
Oracle® Database
Using AutoUpgrade to Upgrade and Convert
Non-CDBs to a PDB with the Same Operating
System

21c
F48020-04
February 2024



Oracle Database Using AutoUpgrade to Upgrade and Convert Non-CDBs to a PDB with the Same Operating
System, 21c

F48020-04

Copyright © 2018, 2024, Oracle and/or its affiliates.

Primary Author: Douglas Williams

Contributing Authors: Daniel Overby Hansen, Nirmal Kumar, Sunil Surabhi

Contributors: Mark Bauer, Mike Dietrich, Rajesh Bhatiya, Hector Vieyra Farfan, Prakash Jashnani, Cindy Lim,
Byron Motta, Padmaja Potineni, Roy Swonger, Carol Tagliaferri, Zhihai Zhang

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, MySQL and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.



Contents

 Preface

Use Case Scenario for this Document vii

Documentation Accessibility vii

1   Checking Compatibility Before Upgrading Oracle Database

Oracle Database Releases That Support Direct Upgrade 1-1

Checking the Compatibility Level of Oracle Database 1-3

Values for the COMPATIBLE Initialization Parameter in Oracle Database 1-3

2   Preparing to Upgrade Oracle Database

Prepare a Backup Strategy Before Upgrading Oracle Database Using AutoUpgrade 2-2

Preparing for Upgrades of Databases with Oracle Database Vault 2-3

Pre-Upgrade Information Check with AutoUpgrade 2-3

Installing Oracle Software in a New Oracle Home 2-4

Choose a New Location for Oracle Home when Upgrading or Patching 2-4

Installing the New Oracle Database Software for Single Instance 2-5

Database Preparation Tasks to Complete Before Starting Oracle Database Upgrades 2-5

Release Updates and Requirements for Upgrading Oracle Database 2-5

Understanding Password Case Sensitivity and Upgrades 2-6

Checking for Accounts Using Case-Insensitive Password Version 2-7

Running Upgrades with Read-Only Tablespaces 2-10

Preparations for Running AutoUpgrade Processing Modes 2-11

Create Configuration File for AutoUpgrade 2-12

Locally Modifiable Global Parameters for AutoUpgrade Configuration File 2-13

defer_standby_log_shipping 2-15

dictionary_stats_after 2-15

dictionary_stats_before 2-16

drop_grp_after_upgrade 2-16

enable_local_undo 2-17

fixed_stats_before 2-17

manage_network_files 2-18

iii



remove_underscore_parameters 2-18

restoration 2-19

target_base 2-19

target_home 2-19

target_version 2-20

Local Parameters for the AutoUpgrade Configuration File 2-20

add_after_upgrade_pfile 2-24

add_during_upgrade_pfile 2-24

after_action 2-24

before_action 2-25

catctl_options 2-26

checklist 2-27

close_source 2-27

del_after_upgrade_pfile 2-28

del_during_upgrade_pfile 2-28

drop_win_src_service 2-28

env 2-29

exclusion_list 2-29

ignore_errors 2-30

keep_source_pdb 2-30

log_dir 2-31

manage_standbys_clause 2-31

pdbs 2-33

raise_compatible 2-33

remove_rac_config 2-34

remove_underscore_parameters 2-35

replay 2-35

restoration 2-35

revert_after_action 2-36

revert_before_action 2-37

run_hcheck 2-37

run_utlrp 2-38

sid 2-39

skip_tde_key_import 2-39

source_base 2-39

source_dblink 2-40

source_home 2-41

source_ldap_admin_dir 2-42

source_tns_admin_dir 2-42

start_time 2-42

target_base 2-43

iv



target_cdb 2-43

target_pdb_copy_option=file_name_convert 2-44

target_pdb_name 2-45

target_ldap_admin_dir 2-46

target_tns_admin_dir 2-46

timezone_upg 2-46

tune_setting 2-47

upgrade_node 2-49

Global Parameters for the AutoUpgrade User Configuration File 2-50

add_after_upgrade_pfile 2-51

add_during_upgrade_pfile 2-52

after_action 2-52

autoupg_log_dir 2-53

before_action 2-53

catctl_options 2-54

del_after_upgrade_pfile 2-55

del_during_upgrade_pfile 2-55

drop_grp_after_upgrade 2-55

keystore 2-56

raise_compatible 2-56

replay 2-57

target_base 2-57

target_home 2-58

target_version 2-58

upgradexml 2-59

Understanding Non-CDB to PDB Upgrades with AutoUpgrade 2-59

Non-CDB to PDB Upgrade Guidelines and Examples 2-61

Understanding Unplug-Plug Upgrades with AutoUpgrade 2-62

Examples of Non-CDB to PDB Configuration Files for AutoUpgrade 2-65

3   Using AutoUpgrade to Upgrade and convert Non-CDBs to PDBs

AutoUpgrade with Source and Target Database Homes on Same Server (Typical) 3-1

AutoUpgrade with Source and Target Database Homes on Different Servers 3-1

4   Post-Upgrade Tasks for Oracle Database

Check the Upgrade With Post-Upgrade Status Tool 4-1

Required Tasks to Complete After Upgrading Oracle Database 4-1

Setting Environment Variables on Linux and Unix Systems After Manual Upgrades 4-2

Recompile Invalid Objects in the Database 4-2

v



Check PL/SQL Packages and Dependent Procedures 4-4

Configuring the FTP and HTTP Ports and HTTP Authentication for Oracle XML DB 4-5

Install Oracle Text Supplied Knowledge Bases After Upgrading Oracle Database 4-5

Replace the DEMO Directory in Read-Only Oracle Homes 4-6

Configure Access Control Lists (ACLs) to External Network Services 4-7

Enabling Oracle Database Vault After Upgrading Oracle Database 4-7

Upgrading Oracle Database Without Disabling Oracle Database Vault 4-8

Postupgrade Scenarios with Oracle Database Vault 4-8

Check for the SQLNET.ALLOWED_LOGON_VERSION Parameter Behavior 4-9

Recommended and Best Practices to Complete After Upgrading Oracle Database 4-10

Back Up the Database 4-11

Run AutoUpgrade Postupgrade Checks 4-11

Gathering Dictionary Statistics After Upgrading 4-12

Upgrading Statistics Tables Created by the DBMS_STATS Package After Upgrading
Oracle Database 4-13

Regathering Fixed Objects Statistics with DBMS_STATS 4-13

Reset Passwords to Enforce Case-Sensitivity 4-14

Finding and Resetting User Passwords That Use the 10G Password Version 4-15

Understand Oracle Grid Infrastructure, Oracle ASM, and Oracle Clusterware 4-17

Oracle Grid Infrastructure Installation and Upgrade and Oracle ASM 4-18

Add New Features as Appropriate 4-18

Develop New Administrative Procedures as Needed 4-18

Migrating Tables from the LONG Data Type to the LOB Data Type 4-19

Turn Off Traditional Auditing in Upgraded Oracle Databases 4-19

Understanding Auditing for Oracle Database 4-20

Turning Off Traditional Auditing and Using Unified Auditing for Oracle Database 4-20

About Managing Earlier Audit Records After You Move to Unified Auditing 4-23

Moving From Pure Unified Auditing to Mixed-Mode Auditing 4-23

Obtaining Documentation References if You Choose Not to Use Unified Auditing 4-24

Identify Oracle Text Indexes for Rebuilds 4-25

Dropping and Recreating DBMS_SCHEDULER Jobs 4-25

Transfer Unified Audit Records After the Upgrade 4-25

About Transferring Unified Audit Records After an Upgrade 4-25

Transferring Unified Audit Records After an Upgrade 4-26

About Recovery Catalog Upgrade After Upgrading Oracle Database 4-27

Upgrading the Time Zone File Version After Upgrading Oracle Database 4-27

Enabling Disabled Release Update Bug Fixes in the Upgraded Database 4-28

About Testing the Upgraded Production Oracle Database 4-28

vi



Preface

This guide provides a compilation of topics from the Oracle Database user assistance
documentation that are collected to help you complete a specific use case scenario.

• Use Case Scenario for this Document

• Documentation Accessibility

Use Case Scenario for this Document
Use this scenario document to assist you to upgrade and convert to a PDB an earlier release
non-CDB to the new release Oracle Database with the AutoUpgrade utility.

Prerequisites for this Scenario

• You have installed a new release of Oracle Database, and you have created a new
container database or have an existing container database that can be used.

Oracle recommends that you back up your database.

Outline for this Scenario

1. Checking Compatibility Before Upgrading Oracle Database. Check that your earlier
release is compatible with this upgrade scenario.

2. Preparing to Upgrade Oracle Database. Review steps and complete preparation tasks
for this upgrade scenario.

3. Upgrading Oracle Database. Upgrade and convert your database from a non-CDB to a
PDB on a multitenant Oracle Database using the AutoUpgrade utility.

4. Post-upgrade tasks for Oracle Database. Complete this basic list of post-upgrade
tasks.

These steps correspond to the chapters in this document.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

vii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs


1
Checking Compatibility Before Upgrading
Oracle Database

Check the Oracle Database server upgrade compatibility matrix before upgrading the Oracle
Database.

• Oracle Database Releases That Support Direct Upgrade
Review the supported options for direct upgrades to Oracle Database 21c.

• Checking the Compatibility Level of Oracle Database

• Values for the COMPATIBLE Initialization Parameter in Oracle Database

Oracle Database Releases That Support Direct Upgrade
Review the supported options for direct upgrades to Oracle Database 21c.

You can perform a direct upgrade to the new release from the following releases:

• 19c

• 18c

• 12c Release 2 (12.2)

The path that you must take to upgrade to the latest Oracle Database release depends on
the release number of your current database.

If your current Oracle Database is a release earlier than release 12.2, then you cannot
directly upgrade your Oracle Database to the latest release. In this case, you are required to
upgrade to an intermediate release before upgrading to Oracle Database 21c.

If you cannot carry out a direct upgrade, then carry out an upgrade to the most recent release
where direct upgrades are supported.

1-1



Note:

For any multi-step upgrade, if you must carry out two upgrades to upgrade to
the current release, then you must run the preupgrade script twice: First,
complete an upgrade to an intermediate upgrade release that is supported
for direct upgrade to the target upgrade release. Second, complete the
upgrade for the target upgrade release.

For example, if the database from which you are upgrading is running Oracle
Database 11g Release 2 (11.2) then to upgrade to Oracle Database 21c,
follow these steps:

1. Upgrade Release 11.2 to release 12.2, using the instructions in Oracle
Database Upgrade Guide 12c Release 2 (12.2), including running the
preupgrade script for 12.2.

2. Upgrade Oracle Database 12c Release 2 (12.2) directly to Oracle
Database 21c. Use the instructions in this book, Oracle Database
Upgrade Guide, including running the preupgrade script for Oracle
Database 21c.

The following table shows the required upgrade path for each release of Oracle
Database. Use the upgrade path and the specified documentation to perform an
intermediate upgrade of your database before fully upgrading to Oracle Database 21c.

Table 1-1    Examples of Upgrade Paths for Oracle Database 21c

Current Release Upgrade Options

19 (all releases),
18 (all releases),
12.2.0.1

Direct upgrade is supported. Perform the upgrade using the current
Oracle Database Upgrade Guide, which is this guide.

12.1.0.2.

12.1.0.1

11.2.0.1,
11.2.0.2,
11.2.0.3, 11.2.0.4

11.1.0.6, 11.1.0.7

10.2 or earlier
releases

Direct upgrade to Oracle Database 21c is not supported.
Solution: Upgrade to an intermediate Oracle Database release that can be
directly upgraded to the current release. Upgrade Oracle Database
releases that are not supported for direct upgrade in this release to an
intermediate Oracle Database release that is supported for direct upgrade.

When upgrading to an intermediate Oracle Database release, follow the
instructions in the intermediate release documentation, including running
the preupgrade scripts for that intermediate release. After you complete an
upgrade to the intermediate release Oracle Database, you can upgrade the
intermediate release database to the current Oracle Database release.

This restriction does not apply if you use Oracle Data Pump export/import
to migrate data to the new release.

For example:

• Releases 12.1.0.1, 12.1.0.2, 11.2.0.3, 11.2.0.4: Upgrade to Oracle
Database 12c Release 2 (12.2), and then upgrade to Oracle Database
21c.

• Releases 10.2.0.2, 10.2.0.3, 10.2.0.4, 10.2.0.5 or 10.1.0.5: Upgrade to
release 11.2.0.3 or 12.1, and then to 12.2, and then to Oracle
Database 21c.

Note: Always update to the most recent intermediate release to which you
can upgrade directly. Your case can be different from that of the examples
provided here.

Chapter 1
Oracle Database Releases That Support Direct Upgrade

1-2



Checking the Compatibility Level of Oracle Database
Use this SQL query to find the COMPATIBLE initialization parameter value set for your
database.

SQL> SELECT name, value FROM v$parameter
         WHERE name = 'compatible';

Values for the COMPATIBLE Initialization Parameter in Oracle
Database

Review to find the default and minimum values for the COMPATIBLE initialization parameter
for Oracle Database 21c.

Default and Minimum COMPATIBLE Parameter Values

The minimum supported release for direct upgrade to Oracle Database 21c is Oracle
Database 12c Release 2 (12.2). The minimum COMPATIBLE parameter value for Oracle
Database 21c is 12.2.0. The default value for the COMPATIBLE parameter is 21.0.0. Before
you use a direct upgrade to Oracle Database 21c, you must set the COMPATIBLE parameter
on your source Oracle Database release to at least 12.2.0.

The COMPATIBLE parameter should not be changed for a Release Update (RU) or a Release
Update Revision (RUR), either for CDB or Non-CDB instances. The following table lists the
default and minimum values for the COMPATIBLE parameter in Oracle Database 21c,
compared to earlier releases supported for direct upgrade:

Caution:

After the COMPATIBLE parameter is increased, database downgrade is not
possible.

When you plug in an earlier release PDB to a later release CDB where
COMPATIBLE is set to a later release than the earlier release PDB, and you
upgrade the PDB by using an unplug/plug/upgrade procedure, the COMPATIBILE
setting of the upgraded PDB is automatically increased to the COMPATIBLE setting
of the later release CDB.

Do not alter the COMPATIBLE parameter to a value other than a default release
value. Use only one of the default values listed in the following table.

Table 1-2    The COMPATIBLE Initialization Parameter

Oracle Database Release Default Value Minimum Value

Oracle Database 21c 21.0.0 12.2.0

Oracle Database 19c 19.0.0 11.2.0

Oracle Database 18c 18.0.0 11.2.0

Chapter 1
Checking the Compatibility Level of Oracle Database

1-3



Table 1-2    (Cont.) The COMPATIBLE Initialization Parameter

Oracle Database Release Default Value Minimum Value

Oracle Database 12c Release 2
(12.2)

12.2.0 11.2.0

Chapter 1
Values for the COMPATIBLE Initialization Parameter in Oracle Database

1-4



2
Preparing to Upgrade Oracle Database

Before you upgrade Oracle Database, review new features, and carry out procedures to
prepare your database for upgrade.

Note:

Oracle strongly recommends that you test the upgrade process and prepare a
backup strategy.

• Installing Oracle Software in a New Oracle Home
Choose a new location for the target Oracle home, and then install the new Oracle
Database release software for single-instance.

• Prepare a Backup Strategy Before Upgrading Oracle Database Using AutoUpgrade
You must design and carry out an appropriate backup strategy to ensure a successful
upgrade.

• Database Preparation Tasks to Complete Before Starting Oracle Database Upgrades
Ensure that you have completed these database preparation tasks before starting an
Oracle Database upgrade.

• Preparing for Upgrades of Databases with Oracle Database Vault
If the Oracle Database you plan to upgrade uses Oracle Database Vault, then you must
disable Oracle Database Vault before starting the upgrade.

• Preparations for Running AutoUpgrade Processing Modes
You must complete preparations before you can run an AutoUpgrade processing mode.

• Pre-Upgrade Information Check with AutoUpgrade
To obtain a checklist of tasks you must complete before upgrading an Oracle Database,
run the AutoUpgrade utility (autoupgrade.jar) in analyze mode.

• Create Configuration File for AutoUpgrade
To use AutoUpgrade to complete the upgrade, you first create a configuration file with
AutoUpgrade from the new release Oracle home.

• Locally Modifiable Global Parameters for AutoUpgrade Configuration File
Required configuration parameters for AutoUpgrade can be set either globally for all
upgrades, or locally.

• Local Parameters for the AutoUpgrade Configuration File
To configure information for specific Oracle Databases for the AutoUpgrade utility
upgrade, you provide information in the AutoUpgrade local parameters.

