Oracle® Database
Utilities

21c
F30732-19
March 2024

ORACLE"

Oracle Database Utilities, 21c

F30732-19

Copyright © 2002, 2024, Oracle and/or its affiliates.
Primary Author: Douglas Williams

Contributors: William Beauregard, Michael Cusson, Steve DiPirro, John Kalogeropoulos, Rod Payne, Rich
Phillips, Mike Sakayeda, Jim Stenoish, Roy Swonger

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation,” or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Contents

Preface

Audience XXXIX

Documentation Accessibility XXXiX

Diversity and Inclusion X

Related Documentation x|

Syntax Diagrams xli

Conventions xli

Part | Oracle Data Pump
1 Overview of Oracle Data Pump

1.1 Oracle Data Pump Components 1-2

1.2 How Does Oracle Data Pump Move Data? 1-3
1.2.1 Using Data File Copying to Move Data 1-4
1.2.2 Using Direct Path to Move Data 1-5
1.2.3 Using External Tables to Move Data 1-6
1.2.4 Using Conventional Path to Move Data 1-7
1.2.5 Using Network Link Import to Move Data 1-7
1.2.6 Using a Parameter File (Parfile) with Oracle Data Pump 1-8

1.3 Using Oracle Data Pump With CDBs 1-9
1.3.1 About Using Oracle Data Pump in a Multitenant Environment 1-9
1.3.2 Using Oracle Data Pump to Move Data Into a CDB 1-10
1.3.3 Using Oracle Data Pump to Move PDBs Within or Between CDBs 1-12

1.4 Required Roles for Oracle Data Pump Export and Import Operations 1-13

1.5 What Happens During the Processing of an Oracle Data Pump Job? 1-14
1.5.1 Coordination of an Oracle Data Pump Job 1-15
1.5.2 Tracking Progress Within an Oracle Data Pump Job 1-15
1.5.3 Filtering Data and Metadata During an Oracle Data Pump Job 1-16
1.5.4 Transforming Metadata During an Oracle Data Pump Job 1-16
1.5.5 Maximizing Job Performance of Oracle Data Pump 1-16
1.5.6 Loading and Unloading Data with Oracle Data Pump 1-17

ORACLE

1.6 How to Monitor Status of Oracle Data Pump Jobs 1-18

1.7 How to Monitor the Progress of Running Jobs with V$SESSION_LONGOPS 1-18
1.8 File Allocation with Oracle Data Pump 1-19
1.8.1 Understanding File Allocation in Oracle Data Pump 1-19
1.8.2 Specifying Files and Adding Additional Dump Files 1-20
1.8.3 Default Locations for Dump, Log, and SQL Files 1-20
1.8.3.1 Understanding Dump, Log, and SQL File Default Locations 1-20
1.8.3.2 Understanding How to Use Oracle Data Pump with Oracle RAC 1-22

1.8.3.3 Using Directory Objects When Oracle Automatic Storage Management Is
Enabled 1-23
1.8.3.4 The DATA_PUMP_DIR Directory Object and Pluggable Databases 1-23
1.8.4 Using Substitution Variables with Oracle Data Pump Exports 1-24
1.9 Exporting and Importing Between Different Oracle Database Releases 1-25
1.10 Exporting and Importing Blockchain Tables with Oracle Data Pump 1-26
1.11 Managing SecureFiles Large Object Exports with Oracle Data Pump 1-27
1.12 Oracle Data Pump Process Exit Codes 1-28
1.13 How to Monitor Oracle Data Pump Jobs with Unified Auditing 1-29
1.14 Encrypted Data Security Warnings for Oracle Data Pump Operations 1-29
1.15 How Does Oracle Data Pump Handle Timestamp Data? 1-29
1.15.1 TIMESTAMP WITH TIMEZONE Restrictions 1-30
1.15.1.1 Understanding TIMESTAMP WITH TIME ZONE Restrictions 1-30
1.15.1.2 Oracle Data Pump Support for TIMESTAMP WITH TIME ZONE Data 1-31
1.15.1.3 Time Zone File Versions on the Source and Target 1-32
1.15.2 TIMESTAMP WITH LOCAL TIME ZONE Restrictions 1-32
1.16 Character Set and Globalization Support Considerations 1-32
1.16.1 Data Definition Language (DDL) 1-33
1.16.2 Single-Byte Character Sets and Export and Import 1-33
1.16.3 Multibyte Character Sets and Export and Import 1-33
1.17 Oracle Data Pump Behavior with Data-Bound Collation 1-34

2 Oracle Data Pump Export

2.1 What Is Oracle Data Pump Export? 2-1
2.2 Starting Oracle Data Pump Export 2-2
2.2.1 Oracle Data Pump Export Interfaces 2-2
2.2.2 Oracle Data Pump Export Modes 2-3
2.2.2.1 Full Export Mode 2-4

2.2.2.2 Schema Mode 2-5

2.2.2.3 Table Mode 2-6

2.2.2.4 Tablespace Mode 2-7

2.2.2.5 Transportable Tablespace Mode 2-7

2.2.3 Network Considerations for Oracle Data Pump Export 2-8

ORACLE iv

2.3 Filtering During Export Operations

23.1
2.3.2

Oracle Data Pump Export Data Filters
Oracle Data Pump Metadata Filters

2.4 Parameters Available in Data Pump Export Command-Line Mode

24.1

24.2

243

244

245

2.4.6

247

248

24.9

2.4.10
2411
2.4.12
2.4.13
2414
2.4.15
2.4.16
2.4.17
2.4.18
2.4.19
2.4.20
2421
2.4.22
2.4.23
2.4.24
2.4.25
2.4.26
2.4.27
2.4.28
2.4.29
2.4.30
2431
2.4.32
2.4.33
2.4.34
2.4.35
2.4.36
2.4.37

ORACLE

About Data Pump Export Parameters
ABORT_STEP
ACCESS_METHOD
ATTACH
CHECKSUM
CHECKSUM_ALGORITM
CLUSTER
COMPRESSION
COMPRESSION_ALGORITHM
CONTENT
CREDENTIAL
DATA_OPTIONS
DIRECTORY
DUMPFILE
ENABLE_SECURE_ROLES
ENCRYPTION
ENCRYPTION_ALGORITHM
ENCRYPTION_MODE
ENCRYPTION_PASSWORD
ENCRYPTION_PWD_PROMPT
ESTIMATE
ESTIMATE_ONLY
EXCLUDE
FILESIZE
FLASHBACK_SCN
FLASHBACK_TIME
FULL
HELP
INCLUDE
JOB_NAME
KEEP_MASTER
LOGFILE
LOGTIME
METRICS
NETWORK_LINK
NOLOGFILE
PARALLEL

2-9

2-9
2-10
2-11
2-16
2-17
2-18
2-19
2-20
2-21
2-22
2-23
2-24
2-25
2-26
2-27
2-28
2-29
2-31
2-32
2-34
2-35
2-36
2-38
2-39
2-40
2-41
2-43
2-44
2-45
2-46
2-48
2-48
2-50
2-51
2-51
2-52
2-54
2-55
2-57
2-57

2.4.38
2.4.39
2.4.40
2.4.41
2.4.42
2.4.43
2.4.44
2.4.45
2.4.46
2.4.47
2.4.48
2.4.49
2.4.50
2.4.51
2.4.52
2.4.53
2.4.54
2.4.55
2.4.56

2.5 Commands Available in Data Pump Export Interactive-Command Mode

251
252
2.5.3
254
255
2.5.6
257
2.5.8
2.5.9
2.5.10
2511

PARALLEL_THRESHOLD
PARFILE

QUERY

REMAP_DATA
REUSE_DUMPFILES
SAMPLE

SCHEMAS

SERVICE_NAME
SOURCE_EDITION

STATUS

TABLES

TABLESPACES
TRANSPORT_DATAFILES_LOG
TRANSPORT_FULL_CHECK
TRANSPORT_TABLESPACES
TRANSPORTABLE
TTS_CLOSURE_CHECK
VERSION
VIEWS_AS_TABLES

About Oracle Data Pump Export Interactive Command Mode

ADD_FILE

CONTINUE_CLIENT

EXIT_CLIENT

FILESIZE

HELP

KILL_JOB

PARALLEL

START_JOB
STATUS
STOP_JOB

2.6 Examples of Using Oracle Data Pump Export

26.1
2.6.2
2.6.3
2.6.4
2.6.5
2.6.6

Performing a Table-Mode Export

Data-Only Unload of Selected Tables and Rows
Estimating Disk Space Needed in a Table-Mode Export
Performing a Schema-Mode Export

Performing a Parallel Full Database Export

Using Interactive Mode to Stop and Reattach to a Job

2.7 Syntax Diagrams for Oracle Data Pump Export

ORACLE

Vi

2-59
2-60
2-61
2-63
2-65
2-65
2-66
2-67
2-68
2-69
2-70
2-73
2-73
2-75
2-76
2-77
2-79
2-80
2-81
2-83
2-84
2-85
2-85
2-86
2-86
2-87
2-87
2-88
2-89
2-89
2-90
2-90
2-91
2-91
2-91
2-92
2-92
2-93
2-93

3 Oracle Data Pump Import

3.1 What Is Oracle Data Pump Import?

3.2 Starting Oracle Data Pump Import

3.21
3.2.2

Oracle Data Pump Import Interfaces
Oracle Data Pump Import Modes

3.2.2.1 About Oracle Data Pump Import Modes
3.2.2.2 Full Import Mode

3.2.2.3 Schema Mode

3.2.2.4 Table Mode

3.2.2.5 Tablespace Mode

3.2.2.6 Transportable Tablespace Mode

3.2.3

Network Considerations for Oracle Data Pump Import

3.3 Filtering During Import Operations

331
3.3.2

Oracle Data Pump Import Data Filters
Oracle Data Pump Import Metadata Filters

3.4 Parameters Available in Oracle Data Pump Import Command-Line Mode

34.1
3.4.2
3.4.3
3.4.4
3.45
3.4.6
3.4.7
3.4.8
3.4.9
3.4.10
3.4.11
3.4.12
3.4.13
3.4.14
3.4.15
3.4.16
3.4.17
3.4.18
3.4.19
3.4.20
3.4.21
3.4.22
3.4.23
3.4.24

ORACLE

About Import Command-Line Mode
ABORT_STEP
ACCESS_METHOD
ATTACH
CLUSTER
CONTENT
CREDENTIAL
DATA_OPTIONS
DIRECTORY
DUMPFILE
ENABLE_SECURE_ROLES
ENCRYPTION_PASSWORD
ENCRYPTION_PWD_PROMPT
ESTIMATE
EXCLUDE
FLASHBACK_SCN
FLASHBACK_TIME
FULL
HELP
INCLUDE
JOB_NAME
KEEP_MASTER
LOGFILE
LOGTIME

3-1
3-1

3-3
3-3
3-4
3-5
3-5
3-6
3-6
3-7

3-8

3-8

3-9
3-14
3-16
3-17
3-18
3-19
3-20
3-21
3-23
3-26
3-27
3-30
3-30
3-31
3-33
3-34
3-36
3-37
3-38
3-40
3-40
3-42
3-43
3-43
3-45

Vii

3.4.25
3.4.26
3.4.27
3.4.28
3.4.29
3.4.30
3.4.31
3.4.32
3.4.33
3.4.34
3.4.35
3.4.36
3.4.37
3.4.38
3.4.39
3.4.40
3.4.41
3.4.42
3.4.43
3.4.44
3.4.45
3.4.46
3.4.47
3.4.48
3.4.49
3.4.50
3.4.51
3.4.52
3.4.53
3.4.54
3.4.55
3.4.56
3.4.57
3.4.58
3.4.59
3.4.60

MASTER_ONLY

METRICS

NETWORK_LINK
NOLOGFILE

PARALLEL
PARALLEL_THRESHOLD
PARFILE
PARTITION_OPTIONS
QUERY

REMAP_DATA
REMAP_DATAFILE
REMAP_DIRECTORY
REMAP_SCHEMA
REMAP_TABLE
REMAP_TABLESPACE
SCHEMAS

SERVICE_NAME
SKIP_UNUSABLE_INDEXES
SOURCE_EDITION

SQLFILE

STATUS
STREAMS_CONFIGURATION
TABLE_EXISTS_ACTION
REUSE_DATAFILES
TABLES

TABLESPACES
TARGET_EDITION
TRANSFORM
TRANSPORT_DATAFILES
TRANSPORT_FULL_CHECK
TRANSPORT_TABLESPACES
TRANSPORTABLE
VERIFY_CHECKSUM
VERIFY_ONLY

VERSION
VIEWS_AS_TABLES (Network Import)

3.5 Commands Available in Oracle Data Pump Import Interactive-Command Mode

3.5.1
3.5.2
3.5.3
3.5.4

ORACLE

About Oracle Data Pump Import Interactive Command Mode
CONTINUE_CLIENT

EXIT_CLIENT

HELP

3-45
3-46
3-47
3-49
3-49
3-52
3-53
3-54
3-56
3-58
3-59
3-60
3-61
3-63
3-64
3-65
3-66
3-67
3-68
3-69
3-71
3-71
3-72
3-74
3-75
3-77
3-78
3-79
3-86
3-88
3-89
3-91
3-93
3-94
3-95
3-96
3-98
3-98
3-99

3-100

3-100

viii

3.55 KILL_JOB 3-101

3.5.6 PARALLEL 3-101
3.5.7 START_JOB 3-102
3.5.8 STATUS 3-103
3.5.9 STOP_JOB 3-103
3.6 Examples of Using Oracle Data Pump Import 3-104
3.6.1 Performing a Data-Only Table-Mode Import 3-104
3.6.2 Performing a Schema-Mode Import 3-104
3.6.3 Performing a Network-Mode Import 3-105
3.6.4 Using Wildcards in URL-Based Dumpfile Names 3-105
3.7 Syntax Diagrams for Oracle Data Pump Import 3-106

4 Oracle Data Pump Legacy Mode

4.1 Oracle Data Pump Legacy Mode Use Cases 4-1
4.2 Parameter Mappings 4-2
4.2.1 Using Original Export Parameters with Oracle Data Pump 4-2
4.2.2 Using Original Import Parameters with Oracle Data Pump 4-5
4.3 Management of File Locations in Oracle Data Pump Legacy Mode 4-10
4.4 Adjusting Existing Scripts for Oracle Data Pump Log Files and Errors 4-13
44.1 Log Files 4-13
4.4.2 Error Cases 4-13
443 Exit Status 4-13
5 Oracle Data Pump Performance
5.1 Data Performance Improvements for Oracle Data Pump Export and Import 5-1
5.2 Tuning Performance 5-2
5.2.1 How To Manage Oracle Data Pump Resource Consumption 5-2
5.2.2 Effect of Compression and Encryption on Performance 5-3
5.2.3 Memory Considerations When Exporting and Importing Statistics 5-3
5.3 Initialization Parameters That Affect Oracle Data Pump Performance 5-3
5.3.1 Performance Guidelines for Oracle Data Pump Parameters 5-4
5.3.2 Setting the Size Of the Buffer Cache In a GoldenGate Replication Environment 5-4
5.3.3 Managing Resource Usage for Multiple User Oracle Data Pump Jobs 5-4

6 Using the Oracle Data Pump API

6.1 How Does the Oracle Data Pump Client Interface APl Work? 6-1
6.2 DBMS_DATAPUMP Job States 6-1
6.3 What Are the Basic Steps in Using the Oracle Data Pump API? 6-4
6.4 Examples of Using the Oracle Data Pump API 6-4

ORACLE iX

6.4.1 Using the Oracle Data Pump APl Examples with Your Database 6-5
6.4.2 Performing a Simple Schema Export with Oracle Data Pump 6-5
6.4.3 Performing a Table Mode Export to Object Store with Oracle Data Pump 6-7
6.4.4 Importing a Dump File and Remapping All Schema Objects 6-11
6.4.5 Importing a Table to an Object Store Using Oracle Data Pump 6-13
6.4.6 Using Exception Handling During a Simple Schema Export 6-17
6.4.7 Displaying Dump File Information for Oracle Data Pump Jobs 6-20
Part |l SQL*Loader
7 Understanding How to Use SQL*Loader

7.1 SQL*Loader Features 7-2
7.2 SQL*Loader Parameters 7-3
7.3 SQL*Loader Control File 7-4
7.4 Input Data and Data Fields in SQL*Loader 7-4
7.4.1 How SQL*Loader Reads Input Data and Data Files 7-5
7.4.2 Fixed Record Format 7-5
7.4.3 Variable Record Format and SQL*Loader 7-6
7.4.4 Stream Record Format and SQL*Loader 7-7
7.4.5 Logical Records and SQL*Loader 7-8
7.4.6 Data Field Setting and SQL*Loader 7-9

7.5 LOBFILEs and Secondary Data Files (SDFs) 7-9
7.6 Data Conversion and Data Type Specification 7-10
7.7 SQL*Loader Discarded and Rejected Records 7-11
7.7.1 The SQL*Loader Bad File 7-11
7.7.1.1 Records Rejected by SQL*Loader 7-11

7.7.1.2 Records Rejected by Oracle Database During a SQL*Loader Operation 7-11

7.7.2 The SQL*Loader Discard File 7-11

7.8 Log File and Logging Information 7-12
7.9 Conventional Path Loads, Direct Path Loads, and External Table Loads 7-12
7.9.1 Conventional Path Loads 7-13
7.9.2 Direct Path Loads 7-13
7.9.3 Parallel Direct Path 7-13
7.9.4 External Table Loads 7-14
7.9.5 Choosing External Tables Versus SQL*Loader 7-14
7.9.6 Behavior Differences Between SQL*Loader and External Tables 7-15
7.9.6.1 Multiple Primary Input Data Files 7-15

7.9.6.2 Syntax and Data Types 7-15

7.9.6.3 Byte-Order Marks 7-16

7.9.6.4 Default Character Sets, Date Masks, and Decimal Separator 7-16

ORACLE

7.9.6.5 Use of the Backslash Escape Character 7-16
7.9.7 Loading Tables Using Data Stored into Object Storage 7-16
7.10 Loading Objects, Collections, and LOBs with SQL*Loader 7-18
7.10.1 Supported Object Types 7-18
7.10.1.1 column objects 7-18
7.10.1.2 row objects 7-18
7.10.2 Supported Collection Types 7-19
7.10.2.1 Nested Tables 7-19
7.10.2.2 VARRAYs 7-19
7.10.3 Supported LOB Data Types 7-19
7.11 Partitioned Object Support in SQL*Loader 7-20
7.12 Application Development: Direct Path Load API 7-20
7.13 SQL*Loader Case Studies 7-20
7.13.1 How to Access and Use the Oracle SQL*Loader Case Studies 7-21
7.13.2 Case Study Files 7-22
7.13.3 Running the Case Studies 7-23
7.13.4 Case Study Log Files 7-23
7.13.5 Checking the Results of a Case Study 7-23
SQL*Loader Command-Line Reference
8.1 Starting SQL*Loader 8-1
8.1.1 Specifying Parameters on the Command Line 8-1
8.1.2 Alternative Ways to Specify SQL*Loader Parameters 8-2
8.1.3 Using SQL*Loader to Load Data Across a Network 8-3
8.2 Command-Line Parameters for SQL*Loader 8-3
8.2.1 BAD 8-6
8.2.2 BINDSIZE 8-8
8.2.3 COLUMNARRAYROWS 8-9
8.2.4 CONTROL 8-9
8.2.5 CREDENTIAL 8-10
8.2.6 DATA 8-12
8.2.7 DATE_CACHE 8-14
8.2.8 DEFAULTS 8-15
8.2.9 DEGREE_OF_PARALLELISM 8-16
8.2.10 DIRECT 8-17
8.2.11 DIRECT_PATH_LOCK_WAIT 8-18
8.2.12 DISCARD 8-18
8.2.13 DISCARDMAX 8-20
8.2.14 DNFS_ENABLE 8-20
8.2.15 DNFS_READBUFFERS 8-21

ORACLE

Xi

8.2.16 EMPTY_LOBS_ARE_NULL 8-22

8.2.17 ERRORS 8-23
8.2.18 EXTERNAL_TABLE 8-24
8.2.19 FILE 8-26
8.2.20 HELP 8-26
8.2.21 LOAD 8-27
8.2.22 LOG 8-27
8.2.23 MULTITHREADING 8-28
8.2.24 NO_INDEX_ERRORS 8-29
8.2.25 PARALLEL 8-29
8.2.26 PARFILE 8-30
8.2.27 PARTITION_MEMORY 8-31
8.2.28 READSIZE 8-31
8.2.29 RESUMABLE 8-32
8.2.30 RESUMABLE_NAME 8-33
8.2.31 RESUMABLE_TIMEOUT 8-34
8.2.32 ROWS 8-34
8.2.33 SDF_PREFIX 8-35
8.2.34 SILENT 8-36
8.2.35 SKIP 8-37
8.2.36 SKIP_INDEX_MAINTENANCE 8-38
8.2.37 SKIP_UNUSABLE_INDEXES 8-39
8.2.38 STREAMSIZE 8-40
8.2.39 TRIM 8-41
8.2.40 USERID 8-42
8.3 Exit Codes for Inspection and Display 8-43

O SQL*Loader Control File Reference

9.1 Control File Contents 9-2
9.2 Comments in the Control File 9-4
9.3 Specifying Command-Line Parameters in the Control File 9-4
9.3.1 OPTIONS Clause 9-4
9.3.2 Specifying the Number of Default Expressions to Be Evaluated At One Time 9-5

9.4 Specifying File Names and Object Names 9-5
9.4.1 File Names That Conflict with SQL and SQL*Loader Reserved Words 9-6
9.4.2 Specifying SQL Strings in the SQL*Loader Control File 9-6
9.4.3 Operating Systems and SQL Loader Control File Characters 9-6
9.4.3.1 Specifying a Complete Path 9-7

9.4.3.2 Backslash Escape Character 9-7

9.4.3.3 Nonportable Strings 9-7

ORACLE Xii

9.4.3.4 Using the Backslash as an Escape Character 9-8

9.4.3.5 Escape Character Is Sometimes Disallowed 9-8
9.5 Identifying XMLType Tables 9-8
9.6 Specifying Field Order 9-10
9.7 Specifying Data Files 9-10
9.7.1 Understanding How to Specify Data Files 9-11
9.7.2 Examples of INFILE Syntax 9-12
9.7.3 Specifying Multiple Data Files 9-13
9.8 Specifying CSV Format Files 9-13
9.9 Identifying Data in the Control File with BEGINDATA 9-14
9.10 Specifying Data File Format and Buffering 9-15
9.11 Specifying the Bad File 9-16
9.11.1 Understanding and Specifying the Bad File 9-16
9.11.2 Examples of Specifying a Bad File Name 9-17
9.11.3 How Bad Files Are Handled with LOBFILEs and SDFs 9-17
9.11.4 Criteria for Rejected Records 9-17
9.12 Specifying the Discard File 9-18
9.12.1 Understanding and Specifying the Discard File 9-19
9.12.2 Specifying the Discard File in the Control File 9-20
9.12.3 Limiting the Number of Discard Records 9-20
9.12.4 Examples of Specifying a Discard File Name 9-20
9.12.5 Criteria for Discarded Records 9-21
9.12.6 How Discard Files Are Handled with LOBFILEs and SDFs 9-21
9.12.7 Specifying the Discard File from the Command Line 9-21
9.13 Specifying a NULLIF Clause At the Table Level 9-21
9.14 Specifying Datetime Formats At the Table Level 9-22
9.15 Handling Different Character Encoding Schemes 9-23
9.15.1 Multibyte (Asian) Character Sets 9-23
9.15.2 Unicode Character Sets 9-24
9.15.3 Database Character Sets 9-25
9.15.4 Data File Character Sets 9-25
9.15.5 Input Character Conversion with SQL*Loader 9-25
9.15.5.1 Options for Converting Character Sets Using SQL*Loader 9-26
9.15.5.2 Considerations When Loading Data into VARRAYs or Primary-Key-
Based REFs 9-27
9.15.5.3 CHARACTERSET Parameter 9-27
9.15.5.4 Control File Character Set 9-28
9.15.5.5 Character-Length Semantics 9-29
9.15.6 Shift-sensitive Character Data 9-30
9.16 Interrupted SQL*Loader Loads 9-30
9.16.1 Understanding Causes of Interrupted SQL*Loader Loads 9-31

