command, which forces the
stylesheet to be applied before generating the output.

21.3.6 Inserting Rows with OracleXMLSave
To insert a document into a table or view, supply the table or view name and the
document. XSU parses the document and creates an INSERT statement into which it
binds the values. By default, XSU inserts values into all columns of the table or view.

An absent element is treated as a NULL value. The following example shows how you
can store the XML document generated from the hr.employees table in the table.

21.3.6.1 Inserting XML into All Columns with OracleXMLSave
The testInsert.java demo program inserts XML values into all columns of the
hr.employees table.

The program follows these steps:

1. Create a JDBC OCI connection. The program invokes the same getConnection()
method used by the previous examples in this chapter:

Connection conn = getConnection("hr","password");
2. Create an XML save object. You initialize the object by passing it the Connection

reference and the name of the table on which you want to perform DML. The
following example shows this technique:

OracleXMLSave sav = new OracleXMLSave(conn, "employees");
3. Insert the data in an input XML document into the hr.employees table. The

following code fragment creates a URL from the document file name specified on
the command line:

sav.insertXML(sav.getURL(argv[0]));
4. Close the XML save object:

sav.close();

Chapter 21
Programming with the XSU Java API

21-20

21.3.6.1.1 Running the testInsert Program
The textInsert program is described.

Assume that you write the new_emp.xml document to describe new employee Janet Smith,
who has employee ID 7369. You pass the file name new_emp.xml as an argument to the
testInsert program:

java testInsert "new_emp.xml"

The program inserts a new row in the employees table that contains the values for the
columns specified. Any absent element inside the row element is treated as NULL.

Running the program generates an INSERT statement of this form:

INSERT INTO hr.employees
 (employee_id, first_name, last_name, email, phone_number, hire_date,
 salary, commission_pct, manager_id, department_id)
VALUES
 (?, ?, ?, ?, ?, ?, ?, ?, ?, ?);

XSU matches the element tags in the input XML document that match the column names and
binds their values.

21.3.6.2 Inserting XML into a Subset of Columns with OracleXMLSave
In some situations, you might not want to insert values into all columns. For example, the
group of values that you get might not be the complete set, requiring you to use triggers or
default values for the remaining columns.

The testInsertSubset.java demo program shows how to handle this case. It follows these
steps:

1. Create a JDBC OCI connection. The program invokes the same getConnection()
method used by the previous examples in this chapter:

Connection conn = getConnection("hr","password");
2. Create an XML save object. Initialize the object by passing it the Connection reference

and the name of the table on which you want to perform DML. The following example
shows this technique:

OracleXMLSave sav = new OracleXMLSave(conn, "employees");
3. Create an array of strings. Each element of the array must contain the name of a column

in which values are inserted. The following code fragment specifies the names of five
columns:

String [] colNames = new String[5];
colNames[0] = "EMPLOYEE_ID";
colNames[1] = "LAST_NAME";
colNames[2] = "EMAIL";
colNames[3] = "JOB_ID";
colNames[4] = "HIRE_DATE";

4. Configure the XML save object to update the specified columns. The following statement
passes a reference to the array to the OracleXMLSave.setUpdateColumnList() method:

sav.setUpdateColumnList(colNames);

Chapter 21
Programming with the XSU Java API

21-21

5. Insert the data in an input XML document into the hr.employees table. The
following code fragment creates a URL from the document file name specified on
the command line:

sav.insertXML(sav.getURL(argv[0]));
6. Close the XML save object:

sav.close();

21.3.6.2.1 Running the testInsertSubset Program
The testInsertSubset program is described.

Assume that you use the new_emp2.xml document to store data for new employee
Adams, who has employee ID 7400. You pass new_emp2.xml as an argument to the
testInsert program:

java testInsert new_emp2.xml

The program ignores values for the columns that were not specified in the input file. It
performs an INSERT for each ROW element in the input and batches the INSERT
statements by default.

The program generates this INSERT statement:

INSERT INTO hr.employees (employee_id, last_name, email, job_id, hire_date)
 VALUES (?, ?, ?, ?, ?);

21.3.7 Updating Rows Using OracleXMLSave
Examples show how to update the fields in a table or view. You supply the table or
view name and an XML document. XSU parses the document (if a string is given) and
creates one or more UPDATE statements into which it binds all of the values.

The following examples use an XML document to update table hr.employees.

21.3.7.1 Updating Key Columns Using OracleXMLSave
Demo program testUpdate.java invokes method
OracleXMLSave.setKeyColumnList() to update table hr.employees.

testUpdate.java follows these steps:

1. Create a JDBC OCI connection. The program invokes the same getConnection()
method used by the previous examples in this chapter:

Connection conn = getConnection("hr","password");
2. Create an XML save object. You initialize the object by passing it the Connection

reference and the name of the table on which you want to perform DML. The
following example shows this technique:

OracleXMLSave sav = new OracleXMLSave(conn, "employees");
3. Create a single-element String array to hold the name of the primary key column

in the table to be updated. The following code fragment specifies the name of the
employee_id column:

Chapter 21
Programming with the XSU Java API

21-22

String [] keyColNames = new String[1];
colNames[0] = "EMPLOYEE_ID";

4. Set the XML save object to the primary key specified in the array. The following
statement passes a reference to the keyColNames array to the
OracleXMLSave.setKeyColumnList() method:

sav.setKeyColumnList(keyColNames);
5. Update the rows specified in the input XML document. The following statement creates a

URL from the file name specified on the command line:

sav.updateXML(sav.getURL(argv[0]));
6. Close the XML save object:

sav.close();

21.3.7.1.1 Running the testUpdate Program
The testUpdate program is described.

You can use XSU to update specified fields in a table. Example 21-2 shows upd_emp.xml,
which contains updated salary and other information for the two employees that you just
added, 7369 and 7400.

For updates, supply XSU with the list of key column names in the WHERE clause of the UPDATE
statement. In the hr.employees table the employee_id column is the key.

Pass the file name upd_emp.xml as an argument to the preceding program:

java testUpdate upd_emp.xml

The program generates two UPDATE statements. For the first ROW element, the program
generates an UPDATE statement to update the SALARY field:

UPDATE hr.employees SET salary = 3250 WHERE employee_id = 7400;

For the second ROW element the program generates this statement:

UPDATE hr.employees SET job_id = 'SA_REP' AND MANAGER_ID = 145
 WHERE employee_id = 7369;

Example 21-2 upd_emp.xml

<?xml version='1.0'?>
<ROWSET>
 <ROW num="1">
 <EMPLOYEE_ID>7400</EMPLOYEE_ID>
 <SALARY>3250</SALARY>
 </ROW>
 <ROW num="2">
 <EMPLOYEE_ID>7369</EMPLOYEE_ID>
 <JOB_ID>SA_REP</JOB_ID>
 <MANAGER_ID>145</MANAGER_ID>
 </ROW>
<!-- additional rows ... -->
</ROWSET>

Chapter 21
Programming with the XSU Java API

21-23

21.3.7.2 Updating a Column List Using OracleXMLSave

You can update a table using only a subset of the elements in an XML document, by
specifying a list of columns. This is fast because XSU uses the same UPDATE
statement, with bind variables for all of the ROW elements. Other tags in the document
can be ignored.

Note:

When you specify a list of columns to update, if an element corresponding to
an update column is absent, XSU treats it as NULL.

Suppose you want to update the salary and job title for each employee and ignore the
other data. If you know that all the elements to be updated are the same for all ROW
elements in the XML document, then you can use the
OracleXMLSave.setUpdateColumnNames() method to specify the columns. The
testUpdateList.java program shows this technique.

The testUpdateList.java program follows these steps:

1. Create a JDBC OCI connection. The program invokes the same getConnection()
method used by the previous examples in this chapter:

Connection conn = getConnection("hr","password");
2. Create an XML save object. You initialize the object by passing it the Connection

reference and the name of the table on which you want to perform DML. The
following example shows this technique:

OracleXMLSave sav = new OracleXMLSave(conn, "employees");
3. Create an array of type String to hold the name of the primary key column in the

table to be updated. The array contains only one element, which is the name of
the primary key column in the table to be updated. The following code fragment
specifies the name of the employee_id column:

String [] colNames = new String[1];
colNames[0] = "EMPLOYEE_ID";

4. Set the XML save object to the primary key specified in the array. The following
statement passes a reference to the colNames array to the
OracleXMLSave.setKeyColumnList() method:

sav.setKeyColumnList(keyColNames);
5. Create an array of type String to hold the name of the columns to be updated.

The following code fragment specifies the name of the employee_id column:

String[] updateColNames = new String[2];
updateColNames[0] = "SALARY";
updateColNames[1] = "JOB_ID";

6. Set the XML save object to the list of columns to be updated. The following
statement performs this task:

sav.setUpdateColumnList(updateColNames);

Chapter 21
Programming with the XSU Java API

21-24

7. Update the rows specified in the input XML document. The following code fragment
creates a URL from the file name specified on the command line:

sav.updateXML(sav.getURL(argv[0]));
8. Close the XML save object:

sav.close();

21.3.7.2.1 Running the testUpdateList Program
The testUpdateList program is described.

Suppose that you use the sample XML document upd_emp2.xml to store new data for
employees Steven King, who has an employee ID of 100, and William Gietz, who has an
employee identifier (ID) of 206. You pass upd_emp2.xml as an argument to the
testUpdateList program:

java testUpdateList upd_emp2.xml

In this example, the program generates two UPDATE statements. For the first ROW element, the
program generates this statement:

UPDATE hr.employees SET salary = 8350 AND job_id = 'AC_ACCOUNT'
 WHERE employee_id = 100;

For the second ROW element the program generates this statement:

UPDATE hr.employees SET salary = 25000 AND job_id = 'AD_PRES'
 WHERE employee_id = 206;

21.3.8 Deleting Rows using XSU
When deleting from XML documents, you can specify a list of key columns. XSU uses these
columns in the WHERE clause of the DELETE statement. If you do not supply the key column
names, then XSU creates a new DELETE statement for each ROW element of the XML
document.

The list of columns in the WHERE clause of the DELETE statement matches those in the ROW
element.

21.3.8.1 Deleting by Row with OracleXMLSave
The testDeleteRow.java demo program accepts an XML document file name as input and
deletes the rows corresponding to the elements in the document.

The testDeleteRow.java program follows these steps:

1. Create a JDBC OCI connection. The program invokes the same getConnection()
method used by the previous examples in this chapter:

Connection conn = getConnection("hr","password");
2. Create an XML save object. You initialize the object by passing it the Connection

reference and the name of the table on which you want to perform DML. The following
example shows this technique:

OracleXMLSave sav = new OracleXMLSave(conn, "employees");

Chapter 21
Programming with the XSU Java API

21-25

3. Delete the rows specified in the input XML document. The following code fragment
creates a URL from the file name specified on the command line:

sav.deleteXML(sav.getURL(argv[0]));
4. Close the XML save object:

sav.close();

21.3.8.1.1 Running the testDelete Program
The testDelete program is described.

This section shows how to delete the employees 7400 and 7369 that you added in
Inserting Rows with OracleXMLSave.

To make this example work correctly, connect to the database and disable a constraint
on the hr.job_history table:

CONNECT hr
ALTER TABLE job_history
 DISABLE CONSTRAINT JHIST_EMP_FK;
EXIT

Now pass upd_emp.xml to the testDeleteRow program:

java testDeleteRow upd_emp.xml

The program forms the DELETE statements based on the tag names present in each
ROW element in the XML document. It executes these statements:

DELETE FROM hr.employees WHERE salary = 3250 AND employee_id = 7400;
DELETE FROM hr.employees WHERE job_id = 'SA_REP' AND MANAGER_ID = 145
 AND employee_id = 7369;

21.3.8.2 Deleting by Key with OracleXMLSave
To use only the key values as predicates on the DELETE statement, invoke the
OracleXMLSave.setKeyColumnList() method. This approach limits the number of
elements used to identify a row, which has the benefit of improving performance by
caching the DELETE statement and batching transactions. The testDeleteKey.java
program shows this technique.

The testDeleteKey.java program follows these steps:

1. Create a JDBC OCI connection. The program invokes the same getConnection()
method used by the previous examples in this chapter:

Connection conn = getConnection("hr","password");
2. Create an XML save object. You initialize the object by passing it the Connection

reference and the name of the table on which you want to perform DML. The
following example shows this technique:

OracleXMLSave sav = new OracleXMLSave(conn, "employees");
3. Create an array of type String to hold the name of the primary key column in the

table. The array contains only one element. The following code fragment specifies
the name of the employee_id column:

Chapter 21
Programming with the XSU Java API

21-26

String [] colNames = new String[1];
colNames[0] = "EMPLOYEE_ID";

4. Set the XML save object to the primary key specified in the array. The following
statement passes a reference to the colNames array to the
OracleXMLSave.setKeyColumnList() method:

sav.setKeyColumnList(keyColNames);
5. Delete the rows specified in the input XML document. The following code fragment

creates a URL from the file name specified on the command line:

sav.deleteXML(sav.getURL(argv[0]));
6. Close the XML save object:

sav.close();

21.3.8.2.1 Running the testDeleteKey Program
The testDeleteKey program is described.

This section shows how to delete employees 7400 and 7369 that you added in Updating Key
Columns Using OracleXMLSave. If you deleted these employees in the previous example,
you can add them back to the employees table:

java testInsert new_emp.xml
java testInsert new_emp2.xml

Delete employees 7400 and 7369 by passing the same upd_emp.xml document to the
testDeleteRow program:

java testDeleteKey upd_emp.xml

The program forms this single generated DELETE statement:

DELETE FROM hr.employees WHERE employee_id=?;

The program executes these DELETE statements, one for each employee:

DELETE FROM hr.employees WHERE employee_id = 7400;
DELETE FROM hr.employees WHERE employee_id = 7369;

21.3.9 Handling XSU Java Exceptions
XSU catches all exceptions that occur during processing and throws
oracle.xml.sql.OracleXMLSQLException, which is a generic runtime exception. The
invoking program need not catch this exception if it can still perform the appropriate action.
The exception class provides methods to get error messages and any parent exceptions.

21.3.9.1 Getting the Parent Exception
The testException.java demo program throws a runtime exception and then gets the
parent exception by invoking Exception.getParentException().

Running the program generates this error message:

Caught SQL Exception:ORA-00904: "SD": invalid identifier

Chapter 21
Programming with the XSU Java API

21-27

21.3.9.2 Raising a No Rows Exception
When there are no rows to process, XSU returns a null string. You can throw an
exception each time there are no more rows, however, so that a program can process
this exception using exception handlers.

When a program invokes OracleXMLQuery.setRaiseNoRowsException(), XSU raises
an oracle.xml.sql.OracleXMLSQLNoRowsException whenever there are no rows to
generate for the output. This is a runtime exception and need not be caught.

The noRowsTest.java demo program instantiates the pageTest class defined in
pageTest.java. The condition to check the termination changed from checking
whether the result is null to an exception handler.

The noRowsTest.java program creates a pageTest object and initializes it with a SQL
query. The program proceeds as follows:

1. Configure the query object or raise a no rows exception. The following code
fragment shows this technique:

pageTest test = new pageTest("SELECT * from employees");
...
test.qry.setRaiseNoRowsException(true);

2. Loop through the result set infinitely, retrieving ten rows at a time. When no rows
are available, the program throws an exception. The following code fragment
invokes pageTest.nextPage(), which scrolls through the result set ten rows at a
time:

try
{
 while(true)
 System.out.println(test.nextPage());
}

3. Catch the no rows exception and print "END OF OUTPUT". The following code
shows this technique:

catch(oracle.xml.sql.OracleXMLSQLNoRowsException e)
{
 System.out.println(" END OF OUTPUT ");
 try
 {
 test.close();
 }
 catch (Exception ae)
 {
 ae.printStackTrace(System.out);
 }
}

After compiling the program, run it from the command line:

java noRowsTest

21.4 Tips and Techniques for Programming with XSU
This section provides tips and techniques for writing programs with XSU.

Chapter 21
Tips and Techniques for Programming with XSU

21-28

21.4.1 How XSU Maps Between SQL and XML
The mapping between SQL and XML is described.

The fundamental component of a table is a column, whereas the fundamental components of
an XML document are elements and attributes. How do tables map to XML documents? For
example, if the hr.employees table has a column called last_name, how is this structure
represented in XML: as an <EMPLOYEES> element with a last_name attribute or as a
<LAST_NAME> element within a different root element? This section answers such questions by
describing how SQL maps to XML and the reverse.

21.4.1.1 Default SQL-to-XML Mapping
The default mapping of SQL data to XML data is described.

To display data from some column of the hr.employees table as an XML document, run XSU
at the command line:

java OracleXML getXML -user "hr/password" -withschema \
 "SELECT employee_id, last_name, hire_date FROM employees"

XSU outputs an XML document based on the input query. The root element of the document
is <DOCUMENT>. The following shows sample output, with extraneous lines replaced by
comments:

<?xml version = '1.0'?>
<DOCUMENT xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <!-- children of schema element ... -->
 </xsd:schema>
 <ROWSET xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="#/DOCUMENT/xsd:schema[not(@targetNamespace)]">
 <ROW num="1">
 <EMPLOYEE_ID>100</EMPLOYEE_ID>
 <LAST_NAME>King</LAST_NAME>
 <HIRE_DATE>6/17/1987 0:0:0</HIRE_DATE>
 </ROW>
 <!-- additional rows ... -->
 </ROWSET>
</DOCUMENT>

In the generated XML, the rows returned by the SQL query are children of the <ROWSET>
element. The XML document has these features:

• The <ROWSET> element has zero or more <ROW> child elements corresponding to the
number of rows returned. If the query generates no rows, then no <ROW> elements are
included; if the query generates one row, then one <ROW> element is included, and so
forth.

• Each <ROW> element contains data from one table row. Specifically, each <ROW> element
has one or more child elements whose names and content are identical to the database
columns specified in the SELECT statement.

21.4.1.1.1 XML Mapping Against an Object-Relational Schema
XSU can generate an XML document from an object-relational schema.

Chapter 21
Tips and Techniques for Programming with XSU

21-29

Run the createObjRelSchema.sql script in SQL*Plus to set up and populate an object-
relational schema. The schema contains a dept1 table with two columns that employ
user-defined types.

You can query the dept1 table by invoking XSU from the command line:

% java OracleXML getXML -user "hr/password" -withschema "SELECT * FROM dept1"

XSU returns the XML document shown in Example 21-3, which is altered so that
extraneous lines are replaced by comments.

As in the previous example, the mapping is canonical, that is, <ROWSET> contains <ROW>
child elements, which in turn contain child elements corresponding to the columns in
dept1. For example, the <DEPTNAME> element corresponds to the dept1.deptname
column. The elements corresponding to scalar type columns contain the data from the
columns.

Example 21-3 XSU-Generated Sample Document

<?xml version='1.0'?>
<DOCUMENT xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <schema targetNamespace="http://xmlns.oracle.com/xdb/SYSTEM"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:SYSTEM="http://xmlns.oracle.com/xdb/SYSTEM">
 <!-- children of schema element ... -->
 </xsd:schema>
 <ROWSET xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="#/DOCUMENT/xsd:schema[not(@targetNamespace)]">
 <ROW num="1">
 <DEPTNO>120</DEPTNO>
 <DEPTNAME>Treasury</DEPTNAME>
 <DEPTADDR>
 <STREET>2004 Charade Rd</STREET>
 <CITY>Seattle</CITY>
 <STATE>WA</STATE>
 <ZIP>98199</ZIP>
 </DEPTADDR>
 <EMPLIST>
 <EMPLIST_ITEM>
 <EMPLOYEE_ID>1</EMPLOYEE_ID>
 <LAST_NAME>Mehta</LAST_NAME>
 <SALARY>6000</SALARY>
 <EMPLOYEE_ADDRESS>
 <STREET>500 Main Road</STREET>
 <CITY>Seattle</CITY>
 <STATE>WA</STATE>
 <ZIP>98199</ZIP>
 </EMPLOYEE_ADDRESS>
 </EMPLIST_ITEM>
 </EMPLIST>
 </ROW>
 </ROWSET>
</DOCUMENT>

21.4.1.1.2 Default Mapping of Complex Type Columns to XML
The default mapping of complex-type columns to XML data is described.

Chapter 21
Tips and Techniques for Programming with XSU

21-30

The situation is more complex with elements corresponding to a complex-type column. In
Example 21-3, <DEPTADDR> corresponds to the dept1.deptAddr column, which is of object
type AddressType. Consequently, <DEPTADDR> contains child elements corresponding to the
attributes specified in the type AddressType. The AddressType attribute street corresponds
to the child XML element <STREET> and so forth. These subelements can contain data or
subelements of their own, depending on whether the attribute they correspond to is of a
simple or complex type.

21.4.1.1.3 Default Mapping of Collections to XML
The default mapping of database collections to XML data is described.

When dealing with elements corresponding to database collections, the situation is also
different. In Example 21-3, the <EMPLIST> element corresponds to the emplist column of type
EmployeeListType. Consequently, the <EMPLIST> element contains a list of <EMPLIST_ITEM>
elements, each corresponding to an element of the collection. Note:

• The <ROW> elements contain a cardinality attribute num.

• If a particular column or attribute value is NULL, then for that row, the corresponding XML
element is omitted.

• If a top-level scalar column name starts with the at sign (@) character, then the column is
mapped to an XML attribute instead of an XML element.

21.4.1.2 Default XML-to-SQL Mapping
The default mapping of XML data to SQL data is described.

XML to SQL mapping is the reverse of SQL to XML mapping. Consider these differences
when using XSU to map XML to SQL:

• When transforming XML to SQL, XSU ignores XML attributes. Thus, there is really no
mapping of XML attributes to SQL.

• When transforming SQL to XML, XSU performs the mapping on a single ResultSet
created by a SQL query. The query can span multiple database tables or views. When
transforming XML into SQL, note:

– To insert one XML document into multiple tables or views, you must create an object-
relational view over the target schema.

– If the view is not updatable, then you can use INSTEAD OF INSERT triggers.

If the XML document does not perfectly map to the target database schema, then you can
perform these actions:

• Modify the target. Create an object-relational view over the target schema and make the
view the new target.

• Modify the XML document by using XSLT to transform the XML document. You can
register the XSLT stylesheet with XSU so that the incoming XML is automatically
transformed before it attempts any mapping.

• Modify XSU's XML-to-SQL mapping. You can instruct XSU to perform case-insensitive
matching of XML elements to database columns or attributes. For example, you can
instruct XSU to do this:

– Use the name of the element corresponding to a database row instead of ROW.

– Specify the date format to use when parsing dates in the XML document.

Chapter 21
Tips and Techniques for Programming with XSU

21-31

21.4.1.3 Customizing Generated XML
In some situations, you might need to generate XML with a specific structure. Because
the desired structure might differ from the default structure of the generated XML
document, you need to have some flexibility in this process.

21.4.1.3.1 Altering the Database Schema or SQL Query
You can perform source customizations by altering the SQL query or the database
schema.

The simplest and most powerful source customizations include:

• In the database schema, create an object-relational view that maps to the desired
XML document structure.

• In your query, do this:

– Use cursor subqueries or cast-multiset constructs to create nesting in the XML
document that comes from a flat schema.

– Alias column and attribute names to get the desired XML element names.

– Alias top-level scalar type columns with identifiers that begin with the at sign
(@) to make them map to an XML attribute instead of an XML element. For
example, executing these statement generates an XML document in which the
<ROW> element has the attribute empno:

SELECT employee_name AS "@empno",... FROM employees;
Consider the customer.xml document shown in Example 21-4.

Suppose you must design a set of database tables to store this data. Because the
XML is nested more than one level, you can use an object-relational database schema
that maps canonically to the preceding XML document. Run the
createObjRelSchema2.sql script in SQL*Plus to create such a database schema.

You can load the data in the customer.xml document into the customer_tab table
created by the script. Invoke XSU for Java from the command line:

java OracleXML putXML -user "hr/password" -fileName customer.xml customer_tab

To load customer.xml into a database schema that is not object-relational, you can
create objects in views on top of a standard relational schema. For example, you can
create a relational table that contains the necessary columns, then create a customer
view that contains a customer object on top of it, as shown in the
createRelSchema.sql script in Example 21-5.

You can load data into customer_view:

java OracleXML putXML -user "hr/password" -fileName customer.xml customer_view

Alternatively, you can flatten your XML with XSLT and then insert it directly into a
relational schema. However, this is the least recommended option.

To map a particular column or a group of columns to an XML attribute instead of an
XML element, you can create an alias for the column name and prepend the at sign
(@) before the name of this alias. For example, you can use the mapColumnToAtt.sql
script to query the hr.employees table, rendering employee_id as an XML attribute.

Chapter 21
Tips and Techniques for Programming with XSU

21-32

You can run the mapColumnToAtt.sql script from the command line:

java OracleXML getXML -user "hr/password" -fileName "mapColumnToAtt.sql"

Note:

All attributes must appear before any nonattribute.

Example 21-4 customer.xml

<?xml version = "1.0"?>
<ROWSET>
 <ROW num="1">
 <CUSTOMER>
 <CUSTOMERID>1044</CUSTOMERID>
 <FIRSTNAME>Paul</FIRSTNAME>
 <LASTNAME>Astoria</LASTNAME>
 <HOMEADDRESS>
 <STREET>123 Cherry Lane</STREET>
 <CITY>SF</CITY>
 <STATE>CA</STATE>
 <ZIP>94132</ZIP>
 </HOMEADDRESS>
 </CUSTOMER>
 </ROW>
</ROWSET>

Example 21-5 createRelSchema.sql

CREATE TABLE hr.cust_tab
 (customerid NUMBER(10),
 firstname VARCHAR2(20),
 lastname VARCHAR2(20),
 street VARCHAR2(40),
 city VARCHAR2(20),
 state VARCHAR2(20),
 zip VARCHAR2(20)
);

CREATE VIEW customer_view
AS
SELECT customer_type(customerid, firstname, lastname,
 address_type(street,city,state,zip)) customer
FROM cust_tab;

21.4.1.3.2 Modifying XSU
XSU lets you modify the rules that it uses to transform SQL data into XML.

You can make any of these changes when mapping SQL to XML:

• Change or omit the <ROWSET> or <ROW> tag.

• Change or omit the attribute num, which is the cardinality attribute of the <ROW> element.

• Specify the case for the generated XML element names.

• Specify that XML elements corresponding to elements of a collection must have a
cardinality attribute.

Chapter 21
Tips and Techniques for Programming with XSU

21-33

• Specify the format for dates in the XML document.

• Specify that null values in the XML document must be indicated with a nullness
attribute rather than by omitting the element.

21.4.2 How XSU Processes SQL Statements
How XSU processes SQL statements is described.

21.4.2.1 How XSU Queries the Database
XSU executes SQL queries and retrieves the ResultSet from the database. XSU then
acquires and analyzes metadata about the ResultSet.

Using the mapping described in Default SQL-to-XML Mapping, XSU processes the
SQL result set and converts it into an XML document.

XSU cannot handle certain types of queries, especially those that mix columns of type
LONG or LONG RAW with CURSOR() expressions in the SELECT clause. LONG and LONG RAW
are two examples of data types that JDBC accesses as streams and whose use is
deprecated. If you migrate these columns to CLOBs, then the queries succeed.

21.4.2.2 How XSU Inserts Rows
The steps that XSU performs when inserting an XML document into a table or view are
described.

When inserting the contents of an XML document into a table or view, XSU does the
following:

1. Retrieves metadata about the target table or view.

2. Generates a SQL INSERT statement based on the metadata. For example, assume
that the target table is dept1 and the XML document is generated from dept1.
XSU generates this INSERT statement:

INSERT INTO dept1 (deptno, deptname, deptaddr, emplist) VALUES (?,?,?,?)
3. Parses the XML document, and for each record, it binds the appropriate values to

the appropriate columns or attributes. For example, it binds the values for INSERT
statement:

deptno <- 100
deptname <- SPORTS
deptaddr <- AddressType('100 Redwood Shores Pkwy','Redwood Shores',
 'CA','94065')
emplist <- EmployeeListType(EmployeeType(7369,'John',100000,
 AddressType('300 Embarcadero','Palo Alto','CA','94056'),...)

4. Executes the statement. You can optimize INSERT processing to insert in batches
and commit in batches.

Related Topics

• Default SQL-to-XML Mapping
The default mapping of SQL data to XML data is described.

Chapter 21
Tips and Techniques for Programming with XSU

21-34

See Also:

Inserting Rows with OracleXMLSave for more detail on batching

21.4.2.3 How XSU Updates Rows
Updates and delete statements differ from inserts in that they can affect more than one row in
the database table.

For inserts, each <ROW> element of the XML document can affect at most one row in the table
if no triggers or constraints are on the table. With updates and deletes, the XML element can
match more than one row if the matching columns are not key columns in the table.

For update statements, you must provide a list of key columns that XSU must identify the row
to update. For example, assume that you have an XML document that contains this fragment:

<ROWSET>
 <ROW num="1">
 <DEPTNO>100</DEPTNO>
 <DEPTNAME>SportsDept</DEPTNAME>
 </ROW>
</ROWSET>

You want to change the DEPTNAME value from Sports to SportsDept. If you supply the DEPTNO
as the key column, then XSU generates this UPDATE statement:

UPDATE dept1 SET deptname = ? WHERE deptno = ?

XSU binds the values in this way:

deptno <- 100
deptname <- SportsDept

For updates, you can also choose to update only a set of columns and not all the elements
present in the XML document.

Related Topics

• Updating Rows Using OracleXMLSave
Examples show how to update the fields in a table or view. You supply the table or view
name and an XML document. XSU parses the document (if a string is given) and creates
one or more UPDATE statements into which it binds all of the values.

21.4.2.4 How XSU Deletes Rows
For row deletions, you can choose to provide a set of key columns, so that XSU can identify
the rows to be deleted. If you do not provide a set of key columns then the DELETE statement
tries to match all the columns in the document.

Chapter 21
Tips and Techniques for Programming with XSU

21-35

Assume that you pass this document to XSU:

<ROWSET>
 <ROW num="1">
 <DEPTNO>100</DEPTNO>
 <DEPTNAME>Sports</DEPTNAME>
 <DEPTADDR>
 <STREET>100 Redwood Shores Pkwy</STREET>
 <CITY>Redwood Shores</CITY>
 <STATE>CA</STATE>
 <ZIP>94065</ZIP>
 </DEPTADDR>
 </ROW>
 <!-- additional rows ... -->
</ROWSET>

XSU builds a DELETE statement for each ROW element:

DELETE FROM dept1 WHERE deptno = ? AND deptname = ? AND deptaddr = ?

The binding is:

deptno <- 100
deptname <- sports
deptaddr <- addresstype('100 redwood shores pkwy','redwood city','ca',
 '94065')

Related Topics

• Deleting Rows using XSU
When deleting from XML documents, you can specify a list of key columns. XSU
uses these columns in the WHERE clause of the DELETE statement. If you do not
supply the key column names, then XSU creates a new DELETE statement for each
ROW element of the XML document.

21.4.2.5 How XSU Commits After DML
By default, XSU performs no explicit commits. If AUTOCOMMIT is on, which is the default
for a JDBC connection, then after each batch of statement executions XSU executes a
COMMIT.

You can override this behavior by turning AUTOCOMMIT off and then using
setCommitBatch to specify the number of statement executions before XSU commits.
If an error occurs, then XSU rolls back to either the state the target table was in before
the call to XSU, or the state after the last commit made during the current call to XSU.

Chapter 21
Tips and Techniques for Programming with XSU

21-36

22
Using the TransX Utility

An explanation is given of how to use the TransX utility to transfer XML data to a database.

Related Topics

• Data Loading Format (DLF) Specification
A description is given of version 1.0 of the Data Loading Format (DLF), which is the
standard format for describing translated messages and seed data loaded into the
database by the TransX utility.

22.1 Introduction to the TransX Utility
The TransX utility is described.

TransX Utility lets you transfer XML data to a database. TransX is an application of XML SQL
Utility (XSU) that loads translated seed data and messages into a database schema.

TransX is particularly useful when handling multilingual Extensible Markup Language (XML).
You can use TransX to add data to a database in multiple languages. The utility does this:

• Automatically manages the change variables, start sequences, and additional structured
query language (SQL) statements that would otherwise require multiple inserts or
sessions. Thus, translation vendors do not have to work with unfamiliar SQL and
Procedural Language/Structured Query Language (PL/SQL) scripts.

• Automates character encoding. Consequently, loading errors due to incorrect encoding
are impossible if the data file conforms with the XML standard.

• Reduces globalization costs by preparing strings to be translated, translating the strings,
and loading them into the database.

• Minimizes translation data format errors and accurately loads the translation contents into
predetermined locations in the database. When the data is in a predefined format, the
TransX utility validates it.

• Eliminates syntax errors due to varying Globalization Support settings.

• Does not require the UNISTR construct for every piece of NCHAR data.

Note:

TransX runs as the authenticated user. Care must be taken to review data files and
to load data files only from a trusted source.

22.1.1 Prerequisites for Using the TransX Utility
Prerequisites for using the TransX utility are described.

22-1

This chapter assumes that you are familiar with XML SQL Utility (XSU) because
TransX is an application of XSU.

Related Topics

• Using the XML SQL Utility
An explanation is given of how to use the Extensible Markup Language (XML)
SQL Utility (XSU).

22.1.2 TransX Utility Features
Topics here include simplified multilingual data loading, simplified data format support,
and other TransX Utility features.

22.1.2.1 Simplified Multilingual Data Loading
The traditional translation data loading method is to change environment variable
NLS_LANG when switching load files. This sets the language and territory used by client
applications and the database server. It also sets the client character set, which is
used for data entered or displayed by a client program.

When inserting multilingual data or data translations into a database, or when
encoding, each XML file requires validation.

In the traditional method, each load file is encoded in a character set suitable for its
language, which is necessary because translations must be performed in the same file
format—typically in a SQL script—as the original. The NLS_LANG setting changes as
files are loaded to adapt to the character set that corresponds to the language. As well
as consuming time, this approach is error-prone because the encoding metadata is
separate from the data itself.

With the TransX utility you use an XML document with a predefined format called a
data set. The data set contains the encoding information and the data so that you can
transfer multilingual data without changing NLS_LANG settings. The TransX utility frees
development and translation groups by maintaining the correct character set while
loading XML data into the database.

See Also:

Oracle Database Globalization Support Guide to learn about the NLS_LANG
environment variable

22.1.2.2 Simplified Data Format Support and Interface
The TransX Utility provides a command-line interface and a programmable application
programming interface (API). The utility complies with a data format that is the
canonical method for the representation of seed data loaded into the database. The
format is easy to understand and simplified for use by translation groups.

The format specification defines how translators can describe the data so that it is
loaded in an expected way. You can represent the values in the data set with scalar
values or expressions such as constants, sequences, and queries.

Chapter 22
Introduction to the TransX Utility

22-2

22.1.2.3 Additional TransX Utility Features
Other useful TransX Utility features are described.

Table 22-1 TransX Utility Features

Feature TransX Utility . . .

Command-line interface Provides easy-to-use commands.

User API Exposes a Java API.

Validation Validates the data format and reports errors.

White space handling Does not consider white space characters in the data set as
significant unless otherwise specified in various granularity.

Unloading Exports the result into the standard data format based on an input
query.

Intimacy with translation
exchange format

Enables transformation to and from translation exchange format.

Localized user interface Provides messages in many languages.

22.2 Using the TransX Utility: Overview
Topics here describe how to use the TransX utility.

22.2.1 Using the TransX Utility: Basic Process
The TransX API basic process is described.

TransX is accessible through this API:

• oracle.xml.transx.loader class, which contains the getLoader() method to get a
TransX instance

• oracle.xml.transx.TransX interface, which is the TransX API

Figure 22-1 shows the basic process for using the TransX API to transfer XML to a database.

Chapter 22
Using the TransX Utility: Overview

22-3

Figure 22-1 Basic Process of a TransX Application

g
e
tL

o
a
d

e
r(

)

tr
a
n

s
x
.o

p
e
n

()

tr
a
n

s
x
.l
o

a
d

()

tr
a
n

s
x
.s

e
tL

o
a
d

in
g

M
o

d
e
()

�
tr

a
n

s
x
.s

e
tP

re
s
e
rv

e
W

h
it

e
s
p

a
c
e
()

tr

a
n

s
x
.s

e
tV

a
li
d

a
ti

o
n

M
o

d
e
()

4321 5
tr

a
n

s
x
.c

lo
s
e
()

D
a

ta
b

a
s

e
T

ra
n

s
X

�
A

P
I

T
ra

n
s
X

�
C

o
re

�
P

o
w

e
re

d
�

b
y
 X

D
K

The basic process of a TransX application is:

1. Create a TransX loader object. Instantiate the TransX class by invoking
getLoader():

TransX transx = loader.getLoader();
2. Start a data loading session by supplying database connection information using

TransX.open(). You create a session by supplying the Java Database
Connectivity (JDBC) connect string, database user name, and database
password. You can create the connection in one of these ways:

• Using the JDBC Oracle Call Interface (OCI) driver. The following code
fragment shows this technique and connects with the supplied user name and
password:

transx.open("jdbc:oracle:oci8:@", user, passwd);
• Using the JDBC thin driver. The thin driver is written in pure Java and can be

called from any Java program. The following code fragment shows this
technique and connects:

transx.open("jdbc:oracle:thin:@//myhost:1521/myservicename",
user,passwd);

The thin driver requires the host name (myhost), port number (1521), and the
service name (myservicename). The database must have an active
Transmission Control Protocol/Internet Protocol (TCP/IP) listener.

Chapter 22
Using the TransX Utility: Overview

22-4

Note:

If you are validating only your data format, you do not have to establish a
database connection because the validation is performed by TransX. Thus, you
can invoke the TransX.validate() method without a preceding open()
invocation.

3. Configure the TransX loader. Table 22-2 describes configuration methods.

Table 22-2 TransX Configuration Methods

Method Description

setLoadingMode() Sets the operation mode on duplicates. The mode determines
TransX behavior when there are one or more existing rows in
the database whose values in the key columns are the same as
those in the data set to be loaded. You can specify the
constants EXCEPTION_ON_DUPLICATES, SKIP_DUPLICATES,
or UPDATE_DUPLICATES in class
oracle.xml.transx.LoadingMode. By default the loader
skips duplicates.

setNormalizeLangTag() Sets the case of language tag. By default the loader uses the
style specified in the normalize-langtag attribute on Data
Loading Format (DLF).

setPreserveWhitespace() Specifies how the loader handles white space. The default is
FALSE, which means that the loader ignores the type of white
space characters in the data set and loads them as space
characters. The loader treats consecutive white space
characters in the data set as one space character.

setValidationMode() Sets the validation mode. The default is TRUE, which means
that the loader performs validation of the data set format against
the canonical schema definition on each load() invocation.
The validation mode is disabled only if the data set has already
been validated.

The following example specifies that the loader must skip duplicate rows and not validate
the data set:

transx.setLoadingMode(LoadingMode.SKIP_DUPLICATES);
transx.setValidationMode(false);

4. Load the data sets by invoking TransX.load(). The same JDBC connection is used
during the iteration of the load operations. For example, load three data sets:

String datasrc[] = {"data1.xml", "data2.xml", "data3.xml"};
...
for (int i = 0 ; i < datasrc.length ; i++)
{
 transx.load(datasrc[i]);
}

5. Close the loading session by invoking TransX.close(). This method invocation closes
the database connection:

transx.close();

Chapter 22
Using the TransX Utility: Overview

22-5

See Also:

• Oracle Database Java Developer’s Guide to learn about Oracle
JDBC

• Oracle Database XML Java API Reference to learn about TransX
classes and methods

22.2.2 Running the TransX Utility Demo Programs
Demo programs for the TransX utility are included in $ORACLE_HOME/xdk/demo/java/
transx.

Table 22-3 describes the XML files and programs that you can use to test the utility.

Table 22-3 TransX Utility Sample Files

File Description

README A text file that describes how to set up the TransX demos.

emp-dlf.xml A sample output file. The following command generates a file emp.xml that
contains all data in the table emp:

transx -s "jdbc:oracle:thin:@//myhost:1521/myservicename" user
 -pw emp.xml emp

The emp-dlf.xml file must be identical to emp.xml.

txclean.sql A SQL file that drops the tables and sequences created for the demo.

txdemo1.java A sample Java application that creates a JDBC connection and loads three
data sets into the database.

txdemo1.sql A SQL script that creates two tables and a sequence for use by the demo
application.

txdemo1.xml A sample data set.

Documentation for how to compile and run the sample programs is located in the
README. The basic steps are:

1. Change into the $ORACLE_HOME/xdk/demo/java/transx directory (UNIX) or
%ORACLE_HOME%\xdk\demo\java\transx directory (Windows).

2. Make sure that your environment variables are set as described in Setting Up the
XDK for Java Environment. Oracle recommends that you set the $ORACLE_SID
(UNIX) or %ORACLE_SID% (Windows) environment variables to the default database.

Chapter 22
Using the TransX Utility: Overview

22-6

Note:

For security, do not expose passwords in command-line interfaces. If "-pw" is
specified instead of the password in TransX, the user is prompted for the
password [Enter password :]. When the user types the password, it is not
echoed; instead, "*"s is printed in the command window.

3. Set up the sample database objects by executing txdemo1.sql. Connect to the database
and run the txdemo1.sql script:

@txdemo1
4. Run the TransX utility from the command line. This example shows how to connect with

the Java thin driver, where your host is myhost, your port is 1521, and your service name
is myservicename. Enter the user name where the token user appears. You can execute
this command to load data set txdemo1.xml:

transx "jdbc:oracle:thin:@//myhost:1521/myservicename" user -pw txdemo1.xml

When the operation is successful, nothing is printed out on your terminal.

5. Query the database to determine whether the load was successful. For example:

SELECT * FROM i18n_messages;
6. Drop the demo objects to prepare for another test. Connect to the database and run the

txclean.sql script:

@txclean
7. Compile the Java demo program. For example:

javac txdemo1.java
8. Run the Java program, using the same JDBC and database connection data that you

used when invoking the command-line interface. For example:

java txdemo1 "jdbc:oracle:thin:@//myhost:1521/myservicename" user -pw\
 txdemo1.xml

Perform the same query test (Step 5) and cleanup operation (Step 6) as before.

9. Run the TransX Utility to unload data into the predefined XML format. For example:

transx -s "jdbc:oracle:thin:@//myhost:1521/myservicename" user -pw emp.xml emp

Compare the data in emp.xml with emp-dlf.xml.

Note:

For simplicity in demonstrating this feature, this example does not perform the
password management techniques that a deployed system normally uses. In a
production environment, follow the Oracle Database password management
guidelines, and disable any sample accounts. See Oracle Database Security
Guide for password management guidelines and other security
recommendations.

Chapter 22
Using the TransX Utility: Overview

22-7

22.2.3 Using the TransX Command-Line Utility
TransX utility is packaged with Oracle Database. By default, the Oracle Universal
Installer installs the utility on disk.

As explained in XDK for Java Component Dependencies, the TransX library
is $ORACLE_HOME/lib/xml.jar (UNIX) and %ORACLE_HOME%\lib\xml.jar (Windows).

You can run the TransX utility from the operating system command line with this
syntax:

java oracle.xml.transx.loader

Oracle XML Developer's Kit (XDK) includes a script version of TransX
named $ORACLE_HOME/bin/transx (UNIX) and %ORACLE_HOME%\bin\transx.bat
(Windows). Assuming that your PATH variable is set correctly, you can run TransX:

transx options parameters
transx.bat options parameters

For example, this command shows valid syntax:

transx -s "jdbc:oracle:thin:@//myhost:1521/myservicename" user -pw emp.xml emp

22.2.3.1 TransX Utility Command-Line Options
The command-line options for the TransX Utility are described.

Table 22-4 TransX Utility Command-Line Options

Option Meaning Description

-u Update existing rows. Does not skip existing rows but updates them.
To exclude a column from the update
operation, set the useforupdate attribute to
no.

-e Raise exception if a given row
already exists in the database.

Raises an exception if a duplicate row is found.
By default, TransX skips duplicate rows. Rows
are considered duplicate if the values for
lookup-key column(s) in the database and the
data set are the same.

-x Print database data in the
predefined format.

Similar to the -s option, it causes the utility to
perform the opposite operation of loading.
Unlike the -s option, it prints to stdout.
Redirecting this output to a file is discouraged
because intervention of the operating system
may cause data loss due to unexpected
transcoding.

-s Save database data to a file in the
predefined format.

Performs unloading. TransX Utility queries the
database, formats the result into the
predefined XML format, and stores it under the
specified file name.

-p Print the XML to load. Prints out the data set for insert in the
canonical format of XSU.

Chapter 22
Using the TransX Utility: Overview

22-8

Table 22-4 (Cont.) TransX Utility Command-Line Options

Option Meaning Description

-t Print the XML for update. Prints out the data set for update in the
canonical format of XSU.

-o Omit validation (as the data set is
parsed it is validated by default).

Causes TransX Utility to skip the format
validation, which is performed by default.

-v Validate the data format and exit
without loading.

Causes TransX Utility to perform validation and
exit.

-w Preserve white space. Causes TransX Utility to treat white space
characters (such as \t, \r, \n, and ' ') as
significant. The utility condenses consecutive
white space characters in string data elements
into one space character by default.

-l Set the case of language tag. Causes TransX Utility to override the style of
normalizing the case of language tag specified
in the normalize-langtag attribute on DLF
or the setNormalizeLangTag() method on
the TransX API. Valid options are -ls, -lu
and -ll for standard, uppercase and
lowercase, respectively.

Command-line option exceptions:

• -u and -e are mutually exclusive.

• -v must be the only option followed by data, as shown in the examples.

• -x must be the only option followed by connect information and a SQL query, as shown in
the examples.

Omitting all arguments produces the display of the usage information shown in Table 22-4.

22.2.3.2 TransX Utility Command-Line Parameters
The command-line parameters for the TransX utility are described.

Table 22-5 TransX Utility Command-Line Parameters

Parameter Description

connect_string The JDBC connect string. See Oracle Database JDBC Developer’s Guide,

username Database user name (schema).

password Password for the database user, or "-pw".

datasource An XML document specified by file name or URL.

options Described in Table 22-4.

Chapter 22
Using the TransX Utility: Overview

22-9

See Also:

Oracle Database XML Java API Reference for complete details of the TransX
interface

22.3 Loading Data with the TransX Utility
You can use the TransX utility to populate a database with multilingual data. To
transfer data in and out of a database schema, you create a data set that maps to this
schema. A scenario is described in which you use TransX to organize translated
application messages in a database.

22.3.1 Storing Messages in the Database
Data that is specific to a particular region and shares a common language and cultural
conventions must be organized with a resource management facility that can retrieve
locale-specific information. A database is often used to store such data because of
easy maintenance and flexibility.

To build an internationalized system, it is essential to decouple localizable resources
from business logic. A typical example of such a resource is translated text
information.

Assume that you create the table with the structure and content shown in
Example 22-1 and insert data.

The column language_id is defined in this table so that applications can retrieve
messages based on the preferred language of the end user. It contains abbreviations
of language names to identify the language of messages.

Example 22-2 shows sample data for the table.

See Also:

Oracle Database Globalization Support Guide for Oracle language
abbreviations

Example 22-1 Structure of Table translated_messages

CREATE TABLE translated_messages
(
 MESSAGE_ID NUMBER(4)
 CONSTRAINT tm_mess_id_nn NOT NULL
, LANGUAGE_ID VARCHAR2(42)
, MESSAGE VARCHAR2(200)
);

Example 22-2 Query of translated_messages

MESSAGE_ID LANGUAGE_ID MESSAGE
---------- ----------- ----------------------------------

Chapter 22
Loading Data with the TransX Utility

22-10

1 us Welcome to System X
2 us Please enter username and password

22.3.2 Creation of a Data Set in a Predefined Format
An example shows an XML document that represents the translated_messages table.

Data Loading Format (DLF) Specification describes the complete syntax of the DLF
language. This language is used to create a DLF document that provides the input to TransX.

Given the data set (the input data) in the canonical format, the TransX Utility loads the data
into the designated locations in the database. TransX does not create the database objects:
you must create the tables or views before attempting to load data.

An XML document that represents the translated_messages table created in Example 22-1
looks something like Example 22-3. The data set reflects the structure of the target table,
which in this case is called translated_messages.

Example 22-3 example.xml

<?xml version="1.0"?>
<table name="translated_messages">
 <!-- Specify the unique identifier -->
 <lookup-key>
 <column name="message_id" />
 <column name="language_id" />
 </lookup-key>
 <!-- Specify the columns into which data will be inserted -->
 <columns>
 <column name="message_id" type="number"/>
 <column name="language_id" type="string" constant="us" translate="yes"/>
 <column name="message" type="string" translate="yes"/>
 </columns>
 <!-- Specify the data to be inserted -->
 <dataset>
 <row>
 <col name="message_id">1</col>
 <col name="message" translation-note="dnt'X'">Welcome to System X</col>
 </row>
 <row>
 <col name="message_id">2</col>
 <col name="message">Please enter username and password</col>
 </row>
 <!-- ... -->
 </dataset>
</table>

22.3.2.1 Format of the Input XML Document
The format of the input XML document is described.

The XML document in Example 22-3 starts with this declaration:

<?xml version="1.0"?>

Its root element <table>, which has an attribute that specifies the name of the table, encloses
all the other elements:

Chapter 22
Loading Data with the TransX Utility

22-11

<table name="translated_messages">
...
</table>

As explained in Elements in DLF, the <table> element contains three subsections:

• Lookup Key Elements

• Metadata Elements

• Data Elements

The preceding sections map to elements in Example 22-3:

<lookup-key>...</lookup-key>
<columns>...</columns>
<dataset>...</dataset>

The lookup keys are columns used to evaluate rows if they already exist in the
database. Because you want a pair of message and language identifiers to identify a
unique string, the document lists the corresponding columns. Thus, the message_id,
language_id, and message columns in table translated_messages map to the
attributes in the <column> element:

<column name="message_id" type="number"/>
<column name="language_id" type="string" constant="us" translate="yes"/>
<column name="message" type="string" translate="yes"/>

The columns section must mirror the table structure because it specifies which piece
of data in the data set section maps to which table column. The column names must
be consistent throughout the XML data set and database. You can use the <column>
attributes in Table 22-6 to describe the data to be loaded. These attributes form a
subset of the DLF attributes described in Attributes in DLF.

Table 22-6 <column> Attributes

Attribute Description Example

type Specifies the data type of a column
in the data set. This attribute
specifies the kind of text contained
in the <col> element in the data
set. Depending on this type, the
data loading tool applies different
data type conventions to the data.

<column name="col" type="string" />

constant Specifies a constant value. A
column with a fixed value for each
row does not have to repeat that
same value.

<column name="col" type="string" constant="us" />

language The language attribute indicates
that the column is the language
column, which stores a language
tag. It works in the same way as the
constant attribute, except for the
role to declare the column is the
language column.

<column name="language" type="string" language="us" />

sequence Specifies a sequence in the
database used to fill in the value for
this column.

<column name="id" type="number" sequence="id_sq" />

Chapter 22
Loading Data with the TransX Utility

22-12

Table 22-6 (Cont.) <column> Attributes

Attribute Description Example

translate Indicates whether the text of this
column or parameter is to be
translated.

<column name="msg" type="string" translate="yes"/>

The constant attribute of a <column> element specifies a value to be stored into the
corresponding column for every row in the <dataset> section. Because this example is
working in the original language, the language_id column is set to the value us.

Defining the Language Column

Alternatively, the language_id column may use the language attribute instead of the
constant attribute. A DLF document with the language attribute can use the lang attribute in
the xml namespace. A language column can use the "%x" placeholder to get its value from
the standard xml:lang attribute at the root table element.Thus translate="yes" is not
required, because the value "%x" does not have to be translated. The result of loading this
DLF is the same as Example 10-3.

As explained in Table 23-10, the valid values for the type attribute are string, number, date,
and dateTime. These values correspond to the data types defined in the XML schema
standard, so each piece of data must conform to the respective data type definition. In
particular, it is important to use the International Organization for Standardization (ISO) 8601
format for the date and dateTime data types, as shown in Table 22-7.

Table 22-7 date and dateTime Formats

Data Type Format Example

date CCYY-MM-DD 2009-05-20

dateTime CCYY-MM-DDThh:mm:ss 2009-05-20T16:01:37

Example 22-5 shows how you can represent a table row with dateTime data in a TransX data
set.

Example 22-4 example.xml with a Language Attribute

<?xml version="1.0"?>
<table xml:lang="us" name="translated_messages">
 <!-- Specify the unique identifier -->
 <lookup-key>
 <column name="message_id" />
 <column name="language_id" />
 </lookup-key>
 <!-- Specify the columns into which data will be inserted -->
 <columns>
 <column name="message_id" type="number"/>
 <column name="language_id" type="string" language="%x"/>
 <column name="message" type="string" translate="yes"/>
 </columns>
 <!-- Specify the data to be inserted -->
 <dataset>
 <row>
 <col name="message_id">1</col>

Chapter 22
Loading Data with the TransX Utility

22-13

 <col name="message" translation-note="dnt'X'">Welcome to System X</col>
 </row>
 <row>
 <col name="message_id">2</col>
 <col name="message">Please enter username and password</col>
 </row>
 <!-- ... -->
 </dataset>
</table>

Example 22-5 dateTime Row

<row>
 <col name="article_id">12345678</col>
 <col name="author_id">10500</col>
 <col name="submission">2002-03-09T16:01:37</col>
 <col name="title">...</col>
 <!-- some columns follows -->
</row>

22.3.2.2 Specifying Translations in a Data Set
You can use the translation attribute to specify whether a column contains translated
data.

This is explained in Attributes in DLF. In Example 22-3, two <column> elements use
the translate attribute differently. The attribute for the language_id column specifies
that the value of the constant attribute must be translated:

<column name="language_id" type="string" constant="us"
translate="yes"/>

In contrast, this translate attribute requests translation of the data in the <dataset>
section with a name that matches this column:

<column name="message" type="string" translate="yes"/>

For example, the preceding element specifies that thesethis messages in the
<dataset> section must be translated:

<col name="message" translation-note="dnt'X'">Welcome to System X</col>
<col name="message">Please enter username and password</col>

When translating messages for applications, you might decide to leave specified
words or phrases untranslated. The translation-note attribute shown in the
preceding example achieves this goal.

An Extensible Stylesheet Language Transformation (XSLT) processor can convert the
preceding format into another format for exchanging translation data among
localization service providers for use with XML-based translation tools. This
transformation insulates developers from tasks such as keeping track of revisions,
categorizing translatable strings into units, and so on.

Example 22-6 shows what (the beginning of) the document in Example 22-3 looks like
after translation.

Chapter 22
Loading Data with the TransX Utility

22-14

Example 22-7 shows what the document in Example 22-4 looks like after translation. Unlike
the previous example, the column definition is not changed.

If you use a text editor or a traditional text-based translation tool during the translation
process, it is important to maintain the encoding of the document. After a document is
translated, it may be in a different encoding from the original. As explained in XML
Declaration in DLF, If the translated document is in an encoding other than Unicode, then add
the encoding declaration to the XML declaration on the first line. A declaration for non-
Unicode encoding looks like these:

<?xml version="1.0" encoding="ISO-8859-15"?>

To ensure that the translation process does not lose syntactic integrity, process the document
as XML. Otherwise, you can check the format by specifying the -v option of the command-
line interface. If a syntactic error exists, the utility prints the location and description of the
error. You must fix errors for the data transfer to succeed.

Example 22-6 example_es.xml

<?xml version="1.0"?>
<table xml:lang="es" name="translated_messages">
<!-- Specify the unique identifier -->
<lookup-key>
<column name="message_id" />
<column name="language_id" />
</lookup-key>
<!-- Specify the columns into which data will be inserted -->
<columns>
<column name="message_id" type="number"/>
<column name="language_id" type="string" constant="es"
translate="yes"/>

Example 22-7 example_es.xml with a Language Attribute

<?xml version="1.0"?>
<table xml:lang="es" name="translated_messages">
 <!-- Specify the unique identifier -->
 <lookup-key>
 <column name="message_id" />
 <column name="language_id" />
 </lookup-key>
 <!-- Specify the columns into which data will be inserted -->
 <columns>
 <column name="message_id" type="number"/>
 <column name="language_id" type="string" language="%x"/>
...

Related Topics

• Data Loading Format (DLF) Specification
A description is given of version 1.0 of the Data Loading Format (DLF), which is the
standard format for describing translated messages and seed data loaded into the
database by the TransX utility.

Chapter 22
Loading Data with the TransX Utility

22-15

22.3.3 Loading the Data
The use of demo program txdemo1.java is described.

You can load the sample documents in Example 22-3 and Example 22-8 into the
translated_messages table that you created in Example 22-1. Then, you can use the
sample program in Example 22-8, which you can find in the TransX demo directory, to
load the data.

The txdemo1.java program follows these steps:

1. Create a TransX loader object. For example:

TransX transx = loader.getLoader();
2. Open a data loading session. The first three command-line parameters are the

JDBC connect string, database user name, and database password. These
parameters are passed to the TransX.open() method. The program includes this
statement:

transx.open(args[0], args[1], args[2]);
3. Configure the TransX loader. The program configures the loader to skip duplicate

rows and to validate the input data set. The program includes these statements:

transx.setLoadingMode(LoadingMode.SKIP_DUPLICATES);
transx.setValidationMode(false);

4. Load the data. The first three command-line parameters specify connection
information; any additional parameters specify input XML documents. The
program invokes the load() method for every specified document:

for (int i = 3 ; i < args.length ; i++)
{
 transx.load(args[i]);
}

5. Close the data loading session. The program includes this statement:

transx.close();
After compiling the program with javac, you can run it from the command line. The
following example uses the Java thin driver to connect to instance mydb on port 1521 of
computer myhost. It connects to the user schema and loads the XML documents
example.xml and example_es.xml:

java txdemo1 "jdbc:oracle:thin:@//myhost:1521/mydb" user -pw example.xml
 example_es.xml

In building a multilingual software system, translations usually become available at a
later stage of development. They also tend to evolve over time. To add messages to
the database later, run the TransX utility again to add new rows in your data set
definition. TransX recognizes which rows are new and inserts only the new messages
based on the columns specified in the <lookup-key> section. If some messages are
updated, then run TransX with the -u option to update existing rows with the data
specified in XML, as shown in this example:

transx -u "jdbc:oracle:thin:@//myhost:1521/mydb" user -pw example.xml
 example_es.xml

Chapter 22
Loading Data with the TransX Utility

22-16

Example 22-8 txdemo1.java

// Copyright (c) 2001 All rights reserved Oracle Corporation

import oracle.xml.transx.*;

public class txdemo1 {

 /**
 * Constructor
 */
 public txdemo1() {
 }

 /**
 * main
 * @param args
 *
 * args[0] : connect string
 * args[1] : username
 * args[2] : password
 * args[3+] : xml file names
 */
 public static void main(String[] args) throws Exception {

 // instantiate a transx class
 TransX transx = loader.getLoader();

 // start a data loading session
 transx.open(args[0], args[1], args[2]);

 // specify operation modes
 transx.setLoadingMode(LoadingMode.SKIP_DUPLICATES);
 transx.setValidationMode(false);

 // load the dataset(s)
 for (int i = 3 ; i < args.length ; i++)
 {
 transx.load(args[i]);
 }

 // cleanup
 transx.close();
 }
}

22.3.4 Querying the Data
The result of querying table translated_messages is shown.

After using the program in Example 22-8 to load the data, you can query table
translated_messages to see the result, which looks like this:

MESSAGE_ID LANGUAGE_ID MESSAGE
---------- ----------- ----------------------------------
1 us Welcome to System X
1 es Bienvenido al Sistema X
2 us Please enter username and password
2 es Porfavor entre su nombre de usuario y su contraseña

Chapter 22
Loading Data with the TransX Utility

22-17

An application can retrieve a message in a specific language by using the
language_id and message_id columns in a WHERE clause. For example, you can
execute this query:

SELECT message
FROM translated_messages
WHERE message_id = 2
AND language_id = 'es';

MESSAGE

Porfavor entre su nombre de usuario y su contraseña

Chapter 22
Loading Data with the TransX Utility

22-18

23
Data Loading Format (DLF) Specification

A description is given of version 1.0 of the Data Loading Format (DLF), which is the standard
format for describing translated messages and seed data loaded into the database by the
TransX utility.

Related Topics

• Using the TransX Utility
An explanation is given of how to use the TransX utility to transfer XML data to a
database.

23.1 Introduction to DLF
DLF defines a standard format for loading data with the TransX utility. It is intended to
supersede loading data with SQL scripts. DLF provides these advantages:

• Format validation. Validation reduces errors during the translation and loading processes.

• Ease of use. The user does not have to maintain the character encoding of each data file
to correspond with the language used in the data file.

DLF is based on the XML 1.0 specification.

Note:

TransX runs as the authenticated user. Be sure to review your data files, and load
data files only from a trusted source.

23.1.1 Naming Conventions for DLF
This section describes the naming conventions used in this document.

23.1.1.1 Elements and Attributes
Naming conventions for elements and attributes that are used in this document are
described.

• Standard English letters

• Lowercase letters only

• Hyphen (-) may be used for concatenation

• Attribute names must be consistently defined throughout

• Industry-standard terminology must be followed wherever possible

23-1

23.1.1.2 Values
Values are case-sensitive except for some attribute values used for column names. All
predefined attribute values are lowercase. No element values are defined by this
specification.

23.1.1.3 File Extensions
No file extension is recommended by this specification. A future version of this
specification may recommend that documents use an extension that conforms with an
8.3 standard.

23.2 General Structure of DLF
Data Loading Format is XML, so it begins with an XML declaration. After the XML
declaration comes the DLF document itself, enclosed within element <table>.

A DLF document is composed of these required sections:

• The <lookup-key> element contains a list of column names that determine
whether existing rows in the database are duplicates of the rows in the data set
definition included in the <dataset> element.

• The <columns> element contains metadata about the <dataset> element such as
the names, data types, and attributes of columns.

• The <dataset> element contains a <row> element for each row, which in turn
contains a <col> element that corresponds to a piece of data that is loaded in a
database column. In this way a DLF document looks similar to the familiar tabular
format in printing data in the database and allows easy editing.

DLF provides one optional section, which is enclosed within a <translation> element.
This section may precede the required sections.

In addition, DLF provides information about TransX utility processing. Such information
includes but is not limited to this:

• The <query> element is used to retrieve the value to be loaded to the column from
a SQL query.

• The sequence attribute is used to retrieve the value to be loaded to the column
from a sequence object in the database.

• The constant attribute is used to specify a constant value to the column.

• The language attribute is used to specify the language identifier to be loaded to
the column.

23.2.1 Tree Structure of DLF
The possible structure of a DLF document is shown as a tree. Each element is
represented as <element_name>, where element_name is the name of an element.
Attributes have no markup. Each element and attribute is followed by notation
indicating its possible occurrence.

Table 23-1 describes the occurrence notation.

Chapter 23
General Structure of DLF

23-2

Table 23-1 Notation for Occurrence of Attributes and Elements

Symbol Meaning

1 one

+ one or more

? zero or one

* zero or more

(a|b|c) exactly one of a, b, and c

Example 23-1 shows the tree structure of a DLF document. The elements are described in
Elements in DLF. The attributes are described in Attributes in DLF.

Example 23-1 DLF Tree Structure

<table>1
 |
 +---- lang?
 |
 +---- space?
 |
 +---- normalize-langtag?
 |
 +---- <translation>?
 | |
 | +---- <target>+
 | | |
 | | +---- <language ID>
 | |
 | +---- <restype>+
 | |
 | +---- name1
 | |
 | +---- expansion?
 |
 +---- <lookup-key>1
 | |
 | +---- <column>*
 | |
 | +---- name1
 |
 +---- <columns>1
 | |
 | +---- <column>+
 | |
 | +---- name1
 | |
 | +---- type1
 | |
 | +---- translate?
 | |
 | +---- translation-note?
 | |
 | +---- constant?
 | |
 | +---- language?

Chapter 23
General Structure of DLF

23-3

 | |
 | +---- sequence?
 | |
 | +---- virtual?
 | |
 | +---- useforupdate?
 | |
 | +---- maxsize?
 | |
 | +---- size-unit?
 | |
 | +---- restype?
 | |
 | +---- space?
 | |
 | +---- (<query>|<sql>)?
 | |
 | +---- text1
 | |
 | +---- <parameter>*
 | |
 | +---- id1
 | |
 | +---- (col|constant)1
 | |
 | +---- translate?
 | |
 | +---- trans-key?
 | |
 | +---- translation-note?
 |
 |
 +---- <dataset>1
 |
 +---- <row>+
 |
 +---- space?
 |
 +---- <col>*
 |
 +---- space?
 |
 +---- name1
 |
 +---- trans-key?
 |
 +---- translation-note?
 |
 +---- <the text element for the data>

23.3 DLF Specifications
Topics here include XML declarations, entity references, elements, and attributes in
DLF.

Chapter 23
DLF Specifications

23-4

23.3.1 XML Declaration in DLF
The Extensible Markup Language (XML) declaration starts an XML entity. It indicates the
XML version.

It can also declare the encoding of the file, as in this example:

<?xml version="1.0" encoding="iso-8859-1" ?>

As in all XML files, the default encoding for a DLF file is assumed to be either 8-bit encoding
of Unicode (UTF-8), which is a superset of the 7-bit ASCII character set, or 16-bit encoding of
Unicode (UTF-16), which is conceptually 2-byte Universal Character Set (UCS-2) with
surrogate pairs for code points above 65,535. Thus, for these character sets, the encoding
declaration is not necessary. Furthermore, all XML parsers support these character sets. If
the encoding is UTF-16, then the first character of the file must be the Unicode Byte-Order-
Mark, #xFEFF, which indicates the endianness of the file.

Other character sets supported by Oracle XML parsers include all Oracle character sets and
commonly used Internet Assigned Numbers Authority (IANA) character set and Java
encodings. The names of these character sets can be found in the parser documentation.
You must declare these with encoding declarations if the document does not have an external
source of encoding information such as from the execution environment or the network
protocol. Therefore, Oracle recommends that you use a Unicode character encoding so that
you can dispense with the encoding declaration. The recommended practice is to encode the
document in UTF-8 and use this declaration:

<?xml version="1.0" ?>

23.3.2 Entity References in DLF
XML predefines five entity references: <, >, &, ', and ".You must use
entity references < and & in place of the characters they reference.

Table 23-2 Entity References

Entity Reference Meaning

< Less than sign (<)

> Greater than sign (>)

& Ampersand (&)

' Apostrophe or single quotation mark (')

" Straight, double quotation mark (")

23.3.3 Elements in DLF
Categories of DLF elements are described.

The DLF elements shown in Example 23-1 are divided into the categories described in
Table 23-3. Attributes are shared among them. The attributes are described in Attributes in
DLF.