• Global Parameters for the AutoUpgrade User Configuration File
To specify a default behavior for a parameter for all Oracle Database upgrades
addressed in the configuration file, you can use the optional AutoUpgrade global
parameters.

2-1



• Understanding Non-CDB to PDB Upgrades with AutoUpgrade
You can upgrade and convert a non-CDB to a PDB in a new CDB in a single
operation, or upgrade and then convert a Non-CDB database to a PDB in a pre-
existing CDB.

• Non-CDB to PDB Upgrade Guidelines and Examples
Before conversion, back up your datafiles and database, and follow the guidelines
for your source Oracle Database release.

• Understanding Unplug-Plug Upgrades with AutoUpgrade
AutoUpgrade can perform an unplug of a pluggable database (PDB) from an
earlier release source container database (CDB), plug it into a later release target
CDB, and then complete all the steps required to upgrade the PDB to the target
CDB release.

• Examples of Non-CDB to PDB Configuration Files for AutoUpgrade
Use these examples to understand how you can modify your own Oracle
Database upgrade configuration file for AutoUpgrade.

Prepare a Backup Strategy Before Upgrading Oracle
Database Using AutoUpgrade

You must design and carry out an appropriate backup strategy to ensure a successful
upgrade.

For Oracle Database Enterprise Edition, the primary fallback mechanism is Flashback
Database. However, Flashback Database can't be used to revert an unplug-plug
upgrade. For unplug-plug upgrades, remove it entirely, or rely on other fallback
strategies, such as an RMAN backup.

If you use AutoUpgrade, then Oracle recommends that you specify
target_pdb_copy_option=file_name_convert, in the AutoUpgrade configuration file,
where file_name_convert is a convert pattern prefixed to the data files. When you do
that, AutoUpgrade directs the database to create copies of the data files before
plugging in the database. Choosing to use this method enables you to use the original
database as a fallback. However, be aware that when you create data file copies, the
upgrade requires additional disk space and extra time.

To develop a backup strategy, consider the following questions:

• How long can the production database remain inoperable before business
consequences become intolerable?

• What backup strategy is necessary to meet your availability requirements?

• Are backups archived in a safe, offsite location?

• Are backups tested to ensure that they are done properly?

• How quickly can backups be restored (including backups in offsite storage)?

• Have disaster recovery procedures been tested successfully?

Your backup strategy should answer all of these questions, and include procedures for
successfully backing up and recovering your database. For information about
implementing backup strategies using RMAN, review Oracle Database Backup and
Recovery User’s Guide.

Chapter 2
Prepare a Backup Strategy Before Upgrading Oracle Database Using AutoUpgrade

2-2



In addition, to ensure that you are prepared for a downgrade, review the downgrade chapter
and complete any preparation steps you may need to prepare for your release.

Related Topics

• Backing Up the Database

Preparing for Upgrades of Databases with Oracle Database
Vault

If the Oracle Database you plan to upgrade uses Oracle Database Vault, then you must
disable Oracle Database Vault before starting the upgrade.

During the upgrade process, if your source Oracle Database uses Oracle Database Vault,
then you must first disable Oracle Database Vault before you start the upgrade.

You have two options you can use:

1. Use a manual procedure: Log on as the common Database Vault (DV) administrator in
the CDB$ROOT and grant the DV_PATCH_ADMIN role to SYS, or log in and disable Oracle
Database Vault on every container. Procedures vary slightly, depending on your upgrade
scenario. This procedure is described in My Oracle Support, "Requirement for Upgrading
Database with Database Vault (Doc ID 2757126.1)".

2. Download the latest AutoUpgrade Jar file, and perform the procedure described here.

With either option, when you run AutoUpgrade in Analyze mode, it detects that Oracle
Database Vault is enabled, and indicates in its report that you must ensure the prerequisites
for Oracle Database Vault and upgrade are met.

Example 2-1    AutoUpgrade Procedure for Databases Using Oracle Database Vault

When you use AutoUpgrade, and your database is configured with Oracle Database Vault,
the upgrade procedure is as follows:

1. Disable Oracle Database Vault.

2. Install the new Oracle Database release.

3. Download the latest AutoUpgrade JAR file from My Oracle Support note 2485457.1, and
replace the AutoUpgrade JAR file in the new Oracle Database release, in the path
Oracle_home/rdbms/admin

4. Run the AutoUpgrade utility (or Database Upgrade Assistant), and complete the upgrade.

5. Enable Oracle Database Vault in the upgraded Oracle Database.

Related Topics

• Disabling and Enabling Oracle Database Vault

• Requirement for Upgrading Database with Database Vault (Doc ID 2757126.1)

• AutoUpgrade Tool (Doc ID 2485457.1)

Pre-Upgrade Information Check with AutoUpgrade
To obtain a checklist of tasks you must complete before upgrading an Oracle Database, run
the AutoUpgrade utility (autoupgrade.jar) in analyze mode.

Chapter 2
Preparing for Upgrades of Databases with Oracle Database Vault

2-3

https://support.oracle.com/rs?type=doc&amp;id=2757126.1
https://support.oracle.com/rs?type=doc&id=2485457.1


Oracle recommends that you download and run the most recent release of
AutoUpgrade in -analyze mode before you upgrade Oracle Database. AutoUpgrade
can identify issues for you to address before you start your upgrade. In certain cases,
AutoUpgrade can also generate scripts that can resolve some issues.

Tip:

Consider reviewing Mike Dietrich's upgrade blog for tips and suggestions
that can assist you with your upgrade preparations. You can also review the
checklist on My Oracle Support, but ensure that you download the latest
version of the AutoUpgrade tool, and use the checklist AutoUpgrade
generates for your upgrade.

Related Topics

• My Oracle Support AutoUpgrade Tool (Doc ID 2485457.1)

• Upgrade your Database – NOW! Mike Dietrich's Oracle Database Upgrade Blog

• Database Preupgrade tool (via autoupgrade.jar) check list (Doc ID 2380601.1)

Installing Oracle Software in a New Oracle Home
Choose a new location for the target Oracle home, and then install the new Oracle
Database release software for single-instance.

• Choose a New Location for Oracle Home when Upgrading or Patching

• Installing the New Oracle Database Software for Single Instance

Choose a New Location for Oracle Home when Upgrading or Patching
When you upgrade or patch the database, you install the new Oracle home in a new
location (an out-of-place upgrade or patch).

AutoUpgrade performs out-of-place upgrades and patches. This means that the
upgrade or the patched Oracle home is in a new Oracle home. Using separate
installation locations enables you to keep your existing Oracle software installed along
with the new Oracle software. By using separate installation locations, you can test the
upgrade or patch process in the out-of-place Oracle home database before replacing
your production environment entirely.

If you are upgrading a PDB by using an unplug/plug upgrade, then the target CDB into
which you plug the PDB is the location for the PDB. Because the CDB is the target
release, it is already in a new Oracle home for that release. There is no need to
choose a new location for installing the target Oracle homes for the PDBs, because
the target CDB already has its Oracle home.

Related Topics

• How to Speed Up Your Database and GI Patching

Chapter 2
Installing Oracle Software in a New Oracle Home

2-4

https://support.oracle.com/rs?type=doc&id=2485457.1
https://mikedietrichde.com/
https://support.oracle.com/rs?type=doc&id=2380601.1
https://mikedietrichde.com/2022/05/09/how-to-speed-up-your-database-and-gi-patching/


Installing the New Oracle Database Software for Single Instance
Use this procedure overview to assist you to install the software for the new Oracle Database
release for a single instance deployment.

To install the new Oracle Database software for this release:

1. Follow the instructions in your Oracle operating system-specific documentation to
prepare for installation of Oracle Database software.

2. Start Oracle Universal Installer, and select a software-only installation.

When installation of Oracle Database software has completed successfully, click Exit to
close Oracle Universal Installer.

3. If you use Oracle Label Security, Oracle Database Vault, or both, then select Enterprise
Edition on the Select Database Edition page, click Select Options, and enable one or
both components from the components list.

Database Preparation Tasks to Complete Before Starting Oracle
Database Upgrades

Ensure that you have completed these database preparation tasks before starting an Oracle
Database upgrade.

• Release Updates and Requirements for Upgrading Oracle Database

• Understanding Password Case Sensitivity and Upgrades

• Checking for Accounts Using Case-Insensitive Password Version

• Running Upgrades with Read-Only Tablespaces
To take user schema-based tablespaces offline during upgrade, use AutoUpgrade with
the catctl_options parameter -T option.

Release Updates and Requirements for Upgrading Oracle Database
Before starting upgrades, update your new release Oracle home to the latest Release Update
(Update).

The software for new Oracle Database releases contains a full release that includes all the
latest updates for Oracle Database at the time of the release.

Before you start an upgrade, Oracle strongly recommends that you update your new release
Oracle home to the latest quarterly Release Update (Update).

My Oracle Support provides detailed notes about how you can obtain the updates, as well as
tools for lifecycle management.. For example:

• My Oracle Support note 2118136.2 contains a download assistant to help you select the
updates that you need for your environment. Oracle highly recommends that you start
here.

• My Oracle Support note 1227443.1 contains a list of Oracle Database PSU/BP/Update/
Revision known issues. This note provides information about all known issues notes for
Oracle Database, Oracle Grid Infrastructure, and the Oracle JavaVM Component
(OJVM).

Chapter 2
Database Preparation Tasks to Complete Before Starting Oracle Database Upgrades

2-5



Related Topics

• My Oracle Support Note 2118136.2

• My Oracle Support Note 1227443.1

Understanding Password Case Sensitivity and Upgrades
By default, Oracle Database 12c Release 2 (12.2) and later releases use Exclusive
Mode authentication protocols. Exclusive Modes do not support case-insensitive
password-based authentication.

Accounts that have only the 10G password version become inaccessible when the
server runs in an Exclusive Mode.

Note:

Starting with Oracle Database 21c, the SEC_CASE_SENSITIVE_LOGON
parameter is desupported. You must use a case-sensitive password version.
If a user with only a 10G password version is upgraded to Oracle Database
21c, then that user account is locked, until an administrator resets the
password.

In previous Oracle Database releases, you could configure the authentication protocol
so that it allows case-insensitive password-based authentication by setting
SEC_CASE_SENSITIVE_LOGON=FALSE. Starting with Oracle Database 12c release 2
(12.2), the default password-based authentication protocol configuration excluded the
use of the case-insensitive 10G password version. By default, the SQLNET.ORA
parameter SQLNET.ALLOWED_LOGON_VERSION_SERVER is set to 12, which is an Exclusive
Mode. When the database is configured in Exclusive Mode, the password-based
authentication protocol requires that one of the case-sensitive password versions (11G
or 12C) is present for the account being authenticated. This mode excludes the use of
the 10G password version used in earlier releases. After upgrading to Oracle Database
12c release 2 and later releases, accounts that have only the case-insensitive 10G
password version become inaccessible. This change occurs because the server runs
in an Exclusive Mode by default. When Oracle Database is configured in Exclusive
Mode, it cannot use the old 10G password version to authenticate the client. The server
is left with no password version with which to authenticate the client.

Before upgrading, Oracle recommends that you determine if this change to the default
password-based authentication protocol configuration affects you. Perform the
following checks:

• Identify if you have accounts that use only 10G case-insensitive password
authentication versions.

• Identify if you have Oracle Database 11g release 2 (11.2.0.3) database or earlier
clients that have not applied critical patch update CPUOct2012, or a later patch
update, and have any account that does not have the case-insensitive 10G
password version.

Chapter 2
Database Preparation Tasks to Complete Before Starting Oracle Database Upgrades

2-6

https://support.oracle.com/rs?type=doc&amp;id=2118136.2
https://support.oracle.com/rs?type=doc&id=1227443.1


Update Accounts Using Case-Insensitive Versions

If you have user accounts that have only the case-insensitive 10G password version, then
before upgrade, update the password versions for each account that has only the 10G
password version. You can update the password versions by expiring user passwords using
the 10G password version, and requesting that these users log in to their account. When they
attempt to log in, the server automatically updates the list of password versions, which
includes the case-sensitive password versions.

Related Topics

• Oracle Database Net Services Reference

• Oracle Database Security Guide

Checking for Accounts Using Case-Insensitive Password Version
Use these procedures to identify if the Oracle Database that you want to upgrade has
accounts or configuration parameters that are using a case-insensitive password version.

Note:

Starting with Oracle Database 21c, the SEC_CASE_SENSITIVE_LOGON parameter is
desupported. You must use a case-sensitive password version.

If you do not want user accounts authenticated with case-insensitive password versions to be
locked out of the database after an upgrade, then before the upgrade, you must identify
affected accounts, and ensure that they are using case-sensitive password versions.

Example 2-2    Finding User Accounts That Use Case-Insensitive (10G) Version

Log in to SQL*Plus as an administrative user, and enter the following SQL query:

SELECT USERNAME,PASSWORD_VERSIONS FROM DBA_USERS;

The following result shows password versions for the accounts:

USERNAME                       PASSWORD_VERSIONS
------------------------------ -----------------
JONES                          10G 11G 12C
ADAMS                          10G 11G
CLARK                          10G 11G
PRESTON                        11G
BLAKE                          10G

In this example, the backgrounds for each user account password verification version in use
are different:

• JONES was created in Oracle Database 10G, and the password for JONES was reset in
Oracle Database 12C when the setting for the SQLNET.ALLOWED_LOGON_VERSION_SERVER
parameter was set to 8. As a result, this password reset created all three versions. 11G
and 12C use case-sensitive passwords.

Chapter 2
Database Preparation Tasks to Complete Before Starting Oracle Database Upgrades

2-7



• ADAMS and CLARK were originally created with the 10G version, and then 11G, after
they were imported from an earlier release. These account passwords were then
reset in 11G, with the deprecated parameter SEC_CASE_SENSITIVE_LOGON set
to TRUE.

• The password for BLAKE was created with the 10G version, and the password has
not been reset. As a result, user BLAKE continues to use the 10G password
version, which uses a case-insensitive password.

The user BLAKE has only the 10G password version before upgrade:

SQL> SELECT USERNAME,PASSWORD_VERSIONS FROM DBA_USERS;

USERNAME PASSWORD_VERSIONS
------------------------------ -----------------
BLAKE 10G

If you upgrade to a new Oracle Database release without taking any further action,
then this account becomes inaccessible. Ensure that the system is not configured in
Exclusive Mode (by setting the SQLNET.ORA parameter
SQLNET.ALLOWED_LOGON_VERSION_SERVER to a more permissive authentication mode)
before the upgrade.

Example 2-3    Fixing Accounts with Case-Insensitive Passwords

Complete the following procedure:

1. Use the following SQL query to find the accounts that only have the 10G password
version:

      select USERNAME
         from DBA_USERS
        where ( PASSWORD_VERSIONS = '10G '
               or PASSWORD_VERSIONS = '10G HTTP ')
          and USERNAME <> 'ANONYMOUS';

2. Configure the system so that it is not running in Exclusive Mode by editing the
setting of the SQLNET.ORA parameter SQLNET.ALLOWED_LOGON_VERSION_SERVER to a
level appropriate for affected accounts. For example:

SQLNET.ALLOWED_LOGON_VERSION_SERVER=11

After you make this change, proceed with the upgrade.

3. After the upgrade completes, use the following command syntax to expire the
accounts you found in step 1, where username is the name of a user returned from
the query in step 1:

ALTER USER username PASSWORD EXPIRE;
4. Ask the users for whom you have expired the passwords to log in.

5. When these users log in, they are prompted to reset their passwords. The system
internally generates the missing 11G and 12C password versions for their account,
in addition to the 10G password version. The 10G password version is still present,
because the system is running in the permissive mode.

6. Ensure that the client software with which users are connecting has the O5L_NP
capability flag.

Chapter 2
Database Preparation Tasks to Complete Before Starting Oracle Database Upgrades

2-8



Note:

All Oracle Database release 11.2.0.4 and later clients, and all Oracle Database
release 12.1 and later clients have the O5L_NP capability. Other clients require
the CPUOct2012 patch to acquire the O5L_NP capability.

The O5L_NP capability flag is documented in Oracle Database Net Services
Reference, in the section on the parameter
SQLNET.ALLOWED_LOGON_VERSION_SERVER.