ORACLE Xiii

9.16.2 Discontinued Conventional Path Loads 9-31

9.16.3 Discontinued Direct Path Loads 9-32
9.16.3.1 Load Discontinued Because of Space Errors 9-32
9.16.3.2 Load Discontinued Because Maximum Number of Errors Exceeded 9-33
9.16.3.3 Load Discontinued Because of Fatal Errors 9-33
9.16.3.4 Load Discontinued Because a Ctrl+C Was Issued 9-33

9.16.4 Status of Tables and Indexes After an Interrupted Load 9-33

9.16.5 Using the Log File to Determine Load Status 9-33

9.16.6 Continuing Single-Table Loads 9-33

9.17 Assembling Logical Records from Physical Records 9-34
9.17.1 Using CONCATENATE to Assemble Logical Records 9-34
9.17.2 Using CONTINUEIF to Assemble Logical Records 9-35

9.18 Loading Logical Records into Tables 9-38

9.18.1 Specifying Table Names 9-39

9.18.2 INTO TABLE Clause 9-39

9.18.3 Table-Specific Loading Method 9-40

9.18.4 Loading Data into Empty Tables with INSERT 9-40

9.18.5 Loading Data into Nonempty Tables 9-41
9.18.5.1 Options for Loading Data Into Nonempty Tables 9-41
9.185.2 APPEND 9-41
9.18.5.3 REPLACE 9-42
9.18.5.4 Updating Existing Rows 9-42
9.185.5 TRUNCATE 9-42

9.18.6 Table-Specific OPTIONS Parameter 9-42

9.18.7 Loading Records Based on a Condition 9-43

9.18.8 Using the WHEN Clause with LOBFILEs and SDFs 9-43

9.18.9 Specifying Default Data Delimiters 9-44
9.18.9.1 fields_spec 9-44
9.18.9.2 termination_spec 9-44
9.18.9.3 enclosure_spec 9-45

9.18.10 Handling Records with Missing Specified Fields 9-45
9.18.10.1 SQL*Loader Management of Short Records with Missing Data 9-45
9.18.10.2 TRAILING NULLCOLS Clause 9-46

9.19 Index Options 9-47
9.19.1 Understanding the SORTED INDEXES Parameter 9-47
9.19.2 Understanding the SINGLEROW Parameter 9-47

9.20 Benefits of Using Multiple INTO TABLE Clauses 9-48

9.20.1 Understanding the SQL*Loader INTO TABLE Clause 9-48

9.20.2 Distinguishing Different Input Record Formats 9-49

9.20.3 Relative Positioning Based on the POSITION Parameter 9-49

9.20.4 Distinguishing Different Input Row Object Subtypes 9-50

ORACLE Xiv

9.20.5 Loading Data into Multiple Tables 9-51

9.20.6 Summary of Using Multiple INTO TABLE Clauses 9-52
9.20.7 Extracting Multiple Logical Records 9-52
9.20.7.1 Example of Extracting Multiple Logical Records From a Physical Record 9-52
9.20.7.2 Example of Relative Positioning Based on Delimiters 9-53
9.21 Bind Arrays and Conventional Path Loads 9-53
9.21.1 Differences Between Bind Arrays and Conventional Path Loads 9-54
9.21.2 Size Requirements for Bind Arrays 9-54
9.21.3 Performance Implications of Bind Arrays 9-55
9.21.4 Specifying Number of Rows Versus Size of Bind Array 9-55
9.21.5 Setting Up SQL*Loader Bind Arrays 9-55
9.21.5.1 Calculations to Determine Bind Array Size 9-56
9.21.5.2 Determining the Size of the Length Indicator 9-57
9.21.5.3 Calculating the Size of Field Buffers 9-58
9.21.6 Minimizing Memory Requirements for Bind Arrays 9-59
9.21.7 Calculating Bind Array Size for Multiple INTO TABLE Clauses 9-60

10 SQL*Loader Field List Reference

10.1 Field List Contents 10-2
10.2 Specifying the Position of a Data Field. 10-3
10.2.1 POSITION 10-3
10.2.2 Using POSITION with Data Containing Tabs 10-4
10.2.3 Using POSITION with Multiple Table Loads 10-4
10.2.4 Examples of Using POSITION in SQL*Loader Specifications 10-5
10.3 Specifying Columns and Fields 10-5
10.3.1 Options for Column and Field Specification 10-6
10.3.2 Specifying Filler Fields 10-6
10.3.3 Specifying the Data Type of a Data Field 10-8
10.4 SQL*Loader Data Types 10-8
10.4.1 Portable and Nonportable Data Type Differences 10-9
10.4.2 Nonportable Data Types 10-9
10.4.2.1 Categories of Nonportable Data Types 10-10
10.4.2.2 INTEGER(n) 10-11
10.4.2.3 SMALLINT 10-11
10.4.2.4 FLOAT 10-12
10.4.2.5 DOUBLE 10-13
10.4.2.6 BYTEINT 10-13
10.4.2.7 ZONED 10-13
10.4.2.8 DECIMAL 10-14
10.4.2.9 VARGRAPHIC 10-15

ORACLE XV

10.4.2.10
10.4.2.11
10.4.2.12

VARCHAR
VARRAW
LONG VARRAW

10.4.3 Portable Data Types

10431
10.4.3.2
10.4.3.3
10.4.3.4
10.4.3.5
10.4.3.6
10.4.3.7
10.4.3.8
10.4.3.9
10.4.3.10
10.4.3.11

Categories of Portable Data Types

CHAR

Datetime and Interval

GRAPHIC

GRAPHIC EXTERNAL

Numeric EXTERNAL

RAW

VARCHARC

VARRAWC
Conflicting Native Data Type Field Lengths
Field Lengths for Length-Value Data Types

10.4.4 Data Type Conversions

10.4.5 Data Type Conversions for Datetime and Interval Data Types
10.4.6 Specifying Delimiters

10.4.6.1
10.4.6.2
10.4.6.3
10.4.6.4

Syntax for Termination and Enclosure Specification
Delimiter Marks in the Data

Maximum Length of Delimited Data

Loading Trailing Blanks with Delimiters

10.4.7 How Delimited Data Is Processed

10.4.7.1
10.4.7.2
10.4.7.3
10.4.7.4

Fields Using Only TERMINATED BY

Fields Using ENCLOSED BY Without TERMINATED BY

Fields Using ENCLOSED BY With TERMINATED BY

Fields Using OPTIONALLY ENCLOSED BY With TERMINATED BY

10.4.8 Conflicting Field Lengths for Character Data Types

10.4.8.1
10.4.8.2
10.4.8.3

Predetermined Size Fields
Delimited Fields
Date Field Masks

10.5 Specifying Field Conditions
10.5.1 Comparing Fields to BLANKS
10.5.2 Comparing Fields to Literals
10.6 Using the WHEN, NULLIF, and DEFAULTIF Clauses
10.7 Examples of Using the WHEN, NULLIF, and DEFAULTIF Clauses
10.8 Loading Data Across Different Platforms

10.9 Understanding how SQL*Loader Manages Byte Ordering
10.9.1 Byte Order Syntax
10.9.2 Using Byte Order Marks (BOMSs)

10.9.21

ORACLE

Suppressing Checks for BOMs

XVi

10-16
10-17
10-18
10-18
10-19
10-20
10-20
10-25
10-26
10-27
10-28
10-28
10-29
10-30
10-31
10-31
10-32
10-33
10-33
10-35
10-35
10-36
10-36
10-37
10-37
10-37
10-38
10-39
10-39
10-40
10-40
10-41
10-41
10-41
10-42
10-44
10-45
10-46
10-47
10-48
10-49

10.10 Loading All-Blank Fields
10.11 Trimming Whitespace
10.11.1 Data Types for Which Whitespace Can Be Trimmed

10.11.2 Specifying Field Length for Data Types for Which Whitespace Can Be
Trimmed

10.11.2.1 Predetermined Size Fields
10.11.2.2 Delimited Fields
10.11.3 Relative Positioning of Fields
10.11.3.1 No Start Position Specified for a Field
10.11.3.2 Previous Field Terminated by a Delimiter
10.11.3.3 Previous Field Has Both Enclosure and Termination Delimiters
10.11.4 Leading Whitespace
10.11.4.1 Previous Field Terminated by Whitespace
10.11.4.2 Optional Enclosure Delimiters
10.11.5 Trimming Trailing Whitespace
10.11.6 Trimming Enclosed Fields
10.12 How the PRESERVE BLANKS Option Affects Whitespace Trimming
10.13 How [NO] PRESERVE BLANKS Works with Delimiter Clauses
10.14 Applying SQL Operators to Fields
10.14.1 Referencing Fields
10.14.2 Common Uses of SQL Operators in Field Specifications
10.14.3 Combinations of SQL Operators
10.14.4 Using SQL Strings with a Date Mask
10.14.5 Interpreting Formatted Fields
10.14.6 Using SQL Strings to Load the ANYDATA Database Type
10.15 Using SQL*Loader to Generate Data for Input
10.15.1 Loading Data Without Files
10.15.2 Setting a Column to a Constant Value
10.15.2.1 CONSTANT Parameter
10.15.3 Setting a Column to an Expression Value
10.15.3.1 EXPRESSION Parameter
10.15.4 Setting a Column to the Data File Record Number
10.15.4.1 RECNUM Parameter
10.15.5 Setting a Column to the Current Date
10.15.5.1 SYSDATE Parameter
10.15.6 Setting a Column to a Unique Sequence Number
10.15.6.1 SEQUENCE Parameter
10.15.7 Generating Sequence Numbers for Multiple Tables
10.15.7.1 Example: Generating Different Sequence Numbers for Each Insert

ORACLE

10-50
10-51
10-53

10-53
10-54
10-54
10-54
10-54
10-55
10-55
10-55
10-56
10-56
10-57
10-57
10-57
10-58
10-58
10-61
10-62
10-62
10-62
10-63
10-63
10-64
10-64
10-64
10-65
10-65
10-65
10-66
10-66
10-66
10-66
10-67
10-67
10-68
10-68

XVii

11 Loading Objects, LOBs, and Collections with SQL*Loader

11.1 Loading Column Objects 11-1
11.1.1 Understanding Column Object Attributes 11-2
11.1.2 Loading Column Objects in Stream Record Format 11-2
11.1.3 Loading Column Objects in Variable Record Format 11-3
11.1.4 Loading Nested Column Objects 11-4
11.1.5 Loading Column Objects with a Derived Subtype 11-5
11.1.6 Specifying Null Values for Objects 11-6

11.1.6.1 Specifying Attribute Nulls 11-6
11.1.6.2 Specifying Atomic Nulls 11-7
11.1.7 Loading Column Objects with User-Defined Constructors 11-8

11.2 Loading Object Tables with SQL*Loader 11-11
11.2.1 Examples of Loading Object Tables with SQL*Loader 11-11
11.2.2 Loading Object Tables with Subtypes 11-13

11.3 Loading REF Columns with SQL*Loader 11-14
11.3.1 Specifying Table Names in a REF Clause 11-15
11.3.2 System-Generated OID REF Columns 11-15
11.3.3 Primary Key REF Columns 11-16
11.3.4 Unscoped REF Columns That Allow Primary Keys 11-17

11.4 Loading LOBs with SQL*Loader 11-18
11.4.1 Overview of Loading LOBs with SQL*Loader 11-19
11.4.2 Options for Using SQL*Loader to Load LOBs 11-20
11.4.3 Loading LOB Data from a Primary Data File 11-21

11.4.3.1 LOB Data in Predetermined Size Fields 11-22
11.4.3.2 LOB Data in Delimited Fields 11-23
11.4.3.3 LOB Data in Length-Value Pair Fields 11-24
11.4.4 Loading LOB Data from LOBFILEs 11-25
11.4.4.1 Overview of Loading LOB Data from LOBFILEs 11-25
11.4.4.2 Dynamic Versus Static LOBFILE Specifications 11-26
11.4.4.3 Examples of Loading LOB Data from LOBFILEs 11-26
11.4.4.4 Considerations When Loading LOBs from LOBFILEs 11-31
11.4.5 Loading Data Files that Contain LLS Fields 11-32

11.5 Loading BFILE Columns with SQL*Loader 11-33

11.6 Loading Collections (Nested Tables and VARRAYs) 11-34
11.6.1 Overview of Loading Collections (Nested Tables and VARRAYYS) 11-35
11.6.2 Restrictions in Nested Tables and VARRAYs 11-36
11.6.3 Secondary Data Files (SDFs) 11-37

11.7 Choosing Dynamic or Static SDF Specifications 11-38

11.8 Loading a Parent Table Separately from Its Child Table 11-38

ORACLE Xviii

11.8.1 Memory Issues When Loading VARRAY Columns 11-39

12 Conventional and Direct Path Loads

12.1 Data Loading Methods 12-2
12.2 Loading ROWID Columns 12-2
12.3 Conventional Path Loads 12-2
12.3.1 Conventional Path Load 12-3
12.3.2 When to Use a Conventional Path Load 12-3
12.3.3 Conventional Path Load of a Single Partition 12-4
12.4 Direct Path Loads 12-4
12.4.1 About SQL*Loader Direct Path Load 12-5
12.4.2 Loading into Synonyms 12-5
12.4.3 Field Defaults on the Direct Path 12-5
12.4.4 Integrity Constraints 12-6
12.4.5 When to Use a Direct Path Load 12-6
12.4.6 Restrictions on a Direct Path Load of a Single Partition 12-6
12.4.7 Restrictions on Using Direct Path Loads 12-6
12.4.8 Advantages of a Direct Path Load 12-7
12.4.9 Direct Path Load of a Single Partition or Subpartition 12-8
12.4.10 Direct Path Load of a Partitioned or Subpartitioned Table 12-9
12.4.11 Data Conversion During Direct Path Loads 12-9
12.5 Using Direct Path Load 12-10
12.5.1 Setting Up for Direct Path Loads 12-10
12.5.2 Specifying a Direct Path Load 12-11
12.5.3 Building Indexes 12-11
12.5.3.1 Improving Performance 12-11
12.5.3.2 Calculating Temporary Segment Storage Requirements 12-12

12.5.4 Indexes Left in an Unusable State 12-12
12.5.5 Preventing Data Loss with Data Saves 12-13
12.5.,5.1 Using Data Saves to Protect Against Data Loss 12-13
12.5.5.2 Using the ROWS Parameter 12-14
12.5.5.3 Data Save Versus Commit 12-14

12.5.6 Data Recovery During Direct Path Loads 12-14
12.5.6.1 Media Recovery and Direct Path Loads 12-15
12.5.6.2 Instance Recovery and Direct Path Loads 12-15

12.5.7 Loading Long Data Fields 12-15
12.5.8 Loading Data As PIECED 12-16
12.5.9 Auditing SQL*Loader Operations That Use Direct Path Mode 12-16
12.6 Optimizing Performance of Direct Path Loads 12-17
12.6.1 Minimizing Time and Space Required for Direct Path Loads 12-17

ORACLE XixX

12.6.2 Preallocating Storage for Faster Loading
12.6.3 Presorting Data for Faster Indexing
12.6.3.1 Advantages of Presorting Data
12.6.3.2 SORTED INDEXES Clause
12.6.3.3 Unsorted Data
12.6.3.4 Multiple-Column Indexes
12.6.3.5 Choosing the Best Sort Order
12.6.4 Infrequent Data Saves
12.6.5 Minimizing Use of the Redo Log
12.6.5.1 Disabling Archiving
12.6.5.2 Specifying the SQL*Loader UNRECOVERABLE Clause
12.6.5.3 Setting the SQL NOLOGGING Parameter
12.6.6 Specifying the Number of Column Array Rows and Size of Stream Buffers
12.6.7 Specifying a Value for DATE_CACHE
12.7 Optimizing Direct Path Loads on Multiple-CPU Systems
12.8 Avoiding Index Maintenance
12.9 Direct Path Loads, Integrity Constraints, and Triggers
12.9.1 Integrity Constraints
12.9.1.1 Enabled Constraints
12.9.1.2 Disabled Constraints
12.9.1.3 Reenable Constraints
12.9.2 Database Insert Triggers
12.9.2.1 Replacing Insert Triggers with Integrity Constraints
12.9.2.2 When Automatic Constraints Cannot Be Used
12.9.2.3 Preparation of Database Triggers
12.9.2.4 Using an Update Trigger
12.9.2.5 Duplicating the Effects of Exception Conditions
12.9.2.6 Using a Stored Procedure
12.9.3 Permanently Disabled Triggers and Constraints
12.9.4 Increasing Performance with Concurrent Conventional Path Loads
12.10 Optimizing Performance of Direct Path Loads
12.10.1 About SQL*Loader Parallel Data Loading Models
12.10.2 Concurrent Conventional Path Loads
12.10.3 Intersegment Concurrency with Direct Path
12.10.4 Intrasegment Concurrency with Direct Path
12.10.5 Restrictions on Parallel Direct Path Loads
12.10.6 Initiating Multiple SQL*Loader Sessions
12.10.7 Parameters for Parallel Direct Path Loads
12.10.7.1 Using the FILE Parameter to Specify Temporary Segments
12.10.8 Enabling Constraints After a Parallel Direct Path Load
12.10.9 PRIMARY KEY and UNIQUE KEY Constraints

ORACLE

XX

12-18
12-18
12-18
12-19
12-19
12-19
12-20
12-20
12-20
12-21
12-21
12-22
12-22
12-23
12-24
12-25
12-25
12-26
12-26
12-26
12-27
12-28
12-29
12-29
12-29
12-29
12-30
12-30
12-31
12-31
12-31
12-32
12-32
12-32
12-33
12-33
12-33
12-34
12-34
12-35
12-36

12.11 General Performance Improvement Hints 12-36
13 SQL*Loader Express
13.1 What is SQL*Loader Express Mode? 13-1
13.2 Using SQL*Loader Express Mode 13-1
13.2.1 Starting SQL*Loader in Express Mode 13-2
13.2.2 Default Values Used by SQL*Loader Express Mode 13-3
13.2.3 How SQL*Loader Express Mode Handles Byte Order 13-4
13.3 SQL*Loader Express Mode Parameter Reference 13-4
13.3.1 BAD 13-6
13.3.2 CHARACTERSET 13-7
13.3.3 CsV 13-8
13.3.4 DATA 13-9
13.3.5 DATE_FORMAT 13-11
13.3.6 DEGREE_OF_PARALLELISM 13-11
13.3.7 DIRECT 13-12
13.3.8 DNFS_ENABLE 13-13
13.3.9 DNFS_READBUFFERS 13-14
13.3.10 ENCLOSED_BY 13-15
13.3.11 EXTERNAL_TABLE 13-15
13.3.12 FIELD_NAMES 13-16
13.3.13 LOAD 13-17
13.3.14 NULLIF 13-18
13.3.15 OPTIONALLY_ENCLOSED_BY 13-19
13.3.16 PARFILE 13-19
13.3.17 SILENT 13-20
13.3.18 TABLE 13-21
13.3.19 TERMINATED_BY 13-22
13.3.20 TIMESTAMP_FORMAT 13-23
13.3.21 TRIM 13-23
13.3.22 USERID 13-24
13.4 SQL*Loader Express Mode Syntax Diagrams 13-25
Part Il External Tables
14 External Tables Concepts
14.1 How Are External Tables Created? 14-1
142 CREATE_EXTERNAL_PART_TABLE Procedure 14-4
14.3 CREATE_EXTERNAL_TABLE Procedure 14-11

ORACLE

XXi

14.4 Location of Data Files and Output Files 14-13
14.5 Access Parameters for External Tables 14-14
14.6 Data Type Conversion During External Table Use 14-15
15 The ORACLE_LOADER Access Driver
15.1 About the ORACLE_LOADER Access Driver 15-1
15.2 access_parameters Clause 15-2
15.3 record_format_info Clause 15-4
15.3.1 Overview of record_format_info Clause 15-6
15.3.2 FIXED Length 15-8
15.3.3 VARIABLE size 15-9
15.3.4 DELIMITED BY 15-9
15.3.5 XMLTAG 15-11
15.3.6 CHARACTERSET 15-13
15.3.7 PREPROCESSOR 15-14
15.3.8 PREPROCESSOR_TIMEOUT 15-18
15.3.9 EXTERNAL VARIABLE DATA 15-20
15.3.10 LANGUAGE 15-22
15.3.11 TERRITORY 15-23
15.3.12 DATA IS...ENDIAN 15-23
15.3.13 BYTEORDERMARK [CHECK | NOCHECK] 15-24
15.3.14 STRING SIZES ARE IN 15-25
15.3.15 LOAD WHEN 15-25
15.3.16 BADFILE | NOBADFILE 15-26
15.3.17 DISCARDFILE | NODISCARDFILE 15-27
15.3.18 LOGFILE | NOLOGFILE 15-27
15.3.19 SKIP 15-28
15.3.20 FIELD NAMES 15-28
15.3.21 READSIZE 15-31
15.3.22 DATE_CACHE 15-31
15.3.23 string 15-31
15.3.24 condition_spec 15-32
15.3.25 [directory object name:] [filename] 15-33
15.3.26 condition 15-34
15.3.26.1 range start : range end 15-34
15.3.27 |O_OPTIONS clause 15-35
15.3.28 DNFS_DISABLE | DNFS_ENABLE 15-36
15.3.29 DNFS_READBUFFERS 15-36
15.4 field_definitions Clause 15-37
15.4.1 Overview of field_definitions Clause 15-38
ORACLE XXii

15.4.2 delim_spec

15421
15.4.2.2

15.4.2.3 Example: External Table with Optional Enclosure Delimiters

Example: External Table with Terminating Delimiters
Example: External Table with Enclosure and Terminator Delimiters

15.4.3 trim_spec

15.4.4 MISSING FIELD VALUES ARE NULL

15.4.5 field_list
15.4.6 pos_spec Clause

1546.1
15.4.6.2
15.4.6.3
15.4.6.4
15.4.6.5
15.4.6.6

pos_spec Clause Syntax
start

*

increment

end

length

15.4.7 datatype_spec Clause

15471
15.4.7.2
15.4.7.3
15.4.7.4
15.4.75
15.4.7.6
15.4.7.7
15.4.7.8
15.4.7.9
15.4.7.10
15.4.7.11
15.4.7.12
15.4.7.13
15.4.7.14
15.4.7.15

datatype_spec Clause Syntax

[UNSIGNED] INTEGER [EXTERNAL] [(Ien)]
DECIMAL [EXTERNAL] and ZONED [EXTERNAL]

ORACLE_DATE
ORACLE_NUMBER
Floating-Point Numbers
DOUBLE
FLOAT [EXTERNAL]
BINARY_DOUBLE
BINARY_FLOAT
RAW
CHAR
date_format_spec
VARCHAR and VARRAW
VARCHARC and VARRAWC