Chapter 23
DLF Specifications

23-5

Table 23-3 DLF Elements

Type of Element Tag

Top-Level Table Element <table>
Translation Elements <target>, <restype>
Lookup Key Elements <lookup-key>, <column>
Metadata Elements <columns>, <column>, <query>, <sql>, <parameter>
Data Elements <dataset>, <row>, <col>

23.3.3.1 Top-Level Table Element
The top-level table element is described.

Table 23-4 Top-Level Table Element

Tag Description Required
Attributes

Optional
Attributes

Contents

<table> Corresponds to a single table. It
encloses all the other elements
of the document.

name lang,
space,
normalize
-langtag

The order of the elements within
<table> is:

1. <translation> (optional)

2. <lookup-key>
3. <columns>
4. <dataset>

23.3.3.2 Translation Elements
The translation elements are described.

Table 23-5 Translation Elements

Tag Description Required
Attributes

Optional
Attributes

Contents

<translat
ion>

Contains generic information
pertinent to translation.

None None Zero or more <target> elements and
zero or more <restype> elements

<target> Specifies a language to which
this document is translated.

None None A language identifier as defined by
[IETFRFC1766]

<restype> Declares a type of resource. name expansion Empty element

23.3.3.3 Lookup Key Elements
The lookup key elements are described.

Chapter 23
DLF Specifications

23-6

Table 23-6 Lookup Key Elements

Tag Description Required
Attributes

Optional
Attributes

Contents

<lookup-key> Contains the <column> element(s) based on
which the TransX recognizes the rows as
identical or duplicate.

name None Zero or more
<column> elements

<column> A <column> element under <lookup-key>
element indicates a column to be used to
recognize the rows as identical or duplicate.
Columns with the same values in specified
column(s) are considered duplicate,
regardless of the values in the other
column(s). A lookup key <column> must
have corresponding <col>umns in the
<dataset> section or be declared as a
<column> with a constant expression or a
<query> in the <columns> section.

name None Empty element

23.3.3.4 Metadata Elements
The metadata elements are described.

Table 23-7 Metadata Elements

Tag Description Required Attributes Optional
Attributes

Contents

<columns> Contains data about the data to be
loaded.

None None One or more
<column> elements

<column> Specifies a column that
corresponds to <col> elements
under the <dataset> element.
After a <column> is defined the
corresponding <col> element
must appear in every <row>
unless the column has the
sequence, constant or query
attribute.

name, , type in
either order.

The recommended
sequence is name,
type, then optional
attributes.

translate,
constant,
sequence,
virtual,
useforupdate,
maxsize, size-
unit, restype
in any order

Zero or one <query>
or <sql> element

<query> Specifies a SQL query whose
result is used to fill in the column
to which this element belongs.

text None Zero or more
<parameter>
elements

<sql> Specifies a SQL statement whose
result, if any, is used to fill in the
column to which this element
belongs.

text None Zero or more
<parameter>
elements

Chapter 23
DLF Specifications

23-7

Table 23-7 (Cont.) Metadata Elements

Tag Description Required Attributes Optional
Attributes

Contents

<parameter> Specifies a parameter of a
<query> element.

id and either col or
constant.

If col is specified,
the referenced
column cannot have
the query,
constant, or
sequence attributes.

translate,
trans-key

Empty

23.3.3.5 Data Elements
The data elements are <dataset>, <row>, and <col>.

Table 23-8 describes the data elements.

Table 23-8 Data Elements

Tag Description Required
Attributes

Optional
Attributes

Contents

<dataset> Contains data to be loaded into the
database.

None None One or more <row>
elements

<row> Contains data about the data to be
loaded <dataset> element.

None None Zero or more <col>
elements

<col> Specifies an instance of a piece of
data to be loaded to a database
column, or for a virtual column, a
piece of data to be used to get an
actual data to be loaded to a
database column.

name trans-key Data for use by
applications

23.3.4 Attributes in DLF
The various attributes used in the DLF elements are listed. An attribute is never
specified more than once for each element. Along with some of the attributes are the
recommended attribute values. Values for these attributes are case-sensitive.

Table 23-9 Attributes

Type of Attribute Attributes

DLF Attributes name, type, translate, constant, sequence, virtual,
useforupdate, maxsize, size-unit, restype, text, id,
col, trans-key, translation-note, normalize-langtag

XML Namespace Attributes xml:space

Chapter 23
DLF Specifications

23-8

23.3.4.1 DLF Attributes
The DLF attributes are described. These attributes are shared among the DLF elements.

Table 23-10 DLF Attributes

Attribute Description Value Description Default
Value

Used by
Elements

lang Specifies the language of the
document.

This is equivalent to the xml:lang
attribute.

The values of the attribute are
language identifiers as defined by
[IETFRFC4646].

This attribute does not affect data
loading operation in any way.

None; if
absent,
"en" is
assumed

<table>

normalize-
langtag

Specifies how to normalize
the case of language tag.

"none", "standard", "uppercase" or
"lowercase".

The meanings are:

none—no normalization. the values in
the language column on DLF are used
as they are

standard—the style as recommended
by the standards

* lowercase for the 2 letter language
code

* uppercase for the 2 letter country
code

* titlecase for the 4 letter script code

* lowercase for others

uppercase—uppercase everything

lowercase—lowercase everything

none <table>

space Specifies how white spaces
(ASCII spaces, tabs and line-
breaks) are treated.

"default" or "preserve"
The value "default" signals that
applications' default white-space
processing modes are acceptable; the
value "preserve" indicates the intent
that applications preserve all white
space. If this intent is declared at the
root table element, it is considered to
apply to all string data elements in the
whole document. If declared at column
level, it is considered to apply to the
specified column of every row. If this
attribute is declared in the <dataset>
section, the intent applies only to the
immediate text data. Declaration at the
document or column level may be
overridden with another instance of the
space attribute.

"default" <table>,
<column>
, <col>

Chapter 23
DLF Specifications

23-9

Table 23-10 (Cont.) DLF Attributes

Attribute Description Value Description Default
Value

Used by
Elements

name Specifies the name of an
object such as table, column,
restype, and so forth.

String: This is a database table name
for the <table> element, and a column
name for the <column> or <col>
element.

Not
applicable

<table>,
<column>
, <col>

type The data type of a column in
the data set. This attribute
specifies the kind of text
contained in the <col>
element in the data set.
Depending on this type,
TransX may apply different
processes to the data.

Because implicit data type
conversion is provided by
XSU and Java Database
Connectivity (JDBC), TransX
does not do its own parsing
based on this type
information. It uses this
attribute to choose
appropriate intermediate data
types in Java for columns of
date or dateTime type, in
which case the standard date
formats are accepted.

String: possible values are "number",
"string", "date", "dateTime" or
"binary".

The lexical representation of a value of
number type must be supplied in the
SQL language syntax, no matter what
the current locale is. The SQL syntax
uses no digit grouping separator
(usually comma), but uses a dot as the
decimal separator (usually dot).For the
binary data type, the data value
specified in a text field between the
col tags indicates the name of a file
that contains the actual binary data.
Raw data cannot be embedded in the
text field.For the other data types
(string, date, and dateTime) the
representation is constrained by the
corresponding types in the XML
Schema specification.For simplicity,
DLF accepts only standard date
formats of XML Schema in the form
"CCYY-MM-DDThh:mm:ss" (dateTime)
or "CCYY-MM-DD" (date). No other
date format is recognized.

TransX uses this attribute for:

• Bind virtual columns to parameters
of a query

• Bind the result of a query to a
corresponding column

Not
applicable

<column>

translate Indicates whether to translate
the text of this column or
parameter.

Either "yes" or "no" "no" <column>
,
<paramet
er>

constant Specifies a constant value for
this column or parameter.

The value of this column for every row Not
applicable

<column>
,
<paramet
er>

language Specifies language identifier
for this column

Language identifier or a placeholder.
"%x" gets the value from the xml:lang
attribute of the root table element.

Not
applicable

<column>

sequence Specifies a sequence in the
database used to fill in the
value for this column.

String: The name of a sequence in the
database

Not
applicable

<column>

Chapter 23
DLF Specifications

23-10

Table 23-10 (Cont.) DLF Attributes

Attribute Description Value Description Default
Value

Used by
Elements

virtual Indicates that this column
provides data used to
construct another piece of
data, which in turn is loaded
into the database. A virtual
column does not exist in the
database. It is typically used
to provide a value of a
parameter in a query. A virtual
column cannot be a lookup-
key column. A virtual column
with a query throws the result
away.

Either "yes" or "no" "no" <column>

useforupdate Indicates whether to use the
value of this column for the
update when uploading seed
data. This attribute has no
effect unless TransX is in the
mode to update duplicate
rows. A virtual column cannot
have this attribute set to yes.

Either "yes" or "no". If this attribute is
set to "no", then the value of the
column remains unchanged on the
update operation.

"yes" <column>

maxsize Specifies the maximum size
for the data for this column.

Numeric value in the unit specified by
the size-unit attribute. If this
attribute is set and the size-unit is
not set, the size is assumed to be in
characters.

None <column>

size-unit Specifies the unit of size
specified in the maxsize
attribute.

Units. Recommended values are
"char" for characters, "byte" for
bytes.

For supplemental characters, they take
two "char" units.

"char" <column>

restype Indicates the type of data
contained in this column.

A resource type. The value must match
with the name of a <restype>
element.

None <column>

expansion Indicates the maximum size
up to which translated strings
are allowed to become longer
for this type of resource.

A numeric value in percentage of
increase.

0% <restype
>

text Specifies a SQL query
statement to get a value to put
in the column to which the
query belongs.

A SQL statement. Zero or more
parameters can be specified with an
identifier preceded by a colon. The
statement returns a single row of a
single value. Any excessive result is
discarded.

Not
applicable

<query>

Chapter 23
DLF Specifications

23-11

Table 23-10 (Cont.) DLF Attributes

Attribute Description Value Description Default
Value

Used by
Elements

id Specifies a placeholder used
in a SQL query statement with
parameters. The value of the
column specified by the
sibling col attribute is
associated as a parameter to
the query.

String: an identifier that appears in the
text attribute of the parent query
element.

Empty
string

<paramet
er>

col Specifies a column to be
associated with a placeholder
in the query specified by the
sibling id attribute.

String: a column name. The column
must be other than the column this
attribute is a part of.

Not
applicable

<paramet
er>

trans-key Specifies a key for translation. String: a translation key. The value
must be unique in a translation domain.

Not
applicable

<col>,
<paramet
er>

translation-
note

Specifies notes for translation. String: Translation notes. Not
applicable

<col>,
<column>
,
<paramet
er>

23.3.4.2 XML Namespace Attributes
The XML namespace attributes are described.

Table 23-11 XML Namespace Attributes

Attribute Description Value Description Default
Value

Used by
Elements

xml:space Specifies how white space
(ASCII spaces, tabs and
line-breaks) are treated.

"default" or "preserve"
The value "default" signals that
applications' default white space
processing modes are acceptable for this
element; the value "preserve" indicates
the intent that applications preserve all the
white space. This declared intent is
considered to apply to all elements within
the content of the element where it is
specified, unless overridden with another
instance of the xml:space attribute.

"default" None

xml:lang Specifies the language of
the content.

A language tag defined by RFC 4646. Not
applicable

table

23.4 DLF Examples
Topics here include minimal, typical, and localized DLF documents.

Chapter 23
DLF Examples

23-12

23.4.1 Minimal DLF Document
A minimal DLF document is presented.

Example 23-2 Minimal DLF Document

<?xml version="1.0" ?>
<table name="dual">
 <lookup-key/>
 <columns>
 <column name="DUMMY" type="string">
 </columns>
 <dataset>
 <row>
 <col name="DUMMY">X</col>
 </row>
 </dataset>
</table>

23.4.2 Typical DLF Document
A sample DLF document that contains seed data for table CLK_STATUS_L is presented.

Example 23-3 Sample DLF Document

<!--
 - $Header: $
 -
 - Copyright (c) 2001 Oracle Corporation. All Rights Reserved.
 -
 - NAME
 - status.xml - Seed file for the CLK_STATUS_L table
 -
 - DESCRIPTION
 - This file contains seed data for the Status level table.
 -
 - NOTES
 -
 - MODIFIED (MM/DD/YY)
 - dchiba 06/11/01 - Adaption to enhancements of data loading tool
 - dchiba 05/23/01 - Adaption to generic data loading tool
 - rbolsius 05/07/01 - Created
 -->

<table name="clk_status_l" xml:space="preserve">
 <lookup-key>
 <!--column name="status_id" /-->
 <column name="status_code" />
 </lookup-key>

 <columns>
 <column name="status_id" type="number" sequence="clk_status_seq"
useforupdate="no"/>
 <column name="status_code" type="number" />
 <column name="status_name" type="string" translate="yes" />

Chapter 23
DLF Examples

23-13

 <column name="status_description" type="string" translate="yes" />
 <column name="version_created" type="number" constant="0" />
 <column name="version_updated" type="number" constant="0" />
 <column name="status_type_code" type="string" virtual="yes" />
 <column name="status_type_id" type="number" >
 <query text="select status_type_id from clk_status_type_l where
status_type_code = :1" >
 <parameter id="1" col="status_type_code" />
 </query>
 </column>
 </columns>

 <dataset>

 <row>
 <col name="status_code" >100</col>
 <col name="status_name" trans-key="stts-name-1" >Continue</col>
 <col name="status_description" trans-key="stts-desc-1" >
 The client should continue with its request.</col>
 <col name="status_type_code" >INFO</col>
 </row>

 <row>
 <col name="status_code" >101</col>
 <col name="status_name" trans-key="stts-name-2" >Switching Protocols</col>
 <col name="status_description" trans-key="stts-desc-2" >
 The server understands and is willing to comply with the client's
 request (via the Upgrade message header field) for a change in the
 application protocol being used on this connection.</col>
 <col name="status_type_code" >INFO</col>
 </row>

 <row>
 <col name="status_code" >200</col>
 <col name="status_name" trans-key="stts-name-3" >OK</col>
 <col name="status_description" trans-key="stts-desc-3" >
 The request has succeeded.</col>
 <col name="status_type_code" >SUCCESS</col>
 </row>

 <row>
 <col name="status_code" >201</col>
 <col name="status_name" trans-key="stts-name-4" >Created</col>
 <col name="status_description" trans-key="stts-desc-4" >
 The request has been fulfilled and resulted in a new resource being
 created.</col>
 <col name="status_type_code" >SUCCESS</col>
 </row>

 <row>
 <col name="status_code" >202</col>
 <col name="status_name" trans-key="stts-name-5" >Accepted</col>
 <col name="status_description" trans-key="stts-desc-5" >
 The request has been accepted for processing, but the processing has
 not been completed.</col>

Chapter 23
DLF Examples

23-14

 <col name="status_type_code" >SUCCESS</col>
 </row>

 <row>
 <col name="status_code" >203</col>
 <col name="status_name" trans-key="stts-name-6" >Non-Authoritative Information</col>
 <col name="status_description" trans-key="stts-desc-6" >
 The returned metainformation in the entity-header is not the
 definitive set as available from the origin server, but is gathered
 from a local or a third-party copy.</col>
 <col name="status_type_code" >SUCCESS</col>
 </row>

 <row>
 <col name="status_code" >204</col>
 <col name="status_name" trans-key="stts-name-7" >No Content</col>
 <col name="status_description" trans-key="stts-desc-7" >
 The server has fulfilled the request but does not need to return an
 entity-body, and might want to return updated metainformation.</col>
 <col name="status_type_code" >SUCCESS</col>
 </row>

 <!-- ... -->

 </dataset>
</table>

23.4.3 Localized DLF Document
An example of elements and attributes for localization is shown.

Example 23-4 DLF with Localization

<?xml version="1.0"?>
<table name="table_name" xml:lang="en" xml:space="preserve">

<translation>
<target>ar</target>
<target>bs</target>
<target>es</target>
<restype name="alt" expansion="50%"/>
<restype name="foo" expansion="50%"/>
<restype name="bar" expansion="30%"/>
</translation>

<lookup-key><column name="resid" /></lookup-key>

<columns>
<column name="resid" type="number" sequence="seq_foo" useforupdate="no"/>
<column name="image" type="binary"/>
<column name="alt_text" type="string" translate="yes" maxsize="30"
 size-unit="byte" restype="alt"/>

</columns>

<dataset>
<col name="image">foo1.gif</col>

Chapter 23
DLF Examples

23-15

<col name="alt_text">Hello world</col>
</dataset>

</table>

Chapter 23
DLF Examples

23-16

24
Using the XSQL Pages Publishing Framework

An explanation is given of how to use the basic features of the XSQL pages publishing
framework.

Related Topics

• Using the XSQL Pages Publishing Framework: Advanced Topics
An explanation is given of how to use advanced features of the XSQL pages publishing
framework.

24.1 Introduction to the XSQL Pages Publishing Framework
The Oracle XSQL pages publishing framework is an extensible platform for publishing
Extensible Markup Language (XML) in multiple formats.

The Java-based XSQL servlet, which is the center of the framework, provides a declarative
interface for dynamically publishing dynamic web content based on relational data.

The XSQL framework combines the power of structured query language (SQL), XML, and
Extensible Stylesheet Language Transformation (XSLT). You can use it to create declarative
templates called XSQL pages to perform these actions:

• Assemble dynamic XML datagrams based on parameterized SQL queries

• Transform datagrams with XSLT to generate a result in an XML, HTML, or text-based
format

An XSQL page, so called because its default extension is .xsql, is an XML file that contains
instructions for the XSQL servlet. The Example 24-1 shows a simple XSQL page. It uses the
<xsql:query> action element to query the hr.employees table.

You can present a browser client with the data returned from the query in Example 24-1.
Assembling and transforming information for publishing requires no programming. You can
perform most tasks in a declarative way. If a built-in feature does not fit your needs, however,
you can use Java to integrate custom data sources or perform customized server-side
processing.

In the XSQL pages framework, the assembly of information to be published is separate from
presentation. This architectural feature enables you to do this:

• Present the same data in multiple ways, including tailoring the presentation appropriately
to the type of client device making the request —browser, cellular phone, personal digital
assistant (PDA), and so on.

• Reuse data by aggregating existing pages into new ones

• Revise and enhance the presentation independently of the content

Example 24-1 Sample XSQL Page

<?xml version="1.0">
<?xml-stylesheet type="text/xsl" href="emplist.xsl"?>
<xsql:query connection="hr" xmlns:xsql="urn:oracle-xsql">

24-1

 SELECT * FROM employees
</xsql:query>

24.1.1 Prerequisites for Using the XSQL Pages Publishing Framework
Prerequisites for using the XSQL pages publishing framework are described.

This chapter assumes that you are familiar with these technologies:

• Oracle Database SQL. The XSQL framework accesses data in a database.

• Procedural Language/Structured Query Language (PL/SQL). Oracle XML
Developer's Kit (XDK) supplies a PL/SQL application programming interface (API)
for XML SQL Utility (XSU) that mirrors the Java API.

• Java Database Connectivity (JDBC). The XSQL pages framework depends on a
JDBC driver for database connections.

• Extensible Stylesheet Language Transformations (XSLT). You can use XSLT to
transform the data into a format appropriate for delivery to the user.

• XML SQL Utility (XSU). The XSQL pages framework uses XSU to query the
database.

24.2 Using the XSQL Pages Publishing Framework:
Overview

Topics here include basic use, setting up, running the demo programs, and using the
command-line utility.

24.2.1 Using the XSQL Pages Framework: Basic Process
The XSQL page processor engine interprets, caches, and processes the contents of
XSQL pages. Basic use of the XSQL pages framework is described.

Figure 24-1 shows the basic architecture of the XSQL pages publishing framework.
The XSQL page processor provides access from this entry points:

• From the command line or in batch mode with the XSQL command-line utility. The
oracle.xml.xsql.XSQLCommandLine class is the command-line interface.

• Over the web by using the XSQL servlet installed in a web server. The
oracle.xml.xsql.XSQLServlet class is the servlet interface.

• As part of JSP applications by using <jsp:include> to include a template or
<jsp:forward> to forward a template.

• Programmatically by using the oracle.xml.xsql.XSQLRequest Java class.

Chapter 24
Using the XSQL Pages Publishing Framework: Overview

24-2

Figure 24-1 XSQL Pages Framework Architecture

You can run the same XSQL pages from any of the access points shown in Figure 24-1.
Regardless of which way you use the XSQL page processor, it performs these actions to
generate a result:

1. Receives a request to process an XSQL page. The request can come from the
command-line utility or programmatically from an XSQLRequest object.

2. Assembles an XML datagram by using the result of one or more SQL queries. The query
is specified in the <xsql:query> element of the XSQL page.

3. Returns this XML datagram to the requester.

4. Optionally transforms the datagram into any XML, HTML, or text-based format.

Figure 24-2 shows a typical web-based scenario in which a web server receives an HTTP
request for Page.xsql, which contains a reference to the XSLT stylesheet Style.xsl. The
XSQL page contains a database query.

Chapter 24
Using the XSQL Pages Publishing Framework: Overview

24-3

Figure 24-2 Web Access to XSQL Pages

XSU

XSQL�
Servlet

Database

<ROWSET>

 <ROW num="1">

 <EMPLOYEE_ID>

 100

 </EMPLOYEE_ID>

 <FIRST_NAME>

 Steven

 </FIRST_NAME>

 ...

<query>

 SELECT *�

 FROM employees

<query>

<html>

 .
 .

<xsl:value-of

 select="LNAME"/>

 .
 .

</html>

XML or �
HTML

71

2

5

http://server/Page.xsql

Page.xsql XML or HTML

Style.xsl

Page.xsql

DOM

SQL DOM

XML

XML or HTML

3

DOM

XML
Parser

6
XSLT

Engine

4

XSQL Page Processor

The XSQL page processor shown in Figure 24-2 performs these steps:

1. Receives a request from the XSQL Servlet to process Page.xsql.

2. Parses Page.xsql with the Oracle XML Parser and caches it.

3. Connects to the database based on the value of the connection attribute on the
document element.

4. Generates the XML datagram by replacing each XSQL action element, for
example, <xsql:query>, with the XML results returned by its built-in action handler.

5. Parses the Style.xsl stylesheet and caches it.

6. Transforms the datagram by passing it and the Style.xsl stylesheet to the Oracle
XSLT processor.

7. Returns the resulting XML or HTML document to the requester.

During the transformation step in this process, you can use stylesheets that conform
with the W3C XSLT 1.0 or 2.0 standard to transform the assembled datagram into
document formats such as:

• HTML for browser display

• Wireless Markup Language (WML) for wireless devices

• Scalable Vector Graphics (SVG) for data-driven charts, graphs, and diagrams

Chapter 24
Using the XSQL Pages Publishing Framework: Overview

24-4

• XML Stylesheet Formatting Objects (XSL-FO), for rendering into Adobe PDF

• Text documents such as e-mails, SQL scripts, Java programs, and so on

• Arbitrary XML-based document formats

24.2.2 Setting Up the XSQL Pages Framework
You can develop and use XSQL pages in various scenarios.

24.2.2.1 Creating and Testing XSQL Pages with Oracle JDeveloper
The following Oracle JDeveloper tasks are covered here: creating an XSQL page, adding
XSQL action elements to an XSQL page, checking the syntax of an XSQL page, testing an
XSQL page, and adding an XSQL runtime library to your project library list so that
environment variable CLASSPATH is properly set.

The IDE supports these features:

• Color-coded syntax highlighting

• XML syntax checking

• In-context drop-down lists that help you pick valid XSQL tag names and auto-complete
tag and attribute names

• XSQL page deployment and testing

• Debugging tools

• Wizards for creating XSQL actions

To create an XSQL page in an Oracle JDeveloper project:

1. Create or open a project.

2. Select File and then New.

3. In the New Gallery dialog box, select the General category and then XML.

4. In the Item window, select XSQL Page and click OK. Oracle JDeveloper loads a tab for
the new XSQL page into the central window.

To add XSQL action elements such as <xsql:query> to your XSQL page, place the cursor
where you want the new element to go and click an item in the Component Palette. A wizard
opens that takes you through the steps of selecting which XSQL action you want to use and
which attributes you must provide.

To check the syntax of an XSQL page, place the cursor in the page and right-click Check
XML Syntax. If there are any XML syntax errors, Oracle JDeveloper displays them.

To test an XSQL page, select the page in the navigator and right-click Run. Oracle
JDeveloper automatically starts a local web server, properly configured to run XSQL pages,
and tests your page by starting your default browser with the appropriate URL to request the
page. After you have run the XSQL page, you can continue to make modifications to it in the
IDE. And, you can modify any XSLT stylesheets with which it might be associated. After
saving the files in the IDE, you can immediately refresh the browser to observe the effect of
the changes.

You must add the XSQL runtime library to your project library list so that the CLASSPATH is
properly set. The IDE adds this entry automatically when you go through the New Gallery
dialog to create a new XSQL page, but you can also add it manually to the project as follows:

Chapter 24
Using the XSQL Pages Publishing Framework: Overview

24-5

1. Right-click the project in the Applications Navigator.

2. Select Project Properties.

3. Select Profiles and then Libraries from the navigation tree.

4. Move XSQL Runtime from the Available Libraries pane to Selected Libraries.

24.2.2.2 Setting the CLASSPATH for XSQL Pages
Outside of the Oracle JDeveloper environment, you must ensure that the XSQL page
processor engine is properly configured.

Ensure that the appropriate Java Archive (JAR) files are in the CLASSPATH of the Java
Virtual Machine (JVM) that processes the XSQL Pages. The complete set of XDK JAR
files is described in Table 11-1. The JAR files for the XSQL framework include:

• xml.jar, the XSQL page processor

• xmlparserv2.jar, the Oracle XML parser

• xsu12.jar, the Oracle XML SQL utility (XSU)

• ojdbc6.jar, the Oracle JDBC driver

Note:

The XSQL servlet can connect to any database that has Java Database
Connectivity (JDBC) support. Indicate the appropriate JDBC driver class and
connection URL in the XSQL configuration file connection definition. Object-
relational functionality works only when using Oracle Database with the
Oracle JDBC driver.

If you have configured your CLASSPATH as instructed in Setting Up the XDK for Java
Environment, you need to add the directory only where the XSQL pages configuration
file resides. In the database installation of XDK, the directory for XSQLConfig.xml
is $ORACLE_HOME/xdk/admin.

On Windows your %CLASSPATH% variable contains these entries:

%ORACLE_HOME%\lib\ojdbc6.jar;%ORACLE_HOME%\lib\xmlparserv2.jar;
%ORACLE_HOME%\lib\xsu12.jar;C:\xsql\lib\xml.jar;%ORACLE_HOME%\xdk\admin

On UNIX the $CLASSPATH variable contains these entries:

$ORACLE_HOME/lib/ojdbc6.jar:$ORACLE_HOME/lib/xmlparserv2.jar:
$ORACLE_HOME/lib/xsu12.jar:$ORACLE_HOME/lib/xml.jar:$ORACLE_HOME\xdk\admin

Note:

If you are deploying your XSQL pages in a Java Platform, Enterprise Edition
(Java EE) web application archive (WAR) file, then you can include the
XSQL JAR files in the ./WEB-INF/lib directory of the WAR file.

Chapter 24
Using the XSQL Pages Publishing Framework: Overview

24-6

24.2.2.3 Configuring the XSQL Servlet Container
You can install the XSQL servlet in a variety of different web servers. See the
file $ORACLE_HOME/xdk/readme.html for servlet installation instructions.

24.2.2.4 Setting Up the Connection Definitions
XSQL pages specify database connections by using a short name for a connection that is
defined in the XSQL configuration file, which by default is named $ORACLE_HOME/xdk/admin/
XSQLConfig.xml.

Note:

If you are deploying your XSQL pages in a Java EE WAR file, then you can place
the XSQLConfig.xml file in the ./WEB-INF/classes directory of your WAR file.

The sample XSQL page shown in Example 24-1 contains this connection information:

<xsql:query connection="hr" xmlns:xsql="urn:oracle-xsql">

Connection names are defined in the <connectiondefs> section of the XSQL configuration
file. Example 24-2 shows the relevant section of the sample configuration file included with
the database, with the hr connection in bold.

For each database connection, you can specify these elements:

• <username>, the database user name

• <password>, the database password

• <dburl>, the JDBC connection string

• <driver>, the fully qualified class name of the JDBC driver to use

• <autocommit>, which optionally forces AUTOCOMMIT to TRUE or FALSE
Specify an <autocommit> child element to control the setting of the JDBC autocommit for any
connection. If no <autocommit> child element is set for a <connection>, then the autocommit
setting is not set by the XSQL connection manager. In this case, the setting is the default
autocommit setting for the JDBC driver.

You can place an arbitrary number of <connection> elements in the XSQL configuration file
to define your database connections. An individual XSQL page refers to the connection it
wants to use by putting a connection="xxx" attribute on the top-level element in the page
(also called the "document element").

Chapter 24
Using the XSQL Pages Publishing Framework: Overview

24-7

Note:

The XSQLConfig.xml file contains sensitive database user name and
password information that must be kept secure on the database server. See
Security Considerations for XSQL Pages for instructions.

Example 24-2 Connection Definitions Section of XSQLConfig.xml

<connectiondefs>
 ...
 <connection name="hr">
 <username>hr</username>
 <password>hr_password</password>
 <dburl>jdbc:oracle:thin:@localhost:1521:ORCL</dburl>
 <driver>oracle.jdbc.driver.OracleDriver</driver>
 <autocommit>false</autocommit>
 </connection>
 ...
</connectiondefs>

24.2.3 Running the XSQL Pages Demo Programs
Demo programs for the XSQL servlet are included in $ORACLE_HOME/xdk/demo/java/
xsql.

Table 24-1 lists the demo subdirectories and explains the included demos. The Demo
Name column refers to the title of the demo listed on the XSQL Pages & XSQL Servlet
home page. Running the XSQL Demos explains how to access the home page.

Table 24-1 XSQL Servlet Demos

Directory Demo Name Description

home/ XSQL Pages &
XSQL Servlet

Contains the pages that display the tabbed home page of the XSQL demos and
the online XSQL help that you can access from that page. As explained in
Running the XSQL Demos. you can invoke the XSQL home page from the
index.html page.

helloworld
/

Hello World
Page

Shows the simplest possible XSQL page.

emp/ Employee Page XSQL page showing XML data from the hr.employees table, using XSQL page
parameters to control what employees are returned and which columns to use for
the database sort.

Uses an associated XSLT stylesheet to format the results as an HTML Form
containing the emp.xsql page as the form action so the user can refine the
search criteria.

insclaim/ Insurance Claim
Page

Demonstrates several sample queries over the richly structured Insurance Claim
object view. The insclaim.sql scripts sets up the INSURANCE_CLAIM_VIEW
object view and populates it with sample data.

classerr/ Invalid Classes
Page

Uses invalidclasses.xsl to format a "live" list of current Java class
compilation errors in your schema. The accompanying SQL script sets up the
XSQLJavaClassesView object view used by the demo. The master/detail
information from the object view is formatted into HTML by the
invalidclasses.xsl stylesheet in the server.

Chapter 24
Using the XSQL Pages Publishing Framework: Overview

24-8

Table 24-1 (Cont.) XSQL Servlet Demos

Directory Demo Name Description

doyouxml/ Do You XML?
Site

Shows how a simple, data-driven web site can be built with an XSQL page that
uses SQL, XSQL substitution variables in the queries, and XSLT for formatting
the site.

Demonstrates using substitution parameters in both the body of SQL query
statements within <xsql:query> tags, and also within the attributes to
<xsql:query> tags to control behavior such as how many records to display and
to skip (for "paging" through query results in a stateless way).

empdept/ Emp/Dept
Object Demo

Demonstrates how to use an object view to group master/detail information from
two existing flat tables such as scott.emp and scott.dept. The
empdeptobjs.sql script creates the object view and also the INSTEAD OF
INSERT triggers that enable the master/detail view to be used as an insert target
of xsql:insert-request.

The empdept.xsl stylesheet shows a form of an XSLT stylesheet that looks just
like an HTML page without the extra xsl:stylesheet or xsl:transform at the
top. Using a Literal Result Element as a stylesheet is part of the XSLT 1.0
specification. The stylesheet also shows how to generate an HTML page that
includes <link rel="stylesheet"> to enable the generated HTML to fully
leverage cascading stylesheets (CSS) for centralized HTML style information,
found in the coolcolors.css file.

airport/ Airport Code
Validation

Returns a datagram of information about airports based on their three-letter
codes and uses <xsql:no-rows-query> as alternative queries when initial
queries return no rows. After attempting to match the airport code passed in, the
XSQL page tries a fuzzy match based on the airport description.

The airport.htm page shows how to use the XML results of the
airport.xsql page from a web page with JavaScript to exploit built-in
Document Object Model (DOM) functionality in Internet Explorer.

When you enter the three-letter airport code on the web page, a JavaScript
fetches an XML datagram from XSQL servlet. The datagram corresponds to the
code that you entered. If the return indicates no match, then the program collects
a "picklist" of possible matches based on information returned in the XML
datagram from XSQL servlet

airport/ Airport Code
Display

Demonstrates use of the same XSQL page as the Airport Code Validation
example but supplies an XSLT stylesheet name in the request. This behavior
causes the airport information to be formatted as an HTML form instead of being
returned as raw XML.

airport/ Airport Soap
Service

Demonstrates returning airport information as a Simple Object Access Protocol
(SOAP) Service.

adhocsql/ Adhoc Query
Visualization

Demonstrates how to pass a SQL query and an XSLT stylesheet as parameters
to the server.

Chapter 24
Using the XSQL Pages Publishing Framework: Overview

24-9

Table 24-1 (Cont.) XSQL Servlet Demos

Directory Demo Name Description

document/ XML Document
Demo

Demonstrates inserting XML documents into relational tables. The docdemo.sql
script creates a user-defined type called XMLDOCFRAG containing an attribute
of type character large object (CLOB).

Try inserting the text of the document in ./xsql/demo/xml99.xml and providing
the name xml99.xsl as the stylesheet, and ./xsql/demo/JDevRelNotes.xml
with the stylesheet relnotes.xsl.

The docstyle.xsql page shows an example of the <xsql:include-xsql> action
element to include the output of the doc.xsql page into its own page before
transforming the final output using a client-supplied stylesheet name.

The demo uses the client-side XML features of Internet Explorer 5.0 to check the
document for well-formedness before allowing it to be posted to the server.

insertxml/ XML Insert
Request Demo

Demonstrates posting XML from a client to an XSQL page that handles inserting
the posted XML data into a database table using the <xsql:insert-request> action
element. The demo accepts XML documents in the moreover.com XML-based
news format.

In this case, the program doing the posting of the XML is a client-side web page
using Internet Explorer 5.0 and the XMLHttpRequest object from JavaScript. If
you look at the source for the insertnewsstory.xsql page, you'll see it's
specifying a table name and an XSLT Transform name. The moreover-to-
newsstory.xsl stylesheet transforms the incoming XML information into the
canonical format that the OracleXMLSave utility knows how to insert.

Try copying and pasting the example <article> element several times within the
<moreovernews> element to insert several new articles in one shot.

The newsstory.sql script shows how INSTEAD OF triggers can be used on the
database views into which you ask XSQL Pages to insert to the data to customize
how incoming data is handled, default primary key values, and so on.

svg/ Scalable Vector
Graphics Demo

The deptlist.xsql page displays a simple list of departments with hyperlinks
to the SalChart.xsql page. The SalChart.xsql page queries employees for
a given department passed in as a parameter and uses the associated
SalChart.xsql stylesheet to format the result into a Scalable Vector Graphics
drawing, a bar chart comparing salaries of the employees in that department.

fop/ PDF Demo The emptable.xsql page displays a simple list of employees. The
emptable.xsl stylesheet transforms the datapage into the XSL-FO Formatting
Objects which, combined with the built-in FOP serializer, render the results in
Adobe PDF format.

cursor/ Cursor Demo Contains an example of using a nested CURSOR expression, which is one of three
ways to use the default <xsql:query> element to produce nested elements.

actions/ Contains the source code for two example custom actions.

24.2.3.1 Setting Up the XSQL Demos
How to set up the XSQL demos is described.

1. Change into the $ORACLE_HOME/xdk/demo/java/xsql directory (UNIX) or
%ORACLE_HOME%\xdk\demo\java\xsql directory (Windows).

2. Start SQL*Plus and connect to your database as ctxsys—the schema owner for
the Oracle Text packages—and issue this statement:

Chapter 24
Using the XSQL Pages Publishing Framework: Overview

24-10

GRANT EXECUTE ON ctx_ddl TO scott;
3. Connect to your database as a user with DBA privileges and issue this statement:

GRANT QUERY REWRITE TO scott;

The preceding query enables scott to create a function-based index that one of the
demos requires to perform case-insensitive queries on descriptions of airports.

4. Connect to your database as scott. You are prompted for the password.

5. Run the SQL script install.sql in the current directory. This script runs all SQL scripts
for all the demos:

@install.sql
6. Change to the ./doyouxml subdirectory, and run this command to import sample data for

the "Do You XML?" demo (you are prompted for the password):

imp scott file=doyouxml.dmp
7. To run the Scalable Vector Graphics (SVG) demonstration, install an SVG plug-in such as

Adobe SVG plug-in into your browser.

24.2.3.2 Running the XSQL Demos
The XSQL demos are designed to be accessed through a web browser.

If you have set up the XSQL servlet in a web server as described in Configuring the XSQL
Servlet Container, then you can access the demos through this URL, substituting appropriate
values for yourserver and port:

http://yourserver:port/xsql/index.html

Figure 24-3 shows a section of the XSQL home page in Internet Explorer. (You must use
browser version 5 or later.)

Chapter 24
Using the XSQL Pages Publishing Framework: Overview

24-11

Figure 24-3 XSQL Home Page

The demos are designed to be self-explanatory. Click the demo titles—Hello World
Page, Employee Page, and so forth—and follow the online instructions.

24.2.4 Using the XSQL Pages Command-Line Utility
XDK includes a command-line Java interface that runs the XSQL page processor. You
can process any XSQL page with the XSQL command-line utility.

Often the content of a dynamic page is based on data that does not frequently change.
To optimize performance of your web publishing, you can use operating system
facilities to schedule offline processing of your XSQL pages. This technique enables
the processed results to be served statically by your web server.

The $ORACLE_HOME/xdk/bin/xsql and %ORACLE_HOME%\xdk\bin\xsql.bat shell scripts
run the oracle.xml.xsql.XSQLCommandLine class. Before invoking the class ensure
that your environment is configured as described in Setting Up the XSQL Pages
Framework. Depending on how you invoke the utility, the syntax is either of these:

java oracle.xml.xsql.XSQLCommandLine xsqlpage [outfile] [param1=value1 ...]
xsql xsqlpage [outfile] [param1=value1 ...]

If you specify an outfile, then the result of processing xsqlpage is written to it;
otherwise the result goes to standard out. You can pass any number of parameters to

Chapter 24
Using the XSQL Pages Publishing Framework: Overview

24-12

the XSQL page processor, which are available for reference by the XSQL page processed as
part of the request. However, these parameter names are recognized by the command-line
utility and have a predefined behavior:

• xml-stylesheet=stylesheetURL
Provides the relative or absolute URL for a stylesheet to use for the request. You can also
set it to the string none to suppress XSLT stylesheet processing for debugging.

• posted-xml=XMLDocumentURL
Provides the relative or absolute URL of an XML resource to treat as if it were posted as
part of the request.

• useragent=UserAgentString
Simulates a particular HTTP User-Agent string from the command line so that an
appropriate stylesheet for that User-Agent type is selected as part of command-line
processing of the page.

24.3 Generating and Transforming XML with XSQL Servlet
The basic tasks that you can perform with your server-side XSQL page templates are
described.

24.3.1 Composing XSQL Pages
You can serve database information in XML format over the web with XSQL pages.

For example, suppose your aim is to serve a real-time XML datagram from Oracle of all
available flights landing today at JFK airport. Example 24-3 shows a sample XSQL page in a
file named AvailableFlightsToday.xsql.

The XSQL page is an XML file that contains any mix of static XML content and XSQL action
elements. The file can have any extension, but .xsql is the default extension for XSQL
pages. You can modify your servlet engine configuration settings to associate other
extensions by using the same technique described in Configuring the XSQL Servlet
Container. The servlet extension mapping is configured inside the ./WEB-INF/web.xml file in
a Java EE WAR file.

The XSQL page in Example 24-3 begins with this declaration:

<?xml version="1.0"?>

The first, outermost element in an XSQL page is the document element.
AvailableFlightsToday.xsql contains a single XSQL action element <xsql:query>, but no
static XML elements. In this case the <xsql:query> element is the document element.
Example 24-3 represents the simplest useful XSQL page: one that contains a single query.
The results of the query replace the <xsql:query> section in the XSQL page.

Note:

XSQL Pages Reference describes the complete set of built-in action elements.

Chapter 24
Generating and Transforming XML with XSQL Servlet

24-13

The <xsql:query> action element includes an xmlns attribute that declares the xsql
namespace prefix as a synonym for the urn:oracle-xsql value, which is the Oracle
XSQL namespace identifier:

<xsql:query connection="demo" bind-params="City" xmlns:xsql="urn:oracle-xsql">

The element also contains a connection attribute whose value is the name of a
predefined connection in the XSQL configuration file:

<xsql:query connection="demo" bind-params="City" xmlns:xsql="urn:oracle-xsql">

The details concerning the user name, password, database, and JDBC driver to be
used for the demo connection are centralized in the configuration file.

To include more than one query on the page, you can invent an XML element to wrap
the other elements. Example 24-4 shows this technique.

In Example 24-4, the connection attribute and the xsql namespace declaration
always go on the document element, whereas the bind-params is specific to the
<xsql:query> action.

Example 24-3 Sample XSQL Page in AvailableFlightsToday.xsql

<?xml version="1.0"?>
<xsql:query connection="demo" bind-params="City" xmlns:xsql="urn:oracle-xsql">
 SELECT Carrier, FlightNumber, Origin, TO_CHAR(ExpectedTime,'HH24:MI') AS Due
 FROM FlightSchedule
 WHERE TRUNC(ExpectedTime) = TRUNC(SYSDATE)
 AND Arrived = 'N'
 AND Destination = ? /* The "?" represents a bind variable bound */
 ORDER BY ExpectedTime /* to the value of the City parameter. */
</xsql:query>

Example 24-4 Wrapping the <xsql:query> Element

<?xml version="1.0"?>
<page connection="demo" xmlns:xsql="urn:oracle-xsql">
 <xsql:query bind-params="City">
 SELECT Carrier, FlightNumber, Origin, TO_CHAR(ExpectedTime,'HH24:MI') AS
Due
 FROM FlightSchedule
 WHERE TRUNC(ExpectedTime) = TRUNC(SYSDATE)
 AND Arrived = 'N'
 AND Destination = ? /* The ? is a bind variable bound */
 ORDER BY ExpectedTime /* to the value of the City parameter. */
 </xsql:query>
 <!-- Other xsql:query actions can go here inside <page> and </page> -->
</page>

24.3.1.1 Using Bind Parameters
The use of bind parameters is described.

The <xsql:query> element shown in Example 24-3 contains a bind-params attribute
that associates the values of parameters in the request to bind variables in the SQL
statement included in the <xsql:query> tag. The bind parameters in the SQL
statement are represented by question marks.

Chapter 24
Generating and Transforming XML with XSQL Servlet

24-14

You can use SQL bind variables to parameterize the results of any of the actions in
Table 33-1 that allow SQL statements. Bind variables enable your XSQL page template to
produce results based on the values of parameters passed in the request.

To use a bind variable, include a question mark anywhere in a statement where bind
variables are allowed by SQL. Whenever a SQL statement is executed in the page, the XSQL
engine binds the parameter values to the variable by specifying the bind-params attribute on
the action element.

Example 24-5 shows an XSQL page that binds the bind variables to the value of the custid
parameter in the page request.

The XML data for a customer with ID of 101 can then be requested by passing the customer
id parameter in the request:

http://yourserver.com/fin/CustomerPortfolio.xsql?custid=1001

The value of the bind-params attribute is a space-delimited list of parameter names. The left-
to-right order indicates the positional bind variable to which its value is bound in the
statement. Thus, if your SQL statement contains five question marks, then the bind-params
attribute needs a space-delimited list of five parameter names. If the same parameter value
must be bound to several different occurrences of a bind variable, then repeat the name of
the parameters in the value of the bind-params attribute at the appropriate position. Failure to
include the same number of parameter names in the bind-params attribute as in the query
causes an error when the page is executed.

You can use variables in any action that expects a SQL statement or PL/SQL block. The
page shown in Example 24-6 shows this technique. The XSQL page contains three action
elements:

• <xsql:dml> binds useridCookie to an argument in the log_user_hit procedure.

• <xsql:query> binds parameter custid to a variable in a WHERE clause.

• <xsql:include-owa> binds parameters custid and userCookie to two arguments in the
historical_data procedure.

Example 24-5 Bind Variables in CustomerPortfolio.xsql

<portfolio connnection="prod" xmlns:xsql="urn:oracle-xsql">
 <xsql:query bind-params="custid">
 SELECT s.ticker as "Symbol", s.last_traded_price as "Price"
 FROM latest_stocks s, customer_portfolio p
 WHERE p.customer_id = ?
 AND s.ticker = p.ticker
 </xsql:query>
</portfolio>

Example 24-6 Bind Variables with Action Elements in CustomerPortfolio.xsql

<portfolio connnection="prod" xmlns:xsql="urn:oracle-xsql">
 <xsql:dml commit="yes" bind-params="useridCookie">
 BEGIN log_user_hit(?); END;
 </xsql:dml>
 <current-prices>
 <xsql:query bind-params="custid">
 SELECT s.ticker as "Symbol", s.last_traded_price as "Price"
 FROM latest_stocks s, customer_portfolio p
 WHERE p.customer_id = ?
 AND s.ticker = p.ticker
 </xsql:query>

Chapter 24
Generating and Transforming XML with XSQL Servlet

24-15

 </current-prices>
 <analysis>
 <xsql:include-owa bind-params="custid userCookie">
 BEGIN portfolio_analysis.historical_data(?,5 /* years */, ?); END;
 </xsql:include-owa>
 </analysis>
</portfolio>

24.3.1.2 Using Lexical Substitution Parameters
For any XSQL action element, you can substitute a lexical substitution parameter for
the value of any attribute or the text of any contained SQL statement. Thus, you can
parameterize how actions behave and substitute parts of the SQL statements that they
perform.

Lexical substitution parameters are referenced with this syntax: {@ParameterName}.
Example 24-7 shows how you can use two lexical substitution parameters. One
parameter in the <xsql:query> element sets the maximum number of rows to be
passed in, whereas the other controls the list of columns to be ordered.

Example 24-7 also contains two bind parameters: dev and prod. For example, you
might want to get the open bugs for developer yxsmith against product 817. And, you
want to retrieve only 10 rows and order them by bug number. You can fetch the XML
for the bug list by specifying parameter values:

http://server.com/bug/DevOpenBugs.xsql?
dev=yxsmith&prod=817&max=10&orderby=bugno

You can also use the XSQL command-line utility to make the request:

xsql DevOpenBugs.xsql dev=yxsmith prod=817 max=10 orderby=bugno

Lexical parameters also enable you to specify parameters for the XSQL pages
connection and the stylesheet used to process the page. Example 24-8 shows this
technique. You can switch between stylesheets test.xsql and prod.xsl by specifying
the name/value pairs sheet=test and sheet=prod.

Example 24-7 Lexical Substitution Parameters for Rows and Columns in
DevOpenBugs.xsql

<!-- DevOpenBugs.xsql -->
<open-bugs connection="demo" xmlns:xsql="urn:oracle-xsql">
 <xsql:query max-rows="{@max}" bind-params="dev prod">
 SELECT bugno, abstract, status
 FROM bug_table
 WHERE programmer_assigned = UPPER(?)
 AND product_id = ?
 AND status < 80
 ORDER BY {@orderby}
 </xsql:query>
</open-bugs>

Chapter 24
Generating and Transforming XML with XSQL Servlet

24-16

Example 24-8 Lexical Substitution Parameters for Connections and Stylesheets in
DevOpenBugs.xsql

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="{@sheet}.xsl"?>
<!-- DevOpenBugs.xsql -->
<open-bugs connection="{@conn}" xmlns:xsql="urn:oracle-xsql">
 <xsql:query max-rows="{@max}" bind-params="dev prod">
 SELECT bugno, abstract, status
 FROM bug_table
 WHERE programmer_assigned = UPPER(?)
 AND product_id = ?
 AND status < 80
 ORDER BY {@orderby}
 </xsql:query>
</open-bugs>

24.3.1.3 Providing Default Values for Bind and Substitution Parameters
You may want to provide a default value for a bind variable or a substitution parameter
directly in a page. In this way, the page is parameterized without requiring the requester to
explicitly pass in all values in each request.

To include a default value for a parameter, add an XML attribute of the same name as the
parameter to the action element or to any ancestor element. If a value for a given parameter
is not included in the request, then the XSQL page processor searches for an attribute by the
same name on the current action element. If it does not find one, it keeps looking for such an
attribute on each ancestor element of the current action element until it gets to the document
element of the page.

The page in Example 24-9 defaults the value of the max parameter to 10 for both
<xsql:query> actions in the page.

This page in Example 24-10 defaults the first query to a max of 5, the second query to a max of
7, and the third query to a max of 10.

All defaults are overridden if a value of max is supplied in the request, as shown in this
example:

http://yourserver.com/example.xsql?max=3

Bind variables respect the same defaulting rules. Example 24-11 shows how you can set the
val parameter to 10 by default.

If the page in Example 24-11 is requested without any parameters, it returns this XML
datagram:

<example>
 <rowset>
 <row>
 <somevalue>10</somevalue>
 </row>
 </row>
</example>

Alternatively, assume that the page is requested with this URL:

Chapter 24
Generating and Transforming XML with XSQL Servlet

24-17

http://yourserver.com/example.xsql?val=3

The preceding URL returns this datagram:

<example>
 <rowset>
 <row>
 <somevalue>3</somevalue>
 </row>
 </row>
</example>

You can remove the default value for the val parameter from the page by removing
the val attribute. Example 24-12 shows this technique.

A URL request for the page that does not supply a name/value pair returns this
datagram:

<example>
 <rowset/>
</example>

A bind variable that is bound to a parameter with neither a default value nor a value
supplied in the request is bound to NULL, which causes the WHERE clause in
Example 24-12 to return no rows.

Example 24-9 Setting a Default Value

<example max="10" connection="demo" xmlns:xsql="urn:oracle-xsql">
 <xsql:query max-rows="{@max}">SELECT * FROM TABLE1</xsql:query>
 <xsql:query max-rows="{@max}">SELECT * FROM TABLE2</xsql:query>
</example>

Example 24-10 Setting Multiple Default Values

<example max="10" connection="demo" xmlns:xsql="urn:oracle-xsql">
 <xsql:query max="5" max-rows="{@max}">SELECT * FROM TABLE1</xsql:query>
 <xsql:query max="7" max-rows="{@max}">SELECT * FROM TABLE2</xsql:query>
 <xsql:query max-rows="{@max}">SELECT * FROM TABLE3</xsql:query>
</example>

Example 24-11 Defaults for Bind Variables

<example val="10" connection="demo" xmlns:xsql="urn:oracle-xsql">
 <xsql:query tag-case="lower" bind-params="val val val">
 SELECT ? AS somevalue
 FROM DUAL
 WHERE ? = ?
 </xsql:query>
</example>

Example 24-12 Bind Variables with No Defaults

<example connection="demo" xmlns:xsql="urn:oracle-xsql">
 <xsql:query tag-case="lower" bind-params="val val val">
 SELECT ? AS somevalue
 FROM DUAL
 WHERE ? = ?
 </xsql:query>
</example>

Chapter 24
Generating and Transforming XML with XSQL Servlet

24-18

24.3.1.4 How the XSQL Page Processor Handles Different Types of Parameters
XSQL pages can make use of parameters supplied in the request and also of page-private
parameters. The names and values of page-private parameters are determined by actions in
the page.

If an action encounters a reference to a parameter named param in either a bind-params
attribute or in a lexical parameter reference, then the value of the param parameter is
resolved in this order:

1. The value of the page-private parameter named param, if set

2. The value of the request parameter named param, if supplied

3. The default value provided by an attribute named param on the current action element or
one of its ancestor elements

4. The value NULL for bind variables and the empty string for lexical parameters

For XSQL pages that are processed by the XSQL servlet over HTTP, you can also set and
reference the HTTP-Session-level variables and HTTP Cookies parameters.

For XSQL pages processed through the XSQL servlet, the value of a parameter param is
resolved in this order:

1. The value of the page-private parameter param, if set

2. The value of the cookie named param, if set

3. The value of the session variable named param, if set

4. The value of the request parameter named param, if supplied

5. The default value provided by an attribute named param on the current action element or
one of its ancestor elements

6. The value NULL for bind variables and the empty string for lexical parameters

The resolution order means that users cannot supply parameter values in a request to
override parameters of the same name set in the HTTP session. Also, users cannot set them
as cookies that persist across browser sessions.

24.3.2 Producing Datagrams from SQL Queries
How to produce datagrams using SQL queries is described.

With XSQL servlet properly installed on your web server, you can access XSQL pages by
following these basic steps:

1. Copy an XSQL file to a directory under the virtual hierarchy of your web server.
Example 24-3 shows the sample page AvailableFlightsToday.xsql.

You can also deploy XSQL pages in a standard Java EE WAR file, which occurs when
you use Oracle JDeveloper to develop and deploy your pages to Oracle WebLogic
Server.

2. Load the page in your browser. For example, if the root URL is yourcompany.com, then
you can access the AvailableFlightsToday.xsql page through a web browser by
requesting this URL:

http://yourcompany.com/AvailableFlightsToday.xsql?City=JFK

Chapter 24
Generating and Transforming XML with XSQL Servlet

24-19

The XSQL page processor automatically materializes the results of the query in your
XSQL page as XML and returns them to the requester. Typically, another server
program requests this XML-based datagram for processing, but if you use a browser
such as Internet Explorer then you can directly view the XML result, as shown in
Figure 24-4.

Figure 24-4 XML Result from XSQL Page (AvailableFlightsToday.xsql) Query

24.3.3 Transforming XML Datagrams into an Alternative XML Format
If the canonical <ROWSET> and <ROW> XML output format is not the XML format you
need, you can associate an XSLT stylesheet with your XSQL page. The stylesheet can
transform the XML datagram in the server before returning the data.

The canonical output is presented in Figure 24-4.

When exchanging data with another program, you typically agree on a document type
definition (DTD) that describes the XML format for the exchange. Assume that you are
given the flight-list.dtd definition and are told to produce your list of arriving flights
in a format compliant with the DTD. You can use a visual tool such as XML Authority to
browse the structure of the flight-list DTD, as shown in Figure 24-5.

Chapter 24
Generating and Transforming XML with XSQL Servlet

24-20

Figure 24-5 Exploring flight-list.dtd with XML Authority

Figure 24-5 shows that the standard XML formats for flight lists are:

• <flight-list> element, which contains one or more <flight> elements

• <flight> elements, which have attributes airline and number, and each of which
contains an <arrives> element

• <arrives> elements, which contains text

Example 24-13 shows the XSLT stylesheet flight-list.xsl. By associating the stylesheet
with the XSQL page, you can change the default <ROWSET> and <ROW> format into the
industry-standard <flight-list> and <flight>.

The XSLT stylesheet is a template that includes the literal elements to produce in the
resulting document, such as <flight-list>, <flight>, and <arrives>, interspersed with
XSLT actions that enable you to do this:

• Loop over matching elements in the source document with <xsl:for-each>
• Plug in the values of source document elements where necessary with <xsl:value-of>
• Plug in the values of source document elements into attribute values with the

{some_parameter} notation

The following items have been added to the top-level <flight-list> element in the
Example 24-13 stylesheet:

• xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
This attribute defines the XML namespace named xsl and identifies the URL string that
uniquely identifies the XSLT specification. Although it looks just like a URL, think of the
string http://www.w3.org/1999/XSL/Transform as the "global primary key" for the set of
elements defined in the XSLT specification. When the namespace is defined, you can
use the <xsl:XXX> action elements in the stylesheet to loop and plug values in where
necessary.

• xsl:version="1.0"

Chapter 24
Generating and Transforming XML with XSQL Servlet

24-21

This attribute identifies the document as an XSLT 1.0 stylesheet. A version
attribute is required on all XSLT stylesheets for them to be valid and recognized by
an XSLT processor.

You can associate the flight-list.xsl stylesheet with the
AvailableFlightsToday.xsql in Example 24-3 by adding an <?xml-stylesheet?>
instruction to the top of the page. Example 24-14 shows this technique.

Associating an XSLT stylesheet with the XSQL page causes the requesting program or
browser to view the XML in the format as specified by flight-list.dtd you were
given. Figure 24-6 shows a sample browser display.

Figure 24-6 XSQL Page Results in XML Format

Example 24-13 Industry Standard Formats in flight-list.xsl

<!-- XSLT Stylesheet to transform ROWSET/ROW results into flight-list
format
 -->
<flight-list xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xsl:version="1.0">
 <xsl:for-each select="ROWSET/ROW">
 <flight airline="{CARRIER}" number="{FLIGHTNUMBER}">
 <arrives><xsl:value-of select="DUE"/></arrives>
 </flight>
 </xsl:for-each>
</flight-list>

Example 24-14 Stylesheet Association in flight-list.xsl

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="flight-list.xsl"?>

Chapter 24
Generating and Transforming XML with XSQL Servlet

24-22

<xsql:query connection="demo" bind-params="City" xmlns:xsql="urn:oracle-
xsql">
 SELECT Carrier, FlightNumber, Origin, TO_CHAR(ExpectedTime,'HH24:MI') AS
Due
 FROM FlightSchedule
 WHERE TRUNC(ExpectedTime) = TRUNC(SYSDATE) AND Arrived = 'N'
 AND Destination = ? /* The ? is a bind variable being bound */
 ORDER BY ExpectedTime /* to the value of the City parameter */
</xsql:query>

24.3.4 Transforming XML Datagrams into HTML for Display
To return XML data in HTML instead of an alternative XML format, use an appropriate XSLT
stylesheet. For example, rather than producing elements such as <flight-list> and
<flight>, you can write a stylesheet that produces HTML elements such as <table>, <tr>,
and <td>.

The result of the dynamically queried data then looks like the HTML page shown in
Figure 24-7. Instead of returning raw XML data, the XSQL page leverages server-side XSLT
transformation to format the information as HTML for delivery to the browser.

Figure 24-7 Using an XSLT Stylesheet to Render HTML

Similar to the syntax of the flight-list.xsl stylesheet, the flight-display.xsl stylesheet
shown in Example 24-15 looks like a template HTML page. It contains <xsl:for-each>,
<xsl:value-of>, and attribute value templates such as {DUE} to plug in the dynamic values
from the underlying <ROWSET> and <ROW> structured XML query results.

Chapter 24
Generating and Transforming XML with XSQL Servlet

24-23

Note:

The stylesheet produces well-formed HTML. Each opening tag is properly
closed (for example, <td>…</td>); empty tags use the XML empty element
syntax
 instead of just
.

You can achieve useful results quickly by combining the power of:

• Parameterized SQL statements to select information from Oracle Database

• Industry-standard XML as a portable, interim data exchange format

• XSLT to transform XML-based datagrams into any XML- or HTML-based format

Example 24-15 Query Results in flight-display.xsl

<!-- XSLT Stylesheet to transform ROWSET/ROW results into HTML -->
<html xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xsl:version="1.0">
 <head><link rel="stylesheet" type="text/css" href="flights.css" /></
head>
 <body>
 <center><table border="0">
 <tr><th>Flight</th><th>Arrives</th></tr>
 <xsl:for-each select="ROWSET/ROW">
 <tr>
 <td>
 <table border="0" cellspacing="0" cellpadding="4">
 <tr>
 <td><img align="absmiddle" src="images/
{CARRIER}.gif"/></td>
 <td width="180">
 <xsl:value-of select="CARRIER"/>
 <xsl:text> </xsl:text>
 <xsl:value-of select="FLIGHTNUMBER"/>
 </td>
 </tr>
 </table>
 </td>
 <td align="center"><xsl:value-of select="DUE"/></td>
 </tr>
 </xsl:for-each>
 </table></center>
 </body>
</html>

24.4 Using XSQL in Java Programs
Class oracle.xml.xsql.XSQLRequest lets you use the XSQL page processor in your
Java programs.

To use the XSQL Java API, follow these basic steps:

Chapter 24
Using XSQL in Java Programs

24-24

1. Construct an instance of XSQLRequest, passing the XSQL page to be processed into the
constructor as one of these components:

• String containing a URL to the page

• URL object for the page

• In-memory XMLDocument
2. Invoke one of these methods on the object to process the page:

• process() to write the result to a PrintWriter or OutputStream
• processToXML() to return the result as an XML Document

To use the built-in XSQL connection manager, which implements JDBC connection pooling
based on XSQL configuration file definitions, the XSQL page is all you must pass to the
constructor. Optionally, you can pass in a custom implementation for the
XSQLConnectionManagerFactory interface as well.

The ability to pass the XSQL page as an in-memory XMLDocument object means that you can
dynamically generate any valid XSQL page for processing. You can then pass the page to the
XSQL engine for evaluation.

When processing a page, you may want to perform these additional tasks as part of the
request:

• Pass a set of parameters to the request.

You accomplish this aim by passing any object that implements the Dictionary interface
to the process() or processToXML() methods. Passing a HashTable containing the
parameters is one popular approach.

• Set an XML document to be processed by the page as if it were the "posted XML"
message body.

You can do this by using the XSQLResquest.setPostedDocument() method.

Example 24-16 shows how you can process a page by using XSQLRequest.

See Also:

Using the XSQL Pages Publishing Framework: Advanced Topics to learn more
about the XSQL Java API

Example 24-16 XSQLRequestSample Class

import oracle.xml.xsql.XSQLRequest;
import java.util.Hashtable;
import java.io.PrintWriter;
import java.net.URL;
public class XSQLRequestSample {
 public static void main(String[] args) throws Exception {
 // Construct the URL of the XSQL Page
 URL pageUrl = new URL("file:///C:/foo/bar.xsql");
 // Construct a new XSQL Page request
 XSQLRequest req = new XSQLRequest(pageUrl);
 // Set up a Hashtable of named parameters to pass to the request

Chapter 24
Using XSQL in Java Programs

24-25

 Hashtable params = new Hashtable(3);
 params.put("param1","value1");
 params.put("param2","value2");
 /* If needed, treat an existing, in-memory XMLDocument as if
 ** it were posted to the XSQL Page as part of the request
 req.setPostedDocument(myXMLDocument);
 **
 */
 // Process the page, passing the parameters and writing the output
 // to standard out.
 req.process(params,new PrintWriter(System.out),
 new PrintWriter(System.err));
 }
}

Related Topics

• Using the XSQL Pages Publishing Framework: Advanced Topics
An explanation is given of how to use advanced features of the XSQL pages
publishing framework.

24.5 XSQL Pages Tips and Techniques
Topics here provide information about using XSQL pages.

24.5.1 XSQL Pages Limitations
Limitations are specified for XSQL pages.

HTTP parameters with multibyte names, such as a parameter whose name is in Kanji,
are properly handled when they are inserted into your XSQL page with element
<xsql:include-request-params>. An attempt to refer to a parameter with a multibyte
name inside the query statement of an <xsql:query> tag returns an empty string for the
parameter value.

As a workaround, use a nonmultibyte parameter name. The parameter can still have a
multibyte value that can be handled correctly.

24.5.2 Hints for Using the XSQL Servlet
Topics here provide hints for using the XSQL Servlet.

24.5.2.1 Specifying a DTD While Transforming XSQL Output to a WML
Document

You can specify a DTD while transforming XSQL output to a Wireless Markup
Language (WML) document for a wireless application. The technique is to use a built-
in facility of the XSLT stylesheet called <xsl:output>. An example illustrates this.

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:output type="xml" doctype-system="your.dtd"/>
 <xsl:template match="/">

Chapter 24
XSQL Pages Tips and Techniques

24-26

 </xsl:template>
 ...
</xsl:stylesheet>

The preceding stylesheet produces an XML result that includes this code, where "your.dtd"
can be any valid absolute or relative URL:

<!DOCTYPE xxxx SYSTEM "your.dtd">

24.5.2.2 Testing Conditions in XSQL Pages
You can include if-then logic in your XSQL pages.

Example 24-17 shows a technique for executing a query based on a test of a parameter
value.

See Also:

XSQL Pages Reference to learn about the <xsql:if-param> action

Example 24-17 Conditional Statements in XSQL Pages

<xsql:if-param name="security" equals="admin">
 <xsql:query>
 SELECT
 </xsql:query>
</xsq:when>
<xsql:if-param name="security" equals="user">
 <xsql:query>
 SELECT
 </xsql:query>
</xsql:if-param>

24.5.2.3 Passing a Query Result to the WHERE Clause of Another Query
If you have two queries in an XSQL page then you can use the value of a select list item of
the first query in the second query by using page parameters.

Example 24-18 Passing Values Among SQL Queries

<page xmlns:xsql="urn:oracle-xsql" connection="demo">
 <!-- Value of page param "xxx" will be first column of first row -->
 <xsql:set-page-param name="xxx">
 SELECT one FROM table1 WHERE ...
 </xsl:set-param-param>
 <xsql:query bind-params="xxx">
 SELECT col3,col4 FROM table2
 WHERE col3 = ?
 </xsql:query>
</page>

Chapter 24
XSQL Pages Tips and Techniques

24-27

24.5.2.4 Handling Multivalued HTML Form Parameters
In some situations, you might need to process multivalued HTML <form> parameters
that are needed for <input name="choices" type="checkbox">. Use the parameter
array notation on your parameter name (for example, choices[]) to refer to the array
of values from the selected check boxes.

Assume that you have a multivalued parameter named guy. You can use the array
parameter notation in an XSQL page as shown in Example 24-19.

Assume that you request this page is requested with this URL, which contains multiple
parameters of the same name to produce a multivalued attribute:

http://yourserver.com/page.xsql?guy=Curly&guy=Larry&guy=Moe

The page returned looks like this:

<page>
 <guy-list>Curly,Larry,Moe</guy-list>
 <quoted-guys>'Curly','Larry','Moe'</quoted-guys>
 <guy>
 <value>Curly</value>
 <value>Larry</value>
 <value>Moe</value>
 </guy>
</page>

You can also use the value of a multivalued page parameter in a SQL statement WHERE
clause by using the code shown in Example 24-20.