7. After all clients have the O5L_NP capability, raise the server security back to Exclusive
Mode by using the following procedure:

a. Remove the SEC_CASE_SENSITIVE_LOGON setting from the instance initialization file, or
set the SEC_CASE_SENSITIVE_LOGON instance initialization parameter to TRUE. For
example:

SEC_CASE_SENSITIVE_LOGON = TRUE
b. Remove the SQLNET.ALLOWED_LOGON_VERSION_SERVER parameter from the server

SQLNET.ORA file, or set it back to Exclusive Mode by changing the value of
SQLNET.ALLOWED_LOGON_VERSION_SERVER in the server SQLNET.ORA file back to 12. For
example:

SQLNET.ALLOWED_LOGON_VERSION_SERVER = 12
8. Use the following SQL query to find the accounts that still have the 10G password version:

       select USERNAME
         from DBA_USERS
        where PASSWORD_VERSIONS like '%10G%'
          and USERNAME <> 'ANONYMOUS';

9. Use the list of accounts returned from the query in step 8 to expire all the accounts that
still have the 10G password version. Expire the accounts using the following syntax,
where username is a name on the list returned by the query:

ALTER USER username PASSWORD EXPIRE;
10. Request the users whose accounts you expired to log in to their accounts.

When the users log in, they are prompted to reset their password. The system internally
generates only the 11G and 12C password versions for their account. Because the system
is running in Exclusive Mode, the 10G password version is no longer generated.

11. Check that the system is running in a secure mode by rerunning the query from step 1.
Ensure that no users are found. When the query finds no users, this result means that no
10G password version remains present in the system.

Example 2-4    Checking for the Presence of SEC_CASE_SENSITIVE_LOGON Set to
FALSE

Oracle Database does not prevent the use of the FALSE setting for
SEC_CASE_SENSITIVE_LOGON when the SQLNET.ALLOWED_LOGON_VERSION_SERVER parameter is
set to 12 or 12a. This setting can result in all accounts in the upgraded database becoming
inaccessible.

SQL> SHOW PARAMETER SEC_CASE_SENSITIVE_LOGON

Chapter 2
Database Preparation Tasks to Complete Before Starting Oracle Database Upgrades

2-9



NAME                                 TYPE        VALUE
------------------------------------ ----------- 
------------------------------
sec_case_sensitive_logon             boolean     FALSE

You can change this parameter by using the following command:

SQL> ALTER SYSTEM SET SEC_CASE_SENSITIVE_LOGON = TRUE;

System altered.

Note:

Unless the value for the parameter SQLNET.ALLOWED_LOGON_VERSION_SERVER
is changed to a version that is more permissive than 12, such as 11, do not
set the SEC_CASE_SENSITIVE_LOGON parameter to FALSE.

Related Topics

• Oracle Database Net Services Reference

• Oracle Database Security Guide

Running Upgrades with Read-Only Tablespaces
To take user schema-based tablespaces offline during upgrade, use AutoUpgrade with
the catctl_options parameter -T option.

For all Oracle Database releases that AutoUpgrade can upgrade, Autoupgrade can
read file headers created in earlier releases. You are not required to do anything to
them during the upgrade. The file headers of READ ONLY tablespaces are updated
when they are changed to READ WRITE.

Note:

If you are performing a non-CDB to PDB conversion, then using read-only
tablespaces is not a valid fallback option. During a non-CDB to PDB
conversion, tablespaces must be online during conversion, because each
data file header requires changes during the upgrade.

If the upgrade suffers a catastrophic error, so that the upgrade is unable to bring the
tablespaces back online, then review the upgrade log files. The log files contain the
actual SQL statements required to make the tablespaces available. To bring the
tablespaces back online, you must run the SQL statements in the log files for the
database, or run the log files for each PDB.

Chapter 2
Database Preparation Tasks to Complete Before Starting Oracle Database Upgrades

2-10



Viewing Tablespace Commands in Upgrade Log Files

If a catastrophic upgrade failure occurs, then you can navigate to the dbupgrade log directory,
and run commands in the log files manually to bring up tablespaces. You can view tablespace
commands in the following log files:

• Non-CDB Upgrade format: catupgrdYYYYMMDDHHMMSC0.log, where:

YYYY is the year, MM is the month, DD is the day, HH is the hour, MM is the minute in the hour,
and SC is the seconds.

• PDB databases format: catupgrdYYYYMMDDHHSCpdbname0.log, where:

YYYY is the year, MM is the month, DD is the day, HH is the hour, MM is the minute in the hour,
SC is the seconds, and pdbname is the name of the PDB that you are upgrading.

At the beginning of each log file, you find SQL statements such as the following, which sets
tables to READ ONLY:

SQL> ALTER TABLESPACE ARGROTBLSPA6 READ ONLY;

Tablespace altered.

SQL> ALTER TABLESPACE ARGROTBLSPB6 READ ONLY;

Tablespace altered.

Near the end of each log file, you find SQL statements to reset tables to READ WRITE:

SQL> ALTER TABLESPACE ARGROTBLSPA6 READ WRITE;

Tablespace altered.

SQL> ALTER TABLESPACE ARGROTBLSPB6 READ WRITE;

Tablespace altered.

See Also:

Oracle Database Administrator’s Guide for information about transporting
tablespaces between databases

Preparations for Running AutoUpgrade Processing Modes
You must complete preparations before you can run an AutoUpgrade processing mode.

Before you can use an AutoUpgrade processing mode, confirm that you meet the following
requirements:

• You have created a user configuration file.

Chapter 2
Preparations for Running AutoUpgrade Processing Modes

2-11



• The source Oracle Database release is up and running in the original Oracle
home. In case of a restart of AutoUpgrade, you must start the database in the
Oracle home that corresponds to the phase in the upgrade flow.

• The server on which the database is running is registered on the server hosts file
(for example, /etc/hosts), or on a domain name server (DNS).

If you are logged in to the server on which the target database is located, and the
database is running either on localhost, or where AutoUpgrade is running, then
remove the hostname parameter from the AutoUpgrade config file.

• On container databases (CDBs), if you want to upgrade a subset of pluggable
databases (PDBs), then the PDBs on which you want to run the upgrade are open,
and they are configured in the user configuration file, using the AutoUpgrade local
parameter pdbs. If you do not specify a list of PDBs, then AutoUpgrade upgrades
all PDBs on the CDB.

• You have the AutoUpgrade jar file (autoupgrade.jar) downloaded or available,
and you are able to run it using a Java 8 distribution.

• If you want to run AutoUpgrade in a batch or script , then you have called
AutoUpgrade using the noconsole parameter in the command.

In Oracle Database 19c (19.3) and later target Oracle homes, the autoupgrade.jar
file exists by default. However, before you use AutoUpgrade, Oracle strongly
recommends that you download the latest version, which is available form My Oracle
Support Document 2485457.1.

Related Topics

• My Oracle Support Document 2485457.1

Create Configuration File for AutoUpgrade
To use AutoUpgrade to complete the upgrade, you first create a configuration file with
AutoUpgrade from the new release Oracle home.

In the following example, the AutoUpgrade utility is run using the parameter
sample_config_file. This parameter generates a configuration file in the home of the
user running AutoUpgrade that you can edit to provide environment paths and settings
and upgrade preferences for the upgrade. To generate the configuration file (config),
you run AutoUpgrade from the new release Oracle Database home using the
sample_config_file parameter, and specify an output file name.

Note:

AutoUpgrade is regularly updated. For additional examples, and for
information about the most recent AutoUpgrade releases, including new
command-line parameters and options, and new or enhanced configuration
file parameters, refer to the Oracle Database Upgrade Guide for the release
to which you want to upgrade. Also refer to the My Oracle Support note
"AutoUpgrade Tool (Doc ID 2485457.1)," which will contain information about
the most recent AutoUpgrade updates.

Chapter 2
Create Configuration File for AutoUpgrade

2-12

https://support.oracle.com/rs?type=doc&id=2485457.1


In this example, user oracle navigates to the location of an earlier release Oracle home,
which in this example is Oracle Database 19c:

cd /u01/app/oracle/product/19.0.0/

Next, the Oracle user starts AutoUpgrade from the Oracle Database 23c Oracle home, and
creates a configuration file in its user home directory, /home/oracle:

java -jar /u01/app/oracle/product/23/rdbms/admin/autoupgrade.jar -
create_sample_file config
Created sample configuration file /home/oracle/sample_config.cfg

After you create the configuration file, open it up in your preferred text editor, and modify
parameter settings as needed for your environment.

cd /
vi sample_config.cfg

Related Topics

• Oracle Database Documentation

• AutoUpgrade Tool (Doc ID 2485457.1)

Locally Modifiable Global Parameters for AutoUpgrade
Configuration File

Required configuration parameters for AutoUpgrade can be set either globally for all
upgrades, or locally.

Usage Notes

If you set required AutoUpgrade parameters globally, as a locally modifiable global
parameter, then these parameters can be overridden by local parameters set for particular
upgrades, so that you can better control AutoUpgrade job processing.

With locally modifiable global parameters, you can use the prefix global to set values for
required parameters as global parameters for all jobs in your AutoUpgrade configuration file,
but identify the same parameter with a local job prefix to reset the global value to a different
value for a particular job in the same configuration file. You can also choose to set locally
modifiable global parameters only as local parameters for each AutoUpgrade job.

Note:

These parameters are available in the latest version of AutoUpgrade that you can
download from My Oracle Support.

When a locally modifiable global parameter is set both with a global prefix, and with a local
job prefix, the locally modified parameter value overrides the global parameter values for the
job identified by the prefix that you use with the parameter.

Chapter 2
Locally Modifiable Global Parameters for AutoUpgrade Configuration File

2-13

https://docs.oracle.com/en/database/oracle/oracle-database/index.html
https://support.oracle.com/rs?type=doc&id=2485457.1


For example, with global.target_home, the syntax you use is in the form
global.target_home=Global target Oracle home, and
database.target_home=local target Oracle home.

Example

In the AutoUpgrade configuration file, the required parameter target_home is set
globally to one Oracle home path. But in the configuration file, the same parameter is
set locally to a different Oracle home path. As AutoUpgrade processes the jobs in the
configuration file, it uses the locally defined path for target_home for the job defined by
the prefix upgrade3, overriding the global parameter setting:

global.target_home=/u01/app/oracle/21.0.0/dbhome01
upgrade3.target_home=/u03/app/oracle3/12.2.0.1/dbhome3

• defer_standby_log_shipping

• dictionary_stats_after
(Optional) Specifies that AutoUpgrade gathers data dictionary statistics on the
target database after the upgrade is complete.

• dictionary_stats_before
(Optional) Specifies that AutoUpgrade gathers data dictionary statistics on the
source database before starting the upgrade.

• drop_grp_after_upgrade
Deletes the Guaranteed Restore Point (GRP) after database upgrade.

• enable_local_undo
For a CDB upgrade, specifies whether or not LOCAL undo should be enabled
before the upgrade of CDB$ROOT.

• fixed_stats_before
(Optional) Specifies that AutoUpgrade gathers fixed object statistics on the source
database before starting the upgrade.

• manage_network_files
Specifies whether network files are processed during the upgrade.

• remove_underscore_parameters
Removes underscore (hidden) parameters from PFILE files during upgrade, and
after upgrade, for all Oracle Databases in the configuration file.

• restoration
(Available with Enterprise Edition only) Generates a Guaranteed Restore Point
(GRP) for database restoration.

• target_base
Specifies the target ORACLE_BASE path for the target Oracle home.

• target_home
(Required for upgrade and deploy modes, if the target home is not on the
system. Optional for analyze and fixups mode. ) Specifies the target Oracle home
(ORACLE_HOME) path.

• target_version
(Required if target Oracle home is not on the system, or is release 12.2)
Specifies the target release version on which you want AutoUpgrade to perform
the upgrade.

Chapter 2
Locally Modifiable Global Parameters for AutoUpgrade Configuration File

2-14



defer_standby_log_shipping
Defers shipping logs from the primary database to any standby database. All log archive
destionations (log_archive_dest_n) are set to deferred.

Usage Notes

By default, log shipping occurs as part of the upgrade. When Autoupgrade defers log
shipping, you receive a notice that log shipping is deferred, and that after the upgrade
completes successfully, you need to reenable shipping logs from the primary database to the
secondary database.

Note:

This configuration file parameter affects not only standby databases, but all
products or services that receive redo from the primary database, such as Oracle
Zero Data Loss Recovery Appliance (ZDLRA) real-time log transport, and Oracle
GoldenGate downstream capture.

Options

[yes | no]
The default value is no
The default is no (log-shipping is not deferred). If you change the default to Yes, then log
shipping is deferred, and you must choose to re-enable it manually after upgrade.

Example

defer_standby_log_shipping=yes

dictionary_stats_after
(Optional) Specifies that AutoUpgrade gathers data dictionary statistics on the target
database after the upgrade is complete.

Usage Notes

Oracle recommends that you gather dictionary statistics both before and after upgrading the
database, because Data Dictionary tables are modified and created during the upgrade.
When you specify yes, AutoUpgrade gathers dictionary statistics after the upgrade is
completed.

Options

[yes | no]
The default value is Yes.

Chapter 2
Locally Modifiable Global Parameters for AutoUpgrade Configuration File

2-15



Example

global.dictionary_stats_after=yes

sales.dictionary_stats_after=yes

dictionary_stats_before
(Optional) Specifies that AutoUpgrade gathers data dictionary statistics on the source
database before starting the upgrade.

Usage Notes

Oracle recommends that you gather dictionary statistics both before and after
upgrading the database, because Data Dictionary tables are modified and created
during the upgrade. When you specify yes, AutoUpgrade gathers dictionary statistics
before beginning the upgrade.

Options

[yes | no]
The default value is Yes.

Example

global.dictionary_stats_before=yes

sales.dictionary_stats_before=yes

drop_grp_after_upgrade
Deletes the Guaranteed Restore Point (GRP) after database upgrade.

Usage Notes

If you select this option, then GRP is deleted after upgrade completes successfully.

Options

[yes | no]
The default value is no.

Example

global.drop_grp_after_upgrade=yes

sales.drop_grp_after_upgrade=yes

Chapter 2
Locally Modifiable Global Parameters for AutoUpgrade Configuration File

2-16



enable_local_undo
For a CDB upgrade, specifies whether or not LOCAL undo should be enabled before the
upgrade of CDB$ROOT.

Usage Notes

If you select this option, then AutoUpgrade runs the following statement before upgrade:
ALTER DATABASE LOCAL UNDO ON;.

When local undo is first enabled, the size of the undo tablespace in PDB$SEED is determined
as a factor of the size of the undo tablespace in CDB$ROOT. The default is 30 percent of the
undo tablespace size. Every other PDB in the CDB inherits this property from PDB$SEED.
Ensure that there is enough space to allocate new UNDO tablespaces.

Options

[yes | no]
The default value is no.

Example

enable_local_undo=yes

fixed_stats_before
(Optional) Specifies that AutoUpgrade gathers fixed object statistics on the source database
before starting the upgrade.

Usage Notes

Before an upgrade, Oracle recommends that you regather fixed object statistics.

Fixed objects are the X$ tables and their indexes. V$ performance views are defined through
X$ tables. Gathering fixed object statistics is valuable for database performance, because
these statistics help the optimizer generate good execution plans, which can improve
database performance. Failing to obtain representative statistics can lead to suboptimal
execution plans, which can cause significant performance problems.

Options

[yes | no]
The default value is Yes.

Example

global.fixed_stats_before=yes

sales.fixed_stats_before=yes

Chapter 2
Locally Modifiable Global Parameters for AutoUpgrade Configuration File

2-17



manage_network_files
Specifies whether network files are processed during the upgrade.

Usage Notes

If you select this option, then AutoUpgrade processes network files, depending on the
option that you specify.

The following network files are processed: oranfstab, ldap.ora, tnsnames.ora,
sqlnet.ora, and listener.ora

Options

[FULL|SKIP|IGNORE_READ_ONLY]

• FULL: (default) Raise all exceptions encountered during the copy and merge of
network files into the target Oracle home.

• SKIP: Do not process network files during postupgrade.

• IGNORE_READ_ONLY: Attempt to copy and merge network files, but do not raise an
exception during the upgrade if the target file is read only

Example

manage_network_files=ignore_read_only

remove_underscore_parameters
Removes underscore (hidden) parameters from PFILE files during upgrade, and after
upgrade, for all Oracle Databases in the configuration file.

Usage Notes

Underscore parameters should only be used by advice of Oracle Support.

Options

[yes | no]
The default value is no.

Example

global.remove_underscore_parameters=yes

Chapter 2
Locally Modifiable Global Parameters for AutoUpgrade Configuration File

2-18



restoration
(Available with Enterprise Edition only) Generates a Guaranteed Restore Point (GRP) for
database restoration.

Usage Notes

This option determines whether database backup and database restoration must be
performed manually by the DBA.

Standard Edition does not support Flashback Database, so this option is not available for
Standard Edition. If your database is a Standard Edition Oracle Database, then you must
ensure that you have a separate fallback mechanism is in place.

Options

[yes | no]
The default value is yes.

Example

global.restoration=no

target_base
Specifies the target ORACLE_BASE path for the target Oracle home.