15.4.8 init_spec Clause
15.4.9 LLS Clause
15.5 column_transforms Clause

15.5.1 transform

15511
155.1.2
155.1.3
15514
15.5.15
15.5.1.6
15.5.1.7

ORACLE

column_name FROM

NULL

CONSTANT

CONCAT

LOBFILE

lobfile_attr_list

STARTOF source_field (length)

15-42
15-44
15-44
15-44
15-45
15-46
15-47
15-48
15-49
15-49
15-49
15-49
15-49
15-50
15-50
15-51
15-52
15-53
15-53
15-53
15-54
15-54
15-54
15-54
15-55
15-55
15-55
15-56
15-58
15-60
15-61
15-61
15-62
15-63
15-64
15-64
15-64
15-64
15-64
15-65
15-65

XXiii

15.6 Parallel Loading Considerations for the ORACLE_LOADER Access Driver 15-67

15.7 Performance Hints When Using the ORACLE_LOADER Access Driver 15-67
15.8 Restrictions When Using the ORACLE_LOADER Access Driver 15-68
15.9 Reserved Words for the ORACLE_LOADER Access Driver 15-69

16 The ORACLE_DATAPUMP Access Driver

16.1 Using the ORACLE_DATAPUMP Access Driver 16-1
16.2 access_parameters Clause 16-2
16.2.1 Comments 16-4
16.2.2 ENCRYPTION 16-4
16.2.3 LOGFILE | NOLOGFILE 16-5
16.2.3.1 Log File Naming in Parallel Loads 16-6

16.2.4 COMPRESSION 16-6
16.2.5 VERSION Clause 16-7
16.2.6 HADOOP_TRAILERS Clause 16-8
16.2.7 Effects of Using the SQL ENCRYPT Clause 16-9
16.3 Unloading and Loading Data with the ORACLE_DATAPUMP Access Driver 16-9
16.3.1 Parallel Loading and Unloading 16-12
16.3.2 Combining Dump Files 16-13
16.4 Supported Data Types 16-14
16.5 Unsupported Data Types 16-15
16.5.1 Unloading and Loading BFILE Data Types 16-15
16.5.2 Unloading LONG and LONG RAW Data Types 16-17
16.5.3 Unloading and Loading Columns Containing Final Object Types 16-18
16.5.4 Tables of Final Object Types 16-19
16.6 Performance Hints When Using the ORACLE_DATAPUMP Access Driver 16-20
16.7 Restrictions When Using the ORACLE_DATAPUMP Access Driver 16-21
16.8 Reserved Words for the ORACLE_DATAPUMP Access Driver 16-21

17 ORACLE_BIGDATA Access Driver

17.1 Using the ORACLE_BIGDATA Access Driver 17-1
17.2 How to Create a Credential for Object Stores 17-1
17.2.1 Creating the Credential Object with
DBMS_CREDENTIAL.CREATE_CREDENTIAL 17-2
17.2.2 Creating the Credential Object with DBMS_CLOUD.CREATE_CREDENTIAL 17-3
17.2.3 How to Define the Location Clause for Object Storage 17-4
17.2.4 Understanding ORACLE_BIGDATA Access Parameters 17-5
17.3 Object Store Access Parameters 17-5
17.3.1 Syntax Rules for Specifying Properties 17-6
17.3.2 com.oracle.bigdata.fileformat 17-7

ORACLE XXiV

17.3.3 ORACLE_BIGDATA Access Parameters 17-8
17.3.4 GATHER_EXTERNAL_TABLE_STATS 17-16

18 External Tables Examples

18.1 Using the ORACLE_LOADER Access Driver to Create Partitioned External Tables 18-1
18.2 Using the ORACLE_LOADER Access Driver to Create Partitioned Hybrid Tables 18-4
18.3 Using the ORACLE_DATAPUMP Access Driver to Create Partitioned External
Tables 18-5
18.4 Using the ORACLE_BIGDATA Access Driver to Create Partitioned External Tables 18-9
18.5 Using the ORA_PARTITION_VALIDATION Function to Validate Partitioned External
Tables 18-10
18.6 Loading LOBs with External Tables 18-11
18.6.1 Overview of LOBs and External Tables 18-11
18.6.2 Loading LOBs From External Tables with ORACLE_LOADER Access Driver 18-13
18.6.2.1 Loading LOBs from Primary Data Files 18-13
18.6.2.2 Loading LOBs from LOBFILE Files 18-15
18.6.2.3 Loading LOBs from LOB Location Specifiers 18-17
18.6.3 Loading LOBs with ORACLE_DATAPUMP Access Driver 18-18
18.7 Loading CSV Files From External Tables 18-20

Part I\ Other Utilities

19 Cloud Premigration Advisor Tool

19.2 Prerequisites for Using the Cloud Premigration Advisor Tool 19-2
19.3 Downloading and Configuring Cloud Premigration Advisor Tool 19-3
19.4 Getting Started with the Cloud Premigration Advisor Tool (CPAT) 19-4
19.5 Connection Strings for Cloud Premigration Advisor Tool 19-5
19.6 Required Command-Line Strings for Cloud Premigration Advisor Tool 19-7
19.7 FULL Mode and SCHEMA Mode 19-8
19.8 Interpreting Cloud Premigration Advisor Tool (CPAT) Report Data 19-9
19.12 Best Practices for Using the Premigration Advisor Tool 19-10
19.12.1 Generate Properties File on the Target Database Instance 19-10
19.12.2 Focus the CPAT Analysis 19-11
19.12.3 Reduce the Amount of Data in Reports 19-12
19.12.4 Generate the JSON Report and Save Logs 19-12
19.12.5 Use Output Prefixes to Record Different Migration Scenarios 19-12
19.1 What is the Cloud Premigration Advisor Tool 19-13
19.9 Command-Line Syntax and Properties 19-14
19.9.1 Premigration Advisor Tool Command-Line Syntax 19-15

ORACLE' v

19.9.2 Premigration Advisor Tool Command-Line Properties 19-16

19.9.2.1 analysisprops 19-17
19.9.2.2 connectstring 19-18
19.9.2.3 excludeschemas 19-19
19.9.2.4 full 19-19
19.9.2.5 (gettargetprops 19-20
19.9.2.6 help 19-21
19.9.2.7 logginglevel 19-21
19.9.2.8 maxrelevantobjects 19-22
19.9.2.9 maxtextdatarows 19-23
19.9.2.10 migrationmethod 19-23
19.9.2.11 outdir 19-24
19.9.2.12 outfileprefix 19-25
19.9.2.13 pdbname 19-25
19.9.2.14 reportformat 19-26
19.9.2.15 schemas 19-27
19.9.2.16 sqltext 19-28
19.9.2.17 sysdba 19-29
19.9.2.18 targetcloud 19-29
19.9.2.19 username 19-30
19.9.2.20 version 19-30
19.9.2.21 updatecheck 19-31
19.10 Premigration Advisor Tool Log File Structure 19-32
19.11 List of Checks Performed By the Premigration Advisor Tool 19-35
19.11.1 dp_has_low_streams_pool_size 19-41
19.11.2 gg_enabled_replication 19-42
19.11.3 gg_force_logging 19-43
19.11.4 gg_has_low_streams_pool_size 19-44
19.11.5 gg_not_unique_bad_col _no 19-45
19.11.6 gg_not_unique_bad_col_yes 19-46
19.11.7 gg_objects_not_supported 19-47
19.11.8 gg_supplemental _log_data_min 19-48
19.11.9 (gg_tables_not_supported 19-48
19.11.10 (gg_tables_not_supported 19-49
19.11.11 gg_user_objects_in_ggadmin_schemas 19-50
19.11.12 has_absent_default_tablespace 19-51
19.11.13 has_absent_temp_tablespace 19-52
19.11.14 has_active_data_guard_dedicated 19-53
19.11.15 has_active_data guard_serverless 19-53
19.11.16 has_basic_file_lobs 19-54
19.11.17 has_clustered_tables 19-55

ORACLE XXVi

19.11.18
19.11.19
19.11.20
19.11.21
19.11.22
19.11.23
19.11.24
19.11.25
19.11.26
19.11.27
19.11.28
19.11.29
19.11.30
19.11.31
19.11.32
19.11.33
19.11.34
19.11.35
19.11.36
19.11.37
19.11.38
19.11.39
19.11.40
19.11.41
19.11.42
19.11.43
19.11.44
19.11.45
19.11.46
19.11.47
19.11.48
19.11.49
19.11.50
19.11.51
19.11.52
19.11.53
19.11.54
19.11.55
19.11.56
19.11.57
19.11.58

ORACLE

has_columns_of rowid_type
has_columns_with_media_data_types_adb
has_columns_with_media_data_types_ default
has_columns_with_spatial_data_types
has_common_objects
has_compression_disabled for_objects
has_csmig_schema
has_data_in_other_tablespaces_dedicated
has_data_in_other_tablespaces_serverless
has_db_link_synonyms

has_db_links

has_dbms_credentials
has_dbms_credentials

has_directories
has_enabled_scheduler_jobs
has_external_tables dedicated
has_external_tables_default
has_external_tables_serverless
has_fmw_registry _in_system
has_illegal_characters_in_comments
has_ilm_ado_policies
has_incompatible_jobs
has_index_organized_tables
has_java_objects

has_java_source

has_libraries
has_logging_off_for_partitions
has_logging_off for_subpartitions
has_logging_off for_tables
has_low_streams_pool_size
has_noexport_object_grants
has_parallel_indexes_enabled
has_profile_not_default
has_public_synonyms
has_refs_to_restricted_packages_dedicated
has_refs_to_restricted_packages_serverless
has_refs_to_user_objects_in_sys
has_role_privileges

has_sqlt_objects_adb
has_sqlt_objects_default
has_sys_privileges

19-56
19-56
19-57
19-58
19-59
19-60
19-61
19-62
19-63
19-64
19-64
19-65
19-66
19-67
19-67
19-68
19-69
19-70
19-71
19-71
19-72
19-73
19-74
19-74
19-75
19-76
19-77
19-77
19-78
19-79
19-80
19-80
19-81
19-82
19-83
19-83
19-84
19-85
19-86
19-86
19-87

XXVii

19.11.59 has_tables_that fail_with_dblink 19-88
19.11.60 has_tables_with_long_raw_datatype 19-89
19.11.61 has_tables_with_xmltype_column 19-90
19.11.62 has_trusted_server_entries 19-90
19.11.63 has_user_defined_objects_in_sys 19-91
19.11.64 has_users_with_10g_password_version 19-92
19.11.65 has_sys_privileges 19-93
19.11.66 has_tables_that_fail _with_dblink 19-94
19.11.67 has_tables_with_long_raw_datatype 19-95
19.11.68 has_tables_with_xmltype_column 19-96
19.11.69 has_trusted_server_entries 19-96
19.11.70 has_user_defined_objects_in_sys 19-97
19.11.71 has_users_with_10g_password_version 19-98
19.11.72 has_xmischema_objects 19-99
19.11.73 has_xmitype_tables 19-100
19.11.74 modified_db_parameters_dedicated 19-100
19.11.75 modified_db_parameters_serverless 19-101
19.11.76 nls_character_set_conversion 19-102
19.11.77 nls_national_character_set 19-103
19.11.78 nls_nchar_ora 910 19-104
19.11.79 options_in_use_not_available_dedicated 19-105
19.11.80 options_in_use_not_available_serverless 19-105
19.11.81 standard_traditional_audit_adb 19-106
19.11.82 standard_traditional_audit_default 19-107
19.11.83 timezone_table_compatibility higher_dedicated 19-108
19.11.84 timezone_table_compatibility higher_default 19-109
19.11.85 timezone_table_compatibility _higher_serverless 19-109
19.11.86 unified_and_standard_traditional _audit_adb 19-110
19.11.87 unified_and_standard_traditional_audit_default 19-111
19.11.88 xdb_resource view_has_entries Check 19-112
20 ADRCI: ADR Command Interpreter
20.1 About the ADR Command Interpreter (ADRCI) Utility 20-2
20.2 Definitions for Oracle Database ADRC 20-2
20.3 Starting ADRCI and Getting Help 20-5
20.3.1 Using ADRCI in Interactive Mode 20-5
20.3.2 Getting Help 20-6
20.3.3 Using ADRCI in Batch Mode 20-7
20.4 Setting the ADRCI Homepath Before Using ADRCI Commands 20-8
20.5 Viewing the Alert Log 20-9

ORACLE

XXVl

20.6 Finding Trace Files
20.7 Viewing Incidents

20.8 Packaging Incidents
20.8.1 About Packaging Incidents
20.8.2 Creating Incident Packages

20.8.2.1

20.8.2.2 Adding Diagnostic Information to a Logical Incident Package
20.8.2.3 Generating a Physical Incident Package

Creating a Logical Incident Package

20.9 ADRCI Command Reference
20.9.1 CREATE REPORT

Using the <ADR_HOME> and <ADR_BASE> Variables in IPS

20.9.2 ECHO

20.9.3 EXIT

20.9.4 HOST

20.9.5 IPS
20.9.5.1

Commands

20.9.5.2 IPS ADD
20.9.5.3 IPS ADD FILE
20.9.5.4 IPS ADD NEW INCIDENTS
20.9.5.5 IPS COPY IN FILE
20.9.5.6 IPS COPY OUT FILE
20.9.5.7 IPS CREATE PACKAGE
20.9.5.8 IPS DELETE PACKAGE
20.9.5.9 IPS FINALIZE
20.9.5.10 IPS GENERATE PACKAGE
20.9.5.11 IPS GET MANIFEST
20.9.5.12 IPS GET METADATA
20.9.5.13 IPS PACK
20.9.5.14 IPS REMOVE
20.9.5.15 IPS REMOVE FILE
20.9.5.16 IPS SET CONFIGURATION
20.9.5.17 IPS SHOW CONFIGURATION
20.9.5.18 IPS SHOW FILES
20.9.5.19 IPS SHOW INCIDENTS
20.9.5.20 IPS SHOW PACKAGE
20.9.5.21 IPS UNPACK FILE

20.9.6 PURGE

20.9.7 QUIT

20.9.8 RUN

20.9.9 SELECT
20.9.9.1 AVG

ORACLE

20-10
20-11
20-12
20-12
20-13
20-14
20-16
20-16
20-17
20-19
20-21
20-21
20-21
20-22

20-24
20-24
20-26
20-26
20-27
20-28
20-28
20-31
20-31
20-32
20-32
20-33
20-33
20-35
20-36
20-37
20-38
20-41
20-42
20-43
20-43
20-44
20-45
20-46
20-46
20-49

XXiX

20.9.9.2 CONCAT 20-50
20.9.9.3 COUNT 20-50
20.9.94 DECODE 20-51
20.9.95 LENGTH 20-52
20.9.9.6 MAX 20-52
20.9.9.7 MIN 20-53
20.9.9.8 NVL 20-53
20.9.9.9 REGEXP_LIKE 20-54
20.9.9.10 SUBSTR 20-54
20.9.9.11 SUM 20-55
20.9.9.12 TIMESTAMP_TO_CHAR 20-55
20.9.9.13 TOLOWER 20-56
20.9.9.14 TOUPPER 20-56
20.9.10 SET BASE 20-57
20.9.11 SET BROWSER 20-57
20.9.12 SET CONTROL 20-58
20.9.13 SET ECHO 20-60
20.9.14 SET EDITOR 20-60
20.9.15 SET HOMEPATH 20-60
20.9.16 SET TERMOUT 20-61
20.9.17 SHOW ALERT 20-61
20.9.18 SHOW BASE 20-64
20.9.19 SHOW CONTROL 20-64
20.9.20 SHOW HM_RUN 20-67
20.9.21 SHOW HOMEPATH 20-68
20.9.22 SHOW HOMES 20-68
20.9.23 SHOW INCDIR 20-69
20.9.24 SHOW INCIDENT 20-70
20.9.25 SHOW LOG 20-73
20.9.26 SHOW PROBLEM 20-75
20.9.27 SHOW REPORT 20-76
20.9.28 SHOW TRACEFILE 20-77
20.9.29 SPOOL 20-78
20.10 Troubleshooting ADRCI 20-78
21 DBVERIFY: Offline Database Verification Utility

21.1 Using DBVERIFY to Validate Disk Blocks of a Single Data File 21-1
21.1.1 DBVERIFY Syntax When Validating Blocks of a Single File 21-2
21.1.2 DBVERIFY Parameters When Validating Blocks of a Single File 21-2
21.1.3 Example DBVERIFY Output For a Single Data File 21-3

ORACLE

XXX

21.2 Using DBVERIFY to Validate a Segment 21-4
21.2.1 DBVERIFY Syntax When Validating a Segment 21-5
21.2.2 DBVERIFY Parameters When Validating a Single Segment 21-5
21.2.3 Example DBVERIFY Output For a Validated Segment 21-6

292 DBNEWID Utility

22.1 What Is the DBNEWID Utility? 22-1

22.2 Ramifications of Changing the DBID and DBNAME 22-2

22.3 Considerations for Global Database Names 22-3

22.4 Changing Both CDB and PDB DBIDs Using DBNEWID 22-3

22.5 Changing the DBID and DBNAME of a Database 22-4
22.5.1 Changing the DBID and Database Name 22-4
22.5.2 Changing Only the Database ID 22-6
22.5.3 Changing Only the Database Name 22-7
22.5.4 Troubleshooting DBNEWID 22-9

22.6 DBNEWID Syntax 22-10
22.6.1 DBNEWID Parameters 22-10
22.6.2 Restrictions and Usage Notes 22-11
22.6.3 Additional Restrictions for Releases Earlier Than Oracle Database 10g 22-12

23 Using LogMiner to Analyze Redo Log Files

23.1 LogMiner Benefits 23-2

23.2 Introduction to LogMiner 23-3
23.2.1 LogMiner Configuration 23-3

23.2.1.1 Objects in LogMiner Configuration Files 23-3
23.2.1.2 LogMiner Configuration Example 23-4
23.2.1.3 LogMiner Requirements 23-5
23.2.2 Directing LogMiner Operations and Retrieving Data of Interest 23-7

23.3 Using LogMiner in a CDB 23-7
23.3.1 LogMiner V$ Views and DBA Views in a CDB 23-8
23.3.2 The VSLOGMNR_CONTENTS View in a CDB 23-9
23.3.3 Enabling Supplemental Logging in a CDB 23-10

23.4 How to Configure Supplemental Logging for Oracle GoldenGate 23-10
23.4.1 Oracle GoldenGate Integration with Oracle Database for Fine-Grained

Supplemental Logging 23-11
23.4.2 Logical Replication of Tables with LogMiner and Oracle GoldenGate 23-11
23.4.3 Views that Show Tables Enabled for Oracle GoldenGate Automatic Capture 23-12

23.5 LogMiner Dictionary Files and Redo Log Files 23-13

23.5.1 LogMiner Dictionary Options 23-14
23.5.1.1 Using the Online Catalog 23-15
ORACLE XXXi

23.5.1.2 Extracting a LogMiner Dictionary to the Redo Log Files 23-16

23.5.2 Specifying Redo Log Files for Data Mining 23-17
23.6 Starting LogMiner 23-17
23.7 Querying VSLOGMNR_CONTENTS for Redo Data of Interest 23-18

23.7.1 How to Use VSLOGMNR_CONTENTS to Find Redo Data 23-19

23.7.2 How the VSLOGMNR_CONTENTS View Is Populated 23-21

23.7.3 Querying VSLOGMNR_CONTENTS Based on Column Values 23-22

23.7.3.1 Example of Querying VSLOGMNR_CONTENTS Column Values 23-22
23.7.3.2 The Meaning of NULL Values Returned by the MINE_VALUE Function 23-23
23.7.3.3 Usage Rules for the MINE_VALUE and COLUMN_PRESENT Functions 23-23
23.7.3.4 Restrictions When Using the MINE_VALUE Function To Get an NCHAR
Value 23-23
23.7.4 Querying VSLOGMNR_CONTENTS Based on XMLType Columns and Tables 23-24
23.7.4.1 How VSLOGMNR_CONTENTS Based on XMLType Columns and
Tables are Queried 23-24
23.7.4.2 Restrictions When Using LogMiner With XMLType Data 23-26
23.7.4.3 Example of a PL/SQL Procedure for Assembling XMLType Data 23-26
23.8 Filtering and Formatting Data Returned to VSLOGMNR_CONTENTS 23-29

23.8.1 Showing Only Committed Transactions 23-29

23.8.2 Skipping Redo Corruptions 23-32

23.8.3 Filtering Data by Time 23-33

23.8.4 Filtering Data by SCN 23-33

23.8.5 Formatting Reconstructed SQL Statements for Re-execution 23-34

23.8.6 Formatting the Appearance of Returned Data for Readability 23-34
23.9 Reapplying DDL Statements Returned to VSLOGMNR_CONTENTS 23-35
23.10 Calling DBMS_LOGMNR.START_LOGMNR Multiple Times 23-36
23.11 LogMiner and Supplemental Logging 23-37

23.11.1 Understanding Supplemental Logging and LogMiner 23-37

23.11.2 Database-Level Supplemental Logging 23-38

23.11.2.1 Minimal Supplemental Logging 23-39
23.11.2.2 Database-Level Identification Key Logging 23-39
23.11.2.3 Procedural Supplemental Logging 23-40
23.11.3 Disabling Database-Level Supplemental Logging 23-41
23.11.4 Table-Level Supplemental Logging 23-41
23.11.4.1 Table-Level Identification Key Logging 23-42
23.11.4.2 Table-Level User-Defined Supplemental Log Groups 23-42
23.11.4.3 Usage Notes for User-Defined Supplemental Log Groups 23-43

23.11.5 Tracking DDL Statements in the LogMiner Dictionary 23-44

23.11.6 DDL_DICT_TRACKING and Supplemental Logging Settings 23-45

23.11.7 DDL_DICT_TRACKING and Specified Time or SCN Ranges 23-46
23.12 Accessing LogMiner Operational Information in Views 23-47

23.12.1 Options for Viewing LogMiner Operational Information 23-47

ORACLE XXXii

23.12.2 Querying VSLOGMNR_LOGS 23-48
23.12.3 Querying Views for Supplemental Logging Settings 23-49
23.12.4 Querying Individual PDBs Using LogMiner 23-50
23.13 Steps in a Typical LogMiner Session 23-52
23.13.1 Understanding How to Run LogMiner Sessions 23-52
23.13.2 Typical LogMiner Session Task 1: Enable Supplemental Logging 23-54
23.13.3 Typical LogMiner Session Task 2: Extract a LogMiner Dictionary 23-54
23.13.4 Typical LogMiner Session Task 3: Specify Redo Log Files for Analysis 23-55
23.13.5 Start LogMiner 23-56
23.13.6 Query V3LOGMNR_CONTENTS 23-57
23.13.7 Typical LogMiner Session Task 6: End the LogMiner Session 23-58
23.14 Examples Using LogMiner 23-59
23.14.1 Examples of Mining by Explicitly Specifying the Redo Log Files of Interest 23-59

23.14.1.1 Example 1: Finding All Modifications in the Last Archived Redo Log
File 23-60
23.14.1.2 Example 2: Grouping DML Statements into Committed Transactions 23-63
23.14.1.3 Example 3: Formatting the Reconstructed SQL 23-64
23.14.1.4 Example 4: Using the LogMiner Dictionary in the Redo Log Files 23-67
23.14.1.5 Example 5: Tracking DDL Statements in the Internal Dictionary 23-76
23.14.1.6 Example 6: Filtering Output by Time Range 23-79
23.14.2 LogMiner Use Case Scenarios 23-81
23.14.2.1 Using LogMiner to Track Changes Made by a Specific User 23-82
23.14.2.2 Using LogMiner to Calculate Table Access Statistics 23-83