Example 24-19 Handling Multivalued Parameters

<page xmlns:xsql="urn:oracle-xsql">
 <xsql:set-page-param name="guy-list" value="{@guy[]}"
 treat-list-as-array="yes"/>
 <xsql:set-page-param name="quoted-guys" value="{@guy[]}"
 treat-list-as-array="yes" quote-array-values="yes"/>
 <xsql:include-param name="guy-list"/>
 <xsql:include-param name="quoted-guys"/>
 <xsql:include-param name="guy[]"/>
</page>

Example 24-20 Using Multivalued Page Parameters in a SQL Statement

<page connection="demo" xmlns:xsql="urn:oracle-xsql">
 <xsql:set-page-param name="quoted-guys" value="{@guy[]}"
 treat-list-as-array="yes"
 quote-array-values="yes"/>
 <xsql:query>
 SELECT *
 FROM sometable
 WHERE name IN ({@quoted-guys})
 </xsql:query>
</page>

Chapter 24
XSQL Pages Tips and Techniques

24-28

24.5.2.5 Invoking PL/SQL Wrapper Procedures to Generate XML Datagrams
The use of PL/SQL wrapper procedures to generate XML datagrams is described.

You cannot set parameter values by binding them in the position of OUT variables with
<xsql:dml>. Only IN parameters are supported for binding. You can create a wrapper
procedure, however, that constructs XML elements with the HTTP package. Your XSQL page
can then invoke the wrapper procedure with <xsql:include-owa>.

Example 24-21 shows a PL/SQL procedure that accepts two IN parameters, multiplies them
and puts the value in one OUT parameter, then adds them and puts the result in a second OUT
parameter.

You can write the PL/SQL procedure in Example 24-22 to wrap the procedure in
Example 24-21. The addmultwrapper procedure accepts the IN arguments that the addmult
procedure preceding expects, and then encodes the OUT values as an XML datagram that
you print to the Open Web Analytics (OWA) page buffer.

The XSQL page shown in Example 24-23 constructs an XML document by including a call to
the PL/SQL wrapper procedure.

You can invoke addmult.xsql by entering a URL in a browser:

http://yourserver.com/addmult.xsql?arg1=30&arg2=45

The XML datagram returned by the servlet reflects the OUT values:

<page>
 <addmult><sum>75</sum><product>1350</product></addmult>
</page>

Example 24-21 addmult PL/SQL Procedure

CREATE OR REPLACE PROCEDURE addmult(arg1 NUMBER, arg2 NUMBER,
 sumval OUT NUMBER, prodval OUT NUMBER)
IS
BEGIN
 sumval := arg1 + arg2;
 prodval := arg1 * arg2;
END;

Example 24-22 addmultwrapper PL/SQL Procedure

CREATE OR REPLACE PROCEDURE addmultwrapper(arg1 NUMBER, arg2 NUMBER)
IS
 sumval NUMBER;
 prodval NUMBER;
 xml VARCHAR2(2000);
BEGIN
 -- Call the procedure with OUT values
 addmult(arg1,arg2,sumval,prodval);
 -- Then produce XML that encodes the OUT values
 xml := '<addmult>'||
 '<sum>'||sumval||'</sum>'||
 '<product>'||prodval||'</product>'||
 '</addmult>';
 -- Print the XML result to the OWA page buffer for return
 HTP.P(xml);
END;

Chapter 24
XSQL Pages Tips and Techniques

24-29

Example 24-23 addmult.xsql

<page connection="demo" xmlns:xsql="urn:oracle-xsql">
 <xsql:include-owa bind-params="arg1 arg2">
 BEGIN addmultwrapper(?,?); END;
 </xsql:include-owa>
</page>

24.5.2.6 Accessing Contents of Posted XML
The XSQL page processor can access the contents of posted XML. Any XML
document can be posted and handled by the feature that XSQL supports.

For example, an XSQL page can access the contents of an inbound SOAP message
by using the xpath="XpathExpression" attribute in the <xsql:set-page-param> action.
Alternatively, custom action handlers can gain direct access to the SOAP message
body by invoking getPageRequest().getPostedDocument(). To create the SOAP
response body to return to the client, use an XSLT stylesheet or a custom serializer
implementation to write the XML response in an appropriate SOAP-encoded format.

See Also:

The Airport SOAP demo for an example of using an XSQL page to
implement a SOAP-based web service

24.5.2.7 Changing Database Connections Dynamically
You can choose database connections dynamically when invoking an XSQL page. For
example, you might want to switch between a test database and a production
database. You can achieve this goal by including an XSQL parameter in the
connection attribute of the XSQL page.

Define an attribute of the same name to serve as the default value for the connection
name.

Assume that in your XSQL configuration file you define connections for database
testdb and proddb. You then write an XSQL page with this <xsql:query> element:

<xsql:query conn="testdb" connection="{@conn}" xmlns:xsql="urn:oracle-xsql">
 ...
</xsql:query>

If you request this page without any parameters, then the value of the conn parameter
is testdb, so the page uses the connection named testdb defined in the XSQL
configuration file. If you request the page with conn=proddb, then the page uses the
connection named proddb instead.

24.5.2.8 Retrieving the Name of the Current XSQL Page
An XSQL page can access its own name in a generic way at run time to construct links
to the current page.

You can use a helper method like the one shown in Example 24-24 to retrieve the
name of the page inside a custom action handler.

Chapter 24
XSQL Pages Tips and Techniques

24-30

Example 24-24 Getting the Name of the Current XSQL Page

private String curPageName(XSQLPageRequest req) {
 String thisPage = req.getSourceDocumentURI();;
 int pos = thisPage.lastIndexOf('/');
 if (pos >=0) thisPage = thisPage.substring(pos+1);
 pos = thisPage.indexOf('?');
 if (pos >=0) thisPage = thisPage.substring(0,pos-1);
 return thisPage;
}

24.5.3 Resolving Common XSQL Connection Errors
Topics here include receiving unable-to-connect and no-posted-document errors.

24.5.3.1 Receiving "Unable to Connect" Errors
Reasons are given for receiving errors saying that you cannot connect.

Suppose you are unable to connect to a database and you see errors similar to these when
running the helloworld.xsql sample program:

Oracle XSQL Servlet Page Processor
XSQL-007: Cannot acquire a database connection to process page.
Connection refused(DESCRIPTION=(TMP=)(VSNNUM=135286784)(ERR=12505)
(ERROR_STACK=(ERROR=(CODE=12505)(EMFI=4))))

The preceding errors indicate that the XSQL servlet is attempting the JDBC connection
based on the <connectiondef> information for the connection named demo, assuming you did
not modify the helloworld.xsql demo page.

By default the XSQLConfig.xml file comes with the entry for the demo connection that looks
like this (use the correct password):

<connection name="demo">
 <username>scott</username>
 <password>password</password>
 <dburl>jdbc:oracle:thin:@localhost:1521:ORCL</dburl>
 <driver>oracle.jdbc.driver.OracleDriver</driver>
</connection>

The error is probably due to one of these reasons:

• Your database is not on the localhost machine.

• Your database SID is not ORCL.
• Your TNS Listener Port is not 1521.

24.5.3.2 Receiving "No Posted Document to Process" When Using HTTP POST
If you try to post XML information to an XSQL page for processing using HTTP GET instead of
HTTP POST, then there is no posted document, and you get the “No posted document to
process” error.

XML information posted to an XSQL page for processing must be sent by HTTP POST. This
transfer can be effected by an HTML form or an XML document sent by HTTP POST.

Chapter 24
XSQL Pages Tips and Techniques

24-31

24.5.4 Security Considerations for XSQL Pages
Best practices are covered for managing security in the XSQL servlet.

24.5.4.1 Installing Your XSQL Configuration File in a Safe Directory
The XSQLConfig.xml configuration file contains sensitive database user name and
password information. This file must not reside in any directory that maps to a virtual
path of your web server, nor in any of its subdirectories.

The only required permissions for the configuration file are read permission granted to
the UNIX account that owns the servlet engine. Failure to follow this recommendation
could mean that a user of your site could browse the contents of your configuration
file, thereby getting the passwords to database accounts.

24.5.4.2 Disabling Default Client Stylesheet Overrides
By default, the XSQL page processor lets you supply a stylesheet in a page request by
passing a value for parameter xml-stylesheet. If you want the stylesheet referenced
by the server-side XSQL page to be the only legal stylesheet, then include attribute
allow-client-style="no" on the document element of your page.

You can also globally change the default setting in the XSQLConfig.xml file to disallow
client stylesheet overrides. If you take either approach, then the only pages that allow
client stylesheet overrides are those that include the allow-client-style="yes"
attribute on their document element.

24.5.4.3 Protecting Against the Misuse of Substitution Parameters
Some precautions are described that help you avoid misuse of substitution variables.

Any product that supports the use of lexical substitution variables in a SQL query can
cause a developer problems. Any time you deploy an XSQL page that allows part of all
of a SQL statement to be substituted by a lexical parameter, you must ensure that you
have taken appropriate precautions against misuse.

For example, one of the demonstrations that comes with XSQL Pages is the Adhoc
Query Demo. It shows how you can supply the entire SQL statement of an
<xsql:query> action handler as a parameter. This technique is a powerful and
beneficial tool when in the right hands, but if you deploy a similar page to your
production system, then the user can execute any query that the database security
privileges for the connection associated with the page allows. For example, the Adhoc
Query Demo is set up to use a connection that maps to the scott account, so a user
can query any data that scott would be allowed to query from SQL*Plus.

You can use these techniques to ensure that your pages are not abused:

• Ensure the database user account associated with the page has only the
privileges for reading the tables and views you want your users to see.

• Use true bind variables instead of lexical bind variables when substituting single
values in a SELECT statement. If you must parameterize syntactic parts of your
SQL statement, then lexical parameters are the only way to proceed. Otherwise,
use true bind variables so that any attempt to pass an invalid value generates an
error instead of producing an unexpected result.

Chapter 24
XSQL Pages Tips and Techniques

24-32

25
Using the XSQL Pages Publishing
Framework: Advanced Topics

An explanation is given of how to use advanced features of the XSQL pages publishing
framework.

Related Topics

• Using the XSQL Pages Publishing Framework
An explanation is given of how to use the basic features of the XSQL pages publishing
framework.

See Also:

Using the XSQL Pages Publishing Framework for information about basic features

25.1 Customizing the XSQL Configuration File Name
By default, the XSQL pages framework expects the configuration file to be named
XSQLConfig.xml. When moving between development, test, and production environments,
you can switch among different versions of a configuration file. To override the name of the
configuration file read by the XSQL page processor, set system property xsql.config.

The simplest technique is to specify a Java Virtual Machine (JVM) command-line flag such as
-Dxsql.config=MyConfigFile.xml by defining a servlet initialization parameter named
xsql.config. Add an <init-param> element to your web.xml file as part of the <servlet> tag
that defines the XSQL Servlet:

<servlet>
 <servlet-name>XSQL</servlet-name>
 <servlet-class>oracle.xml.xsql.XSQLServlet</servlet-class>
 <init-param>
 <param-name>xsql.config</param-name>
 <param-value>MyConfigFile.xml</param-value>
 <description>
 Please Use MyConfigFile.xml instead of XSQLConfig.xml
 </description>
 </init-param>
</servlet>

The servlet initialization parameter is applicable only to the servlet-based use of the XSQL
engine. When using the XSQLCommandLine or XSQLRequest programmatic interfaces, use the
System parameter instead.

25-1

Note:

The configuration file is always read from the CLASSPATH. For example, if you
specify a custom configuration parameter file named MyConfigFile.xml,
then the XSQL processor attempts to read the XML file as a resource from
the CLASSPATH. In a servlet environment like Java Platform, Enterprise
Edition (Java EE), you must place your MyConfigFile.xml in the .\WEB-
INF\classes directory (or another top-level directory on the CLASSPATH). If
both the servlet initialization parameter and the System parameter are
provided, then the servlet initialization parameter value is used.

25.2 Controlling How Stylesheets Are Processed
Topics here include an overview of client stylesheets, controlling content type,
assigning stylesheets dynamically, processing stylesheets in a client, and providing
multiple stylesheets.

25.2.1 Overriding Client Stylesheets
If the current XSQL page being requested allows it, you can supply an Extensible
Stylesheet Language Transformation (XSLT) stylesheet URL in the request. This
technique lets you override the default stylesheet or apply a stylesheet where none is
applied by default.

The client-initiated stylesheet URL is provided by supplying the xml-stylesheet
parameter as part of the request. The valid values for this parameter are:

• Any relative URL interpreted relative to the XSQL page being processed.

• Any absolute URL that uses the HTTP protocol scheme, provided it references a
trusted host as defined in the XSQL configuration file.

• The literal value none. Setting xml-stylesheet=none is useful during development
to temporarily "short-circuit" the XSLT stylesheet processing to determine what
XML datagram your stylesheet is seeing. Use this technique to determine why a
stylesheet is not producing expected results.

You can allow client override of stylesheets for an XSQL page in these ways:

• Setting the allow-client-style configuration parameter to no in the XSQL
configuration file

• Explicitly including an allow-client-style="no" attribute on the document
element of any XSQL page

If client-override of stylesheets has been globally disabled by default in the XSQL
configuration file, any page can still enable client-override explicitly by including an
allow-client-style="yes" attribute on the document element of that page.

25.2.2 Controlling the Content Type of the Returned Document
Setting the content type of the data you serve lets a requesting client correctly interpret
the data you return. If your stylesheet uses an <xsl:output> element then the XSQL

Chapter 25
Controlling How Stylesheets Are Processed

25-2

processor infers the media type and the encoding of the returned document from the media-
type and encoding attributes of <xsl:output>.

The stylesheet in Example 25-1 uses the media-type="application/vnd.ms-excel" attribute
on <xsl:output>. This instruction transforms the results of an XSQL page containing a
standard query of the hr.employees table into Microsoft Excel format.

The following XSQL page uses the stylesheet in Example 25-1:

<?xml version="1.0"?>
<?xml-stylesheet href="empToExcel.xsl" type="text/xsl"?>
<xsql:query connection="hr" xmlns:xsql="urn:oracle-xsql">
 SELECT employee_id, email, salary
 FROM employees
 ORDER BY salary DESC
</xsql:query>

Example 25-1 empToExcel.xsl

<?xml version="1.0"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:output method="html" media-type="application/vnd.ms-excel"/>
 <xsl:template match="/">
 <html>
 <table>
 <tr><th>Id</th><th>Email</th><th>Salary</th></tr>
 <xsl:for-each select="ROWSET/ROW">
 <tr>
 <td><xsl:value-of select="EMPLOYEE_ID"/></td>
 <td><xsl:value-of select="EMAIL"/></td>
 <td><xsl:value-of select="SALARY"/></td>
 </tr>
 </xsl:for-each>
 </table>
 </html>
 </xsl:template>
</xsl:stylesheet>

25.2.3 Assigning the Stylesheet Dynamically
If you include an <?xml-stylesheet?> instruction at the top of your .xsql file, then the XSQL
page processor considers it for use in transforming the resulting XML datagram.

Consider the emp_test.xsql page shown in Example 25-2.

The page in Example 25-2 uses the emp.xsl stylesheet to transform the results of the
employees query in the server tier before returning the response to the requester. The
processor accesses the stylesheet by the URL provided in the href pseudo-attribute on the
<?xml-stylesheet?> processing instruction.

For example, to change XSLT stylesheets dynamically based on arguments passed to the
XSQL servlet, you can use a lexical parameter in the href attribute of your xml-stylesheet
processing instruction, as shown in this sample instruction:

<?xml-stylesheet type="text/xsl" href="{@filename}.xsl"?>

You can then pass the value of the filename parameter as part of the URL request to XSQL
servlet.

Chapter 25
Controlling How Stylesheets Are Processed

25-3

You can also use the <xsql:set-page-param> element in an XSQL page to set the
value of the parameter based on a SQL query. For example, the XSQL page in
Example 25-3 selects the name of the stylesheet to use from a table by assigning the
value of a page-private parameter.

Example 25-2 emp_test.xsql

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="emp.xsl"?>
<page connection="demo" xmlns:xsql="urn:oracle-xsql">
 <xsql:query>
 SELECT *
 FROM employees
 ORDER BY salary DESC
 </xsql:query>
</page>

Example 25-3 emp_test_dynamic.xsql

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="{@sheet}.xsl"?>
<page connection="demo" xmlns:xsql="urn:oracle-xsql">
 <xsql:set-page-param bind-params="UserCookie" name="sheet">
 SELECT stylesheet_name
 FROM user_prefs
 WHERE username = ?
 </xsql:set-page-param>
 <xsql:query>
 SELECT *
 FROM employees
 ORDER BY salary DESC
 </xsql:query>
</page>

25.2.4 Processing XSLT Stylesheets in the Client
How to process XSLT stylesheets in the client is described.

Some browsers support processing XSLT stylesheets in the client. These browsers
recognize the stylesheet to be processed for an XML document by using an <?xml-
stylesheet?> processing instruction. The use of <?xml-stylesheet?> for this purpose
is part of the W3C Recommendation from June 29, 1999 entitled "Associating
Stylesheets with XML Documents, Version 1.0".

By default, the XSQL pages processor performs XSLT transformations in the server.
By adding client="yes" to your <?xml-stylesheet?> processing instruction in your
XSQL page, however, you can defer XSLT processing to the client. The processor
serves the XML datagram "raw" with the current <?xml-stylesheet?> element at the
top of the document.

25.2.5 Providing Multiple Stylesheets
You can include multiple <?xml-stylesheet?> processing instructions at the top of an
XSQL page.

The instructions can contain an optional media pseudo-attribute. If specified, the
processor case-insensitively compares the value of the media pseudo-attribute with the
value of the User-Agent string in the HTTP header. If the value of the media pseudo-

Chapter 25
Controlling How Stylesheets Are Processed

25-4

attribute matches part of the User-Agent string, then the processor selects the current <?xml-
stylesheet?> instruction for use. Otherwise, the processor ignores the instruction and
continues looking. The processor uses the first matching processing instruction in document
order. An instruction without a media pseudo-attribute matches all user agents.

Processing Instructions"?> shows multiple processing instructions at the top of an XSQL file.
The processor uses doyouxml-lynx.xsl for Lynx browsers, doyouxml-ie.xsl for Internet
Explorer 5.0 or 5.5 browsers, and doyouxml.xsl for all others.

"?> summarizes the supported pseudo-attributes allowed on the <?xml-stylesheet?>
processing instruction.

Table 25-1 Pseudo-Attributes for <?xml-stylesheet ?>

Attribute Name Description

type = "string" Indicates the Multipurpose Internet Mail Extensions (MIME) type of the associated
stylesheet. For XSLT stylesheets, this attribute must be set to the string text/xsl.

This attribute may be present or absent when using the serializer attribute,
depending on whether an XSLT stylesheet must execute before invoking the serializer,
or not.

href = "URL" Indicates the relative or absolute URL to the XSLT stylesheet to be used. If an absolute
URL is supplied that uses the http protocol scheme, the IP address of the resource
must be a trusted host listed in the XSQL configuration file (by default, named
XSQLConfig.xml).

media = "string" Performs a case-insensitive match on the User-Agent string from the HTTP header
sent by the requesting device. This attribute is optional. The current <?xml-
stylesheet?> processing instruction is used only if the User-Agent string contains
the value of the media attribute; otherwise it is ignored.

client = "boolean" Defers the processing of the associated XSLT stylesheet to the client if set to yes. The
raw XML datagram is sent to the client with the current <?xml-stylesheet?>
instruction at the top of the document. The default if not specified is to perform the
transformation in the server.

serializer = "string" By default, the XSQL page processor uses:

• XML Document Object Model (DOM) serializer if no XSLT stylesheet is used
• XSLT processor serializer if an XSLT stylesheet is used
Specifying this pseudo-attribute indicates that a custom serializer implementation must
be used instead.

Valid values are either the name of a custom serializer defined in the
<serializerdefs> section of the XSQL configuration file or the string
java:fully.qualified.Classname. If both an XSLT stylesheet and the serializer
attribute are present, then the processor performs the XSLT transformation first, then
invokes the custom serializer to render the final result to the OutputStream or
PrintWriter.

Example 25-4 Multiple <?xml-stylesheet ?> Processing Instructions

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" media="lynx" href="doyouxml-lynx.xsl" ?>
<?xml-stylesheet type="text/xsl" media="msie 5" href="doyouxml-ie.xsl" ?>
<?xml-stylesheet type="text/xsl" href="doyouxml.xsl" ?>
<page xmlns:xsql="urn:oracle-xsql" connection="demo">

Chapter 25
Controlling How Stylesheets Are Processed

25-5

25.3 Working with Array-Valued Parameters
Topics here include using array values for parameters, including page or session
parameters and parameters in SQL or PL/SQL code

25.3.1 Supplying Values for Array-Valued Parameters
Request parameters, session parameters, and page-private parameters can have
arrays of strings as values. To treat to the value of a parameter as an array, add two
empty square brackets to the end of its name.

For example, if an HTML form is posted with four occurrences of a input control named
productid, then use the notation productid[] to refer to the array-valued productid
parameter. If you refer to an array-valued parameter without using the array-brackets
notation, then the XSQL processor uses the value of the first array entry.

Note:

The XSQL processor does not support use of numbers inside the array
brackets. That is, you can refer to productid or productid[], but not
productid[2].

Suppose that you refer to an array-valued parameter as a lexical substitution
parameter inside an action handler attribute value or inside the content of an action
handler element. The XSQL page processor converts its value to a comma-delimited
list of non-null and nonempty strings in the order that they exist in the array.
Example 25-5 shows an XSQL page with an array-valued parameter.

You can invoke the XSQL command-line utility to supply multiple values for the
productid parameter in Page.xsql:

xsql Page.xsql productid=111 productid=222 productid=333 productid=444

The preceding command sets the productid[] array-valued parameter to the value
{"111","222","333","444"}. The XSQL page processor replaces the {@productid[]}
expression in the query with the string "111,222,333,444".

You can also pass multivalued parameters programmatically through the XSQLRequest
application programming interface (API), which accepts a java.util.Dictionary of
named parameters. You can use a Hashtable and invoke its put(name,value) method
to add String-valued parameters to the request. To add multivalued parameters, put a
value of type String[] instead of type String.

Chapter 25
Working with Array-Valued Parameters

25-6

Note:

Only request parameters, page-private parameters, and session parameters can
use string arrays. The <xsql:set-stylesheet-param> and <xsql:set-cookie> actions
support only working with parameters as simple string values. To refer to a
multivalued parameter in your XSLT stylesheet, use <xsql:include-param> to
include the multivalued parameter into your XSQL datapage, then use an XPath
expression in the stylesheet to refer to the values from the datapage.

Example 25-5 Using an Array-Valued Parameter in an XSQL Page

<page xmlns:xsql="urn:oracle-xsql">
 <xsql:query>
 SELECT description
 FROM product
 WHERE productid in ({@productid[]}) /* Using lexical parameter */
 </xsql:query>
</page>

25.3.2 Setting Array-Valued Page or Session Parameters from Strings
You can set the value of a page-private parameter or a session parameter from strings.

You can set the value of a page-private parameter to a string-array value by using array
brackets notation on the name:

<!-- param name contains array brackets -->
<xsql:set-page-param name="names[]" value="Tom Jane Joe"/>

You set the value similarly for session parameters, as shown in this example:

<xsql:set-session-param name="dates[]" value="12-APR-1962 15-JUL-1968"/>

By default, when the name of the parameter uses array brackets, the XSQL processor treats
the value as a space-or-comma-delimited list and tokenizes it.

The resulting string array value contains these separate tokens. In the preceding examples,
parameter names[] is the string array {"Tom", "Jane", "Joe"} and parameter dates[] is the
string array {"12-APR-1962", "15-JUL-1968"}.

To handle strings that contain spaces, the tokenization algorithm first checks the string for the
presence of commas. If at least one comma is found in the string, then commas are used as
the token delimiter. For example, this action sets the value of the names[] parameter to the
string array {"Tom Jones", "Jane York"}:

<!-- param name contains array brackets -->
<xsql:set-page-param name="names[]" value="Tom Jones,Jane York"/>

By default, when you set a parameter whose name does not end with the array-brackets,
then the string-tokenization does not occur. Thus, this action sets the parameter names to the
literal string "Tom Jones,Jane York":

<!-- param name does NOT contain array brackets -->
<xsql:set-page-param name="names" value="Tom Jones,Jane York"/>

Chapter 25
Working with Array-Valued Parameters

25-7

You can force the string to be tokenized by including the treat-list-as-array="yes"
attribute on the <xsql:set-page-param> or <xsql:set-session-param> actions. When
this attribute is set, the XSQL processor assigns a comma-delimited string of the
tokenized values to the parameter. For example, this action sets the names parameter
to the literal string "Tom,Jane,Joe":

<!-- param name does NOT contain array brackets -->
<xsql:set-page-param name="names" value="Tom Jane Joe"
 treat-list-as-array="yes"/>

When you are setting the value of a simple string-valued parameter and you are
tokenizing the value with treat-list-as-array="yes", you can include the quote-
array-values="yes" attribute to surround the comma-delimited values with single
quotation marks. Thus, this action assigns the literal string value "'Tom Jones','Jane
York','Jimmy'" to the names parameter:

<!-- param name does NOT contain array brackets -->
<xsql:set-page-param name="names" value="Tom Jones,Jane York,Jimmy"
 treat-list-as-array="yes"
 quote-array-values="yes"/>

25.3.3 Binding Array-Valued Parameters in SQL and PL/SQL
Statements

Where string-valued scalar bind variables are supported in an XSQL page, you can
also bind array-valued parameters. Use the array parameter name, for example,
myparam[], in the list of parameter names that you supply for attribute bind-params.
This technique lets you process array-valued parameters in SQL statements and
PL/SQL procedures.

The XSQL processor binds array-valued parameters as a nested table object type
named XSQL_TABLE_OF_VARCHAR. You must create this type in your current schema
with this DDL statement:

CREATE TYPE xsql_table_of_varchar AS TABLE OF VARCHAR2(2000);

Although the type must have the name xsql_table_of_varchar, you can change the
dimension of the VARCHAR2 string, if necessary. You must make the dimension long
enough for any string value you expect to handle in your array-valued string
parameters.

Consider the PL/SQL function shown in Example 25-6.

The XSQL page in Example 25-7 shows how to bind two array-valued parameters in a
SQL statement that uses testTableFunction.

Executing the XSQL page in Example 25-7 generates this datagram:

<page someNames="aa,bb,cc" someValues="11,22,33">
 <ROWSET>
 <ROW num="1">
 <EXAMPLE>aa=11:bb=22:cc=33</EXAMPLE>
 </ROW>
 </ROWSET>
</page>

Chapter 25
Working with Array-Valued Parameters

25-8

This technique shows that the XSQL processor bound the array-valued someNames[] and
someValues[] parameters as table collection types. It iterated over the values and
concatenated them to produce the "aa=11:bb=22:cc=33" string value as the return value of
the PL/SQL function.

You can mix any number of regular parameters and array-valued parameters in your bind-
params string. Use the array-bracket notation for the parameters to be bound as arrays.

Note:

If you run the page in Example 25-7 but you have not created the
XSQL_TABLE_OF_VARCHAR type as showd earlier, then you receive an error such as:

<page someNames="aa,bb,cc" someValues="11,22,33">
 <xsql-error code="17074" action="xsql:query">
 <statement>
 select testTableFunction(?,?) as example from dual
 </statement>
 <message>
 invalid name pattern: SCOTT.XSQL_TABLE_OF_VARCHAR
 </message>
 </xsql-error>
</page>

Because the XSQL processor binds array parameters as nested table collection types, you
can use the TABLE() operator with the CAST() operator in SQL to treat the nested table bind
variable value as a table of values. You can then query this table. This technique is especially
useful in subqueries. The page in Example 25-8 uses an array-valued parameter containing
employee IDs to restrict the rows queried from hr.employees.

The XSQL page in Example 25-8 generates a datagram such as:

<page>
 <ROWSET>
 <ROW num="1">
 <NAME>Alana Walsh</NAME>
 <SALARY>3100</SALARY>
 </ROW>
 <ROW num="2">
 <NAME>Kevin Feeny</NAME>
 <SALARY>3000</SALARY>
 </ROW>
 </ROWSET>
</page>

Example 25-7 and Example 25-8 show how to use bind-params with <xsql:query>, but these
techniques work for <xsql:dml>, <xsql:include-owa>, <xsql:ref-cursor-function>, and other
actions that accept SQL or PL/SQL statements.

PL/SQL index-by tables work with the OCI JDBC driver but not the JDBC thin driver. By using
the nested table collection type XSQL_TABLE_OF_VARCHAR, you can use array-valued
parameters with either driver. In this way you avoid losing the programming flexibility of
working with array values in PL/SQL.

Chapter 25
Working with Array-Valued Parameters

25-9

Example 25-6 testTableFunction

FUNCTION testTableFunction(p_name XSQL_TABLE_OF_VARCHAR,
 p_value XSQL_TABLE_OF_VARCHAR)
RETURN VARCHAR2 IS
 lv_ret VARCHAR2(4000);
 lv_numElts INTEGER;
BEGIN
 IF p_name IS NOT NULL THEN
 lv_numElts := p_name.COUNT;
 FOR j IN 1..lv_numElts LOOP
 IF (j > 1) THEN
 lv_ret := lv_ret||':';
 END IF;
 lv_ret := lv_ret||p_name(j)||'='||p_value(j);
 END LOOP;
 END IF;
 RETURN lv_ret;
END;

Example 25-7 XSQL Page with Array-Valued Parameters

<page xmlns:xsql="urn:oracle-xsql" connection="demo"
 someNames="aa,bb,cc" someValues="11,22,33">
 <xsql:query bind-params="someNames[] someValues[]">
 SELECT testTableFunction(?,?) AS example
 FROM dual
 </xsql:query>
</page>

Example 25-8 Using an Array-Valued Parameter to Restrict Rows

<page xmlns:xsql="urn:oracle-xsql" connection="hr">
 <xsql:set-page-param name="someEmployees[]" value="196,197"/>
 <xsql:query bind-params="someEmployees[]">
 SELECT first_name||' '||last_name AS name, salary
 FROM employees
 WHERE employee_id IN (
 SELECT * FROM TABLE(CAST(? AS xsql_table_of_varchar))
)
 </xsql:query>
</page>

25.4 Setting Error Parameters on Built-In Actions
You can set a page-private parameter on a built-in XSQL action when the action
reports a nonfatal error.

The XSQL page processor determines whether an action encountered a nonfatal error
during its execution. For example, an attempt to insert a row or invoke a stored
procedure can fail with a database exception that gets included in your XSQL data
page as an <xsql-error> element.

Use attribute error-param on the action to set a page-private parameter on a built-in
XSQL action when the action reports a nonfatal error. For example, to set parameter
dml-error when the statement inside action <xsql:dml> encounters a database error,
you can use the technique shown in Example 25-9.

If the execution of action <xsql:dml> encounters an error then the XSQL processor
sets the page-private parameter dml-error to the string "Error". If the execution is

Chapter 25
Setting Error Parameters on Built-In Actions

25-10

successful then the XSQL processor does not assign a value to the error parameter. In
Example 25-9, if the page-private parameter dml-error already exists then it retains its
current value. If it does not exist then it continues not to exist.

Example 25-9 Setting an Error Parameter

<xsql:dml error-param="dml-error" bind-params="val">
 INSERT INTO yourtable(somecol)
 VALUES(?)
</xsql:dml>

25.4.1 Using Conditional Logic with Error Parameters
How to get conditional behavior in your XSQL page template is described.

By using the error parameter in combination with <xsql:if-param>, you can achieve
conditional behavior in your XSQL page template. For example, assume that your connection
definition sets the AUTOCOMMIT flag to false on the connection named demo in the XSQL
configuration file. The XSQL page shown in Example 25-10 shows how you might roll back
the changes made by a previous action if a subsequent action encounters an error.

If you have written custom action handlers, and if your custom actions invoke
reportMissingAttribute(), reportError(), or reportErrorIncludingStatement() to report
nonfatal action errors, then they automatically pick up this feature as well.

Example 25-10 Achieving Conditional Behavior with an Error Parameter

<!-- NOTE: Connection "demo" must not set to autocommit! -->
<page connection="demo" xmlns:xsql="urn:oracle-xsql">
 <xsql:dml error-param="dml-error" bind-params="val">
 INSERT INTO yourtable(somecol)
 VALUES(?)
 </xsql:dml>
 <!-- This second statement will commit if it succeeds -->
 <xsql:dml commit="yes" error-param="dml-error" bind-params="val2">
 INSERT INTO anothertable(anothercol)
 VALUES(?)
 </xsql:dml>
 <xsql:if-param name="dml-error" exists="yes">
 <xsql:dml>
 ROLLBACK
 </xsql:dml>
 </xsql:if-param>
</page>

25.4.2 Formatting XSQL Action Handler Errors
Errors raised by the processing of XSQL action elements are reported as XML elements in a
uniform way. This fact enables XSLT stylesheets to detect their presence and optionally
format them for presentation.

The action element in error is replaced in the page by this element:

<xsql-error action="xxx">

Chapter 25
Setting Error Parameters on Built-In Actions

25-11

Depending on the error the <xsql-error> element contains:

• A nested <message> element

• A <statement> element with the offending SQL statement

Example 25-11 shows an XSLT stylesheet that uses this information to display error
information on the screen.

Example 25-11 XSLT Stylesheet

<xsl:if test="//xsql-error">
 <table style="background:yellow">
 <xsl:for-each select="//xsql-error">
 <tr>
 <td>Action</td>
 <td><xsl:value-of select="@action"/></td>
 </tr>
 <tr valign="top">
 <td>Message</td>
 <td><xsl:value-of select="message"/></td>
 </tr>
 </xsl:for-each>
 </table>
</xsl:if>

25.5 Including XMLType Query Results in XSQL Pages
Oracle Database supports XMLType for storing and querying XML-based database
content.

You can exploit database XML features to produce XML data for inclusion in your
XSQL pages by using one of these techniques:

• <xsql:query> handles any query including columns of type XMLType, but it handles
XML markup in CLOB and VARCHAR2 columns as literal text.

• <xsql:include-xml> parses and includes a single CLOB or string-based XML
document retrieved from a query.

One difference between the preceding approaches is that <xsql:include-xml> parses
the literal XML appearing in a CLOB or string value as needed to turn it into a tree of
elements and attributes. In contrast, <xsql:query> leaves XML markup in CLOB or
string-valued columns as literal text.

Another difference is that while <xsql:query> can handle query results of any number
of columns and rows, <xsql:include-xml> works on a single column of a single row.
Accordingly, when using <xsql:include-xml>, the SELECT statement inside it returns a
single row containing a single column. The column can either be a CLOB or a VARCHAR2
value containing a well-formed XML document. The XSQL engine parses the XML
document and includes it in your XSQL page.

Example 25-12 uses nested XmlAgg() functions to aggregate the results of a
dynamically-constructed XML document containing departments and nested
employees. The functions aggregate the document into a single "result" document
wrapped in a <DepartmentList> element.

Chapter 25
Including XMLType Query Results in XSQL Pages

25-12

In another example, suppose you have many <Movie> XML documents stored in a table of
XMLType called movies. Each document might look like the one shown in Example 25-13.

You can use the built-in XPath query features to extract an aggregate list of all cast members
who have received Oscar awards from any movie in the database. Example 25-14 shows a
sample query.

To include this query result of XMLType in your XSQL page, paste the query inside an
<xsql:query> element. Make sure you include an alias for the query expression, as shown in
Example 25-15.

You can use the combination of XmlElement() and XmlAgg() to make the database
aggregate all of the XML fragments identified by the query into single, well-formed XML
document. The functions work to produce a well-formed result like this:

<AwardedActors>
 <Actor>...</Actor>
 <Actress>...</Actress>
</AwardedActors>

You can use the standard XSQL bind variable capabilities in the middle of an XPath
expression if you concatenate the bind variable into the expression. For example, to
parameterize the value Oscar into a parameter named award-from, you can use an XSQL
page like the one shown in Example 25-16.

Example 25-12 Aggregating a Dynamically-Constructed XML Document

<xsql:query connection="hr" xmlns:xsql="urn:oracle-xsql">
 SELECT XmlElement("DepartmentList",
 XmlAgg(
 XmlElement("Department",
 XmlAttributes(department_id AS "Id"),
 XmlForest(department_name AS "Name"),
 (SELECT XmlElement("Employees",
 XmlAgg(
 XmlElement("Employee",
 XmlAttributes(employee_id AS "Id"),
 XmlForest(first_name||' '||last_name AS "Name",
 salary AS "Salary",
 job_id AS "Job")
)
)
)
 FROM employees e
 WHERE e.department_id = d.department_id
)
)
)
) AS result
 FROM departments d
 ORDER BY department_name
</xsql:query>

Example 25-13 Movie XML Document

<Movie Title="The Talented Mr.Ripley" RunningTime="139" Rating="R">
 <Director>
 <First>Anthony</First>
 <Last>Minghella</Last>
 </Director>
 <Cast>

Chapter 25
Including XMLType Query Results in XSQL Pages

25-13

 <Actor Role="Tom Ripley">
 <First>Matt</First>
 <Last>Damon</Last>
 </Actor>
 <Actress Role="Marge Sherwood">
 <First>Gwyneth</First>
 <Last>Paltrow</Last>
 </Actress>
 <Actor Role="Dickie Greenleaf">
 <First>Jude</First>
 <Last>Law</Last>
 <Award From="BAFTA" Category="Best Supporting Actor"/>
 </Actor>
 </Cast>
</Movie>

Example 25-14 Using XPath to Extract an Aggregate List

SELECT XMLELEMENT("AwardedActors",
 XMLAGG(EXTRACT(VALUE(m),
 '/Movie/Cast/*[Award[@From="Oscar"]]')))
FROM movies m

Example 25-15 Including an XMLType Query Result

<xsql:query connection="demo" xmlns:xsql="urn:oracle-xsql">
 SELECT XMLELEMENT("AwardedActors",
 XMLAGG(EXTRACT(VALUE(m),
 '/Movie/Cast/*[Award[@From="Oscar"]]'))) AS result
 FROM movies m
</xsql:query>

Example 25-16 Using XSQL Bind Variables in an XPath Expression

<xsql:query connection="orcl92" xmlns:xsql="urn:oracle-xsql"
 award-from="Oscar" bind-params="award-from">
 /* Using a bind variable in an XPath expression */
 SELECT XMLELEMENT("AwardedActors",
 XMLAGG(EXTRACT(VALUE(m),
 '/Movie/Cast/*[Award[@From="'|| ? ||'"]]'))) AS result
 FROM movies m
</xsql:query>

25.6 Handling Posted XML Content
In addition to simplifying the assembly and transformation of XML content, the XSQL
pages framework helps you handle posted XML content.

Built-in actions provide these advantages:

• Simplify the handling of posted data from both XML document and HTML forms

• Enable data to be posted directly into a database table by using XSU

XSU can perform database inserts, updates, and deletes based on the content of an
XML document in canonical form for a target table or view. For a specified table, the
canonical XML form of its data is given by one row of XML output from a SELECT *
query. When given an XML document in this form, XSU can automate the DML
operation.

Chapter 25
Handling Posted XML Content

25-14

By combining XSU with XSLT, you can transform XML in any format into the canonical format
expected by a given table. XSU can then perform DML on the resulting canonical XML.

The following built-in XSQL actions make it possible for you to exploit this capability from
within your XSQL pages:

• <xsql:insert-request>

Insert the optionally transformed XML document that was posted in the request into a
table.

• <xsql:update-request>

Update the optionally transformed XML document that was posted in the request into a
table or view.

• <xsql:delete-request>

Delete the optionally transformed XML document that was posted in the request from a
table or view.

• <xsql:insert-param>

Insert the optionally transformed XML document that was posted as the value of a
request parameter into a table or view.

If you target a database view with your insert, then you can create INSTEAD OF INSERT
triggers on the view to further automate the handling of the posted information. For example,
an INSTEAD OF INSERT trigger on a view can use PL/SQL to check for the existence of a
record and intelligently choose whether to do an INSERT or an UPDATE depending on the result
of this check.

25.6.1 Understanding XML Posting Options
An overview is provided of XML posting options.

The XSQL pages framework can handle posted data in these scenarios:

• A client program sends an HTTP POST message that targets an XSQL page. The request
body contains an XML document; the HTTP header reports a ContentType of "text/xml".

In this case, <xsql:insert-request>, <xsql:update-request>, or <xsql:delete-
request> can insert, update, or delete the content of the posted XML in the target table. If
you transform the posted XML with XSLT, then the posted document is the source for the
transformation.

• A client program sends an HTTP GET request for an XSQL page, one of whose
parameters contains an XML document.

In this case, you can use the <xsql:insert-param> action to insert the content of the
posted XML parameter value in the target table. If you transform the posted XML
document with XSLT, then the XML document in the parameter value is the source
document for this transformation.

• A browser submits an HTML form with method="POST" whose action targets an XSQL
page. The request body of the HTTP POST message contains an encoded version of the
form fields and values with a ContentType of "application/x-www-form-urlencoded".

In this case, the request does not contain an XML document, but an encoded version of
the form parameters. To make all three of these cases uniform, however, the XSQL page
processor materializes on demand an XML document from the form parameters, session
variables, and cookies contained in the request. The XSLT processor transforms this

Chapter 25
Handling Posted XML Content

25-15

dynamically-materialized XML document into canonical form for DML by using
<xsql:insert>, <xsql:update-request>, or <xsql:delete-request>.

When working with posted HTML forms, the dynamically materialized XML document
has the form shown in Example 25-17.

If multiple parameters are posted with the same name, then the XSQL processor
automatically creates multiple <row> elements to make subsequent processing easier.
Assume that a request posts or includes these parameters and values:

• id = 101
• name = Steve
• id = 102
• name = Sita
• operation = update
The XSQL page processor creates a set of parameters as follows:

<request>
 <parameters>
 <row>
 <id>101</id>
 <name>Steve</name>
 </row>
 <row>
 <id>102</id>
 <name>Sita</name>
 </row>
 <operation>update</operation>
 </parameters>
 ...
</request>

You must provide an XSLT stylesheet that transforms this materialized XML document
containing the request parameters into canonical format for your target table. Thus,
you can build an XSQL page:

<!--
 | ShowRequestDocument.xsql
 | Show Materialized XML Document for an HTML Form
 +-->
<xsql:include-request-params xmlns:xsql="urn:oracle-xsql"/>

With this page in place, you can temporarily modify your HTML form to post to the
ShowRequestDocument.xsql page. In the browser you see the "raw" XML for the
materialized XML request document, which you can save and use to develop the XSL
transformation.

Example 25-17 XML Document Generated from HTML Form

<request>
 <parameters>
 <firstparamname>firstparamvalue</firstparamname>
 ...
 <lastparamname>lastparamvalue</lastparamname>
 </parameters>
 <session>
 <firstparamname>firstsessionparamvalue</firstparamname>

Chapter 25
Handling Posted XML Content

25-16

 ...
 <lastparamname>lastsessionparamvalue</lastparamname>
 </session>
 <cookies>
 <firstcookie>firstcookievalue</firstcookiename>
 ...
 <lastcookie>firstcookievalue</lastcookiename>
 </cookies>
</request>

25.7 Producing PDF Output with the FOP Serializer
Using the XSQL pages framework support for custom serializers, the
oracle.xml.xsql.serializers.XSQLFOPSerializer class provides integration with the
Apache Formatting Objects Processor (FOP). The FOP processor renders a PDF document
from an XML document containing XSL Formatting Objects.

As described in Table 24-1, the demo directory includes the emptablefo.xsl stylesheet and
emptable.xsql page as illustrations. If you get an error trying to use the FOP serializer, then
probably you do not have all of the required JAR files in the CLASSPATH. The
XSQLFOPSerializer class resides in the separate xml.jar file, which must be included in the
CLASSPATH to use the FOP integration. You must also add these additional Java archives to
your CLASSPATH:

• fop.jar—from Apache, version 0.20.3 or later

• batik.jar—from the FOP distribution

• avalon-framework-4.0.jar—from FOP distribution

• logkit-1.0.jar—from FOP distribution

In case you want to customize the implementation, the source code for the FOP serializer
provided in this release is shown in Example 25-18.

See Also:

Apache FOP

Example 25-18 Source Code for FOP Serializer

package oracle.xml.xsql.serializers;
import org.w3c.dom.Document;
import org.apache.log.Logger;
import org.apache.log.Hierarchy;
import org.apache.fop.messaging.MessageHandler;
import org.apache.log.LogTarget;
import oracle.xml.xsql.XSQLPageRequest;
import oracle.xml.xsql.XSQLDocumentSerializer;
import org.apache.fop.apps.Driver;
import org.apache.log.output.NullOutputLogTarget;
/**
 * Tested with the FOP 0.20.3RC release from 19-Jan-2002
 */
public class XSQLFOPSerializer implements XSQLDocumentSerializer {
 private static final String PDFMIME = "application/pdf";

Chapter 25
Producing PDF Output with the FOP Serializer

25-17

 public void serialize(Document doc, XSQLPageRequest env) throws Throwable {
 try {
 // First make sure we can load the driver
 Driver FOPDriver = new Driver();
 // Tell FOP not to spit out any messages by default.
 // You can modify this code to create your own FOP Serializer
 // that logs the output to one of many different logger targets
 // using the Apache LogKit API
 Logger logger=Hierarchy.getDefaultHierarchy().getLoggerFor("XSQLServlet");
 logger.setLogTargets(new LogTarget[]{new NullOutputLogTarget()});
 FOPDriver.setLogger(logger);
 // Some of FOP's messages appear to still use MessageHandler.
 MessageHandler.setOutputMethod(MessageHandler.NONE);
 // Then set the content type before getting the reader
 env.setContentType(PDFMIME);
 FOPDriver.setOutputStream(env.getOutputStream());
 FOPDriver.setRenderer(FOPDriver.RENDER_PDF); FOPDriver.render(doc);
 }
 catch (Exception e) {
 // Cannot write PDF output for the error anyway.
 // So maybe this stack trace will be useful info
 e.printStackTrace(System.err);
 }
 }
}

25.8 Performing XSQL Customizations
XSQL customization topics are presented.

25.8.1 Writing Custom XSQL Action Handlers
The XSQL pages engine processes an XSQL page by looking for action elements
from the xsql namespace and invoking an appropriate action element handler class to
process each action. The processor supports any action that implements the
XSQLActionHandler interface. All of the built-in actions implement this interface.

When a task requires custom processing, and none of the built-in actions listed in
Table 33-2 does exactly what you need, you can write your own actions.

The XSQL engine processes the actions in a page in the following way. For each
action in the page, the engine performs these steps:

1. Constructs an instance of the action handler class using the default constructor

2. Initializes the handler instance with the action element object and the page
processor context by invoking the method init(Element
actionElt,XSQLPageRequest context)

3. Invokes the method that allows the handler to handle the action handleAction
(Node result)

For built-in actions, the engine can map the XSQL action element name to the Java
class that implements the handler of the action. Table 33-2 lists the built-in actions and
their corresponding classes.

Chapter 25
Performing XSQL Customizations

25-18

For user-defined actions, use this built-in action, replacing fully.qualified.Classname with
the name of your class:

<xsql:action handler="fully.qualified.Classname" ... />

The handler attribute provides the fully qualified name of the Java class that implements the
custom action handler.

25.8.1.1 Implementing the XSQLActionHandler Interface
To create a custom action handler, provide a class that implements To create a custom action
handler, provide a class that implements oracle.xml.xsql.XSQLActionHandler interface
oracle.xml.xsql.XSQLActionHandler. Most custom action handlers extend
oracle.xml.xsql.XSQLActionHandlerImpl, which provides a default implementation of the
init() method and offers useful helper methods.

When an action handler's handleAction() method is invoked by the XSQL pages processor,
a DOM fragment is passed to the action implementation. The action handler appends any
dynamically created XML content returned to the page to the root node.

The XSQL processor conceptually replaces the action element in the XSQL page with the
content of this document fragment. It is legal for an action handler to append nothing to this
fragment if it has no XML content to add to the page.

While writing your custom action handlers, some methods on the XSQLActionHandlerImpl
class are helpful. Table 25-2 lists these methods.

Table 25-2 Helpful Methods in the XSQLActionHandlerImpl Class

Method Name Description

getActionElement Returns the current action element being handled.

getActionElementContent Returns the text content of the current action element, with all lexical
parameters substituted appropriately.

Chapter 25
Performing XSQL Customizations

25-19

Table 25-2 (Cont.) Helpful Methods in the XSQLActionHandlerImpl Class

Method Name Description

getPageRequest Returns the current XSQL pages processor context. Using this object you do
this:

• setPageParam()
Set a page parameter value.

• getPostedDocument()/setPostedDocument()
Get or set the posted XML document.

• translateURL()
Translate a relative URL to an absolute URL.

• getRequestObject()/setRequestObject()
Get or set objects in the page request context that can be shared across
actions in a single page.

• getJDBCConnection()
Gets the JDBC connection in use by this page (possible null if no
connection in use).

• getRequestType()
Detect whether you are running in the Servlet, Command Line, or
Programmatic context. For example, if the request type is Servlet then you
can cast the XSQLPageRequest object to the more specific
XSQLServletPageRequest to access servlet-specific methods such as
getHttpServletRequest, getHttpServletResponse, and
getServletContext.

getAttributeAllowingParam Retrieves the attribute value from an element, resolving any XSQL lexical
parameter references that might appear in value of the attribute. Typically this
method is applied to the action element itself, but it is also useful for accessing
attributes of subelements. To access an attribute value without allowing lexical
parameters, use the standard getAttribute() method on the DOM
Element interface.

appendSecondaryDocument Appends the contents of an external XML document to the root of the action
handler result content.

addResultElement Simplifies appending a single element with text content to the root of the action
handler result content.

firstColumnOfFirstRow Returns the first column value of the first row of a SQL statement. Requires
the current page to have a connection attribute on its document element, or an
error is returned.

getBindVariableCount Returns the number of tokens in the space-delimited list of bind-params.
This number indicates how many bind variables are expected to be bound to
parameters.

handleBindVariables Manages the binding of JDBC bind variables that appear in a prepared
statement with the parameter values specified in the bind-params attribute
on the current action element. If the statement is already using several bind
variables before invoking this method, you can pass the number of existing
bind variable slots in use as well.

reportErrorIncludingStatement Reports an error. The error includes the offending (SQL) statement that
caused the problem and optionally includes a numeric error code.

reportFatalError Reports a fatal error.

Chapter 25
Performing XSQL Customizations

25-20

Table 25-2 (Cont.) Helpful Methods in the XSQLActionHandlerImpl Class

Method Name Description

reportMissingAttribute Reports an error that a required action handler attribute is missing by using
the <xsql-error> element.

reportStatus Reports action handler status by using the <xsql-status> element.

requiredConnectionProvided Checks whether a connection is available for this request and outputs an
errorgram into the page if no connection is available.

variableValue Returns the value of a lexical parameter, taking into account all scoping rules
that might determine its default value.

Example 25-19 shows a custom action handler named MyIncludeXSQLHandler that leverages
a built-in action handler. It uses arbitrary Java code to modify the XML fragment returned by
this handler before appending its result to the XSQL page.

You might have to write custom action handlers that work differently based on whether the
page is requested through the XSQL servlet, the XSQL command-line utility, or
programmatically through the XSQLRequest class.You can invoke getPageRequest() in your
action handler implementation to get a reference to the XSQLPageRequest interface for the
current page request. By invoking getRequestType() on the XSQLPageRequest object, you
can determine whether the request is coming from the Servlet, Command Line, or
Programmatic routes. If the return value is Servlet, then you can access the HTTP servlet
request, response, and servlet context objects as shown in Example 25-20.

Example 25-19 MyIncludeXSQLHandler.java

import oracle.xml.xsql.*;
import oracle.xml.xsql.actions.XSQLIncludeXSQLHandler;
import org.w3c.dom.*;
import java.sql.SQLException;
public class MyIncludeXSQLHandler extends XSQLActionHandlerImpl {
 XSQLActionHandler nestedHandler = null;
 public void init(XSQLPageRequest req, Element action) {
 super.init(req, action);
 // Create an instance of an XSQLIncludeXSQLHandler and init() the handler by
 // passing the current request/action. This assumes the XSQLIncludeXSQLHandler
 // will pick up its href="xxx.xsql" attribute from the current action element.
 nestedHandler = new XSQLIncludeXSQLHandler();
 nestedHandler.init(req,action);
 }
 public void handleAction(Node result) throws SQLException {
 DocumentFragment df=result.getOwnerDocument().createDocumentFragment();
 nestedHandler.handleAction(df);
 // Custom Java code here can work on the returned document fragment
 // before appending the final, modified document to the result node.
 // For example, add an attribute to the first child.
 Element e = (Element)df.getFirstChild();
 if (e != null) {
 e.setAttribute("ExtraAttribute","SomeValue");
 }
 result.appendChild(df);
 }
}

Chapter 25
Performing XSQL Customizations

25-21

Example 25-20 Testing for the Servlet Request

XSQLServletPageRequest xspr = (XSQLServletPageRequest)getPageRequest();
if (xspr.getRequestType().equals("Servlet")) {
 HttpServletRequest req = xspr.getHttpServletRequest();
 HttpServletResponse resp = xspr.getHttpServletResponse();
 ServletContext cont = xspr.getServletContext();
 // Do something here with req, resp, or cont. Note that writing to the
response
 // directly from a handler produces unexpected results. All the servlet or
your
 // custom Serializer to write to the servlet response output stream at the
right
 // moment later when all action elements have been processed.
}

25.8.1.2 Using Multivalued Parameters in Custom XSQL Actions
XSQLActionHandlerImpl is the base class for custom XSQL actions.

It supports:

• Array-named lexical parameter substitution

• Array-named bind variables

• Simple-valued parameters

If your custom actions use methods such as getAttributeAllowingParam(),
getActionElementContent(), or handleBindVariables() from this base class, you
pick up multivalued parameter functionality for free in your custom actions.

Use the getParameterValues() method on the XSQLPageRequest interface to explicitly
get a parameter value as a String[]. The helper method variableValues() in
XSQLActionHandlerImpl enables you to use this functionality from within a custom
action handler if you must do so programmatically.

25.8.2 Implementing Custom XSQL Serializers
You can implement a user-defined serializer class to control how the final XSQL
datapage is serialized to a text or binary stream. A user-defined serializer must
implement interface oracle.xml.xsql.XSQLDocumentSerializer.

Interface oracle.xml.xsql.XSQLDocumentSerializer contains this single method:

void serialize(org.w3c.dom.Document doc, XSQLPageRequest env) throws
Throwable;

Only DOM-based serializers are supported. A custom serializer class is expected to
perform these steps:

1. Set the content type of the serialized stream before writing any content to the
output PrintWriter (or OutputStream).

Set the type by invoking setContentType() on the XSQLPageRequest passed to
your serializer. When setting the content type, you can set a MIME type:

env.setContentType("text/html");

Chapter 25
Performing XSQL Customizations

25-22

Alternatively, you can set a MIME type with an explicit output encoding character set:

env.setContentType("text/html;charset=Shift_JIS");
2. Invoke either getWriter() or getOutputStream() (but not both) on the XSQLPageRequest

to get the appropriate PrintWriter or OutputStream for serializing the content.

The custom serializer in Example 25-21 shows a simple implementation that serializes an
HTML document containing the name of the document element of the current XSQL data
page.

Example 25-21 Custom Serializer

package oracle.xml.xsql.serializers;
import org.w3c.dom.Document;
import java.io.PrintWriter;
import oracle.xml.xsql.*;

public class XSQLSampleSerializer implements XSQLDocumentSerializer {
 public void serialize(Document doc, XSQLPageRequest env) throws Throwable {
 String encoding = env.getPageEncoding(); // Use same encoding as XSQL page
 // template. Set to specific
 // encoding if necessary
 String mimeType = "text/html"; // Set this to the appropriate content type
 // (1) Set content type using the setContentType on the XSQLPageRequest
 if (encoding != null && !encoding.equals("")) {
 env.setContentType(mimeType+";charset="+encoding);
 }
 else {
 env.setContentType(mimeType);
 }
 // (2) Get the output writer from the XSQLPageRequest
 PrintWriter e = env.getWriter();
 // (3) Serialize the document to the writer
 e.println("<html>Document element is "+
 doc.getDocumentElement().getNodeName()+"</html>");
 }
}

25.8.2.1 Techniques for Using a Custom Serializer
There are two ways to use a custom serializer, depending on whether you must first perform
an XSLT transformation before serializing.

To perform an XSLT transformation before using a custom serializer, add the
serializer="java:fully.qualified.ClassName" in the <?xml-stylesheet?> processing
instruction at the top of your page. The following examples shows this technique:

<?xml version="1.0?>
<?xml-stylesheet type="text/xsl" href="mystyle.xsl"
 serializer="java:my.pkg.MySerializer"?>

If you need only the custom serializer, omit the type and href attributes. The following
example shows this technique:

<?xml version="1.0?>
<?xml-stylesheet serializer="java:my.pkg.MySerializer"?>

Chapter 25
Performing XSQL Customizations

25-23

25.8.2.2 Assigning a Short Name to a Custom Serializer
You can assign a short name to your custom serializers in the <serializerdefs>
section of the XSQL configuration file. You can then use the short name in the
serializer attribute, to save typing. The short name is case-sensitive.

Assume that you have the information shown in Example 25-22 in your XSQL
configuration file. You can use the short names "Sample" or "FOP" in a stylesheet
instruction:

<?xml-stylesheet type="text/xsl" href="emp-to-xslfo.xsl" serializer="FOP"?>
<?xml-stylesheet serializer="Sample"?>

The XSQLPageRequest interface supports both a getWriter() and a
getOutputStream() method. Custom serializers can invoke getOutputStream() to
return an OutputStream instance into which binary data can be serialized. When you
use the XSQL servlet, writing to this output stream writes binary information to the
servlet output stream.

The serializer shown in Example 25-23 shows an example of writing a dynamic GIF
image. In this example the GIF image is a static "ok" icon, but it shows the basic
technique that a more sophisticated image serializer must use.

Using the XSQL command-line utility, the binary information is written to the target
output file. Using the XSQLRequest API, two constructors exist that allow the caller to
supply the target OutputStream to use for the results of page processing.

Your serializer must either invoke getWriter() for textual output or
getOutputStream() for binary output but not both. Invoking both in the same request
raises an error.

Example 25-22 Assigning Short Names to Custom Serializers

<XSQLConfig>
 <!--and so on. -->
 <serializerdefs>
 <serializer>
 <name>Sample</name>
 <class>oracle.xml.xsql.serializers.XSQLSampleSerializer</class>
 </serializer>
 <serializer>
 <name>FOP</name>
 <class>oracle.xml.xsql.serializers.XSQLFOPSerializer</class>
 </serializer>
 </serializerdefs>
</XSQLConfig>

Example 25-23 Writing a Dynamic GIF Image

package oracle.xml.xsql.serializers;
import org.w3c.dom.Document;
import java.io.*;
import oracle.xml.xsql.*;

public class XSQLSampleImageSerializer implements XSQLDocumentSerializer {
 // Byte array representing a small "ok" GIF image
 private static byte[] okGif =
 {(byte)0x47,(byte)0x49,(byte)0x46,(byte)0x38,
 (byte)0x39,(byte)0x61,(byte)0xB,(byte)0x0,

Chapter 25
Performing XSQL Customizations

25-24

 (byte)0x9,(byte)0x0,(byte)0xFFFFFF80,(byte)0x0,
 (byte)0x0,(byte)0x0,(byte)0x0,(byte)0x0,
 (byte)0xFFFFFFFF,(byte)0xFFFFFFFF,(byte)0xFFFFFFFF,(byte)0x2C,
 (byte)0x0,(byte)0x0,(byte)0x0,(byte)0x0,
 (byte)0xB,(byte)0x0,(byte)0x9,(byte)0x0,
 (byte)0x0,(byte)0x2,(byte)0x14,(byte)0xFFFFFF8C,
 (byte)0xF,(byte)0xFFFFFFA7,(byte)0xFFFFFFB8,(byte)0xFFFFFF9B,
 (byte)0xA,(byte)0xFFFFFFA2,(byte)0x79,(byte)0xFFFFFFE9,
 (byte)0xFFFFFF85,(byte)0x7A,(byte)0x27,(byte)0xFFFFFF93,
 (byte)0x5A,(byte)0xFFFFFFE3,(byte)0xFFFFFFEC,(byte)0x75,
 (byte)0x11,(byte)0xFFFFFF85,(byte)0x14,(byte)0x0,
 (byte)0x3B};

 public void serialize(Document doc, XSQLPageRequest env) throws Throwable {
 env.setContentType("image/gif");
 OutputStream os = env.getOutputStream();
 os.write(okGif,0,okGif.length);
 os.flush();
 }
}

25.8.3 Using a Custom XSQL Connection Manager for JDBC Data
Sources

As an alternative to defining your named connections in the XSQL configuration file, you can
use one of two XSQLConnectionManager implementations provided. These let you use your
servlet container's JDBC data source implementation and related connection pooling
features.

This XSQL pages framework provides this alternative connection manager implementations:

• oracle.xml.xsql.XSQLDatasourceConnectionManager
Consider using this connection manager if your servlet container's data source
implementation does not use the Oracle JDBC driver. Features of the XSQL pages
system such as <xsql:ref-cursor-function> and <xsql:include-owa> are not
available when you do not use an Oracle JDBC driver.

• oracle.xml.xsql.XSQLOracleDatasourceConnectionManager
Consider using this connection manager when your data source implementation returns
JDBC PreparedStatement and CallableStatement objects that implement the
oracle.jdbc.PreparedStatement and oracle.jdbc.CallableStatement interfaces. The
Oracle WebLogic Server has a data source implementation that performs this task.

When using either of the preceding alternative connection manager implementations, the
value of the connection attribute in your XSQL page template is the Java Naming and
Directory Interface (JNDI) name used to look up your desired data source. For example, the
value of the connection attribute might look like:

• jdbc/scottDS
• java:comp/env/jdbc/MyDatasource
If you are not using the default XSQL pages connection manager, then needed connection
pooling functionality must be provided by the alternative connection manager implementation.
In the case of the preceding two options based on JDBC data sources, you must properly
configure your servlet container to supply the connection pooling. See your servlet container

Chapter 25
Performing XSQL Customizations

25-25

documentation for instructions on how to properly configure the data sources to offer
pooled connections.

25.8.4 Writing Custom XSQL Connection Managers
You can provide a custom connection manager to replace the built-in connection
management mechanism.

To provide a custom connection manager implementation, you must perform these
steps:

1. Write a connection manager factory class that implements the
oracle.xml.xsql.XSQLConnectionManagerFactory interface.

2. Write a connection manager class that implements the
oracle.xml.xsql.XSQLConnectionManager interface.

3. Change the name of the XSQLConnectionManagerFactory class in your XSQL
configuration file.

The XSQL servlet uses your connection management scheme instead of the XSQL
pages default scheme.

You can set your custom connection manager factory as the default connection
manager factory by providing the class name in the XSQL configuration file. Set the
factory in this section:

<!--
 | Set the name of the XSQL Connection Manager Factory
 | implementation. The class must implement the
 | oracle.xml.xsql.XSQLConnectionManagerFactory interface.
 | If unset, the default is to use the built-in connection
 | manager implementation in
 | oracle.xml.xsql.XSQLConnectionManagerFactoryImpl
+-->
 <connection-manager>
 <factory>oracle.xml.xsql.XSQLConnectionManagerFactoryImpl</
factory>
 </connection-manager>

In addition to specifying the default connection manager factory, you can associate a
custom connection factory with a XSQLRequest object by using APIs provided.

The responsibility of the XSQLConnectionManagerFactory is to return an instance of an
XSQLConnectionManager for use by the current request. In a multithreaded
environment such as a servlet engine, the XSQLConnectionManager object must ensure
that a single XSQLConnection instance is not used by two different threads. This aim is
realized by marking the connection as in use for the time between the
getConnection() and releaseConnection() method invocations. The default XSQL
connection manager implementation automatically pools named connections and
adheres to this thread-safe policy.

If your custom implementation of XSQLConnectionManager implements the optional
oracle.xml.xsql.XSQLConnectionManagerCleanup interface, then your connection
manager can clean up any resources it has allocated. For example, if your servlet
container invokes the destroy() method on the XSQLServlet servlet, which can occur

Chapter 25
Performing XSQL Customizations

25-26

during online administration of the servlet for example, the connection manager has a chance
to clean up resources as part of the servlet destruction process.

25.8.4.1 Accessing Authentication Information in a Custom Connection Manager
To use the HTTP authentication mechanism to get the user name and password to connect to
the database, write a customized connection manager. You can then invoke a
getConnection() method to get the needed information.

You can write a Java program that follows these steps:

1. Pass an instance of the oracle.xml.xsql.XSQLPageRequest interface to the
getConnection() method.

2. Invoke getRequestType() to ensure that the request type is Servlet.

3. Cast the XSQLPageRequest object to an XSQLServletPageRequest.

4. Invoke getHttpServletRequest() on the result of the preceding step.

5. Get the authentication information from the javax.servlet.http.HttpServletResponse
object returned by the previous invocation.

25.8.5 Implementing a Custom XSQLErrorHandler
You can control how serious page processor errors such as an unavailable connection are
reported to users by implementing interface oracle.xml.xsql.XSQLErrorHandler.

The interface contains this single method signature:

public interface XSQLErrorHandler {
 public void handleError(XSQLError err, XSQLPageRequest env);
}

You can provide a class that implements the XSQLErrorHandler interface to customize how
the XSQL pages processor writes error messages. The new XSQLError object encapsulates
the error information and provides access to the error code, formatted error message, and so
on.

Example 25-24 shows a sample implementation of XSQLErrorHandler.

You can control which custom XSQLErrorHandler implementation is used in these distinct
ways:

• Define the name of a custom XSQLErrorHandler implementation class in the XSQL
configuration file. You must provide the fully qualified class name of your error handler
class as the value of the /XSQLConfig/processor/error-handler/class entry.

If the XSQL processor can load this class, and if it correctly implements the
XSQLErrorHandler interface, then it uses this class as a singleton and replaces the
default implementation globally wherever page processor errors are reported.

• Override the error writer on a per page basis by using the errorHandler (or
xsql:errorHandler) attribute on the document element of the page. The attribute value
is the fully qualified class name of a class that implements the XSQLErrorHandler
interface. This class reports the errors only for this page. The class is instantiated on
each page request by the page engine.

You can use a combination of the preceding approaches if needed.