Example

global.target_base=/u01/app/oracle
sales4.target_base=/u04/app/oracle4

target_home
(Required for upgrade and deploy modes, if the target home is not on the system.
Optional for analyze and fixups mode. ) Specifies the target Oracle home (ORACLE_HOME) path.

Usage Notes

AutoUpgrade uses the release version information that you provide in this parameter to
ensure that the correct checks and fixups are used for the target Oracle Database release to
which you are upgrading. The format for this parameter are period-delimited values of valid
Oracle versions.

This option is only required if the target home is not present on the system, or if the target
home is a 12.2 release. Otherwise, AutoUpgrade can derive the target release value.

Options

Valid values

• 12.2

Chapter 2
Locally Modifiable Global Parameters for AutoUpgrade Configuration File

2-19



• 18

• 19

• 21

• 23

Example

global.target_version=23
employees.target_version=19

target_version
(Required if target Oracle home is not on the system, or is release 12.2) Specifies
the target release version on which you want AutoUpgrade to perform the upgrade.

Usage Notes

AutoUpgrade uses the release version information that you provide in this parameter
to ensure that the correct checks and fixups are used for the target Oracle Database
release to which you are upgrading. The format for this parameter are period-delimited
values of valid Oracle versions.

This option is only required if the target home is not present on the system, or if the
target home is a 12.2 release. Otherwise, AutoUpgrade can derive the target release
value.

Options

Valid values

• 12.2

• 18

• 19

• 21

• 23

Example

global.target_version=23
employees.target_version=19

Local Parameters for the AutoUpgrade Configuration File
To configure information for specific Oracle Databases for the AutoUpgrade utility
upgrade, you provide information in the AutoUpgrade local parameters.

Usage Notes

Local parameters take precedence over any global parameters set in the AutoUpgrade
configuration file. Local parameters that either must be set locally, or as a locally
modifiable global parameter are indicated by (Required). All local parameters take a

Chapter 2
Local Parameters for the AutoUpgrade Configuration File

2-20



prefix (in examples, identified by a value you define to identify a particular database or
upgrade. The prefix identifies the specific upgrade job to which the parameter applies in the
configuration file.

Example: The set of parameters for the first upgrade in the configuration file uses the prefix
sales, and the set of parameters for the next upgrade in the configuration file uses the prefix
employees:

sales.source_home=/u01/app/oracle/12.2/dbhome1
.
.
.
employees.sid=salescdb
employees.source_home-/03/app/oracle/21/dbhome1

• add_after_upgrade_pfile
(Optional) Specifies a path and file name of a PFILE whose parameters you want to add
after the upgrade.

• add_during_upgrade_pfile
(Optional) Specifies a path and file name of a PFILE whose parameters you want to add
during the upgrade.

• after_action
(Optional) In deploy mode, specifies a custom action that you want to have performed
after completing the deploy job for the database identified by the prefix address.

• before_action
(Optional) In deploy mode, specifies a custom action that you want to have performed
before starting the upgrade job for the specific database job addressed by the prefix. If
you want to have a script run before all upgrade jobs, then specify that script by using the
local parameter (global.before_action)

• catctl_options
(Optional) Specifies one or more of a set of catctl.pl options that you can select for
AutoUpgrade to submit for catctl.pl to override default behavior.

• checklist
(Optional) Specifies the path to a checklist that you can use to override the default list of
fixups that AutoUpgrade performs, such as fixups that you do not want implemented
automatically, due to policy or security concerns.

• close_source
(Optional) Closes the source non-CDB or source PDB just before AutoUpgrade starts an
unplug-relocate upgrade.

• del_after_upgrade_pfile
(Optional) Specifies a path and file name of a PFILE whose parameters you want to have
removed after upgrade.

• del_during_upgrade_pfile
(Optional) Specifies a path and file name of a PFILE whose parameters you want to have
removed during upgrade.

• drop_win_src_service
(Optional) For upgrades on Microsoft Windows, specifies whether to drop the Windows
operating system service for the source Oracle Database after upgrade.

Chapter 2
Local Parameters for the AutoUpgrade Configuration File

2-21



• env
(Optional) Specifies custom operating system environment variables set on your
operating system, excluding ORACLE_SID, ORACLE_HOME, ORACLE_BASE, and
TNS_ADMIN.

• exclusion_list
(Optional) Sets a list of PDBs that you want to be excluded from the AutoUpgrade
run. This parameter only applies to the multitenant architecture (CDB) databases.
If you are plugging in and upgrading a non-CDB database, then this parameter is
ignored.

• ignore_errors
(Optional) Enables you to specify a comma-delimited list of specific Oracle errors
that you want AutoUpgrade to ignore during the upgrade or patching process.

• keep_source_pdb
(Optional) Specifies if the source PDB in an unplug-plug upgrade operation is kept
in a closed state instead of being removed from the source CDB.

• log_dir
(Optional) Sets the location of log files that are generated for database upgrades
that are in the set of databases included in the upgrade job identified by the prefix
for the parameter.

• manage_standbys_clause
(Optional) Specifies whether standby Oracle Data Guard standby databases you
identify by DB_UNIQUE_NAME are excluded from AutoUpgrade plug-in upgrades, so
that standby database files can be reused.

• pdbs
(Optional) Sets a list of PDBs on which you want the upgrade to run. This
parameter only applies to upgrades of multitenant architecture (CDB) databases. If
you are plugging in and upgrading a non-CDB database, then this parameter is
ignored.

• raise_compatible
(Optional) Increases the Oracle Database COMPATIBLE initialization parameter to
the default value of the target release after the upgrade is completed successfully.

• remove_rac_config
(Optional) Specifies whether to remove a non-CDB Oracle RAC database from
clusterware on the source Oracle home after a successful conversion to the target
CDB home, or to leave the source database unchanged.

• remove_underscore_parameters
(Optional) Removes underscore (hidden) parameters from PFILE files during
upgrade, and after upgrade, for all Oracle Databases in the configuration file.

• replay
(Optional) Specifies whether to use replay to upgrade the database.

• restoration
(Optional) Generates a Guaranteed Restore Point (GRP) for database restoration.

• revert_after_action
(Optional) Specifies a custom action that you want to have run on the operating
system after a system restoration is completed for the specific database job
addressed by the prefix, and the database is up.

Chapter 2
Local Parameters for the AutoUpgrade Configuration File

2-22



• revert_before_action
(Optional) Specifies a custom action that you want to have run on the operating system
before a system restoration is completed for the specific database job addressed by the
prefix, and the database is up.

• run_hcheck
(Optional) Specifies whether you run Oracle Dictionary Health Checks as part of
preupgrade checks to identify database dictionary inconsistencies.

• run_utlrp
(Optional) Enables or disables running a version of utlrp.sql as part of post upgrade, to
recompile only invalid objects in Oracle-maintained schemas.

• sid
(Required) Identifies the Oracle system identifier (SID) of the database that you want to
upgrade.

• skip_tde_key_import
(Optional) When set to yes, the upgrade is run, but import of the source database
KeyStore into the target database is skipped, without raising an error.

• source_base
(Optional) Specifies the source ORACLE_BASE path for the source Oracle home.

• source_dblink
(Optional) Specifies the database link set up for an unplug-plug relocate (hot clone)
upgrade.

• source_home
(Required for analyze, fixups, and deploy modes. Optional for upgrade mode.)
Current Oracle home (ORACLE_HOME) of the database that you want to upgrade.

• source_ldap_admin_dir
(Optional) Specifies the path to the LDAP_ADMIN directory in the source database home.

• source_tns_admin_dir
(Optional) Specifies the path to the TNS_ADMIN directory in the source database home.

• start_time
(Optional) Sets a future start time for the upgrade job to run. Use this parameter to
schedule upgrade jobs to balance the load on your server, and to prevent multiple jobs
from starting immediately.

• target_base
(Optional) Specifies the target ORACLE_BASE path for the target Oracle home.

• target_cdb
(Optional) Specifies the SID of the target CDB into which a non-CDB Oracle Database is
plugged in. This parameter is mandatory when you want to upgrade and convert a non-
CDB Oracle Database.

• target_pdb_copy_option=file_name_convert
(Optional) Specifies the file_name_convert option used by the create pluggable
database statement that AutoUpgrade runs when converting a non-CDB database to a
PDB or an existing PDB from a different source CDB into a PDB in the specified target
CDB.

• target_pdb_name
(Optional) Specifies the name that you want to assign to a non-CDB source Oracle
Database after it is plugged in to the target CDB.

Chapter 2
Local Parameters for the AutoUpgrade Configuration File

2-23



• target_ldap_admin_dir
(Optional) Specifies the path to the LDAP_ADMIN directory in the target database
home.

• target_tns_admin_dir
(Optional) Specifies the path to the TNS_ADMIN directory in the target database
home.

• timezone_upg
(Optional) Enables or disables running the time zone upgrade as part of the
AutoUpgrade process.

• tune_setting
(Optional) Enables special workflows that alter the behavior of AutoUpgrade
during runtime, depending on the workflow option that you specify.

• upgrade_node
(Optional) Specifies the node on which the current user configuration is valid. The
default value is localhost.

add_after_upgrade_pfile
(Optional) Specifies a path and file name of a PFILE whose parameters you want to
add after the upgrade.

Examples

sales3.add_after_upgrade_pfile=/path/to/my/pfile_add.ora

add_during_upgrade_pfile
(Optional) Specifies a path and file name of a PFILE whose parameters you want to
add during the upgrade.

Examples

sales3.add_during_upgrade_pfile=/path/to/my/newpfile.ora

after_action
(Optional) In deploy mode, specifies a custom action that you want to have performed
after completing the deploy job for the database identified by the prefix address.

Usage Notes

The script that you use must be in the form of name.ext (for example, myscript.sh, so
that AutoUpgrade can identify the type of script that you want to run. Permitted
extension options:

• Unix shell (.sh)

• Microsoft Windows batch (.bat, .cmd)

• Microsoft Windows PowerShell (.ps1)

• Oracle SQL file (.sql), with a local operation only designated by the prefix.

Chapter 2
Local Parameters for the AutoUpgrade Configuration File

2-24



By default, if the script fails, then AutoUpgrade continues to run. Use the Y flag to specify that
AutoUpgrade stops if the operating system detects that your script fails. If the script finishes
with a status different than 0, then it is considered a failed completion.

In contrast to the global after_action parameter, the local after_action parameter can
specify a SQL script, which then runs on the database using the target Oracle Database
binaries on a non-CDB Oracle home, or on CDB$ROOT. If you want to run additional container-
specific actions, then they must be set within the code. For more complex scenarios, you can
run container-specific actions in a shell.

The output of the script is captured and stored in files. Both stdout and stderr are captured.
The files are stored in the postupgrade subdirectory in the directory matching the specific
database or job.

The following environment variables are set in the shell that runs the script:

• ORACLE_SID
• ORACLE_UNQNAME
• ORACLE_BASE
• ORACLE_HOME
• TNS_ADMIN

Examples

Run the specified script after AutoUpgrade starts processing, with the Y flag set to stop
AutoUpgrade if the script fails:

sales2.after_action=/user/path/script.sh Y 

Run the specified script after AutoUpgrade starts processing the deploy option, with
AutoUpgrade set to continue to run if the script fails:

sales3.after_action=/user/path/script.sh 

before_action
(Optional) In deploy mode, specifies a custom action that you want to have performed before
starting the upgrade job for the specific database job addressed by the prefix. If you want to
have a script run before all upgrade jobs, then specify that script by using the local parameter
(global.before_action)

Usage Notes

The script that you use must be in the form of name.ext (for example, myscript.sh), so that
AutoUpgrade can identify the type of script that you want to run. Permitted extension options:

• Unix shell (.sh)

• Microsoft Windows batch (.bat, .cmd)

• Microsoft Windows PowerShell (.ps1)

• Oracle SQL file (.sql), with a local operation only designated by the prefix.

Chapter 2
Local Parameters for the AutoUpgrade Configuration File

2-25



By default, if the script fails, then AutoUpgrade continues to run. Use the Y flag to
specify that AutoUpgrade stops if the operating system detects that your script fails. If
the script finishes with a status different than 0, then it is considered a failed
completion.

In contrast to the global before_action parameter, the local before_action parameter
can specify a SQL script, which can run on the database in the source database
Oracle home, using the earlier release Oracle Database binaries. The script runs on a
non-CDB Oracle home, or on CDB$ROOT. If you want to run additional container-specific
actions, then they must be set within the code. For more complex scenarios, you can
run container-specific actions in a shell.

The output of the script is captured and stored in files. Both stdout and stderr are
captured. The files are stored in the preupgrade subdirectory in the directory matching
the specific database or job.

The following environment variables are set in the shell that runs the script:

• ORACLE_SID
• ORACLE_UNQNAME
• ORACLE_BASE
• ORACLE_HOME
• TNS_ADMIN

Examples

Run the specified script before AutoUpgrade starts processing deploy mode, with the
Y flag set to stop AutoUpgrade if the script fails:

sales.before_action=/user/path/script.sh Y 

Run the specified script before AutoUpgrade starts processing, with AutoUpgrade set
to continue to run if the script fails:

sales4.before_action=/user/path/script.sh 

catctl_options
(Optional) Specifies one or more of a set of catctl.pl options that you can select for
AutoUpgrade to submit for catctl.pl to override default behavior.

Usage Notes

Available catctl.pl options:

• -n Number of processes to use for parallel operations. For Replay upgrades, the
number of parallel processes used for the upgrade defaults to the value of
(CPU_COUNT divided by 4) . For Classic upgrades, the default for CDB$ROOT is 8.

• -N Number of processors to use when upgrading PDBs. For Replay upgrades, the
number of parallel processes used for the upgrade defaults to the value of
(CPU_COUNT divided by 4) For Classic upgrades, the default is 2

Chapter 2
Local Parameters for the AutoUpgrade Configuration File

2-26



• -T Takes offline user schema-based table spaces.

• -z Turns on production debugging information for catcon.pl.

Examples

sales4.catctl_options=-n 24 -N 4

Related Topics

• Upgrade Script (catctl.pl) Parameters

checklist
(Optional) Specifies the path to a checklist that you can use to override the default list of
fixups that AutoUpgrade performs, such as fixups that you do not want implemented
automatically, due to policy or security concerns.

Usage Notes

To use this parameter during other AutoUpgrade modes, you must run AutoUpgrade in
analyze mode. After AutoUpgrade finishes the analysis, you can then find the checklist file
identified by the database name under the precheck directory (dbname_checklist.cfg).
Update the file manually to exclude the fixups that you want AutoUpgrade to bypass, and
save the file with a new name. When you run AutoUpgrade again, you can specify the
parameter pointing to the checklist file that you created, and modify fixups that are performed
for individual databases. If you do not specify a checklist file path, then the set of fixups that
run during the upgrade is the latest version of the checklist file that is created during the
deploy mode that you specified.

Examples

sales.checklist=/u01/app/oracle/upgrade-jobs/salesdb_checklist.cfg

In the preceding example, salesdb_checklist.cfg is the checklist configuration file for the
database salesdb.

close_source
(Optional) Closes the source non-CDB or source PDB just before AutoUpgrade starts an
unplug-relocate upgrade.

Usage Notes

During an unplug-relocate operation, if close_source is set to yes (the default), then
AutoUpgrade closes source non-CDB or source PDB just before starting the upgrade.
Additionally, if Oracle Real Application Clusters or Oracle Grid Infrastructure (CRS) services
are configured for a non-CDB source, then they are disabled before starting the upgrade.

This parameter can only be used when the source and target databases are both on the
same system. When they are on different systems, the source non-CDB or PDB cannot be
closed, because AutoUpgrade has no access to it.

Chapter 2
Local Parameters for the AutoUpgrade Configuration File

2-27



Options

[yes | no]

The default value is yes.

Examples

sales3.close_source=yes

del_after_upgrade_pfile
(Optional) Specifies a path and file name of a PFILE whose parameters you want to
have removed after upgrade.

Examples

sales3.del_after_upgrade_pfile=/path/to/my/pfile_del.ora

del_during_upgrade_pfile
(Optional) Specifies a path and file name of a PFILE whose parameters you want to
have removed during upgrade.

Examples

sales3.del_during_upgrade_pfile=/path/to/my/oldpfile.ora

drop_win_src_service
(Optional) For upgrades on Microsoft Windows, specifies whether to drop the Windows
operating system service for the source Oracle Database after upgrade.

Usage Notes

By default, for Oracle Database upgrades on Microsoft Windows operating systems,
after AutoUpgrade shuts down the Windows Oracle Database service and completes
the upgrade, it leaves the service in place. Leaving the service down but in place gives
you the option to restore the database to the source Oracle home without having to
recreate the Microsoft Windows service for the database. However, you can choose to
have the Microsoft Windows service for the source database removed automatically
after upgrade is completed successfully. If either no is specified, or no value is is
specified, then the service is shut down on the source, but left in place after the
upgrade.