23.15 Supported Data Types, Storage Attributes, and Database and Redo Log File
Versions 23-85
23.15.1 Supported Data Types and Table Storage Attributes 23-85
23.15.2 Database Compatibility Requirements for LogMiner 23-87
23.15.3 Unsupported Data Types and Table Storage Attributes 23-87
23.15.4 Supported Databases and Redo Log File Versions 23-88
23.15.5 SecureFiles LOB Considerations 23-88
24 Using the Metadata APIs

24.1 Why Use the DBMS_METADATA API? 24-2
24.2 Overview of the DBMS_METADATA API 24-2
24.3 Using the DBMS_METADATA API to Retrieve an Object's Metadata 24-5
24.3.1 How to Use the DBMS_ METADATA API to Retrieve Object Metadata 24-5
24.3.2 Typical Steps Used for Basic Metadata Retrieval 24-6
24.3.3 Retrieving Multiple Objects 24-7
24.3.4 Placing Conditions on Transforms 24-8
24.3.5 Accessing Specific Metadata Attributes 24-11
24.4 Using the DBMS_METADATA API to Recreate a Retrieved Object 24-13

ORACLE

XXXiii

24.5 Using the DBMS_METADATA API to Retrieve Collections of Different Object Types 24-16
24.6 Filtering the Return of Heterogeneous Object Types 24-17
24.7 Using the DBMS_METADATA_DIFF APl to Compare Object Metadata 24-19
24.8 Performance Tips for the Programmatic Interface of the DBMS_METADATA API 24-27
249 Example Usage of the DBMS_METADATA API 24-28
24.9.1 What Does the DBMS_METADATA Example Do? 24-29
24.9.2 Output Generated from the GET_PAYROLL_TABLES Procedure 24-31
24.10 Summary of DBMS_METADATA Procedures 24-32
24.11 Summary of DBMS_METADATA_DIFF Procedures 24-34
25 Original Import

25.1 What Is the Import Utility? 25-3
25.2 Table Objects: Order of Import 25-3
25.3 Before Using Import 25-4
25.3.1 Overview of Import Preparation 25-4
25.3.2 Running catexp.sql or catalog.sql 25-4
25.3.3 \Verifying Access Privileges for Import Operations 25-4
25.3.3.1 Importing Objects Into Your Own Schema 25-5
25.3.3.2 Importing Grants 25-6
25.3.3.3 Importing Objects Into Other Schemas 25-6
25.3.3.4 Importing System Objects 25-6

25.3.4 Processing Restrictions 25-7
25.4 Importing into Existing Tables 25-7
25.4.1 Manually Creating Tables Before Importing Data 25-7
25.4.2 Disabling Referential Constraints 25-8
25.4.3 Manually Ordering the Import 25-8
25.5 Effect of Schema and Database Triggers on Import Operations 25-9
25.6 Invoking Import 25-9
25.6.1 Command-Line Entries 25-10
25.6.2 Parameter Files 25-10
25.6.3 Interactive Mode 25-11
25.6.4 Invoking Import As SYSDBA 25-11
25.6.5 Getting Online Help 25-12
25.7 Import Modes 25-12
25.8 Import Parameters 25-15
25.8.1 BUFFER 25-18
25.8.2 COMMIT 25-18
25.8.3 COMPILE 25-19
25.8.4 CONSTRAINTS 25-19
25.8.5 DATA_ONLY 25-19

ORACLE

XXXIV

25.8.6 DATAFILES
25.8.7 DESTROY
25.8.8 FEEDBACK
25.8.9 FILE
25.8.10 FILESIZE
25.8.11 FROMUSER
25.8.12 FULL

25.8.12.1 Points to Consider for Full Database Exports and Imports
25.8.13 GRANTS
25.8.14 HELP
25.8.15 IGNORE
25.8.16 INDEXES
25.8.17 INDEXFILE
25.8.18 LOG
25.8.19 PARFILE
25.8.20 RECORDLENGTH
25.8.21 RESUMABLE
25.8.22 RESUMABLE_NAME
25.8.23 RESUMABLE_TIMEOUT
25.8.24 ROWS
25.8.25 SHOW
25.8.26 SKIP_UNUSABLE_INDEXES
25.8.27 STATISTICS
25.8.28 STREAMS_CONFIGURATION
25.8.29 STREAMS_INSTANTIATION
25.8.30 TABLES

25.8.30.1 Table Name Restrictions
25.8.31 TABLESPACES
25.8.32 TOID_NOVALIDATE
25.8.33 TOUSER
25.8.34 TRANSPORT_TABLESPACE
25.8.35 TTS_OWNERS
25.8.36 USERID (username/password)
25.8.37 VOLSIZE

25.9 Example Import Sessions

25.9.1 Example Import of Selected Tables for a Specific User
25.9.2 Example Import of Tables Exported by Another User
25.9.3 Example Import of Tables from One User to Another
25.9.4 Example Import Session Using Partition-Level Import

25.9.4.1 Example 1: A Partition-Level Import

25.9.4.2 Example 2: A Partition-Level Import of a Composite Partitioned Table

ORACLE

25-20
25-20
25-21
25-21
25-21
25-22
25-22
25-23
25-23
25-24
25-24
25-25
25-25
25-26
25-26
25-26
25-26
25-27
25-27
25-27
25-28
25-28
25-29
25-29
25-30
25-30
25-31
25-32
25-32
25-33
25-34
25-34
25-34
25-35
25-35
25-35
25-36
25-36
25-37
25-37
25-38

XXXV

25.9.4.3 Example 3: Repartitioning a Table on a Different Column 25-39

25.9.5 Example Import Using Pattern Matching to Import Various Tables 25-40
25.10 Exit Codes for Inspection and Display 25-41
25.11 Error Handling During an Import 25-41

25.11.1 Row Errors 25-42

25.11.1.1 Failed Integrity Constraints 25-42
25.11.1.2 Invalid Data 25-42
25.11.2 Errors Importing Database Objects 25-43
25.11.2.1 Object Already Exists 25-43
25.11.2.2 Sequences 25-43
25.11.2.3 Resource Errors 25-44
25.11.2.4 Domain Index Metadata 25-44

25.12 Table-Level and Partition-Level Import 25-44

25.12.1 Guidelines for Using Table-Level Import 25-44

25.12.2 Guidelines for Using Partition-Level Import 25-45

25.12.3 Migrating Data Across Partitions and Tables 25-45
25.13 Controlling Index Creation and Maintenance 25-46

25.13.1 Delaying Index Creation 25-46

25.13.2 Index Creation and Maintenance Controls 25-46

25.13.2.1 Example of Postponing Index Maintenance 25-47

25.14 Network Considerations for Using Oracle Net with Original Import 25-47
25.15 Character Set and Globalization Support Considerations 25-48
25.15.1 User Data 25-48
25.15.1.1 Effect of Character Set Sorting Order on Conversions 25-48

25.15.2 Data Definition Language (DDL) 25-49

25.15.3 Single-Byte Character Sets 25-49

25.15.4 Multibyte Character Sets 25-50
25.16 Using Instance Affinity 25-50
25.17 Considerations When Importing Database Objects 25-50

25.17.1 Importing Object Identifiers 25-51

25.17.2 Importing Existing Object Tables and Tables That Contain Object Types 25-53

25.17.3 Importing Nested Tables 25-53

25.17.4 Importing REF Data 25-54

25.17.5 Importing BFILE Columns and Directory Aliases 25-54

25.17.6 Importing Foreign Function Libraries 25-55

25.17.7 Importing Stored Procedures, Functions, and Packages 25-55

25.17.8 Importing Java Objects 25-55

25.17.9 Importing External Tables 25-56

25.17.10 Importing Advanced Queue (AQ) Tables 25-56

25.17.11 Importing LONG Columns 25-56

25.17.12 Importing LOB Columns When Triggers Are Present 25-57

ORACLE XXXVi

25.17.13 Importing Views 25-57
25.17.14 Importing Partitioned Tables 25-58
25.18 Support for Fine-Grained Access Control 25-58
25.19 Snapshots and Snapshot Logs 25-58
25.19.1 Snapshot Log 25-58
25.19.2 Snapshots 25-59
25.19.2.1 Importing a Snapshot 25-59
25.19.2.2 Importing a Snapshot into a Different Schema 25-59
25.20 Transportable Tablespaces 25-60
25.21 Storage Parameters 25-61
25.21.1 The OPTIMAL Parameter 25-61
25.21.2 Storage Parameters for OID Indexes and LOB Columns 25-61
25.21.3 Overriding Storage Parameters 25-62
25.22 Read-Only Tablespaces 25-62
25.23 Dropping a Tablespace 25-62
25.24 Reorganizing Tablespaces 25-62
25.25 Importing Statistics 25-63
25.26 Using Export and Import to Partition a Database Migration 25-64
25.26.1 Advantages of Partitioning a Migration 25-64
25.26.2 Disadvantages of Partitioning a Migration 25-64
25.26.3 How to Use Export and Import to Partition a Database Migration 25-65
25.27 Tuning Considerations for Import Operations 25-65
25.27.1 Changing System-Level Options 25-65
25.27.2 Changing Initialization Parameters 25-66
25.27.3 Changing Import Options 25-66
25.27.4 Dealing with Large Amounts of LOB Data 25-67
25.27.5 Dealing with Large Amounts of LONG Data 25-67
25.28 Using Different Releases of Export and Import 25-67
25.28.1 Restrictions When Using Different Releases of Export and Import 25-68
25.28.2 Examples of Using Different Releases of Export and Import 25-68
Part V. Appendices
A Instant Client for SQL*Loader, Export, and Import
A.1 What is the Tools Instant Client? A-1
A.2 Choosing Which Instant Client to Install A-2
A.3 Installing Instant Client Tools by Downloading from OTN A-3
A.3.1 Installing Instant Client and Instant Client Tools RPM Packages for Linux A-3
A.3.2 Installing Instant Client and Instant Client Tools from Unix or Windows Zip Files A-4
A.4 Installing Tools Instant Client from the Client Release Media A-5
ORACLE XXXVii

A5
A.6
A7
A.8

List of Oracle Instant Client Tools Files

Configuring Tools Instant Client Package

Connecting to a Database with the Tools Instant Client Package
Uninstalling Tools Instant Client Package and Instant Client

B SQL*Loader Syntax Diagrams

A-5

A-8
A-9

ORACLE"

XXXViii

Preface

This document describes how to use Oracle Database utilities for data transfer, data
maintenance, and database administration.

* Audience

e Documentation Accessibility
e Diversity and Inclusion

* Related Documentation

e Syntax Diagrams

e Conventions

Audience

The utilities described in this book are intended for database administrators (DBAS),
application programmers, security administrators, system operators, and other Oracle
Database users who perform the following tasks:

* Archive data, back up Oracle Database, or move data between different Oracle
Databases using the Export and Import utilities (both the original versions and the Oracle
Data Pump versions)

* Load data into Oracle Database tables from operating system files, using SQL*Loader
* Load data from external sources, using the external tables feature

» Perform a physical data structure integrity check on an offline database, using the
DBVERIFY utility

* Maintain the internal database identifier (DBID) and the database name (DBNAME) for an
operational database, using the DBNEWID utility

« Extract and manipulate complete representations of the metadata for Oracle Database
objects, using the Metadata API

* Query and analyze redo log files (through a SQL interface), using the LogMiner utility

» Use the Automatic Diagnostic Repository Command Interpreter (ADRCI) utility to manage
Oracle Database diagnostic data

To use this manual, you need a working knowledge of SQL and of Oracle fundamentals. You
can find such information in Oracle Database Concepts. In addition, to use SQL*Loader, you
must know how to use the file management facilities of your operating system.

Documentation Accessibility

ORACLE XXXIX

Preface

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Diversity and Inclusion

Oracle is fully committed to diversity and inclusion. Oracle respects and values having
a diverse workforce that increases thought leadership and innovation. As part of our
initiative to build a more inclusive culture that positively impacts our employees,
customers, and partners, we are working to remove insensitive terms from our
products and documentation. We are also mindful of the necessity to maintain
compatibility with our customers' existing technologies and the need to ensure
continuity of service as Oracle's offerings and industry standards evolve. Because of
these technical constraints, our effort to remove insensitive terms is ongoing and will
take time and external cooperation.

Related Documentation

ORACLE

For more information, refer to the Oracle Database documentation set. In particular,
check the following documents:

e Oracle Database Concepts

e Oracle Database SQL Language Reference

* Oracle Database Administrator’s Guide

e Oracle Database PL/SQL Packages and Types Reference

Also refer to My Oracle Support notes that are relevant to Oracle Data Pump tasks,
and in particular, refer to recommended proactive patches for your release:

Data Pump Recommended Proactive Patches For 19.10 and Above (Doc ID
2819284.1)

Oracle Data Pump patches are not included in Oracle Database release updates, but
instead are provide in bundled patches that contain SQL, PL/SQL packages, and XML
stylesheets for Oracle Data Pump. Oracle recommends that you apply the most recent
Oracle Data Pump bundle patch for your release. Because these patches do not
include Oracle Database binaries, you can apply Oracle Data Pump patches online
while the database is running , so long as Oracle Data Pump is not in use at the time.

Some of the examples in this book use the sample schemas of the seed database,
which is installed by default when you install Oracle Database. Refer to Oracle
Database Sample Schemas for information about how these schemas were created,
and how you can use them yourself.

x|

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://support.oracle.com/rs?type=doc&id=2819284.1
https://support.oracle.com/rs?type=doc&id=2819284.1

Preface

Syntax Diagrams

Syntax descriptions are provided in this book for various SQL, PL/SQL, or other command-
line constructs in graphic form or Backus Naur Form (BNF). See Oracle Database SQL
Language Reference for information about how to interpret these descriptions.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

ORACLE' Wi

Oracle Data Pump

ORACLE

Learn about data movement options using Oracle Data Pump Export, Oracle Data Pump
Import, legacy mode, performance, and the Oracle Data Pump API DBMS DATAPUMP.

e Overview of Oracle Data Pump
Oracle Data Pump technology enables very high-speed movement of data and metadata
from one database to another.

e Oracle Data Pump Export
The Oracle Data Pump Export utility is used to unload data and metadata into a set of
operating system files, which are called a dump file set.

e Oracle Data Pump Import
With Oracle Data Pump Import, you can load an export dump file set into a target
database, or load a target database directly from a source database with no intervening
files.

e Oracle Data Pump Legacy Mode
With Oracle Data Pump legacy mode, you can use original Export and Import parameters
on the Oracle Data Pump Export and Data Pump Import command lines.

e Oracle Data Pump Performance
Learn how Oracle Data Pump Export and Import is better than that of original Export and
Import, and how to enhance performance of export and import operations.

e Using the Oracle Data Pump API
You can automate data movement operations by using the Oracle Data Pump PL/SQL
API| DBMS_DATAPUMP.

Overview of Oracle Data Pump

ORACLE

Oracle Data Pump technology enables very high-speed movement of data and metadata
from one database to another.

An understanding of the following topics can help you to successfully use Oracle Data Pump
to its fullest advantage:

Oracle Data Pump Components

Oracle Data Pump is made up of three distinct components: Command-line clients, expdp
and impdp; the DBMS DATAPUMP PL/SQL package (also known as the Data Pump API);
and the DBMS METADATA PL/SQL package (also known as the Metadata API).

How Does Oracle Data Pump Move Data?
There are several Oracle Data Pump methods that you can use to move data in and out
of databases. You can select the method that best fits your use case.

Using Oracle Data Pump With CDBs
Oracle Data Pump can migrate all, or portions of, a database from a non-CDB into a
PDB, between PDBs within the same or different CDBs, and from a PDB into a non-CDB.

Required Roles for Oracle Data Pump Export and Import Operations
The roles DATAPUMP EXP FULL DATABASE and DATAPUMP IMP FULL DATABASE are required
for many Export and Import operations.

What Happens During the Processing of an Oracle Data Pump Job?
Oracle Data Pump jobs use a Data Pump control job table, a Data Pump control job
process, and worker processes to perform the work and keep track of progress.

How to Monitor Status of Oracle Data Pump Jobs
The Oracle Data Pump Export and Import client utilities can attach to a job in either
logging mode or interactive-command mode.

How to Monitor the Progress of Running Jobs with V$SESSION_LONGOPS
To monitor table data transfers, you can use the V$SESSION LONGOPS dynamic
performance view to monitor Oracle Data Pump jobs.

File Allocation with Oracle Data Pump
You can modify how Oracle Data Pump allocates and handles files by using commands
in interactive mode.

Exporting and Importing Between Different Oracle Database Releases
You can use Oracle Data Pump to migrate all or any portion of an Oracle Database
between different releases of the database software.

Exporting and Importing Blockchain Tables with Oracle Data Pump
To export or import blockchain tables, review these minimum requirements, restrictions,
and guidelines.

Managing SecureFiles Large Object Exports with Oracle Data Pump
Exports of SecureFiles large objects (LOBs) are affected by the content type, the VERSION
parameter, and other variables.

1-1

Chapter 1
Oracle Data Pump Components

* Oracle Data Pump Process Exit Codes
To check the status of your Oracle Data Pump export and import operations,
review the process exit codes in the log file.

* How to Monitor Oracle Data Pump Jobs with Unified Auditing
To monitor and record specific user database actions, perform auditing on Data
Pump jobs with unified auditing.

* Encrypted Data Security Warnings for Oracle Data Pump Operations
Oracle Data Pump warns you when encrypted data is exported as unencrypted
data.

* How Does Oracle Data Pump Handle Timestamp Data?
Learn about factors that can affect successful completion of export and import jobs
that involve the timestamp data types TIMESTAMP WITH TIMEZONE and TIMESTAMP
WITH LOCAL TIMEZONE.

e Character Set and Globalization Support Considerations
Learn about Globalization support of Oracle Data Pump Export and Import using
character set conversion of user data, and data definition language (DDL).

e Oracle Data Pump Behavior with Data-Bound Collation
Oracle Data Pump supports data-bound collation (DBC).

1.1 Oracle Data Pump Components

ORACLE

Oracle Data Pump is made up of three distinct components: Command-line clients,
expdp and impdp; the DBMS DATAPUMP PL/SQL package (also known as the Data Pump
API); and the DBMS METADATA PL/SQL package (also known as the Metadata API).

The Oracle Data Pump clients, expdp and impdp, start the Oracle Data Pump Export
utility and Oracle Data Pump Import utility, respectively.

The expdp and impdp clients use the procedures provided in the DBMS DATAPUMP
PL/SQL package to execute export and import commands, using the parameters
entered at the command line. These parameters enable the exporting and importing of
data and metadata for a complete database or for subsets of a database.

When metadata is moved, Data Pump uses functionality provided by the
DBMS METADATA PL/SQL package. The DBMS METADATA package provides a centralized
facility for the extraction, manipulation, and re-creation of dictionary metadata.

The DBMS_ DATAPUMP and DBMS METADATA PL/SQL packages can be used independently
of the Data Pump clients.

Note:

All Oracle Data Pump Export and Import processing, including the reading
and writing of dump files, is done on the system (server) selected by the
specified database connect string. This means that for unprivileged users,
the database administrator (DBA) must create directory objects for the
Data Pump files that are read and written on that server file system. (For
security reasons, DBAs must ensure that only approved users are allowed
access to directory objects.) For privileged users, a default directory object is
available.

1-2

Chapter 1
How Does Oracle Data Pump Move Data?

Starting with Oracle Database 18c, you can include the unified audit trail in either full or
partial export and import operations using Oracle Data Pump. There is no change to the user
interface. When you perform the export or import operations of a database, the unified audit
trail is automatically included in the Oracle Data Pump dump files. See Oracle Database
PL/SQL Packages and Types Reference for a description of the DBMS DATAPUMP and the
DBMS METADATA packages. See Oracle Database Security Guide for information about
exporting and importing the unified audit trail using Oracle Data Pump.

Related Topics

Understanding Dump, Log, and SQL File Default Locations
Oracle Data Pump is server-based, rather than client-based. Dump files, log files, and
SQL files are accessed relative to server-based directory paths.

Oracle Database PL/SQL Packages and Types Reference

Oracle Database Security Guide

1.2 How Does Oracle Data Pump Move Data?

There are several Oracle Data Pump methods that you can use to move data in and out of
databases. You can select the method that best fits your use case.

ORACLE

¢ Note:

The UTL FILE DIR desupportin Oracle Database 18c and later releases affects
Oracle Data Pump. This desupport can affect any feature from an earlier release
using symbolic links, including (but not restricted to) Oracle Data Pump, BFILES,
and External Tables. If you attempt to use an affected feature configured with
symbolic links, then you encounter ORA-29283: invalid file operation: path
traverses a symlink. Oracle recommends that you instead use directory objects
in place of symbolic links.

Data Pump does not load tables with disabled unique indexes. To load data into the
table, the indexes must be either dropped or reenabled.

Using Data File Copying to Move Data
The fastest method of moving data is to copy the database data files to the target
database without interpreting or altering the data.

Using Direct Path to Move Data

After data file copying, direct path is the fastest method of moving data. In this method,
the SQL layer of the database is bypassed and rows are moved to and from the dump file
with only minimal interpretation.

Using External Tables to Move Data
If you do not select data file copying, and the data cannot be moved using direct path,
you can use the external tables mechanism.

Using Conventional Path to Move Data
Where there are conflicting table attributes, Oracle Data Pump uses conventional path to
move data.

1-3

Chapter 1
How Does Oracle Data Pump Move Data?

* Using Network Link Import to Move Data
When the Import NETWORK LINK parameter is used to specify a network link for an
import operation, the direct path method is used by default. Review supported
database link types.

* Using a Parameter File (Parfile) with Oracle Data Pump
To help to simplify Oracle Data Pump exports and imports, you can create a
parameter file, also known as a parfile.

1.2.1 Using Data File Copying to Move Data

The fastest method of moving data is to copy the database data files to the target
database without interpreting or altering the data.

When you copy database data files to the target database with this method, Data
Pump Export is used to unload only structural information (metadata) into the dump
file.

* The TRANSPORT TABLESPACES parameter is used to specify a transportable
tablespace export. Only metadata for the specified tablespaces is exported.

e The TRANSPORTABLE=ALWAYS parameter is supplied on a table mode export
(specified with the TABLES parameter) or a full mode export (specified with the FULL
parameter) or a full mode network import (specified with the FULL and
NETWORK_LINK parameters).

When an export operation uses data file copying, the corresponding import job always
also uses data file copying. During the ensuing import operation, both the data files
and the export dump file must be loaded.

Note:

Starting with Oracle Database 21c, transportable jobs are restartable at or
near the point of failure During transportable imports tablespaces are
temporarily made read/write and then set back to read-only. The temporary
setting change was introduced with Oracle Database 12c Release 1
(12.1.0.2) to improve performance. However, be aware that this behavior
also causes the SCNs of the import job data files to change. Changing the
SCNs for data files can cause issues during future transportable imports of
those files.

For example, if a transportable tablespace import fails at any point after the
tablespaces have been made read/write (even if they are now read-only
again), then the data files at that section of the export become corrupt. They
cannot be recovered.

When transportable jobs are performed, it is best practice to keep a copy of
the data files on the source system until the import job has successfully
completed on the target system. If the import job fails for some reason, then
keeping copies ensures that you can have uncorrupted copies of the data
files.

When data is moved by using data file copying, there are some limitations regarding
character set compatibility between the source and target databases.

ORACLE 1-4

Chapter 1
How Does Oracle Data Pump Move Data?

If the source platform and the target platform are of different endianness, then you must
convert the data being transported so that it is in the format of the target platform. You can
use the DBMS_FILE TRANSFER PL/SQL package or the RMAN CONVERT command to convert the
data.