Chapter 25
Performing XSQL Customizations

25-27

Example 25-24 myErrorHandler class

package example;
import oracle.xml.xsql.*;
import java.io.*;
public class myErrorHandler implements XSQLErrorHandler {
 public void logError(XSQLError err, XSQLPageRequest env) {
 // Must set the content type before writing anything out
 env.setContentType("text/html");
 PrintWriter pw = env.getErrorWriter();
 pw.println("<H1>ERROR</H1><hr>"+err.getMessage());
 }
}

25.8.6 Providing a Custom XSQL Logger Implementation
You can optionally register custom code to handle the logging of the start and end of
each XSQL page request. Your custom logger code must provide an implementation of
interfaces oracle.xml.xsql.XSQLLoggerFactory and oracle.xml.xsql.XSQLLogger.

The XSQLLoggerFactory interface contains this single method:

public interface XSQLLoggerFactory {
 public XSQLLogger create(XSQLPageRequest env);
}

You can provide a class that implements the XSQLLoggerFactory interface to decide
how XSQLLogger objects are created (or reused) for logging. The XSQL processor
holds a reference to the XSQLLogger object returned by the factory for the duration of a
page request. The processor uses it to log the start and end of each page request by
invoking the logRequestStart() and logRequestEnd() methods.

The XSQLLogger interface is:

public interface XSQLLogger {
 public void logRequestStart(XSQLPageRequest env) ;
 public void logRequestEnd(XSQLPageRequest env);
}

The classes in Example 25-25 and Example 25-26 show a trivial implementation of a
custom logger. The XSQLLogger implementation in Example 25-25 notes the time the
page request started. It then logs the page request end by printing the name of the
page request and the elapsed time to System.out.

The factory implementation is shown in Example 25-26.

To register a custom logger factory, edit the XSQLConfig.xml file and provide the name
of your custom logger factory class as the content to the /XSQLConfig/processor/
logger/factory element. Example 25-27 shows this technique.

By default, <logger> section is commented out. There is no default logger.

Example 25-25 SampleCustomLogger Class

package example;
import oracle.xml.xsql.*;
public class SampleCustomLogger implements XSQLLogger {
 long start = 0;
 public void logRequestStart(XSQLPageRequest env) {
 start = System.currentTimeMillis();

Chapter 25
Performing XSQL Customizations

25-28

 }
 public void logRequestEnd(XSQLPageRequest env) {
 long secs = System.currentTimeMillis() - start;
 System.out.println("Request for " + env.getSourceDocumentURI()
 + " took "+ secs + "ms");
 }
}

Example 25-26 SampleCustomLoggerFactory Class

package example;
import oracle.xml.xsql.*;
public class SampleCustomLoggerFactory implements XSQLLoggerFactory {
 public XSQLLogger create(XSQLPageRequest env) {
 return new SampleCustomLogger();
 }
}

Example 25-27 Registering a Custom Logger Factory

<XSQLConfig>
 :
 <processor>
 :
 <logger>
 <factory>example.SampleCustomLoggerFactory</factory>
 </logger>
 :
 </processor>
</XSQLConfig>

Chapter 25
Performing XSQL Customizations

25-29

Part III
Oracle XML Developer's Kit for C++

An explanation is given of how to use Oracle XML Developer's Kit (XDK) to develop C++
applications.

26
Getting Started with Oracle XML Developer's
Kit for C++

An explanation is given of how to get started with Oracle XML Developer's Kit (XDK) for C++.
The C++ demo programs are on the Oracle Database Examples media.

26.1 Installing XDK for C++ Components
The XDK for C++ components are included with Oracle Database.

Related Topics

• About Installing XDK
The standard installation of Oracle Database includes XDK (all of its components).

See Also:

Overview of XDK for a list of the XDK for C++ components

26.2 Configuring the UNIX Environment for XDK for C++
Components

Topics here include component dependencies, environment variables, the runtime and
compile-time environments, and the component version.

26.2.1 XDK for C++ Component Dependencies on UNIX
The C++ libraries described in this section are located in $ORACLE_HOME/lib.

The XDK for C and C++ components are contained in the library:

libxml21.a

In addition to the XDK for C components described in XDK for C Component Dependencies
on UNIX, the library includes the XML class generator, which creates C++ source files based
on an input document type definition (DTD) or XML Schema.

Table 3-1 in XDK for C Component Dependencies on UNIX describes the Oracle CORE and
Globalization Support libraries on which the XDK for C components (UNIX) depend. The
library dependencies are the same for C and C++.

26-1

26.2.2 Setting Up XDK for C++ Environment Variables on UNIX
The UNIX environment variables required for use with the XDK components are the
same for C and C++.

See Table 3-2 in Setting Up XDK for C Environment Variables on UNIX.

26.2.3 Testing the XDK for C++ Runtime Environment on UNIX
You can test your environment by running any of the XDK C utilities for UNIX. These
utilities do not have C++ versions.

The C utilities described in Table 3-3 in Testing the XDK for C Runtime Environment on
UNIX.

26.2.4 Setting Up and Testing the XDK for C++ Compile-Time
Environment on UNIX

How to set up and test the XDK C++ compile-time UNIX environment is described.

Both the C and C++ header files are located in $ORACLE_HOME/xdk/include.
Table 26-1 describes the C++ header files. Table 3-4 in Setting Up and Testing the
XDK C Compile-Time Environment on UNIX describes the C header files. Your runtime
environment must be set up before you can compile your C++ code.

Table 26-1 Header Files in the XDK for C++ Compile-Time Environment

Header File Description

oraxml.hpp Includes the Oracle9i XML ORA data types and the public ORA application
programming interfaces (APIs) included in libxml.a (only for backward
compatibility).

oraxmlcg.h Includes the C APIs for the C++ class generator (only for backward
compatibility).

oraxsd.hpp Includes the Oracle9i XML schema definition (XSD) validator data types and
APIs (only for backward compatibility)

xml.hpp Handles the Unified Document Object Model (DOM) APIs transparently,
whether you use them through Oracle Call Interface (OCI) or standalone

xmlotn.hpp Includes the common APIs, whether you compile standalone or use OCI and
the Unified DOM

xmlctx.hpp Includes the initialization and exception-handling public APIs

26.2.4.1 Testing the XDK for C++ Compile-Time Environment on UNIX
The simplest way to test your compile-time environment is to run the make utility on the
sample programs.

The demo programs are located on the Examples media rather than the Oracle
Database CD. After installing these programs, they are located in $ORACLE_HOME/xdk/
demo/cpp.

Chapter 26
Configuring the UNIX Environment for XDK for C++ Components

26-2

Build and run the sample programs by executing these commands at the system prompt:

cd $ORACLE_HOME/xdk/demo/cpp
make

26.2.5 Verifying the XDK for C++ Component Version on UNIX
How to determine which version of XDK you have is explained.

To get the version of XDK that you are using, change into $ORACLE_HOME/lib and run this
command as the system prompt:

strings libxml21.a | grep -i developers

26.3 Configuring the Windows Environment for XDK for C++
Components

Topics here include component dependencies, environment variables, testing the runtime
environment, setting up and testing the compile-time environment, and Visual C/C++.

26.3.1 XDK for C++ Component Dependencies on Windows
The C++ libraries described in this section are located in %ORACLE_HOME%\bin.

The XDK for C and C++ components are contained in this Windows library:

libxml21.dll

Table 3-5 in XDK for C Component Dependencies on Windows describes the Oracle
Common Oracle Runtime Environment (CORE) and Globalization Support libraries on which
the C components for Windows depend. The library dependencies are the same for C and C+
+.

26.3.2 Setting Up XDK for C++ Environment Variables on Windows
The Windows environment variables required for use with the XDK are the same for C and
C++.

See Table 3-6 in Setting Up XDK for C Environment Variables on Windows.

26.3.3 Testing the XDK for C++ Runtime Environment on Windows
You can test your environment by running any of the XDK C utilities for UNIX. These utilities
do not have C++ versions.

These utilities are described in Table 3-7 in Testing the XDK for C Runtime Environment on
Windows.

Chapter 26
Configuring the Windows Environment for XDK for C++ Components

26-3

26.3.4 Setting Up and Testing the XDK for C++ Compile-Time
Environment on Windows

How to set up and test the XDK C++ compile-time Microsoft Windows environment is
described.

Table 26-1 in the section Setting Up and Testing the XDK for C++ Compile-Time
Environment on UNIX describes the header files required for compilation of the C
components on Windows. The relative file names are the same on both UNIX and
Windows installations.

On Windows the header files are located in %ORACLE_HOME%\xdk\include. Your
runtime environment must be set up before you can compile your code.

26.3.4.1 Testing the XDK for C++ Compile-Time Environment on Windows
You can test your compile-time environment by compiling the demo programs, which
are located in %ORACLE_HOME%\xdk\demo\cpp if you have installed the Oracle Database
Examples media.

The procedure for setting the C++ compiler path is identical to the procedure
described in Setting the XDK for C Compiler Path on Windows. The procedure for
editing the Make.bat files is identical to the procedure described in Editing the
Make.bat Files on Windows.

26.3.5 Using the XDK for C++ Components with Visual C/C++
You can set up a project in Microsoft Visual C/C++ and use it for the demos included in
XDK.

See Using the XDK for C Components and Visual C++ in Microsoft Visual Studio for
instructions.

Chapter 26
Configuring the Windows Environment for XDK for C++ Components

26-4

27
Overview of the Unified C++ Interfaces

The unified C++ interfaces are described.

27.1 What Is the Unified C++ API?
Unified C++ application programming interfaces (APIs) for Extensible Markup Language
(XML) tools represent a set of C++ interfaces for Oracle XML tools. All three kinds of C++
interfaces: abstract classes, templates, and implicit interfaces represented by generic
template parameters, are used by the unified framework.

This unified approach provides a generic, interface-based framework that allows XML tools to
be improved, updated, replaced, or added without affecting any interface-based user code,
and minimally affecting application drivers and, possibly, application configuration.

Note:

Use the unified C++ API in xml.hpp for Oracle XML Developer's Kit (XDK)
applications. The older, nonunified C++ API in oraxml.hpp is deprecated and
supported only for backward compatibility. It will be removed in a future release.

The unified C++ API supports the World Wide Web Consortium (W3C) specification
as closely as possible. However, Oracle cannot guarantee that the specification is
fully supported by our implementation because the W3C specification does not
cover C++ implementations.

27.2 Accessing the C++ Interface
The C++ interface is provided with Oracle Database. Sample files are located
in $ORACLE_HOME/xdk/demo/cpp. readme.html in the root directory of the software archive
contains release specific information including bug fixes and API additions.

27.3 OracleXML Namespace
OracleXml is the C++ namespace for all XML C++ interfaces. It contains common interfaces
and namespaces for different XDK packages.

The following namespaces are included in namespace OracleXML:

• Ctx—namespace for TCtx related declarations

• Dom—namespace for Document Object Model (DOM) related declarations

• Parser—namespace for parser and schema validator declarations

27-1

• IO—namespace for input and output source declarations

• Xsl—namespace for Extensible Stylesheet Language Transformation (XSLT)
related declarations

• XPath - namespace for XPath related declarations

• Tools—namespace for Tools::Factory related declarations

OracleXml is fully defined in the file xml.hpp. Another namespace, XmlCtxNS, visible to
users, is defined in xmlctx.hpp. That namespace contains C++ definitions of data
structures corresponding to C level definitions of the xmlctx context and related data
structures. While there is no need for users to know details of that namespace,
xmlctx.hpp must be included in most application main modules.

Multiple encodings are currently supported on the base of the oratext type that is
currently supposed to be used by all implementations. All strings are represented as
oratext*.

27.3.1 OracleXML Interfaces
XMLException interface—This is the root interface for all XML exceptions.

27.4 Ctx Namespace
The Ctx namespace contains data types and interfaces related to the TCtx interface.

27.4.1 OracleXML Data Types
OracleXML data types are described.

encoding—a particular supported encoding. The following kinds of encodings (or
encoding names) are supported:

• data_encoding

• default_input_encoding

• input_encoding—overwrites the previous one

• error_language—gets overwritten by the language of the error handler, if specified

encodings—array of encodings.

27.4.2 Ctx Interfaces
Ctx interfaces ErrorHandler, MemAllocator, and Tctx are described.

ErrorHandler Interface — This is the root error handler class. It deals with local
processing of errors, mainly from the underlying C implementation. In some
implementations, it might throw XmlException. To accommodate the needs of all
implementations, this behavior is not specified in its signature. However, it can create
exception objects. The error handler is passed to the TCtx constructor when TCtx is
initialized. Implementations of this interface are provided by the user.

MemAllocator Interface—This is a simple root interface to make the TCtx interface
reasonably generic so that different allocator approaches can be used in the future. It

Chapter 27
Ctx Namespace

27-2

is passed to the TCtx constructor when TCtx is initialized. It is a low level allocator that does
not know the type of an object being allocated. The allocators with this interface can also be
used directly. In this case the user is responsible for the explicit deallocation of objects (with
dealloc).

If the MemAllocator interface is passed as a parameter to the TCtx constructor, it often makes
sense to overwrite the operator new. In this case, all memory allocations in both C and C++
can be done by the same allocator.

Tctx Interface—This is an implicit interface to XML context implementations. It is primarily
used for memory allocation, error (not exception) handling, and different encodings handling.
The context interface is an implicit interface that is supposed to be used as type parameter.
The name TCtx is used as a corresponding type parameter name. Its actual substitutions are
instantiations of implementations parameterized (templatized) by real context
implementations. In the case of errors XmlException might be thrown.All constructors create
and initialize context implementations. In a multithreaded environment a separate context
implementation must be initialized for each thread.

27.5 IO Namespace
The IO namespace specifies interfaces for the different input and output options for all XML
tools.

27.5.1 IO Data Types
Data type InputSourceType specifies the kinds of input sources that are supported.

• ISRC_URI—Input is to be read from the specified Universal Resource Identifier (URI).

• ISRC_FILE—Input is to be read from a file.

• ISRC_BUFFER—Input is to be read from a buffer.

• ISRC_DOM—Input is a DOM tree.

• ISRC_CSTREAM—Input is a C level stream.

27.5.2 IO Interfaces
The interfaces to inputs are described.

URISource—This is an interface to inputs from specified URIs.

FileSource—This is an interface to inputs from a file.

BufferSource—This is an interface to inputs from a buffer.

DOMSource—This is an interface to inputs from a DOM tree.

CStreamSource—This is an interface to inputs from a C level stream.

27.6 Tools Package
Tools is the package (subspace of OracleXml) for types and interfaces that are related to the
creation and instantiation of Oracle XML tools.

Chapter 27
IO Namespace

27-3

27.6.1 Tools Interfaces
Interfaces for XML tools are described.

FactoryException—Specifies tools factory exceptions. It is derived from
XMLExceptions.

Factory—XML tools factory. Hides implementations of all XML tools and provides
methods to create objects representing these tools based on their identifier (ID)
values.

27.7 Error Message Files
Error message files are provided in directory $ORACLE_HOME/xdk/mesg. You can set
environment variable ORA_XML_MESG to point to this directory, but this not required.

See Also:

Oracle Database XML C++ API Reference package Ctx APIs for C++

Chapter 27
Error Message Files

27-4

28
Using the XML Parser for C++

An explanation is given of how to use the Extensible Markup Language (XML) parser for C+
+.

Note:

Use the unified C++ application programming interface (API) in xml.hpp for Oracle
XML Developer's Kit (XDK) applications. The older, nonunified C++ API in
oraxml.hpp is deprecated and supported only for backward compatibility. It will be
removed in a future release.

28.1 Introduction to Oracle XML Parser for C++
Oracle XML parser for C++ determines whether an XML document is well-formed and
optionally validates it against a document type definition (DTD) or Extensible Markup
Language (XML) schema. The parser constructs an object tree that can be accessed through
one of these two XML APIs:

• Document Object Model (DOM): Tree-based APIs. A tree-based API compiles an XML
document into an internal tree structure, then allows an application to navigate that tree
using the DOM, a standard tree-based API for XML and HTML documents.

• Simple API for XML (SAX): Event-based APIs. An event-based API reports parsing
events (such as the start and end of elements) directly to the application through a user
defined SAX even handler, and does not usually build an internal tree. The application
implements handlers to deal with the different events, much like handling events in a
graphical user interface.

Tree-based APIs are useful for a wide range of applications, but they often put a great strain
on system resources, especially if the document is large (under very controlled
circumstances, it is possible to construct the tree in a lazy fashion to avoid some of this
problem). Furthermore, some applications must build their own, different data trees, and it is
very inefficient to build a tree of parse nodes only to map it onto a new tree.

28.2 DOM Namespace
The DOM namespace is the namespace for DOM-related types and interfaces.

DOM interfaces are represented as generic references to different implementations of the
DOM specification. They are parameterized by Node that supports various specializations and
instantiations. Of them, the most important is xmlnode which corresponds to the current C
implementation

28-1

These generic references do not have a NULL-like value. Any implementation must
never create a reference with no state (like NULL). If it is necessary to signal that
something has no state, the implementation must throw an exception.

Many methods might throw the SYNTAX_ERR exception, if the DOM tree is incorrectly
formed, or they might throw UNDEFINED_ERR, when encountering incorrect parameters
or unexpected NULL pointers. If these are the only errors that a particular method might
throw, it is not reflected in the method signature.

Actual DOM trees do not depend on the context, TCtx. However, manipulations on
DOM trees in the current, xmlctx-based implementation require access to the current
context, TCtx. This is accomplished by passing the context pointer to the constructor of
DOMImplRef. In multithreaded environment DOMImplRef is always created in the thread
context and, so, has the pointer to the right context.

DOMImplRef provides a way to create DOM trees. DomImplRef is a reference to the
actual DOMImplementation object that is created when a regular, noncopy constructor
of DomImplRef is invoked. This works well in a multithreaded environment where DOM
trees must be shared, and each thread has a separate TCtx associated with it. This
works equally well in a single threaded environment.

DOMString is one encoding supported by Oracle implementations. The support of other
encodings is an Oracle extension. The oratext* data type is used for all encodings.
Interfaces represent DOM level 2 Core interfaces according to Document Object
Model Core. These C++ interfaces support the DOM specification as closely as
possible. However, Oracle cannot guarantee that the specification is fully supported by
our implementation because the World Wide Web Consortium (W3C) specification
does not cover C++ binding.

28.2.1 DOM Data Types
DomNodeType defines types of DOM nodes. DomExceptionCode defines exception codes
returned by the DOM API.

28.2.2 DOM Interfaces
The DOM interfaces are described.

DOMException Interface—See exception DOMException in the W3C DOM
documentation. DOM operations raise exceptions only in "exceptional" circumstances:
when an operation is impossible to perform (either for logical reasons, because data is
lost, or because the implementation has become unstable). The functionality of
XMLException can be used for a wider range of exceptions.

NodeRef Interface—See interface Node in the W3C documentation.

DocumentRef Interface—See interface Document in the W3C documentation.

DocumentFragmentRef Interface—See interface DocumentFragment in the W3C
documentation.

ElementRef Interface—See interface Element in the W3C documentation.

AttrRef Interface—See interface Attr in the W3C documentation.

Chapter 28
DOM Namespace

28-2

CharacterDataRef Interface—See interface CharacterData in the W3C documentation.

TextRef Interface—See Text nodes in the W3C documentation.

CDATASectionRef Interface—See CDATASection nodes in the W3C documentation.

CommentRef Interface—See Comment nodes in the W3C documentation.

ProcessingInstructionRef Interface—See PI nodes in the W3C documentation.

EntityRef Interface—See Entity nodes in the W3C documentation.

EntityReferenceRef Interface—See EntityReference nodes in the W3C documentation.

NotationRef Interface—See Notation nodes in the W3C documentation.

DocumentTypeRef Interface—See DTD nodes in the W3C documentation.

DOMImplRef Interface—See interface DOMImplementation in the W3C DOM documentation.
DOMImplementation is fundamental for manipulating DOM trees. Every DOM tree is attached
to a particular DOM implementation object. Several DOM trees can be attached to the same
DOM implementation object. Each DOM tree can be deleted and deallocated by deleting the
document object. All DOM trees attached to a particular DOM implementation object are
deleted when this object is deleted. The DOMImplementation object is not visible to the user
directly. It is visible through the class DOMImplRef. This functionality is needed because of
requirements for multithreaded environments.

NodeListRef Interface—Abstract implementation of node list. See interface NodeList in the
W3C documentation.

NamedNodeMapRef Interface—Abstract implementation of a node map. See interface
NamedNodeMap in the W3C documentation.

28.2.3 DOM Traversal and Range Data Types
AcceptNodeCode is the data type for values returned by node filters for iterators and tree
walkers. WhatToShowCode is the data type for codes to filter nodes. RangeExceptionCode is
the data type for exceptions that can be thrown by interface Range. CompareHowCode is the
data type for range comparisons.

28.2.4 DOM Traversal and Range Interfaces
The DOM 2 traversal and range interfaces are NodeFilter, NodeIterator, TreeWalker,
DocumentTraversal, RangeException, Range, and DocumentRange.

28.3 Parser Namespace
Interfaces associated with the parser namespace are described.

DOMParser Interface—DOM parser root class.

GParser Interface—Root class for XML parsers.

ParserException Interface—Exception class for parser and validator.

SAXHandler Interface—Root class for current SAX handler implementations.

Chapter 28
Parser Namespace

28-3

SAXHandlerRoot Interface—Root class for all SAX handlers.

SAXParser Interface—Root class for all SAX parsers.

SchemaValidator Interface—XML schema-aware validator.

28.3.1 GParser Interface
Interface GParser is the root class for all XML parser interfaces and implementations.
It is not an abstract class; that is, it is not an interface. It is a real class that you can
use to set and check parser parameters.

28.3.2 DOMParser Interface
Interface DOMParser is the DOM parser root abstract class or interface. In addition to
parsing and checking that a document is well formed, it provides ways to validate a
document against a document type definition (DTD) or an XML schema.

28.3.3 SAXParser Interface
Interface SAXParser is the root abstract class for all SAX parsers.

28.3.3.1 SAX Event Handlers
To use SAX, a SAX event handler class must be provided by the user and passed to
the SAXParser in a parse() invocation or set before such invocation.

SAXHandlerRoot Interface—root class for all SAX handlers.

SAXHandler Interface—root class for current SAX handler implementations.

28.4 Thread Safety for the XML Parser for C++
If threads are forked in the midst of the init–parse–term sequence of invocations,
unpredictable behavior or results can occur.

28.5 XML Parser for C++ Usage
Invoke Tools::Factory to create a parser and initialize the parsing process. The XML
input can be kind of InputSource (see IO namespace). DOMParser invocation produces
the DOM tree. SAXParser invocation produces SAX events. Invoking the parser
destructor terminates the process.

28.6 XML Parser for C++ Default Behavior
The default behavior for the XML parser for C++ is described.

• Character set encoding is 8-bit encoding of Unicode (UTF-8). If all your documents
are ASCII, you are encouraged to set the encoding to US-ASCII for better
performance.

• Messages are printed to stderr unless msghdlr is specified.

Chapter 28
Thread Safety for the XML Parser for C++

28-4

• XML parser for C++ determines whether an XML document is well-formed and optionally
validates it against a DTD. The parser constructs an object tree that can be accessed
through a DOM interface or operates serially through a SAX interface.

• A parse tree which can be accessed by DOM APIs is built unless saxcb is set to use the
SAX callback APIs. You can set any of the SAX callback functions to NULL if not needed.

• The default behavior for the parser is to check that the input is well-formed but not to
check whether it is valid. The flag XML_FLAG_VALIDATE can be set to validate the input.
The default behavior for white space processing is to be fully conformant with the XML
1.0 spec, that is, all white space is reported back to the application but it is indicated
which white space is ignorable. However, some applications may prefer to set the
XML_FLAG_DISCARD_WHITESPACE which discards all white space between an end-element
tag and this start-element tag.

Note:

Oracle recommends that you set the default encoding explicitly if using only
single-byte character sets (such as US-ASCII or any of the ISO-8859 character
sets) for performance up to 25% faster than with multibyte character sets, such
as UTF-8.

• In both of these cases, an event-based API provides a simpler, lower-level access to an
XML document: you can parse documents much larger than your available system
memory, and you can construct your own data structures using your callback event
handlers.

28.7 C++ Sample Files
Directory xdk/demo/cpp/parser/ contains several XML applications that show how to use the
XML parser for C++ with the DOM and SAX interfaces.

Change directories to the sample directory ($ORACLE_HOME/xdk/demo/cpp on Solaris, for
example) and read the README file. This document explains how to build the sample
programs.

Table 28-1 lists the sample files in the directory. Each file *Main.cpp has a corresponding
*Gen.cpp and *Gen.hpp.

Table 28-1 XML Parser for C++ Sample Files

Sample File Name Description

DOMSampleMain.cpp Sample usage of C++ interfaces of XML parser and DOM.

FullDOMSampleMain.cpp Manually build DOM and then exercise.

SAXSampleMain.cpp Source for SAXSample program.

Chapter 28
C++ Sample Files

28-5

See Also:

Oracle Database XML C++ API Reference for parser package APIs for C++

Chapter 28
C++ Sample Files

28-6

29
Using the XSLT Processor for C++

An explanation is given of how to use the Extensible Stylesheet Language Transformation
(XSLT) processor for C++.

Note:

Use the unified C++ application programming interface (API) in xml.hpp for Oracle
XML Developer's Kit (XDK) applications. The older, nonunified C++ API in
oraxml.hpp is deprecated and supported only for backward compatibility. It will be
removed in a future release.

29.1 Accessing XSLT for C++
Extensible Stylesheet Language Transformation (XSLT) for C++ is provided with Oracle
Database.

Sample files are located at xdk/demo/cpp/new.

readme.html in the root directory of the software archive contains release specific information
including bug fixes and API additions.

Related Topics

• XSLT XVM Processor
The Oracle XVM package includes the XSLT compiler and the XVM. This package
implements the XSLT language as specified in the World Wide Web Consortium (W3C)
Recommendation of 16 November 1999.

29.2 XSL Namespace
This is the namespace for XSLT compilers and transformers.

29.2.1 XSL Interfaces
The XSL interfaces are described.

XslException Interface—Root interface for all XSLT-related exceptions.

Transformer Interface—Basic XSLT processor. You can use this interface to invoke all XSLT
processors.

CompTransformer Interface—Extended XSLT processor. You can use this interface only with
processors that create intermediate binary bytecode (currently only the XVM-based
processor).

29-1

Compiler Interface—XSLT compiler. It is used for compilers that compile XSLT into
binary bytecode.

See Also:

Oracle Database XML C++ API Reference package XSL APIs for C++

29.3 XSLT for C++ DOM Interface Usage
Basic usage of XSLT for C++ DOM is described.

There are two inputs to XMLParser.xmlparse():

• The Extensible Markup Language (XML) document

• The XSLT stylesheet to be applied to the XML document

An XSLT processor is initiated by invoking the tools factory to create a particular XSLT
transformer or compiler.

An XSLT stylesheet is supplied to a transformer by invoking setXSL() member
functions.

An XML instance document is supplied as a parameter to the transform member
functions.

The resultant document (XML, HTML, Vector Markup Language (VML), and so on) is
typically sent to an application for further processing. It is sent as a Document Object
Model (DOM) tree or as a sequence of Simple API for XML (SAX) events. SAX events
are produced if a SAX event handler is provided by the user.

The application terminates the XSLT processors by invoking their destructors.

29.4 Invoking XSLT for C++
You can invoke XSLT for C++ by invoking the executable on the command line or by
writing C++ code and using the supplied APIs.

29.4.1 Command-Line Usage
XSLT for C++ can be called as an executable by invoking bin/xml.

See Also:

Table 5-4

Chapter 29
XSLT for C++ DOM Interface Usage

29-2

29.4.2 Writing C++ Code to Use Supplied APIs
XSLT for C++ can be invoked by writing code to use the supplied APIs. The code must be
compiled using the headers in directory public and linked against the libraries in directory
lib . See Makefile or make.bat in xdk/demo/cpp/new for full details of how to build your
program.

29.5 Using the Sample Files Included with the Software
Directory $ORACLE_HOME/xdk/demo/cpp/parser/ contains several XML applications that show
how to use the XSLT for C++.

Table 29-1 XSLT for C++ Sample Files

Sample File Name Description

XSLSampleMain.cpp
XSLSampleGen.cpp
XSLSampleGen.hpp

Sources for sample XSLT usage program. XSLSample takes two
arguments, the XSLT stylesheet and the XML file. If you redirect
stdout of this program to a file, you may have some output missing,
depending on your environment.

XVMSampleMain.cpp
XVMSampleGen.cpp
XVMSampleGen.hpp

Sources for the sample XSLT Virtual Machine (XVM) usage program.

Chapter 29
Using the Sample Files Included with the Software

29-3

30
Using the XML Schema Processor for C++

An explanation is given of how to use the Extensible Markup Language (XML) schema
processor for C++.

Note:

Use the unified C++ application programming interface (API) in xml.hpp for Oracle
XML Developer's Kit (XDK) applications. The older, nonunified C++ API in
oraxml.hpp is deprecated and supported only for backward compatibility. It will be
removed in a future release.

30.1 Oracle XML Schema Processor for C++
The XML Schema processor for C++ is a companion component to the Extensible Markup
Language (XML) parser for C++ that allows support to simple and complex data types into
XML applications.

The XML Schema processor for C++ supports the World Wide Web Consortium (W3C) XML
Schema Recommendation. This makes writing custom applications that process XML
documents straightforward, and means that a standards-compliant XML Schema processor is
part of XDK on each operating system where Oracle Database is ported.

30.1.1 Oracle XML Schema for C++ Features
The features of the Oracle XML Schema processor for C++ are described.

These are the features:

• Supports simple and complex types

• Built upon the XML parser for C++

• Supports the W3C XML Schema Recommendation

The XML Schema processor for C++ class is OracleXml::Parser::SchemaValidator.

See Also:

Oracle Database XML C++ API Reference schema validator interface

30-1

30.1.1.1 Online Documentation
Documentation for Oracle XML Schema processor for C++ is located
in /xdk/doc/cpp/schema directory in your install area.

30.1.2 Standards Conformance for Oracle XML Schema Processor for
C++

The standards to which the XML Schema Processor for C++ conforms are listed.

• W3C recommendation for Extensible Markup Language (XML) 1.0

• W3C recommendation for Document Object Model Level 1.0

• W3C recommendation for Namespaces in XML 1.0

• W3C recommendation for XML Schema 1.0

30.2 XML Schema Processor API
Interface SchemaValidator is an abstract template class to handle XML schema-based
validation of XML documents.

30.2.1 Invoking XML Schema Processor for C++
The XML Schema processor for C++ can be called as an executable by invoking bin/
schema in the install area. This takes the arguments:

• XML instance document

• Optionally, a default schema

• Optionally, the working directory

Table 30-1 lists the options (can be listed if the option is invalid or -h is the option):

Table 30-1 XML Schema Processor for C++ Command-Line Options

Option Description

-0 Always exit with code 0 (success).

-e encoding Specify default input file encoding.

-E encoding Specify output/data/presentation encoding.

-h Help. Prints these choices.

-i Ignore provided schema.

-o num Validation option.

-p Print document instance to stdout on success.

-u Force the Unicode path.

-v Version—display version, then exit.

Chapter 30
XML Schema Processor API

30-2

The XML Schema processor for C++ can also be invoked by writing code using the supplied
APIs. The code must be compiled using the headers in the include subdirectory and linked
against the libraries in the lib subdirectory. See Makefile or Make.bat in the xdk/demo/cpp/
schema directory for details on how to build your program.

Error message files in different languages are provided in the mesg subdirectory.

30.3 Running the Provided XML Schema for C++ Sample
Programs

Directory $ORACLE_HOME/xdk/demo/cpp/schema contains a sample application that shows how
to use Oracle XML Schema processor for C++ with its API.

Table 30-2 lists the sample files provided.

Table 30-2 XML Schema Processor for C++ Samples Provided

Sample File Description

Makefile Makefile to build the sample programs and run them, verifying correct
output.

xsdtest.cpp Trivial program which invokes the XML Schema for C++ API

car.{xsd,xml,std} Sample schema, instance document, expected output respectively, after
running xsdtest on them.

aq.{xsd,xml,std} Second sample schema, instance document, expected output,
respectively, after running xsdtest on them.

pub.{xsd,xml,std} Third sample schema, instance document, expected output
respectively, after running xsdtest on them.

To build the sample programs, run make.

To build the programs and run them, comparing the actual output to expected output:

make sure

Chapter 30
Running the Provided XML Schema for C++ Sample Programs

30-3

31
Using the XPath Processor for C++

An explanation is given of how to use the XPath processor for C++.

Note:

Use the unified C++ application programming interface (API) in xml.hpp for Oracle
XML Developer's Kit (XDK) applications. The older, nonunified C++ API in
oraxml.hpp is deprecated and supported only for backward compatibility. It will be
removed in a future release.

31.1 XPath Interfaces
The XPath interfaces are described.

Processor Interface—basic XPath processor interface to which any XPath processor must
conform.

CompProcessor Interface—extended XPath processor that adds an ability to use XPath
expressions precompiled into an internal binary representation. In this release this interface
represents Oracle virtual machine interface.

Compiler Interface—XPath compiler into binary representation.

NodeSetRef Interface—defines references to node sets when they are returned by the XPath
expression evaluation.

XPathException Interface—exceptions for XPath compilers and processors.

XPathObject Interface—interface for XPath 1.0 objects.

31.2 Sample Programs
Sample programs are located in xdk/demo/cpp/new.

The programs XslXPathSample and XvmXPathSample have sources:

XslXPathSampleGen.hpp, XslXPathSampleGen.cpp, XslXPathSampleMain.cpp,
XslXPathSampleForce.cpp;

and XvmXPathSampleGen.hpp, XvmXPathSampleGen.cpp, XvmXPathSampleMain.cpp,
XvmXPathSampleForce.cpp.

31-1

See Also:

Oracle Database XML C++ API Reference package XPATH APIs for C++

Chapter 31
Sample Programs

31-2

32
Using the XML Class Generator for C++

Topics here explain how to use the Extensible Markup Language (XML) class generator for
C++.

32.1 Accessing the XML C++ Class Generator
The XML C++ class generator is provided with Oracle Database.

32.2 Using the XML C++ Class Generator
The XML C++ class generator creates source files from an XML document type definition
(DTD) or XML schema. It generates a class for each defined element. The classes are then
used in a C++ program to construct XML documents that conform to the DTD or XML
schema.

This is useful when an application wants to send an XML message to another application
based on an agreed-upon DTD or XML Schema, or as the back end of a Web form to
construct an XML document. Using these classes, C++ applications can construct, validate,
and print XML documents that comply with the input.

The class generator works with the Oracle XML parser for C++, which parses the input and
passes the parsed document to the class generator.

32.2.1 External DTD Parsing
The XML C++ class generator can also parse an external DTD directly without requiring a
complete (dummy) document by using the Oracle XML parser for C++ routine
xmlparsedtd(). The provided command-line program xmlcg has a -d option that is used to
parse external DTDs.

32.3 Using the XML C++ Class Generator Command-Line Utility
The standalone class generator can be called as an executable by invoking bin/xmlcg.

You can invoke the C++ class generator from the command line:

xmlcg [options] input_file

Table 32-1 C++ Class Generator Options

Option Description

-d name Input is an external DTD or a DTD file. Generates name.cpp and
name.h.

-o directory Output directory for generated files (the default is the current directory).

32-1

Table 32-1 (Cont.) C++ Class Generator Options

Option Description

-e encoding Default input file encoding.

-h Show this usage help.

-v Show the class generator version validator options.

-s name Input is an XML Schema file with the given name. Generates name.cpp
and name.h.

input_file is the name of the parsed XML document with <!DOCTYPE> definitions, or
parsed DTD, or an XML Schema document. The XML document must have an
associated DTD.

The DTD input to the XML C++ class generator is an XML document containing a
DTD, or it is an external DTD. The document body itself is ignored — only the DTD is
relevant, though the document must conform to the DTD.

If invalid options were used, or no input was provided, a usage message is output.

Two source files are output, a name.h header file and a C++ file, name.cpp. These are
named after the DTD file.

The output files are typically used to generate XML documents.

Constructors are provided for each class (element) that allow an object to be created
in these ways:

• Initially empty, then adding the children or data after the initial creation

• Created with the initial full set of children or initial data

A method is provided for #PCDATA (and Mixed) elements to set the data and, when
appropriate, set an element's attributes.

32.3.1 Input to the XML C++ Class Generator
The input is an XML document containing a DTD. The document body itself is ignored;
only the DTD is relevant, though the dummy document must conform to the DTD. The
underlying XML parser accepts only file names for the document and associated
external entities.

32.4 Using the XML C++ Class Generator Examples
The demo XML C++ class generator files are described.

Table 32-2 XML C++ Class Generator Files

File Name Description

CG.cpp Sample program

CG.xml XML file contains DTD and dummy document

CG.dtd DTD file referenced by CG.xml

Chapter 32
Using the XML C++ Class Generator Examples

32-2

Table 32-2 (Cont.) XML C++ Class Generator Files

File Name Description

Make.bat on Windows

Makefile on UNIX

Batch file (on Windows) or Make file (on UNIX) to generate
classes and build the sample programs.

README A readme file with these instructions

The make.bat batch file (on Windows) or Makefile (on UNIX) does the following:

• Generate classes based on CG.xml into Sample.h and Sample.cpp
• Compile the program CG.cpp (using Sample.h), and link this with the Sample object into

an executable named CG.exe in the...\bin (or .../bin) directory.

32.4.1 XML C++ Class Generator Example 1: XML — Input File to Class
Generator, CG.xml

XML file CG.xml is presented. It is input to XML C++ class generator. It references the DTD
file, CG.dtd.

<?xml version="1.0"?>
<!DOCTYPE Sample SYSTEM "CG.dtd">
 <Sample>
 Be!
 <D attr="value"></D>
 <E>
 <F>Formula1</F>
 <F>Formula2</F>
 </E>
 </Sample>

32.4.2 XML C++ Class Generator Example 2: DTD — Input File to Class
Generator, CG.dtd

DTD file CG.dtd is presented. It is referenced by XML file CG.xml, which is input to XML C++
class generator.

<!ELEMENT Sample (A | (B, (C | (D, E))) | F)>
<!ELEMENT A (#PCDATA)>
<!ELEMENT B (#PCDATA | F)*>
<!ELEMENT C (#PCDATA)>
<!ELEMENT D (#PCDATA)>
<!ATTLIST D attr CDATA #REQUIRED>
<!ELEMENT E (F, F)>
<!ELEMENT F (#PCDATA)>

Chapter 32
Using the XML C++ Class Generator Examples

32-3

32.4.3 XML C++ Class Generator Example 3: CG Sample Program
Sample program CG, CG.cpp, is presented.

It does the following:

1. Initializes the XML parser.

2. Loads the DTD (by parsing the DTD-containing file—the dummy document part is
ignored).

3. Creates some objects using the generated classes.

4. Invokes the validation function which verifies that the constructed classes match
the DTD.

5. Writes the constructed document to Sample.xml.

///
///////
// NAME CG.cpp
// DESCRIPTION Demonstration program for C++ class generator usage
///
///////

#ifndef ORAXMLDOM_ORACLE
include <oraxmldom.h>
#endif

#include <fstream.h>

#include "Sample.h"

#define DTD_DOCUMENT "CG.xml"
#define OUT_DOCUMENT Sample.xml"

int main()
{
 XMLParser parser;
 Document *doc;
 Sample *samp;
 B *b;
 D *d;
 E *e;
 F *f1, *f2;
 fstream *out;
 ub4 flags = XML_FLAG_VALIDATE;
 uword ecode;

 // Initialize XML parser
 cout << "Initializing XML parser...\n";
 if (ecode = parser.xmlinit())
 {
 cout << "Failed to initialize parser, code " << ecode << "\n";
 return 1;
 }

Chapter 32
Using the XML C++ Class Generator Examples

32-4

 // Parse the document containing a DTD; parsing just a DTD is not
 // possible yet, so the file must contain a valid document (which
 // is parsed but we're ignoring).
 cout << "Loading DTD from " << DTD_DOCUMENT << "...\n";
 if (ecode = parser.xmlparse((oratext *) DTD_DOCUMENT, (oratext *)0,
flags))
 {
 cout << "Failed to parse DTD document " << DTD_DOCUMENT <<
 ", code " << ecode << "\n";
 return 2;
 }

 // Fetch dummy document
 cout << "Fetching dummy document...\n";
 doc = parser.getDocument();

 // Create the constituent parts of a Sample
 cout << "Creating components...\n";
 b = new B(doc, (String) "Be there or be square");
 d = new D(doc, (String) "Dit dah");
 d->setattr((String) "attribute value");
 f1 = new F(doc, (String) "Formula1");
 f2 = new F(doc, (String) "Formula2");
 e = new E(doc, f1, f2);

 // Create the Sample
 cout << "Creating top-level element...\n";
 samp = new Sample(doc, b, d, e);

 // Validate the construct
 cout << "Validating...\n";
 if (ecode = parser.validate(samp))
 {
 cout << "Validation failed, code " << ecode << "\n";
 return 3;
 }

 // Write out doc
 cout << "Writing document to " << OUT_DOCUMENT << "\n";
 if (!(out = new fstream(OUT_DOCUMENT, ios::out)))
 {
 cout << "Failed to open output stream\n";
 return 4;
 }
 samp->print(out, 0);
 out->close();

 // Everything's OK
 cout << "Success.\n";

 // Shut down
 parser.xmlterm();
 return 0;
}

Chapter 32
Using the XML C++ Class Generator Examples

32-5

// end of CG.cpp

Chapter 32
Using the XML C++ Class Generator Examples

32-6

Part IV
Oracle XML Developer's Kit Reference

Reference information is presented for Oracle XML Developer's Kit (XDK).

33
XSQL Pages Reference

Reference information is presented for the XSQL pages framework.

XSQL Configuration File Parameters describes settings in the XSQL configuration file.
Table 33-1 lists the legal built-in actions for XSQL pages.

Table 33-1 Built-In XSQL Elements and Action Handler Classes

XSQL Action Element Handler Class in
oracle.xml.xsql.actions

Purpose

<xsql:action> XSQLExtensionActionHandler Invoke a user-defined action
handler, implemented in Java, for
executing custom logic and
including custom Extensible Markup
Language (XML) data in your XSQL
page.

<xsql:delete-request> XSQLDeleteRequestHandler Delete an existing row in the
database based on the posted XML
document supplied in the request.

<xsql:dml> XSQLDMLHandler Execute a structured query
language (SQL) data manipulation
language (DML) statement or a
Procedural Language/Structured
Query Language (PL/SQL)
anonymous block.

<xsql:if-param> XSQLIfParamHandler Conditionally include XML content
or other XSQL actions.

<xsql:include-owa> XSQLIncludeOWAHandler Include the results of a stored
procedure that uses the Oracle Web
Agent (OWA) packages in the
database to generate XML.

<xsql:include-param> XSQLGetParameterHandler Include a parameter and its value as
an element in the XSQL page.

<xsql:include-posted-include-posted> XSQLIncludePostedXMLHandler Include the XML document that has
been posted in the request into the
XSQL page.

<xsql:include-request-params> XSQLIncludeRequestHandler Include all request parameters as
XML elements in the XSQL page.

<xsql:include-xml> XSQLIncludeXMLHandler Include arbitrary XML resources at
any point in your page by relative or
absolute URL.

<xsql:include-xsql> XSQLIncludeXSQLHandler Include the results of one XSQL
page at any point inside another.

<xsql:insert-param> XSQLInsertParameterHandler Insert the XML document contained
in the value of a single parameter.

33-1

Table 33-1 (Cont.) Built-In XSQL Elements and Action Handler Classes

XSQL Action Element Handler Class in
oracle.xml.xsql.actions

Purpose

<xsql:insert-request> XSQLInsertRequestHandler Insert the XML document or HTML
form posted in the request into a
table or view.

<xsql:query> XSQLQueryHandler Execute an arbitrary SQL statement
and include its result in canonical
XML format.

<xsql:ref-cursor-function> XSQLRefCursorFunctionHandler Include the canonical XML
representation of the result set of a
cursor returned by a PL/SQL stored
function.

<xsql:set-cookie> XSQLSetCookieHandler Set an HTTP Cookie.

<xsql:set-page-param> XSQLSetPageParamHandler Set an HTTP-Session level
parameter. Set a page-level (local)
parameter that can be referred to in
subsequent SQL statements in the
page.

<xsql:set-session-param> XSQLSetSessionParamHandler Set an HTTP-Session level
parameter.

<xsql:set-stylesheet-param> XSQLStylesheetParameterHandler Set the value of a top-level
Extensible Stylesheet Language
Transformation (XSLT) parameter.

<xsql:update-request> XSQLUpdateRequestHandler Update an existing row in the
database based on the posted XML
document supplied in the request.

33.1 XSQL Configuration File Parameters
You can use the XSQL configuration file to tune your XSQL pages environment. The
available configuration settings are described.

Table 33-2 XSQL Configuration File Settings

Configuration Setting Name Description

XSQLConfig/servlet/output-buffer-size
Sets the size in bytes of the buffered output stream. If the
servlet engine already buffers I/O to the servlet output
stream, you can set to 0 (the default) to avoid additional
buffering. Any nonnegative integer is valid.

Chapter 33
XSQL Configuration File Parameters

33-2

Table 33-2 (Cont.) XSQL Configuration File Settings

Configuration Setting Name Description

XSQLConfig/servlet/suppress-mime-
charset/media-type

The XSQL servlet sets the HTTP ContentType header to
indicate the Multipurpose Internet Mail Extensions (MIME)
type of the resource returned to the request. By default,
the servlet includes the optional character set data in the
MIME type. For a particular MIME type, you can suppress
the inclusion of the character set data by including a
<media-type> element, with the desired MIME type as its
contents. You can list any number of <media-type>
elements. Valid value is any string.

XSQLConfig/processor/character-set-
conversion/
default-charset

Note: Setting name is a single line. It is displayed on
two lines due to space constraints.

Performs character set conversion by default on the value
of HTTP parameters to compensate for the default
character set used by most servlet engines. The default
base character set used for conversion is the Java
8859_1, which corresponds to the Internet Assigned
Numbers Authority (IANA) ISO-8859-1 set. If your servlet
engine uses a different character set as its base, then you
can specify this value here.

To suppress character set conversion, specify the empty
element <none/> as the content of the <default-
charset> element instead of a character set name. This
technique is useful if you are working with parameter
values that are correctly representable with your servlet
default character set. It eliminates overhead associated
with performing the character set conversion.

Valid values are any Java character set name or <none/>.

XSQLConfig/processor/reload-connections-
on-error

Connection definitions are cached when the XSQL pages
processor is initialized. Set to yes (default) to cause the
processor to reread the XSQLConfig.xml file to reload
connection definitions if an attempt is made to request a
connection name that is not in the cached connection list.
The yes setting is useful for adding new <connection>
definitions to the file while the servlet is running. Set to no
to avoid reloading the connection definition file when a
connection name is not found in the in-memory cache.
Valid values are yes and no.

XSQLConfig/processor/default-fetch-size
Sets the default value of the row fetch size for retrieving
information from SQL queries. It takes effect only when
you use the Oracle JDBC driver; otherwise the setting is
ignored. This technique reduces network round trips to the
database from the servlet engine running in a different tier.

Default is 50. Valid value is any nonzero positive integer.

XSQLConfig/processor/page-cache-size
Sets the size of the cache for XSQL page templates and
so determines the maximum number of XSQL pages that
are cached. Least recently used pages move out of the
cache if you go above this number. Default is 25. Any
nonzero positive integer is valid.

XSQLConfig/processor/stylesheet-cache-
size

Sets the size of the cache for XSLT stylesheets and so
determines the maximum number of XSQL pages that are
cached. Least recently used pages move out of the cache
if you go above this number. Default is 25. Any nonzero
positive integer is valid.

Chapter 33
XSQL Configuration File Parameters

33-3

Table 33-2 (Cont.) XSQL Configuration File Settings

Configuration Setting Name Description

XSQLConfig/processor/stylesheet-pool/
initial

Each cached stylesheet is a pool of cached stylesheet
instances to improve throughput. Sets the initial number of
stylesheets to be allocated in each stylesheet pool.

Default is 1. Valid value is any nonzero positive integer.

XSQLConfig/processor/stylesheet-pool/
increment

Sets the number of stylesheets allocated when the
stylesheet pool must grow due to increased load on the
server.

Default is 1. Valid value is any nonzero positive integer.

XSQLConfig/processor/stylesheet-pool/
timeout-seconds

Sets the number of seconds of inactivity before a
stylesheet instance in the pool is removed to free
resources as the pool tries to shrink back to its initial size.

Default is 60. Valid value is any nonzero positive integer.

XSQLConfig/processor/connection-pool/
initial

Controls the initial number of Java Database Connectivity
(JDBC) connections allocated in each connection pool.
The XSQL pages processor's default connection manager
implements connection pooling to improve throughput.

Default is 2. Valid value is any nonzero positive integer.

XSQLConfig/processor/connection-pool/
increment

Sets the number of connections allocated when the
connection pool must grow due to increased load on the
server.

Default is 1. Valid value is any nonzero positive integer.

XSQLConfig/processor/connection-pool/
timeout-seconds

Sets the number of seconds of inactivity before a JDBC
connection in the pool is removed to free resources as the
pool tries to shrink back to its initial size.

Default is 60. Valid value is any nonzero positive integer.

XSQLConfig/processor/connection-pool/
dump-allowed

Determines whether a diagnostic report of connection pool
activity can be requested by passing the dump-pool=y
parameter in the page request.

Default is no. Valid value is yes or no.

XSQLConfig/processor/connection-manager/
factory

Specifies the fully qualified Java class name of the XSQL
connection manager factory implementation. If not
specified, default is
XSQLConnectionManagerFactoryImpl.

Valid value is any class name that implements the
XSQLConnectionManagerFactory interface.

Chapter 33
XSQL Configuration File Parameters

33-4

Table 33-2 (Cont.) XSQL Configuration File Settings

Configuration Setting Name Description

XSQLConfig/processor/owa/fetch-style
Sets the default OWA Page Buffer fetch style used by the
<xsql:include-owa> action. Valid values are CLOB
(default) or TABLE.

If set to CLOB, then the processor uses a temporary CLOB
to retrieve the OWA page buffer. If set to TABLE, then the
processor uses a more efficient approach that requires the
Oracle Database user-defined type XSQL_OWA_ARRAY.
Create this type with this data definition language (DDL)
statement:

CREATE TYPE xsql_owa_array AS TABLE OF
VARCHAR2(32767)

XSQLConfig/processor/timing/page
Determines whether the XSQL page processor adds an
xsql-timing attribute to the document element of the
page whose value reports the elapsed number of
milliseconds required to process the page.

Valid values are yes or no (default).

XSQLConfig/processor/timing/action
Determines whether a the XSQL page processor adds
comment to the page just before the action element whose
contents reports the elapsed number of milliseconds
required to process the action.

Valid values are yes or no (default).

XSQLConfig/processor/logger/factory
Specifies the fully qualified Java class name of a custom
XSQL logger factory implementation. If not set, then no
logger is used.

Valid value is any class name that implements the
XSQLLoggerFactory interface.

XSQLConfig/processor/error-handler/class
Specifies the fully qualified Java class name of a custom
XSQL error handler. The specified handler is the default
error handler implementation. If not set, then the default
error handler is used.

Valid value is any class name that implements the
XSQLErrorHandler interface.

XSQLConfig/processor/xml-parsing/
preserve-whitespace

Determines whether the XSQL pages processor preserves
white space when parsing XSQL pages and XSLT
stylesheets.

Valid values are true (default) or false. Changing the
default to false can slightly speed up processing of XSQL
pages and stylesheets because ignoring white space while
parsing is faster than preserving it.

Chapter 33
XSQL Configuration File Parameters

33-5

Table 33-2 (Cont.) XSQL Configuration File Settings

Configuration Setting Name Description

XSQLConfig/processor/security/
stylesheet/defaults/
allow-client-style

Note: Setting name is a single line. It is displayed on
two lines due to space constraints.

Prevents client overriding of the stylesheet. Valid values
are yes and no.

During development it is sometimes useful to use the
XSQL stylesheet override feature by providing a value for
the xml-stylesheet parameter in the request. You can
use the xml-stylesheet=none combination to
temporarily disable the application of the stylesheet for
debugging purposes.

You can add the allow-client-style="no" attribute to
the document element of each XSQL page to prohibit
client overriding of the stylesheet in production
applications. This setting can globally change the default
behavior for allow-client-style in a single place.

This setting specifies only default behavior. If the attribute
value is explicitly specified on the document element for a
given XSQL page, its value takes precedence over this
global default.

XSQLConfig/processor/security/
stylesheet/
trusted-hosts/host

Note: Setting name is a single line. It is displayed on
two lines due to space constraints.

Specifies that any absolute URL to an XSLT stylesheet
must be from a trusted host whose name is listed in the
configuration file. List any number of <host> elements
inside the <trusted-hosts> element. The name of the
local machine, localhost, and 127.0.0.1 are trusted
hosts by default. Valid values are any host name or IP
address.

The XSLT processor supports Java extension functions.
Typically, XSQL pages refer to XSLT stylesheets with
relative URLs.

XSQLConfig/http/proxyhost
Sets the name of the HTTP proxy server to use when
processing URLs with the HTTP protocol.

Valid value is any host name or Internet Protocol (IP)
address.

XSQLConfig/http/proxyport
Sets the port number of the HTTP proxy server to use
when processing URLs with the HTTP protocol.

Valid value is any nonzero integer.

XSQLConfig/connectiondefs/connection
Defines a short name and the JDBC details for a named
connection used by the XSQL pages processor.

You may supply any number of <connection> element
children of <connectiondefs>. Each connection
definition must supply a name attribute and may supply
children elements <username>, <password>,
<driver>, <dburl>, and <autocommit>.

XSQLConfig/connectiondefs/connection/
username

Defines the user name for the current connection.

Chapter 33
XSQL Configuration File Parameters

33-6

Table 33-2 (Cont.) XSQL Configuration File Settings

Configuration Setting Name Description

XSQLConfig/connectiondefs/connection/
password

Defines the password for the current connection.

XSQLConfig/connectiondefs/connection/
dburl

Defines the JDBC connection URL for the current
connection.

XSQLConfig/connectiondefs/connection/
driver

Specifies the fully qualified Java class name of the JDBC
driver used for the current connection. If not specified,
defaults to oracle.jdbc.driver.OracleDriver.

XSQLConfig/connectiondefs/connection/
autocommit

Explicitly sets the Auto Commit flag for the current
connection. If not specified, the connection uses the JDBC
driver default setting for Auto Commit.

XSQLConfig/serializerdefs/serializer
Defines a named custom serializer implementation. You
can supply any number of <serializer> element
children of <serializerdefs>. Each must specify both a
<name> and a <class> child element.

XSQLConfig/serializerdefs/serializer/
name

Defines the name of the current custom serializer
definition.

XSQLConfig/connectiondefs/connection/
class

Specifies the fully qualified Java class name of the current
custom serializer. The class must implement the
XSQLDocumentSerializer interface.

33.2.1 <xsql:action>
Element <xsql:action> is described.

Purpose

Invokes a user-defined action handler, implemented in Java, for executing custom logic and
including custom XML data in a XSQL page. The Java class invoked with this action must
implement the oracle.xml.xsql.XSQLActionHandler interface.

Use <xsql:action> to perform tasks that are not handled by the built-in action handlers.
Custom actions can supply arbitrary XML content to the data page and perform arbitrary
processing.

Usage Notes

The XSQL page processor processes the actions in a page in this way:

Chapter 33
<xsql:action>

33-7

1. Constructs an instance of the action handler class with the default constructor.

2. Initializes the handler instance with the action element object and the page
processor context by invoking the method init(Element actionElt,
XSQLPageRequest context).

3. Invokes the method that allows the handler to handle the action
handleAction(Node result).

Syntax

The syntax for this action is as follows, where handler is a single, required attribute
named whose value is the fully qualified Java class name of the invoked action,
yourpackage is the Java package, and YourCustomHandler is the Java class:

<xsql:action handler="yourpackage.YourCustomHandler"/>

Some action handlers expect text content or element content to appear inside the
<xsql:action> element. In this case, use syntax such as:

<xsql:action handler="yourpackage.YourCustomHandler">
 Some_text
</xsql:action>

You can also use this syntax:

<xsql:action handler="yourpackage.YourCustomHandler">
 <some>
 <other/>
 <elements/>
 <here/>
 </some>
</xsql:action>

Attributes

The only required attribute is handler, but you can supply additional attributes to the
handler. For example, if yourpackage.YourCustomHandler is expecting attributes
named param1 and param2, then use this syntax:

<xsql:action handler="yourpackage.YourCustomHandler" param1="xxx" param2="yyy">

Examples

The following example shows an XSQL page that invokes the myactions.StockQuotes
Java class. It includes stock quotes from Google for any symbols passed in with the
symbol parameter. If this parameter is not supplied, it supplies a default list.

Retrieving Stock Quotes

<?xml version="1.0"?>
<page xmlns:xsql="urn:oracle-xsql">
 <xsql:action handler="myactions.StockQuotes"
 symbols="{@symbol}"
 symbol="ORCL,SAP,MSFT,IBM"/>
</page>

Chapter 33
<xsql:action>

33-8

33.2.2 <xsql:delete-request>
Element <xsql:delete-request> is described.

Purpose

Accepts data posted from an XML document or HTML form and uses the XML SQL Utility
(XSU) to delete the content of an XML document in canonical form from a target table or
view.

By combining XSU with XSLT, you can transform XML into the canonical format expected by
a given table. Afterward, you can use XSU to delete the resulting canonical XML. For a
specified database table, the canonical XML form is given by one row of XML output from a
SELECT * query against the table.

Syntax

The syntax for this action is as follows, where table_name is the name of a table and key is a
list of one or more columns to use as the unique key:

<xsql:delete-request table="table_name" key-columns="key"/>

Attributes

Table 33-3 lists the optional attributes that you can use on the <xsql:delete-request>
action. Required attributes are in bold

Table 33-3 Attributes for <xsql:delete-request>

Attribute Name Description

table = "string" Name of the table, view, or synonym to use for deleting the XML data.

key-columns = "string
string ..."

Space-delimited or comma-delimited list of one or more column names. The
processor uses the values of these names in the posted XML document to identify
the existing rows to delete.

transform = "URL" Relative or absolute URL of the XSLT transformation to use to transform the
document to be deleted into canonical ROWSET/ROW format.

columns = "string" Relative or absolute URL of the XSLT transformation to use to transform the
document to be deleted into canonical ROWSET/ROW format.

commit = "boolean" If set to yes (default), invokes COMMIT on the current connection after a successful
execution of the deletion. Valid values are yes and no.

commit-batch-size =
"integer"

If a positive, nonzero integer is specified, then after each batch of integer
deleted records, the processor issues a COMMIT. The default batch size is zero (0) if
not specified, which means that the processor does not commit interim batches.

date-format = "string" Date format mask to use for interpreting date field values in XML being deleted.
Valid values are those documented for the java.text.SimpleDateFormat class.

error-param = "string" Name of a page-private parameter that must be set to the string Error if a nonfatal
error occurs while processing this action. Valid value is any parameter name.

Chapter 33
<xsql:delete-request>

33-9

Examples

The following example specifies that the posted XML document is to be transformed
with the style.xsl stylesheet and then deleted from the departments table. The
departments.department_id column is the primary key for the deletion.

Deleting Rows

<?xml version="1.0"?>
<xsql:delete-request table="departments" transform="style.xsl"
 connection="demo" key-columns="department_id" xmlns:xsql="urn:oracle-xsql"/>

33.2.3 <xsql:dml>
Element <xsql:dml> is described.

Purpose

Executes a DML or DDL statement or a PL/SQL block. Typically, you use this tag to
include statements that would be executed or rolled back together.

This action requires a database connection provided as a connection="connname"
attribute on the document element of the XSQL page in which it appears.

Usage Notes

You cannot set parameter values by binding them in the position of OUT variables with
<xsql:dml>. Only IN parameters are supported for binding.

Syntax

The syntax for the action is as follows, where DML_DDL_or_PLSQL is a placeholder for a
legal DML statement, DDL statement, or PL/SQL block:

<xsql:dml>
 DML_DDL_or_PLSQL
</xsql:dml>

Attributes

Table 33-4 lists the optional attributes that you can use on the <xsql:dml> action.

Table 33-4 Attributes for <xsql:dml>

Attribute Name Description

commit = "boolean" If set to yes, invokes commit on the current connection after a successful
execution of the DML statement. Valid values are yes and no (default).

bind-params = "string" Ordered, space-delimited list of one or more XSQL parameter names. The values
of these parameters are used to bind to the JDBC bind variable in the appropriate
sequential position in the SQL statement.

error-param = "string" Name of a page-private parameter that must be set to the string 'Error' if a
nonfatal error occurs while processing this action. Valid value is any parameter
name.

Chapter 33
<xsql:dml>

33-10

Table 33-4 (Cont.) Attributes for <xsql:dml>

Attribute Name Description

error-statement =
"boolean"

If set to no, suppresses the inclusion of the offending SQL statement in any
<xsql-error> element generated. Valid values are yes (default) and no.

Examples

The following example inserts the user name stored in the webuser cookie into a request_log
table. Using bind variables guards against SQL injection attacks.

Inserting a User Name into a Table

 <xsql:dml connection="demo" bind-params="webuser"
 xmlns:xsql="urn:oracle-xsql">
 BEGIN
 INSERT INTO request_log(page,userid)
 VALUES('somepage.xsql', ?);
 COMMIT;
 END;
 </xsql:dml>

33.2.4 <xsql:if-param>
Element <xsql:if-param> is described.

Purpose

Enables you to include elements and actions nested inside if a specified condition is true. If
the condition is true, then all nested XML content and actions are included in the page. If the
condition is false, then none of the nested XML content or actions is included (and thus none
of the nested actions is executed).

Specify which parameter value is evaluated by supplying the required name attribute. Simple
parameter names and array-parameter names are supported.

Note:

If the parameter being tested does not exist, the test evaluates to false.

Syntax

The syntax for the action is this, where some_name is the value of the name attribute and
test_condition is exactly one of the conditions listed in Table 33-5:

<xsql:if-param name="some_name" test_condition>
 element_or_action
</xsql:if-param>

Any XML content or XSQL action elements can be nested inside an <xsql:if-param>,
including other <xsql:if-param> elements.

Chapter 33
<xsql:if-param>

33-11

Attributes

In addition to the required name attribute, you must choose exactly one of the attributes
listed in Table 33-5 to indicate how the parameter value (or values, in the array case)
is tested. As with other XSQL actions, the attributes of the <xsql:if-param> action
can contain lexical substitution parameter expressions such as {@paramName}.

Table 33-5 Attributes for <xsql:if-param>

Attribute Name Description

exists="yes_or_no" If set to exists="yes", then this condition tests whether the named
parameter exists and has a nonempty value. For an array-valued parameter,
it tests whether the array-parameter exists and has at least one nonempty
element.

If set to exists="no", then this condition evaluates to true if the parameter
does not exist, of if it exists but has an empty value. For an array-valued
parameter, it evaluates to true if the parameter does not exist, or if all of the
array elements are empty.

equals="stringValue" This condition tests whether the named parameter equals the string value
provided. By default the comparison is an exact string match. For a case-
insensitive match, supply the additional ignore-case="yes" attribute as
well.

For an array-valued parameter, the condition tests whether any element in
the array has the indicated value.

not-equals="stringValue" This condition tests whether the named parameter does not equal the string
value provided. By default the comparison is an exact string match. For an
array-valued parameter, the condition evaluates to true if none of the
elements in the array has the indicated value.

in-list = "comma-or-space-
separated-list"

This condition tests whether the named parameter matches any of the
strings in the provided list. By default the comparison is an exact string
match. For a case-insensitive match, supply the additional ignore-
case="yes" attribute as well.

The value of the in-list parameter is tokenized into an array with commas
as the delimiter if commas are detected in the string. Otherwise, it uses a
space as the delimiter. For an array-valued parameter, the condition tests
whether any element in the array matches an element in the list.

not-in-list = "comma-or-space-
separated-list"

This tests whether the named parameter does not match any of the strings in
the provided list. By default the comparison is an exact string match. For a
case-insensitive match, supply the additional ignore-case="yes" attribute
as well.

The value of the not-in-list parameter is tokenized into an array with
commas as the delimiter if commas are in the string. Otherwise, the
processor uses a space as the delimiter. For an array-valued parameter, the
condition tests whether none of the elements in the array matches an
element in the list.

Examples

To test whether two different conditions are true, you can use nested <xsql:if-param>
elements as shown in the following example.

Testing Conditions

Chapter 33
<xsql:if-param>

33-12

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="style.xsl"?>
<page connection="demo" xmlns:xsql="urn:oracle-xsql">
<!--
| Set page parameter 'some_param' to value "some_value" if parameter 'a'
| exists, and if parameter 'b' has a value equal to "X"
+-->
 <xsql:if-param name="a" exists="yes">
 <xsql:if-param name="b" equals="X">
 <xsql:set-page-param name="some_param" value="some_value"/>
 </xsql:if-param>
 </xsql:if-param>
 <!-- ... -->
</page>

33.2.5 <xsql:include-owa>
Element <xsql:include-owa> is described.

Purpose

Includes XML content generated by a database stored procedure. This action requires a
database connection to be provided by supplying a connection="connname" attribute on the
document element of the XSQL page in which it appears.

The stored procedure uses the standard OWA packages (HTP and HTF) to "print" the XML
tags into the server-side page buffer. Afterwards, the XSQL pages processor fetches, parses,
and includes the dynamically-produced XML content in the data page. The stored procedure
must generate a well-formed XML page or an appropriate error is displayed.

Usage Notes

You can create a wrapper procedure that constructs XML elements with the HTP package.
Your XSQL page can invoke the wrapper procedure by using <xsql:include-owa>.

Syntax

The syntax for the action is as follows, where PL/SQL_block is a PL/SQL Block invoking a
procedure that uses the HTP or HTF packages:

<xsql:include-owa>
 PL/SQL_block
</xsql:include-owa>

Attributes

Table 33-6 lists the optional attributes supported by this action.

Table 33-6 Attributes for <xsql:include-owa>

Attribute Name Description

bind-params = "string" Ordered, space-delimited list of one or more XSQL parameter names.
The values of these parameters are used to bind to the JDBC bind
variable in the appropriate sequential position in the SQL statement.

Chapter 33
<xsql:include-owa>

33-13

Table 33-6 (Cont.) Attributes for <xsql:include-owa>

Attribute Name Description

error-param = "string" Name of a page-private parameter that must be set to the string 'Error'
if a nonfatal error occurs while processing this action. Valid value is any
parameter name.

error-statement =
"boolean"

If set to no, suppresses the inclusion of the offending SQL statement in
any <xsql-error> element generated. Valid values are yes (default)
and no.