Options

[yes | no]

Chapter 2
Local Parameters for the AutoUpgrade Configuration File

2-28



The default value is no.

Examples

upg1.drop_win_src_service=yes 

env
(Optional) Specifies custom operating system environment variables set on your operating
system, excluding ORACLE_SID, ORACLE_HOME, ORACLE_BASE, and TNS_ADMIN.

Usage Notes

Use this parameter to provide environment setting that are indicated in the database
sqlnet.ora file, such as secure socket layer cipher suites that are used for Oracle Wallet.
Multiple settings are comma-delimited.

Syntax:

prefix=VARIABLE1=value1 [, VARIABLE2=value2, ...]

Example

Assume that for the PDB sales2, the value for WALLET_LOCATION is set using custom
environment variables:

WALLET_LOCATION=
  (SOURCE=
    (METHOD=file)
    (METHOD_DATA=(DIRECTORY=/databases/wallets/$CUSTOM_ENV1/$CUSTOM_ENV2))

In that case, for AutoUpgrade to know what those custom environment variables are, you
must provide them using the env parameter, where dir1 is the path indicated by the
environment variable CUSTOM_ENV1, and dir2 is the path specified by CUSTOM_ENV2:

sales2.env=CUSTOM_ENV1=dir1,CUSTOM_ENV2=dir2

exclusion_list
(Optional) Sets a list of PDBs that you want to be excluded from the AutoUpgrade run. This
parameter only applies to the multitenant architecture (CDB) databases. If you are plugging in
and upgrading a non-CDB database, then this parameter is ignored.

Usage Notes

Use this parameter to provide a list of PDBs to exclude from the AutoUpgrade run. The PDB
list is comma-delimited. It can contain either a list of PDB names, or an asterisk character (*),
which indicates that you want ot exclude all PDBs that are open on the CDB at the time that
you run AutoUpgrade.

Chapter 2
Local Parameters for the AutoUpgrade Configuration File

2-29



Syntax:

prefix.exclusion_list=[pdb-name|*][,pdb-name,...]

Examples

Assume that you want to exclude PDBs pdb1 and pdb2 from the upgrade of cdb
sales1. The following entry in the configuration file excludes pdb1 and pdb2 from being
processed during the AutoUpgrade run:

sales1.exclusion_list=pdb1,pdb2

This entry in the configuration file excludes all open PDBs from the CDB sales2:

sales2.exclusion_list=*

ignore_errors
(Optional) Enables you to specify a comma-delimited list of specific Oracle errors that
you want AutoUpgrade to ignore during the upgrade or patching process.

Usage Notes

If you add this parameter to your configuration file, then the error numbers that you
specify are ignored during the upgrade for the upgrade prefix that you specify.

Examples

sales3.ignore_errors=ORA-48181,ORA-00001

keep_source_pdb
(Optional) Specifies if the source PDB in an unplug-plug upgrade operation is kept in a
closed state instead of being removed from the source CDB.

Usage Notes

By default, the source PDB is removed from the source CDB during the upgrade
process. When keep_source_pdb is set to YES, the source PDB is not removed from
the earlier release system. You are only able to set the parameter to YES when the
copy option is specified in the parameter target_pdb_copy_option. When the copy
option is not used, this parameter is ignored, because the PDB must be dropped.
Without a copy, the existing datafiles can only be used by a single CDB.

Options

[yes | no]

The default value is no.

Chapter 2
Local Parameters for the AutoUpgrade Configuration File

2-30



Example

sales1.keep_source_pdb=yes

log_dir
(Optional) Sets the location of log files that are generated for database upgrades that are in
the set of databases included in the upgrade job identified by the prefix for the parameter.

Usage Notes

When set, AutoUpgrade creates a hierarchical directory based on a local log file path that you
specify. For example, where the job identifier prefix is sales, and where log_dir is identified
as upgrade-jobs, and stage1, stage2, and stagen represent stages of the upgrades:

/u01/app/oracle/upgrade-jobs
                                      /temp/
                                      /sales/
                                      /sales/stage1
                                      /sales/stage2
                                      /sales/stagen

You cannot use wild cards for paths, such as tilde (~). You must use a complete path.

Example

salesdb.log_dir=/u01/app/oracle/upgrade-jobs

By default, if the global configuration file parameter global.autoupg_log_dir is specified,
and you do not specify log_dir, then the default is the path specified in
global.autoupg_log_dir.

When neither global.autoupg_log_dir nor log_dir is specified, then by default the log files
are placed in the location indicated by the orabase utility for the databases that you include in
your configuration file. In that case, the default logs directory is in the path ORACLE_BASE/
cfgtoollogs/autoupgrade.

If the orabase utility fails for all databases included in the configuration file, then the log file
location is then based on the temp directory for the user running AutoUpgrade.

manage_standbys_clause
(Optional) Specifies whether standby Oracle Data Guard standby databases you identify by
DB_UNIQUE_NAME are excluded from AutoUpgrade plug-in upgrades, so that standby database
files can be reused.

Usage Notes

Before upgrades of database configurations with standby databases, to reduce potential
issues, Oracle recommends that you run AutoUpgrade in analyze mode on your standby
databases.

Chapter 2
Local Parameters for the AutoUpgrade Configuration File

2-31



Options

In the following syntax, pdb-name is a DB_UNIQUE_NAME of a source PDB that you are
upgrading to the target CDB in an unplug/plug upgrade.

manage_standbys_clause=STANDBYS=[STANDBYS=NONE|STANDBYS=ALL|
STANDBYS=ALL EXCEPT ('pdb-name', 'pdb-name', ...)|STANDBYS=('pdb-
name', 'pdb-name', ...)]

The default value is NONE.

Examples

In the following example, any non-CDB or pluggable database that is a member of an
Oracle Data Guard standby is not excluded from AutoUpgrade plug-in upgrades:

upg2.sid=cdb1 
upg2.pdbs=* 
upg2.target_cdb=cdb21x 
upg2.source_home=/source/18x 
upg2.target_home=/target/21x
upg2.manage_standbys_clause=standbys=none

In the following example, applying the redo on data files on all standby databases is
deferred on all AutoUpgrade plug-in upgrades:

upg3.sid=cdb2 
upg3.pdbs=* 
upg3.target_cdb=cdb21x 
upg3.source_home=/source/18x 
upg3.target_home=/target/21x
upg3.manage_standbys_clause=standbys=all

In the following example, during the AutoUpgrade plug-in upgrades, applying the redo
on data files is deferred on all standby PDBs except PDBs cdb3_stby_1 and
cdb3_stby_2.

upg4.sid=cdb3 
upg4.pdbs=* 
upg4.target_cdb=cdb21x 
upg4.source_home=/source/12.2x 
upg4.target_home=/target/21x
upg4.manage_standbys_clause=standbys=all except 
('cdb3_stby_1','cdb3_stby_2')

Chapter 2
Local Parameters for the AutoUpgrade Configuration File

2-32



In the following example, during the AutoUpgrade plug-in upgrades, applying the redo on
data files is deferred only on standby PDB cdb4_stby1.

upg4.sid=cdb4 
upg4.pdbs=* 
upg4.target_cdb=cdb21x 
upg4.source_home=/source/12.2x 
upg4.target_home=/target/21x
upg4.manage_standbys_clause=standbys=('cdb4_stby_1')

pdbs
(Optional) Sets a list of PDBs on which you want the upgrade to run. This parameter only
applies to upgrades of multitenant architecture (CDB) databases. If you are plugging in and
upgrading a non-CDB database, then this parameter is ignored.

Usage Notes

The PDB list is comma-deliminated. The list can contain either PDB names, or a star
character (*), which indicates that you want to upgrade all PDBs that are open on the CDB at
the time that you run AutoUpgrade. If the parameter is not specified, then the default value is
*.

If running in ANALYZE mode, AutoUpgrade ignores the PDBs in a mounted state.

If running in FIXUPS, DEPLOY or UPGRADE mode, AutoUpgrade opens the PDBs in mount state
in read-write mode, upgrade mode, or both, depending on the execution mode.

Example

sales1.pdbs=pdb1, pdb2, pdbn
   upgr1.pdbs=*

raise_compatible
(Optional) Increases the Oracle Database COMPATIBLE initialization parameter to the default
value of the target release after the upgrade is completed successfully.

Usage Notes

Options:

• Y : Increase the COMPATIBLE parameter setting to the target release

• N : Do not increase the COMPATIBLE parameter setting to the target release

The default is N.

Chapter 2
Local Parameters for the AutoUpgrade Configuration File

2-33



Caution:

• After the COMPATIBLE parameter is increased, database downgrade is not
possible.

• Oracle recommends that you only raise the COMPATIBLE parameter to the
current release level after you have thoroughly tested the upgraded
database.

• Regardless of what value you use for the autoupgrade command-line
parameter restore, if you set the value of the configuration file
parameter raise_compatible to yes, then before starting the upgrade,
you must delete manually any guaranteed restore point you have
created. After the upgrade is completed successfully, AutoUpgrade
deletes the guaranteed restore point it creates before starting the
upgrade. When AutoUpgrade starts the POSTUPGRADE stage, there is
no way to restore the database.

Example

sales1.raise_compatible=yes

remove_rac_config
(Optional) Specifies whether to remove a non-CDB Oracle RAC database from
clusterware on the source Oracle home after a successful conversion to the target
CDB home, or to leave the source database unchanged.

Usage Notes

By default, the source Oracle RAC database configuration on a non-CDB is removed
from the source Oracle Grid Infrastructure when it is migrated to a CDB during the
upgrade process. When remove_rac_config is set to no, the source Oracle RAC
database is not removed from the earlier release non-CDB system.

Options

[yes | no]

The default value is yes.

Example

upg1.remove_rac_config=no

Chapter 2
Local Parameters for the AutoUpgrade Configuration File

2-34



remove_underscore_parameters
(Optional) Removes underscore (hidden) parameters from PFILE files during upgrade, and
after upgrade, for all Oracle Databases in the configuration file.

Usage Notes

Underscore parameters should only be used by advice of Oracle Support.

Options

[yes | no]
The default value is no.

Example

sales1.remove_underscore_parameters=yes

replay
(Optional) Specifies whether to use replay to upgrade the database.

Usage Notes

By default, AutoUpgrade performs a Classic upgrade to upgrade the database.

Options

[yes | no]
The default value is no.

Example

upg1.replay=yes

restoration
(Optional) Generates a Guaranteed Restore Point (GRP) for database restoration.

Usage Notes

If you set restoration=no, then both the database backup and restoration must be
performed manually. Use this option for databases that operate in NOARCHIVELOG mode, and
for Standard Edition and Standard Edition 2 databases, which do not support the Oracle
Flashback technology feature Flashback Database. If you do not specify the parameter, then
the default value (yes) is used, and a guaranteed restore point is created.

Options

[yes | no]
The default value is yes.

Chapter 2
Local Parameters for the AutoUpgrade Configuration File

2-35



Example

sales1.restoration=no

revert_after_action
(Optional) Specifies a custom action that you want to have run on the operating
system after a system restoration is completed for the specific database job addressed
by the prefix, and the database is up.

Usage Notes

The action that you specify with revert_after_action runs on the target Oracle home
binaries after the restoration process is completed, and the database is up.

The script that you specify to run must be in the form of name.ext (for example,
myscript.sh), so that AutoUpgrade can identify the type of script that you want to run.
Permitted extension options:

• Unix shell (.sh)

• Microsoft Windows batch (.bat, .cmd)

• Microsoft Windows PowerShell (.ps1)

• Oracle SQL script (.sql), with a local operation on the database designated by the
revert_before_action parameter prefix.

Options

Stop on fail: [Y|N]. The default is N.

By default, if the specified script fails, then AutoUpgrade continues to run (N. To specify
that AutoUpgrade stops if the script fails, use the Y flag. If the script finishes running on
the operating system with a status different than 0, then AutoUpgrade identifies the
script as failed.

Examples

Run the script you specify on the operating system after AutoUpgrade completes
processing the restoration, with the Y flag set to stop AutoUpgrade if the script fails:

sales3.revert_after_action =/user/path/script.sh Y

Run the script you specify on the operating system after AutoUpgrade completes
processing the restoration. With no flag, the default stop on fail option is N, so
AutoUpgrade continues to run if the script fails:

sales3.revert_after_action =/user/path/script.sh

Chapter 2
Local Parameters for the AutoUpgrade Configuration File

2-36



revert_before_action
(Optional) Specifies a custom action that you want to have run on the operating system
before a system restoration is completed for the specific database job addressed by the
prefix, and the database is up.

Usage Notes

The action that you specify with revert_before_action runs on the target Oracle home
binaries before database restoration is started, and the database is up.

The script that you specify to run must be in the form of name.ext (for example,
myscript.sh), so that AutoUpgrade can identify the type of script that you want to run.
Permitted extension options:

• Unix shell (.sh)

• Microsoft Windows batch (.bat, .cmd)

• Microsoft Windows PowerShell (.ps1)

• Oracle SQL script (.sql), with a local operation on the database designated by the
revert_before_action parameter prefix.

Options

Stop on fail: [Y|N]. The default is N.

By default, if the specified script fails, then AutoUpgrade continues to run (N. To specify that
AutoUpgrade stops if the script fails, use the Y flag. If the script finishes running on the
operating system with a status different than 0, then AutoUpgrade identifies the script as
failed.

Examples

Run the script you specify on the operating system before AutoUpgrade starts the restoration,
with the Y flag set to stop AutoUpgrade if the script fails:

sales3.revert_before_action =/user/path/script.sh Y

Run the script you specify on the operating system before AutoUpgrade starts the restoration.
With no flag, the default stop on fail option is N, so AutoUpgrade continues to run if the script
fails:

sales3.revert_before_action =/user/path/script.sh

run_hcheck
(Optional) Specifies whether you run Oracle Dictionary Health Checks as part of preupgrade
checks to identify database dictionary inconsistencies.

Usage Notes

To help to identify database dictionary inconsistencies, you can specify that AutoUpgrade
runs the DBMS_HCHECK PL/SQL package on the source database as part of preupgrade

Chapter 2
Local Parameters for the AutoUpgrade Configuration File

2-37



checks. If set, the AutoUpgrade run_hcheck parameter enables you to specify for each
upgrade source database that AutoUpgrade runs either the full array of Oracle
Dictionary Health Checks on the database dictionary, or that it runs only the most
critical set of checks. If the check detects potential or critical problems with the
database dictionary, then it prevents the upgrade from starting.

Oracle Dictionary Health Check results are stored under the AutoUpgrade precheck
directory in the format dbname_healthcheck_result.log, where dbname is the name of
the database on which the check was run. For more information about Oracle
Dictionary Health Check, refer to the DBMS_HCHECK package documentation in Oracle
Database PL/SQL Packages and Types Reference.

Options

[full| critical]
If the parameter is not set, then the default is to not run DBMS_HCHECK.

Example

sales1.run_hcheck=full
sales2.run_hcheck=critical

Related Topics

• DBMS_HCHECK

run_utlrp
(Optional) Enables or disables running a version of utlrp.sql as part of post upgrade,
to recompile only invalid objects in Oracle-maintained schemas.

Usage Notes

The utlrp utility recompiles all Data Dictionary and user objects that become invalid
during a database upgrade. If you set run_utlrp=no, or if you want invalid user objects
also to be recompiled, then Oracle recommends that you use this utility to recompile
invalid objects after upgrading with AutoUpgrade.

Options

[yes | no]
The default value is yes.

Example

prefix.run_utlrp=yes

Chapter 2
Local Parameters for the AutoUpgrade Configuration File

2-38



sid
(Required) Identifies the Oracle system identifier (SID) of the database that you want to
upgrade.

Example

sales1.sid=salesdb

skip_tde_key_import
(Optional) When set to yes, the upgrade is run, but import of the source database KeyStore
into the target database is skipped, without raising an error.

Usage Notes

Note:

This parameter is deprecated, because it is no longer needed. It can be removed in
a future AutoUpgrade release. Instead of using this parameter, Oracle recommends
that you either use the -load_password command line option to add the TDE
password to AutoUpgrade's keystore, or add the TDE password to a Secure
External Password Store (SEPS).

You can use this option for nonCDB-to-PDB and unplug/plug operations. When import of the
source database KeyStore into the target database is skipped, AutoUpgrade will leave the
PDB open in upgrade mode, so that you can import the keys manually yourself. After you
import the keys, you must then restart the database in normal mode.

Options

[yes | no]
The default value is no.