¢ See Also:

e Oracle Database Backup and Recovery Reference for information about the
RMAN CONVERT command

e Oracle Database Administrator’s Guide for a description and example (including
how to convert the data) of transporting tablespaces between databases

1.2.2 Using Direct Path to Move Data

ORACLE

After data file copying, direct path is the fastest method of moving data. In this method, the
SQL layer of the database is bypassed and rows are moved to and from the dump file with
only minimal interpretation.

Data Pump automatically uses the direct path method for loading and unloading data unless
the structure of a table does not allow it. For example, if a table contains a column of type
BFILE, then direct path cannot be used to load that table and external tables is used instead.

The following sections describe situations in which direct path cannot be used for loading and
unloading.

Situations in Which Direct Path Load Is Not Used

If any of the following conditions exist for a table, then Data Pump uses external tables to
load the data for that table, instead of direct path:

* A domain index that is not a CONTEXT type index exists for a LOB column.

A global index on multipartition tables exists during a single-partition load. This case
includes object tables that are partitioned.

e Atableisin a cluster.

* There is an active trigger on a preexisting table.

» Fine-grained access control is enabled in insert mode on a preexisting table.
* Atable contains BFILE columns or columns of opaque types.

« Areferential integrity constraint is present on a preexisting table.

» Atable contains VARRAY columns with an embedded opaque type.

e The table has encrypted columns.

e The table into which data is being imported is a preexisting table and at least one of the
following conditions exists:

— There is an active trigger
— The table is partitioned

— Fine-grained access control is in insert mode

1-5

Chapter 1
How Does Oracle Data Pump Move Data?

— Areferential integrity constraint exists
— A unigue index exists
* Supplemental logging is enabled, and the table has at least one LOB column.

* The Data Pump command for the specified table used the QUERY, SAMPLE, or
REMAP DATA parameter.

* Atable contains a column (including a VARRAY column) with a TIMESTAMP WITH
TIME ZONE data type, and the version of the time zone data file is different between
the export and import systems.

Situations in Which Direct Path Unload Is Not Used

If any of the following conditions exist for a table, then Data Pump uses external tables
rather than direct path to unload the data:

* Fine-grained access control for SELECT is enabled.

* The table is a queue table.

* The table contains one or more columns of type BFILE or opaque, or an object
type containing opaque columns.

* The table contains encrypted columns.
* The table contains a column of an evolved type that needs upgrading.

* The Data Pump command for the specified table used the QUERY, SAMPLE, or
REMAP DATA parameter.

« Before the unload operation, the table was altered to contain a column that is NOT
NULL, and also has a default value specified.

1.2.3 Using External Tables to Move Data

ORACLE

If you do not select data file copying, and the data cannot be moved using direct path,
you can use the external tables mechanism.

The external tables mechanism creates an external table that maps to the dump file
data for the database table. The SQL engine is then used to move the data. If
possible, use the APPEND hint on import to speed the copying of the data into the
database. The representation of data for direct path data and external table data is the
same in a dump file. Because they are the same, Oracle Data Pump can use the direct
path mechanism at export time, but use external tables when the data is imported into
the target database. Similarly, Oracle Data Pump can use external tables for the
export, but use direct path for the import.

In particular, Oracle Data Pump can use external tables in the following situations:

* Loading and unloading very large tables and partitions in situations where it is
advantageous to use parallel SQL capabilities

* Loading tables with global or domain indexes defined on them, including
partitioned object tables

* Loading tables with active triggers or clustered tables
* Loading and unloading tables with encrypted columns

* Loading tables with fine-grained access control enabled for inserts

1-6

Chapter 1
How Does Oracle Data Pump Move Data?

* Loading a table not created by the import operation (the table exists before the import
starts)

Note:

When Oracle Data Pump uses external tables as the data access mechanism, it
uses the ORACLE DATAPUMP access driver. However, be aware that the files that
Oracle Data Pump creates when it uses external tables are not compatible with files
created when you manually create an external table using the SQL CREATE

TABLE ... ORGANIZATION EXTERNAL Statement.

Related Topics

e The ORACLE_DATAPUMP Access Driver
* APPEND Hint

e Loading LOBs with External Tables

1.2.4 Using Conventional Path to Move Data

Where there are conflicting table attributes, Oracle Data Pump uses conventional path to
move data.

In situations where there are conflicting table attributes, Oracle Data Pump is not able to load
data into a table using either direct path or external tables. In such cases, conventional path
is used, which can affect performance.

1.2.5 Using Network Link Import to Move Data

ORACLE

When the Import NETWORK LINK parameter is used to specify a network link for an import
operation, the direct path method is used by default. Review supported database link types.

If direct path cannot be used (for example, because one of the columns is a BFILE), then SQL
is used to move the data using an INSERT SELECT statement. (Before Oracle Database 12c¢
Release 2 (12.2.0.1), the default was to use the INSERT SELECT statement.) The SELECT
clause retrieves the data from the remote database over the network link. The INSERT clause
uses SQL to insert the data into the target database. There are no dump files involved.

When the Export NETWORK LINK parameter is used to specify a network link for an export
operation, the data from the remote database is written to dump files on the target database.
(Note that to export from a read-only database, the NETWORK_LINK parameter is required.)

Because the link can identify a remotely networked database, the terms database link and
network link are used interchangeably.

Supported Link Types

The following types of database links are supported for use with Data Pump Export and
Import:

* Public fixed user

e Public connected user

1-7

Chapter 1
How Does Oracle Data Pump Move Data?

* Public shared user (only when used by link owner)
» Private shared user (only when used by link owner)

» Private fixed user (only when used by link owner)

Unsupported Link Types

The following types of database links are not supported for use with Data Pump Export
and Import:

e Private connected user
e Current user
» Parallel export or import of metadata for network jobs.

For conventional jobs, if you need parallel metadata import, then use a dumpfile
instead of NETWORK_LINK.

¢ See Also:

e The Export NETWORK_LINK parameter for information about
performing exports over a database link

e The Import NETWORK_LINK parameter for information about
performing imports over a database link

e Oracle Database Administrator’s Guide for information about creating
database links and the different types of links

1.2.6 Using a Parameter File (Parfile) with Oracle Data Pump

ORACLE

To help to simplify Oracle Data Pump exports and imports, you can create a
parameter file, also known as a parfile.

Instead of typing in Oracle Data Pump parameters at the command line, when you run
an export or import operation, you can prepare a parameter text file (also known as a
parfile, after the parameter name) that provides the command-line parameters to the
Oracle Data Pump client. You specify that Oracle Data Pump obtains parameters for
the command by entering the PARFILE parameter, and then specifying the parameter
name:

PARFILE=[directory path]file name

When the Oracle Data Pump Export or Import operation starts, the parameter file is
opened and read by the client. The default location of the parameter file is the user's
current directory.

For example:

expdp hr PARFILE=hr.par

When you create a parameter file, it makes it easier for you to reuse that file for
multiple export or import operations, which can simplify these operations, particularly if
you perform them regularly. Creating a parameter file also helps you to avoid

1-8

1.3 Using

Chapter 1
Using Oracle Data Pump With CDBs

typographical errors that can occur from typing long Oracle Data Pump commands on the

command line, especially if you use parameters whose values require quotation marks that
must be placed precisely. On some systems, if you use a parameter file and the parameter
value being specified does not have quotation marks as the first character in the string (for
example, TABLES=scott."Emp"), then the use of escape characters may not be necessary.

There is no required file name extension, but Oracle examples use .par as the extension.
Oracle recommends that you also use this file extension convention. Using a consistent
parameter file extension makes it easier to identify and use these files.

< Note:

The PARFILE parameter cannot be specified within a parameter file.

For more information and examples, see the PARFILE parameters for Oracle Data Pump
Import and Export.

Related Topics
e Oracle Data Pump Export PARFILE
e Oracle Data Pump Import PARFILE

Oracle Data Pump With CDBs

Oracle Data Pump can migrate all, or portions of, a database from a non-CDB into a PDB,
between PDBs within the same or different CDBs, and from a PDB into a non-CDB.

e About Using Oracle Data Pump in a Multitenant Environment
In general, using Oracle Data Pump with PDBs is identical to using Oracle Data Pump
with a non-CDB.

e Using Oracle Data Pump to Move Data Into a CDB
After you create an empty PDB, to move data into the PDB, you can use an Oracle Data
Pump full-mode export and import operation.

* Using Oracle Data Pump to Move PDBs Within or Between CDBs
Learn how to avoid ORA-65094 user schema errors with Oracle Data Pump export and
import operations on PDBs.

1.3.1 About Using Oracle Data Pump in a Multitenant Environment

ORACLE

In general, using Oracle Data Pump with PDBs is identical to using Oracle Data Pump with a
non-CDB.

A multitenant container database (CDB) is an Oracle Database that includes zero, one, or
many user-created pluggable databases (PDBs). A PDB is a portable set of schemas,
schema objects, and non-schema objects that appear to an Oracle Net client as a non-CDB.
A non-CDB is an Oracle Database that is not a CDB. Non-CDB architecture Oracle Database
was deprecated in Oracle Database 12c Release 1 (12.1). Starting with Oracle Database
21c, non-CDB architecture deployments are desupported.

You can use Oracle Data Pump to migrate all or some of a database in the following
scenarios:

e From a non-CDB into a PDB

1-9

Chapter 1
Using Oracle Data Pump With CDBs

» Between PDBs within the same or different CDBs

« From a PDB into an earlier release non-CDB

Note:

Oracle Data Pump does not support any operations across the entire CDB. If
you are connected to the root or seed database of a CDB, then Oracle Data
Pump issues the following warning:

ORA-39357: Warning: Oracle Data Pump operations are not
typically needed when connected to the root or seed of a
container database.

1.3.2 Using Oracle Data Pump to Move Data Into a CDB

ORACLE

After you create an empty PDB, to move data into the PDB, you can use an Oracle
Data Pump full-mode export and import operation.

You can import data with or without the transportable option. If you use the
transportable option on a full mode export or import, then it is referred to as a full
transportable export/import.

When the transportable option is used, export and import use both transportable
tablespace data movement and conventional data movement; the latter for those
tables that reside in non-transportable tablespaces such as sYSTEM and SYSAUX. Using
the transportable option can reduce the export time, and especially, the import time.
With the transportable option, table data does not need to be unloaded and reloaded,
and index structures in user tablespaces do not need to be recreated.

Note the following requirements when using Oracle Data Pump to move data into a
CDB:

* To administer a multitenant environment, you must have the CDB_DBA role.

* Full database exports from Oracle Database 11.2.0.2 and earlier can be imported
into Oracle Database 12c or later (CDB or non-CDB). However, Oracle
recommends that you first upgrade the source database to Oracle Database 11g
Release 2 (11.2.0.3 or later), so that information about registered options and
components is included in the export.

* When migrating Oracle Database 11g Release 2 (11.2.0.3 or later) to a CDB (or to
a non-CDB) using either full database export or full transportable database export,
you must set the Oracle Data Pump Export parameter at least to VERSION=12 to
generate a dump file that is ready for import into an Oracle Database 12c or later
release. If you do not set VERSION=12, then the export file that is generated does
not contain complete information about registered database options and
components.

* Network-based full transportable imports require use of the FULL=YES,
TRANSPORTABLE=ALWAYS, and TRANSPORT DATAFILES=datafile name parameters.
When the source database is Oracle Database 11g Release 11.2.0.3 or later, but
earlier than Oracle Database 12c Release 1 (12.1), the VERSION=12 parameter is
also required.

1-10

ORACLE

Chapter 1
Using Oracle Data Pump With CDBs

» File-based full transportable imports only require use of the
TRANSPORT DATAFILES=datafile name parameter. Data Pump Import infers the presence
of the TRANSPORTABLE=ALWAYS and FULL=YES parameters.

* As of Oracle Database 12c Release 2 (12.2), in a multitenant container database (CDB)
environment, the default Oracle Data Pump directory object, DATA PUMP DIR, is defined
as a unique path for each PDB in the CDB. This unique path is defined whether the
PATH PREFIX clause of the CREATE PLUGGABLE DATABASE statement is defined or is not
defined for relative paths.

e Starting in Oracle Database 19c, the credential parameter of impdp specifies the name
of the credential object that contains the user name and password required to access an
object store bucket. You can also specify a default credential using the PDB property
named DEFAULT CREDENTIAL. When you run impdb with then default credential, you prefix
the dump file name with DEFAULT CREDENTIAL: and you do not specify the credential
parameter.

Example 1-1 Importing a Table into a PDB

To specify a particular PDB for the export/import operation, supply a connect identifier in the
connect string when you start Data Pump. For example, to import data to a PDB named pdb1,
you could enter the following on the Data Pump command line:

impdp hr@pdbl DIRECTORY=dpump dirl DUMPFILE=hr.dmp TABLES=employees

Example 1-2 Specifying a Credential When Importing Data

This example assumes that you created a credential named HR CRED using
DBMS_CREDENTIAL.CREATE CREDENTIAL as follows:

BEGIN
DBMS CLOUD.CREATE CREDENTIAL (
credential name => "HR CRED',
username => 'atpc user@example.com',
password => 'password'
)i
END;
/

The following command specifies credential HR CRED, and specifies the file stored in an object
store. The URL of the file is https://example.com/ostore/dnfs/myt . dmp.

impdp hr@pdbl \
table exists action=replace \
credential=HR CRED \
parallel=16 \
dumpfile=https://example.com/ostore/dnfs/myt.dmp

Example 1-3 Importing Data Using a Default Credential

1. You create a credential named HR_CRED using DBMS CREDENTIAL.CREATE CREDENTIAL as
follows:

BEGIN
DBMS CLOUD.CREATE CREDENTIAL (

1-11

Chapter 1
Using Oracle Data Pump With CDBs

credential name => 'HR CRED',
username => 'atpc user@example.com',
password => 'password'
)i
END;
/

2. You set the PDB property DEFAULT CREDENTIAL as follows:
ALTER DATABASE PROPERTY SET DEFAULT CREDENTIAL = 'ADMIN.HR CRED'

3. The following command specifies the default credential as a prefix to the dump file
location https://example.com/ostore/dnfs/myt . dmp:

impdp hr@pdbl \

table exists action=replace \

parallel=16 \

dumpfile=default credential:https://example.com/ostore/dnfs/
myt .dmp

Note that the credential parameter is not specified.

¢ See Also:

e Oracle Database Security Guide to learn how to configure SSL
authentication, which is necessary for object store access

e Importing a Table to an Object Store Using Oracle Data Pump to learn
about using Oracle Data Pump Import to load files to the object store

1.3.3 Using Oracle Data Pump to Move PDBs Within or Between

CDBs

ORACLE

Learn how to avoid ORA-65094 user schema errors with Oracle Data Pump export and
import operations on PDBs.

If you create a common user in a CDB, then a full database or privileged schema
export of that user from within any PDB in the CDB results in a standard CREATE USER
C##common name DDL statement being performed upon import. However, the statement
fails because of the common user prefix C## on the user name. The following error
message is returned:

ORA-65094:invalid local user or role name

Example 1-4 Avoiding Invalid Local User Error

In the PDB being exported, if you have created local objects in that user's schema,
and you want to import them, then either make sure a common user of the same name
already exists in the target CDB instance, or use the Oracle Data Pump Import

1-12

Chapter 1
Required Roles for Oracle Data Pump Export and Import Operations

REMAP SCHEMA parameter on the impdp command to remap the schema to a valid local user.
For example:

REMAP SCHEMA=C##common name:local user name

Related Topics

e Full Export Mode
You can use Oracle Data Pump to carry out a full database export by using the FULL
parameter.

e Full Import Mode
To specify a full import with Oracle Data Pump, use the FULL parameter.

1.4 Required Roles for Oracle Data Pump Export and Import
Operations

The roles DATAPUMP EXP FULL DATABASE and DATAPUMP IMP FULL DATABASE are required for
many Export and Import operations.

When you run Export or Import operations, the operation can require that the user account
you are using to run the operations is granted either the DATAPUMP EXP FULL DATABASE role,
or the DATAPUMP IMP FULL DATABASE role, or both roles. These roles are automatically
defined for Oracle Database when you run the standard scripts that are part of database
creation. (Note that although the names of these roles contain the word FULL, these roles
actually apply to any privileged operations in any export or import mode, not only Full mode.)

The DATAPUMP EXP FULL DATABASE role affects only export operations. The
DATAPUMP IMP FULL DATABASE role affects import operations and operations that use the
Import SQLFILE parameter. These roles allow users performing exports and imports to do the
following:

* Perform the operation outside the scope of their schema
* Monitor jobs that were initiated by another user

» Export objects (such as tablespace definitions) and import objects (such as directory
definitions) that unprivileged users cannot reference

These are powerful roles. As a database administrator, you should use caution when granting
these roles to users.

Although the sYs schema does not have either of these roles assigned to it, all security
checks performed by Oracle Data Pump that require these roles also grant access to the sys
schema.

ORACLE 1-13

Chapter 1
What Happens During the Processing of an Oracle Data Pump Job?

< Note:

If you receive an ORA-39181: Only Partial Data Exported Due to Fine
Grain Access Control error message, then see My Oracle Support Note

422480.1 for information about security during an export of table data with
fine-grained access control policies enabled.:

https://support.oracle.com/rs?type=doc&id=422480.1

Some Oracle roles require authorization. If you need to use these roles with Oracle
Data Pump exports and imports, then you must explicitly enable them by setting the
ENABLE SECURE_ROLES parameter to YES.

" See Also:

Oracle Database Security Guide for more information about predefined roles
in an Oracle Database installation

1.5 What Happens During the Processing of an Oracle Data
Pump Job?

ORACLE

Oracle Data Pump jobs use a Data Pump control job table, a Data Pump control job
process, and worker processes to perform the work and keep track of progress.

e Coordination of an Oracle Data Pump Job
A Data Pump control process is created to coordinate every Oracle Data Pump
Export and Import job.

e Tracking Progress Within an Oracle Data Pump Job
While Oracle Data Pump transfers data and metadata, a Data Pump control job
table is used to track the progress within a job.

e Filtering Data and Metadata During an Oracle Data Pump Job
If you want to filter the types of objects that are exported and imported with Oracle
Data Pump, then you can use the EXCLUDE and INCLUDE parameters.

e Transforming Metadata During an Oracle Data Pump Job
When you move data from one database to another, you can perform
transformations on the metadata by using Oracle Data Pump Import parameters.

e Maximizing Job Performance of Oracle Data Pump
To increase job performance, you can use the Oracle Data Pump PARALLEL
parameter to run multiple worker processes in parallel.

* Loading and Unloading Data with Oracle Data Pump
Learn how Oracle Data Pump child processes operate during data imports and
exports.

1-14

https://support.oracle.com/rs?type=doc&id=422480.1

Chapter 1
What Happens During the Processing of an Oracle Data Pump Job?

1.5.1 Coordination of an Oracle Data Pump Job

A Data Pump control process is created to coordinate every Oracle Data Pump Export and
Import job.

The Data Pump control process controls the entire job, including communicating with the
client processes, creating and controlling a pool of worker processes, and performing logging
operations.

1.5.2 Tracking Progress Within an Oracle Data Pump Job

ORACLE

While Oracle Data Pump transfers data and metadata, a Data Pump control job table is used
to track the progress within a job.

The Data Pump control table is implemented as a user table within the database. The specific
function of the Data Pump control table for export and import jobs is as follows:

* For export jobs, the Data Pump control job table records the location of database objects
within a dump file set. Export builds and maintains the Data Pump control table for the
duration of the job. At the end of an export job, the content of the Data Pump control table
is written to a file in the dump file set.

* For import jobs, the Data Pump control job table is loaded from the dump file set, and is
used to control the sequence of operations for locating objects that need to be imported
into the target database.

The Data Pump control job table is created in the schema of the current user performing the
export or import operation. Therefore, that user must have the CREATE TABLE system privilege
and a sufficient tablespace quota for creation of the Data Pump control job table. The name
of the Data Pump control job table is the same as the name of the job that created it.
Therefore, you cannot explicitly give an Oracle Data Pump job the same name as a
preexisting table or view.

For all operations, the information in the master table is used to restart a job.

The Data Pump control job table is either retained or dropped, depending on the
circumstances, as follows:

* Upon successful job completion, the Data Pump control job table is dropped. You can
override this by setting the Oracle Data Pump KEEP_MASTER=YES parameter for the job.

* The Data Pump control job table is automatically retained for jobs that do not complete
successfully.

» If ajob is stopped using the STOP JOB interactive command, then the Data Pump control
job table is retained for use in restarting the job.

» If ajob is killed using the XKILL JOB interactive command, then the Data Pump control job
table is dropped, and the job cannot be restarted.

« If a job terminates unexpectedly, then the Data Pump control job table is retained. You
can delete it if you do not intend to restart the job.

« If a job stops before it starts running (that is, before any database objects have been
copied), then the Data Pump control job table is dropped.

Related Topics

e Oracle Data Pump Export command-line utility JOB_NAME parameter

1-15

Chapter 1
What Happens During the Processing of an Oracle Data Pump Job?

1.5.3 Filtering Data and Metadata During an Oracle Data Pump Job

If you want to filter the types of objects that are exported and imported with Oracle
Data Pump, then you can use the EXCLUDE and INCLUDE parameters.

Within the Data Pump control job table, specific objects are assigned attributes such
as name or owning schema. Objects also belong to a class of objects (such as TABLE,
INDEX, or DIRECTORY). The class of an object is called its object type. You can use the
EXCLUDE and INCLUDE parameters to restrict the types of objects that are exported and
imported. The objects can be based upon the name of the object, or the name of the
schema that owns the object. You can also specify data-specific filters to restrict the
rows that are exported and imported.

Related Topics

* Filtering During Export Operations
Oracle Data Pump Export provides data and metadata filtering capability. This
capability helps you limit the type of information that is exported.

* Filtering During Import Operations
Oracle Data Pump Import provides data and metadata filtering capability, which
can help you limit the type of information that you import.

1.5.4 Transforming Metadata During an Oracle Data Pump Job

When you move data from one database to another, you can perform transformations
on the metadata by using Oracle Data Pump Import parameters.

It is often useful to perform transformations on your metadata, so that you can remap
storage between tablespaces, or redefine the owner of a particular set of objects.
When you move data, you can perform transformations by using the Oracle Data
Pump import parameters REMAP DATAFILE, REMAP SCHEMA,

REMAP TABLE,REMAP TABLESPACE, TRANSFORM, and PARTITION OPTIONS.

1.5.5 Maximizing Job Performance of Oracle Data Pump

ORACLE

To increase job performance, you can use the Oracle Data Pump PARALLEL parameter
to run multiple worker processes in parallel.

The PARALLEL parameter enables you to set a degree of parallelism that takes
maximum advantage of current conditions. For example, to limit the effect of a job on a
production system, database administrators can choose to restrict the parallelism. The
degree of parallelism can be reset at any time during a job. For example, during
production hours, you can set PARALLEL to 2, so that you restrict a particular job to only
two degrees of parallelism. During non-production hours, you can reset the degree of
parallelism to 8. The parallelism setting is enforced by the Data Pump control process,
which allocates workloads to worker processes that perform the data and metadata
processing within an operation. These worker processes operate in parallel. For
recommendations on setting the degree of parallelism, refer to the Export PARALLEL
and Import PARALLEL parameter descriptions.

1-16

Chapter 1
What Happens During the Processing of an Oracle Data Pump Job?

< Note:

The ability to adjust the degree of parallelism is available only in the Enterprise
Edition of Oracle Database.