Examples

Assume that you write a PL/SQL procedure called UpdateStatus that updates the
status of a project. The procedure uses HTP to print an <UpdateStatus> datagram that
contains the element <Success/> if no errors occur or one or more <Error> elements if
errors occur.

The following example shows how you can invoke UpdateStatus from an XSQL page.
The example uses SQL bind variable instead of lexical substitution to prevent the
possibility of SQL injection attacks.

Including XML Content Created by a Stored Procedure

<xsql:include-owa connection="demo"
 bind-params="project status"
 xmlns:xsql="urn:oracle-xsql">
 UpdateStatus(?,?);
</xsql:include-owa>

Assume that a user enters an invalid status number for a project into a web-based
form. The form posts the input parameters to an XSQL page as shown in the following
example. The XSQL processor returns this datagram, which an XSLT stylesheet could
transform into an HTML error page:

<UpdateStatus>
 <Error Field="status">Status must be 1, 2, 3, or 4</Error>
</UpdateStatus>

33.2.6 <xsql:include-param>
Element <xsql:include-param> is described.

Purpose

Includes an XML representation of the name and value of a single parameter. This
technique is useful if an associated XSLT stylesheet must refer to parameter values
with XPath expressions.

Syntax

The syntax of the action is as follows, where paramname is the name of a parameter:

<xsql:include-param name="paramname" />

Chapter 33
<xsql:include-param>

33-14

The required name attribute supplies the name of the parameter whose value you want to
include.

Attributes

The name attribute is required; there are no optional attributes.

Examples

The following example uses XPATH to get the value of a parameter and represent it in XML.

Including an XML Representation of a Parameter Value

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="style.xsl"?>
<page connection="demo" xmlns:xsql="urn:oracle-xsql"
 xmlns:p="http://www.companysite.com/products">
 <xsql:set-page-param name="productid"
 xpath="/p:Products/productid"/>
 <xsql:include-param name="productid"/>
</page>

The XML fragment included in the datagram is:

<productid>12345</productid>

You can use an array parameter name to indicate that the value is to be treated as an array,
as shown in this example:

<xsql:include-param name="productid[]"/>

The XML fragment reflects all of the array values, as shown in this example:

<productid>
 <value>12345<value>
 <value>33455</value>
 <value>88199</value>
</productid>

In this array-parameter name scenario, if productid is a single-valued parameter, then the
fragment looks identical to a one-element array, as showd in this example:

<productid>
 <value>12345<value>
</productid>

33.2.7 <xsql:include-posted-include-posted>
Element <xsql:dml> is described.

Purpose

Includes the posted XML document in the XSQL page. If the user posts an HTML form
instead of an XML document, then the XML included is similar to that included by the
<xsql:include-request-params> action.

Syntax

The syntax of the action is:

Chapter 33
<xsql:include-posted-include-posted>

33-15

<xsql:include-posted-xml/>

Attributes

None.

Examples

The following example shows a sample XSQL page that includes a posted XML
document.

Including Posted XML

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsql" href="somepage.xsql"?>
<page connection="demo"
 xmlns:xsql="urn:oracle-xsql">
 <xsql:include-posted-xml/>
</page>

33.2.8 <xsql:include-request-params>
Element <xsql:include-request-params> is described.

Purpose

Includes an XML representation of all parameters in the request in the datagram. The
action element is replaced in the page at page-request time with a tree of XML
elements that represents the parameters available to the request.

This technique is useful if an associated XSLT stylesheet must refer to request
parameter values with XPath expressions.

Usage Notes

When processing pages through the XSQL servlet, the XML included takes the form
shown in the following example.

Including Request Parameters

<request>
 <parameters>
 <paramname>value1</paramname>
 <ParamName2>value2</ParamName2>
 ...
 </parameters>
 <session>
 <sessVarName>value1</sessVarName>
 ...
 </session>
 <cookies>
 <cookieName>value1</cookieName>
 ...
 </cookies>
</request>

When you use the XSQL command-line utility or the XSQLRequest class, the XML
takes the form shown in the following example.

Including Request Parameters

Chapter 33
<xsql:include-request-params>

33-16

<request>
 <parameters>
 <paramname>value1</paramname>
 <ParamName2>value2</ParamName2>
 ...
 </parameters>
</request>

The technique enables you to distinguish request parameters from session parameters or
cookies because its value is a child element of <parameters>, <session>, or <cookies>.

Syntax

The syntax of the action is:

<xsql:include-request-params/>

Attributes

None.

Examples

The following example shows a sample XSQL page that includes all request parameters in
the data page.

Including Request Parameters

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsql" href="cookie_condition.xsl"?>
<page connection="demo" xmlns:xsql="urn:oracle-xsql">
 <xsql:include-request-params/>
</page>

The cookie_condition.xsl stylesheet chooses an output format based on whether the
siteuser cookie is present. The following example shows a fragment of the stylesheet.

Testing for Conditions in a Stylesheet

<xsl:choose>
 <xsl:when test="/page/request/cookies/siteuser">
 ...
 </xsl:when>
 <xsl:otherwise>
 ...
 </xsl:otherwise>
</xsl:choose>

33.2.9 <xsql:include-xml>
Element <xsql:include-xml> is described.

Purpose

Includes the XML contents of a local, remote, or database-driven XML resource in your
datagram. You can specify the resource by URL or SQL statement. The server can deliver a
resource that is a static XML file or dynamically created XML from a programmatic resource
such as a servlet or common gateway interface (CGI) program.

Chapter 33
<xsql:include-xml>

33-17

Syntax

The syntax for this action is as follows, where URL is a relative URL or an absolute,
HTTP-based URL to retrieve XML from another web site:

<xsql:include-xml href="URL"/>

Alternatively, you can use this syntax, where SQL_statement is a SQL SELECT
statement selecting a single row containing a single CLOB or VARCHAR2 column value:

<xsql:include-xml>
 SQL_statement
</xsql:include-xml>

The href attribute and SQL statement are mutually exclusive. If you provide one, then
the other is not allowed.

Attributes

Table 33-7 lists the attributes supported by this action. Required attributes are in bold.

Table 33-7 Attributes for <xsql:include-xml>

Attribute Name Description

href="URL" The absolute, relative, or parameterized URL of the XML resource
to be included. The resource can be a static file dynamic source.

bind-params = "string" Ordered, space-delimited list of one or more XSQL parameter
names. The values for these names are used to bind to the JDBC
bind variable in the appropriate sequential position in the SQL
statement.

error-param = "string" Name of a page-private parameter that must be set to the string
'Error' if a nonfatal error occurs while processing this action. Valid
value is any parameter name.

Examples

The following example includes an XML document retrieved by a database query. The
XML content is a CLOB-valued member field of a user-defined type. The XML included
must come from a VARCHAR2 or CLOB column, not an XMLType.

Including an XML Document

<?xml version="1.0"?>
<xsql:include-xml bind-params="id" connection="demo"
 xmlns:xsql="urn:oracle-xsql">
 SELECT x.document.contents doc FROM xmldoc x
 WHERE x.docid = ?
</xsql:include-xml>

Chapter 33
<xsql:include-xml>

33-18

33.2.10 <xsql:include-xsql>
Element <xsql:include-xsql> is described.

Purpose

Includes the XML output of one XSQL page in another page. You can create a page that
assembles the contents—optionally transformed—from other XSQL pages.

Usage Notes

If the aggregated page contains an <?xml-stylesheet?> processing instruction, then this
stylesheet is applied before the result is aggregated. Thus, you can use <xsql:include-
xsql> to chain XSLT stylesheets.

When one XSQL page aggregates another page by using <xsql:include-xsql>, all request-
level parameters are visible to the nested page. For pages processed by the XSQL Servlet,
the visible data includes session-level parameters and cookies. None of the page-private
parameters of the aggregating page are visible to the nested page.

Syntax

The syntax for this action is as follows, where XSQL_page is a relative or absolute URL of an
XSQL page to be included:

<xsql:include-xsql href="XSQL_page"/>

Attributes

Table 33-8 lists the attributes supported by this action. Required attributes are in bold; all
others are optional.

Table 33-8 Attributes for <xsql:include-xsql>

Attribute Name Description

href="string" Relative or absolute URL of XSQL page to be included.

error-param = "string" Name of a page-private parameter that must be set to the string Error
if a nonfatal error occurs while processing this action. Valid value is any
parameter name.

reparse = "boolean" Indicates whether output of the included XSQL page must be reparsed
before it is included. Valid values are no (default) and yes.

This attribute is useful if the included XSQL page selects the text of an
XML document fragment that the including page wants to treat as
elements.

Examples

The following example displays an XSQL page that lists discussion forum categories.

Categories.xsql

<?xml version="1.0"?>
<xsql:query connection="demo" xmlns:xsql="urn:oracle-xsql">
 SELECT name

Chapter 33
<xsql:include-xsql>

33-19

 FROM categories
 ORDER BY name
</xsql:query>

The following example shows how you can include the results of the page in the
previous Categories.xsql example into a page that lists the ten most recent topics in
the current forum.

TopTenTopics.xsql

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="style.xsl"?>
<top-ten-topics connection="demo" xmlns:xsql="urn:oracle-xsql">
 <topics>
 <xsql:query max-rows="10">
 SELECT subject
 FROM topics
 ORDER BY last_modified DESC
 </xsql:query>
 </topics>
 <categories>
 <xsql:include-xsql href="Categories.xsql"/>
 </categories>
</top-ten-topics>

You can also use <xsql:include-xsql> to apply an XSLT stylesheet to an included
page. Assume that you write this XSLT stylesheets:

• cats-as-html.xsl, which renders the topics in HTML

• cats-as-wml.xsl, which renders the topics in WML

One approach for catering to two different types of devices is to create different XSQL
pages for each device. The following example shows an XSQL page that aggregates
Categories.xsql and applies the cats-as-html.xsl stylesheet.

HTMLCategories.xsql

<?xml version="1.0"?>
<!-- HTMLCategories.xsql -->
<?xml-stylesheet type="text/xsl" href="cats-as-html.xsl"?>
<xsql:include-xsql href="Categories.xsql" xmlns:xsql="urn:oracle-xsql"/>

The following example shows an XSQL page that aggregates Categories.xsql and
applies the cats-as-html.xsl stylesheet for delivering to wireless devices.

WMLCategories.xsql

<?xml version="1.0"?>
<!-- WMLCategories.xsql -->
<?xml-stylesheet type="text/xsl" href="cats-as-wml.xsl"?>
<xsql:include-xsql href="Categories.xsql" xmlns:xsql="urn:oracle-xsql"/>

Chapter 33
<xsql:include-xsql>

33-20

33.2.11 <xsql:insert-param>
Element <xsql:insert-param> is described.

Purpose

Inserts the value of a parameter into a table or view. Use this tag when the client is posting a
well-formed XML document as text in an HTTP parameter or individual HTML form field.

By combining the XML SQL Utility (XSU) with XSLT, you can transform XML into the
canonical format expected by a given table. Afterward, you can use XSU to insert the
resulting canonical XML. For a specified database table, the canonical XML form is given by
one row of XML output from a SELECT * query against the table.

Syntax

The syntax for this action is as follows, where table_or_view_name is a relative or absolute
URL of an XSQL page to be included:

<xsql:insert-param table="table_or_view_name" name="string"/>

Attributes

Table 33-9 lists the optional attributes that you can use on the <xsql:insert-param> action.

Table 33-9 Attributes for <xsql:insert-param>

Attribute Name Description

name="string" Name of the parameter whose value contains XML to be inserted.

table="string" Name of the table, view, or synonym to use for inserting the XML data.

transform = "URL" Relative or absolute URL of the XSLT transformation to use to transform the
document to be inserted into canonical ROWSET/ROW format.

columns = "string" Space-delimited or comma-delimited list of one or more column names whose
values are inserted. If supplied, then only these columns are inserted. If not
supplied, all columns are inserted, with NULL values for columns whose values do
not appear in the XML document.

commit = "boolean" If set to yes, invokes commit on the current connection after a successful execution
of the insert. Valid values are yes (default) and no.

commit-batch-size =
"integer"

If a positive, nonzero number integer is specified, then after each batch of
integer inserted records, the XSQL processor issues a COMMIT. Default batch size
is zero (0), which instructs the processor not to commit interim batches.

date-format = "string" Date format mask to use for interpreting date field values in XML being inserted.
Valid values are those for the java.text.SimpleDateFormat class.

error-param = "string" Name of a page-private parameter that must be set to Error if a nonfatal error
occurs while processing this action. Valid value is any parameter name.

Chapter 33
<xsql:insert-param>

33-21

Examples

The following example parses and transforms the contents of the HTML form
parameter xmlfield for database insert.

Inserting XML Contained in an HTML Form Parameter

<?xml version="1.0"?>
<xsql:insert-param name="xmlfield" table="image_metadata_table"
transform="field-to-rowset.xsl" connection="demo" xmlns:xsql="urn:oracle-xsql"/>

33.2.12 <xsql:insert-request>
Element <xsql:insert-request> is described.

Purpose

Accepts data posted from an XML document or HTML form and uses the XML SQL
Utility (XSU) to insert the content of an XML document in canonical form into a target
table or view.

If an HTML Form has been posted, then the posted XML document is materialized
from HTTP request parameters, cookies, and session variables. The XML document
has this form:

<request>
<parameters>
 <param1>value1</param1>
 :
 </paramN>valueN</paramN>
</parameters>
 :
</request>

By combining XSU with XSLT, you can transform XML into the canonical format
expected by a given table. The XSQL engine uses XSU to insert the resulting
canonical XML. For a specified database table, the canonical XML form is given by
one row of XML output from a SELECT * query against the table.

Usage Notes

If you target a database view with an INSERT, then you can create INSTEAD OF INSERT
triggers on the view to further automate the handling of the posted data. For example,
an INSTEAD OF INSERT trigger on a view can use PL/SQL to check for the existence of
a record and intelligently choose whether to do an INSERT or an UPDATE depending on
the result.

Syntax

The syntax for this action is:

<xsql:insert-request table="table"/>

Attributes

Table 33-10 lists the optional attributes that you can use on the <xsql:insert-
request> action.

Chapter 33
<xsql:insert-request>

33-22

Table 33-10 Attributes for <xsql:insert-request>

Attribute Name Description

table = "string" Name of the table, view, or synonym to use for inserting the XML data.

transform = "URL" Relative or absolute URL of the XSLT transformation to use to transform the
document to be inserted into canonical ROWSET/ROW format.

columns = "string" Relative or absolute URL of the XSLT transformation to use to transform the
document to be inserted into canonical ROWSET/ROW format.

commit = "boolean" If set to yes (default), invokes COMMIT on the current connection after a
successful execution of the insert. Valid values are yes and no.

commit-batch-size =
"integer"

If a positive, nonzero number integer is specified, then after each batch of
integer inserted records, the processor issues a COMMIT. The default batch size is
zero (0) if not specified, which means that the processor does not commit interim
batches.

date-format = "string" Date format mask to use for interpreting date field values in XML being inserted.
Valid values are those documented for the java.text.SimpleDateFormat
class.

error-param = "string" Name of a page-private parameter that must be set to the string Error if a
nonfatal error occurs while processing this action. Valid value is any parameter
name.

Examples

The following example parses and transforms the contents of the posted XML document or
HTML Form for insert.

Inserting XML Received in a Parameter

<?xml version="1.0"?>
<xsql:insert-request
 table="purchase_order"
 transform="purchseorder-to-rowset.xsl"
 connection="demo"
 xmlns:xsql="urn:oracle-xsql"/>

33.2.13 <xsql:query>
Element <xsql:query> is described.

Purpose

Executes a SQL select statement and includes a canonical XML representation of the query
result set in the data page. This action requires a database connection to be provided by
supplying a connection="connname" attribute on the document element of the XSQL page in
which it appears.

Syntax

The syntax for the action is:

Chapter 33
<xsql:query>

33-23

<xsql:query>
 SELECT_Statement
</xsql:query>

Any legal SQL select statement is permissible as a substitution for the
SELECT_Statement placeholder. If the select statement produces no rows, then you
can provide a fallback query by including a nested <xsql:no-rows-query> element:

<xsql:query>
 SELECT_Statement
 <xsql:no-rows-query>
 Fallback_SELECT_Statement
 </xsql:no-rows-query>
</xsql:query>

An <xsql:no-rows-query> element can itself contain nested <xsql:no-rows-query>
elements to any level of nesting. The options available on the <xsql:no-rows-query>
are identical to those legal on the <xsql:query> action element.

Attributes

The optional attributes listed in Table 33-11 can be supplied to control various aspects
of the data retrieved and the XML produced by the <xsql:query> action.

Table 33-11 Attributes for <xsql:query>

Attribute Name Description

bind-params = "string" Ordered, space-delimited list of one or more XSQL parameter names. The values of
these parameters are used to bind to the JDBC bind variable in the appropriate
sequential position in the SQL statement.

date-format = "string" Date format mask to use for formatted date column and attribute values in the XML
that is queried. Valid values are the same values legal for the
java.text.SimpleDateFormat class.

error-param = "string" Name of a page-private parameter that must be set to the string 'Error' if a nonfatal
error occurs while processing this action. Valid value is any parameter name.

error-statement =
"boolean"

If set to no, suppresses the inclusion of the offending SQL statement in any <xsql-
error> element generated. Valid values are yes (default) and no.

fetch-size = "integer" Number of records to fetch in each round trip to the database. If not set, the default
value is used as specified by the /XSQLConfig/processor/default-fetch-size
configuration setting in XSQLConfig.xml.

id-attribute = "string" XML attribute name to use instead of the default num for uniquely identifying each row
in the result set. If the value is the empty string, then the row id attribute is
suppressed.

id-attribute-column =
"string"

Case-sensitive name of the column in the result set whose value must be used in
each row as the value of the row id attribute. The default is to use the row count as the
value of the row id attribute.

include-schema =
"boolean"

If set to yes, includes an inline XML schema that describes the structure of the result
set. Valid values are yes and no (default).

max-rows = "integer" Maximum number of rows to fetch after optionally skipping the number of rows set by
the skip-rows attribute. If not specified, the default is to fetch all rows.

Chapter 33
<xsql:query>

33-24

Table 33-11 (Cont.) Attributes for <xsql:query>

Attribute Name Description

null-indicator =
"boolean"

Indicates whether to signal that a column's value is NULL by including the NULL="Y"
attribute on the element for the column. By default, columns with NULL values are
omitted from the output. Valid values are yes and no (default).

row-element = "string" XML element name to use instead of the default <ROW> for the rowset of query
results. Set to the empty string to suppress generating a containing <ROW> element for
each row in the result set.

rowset-element =
"string"

XML element name to use instead of the default <ROWSET> for the rowset of query
results. Set to the empty string to suppress generating a containing <ROWSET>
element.

skip-rows = "integer" Number of rows to skip before fetching rows from the result set. Can be combined
with max-rows for stateless paging through query results.

tag-case = "string" Valid values are lower and upper. If not specified, the default is to use the case of
column names as specified in the query as corresponding XML element names.

Examples

The following example shows a simple XSQL page.

Hello World

<?xml version="1.0"?>
<xsql:query connection="xmlbook" xmlns:xsql="urn:oracle-xsql">
 SELECT 'Hello, World!' AS text FROM DUAL</xsql:query>

If you save the previous example as hello.xsql and execute it in a browser, the XSQL page
processor returns this XML:

<?xml version = '1.0'?>
<ROWSET>
 <ROW num="1">
 <TEXT>Hello, World!</TEXT>
 </ROW>
</ROWSET>

By default, the XML produced by a query reflects the column structure of its result set, with
element names matching the names of the columns. Columns in the result with this nested
structure produce nested elements that reflect this structure:

• Object types

• Collection types

• CURSOR expressions

The result of a typical query containing different types of columns and returning one row
might look like the following example.

Nested Structure Example

<ROWSET>
 <ROW id="1">
 <VARCHARCOL>Value</VARCHARCOL>
 <NUMBERCOL>12345</NUMBERCOL>
 <DATECOL>12/10/2001 10:13:22</DATECOL>

Chapter 33
<xsql:query>

33-25

 <OBJECTCOL>
 <ATTR1>Value</ATTR1>
 <ATTR2>Value</ATTR2>
 </OBJECTCOL>
 <COLLECTIONCOL>
 <COLLECTIONCOL_ITEM>
 <ATTR1>Value</ATTR1>
 <ATTR2>Value</ATTR2>
 </COLLECTIONCOL_ITEM>
 <COLLECTIONCOL_ITEM>
 <ATTR1>Value</ATTR1>
 <ATTR2>Value</ATTR2>
 </COLLECTIONCOL_ITEM>
 </COLLECTIONCOL>
 <CURSORCOL>
 <CURSORCOL_ROW>
 <COL1>Value1</COL1>
 <COL2>Value2</COL2>
 </CURSORCOR_ROW>
 </CURSORCOL>
 </ROW>
</ROWSET>

A <ROW> element repeats for each row in the result set. Your query can use standard
SQL column aliasing to rename the columns in the result, which effectively renames
the XML elements that are produced. Column aliasing is required for columns whose
names otherwise are illegal names for an XML element.

For example, an <xsql:query> action as shown in the following example produces an
error because the default column name for the calculated expression is an illegal XML
element name.

Query with Error

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="style.xsl"?>
<xsql:query connection="demo" xmlns:xsql="urn:oracle-xsql">
 SELECT TO_CHAR(hire_date,'DD-MON')
 FROM employees
</xsql:query>

You can fix the problem by using column aliasing as shown in the following example.

Query with Column Aliasing

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="style.xsl"?>
<xsql:query connection="demo" xmlns:xsql="urn:oracle-xsql">
 SELECT TO_CHAR(hire_date,'DD-MON') AS hiredate FROM employees
</xsql:query>

33.2.14 <xsql:ref-cursor-function>
Element <xsql:ref-cursor-function> is described.

Purpose

Executes an arbitrary stored function returning a REF CURSOR and includes the query
result set in canonical XML format. This action requires a database connection to be

Chapter 33
<xsql:ref-cursor-function>

33-26

provided by supplying a connection="connname" attribute on the document element of the
XSQL page in which it appears.

Use this tag to invoke a stored procedure that determines what the query is and returns a
cursor to the query. Used in this way, this tag also provides a weak level of security because
it can hide the query from direct inspection.

Syntax

The syntax of the action is as follows, where SCHEMA_NAME represents an optional database
schema name, PACKAGE_NAME represents an optional PL/SQL package name, and
FUNCTION_NAME (required) specifies the name of a PL/SQL function:

<xsql:ref-cursor-function>
 [SCHEMA_NAME.][PACKAGE_NAME.]FUNCTION_NAME(args);
</xsql:ref-cursor-function>

Attributes

The optional attributes are the same as for the <xsql:query> action listed in Table 33-11
except that fetch-size is not available for <xsql:ref-cursor-function>.

Examples

By exploiting dynamic SQL in PL/SQL, a function can conditionally construct a dynamic query
before a cursor handle to its result set is returned to the XSQL page processor. The return
value of the function must be of type REF CURSOR. Consider the PL/SQL package shown in the
following example.

DynCursor PL/SQL Package

CREATE OR REPLACE PACKAGE DynCursor IS
 TYPE ref_cursor IS REF CURSOR;
 FUNCTION DynamicQuery(id NUMBER) RETURN ref_cursor;
END;
CREATE OR REPLACE PACKAGE BODY DynCursor IS
 FUNCTION DynamicQuery(id NUMBER) RETURN ref_cursor IS
 the_cursor ref_cursor;
 BEGIN
 IF id = 1 THEN -- Conditionally return a dynamic query as a REF CURSOR
 OPEN the_cursor -- An employees Query
 FOR 'SELECT employee_id, email FROM employees';
 ELSE
 OPEN the_cursor -- A departments Query
 FOR 'SELECT department_name, department_id FROM departments';
 END IF;
 RETURN the_cursor;
 END;
END;

An <xsql:ref-cursor-function> can include the dynamic results of the REF CURSOR returned
by this function as shown in the following example.

Executing a REF CURSOR Function

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="style.xsl"?>
<xsql:ref-cursor-function connection="demo" xmlns:xsql="urn:oracle-xsql">
 DynCursor.DynamicQuery(1);
</xsql:ref-cursor-function>

Chapter 33
<xsql:ref-cursor-function>

33-27

33.2.15 <xsql:set-cookie>
Element <xsql:set-cookie> is described.

Purpose

Sets an HTTP cookie to a value. By default, the value remains for the lifetime of the
current browser, but you can change its lifetime by supplying the optional max-age
attribute. The value to be assigned to the cookie can be supplied by a combination of
static text and other parameter values, or from the result of a SQL SELECT statement.

Because this feature is specific to the HTTP protocol, this action is effective only if the
XSQL page in which it appears is processed by the XSQL servlet. If this action is
encountered in an XSQL page processed by the XSQL command-line utility or the
XSQLRequest programmatic application programming interface (API), then it does
nothing.

Usage Notes

If you use the SQL statement option, then a single row is fetched from the result set
and the parameter is assigned the value of the first column. This use requires a
database connection to be provided by supplying a connection="connname" attribute
on the document element of the XSQL page in which it appears.

If you must set several cookie values based on the results of a single SQL statement,
then do not use the name attribute. Instead, you can use the names attribute and supply
a space-or-comma-delimited list of one or more cookie names.

Syntax

The syntax for this action is as follows, where paramname is the name of a parameter:

<xsql:set-cookie name="paramname" value="value"/>

Alternatively, you can use this syntax, where SQL_statement is a SQL SELECT
statement and paramname is the name of a parameter:

<xsql:set-cookie name="paramname">
 SQL_statement
</xsql:set-cookie>

Either the name or the names attribute is required. The value attribute and the
contained SQL statement are mutually exclusive. The number of columns in the select
list must match the number of cookies being set or an error message results.

Attributes

Table 33-12 lists the attributes supported by this action. Attributes in bold are required;
all others are optional.

Table 33-12 Attributes for <xsql:set-cookie>

Attribute Name Description

name = "string" Name of the cookie whose value you want to set. You must use
name or names but not both.

Chapter 33
<xsql:set-cookie>

33-28

Table 33-12 (Cont.) Attributes for <xsql:set-cookie>

Attribute Name Description

names = "string
string ..."

Space-or-comma-delimited list of the cookie names whose values
you want to set. You must use name or names but not both.

bind-params = "string" Ordered, space-delimited list of one or more XSQL parameter
names. Values are used to bind to the JDBC bind variable in the
appropriate sequential position in the SQL statement.

domain = "string" Domain in which cookie value is valid and readable. If domain is
not set explicitly, it defaults to the fully qualified host name (for
example, server.biz.com) of the document creating the cookie.

error-param = "string" Name of a page-private parameter that is set to the string 'Error'
if a nonfatal error occurs while processing this action. Valid value
is any parameter name.

ignore-empty-value =
"boolean"

Indicates whether the cookie assignment is ignored if the value to
which it is being assigned is an empty string.Valid values are yes
and no (default).

immediate = "boolean" Indicates whether the cookie assignment is immediately visible to
the current page. Typically, cookies set in the current request are
not visible until the browser sends them back to the server in a
subsequent request.Valid values are yes and no (default).

max-age = "integer" Sets the maximum age of the cookie in seconds. Default is to set
the cookie to expire when users current browser session
terminates.

only-if-unset =
"boolean"

Indicates whether the cookie assignment occurs only when the
cookie currently does not exists.Valid values are yes and no
(default).

path = "string" Relative URL path within domain in which cookie value is valid and
readable. If path is not set explicitly, then it defaults to the URL
path of the document creating the cookie.

value = "string" Sets the value to assign to the cookie.

Examples

The following example sets the HTTP cookie to the value of the parameter named choice.

Setting a Cookie to a Parameter Value

<?xml version="1.0"?>
<xsql:set-cookie name="last_selection"
 value="{@choice}" xmlns:xsql="urn:oracle-xsql"/>

Table 33-5 sets the HTTP cookie to a value selected from the database.

Setting a Cookie to a Database-Generated Value

<?xml version="1.0"?>
<xsql:set-cookie name="shopping_cart_id" bind-params="user"
 connection="demo" xmlns:xsql="urn:oracle-xsql">
 SELECT cartmgr.new_cart_id(UPPER(?)) FROM DUAL
</xsql:set-cookie>

Chapter 33
<xsql:set-cookie>

33-29

Table 33-6 sets three cookies based on the result of a single SELECT statement.

Setting Three Cookies

<?xml version="1.0"?>
<xsql:set-cookie names="paramname1 paramname2 paramname3"
 connection="demo" xmlns:xsql="urn:oracle-xsql">
 SELECT expression_or_column1, expression_or_column2, expression_or_column3
 FROM table
 WHERE clause_identifying_a_single_row
</xsql:set-cookie>

33.2.16 <xsql:set-page-param>
Element <xsql:set-page-param> is described.

Purpose

Sets a page-private parameter to a value. The value can be supplied by a combination
of static text and other parameter values, or alternatively from the result of a SQL
SELECT statement.

Usage Notes

If you use the SQL statement option, then the program fetches a single row from the
result set and assigns the parameter the value of the first column. This usage requires
a database connection to be provided by supplying a connection="connname" attribute
on the document element of the XSQL page in which it appears.

As an alternative to providing the value attribute, or a SQL statement, you can supply
the xpath attribute to set the page-level parameter to the value of an XPath
expression. The XPath expression is evaluated against an XML document or HTML
form that has been posted to the XSQL pages processor. The value of the xpath
attribute can be any valid XPath expression, optionally built using XSQL parameters
as part of the attribute value like any other XSQL action element.

After a page-private parameter is set, subsequent action handlers can use this value
as a lexical parameter, for example {@po_id}. Alternatively, action handlers can use
this value as a SQL bind parameter value; they can reference its name in the bind-
params attribute of any action handler that supports SQL operations.

If you must set multiple session parameter values based on the results of a single SQL
statement, instead of using the name attribute, then you can use the names attribute.
You can supply a list, delimited by spaces or commas, of one or more session
parameter names.

Syntax

The syntax for this action is as follows, where paramname is the name of a parameter
and value is a value:

<xsql:set-page-param name="paramname" value="value"/>

Alternatively, you can use this syntax, where SQL_statement is a SQL SELECT
statement and paramname is the name of a parameter:

Chapter 33
<xsql:set-page-param>

33-30

<xsql:set-page-param nname="paramname">
 SQL_statement
</xsql:set-page-param>

Alternatively, you can use this syntax, where paramname is the name of a parameter and
where expression is an XPath expression:

<xsql:set-page-param name="paramname" xpath="expression"/>

Either the name or the names attribute is required. The value attribute and the contained SQL
statement are mutually exclusive.

Attributes

Table 33-13 lists the attributes supported by this action. Attributes in bold are required; all
others are optional.

Table 33-13 Attributes for <xsql:set-page-param>

Attribute Name Description

name = "string" Name of the page-private parameter whose value you want to set.

names = "string
string ..."

Space-or-comma-delimited list of the page parameter names whose
values you want to set. Either use the name or the names attribute, but
not both.

bind-params = "string" Ordered, space-delimited list of one or more XSQL parameter names.
The values of these parameters are used to bind to the JDBC bind
variable in the appropriate sequential position in the SQL statement.

error-param = "string" Name of a page-private parameter that must be set to the string 'Error'
if a nonfatal error occurs while processing this action. Valid value is any
parameter name.

ignore-empty-value =
"boolean"

Indicates whether the page-level parameter assignment is ignored if the
value to which it is being assigned is an empty string.Valid values are
yes and no (default).

quote-array-values =
"boolean"

If the parameter name is a simple-valued parameter name (for example,
myparam) and if treat-list-as-array="yes" is specified, then
specifying quote-array-values="yes" surrounds each string token
with single quotation marks before separating the values with commas.
Valid values are yes and no (default).

treat-list-as-array =
"boolean"

Indicates whether the string-value assigned to the parameter is
tokenized into an array of separate values before assignment. If any
comma is present in the string, then the comma is used for separating
tokens. Otherwise, spaces are used.Valid values are yes and no. The
default value is yes if the parameter name being set is an array
parameter name (for example, myparam[]), and default is no if the
parameter name being set is a simple-valued parameter name like
myparam.

value = "string" Sets the value to assign to the parameter.

xpath =
"XPathExpression"

Sets the value of the parameter to an XPath expression evaluated
against an XML document or HTML form that has been posted to the
XSQL pages processor.

Chapter 33
<xsql:set-page-param>

33-31

Examples

The following example sets multiple parameter values based on the results of a single
SQL statement.

Setting Multiple Page Parameters

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="style.xsl"?>
<xsql:set-page-param names="paramname1 paramname2 paramname3"
 connection="demo" xmlns:xsql="urn:oracle-xsql>
 SELECT expression_or_column1, expression_or_column2, expression_or_column3
 FROM table
 WHERE clause_identifying_a_single_row
</xsql:set-page-param>

The following example sets the page-level parameter to a value selected from
database and then uses it as the value of an xsql:query attribute.

Setting a Parameter to a Database-Generated Value

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="style.xsl"?>
<page connection="demo" xmlns:xsql="urn:oracle-xsql">
 <xsql:set-page-param name="max-rows-pref">
 SELECT max_rows
 FROM user_profile
 WHERE userid = {@userid}
 </xsql:set-page-param>
 <xsql:query max-rows="{@max-rows-pref}">
 SELECT title, url
 FROM newsstory
 ORDER BY date_entered DESC
 </xsql:query>
</page>

33.2.17 <xsql:set-session-param>
Element <xsql:set-session-param> is described.

Purpose

Sets an HTTP session-level parameter to a value. The value of the session-level
parameter remains for the lifetime HTTP session of the current browser user. The web
server controls the session. The value can be supplied by a combination of static text
and other parameter values, or from the result of a SQL SELECT statement.

Because this feature is specific to Java servlets, this action is effective only if the
XSQL page in which it appears is processed by the XSQL servlet. If this action occurs
in an XSQL page processed by the XSQL command-line utility or the XSQLRequest
programmatic API, it does nothing.

Usage Notes

If you use the SQL statement option, the XSQL processor fetches a single row from
the result set and assigns the parameter the value of the first column. This use
requires a database connection to be provided by supplying a connection="connname"
attribute on the document element of the XSQL page in which it appears.

Chapter 33
<xsql:set-session-param>

33-32

To set several session parameter values based on the results of a single SQL statement, do
not use the name attribute. Instead, use the names attribute and supply a space-or-comma-
delimited list of one or more session parameter names.

Syntax

The syntax for this action is as follows, where paramname is the name of a parameter and
where value is a value:

<xsql:set-session-param name="paramname" value="value"/>

Alternatively, you can use this syntax, where SQL_statement is a SQL SELECT statement and
paramname is the name of a parameter:

<xsql:set-session-param name="paramname">
 SQL_statement
</xsql:set-session-param>

Either the name or the names attribute is required. The value attribute and the contained SQL
statement are mutually exclusive.

Attributes

Table 33-14 lists the optional attributes supported by this action. Attributes in bold are
required; all others are optional.

Table 33-14 Attributes for <xsql:set-session-param>

Attribute Name Description

name = "string" Name of the session-level variable whose value you want to set. Either use the name
or the names attribute, but not both.

names = "string
string ..."

Space-or-comma-delimited list of the session parameter names whose values you
want to set. Either use the name or the names attribute, but not both.

bind-params = "string" Ordered, space-delimited list of one or more XSQL parameter names. The parameter
values are used to bind to the JDBC bind variable in the appropriate sequential
position in the SQL statement.

error-param = "string" Name of a page-private parameter that is set to the string 'Error' if a nonfatal error
occurs while processing this action. Valid value is any parameter name.

ignore-empty-value =
"boolean"

Indicates whether the session-level parameter assignment is ignored if the value to
which it is being assigned is an empty string. Valid values are yes and no (default).

only-if-unset =
"boolean"

Indicates whether the session variable assignment occurs only when the session
variable currently does not exists.Valid values are yes and no (default).

quote-array-values =
"boolean"

If the parameter name is a simple-valued parameter name (for example, myparam)
and if treat-list-as-array="yes" is specified, then specifying quote-array-
values="yes" surrounds each string token with single quotation marks before
separating the values with commas. Valid values are yes and no (default).

Chapter 33
<xsql:set-session-param>

33-33

Table 33-14 (Cont.) Attributes for <xsql:set-session-param>

Attribute Name Description

treat-list-as-array =
"boolean"

Indicates whether the string-value assigned to the parameter is tokenized into an
array of separate values before assignment. If any comma is present in the string,
then the comma is used for separating tokens. Otherwise, spaces are used.Valid
values are yes and no. The default value is yes if the parameter name being set is an
array parameter name (for example, myparam[]), and default is no if the parameter
name being set is a simple-valued parameter name like myparam.

value = "string" Sets the value to assign to the parameter.

Examples

The following example sets multiple session parameter values based on the results of
a single SELECT statement.

Setting Session Parameters

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="style.xsl"?>
<page connection="demo" xmlns:xsql="urn:oracle-xsql">
 <xsql:set-session-param names="paramname1 paramname2 paramname3">
 SELECT expression_or_column1, expression_or_column2, expression_or_column3
 FROM table
 WHERE clause_identifying_a_single_row
 </xsql:set-session-param>
 <!-- ... -->
</page>

33.2.18 <xsql:set-stylesheet-param>
Element <xsql:set-stylesheet-param> is described.

Purpose

Sets a top-level XSLT stylesheet parameter to a value. The value can be supplied by a
combination of static text and other parameter values, or from the result of a SQL
SELECT statement. The stylesheet parameter is set on any stylesheet used during the
processing of the current page.

Usage Notes

If you use the SQL statement option, then a single row is fetched from the result set
and the parameter is assigned the value of the first column. This use requires a
database connection to be provided by supplying a connection="connname" attribute
on the document element of the XSQL page in which it appears.

To set several stylesheet parameter values based on the results of a single SQL
statement, do not use the name attribute. You can use the names attribute and supply a
space-or-comma-delimited list of one or more stylesheet parameter names.

Chapter 33
<xsql:set-stylesheet-param>

33-34

Syntax

The syntax for this action is as follows, where paramname is the name of a parameter and
where value is a value:

<xsql:set-stylesheet-param name="paramname" value="value"/>

Alternatively, you can use this syntax, where SQL_statement is a SQL SELECT statement and
paramname is the name of a parameter:

<xsql:set-stylesheet-param name="paramname">
 SQL_statement
</xsql:set-stylesheet-param>

Either the name or the names attribute is required. The value attribute and the contained SQL
statement are mutually exclusive.

Attributes

Table 33-15 lists the optional attributes supported by this action. Attributes in bold are
required; all others are optional.

Table 33-15 Attributes for <xsql:set-stylesheet-param>

Attribute Name Description

name = "string" Name of the top-level stylesheet parameter whose value you want to set.

names = "string
string ..."

Space-or-comma-delimited list of the top-level stylesheet parameter names whose
values you want to set. Use the name or the names attribute, but not both.

bind-params = "string" Ordered, space-delimited list of one or more XSQL parameter names. Parameter
values are used to bind to the JDBC bind variable in the appropriate sequential
position in the SQL statement.

error-param = "string" Name of a page-private parameter that must be set to the string 'Error' if a nonfatal
error occurs while processing this action. Valid value is any parameter name.

ignore-empty-value =
"boolean"

Indicates whether the stylesheet parameter assignment is to be ignored if the value to
which it is being assigned is an empty string. Valid values are yes and no (default).

value = "string" Sets the value to assign to the parameter.

Examples

The following example associates a stylesheet and uses the <xsql:set-stylesheet-param>
action element to assign the value of the XSQL page parameter named p_table to the XSLT
top-level stylesheet parameter named table.

Setting a Stylesheet Parameter

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="style.xsl"?>
<page connname="xmlbook" connection="{@p_connname}">
 <xsql:query null-indicator="yes" xmlns:xsql="urn:oracle-xsql">
 <![CDATA[

Chapter 33
<xsql:set-stylesheet-param>

33-35

 SELECT *
 FROM {@p_table}
 WHERE rownum < 2
]>
 </xsql:query>
 <xsql:set-stylesheet-param name="table" value="{@p_table}"
 xmlns:xsql="urn:oracle-xsql" />
</page>

33.2.19 <xsql:update-request>
Element <xsql:update-request> is described.

Purpose

Accepts data posted from an XML document or HTML form and uses the XML SQL
Utility (XSU) to update the content of an XML document in canonical form from a
target table or view.

By combining XSU with XSLT, you can transform XML into the canonical format
expected by a given table. Afterward, you can use XSU to update the resulting
canonical XML. For a specified database table, the canonical XML form is given by
one row of XML output from a SELECT * query against the table.

Syntax

The syntax for this action is:

<xsql:update-request table="table_name"/>

Attributes

Table 33-3 lists the attributes that you can use on the <xsql:update-request> action.
Required attributes are in bold.

Table 33-16 Attributes for <xsql:update-request>

Attribute Name Description

table = "string" Name of the table, view, or synonym to use for updating the XML data.

key_columns = "string
string ..."

Space-delimited or comma-delimited list of one or more column names. The
processor uses the values of these names in the posted XML document to
identify the existing rows to update.

transform = "URL" Relative or absolute URL of the XSLT transformation to use to transform the
document to be updated into canonical ROWSET/ROW format.

columns = "string" Relative or absolute URL of the XSLT transformation to use to transform the
document to be updated into canonical ROWSET/ROW format.

commit = "boolean" If set to yes (default), invokes COMMIT on the current connection after a
successful execution of the update. Valid values are yes and no.

commit-batch-size =
"integer"

If a positive, nonzero integer is specified, then after each batch of integer
updated records, the processor issues a COMMIT. The default batch size is zero
(0) if not specified, which means that the processor does not commit interim
batches.

Chapter 33
<xsql:update-request>

33-36

Table 33-16 (Cont.) Attributes for <xsql:update-request>

Attribute Name Description

date-format = "string" Date format mask to use for interpreting date field values in XML being updated.
Valid values are those for the java.text.SimpleDateFormat class.

error-param = "string" Name of a page-private parameter that must be set to Error if a nonfatal error
occurs while processing this action. Valid value is any parameter name.

Examples

The following example parses and transforms the contents of the posted XML document or
HTML Form for update.

Updating XML Received in a Parameter

<?xml version="1.0"?>
<xsql:update-request table="purchase_order" key-columns="department_id"
 connection="demo" transform="doc-to-departments.xsl"
 xmlns:xsql="urn:oracle-xsql/>

Chapter 33
<xsql:update-request>

33-37

34
Oracle XML Developer's Kit Standards

A description is given of the Oracle XML Developer's Kit (XDK) standards.

34.1 XML Standards Supported by XDK
Topics here include XML and Java standards supported by XDK.

34.1.1 Summary of XML Standards Supported by XDK
The XML standards supported by XDK components are described.

Table 34-1 Summary of XML Standards Supported by Oracle XML Developer's Kit

Standard Java C C++

Document Object Model (DOM) Level 1 Specification Full Full Full

Document Object Model Core (2.0) Full Full Full

Document Object Model (DOM) Level 2 Events Specification Full Full Full

Document Object Model (DOM) Level 2 Traversal and Range
Specification

Full Full Full

Document Object Model (DOM) Level 3 Core Specification Full N/A N/A

Document Object Model (DOM) Level 3 Load and Save
Specification

Partial1 None None

Document Object Model (DOM) Level 3 Validation Specification Full2 None None

JAXP 1.1 and 1.2 (JSR Standard) Full N/A N/A

SAX Project, 1.0, 2.0 core, and 2.0 extension Full Full Full

Extensible Markup Language (XML) 1.0 (Fifth Edition) Full Full Full

XML Base (Second Edition) Only in XSLT None None

Namespaces in XML 1.0 (Third Edition) Full Full Full

XML Pipeline Definition Language Version 1.0 Partial3 None None

XML Schema Part 0: Primer Second Edition Full Full4 Full4

XML Path Language (XPath) Version 1.0 Full Full Full

XML Path Language (XPath) 2.0 (Second Edition) Full None None

XML Path Language (XPath) 3.0 Full None None

XQuery 1.0: An XML Query Language (Second Edition) Full None None

XQuery and XPath Data Model 3.1 Full None None

XPath and XQuery Functions and Operators 3.1 Full None None

XQuery 3.0: An XML Query Language Full None None

XQuery and XPath Data Model 3.0 Full None None

34-1

Table 34-1 (Cont.) Summary of XML Standards Supported by Oracle XML Developer's Kit

Standard Java C C++

XPath and XQuery Functions and Operators 3.0 Full None None

XQuery Update Facility 1.0 Full None None

XQueryX 3.0 Full None None

JSR-000225 XQuery API for Java Full None None

XSL Transformations (XSLT) Version 1.0 Full Full Full

XSL Transformations (XSLT) Version 2.0, Basic XSLT Processor Conformance as
a basic XSLT
processor5

None None

1 DOM Level 3 Load and Save describes the relationship between DOM 3.0 Core and Load and Save.
2 DOM 3.0 Validation describes the relationship between DOM 3.0 Core and Validation.
3 Pipeline Definition Language Standard for XDK for Java describes the parts of the standard that are not supported.
4 The Schema processor fully supports the functionality stated in the specification plus XML Schema 1.0 Specification Errata.
5 See XSLT Standard for XDK for Java for details

34.1.2 XML Standards for XDK for Java
Topics here include XDK standards for DOM, XSLT, JAXB, and Pipeline Definition
Language.

34.1.2.1 DOM Standard for XDK for Java
The DOM APIs include support for candidate recommendations of DOM Level 3
Validation and DOM Level 3 Load and Save.

Note:

In Oracle Database 10g Release 2, XDK for Java implements the candidate
recommendation versions of Document Object Model (DOM) Level 3.0 Load
and Save and Validation specifications. Oracle plans to produce a release or
patch set that will include an implementation of DOM Level 3.0 Load and
Save and Validation recommendations. To conform with the
recommendations, Oracle might be forced to make changes that are not
backward compatible. During this period Oracle does not guarantee
backward compatibility with our DOM Load and Save, and Validation
implementation. After XDK for Java is updated to conform with the
recommendations, standard Oracle policies for backward compatibility will
apply to the Oracle DOM Load and Save, and Validation implementation.

34.1.2.1.1 DOM Level 3 Load and Save
The DOM Level 3 Load and Save module enables software developers to load and
save Extensible Markup Language (XML) content inside conforming products.

Chapter 34
XML Standards Supported by XDK

34-2

The charset-overrides-xml-encoding configuration parameter is not supported by
LSParser. Optional settings of these configuration parameters are not supported by
LSParser:

• disallow-doctype (true)
• ignore-unknown-character-denormalizations (false)
• namespaces (false)
• supported-media-types-only (true)
The discard-default-content configuration parameter is not supported by LSSerializer.
Optional settings of these configuration parameters are not supported by LSSerializer:

• canonical-form (true)
• format-pretty-print (true)
• ignore-unknown-character-denormalizations (false)
• normalize-characters (true)

34.1.2.1.2 DOM 3.0 Validation
DOM 3.0 validation lets users retrieve metadata definitions from XML schemas, query the
validity of DOM operations, and validate the DOM documents or subtrees against an XML
schema. Because validation is based on a schema, you must convert a document type
definition (DTD) to a schema before using these functions.

34.1.2.2 XSLT Standard for XDK for Java
The XDK XSLT processor supports the current recommendations of XSLT 2.0, XPath 2.0,
and the shared XPath/XQuery data model.

Oracle XML Development Kit (XDK) supports the XSLT 2.0 (W3C Recommendation, 23
January 2007) as a basic XSLT processor, with the following limitation: Support for xsl:key
and xsl:sort behavior is at the XSLT 1.0 level.

See Also:

• Basic XSLT Processor

• XSL Transformations (XSLT) Version 1.0

34.1.2.3 JAXB Standard for XDK for Java
Features not supported by the XDK implementation of the Java Architecture for XML Binding
(JAXB) specification are described.

The XDK implementation of the Java Architecture for XML Binding (JAXB) specification does
not support these features:

• Javadoc generation

• XML Schema component any and substitution groups

Chapter 34
XML Standards Supported by XDK

34-3

34.1.2.4 Pipeline Definition Language Standard for XDK for Java
Differences between the XML Pipeline processor and the W3C Note are presented.

The two differ as follows:

• The parser processes DOMParserProcess and SAXParserProcess are included in
the XML pipeline (Section 1).

• Only the final target output is checked to see if it is up-to-date with the available
pipeline inputs. The XML Pipeline processor does not determine whether the
intermediate outputs of every process are up-to-date (Section 2.2).

• For the select attribute, anything in between double quotation marks ("...") is
considered to be a string literal.

• The XML Pipeline processor throws an error if more that one process produces
the same infoset (Section 2.4.2.3).

• The <document> element is not supported (Section 2.4.2.8).

34.2 Character Sets Supported by XDK
The character sets supported by XDK for Java and XDK for C are described.

34.2.1 Character Sets Supported by XDK for Java
The character-set encodings supported by XDK for Java are described.

XML Schema processor for Java supports documents in these encodings:

• BIG

• EBCDIC-CP-*

• EUC-JP

• EUC-KR

• GB2312

• ISO-2022-JP

• ISO-2022-KR

• ISO-8859-1to -9

• ISO-10646-UCS-2

• ISO-10646-UCS-4

• KOI8-R

• Shift_JIS

• US-ASCII

• UTF-8

• UTF-16

Chapter 34
Character Sets Supported by XDK

34-4

34.2.2 Character Sets Supported by XDK for C
XDK for C supports over 300 Internet Assigned Numbers Authority (IANA) character sets.

These character sets include:

• UTF-8

• UTF-16

• UTF16-BE

• UTF16-LE

• US-ASCII

• ISO-10646-UCS-2

• ISO-8859-{1-9, 13-15}

• EUC-JP

• SHIFT_JIS

• BIG5

• GB2312

• GB_2312-80

• HZ-GB-2312

• KOI8-R

• KSC5601

• EUC-KR

• ISO-2022-CN

• ISO-2022-JP

• ISO-2022-KR

• WINDOWS-{1250-1258}

• EBCDIC-CP-{US,CA,NL,WT,DK,NO,FI,SE,IT,ES,GB,FR,HE,BE,CH,ROECE,YU,IS,AR}

• IBM{037, 273, 277, 278, 280, 284, 285, 297, 420, 424, 437, 500, 775, 850, 852, 855,
857, 858, 860, 861, 863, 865, 866, 869, 870, 871, 1026, 01140, 01141, 01142, 01143,
01144, 01145, 01146, 01147,01148}

You can use any alias of the preceding character sets. In addition, you can use any character
set specified in Oracle Database Globalization Support Guide, except for IW7IS960.

Chapter 34
Character Sets Supported by XDK

34-5

A
XDK for Java XML Error Messages

Error messages are listed for applications that use Oracle XML Developer's Kit (XDK) for
Java during the execution of Extensible Markup Language (XML) interfaces.

A.1 XML Parser Error Messages
Extensible Markup Language (XML) parser error messages are in the range XML-20000
through XML-20999.

XML-20003: missing token string at line string, column string

Cause: An expected token was not found in the input data.

Action: Check/update the input data to fix the syntax error.

XML-20004: missing keyword string at line string, column string

Cause: An expected keyword was not found in the input data.

Action: Check/update the input data to the correct keyword.

XML-20005: missing keyword string or string at line string, column string

Cause: An expected keyword was not found in the input data.

Action: Check/update the input data to the correct keyword.

XML-20006: unexpected text at line string, column string; expected EOF

Cause: More text was found after the end-tag of the root element.

Action: The end-tag of the root element can be followed only by comments, PI, or white
space. Remove the extra text after the end-tag.

XML-20007: missing content model in element declaration at line string, column string

Cause: The element declaration was missing the required content model spec. See
Production [45] in XML 1.0 2nd Edition.

Action: Add the required content spec to the element declaration.

XML-20008: missing element name in content model at line string, column string

Cause: The content model in the element declaration was invalid, the content particle
requires an element name. See Production [48] in XML 1.0 2nd Edition.

Action: Add the element name to fix the content spec syntactically.

A-1

XML-20009: target name string of processing instruction at line string, column
string is reserved

Cause: The target names "XML: xml", and so on are reserved for standardization in
future versions of XML specification. See Production [17] in XML 1.0 2nd Edition.

Action: If the PI is meant to be XML declaration, make sure the declaration occurs at
the very beginning of the file. Otherwise, change to name of the PI.

XML-20010: missing notation name in unparsed entity declaration at line string,
column string

Cause: The notation name used in the unparsed entity declaration did not match the
name in a declared notation. See Production [76] in XML 1.0 2nd Edition.

Action: Add the notation declaration to the DTD.

XML-20011: missing attribute type in attribute-list declaration at line string,
column string

Cause: The attribute type was missing the attribute-list declaration. One of these types
CDATA, ID, IDREF, IDREFS, ENTITY, ENTITIES, NMTOKEN, or NMTOKENS must be
added. See Production [52], [53] in XML 1.0 2nd Edition.

Action: Check and correct attribute declaration.

XML-20012: missing white space at line string, column string

Cause: The required white space was missing.

Action: Add white space to fix the syntax error.

XML-20013: invalid character string in entity value at line string, column string

Cause: An invalid character was used in the entity value. Characters &, %, and either "
or ' (based on the value delimiters) are invalid. See Production [9] in XML 1.0 2nd
Edition.

Action: Use entity or character references instead of the characters For example,
& or & can be used instead of &.

XML-20014: -- not allowed in comment at line string, column string

Cause: A syntax error in comment due to the use of "--"See Production [15] in XML
1.0 2nd Edition.

Action: Fix the comment, and use -- only as part of end of comment -->

XML-20015:]> not allowed in text at line string, column string

Cause:]> is not allowed in text. It is used only as end marker for CDATA Section. See
Production [14] in XML 1.0 2nd Edition.

Action: Fix the text content by using > or char ref for >.

Appendix A
XML Parser Error Messages

A-2

XML-20016: white space not allowed before occurrence indicator at line string, column
string

Cause: White space is not allowed in the contentspec before the occurrence indicator. For
example, <!ELEMENT x (a,b) *> is not valid. See Production [47], [48] in XML 1.0 2nd
Edition.

Action: Fix the contentspec by removing the extra space

XML-20017: occurrence indicator string not allowed in mixed-content at line string,
column string

Cause: Occurrence is not allowed in mixed content declaration. For example, <!ELEMENT x
(#PCDATA)?> is not valid. See Production [51] in XML 1.0 2nd Edition.

Action: Fix the syntax to remove the occurrence indicator.

XML-20018: content list not allowed inside mixed-content at line string, column string

Cause: Content list is not allowed in mixed-content declaration. For example, <!ELEMENT x
(#PCDATA | (a,b))> is not valid. See Production [51] in XML 1.0 2nd Edition.

Action: Fix the syntax to remove the content list.

XML-20019: duplicate element string in mixed-content declaration at line string,
column string

Cause: Duplicate element name was found in mixed-content declaration. For example, <!
ELEMENT x (#PCDATA | a | a)> is not valid. See Production [51] in XML 1.0 2nd Edition

Action: Remove the duplicate element name.

XML-20020: root element string does not match the DOCTYPE name string at line
string, column string

Cause: failed: The name in the document type declaration must match the element type of
the root element. For example: <?xml version="1.0"?> <!DOCTYPE greeting [<!ELEMENT
greeting (#PCDATA)>]> <salutation>Hello!</salutation>. The document's root
element, salutation, does not match the root element declared in the DTD (greeting).

Action: Correct the document.

XML-20021: duplicate element declaration string at line string, column string

Cause: Element was declared twice in the DTD.

Action: Remove the duplicate declaration.

XML-20022: element string has multiple ID attributes at line string, column string

Cause: failed: No element type may have more than one ID attribute specified.

Action: Correct the document, by removing the duplicate ID attribute decl.

XML-20023: ID attribute string in element string must be #IMPLIED or #REQUIRED at
line string, column string

Cause: failed: An ID attribute must have a declared default of #IMPLIED or #REQUIRED.

Appendix A
XML Parser Error Messages

A-3

Action: Fix the attribute declaration.

XML-20024: missing required attribute string in element string at line string,
column string

Cause: failed: If the default declaration is the keyword #REQUIRED, then the attribute
must be specified for all elements of the type in the attribute-list declaration.

Action: Fix the input document by specifying the required attribute.

XML-20025: duplicate ID value: string

Cause: Values of type ID must match the Name production. A name must not appear
more than once in an XML document as a value of this type; thus, ID values must
uniquely identify the elements which bear them.

Action: Fix the input document by removing the duplicate ID value.

XML-20026: undefined ID value string in IDREF

Cause: failed "Values of type IDREF must match value of some ID attribute.

Action: Fix the document by adding an ID corresponding the to the IDREF, or
removing the IDREF.

XML-20027: attribute string in element string has invalid enumeration value
string at line string, column string

Cause: failed: Values of this type must match one of the Nmtoken tokens in the
declaration.

Action: Fix the attribute value to match one of the enumerated values.

XML-20028: attribute string in element string has invalid value string, must be
string at line string, column {5}

Cause: failed: If an attribute has a default value declared with the #FIXED keyword,
instances of that attribute must match the default value.

Action: Update the attribute value to match the fixed default value.

XML-20029: attribute default must be REQUIRED, IMPLIED, or FIXED at line
string, column string

Cause: The declared default value must meet the lexical constraints o the declared
attribute type.

Action: Use one of REQUIRED, IMPLIED, or FIXED for attribute default decl.

XML-20030: invalid text in content of element string at line string, column string

Cause: The element does not allow text in content. An element is valid if there is a
declaration matching element decl where the Name matches the element type, and
one of these holds:

The declaration matches children and the sequence of child elements belongs to the
language generated by the regular expression in the content model, with optional
white space (characters matching the nonterminal S) between the start-tag and the
first child element, between child elements, or between the last child element and the

Appendix A
XML Parser Error Messages

A-4

end-tag. A CDATA section containing only white space does not match the nonterminal S,
and hence cannot appear in these positions.

Action: Fix the content by removing unexpected text.

XML-20031: invalid element string in content of element string at line string, column
string

Cause: The element has invalid content. An element is valid if there is a declaration matching
element decl where the Name matches the element type, and one of these holds:

1. The declaration matches children and the sequence of child elements belongs to the
language generated by the regular expression in the content model, with optional white
space (characters matching the nonterminal S) between the start-tag and the first child
element, between child elements, or between the last child element and the end-tag. A
CDATA section containing only white space does not match the nonterminal S, and
hence cannot appear in these positions.

2. The declaration matches Mixed and the content consists of character data and child
elements whose types match names in the content model.

Action: Fix the content by removing unexpected elements.

XML-20032: incomplete content in element string at line string, column string

Cause: The element has invalid content. An element is valid if there is a declaration matching
element decl where the Name matches the element type, and one of these holds:

1. The declaration matches children and the sequence of child elements belongs to the
language generated by the regular expression in the content model, with optional white
space (characters matching the nonterminal S) between the start-tag and the first child
element, between child elements, or between the last child element and the end-tag. A
CDATA section containing only white space does not match the nonterminal S, and
hence cannot appear in these positions.

2. The declaration matches Mixed and the content consists of character data and child
elements whose types match names in the content model.

Action: Fix the content by removing unexpected elements.

XML-20033: invalid replacement-text for entity string at line string, column string

Cause: Parameter-entity replacement text must be properly nested with markup declarations.
That is to say, if either the first character or the last character of a markup declaration
(markup decl above) is contained in the replacement text for a parameter-entity reference,
both must be contained in the same replacement text.

Action: Fix the entity value.

XML-20034: end-element tag string does not match start-element tag string at line
string, column string

Cause: The Name in an element's end-tag must match the element type in the start-tag.

Action: Fix the end-tag or start-tag to match the other.

XML-20035: duplicate attribute string in element string at line string, column string

Cause: No attribute name may appear more than once in the same start-tag or empty-
element tag.

Appendix A
XML Parser Error Messages

A-5

Action: Remove the duplicate attribute.

XML-20036: invalid character string in attribute value at line string, column
string

Cause: An invalid character was used in the attribute value, the characters &, <, and
either " or ' (based on the value delimiters) are invalid. See Production [10] in XML
1.0 2nd Edition.

Action: Use entity or character references instead of the characters For example,
& or & can be used instead of &.

XML-20037: invalid reference to external entity string in attribute string at line
string, column string

Cause: Attribute values cannot contain direct or indirect entity references to external
entities.

Action: Fix document to remove reference to external entity in attribute.

XML-20038: invalid reference to unparsed entity string in element string at line
string, column string

Cause: An entity reference must not contain the name of an unparsed entity.
Unparsed entities may be referenced only in attribute values declared to be of type
ENTITY or ENTITIES.

Action: Fix document to remove reference to unparsed entity in content.

XML-20039: invalid attribute type string in attribute-list declaration at line string,
column string

Cause: Invalid attribute type was used in the attribute-list declaration. One of these
types CDATA, ID, IDREF, IDREFS, ENTITY, ENTITIES, NMTOKEN, or NMTOKENS
must be added. See Production [52], [53] in XML 1.0 2nd Edition.

Action: Check and correct attribute declaration.

XML-20040: invalid character string in element content at line string, column
string

Cause: Characters referred to using character references must match the production
for Char.

Action: Fix the document by removing the invalid character or char-ref.

XML-20041: entity reference string refers to itself at line string, column string

Cause: A parsed entity must not contain a recursive reference to itself, either directly
or indirectly.

Action: Fix the document.

XML-20042: invalid Nmtoken: string

Cause: Values of this type must match one of the Nmtoken tokens in the declaration,
and must be valid Nmtoken"

Action: Fix the attribute value.

Appendix A
XML Parser Error Messages

A-6

XML-20043: invalid character string in public identifier at line string, column string

Cause: Invalid character used in public identifier. See Production [12], [13] in XML 1.0 2nd
Edition.

Action: Fix the public identifier.

XML-20044: undeclared namespace prefix string used at line string, column string

Cause: The prefix was not defined in any namespace declaration in scope.

Action: Add a namespace declaration to define the prefix.

XML-20045: attribute string in element string must be an unparsed entity at line string,
column string

Cause: Values of type ENTITY must match the Name production, values of type ENTITIES
must match Names; each Name must match the name of an unparsed entity declared in the
DTD.

Action: Fix the attribute value to refer to an unparsed entity.

XML-20046: undeclared notation string used in unparsed entity string at line string,
column string

Cause: Values of this type must match one of the notation names included in the declaration;
all notation names in the declaration must be declared.

Action: Fix the notation name in the unparsed entity declaration.

XML-20047: missing element declaration string

Cause: The element declaration referred to by an attribute declaration was not found in the
DTD.

Action: Fix the DTD by adding the element declaration.

XML-20048: duplicate entity declaration string at line string, column string

Cause: Warning regarding duplicate entity declaration.

Action: No action required.

XML-20049: invalid use of NDATA in parameter entity declaration at line string, column
string

Cause: NDATA declaration was found in parameter entity declaration. It is allowed only in
general unparsed entity declaration. See Production [72], [74] in XML 1.0 2nd Edition.

Action: Fix the entity declaration.

XML-20050: duplicate attribute declaration string at line string, column string

Cause: Warning regarding duplicate attribute declaration.

Action: No action required.

XML-20051: duplicate notation declaration string at line string, column string

Cause: Only one notation declaration can declare a given Name.

Appendix A
XML Parser Error Messages

A-7

Action: Fix the document by removing the duplicate notation.

XML-20052: undeclared attribute string used at line string, column string

Cause: The attribute declaration was not found in the DTD.

Action: Fix the DTD by adding the attribute declaration.

XML-20053: undeclared element string used at line string, column string

Cause: The element declaration was not found in the DTD.

Action: Fix the DTD by adding the element declaration.

XML-20054: undeclared entity string used at line string, column string

Cause: The entity declaration was not found in the DTD.

Action: Fix the DTD by adding the element declaration.

XML-20055: invalid document returned by NodeFactory's createDocument

Cause: The document returned by createDocument function of NodeFactory was
invalid, either it was null or instance of an unsupported class.

Action: Fix NodeFactory implementation to return an instance of XMLDocument or its
subclass.

XML-20056: invalid SAX feature string

Cause: The SAX feature supplied was not a valid feature name.

Action: See the documentation for a valid list of features.

XML-20057: invalid value string passed for SAX feature string

Cause: The value supplied for the SAX feature was not valid.

Action: See the documentation for a valid list of features and their corresponding
values.

XML-20058: invalid SAX property string

Cause: The SAX property supplied was not a valid property name.

Action: See the documentation for a valid list of properties.

XML-20059: invalid value passed for SAX property string

Cause: The value supplied for the SAX property was not valid.

Action: See the documentation for a valid list of properties and their corresponding
values

XML-20060: Error occurred while opening URL string

Cause: An error occurred while opening the supplied URL.

Action: Verify the URL, and take appropriate action to allow data to be read.

Appendix A
XML Parser Error Messages

A-8

XML-20061: invalid byte stream string in UTF8 encoded data

Cause: The input data contained bytes that are not valid with respect to UTF-8 encoding
scheme.

Action: Fix the input data.

XML-20062: 5-byte UTF8 encoding not supported

Cause: The XML Parser does not support 5-byte UTF-8 encoding scheme. It is also possible
that invalid UTF-8 characters were misinterpreted as 5-byte UTF-8 encoding.

Action: If the data contains invalid UTF-8 bytes, fix the input, otherwise if 5-byte UTF-8
supported is required, contact Oracle Support.

XML-20063: 6-byte UTF8 encoding not supported

Cause: The XML Parser does not support 6-byte UTF-8 encoding scheme. It is also possible
that invalid UTF-8 characters were misinterpreted as 6-byte UTF-8 encoding.

Action: If the data contains invalid UTF-8 bytes, fix the input, otherwise if 6-byte UTF-8
supported is required, contact Oracle Support.

XML-20064: invalid XML character string

Cause: Invalid XML character was found in the input data.

Action: Fix the input data.

XML-20065: encoding string doesn't match encoding string in XML declaration

Cause: The encoding of the data (either by auto-detection or user supplied)didn't match the
encoding specified in the XML declaration.

Action: Fix the XML declaration to match the encoding of the data.

XML-20066: encoding string not supported

Cause: The XML Parser does not support the specified encoding.

Action: If the support for the encoding is required, contact Oracle Support.

XML-20067: invalid InputSource returned by EntityResolver's resolveEntity

Cause: An invalid instance of InputSource was returned by the EntityResolverAn
InputSource can be invalid if the none of Reader, InputStream, and SystemId were initialized
or if the SystemId was invalid.

Action: Fix the EntityResolver class to return a valid instance of InputSource.

Appendix A
XML Parser Error Messages

A-9

XML-20100: Expected string.

XML-20101: Expected string or string.

XML-20102: Expected string, string, or string.

XML-20103: Illegal token in content model.

XML-20104: Could not find element with ID string.

XML-20105: ENTITY type Attribute value string does not match any unparsed
Entity.