Example

sales1.skip_tde_key_import=yes

source_base
(Optional) Specifies the source ORACLE_BASE path for the source Oracle home.

Examples

source_base=/u01/app/oracle
sales4.source_base=/u04/app/oracle4

Chapter 2
Local Parameters for the AutoUpgrade Configuration File

2-39



source_dblink
(Optional) Specifies the database link set up for an unplug-plug relocate (hot clone)
upgrade.

Usage Notes

To set up an unplug-plug relocate upgrade for a non-CDB or a PDB, you must first set
up a database link between the source database and the target database location. You
then pass that database link to AutoUpgrade using the source_dblink parameter. You
identify source database name associated with the database link as a suffix to
source_dblink. parameter. You also have the option to specify a time value, in
seconds, that the database is refreshed from the database link.

Note:

This option is available for source database releases Oracle Database
12.1.0.2 and later.

The source_dblink parameter becomes active when you use the
target_pdb_copy_option parameter. When you use source_dblink, you must also
must specify a value for the file_name_convert parameter, either to convert file
names, or to specify not to convert file names. If file_name_convert is set to none,
then you must also set db_create_file_dest to specify where you want to place the
database files.

You can also choose to set a refresh interval, in seconds, specifying how frequently
the target database is updated over the database link from the source database. You
can use the refresh interval with the start_time parameter to keep the source
database refreshed for the target location. If no refresh rate is specified, then the
source database is cloned only one time, and no refresh occurs. If the refresh rate is
specified, but you do not specify a future start time using the start_time parameter,
then the refresh interval value is ignored, and the database is cloned only one time.

Options

• (Required) The source database name, specified as a suffix.

• (Required) The name of the database link that you created.

• (Optional) The refresh rate for the target database from the source database, in
seconds. If you specify a refresh rate, then typically you also specify a future start
time using the start_time parameter.

• (Optional) CLONE_ONLY. Adding this option specifies that the PDB that is created is
a clone that is never refreshed, and that the upgrade is started immediately after
the clone operation is completed. This option is required when the source is
Oracle Database 12.1 (Release 12.1.0.2).

Examples

In the following example, two database links are created:

Chapter 2
Local Parameters for the AutoUpgrade Configuration File

2-40



• pdbxcdb18x_link, created on the PDB source database named pdbx:

CREATE DATABASE LINK pdbxcdb18x_link CONNECT TO remote-user IDENTIFIED BY 
password  
USING'(DESCRIPTION =(ADDRESS = (PROTOCOL = TCP)(HOST
GRANT CREATE SESSION, CREATE PLUGGABLE DATABASE, SELECT_CATALOG_ROLE TO 
remote-user;
GRANT READ ON sys.enc$ TO remote-user;

• db18x_link, created on the non-CDB source database named db18x:

CREATE DATABASE LINK db18x_link CONNECT TO remote-user IDENTIFIED BY 
password 
USING'(DESCRIPTION =(ADDRESS = (PROTOCOL = TCP)(HOST = db-node1)(PORT = 
1521))
(CONNECT_DATA = (SERVICE_NAME = db18x)))';

In the AutoUpgrade configuration file, the database name associated with the database link is
specified by using that name as a suffix to source_dblink: The suffix: pdbx for the PDB
source database, and the suffix db18x for the non-CDB source database.

In the following example, source_dblink is used to specify the dblink for the source database
pdbx. The PDB upgrade deployment starts immediately after you start AutoUpgrade, because
no time interval is specified:

upg1.source_dblink.pdbx=pdbxcdb18x

Using the same configuration file, AutoUpgrade starts the upgrade of the database named
db18x in 1 hour and 40 minutes after AutoUpgrade is started from the command line.
Between the time that AutoUpgrade is started, and the deployment time specified by
start_time, the cloned target database is refreshed every 20 seconds from the source.

upg1.source_dblink.db18x=db18x_link 20 
upg1.start_time=+1h40m

In the following example, the source database db18x is cloned to the target PDB db18x_link,
and the upgrade is started immediately after that source database is cloned successfully:

upg1.source_dblink.db18x=db18x_link CLONE_ONLY

source_home
(Required for analyze, fixups, and deploy modes. Optional for upgrade mode.) Current
Oracle home (ORACLE_HOME) of the database that you want to upgrade.

Usage Notes

For the mode upgrade, the source home and target home values can be the same path.

Chapter 2
Local Parameters for the AutoUpgrade Configuration File

2-41



Example

sales2.source_home=/path/to/my/source/oracle/home

source_ldap_admin_dir
(Optional) Specifies the path to the LDAP_ADMIN directory in the source database
home.

Usage Notes

This parameter has no effect on Microsoft Windows, because on Windows, the
LDAP_ADMIN environmental variable is set within the registry.

Example

sales1.source_ldap_admin_dir=/u01/app/oracle/12.2/dbhome01/ldap/admin

source_tns_admin_dir
(Optional) Specifies the path to the TNS_ADMIN directory in the source database home.

Usage Notes

This parameter has no effect on Microsoft Windows, because on Windows, the
TNS_ADMIN environmental variable is set within the registry.

Example

sales1.source_tns_admin_dir=/u01/app/oracle/12.2/dbhome01/network/admin

start_time
(Optional) Sets a future start time for the upgrade job to run. Use this parameter to
schedule upgrade jobs to balance the load on your server, and to prevent multiple jobs
from starting immediately.

Usage Notes

Values must either take the form now (start immediately), or take the English Date
Format form DD/MM/YYYY or MM/DD/YYYY, where MM is month, DD is day, and
YYYY is year. If you do not set a value, then the default is now.

Permitted values:

now
30/12/2019 15:30:00
01/11/2020 01:30:15
2/5/2020 3:30:50

Chapter 2
Local Parameters for the AutoUpgrade Configuration File

2-42



If more than one job is started with the start_time value set to now, then AutoUpgrade
schedules start times based on resources available in the system, which can result in start
time for jobs that are separated by a few minutes.

Values are invalid that use the wrong deliminator for the date or time element, or that use the
wrong date or hour format, such as the following:

30-12-2019 15:30:00
01/11/2020 3:30:15pm
2020/06/01 01:30:15   

Examples

sales1.start_time=now
sales2.start_time=07/11/2020 01:30:15

target_base
(Optional) Specifies the target ORACLE_BASE path for the target Oracle home.

Examples

target_base=/u01/app/oracle
sales4.target_base=/u04/app/oracle4

target_cdb
(Optional) Specifies the SID of the target CDB into which a non-CDB Oracle Database is
plugged in. This parameter is mandatory when you want to upgrade and convert a non-CDB
Oracle Database.

Example

emp.target_cdb=salescdb

Chapter 2
Local Parameters for the AutoUpgrade Configuration File

2-43



target_pdb_copy_option=file_name_convert
(Optional) Specifies the file_name_convert option used by the create pluggable
database statement that AutoUpgrade runs when converting a non-CDB database to a
PDB or an existing PDB from a different source CDB into a PDB in the specified target
CDB.

Usage Notes

Caution:

Specifying target_pdb_copy_option enables AutoUpgrade to manage the
recovery as needed. When target_pdb_copy_option is not set, and the
default nocopy option is used, there is no recovery of the default PDB.
Ensure that you have a backup of your source PDB.

This option is only used when creating a pluggable database within the target CDB. If
you do not specify this parameter, then the default value of the parameter is NOCOPY,
and existing data files on the source database are reused. When you do specify this
parameter, then you must append a suffix to the parameter that specifies either the
source database name or PDB name (target_pdb_copy_option.suffix, and specify
file_name_convert= with one of the following options:

• Specify source file names (f) and target replacement file names (r) ('f', 'r'), or
specify NONE

• If you are creating a refreshable clone database, then append a suffix to the
parameter that specifies either the source database name or PDB name
(target_pdb_copy_option.suffix

On the target CDB, if you are using ASM, or if you have the parameters
DB_CREATE_FILE_DEST or PDB_FILE_NAME_CONVERT set, and you want these parameters
on the target CDB to take effect for replacement file names, then set the value of
prefix.target_pdb_copy_option.source-db-name-or-
pdb=file_name_convert=NONE.

If you want one or more data file names changed during conversion on the target
CDB, then enter values for the parameter to indicate the source database name or
PDB, specified as a suffix, the source filename you want to change, and the target
filename to which you want the existing files copied, using the syntax
prefix.target_pdb_copy_option.source-db-name-or-pdb=('f1', 'r1', 'f2',
'r2', . . .), where f1 is the first filename pattern on your source, r1 is the first
replacement filename pattern on your target CDB, f2 is the second filename pattern on
your source, r2 is the second replacement file pattern on your target CDB, and so on.

Syntax

prefix.target_pdb_copy_option.source-db-name-or-
pdb=file_name_convert=('f1', 'r1', 'f2', 'r2', 'f3', 'r3'...)

Chapter 2
Local Parameters for the AutoUpgrade Configuration File

2-44



Example

In this example, AutoUpgrade will copy existing datafiles during conversion of a database
specified with the prefix string upg1, and with the suffix sales to replace the file path string
and filename /old/path/pdb_2 with the file path string and filename /new/path/depsales:

upg1.target_pdb_copy_option.sales=file_name_convert=('/old/path/pdb_2', 
'/new/path/depsales') 

To convert OMF files with target_pdb_copy_optionsource-db-name-or-
pdb=file_name_convert, the target Oracle home must be Oracle Database 19c Release
Update 6 or later (19.6.0), or Oracle Database 18c Release Update 10 or later (18.10.0).

In this example, the parameter is configured so that data files that are stored on Oracle ASM,
but not stored as Oracle-managed files, are copied from +DATA/dbname/sales to +DATA/
dbname/depsales:

upg1.target_pdb_copy_option.sales=file_name_convert=('+DATA/dbname/sales', 
'+DATA/dbname/depsales')

target_pdb_name
(Optional) Specifies the name that you want to assign to a non-CDB source Oracle Database
after it is plugged in to the target CDB.

Usage Notes

This parameter is optional. It is used when you want to upgrade and convert a non-CDB
Oracle Database to a PDB, or you want to unplug a PDB from a source release CDB and
plug it in for an upgrade to a targetr release CDB.

When you upgrade and convert an existing non-CDB database to a PDB on a target CDB,
the target_cdb parameter is mandatory, because it specifies the target CDB. If you want to
determine how the PDB is created on the target CDB, you can use the optional parameters
target_pdb_name and target_pdb_copy_option to specify how the PDB is created on the
target CDB. However, if neither optional parameters are used, then a full upgrade of the
source CDB is performed.

The default name for the target PDB when you convert a non-CDB to a PDB is to use the
database unique name of the non-CDB Oracle Database. To specify a name that is different
from the existing name of the non-CDB when you plug it in to the CDB, set the new name by
using target_pdb_name. In addition, if you are creating a refreshable clone database, then
append a suffix to the parameter that specifies either the source database name or PDB
name (target_name.suffix)

Examples

In the following example, the source non-CDB database is emp19. The target_pdb_name
parameter is used to change the name to emp23pdb on the target CDB database.

upg.target_pdb_name=emp23pdb

Chapter 2
Local Parameters for the AutoUpgrade Configuration File

2-45



For a refreshable clone, add a prefix to indicate the source database for the clone. In
this example, the the source container database is db122b and we are cloning pdb1
from db122b into the target container database db19. The suffix pdb1 is used as the
identifier for both target_pdb_name and source_dblink. The pdb1 suffix identifier
associates both the target pdb name and the dblink used to move the data from the
source, pdb1, into the target PDB PLUG122.

global.autoupg_log_dir=/tmp/logs
upg1.source_home=/u01/app/oracle/122
upg1.target_home=/u01/app/oracle/19
upg1.sid=db122b
upg1.target_cdb=db19
upg1.pdbs=pdb1
upg1.target_pdb_name.pdb1=PLUG122
upg1.target_pdb_copy_option.pdb1=file_name_convert=('/u01/app/oracle/
oradata/db122b/pdb1', '/u01/app/oracle/plug/pdb122b')
upg1.source_dblink.pdb1=pdbxcdb122x_link

target_ldap_admin_dir
(Optional) Specifies the path to the LDAP_ADMIN directory in the target database home.

Example

sales1.target_ldap_admin_dir=/u01/app/oracle/19/dbhome01/ldap/admin

target_tns_admin_dir
(Optional) Specifies the path to the TNS_ADMIN directory in the target database home.

Example

sales1.target_tns_admin_dir=/u01/app/oracle/19/dbhome01/network/admin

timezone_upg
(Optional) Enables or disables running the time zone upgrade as part of the
AutoUpgrade process.

Usage Notes

To preserve data integrity, Oracle recommends that you upgrade the time zone file
(DST) settings at the time of your database upgrade. In particular, upgrade the
timezone when you have data that depend on the time zone, such as timestamp with
time zone table columns. Note that this setting can be disabled by overwriting the
fixup on the checklist file.

If you explicitly disable the time zone file upgrade in your AutoUpgrade configuration
file, then Oracle recommends that you perform this task either as part of your upgrade
plan, or at a later point in time.

Chapter 2
Local Parameters for the AutoUpgrade Configuration File

2-46



Options

[yes | no]
The default value is yes for upgrade, and no for patching.

Example

sales1.timezone_upg=no

Note:

If you patch a database with RU 19.18 or later, then updated time zone files are
installed in the Oracle home by default. A new database created with Database
Configuration Assistant (DBCA) in a patched Oracle home will be created with the
latest time zone files.

tune_setting
(Optional) Enables special workflows that alter the behavior of AutoUpgrade during runtime,
depending on the workflow option that you specify.

Usage Notes

The tune_setting parameter enables you to fine-tune upgrade steps or the resources
allocated to the processing of the upgrades specified by the container databases or
pluggable databases (CDBs or PDBs) specified by the parameter prefix in your AutoUpgrade
configuration file. This capability can be useful for some upgrades if you find the default
AutoUpgrade values are insufficient for your system requirements, or when you want to
enable nondefault AutoUpgrade options.

Syntax

prefix.tune_setting=option[, option, option, ...]

Select the tune_setting options that provide the AutoUpgrade runtime tuning that you
require from the list that follows. To combine multiple tuning options with the tune_setting
parameter, use comma delimiters. Example:

sales3.tune_setting=proactive_fixups=true,query_hint_parallel=8,utlrp_threads
_per_pdb=8

Note:

You can concatinate multiple parameters together in a single tune_setting entry

Chapter 2
Local Parameters for the AutoUpgrade Configuration File

2-47



Option Description

active_nodes_limit Sets a new total of active cluster member nodes that you
want to use during a distributed upgrade of Oracle Real
Application Clusters databases. The default is 2. If the
number you specify is equal to or greater than the maximum
number of cluster member nodes, then all nodes are taken.

sales3.tune_setting=active_nodes_limit=4
distributed_upgrade Specifies that AutoUpgrade performs a distributed

upgrade. A distributed upgrade leverages the resources of
the Oracle Clusterware cluster member nodes to perform
the upgrades of PDBs more rapidly on the cluster. Use this
option when a CDB in an Oracle RAC cluster of at least two
nodes is being upgraded. When you choose this option, the
proactive_fixups option is also enabled by default.
Example:

sales3.tune_setting=proactive_fixups=true,dist
ributed_upgrade=true

make_pdbs_available Opens the PDBs designated by the prefix in read/write and
non-restricted mode after postfixups are complete when
proactive fixups mode is used. This option enables PDBs
designated by the prefix to become available for service
immediately after the upgrade is completed, while other
PDBs continue to be upgraded, which can be useful for
large fleet upgrade deployments.

Precautions:

Choosing this option enables the PDBs you designate to
accept service requests from users, while other PDBs are
being upgraded. The response time of the PDBs for service
requests, and the time required for ongoing PDB upgrades
can each be affected.

Example:

sales3.tune_setting=make_pdbs_available=true
proactive_fixups Enables proactive fixups mode, where the PDBs are

upgraded as the last stage of the upgrade. When the
number of PDBs is higher than the CPU count defined in the
database, divided by 2, choosing this tuning option can
result in a faster upgrade. Example:

sales3.tune_setting=proactive_fixups=true
Precautions:

If the number of CPUs is higher than the number of PDBs,
then changing this setting may not improve performance.

query_hint_parallel Specifies a parallel thread specification to the code that
gathers data from the tablespaces during the query of the
PDBs specified by the prefix, so that you can allocate a
greater number or lesser number of parallel threads to the
PDBs specified by the prefix. Example:

sales3.tune_setting=query_hint_parallel=8
Choosing this option can cause AutoUpgrade to consume
more system resources.