Related Topics

* PARALLEL
The Oracle Data Pump Export command-line utility PARALLEL parameter specifies the
maximum number of processes of active execution operating on behalf of the export job.

* PARALLEL
The Oracle Data Pump Import command-line mode PARALLEL parameter sets the
maximum number of worker processes that can load in parallel.

1.5.6 Loading and Unloading Data with Oracle Data Pump

Learn how Oracle Data Pump child processes operate during data imports and exports.

Oracle Data Pump child processes unload and load metadata and table data. For export, all
metadata and data are unloaded in parallel, with the exception of jobs that use transportable
tablespace. For import, objects must be created in the correct dependency order.

If there are enough objects of the same type to make use of multiple child processes, then
the objects are imported by multiple child processes. Some metadata objects have
interdependencies, which require one child process to create them serially to satisfy those
dependencies. Child processes are created as needed until the number of child processes
equals the value supplied for the PARALLEL command-line parameter. The number of active
child processes can be reset throughout the life of a job. Worker processes can be started on
different nodes in an Oracle Real Application Clusters (Oracle RAC) environment.

¢ Note:

The value of PARALLEL is restricted to 1 in the Standard Edition of Oracle Database.

When a child process is assigned the task of loading or unloading a very large table or
partition, to make maximum use of parallel execution, it can make use of the external tables
access method. In such a case, the child process becomes a parallel execution coordinator.
The actual loading and unloading work is divided among some number of parallel input/
output (1/0O) execution processes allocated from a pool of available processes in an Oracle
Real Application Clusters (Oracle RAC) environment.

Related Topics
* PARALLEL
* PARALLEL

ORACLE 1-17

Chapter 1
How to Monitor Status of Oracle Data Pump Jobs

1.6 How to Monitor Status of Oracle Data Pump Jobs

The Oracle Data Pump Export and Import client utilities can attach to a job in either
logging mode or interactive-command mode.

In logging mode, real-time detailed status about the job is automatically displayed
during job execution. The information displayed can include the job and parameter
descriptions, an estimate of the amount of data to be processed, a description of the
current operation or item being processed, files used during the job, any errors
encountered, and the final job state (Stopped or Completed).

In interactive-command mode, job status can be displayed on request. The information
displayed can include the job description and state, a description of the current
operation or item being processed, files being written, and a cumulative status.

You can also have a log file written during the execution of a job. The log file
summarizes the progress of the job, lists any errors encountered during execution of
the job, and records the completion status of the job.

As an alternative to determine job status or other information about Oracle Data Pump
jobs, you can query the DBA DATAPUMP JOBS, USER DATAPUMP JOBS, Or

DBA_DATAPUMP SESSIONS views. Refer to Oracle Database Reference for more
information.

Related Topics

e Oracle Database Reference

1.7 How to Monitor the Progress of Running Jobs with
VSSESSION_LONGOPS

ORACLE

To monitor table data transfers, you can use the V$SESSION LONGOPS dynamic
performance view to monitor Oracle Data Pump jobs.

Oracle Data Pump operations that transfer table data (export and import) maintain an
entry in the V$SESSION LONGOPS dynamic performance view indicating the job progress
(in megabytes of table data transferred). The entry contains the estimated transfer size
and is periodically updated to reflect the actual amount of data transferred.

Use of the COMPRESSION, ENCRYPTION, ENCRYPTION ALGORITHM, ENCRYPTION MODE,
ENCRYPTION PASSWORD, QUERY, and REMAP DATA parameters are not reflected in the
determination of estimate values.

The usefulness of the estimate value for export operations depends on the type of
estimation requested when the operation was initiated, and it is updated as required if
exceeded by the actual transfer amount. The estimate value for import operations is
exact.

The V$SESSION LONGOPS columns that are relevant to a Data Pump job are as follows:

e USERNAME: Job owner
e OPNAME: Job name

* TARGET DESC: Job operation

1-18

Chapter 1
File Allocation with Oracle Data Pump

SOFAR: Megabytes transferred thus far during the job
TOTALWORK Estimated number of megabytes in the job
UNITS: Megabytes (MB)

MESSAGE: A formatted status message that uses the following format:

'job name: operation name : nnn out of mmm MB done'

1.8 File Allocation with Oracle Data Pump

You can modify how Oracle Data Pump allocates and handles files by using commands in
interactive mode.

Understanding File Allocation in Oracle Data Pump
Understanding how Oracle Data Pump allocates and handles files helps you to use
Export and Import to their fullest advantage.

Specifying Files and Adding Additional Dump Files
For export operations, you can either specify dump files at the time you define the Oracle
Data Pump job, or at a later time during the operation.

Default Locations for Dump, Log, and SQL Files

Learn about default Oracle Data Pump file locations, and how these locations are
affected when you are using Oracle RAC, Oracle Automatic Storage Management, and
multitenant architecture.

Using Substitution Variables with Oracle Data Pump Exports
If you want to specify multiple dump files during Oracle Data Pump export operations,
then use the DUMPFILE parameter with a substitution variable in the file name.

1.8.1 Understanding File Allocation in Oracle Data Pump

Understanding how Oracle Data Pump allocates and handles files helps you to use Export
and Import to their fullest advantage.

Oracle Data Pump jobs manage the following types of files:

ORACLE

Dump files, to contain the data and metadata that is being moved.
Log files, to record the messages associated with an operation.

SQL files, to record the output of a SQLFILE operation. A SQLFILE operation is started
using the Oracle Data Pump Import SQLFILE parameter. This operation results in all of the
SQL DDL that Import would execute, based on other parameters, being written to a SQL
file.

Files specified by the DATA FILES parameter during a transportable import.

< Note:

If your Oracle Data Pump job generates errors related to Network File Storage
(NFS), then consult the installation guide for your platform to determine the correct
NFS mount settings.

1-19

Chapter 1
File Allocation with Oracle Data Pump

1.8.2 Specifying Files and Adding Additional Dump Files

For export operations, you can either specify dump files at the time you define the
Oracle Data Pump job, or at a later time during the operation.

If you discover that space is running low during an export operation, then you can add
additional dump files by using the Oracle Data Pump Export ADD FILE command in
interactive mode.

For import operations, all dump files must be specified at the time the job is defined.

Log files and SQL files overwrite previously existing files. For dump files, you can use
the Export REUSE_DUMPFILES parameter to specify whether to overwrite a preexisting
dump file.

1.8.3 Default Locations for Dump, Log, and SQL Files

Learn about default Oracle Data Pump file locations, and how these locations are
affected when you are using Oracle RAC, Oracle Automatic Storage Management,
and multitenant architecture.

* Understanding Dump, Log, and SQL File Default Locations
Oracle Data Pump is server-based, rather than client-based. Dump files, log files,
and SQL files are accessed relative to server-based directory paths.

* Understanding How to Use Oracle Data Pump with Oracle RAC
Using Oracle Data Pump in an Oracle Real Application Clusters (Oracle RAC)
environment requires you to perform a few checks to ensure that you are making
cluster member nodes available.

* Using Directory Objects When Oracle Automatic Storage Management Is Enabled
If you use Oracle Data Pump Export or Import with Oracle Automatic Storage
Management (Oracle ASM) enabled, then define the directory object used for the
dump file.

* The DATA_PUMP_DIR Directory Object and Pluggable Databases
The default Oracle Data Pump directory object, DATA PUMP DIR, is defined as a
unique path for each PDB in the CDB.

1.8.3.1 Understanding Dump, Log, and SQL File Default Locations

ORACLE

Oracle Data Pump is server-based, rather than client-based. Dump files, log files, and
SQL files are accessed relative to server-based directory paths.

Oracle Data Pump requires that directory paths are specified as directory objects. A
directory object maps a name to a directory path on the file system. As a database
administrator, you must ensure that only approved users are allowed access to the
directory object associated with the directory path.

The following example shows a SQL statement that creates a directory object named
dpump_dirl that is mapped to a directory located at /usr/apps/datafiles.

SQL> CREATE DIRECTORY dpump dirl AS '/usr/apps/datafiles';

1-20

ORACLE

Chapter 1
File Allocation with Oracle Data Pump

The reason that a directory object is required is to ensure data security and integrity. For
example:

« If you are allowed to specify a directory path location for an input file, then it is possible
that you could be able to read data that the server has access to, but to which you should
not.

» If you are allowed to specify a directory path location for an output file, then it is possible
that you could overwrite a file that normally you do not have privileges to delete.

On Unix, Linux, and Windows operating systems, a default directory object, DATA PUMP DIR,
is created at database creation, or whenever the database dictionary is upgraded. By default,
this directory object is available only to privileged users. (The user SYSTEM has read and write
access to the DATA PUMP DIR directory, by default.) Oracle can change the definition of the
DATA PUMP DIR directory, either during Oracle Database upgrades, or when patches are
applied.

If you are not a privileged user, then before you can run Oracle Data Pump Export or Import,
a directory object must be created by a database administrator (DBA), or by any user with the
CREATE ANY DIRECTORY privilege.

After a directory is created, the user creating the directory object must grant READ or WRITE
permission on the directory to other users. For example, to allow Oracle Database to read
and write files on behalf of user hr in the directory named by dpump dirl, the DBA must run
the following command:

SQL> GRANT READ, WRITE ON DIRECTORY dpump dirl TO hr;

Note that READ or WRITE permission to a directory object only means that Oracle Database
can read or write files in the corresponding directory on your behalf. Outside of Oracle
Database, uou are not given direct access to those files, unless you have the appropriate
operating system privileges. Similarly, Oracle Database requires permission from the
operating system to read and write files in the directories.

Oracle Data Pump Export and Import use the following order of precedence to determine a
file's location:

1. If a directory object is specified as part of the file specification, then the location specified
by that directory object is used. (The directory object must be separated from the file
name by a colon.)

2. If a directory object is not specified as part of the file specification, then the directory
object named by the DIRECTORY parameter is used.

3. If a directory object is not specified as part of the file specification, and if no directory
object is named by the DIRECTORY parameter, then the value of the environment variable,
DATA PUMP DIR, is used. This environment variable is defined by using operating system
commands on the client system where the Data Pump Export and Import utilities are run.
The value assigned to this client-based environment variable must be the name of a
server-based directory object, which must first be created on the server system by a
DBA. For example, the following SQL statement creates a directory object on the server
system. The name of the directory object is DUMP FILESI, and it is located at ' /usr/apps/
dumpfilesl”'.

SQL> CREATE DIRECTORY DUMP FILES1 AS '/usr/apps/dumpfilesl';

1-21

Chapter 1
File Allocation with Oracle Data Pump

After this statement is run, a user on a Unix-based client system using csh can
assign the value DUMP_FILES] to the environment variable DATA PUMP DIR. The
DIRECTORY parameter can then be omitted from the command line. The dump file
employees.dmp, and the log file export.log, are writtento '/usr/apps/
dumpfilesl'.

$setenv DATA PUMP DIR DUMP FILESI
%expdp hr TABLES=employees DUMPFILE=employees.dmp

If none of the previous three conditions yields a directory object, and you are a
privileged user, then Oracle Data Pump attempts to use the value of the default
server-based directory object, DATA PUMP DIR. This directory object is
automatically created, either at database creation, or when the database dictionary
is upgraded. To see the path definition for DATA PUMP DIR, you can use the
following SQL query:

SQL> SELECT directory name, directory path FROM dba directories
2 WHERE directory name='DATA PUMP DIR';

If you are not a privileged user, then access to the DATA PUMP DIR directory object
must have previously been granted to you by a DBA.

Do not confuse the default DATA PUMP DIR directory object with the client-based
environment variable of the same name.

1.8.3.2 Understanding How to Use Oracle Data Pump with Oracle RAC

Using Oracle Data Pump in an Oracle Real Application Clusters (Oracle RAC)
environment requires you to perform a few checks to ensure that you are making
cluster member nodes available.

ORACLE

To use Oracle Data Pump or external tables in an Oracle RAC configuration, you
must ensure that the directory object path is on a cluster-wide file system.

The directory object must point to shared physical storage that is visible to, and
accessible from, all instances where Oracle Data Pump or external tables
processes (or both) can run.

The default Oracle Data Pump behavior is that child processes can run on any
instance in an Oracle RAC configuration. Therefore, child processes on those
Oracle RAC instances must have physical access to the location defined by the
directory object, such as shared storage media. If the configuration does not have
shared storage for this purpose, but you still require parallelism, then you can use
the CLUSTER=NO parameter to constrain all child processes to the instance where
the Oracle Data Pump job was started.

Under certain circumstances, Oracle Data Pump uses parallel query child
processes to load or unload data. In an Oracle RAC environment, Data Pump
does not control where these child processes run. Therefore, these child
processes can run on other cluster member nodes in the cluster, regardless of
which instance is specified for CLUSTER and SERVICE NAME for the Oracle Data
Pump job. Controls for parallel query operations are independent of Oracle Data
Pump. When parallel query child processes run on other instances as part of an
Oracle Data Pump job, they also require access to the physical storage of the
dump file set.

1-22

Chapter 1
File Allocation with Oracle Data Pump

1.8.3.3 Using Directory Objects When Oracle Automatic Storage Management Is

Enabled

If you use Oracle Data Pump Export or Import with Oracle Automatic Storage Management
(Oracle ASM) enabled, then define the directory object used for the dump file.

You must define the directory object used for the dump file so that the Oracle ASM disk group
name is used, instead of an operating system directory path.

For log file, use a separate directory object that points to an operating system directory path.

For example, you can create a directory object for the Oracle ASM dump file using this
procedure.

SQL> CREATE or REPLACE DIRECTORY dpump dir as '+DATAFILES/';

After you create the directory object, you then create a separate directory object for the log
file:

SQL> CREATE or REPLACE DIRECTORY dpump log as '/homedir/userl/';

To enable user hr to have access to these directory objects, you assign the necessary
privileges for that user:

SQL> GRANT READ, WRITE ON DIRECTORY dpump dir TO hr;
SQL> GRANT READ, WRITE ON DIRECTORY dpump log TO hr;

Finally, you then can use use the following Data Pump Export command:

> expdp hr DIRECTORY=dpump dir DUMPFILE=hr.dmp LOGFILE=dpump log:hr.log
Before the command executes, you are prompted for the password.

Note:

If you simply want to copy Data Pump dump files between ASM and disk
directories, you can use the DBMS FILE TRANSFER PL/SQL package.

Related Topics
e Oracle Database SQL Language Reference

e Oracle Database PL/SQL Packages and Types Reference

1.8.3.4 The DATA_PUMP_DIR Directory Object and Pluggable Databases

ORACLE

The default Oracle Data Pump directory object, DATA PUMP DIR, is defined as a unique path
for each PDB in the CDB.

As of Oracle Database 12c Release 2 (12.2), in a multitenant container database (CDB)
environment, the default Oracle Data Pump directory object, DATA PUMP DIR, is defined as a

1-23

Chapter 1
File Allocation with Oracle Data Pump

unique path for each PDB in the CDB, whether or not the PATH PREFIX clause of the
CREATE PLUGGABLE DATABASE statement is defined for relative paths.

1.8.4 Using Substitution Variables with Oracle Data Pump Exports

ORACLE

If you want to specify multiple dump files during Oracle Data Pump export operations,
then use the DUMPFILE parameter with a substitution variable in the file name.

When you use substitution variables with file names, instead of or in addition to listing
specific file names, then those filenames with a substitution variable are called dump
file templates.

¢ Note:

In the examples that follow, the substitution variable $U is used to explain
how Oracle Data Pump uses substitution variables. You can view other
available substitution variables under the Import or Export DUMPFILE
parameter reference topics.

When you use dump file templates, new dump files are created as they are needed.
For example, if you are using the substitution variable $U, then new dump files are
created as needed beginning with 01 for $U, and then using 02, 03, and so on. Enough
dump files are created to allow all processes specified by the current setting of the
PARALLEL parameter to be active. If one of the dump files becomes full because its size
has reached the maximum size specified by the FILESIZE parameter, then it is closed,
and a new dump file (with a new generated name) is created to take its place.

If multiple dump file templates are provided, then they are used to generate dump files
in a round-robin fashion. For example, if expa%U, expb%U, and expc%U are all specified
for a job having a parallelism of 6, then the initial dump files created are expa01.dmp,
expb01.dmp, expc0l.dmp, expal2.dmp, expb02.dmp, and expc02 . dmp.

For import and SQLFILE operations, if dump file specifications expa%U, expb%U, and
expc%U are specified, then the operation begins by attempting to open the dump files
expall.dmp, expb01.dmp, and expc01.dmp. It is possible for the Data Pump control
export table to span multiple dump files. For this reason, until all pieces of the Data
Pump control table are found, dump files continue to be opened by incrementing the
substitution variable, and looking up the new file names (For example: expa02 . dmp,
expb02.dmp, and expc02.dmp). If a dump file does not exist, then the operation stops
incrementing the substitution variable for the dump file specification that was in error.
For example, if expb01.dmp and expb02.dmp are found, but expb03.dmp is not found,
then no more files are searched for using the expb%U specification. After the entire
Data Pump control table is found, it is used to determine whether all dump files in the
dump file set have been located.

Related Topics
* Oracle Data Pump Export command-line utility DUMPFILE parameter

e Oracle Data Pump Import command-line mode DUMPFILE parameter

1-24

Chapter 1
Exporting and Importing Between Different Oracle Database Releases

1.9 Exporting and Importing Between Different Oracle Database

Releases

ORACLE

You can use Oracle Data Pump to migrate all or any portion of an Oracle Database between
different releases of the database software.

Typically, you use the Oracle Data Pump Export VERSION parameter to migrate between
database releases. Using VERSION generates an Oracle Data Pump dump file set that is
compatible with the specified version.

The default value for VERSION is COMPATIBLE. This value indicates that exported database
object definitions are compatible with the release specified for the COMPATIBLE initialization
parameter.

In an upgrade situation, when the target release of an Oracle Data Pump-based migration is
higher than the source, you typically do not have to specify the VERSION parameter. When the
target release is higher then the source, all objects in the source database are compatible
with the higher target release. However, an exception is when an entire Oracle Database 119
(Release 11.2.0.3 or higher) is exported in preparation for importing into Oracle Database 12c
Release 1 (12.1.0.1) or later. In this case, to include a complete set of Oracle Database
internal component metadata, explicitly specify VERSION=12 with FULL=YES.

In a downgrade situation, when the target release of an Oracle Data Pump-based migration is
lower than the source, set the VERSION parameter value to be the same version as the target.
An exception is when the target release version is the same as the value of the COMPATIBLE
initialization parameter on the source system. In that case, you do not need to specify
VERSION. In general, however, Oracle Data Pump import cannot read dump file sets created
by an Oracle Database release that is newer than the current release, unless you explicitly
specify the VERSION parameter.

Keep the following information in mind when you are exporting and importing between
different database releases:

e On an Oracle Data Pump export, if you specify a database version that is older than the
current database version, then a dump file set is created that you can import into that
older version of the database. For example, if you are running Oracle Database 19c, and
you specify VERSION=12.2 on an export, then the dump file set that is created can be
imported into an Oracle Database 12c (Release 12.2) database.

< Note:

— Database privileges that are valid only in Oracle Database 12c Release 1
(12.1.0.2) and later (for example, the READ privilege on tables, views,
materialized views, and synonyms) cannot be imported into Oracle
Database 12c Release 1 (12.1.0.1) or earlier. If an attempt is made to do
so, then Import reports it as an error, and continues the import operation.

— When you export to a release earlier than Oracle Database 12c Release 2
(12.2.0.1), Oracle Data Pump does not filter out object names longer than
30 bytes. The objects are exported. At import time, if you attempt to create
an object with a name longer than 30 bytes, then an error is returned.

1-25

Chapter 1
Exporting and Importing Blockchain Tables with Oracle Data Pump

» If you specify an Oracle Database release that is older than the current Oracle
Database release, then certain features and data types can be unavailable. For
example, specifying VERSION=10.1 causes an error if data compression is also
specified for the job, because compression was not supported in Oracle Database
10g release 1 (10.1). Another example: If a user-defined type or Oracle-supplied
type in the source Oracle Database release is a later version than the type in the
target Oracle Database release, then that type is not loaded, because it does not
match any version of the type in the target database.

e Oracle Data Pump Import can always read Oracle Data Pump dump file sets
created by older Oracle Database releases.

* When operating across a network link, Oracle Data Pump requires that the source
and target Oracle Database releases differ by no more than two versions.

For example, if one database is Oracle Database 12c, then the other Oracle
Database release must be 12c, 11g, or 10g. Oracle Data Pump checks only the
major version humber (for example, 10g,11g, 12c¢), not specific Oracle Database
release numbers (for example, 12.2, 12.1, 11.1, 11.2, 10.1, or 10.2).

* Importing Oracle Database 11g dump files that contain table statistics into Oracle
Database 12c Release 1 (12.1) or later Oracle Database releases can result in an
Oracle ORA-39346 error. This error occurs because Oracle Database 11g dump
files contain table statistics as metadata. Oracle Database 12c¢ Release 1 (12.1)
and later releases require table statistics to be presented as table data. The
workaround is to ignore the error during the import operation. After the import
operation completes, regather table statistics.

e All forms of LONG data types (LONG, LONG RAW, LONG VARCHAR, LONG VARRAW) were
deprecated in Oracle8i Release 8.1.6. For succeeding releases, the LONG data
type was provided for backward compatibility with existing applications. In new
applications developed with later releases, Oracle strongly recommends that you
use CLOB and NCLOB data types for large amounts of character data.

Related Topics
* Oracle Data Pump Export command-line utility VERSION parameter

* Oracle Data Pump Import command-line mode VERSION parameter

See Also:

e READ and SELECT Obiject Privileges in Oracle Database Security
Guide for more information about the READ and READ ANY TABLE
privileges

1.10 Exporting and Importing Blockchain Tables with Oracle
Data Pump

To export or import blockchain tables, review these minimum requirements,
restrictions, and guidelines.

ORACLE 1-26

Chapter 1
Managing SecureFiles Large Object Exports with Oracle Data Pump

If you use Oracle Data Pump with blockchain tables, then you can use only CONVENTIONAL
access_method.

Blockchain tables are exported only under the following conditions:

The VERSION parameter for the export is explicitly setto 21.0.0.0.0 or later.

The VERSION parameter is set to (or defaults to) COMPATIBLE, and the database
compatibility is setto 21.0.0.0.0 or later.

The VERSION parameter is set to LATEST, and the database release is sett0 21.0.0.0.0
or later.

If you attempt to use Oracle Data Pump options that are not supported with blockchain
tables, then you receive errors when you attempt to use those options.

The following options of Oracle Data Pump are not supported with blockchain tables:

ACCESS_METHOD=[DIRECT PATH, EXTERNAL TABLE, INSERT AS SELECT]
TABLE EXISTS ACTION=[REPLACE | APPEND | TRUNCATE]

These options result in errors when you attempt to use them to import data into an
existing blockchain table.

CONTENT=DATA ONLY
This option results in error when you attempt to import data into a blockchain table.
PARTITION OPTIONS= [DEPARTITIONING | MERGE]

If you request departitioning using this option with blockchain tables, then the blockchain
tables are skipped during depatrtitioning.

NETWORK IMPORT
TRANSPORTABLE

SAMPLE, QUERY and REMAP DATA

1.11 Managing SecureFiles Large Object Exports with Oracle

Data Pump

ORACLE

Exports of SecureFiles large objects (LOBs) are affected by the content type, the VERSION
parameter, and other variables.

LOBs are a set of data types that are designed to hold large amounts of data. When you use
Oracle Data Pump Export to export SecureFiles LOBs, the export behavior depends on
several things, including the Export VERSION parameter value, whether a content type
(ContentType) is present, and whether the LOB is archived and data is cached.