XML-20106: Could not find Notation string.

XML-20107: Could not find declaration for element string.

XML-20108: Start of root element expected.

XML-20109: PI with the name 'xml' can occur only in the beginning of the
document.

XML-20110: #PCDATA expected in mixed-content declaration.

XML-20111: Element string repeated in mixed-content declaration.

XML-20112: Error opening external DTD string.

XML-20113: Unable to open input source (string).

XML-20114: Bad conditional section start syntax, expected '['.

XML-20115: Expected ']>' to end conditional section.

XML-20116: Entity string already defined, using the first definition.

XML-20117: NDATA not allowed in parameter entity declaration.

XML-20118: NDATA value required.

XML-20119: Entity Value should start with quote.

XML-20120: Entity value not well-formed.

XML-20121: End tag does not match start tag string.

XML-20122: '=' missing in attribute.

XML-20123: '>' Missing from end tag.

XML-20124: An attribute cannot appear more than once in the same start tag.

XML-20125: Attribute value should start with quote.

XML-20126: '<' cannot appear in attribute value.

XML-20127: Reference to an external entity not allowed in attribute value.

XML-20128: Reference to unparsed entity not allowed in element content.

XML-20129: Namespace prefix string used but not declared.

XML-20130: Root element name must match the DOCTYPE name.

XML-20131: Element string already declared.

XML-20132: Element cannot have more than one ID attribute.

XML-20133: Attr type missing.

XML-20134: ID attribute must be declared #IMPLIED or #REQUIRED.

XML-20135: Attribute string already defined, using the first definition.

XML-20136: Notation string already declared.

XML-20137: Attribute string used but not declared.

XML-20138: REQUIRED attribute string is not specified.

XML-20139: ID value string is not unique.

XML-20140: IDREF value string does not match any ID attribute value.

XML-20141: Attribute value string should be one of the declared enumerated

Appendix A
XML Parser Error Messages

A-10

values.

XML-20142: Unknown attribute type.

XML-20143: Unrecognized text at end of attribute value.

XML-20144: FIXED type Attribute value not equal to the default value string.

XML-20145: Unexpected text in content of Element string.

XML-20146: Unexpected text in content of Element string, expected elements string.

XML-20147: Invalid element string in content of string, expected closing tag.

XML-20148: Invalid element string in content of string, expected elements string.

XML-20149: Element string used but not declared.

XML-20150: Element string not complete, expected elements string.

XML-20151: Entity string used but not declared.

XML-20170: Invalid UTF8 encoding.

XML-20171: Invalid XML character(string).

XML-20172: 5-byte UTF8 encoding not supported.

XML-20173: 6-byte UTF8 encoding not supported.

XML-20180: User Supplied NodeFactory returned a Null Pointer.

XML-20190: Whitespace required.

XML-20191: '>' required to end DTD.

XML-20192: Unexpected text in DTD.

XML-20193: Unexpected EOF.

XML-20194: Unable to write to output stream.

XML-20195: Encoding not supported in PrintWriter.

XML-20200: Expected string instead of string.

XML-20201: Expected string instead of string.

XML-20202: Expected string to be string.

XML-20205: Expected string.

XML-20206: Expected string or string.

XML-20210: Unexpected string.

XML-20211: string is not allowed in string.

XML-20220: Invalid InputSource.

XML-20221: Invalid char in text.

XML-20230: Illegal change of encoding: from string to string.

XML-20240: Unable to open InputSource.

XML-20241: Unable to open entity string.

XML-20242: Error opening external DTD string.

XML-20250: Missing entity string.

XML-20251: Cyclic Entity Reference in entity string.

XML-20280: Bad character (string).

XML-20281: NMToken must contain atleast one NMChar.

XML-20282: string not allowed in a PubIdLiteral.

XML-20284: Illegal white space before optional character in content model.

XML-20285: Illegal mixed content model.

XML-20286: Content list not allowed inside mixed content model.

XML-20287: Content particles not allowed inside mixed content model.

XML-20288: Invalid default declaration in attribute declaration.

XML-20500: SAX feature string not recognized.

XML-20501: SAX feature string not supported.

XML-20502: SAX property string not recognized.

XML-20503: SAX property string not supported.

A.2 DOM Error Messages
DOM error messages are described.

Document Object Model (DOM) error messages are in the range XML-21000 through

Appendix A
DOM Error Messages

A-11

XML-21999.

XML-21000: invalid size string specified

Cause: An invalid size or count was passed to a DOM function.

Action: Correct the argument passed to a valid value.

XML-21001: invalid index string specified; must be between 0 and string

Cause: An invalid index was passed to a DOM function.

Action: Correct the argument passed to a valid value specified by the bounds in the
error messag

XML-21002: cannot add an ancestor as a child node

Cause: The DOM operation was trying to a add an ancestor node as a child. This can
lead to inconsistencies in the tree, so it is not allowed.

Action: Check the application to fix the usage.

XML-21003: node of type string cannot be added to node of type string

Cause: The DOM specification does not allow the parent-child combinationused in the
DOM operation.

Action: See the DOM specification to fix the usage.

XML-21004: document node can have only one string node as child

Cause: The XML well-formedness requires that the document node have onlyone
element node as its child. The application tried adding addinga second element node.

Action: Fix usage in the application.

XML-21005: node of type string cannot be added to attribute list

Cause: The attribute list (instance of NamedNodeMap) can contain onlyattribute
nodes.

Action: Fix usage of NamedNodeMap.

XML-21006: cannot add a node belonging to a different document

Cause: The node being added was created by a different document. The
DOMspecification does not allow use of nodes across documents.

Action: Use importNode or adoptNode to move a node from one document to another,
before adding it.

XML-21007: invalid character string in name

Cause: The qualified or local name passed was invalid.

Action: Fix the name to contain only valid

XML-21008: cannot set value for node of type string

Cause: The node of the specified type cannot have value.

Action: Fix usage of DOM functions.

Appendix A
DOM Error Messages

A-12

XML-21009: cannot modify descendants of entity or entity reference nodes

Cause: The descendants of entity or entity reference nodes are read-onlynodes, and
modification is not allowed.

Action: Fix usage of DOM functions.

XML-21010: cannot modify DTD's content

Cause: DTD and all its content is read-only and cannot be modified.

Action: Fix usage of DOM functions.

XML-21011: cannot remove attribute; not found in the current element

Cause: An attempt was made to remove an attribute that does not belong thecurrent
element.

Action: Fix usage in application.

XML-21012: cannot remove or replace node; it is not a child of the current node

Cause: An attempt was made to remove an node that does not belong thecurrent node as a
child.

Action: Fix usage in application.

XML-21013: parameter string not recognized

Cause: The DOM parameter was not recognized.

Action: See the documentation for a valid list of parameters.

XML-21014: value string of parameter string is not supported

Cause: The DOM parameter was not recognized.

Action: See the documentation for a valid list of parameters.

XML-21015: cannot add attribute belonging to another element

Cause: An attempt was made to add an attribute that belonged theanother element.

Action: Fix usage in application.

XML-21016: invalid namespace string for prefix string

Cause: The namespace for xml, and xmlns prefixes is fixed, and usage mustmatch these.

Action: Correct the namespace for the prefixes, namespaces are xml = http://
www.w3.org/XML/1998/namespace xmlns = http://www.w3.org/2000/xmlns/

XML-21017: invalid qualified name: string

Cause: The qualified name passed to a DOM function was invalid.

Action: Fix the qualified name.

Appendix A
DOM Error Messages

A-13

XML-21018: conflicting namespace declarations string and string for prefix
string

Cause: The DOM tree has conflicting namespace declarations for the sameprefix.
Such a DOM tree cannot be serialized.

Action: Fix the DOM tree, before printing it.

XML-21019: string object is detached

Cause: The object was detached, no operations are supported ona detached object.
The object can be a Range or iterator object

Action: Fix the usage in application.

XML-21020: bad boundary specified; cannot partially select a node of type string

Cause: The boundary specified in the range was invalid. The selectioncan be partial
only for text nodes.

Action: Fix the usage in the application.

XML-21021: node of type string does not support range operation string

Cause: The range operation is not supported on the node type specified.

Action: See the DOM documentation for restrictions of node types for each range
operation.

XML-21022: invalid event type: string

Cause: The event type passed was invalid.

Action: Fix usage in the application.

XML-21023: prefix not allowed on nodes of type string

Cause: The application tried to set prefix on a node on which prefix is notallowed

Action: Fix usage in the application.

XML-21024: import not allowed on nodes of type string

Cause: The application tried to import a node of type DOCUMENT orDOCUMENT
FRAGMENT.

Action: Fix usage in the application.

XML-21025: rename not allowed on nodes of type string

Cause: The application tried to import a node of type other than ELEMENT
orATTRIBUTE.

Action: Fix usage in the application.

XML-21026: Unrepresentable character in node: string

Cause: A node contains an invalid character, eg. CDATA section contain a termination
character.

Appendix A
DOM Error Messages

A-14

Action: Set appropriate DOMConfiguration parameter.

XML-21027: Namespace normalization error in node: string

Cause: Namespace fixup cannot be performed on this node.

Action: Set namespace normalization to false.

XML-21997: function not supported on THICK DOM

Cause: A function on THICK (for example, XDB based) DOM which is not supported was
called.

Action: See the XDK documentation for possible alternatives for functions not supported on
THICK DOM.

XML-21998: system error occurred: string

Cause: Non-DOM related system errors occurred.

Action: Check with ORA error(s) embedded in the message and consult with developers for
possible causes.

Appendix A
DOM Error Messages

A-15

A.3 XSLT Error Messages
Extensible Stylesheet Language Transformation (XSLT) error messages are in the
range XML-22000 through XML-22999.

XML-22000: Error while parsing XSL file (string).

XML-22001: XSL Stylesheet does not belong to XSLT namespace.

XML-22002: Error while processing include XSL file (string).

XML-22003: Unable to write to output stream (string).

XML-22004: Error while parsing input XML document (string).

XML-22005: Error while reading input XML stream (string).

XML-22006: Error while reading input XML URL (string).

XML-22007: Error while reading input XML reader (string).

XML-22008: Namespace prefix string used but not declared.

XML-22009: Attribute string not found in string.

XML-22010: Element string not found in string.

XML-22011: Cannot construct XML PI with content: string.

XML-22012: Cannot construct XML comment with content: string.

XML-22013: Error in expression: string.

XML-22014: Expecting node-set before relative location path.

XML-22015: Function string not found.

XML-22016: Extension function namespace should start with string.

XML-22017: Literal expected in string function. Found string.

XML-22018: Parse Error in string function.

XML-22019: Expected string instead of string.

XML-22020: Error in extension function arguments.

XML-22021: Error parsing external document: string.

XML-22022: Error while testing predicates. Not a nodeset type.

XML-22023: Literal Mismatch.

XML-22024: Unknown multiply operator.

XML-22025: Expression error: Empty string.

XML-22026: Unknown expression at EOF: string.

XML-22027: Closing } not found in Attribute Value template.

XML-22028: Expression value type string not recognized by string.

XML-22029: Cannot transform child string in string.

XML-22030: Attribute value string not expected for string.

XML-22031: Variable not defined: string.

XML-22032: Found a single } outside expression in Attribute value template.

XML-22033: Token not recognized:!.

XML-22034: Namespace definition not found for prefix string.

XML-22035: Axis string not found

XML-22036: Cannot convert string to string.

XML-22037: Unsupported feature: string.

XML-22038: Expected Node-set in Path Expression.

XML-22039: Extension function error: Error invoking constructor for string

XML-22040: Extension function error: Overloaded constructors for string

XML-22041: Extension function error: Constructor not found for string

XML-22042: Extension function error: Overloaded method string

XML-22043: Extension function error: Method not found string

XML-22044: Extension function error: Error invoking string:string

XML-22045: Extension function error: Class not found string

XML-22046: Apply import cannot be called when current template is null.

XML-22047: Invalid instantiation of string in string context.

XML-22048: The string element children must precede all other element children

Appendix A
XSLT Error Messages

A-16

of an string element.

XML-22049: Template string invoked but not defined.

XML-22050: Duplicate variable string definition.

XML-22051: only a literal or a reference to a variable or parameter is allowed in id()
function when used as a pattern

XML-22052: no sort key named as: string was defined

XML-22053: cannot detect encoding in unparsed-text(), please specify

XML-22054: no such xsl:function with namespace: string and local name: string was
defined

XML-22055: range expression can only accept xs:integer data type, but not string

XML-22056: exactly one of four group attributes must be present in xsl:for-each-group

XML-22057: string can only have string as children

XML-22058: wrong child of xsl:function

XML-22059: wrong child order of xsl:function

XML-22060: TERMINATE PROCESSING

XML-22061: teminate attribute in <xsl:message> can only be yes or no

XML-22062: string must have at least one string child

XML-22063: no definition for character-map with qname string

XML-22064: cannot define character-map with the same name string and the same
import precedence

Cause: A required child was not found.

Action: After error mesgfreeze is over, throws an error (without the required child element, it
can do nothing).

XML-22065: at least one string must be defined under string

Cause: A required child is missing.

Action: Without the required child, it can do nothing.

XML-22066: if select attribute is present, string instructions sequence-constructor
must be empty

Cause: Attribute and sequence constructor select must be mutually exclusive for this
instruction.

Action: None.

Appendix A
XSLT Error Messages

A-17

XML-22067: if use attribute is present, string instructions sequence-constructor
must be empty

Cause: Attribute and sequence constructor use must be mutually exclusive for this
instruction.

Action: None.

XML-22068: only primary sort key is allowed to have the stable attribute.

Cause: The secondary sort key has a stable attribute.

Action: None.

XML-22069: only string or string is allowed.

Cause: User typo.

Action: None.

XML-22101: DOMSource node as this type not supported.

XML-22103: DOMResult can not be this kind of node.

XML-22106: Invalid StreamSource - InputStream, Reader, and SystemId are null.

XML-22107: Invalid SAXSource - InputSource is null.

XML-22108: Invalid Source - URL format is incorrect.

XML-22109: Internal error while reporting SAX events.

XML-22110: Invalid StreamResult set in TransformerHandler.

XML-22111: Invalid Result set in TransformerHandler.

XML-22112: Namespace URI missing }.

XML-22113: Namespace URI should start with {.

XML-22117: URL format has problems (null or bad format or missing 'href' or
missing '=').

XML-22121: Could not get associated stylesheet.

XML-22122: Invalid StreamResult - OutputStream, Writer, and SystemId are null.

XML-22900: An internal error condition occurred.

A.4 XPath Error Messages
XPath error messages are in the range XML-23000 through XML-23999.

XML-23002: internal xpath error

Cause: This was an error returned by the XPath/XQuery datamodel or XPath F&O.

Appendix A
XPath Error Messages

A-18

Action: Check the XPath expression.

XML-23003: XPath 2.0 feature schema-element/schema-attribute not supported

Cause: This error was caused by using the kindtest schema-element or schema-attribute.
These are not supported for this release.

Action: Remove usage of schema-element or schema-attribute kindtest

XML-23006: value does not match required type

Cause: During the evaluation phase, there was a type error as the value did not match a
required type specified by the matching rules in XPath 2.0 SequenceType matching.

Action: Modify the stylesheet to reflect the correct type.

XML-23007: FOAR0001: division by zero

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23008: FOAR0002: numeric operation overflow/unflow

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23009: FOCA0001: Error in casting to decimal

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23010: FOCA0002: invalid lexical value

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23011: FOCA0003: input value too large for integer

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23012: FOCA0004: Error in casting to integer

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23013: FOCA0005: NaN supplied as float/double value

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23014: FOCH0001: invalid codepoint

Cause: This was an XPath 2.0 F&O specification error.

Appendix A
XPath Error Messages

A-19

Action: Check the XPath expression.

XML-23015: FOCH0002: unsupported collation

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23016: FOCH0003: unsupported normalization form

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23017: FOCH0004: collation does not support collation units

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23018: FODC0001: no context document

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23019: FODC0002: Error retrieving resource

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23020: FODC0003: Error parsing contents of resource

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23021: FODC0004: invalid argument to fn:collection()

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23022: FODT0001: overflow in date/time arithmetic

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23023: FODT0002: overflow in duration arithmetic

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23024: FONC0001: undefined context item

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

Appendix A
XPath Error Messages

A-20

XML-23025: FONS0002: default namespace is defined

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23026: FONS0003: no prefix defined for namespace

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23027: FONS0004: no namespace found for prefix

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23028: FONS0005: base URI not defined in the static context

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23029: FORG0001: invalid value for cast/constructor

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23030: FORG0002: invalid argument to fn:resolve-uri()

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23031: FORG0003: zero-or-one called with sequence containing more than one
item

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23032: FORG0004: fn:one-or-more called with sequence containing no items

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23033: FORG0005: exactly-one called with sequence containing zero or more than
one item

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23034: FORG0006: invalid argument type

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

Appendix A
XPath Error Messages

A-21

XML-23035: FORG0007: invalid argument to aggregate function

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23036: FORG0008: both arguments to fn:dateTime have a specified
timezone

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23037: FORG0009: base uri argument to fn:resolve-uri is not an absolute
URI

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23038: FORX0001: invalid regular expression flags

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23039: FORX0002: invalid regular expression

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23040: FORX0003: regular expression matches zero-length string

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23041: FORX0004: invalid replacement string

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23042: FOTY0001: type error

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23043: FOTY0011: context item is not a node

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23044: FOTY0012: items not comparable

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

Appendix A
XPath Error Messages

A-22

XML-23045: FOTY0013: type does not have equality defined

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23046: FOTY0014: type exception

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23047: FORT0001: invalid number of parameters

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23048: FOTY0002: type definition not found

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23049: FOTY0021: invalid node type

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23050: FOER0000: unidentified error

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23051: FODC0005: invalid argument to fn:doc

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23052: FODT0003: invalid timezone value

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

A.5 XML Schema Validation Error Messages
XML schema validation error messages are in the range XML-24000 through XML-24099.

XML-24000: internal error

Cause: An unexpected error occurred during processing.

Action: Report the error.

Appendix A
XML Schema Validation Error Messages

A-23

XML-24001: attribute string not expected at line string, column string

Cause: [cvc-assess-attr.1] The attribute were not expected for owner element.

Action: Add the attribute declaration to the type of the owner element.

XML-24002: can not find element declaration string.

Cause: [cvc-assess-elt.1.1.1.1]The element declaration required by processorfor
validation was absent.

Action: Add the element declaration to schema, or change the instance document to
comply to schema.

XML-24003: context-determined element declaration string absent.

Cause: [cvc-assess-elt.1.1.1.2] The element declaration required by context was
missing in schema.

Action: Add the element declaration to schema.

XML-24004: declaration for element string absent.

Cause: [cvc-assess-elt.1.1.1.3] The context-determined declaration was not skip and
the declaration that matches the element could not be found in schema.

Action: Add the element declaration to schema or change the context-determined
declaration to skip.

XML-24005: element string not assessed

Cause: [cvc-assess-elt.2]

XML-24006: element string laxly assessed

Cause: [cvc-assess-elt.2]

XML-24007: missing attribute declaration stringin element string

Cause: [cvc-attribute.1] Attribute declaration was absent from element declaration.

Action: Add the attribute declaration to schema.

XML-24008: type absent for attribute string

Cause: [cvc-attribute.2] Missing type definition for the attribute declaration.

Action: Specify a data type for the attribute declaration.

XML-24009: invalid attribute value string

Cause: [cvc-attribute.3] Invalid attribute value with respect to its type.

Action: Correct the attribute value in instance.

XML-24010: attribute value string and fixed value string not match

Cause: [cvc-au] Attribute's normalized value was not the same as the fixed value
declared.

Appendix A
XML Schema Validation Error Messages

A-24

Action: Change attribute value to the required value.

XML-24011: type of element string is abstract.

Cause: [cvc-complex-type.1] The type of this element was specified as abstract.

Action: Remove the abstract attribute from the type definition.

XML-24012: no children allowed for element string with empty content type

Cause: [cvc-complex-type.2.1] The content type was specified empty while the actual content
was not.

Action: Make the content empty or modify the content type of this element.

XML-24013: element child string not allowed for simple content

Cause: [cvc-complex-type.2.2] Element was declared with simple content, but instance had
element children.

Action: Use only character content for this element.

XML-24014: characters string not allowed for element-only content

Cause: [cvc-complex-type.2.3] Characters appeared in the content of element with element-
only content.

Action: Use only element children for this element.

XML-24015: multiple ID attributes in element string at line string, column string

Cause: [cvc-complex-type.2.5] More than one attributes with type ID or its derivation
matched attribute wildcard.

Action: Do not use more than one attributes with ID or ID derived type.

XML-24016: invalid string value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid with respect to string type.

Action: Correct the value to satisfy the declared type.

XML-24017: invalid boolean value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid with respect to boolean type.

Action: Correct the value to satisfy Boolean type, valid values are "0: 1", "true", and
"false".

XML-24018: invalid decimal value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters could not be parsed into a decimal value.

Action: Correct the data value to satisfy decimal type.

XML-24019: invalid float value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters could not be parsed into a float value.

Action: Correct the value to satisfy string type

Appendix A
XML Schema Validation Error Messages

A-25

XML-24020: invalid double value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not in valid double format as
specified in IEEE 754-1985.

Action: Correct the value to satisfy double format.

XML-24021: invalid duration string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not in correct extended date time
format defined in ISO 8601.

Action: Correct the value to satisfy format PnYnMnDTnHnMnS.

XML-24022: invalid date value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not in valid calendar date format
specified in ISO 8601.

Action: Correct the value to satisfy CCYY-MM-DD format.

XML-24023: invalid dateTime value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not in valid combined data time
format as specified in ISO 8601.

Action: Correct the value to satisfy format CCYY-MM-DDThh:mm:ss with optional time
zone.

XML-24024: invalid time value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not in valid time format as specified
in ISO 8601.

Action: Correct the value to satisfy format DDThh:mm:ss with optional time zone.

XML-24025: invalid gYearMonth value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not in valid right-truncated date
format, as specified in ISO 8601.

Action: Correct the value to satisfy format CCYY-MM.

XML-24026: invalid gYear value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not in valid right-truncated date
format, as specified in ISO 8601.

Action: Correct the value to satisfy format CCYY.

XML-24027: invalid gMonthDay value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not in valid left-truncated date
format, as specified in ISO 8601.

Action: Correct the value to required format --MM-DD.

Appendix A
XML Schema Validation Error Messages

A-26

XML-24028: invalid gDay value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not in valid left-truncated date format, as
specified in ISO 8601.

Action: Correct the value to required format ---DD.

XML-24029: invalid gMonth value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not in valid left-and-right-truncated date
format, as specified in ISO 8601.

Action: Correct the value to required format --MM--.

XML-24030: invalid hexBinary value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid hex encoded binary.

Action: Correct the value to satisfy hexBinary type.

XML-24031: invalid base64Binary value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid with respect to base64 encoding.

Action: Correct the value to satisfy base64 binary encoding.

XML-24032: invalid anyURI value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not in valid format as specified in RFC
2396 and RFC 2732.

Action: Correct the value to satisfy anyURI type.

XML-24033: invalid QName value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not in valid QName format.

Action: Correct the value to satisfy QName type.

XML-24034: invalid NOTATION value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid value for NOTATION type.

Action: Correct the value to satisfy NOTATION type.

XML-24035: invalid normalizedString value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid normalizedString value.

Action: Correct the value to satisfy normalizedString type.

XML-24036: invalid token value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid value for token type.

Action: Correct the value to satisfy token type.

XML-24037: invalid language value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid value for language type.

Appendix A
XML Schema Validation Error Messages

A-27

Action: Correct the value to satisfy language type.

XML-24038: invalid NMTOKEN value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid value for NMTOKEN type.

Action: Correct the value to satisfy NMTOKEN type.

XML-24039: invalid NMTOKENS value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid list of NMTOKEN type.

Action: Correct the value to satisfy NMTOKENS type.

XML-24040: invalid Name value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid value for Name type.

Action: Correct the value to satisfy Name type.

XML-24041: invalid NCName value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid value for NCName type.

Action: Correct the value to satisfy NCName type.

XML-24042: invalid ID value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid value for ID type.

Action: Correct the value to satisfy ID type.

XML-24043: invalid IDREF value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid value for IDREF type.

Action: Correct the value to satisfy IDREF type.

XML-24044: invalid ENTITY value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid value for ENTITY type

Action: Correct the value to satisfy ENTITY type.

XML-24045: invalid ENTITIES value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid list of ENTITY value.

Action: Correct the value to satisfy ENTITIES type.

XML-24046: invalid integer value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid value for integer type.

Action: Correct the value to satisfy integer type.

XML-24047: invalid nonPositiveInteger value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid value for
nonPositiveInteger type.

Appendix A
XML Schema Validation Error Messages

A-28

Action: Correct the value to satisfy nonPositiveInteger type.

XML-24048: invalid negativeInteger value string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid value for negativeInteger type.

Action: Correct the value to satisfy negativeInteger type.

XML-24049: invalid long value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid value for long type.

Action: Correct the value to satisfy long type.

XML-24050: invalid int value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid value for int type.

Action: Correct the value to satisfy int type.

XML-24051: invalid short value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid value for short type.

Action: Correct the value to satisfy short type.

XML-24052: invalid byte value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid value for byte type.

Action: Correct the value to satisfy byte type.

XML-24053: invalid nonNegativeInteger value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid value for nonNegativeInteger
type.

Action: Correct the value to satisfy nonNegativeInteger type.

XML-24054: invalid unsignedLong value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid value for unsignedlong type.

Action: Correct the value to satisfy unsignedlong type.

XML-24055: invalid unsignedInt value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid value of unsignedInt type.

Action: Correct the value to satisfy unsignedInt type.

XML-24056: invalid unsignedShort value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid value for unsignedShort type.

Action: Correct the value to satisfy unsignedShort type.

XML-24057: invalid unsignedByte value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid value for unsignedByte type.

Appendix A
XML Schema Validation Error Messages

A-29

Action: Correct the value to satisfy unsignedByte type.

XML-24058: value string must be valid with respect to one member type

Cause: [cvc-datatype-valid.1.2.3] Characters were invalid with respect to any member
type of union.

Action: Correct data value to satisfy at least one member type.

XML-24059: element string not expected at line string, column string

Cause: [cvc-elt.1]

XML-24060: element string abstract

Cause: [cvc-elt.2] Element declared abstract was used in instance document.

Action: Do not declare the element as abstract.

XML-24061: element string not nillable

Cause: [cvc-elt.3.1] There was an attribute xsi:nil, which was not allowed because
the element declaration was not nillable.

Action: Remove xsi:nil attribute from the element.

XML-24062: no character or element children allowed for nil content string

Cause: [cvc-elt.3.2.1] Element was specified nil but had character or element
children.

Action: Remove any element content or remove nil attribute.

XML-24063: nil element does not satisfy fixed value constraint

Cause: [cvc-elt.3.2.2] Element had an fixed value while the content in instance was
empty.

Action: Remove nil attribute from element.

XML-24064: xsi:type not a QName at line string, column string

Cause: [cvc-elt.4.1] The value of attribute xsi:type was not a QName.

Action: Change the value to a valid QName that references a type.

XML-24065: xsi:type string not resolved to a type definition

Cause: [cvc-elt.4.2] The referenced type specified by xsi:type was absent.

Action: Correct the value of xsi:type so it points to a valid type definition.

XML-24066: local type string not validly derived from the type of element string

Cause: [cvc-elt.4.3] The type referenced by xsi:type was not derived from original
type.

Action: Modify the reference type definition so that it satisfies the constraint, or use
another type that is derived from the original type.

Appendix A
XML Schema Validation Error Messages

A-30

XML-24067: value string not in enumeration

Cause: [cvc-enumeration-valid] The value was not one in the enumeration constraint.

Action: Use valid value specified in enumeration.

XML-24068: invalid facet string for type string

Cause: [cvc-facet-valid] The given data value violates the constraining facet.

Action: Correct the data value.

XML-24069: too many fraction digits in value string at line string, column string

Cause: [cvc-fractionDigits-valid] The given number violated the fractionDigits constraining
facet.

Action: Use fewer fraction digits.

XML-24070: missing ID definition for ID reference string at line string, column string

Cause: [cvc-id.1] There is no ID binding in the ID/IDREF table for validation root

Action: Define the ID for the ID reference

XML-24071: duplicate ID string at line string, column string

Cause: [cvc-id.2] Same ID was defined more than once.

Action: Eliminate duplicate ID attributes.

XML-24072: duplicate key sequence string

Cause: [cvc-identity-constraint] The document contained duplicate key sequence that
violated uniqueness constraint.

Action: Correct the document to make key sequence unique, or modify XPath to avoid it.

XML-24073: target node set not equals to qualified node set for key string

Cause: [cvc-identity-constraint.4.2.1] There were empty key sequences in key constraint.

Action: Make sure every element in target node set has a nonempty key sequence.

XML-24074: element member string in key sequence is nillable

Cause: [cvc-identity-constraint.4.2.3] The element selected as a member in a key sequence
was nillable, which is not allowed.

Action: Modify the schema to make corresponding element declaration not nillable.

XML-24075: missing key sequence for key reference string

Cause: [cvc-identity-constraint.4.3] A keyref referenced to empty key sequence.

Action: Make sure every key sequence for keyref is has a corresponding key sequence for
referenced key.

Appendix A
XML Schema Validation Error Messages

A-31

XML-24076: incorrect length of value string

Cause: [cvc-length-valid] The length of the value was not the same as specified in
length facet.

Action: Use data value with correct length.

XML-24077: value string greater than or equal to maxExclusive

Cause: [cvc-maxExclusive-valid] The data value was out of boundary specified in
maxExclusive facet.

Action: Correct the data value.

XML-24078: value string greater than the maxInclusive

Cause: [cvc-maxInclusive-valid] The data value was out of boundary specified in
maxInclusive facet.

Action: Correct the data value.

XML-24079: value length of string greater than maxLength

Cause: [cvc-maxLength-valid] The length of the data value was greater than
maxLength.

Action: Make the data value's length smaller than maxLength.

XML-24080: value string smaller or equals to minExclusive

Cause: [cvc-minExclusive-valid] The data value was out of lower boundary of value
range.

Action: Use data value that is greater to minExclusive.

XML-24081: value string smaller than minInclusive

Cause: [cvc-minInclusive-valid] The data value was too small.

Action: Use data value not smaller than the value of minInclusive.

XML-24082: value string shorter than minLength

Cause: [cvc-minLength-valid] The length of value was smaller than that specified in
minLength.

Action: Use data value with length greater than or equals to minLength.

XML-24083: wildcard particle in the content of element string not done

Cause: [cvc-particle.1.1] The wildcard particle's minOccurs had not been met.

Action: Have more elements in the content that match the wildcard.

XML-24084: element particle string not done

Cause: [cvc-particle.1.2] The element particle's minOccurs had not been met.

Action: Have more elements that match the element declaration or members in its
substitution group.

Appendix A
XML Schema Validation Error Messages

A-32

XML-24085: model group string in the content of element string not done

Cause: [cvc-particle.1.3] The model group particle's minOccurs had not been met.

Action: Have more elements in the content that match the model group.

XML-24086: invlid literal string with respect to pattern facet string

Cause: [cvc-pattern-valid] The literal did not match the pattern constraining facet.

Action: Correct the lexical data to match pattern facet.

XML-24087: undefined type string

Cause: [cvc-resolve-instance.1] Could not resolve the type reference to a type definition

Action: Add the type definition to schema

XML-24088: undeclared attribute string

Cause: [cvc-resolve-instance.2] Could not resolve attribute reference to an attribute
declaration.

Action: Add the attribute declaration to schema.

XML-24089: undeclared element string

Cause: [cvc-resolve-instance.3] Could not resolve element reference to an element
declaration

Action: Add the element declaration to schema.

XML-24090: undefined attribute group string

Cause: [cvc-resolve-instance.4] Could not resolve the attribute group reference to an
attribute group definition.

Action: Define the attribute group definition in schema.

XML-24091: undefined model group string

Cause: [cvc-resolve-instance.5] Could not resolve the model group reference to a model
group definition.

Action: Define the model group in schema.

XML-24092: undeclared notation string

Cause: [cvc-resolve-instance.6] Could not resolve the notation reference to a notation
declaration.

Action: Add the notation declaration to schema.

XML-24093: too many digits in value string at line string, column string

Cause: [cvc-totalDigits-valid] The number of digits in numeric value was greater than the
value of totalDigits facet.

Action: Use smaller numbers.

Appendix A
XML Schema Validation Error Messages

A-33

A.6 Schema Representation Constraint Error Messages
Schema representation constraint error messages are in the range XML-24100
through XML-24199.

XML-24100: element string must belong to XML Schema namespace

Cause: Element in XML Schema document did not have Schema namespace.

Action: Specify XML Schema namespace http://www.w3.org/2001/XMLSchema

XML-24101: can not build schema from location string

Cause: [schema_reference.2] Processor could not find schema from given schema
location

Action: Fix the schema location

XML-24102: can not resolve schema by target namespace string

Cause: [schema_reference.3] Processor was unable to retrieve schema based on
given namespace.

Action: Fix the schema namespace

XML-24103: invalid annotation representation at line string, column string

Cause: [src-annotation]

XML-24104: multiple annotations at line string, column string

Cause: [src-annotation] More than one annotation elements appeared in component.

Action: Remove extra annotation.

XML-24105: annotation must be the first element at line string, column string

Cause: [src-annotation] Annotation was not the first element in component.

Action: Move annotation to the begining of component content.

XML-24106: attribute wildcard before attribute declaration at line string, column
string

Cause: The attribute wildcard appeared before attribute declarations.

Action: Move attribute wildcard to the end of declaration.

XML-24107: multiple attribute wildcard

Cause: [src-attribute.1] More than one anyAttributes were declared.

Action: Remove extra attribute wildcards.

XML-24108: default string and fixed string both present

Cause: [src-attribute.1] Both default and fixed attriubtes were present in attriubte
declaration.

Appendix A
Schema Representation Constraint Error Messages

A-34

Action: Remove either default or fixed attribute.

XML-24109: default value string conflicts with attribute use string

Cause: [src-attribute.2] Both default and use were present, and value for use is not optional.

Action: Remove either default or use value.

XML-24110: missing name or ref attribute

Cause: [src-attribute.3.1] Neither name nor ref attribute was present in declaration.

Action: Add name or ref to the declaration.

XML-24111: both name and ref presented in attribute declaration

Cause: [src-attribute.3.1] Name and ref attribute were both present in attribute declaration.

Action: Add name or ref to the declaration.

XML-24112: ref conflicits with form, type, or simpleType child

Cause: [src-attribute.3.2] The attribute was a reference, and form, type or simpleType child
were specified.

Action: Either change ref to name, or remove form; or remove type, or children, or both.

XML-24113: type attribute conflicts with simpleType child

Cause: [src-attribute.4] Both type attribute and simpleType child were present.

Action: Remove either type reference or type definition.

XML-24114: intersecton of attribute wildcard is not expressible

Cause: [src-attribute_group.2] Attriubes wildcards defined were not expressible with a
wildcard.

Action: Remove inexpressible attribute wildcards.

XML-24115: circular attribute group reference string

Cause: [src-attribute_group.3] Attriubte group were circularly referenced outside redefine

Action: Remove circular reference

XML-24116: circular group reference string

Cause: group were circularly referenced outside redefine.

Action: Remove circular reference

XML-24117: base type string for complexContent is not complex type

Cause: [src-ct.1] Derived a complexType with complex content from simple type

Action: Change base type to complex type

XML-24118: simple content required in base type string

Cause: [src-ct.2] A complexType with simpleContent was derived from a complexType with
complex content

Appendix A
Schema Representation Constraint Error Messages

A-35

Action: Change base type to simple type (if derivation is extension) or simpleContent
complex type.

XML-24119: properties specified with element reference string

Cause: [src-element.2.2] Element reference also had complexType, simpleType, key,
keyrefunique children or nillable, form, default, block, or type attribute.

Action: Remove conflict attributes or children.

XML-24120: simpleType and complexType can not both present in element
declaration string

Cause: [src-element.3] Element declaration had both complexType, simpleType
children.

Action: Remove either simpleType or complexType child.

XML-24121: imported namespace string must different from namespace string

Cause: [src-import.1.1] The namespce of import was the same as the target
namespace of importing schema

Action: Change import to inclusion.

XML-24122: target namespace string required

Cause: [src-import.1.2] Imported namespace was specified but absent imported
schema.

Action: Remove namespace attribute in element import, or add target namespac to
the imported schema.

XML-24123: namespace stringis different from expedted targetNamespace string

Cause: [src-import.3.1] Specified namespace was different from actual
targetNamespace impported.

Action: Correct the namespace attribute in import element.

XML-24124: targetNamespace string not expected in schema

Cause: [src-import.3.2] Specified a no-namespace schema, but actual schema had
targetNamespace.

Action: Remove the imported schema's targetNamespace attribute

XML-24125: can not include schema from string

Cause: [src-include.1] Processor was unable to include a schema from given location.

Action: Check correctness of URL and URL resolver

XML-24126: included targetNamespace string must the same as string

Cause: [src-include.2.1] Tried to include a achema with different targetNamespace.

Action: Use import instead of include.

Appendix A
Schema Representation Constraint Error Messages

A-36

XML-24127: no-namespace schema can not include schema with target namespace
string

Cause: [src-include.2.2] A schema without targetNamespace tried to include a schema with
targetNamespace.

Action: Use import instead of include

XML-24128: itemType attribute conflicits with simpleType child

Cause: [src-list-itemType-or-simpleType] Both itemType attribute and simpleType child were
present in list simple type declaration.

Action: Remove either itemType attribute or simpleType child.

XML-24129: prefix of qname string can not be resolved

Cause: [src-qname] Prefix of a qname was present, but did not map to any in-scope
namespace.

Action: Declare a namespace corresponding to the prefix.

XML-24130: redefined schema has different namespace. line string column string

Cause: Redefined schema's targetNamespace was not the same as the targetNamespace of
redefining schema.

Action: Correct the targetNamespace in redefined schema.

XML-24131: no-namespace schema can only redefine schema without
targetNamespace

Cause: [src-redefine.3.2] A no-namespace schema tried to redefine a schema with
namespace

Action: Remove the targetNamespace attribute from redefined schema.

XML-24132: type derivation string must be restriction

Cause: [src-redefine.5] A simpleType or complexType was present in redefine, but the
derivation was not restriction.

Action: Change the type redefinition, make it a restriction.

XML-24132: type string must redefine itself at line string, column string

Cause: [src-redefine.5] A simpleType or complexType was present in redefine, but its base
type was not itself.

Action: Change the base type to redefine itself.

XML-24133: group string can have only one self reference in redefinition

Cause: [src-redefine.6.1.1] A group was present in redefine and it had more than
onereferences to itself in its content.

Action: Remove extra self references in the group redefinition.

Appendix A
Schema Representation Constraint Error Messages

A-37

XML-24134: self reference of group string must not have minOccurs or
maxOccurs other than 1 in redefinition

Cause: [src-redefine.6.1.2] A minOccurs or maxOccurs with value other than 1 was
specified in a group self reference in redefine.

Action: Remove the minOccurs or maxOccurs attribute.

XML-24135: redefined group stringis not a restriction of its orginal group

Cause: [src-redefine.6.2.2] A group presented in redefine, without self reference but
was nota valid restriction of its original group.

Action: Modify the content of the group, make it a valid restriction of its original.

XML-24236: attribute group string can have only one self reference in
redefinition

Cause: [src-redefine.7.1] An attributeGroup was present in redefine and it had more
than oneself references in its content.

Action: Remove extra self references.

XML-24136: redefined attribute group string must be a restriction of its orginal
group

Cause: [src-redefine.7.2.2] An attributeGroup presented in redefine, without self
reference but was not a valid restriction of its original.

Action: Modify the content of the attribute group, make it valid restriction of its original.

XML-24137: restriction must not have both base and simpleType child

Cause: [src-restriction-base-or-simpleType]

XML-24138: simple type restriction must have either base attribute or
simpleType child

Cause: [src-simple-type.2] Both base and simpleType were absent in simple type
restriction

Action: Add either base attribute or simpleType child.

XML-24139: neitehr itemType or simpleType child present for list

Cause: [src-simple-type.3] Missing itemType attribute or simpleType child in list
definition.

Action: Add either itemType or simpleType child

XML-24140: itemType and simpleType child can not both be present in list type.

Cause: [src-simple-type.3] Both itemType attribute and simpleType child were present
inlist definition

Action: Remove either itemType or simpleType child.

Appendix A
Schema Representation Constraint Error Messages

A-38

XML-24141: circular union type is disallowed

Cause: [src-simple-type.4] Some member types in union type made references to the union
type

Action: Remove the circular references

XML-24142: facet string can not be specified more than once

Cause: [src-single-facet-value] Same facet other than enumeration and pattern had been
specified more than once, which is not allowed.

Action: Remove extra facets.

XML-24143: memberTypes and simpleType child can not both be absent in union

Cause: [src-union-memberTypes-or-simpleTypes] Both memberTypes and simpleType were
absent for a union type.

Action: Either specify memberTypes or add simpleType children.

XML-24144: facets can only used for restriction

Cause: [st-restrict-facets] Derivation was not restriction while facet children were present.

Action: Remove facet children.

A.7 Schema Component Constraint Error Messages
Schema component constraint error messages are in the range XML-24200 through
XML-24399.

XML-24201: duplicate attribute string declaration

Cause: [ag-props-correct.1] There were more than one attribute declarations with same
namespace and name in attribute group definition.

Action: Remove duplicate attribute declarations.

XML-24202: more than one attributes with ID type not allowed

Cause: [ag-props-correct.2] There were more than one attribute declarations with type ID.

Action: Change to other types for such attriubte declarations

XML-24203: invalid value constraint string

Cause: [a-props-correct.2] The fixed value or default value did not satisfy the attribute's type

Action: Use type valid default for fixed value.

XML-24204: value constraint string not allowed for ID type

Cause: [a-props-correct.3] Attribute with ID type had either fixed or default value constraint.

Action: Remove value constraint.

Appendix A
Schema Component Constraint Error Messages

A-39

XML-24205: fixed value string does not match string in attribute declaration

Cause: [au-props-correct.2] Attriubte reference specified a fixed value which is not the
same as that in referenced declaration.

Action: Correct the fixed value to the same as specified in attribute declaration

XML-24206: value constraint must be fixed to match that in attribute declaration

Cause: [au-props-correct.2] Attriubte reference specified a default value, while the
referenced declaration had a fixed value.

Action: Remove default value form attribute reference.

XML-24207: invalid xpath expression string

Cause: [c-fields-xpaths.1] The value of xpath was not valid xpath expression as
specified in XPath 1.0.

Action: Use correct xpath

XML-24208: invalid field xpath string

Cause: [c-fields-xpaths.2] The value of xpath did not satisfied field's restricted xpath
syntax.

Action: Correct the xpath expression

XML-24209: maxOccurs in element string of All group must be 0 or 1

Cause: [cos-all-limited] Some elements in a All group had maxOccurs greater than
one.

XML-24210: All group has to form a content type.

Cause: All group was contained in another model group

Action: Make all group at the top of a content type

XML-24211: All group has to form a content type.

Cause: [cos-applicable-facets] All group was contained in another model group

Action: Make all group at the top of a content type

XML-24212: type string does not allow facet string

Cause: [cos-applicable-facets] A facet not applicable to the simple type was used.

Action: Remove the facet.

XML-24213: wildcard intersection is not exprssible

Cause: [cos-aw-intersect] Two wilcards in an attribtue group had different negative
namespaces

Action: Use only one wildcard with negative namespace

Appendix A
Schema Component Constraint Error Messages

A-40

XML-24214: base type not allow string derivation

Cause: [cos-ct-derived-ok.1] Base type's final prevented the derivation.

Action: Remove the derivation method from the value of final in base type

XML-24215: complex type string is not a derivation of type string

Cause: [cos-ct-derived-ok.2] There was no derivation chain from base type to derived type.

Action: Fix the derivation chaining.

XML-24216: must specify a particle in extened content type

Cause: [cos-ct-extends.1.4.2.1] The content type of an extension of a complex type was
empty

Action: Add particle to the content type of extension.

XML-24217: content type string conflicts with base type's content type string

Cause: [cos-ct-extends.1.4.2.2.2] Base type's content type was not empty and was not the
same as the content type specified.

Action: Match the specified content type with that in base type.

XML-24218: inconsistent local element declarations string

Cause: More than one elements in the content had same name and namespace, but did not
refer to the same type.

Action: Make type references the same for all elements equal in name and namespace

Comments: cos-element-consistent

XML-24219: element string is not valid substitutable for element string

Cause: [cos-equiv-derived-ok-rec]

XML-24220: itemType string can not be list

Cause: [cos-list-of-atomic] The itemType of a list type was itself a list.

Action: Use atomic or union type as the itemType of list.

XML-24221: cricular union string not allowed

Cause: [cos-no-circular-union] Union's name and namespace matched one of its
memberType.

Action: Remove any circular references

XML-24222: ambiguous particles string

Cause: [cos-nanambig] particles in a content type violated UPA (Unique Particle Attrition)
constraint.

Action: Make content type particle unambiguous.

Appendix A
Schema Component Constraint Error Messages

A-41

XML-24223: invalid particle extension

Cause: [cos-particle-extend]

XML-24224: invalid particle restriction

Cause: [cos-particle-restrict]

XML-24225: simple type string does not allowed restriction

Cause: [cos-st-derived-ok] Derivation was restriction but restriction was in base type's
final.

Action: Remove restriction from base type's final.

XML-24226: invalid derivation from base type string

Cause: [cos-st-derived-ok] The derivation violated the "type derivaton OK (simple)"
constraint.

Action: Make the derivation satisfy the constraint.

XML-24227: atomic type can not restrict list string

Cause: [cos-st-restricts.1.1] base type is list,

XML-24228: base type can not be ur-type in restriction

Cause: [cos-st-restricts.1.1] Tried to directly restrict anySimipleType.

XML-24229: base type of list must be list or ur-type

Cause: [cos-st-restricts.2.3]

XML-24230: base type of union must be union or ur-type

Cause: [cos-st-restricts.3.3]

XML-24231: element default stringrequires mixed content to be emptiable

Cause: [cos-valide-default] Element had default constraint but its mixed content type
was not emtiable.

Action: Remove default value constraint.

XML-24232: element default string requires mixed content or simple content

Cause: [cos-valide-default] Element had default value constraint but its content type
was element only or empty.

Action: Remove default value constraint.

XML-24233: element default string must be valid to its content type

Cause: [cos-valide-default] Element's default value constraint was invalid to its type.

Action: Correct the default value or remove it.

Appendix A
Schema Component Constraint Error Messages

A-42

XML-24234: wrong field cardinality for keyref string

Cause: [c-props-correct] Number of fields were different between keyref and referenced key.

Action: Ensure that keyref and referenced key have same number of fields.

XML-24235: complex type can only extend simple type string

Cause: [ct-props-correct] Complex type was derived from simple type, but derivation was not
extension.

Action: Change restriction to extension.

XML-24236: cricular type definition string

Cause: [ct-props-correct] Type was in its own derivation chain.

Action: Remove recursive derivation.

XML-24237: base type string must be complex type

Cause: [derivation-ok-restriction.1] Complex type was restricted from a simple type.

Action: Change the restriction from a complex type.

XML-24238: attribute string not allowed in base type

Cause: [derivation-ok-restriction.2] The attribute in restriction was not allowed for base type.

Action: Correct the restriction of attribute use.

XML-24239: required attribute string not in restriction

Cause: [derivation-ok-restriction.3] Restriction's attribute uses was not a subset of basetype's
attribute uses.

Action: Correct the restriction of attribute uses.

XML-24240: no correspoonding attribue wildcard in bas type string

Cause: [derivation-ok-restriction.4] Restriction had an attribute wildard that did not corrspond
to any attribute wildcard in base type.

Action: Correct the derivation.

XML-24241: base type string must have simple content or emptiable

Cause: [derivation-ok-restriction.5.1] Content type was simple, but the base type has
complex content that is not mixed or not emptiable.

Action: Change the content type from simple to element only.

XML-24242: base type string must have empty content or emptiable

Cause: [derivation-ok-restriction.5.2] Content type was empty, but the base type had simple
content or not emptiable complex content.

Action: Change the content type from simple to element only.

Appendix A
Schema Component Constraint Error Messages

A-43

XML-24243: enumeration facet required for NOTATION

Cause: [enumeration-required-notation] NOTATION type was used without
enumeration facet.

Action: Specify enumeration facet for NOTATION.

XML-24244: invalid value string in enumeration

Cause: [enumeration-valid-restriction] Some value in enumeration was not valid in
respect to the type.

Action: Correct invalid values.

XML-24245: default value stringis element type invalid

Cause: [e-props-correct.2] Default value was invalid in respect to the type of element.

Action: Correct the default value.

XML-24246: invalid substitutionGroup string, type invalid

Cause: [e-props-correc.3] The type of the element was not a validly derivation from
the type ofelement's substitutionGroup.

Action: Correct the type or remove substitutionGroup.

XML-24247: ID type does not allow value constraint string

Cause: [e-props-correct.4] Type was ID or its derivation whild there was a value
constraint.

Action: Remove value constraint.

XML-24248: fractionDigits stringgreater than totalDigits string

Cause: [fractionDigits-totalDigits] The value for fractionDigits was greater than
totalDigits.

Action: Make fractionDigits smaller or equal to totalDigits.

XML-24249: length facet can not be specified with minLength or maxLength

Cause: [length-minLength-maxLength] Both length and either minLength or
maxLength were specified.

Action: Remove length facet.

XML-24250: length string not the same as length in base type's

Cause: [length-valid-restriction] Specified a length that was not the same as the length
in base type.

Action: Remove length facet.

XML-24251: maxExclusive greater than its original

Cause: [maxExclusive-valid-restriction] Restricted maxExclusive was greater thant its
original in base type.

Appendix A
Schema Component Constraint Error Messages

A-44

XML-24252: minInclusive greater than or equal to maxExclusive

Cause: [maxInclusive-maxExclusive] Specified a minInclusive that was greater or equal to
maxExclusive.

Action: Make minInclusive smaller than maxExclusive.

XML-24253: maxLength is greater than that in base type

Cause: [maxLength-valid-restriction] Specified a maxLength greater than orginal in base
type.

Action: Sepcify a smaller maxLength to make it valid restriction.

XML-24254: circular group stringdisallowed

Cause: [mg-props-correct] Circular model group references.

Action: Remove circular references in model group definition.

XML-24256: minExclusive must be less than or equal to maxExclusive

Cause: [minExclusive-less-than-equals-to-maxExclusive] minExclusive was bigger than
maxExclusive.

Action: Use smaller value for minExclusive.

XML-24257: minExclusive stringmust be less than maxInclusive

Cause: [minExclusive-less-than-maxInclusive] inExclusive specified was greater than or
equal to maxInclusive.

Action: Specify smaller minExclusive.

XML-24258: invalid minExclusive string

Cause: [minExclusive-valid-restriction] Restriction's minExclusive was less than base type's
minExclusive

Action: Specify greater value for minExclusive.

XML-24259: invalid minExclusive string

Cause: [minExclusive-valid-restriction] Restriction's minExclusive was less than base type's
minInclusive

Action: Specify greater value for minExclusive

XML-24260: invalid minExclusive string

Cause: [minExclusive-valid-restriction] Restriction's minExlcusive was greater than base
type's maxInclusive

Action: Specify smaller value for minExclusive

XML-24261: invalid minExclusive string

Cause: [minExclusive-valid-restriction] Restriction's minExclusive was greater than or equals
to base type's maxExclusive

Appendix A
Schema Component Constraint Error Messages

A-45

Action: Specify smaller value for minExclusive.

XML-24262: minInclusive string must not be greater than maxInclusive

Cause: [minInclusive-less-than-equal-to-maxInclusive] Specified a minInclusive that
was greater than maxInclusive

Action: Specify smaller value for minInclusive.

XML-24263: Can not specify both minInclusive and minExclusive

Cause: [minInclusive-minExclusive]] Restriction specified both minInclusive and
minExclusive.

Action: Remove either minInclusive or minExclusive.

XML-24264: invalid minInclusive string

Cause: [minInclusive-valid-restriction] Restriction's minInclusive was less than or
equal to minInclusive in base type.

Action: Use minInclusive larger than that of base type.

XML-24265: invalid minInclusive string

Cause: [minInclusive-valid-restriction] Restriction's minInclusive was less than
minExclusivein base type.

Action: Use minInclusive larger than or equal to the minExclusive of base type.

XML-24267: invalid minInclusive string

Cause: [minInclusive-valid-restriction] Restriction's minInclusive was greater than
maxInclusive in base type.

Action: Use minInclusive smaller than or equal to the maxInclusive of base type.

XML-24268: invalid minInclusive string

Cause: Restriction's minInclusive was greater than or equal to maxEnclusive in base
type.

Action: Use minInclusive smaller than the maxEnclusive of base type.

Comments: minInclusive-valid-restriction

XML-24269: invalid minLength string

Cause: [minLength-less-than-equal-to-maxLength] minLength in restriction is greater
than base type's maxLength.

Action: Make minLength within the length range of base type.

XML-24270: invalid minLength string

Cause: [minLength-valid-restriction] Value of minLength is smaller than that of base
type in restriction.

Action: Use bigger value for minLength.

Appendix A
Schema Component Constraint Error Messages

A-46

XML-24271: can not declare xmlns attribute

Cause: [no-xmlns] Declared an attribute with name xmlns.

Action: Remove such declaraton.

XML-24272: no xsi for targetNamespace

Cause: [no-xsi] The schema's target namespace matched http://www.w3.org/2001/
XMLSchema-instance

Action: Use other target namespace.

XML-24272: minOccurs is greater than maxOccurs

Cause: [n-props-correct] The minOccurs of particle was greater than the maxOccurs.

Action: Use smaller value for minOccurs.

XML-24281: maxOccurs must greater than or equal to 1

Cause: [p-props-correct] The maxOccurs of particle was less than 1.

Action: Use greater value for maxOccurs.

XML-24282: incorrect Notation properties

Cause: [n-props-correct] The Notation declaration had incorrect properties.

Action: Fix Noation declaration.

XML-24283: particle's range is not valid restriction

Cause: [range-ok] Range of restriction was not within the range of parent particle.

XML-24284: sequence group is not valid derivation of choice group

Cause: Restriction did not satisfy constraint: Particle Derivation OK (Sequence:Choice --
MapAndSum)

Comments: rcase-MapAndSum

XML-24285: element string is not valid restriction of element string

Cause: [rcase-NameAndTypeOK] Restriction did not satisfy constraint: Particle Restriction
OK

XML-24286: element string is not valid restriction of wildcard

Cause: [rcase-NSCompat] Restriction did not satisfy constraint: Particle Restriction OK

XML-24287: group is not valid restriction of wildcard

Cause: [rcase-NSRecurseCheckCardinality] Restriction did not satisfy constraint: Particle
Restriction OK

XML-24288: group any is not valid restriction

Cause: [rcase-NSSubset] Restriction did not satisfy constraint: Particle Restriction
OK(Any:Any -- NSSubset)

Appendix A
Schema Component Constraint Error Messages

A-47

XML-24289: invalid restriction of all or sequence group

Cause: [rcase-Recurse] Restriction did not satisfy constraint: Particle Restriction
OK(All:All, Seqiemce"Sequence:-- Recurse)

XML-24290: wildcard is not valid restriction

Cause: [rcase-RecurseLax] The wildcard was not validly restricted from another
wildcard.

XML-24291: sequence is not a valid restriction of all

Cause: Restriction violated constraint: Particle Derivation OK (Sequence:All--
RecurseUnordered)

Action: Fix the restriction.

XML-24292: duplicate component definitions string

Cause: [sch-props-correct] There were two schema components with same name and
namespace.

Action: Remove duplicate definitions.

XML-24293: Incorrect simple type definition properties

Cause: [st-props-correct]

XML-24294: wildcard is not a subset of its super

Cause: [w-props-correct] The namespace constraint was not a restriction of its super

Action: Correct namespace constraint.

XML-24295: totalDigits stringis greater than string in base type

Cause: [totalDigits-valid-restriction] Restriction specified a totalDigits with value
greater than that in base type.

Action: Use smaller value for totalDigits.

XML-24296: whiteSpace string can not restrict base type's string

Cause: [whiteSpace-valid-restriction] Restriction's whiteSpace was replace or
preserve, and base had whiteSpace collapse, or restriction had replace while base
had preserve.

Action: Eliminate conflicit whiteSpace values.

XML-24297: circular substitution group string

Cause: Substitution group was circular.

Action: Remove the circular substitution group

Appendix A
Schema Component Constraint Error Messages

A-48

A.8 XSQL Server Pages Error Messages
XSQL server error messages are in the range XML-25000 through XML-25999.

XML-25001: Cannot locate requested XSQL file. Check the name.

XML-25002: Cannot acquire database connection from pool: string

XML-25003: Failed to find config file string in CLASSPATH.

XML-25004: Could not acquire a database connection named: string

XML-25005: XSQL page is not well-formed.

XML-25006: XSLT stylesheet is not well-formed: string

XML-25007: Cannot acquire a database connection to process page.

XML-25008: Cannot find XSLT Stylesheet: string

XML-25009: Missing arguments on command line

XML-25010: Error creating: string\nUsing standard output.

XML-25011: Error processing XSLT stylesheet: string

XML-25012: Cannot Read XSQL Page

XML-25013: XSQL Page URI is null; check exact case of file name.

XML-25014: Resulting page is an empty document or had multiple document elements.

XML-25015: Error inserting XML Document

XML-25016: Error parsing posted XML Document

XML-25017: Unexpected Error Occurred

XML-25018: Unexpected Error Occurred processing stylesheet string

XML-25019: Unexpected Error Occurred reading stylesheet string

XML-25020: Config file string is not well-formed.

XML-25021: Serializer string is not defined in XSQL configuration file

XML-25022: Cannot load serializer class string

XML-25023: Class string is not an XSQL Serializer

XML-25024: Attempted to get response Writer after getting OutputStream

XML-25025: Attempted to get response OutputStream after getting Writer

XML-25026: Stylesheet URL references an untrusted server.

XML-25027: Failed to load string class for built-in xsql:string action.

XML-25028: Error reading string. Check case of the name.

XML-25029: Cannot load error handler class string

XML-25030: Class string is not an XSQL ErrorHandler

XML-25100: You must supply a string attribute.

XML-25101: Fatal error in Stylesheet Pool

XML-25102: Error instantiating class string

XML-25103: Unable to load class string

XML-25104: Class string is not an XSQLActionHandler

XML-25105: XML returned from PLSQL agent was not well-formed

XML-25106: Invalid URL string

XML-25107: Error loading URL string

XML-25108: XML Document string is not well-formed

XML-25109: XML Document returned from database is not well-formed

XML-25110: XML Document in parameter string is not well-formed

XML-25111: Problem including string

XML-25112: Error reading parameter value

XML-25113: Error loading XSL transform string

XML-25114: Parameter string has a null value

XML-25115: No posted document to process

XML-25116: No query statement supplied

XML-25117: No PL/SQL function name supplied

XML-25118: Stylesheet URL references an untrusted server.

XML-25119: You must supply either the string or string attribute.

XML-25120: You selected fewer than the expected string values.

XML-25121: Cannot use 'xpath' to set multiple parameters.

XML-25122: Query must be supplied to set multiple parameters

XML-25123: Error reading string. Check case of the name.

XML-25124: Error printing additional error information.

XML-25125: Only one of (string) attributes is allowed.

XML-25126: One of (string) attributes must be supplied.

A.9 XML Pipeline Error Messages
XML pipeline error messages are in the range XML-30000 through XML-30999.

XML-30000: Error ignored in string: string

Cause: Error occurred while processes execution is ignored

Appendix A
XSQL Server Pages Error Messages

A-49

Action: None required

XML-30001: Error occurred in execution of Process

Cause: Component being wrapped by pipeline process is causing error

Action: Fix input XML content

XML-30002: Only XML type(s) string allowed.

Comments: Must not occur normally

XML-30003: Error creating/writing to output string

Cause: Output URL provided might be invalid

XML-30004: Error creating base url string

Cause: URL provided as base URL is invalid

Action: Fix base URL provided

XML-30005: Error reading input string

Cause: Input URL provided might be invalid

XML-30006: Error in processing pipedoc Error element

XML-30007: Error converting output to xml type required by dependent process

XML-30008: A valid parameter target is required

Cause: Parameter with name target is missing or invalid

Action: Add parameter target pointing to the target output label

XML-30009: Error piping output to input

XML-30010: Process definition element string needs to be defined

Cause: Element procdef is missing

Action: Add process definition to pipedoc.

XML-30011: ContentHandler not available

Cause: The dependent process does not provide a valid ContentHandler
Action: Implement the getContentHandler API in your Process.

XML-30012: Pipeline components are not compatible

Cause: Component output and input don't match in terms of document/docfrag.

Action: Fix the pipedoc to use components which are compatible.

XML-30013: Process with output label string not found

Cause: Process whose output label matched target label is not available.

Appendix A
XML Pipeline Error Messages

A-50

Action: Create a process in the pipedoc, where the output label matches the label of the
target parameter.

XML-30014: Pipeline is not complete, missing output/outparam label called string

Cause: A dependent process output label has not been named correctly, or a dependent
process is missing.

Action: Ensure that each dependent input has a corresponding output.

XML-30016: Unable to instantiate class

Cause: A process could not be created because there is an error in the process definition
element associated with it.

Action: Correctly specify the class for a process definition.

XML-30017: Target is up-to-date, pipeline not executed

Cause: Either the target does not exist, or the pipeline inputs are more recent than the target.

Action: Use the force option to execute pipeline regardless of whether the target is up to
date.

A.10 JAXB Error Messages
Java Architecture for XML Binding (JAXB) error messages are in the range XML-32000
through XML32999.

XML-32202: a problem was encountered because multiple <schemaBindings> were
defined.

Cause: There was more than one instance of <schemaBindings> declaration in the
annotation element of the <schema> element.

Action: Update the annotation to remove duplicate <schemaBinding> declaration.

XML-32203: a problem was encountered because multiple <class> name annotations
were defined on node string.

Cause: There was more than one instance of <class> declaration in the annotation element
of the node.

Action: Update the annotation to remove duplicate <class> declaration.

XML-32204: a problem was encountered because the name in <class> declaration
contained a package name prefix string which was not allowed.

Cause: A failure occurred because the name attribute in the <class> declaration contained a
package prefix.

Action: Update the className in the <class> declaration.

Comments: The package prefix is inherited from the current value of package.

XML-32205: a problem was encountered because the property customization was not
specified correctly on node string.

Cause: A failure occurred because the property customization was not specified correctly.

Appendix A
JAXB Error Messages

A-51

Action: Update the <property> customization.

XML-32206: a problem was encountered because the javaType customization
was not specified correctly on node string.

Cause: A failure occurred because the property customization was not specified
correctly.

Action: Update the <javaType> customization.

XML-32207: a problem was encountered in declaring the baseType
customization on the node string.

Cause: A failure occurred because the <baseType> customization was not specified
correctly.

Action: Update the <baseType> customization.

XML-32208: a problem was encountered because multiple baseType
customizations were declared on the node string.

Cause: A failure occurred because multiple <baseType> customizations were declared.

Action: Remove one of the <baseType> customization declaration.

XML-32209: a problem was encountered because multiple javaType
customizations were declared on the node string.

Cause: A failure occurred because multiple <javaType> customizations were declared.

Action: Remove one of the <javaType> customization declaration.

XML-32210: a problem was encountered because invalid value was specified on
customization of string.

Cause: A failure occurred because an invalid value was specified on the
globalBindings customization declaration.

Action: Check and correct the globalBindings customization value.

XML-32211: a problem was encountered because incorrect <schemaBindings>
customization was specified.

Cause: A failure occurred because an invalid value was specified on the
schemaBindings customization.

Action: Check and correct the schemaBindings customization value.

XML-32212: the <class> customization did not support specifiying the
implementation class using implClass declaration. The implClass declaration
specified on node string was ignored.

Cause: A warning occurred because the implClass customization declaration was not
supported.

Appendix A
JAXB Error Messages

A-52

XML-32213: the <globalBindings> customization did not support specifiying user
specific class that implements java.util.List. The collectionType declaration was
ignored.

Cause: A warning occurred because the user specific implementation class for
java.util.List was not supported.

Appendix A
JAXB Error Messages

A-53

B
XDK for Java TXU Error Messages

Error messages are listed for applications that use Oracle XML Developer's Kit (XDK) for
Java during the execution of TXU interfaces.

B.1 DLF Error Messages
Data Loading Format (DLF) error messages are in the range TXU-0100 through TXU-0199.

TXU-0100: parameter string in query string not found

Cause: There is not a placeholder for the parameter in the query

Action: Supply a parameter whose id can be found as an associated placeholder in the
associated query

TXU-0101: incompatible attributes col and constant coexist at string in query string

Cause: Attributes 'col' and 'constant' cannot coexist

Action: Remove either 'col' or 'constant' attribute

TXU-0102: node string not found

Cause: The document lacks an expected node

Action: Supply the missing node

TXU-0103: element string lacks content

Cause: The element has no data

Action: Supply content

TXU-0104: element string with SQL string lacks col or constant attribute

Cause: The element lacks a required attribute of 'col' or 'constant'

Action: Supply either 'col' or 'constant' attribute

TXU-0105: SQL exception string while processing SQL string

Cause: An error occurred during the SQL execution

Action: Resolve the error in the SQL statement

TXU-0106: no data for column string selected by SQL string

Cause: The SQL query returned no data

Action: Supply data or modify your query

B-1

TXU-0107: datatype string not supported

Cause: An attempt to process an unsupported data type was made

Action: Change the data type to a supported one

TXU-0108: missing maxsize attribute for column string

Cause: The size-unit attribute is specified but maxsize is not.

Action: Supply the maxsize attribute, too

TXU-0109: a text length of string for string exceeds the allowed maximum of
string

Cause: The length of the text data is too long

Action: Shorten the data so it fits in the limit, or enlarge the maxsize attribute and
ensure the database column is large enough

TXU-0110: undeclared column string in row string

Cause: A column in the data section is not declared in the columns section

Action: Modify the column name to a declared one

TXU-0111: lacking column data for string in row string

Cause: A column is declared but the data is missing.

Action: Supply the col element whose name attribute matches the column name

TXU-0112: undeclared query parameter string for column string

Cause: The query parameter refers to an undeclared column

Action: Specify a declared column

TXU-0113: incompatible attribute string with a query on column string

Cause: A column with a query cannot have the specified attribute

Action: Remove either the attribute or query

TXU-0114: DLF parse error (string) on line string, character string in string

Cause: The format is in error as reported

Action: Correct the erroneous part

TXU-0115: The specified date string string has an invalid format

Cause: The specified date string does not match the specified formatstring.