Chapter 2
Local Parameters for the AutoUpgrade Configuration File

2-48



Option Description

utlrp_threads_per_pdb Overwrites default maximum number of threads generated
by the recompilation of invalid objects in the CDB, and uses
the number of threads that you specify. Example:

sales3.tune_setting=utlrp_threads_per_pdb=8
Precautions:

If the number of threads specified exceeds available threads
on the system, then performance can be compromised.

utlrp_pdb_in_parallel Overwrites default maximum number of concurrent
recompilation threads to the number that you specify. Use
this option to overwrite the default maximum number of
concurrent processes of recompilation of invalid objects.
Example:

sales3.tune_setting=utlrp_pdbs_in_parallel=2
Precautions:

Each PDB process requires from the system as many
threads as specified by utlrp_threads_per_pdb.

Examples

In the following example, the database upgrades specified with the prefix sales3 are Oracle
Real Application Clusters Oracle Database instances. The tune_setting parameter is used
to set these database instances to use the setting distributed_upgrade, which distributes
the upgrade load across multiple CDBs in the Oracle Grid Infrastructure cluster:

sales3.tune_setting=proactive_fixups=true,distributed_upgrade=true

In the following example, the database upgrades specified with the prefix sales3 are tuned
with multiple tune_setting parameter options:

sales3.tune_setting=proactive_fixups=true,query_hint_parallel=8,utlrp_threads
_per_pdb=8

upgrade_node
(Optional) Specifies the node on which the current user configuration is valid. The default
value is localhost.

Usage Notes

The purpose of this parameter is to prevent AutoUpgrade from processing databases that are
listed in the configuration file that you use with AutoUpgrade, where the value for the
upgrade_node parameter does not correspond to the current host name. It does not enable
running AutoUpgrade remotely. You can use the keyword localhost as a wild card to indicate
that databases on the local host should be processed.

Use case:

The configuration file config.cfg contains 10 databases. Five of the databases have the
value of upgrade_node set to denver01. The remaining five have the value of upgrade_node
set to denver02. If AutoUpgrade is run on the server denver01 using the configuration file

Chapter 2
Local Parameters for the AutoUpgrade Configuration File

2-49



config.cfg, then AutoUpgrade only processes the databases where upgrade_node is
set to denver01. It ignores the databases where upgrade_node is set to denver02. The
utility hostname identifies the value used to resolve the upgrade node.

Example

hostname
denver02
sales1.upgrade_node=denver01

Global Parameters for the AutoUpgrade User Configuration
File

To specify a default behavior for a parameter for all Oracle Database upgrades
addressed in the configuration file, you can use the optional AutoUpgrade global
parameters.

Usage Notes

All global parameters are optional, except for target_home when using upgrade or
deploy mode. All global parameters take the prefix global.

The add_after_upgrade_pfile and del_during_upgrade_pfile global and local
PFILE parameters operations are run in the following hierarchical order:

1. Global Actions

a. Remove global

b. Add global

2. Local Actions

a. Remove local

b. Add local

• add_after_upgrade_pfile
(Optional) Specifies a path and file name of a PFILE whose parameters you want
to add after the PFILE is upgraded.

• add_during_upgrade_pfile
(Optional) Specifies a path and file name of a PFILE whose parameters you want
to add during the PFILE is upgraded.

• after_action
(Optional) Specifies a path and a file name for a custom user script that you want
to have run after all the upgrade jobs finish successfully.

• autoupg_log_dir
(Optional) Sets the location of the log files, and temporary files that belong to
global modules, which AutoUpgrade uses.

• before_action
(Optional) Specifies a custom user script that you want to have run for all
upgrades before starting the upgrade jobs.

Chapter 2
Global Parameters for the AutoUpgrade User Configuration File

2-50



• catctl_options
(Optional) Specifies one or more of a set of catctl.pl options that you can select for
AutoUpgrade to submit for catctl.pl to override default behavior.

• del_after_upgrade_pfile
(Optional) Specifies a path and file name of a PFILE whose parameters you want to have
removed after the PFILE upgrade.

• del_during_upgrade_pfile
(Optional) Specifies a path and file name of a PFILE whose parameters you want to have
removed during the PFILE upgrade.

• drop_grp_after_upgrade
(Optional) Deletes the Guaranteed Restore Point (GRP) after database upgrade.

• keystore

• raise_compatible
(Optional) Increases the compatible parameter to the default value of the target release
after the upgrade is completed successfully.

• replay
(Optional) Specifies whether to use replay to upgrade the database.

• target_base
(Optional) Specifies the target ORACLE_BASE path for the target Oracle home.

• target_home
(Optional for analyze and fixups modes. Required for upgrade and deploy modes.) Sets
a global target home for all of the databases specified in the configuration file.

• target_version
(Optional) Specifies the target release version on which you want AutoUpgrade to
perform the upgrade.

• upgradexml
(Optional) Generates the upgrade.xml file.

add_after_upgrade_pfile
(Optional) Specifies a path and file name of a PFILE whose parameters you want to add after
the PFILE is upgraded.

Usage Notes

This specification applies to all databases in the user configuration file.

Example

global.add_after_upgrade_pfile=/path/to/my/add_after.ora

Chapter 2
Global Parameters for the AutoUpgrade User Configuration File

2-51



add_during_upgrade_pfile
(Optional) Specifies a path and file name of a PFILE whose parameters you want to
add during the PFILE is upgraded.

Usage Notes

This specification applies to all databases in the user configuration file.

Example

global.add_during_upgrade_pfile=/path/to/my/add_during.ora

after_action
(Optional) Specifies a path and a file name for a custom user script that you want to
have run after all the upgrade jobs finish successfully.

Usage Notes

The script that you use must be in the form of name.ext (for example, myscript.sh, so
that AutoUpgrade can identify the type of script that you want to run. Permitted
extension options:

• Unix shell (.sh)

• Microsoft Windows batch (.bat, .cmd)

• Microsoft Windows PowerShell (.ps1)

By default, if the script fails, then AutoUpgrade continues to run. Use the Y flag to
specify that AutoUpgrade stops if the operating system detects that your script fails. If
the script finishes with a status different than 0, then it is considered a failed
completion.

The output of the script is captured and stored in files. Both stdout and stderr are
captured. The files are stored in the postupgrade subdirectory in the directory
matching the specific database or job.

The following environment variables are set in the shell that runs the script:

• ORACLE_SID
• ORACLE_UNQNAME
• ORACLE_BASE
• ORACLE_HOME
• TNS_ADMIN

Examples

If the script fails, then stop AutoUpgrade:

global.after_action=/path/to/my/script.sh Y 

Chapter 2
Global Parameters for the AutoUpgrade User Configuration File

2-52



If the script fails, then continue AutoUpgrade:

global.after_action=/path/to/my/script.sh

autoupg_log_dir
(Optional) Sets the location of the log files, and temporary files that belong to global modules,
which AutoUpgrade uses.

Usage Notes

You can configure different log directory path in the userconfig file in the logs directory for a
specific prefix

If you do not set this parameter to a path, then by default the log files are placed in the
location indicated by the orabase utility for the databases that you include in your
configuration file. In that case, the default logs directory is in the path ORACLE_BASE/
cfgtoollogs/autoupgrade.

If the orabase utility fails for all databases included in the configuration file, then the log file
location is then based on the temp directory for the user running AutoUpgrade.

Examples

global.autoupg_log_dir=/path/to/my/global/log/dir

Configure different log directory path in the userconfig file in the logs directory for a specific
prefix

global.autoupg_log_dir=/path/to/my/global/log/dir
myprefix.log_dir=global.auto_log_dir:different/path

The result of using this syntax is that log files and temporary files are placed in the following
path for databases identified by the prefix myprefix:

/path/to/my/global/log/dir/different/path

before_action
(Optional) Specifies a custom user script that you want to have run for all upgrades before
starting the upgrade jobs.

Usage Notes

The script that you use must be in the form of name.ext (for example, myscript.sh), so that
AutoUpgrade can identify the type of script that you want to run. If you want to have a script
run before a specific upgrade job, then specify that script by using the local parameter
(local.before_action)

Permitted extension options:

• Unix shell (.sh)

Chapter 2
Global Parameters for the AutoUpgrade User Configuration File

2-53



• Microsoft Windows batch (.bat, .cmd)

• Microsoft Windows PowerShell (.ps1)

By default, if the script fails, then AutoUpgrade continues to run. Use the Y flag to
specify that AutoUpgrade stops if the operating system detects that your script fails. If
the script finishes with a status different than 0, then it is considered a failed
completion.

The output of the script is captured and stored in files. Both stdout and stderr are
captured. The files are stored in the preupgrade subdirectory in the directory matching
the specific database or job.

The following environment variables are set in the shell that runs the script:

• ORACLE_SID
• ORACLE_UNQNAME
• ORACLE_BASE
• ORACLE_HOME
• TNS_ADMIN

Examples

If the script fails, then stop AutoUpgrade:

global.before_action=/path/to/my/script.sh Y 

If the script fails, then continue AutoUpgrade:

global.before_action=/path/to/my/script.sh

catctl_options
(Optional) Specifies one or more of a set of catctl.pl options that you can select for
AutoUpgrade to submit for catctl.pl to override default behavior.

Options

Available catctl.pl options:

• -n Number of processes to use for parallel operations. For Replay upgrades, the
number of parallel processes used for the upgrade defaults to the value of
(CPU_COUNT divided by 4) . For Classic upgrades, the default for CDB$ROOT is 8.

• -N Number of processors to use when upgrading PDBs. For Replay upgrades, the
number of parallel processes used for the upgrade defaults to the value of
(CPU_COUNT divided by 4) For Classic upgrades, the default is 2

• -T Takes offline user schema-based table spaces.

• -z Turns on production debugging information for catcon.pm.

Chapter 2
Global Parameters for the AutoUpgrade User Configuration File

2-54



Examples

global.catctl_options=-n 24 -N 4

Related Topics

• Upgrade Script (catctl.pl) Parameters

del_after_upgrade_pfile
(Optional) Specifies a path and file name of a PFILE whose parameters you want to have
removed after the PFILE upgrade.

Usage Notes

This specification applies to all databases in the user configuration file.

Example

global.del_after_upgrade_pfile=/path/to/my/del_after.ora

del_during_upgrade_pfile
(Optional) Specifies a path and file name of a PFILE whose parameters you want to have
removed during the PFILE upgrade.

Usage Notes

This specification applies to all databases in the user configuration file.

Example

global.del_during_upgrade_pfile=/path/to/my/del_during.ora

drop_grp_after_upgrade
(Optional) Deletes the Guaranteed Restore Point (GRP) after database upgrade.

Usage Notes

If you select this option, then GRP is deleted after upgrade completes successfully. If you set
raise_compatible to yes, then you must also set the parameter drop_grp_after_upgrade to
yes.

Options

[yes | no]
The default value is no.

Chapter 2
Global Parameters for the AutoUpgrade User Configuration File

2-55



Example

global.drop_grp_after_upgrade=yes

keystore
(Optional) Specifies the location for a dedicated software keystore used exclusively by
AutoUpgrade to store passwords, and other sensitive information.

Usage Notes

You can use the keystore parameter to specify where you want AutoUpgrade to create
a dedicated software keystore that is used exclusively by AutoUpgrade.

The AutoUpgrade keystore contains the file ewallet.p12 (similar to other kind of
keystores used by the database). The file is created when you use the save command
in the TDE prompt. If you choose to generate an auto-login keystore, then the file
cwallet.sso is created as well. If you have an auto-login keystore, then AutoUpgrade
does not prompt for a keystore password when AutoUpgrade starts.

The keystore generated by AutoUpgrade contains sensitive information, and is
protected by a password that you choose when the keystore is used for the first time.
Each time changes are made to the keystore, the password must be supplied. Unless
you decide to create an auto-login keystore for AutoUpgrade, each time you start
AutoUpgrade, and AutoUpgrade requires information from the keystore, you must
provide the keystore password.

Caution:

Because the directory you specify with global.keystore contains a software
keystore, it should be protected using the same security best practices as
you use with all other highly secure keystore files.

Example

In the following example, replace ORACLE_SID with the system identifier of the
database using the keystore.

global.keystore=/etc/oracle/keystores/ORACLE_SID/autoupgrade

raise_compatible
(Optional) Increases the compatible parameter to the default value of the target
release after the upgrade is completed successfully.

Usage Notes

If you select this option, then GRP is deleted after upgrade completes successfully. If
you set raise_compatible to yes, then you must also set the parameter
drop_grp_after_upgrade to yes.

Chapter 2
Global Parameters for the AutoUpgrade User Configuration File

2-56



Caution:

• After the COMPATIBLE parameter is increased, database downgrade is not possible.

• Oracle recommends that you only raise the COMPATIBLE parameter to the current release
level after you have thoroughly tested the upgraded database.

• Regardless of what value you use for the autoupgrade command-line parameter
restore, if you set the value of the configuration file parameter raise_compatible to yes,
then before starting the upgrade, you must delete manually any guaranteed restore point
you have created. After the upgrade is completed successfully, AutoUpgrade deletes the
guaranteed restore point it creates before starting the upgrade. When AutoUpgrade starts
the POSTUPGRADE stage, there is no way to restore the database.

• If you set raise_compatible to yes, then you must also set the parameter
drop_grp_after_upgrade to yes.

Options

[yes | no]
The default value is no.

Example

global.raise_compatible=yes

replay
(Optional) Specifies whether to use replay to upgrade the database.

Usage Notes

By default, AutoUpgrade performs a Classic upgrade to upgrade the database.

Options

[yes | no]
The default value is no.

Example

global.replay=yes

target_base
(Optional) Specifies the target ORACLE_BASE path for the target Oracle home.

Usage Notes

Use of this parameter is only required in rare cases.

Chapter 2
Global Parameters for the AutoUpgrade User Configuration File

2-57



Example

global.target_base=/u01/app/oracle
sales4.target_base=/u04/app/oracle4

target_home
(Optional for analyze and fixups modes. Required for upgrade and deploy modes.)
Sets a global target home for all of the databases specified in the configuration file.

Usage Notes

Use this option to avoid specifying the same target_home multiple times. This
parameter can be overwritten locally.

Example

global.target_home=/target/Oracle/home

target_version
(Optional) Specifies the target release version on which you want AutoUpgrade to
perform the upgrade.

Usage Notes

AutoUpgrade uses the release version information that you provide in this parameter
to ensure that the correct checks and fixups are used for the target Oracle Database
release to which you are upgrading. The format for this parameter are period-delimited
values of valid Oracle versions.

Valid values

• 12.2

• 18

• 19

• 21

This option is only required if the target home is not present on the system, or if the
target home is a 12.2 release. Otherwise, AutoUpgrade can derive the target release
value.

Example

global.target_version=19
employees.target_version=12.2

Chapter 2
Global Parameters for the AutoUpgrade User Configuration File

2-58



upgradexml
(Optional) Generates the upgrade.xml file.

Usage Notes

The upgrade.xml generated is equivalent to the file in earlier releases that the preupgrade
package generated when you specified the XML parameter. This file is created during the
analyze mode (mode -analyze). It is generated in the prechecks directory defined for the
AutoUpgrade log files.

Options

[yes | no]
The default value is no.

Example

global.upgradexml=yes

Understanding Non-CDB to PDB Upgrades with AutoUpgrade
You can upgrade and convert a non-CDB to a PDB in a new CDB in a single operation, or
upgrade and then convert a Non-CDB database to a PDB in a pre-existing CDB.

Starting with Oracle Database 21c, all upgrades must use the multitenant architecture. Use of
the non-CDB Oracle Database architecture is desupported. When you migrate your database
from the non-CDB architecture to PDBs, you obtain up to three user-configurable PDBs in a
container database (CDB), without requiring a multitenant license. If you choose to configure
four or more PDBs, then a multitenant license is required.

The non-CDB to PDB feature of the AutoUpgrade utility provides you flexible options to
control how you upgrade your earlier release non-CDB Oracle Database when you upgrade
and convert to the multitenant architecture. Starting with Oracle Database 21c, when you
have an existing target release CDB, you can use AutoUpgrade to convert a non-CDB Oracle
Database to a PDB on the target release CDB during the upgrade. To perform an upgrade
and conversion of the non-CDB to a PDB, you provide information about your non-CDB in the
AutoUpgrade configuration file. If you prefer, you can also choose to convert your non-CDB
Oracle Database to a PDB in the source release, and then plug in the PDB to a target release
CDB, where the upgrade is performed when you plug in the PDB.

Caution:

Before you run AutoUpgrade to complete the conversion and upgrade. Oracle
strongly recommends that you create a full backup of your source database, and
complete thorough testing of the upgrade. There is no option to roll back to the non-
CDB Oracle Database state after AutoUpgrade starts this procedure.