The following scenarios cover different combinations of these variables:

If a table contains SecureFiles LOBs with a ContentType, and the Export VERSION
parameter is set to a value earlier than 11.2.0.0.0, then the ContentType is not
exported.

If a table contains SecureFiles LOBs with a ContentType, and the Export VERSTION
parameter is set to a value of 11.2.0.0.0 or later, then the ContentType is exported and
restored on a subsequent import.

1-27

Chapter 1
Oracle Data Pump Process Exit Codes

» If atable contains a SecureFiles LOB that is currently archived, the data is cached,
and the Export VERSION parameter is set to a value earlier than 11.2.0.0.0, then
the SecureFiles LOB data is exported and the archive metadata is dropped. In this
scenario, if VERSION is setto 11.1 or later, then the SecureFiles LOB becomes a
plain SecureFiles LOB. But if VERSTION is set to a value earlier than 11.1, then the
SecureFiles LOB becomes a BasicFiles LOB.

e If a table contains a SecureFiles LOB that is currently archived, but the data is not
cached, and the Export VERSION parameter is set to a value earlier than
11.2.0.0.0, then an ORA-45001 error is returned.

» If a table contains a SecureFiles LOB that is currently archived, the data is cached,
and the Export VERSION parameter is setto a value of 11.2.0.0.0 or later, then
both the cached data and the archive metadata is exported.

Refer to Oracle Database SecureFiles and Large Objects Developer's Guide for more
information about SecureFiles LOBs.

Related Topics

e Oracle Database SecureFiles and Large Objects Developer's Guide

1.12 Oracle Data Pump Process Exit Codes

To check the status of your Oracle Data Pump export and import operations, review
the process exit codes in the log file.

Oracle Data Pump provides the results of export and import operations immediately
upon completion. In addition to recording the results in a log file, Oracle Data Pump
can also report the outcome in a process exit code. Use the Oracle Data Pump exit
code to check the outcome of an Oracle Data Pump job from the command line or a
script:

Table 1-1 Oracle Data Pump Exit Codes

Exit Code

Meaning

EX_SUCC 0

EX SUCC ERR 5

The export or import job completed successfully. No errors are displayed to the
output device or recorded in the log file, if there is one.

The export or import job completed successfully, but there were errors
encountered during the job. The errors are displayed to the output device and
recorded in the log file, if there is one.

EX FAIL 1 The export or import job encountered one or more fatal errors, including the
following:
e Errors on the command line or in command syntax
e Oracle database errors from which export or import cannot recover
e Operating system errors (such as malloc)
« Invalid parameter values that prevent the job from starting (for example, an
invalid directory object specified in the DIRECTORY parameter)
A fatal error is displayed to the output device but may not be recorded in the log
file. Whether it is recorded in the log file can depend on several factors, including:
* Was alog file specified at the start of the job?
« Did the processing of the job proceed far enough for a log file to be opened?
ORACLE 1-28

Chapter 1
How to Monitor Oracle Data Pump Jobs with Unified Auditing

1.13 How to Monitor Oracle Data Pump Jobs with Unified

Auditing

To monitor and record specific user database actions, perform auditing on Data Pump jobs
with unified auditing.

To monitor and record specific user database actions, you can perform auditing on Oracle
Data Pump jobs. Oracle Data Pump uses unified auditing, in which all audit records are
centralized in one place. To set up unified auditing, you create a unified audit policy, or alter
an existing audit policy. An audit policy is a named group of audit settings that enable you to
audit a particular aspect of user behavior in the database.

To create the policy, use the SQL CREATE AUDIT POLICY statement. After creating the audit
policy, use the AUDIT SQL statement to enable the policy.

To disable the policy, use the NOAUDIT SQL statement.

" See Also:

e Oracle Database SQL Language Reference for more information about the
SQL CREATE AUDIT POLICY,ALTER AUDIT POLICY, AUDIT, and NOAUDIT
statements

e Oracle Database Security Guide for more information about using auditing in an
Oracle database

1.14 Encrypted Data Security Warnings for Oracle Data Pump
Operations

Oracle Data Pump warns you when encrypted data is exported as unencrypted data.

During Oracle Data Pump export operations, you receive an ORA-39173 warning when Oracle
Data Pump encounters encrypted data specified when the export job was started. This
ORA-39173 warning ("ORA-39173: Encrypted data has been stored unencrypted in dump file
set") is also written to the the audit record. You can view the ORA-39173 errors encountered
during the export operation by checking the Dp WARNINGS1 column in the unified audit trail.
Obtain the audit information by running the following SQL statement:

SELECT DP_WARNINGS1 FROM UNIFIED AUDIT TRAIL WHERE ACTION NAME = 'EXPORT'
ORDER BY 1;

1.15 How Does Oracle Data Pump Handle Timestamp Data?

ORACLE

Learn about factors that can affect successful completion of export and import jobs that
involve the timestamp data types TIMESTAMP WITH TIMEZONE and TIMESTAMP WITH LOCAL
TIMEZONE.

1-29

Chapter 1
How Does Oracle Data Pump Handle Timestamp Data?

< Note:

The information in this section applies only to Oracle Data Pump running on
Oracle Database 12c and later.

¢ TIMESTAMP WITH TIMEZONE Restrictions
Export and import jobs that have TIMESTAMP WITH TIME ZONE data are restricted.

* TIMESTAMP WITH LOCAL TIME ZONE Restrictions
Moving tables using a transportable mode is restricted.

1.15.1 TIMESTAMP WITH TIMEZONE Restrictions

Export and import jobs that have TIMESTAMP WITH TIME ZONE data are restricted.

e Understanding TIMESTAMP WITH TIME ZONE Restrictions
Carrying out export and import jobs that have TIMESTAMP WITH TIME ZONE data
requires understanding information about your time zone file data and Oracle
Database release.

e Oracle Data Pump Support for TIMESTAMP WITH TIME ZONE Data
Oracle Data Pump supports TIMESTAMP WITH TIME ZONE data during different
export and import modes.

* Time Zone File Versions on the Source and Target
Successful job completion can depend on whether the source and target time
zone file versions match.

1.15.1.1 Understanding TIMESTAMP WITH TIME ZONE Restrictions

ORACLE

Carrying out export and import jobs that have TIMESTAMP WITH TIME ZONE data
requires understanding information about your time zone file data and Oracle
Database release.

When you import a dump file, the time zone version of the destination (target)
database must be either the same version, or a more recent (higher) version than the
time zone version of the source database from which the export was taken. Successful
job completion can depend on the following factors:

* The version of the Oracle Database time zone files on the source and target
databases.

* The export/import mode and whether the Data Pump version being used supports
TIMESTAMP WITH TIME ZONE data. (Oracle Data Pump 11.2.0.1 and later releases
provide support for TIMESTAMP WITH TIME ZONE data.)

To identify the time zone file version of a database, you can run the following SQL
statement:

SQL> SELECT VERSION FROM VSTIMEZONE FILE;

Related Topics

e Choosing a Time Zone File

1-30

Chapter 1
How Does Oracle Data Pump Handle Timestamp Data?

1.15.1.2 Oracle Data Pump Support for TIMESTAMP WITH TIME ZONE Data

ORACLE

Oracle Data Pump supports TIMESTAMP WITH TIME ZONE data during different export and
import modes.

Oracle Data Pump provides support for TIMESTAMP WITH TIME ZONE data during different
export and import modes when versions of the Oracle Database time zone file are different
on the source and target databases. Supported modes include non-transportable mode,
transportable tablespace and transportable table mode, and full transportable mode.

Non-transportable Modes

e If the dump file is created with a Data Pump version that supports TIMESTAMP WITH TIME
ZONE data (11.2.0.1 or later), then the time zone file version of the export system is
recorded in the dump file. Oracle Data Pump uses that information to determine whether
data conversion is necessary. If the target database knows about the source time zone
version, but is actually using a later version, then the data is converted to the later
version. TIMESTAMP WITH TIME ZONE data cannot be downgraded, so if you attempt to
import to a target that is using an earlier version of the time zone file than the source
used, the import fails.

* If the dump file was created with an Oracle Data Pump version earlier than Oracle
Database 119 release 2 (11.2.0.1), then TIMESTAMP WITH TIME ZONE data is not
supported. No conversion is done, and corruption may occur.

Transportable Tablespace and Transportable Table Modes

* Intransportable tablespace and transportable table modes, if the source and target have
different time zone file versions, tables with TIMESTAMP WITH TIME ZONE columns are not
created. A warning is displayed at the beginning of the job that shows the source and
target database time zone file versions. A message is also displayed for each table not
created. This is true even if the Oracle Data Pump version used to create the dump file
supports TIMESTAMP WITH TIME ZONE data. (Release 11.2.0.1 and later support
TIMESTAMP WITH TIMEZONE data.)

» If the source is earlier than Oracle Database 119 release 2 (11.2.0.1), then the time zone
file version must be the same on the source and target database for all transportable
jobs, regardless of whether the transportable set uses TIMESTAMP WITH TIME ZONE
columns.

Full Transportable Mode

Full transportable exports and imports are supported when the source database is at least
Oracle Database 11g release 2 (11.2.0.3) and the target is at least Oracle Database 12c
release 1 (12.1) or later.

Oracle Data Pump 11.2.0.1 and later provide support for TIMESTAMP WITH TIME ZONE data.
Therefore, in full transportable operations, tables with TIMESTAMP WITH TIME ZONE columns
are created. If the source and target database have different time zone file versions, then
TIMESTAMP WITH TIME ZONE columns from the source are converted to the time zone file
version of the target.

Related Topics

e Limitations on Transportable Tablespaces

1-31

Chapter 1
Character Set and Globalization Support Considerations

e Full Export Mode
You can use Oracle Data Pump to carry out a full database export by using the
FULL parameter.

* Full Import Mode
To specify a full import with Oracle Data Pump, use the FULL parameter.

1.15.1.3 Time Zone File Versions on the Source and Target

Successful job completion can depend on whether the source and target time zone file
versions match.

e If the Oracle Database time zone file version is the same on the source and target
databases, then conversion of TIMESTAMP WITH TIME ZONE data is not necessary.
The export/import job should complete successfully.

The exception to this is a transportable tablespace or transportable table export
performed using a Data Pump release earlier than 11.2.0.1. In that case, tables in
the dump file that have TIMESTAMP WITH TIME ZONE columns are not created on
import even though the time zone file version is the same on the source and
target.

» If the source time zone file version is not available on the target database, then the
job fails. The version of the time zone file on the source may not be available on
the target because the source may have had its time zone file updated to a later
version but the target has not. For example, if the export is done on Oracle
Database 11g release 2 (11.2.0.2) with a time zone file version of 17, and the
import is done on 11.2.0.2 with only a time zone file of 16 available, then the job
fails.

1.15.2 TIMESTAMP WITH LOCAL TIME ZONE Restrictions

Moving tables using a transportable mode is restricted.

If a table is moved using a transportable mode (transportable table, transportable
tablespace, or full transportable), and the following conditions exist, then a warning is
issued and the table is not created:

e The source and target databases have different database time zones.
e The table contains TIMESTAMP WITH LOCAL TIME ZONE data types.

To successfully move a table that was not created because of these conditions, use a
non-transportable export and import mode.

1.16 Character Set and Globalization Support
Considerations

ORACLE

Learn about Globalization support of Oracle Data Pump Export and Import using
character set conversion of user data, and data definition language (DDL).

» Data Definition Language (DDL)
The Export utility writes dump files using the database character set of the export
system.

1-32

Chapter 1
Character Set and Globalization Support Considerations

* Single-Byte Character Sets and Export and Import
Ensure that the export database and the import database use the same character set.

* Multibyte Character Sets and Export and Import
During an Oracle Data Pump export and import, the character set conversion depends on
the importing Oracle Database character set.

1.16.1 Data Definition Language (DDL)

The Export utility writes dump files using the database character set of the export system.

When the dump file is imported, a character set conversion is required for DDL only if the
database character set of the import system is different from the database character set of
the export system.

To minimize data loss due to character set conversions, ensure that the import database
character set is a superset of the export database character set.

1.16.2 Single-Byte Character Sets and Export and Import

Ensure that the export database and the import database use the same character set.

If the system on which the import occurs uses a 7-bit character set, and you import an 8-bit
character set dump file, then some 8-bit characters may be converted to 7-bit equivalents. An
indication that this has happened is when accented characters lose the accent mark.

To avoid this unwanted conversion, ensure that the export database and the import database
use the same character set.

1.16.3 Multibyte Character Sets and Export and Import

During an Oracle Data Pump export and import, the character set conversion depends on the
importing Oracle Database character set.

During character set conversion, any characters in the export file that have no equivalent in
the import database character set are replaced with a default character. The import database
character set defines the default character.

If the import system has to use replacement characters while converting DDL, then a warning
message is displayed and the system attempts to load the converted DDL.

If the import system has to use replacement characters while converting user data, then the
default behavior is to load the converted data. However, it is possible to instruct the import
system to reject rows of user data that were converted using replacement characters. See
the Import DATA OPTIONS parameter for details.

To guarantee 100% conversion, the import database character set must be a superset (or
equivalent) of the character set used to generate the export file.

ORACLE 1-33

Chapter 1
Oracle Data Pump Behavior with Data-Bound Collation

Caution:

When the database character set of the export system differs from that of the
import system, the import system displays informational messages at the
start of the job that show what the database character set is.

When the import database character set is not a superset of the character
set used to generate the export file, the import system displays a warning
that possible data loss may occur due to character set conversions.

Related Topics
 DATA_OPTIONS

1.17 Oracle Data Pump Behavior with Data-Bound Collation

ORACLE

Oracle Data Pump supports data-bound collation (DBC).

Oracle Data Pump Export always includes all available collation metadata into the
created dump file. This includes:

e Current default collations of exported users' schemas

e Current default collations of exported tables, views, materialized views and
PL/SQL units (including user-defined types)

» Declared collations of all table and cluster character data type columns

When importing a dump file exported from an Oracle Database 12c Release 2 (12.2)
database, Oracle Data Pump Import's behavior depends both on the effective value of
the Oracle Data Pump VERSION parameter at the time of import, and on whether the
data-bound collation (DBC) feature is enabled in the target database. The effective
value of the VERSION parameter is determined by how it is specified. Yu can specify the
parameter using the following:

° VERSION=n, which means the effective value is the specific version number n. For
example: VERSION=19

e VERSION=LATEST, which means the effective value is the currently running
database version

° VERSION=COMPATIBLE, which means the effective value is the same as the value of
the database initialization parameter COMPATIBLE. This is also true if no value is
specified for VERSTON.

For the DBC feature to be enabled in a database, the initialization parameter
COMPATIBLE must be set to 12.2 or higher, and the initialization parameter
MAX STRING SIZE must be set to EXTENDED.

If the effective value of the Oracle Data Pump Import VERSION parameter is 12.2, and
DBC is enabled in the target database, then Oracle Data Pump Import generates DDL
statements with collation clauses referencing collation metadata from the dump file.
Exported objects are created with the original collation metadata that they had in the
source database.

No collation syntax is generated if DBC is disabled, or if the Oracle Data Pump Import
VERSION parameter is set to a value lower than 12.2.

1-34

Oracle Data Pump Export

The Oracle Data Pump Export utility is used to unload data and metadata into a set of
operating system files, which are called a dump file set.

* What Is Oracle Data Pump Export?
Oracle Data Pump Export is a utility for unloading data and metadata into a set of
operating system files that are called a dump file set.

e Starting Oracle Data Pump Export
Start the Oracle Data Pump Export utility by using the expdp command.

e Filtering During Export Operations
Oracle Data Pump Export provides data and metadata filtering capability. This capability
helps you limit the type of information that is exported.

e Parameters Available in Data Pump Export Command-Line Mode
Use Oracle Data Pump parameters for Export (expdp) to manage your data exports.

* Commands Available in Data Pump Export Interactive-Command Mode
Check which command options are available to you when using Data Pump Export in
interactive mode.

* Examples of Using Oracle Data Pump Export
You can use these common scenario examples to learn how you can create parameter
files and use Oracle Data Pump Export to move your data.

» Syntax Diagrams for Oracle Data Pump Export
You can use syntax diagrams to understand the valid SQL syntax for Oracle Data Pump
Export.

2.1 What Is Oracle Data Pump Export?

ORACLE

Oracle Data Pump Export is a utility for unloading data and metadata into a set of operating
system files that are called a dump file set.

You can import a dump file set only by using the Oracle Data Pump Import utility. You can
import the dump file set on the same system, or import it to another system, and loaded
there.

The dump file set is made up of one or more disk files that contain table data, database
object metadata, and control information. The files are written in a proprietary, binary format.
During an import operation, the Oracle Data Pump Import utility uses these files to locate
each database object in the dump file set.

Because the dump files are written by the server, rather than by the client, you must create
directory objects that define the server locations to which files are written.

Oracle Data Pump Export enables you to specify that you want a job to move a subset of the
data and metadata, as determined by the export mode. This subset selection is done by
using data filters and metadata filters, which are specified through Oracle Data Pump Export
parameters.

2-1

Chapter 2
Starting Oracle Data Pump Export

< Note:

Several system schemas cannot be exported, because they are not user
schemas; they contain Oracle-managed data and metadata. Examples of
schemas that are not exported include SYS, ORDSYS, and MDSYS.
Secondary objects are also not exported, because the CREATE INDEX at
import time will recreate them.

Related Topics
* Understanding Dump_ Log_ and SQL File Default Locations
» Filtering During Export Operations

e Export Utility (exp or expdp) does not Export DR${name}$% or DR#{name}$%
Secondary Tables of Text Indexes (Doc ID 139388.1)

» Examples of Using Oracle Data Pump Export

2.2 Starting Oracle Data Pump Export

Start the Oracle Data Pump Export utility by using the expdp command.

The characteristics of the Oracle Data Pump export operation are determined by the
Export parameters that you specify. You can specify these parameters either on the
command line, or in a parameter file.

Caution:

Do not start Export as SYSDBA, except at the request of Oracle technical
support. SYSDBA is used internally and has specialized functions; its behavior
is not the same as for general users.

e Oracle Data Pump Export Interfaces
You can interact with Oracle Data Pump Export by using a command line, a
parameter file, or an interactive-command mode.

* Oracle Data Pump Export Modes
Export provides different modes for unloading different portions of Oracle
Database data.

* Network Considerations for Oracle Data Pump Export
Learn how Oracle Data Pump Export utility expdp identifies instances with connect
identifiers in the connection string using Oracle*Net or a net service hame, and
how they are different from export operations using the NETWORK LINK parameter.

2.2.1 Oracle Data Pump Export Interfaces

You can interact with Oracle Data Pump Export by using a command line, a parameter
file, or an interactive-command mode.

Choose among the three options:

ORACLE 2-2

https://support.oracle.com/rs?type=doc&id=139388.1
https://support.oracle.com/rs?type=doc&id=139388.1

Chapter 2
Starting Oracle Data Pump Export

Command-Line Interface: Enables you to specify most of the Export parameters directly
on the command line.

Parameter File Interface: Enables you to specify command-line parameters in a
parameter file. The only exception is the PARFILE parameter, because parameter files
cannot be nested. If you are using parameters whose values require quotation marks,
then Oracle recommends that you use parameter files.

Interactive-Command Interface: Stops logging to the terminal and displays the Export
prompt, from which you can enter various commands, some of which are specific to
interactive-command mode. This mode is enabled by pressing Ctrl+C during an export
operation started with the command-line interface, or the parameter file interface.
Interactive-command mode is also enabled when you attach to an executing or stopped
job.

Related Topics

Parameters Available in Data Pump Export Command-Line Mode
Use Oracle Data Pump parameters for Export (expdp) to manage your data exports.

Commands Available in Data Pump Export Interactive-Command Mode
Check which command options are available to you when using Data Pump Export in
interactive mode.

2.2.2 Oracle Data Pump Export Modes

Export provides different modes for unloading different portions of Oracle Database data.

ORACLE

Specify export modes on the command line, using the appropriate parameter.

Note:

You cannot export several Oracle-managed system schemas for Oracle Database,
because they are not user schemas; they contain Oracle-managed data and
metadata. Examples of system schemas that are not exported include SYS, ORDSYS,
and MDSYS.

Full Export Mode
You can use Oracle Data Pump to carry out a full database export by using the FULL
parameter.

Schema Mode
You can specify a schema export with Data Pump by using the SCHEMAS parameter. A
schema export is the default export mode.

Table Mode
You can use Data Pump to carry out a table mode export by specifying the table using
the TABLES parameter.

Tablespace Mode
You can use Data Pump to carry out a tablespace export by specifying tables using the
TABLESPACES parameter.

Transportable Tablespace Mode
You can use Oracle Data Pump to carry out a transportable tablespace export by using
the TRANSPORT TABLESPACES parameter.

2-3

Chapter 2
Starting Oracle Data Pump Export

Related Topics

* Examples of Using Oracle Data Pump Export
You can use these common scenario examples to learn how you can create
parameter files and use Oracle Data Pump Export to move your data.

2.2.2.1 Full Export Mode

ORACLE

You can use Oracle Data Pump to carry out a full database export by using the FULL
parameter.

In a full database export, the entire database is unloaded. This mode requires that you
have the DATAPUMP EXP FULL DATABASE role.

Using the Transportable Option During Full Mode Exports

If you specify the TRANSPORTABLE=ALWAYS parameter along with the FULL parameter,
then Data Pump performs a full transportable export. A full transportable export
exports all objects and data necessary to create a complete copy of the database. A
mix of data movement methods is used:

» Objects residing in transportable tablespaces have only their metadata unloaded
into the dump file set; the data itself is moved when you copy the data files to the
target database. The data files that must be copied are listed at the end of the log
file for the export operation.

» Objects residing in non-transportable tablespaces (for example, SYSTEM and
SYSAUX) have both their metadata and data unloaded into the dump file set, using
direct path unload and external tables.

Restrictions
Performing a full transportable export has the following restrictions:

* The user performing a full transportable export requires the
DATAPUMP EXP FULL DATABASE privilege.

* The default tablespace of the user performing the export must not be set to one of
the tablespaces being transported.

» If the database being exported contains either encrypted tablespaces or tables
with encrypted columns (either Transparent Data Encryption (TDE) columns or
SecureFiles LOB columns), then the ENCRYPTION PASSWORD parameter must also
be supplied.

* The source and target databases must be on platforms with the same endianness
if there are encrypted tablespaces in the source database.

« If the source platform and the target platform are of different endianness, then you
must convert the data being transported so that it is in the format of the target
platform. You can use the DBMS FILE TRANSFER package or the RMAN CONVERT
command to convert the data.

» All objects with storage that are selected for export must have all of their storage
segments either entirely within administrative, non-transportable tablespaces
(SYSTEM/SYSAUX) or entirely within user-defined, transportable tablespaces.
Storage for a single object cannot straddle the two kinds of tablespaces.

* When transporting a database over the network using full transportable export,
auditing cannot be enabled for tables stored in an administrative tablespace (such

2-4

Chapter 2
Starting Oracle Data Pump Export

as SYSTEM and sYSAUX) if the audit trail information itself is stored in a user-defined
tablespace.

If both the source and target databases are running Oracle Database 12c, then to
perform a full transportable export, either the Oracle Data Pump VERSION parameter must
be set to at least 12.0. or the COMPATIBLE database initialization parameter must be set to
at least 12.0 or later.