Action: Make sure the date string is in an appropriate date format

Appendix B
DLF Error Messages

B-2

B.2 TransX Informational Messages
TransX informational messages are in the range TXU-0200 throughTXU-0299.

TXU-0200: duplicate row at string

Cause: A duplicate row exists in the database

Action: This message appears on the DuplicateRowException to inform applications of
existance of one or more duplicate rows already stored in the database

B.3 TransX Error Messages
TransX error messages are in the range TXU-0300 through TXU-0399.

TXU-0300: document string not found

Cause: The document could not be located

Action: Modify the document location or supply the document at the location

TXU-0301: file string could not be read

Cause: An I/O error happened when reading the file

Action: Resolve the I/O problem

TXU-0302: archive string not found

Cause: The archive file could not be located

Action: Ensure that the CLASSPATH includes TransX correctly and only once

TXU-0303: schema string not found in string

Cause: The schema definition of DLF could not be located

Action: Get an unbroken copy of a TransX archive

TXU-0304: archive path for string not found

Cause: The path for the archive could not be determined

Action: Ensure that the CLASSPATH includes TransX correctly and only once

TXU-0305: no database connection on string call for string

Cause: The operation was attempted without a database connection

Action: Open a connection first

TXU-0306: null tablename given; access denied

Cause: The table name is not provided

Action: Specify a table name

Appendix B
TransX Informational Messages

B-3

TXU-0307: lookup-keys could not be determined string

Cause: The data dictionary is corrupted

Action: Restore the data dictionary

TXU-0308: binary file string not found

Cause: The file name is invalid

Action: Supply a good file name

TXU-0309: a file size of string exceeds the allowed maximum of 2,000 bytes

Cause: The file is too large

Action: Reduce the file size

B.4 Assertion Error Messages
Assertion error messages are in the range TXU-0400 through TXU-0499.

TXU-0400: missing SQL statement element on string

Cause: An internal assertion was not successful

Action: Contact Oracle customer support

TXU-0401: missing node string

Cause: An internal assertion was not successful

Action: Contact Oracle customer support

TXU-0402: invalid flag string

Cause: An internal assertion was not successful

Action: Contact Oracle customer support

TXU-0403: internal error string

Cause: An internal assertion was not successful

Action: Contact Oracle customer support

TXU-0404: unexpected Exception string

Cause: An internal assertion was not successful

Action: Contact Oracle customer support

Appendix B
Assertion Error Messages

B-4

C
XDK for Java XSU Error Messages

Error messages are listed for applications that use Oracle XML Developer's Kit (XDK) for
Java during the execution of the XML SQL Utility (XSU) interfaces.

C.1 Generic Error Messages
Generic error messages are in the range XSUE-0000 through XSUE-0099.

XSUE-0000: Internal Error -- Exception Caught string

XSUE-0001: Internal Error -- string

XSUE-0002: string is not a scalar column. The row id attribute can only get values from
scalar columns.

XSUE-0003: string is not a valid column name.

XSUE-0004: This object has been closed. If you would like the object not to be closed
implicitly between calls, see the string method.

XSUE-0005: The row-set enclosing tag and the row enclosing tag are both omitted;
consequently, the result can consist of at most one row which contains exactly one
column which is not marked to be an XML attribute.

XSUE-0006: The row enclosing tag or the row-set enclosing tag is ommitted;
consequently to get a well formed XML document, the result can only consist of a

C-1

single row with multiple columns or multiple rows with exactly one column
which is not marked to be an XML attribute.

XSUE-0007: Parsing of the sqlname failed -- invalid arguments.

XSUE-0008: Character string is not allowed in an XML tag name.

XSUE-0009: this method is not supported by string class. Please use string
instead.

XSUE-0010: The number of bind names does not equal the number of bind
values.

XSUE-0011: The number of bind values does not match the number of binds in
the SQL statement.

XSUE-0012: Bind name identifier string does not exist in the sql query.

XSUE-0013: The bind identifier has to be of non-zero length.

XSUE-0014: Root node supplied is null.

XSUE-0015: Invalid LOB locator specified.

XSUE-0016: File string does not exit.

XSUE-0017: Can not create oracle.sql.STRUCT object of a type other than
oracle.sql.STRUCT (i.e. ADT).

XSUE-0018: Null is not a valid DocumentHandler.

XSUE-0019: Null and empty string are not valid namespace aliases.

XSUE-0020: to use this method you will have to override it in your subclass.

XSUE-0021: You are using an old version of the gss library; thus, sql-xml name
escaping is not supported.

XSUE-0022: cannot create XMLType object from opaque base type: string

C.2 Query Error Messages
Query error messages are in the range XSUE-0100 through XSUE-0199.

XSUE-0100: Invalid context handle specified.

XSUE-0101: In the FIRST row of the resultset there is a nested cursor whose
parent cursor is empty; when this condition occurs we are unable to generate a
dtd.

XSUE-0102: string is not a valid IANA encoding.

XSUE-0103: The resultset is a "TYPE_FORWARD_ONLY" (non-scrollable);
consequently, xsu can not reposition the read point. Furthermore, since the

Appendix C
Query Error Messages

C-2

result set has been passed to the xsu by the caller, the xsu can not recreate the
resultset.

XSUE-0104: input character is invalid for well-formed XML: string

C.3 DML Error Messages
Data manipulation language (DML) error messages are in the range XSUE-0200 through
XSUE-0299.

XSUE-0200: The XML element tag string does not match the name of any of the
columns/attributes of the target database object.

XSUE-0201: NULL is an invalid column name.

XSUE-0202: Column string, specified to be a key column, does not not exits in table
string.

XSUE-0203: Column string, specified as column to be updated, does not exist in the
table string.

XSUE-0204: Invalid REF element - string - attribute string missing.

XSUE-0206: Must specify key values before calling update routine. Use the string
function.

XSUE-0207: UpdateXML: No columns to update. The XML document must contain
some non-key columns to update.

XSUE-0208: The key column array must be non empty.

XSUE-0209: The key column array must be non empty.

XSUE-0210: No rows to modify -- the row enclosing tag missing. Specify the correct
row enclosing tag.

XSUE-0211: string encountered during processing ROW element string in the XML
document.

XSUE-0212: string XML rows were successfully processed.

XSUE-0213: All prior XML row changes were rolled back.

Appendix C
DML Error Messages

C-3

D
Oracle XML Developer's Kit JavaBeans
(Deprecated)

A description is given of Oracle XML Developer's Kit (XDK) JavaBeans, which is deprecated.

Note:

The XDK JavaBeans, described in this appendix, and the corresponding XDK Java
application programming interface (API) packages and classes are deprecated in
Oracle Database 12c Release 1 (12.1). These components are still supported in
Oracle Database 12c Release 1 (12.1), but Oracle recommends not using them in
new applications. This functionality is deprecated with no replacement.

See Also:

Oracle Database XML Java API Reference for more information about the
deprecated XDK Java APIs

D.1 Introduction to XDK JavaBeans
XDK JavaBeans are a set of Extensible Markup Language (XML) components that you can
use in Java applications and applets.

D.1.1 Prerequisites for Using XDK JavaBeans
Prerequisites for using XDK JavaBeans are described.

This appendix assumes that you are familiar with these technologies:

• JavaBeans. JavaBeans components, or Beans, are reusable software components that
can be manipulated visually in a builder tool.

• Java Database Connectivity (JDBC). Database connectivity is included with the XDK
JavaBeans. The beans can connect directly to a JDBC-enabled database to retrieve and
store XML and Extensible Stylesheet Language (XSL) files.

• Document Object Model (DOM). DOM is an in-memory tree representation of the
structure of an XML document.

• Simple API for XML (SAX). SAX is a standard for event-based XML parsing.

• XML Schema language. See Using the XML Schema Processor for Java for an overview
and links to suggested reading.

D-1

D.1.2 Standards and Specifications for XDK JavaBeans
XDK JavaBeans require version 1.2 or later of XDK, and they can be used with any
version of JDK 1.2 or above. The XDK JavaBeans conform with the Sun JavaBeans
specification, and include the required BeanInfo class that extends
java.beans.SimpleBeanInfo.

The JavaBeans 1.01 specification describes JavaBeans as present in JDK 1.1.

The additions for the Java 2 platform to the JavaBeans core specification provide
developers with standard means to create more sophisticated JavaBeans
components.

Related Topics

• Oracle XML Developer's Kit Standards
A description is given of the Oracle XML Developer's Kit (XDK) standards.

See Also:

XDK on OTN for the JavaBeans specifications

D.1.3 XDK JavaBeans Features
XDK JavaBeans facilitate the addition of graphical user interfaces (GUIs) to XML
applications. Bean encapsulation includes documentation and descriptors that you can
access directly from Java integrated development environments (IDEs) such as Oracle
JDeveloper.

D.1.3.1 DOMBuilder
The oracle.xml.async.DOMBuilder bean constructs a DOM tree from an XML
document. The DOMBuilder JavaBean encapsulates the XML parser for class
DOMParser with a bean interface and supports asynchronous parsing. By registering a
listener, Java programs can initiate parsing of large or multiple documents and
immediately return control to the caller.

A main benefit of this bean is increased efficiency when parsing multiple files,
especially if the files are large. DOMBuilder can also provide asynchronous parsing in a
background thread in interactive visual applications. Without asynchronous parsing,
the GUI is useless until the document to be parsed. With DOMBuilder, the application
invokes the parse method and then resumes control. The application can display a
progress bar, allow the user to cancel the parse, and so forth.

Related Topics

• Using the DOMBuilder JavaBean: Basic Process
Class DOMBuilder implements an XML 1.0 parser according to the World Wide
Web Consortium (W3C) recommendation. It parses an XML document and builds
a DOM tree. The parsing is done in a separate thread. Interface
DOMBuilderListener must be used for notification when the tree is built.

Appendix D
Introduction to XDK JavaBeans

D-2

D.1.3.2 XSLTransformer
The oracle.xml.async.XSLTransformer JavaBean supports asynchronous transformation. It
accepts an XML document, applies an Extensible Stylesheet Language Transformation
(XSLT) stylesheet, and creates an output file. It lets you transform an XML document to
almost any text-based format, including XML, HTML, and data definition language (DDL).

This bean can also be used as the basis of a server-side application or servlet to render an
XML document, such as an XML representation of a query result, into HTML for display in a
browser.

The main benefit of the XSLTransformer bean is that it can transform multiple files in parallel.
Like DOMBuilder, you can also use it in visual applications to avoid long periods of time when
the GUI is nonresponsive. By implementing the XSLTransformerListener interface, the
invoking application receives notification when the transformation completes.

Related Topics

• Using the XSLTransformer JavaBean: Basic Process
The XSLTransformer bean encapsulates the Java XML parser XSLT processing engine
with a bean interface and extends its functionality to permit asynchronous transformation.
By registering a listener, your Java application can transform large and successive
documents by having the control returned immediately to the caller.

D.1.3.3 DBAccess
The oracle.xml.dbaccess.DBAccess bean maintains character large object (CLOB) tables that
contain multiple XML and text documents.

You can use it to store and retrieve XML documents in the database, but not to process them
within the database. Java applications that use the DBAccess bean connect to the database
through JDBC. XML documents stored in CLOB tables that are not of type XMLType do not
have their entities expanded.

The DBAccess bean enables you to do perform these tasks:

• Create and delete tables of type CLOB.

• Query the contents of CLOB tables.

• Perform INSERT, UPDATE, and DELETE operations on XML documents stored in CLOB
tables.

D.1.3.4 XMLDBAccess
The oracle.xml.xmldbaccess.XMLDBAccess bean extends the DBAccess bean to support
XML documents stored in XMLType tables. The class provides methods to list, delete, or
retrieve XMLType instances and their tables. For example, the getXMLXPathTextData()
method retrieves the value of an XPath expression from an XML document.

Appendix D
Introduction to XDK JavaBeans

D-3

DBAccess JavaBean maintains XMLType tables that can hold multiple XML and text
documents. Each XML or text document is stored as a row in the table. The table is
created with this structured query language (SQL) statement:

CREATE TABLE (FILENAME CHAR() UNIQUE,
 FILEDATA SYS.XMLType);

The FILENAME field holds a unique string used as a key to retrieve, update, or delete
the row. Document text is stored in the FILEDATA field.

The XMLDBAccess bean performs these tasks:

• Creates and deletes XMLType tables

• Lists the contents of an XMLType column

• Performs INSERT, UPDATE, and DELETE operations on XML documents stored in
XMLType tables

Related Topics

• Using the XMLDBAccess JavaBean: Basic Process
Basic use of the XMLDBAccess bean is described.

D.1.3.5 XMLDiff
When comparing XML documents, it is usually unhelpful to compare them character
by character. Most XML comparisons are concerned with differences in structure and
significant textual content, not differences in white space.

The oracle.xml.differ.XMLDiff bean performs these tasks:

• Constructs and compares the DOM trees for two input XML documents and
indicates whether the documents are different.

• Provides a graphical display of the differences between two XML files. Specifically,
you can refer to node insert, delete, modify, or move.

• Generates an XSLT stylesheet that can convert one of the input XML documents
into the other document.

The XMLDiff bean is especially useful in pipeline applications. For example, an
application could update an XML document, compare it with a previous version of the
document, and store the XSLT stylesheet that shows the differences between them.

Related Topics

• Using the XML Pipeline Processor for Java
An explanation is given of how to use the Extensible Markup Language (XML)
pipeline processor for Java.

• Using the XMLDiff JavaBean: Basic Process
Basic use of the XMLDiff bean is described.

D.1.3.6 XMLCompress
The Oracle XML parser includes a compressor that can serialize XML document
objects as binary streams.

Appendix D
Introduction to XDK JavaBeans

D-4

This is explained in Compressing and Decompressing XML. Although a useful tool,
compression with XML parser has these disadvantages:

• When XML data is deserialized, it must be reparsed.

• The encapsulation of XML data in tags greatly increase its size.

The oracle.xml.xmlcomp.XMLCompress bean is an encapsulation of the XML compression
functionality. It provides these advantages when serializing and deserializing XML:

• It encapsulates the method that serializes the DOM, which produces a stream.

• XML processors can regenerate the DOM from the compressed stream without reparsing
the XML.

The bean supports compression and decompression of input XML parsed by DOMParser or
SAXParser. DOM compression supports inputs of type XMLType, CLOB, and BLOB.

To use different parsing options, parse the document before input and then pass the
XMLDocument object to the compressor bean. The compression factor is a rough value based
on the file size of the input XML file and the compressed file. The limitation of the
compression factor method is that it can be used only when the compression is performed
with java.io.File objects as parameters.

D.1.3.7 XSDValidator
The oracle.xml.schemavalidator.XSDValidator bean encapsulates the XSDValidator
class and adds capabilities for validating a DOM tree.

A useful feature of this bean concerns validation errors. If the application throws a validation
error, method getStackList() returns a list of DOM tree paths that lead to the invalid node.
Nodes with errors are returned in a vector of stack trees in which the top element of the stack
represents the root node. You can get child nodes by pulling them from the stack. To use
getStackList() you must use instantiate the java.util.Vector and java.util.Stack
classes.

D.2 Using XDK JavaBeans: Overview
Topics here include basic use of JavaBeans and running the demo programs.

D.2.1 Using XDK JavaBeans: Basic Process
The program flow of Java applications that use the more useful beans is described. These
include DOMBuilder, XSLTransformer, XMLDBAccess, and XMLDiff.

D.2.1.1 Using the DOMBuilder JavaBean: Basic Process
Class DOMBuilder implements an XML 1.0 parser according to the World Wide Web
Consortium (W3C) recommendation. It parses an XML document and builds a DOM tree. The
parsing is done in a separate thread. Interface DOMBuilderListener must be used for
notification when the tree is built.

When developing applications that use this bean, you must import these subpackages:

• oracle.xml.async, which provides asynchronous Java beans for DOM building

Appendix D
Using XDK JavaBeans: Overview

D-5

• oracle.xml.parser.v2, which provides APIs for SAX, DOM, and XSLT

Subpackage oracle.xml.parser.v2 is described in XML Parsing for Java. The most
important DOM-related classes and interfaces in the javax.xml.async package are
described in Table D-1.

Table D-1 javax.xml.async DOM-Related Classes and Interfaces

Class/Interface Description

DOMBuilder class Encapsulates an XML parser to parse an XML document and build a DOM tree.
The parsing is done in a separate thread. The DOMBuilderListener interface
must be used for notification when the tree is built.

DOMBuilderEvent class Instantiates the event object that DOMBuilder uses to notify all registered
listeners about parse events.

DOMBuilderListener interface Must be implemented so that the program can receive notifications about events
during the asynchronous parsing. The class implementing this interface must be
added to the DOMBuilder with the addDOMBuilderListener() method.

DOMBuildeErrorEvent class Defines the error event that is sent when parse exception occurs.

DOMBuilderErrorListener
interface

Must be implemented so that the program can receive notifications when errors
are found during parsing. The class implementing this interface must be added
to the DOMBuilder with the addDOMBuilderErrorListener() method.

Figure D-1 depicts the basic process of an application that uses the DOMBuilder
JavaBean.

Appendix D
Using XDK JavaBeans: Overview

D-6

Figure D-1 DOMBuilder JavaBean Usage

fi
le

,
s
tr

in
g

 b
u

ff
e
r,

o

r
U

R
L

xm

l i
n
p
u
t

s
e
e
 t
h

e
 l
is

t
o

f

a
v
a
il
a
b

le

m
e
th

o
d

s

D
O

M
B

u
il

d
e

r.

p
a

rs
e

()

D
O

M
B

u
il
d

e
r.

a
d

d
D

O
M

B
u

il
d

e
r

L
is

te
n

e
r(

)

.D
O

M
B

u
il

d
e

r
L

is
te

n
e

r(
)

D
O

M

D
o

c
u

m
e

n
t

D
O

M
B

u
il
d

e
rL

is
te

n
e
r.

D

O
M

B
u

il
d

e
rO

v
e
r(

)

D
O

M
B

u
il
d

e
r.

g

e
tD

o
c
u

m
e
n

t(
)

p
e

rf
o

rm
 o

th
e

r
ta

s
k

s

.D
O

M
B

u
il

d
e

r
E

rr
o

r(
)

.D
O

M
B

u
il

d
e

r
S

ta
rt

e
d

()

a
s
y
n

c
 c

a
ll

Figure D-1 shows these stages of XML processing:

1. Parse the input XML document. The program can receive the XML document as a file,
string buffer, or URL.

2. Add the DOMBuilder listener. The program invokes the method
DOMBuilder.addDOMBuilderListener(DOMBuilderListener).

3. Parse the XML document. The program invokes the DOMBuilder.parse() method.

4. Optionally, process the parsed result further.

5. Invoke the listener when the program receives an asynchronous call. The listener, which
must implement the DOMBuilderListener interface, is called by invoking the
DOMBuilderOver() method.

The available DOMBuilderListener methods are:

• domBuilderError(DOMBuilderEvent), which is called when parse errors occur.

• domBuilderOver(DOMBuilderEvent), which is called when parsing completes.

• domBuilderStarted(DOMBuilderEvent), which is called when parsing begins.

Appendix D
Using XDK JavaBeans: Overview

D-7

6. Fetch the DOM. Invoke the DOMBuilder.getDocument() method to fetch the
resulting DOM document and output it.

D.2.1.2 Using the XSLTransformer JavaBean: Basic Process
The XSLTransformer bean encapsulates the Java XML parser XSLT processing
engine with a bean interface and extends its functionality to permit asynchronous
transformation. By registering a listener, your Java application can transform large and
successive documents by having the control returned immediately to the caller.

When developing applications that use this bean, you must import these subpackages:

• oracle.xml.async, which provides asynchronous Java beans for XSL
transformations

• oracle.xml.parser.v2, which provides APIs for XML parsing SAX, DOM, and
XSLT

The oracle.xml.parser.v2 subpackage is described in detail in XML Parsing for
Java. The most important XSL-related classes and interfaces in the javax.xml.async
package are described in Table D-2.

Table D-2 javax.xml.async XSL-Related Classes and Interfaces

Class/Interface Description

XSLTransformer class Applies XSL transformation in a background thread.

XSLTransformerEvent class Represents the event object used by XSLTransformer to notify XSL
transformation events to all of its registered listeners.

XSLTransformerListener
interface

Must be implemented so that the program can receive notifications about events
during asynchronous transformation. The class implementing this interface must
be added to the XSLTransformer with the addXSLTransformerListener()
method.

XSLTransformerErrorEvent
class

Instantiates the error event object that XSLTransformer uses to notify all
registered listeners about transformation error events.

XSLTransformerErrorListen
er interface

Must be implemented so that the program can receive notifications about error
events during the asynchronous transformation. The class implementing this
interface must be added to the XSLTransformer using
addXSLTransformerListener() method.

Figure D-2 shows XSLTransformer bean usage.

Appendix D
Using XDK JavaBeans: Overview

D-8

Figure D-2 XSLTransformer JavaBean Usage

X
S

L

s
ty

le
s
h

e
e
t,

X

M
L

 d
o

c
u

m
e
n

t

in
p

u
t

s
e
e
 t
h

e
 l
is

t
o

f

a
v
a
il
a
b

le

m
e
th

o
d

s

X
S

L
T

ra
n

s
fo

rm
e
r.

p

ro
c
e
s
s
X

S
L

()

X
S

L
T

ra
n

s
fo

rm
e
r.

a
d

d
X

S
L

T
ra

n
s
fo

rm
e
r

L
is

te
n

e
r(

)

X
L

is
te

n
e
r.

x
s
lT

ra
n

s
fo

rm
e
r

O
v
e
r(

)

a
s
y
n

c
 c

a
ll

X
M

L
 D

o
c
u

m
e
n

t
fr

a
g

m
e
n

t
X

S
L

T
ra

n
s
fo

rm
e
r.

g

e
tR

e
s
u

lt
()

p
e
rf

o
rm

 o
th

e
r

ta
s
k
s

Figure D-2 goes through these stages:

1. Input an XSLT stylesheet and XML instance document.

2. Add an XSLT listener. The program invokes the
XSLTransfomer.addXSLTransformerListener()method.

3. Apply the stylesheets. The XSLTransfomer.processXSL() method initiates the XSL
transformation in the background.

4. Optionally, perform further processing with the XSLTransformer bean.

5. Invoke the XSLT listener when the program receives an asynchronous call. The listener,
which must implement the XSLTransformerListener interface, is called by invoking the
xslTransformerOver() method.

6. Fetch the result of the transformation. Invoke the XSLTransformer.getResult() method
to return the XML document fragment for the resulting document.

7. Output the XML document fragment.

D.2.1.3 Using the XMLDBAccess JavaBean: Basic Process
Basic use of the XMLDBAccess bean is described.

When developing applications that use the XMLDBAccess bean, you must use these
subpackages:

• oracle.xml.xmldbaccess, which includes the XMLDBAccess bean

Appendix D
Using XDK JavaBeans: Overview

D-9

• oracle.xml.parser.v2, which provides APIs for XML parsing SAX, DOM, and
XSLT

The oracle.xml.parser.v2 subpackage is described in detail in XML Parsing for
Java. Some of the more important methods in the XMLDBAccess class are described in
Table D-3.

Table D-3 XMLDBAccess Methods

Class/Interface Description

createXMLTypeTable() Creates an XMLType table.

insertXMLTypeData() Inserts a text file as a row in an XMLType table.

replaceXMLTypeData() Replaces a text file as a row in an XMLType table.

getXMLTypeTableNames() Retrieves all XML tables with names starting with a
specified string.

getXMLTypeData() Retrieves text file from an XMLType table.

getXMLTypeXPathTextData() Retrieves the text data based on the XPath expression
from an XMLType table.

Figure D-3 shows typical XMLDBAccess bean usage. It shows how the DBAccess bean
maintains and manipulates XML documents stored in XMLTypes.

Figure D-3 XMLDBAccess JavaBean Usage

L
is

ts

X
M

L
T

y
p
e
�

ta
b
le

s

M
a
n

ip
u

la
te

s

X
M

L
T

y
p
e
�

ta
b
le

s

D
a
ta

b
a
s
e

X
M

L
D

B
A

c
c
e
s
s
�

b
e
a
n

F
ro

m
:

 ·	
S

Q
L

 r
e
s
u

lt
_
s
e
t

 	
fi

le
s

·	
C

L
O

B
s

·	
F

il
e
s

T
e
x
t

d
o

c
u

m
e
n

ts
:

 ·	
A

d
d

s

·	
R

e
p

la
c
e
s

·	
D

e
le

te
s

C
re

a
te

s
�

X
M

L
T

y
p
e
�

ta
b
le

s

In
s
e
rt

s
�

X
M

L
 d

a
ta

For example, an XMLDBAaccess program could process XML documents in these
stages:

1. Create an XMLType table. Invoke createXMLTypeTable() by passing it database
connection information and a table name.

2. List the XMLType tables. Invoke getXMLTypeTableNames() by passing it database
connection information and an empty string.

3. Load XML data into the table. Invoke replaceXMLTypeData() by passing it
database connection information, the table name, the XML file name, and a string
containing the XML.

Appendix D
Using XDK JavaBeans: Overview

D-10

4. Retrieve the XML data into a String. Invoke getXMLTypeData() by passing it the
connection information, the table name, and the XML file name.

5. Retrieve XML data based on an XPath expression. Invoke getXMLXPathTextData() by
passing it the connection information, the table name, the XML file name, and the XPath
expression.

6. Close the connection.

D.2.1.4 Using the XMLDiff JavaBean: Basic Process
Basic use of the XMLDiff bean is described.

When developing applications that use the XMLDiff bean, you typically use these
subpackages:

• oracle.xml.xmldiff, which includes the XMLDiff bean

• oracle.xml.parser.v2, which provides APIs for XML parsing SAX, DOM, and XSLT

• oracle.xml.async, which provides asynchronous Java beans for DOM building

Subpackage oracle.xml.parser.v2 is described in detail in XML Parsing for Java. Some
important methods in class XMLDiff are described in Table D-4.

Table D-4 XMLDiff Methods

Class/Interface Description

diff() Determines the differences between two input XML files or two XMLDocument
objects.

generateXSL() Generates an XSL file that represents the differences between the input two
XML files. The first XML file can be transformed into the second XML file with
the generated stylesheet. If the XML files are the same, then the XSL generated
can transform the first XML file into the second XML file, where the first and
second files are equivalent.

Related methods are generateXSLDoc() and generateXSLFile().

setFiles() Sets the XML files to be compared.

getDocument1() Gets the document root as an XMLDocument object of the first XML tree.
getDocument2() is the equivalent method for the second tree.

getDiffPane1() Gets the text panel as JTextPane object that visually shows the diffs in the first
XML file. getDiffPane2() is the equivalent method for the second file.

Figure D-4 shows typical XMLDiff bean usage. It shows how XMLDiff bean compares and
displays the differences between input XML documents.

Appendix D
Using XDK JavaBeans: Overview

D-11

Figure D-4 XMLDiff JavaBean Usage

R
e

tu
rn

s
 f

a
ls

e
 i

f

th
e

 s
a

m
e

,
tr

u
e

if

 d
if

fe
re

n
t

n
e

w
�

X
M

L
D

if
f(

)

N
e
w

�
F

il
e
()

N
e
w

�
F

il
e
()

X
M

L
D

if
f.

�
s
e
tF

il
e
s
()

X
M

L
D

if
f.

�
d

if
f(

)

R
e

tu
rn

s
 X

S
L

s

ty
le

s
h

e
e

t
a

s
 a

n

X
M

L
D

o
c

u
m

e
n

t

th
a

t
s

h
o

w
s

d

if
fe

re
n

c
e

s

X
M

L
D

if
f.

�
g

en
er

at
eX

S
L

D
o

c(
)

D
is

p
la

y
�

th
e
 D

O
M

s

c
re

a
te

d
 b

y
 �

X
M

L
D

if
f

A
v

a
il

a
b

le
 m

e
th

o
d

s
:

 ·	
g

e
tD

o
c

u
m

e
n

t1
()

·	

g
e

tD
o

c
u

m
e

n
t2

()

·	
g

e
tD

if
fP

a
n

e
1

()

·	
g

e
tD

if
fP

a
n

e
2

()

X
M

L
�

D
o

c
u

m
e

n
t

1
X

M
L

�
D

o
c

u
m

e
n

t
2

For example, an XMLDiff program could process XML documents in these stages:

1. Create an XMLDiff object.

2. Set the files to be compared. Create File objects for the input files and pass
references to the objects to XMLDiff.setFiles().

3. Compare the documents. The diff() method returns false if the XML files are
the same and true if they are different.

4. Respond depending on the whether the input XML documents are the same or
different. For example, if they are the same, invoke
JOptionPane.showMessageDialog() to print a message.

5. Generate an XSLT stylesheet that shows the differences between the input XML
documents. For example, generateXSLDoc() generates an XSL stylesheet as an
XMLDocument.

6. Display the DOM trees created by XMLDiff.

Appendix D
Using XDK JavaBeans: Overview

D-12

D.2.2 Running XDK JavaBean Demo Programs
Demo programs for XDK SJavaBeans are included in directory $ORACLE_HOME/xdk/demo/
java/transviewer.

The demos show the use of the XDK beans described in XDK JavaBeans Features, and also
some visual beans that are now deprecated. The beans used in the demos are:

• XSLTransformer
• DOMBuilder
• DBAccess
• XMLDBAccess
• XMLDiff
• XMLCompress
• XSDValidator
• oracle.xml.srcviewer.XMLSourceView (deprecated)

• oracle.xml.treeviewer.XMLTreeView (deprecated)

• oracle.xml.transformer.XMLTransformPanel (deprecated)

• oracle.xml.dbviewer.DBViewer (deprecated)

Although the visual beans are deprecated, they remain useful as educational tools.
Consequently, the deprecated beans are included in $ORACLE_HOME/lib/xmldemo.jar. The
nondeprecated beans are included in $ORACLE_HOME/lib/xml.jar.

Table D-5 lists the sample programs provided in the demo directory. The first column of the
table indicates which sample program use deprecated beans.

Table D-5 JavaBean Sample Java Source Files

Sample File Name Description

sample1
(deprecated
)

XMLTransformPanelSample.ja
va

A visual application that uses the XMLTransformPanel,
DOMBuilder, and XSLTransformer beans. This bean applies
XSL transformations to XML documents and shows the result.

sample2
(deprecated
)

ViewSample.java A sample visual application that uses the XMLSourceView and
XMLTreeView beans. It visualizes XML document files.

sample3 AsyncTransformSample.java A nonvisual application that uses the XSLTransformer and
DOMBuilder beans. It applies the XSLT stylesheet specified in
doc.xsl on all .xml files in the current directory. It writes the
results to files with the extension .log.

sample4
(deprecated
)

DBViewSample.java A visual application that uses the DBViewer bean to implement a
simple application that handles insurance claims.

sample4
(deprecated
)

DBViewClaims.java This JFrame subclass is instantiated in the DBViewFrame class,
which is in turn instantiated in the DBViewSample program.

Appendix D
Using XDK JavaBeans: Overview

D-13

Table D-5 (Cont.) JavaBean Sample Java Source Files

Sample File Name Description

sample4
(deprecated
)

DBViewFrame.java This JFrame subclass is instantiated in the DBViewSample
program.

sample5 XMLDBAccessSample.java A nonvisual application for the XMLDBAccess bean. This
program demonstrates how to use the XMLDBAccess bean APIs
to store and retrieve XML documents in XMLType tables.

To use XMLType, you need Oracle Database and xdb.jar. The
program accepts values for HOSTNAME, PORT, SID, USERID, and
PASSWORD. The program creates tables in the database and
loads data from file booklist.xml. The program writes output
to xmldbaccess.log.

sample6
(deprecated
)

XMLDiffSample.java A visual application that uses the XMLDiff bean to find
differences between two XML files and generate an XSLT
stylesheet. You can use this stylesheet to transform the first input
XML into the second input XML file.

sample6
(deprecated
)

XMLDiffFrame.java A class that implements the ActionListener interface. This
class is used by the XMLDiffSample program.

sample6
(deprecated
)

XMLDiffSrcView.java A JPanel subclass used by the XMLDiffSample program.

sample7
(deprecated
)

compviewer.java A visual application that uses the XMLCompress bean to
compress XML. The XML input can be an XML file or XML data
obtained through a SQL query. The application enables you to
decompress the compressed stream and view the resulting DOM
tree.

sample7
(deprecated
)

compstreamdata.java A simple class that pipes information from the GUI to the bean.
This class is used in dbpanel.java, filepanel.java, and
xmlcompressutil.java.

sample7
(deprecated
)

dbpanel.java A JPanel subclass used in xmlcompressutil.java.

sample7
(deprecated
)

filepanel.java A JPanel subclass used in xmlcompressutil.java.

sample7
(deprecated
)

xmlcompressutil.java A JPanel subclass used in compviewer.java.

sample8
(deprecated
)

XMLSchemaTreeViewer.java A visual application that uses the Treeviewer, sourceviewer,
and XSDValidator beans. The application accepts an XML
instance document and an XML schema document as inputs.
The application parses both the documents and validates the
instance document against the schema. If the document is
invalid, then the nodes where the errors occurred are highlighted
and an error message is shown in a tool tip.

Appendix D
Using XDK JavaBeans: Overview

D-14

Table D-5 (Cont.) JavaBean Sample Java Source Files

Sample File Name Description

sample8
(deprecated
)

TreeViewerValidate.java A JPanel subclass that displays a parsed XML instance
document as a tree. This class is used by the
XMLSchemaTreeViewer.java program.

sample9
(deprecated
)

XMLSrcViewer.java A visual application that uses the sourceviewer and
XSDValidator beans. The demo takes an XML file as input.
You can select the validation mode: document type definition
(DTD), XML schema, or no validation. The program validates the
XML data file against the DTD or schema and displays it with
syntax highlighting. It also logs validation errors. For schema
validation it also highlights the error nodes appropriately.
External and internal DTDs can be viewed.

sample9
(deprecated
)

XMLSrcViewPanel.java A class that shows how to use the XMLSourceView and
DTDSourceView objects. This class is used by the
XMLSrcViewer.java program.Each XMLSourceView object is
set as a Component of a JPanel by invoking
goButton_actionPerformed(). The XML file to be viewed is
parsed and the resulting XML document is set in the
XMLSourceView object by invoking makeSrcPane(). The
highlighting and DTD display properties are specified at this
time. For performing schema validation, build the schema object
by invoking makeSchemaValPane(). You can can check for
errors and display the source code accordingly with different
highlights. You can retrieve a list of schema validation errors from
the XMLSourceView by invoking dumpErrors().

sample10 XSDValidatorSample.java An application that shows how to use the XSDValidator bean.
It accepts an XML file and an XML schema file as input. The
program displays errors occurring during validation, including line
numbers.

Table D-6 describes additional files that are used by the demo programs.

Table D-6 JavaBean Sample Files

File Name Description

XMLDiffData1.txt An XML document used by the XMLDiffSample.java program. By default the 2 XML
files XMLDiffData1.txt and XMLDiffData2.txt are compared and the output XSLT is
stored as XMLDiffSample.xsl.

XMLDiffData2.txt An XML document used by the XMLDiffSample.java program. By default the 2 XML
files XMLDiffData1.txt and XMLDiffData2.txt are compared and the output XSLT is
stored as XMLDiffSample.xsl.

booklist.xml An XML document for use by XMLDBAccessSample.java.

claim.sql An XML document used by ViewSample.java and XMLDBAccessSample.java.

doc.xml An XML document for use by AsyncTransformSample.java.

doc.xsl An XSLT stylesheet for use by AsyncTransformSample.java.

emptable.xsl An XSLT stylesheet for use by AsyncTransformSample.java, ViewSample.java, or
XMLTransformPanelSample.java.

Appendix D
Using XDK JavaBeans: Overview

D-15

Table D-6 (Cont.) JavaBean Sample Files

File Name Description

note_in_dtd.xml A sample XML document for use in XMLSrcViewer.java. You can use this file in DTD
validation mode to view an internal DTD with validation errors. An internal DTD can be
optionally displayed along with the XML data.

purchaseorder.xml An XML document used by the XSDValidatorSample.java program. The instance
document purchaseorder.xml does not conform to the XML schema defined in
purchaseorder.xsd, which causes the program to display the errors.

purchaseorder.xsd An XML schema document used by the XSDValidatorSample.java program. The
instance document purchaseorder.xml does not conform to the XML schema defined
in purchaseorder.xsd, which causes the program to display the errors.

Documentation for how to compile and run the sample programs is located in the
README in the same directory. The basic steps are:

1. Change into the $ORACLE_HOME/xdk/demo/java/transviewer directory (UNIX) or
%ORACLE_HOME%\xdk\demo\java\transviewer directory (Windows).

2. Make sure that your environment variables are set as described in Setting Up the
XDK for Java Environment. The beans require Java Development Kit (JDK) 1.2 or
later. The DBViewer and DBTransformPanel beans require JDK 1.2.2 when
rendering HTML. Prior versions of the JDK may not render HTML in the result
buffer properly.

3. Edit the Makefile (UNIX) or Make.bat (Windows) for your environment. In
particular,:

• Change the JDKPATH in the Makefile to point to your JDK path.

• Change PATHSEP to the appropriate path separator for your operating system.

• Change the HOSTNAME, PORT, SID, USERID, and PASSWORD parameters so that
you can connect to the database through the JDBC thin driver. These
parameters are used in sample4 and sample5.

4. Run make (UNIX) or Make.bat (Windows) at the system prompt to generate the
class files.

5. Run gmake to run the demos:

gmake sample1
gmake sample2
gmake sample3
gmake sample4
gmake sample5
gmake sample6
gmake sample7
gmake sample8
gmake sample9
gmake sample10

D.2.2.1 Running sample1
Sample1 is the program that uses the XMLTransViewer bean.

You can run the program manually:

Appendix D
Using XDK JavaBeans: Overview

D-16

java XMLTransformPanelSample

You can use the program to import and export XML files from Oracle Database, store XSL
transformation files in the database, and apply stylesheets to XML interactively. To use the
database connectivity feature in this program, you must know the network name of the
computer where the database runs, the port (usually 1521), and the name of the Oracle
instance (usually orcl). You also need an account with CREATE TABLE privileges. If you have
installed the sample schemas, then you can use the account hr. You can the XMLTransViewer
program to apply stylesheet transformation to XML files and display the result.The program
displays a panel with tabs on the top and the bottom. You can use the first two top tabs to
switch between the XML buffer and the XSLT buffer. The third tab performs XSL
transformation on the XML buffer and displays the result. You can use the first two tabs on
the bottom to load and save data from Oracle Database and from the file system. The
remaining bottom tabs switch the display of the current content to tree view, XML source, edit
mode and, in case of the result view after the transformation, HTML.

D.2.2.2 Running sample2
Sample2 is a GUI-based demo for the XMLSourceView and XMLTreeView beans, which are
deprecated. The ViewSample program displays the booklist.xml file in separate source and
tree views.

You can run the program manually:

java ViewSample

D.2.2.3 Running sample3
Sample3 is a nonvisual demo for the asynchronous DOMBuilder and XSLTransformer beans.
The AsyncTransformSample program applies the doc.xsl XSLT stylesheet to all *.xml files
in the current directory. The program writes output to files with the extension .log.

You can run the program manually:

java AsyncTransformSample

D.2.2.4 Running sample4
Sample4 is a visual demo for the DBViewer bean, which is deprecated.

It runs in these stages:

1. It starts SQL*Plus, connects to the database with the USERID and PASSWORD specified in
the Makefile, and runs the claim.sql script. This script creates several tables, views,
and types for use by the DBViewSample demo program.

2. It runs the DBViewSample program:

java -classpath "$(MAKE_CLASSPATH)" DBViewSample
JDBC connection information is hard-coded in the DBViewClaims.java source file, which
implements a class used by the demo. Specifically, the program assumes the values for
USERID, PASSWORD, and so forth set in the Makefile. If your configuration is different, navigate
to line 92 in DBViewClaims.java and modify setUsername(), setPassword(), and so forth
with values that reflect your Oracle Database configuration.

Appendix D
Using XDK JavaBeans: Overview

D-17

D.2.2.5 Running sample5
Sample5 is a nonvisual demo for the XMLDBAccess bean. It uses the XMLType objects
to store XML documents inside the database. The following program connects to the
database with the Java thin client, creates XMLType tables, and loads the data from
booklist.xml.

To run the program you must specify these pieces of information as command-line
arguments:

• Host name (for example, myhost)

• Port number (for example, 1521)

• SID of the database (for example, ORCL)

• Database account in which the tables are created (for example, hr)

• Password for the database account (for example, hr)

For example, you can run the program:

java XMLDBAccessSample myhost 1521 ORCL hr hr

The following text shows sample output from dbaccess.log:

Demo for createXMLTypeTables():
Table +'testxmltype' successfully created.

Demo for listXMLTypeTables():
tablenamename=TESTXMLTYPE

Demo for replaceXMLTypeData() (similar to insert):
XML Data from +'booklist.xml' successfully replaced in table 'testxmltype'.

Demo for getXMLTypeData():
XMLType data fetched:
<?xml version="1.0"?>
<booklist>
 <book isbn="1234-123456-1234">
 <title>C Programming Language</title>
 <author>Kernighan and Ritchie</author>
 <publisher>EEE</publisher>
 <price>7.99</price>
 </book>
...
 <book isbn="1230-23498-2349879">
 <title>Emperor's New Mind</title>
 <author>Roger Penrose</author>
 <publisher>Oxford Publishing Company</publisher>
 <price>15.99</price>
 </book>
</booklist>

Demo for getXMLTypeXPathTextData():
Data fetched using XPath exp '/booklist/book[3]':
<book isbn="2137-598354-65978">
 <title>Twelve Red Herrings</title>
 <author>Jeffrey Archer</author>
 <publisher>Harper Collins</publisher>

Appendix D
Using XDK JavaBeans: Overview

D-18

 <price>12.95</price>
</book>

D.2.2.6 Running sample6
The sample6 program is a visual demo for the XMLDiff bean.

The XMLDiffSample class invokes a GUI that enables you to choose the input data files from
the File menu by selecting Compare XML Files. The Transform menu enables you to apply
the generated XSLT generated to the first input XML. Select Save As in the File menu to
save the output XML file, which is the same as the second input file. By default, the program
compares XMLDiffData1.txt to XMLDiffData2.txt and stores the XSLT output as
XMLDiffSample.xsl.

You can run the program manually:

java -mx50m XMLDiffSample XMLDiffData1.txt XMLDiffData2.txt

If the input XML files use a DTD that accesses a URL outside a firewall, then modify
XMLDiffSample.java to include the proxy server settings before the setFiles() invocation.
For example, modify the program as follows:

/* Set proxy to access dtd through firewall */
Properties p = System.getProperties();
p.put("proxyHost", "www.proxyservername.com");
p.put("proxyPort", "80");
p.put("proxySet", "true");
/* You will also have to import java.util.*; */

D.2.2.7 Running sample7
The sample7 visual demo shows the use of the XMLCompress bean. Class compviewer invokes
a GUI that lets the user compress and uncompress XML files and data obtained from the
database. The loading options let the user retrieve the data from a file system or a database.

This application does not support loading and saving compressed data from the database.
The compression factor indicates a rough estimate by which the XML data is reduced.

You can run the program manually:

java compviewer

D.2.2.8 Running sample8
The sample8 demo uses the XMLTreeViewer bean. The XMLSchemaTreeViewer program lets a
user view an XMLDocument in a tree format. The user can input an XML-schema document
and validate an instance document against the schema. If the document is invalid, invalid
nodes are highlighted with an error message.

Also, the program displays a log of all the line information in a separate panel, which enables
the user to edit the instance document and revaluated. Test the program with sample files
purchaseorder.xml and purchaseorder.xsd. The instance document purchaseorder.xml
does not conform to the schema defined in purchaseorder.xsd.

You can run the program manually:

java XMLSchemaTreeViewer

Appendix D
Using XDK JavaBeans: Overview

D-19

D.2.2.9 Running sample9
The sample9 demo uses the SourceViewer bean. The XMLSrcViewer program lets you
view an XML document or a DTD, with syntax highlighting. You can validate the
document against an input XML schema or DTD. The DTD can be internal or external.

If the validation is successful, then you can view the instance document and XML
schema or DTD in the Source View pane. If errors were encountered during schema
validation, then an error log with line numbers is available in the Error pane. The
Source View pane shows the XML document with error nodes highlighted.You can
use sample files purchaseorder.xml and purchaseorder.xsd for testing XML schema
validation with errors. You can use note_in_dtd.xml with DTD validation mode to view
an internal DTD with validation errors. You can run the program manually:

java XMLSrcViewer

D.2.2.10 Running sample10
The sample10 demo shows the use of the XSDValidator bean.

The XSDValidatorSample program's two input arguments are an XML document and
its associated XML schema. The program displays errors occurring during validation,
including line numbers.

The following program uses purchaseorder.xsd to validate the contents of
purchaseorder.xml:

java XSDValidatorSample purchaseorder.xml purchaseorder.xsd

The XML document fails (intentionally) to validate against the schema. The program
displays these errors:

Sample purchaseorder.xml purchaseorder.xsd
<Line 2, Column 41>: XML-24523: (Error) Invalid value 'abc' for attribute:
'orderDate'
#document->purchaseOrder
<Line 7, Column 27>: XML-24525: (Error) Invalid text 'CA' in element: 'state'
#document->purchaseOrder->shipTo->state->#text
<Line 8, Column 25>: XML-24525: (Error) Invalid text 'sd' in element: 'zip'
#document->purchaseOrder->shipTo->zip->#text
<Line 14, Column 27>: XML-24525: (Error) Invalid text 'PA' in element: 'state'
#document->purchaseOrder->billTo->state->#text
<Line 17, Column 22>: XML-24534: (Error) Element 'coment' not expected.
#document->purchaseOrder->coment
<Line 29, Column 31>: XML-24534: (Error) Element 'shipDae' not expected.
#document->purchaseOrder->items->item->shipDae

D.3 Processing XML with XDK JavaBeans
Topics here include processing XML documents asynchronously using the DOMBuilder
and XSLTransformer beans, and comparing XML documents using the XmlDiff bean.

Appendix D
Processing XML with XDK JavaBeans

D-20

D.3.1 Processing XML Asynchronously with the DOMBuilder and
XSLTransformer Beans

You can use XDK JavaBeans to perform asynchronous XML processing.

This is explained in XSLTransformer.

The AsyncTransformSample.java program shows how to use the DOMBuilder and
XSLTransformer beans. The program implements these methods:

• runDOMBuilders()
• runXSLTransformer()
• saveResult()
• makeXSLDocument()
• createURL()
• init()
• exitWithError()
• asyncTransform()
The basic architecture of the program is:

1. The program declares and initializes the fields used by the class. The input XSLT
stylesheet is hard-coded in the program as doc.xsl. The class defines these fields:

String basedir = new String (".");
OutputStream errors = System.err;
Vector xmlfiles = new Vector();
int numXMLDocs = 1;
String xslFile = new String ("doc.xsl");
URL xslURL;
XMLDocument xsldoc

2. The main() method invokes the init() method to perform the initial setup. This method
lists the files in the current directory, and if it finds files that end in the extension .xml, it
adds them to a Vector object. The implementation for the init() method is:

boolean init () throws Exception
{
 File directory = new File (basedir);
 String[] dirfiles = directory.list();
 for (int j = 0; j < dirfiles.length; j++)
 {
 String dirfile = dirfiles[j];

 if (!dirfile.endsWith(".xml"))
 continue;

 xmlfiles.addElement(dirfile);
 }

 if (xmlfiles.isEmpty()) {
 System.out.println("No files in directory were selected for processing");
 return false;
 }

Appendix D
Processing XML with XDK JavaBeans

D-21

 numXMLDocs = xmlfiles.size();

 return true;
}

3. The main() method instantiates AsyncTransformSample:

AsyncTransformSample inst = new AsyncTransformSample();
4. The main() method invokes the asyncTransform() method. The

asyncTransform() method performs these main tasks:

a. Invokes makeXSLDocument() to parse the input XSLT stylesheet.

b. Invokes runDOMBuilders() to initiate parsing of the instance documents, that
is, the documents to be transformed, and then transforms them.

After initiating the XML processing, the program resumes control and waits while
the processing occurs in the background. When the last request completes, the
method exits.

The following code shows the implementation of the asyncTransform() method:

void asyncTransform () throws Exception
{
 System.err.println (numXMLDocs +
 " XML documents will be transformed" +
 " using XSLT stylesheet specified in " + xslFile +
 " with " + numXMLDocs + " threads");

 makeXSLDocument ();
 runDOMBuilders ();

 // wait for the last request to complete
 while (rm.activeFound())
 Thread.sleep(100);
}

D.3.1.1 Parsing the Input XSLT Stylesheet
Parsing an XSLT stylesheet is described.

Method makeXSLDocument() performs a simple DOM parse of a stylesheet. It does not
use asynchronous parsing. The technique is the same as that described in Performing
Basic DOM Parsing.

The method follows these steps:

1. Create a new DOMParser() object. The following code fragment from
DOMSample.java shows this technique:

DOMParser parser = new DOMParser();
2. Configure the parser. The following code fragment specifies that white space must

be preserved:

parser.setPreserveWhitespace(true);
3. Create a URL object from the input stylesheet. The following code fragment invokes

the createURL() helper method to accomplish this task:

xslURL = createURL (xslFile);
4. Parse the input XSLT stylesheet. The following statement shows this technique:

Appendix D
Processing XML with XDK JavaBeans

D-22

parser.parse (xslURL);
5. Get a handle to the root of the in-memory DOM tree. You can use the XMLDocument object

to access every part of the parsed XML document. The following statement shows this
technique:

xsldoc = parser.getDocument();

D.3.1.2 Processing the XML Documents Asynchronously
Method runDOMBuilders() shows how you can use the DOMBuilder and XSLTransformer
beans to perform asynchronous processing. The parsing and transforming of the XML data
occurs in the background.

The method follows these steps:

1. Create a resource manager to manage the input XML documents. The program creates a
for loop and gets the XML documents. The following code fragment shows this
technique:

rm = new ResourceManager (numXMLDocs);
for (int i = 0; i < numXMLDocs; i++)
{
 rm.getResource();
 ...
}

2. Instantiate the DOM builder bean for each input XML document. For example:

DOMBuilder builder = new DOMBuilder(i);
3. Create a URL object from the XML file name. For example:

DOMBuilder builder = new DOMBuilder(i);
URL xmlURL = createURL(basedir + "/" + (String)xmlfiles.elementAt(i));
if (xmlURL == null)
 exitWithError("File " + (String)xmlfiles.elementAt(i) + " not found");

4. Configure the DOM builder. The following code fragment specifies the preservation of
white space and sets the base URL for the document:

builder.setPreserveWhitespace(true);
builder.setBaseURL (createURL(basedir + "/"));

5. Add the listener for the DOM builder. The program adds the listener by invoking
addDOMBuilderListener().

The class instantiated to create the listener must implement the DOMBuilderListener
interface. The program provides a do-nothing implementation for domBuilderStarted()
and domBuilderError(), but must provide a substantive implementation for
domBuilderOver(), which is the method called when the parse of the XML document
completes. The method invokes runXSLTransformer(), which is the method that
transforms the XML. See Transforming the XML with the XSLTransformer Bean for an
explanation of this method.

The following code fragment shows how to add the listener:

builder.addDOMBuilderListener
(
 new DOMBuilderListener()
 {
 public void domBuilderStarted(DOMBuilderEvent p0) {}
 public void domBuilderError(DOMBuilderEvent p0) {}

Appendix D
Processing XML with XDK JavaBeans

D-23

 public synchronized void domBuilderOver(DOMBuilderEvent p0)
 {
 DOMBuilder bld = (DOMBuilder)p0.getSource();
 runXSLTransformer (bld.getDocument(), bld.getId());
 }
 }
);

6. Add the error listener for the DOM builder. The program adds the listener by
invoking addDOMBuilderErrorListener().

The class instantiated to create the listener must implement the
DOMBuilderErrorListener interface. The following code fragment show the
implementation:

builder.addDOMBuilderErrorListener
(
 new DOMBuilderErrorListener()
 {
 public void domBuilderErrorCalled(DOMBuilderErrorEvent p0)
 {
 int id = ((DOMBuilder)p0.getSource()).getId();
 exitWithError("Error occurred while parsing " +
 xmlfiles.elementAt(id) + ": " +
 p0.getException().getMessage());
 }
 }
);

7. Parse the document. The following statement shows this technique:

builder.parse (xmlURL);
System.err.println("Parsing file " + xmlfiles.elementAt(i));

D.3.1.2.1 Transforming the XML with the XSLTransformer Bean
When a DOM parse completes, the DOM listener receives notification. Method
domBuilderOver() implements response behavior for this event. The program passes
the DOM to method runXSLTransformer(), which initiates XSL transformation.

The method follows these steps:

1. Instantiate the XSLTransformer bean. This object performs the XSLT processing.
The following statement shows this technique:

XSLTransformer processor = new XSLTransformer (id);

2. Create a new stylesheet object. For example:

XSLStylesheet xsl = new XSLStylesheet (xsldoc, xslURL);

3. Configure the XSLT processor. For example, this statement sets the processor to
show warnings and configures the error output stream:

processor.showWarnings (true);
processor.setErrorStream (errors);

4. Add the listener for the XSLT processor. The program adds the listener by invoking
addXSLTransformerListener().

Appendix D
Processing XML with XDK JavaBeans

D-24

The class instantiated to create the listener must implement the
XSLTransformerListener interface. The program provides a do-nothing implementation
for xslTransformerStarted() and xslTransformerError(), but must provide a
substantive implementation for xslTransformerOver(), which is the method called when
the parse of the XML document completes. The method invokes saveResult(), which
prints the transformation result to a file.

The following code fragment shows how to add the listener:

processor.addXSLTransformerListener
(
 new XSLTransformerListener()
 {
 public void xslTransformerStarted (XSLTransformerEvent p0) {}
 public void xslTransformerError(XSLTransformerEvent p0) {}
 public void xslTransformerOver (XSLTransformerEvent p0)
 {
 XSLTransformer trans = (XSLTransformer)p0.getSource();
 saveResult (trans.getResult(), trans.getId());
 }
 }
);

5. Add the error listener for the XSLT processor. The program adds the listener by invoking
addXSLTransformerErrorListener().

The class instantiated to create the listener must implement the
XSLTransformerErrorListener interface. The following code fragment show the
implementation:

processor.addXSLTransformerErrorListener
(
 new XSLTransformerErrorListener()
 {
 public void xslTransformerErrorCalled(XSLTransformerErrorEvent p0)
 {
 int i = ((XSLTransformer)p0.getSource()).getId();
 exitWithError("Error occurred while processing " +
 xmlfiles.elementAt(i) + ": " +
 p0.getException().getMessage());
 }
 }
);

6. Transform the XML document with the XSLT stylesheet. The following statement shows
this technique:

processor.processXSL (xsl, xml);

D.3.2 Comparing XML Documents with the XMLDiff JavaBean
You can use XDK JavaBeans to compare the structure and significant content of XML
documents.

This is explained in XMLDiff,

Appendix D
Processing XML with XDK JavaBeans

D-25

The XMLDiffSample.java program shows how to use the XMLDiff bean. The program
implements these methods:

• showDiffs()
• doXSLTransform()
• createURL()
The basic architecture of the program is:

1. The program declares and initializes the fields used by the class. One field is of
type XMLDiffFrame, which is the class implemented in the XMLDiffFrame.java
demo. The class defines these fields:

protected XMLDocument doc1; /* DOM tree for first file */
protected XMLDocument doc2; /* DOM tree for second file */
protected static XMLDiffFrame diffFrame; /* GUI frame */
protected static XMLDiffSample dfxApp; /* XMLDiff sample application */
protected static XMLDiff xmlDiff; /* XML diff object */
protected static XMLDocument xslDoc; /* parsed xsl file */
protected static String outFile = new String("XMLDiffSample.xsl"); /* output
 xsl file name
*/

2. The main() method creates an XMLDiffSample object:

dfxApp = new XMLDiffSample();
3. The main() method adds and initializes a JFrame to display the output of the

comparison. The following code shows this technique:

diffFrame = new XMLDiffFrame(dfxApp);
diffFrame.addTransformMenu();

4. The main() method instantiates the XMLDiff bean. The following code shows this
technique:

xmlDiff = new XMLDiff();
5. The main() method invokes the showDiffs() method. This method performs

these tasks:

a. Invokes XMLDiff.diff() to compare the input XML documents.

b. Generates and displays an XSLT stylsheet that can transform one input
document into the other document.

The following code fragment shows the showDiffs() method invocation:

if (args.length == 3)
 outFile = args[2];
if(args.length >= 2)
 dfxApp.showDiffs(new File(args[0]), new File(args[1]));
diffFrame.setVisible(true);

D.3.2.1 Comparing the XML Files and Generating a Stylesheet
Method showDiffs() shows the use of the XMLDiff bean.

The method follows these steps:

1. Set the files for the XMLDiff processor. The following statement shows this
technique:

Appendix D
Processing XML with XDK JavaBeans

D-26

xmlDiff.setFiles(file1, file2);
2. Compare the files. The diff() method returns a boolean value that indicates whether the

input documents have identical structure and content. If they are equivalent, then the
method prints a message to the JFrame implemented by the XMLDiffFrame class. The
following code fragment shows this technique:

if(!xmlDiff.diff())
{
 JOptionPane.showMessageDialog
 (
 diffFrame,
 "Files are equivalent in XML representation",
 "XMLDiffSample Message",
 JOptionPane.PLAIN_MESSAGE
);
}

3. Generate a DOM for the XSLT stylesheet that shows the differences between the two
documents. The following code fragment shows this technique:

xslDoc = xmlDiff.generateXSLDoc();
4. Display the documents in the JFrame implemented by XMLDiffFrame. XMLDiffFrame

instantiates the XMLSourceView bean, which is deprecated. The method follows these
steps:

a. Create the source pane for the input documents. Pass the DOM handles of the two
documents to the diffFrame object to make the source pane:

diffFrame.makeSrcPane(xmlDiff.getDocument1(), xmlDiff.getDocument2());
b. Create the pane that shows the differences between the documents. Pass references

to the text panes to diffFrame:

diffFrame.makeDiffSrcPane(new XMLDiffSrcView(xmlDiff.getDiffPane1()),
 new XMLDiffSrcView(xmlDiff.getDiffPane2()));

c. Create the pane for the XSLT stylesheet. Pass the DOM of the stylesheet:

diffFrame.makeXslPane(xslDoc, "Diff XSL Script");
diffFrame.makeXslTabbedPane();

Appendix D
Processing XML with XDK JavaBeans

D-27

Glossary

attribute
A property of an element that consists of a name and a value separated by an equal sign and
contained within the start-tags after the element name.

In this example, <Price units='USD'>5</Price>, units is the attribute and USD is its value,
which must be in single or double quotation marks. Attributes can reside in the document or
document type definition (DTD). Elements may have many attributes but their retrieval order
is not defined.

binary XML
An Extensible Markup Language (XML) representation that uses a compact, XML schema-
aware format.

callback
A programmatic technique in which one process starts another and then continues. The
second process then invokes the first as a result of an action, value, or other event. This
technique is used in most programs that have a user interface to allow continuous interaction.

cartridge
A stored program in Java or Procedural Language/Structured Query Language (PL/SQL) that
adds the necessary functionality for the database to understand and manipulate a new data
type.

Cartridges interface through the Extensibility Framework within the Oracle XML Developer's
Kit (XDK) implementation of the Java Architecture for XML Binding (JAXB) specification
version 8 or later. Oracle Text is such a cartridge, adding support for reading, writing, and
searching text documents stored within the database.

See also Oracle Text.

Cascading Style Sheets (CSS)
See CSS.

CDATA
Character data. Text in a document that must not be parsed is included within a CDATA
section. This allows for the inclusion of characters that would otherwise have special

Glossary-1

functions, such as &, <, and >. CDATA sections can be used in the content of an element
or in attributes.

character data (CDATA)
See CDATA.

child element
An element that is wholly contained within another, which is referred to as its parent
element. For example <Parent><Child></Child></Parent> shows a child element
nested within its parent element.

See also parent element.

class generator
A class generator accepts an input file and creates a set of output classes that have
corresponding functionality. For the XML class generator, the input file is a DTD or
XML schema, and the output is a series of classes that can be used to create
conforming XML documents.

CLASSPATH
The operating system environment variable that the Java virtual machine (JVM) uses
to find the classes required to run applications.

Common Oracle Runtime Environment (CORE)
See CORE.

CORE
Common Oracle Runtime Environment. The library of functions written in C that
enables developers to create code that can be easily ported to virtually any platform
and operating system.

CSS
Cascading Style Sheets. A simple mechanism for adding style (fonts, colors, spacing,
and so on) to web documents.

data definition language (DDL)
See DDL.

Glossary

Glossary-2

datagram
A text fragment, possibly in XML format, that is returned to the requester embedded in an
HTML page from a SQL query processed by the XSQL servlet.

DDL
Data definition language. Statements that define or change a data structure.

DOCTYPE
The term used as the tag name designating the DTD or its reference within an XML
document. For example, <!DOCTYPE person SYSTEM "person.dtd"> declares the root
element name as person and an external DTD as person.dtd in the file system. Internal DTDs
are declared within the DOCTYPE declaration.

Document Object Model (DOM)
See DOM.

document type definition (DTD)
See DTD.

DOM
Document Object Model. An in-memory, tree-based object representation of an XML
document that enables programmatic access to its elements and attributes.

The Document Object Model (DOM) object and its interface is a World Wide Web Consortium
(W3C) recommendation that specifies the DOM of an XML document, including the
application programming interfaces (APIs) for programmatic access. DOM views the parsed
document as a tree of objects.

DTD
Document type definition. A set of rules that defines the valid structure of an XML document.
DTDs are text files that derive their format from SGML. A DTD can be included in an XML
document by using the DOCTYPE element or by using an external file through a DOCTYPE
reference.

Glossary

Glossary-3

See Also:

• XML

• SGML

• WML

element
The basic logical unit of an XML document that can serve as a container for other
elements, such as children, data, attributes, and their values. Elements are identified
by start-tags, such as <name>, and end-tags, such as </name>, or for empty elements,
<name/>.

empty element
An element without text content or child elements. It can contain only attributes and
their values. Empty elements are of the form <name/> or <name></name>, where there
is no space between the tags.

entity
A string of characters that can represent either another string of characters or special
characters that are not part of the document character set. Entities and the text that is
substituted for them by the parser are declared in the DTD.

epilog
The closing part of an XML document. The epilog is optional.

Extensible Markup Language (XML)
See XML.

Extensible Stylesheet Language (XSL)
See XSL.

Extensible Stylesheet Language Formatting Objects (XSL-FO)
See XSL-FO.

Glossary

Glossary-4

Extensible Stylesheet Language Transformations (XSLT)
See XSLT.

FOP
Formatting Objects Processor: a print formatter driven by XSL-FO. FOP is a Java application
that reads a formatting object tree and renders the resulting pages. The supported output are
PDF, PCL, PS, SVG, XML (area tree representation), print, AWT, MIF, and TXT. The primary
output target is PDF.

Formatting Objects Processor (FOP)
See FOP.

HTTP
Hypertext Transport Protocol. The set of rules for exchanging files on the World Wide Web.
Relative to the TCP/IP suite of protocols, HTTP is an application protocol.

HTTPS
Hypertext Transport Protocol, Secure. The use of Secure Sockets Layer (SSL) as a sublayer
under the regular HTTP application layer.

Hypertext Transport Protocol (HTTP)
See HTTP.

Hypertext Transport Protocol, Secure (HTTPS)
See HTTPS.

IDE
Integrated Development Environment. A set of programs designed to aid in the development
of software run from a user interface. Oracle JDeveloper is an IDE for Java development that
includes an editor, a compiler, a debugger, a syntax checker, and a help system.

infoset
XML Information Set, an abstract data set consisting of several information items. It has at
least one information item: the document node, but the infoset is not necessarily valid XML.

The W3C recommendation is at http://www.w3.org/TR/xml-infoset/.

Glossary

Glossary-5

http://www.w3.org/TR/xml-infoset/

instance document
An XML document validated against an XML schema. If the instance document
conforms to the rules of the schema, it is said to be valid.

instantiate
A term used in object-based languages, such as Java and C++, to refer to the creation
of an object of a specific class.

Integrated Development Environment (IDE)
See IDE.

Java EE
Java Platform, Enterprise Edition. The Java platform that defines multitier enterprise
computing.

Java
A high-level programming language where applications run in a virtual machine known
as a Java Virtual Machine (JVM). The JVM is responsible for all interfaces to the
operating system. This architecture lets developers create Java applications that can
run on any operating system or platform that has a JVM.

See Also:

JVM.

Java Platform, Enterprise Edition (Java EE)
See Java EE.

Java API for XML Processing (JAXP)
See JAXP

Java Architecture for XML Binding (JAXB)
See JAXB.

Java Database Connectivity (JDBC)
See JDBC.

Glossary

Glossary-6

Java Developer's Kit (JDK)
See JDK.

Java Naming and Directory Interface (JNDI)
See JNDI.

Java Specification Request (JSR)
See JSR.

Java Virtual Machine (JVM)
See JVM.

JavaBeans
An independent program module that runs within a Java Virtual Machine (JVM). It is typically
used to create user interfaces on a client.

See Also:

JVM

JAXB
Java Architecture for XML Binding. An API and tools that map to and from XML documents
and Java objects. JAXB is a JSR-31 recommendation.

JAXP
Java API for XML Processing. A programming tool that enables applications to parse and
transform XML documents using an API that is independent of a particular XML processor
implementation.

JDBC
Java Database Connectivity. The programming API that enables Java applications to access
a database through SQL. JDBC drivers are written in Java for platform independence, but are
specific to each database.

Glossary

Glossary-7

JDK
Java Developer's Kit. The collection of Java classes, runtime, compiler, debugger, and
usually source code for a version of Java that makes up a Java development
environment. JDKs are designated by versions.

JNDI
Java Naming and Directory Interface. A programming interface for connecting Java
programs to naming and directory services such as DNS, LDAP, and NDS.

JSR
Java Specification Request. A recommendation of the Java Community Process
organization (JCP), such as JAXB and XQJ.

JVM
Java Virtual Machine. The Java interpreter that converts the compiled Java bytecode
into the machine language of the platform and runs it. JVMs can run on a client, in a
browser, in a middle tier, on an intranet, on an application server, or on a database
server.

listener
A separate application process that monitors the input process.

marshalling
The process of traversing a Java content tree and writing an XML document that
reflects the content of the tree. It is the inverse of unmarshalling.

See also unmarshalling.

node
In XML, the term used to denote each addressable entity in a DOM tree.

notation attribute declaration
In XML, the declaration of a content type that is not part of those understood by the
parser. These types include audio, video, and other multimedia.

OASIS
Organization for the Advancement of Structured Information Standards. An
organization whose members are chartered with promoting public information
standards through conferences, seminars, exhibits, and other educational events. XML
and SGML are standards that OASIS is actively promoting.

Glossary

Glossary-8

See Also:

• SGML

• XML

Oracle JDeveloper
Oracle JDeveloper is a Java IDE that enables application, applet, and servlet development
and includes an editor, compiler, debugger, syntax checker, help system, integrated UML
class modeler, and more. It supports XML-based development by including the XDK for Java
components in its editor.

Oracle Text
An Oracle tool that provides full-text indexing of documents and the capability to do SQL
queries over documents, along with XPath-like searching.

Oracle WebLogic Server
A product that integrates all the core services and features required for building, deploying,
and managing high-performance, n-tier, transaction-oriented web applications within an open
standards framework.

XDK
Oracle XML Developer's Kit. The set of libraries, components, and utilities that provide
software developers with the standards-based functionality to XML-enable their applications.
In the Java components of XDK, the kit contains an XML parser, an XSLT processor, the XML
class generator, the JavaBeans, and the XSQL servlet.

Oracle XML DB
A high-performance XML storage and retrieval technology provided with Oracle Database. It
is based on the W3C XML data model.

Oracle XML Developer's Kit (XDK)
See XDK.

ORACLE_HOME
The operating system environment variable that identifies the location for the installation of
Oracle components.

Glossary

Glossary-9

Organization for the Advancement of Structured Information Standards (OASIS)
See OASIS.

parent element
An element that surrounds another element, which is referred to as its child element.
For example, <Parent><Child></Child></Parent> shows a parent element wrapping
its child element.

See Also:

child element

parsed character data (PCDATA)
See PCDATA.

path name
The name of a resource that reflects its location in the repository hierarchy.

A path name is composed of a root element (the first /), element separators (/), and
various subelements (or path elements). A path element can be composed of any
character in the database character set except the slash (/) or the backslash (\).
These characters have a special meaning for Oracle XML DB. The slash is the default
name separator in a path name; the backslash can be used to escape characters.

PCDATA
Parsed character data. The element content consisting of text that must be parsed but
is not part of a tag or nonparsed data.

See also tag.

prolog
The opening part of an XML document containing the XML declaration and any DTD
or other declarations needed to process the document. The prolog is optional.

repository
The set of database objects, in any schema, that are mapped to path names. There is
one root to the repository (/), which contains a set of resources, each with a path
name.

Glossary

Glossary-10

See Also:

path name

resource
An object in the repository hierarchy.

resource name
The name of a resource within its parent folder. Resource names must be unique (potentially
subject to case-insensitivity) within a folder. Resource names are always in the UTF-8
character set (NVARCHAR2).

result set
The output of a SQL query consisting of one or more rows of data.

root element
The element that encloses all the other elements in an XML document and is between the
optional prolog and epilog. An XML document is permitted to have only one root element.

See Also:

• prolog

• epilog

SAX
Simple API for XML. An XML standard interface provided by XML parsers and used by event-
based applications.

schema
The definition of the structure and data types within a database. It can also refer to an XML
document that supports the XML Schema W3C recommendation.

servlet
A Java application that runs in a server, typically a web server or an application server, and
performs processing on that server. Servlets are the Java equivalent to CGI scripts.

Glossary

Glossary-11

SGML
Standard Generalized Markup Language. An ISO standard for defining the format of a
text document implemented using markup and DTDs.

Simple API for XML (SAX)
See SAX.

Simple Object Access Protocol (SOAP)
See SOAP.

SOAP
Simple Object Access Protocol. An XML-based protocol for exchanging information in
a decentralized, distributed environment.

SQL
Structured Query Language. The standard language used to access and process data
in a relational database.

SQL/XML
An ANSI specification for representing XML in SQL. Oracle SQL includes SQL/XML
functions that query XML: ANSI/ISO/IEC 9075-14:2011, Information technology—
Database languages—SQL—Part 14: XML-Related Specifications (SQL/XML).

Standard Generalized Markup Language (SGML)
See SGML.

StAX
Streaming API for XML.

Streaming API for XML (StAX)
See StAX.

Structured Query Language (SQL)
See SQL.

Glossary

Glossary-12

stylesheet
An XML document that consists of XSL processing instructions used by an XSLT processor
to transform or format an input XML document into an output XML document.

tag
A single piece of XML markup that delimits the start or end of an element. Tags start with <
and end with >. XML includes start-tags (<name>), end-tags (</name>), and empty tags
(<name/>), where name is the tag name.

TransX Utility
A Java API that simplifies the loading of translated seed data and messages into a database.

Uniform Resource Identifier (URI)
See URI.

Uniform Resource Locator (URL)
See URL.

unmarshalling
The process of reading an XML document and constructing a tree of Java content objects.
Each content object corresponds directly to an instance in the input document of the
corresponding schema component.

See also marshalling.

URI
Uniform Resource Identifier. The address syntax that is used to create URLs and XPaths.

URL
Uniform Resource Locator. The address that defines the location and route to a file on the
Internet. URLs are used by browsers to navigate the World Wide Web and consist of a
protocol prefix, port number, domain name, directory and subdirectory names, and a file
name.

valid
The term used to refer to an XML document when its structure and element content is
consistent with that declared in its associated DTD or XML schema.

Glossary

Glossary-13

W3C
World Wide Web Consortium. An international industry consortium started in 1994 to
develop standards for the World Wide Web. The W3C Web site is located at http://
www.w3c.org.

See also WWW.

well-formed
An XML document that conforms to the syntax of the XML version declared in its XML
declaration. This includes having a single root element and properly nested tags.

Wireless Markup Language (WML)
See WML.

WML
Wireless Markup Language. A tag-based markup language developed for the small
display size, reduced memory, and limited processing power of cell phones and other
devices that implement the Wireless Application Protocol (WAP) specification. WML
documents are XML documents that validate against the WML DTD.

See also DTD.

Working Group (WG)
A W3C committee that is made up of industry members who implement the
recommendation process in specific Internet technology areas.

World Wide Web (WWW)
See WWW.

See also W3C.

World Wide Web Consortium (W3C)
See W3C.

See also WWW.

WWW
World Wide Web. A worldwide hypertext system that uses the Internet and the HTTP
protocol.

See also W3C.

Glossary

Glossary-14

XDM
The W3C XQuery 1.0 and XPath 2.0 Data Model. A query data model that supports the most
XQuery features. The main exceptions are the query prolog, element and attribute
constructors, full FLWOR syntax, and the typeswitch expression.

XLink
XML Linking Language. It consists of rules that govern the use of hyperlinks in XML
documents. The rules are defined by the XML Linking Group, under the W3C
recommendation process. This is one of the three languages (XLink, XPointer, and XPath)
that XML supports to manage document presentation and hyperlinks.

See Also:

• XPath

• XPointer

XML
Extensible Markup Language. An open standard for describing data developed by the World
Wide Web Consortium (W3C) using a subset of the SGML syntax and designed for Internet
use.

See Also:

• SGML

• W3C

XML Base
A W3C recommendation that describes the use of the xml:base attribute, which can be
inserted in an XML document to specify a base URI other than the base URI of the document
or external entity. The URIs in the document are resolved by the given base.

XML Information Set
See infoset.

XML Linking Language (XLink)
See XLink.

Glossary

Glossary-15

XML Namespaces
Related element names or attributes within an XML document. Namespace syntax and
usage are defined by a W3C recommendation. For example, element <xsl:apply-
templates/> is identified as part of the XSL namespace. Namespaces are declared in
an XML document or a DTD before they are used, using this attribute syntax:
xmlns:xsl="http://www.w3.org/TR/WD-xsl".

XML parser
A software program that receives an XML document and determines whether it is well-
formed and, optionally, valid. The Oracle XML parser supports both SAX and DOM
interfaces.

See Also:

well-formed

XML Path Language (XPath)
See XPath.

XML Pipeline Definition Language
A W3C recommendation that enables you to describe the processing relations
between XML resources.

XML Pointer Language (XPointer)
See XPointer.

XML processor
A software program that reads an XML document and processes it, that is, performs
actions on the document based on a set of rules. Validity checkers and XML editors
are examples of processors.

XML Query (XQuery)
See XQuery.

XML schema
A document written in the XML Schema language.

Glossary

Glossary-16

XML Schema
See XML Schema language.

XML Schema Definition
Equivalent to XML Schema language.

XML Schema language
The XML Schema language, also called XML Schema, is a W3C recommendation for the use
of simple data types and complex structures within an XML document. It addresses areas
currently lacking in DTDs, including the definition and validation of data types.

XML Schema processor
A software program that automatically ensures the validity of XML documents and data used
in e-business applications, including online exchanges. It adds simple and complex data
types to XML documents, and replaces DTD functionality with an XML schema definition XML
document.

XMLSchema-instance namespace
The namespace declaration attribute used to identify an instance document as a member of
the class defined by a particular XML schema. You must declare the XMLSchema-instance
namespace by adding a namespace declaration to the root element of the instance
document. For example: xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance.

XML SQL Utility (XSU)
See XSU.

XMLType
An Oracle data type that stores XML data using object-relational columns or a binary format
within a table or view.

XMLType views
A mechanism provided by Oracle XML DB to wrap existing relational and object-relational
data in XML format. This is especially useful if, for example, your legacy data is not in XML
but you must migrate it to an XML format.

XPath
XML Path Language. The open standard syntax for addressing elements within a document
used by XSL and XPointer. XPath is a W3C recommendation. It specifies the data model and
grammar for navigating an XML document used by XSLT, XLink, and XML Query.

Glossary

Glossary-17

See Also:

• XLink

• XPointer

• XQuery

XPointer
XML Pointer Language. The term and W3C recommendation to describe a reference
to an XML document fragment. An XPointer can be used at the end of an XPath-
formatted URI. It specifies the identification of individual entities or fragments within an
XML document using XPath navigation.

See Also:

• XLink

• XPath

XQJ
XQuery API for Java.

XQSX
XQuery Scripting Extension.

XQuery
XML Query. The ongoing effort of W3C to create a standard for the language and
syntax to query XML documents.

XQueryX
XML Syntax for XQuery. XQueryX is an XML representation of an XQuery. See JSR
225.

XQUF
XQuery Update Facility.

Glossary

Glossary-18

XQVM
Oracle XQuery Virtual Machine.

XSL
Extensible Stylesheet Language. The language used within stylesheets to transform or
render XML documents. Two W3C recommendations cover XSL stylesheets: XSL
Transformations (XSLT) and XSL Formatting Objects (XSL-FO).

• XSLT is a language for transforming one XML document into another.

• XSL-FO is an XML vocabulary for specifying the presentation of an XML document.

An XSL stylesheet specifies the presentation of a class of XML documents by describing how
an instance of the class is transformed into an XML document that uses the formatting
vocabulary.

See Also:

• XSLT

• XSL-FO

XSL-FO
XSL Formatting Objects. Also known as Extensible Stylesheet Language Formatting Objects,
and XSLFO. The W3C standard specification that defines an XML vocabulary for specifying
formatting semantics.

See Also:

FOP.

XSL Formatting Objects (XSL-FO)
See XSL-FO.

XSL Transformations (XSLT)
See XSLT.

Glossary

Glossary-19

XSLT
Extensible Stylesheet Language Transformations. Also known as XSL-T. The XSL
W3C standard specification that defines a transformation language to convert one
XML document into another.

XSLT Virtual Machine (XVM)
Also XSLT VM. See XVM.

XSLTVM
Also XSLT VM. See XVM.

XSQL pages
XML pages that contain instructions for the XSQL servlet.

XSQL pages publishing framework
See XSQL servlet.

XSQL servlet
A Java-based servlet that can dynamically generate XML documents from one or more
SQL queries and optionally transform the documents in the server with an XSLT
stylesheet.

XSU
XML SQL Utility. An Oracle utility that can generate an XML document (string or DOM)
when given a SQL query or a JDBC ResultSet object. XSU can also extract the data
from an XML document, and then insert, update, or delete rows in a database table.

XVM
XSLT Virtual Machine. Also known as XSLTVM and XSLT VM. The Oracle XSLT
Virtual Machine is the software implementation of a CPU designed to run compiled
XSLT code. The virtual machine concept assumes a compiler compiling XSLT
stylesheets to a program of bytecodes, or machine instructions for the XSLT CPU.

Glossary

Glossary-20

Index

Symbols
.NET, 1-16

B
binary XML

C, 6-1
decoding, 13-5
encoding, 13-4
Java, 13-1
models for using, 13-2
saving text as, 12-21
storage format, 13-1
terminology, 13-2
using Java, 13-6
vocabulary management, 13-5

binary XML decoder, 13-8
binary XML encoder, 13-7
Built-in Action Handler, 25-22
Built-in Action Handler, XSQL, 25-22

C
C API, 3-12
C compile-time environment on UNIX

setting up, 3-5
C components

demos, 3-1, 4-7, 5-8, 7-4
directory structure, 3-1
globalization support, 3-13
installation, 3-1
runtime environment on Windows, 3-7
samples, 3-1, 4-7, 5-8, 7-4
setting up Windows environment, 3-6
setting up Windows environment variables,

3-7
with Visual C/C++ on Windows, 3-9

C environment variables on UNIX, 3-4
C libraries

contents, 3-3
C runtime environment on UNIX, 3-4
C++ class generator, 1-6
C++ interface, 27-1

Class Generator
XML C++, 32-1

CLASSPATH
XSQL Pages, 24-6

CLASSPATH environment variable
for XQJ, 16-1

command-line interface
oraxml, 12-14, 18-8

Connection Definitions, 24-7
custom connection manager, 25-27
custom entity resolver

example, 15-2

D
Data Provider for .NET, 1-16
data variables into XML, 12-50
DB Access JavaBean, D-3
decoding binary XML, 13-5
Default SQL to XML Mapping, 21-29
demos

C components, 3-1, 4-7, 5-8, 7-4
directory structure

C, 3-1
document creation Java APIs, 10-3
DOM

creating in Java, 12-1
specifications, 34-2

DOMBuilder Bean, D-2
DTDs

external, 12-51

E
encoding binary XML, 13-4
entity resolver

other entity types, 15-12
entity resolver framework, 15-2
error messages

DLF, B-1
DML, C-3
DOM, A-11
generic, C-1
JAXB, A-51
query, C-2

Index-1

error messages (continued)
schema component constraint, A-39
schema representation constraint, A-34
TransX, B-3
XML parser, A-1
XML pipeline, A-49
XML schema validation, A-23
XPath, A-18
XSL transformation, A-16
XSQL server pages, A-49

examples of document creation in Java, 10-3
external storage

example, 15-17

F
FileReader not for system files, 12-54
FOP

serializer, 24-8
serializer to produce PDF, 25-17

G
generated XML

customizing, 21-32
generating XML, 21-13

using XSU command line, getXML, 21-13
getXML, 21-13
globalization support

for the C components, 3-13

H
HTML Form Parameters, 24-28
HTTP Parameters, 24-26
HTTP POST method, 24-31

I
informational messages

TransX, B-3
insert, XSU, 21-34
installation

C components, 3-1
invalid characters, 12-56

J
JAR files, DTDs, 12-51
Java classes deprecated, 10-2
Java components

creating a DOM, 12-1
environment in Windows, 11-7
installation, 11-1

Java components (continued)
parsing, 12-1

Java diff operations, 20-3
append-node, 20-4
delete-node, 20-6
examples, 20-7
insert-node-before, 20-5

Java diff output schema
xdiff.xsd, 20-11

Java Specification Request
225, 16-1, 16-7

Java XML diffing library, 20-1
JAXB

class generator, 1-6
compared with JAXP, 18-1, 18-4
features not supported, 18-10
marshalling and unmarshalling, 18-1
validating, 18-1
what is, 18-4

JAXP
compared with JAXB, 18-1

JAXP (Java API for XML Processing), 12-41
JDBC driver, 21-3
JSR-225, 16-1, 16-7

M
make.bat file

editing on Window for C environment, 3-8
mapping

primer, XSU, 21-29
messages

assertion, B-4
Microsoft .NET, 1-16

N
no rows exception, 21-28

O
OCI and the XDK for C, 5-22
OCI examples, 5-24
Oracle JDeveloper, 1-15
Oracle JVM, 12-11
Oracle XML Developer’s Kit components, 1-1
Oracle XML Developer’s Kit version

using C, 3-6
using C++, 26-3
using Java, 11-9

oracle.xml.diff package, 20-1
OracleXml namespace, 27-1
orastream functions, 5-13
oraxml, 12-14, 18-8

Index

Index-2

oraxsl
command-line interfaces, 14-6

Out Variable, using xsql
dml, 24-29

P
Package Classes, 10-2
Parser for Java, 12-1

constructor extension functions, 14-13
oraxsl, 14-6
return value extension function, 14-13
static and nonstatic methods, 14-12
supported database, 12-11
using DTDs, 12-51

Parser for Java, overview, 12-11
PDF results using FOP, 24-8
Pipeline Definition Language, 19-1

S
samples

C components, 3-1, 4-7, 5-8, 7-4
SAX, 12-1
security, XSQL Pages, 24-32
select

with XSU, 21-34
servlet, XSQL, 24-1, 25-1
SOAP

C clients, 9-4
C examples, 9-6
C Functions, 9-5
for C, 9-1
server, 9-4
what is, 9-1

static context
default initial values, 15-30

streaming evaluation, 15-15
example, 15-15

streaming validator, 7-5
opaque mode, 7-7
transparent mode, 7-5

string data, 12-56

T
text node normalization, 20-2
TransX Utility, 22-1

U
Unicode in a system file, 12-54
unified C API for XDK and Oracle XML DB, 3-12
unified Java API, 10-1

Unified Java API, 10-1
Unified Java API new objects and methods, 10-3
UNIX environment for C components

configuring, 3-3
update, XSU, 21-35
updating queries, 15-19
updating query

example, 15-19
UTF-16 Encoding, 12-56
UTF-8 output, 12-55

V
validation

auto validation mode, 12-8
DTD validating Mode, 12-8
partial validation mode, 12-8
schema validation, 12-8
schema validation mode, 12-8

Visual C/C++, 3-9
Visual Studio, 3-9

W
W3C DOM, 12-1
Windows, 3-6

C components
with Visual C/C++, 3-9

C libraries, 3-6
editing make.bat file, 3-8
setting up C environment variables, 3-7

Windows environment for C components
setting up, 3-6

WML Document, 24-26

X
Xdiff instance document, 8-4
Xdiff schema, 8-7
xdiff.xsd, 20-11
XDK

JAR files for XQJ, 15-1
XDK components, 1-1
XDK version

using C, 3-6
using C++, 26-3
using Java, 11-9

XML Base, 34-1
XML C++ Class Generator, 32-1
XML DB

JAR files for XQJ, 16-1
XML diffing methods

Java, 20-1

Index

Index-3

XML documents
generating from C, 1-12
generating from C++, 1-13
generating from Java, 1-11

XML equal methods
Java, 20-1, 20-10

XML hash methods
Java, 20-1, 20-10

XML input documents
comparing and contrasting, 20-3

XML namespace prefixes
ignoring differences, 20-2

XML Namespaces 1.0, 34-1
XML output in UTF-8, 12-55
XML parser

oraxml command-line interface, 12-14, 18-8
XML parser for C

sample programs, 4-7, 5-8
XML pull parser

example, 5-20
XML Pull Parser error handling, 5-19
XML Pull Parser for C, 5-17
XML Schema

explained, 17-3
processor for Java

how to run the sample program, 14-4,
17-9, 18-7, 19-7, 22-6

XML schema for C
sample programs, 7-4

XML SQL Utility (XSU), 1-7
connecting with OCI* JDBC driver, 21-3
customizing generated XML, 21-32
dependencies and installation, 21-2
explained, 21-2
getXML command line, 21-13
inserts, 21-34
mapping primer, 21-29
selects, 21-34
updates, 21-35

XML Syntax for XQuery (XQueryX), 15-29
xmlcg usage, 32-1
XMLCompress JavaBean, D-4
XMLDBAccess JavaBean, D-3
XmlDiff

command-line options for C, 8-2
XMLDiff

example in C, 8-9
XMLDiff in C, 8-1
XMLDiff JavaBean, D-4
XmlHash

example in C, 8-13
XMLNode.selectNodes() method, 12-49
XmlPatch

command-line options for C, 8-12

XQJ, 15-29, 16-1
entity resolver framework, 15-2
updating queries, 15-19
XQuery API for Java, 15-1
XQuery Update Facility, 15-19

XQJ implementation-defined items
support in XDK, 15-30

XQuery API for Java, 15-1
XQuery API for Java (XQJ), 15-29, 16-1
XQuery implementation-defined items

support in XDK, 15-30
XQuery language, 15-29
XQuery optional features

support in XDK, 15-29
XQuery processor for Java, 15-1

standards and specifications, 15-29
streaming evaluation, 15-15
using external storage, 15-17

XQuery Update Facility, 15-19, 15-29
XQuery Update Facility implementation-defined

items
support in XDK, 15-30

XQueryX, 15-29
XSL Transformation (XSLT) Processor, 1-5
XSL Transformation (XSLT) Processor for Java,

14-3, 19-4, 22-3
XSL Transformations Specifications, 34-3
XSLT

XSLTransformer bean, D-8
XSLT compiler, 4-1
XSLT processor, 4-3
XSLT Processor for Java

hints for using, 14-15
XSLTransformer JavaBean, D-3
XSLValidator JavaBean, D-5
XSQL

action handler errors, 25-11
advanced topics, 25-1
built-in action handler elements, 25-22
connection, 24-30
current page name, 24-30
errors, 24-31
setting up demos, 24-10, 24-11
SOAP support, 24-30
stylesheets, 25-2
two queries, 24-27

XSQL action elements
((lt))xsql((colon))action((gt)), 33-7
((lt))xsql((colon))delete-request((gt)), 33-9
((lt))xsql((colon))dml((gt)), 33-10
((lt))xsql((colon))if-param((gt)), 33-11
((lt))xsql((colon))include-owa((gt)), 33-13
((lt))xsql((colon))include-param((gt)), 33-14
((lt))xsql((colon))include-posted-xml((gt)),

33-15

Index

Index-4

XSQL action elements (continued)
((lt))xsql((colon))include-request-

params((gt)), 33-16
((lt))xsql((colon))include-xml((gt)), 33-17
((lt))xsql((colon))include-xsql((gt)), 33-19
((lt))xsql((colon))insert-param((gt)), 33-21
((lt))xsql((colon))insert-request((gt)), 33-22
((lt))xsql((colon))query((gt)), 33-23
((lt))xsql((colon))ref-cursor-function((gt)),

33-26
((lt))xsql((colon))set-cookie((gt)), 33-28
((lt))xsql((colon))set-page-param((gt)), 33-30
((lt))xsql((colon))set-session-param((gt)),

33-32
((lt))xsql((colon))set-stylesheet-param((gt)),

33-34

XSQL action elements (continued)
((lt))xsql((colon))update-request((gt)), 33-36

XSQL Pages security, 24-32
XSQL servlet

hints, 24-26
XSQL Servlet examples, 24-8
XSU

generating XML, 21-13
mapping primer, 21-29
usage guidelines, 21-29

XSU (XML SQL Utility), 1-7
XSU usage techniques, 21-28
XVM

XSLT compiler, 4-3
XVM (XSLT Virtual Machine) processor, 4-1

Index

Index-5

	Contents
	List of Examples
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Examples
	Conventions

	Changes in This Release
	Desupported Feature
	Deprecated Features

	1 Introduction to Oracle XML Developer's Kit
	1.1 Overview of XDK
	1.2 XDK Components
	1.2.1 XML Parsers
	1.2.2 XSLT Processors
	1.2.3 XML Schema Processors
	1.2.4 XML Class Generators
	1.2.5 XML Pipeline Processor
	1.2.6 Oracle XML SQL Utility
	1.2.6.1 XML Document Representations
	1.2.6.2 Using XSU with an XML Class Generator

	1.2.7 TransX Utility Overview
	1.2.8 XSQL Pages Publishing Framework
	1.2.9 SOAP Services
	1.2.10 XSLT Virtual Machine

	1.3 Generating XML Documents Using XDK
	1.3.1 XML Document Generation with Java
	1.3.2 XML Document Generation with C
	1.3.3 XML Document Generation with C++

	1.4 Development Tools and Frameworks for XDK
	1.4.1 Oracle JDeveloper
	1.4.2 Oracle Data Provider for .NET

	1.5 About Installing XDK

	2 Security Considerations for Oracle XML Developer's Kit
	2.1 Implementing Security for Java
	2.1.1 Securing XSLT Processing with Oracle XML Developer's Kit
	2.1.2 Using the Oracle XML Parser Safely

	2.2 Implementing Security for C
	2.3 Security for C++

	Part I Oracle XML Developer's Kit for C
	3 Getting Started with Oracle XML Developer's Kit for C
	3.1 Installing XDK for C Components
	3.2 Configuring the UNIX Environment for XDK for C Components
	3.2.1 XDK for C Component Dependencies on UNIX
	3.2.2 Setting Up XDK for C Environment Variables on UNIX
	3.2.3 Testing the XDK for C Runtime Environment on UNIX
	3.2.4 Setting Up and Testing the XDK C Compile-Time Environment on UNIX
	3.2.4.1 Testing the XDK for C Compile-Time Environment on UNIX

	3.2.5 Verifying the XDK for C Component Version on UNIX

	3.3 Configuring the Windows Environment for XDK C Components
	3.3.1 XDK for C Component Dependencies on Windows
	3.3.2 Setting Up XDK for C Environment Variables on Windows
	3.3.3 Testing the XDK for C Runtime Environment on Windows
	3.3.4 Setting Up and Testing the XDK for C Compile-Time Environment on Windows
	3.3.4.1 Testing the XDK for C Compile-Time Environment on Windows
	3.3.4.1.1 Editing the Make.bat Files on Windows
	3.3.4.1.2 Setting the XDK for C Compiler Path on Windows

	3.3.5 Using the XDK for C Components and Visual C++ in Microsoft Visual Studio
	3.3.5.1 Setting a Path for a Project in Visual C++ on Windows
	3.3.5.2 Setting the Library Path in Visual C++ on Windows

	3.4 Overview of the Unified C API
	3.5 Globalization Support for the XDK for C Components

	4 Using the XSLT and XVM Processors for C
	4.1 XSLT XVM Processor
	4.1.1 XVM Usage Example
	4.1.2 Using the XVM Processor Command-Line Utility
	4.1.3 Accessing the XVM Processor for C

	4.2 XSLT Processor for XDK for C
	4.2.1 XSLT Processor Usage Example
	4.2.2 XPath Processor Usage Example
	4.2.3 Using the C XSLT Processor Command-Line Utility
	4.2.4 Accessing Oracle XSLT processor for C

	4.3 Using the Demo Files Included with the Software
	4.3.1 Building the C Demo Programs for XSLT

	5 Using the XML Parser for C
	5.1 Introduction to the XML Parser for C
	5.1.1 Prerequisites for Using the XML Parser for C
	5.1.2 Standards and Specifications for the XML Parser for C

	5.2 Using the XML Parser API for C
	5.2.1 Overview of the Parser API for C
	5.2.1.1 XML Parser for C Data Types
	5.2.1.2 XML Parser for C Defaults

	5.2.2 XML Parser for C Calling Sequence
	5.2.3 Using the XML Parser for C: Basic Process
	5.2.4 Running the XML Parser for C Demo Programs
	5.2.5 Using the C XML Parser Command-Line Utility
	5.2.5.1 Using the XML Parser Command-Line Utility: Example

	5.3 Using the DOM API for C
	5.3.1 Controlling the Data Encoding of XML Documents for the C API
	5.3.2 Using NULL-Terminated and Length-Encoded C API Functions
	5.3.3 Handling Errors with the C API

	5.4 Using orastream Functions
	5.5 Using the SAX API for C
	5.6 Using the XML Pull Parser for C
	5.6.1 Using Basic XML Pull Parsing Capabilities
	5.6.1.1 XML Event Context
	5.6.1.2 About the XML Event Context

	5.6.2 Parsing Multiple XML Documents
	5.6.3 ID Callback
	5.6.4 Error Handling for the XML Pull Parser
	5.6.4.1 Parser Errors
	5.6.4.2 Programming Errors

	5.6.5 Sample Pull Parser Application

	5.7 Using OCI and the XDK for C API
	5.7.1 Using XMLType Functions and Descriptions
	5.7.2 Initializing an XML Context for Oracle XML DB
	5.7.3 Creating XMLType Instances on the Client
	5.7.4 Operating on XML Data in the Database Server
	5.7.5 Using OCI and the XDK for C API: Examples

	6 Using Binary XML with C
	6.1 Introduction to Binary XML for C
	6.2 Prerequisites for Using Binary XML with C
	6.3 Binary XML Storage Format – C

	7 Using the XML Schema Processor for C
	7.1 Oracle XML Schema Processor for C
	7.1.1 Oracle XML Schema for C Features
	7.1.2 Standards Conformance for Oracle XML Schema Processor for C
	7.1.3 XML Schema Processor for C: Supplied Software

	7.2 Using the C XML Schema Processor Command-Line Utility
	7.3 XML Schema Processor for C Usage Diagram
	7.4 How to Run XML Schema for C Sample Programs
	7.5 What Is the Streaming Validator?
	7.5.1 Using Transparent Mode
	7.5.1.1 Error Handling in Transparent Mode
	7.5.1.2 Streaming Validator Example

	7.5.2 Using Opaque Mode
	7.5.2.1 Error Handling in Opaque Mode
	7.5.2.2 Example of Opaque Mode Application

	7.5.3 Using Function XmlSchemaLoad() With an Existing DOM
	7.5.4 Validation Options

	8 Determining XML Differences Using C
	8.1 Overview of XMLDiff in C
	8.1.1 Process Flow for XMLDiff

	8.2 Using XmlDiff
	8.2.1 User Options for Comparison Optimization
	8.2.2 User Option for Hashing
	8.2.3 How XmlDiff Looks at Input Documents
	8.2.4 Using the XmlDiff Command-Line Utility
	8.2.5 Sample Input Document
	8.2.6 Sample Xdiff Instance Document
	8.2.7 Output Model and XML Processing Instructions
	8.2.8 Xdiff Operations
	8.2.9 Format of Xdiff Instance Document
	8.2.10 Xdiff Schema
	8.2.11 Using XMLDiff in an Application
	8.2.12 Customized Output

	8.3 Using XmlPatch
	8.3.1 Using the XmlPatch Command-Line Utility
	8.3.2 Using XmlPatch in an Application

	8.4 Using XmlHash
	8.4.1 Invoking XmlDiff and XmlPatch

	9 Using SOAP with the Oracle XML Developer's Kit for C
	9.1 Introduction to SOAP for C
	9.1.1 SOAP Messaging Overview
	9.1.1.1 SOAP Message Format
	9.1.1.1.1 SOAP Requests
	9.1.1.1.2 Example of a SOAP Response

	9.1.2 Using SOAP Clients
	9.1.3 Using SOAP Servers

	9.2 SOAP C Functions
	9.3 SOAP Example 1: Sending an XML Document
	9.4 SOAP Example 2: A Response Asking for Clarification
	9.5 SOAP Example 3: Using POST

	Part II Oracle XML Developer's Kit for Java
	10 Unified Java API for XML
	10.1 Overview of Unified Java API for XML
	10.2 Component Unification
	10.3 About Moving to the Unified Java API
	10.3.1 Java DOM APIs for XMLType Classes
	10.3.2 Extension APIs
	10.3.3 Document Creation Java APIs

	11 Getting Started with Oracle XML Developer's Kit for Java
	11.1 Installing XDK for Java Components
	11.2 XDK for Java Component Dependencies
	11.3 Setting Up the XDK for Java Environment
	11.3.1 Setting Up XDK for Java Environment Variables for UNIX
	11.3.2 Testing the XDK for Java Environment on UNIX
	11.3.3 Setting Up XDK for Java Environment Variables for Windows
	11.3.4 Testing the XDK for Java Environment on Windows

	11.4 Verifying the XDK (Java) Version

	12 XML Parsing for Java
	12.1 Introduction to XML Parsing for Java
	12.1.1 Prerequisites for Parsing with Java
	12.1.2 Standards and Specifications for XML Parsing for Java
	12.1.3 Large Node Handling
	12.1.4 XML Parsing in Java: Overview
	12.1.5 DOM in XML Parsing
	12.1.5.1 DOM Creation

	12.1.6 SDOM
	12.1.6.1 Pluggable DOM Support
	12.1.6.2 Lazy Materialization
	12.1.6.3 Configurable DOM Settings
	12.1.6.4 DOM Support for Fast Infoset

	12.1.7 SAX in the XML Parser
	12.1.8 JAXP in the XML Parser
	12.1.9 Namespace Support in the XML Parser
	12.1.10 Validation in the XML Parser
	12.1.11 Compression in the XML Parser

	12.2 Using XML Parsing for Java: Overview
	12.2.1 Using the XML Parser for Java: Basic Process
	12.2.2 Running the XML Parser for Java Demo Programs
	12.2.3 Using the Java XML Parser Command-Line Utility (oraxml)

	12.3 Parsing XML with DOM
	12.3.1 Using the DOM API for Java
	12.3.2 DOM Parser Architecture
	12.3.3 Performing Basic DOM Parsing
	12.3.4 Creating SDOM
	12.3.4.1 Using SDOM
	12.3.4.1.1 InfosetReader Options
	12.3.4.1.2 InfosetWriter
	12.3.4.1.3 Saving XML Text as Binary XML

	12.3.4.2 Using Lazy Materialization
	12.3.4.2.1 Pulling Data on Demand
	12.3.4.2.2 Using Automatic Node Dereferencing
	12.3.4.2.3 Using Manual Node Dereferencing
	12.3.4.2.4 Using Shadow Copy
	12.3.4.2.5 Incorporating DOM Updates
	12.3.4.2.6 Using the PageManager Interface to Support Internal Data

	12.3.4.3 Using Configurable DOM Settings
	12.3.4.3.1 PARTIAL_DOM Attribute
	12.3.4.3.2 ACCESS_MODE Attribute

	12.3.4.4 Using Fast Infoset with SDOM
	12.3.4.5 SDOM Applications
	12.3.4.6 XDK Java DOM Improvements

	12.3.5 Performing DOM Operations with Namespaces
	12.3.6 Performing DOM Operations with Events
	12.3.7 Performing DOM Operations with Ranges
	12.3.8 Performing DOM Operations with TreeWalker

	12.4 Parsing XML with SAX
	12.4.1 Using the SAX API for Java
	12.4.2 Performing Basic SAX Parsing
	12.4.3 Performing Basic SAX Parsing with Namespaces
	12.4.4 Performing SAX Parsing with XMLTokenizer

	12.5 Parsing XML with JAXP
	12.5.1 JAXP Structure
	12.5.2 Using the SAX API Through JAXP
	12.5.3 Using the DOM API Through JAXP
	12.5.4 Transforming XML Through JAXP
	12.5.5 Parsing with JAXP
	12.5.6 Performing Basic Transformations with JAXP

	12.6 Compressing and Decompressing XML
	12.6.1 Compressing a DOM Object
	12.6.2 Decompressing a DOM Object
	12.6.3 Compressing a SAX Object
	12.6.4 Decompressing a SAX Object

	12.7 Tips and Techniques for Parsing XML
	12.7.1 Extracting Node Values from a DOM Tree
	12.7.2 Merging Documents with appendChild()
	12.7.3 Parsing DTDs
	12.7.3.1 Loading External DTDs
	12.7.3.2 Caching DTDs with setDoctype

	12.7.4 Handling Character Sets with the XML Parser
	12.7.4.1 Detecting the Encoding of an XML File on the Operating System
	12.7.4.2 Preventing Distortion of XML Stored in an NCLOB Column
	12.7.4.3 Writing an XML File in a Nondefault Encoding
	12.7.4.4 Parsing XML Stored in Strings
	12.7.4.5 Parsing XML Documents with Accented Characters
	12.7.4.6 Handling Special Characters in Tag Names

	13 Using Binary XML with Java
	13.1 Introduction to Binary XML for Java
	13.1.1 Binary XML Storage Format – Java
	13.1.2 Binary XML Processors

	13.2 Models for Using Binary XML
	13.2.1 Usage Terminology for Binary XML
	13.2.2 Standalone Model
	13.2.3 Client/Server Model
	13.2.4 Web Services Model With Repository
	13.2.5 Web Services Model Without Repository

	13.3 Components of Binary XML for Java
	13.3.1 Binary XML Encoding
	13.3.2 Binary XML Decoding

	13.4 Binary XML Vocabulary Management
	13.4.1 Schema Management
	13.4.1.1 Schema Registration for Binary XML Vocabulary Management
	13.4.1.2 Schema Identification
	13.4.1.3 Schema Annotations
	13.4.1.4 User-Level Annotations
	13.4.1.5 System-Level Annotations

	13.4.2 Token Management

	13.5 Using the Java Binary XML Package
	13.5.1 Binary XML Encoder
	13.5.1.1 Schema-Less Option
	13.5.1.2 Inline-Token Option

	13.5.2 Binary XML Decoder
	13.5.3 Schema Registration Overview
	13.5.4 Resolving xsi:schemaLocation
	13.5.5 Binary XML
	13.5.6 Persistent Storage of Metadata

	14 Using the XSLT Processor for Java
	14.1 Introduction to the XSLT Processor
	14.1.1 Prerequisites for Using the XSLT Processor for Java
	14.1.2 Standards and Specifications for the XSLT Processor for Java
	14.1.3 XML Transformation with XSLT 1.0 and 2.0

	14.2 Using the XSLT Processor for Java: Overview
	14.2.1 Using the XSLT Processor for Java: Basic Process
	14.2.2 Running the XSLT Processor Demo Programs
	14.2.3 Using the XSLT Processor Command-Line Utility
	14.2.3.1 Using the XSLT Processor Command-Line Utility: Example

	14.3 Transforming XML
	14.3.1 Performing Basic XSL Transformation
	14.3.2 Getting DOM Results from an XSL Transformation

	14.4 Programming with Oracle XSLT Extensions
	14.4.1 Overview of Oracle XSLT Extensions
	14.4.2 Specifying Namespaces for XSLT Extension Functions
	14.4.3 Using Static and Nonstatic Java Methods in XSLT
	14.4.4 Using Constructor Extension Functions
	14.4.5 Using Return Value Extension Functions

	14.5 Tips and Techniques for Transforming XML
	14.5.1 Merging XML Documents with XSLT
	14.5.2 Creating an HTML Input Form Based on the Columns in a Table

	15 Using the XQuery Processor for Java
	15.1 Introduction to the XQuery Processor for Java
	15.2 XQJ Entity Resolution
	15.2.1 Resolution of Documents for fn:doc
	15.2.2 Resolution of External XQuery Functions
	15.2.3 Resolution of Imported XQuery Modules
	15.2.4 Resolution of XML Schemas Imported by an XQuery Query
	15.2.5 Prefabricated Entity Resolvers for XQuery
	15.2.6 Resolution of Other Types of Entity

	15.3 XQuery Output Declarations
	15.4 Improving Application Performance and Scalability with XQuery
	15.4.1 Streaming Query Evaluation
	15.4.2 External Storage
	15.4.3 Thread Safety for XQJ

	15.5 Performing Updates
	15.6 Oracle XQuery Functions and Operators
	15.6.1 Oracle XQuery Functions for Duration, Date, and Time
	15.6.1.1 ora-fn:date-from-string-with-format
	15.6.1.2 ora-fn:date-to-string-with-format
	15.6.1.3 ora-fn:dateTime-from-string-with-format
	15.6.1.4 ora-fn:dateTime-to-string-with-format
	15.6.1.5 ora-fn:time-from-string-with-format
	15.6.1.6 ora-fn:time-to-string-with-format
	15.6.1.7 Format Argument
	15.6.1.8 Locale Argument

	15.6.2 Oracle XQuery Functions for Strings
	15.6.2.1 ora-fn:pad-left
	15.6.2.2 ora-fn:pad-right
	15.6.2.3 ora-fn:trim
	15.6.2.4 ora-fn:trim-left
	15.6.2.5 ora-fn:trim-right

	15.7 Standards and Specifications for the XQuery Processor for Java
	15.7.1 Optional XQuery Features
	15.7.2 Implementation-Defined Items

	16 Using XQuery API for Java to Access Oracle XML DB
	16.1 Introduction to Oracle XML DB Support for XQJ
	16.1.1 Prerequisites for Using XQJ to Access Oracle XML DB

	16.2 Examples: Using XQJ to Query Oracle XML DB
	16.3 XQJ Support for Oracle XML DB
	16.3.1 Other Oracle XML DB XQJ Support Limitations

	16.4 XQJ Performance Considerations for Use with Oracle XML DB

	17 Using the XML Schema Processor for Java
	17.1 Introduction to XML Validation
	17.1.1 Prerequisites for Using the XML Schema Processor for Java
	17.1.2 Standards and Specifications for the XML Schema Processor for Java
	17.1.3 XML Validation with DTDs
	17.1.3.1 DTD Samples in XDK

	17.1.4 XML Validation with XML Schemas
	17.1.4.1 XML Schema Samples in XDK

	17.1.5 Differences Between XML Schemas and DTDs

	17.2 Using the XML Schema Processor: Overview
	17.2.1 Using the XML Schema Processor for Java: Basic Process
	17.2.2 Running the XML Schema Processor Demo Programs
	17.2.3 Using the XML Schema Processor Command-Line Utility
	17.2.3.1 Using oraxml to Validate Against a Schema
	17.2.3.2 Using oraxml to Validate Against a DTD

	17.3 Validating XML with XML Schemas
	17.3.1 Validating Against Internally Referenced XML Schemas
	17.3.2 Validating Against Externally Referenced XML Schemas
	17.3.3 Validating a Subsection of an XML Document
	17.3.4 Validating XML from a SAX Stream
	17.3.5 Validating XML from a DOM
	17.3.6 Validating XML from Designed Types and Elements

	17.4 Tips and Techniques for Programming with XML Schemas
	17.4.1 Overriding the Schema Location with an Entity Resolver
	17.4.2 Converting DTDs to XML Schemas

	18 Using the JAXB Class Generator
	18.1 Introduction to the JAXB Class Generator
	18.1.1 Prerequisites for Using the JAXB Class Generator
	18.1.2 Standards and Specifications for the JAXB Class Generator
	18.1.3 JAXB Class Generator Features
	18.1.4 Marshalling and Unmarshalling with JAXB
	18.1.5 Validation with JAXB
	18.1.6 JAXB Customization

	18.2 Using the JAXB Class Generator: Overview
	18.2.1 Using the JAXB Processor: Basic Process
	18.2.2 Running the XML Schema Processor Demo Programs
	18.2.3 Using the JAXB Class Generator Command-Line Utility
	18.2.3.1 Using the JAXB Class Generator Command-Line Utility: Example

	18.2.4 JAXB Features Not Supported in XDK

	18.3 Processing XML with the JAXB Class Generator
	18.3.1 Binding Complex Types
	18.3.1.1 Defining the Schema to Validate sample3.xml
	18.3.1.2 Generating and Compiling the Java Classes
	18.3.1.3 Processing the XML Data in sample3.xml

	18.3.2 Customizing a Class Name in a Top-Level Element
	18.3.2.1 Defining the Schema to Validate schema10.xml
	18.3.2.1.1 Customizing the Schema Binding

	18.3.2.2 Generating and Compiling the Java Classes
	18.3.2.3 Processing the XML Data in sample10.xml

	19 Using the XML Pipeline Processor for Java
	19.1 Introduction to the XML Pipeline Processor
	19.1.1 Prerequisites for Using the XML Pipeline Processor for Java
	19.1.2 Standards and Specifications for the XML Pipeline Processor for Java
	19.1.3 Multistage XML Processing
	19.1.4 Customized Pipeline Processes

	19.2 Using the XML Pipeline Processor for Java: Overview
	19.2.1 Using the XML Pipeline Processor for Java: Basic Process
	19.2.2 Running the XML Pipeline Processor Demo Programs
	19.2.3 Using the XML Pipeline Processor Command-Line Utility

	19.3 Processing XML in a Pipeline
	19.3.1 Creating a Pipeline Document
	19.3.1.1 Example of a Pipeline Document
	19.3.1.1.1 Processes Specified in the Pipeline Document
	19.3.1.1.2 Processing Architecture Specified in the Pipeline Document

	19.3.2 Writing a Pipeline Processor Application
	19.3.3 Writing a Pipeline Error Handler

	20 Determining XML Differences Using Java
	20.1 Overview of XML Diffing Utilities for Java
	20.2 User Options for the Java XML Diffing Library
	20.3 Using Java XML Diffing Methods to Find Differences
	20.3.1 About the append-node Operation
	20.3.2 About the insert-node-before Operation
	20.3.3 About the delete-node Operation

	20.4 Invoking diff and difftoDoc Methods in a Java Application
	20.5 Using Java XML hash and equal Methods to Identify and Compare Inputs
	20.6 Diff Output Schema

	21 Using the XML SQL Utility
	21.1 Introduction to the XML SQL Utility (XSU)
	21.1.1 Prerequisites for Using the XML SQL Utility (XSU)
	21.1.2 XSU Features
	21.1.3 XSU Restrictions

	21.2 Using the XML SQL Utility: Overview
	21.2.1 Using XSU: Basic Process
	21.2.1.1 Generating XML with the XSU Java API: Basic Process
	21.2.1.2 Performing DML with the XSU Java API: Basic Process

	21.2.2 Installing XSU
	21.2.2.1 XSU in the Database
	21.2.2.2 XSU in an Application Server
	21.2.2.3 XSU in a Web Server

	21.2.3 Running the XSU Demo Programs
	21.2.4 Using the XSU Command-Line Utility
	21.2.4.1 Generating XML with the XSU Command-Line Utility
	21.2.4.2 Generating XMLType Data with the XSU Command-Line Utility
	21.2.4.3 Performing DML with the XSU Command-Line Utility

	21.3 Programming with the XSU Java API
	21.3.1 Generating a String with OracleXMLQuery
	21.3.1.1 Running the testXMLSQL Program

	21.3.2 Generating a DOM Tree with OracleXMLQuery
	21.3.3 Paginating Results with OracleXMLQuery
	21.3.3.1 Limiting the Number of Rows in the Result Set
	21.3.3.2 Keeping an Object Open for the Duration of the User's Session
	21.3.3.3 Paginating Results with OracleXMLQuery: Example

	21.3.4 Generating Scrollable Result Sets
	21.3.5 Generating XML from Cursor Objects
	21.3.6 Inserting Rows with OracleXMLSave
	21.3.6.1 Inserting XML into All Columns with OracleXMLSave
	21.3.6.1.1 Running the testInsert Program

	21.3.6.2 Inserting XML into a Subset of Columns with OracleXMLSave
	21.3.6.2.1 Running the testInsertSubset Program

	21.3.7 Updating Rows Using OracleXMLSave
	21.3.7.1 Updating Key Columns Using OracleXMLSave
	21.3.7.1.1 Running the testUpdate Program

	21.3.7.2 Updating a Column List Using OracleXMLSave
	21.3.7.2.1 Running the testUpdateList Program

	21.3.8 Deleting Rows using XSU
	21.3.8.1 Deleting by Row with OracleXMLSave
	21.3.8.1.1 Running the testDelete Program

	21.3.8.2 Deleting by Key with OracleXMLSave
	21.3.8.2.1 Running the testDeleteKey Program

	21.3.9 Handling XSU Java Exceptions
	21.3.9.1 Getting the Parent Exception
	21.3.9.2 Raising a No Rows Exception

	21.4 Tips and Techniques for Programming with XSU
	21.4.1 How XSU Maps Between SQL and XML
	21.4.1.1 Default SQL-to-XML Mapping
	21.4.1.1.1 XML Mapping Against an Object-Relational Schema
	21.4.1.1.2 Default Mapping of Complex Type Columns to XML
	21.4.1.1.3 Default Mapping of Collections to XML

	21.4.1.2 Default XML-to-SQL Mapping
	21.4.1.3 Customizing Generated XML
	21.4.1.3.1 Altering the Database Schema or SQL Query
	21.4.1.3.2 Modifying XSU

	21.4.2 How XSU Processes SQL Statements
	21.4.2.1 How XSU Queries the Database
	21.4.2.2 How XSU Inserts Rows
	21.4.2.3 How XSU Updates Rows
	21.4.2.4 How XSU Deletes Rows
	21.4.2.5 How XSU Commits After DML

	22 Using the TransX Utility
	22.1 Introduction to the TransX Utility
	22.1.1 Prerequisites for Using the TransX Utility
	22.1.2 TransX Utility Features
	22.1.2.1 Simplified Multilingual Data Loading
	22.1.2.2 Simplified Data Format Support and Interface
	22.1.2.3 Additional TransX Utility Features

	22.2 Using the TransX Utility: Overview
	22.2.1 Using the TransX Utility: Basic Process
	22.2.2 Running the TransX Utility Demo Programs
	22.2.3 Using the TransX Command-Line Utility
	22.2.3.1 TransX Utility Command-Line Options
	22.2.3.2 TransX Utility Command-Line Parameters

	22.3 Loading Data with the TransX Utility
	22.3.1 Storing Messages in the Database
	22.3.2 Creation of a Data Set in a Predefined Format
	22.3.2.1 Format of the Input XML Document
	22.3.2.2 Specifying Translations in a Data Set

	22.3.3 Loading the Data
	22.3.4 Querying the Data

	23 Data Loading Format (DLF) Specification
	23.1 Introduction to DLF
	23.1.1 Naming Conventions for DLF
	23.1.1.1 Elements and Attributes
	23.1.1.2 Values
	23.1.1.3 File Extensions

	23.2 General Structure of DLF
	23.2.1 Tree Structure of DLF

	23.3 DLF Specifications
	23.3.1 XML Declaration in DLF
	23.3.2 Entity References in DLF
	23.3.3 Elements in DLF
	23.3.3.1 Top-Level Table Element
	23.3.3.2 Translation Elements
	23.3.3.3 Lookup Key Elements
	23.3.3.4 Metadata Elements
	23.3.3.5 Data Elements

	23.3.4 Attributes in DLF
	23.3.4.1 DLF Attributes
	23.3.4.2 XML Namespace Attributes

	23.4 DLF Examples
	23.4.1 Minimal DLF Document
	23.4.2 Typical DLF Document
	23.4.3 Localized DLF Document

	24 Using the XSQL Pages Publishing Framework
	24.1 Introduction to the XSQL Pages Publishing Framework
	24.1.1 Prerequisites for Using the XSQL Pages Publishing Framework

	24.2 Using the XSQL Pages Publishing Framework: Overview
	24.2.1 Using the XSQL Pages Framework: Basic Process
	24.2.2 Setting Up the XSQL Pages Framework
	24.2.2.1 Creating and Testing XSQL Pages with Oracle JDeveloper
	24.2.2.2 Setting the CLASSPATH for XSQL Pages
	24.2.2.3 Configuring the XSQL Servlet Container
	24.2.2.4 Setting Up the Connection Definitions

	24.2.3 Running the XSQL Pages Demo Programs
	24.2.3.1 Setting Up the XSQL Demos
	24.2.3.2 Running the XSQL Demos

	24.2.4 Using the XSQL Pages Command-Line Utility

	24.3 Generating and Transforming XML with XSQL Servlet
	24.3.1 Composing XSQL Pages
	24.3.1.1 Using Bind Parameters
	24.3.1.2 Using Lexical Substitution Parameters
	24.3.1.3 Providing Default Values for Bind and Substitution Parameters
	24.3.1.4 How the XSQL Page Processor Handles Different Types of Parameters

	24.3.2 Producing Datagrams from SQL Queries
	24.3.3 Transforming XML Datagrams into an Alternative XML Format
	24.3.4 Transforming XML Datagrams into HTML for Display

	24.4 Using XSQL in Java Programs
	24.5 XSQL Pages Tips and Techniques
	24.5.1 XSQL Pages Limitations
	24.5.2 Hints for Using the XSQL Servlet
	24.5.2.1 Specifying a DTD While Transforming XSQL Output to a WML Document
	24.5.2.2 Testing Conditions in XSQL Pages
	24.5.2.3 Passing a Query Result to the WHERE Clause of Another Query
	24.5.2.4 Handling Multivalued HTML Form Parameters
	24.5.2.5 Invoking PL/SQL Wrapper Procedures to Generate XML Datagrams
	24.5.2.6 Accessing Contents of Posted XML
	24.5.2.7 Changing Database Connections Dynamically
	24.5.2.8 Retrieving the Name of the Current XSQL Page

	24.5.3 Resolving Common XSQL Connection Errors
	24.5.3.1 Receiving "Unable to Connect" Errors
	24.5.3.2 Receiving "No Posted Document to Process" When Using HTTP POST

	24.5.4 Security Considerations for XSQL Pages
	24.5.4.1 Installing Your XSQL Configuration File in a Safe Directory
	24.5.4.2 Disabling Default Client Stylesheet Overrides
	24.5.4.3 Protecting Against the Misuse of Substitution Parameters

	25 Using the XSQL Pages Publishing Framework: Advanced Topics
	25.1 Customizing the XSQL Configuration File Name
	25.2 Controlling How Stylesheets Are Processed
	25.2.1 Overriding Client Stylesheets
	25.2.2 Controlling the Content Type of the Returned Document
	25.2.3 Assigning the Stylesheet Dynamically
	25.2.4 Processing XSLT Stylesheets in the Client
	25.2.5 Providing Multiple Stylesheets

	25.3 Working with Array-Valued Parameters
	25.3.1 Supplying Values for Array-Valued Parameters
	25.3.2 Setting Array-Valued Page or Session Parameters from Strings
	25.3.3 Binding Array-Valued Parameters in SQL and PL/SQL Statements

	25.4 Setting Error Parameters on Built-In Actions
	25.4.1 Using Conditional Logic with Error Parameters
	25.4.2 Formatting XSQL Action Handler Errors

	25.5 Including XMLType Query Results in XSQL Pages
	25.6 Handling Posted XML Content
	25.6.1 Understanding XML Posting Options

	25.7 Producing PDF Output with the FOP Serializer
	25.8 Performing XSQL Customizations
	25.8.1 Writing Custom XSQL Action Handlers
	25.8.1.1 Implementing the XSQLActionHandler Interface
	25.8.1.2 Using Multivalued Parameters in Custom XSQL Actions

	25.8.2 Implementing Custom XSQL Serializers
	25.8.2.1 Techniques for Using a Custom Serializer
	25.8.2.2 Assigning a Short Name to a Custom Serializer

	25.8.3 Using a Custom XSQL Connection Manager for JDBC Data Sources
	25.8.4 Writing Custom XSQL Connection Managers
	25.8.4.1 Accessing Authentication Information in a Custom Connection Manager

	25.8.5 Implementing a Custom XSQLErrorHandler
	25.8.6 Providing a Custom XSQL Logger Implementation

	Part III Oracle XML Developer's Kit for C++
	26 Getting Started with Oracle XML Developer's Kit for C++
	26.1 Installing XDK for C++ Components
	26.2 Configuring the UNIX Environment for XDK for C++ Components
	26.2.1 XDK for C++ Component Dependencies on UNIX
	26.2.2 Setting Up XDK for C++ Environment Variables on UNIX
	26.2.3 Testing the XDK for C++ Runtime Environment on UNIX
	26.2.4 Setting Up and Testing the XDK for C++ Compile-Time Environment on UNIX
	26.2.4.1 Testing the XDK for C++ Compile-Time Environment on UNIX

	26.2.5 Verifying the XDK for C++ Component Version on UNIX

	26.3 Configuring the Windows Environment for XDK for C++ Components
	26.3.1 XDK for C++ Component Dependencies on Windows
	26.3.2 Setting Up XDK for C++ Environment Variables on Windows
	26.3.3 Testing the XDK for C++ Runtime Environment on Windows
	26.3.4 Setting Up and Testing the XDK for C++ Compile-Time Environment on Windows
	26.3.4.1 Testing the XDK for C++ Compile-Time Environment on Windows

	26.3.5 Using the XDK for C++ Components with Visual C/C++

	27 Overview of the Unified C++ Interfaces
	27.1 What Is the Unified C++ API?
	27.2 Accessing the C++ Interface
	27.3 OracleXML Namespace
	27.3.1 OracleXML Interfaces

	27.4 Ctx Namespace
	27.4.1 OracleXML Data Types
	27.4.2 Ctx Interfaces

	27.5 IO Namespace
	27.5.1 IO Data Types
	27.5.2 IO Interfaces

	27.6 Tools Package
	27.6.1 Tools Interfaces

	27.7 Error Message Files

	28 Using the XML Parser for C++
	28.1 Introduction to Oracle XML Parser for C++
	28.2 DOM Namespace
	28.2.1 DOM Data Types
	28.2.2 DOM Interfaces
	28.2.3 DOM Traversal and Range Data Types
	28.2.4 DOM Traversal and Range Interfaces

	28.3 Parser Namespace
	28.3.1 GParser Interface
	28.3.2 DOMParser Interface
	28.3.3 SAXParser Interface
	28.3.3.1 SAX Event Handlers

	28.4 Thread Safety for the XML Parser for C++
	28.5 XML Parser for C++ Usage
	28.6 XML Parser for C++ Default Behavior
	28.7 C++ Sample Files

	29 Using the XSLT Processor for C++
	29.1 Accessing XSLT for C++
	29.2 XSL Namespace
	29.2.1 XSL Interfaces

	29.3 XSLT for C++ DOM Interface Usage
	29.4 Invoking XSLT for C++
	29.4.1 Command-Line Usage
	29.4.2 Writing C++ Code to Use Supplied APIs

	29.5 Using the Sample Files Included with the Software

	30 Using the XML Schema Processor for C++
	30.1 Oracle XML Schema Processor for C++
	30.1.1 Oracle XML Schema for C++ Features
	30.1.1.1 Online Documentation

	30.1.2 Standards Conformance for Oracle XML Schema Processor for C++

	30.2 XML Schema Processor API
	30.2.1 Invoking XML Schema Processor for C++

	30.3 Running the Provided XML Schema for C++ Sample Programs

	31 Using the XPath Processor for C++
	31.1 XPath Interfaces
	31.2 Sample Programs

	32 Using the XML Class Generator for C++
	32.1 Accessing the XML C++ Class Generator
	32.2 Using the XML C++ Class Generator
	32.2.1 External DTD Parsing

	32.3 Using the XML C++ Class Generator Command-Line Utility
	32.3.1 Input to the XML C++ Class Generator

	32.4 Using the XML C++ Class Generator Examples
	32.4.1 XML C++ Class Generator Example 1: XML — Input File to Class Generator, CG.xml
	32.4.2 XML C++ Class Generator Example 2: DTD — Input File to Class Generator, CG.dtd
	32.4.3 XML C++ Class Generator Example 3: CG Sample Program

	Part IV Oracle XML Developer's Kit Reference
	33 XSQL Pages Reference
	33.1 XSQL Configuration File Parameters
	33.2.1 <xsql:action>
	33.2.2 <xsql:delete-request>
	33.2.3 <xsql:dml>
	33.2.4 <xsql:if-param>
	33.2.5 <xsql:include-owa>
	33.2.6 <xsql:include-param>
	33.2.7 <xsql:include-posted-include-posted>
	33.2.8 <xsql:include-request-params>
	33.2.9 <xsql:include-xml>
	33.2.10 <xsql:include-xsql>
	33.2.11 <xsql:insert-param>
	33.2.12 <xsql:insert-request>
	33.2.13 <xsql:query>
	33.2.14 <xsql:ref-cursor-function>
	33.2.15 <xsql:set-cookie>
	33.2.16 <xsql:set-page-param>
	33.2.17 <xsql:set-session-param>
	33.2.18 <xsql:set-stylesheet-param>
	33.2.19 <xsql:update-request>

	34 Oracle XML Developer's Kit Standards
	34.1 XML Standards Supported by XDK
	34.1.1 Summary of XML Standards Supported by XDK
	34.1.2 XML Standards for XDK for Java
	34.1.2.1 DOM Standard for XDK for Java
	34.1.2.1.1 DOM Level 3 Load and Save
	34.1.2.1.2 DOM 3.0 Validation

	34.1.2.2 XSLT Standard for XDK for Java
	34.1.2.3 JAXB Standard for XDK for Java
	34.1.2.4 Pipeline Definition Language Standard for XDK for Java

	34.2 Character Sets Supported by XDK
	34.2.1 Character Sets Supported by XDK for Java
	34.2.2 Character Sets Supported by XDK for C

	A XDK for Java XML Error Messages
	A.1 XML Parser Error Messages
	A.2 DOM Error Messages
	A.3 XSLT Error Messages
	A.4 XPath Error Messages
	A.5 XML Schema Validation Error Messages
	A.6 Schema Representation Constraint Error Messages
	A.7 Schema Component Constraint Error Messages
	A.8 XSQL Server Pages Error Messages
	A.9 XML Pipeline Error Messages
	A.10 JAXB Error Messages

	B XDK for Java TXU Error Messages
	B.1 DLF Error Messages
	B.2 TransX Informational Messages
	B.3 TransX Error Messages
	B.4 Assertion Error Messages

	C XDK for Java XSU Error Messages
	C.1 Generic Error Messages
	C.2 Query Error Messages
	C.3 DML Error Messages

	D Oracle XML Developer's Kit JavaBeans (Deprecated)
	D.1 Introduction to XDK JavaBeans
	D.1.1 Prerequisites for Using XDK JavaBeans
	D.1.2 Standards and Specifications for XDK JavaBeans
	D.1.3 XDK JavaBeans Features
	D.1.3.1 DOMBuilder
	D.1.3.2 XSLTransformer
	D.1.3.3 DBAccess
	D.1.3.4 XMLDBAccess
	D.1.3.5 XMLDiff
	D.1.3.6 XMLCompress
	D.1.3.7 XSDValidator

	D.2 Using XDK JavaBeans: Overview
	D.2.1 Using XDK JavaBeans: Basic Process
	D.2.1.1 Using the DOMBuilder JavaBean: Basic Process
	D.2.1.2 Using the XSLTransformer JavaBean: Basic Process
	D.2.1.3 Using the XMLDBAccess JavaBean: Basic Process
	D.2.1.4 Using the XMLDiff JavaBean: Basic Process

	D.2.2 Running XDK JavaBean Demo Programs
	D.2.2.1 Running sample1
	D.2.2.2 Running sample2
	D.2.2.3 Running sample3
	D.2.2.4 Running sample4
	D.2.2.5 Running sample5
	D.2.2.6 Running sample6
	D.2.2.7 Running sample7
	D.2.2.8 Running sample8
	D.2.2.9 Running sample9
	D.2.2.10 Running sample10

	D.3 Processing XML with XDK JavaBeans
	D.3.1 Processing XML Asynchronously with the DOMBuilder and XSLTransformer Beans
	D.3.1.1 Parsing the Input XSLT Stylesheet
	D.3.1.2 Processing the XML Documents Asynchronously
	D.3.1.2.1 Transforming the XML with the XSLTransformer Bean

	D.3.2 Comparing XML Documents with the XMLDiff JavaBean
	D.3.2.1 Comparing the XML Files and Generating a Stylesheet

	Glossary
	attribute
	binary XML
	callback
	cartridge
	Cascading Style Sheets (CSS)
	CDATA
	character data (CDATA)
	child element
	class generator
	CLASSPATH
	Common Oracle Runtime Environment (CORE)
	CORE
	CSS
	data definition language (DDL)
	datagram
	DDL
	DOCTYPE
	Document Object Model (DOM)
	document type definition (DTD)
	DOM
	DTD
	element
	empty element
	entity
	epilog
	Extensible Markup Language (XML)
	Extensible Stylesheet Language (XSL)
	Extensible Stylesheet Language Formatting Objects (XSL-FO)
	Extensible Stylesheet Language Transformations (XSLT)
	FOP
	Formatting Objects Processor (FOP)
	HTTP
	HTTPS
	Hypertext Transport Protocol (HTTP)
	Hypertext Transport Protocol, Secure (HTTPS)
	IDE
	infoset
	instance document
	instantiate
	Integrated Development Environment (IDE)
	Java EE
	Java
	Java Platform, Enterprise Edition (Java EE)
	Java API for XML Processing (JAXP)
	Java Architecture for XML Binding (JAXB)
	Java Database Connectivity (JDBC)
	Java Developer's Kit (JDK)
	Java Naming and Directory Interface (JNDI)
	Java Specification Request (JSR)
	Java Virtual Machine (JVM)
	JavaBeans
	JAXB
	JAXP
	JDBC
	JDK
	JNDI
	JSR
	JVM
	listener
	marshalling
	node
	notation attribute declaration
	OASIS
	Oracle JDeveloper
	Oracle Text
	Oracle WebLogic Server
	XDK
	Oracle XML DB
	Oracle XML Developer's Kit (XDK)
	ORACLE_HOME
	Organization for the Advancement of Structured Information Standards (OASIS)
	parent element
	parsed character data (PCDATA)
	path name
	PCDATA
	prolog
	repository
	resource
	resource name
	result set
	root element
	SAX
	schema
	servlet
	SGML
	Simple API for XML (SAX)
	Simple Object Access Protocol (SOAP)
	SOAP
	SQL
	SQL/XML
	Standard Generalized Markup Language (SGML)
	StAX
	Streaming API for XML (StAX)
	Structured Query Language (SQL)
	stylesheet
	tag
	TransX Utility
	Uniform Resource Identifier (URI)
	Uniform Resource Locator (URL)
	unmarshalling
	URI
	URL
	valid
	W3C
	well-formed
	Wireless Markup Language (WML)
	WML
	Working Group (WG)
	World Wide Web (WWW)
	World Wide Web Consortium (W3C)
	WWW
	XDM
	XLink
	XML
	XML Base
	XML Information Set
	XML Linking Language (XLink)
	XML Namespaces
	XML parser
	XML Path Language (XPath)
	XML Pipeline Definition Language
	XML Pointer Language (XPointer)
	XML processor
	XML Query (XQuery)
	XML schema
	XML Schema
	XML Schema Definition
	XML Schema language
	XML Schema processor
	XMLSchema-instance namespace
	XML SQL Utility (XSU)
	XMLType
	XMLType views
	XPath
	XPointer
	XQJ
	XQSX
	XQuery
	XQueryX
	XQUF
	XQVM
	XSL
	XSL-FO
	XSL Formatting Objects (XSL-FO)
	XSL Transformations (XSLT)
	XSLT
	XSLT Virtual Machine (XVM)
	XSLTVM
	XSQL pages
	XSQL pages publishing framework
	XSQL servlet
	XSU
	XVM

	Index