Full Exports from Oracle Database 11.2.0.3

Full transportable exports are supported from a source database running at least release
11.2.0.3. To run full transportable exports set the Oracle Data Pump VERSION parameter to at
least 12.0, as shown in the following syntax example, where user name is the user performing
a full transportable export:

> expdp user name FULL=y DUMPFILE=expdat.dmp DIRECTORY=data pump dir

TRANSPORTABLE=always VERSION=12.0 LOGFILE=export.log

Full Exports and Imports Using Extensibility Filters

In the following example, you use a full export to copy just the audit trails metadata and
data from the source database to the target database:

> expdp user/pwd directory=mydir full=y include=AUDIT TRAILS
> impdp user/pwd directory=mydir

If you have completed an export from the source database in Full mode, then you can also
import just the audit trails from the full export:

> expdp user/pwd directory=mydir full=y
> impdp user/pwd directory=mydir include=AUDIT TRAILS

To obtain a list of valid extensibility tags, use this query:

SELECT OBJECT PATH FROM DATABASE EXPORT PATHS WHERE tag=1 ORDER BY 1;

Related Topics

FULL
The Export command-line FULL parameter specifies that you want to perform a full
database mode export

TRANSPORTABLE
The Oracle Data Pump Export command-line utility TRANSPORTABLE parameter specifies

whether the transportable option should be used during a table mode or full mode export.
CONVERT

Scenarios for Full Transportable Export/import

2.2.2.2 Schema Mode

You can specify a schema export with Data Pump by using the SCHEMAS parameter. A schema
export is the default export mode.

ORACLE

2-5

Chapter 2
Starting Oracle Data Pump Export

If you have the DATAPUMP EXP FULL DATABASE role, then you can specify a list of
schemas, optionally including the schema definitions themselves and also system
privilege grants to those schemas. If you do not have the
DATAPUMP EXP FULL DATABASE role, then you can export only your own schema.

The sys schema cannot be used as a source schema for export jobs.

Cross-schema references are not exported unless the referenced schema is also
specified in the list of schemas to be exported. For example, a trigger defined on a
table within one of the specified schemas, but that resides in a schema not explicitly
specified, is not exported. Also, external type definitions upon which tables in the
specified schemas depend are not exported. In such a case, it is expected that the
type definitions already exist in the target instance at import time.

Related Topics

e SCHEMAS
The Oracle Data Pump Export command-line utility SCHEMAS parameter specifies
that you want to perform a schema-mode export.

2.2.2.3 Table Mode

ORACLE

You can use Data Pump to carry out a table mode export by specifying the table using
the TABLES parameter.

In table mode, only a specified set of tables, partitions, and their dependent objects
are unloaded. Any object required to create the table, such as the owning schema, or
types for columns, must already exist.

If you specify the TRANSPORTABLE=ALWAYS parameter with the TABLES parameter, then
only object metadata is unloaded. To move the actual data, you copy the data files to
the target database. This results in quicker export times. If you are moving data files
between releases or platforms, then the data files need to be processed by Oracle
Recovery Manager (RMAN).

You must have the DATAPUMP EXP FULL DATABASE role to specify tables that are not in
your own schema. Note that type definitions for columns are not exported in table
mode. It is expected that the type definitions already exist in the target instance at
import time. Also, as in schema exports, cross-schema references are not exported.

To recover tables and table partitions, you can also use RMAN backups and the
RMAN RECOVER TABLE command. During this process, RMAN creates (and optionally
imports) a Data Pump export dump file that contains the recovered objects. Refer to
Oracle Database Backup and Recovery Guide for more information about transporting
data across platforms.

Carrying out a table mode export has the following restriction:

* When using TRANSPORTABLE=ALWAYS parameter with the TABLES parameter, the
ENCRYPTION PASSWORD parameter must also be used if the table being exported
contains encrypted columns, either Transparent Data Encryption (TDE) columns or
SecureFiles LOB columns.

Related Topics

* TABLES
The Oracle Data Pump Export command-line utility TABLES parameter specifies
that you want to perform a table-mode export.

2-6

Chapter 2
Starting Oracle Data Pump Export

e TRANSPORTABLE
The Oracle Data Pump Export command-line utility TRANSPORTABLE parameter specifies
whether the transportable option should be used during a table mode or full mode export.

* Oracle Database Backup and Recovery User’s Guide

2.2.2.4 Tablespace Mode

You can use Data Pump to carry out a tablespace export by specifying tables using the
TABLESPACES parameter.

In tablespace mode, only the tables contained in a specified set of tablespaces are unloaded.
If a table is unloaded, then its dependent objects are also unloaded. Both object metadata
and data are unloaded. In tablespace mode, if any part of a table resides in the specified set,
then that table and all of its dependent objects are exported. Privileged users get all tables.
Unprivileged users get only the tables in their own schemas.

Related Topics

TABLESPACES
The Oracle Data Pump Export command-line utility TABLESPACES parameter specifies a
list of tablespace names that you want to be exported in tablespace mode.

2.2.2.5 Transportable Tablespace Mode

You can use Oracle Data Pump to carry out a transportable tablespace export by using the
TRANSPORT TABLESPACES parameter.

In transportable tablespace mode, only the metadata for the tables (and their dependent
objects) within a specified set of tablespaces is exported. The tablespace data files are
copied in a separate operation. Then, a transportable tablespace import is performed to
import the dump file containing the metadata and to specify the data files to use.

Transportable tablespace mode requires that the specified tables be completely self-
contained. That is, all storage segments of all tables (and their indexes) defined within the
tablespace set must also be contained within the set. If there are self-containment violations,
then Export identifies all of the problems without actually performing the export.

Type definitions for columns of tables in the specified tablespaces are exported and imported.
The schemas owning those types must be present in the target instance.

Starting with Oracle Database 21c, transportable tablespace exports can be done with
degrees of parallelism greater than 1.

Note:

You cannot export transportable tablespaces and then import them into a database
at a lower release level. The target database must be at the same or later release
level as the source database.

Using Oracle Data Pump to carry out a transportable tablespace export has the following
restrictions:

ORACLE .

Chapter 2
Starting Oracle Data Pump Export

» If any of the tablespaces being exported contains tables with encrypted columns,
either Transparent Data Encryption (TDE) columns or SecureFiles LOB columns,
then the ENCRYPTION PASSWORD parameter must also be supplied..

« If any of the tablespaces being exported is encrypted, then the use of the
ENCRYPTION PASSWORD is optional but recommended. If the ENCRYPTION PASSWORD
is omitted in this case, then the following warning message is displayed:

ORA-39396: Warning: exporting encrypted data using transportable
option without password

This warning points out that in order to successfully import such a transportable
tablespace job, the target database wallet must contain a copy of the same
database access key used in the source database when performing the export.
Using the ENCRYPTION PASSWORD parameter during the export and import
eliminates this requirement.

Related Topics

* How Does Oracle Data Pump Handle Timestamp Data?
Learn about factors that can affect successful completion of export and import jobs
that involve the timestamp data types TIMESTAMP WITH TIMEZONE and TIMESTAMP
WITH LOCAL TIMEZONE.

2.2.3 Network Considerations for Oracle Data Pump Export

Learn how Oracle Data Pump Export utility expdp identifies instances with connect
identifiers in the connection string using Oracle*Net or a net service name, and how
they are different from export operations using the NETWORK LINK parameter.

When you start expdp, you can specify a connect identifier in the connect string that
can be different from the current instance identified by the current Oracle System ID
(SID).

To specify a connect identifier manually by using either an Oracle*Net connect
descriptor, or an Easy Connect identifier, or a net service name (usually defined in the
tnsnames.ora file) that maps to a connect descriptor.

To use a connect identifier, you must have Oracle Net Listener running (to start the
default listener, enter 1snrctl start). The following example shows this type of
connection, in which inst1 is the connect identifier:

expdp hr@instl DIRECTORY=dpump dirl DUMPFILE=hr.dmp TABLES=employees

Export then prompts you for a password:

Password: password

To specify an Easy Connect string, the connect string must be an escaped quoted
string. The Easy Connect string in its simplest form consists of a string

ORACLE 2-8

Chapter 2
Filtering During Export Operations

database host[:port][/[service name]. For example, if the hostis inst1, and you run
Export on pdb1, then the Easy Connect string can be:

expdp hr@\"instl@example.com/pdbl" DIRECTORY=dpump dirl DUMPFILE=hr.dmp
TABLES=employees

If you prefer to use an unquoted string, then you can specify the Easy Connect connect string
in a parameter file.

The local Export client connects to the database instance defined by the connect identifier
instl (a Net service name), retrieves data from inst1, and writes it to the dump file hr. dmp
on instl.

Specifying a connect identifier when you start the Export utility is different from performing an
export operation using the NETWORK_LINK parameter. When you start an export operation and
specify a connect identifier, the local Export client connects to the database instance
identified by the connect identifier, retrieves data from that database instance, and writes it to
a dump file set on that database instance. By contrast, when you perform an export using the
NETWORK LINK parameter, the export is performed using a database link. (A database link is a
connection between two physical database servers that allows a client to access them as one
logical database.)

Related Topics

* NETWORK_LINK
The Data Pump Export command-line utility NETWORK LINK parameter enables an export
from a (source) database identified by a valid database link. The data from the source
database instance is written to a dump file set on the connected database instance.

e Database Links

* Understanding the Easy Connect Naming Method

2.3 Filtering During Export Operations

Oracle Data Pump Export provides data and metadata filtering capability. This capability
helps you limit the type of information that is exported.

* Oracle Data Pump Export Data Filters
You can specify restrictions on the table rows that you export by using Oracle Data Pump
Data-specific filtering through the QUERY and SAMPLE parameters.

* Oracle Data Pump Metadata Filters
To exclude or include objects in an export operation, use Oracle Data Pump metadata
filters

2.3.1 Oracle Data Pump Export Data Filters

ORACLE

You can specify restrictions on the table rows that you export by using Oracle Data Pump
Data-specific filtering through the QUERY and SAMPLE parameters.

Oracle Data Pump can also implement Data filtering indirectly because of metadata filtering,
which can include or exclude table objects along with any associated row data.

Each data filter can be specified once for each table within a job. If different filters using the
same name are applied to both a particular table and to the whole job, then the filter
parameter supplied for the specific table takes precedence.

2-9

Chapter 2
Filtering During Export Operations

2.3.2 Oracle Data Pump Metadata Filters

ORACLE

To exclude or include objects in an export operation, use Oracle Data Pump metadata
filters

Metadata filtering is implemented through the EXCLUDE and INCLUDE parameters.
Metadata filters identify a set of objects that you want to be included or excluded from
an Export or Import operation. For example, you can request a full export, but without
Package Specifications or Package Bodies.

To use filters correctly and to obtain the results you expect, remember that dependent
objects of an identified object are processed along with the identified object. For
example, if a filter specifies that you want an index included in an operation, then
statistics from that index are also included. Likewise, if a table is excluded by a filter,
then indexes, constraints, grants, and triggers upon the table are also excluded by the
filter.

Starting with Oracle Database 21c, Oracle Data Pump permits you to set both INCLUDE
and EXCLUDE parameters in the same command. When you include both parameters in
a command, Oracle Data Pump processes the INCLUDE parameter first, such that the
Oracle Data Pump job includes only objects identified as included. Then it processes
the EXCLUDE parameters, which can further restrict the objects processed by the job.
As the command runs, any objects specified by the EXCLUDE parameter that are in the
list of INCLUDE objects are removed.

If multiple filters are specified for an object type, then an implicit AND operation is
applied to them. That is, objects pertaining to the job must pass all of the filters applied
to their object types.

You can specify the same metadata filter name multiple times within a job.

To see a list of valid object types, query the following views:

DATABASE EXPORT OBJECTS for full mode, SCHEMA EXPORT OBJECTS for schema mode,
and TABLE EXPORT OBJECTS for table and tablespace mode. The values listed in the
OBJECT PATH column are the valid object types. For example, you could perform the
following query:

SQL> SELECT OBJECT PATH, COMMENTS FROM SCHEMA EXPORT OBJECTS
2 WHERE OBJECT PATH LIKE '$GRANT' AND OBJECT PATH NOT LIKE '%/%';

The output of this query looks similar to the following:

OBJECT PATH

GRANT
Object grants on the selected tables

OBJECT GRANT
Object grants on the selected tables

2-10

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

PROCDEPOBJ GRANT
Grants on instance procedural objects

PROCOBJ_GRANT
Schema procedural object grants in the selected schemas

ROLE GRANT
Role grants to users associated with the selected schemas

SYSTEM GRANT
System privileges granted to users associated with the selected schemas

Related Topics

EXCLUDE

The Oracle Data Pump Export command-line utility EXCLUDE parameter enables you to
filter the metadata that is exported by specifying objects and object types that you want to
exclude from the export operation.

INCLUDE

The Oracle Data Pump Export command-line utility INCLUDE parameter enables you to
filter the metadata that is exported by specifying objects and object types for the current
export mode.

Related Topics

EXCLUDE

The Oracle Data Pump Import command-line mode EXCLUDE parameter enables you to
filter the metadata that is imported by specifying objects and object types to exclude from
the import job.

INCLUDE

The Oracle Data Pump Import command-line mode INCLUDE parameter enables you to
filter the metadata that is imported by specifying objects and object types for the current
import mode.

2.4 Parameters Available in Data Pump Export Command-Line

Mode

ORACLE

Use Oracle Data Pump parameters for Export (expdp) to manage your data exports.

About Data Pump Export Parameters

Learn how to use Oracle Data Pump Export parameters in command-line mode, including
case sensitivity, quotation marks, escape characters, and information about how to use
examples.

ABORT_STEP
The Oracle Data Pump Export command-line utility ABORT STEP parameter stops the job
after it is initialized.

ACCESS_METHOD
The Oracle Data Pump Export command-line utility ACCESS METHOD parameter instructs
Export to use a particular method to unload data.

2-11

ORACLE

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

ATTACH

The Oracle Data Pump Export command-line utility ATTACH parameter attaches a
worker or client session to an existing export job, and automatically places you in
the interactive-command interface.

CHECKSUM
The Oracle Data Pump Export command-line utility CHECKSUM parameter enables
the export to perform checksum validations for exports.

CHECKSUM_ALGORITM

The Oracle Data Pump Export command-line utility CHECKSUM ALGORITHM
parameter specifies which checksum algorithm to use when calculating
checksums.

CLUSTER

The Oracle Data Pump Export command-line utility CLUSTER parameter determines
whether Data Pump can use Oracle RAC, resources, and start workers on other
Oracle RAC instances.

COMPRESSION
The Oracle Data Pump Export command-line utility COMPRESSION parameter
specifies which data to compress before writing to the dump file set.

COMPRESSION_ALGORITHM

The Oracle Data Pump Export command-line utility COMPRESSION ALGORITHM
parameter specifies the compression algorithm that you want to use when
compressing dump file data.

CONTENT
The Oracle Data Pump Export command-line utility CONTENT parameter enables
you to filter what Export unloads: data only, metadata only, or both.

CREDENTIAL
The Oracle Data Pump Export command-line utility CREDENTIAL parameter enables
the export to write data stored into object stores.

DATA_OPTIONS
The Oracle Data Pump Export command-line utility DATA OPTIONS parameter
designates how you want certain types of data handled during export operations.

DIRECTORY
The Oracle Data Pump Export command-line utility DIRECTORY parameter specifies
the default location to which Export can write the dump file set and the log file.

DUMPFILE
The Oracle Data Pump Export command-line utility DUMPFILE parameter specifies
the names, and optionally, the directory objects of dump files for an export job.

ENABLE_SECURE_ROLES
The Oracle Data Pump Export command-line utility ENABLE SECURE_ROLES
parameter prevents inadvertent use of protected roles during exports.

ENCRYPTION
The Oracle Data Pump Export command-line utility ENCRYPTION parameter
specifies whether to encrypt data before writing it to the dump file set.

ENCRYPTION_ALGORITHM

The Oracle Data Pump Export command-line utility ENCRYPTION ALGORITHM
parameter specifies which cryptographic algorithm should be used to perform the
encryption.

2-12

ORACLE

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

ENCRYPTION_MODE
The Oracle Data Pump Export command-line utility ENCRYPTION MODE parameter specifies
the type of security to use when encryption and decryption are performed.

ENCRYPTION_PASSWORD
The Oracle Data Pump Export command-line utility ENCRYPTION PASSWORD parameter
prevents unauthorized access to an encrypted dump file set.

ENCRYPTION_PWD_PROMPT
The Oracle Data Pump Export command-line utility ENCRYPTION PWD PROMPT specifies
whether Oracle Data Pump prompts you for the encryption password.

ESTIMATE

The Oracle Data Pump Export command-line utility ESTIMATE parameter specifies the
method that Export uses to estimate how much disk space each table in the export job
will consume (in bytes).

ESTIMATE_ONLY

The Oracle Data Pump Export command-line utility ESTIMATE ONLY parameter instructs
Export to estimate the space that a job consumes, without actually performing the export
operation.

EXCLUDE

The Oracle Data Pump Export command-line utility EXCLUDE parameter enables you to
filter the metadata that is exported by specifying objects and object types that you want to
exclude from the export operation.

FILESIZE
The Oracle Data Pump Export command-line utility FILESIZE parameter specifies the
maximum size of each dump file.

FLASHBACK_SCN
The Oracle Data Pump Export command-line utility FLASHBACK SCN parameter specifies
the system change number (SCN) that Export uses to enable the Flashback Query utility.

FLASHBACK_TIME
The Oracle Data Pump Export command-line utility FLASHBACK TIME parameter finds the
SCN that most closely matches the specified time.

FULL
The Export command-line FULL parameter specifies that you want to perform a full
database mode export

HELP
The Data Pump Export command-line utility HELP parameter displays online help for the
Export utility.

INCLUDE

The Oracle Data Pump Export command-line utility INCLUDE parameter enables you to
filter the metadata that is exported by specifying objects and object types for the current
export mode.

JOB_NAME

The Oracle Data Pump Export command-line utility JOB_NAME parameter identifies the
export job in subsequent actions, such as when using ATTACH to attach to a job, or to
identify a job using DBA DATAPUMP JOBS Of USER DATAPUMP JOBS Views.

KEEP_MASTER

The Oracle Data Pump Export command-line utility KEEP MASTER parameter indicates
whether the Data Pump control job table should be deleted or retained at the end of an
Oracle Data Pump job that completes successfully.

2-13

ORACLE

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

LOGFILE
The Data Pump Export command-line utility LOGFILE parameter specifies the
name, and optionally, a directory, for the log file of the export job.

LOGTIME
The Oracle Data Pump Export command-line utility LOGTIME parameter specifies
that messages displayed during export operations are timestamped.

METRICS

The Oracle Data Pump Export command-line utility METRICS parameter indicates
whether you want additional information about the job reported to the Data Pump
log file.

NETWORK_LINK

The Data Pump Export command-line utility NETWORK LINK parameter enables an
export from a (source) database identified by a valid database link. The data from
the source database instance is written to a dump file set on the connected
database instance.

NOLOGFILE
The Data Pump Export command-line utility NOLOGFILE parameter specifies
whether to suppress creation of a log file.

PARALLEL
The Oracle Data Pump Export command-line utility PARALLEL parameter specifies
the maximum number of processes of active execution operating on behalf of the
export job.

PARALLEL_THRESHOLD

The Oracle Data Pump Export command-line utility PARALLEL THRESHOLD
parameter specifies the size of the divisor that Data Pump uses to calculate
potential parallel DML based on table size

PARFILE
The Oracle Data Pump Export command-line utility PARFILE parameter specifies
the name of an export parameter file.

QUERY
The Oracle Data Pump Export command-line utility QUERY parameter enables you
to specify a query clause that is used to filter the data that gets exported.

REMAP_DATA

The Oracle Data Pump Export command-line utility REMAP DATA parameter enables
you to specify a remap function that takes as a source the original value of the
designated column and returns a remapped value that replaces the original value
in the dump file.

REUSE_DUMPFILES
The Oracle Data Pump Export command-line utility REUSE DUMPFILES parameter
specifies whether to overwrite a preexisting dump file.

SAMPLE

The Oracle Data Pump Export command-line utility SAMPLE parameter specifies a
percentage of the data rows that you want to be sampled and unloaded from the
source database.

SCHEMAS
The Oracle Data Pump Export command-line utility SCHEMAS parameter specifies
that you want to perform a schema-mode export.

2-14

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

* SERVICE_NAME
The Oracle Data Pump Export command-line utility SERVICE NAME parameter specifies a
service name that you want to use in conjunction with the CLUSTER parameter.

e SOURCE_EDITION
The Oracle Data Pump Export command-line utility SOURCE_EDITION parameter specifies
the database edition from which objects are exported.

e STATUS
The Oracle Data Pump Export command-line utility STATUS parameter specifies the
frequency at which the job status display is updated.

 TABLES
The Oracle Data Pump Export command-line utility TABLES parameter specifies that you
want to perform a table-mode export.

* TABLESPACES
The Oracle Data Pump Export command-line utility TABLESPACES parameter specifies a
list of tablespace names that you want to be exported in tablespace mode.

* TRANSPORT_DATAFILES_LOG
The Oracle Data Pump Export command-line mode TRANSPORT DATAFILES LOG
parameter specifies a file into which the list of data files associated with a transportable
export is written.

e TRANSPORT_FULL_CHECK
The Oracle Data Pump Export command-line utility TRANSPORT FULL CHECK parameter
specifies whether to check for dependencies between objects

e TRANSPORT_TABLESPACES
The Oracle Data Pump Export command-line utility TRANSPORT TABLESPACES parameter
specifies that you want to perform an export in transportable-tablespace mode.

e TRANSPORTABLE
The Oracle Data Pump Export command-line utility TRANSPORTABLE parameter specifies
whether the transportable option should be used during a table mode or full mode export.

« TTS_CLOSURE_CHECK
The Oracle Data Pump Export command-line mode TTS CLOSURE CHECK parameter is
used to indicate the degree of closure checking to be performed as part of a Data Pump
transportable tablespace operation.

* VERSION
The Data Pump Export command-line utility VERSION parameter specifies the version of
database objects that you want to export.

* VIEWS_AS_TABLES
The Oracle Data Pump Export command-line utility VIEWS AS TABLES parameter specifies
that you want one or more views exported as tables.

ORACLE 2-15

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2.4.1 About Data Pump Export Parameters

ORACLE

Learn how to use Oracle Data Pump Export parameters in command-line mode,
including case sensitivity, quotation marks, escape characters, and information about
how to use examples.

Specifying Export Parameters

For parameters that can have multiple values specified, you can specify the values by
commas, or by spaces. For example, you can specify TABLES=employees, jobs Of
TABLES=employees jobs.

For every parameter you enter, you must enter an equal sign (=), and a value. Data
Pump has no other way of knowing that the previous parameter specification is
complete and a new parameter specification is beginning. For example, in the
following command line, even though NOLOGFILE is a valid parameter, Export interprets
the string as another dump file name for the DUMPFILE parameter:

expdp DIRECTORY=dpumpdir DUMPFILE=test.dmp NOLOGFILE TABLES=employees

This command results in two dump files being created, test.dmp and nologfile.dmp.

To avoid this result, specify either NOLOGFILE=YES Or NOLOGFILE=NO.

Case Sensitivity When Specifying Parameter Values

For tablespace names, schema names, table names, and so on, that you enter as
parameter values, Oracle Data Pump by default changes values entered as lowercase
or mixed-case into uppercase. For example, if you enter TABLE=hr.employees, then it
is changed to TABLE=HR.EMPLOYEES. To maintain case, you must enclose the value
within quotation marks. For example, TABLE="hr.employees" would preserve the table
name in all lower case. The name you enter must exactly match the name stored in
the database.

Use of Quotation Marks On the Data Pump Command Line

Some operating systems treat quotation marks as special characters. These operating
systems therefore do not pass quotation marks on to an applica