Chapter 2
Understanding Non-CDB to PDB Upgrades with AutoUpgrade

2-59



Figure 2-1    Converting a Non-CDB to a PDB and Upgrading the PDB Using
AutoUpgrade

In the following illustration, a non-CDB Oracle Database goes through the following
steps:

1. AutoUpgrade uses the information you provide in the configuration file to move the
non-CDB source release database to the target release Oracle Database.

2. The source database is converted to a PDB on the target release.

3. The source database (now a PDB) is upgraded to the target release.

Requirements for Source Non-CDB and Target CDB

Requirements on the source non-CDB and target CDB to perform upgrades and
conversions to PDBs are as follows:

• The target CDB must be created in advance of performing the upgrade with
AutoUpgrade.

• The PDB created from the non-CDB must continue to use the source non-CDB
name. You cannot change the name of the database.

• The set of Oracle Database options in the target database must be either be the
same as in the source database, or a superset of the options in the source
database.

• The endian format of the source non-CDB and target CDB are identical.

• The source non-CDB and target CDB have compatible character sets and national
character sets.

• The source non-CDB Oracle Database release and operating system platform
must be supported for direct upgrade to the target CDB release.

• Operating system authentication is enabled for the source non-CDB and target
CDB.

The minimum COMPATIBLE parameter setting for the source database must be at least
12.2.0. If the COMPATIBLE setting is a lower version, then during the conversion and

Chapter 2
Understanding Non-CDB to PDB Upgrades with AutoUpgrade

2-60



upgrade process, COMPATIBLE is set to 12.2.0. During the conversion, the original datafiles
are retained. They are not copied to create the new PDB. To enable AutoUpgrade to perform
the upgrade, edit the AutoUpgrade configuration file to set the AutoUpgrade parameters
target_version to the target CDB release, and identify the CDB to which the upgraded
database is placed using target_cdb. During the conversion and upgrade process,
AutoUpgrade uses that information to complete the upgrade to the target CDB.

Example 2-5    AutoUpgrade Configuration File for Non-CDB to PDB Conversion

To use the non-CDB to PDB option, you must set the parameters target_cdb in the
AutoUpgrade configuration file. The target_cdb parameter value defines the Oracle system
identifier (SID) of the container database into which you are plugging the non-CDB Oracle
Database. For example:

global.autoupg_log_dir=/home/oracle/autoupg
upg1.sid=s12201
upg1.source_home=/u01/product/12.2.0/dbhome_1
upg1.log_dir=/home/oracle/autoupg
upg1.target_home=/u01/product/21.1.0/dbhome_1
upg1.target_cdb=cdb21x

You can see a more detailed example of a non-CDB to PDB upgrade from Oracle Database
12c (12.2) to Oracle Database 19c using the multitenant architecture in the blog post
"Unplug / Plug / Upgrade with AutoUpgrade," in Mike Dietrich's Blog, Upgrade Your Database
Now!, and also a demonstration of the noncdb_to_pdb.sql automatic feature using
AutoUpgrade, in AutoUpgrade to Oracle Database 19c - and plug into a CDB.

Related Topics

• Unplug / Plug / Upgrade with AutoUpgrade in Mike Dietrich, Upgrade Your Database Now

• AutoUpgrade to Oracle Database 19c - and plug into a CDB

• Permitted Features, Options, and Management Packs by Oracle Database Offering

Non-CDB to PDB Upgrade Guidelines and Examples
Before conversion, back up your datafiles and database, and follow the guidelines for your
source Oracle Database release.

To ensure that you can recover from a failed conversion, Oracle strongly recommends that
allow time in your upgrade plan to implement your backup strategy before you use
AutoUpgrade to perform a non-CDB upgrade and conversion.

Guidelines for Upgrade Planning

The non-CDB-to-PDB conversion and upgrade process is not recoverable. To ensure a
proper upgrade and conversion, and to reduce unexpected downtime, Oracle strongly
recommends that you address any error conditions found during the analyze phase.

If you use the target_pdb_copy_option in your configuration file to create copies of your data
files, then your existing database is available as a backup. This is a safe option, but will
require additional time and disk space. If you do not set the target_pdb_copy_option in your
AutoUpgrade configuration file, then the database conversion uses the same file location and
file names that are used with existing database files. To prevent potential data loss, ensure
that your data is backed up, and consider your file placement plans before starting
AutoUpgrade.

Chapter 2
Non-CDB to PDB Upgrade Guidelines and Examples

2-61

https://mikedietrichde.com/2021/06/07/unplug-plug-upgrade-with-autoupgrade/
https://www.youtube.com/watch?v=NQAGKbIhb3Q


GRP and Upgrades from Non-CDB to Multitenant Architecture

• During the upgrade, AutoUpgrade creates a guaranteed restore point (GRP) that
is available only in the context of the upgrade stage of the AutoUpgrade Deploy
workflow. To ensure against any potential data loss, you must implement your
backup strategy before starting AutoUpgrade.

• Database conversion from non-CDB to the multitenant architecture is performed
during the AutoUpgrade Drain stage. After this stage is complete, the GRP that
AutoUpgrade creates is removed, and it is not possible to use the AutoUpgrade
restore command to restore the database. In the event that you require a
recovery to the earlier non-CDB Oracle Database release, you must be prepared
to recover the database manually.

Example 2-6    Upgrading and Converting a Non-CDB to Oracle Database 19c
Using Multitenant Architecture

During the Deploy conversion and upgrade workflow, AutoUpgrade creates a GRP,
and runs the Prefixup stage. If any part of the Deploy workflow up to the Prefixup
stage completion fails, then AutoUpgrade can restore the database back to the GRP
created at the start of the deployment,

However, after the Prefixup stage is complete, the upgraded database is plugged in to
the target release Oracle Database container database (CDB) to complete conversion.
As soon as the non-CDB is plugged into the CDB, the GRP is no longer valid, and is
dropped.

If anything goes wrong during the plug-in, and you did not choose to use the
target_pdb_copy_option in your configuration file to create copies of your data files,
then be aware that AutoUpgrade cannot recover and restore the database. In that
event, you must restore the database manually.

Understanding Unplug-Plug Upgrades with AutoUpgrade
AutoUpgrade can perform an unplug of a pluggable database (PDB) from an earlier
release source container database (CDB), plug it into a later release target CDB, and
then complete all the steps required to upgrade the PDB to the target CDB release.

There are two workflows for unplug-plug PDB upgrades using AutoUpgrade,
depending on how you configure the upgrade:

• You unplug one or more pluggable databases from one source CDB, and plug
them into a new release target CDB

• You unplug multiple pluggable databases from different source CDBs, and plug
them into a new release target CDB

In addition, for unplug-plug operations, AutoUpgrade now supports moving the default
state of a PDB from the source PDB to the target PDB. If you set alter pluggable
database save state on a source PDB, then that state is transferred to the target
PDB, so that the PDB is automatically opened when CDB$ROOT is opened.

Chapter 2
Understanding Unplug-Plug Upgrades with AutoUpgrade

2-62



Caution:

As with any other change to the database, before you run AutoUpgrade to complete
the conversion and upgrade, Oracle strongly recommends that you implement a
reliable backup strategy to prevent unexpected data loss. There is no option to roll
back an unplug-plug PDB upgrade after AutoUpgrade starts this procedure.
Flashback Database also does not work across the PDB conversion, and is not
reversible. Backups are the only fallback strategy.

The following illustration shows the unplug-plug operation, in this case of a single PDB:

1. There is one source Oracle Database, and one target release Oracle Database. At this
stage, create your configuration file and run AutoUpgrade in Analyze mode
(autoupgrade.jar -mode analyze) to check your readiness for upgrade, and to correct
any issues that are reported.

2. You run AutoUpgrade in Deploy mode (autoupgrade.jar -mode deploy). AutoUpgrade
uses the information you provide in the configuration file to move the PDB to the target
release, and plug in the PDB.

3. AutoUpgrade runs prefixups, and then upgrades the PDB to the target release.

Figure 2-2    Unplug-Plug Upgrades from Source to Target

Requirements for Source and Target CDBs

To perform an unplug-plug upgrade, your source and target CDBs must meet the following
conditions:

• You have created the target release CDB, and opened the CDB before starting the
unplug-plug upgrade.

• The endian format of the source and target CDBs are identical.

Chapter 2
Understanding Unplug-Plug Upgrades with AutoUpgrade

2-63



• The set of Oracle Database components configured for the target release CDB
include all of the components available on the source CDB.

• The source and target CDBs have compatible character sets and national
character sets

• The source CDB release must be supported for direct upgrade to the target CDB
release.

• External authentication (operating system authentication) is enabled for the source
and target CDBs

• The Oracle APEX installation type on the source CDBs should match the
installation type on the target CDB.

• There should be no existing guaranteed restore point (GRP) on the non-CDB
Oracle Database that you want to plug in to the CDB.

Note:

With AutoUpgrade 22 and later updates, you can now use AutoUpgrade to
plug into an Oracle Data Guard configuration. AutoUpgrade creates the PDB
with the STANDBYS=NONE clause. After the upgrade, you can re-establish
standbys by recovering the data files on the standby databases.

Features of Unplug-Plug Upgrades

When you select an unplug-plug upgrade, depending on how you configure the
AutoUpgrade configuration file, you can use AutoUpgrade to perform the following
options during the upgrade:

• You can either keep the PDB name that you have in the source CDB, or you can
change the PDB name.

• You can make a copy of the data files to the target CDB, while preserving all of the
old files.

• You can copy the data files to the target location, and then delete the old files on
the source CDB

• You can process one PDB, or you can link to an inclusion list and process many
PDBs in one upgrade procedure; the only limit for the number of PDBs you can
process are the server limits, and the limits for PDBS on the CDB.

Example 2-7    AutoUpgrade Configuration File for Unplug-Plug Upgrades

To use the unplug-plug PDB upgrade option, you must identify the following values in
the AutoUpgrade configuration file:

• The system identifier parameters for the source CDB (parameter sid).

• The target CDB (parameter target_cdb).

• The name of the PDB in the source CDB, and, if you want to convert it, the target
conversion name.

Chapter 2
Understanding Unplug-Plug Upgrades with AutoUpgrade

2-64



For example, where the source CDB is CDB122, the target CDB is cdb21x, the name of the
PDB in the source CDB is pdb2, and the conversion name for the PDB that you want on the
target CDB is depsales:

global.autoupg log_dir=/home/oracle/autoupg
upg1.sid=CDB122
upg1.source_home=/u01/app/oracle/product/12.2.0/dbhome_1
upg1.target_home=/u01/app/oracle/product/19.1.0/dbhome_1
upg1.target_cdb=cdb21x
upg1.pdbs=pdb_2
upg1.target_pdb_name.pdb_2=depsales
upg1.target_pdb_copy_option.pdb_2=file_name_convert=('pdb_2','depsales')

Examples of Non-CDB to PDB Configuration Files for
AutoUpgrade

Use these examples to understand how you can modify your own Oracle Database upgrade
configuration file for AutoUpgrade.

These examples are for an upgrade from an Oracle Database 12c Release 2 (12.2) non-CDB
named DB12 to an Oracle Database 19c PDB named PDB3 in the target Oracle Database
19c CDB named CDB2. To understand details of how the global and local parameters are
used, refer to the parameter references.

Caution:

Because this upgrade is a conversion from a non-CDB to a PDB, AutoUpgrade
cannot create a guaranteed restore point that enables you to restore the non-CDB.
To ensure your ability to recover from an issue, either back up your earlier release
database, or convert the CDB to a PDB in your earlier release Oracle Database,
and then upgrade and convert the earlier release PDB to the later release.

Example 2-8    AutoUpgrade Configuration File for Upgrade and Convert with Separate
Backup Solution for Source Database

In this example, the configuration file directs AutoUpgrade to upgrade and convert the non-
CDB Oracle Database 12c named DB12 to a PDB named PDB3 on the Oracle Database 21c
CDB named CDB2.

global.autoupg_log_dir=/home/oracle/logs
upg1.source_home=/u01/app/oracle/product/12
upg1.target_home=/u01/app/oracle/product/21
upg1.sid=DB12
upg1.target_cdb=CDB2
upg1.target_pdb_name=PDB3

Example 2-9    AutoUpgrade Using target_pdb_copy_option
In this example, the parameter upg1.target_pdb_copy_option is used to have AutoUpgrade
make a copy of the Oracle Database 12c (12.2.0.1) release to a PDB named PDB3, plugged

Chapter 2
Examples of Non-CDB to PDB Configuration Files for AutoUpgrade

2-65



into the Oracle Database 19c CDB1. AutoUpgrade then moves PDB3 from /u02/
oradata/CDB1/pdb3 to /u02/oradata/CDB2/pdb3.

global.autoupg_log_dir=/home/oracle/logs

upg1.source_home=/u01/app/oracle/product/12.2.0.1
upg1.target_home=/u01/app/oracle/product/19
upg1.sid=CDB1
upg1.pdb=PDB3
upg1.target_cdb=CDB2
upg1.target_pdb_copy_option=file_name_convert=('CDB1', 'CDB2')

Chapter 2
Examples of Non-CDB to PDB Configuration Files for AutoUpgrade

2-66



3
Using AutoUpgrade to Upgrade and convert
Non-CDBs to PDBs

The AutoUpgrade Utility simplifies the task of upgrading and converting your earlier release
Oracle Database to a later Oracle Database release using the multitenant architecture.

• AutoUpgrade with Source and Target Database Homes on Same Server (Typical)
When your Oracle Database Source and Target Oracle homes are installed on the same
physical server, use this example.

• AutoUpgrade with Source and Target Database Homes on Different Servers
When your Oracle Database Source and Target Oracle homes are located on different
physical servers, you must complete tasks on both servers.

AutoUpgrade with Source and Target Database Homes on
Same Server (Typical)

When your Oracle Database Source and Target Oracle homes are installed on the same
physical server, use this example.

Context: Source and Target homes are on the same server.

To start the analysis, enter the following command.

java -jar autoupgrade.jar -config config.txt -mode analyze

The command produces a report that indicates any error conditions that the command finds.
Review the error conditions.

To start the deployment of the upgrade, enter the following command:

java -jar autoupgrade.jar -config config.txt -mode deploy

AutoUpgrade with Source and Target Database Homes on
Different Servers

When your Oracle Database Source and Target Oracle homes are located on different
physical servers, you must complete tasks on both servers.

Context: Source and Target Oracle homes are on different physical servers.

To start the analysis, enter the following command.

java -jar autoupgrade.jar -config config.txt -mode analyze

3-1



The command produces a report that indicates any error conditions that the command
finds. Review the error conditions.

Because the source and target Oracle Database Oracle homes are on different
servers, you run fixups on the source server, and the upgrade on the target server.

1. Run fixups on the source server:

java -jar autoupgrade.jar -config config.txt -mode fixups

2. Complete the tasks to move the source Oracle Database from the source server to
the target server.

3. On the target server, start up the database in upgrade mode, and then run
AutoUpgrade in upgrade mode:

java -jar autoupgrade.jar -config config.txt -mode upgrade

Chapter 3
AutoUpgrade with Source and Target Database Homes on Different Servers

3-2



4
Post-Upgrade Tasks for Oracle Database

After you have finished upgrading Oracle Database, complete the required post-upgrade
tasks and consider these recommendations for the new release.

• Check the Upgrade With Post-Upgrade Status Tool
Review the upgrade spool log file and use the Post-Upgrade Status Tool, utlusts.sql.

• Required Tasks to Complete After Upgrading Oracle Database
Review and complete these required tasks that are specified for your environment after
you complete your upgrade.

• Recommended and Best Practices to Complete After Upgrading Oracle Database
Oracle recommends that you complete these good practices guidelines for updating
Oracle Database. Except where noted, these practices are recommended for all types of
upgrades.

Check the Upgrade With Post-Upgrade Status Tool
Review the upgrade spool log file and use the Post-Upgrade Status Tool, utlusts.sql.

The Post-Upgrade Status Tool is located in the path $ORACLE_HOME/rdbms/admin. The
tool is a SQL script that is included with Oracle Database. You run the Post-Upgrade Status
Tool in the environment of the new release. You can run the Post-Upgrade Status Tool at any
time after you upgrade the database.

Required Tasks to Complete After Upgrading Oracle Database
Review and complete these required tasks that are specified for your environment after you
complete your upgrade.

You must complete these postupgrade tasks after you upgrade Oracle Database.

Note:

This list of required tasks is based on the assumption that you have used
AutoUpgrade to perform the upgrade. AutoUpgrade completes automatically many
tasks that otherwise you are required to perform manually.

• Setting Environment Variables on Linux and Unix Systems After Manual Upgrades
Check that required operating system environment variables point to the directories of the
new Oracle Database release.

• Recompile Invalid Objects in the Database
After you install, patch, or upgrade a database, recompile invalid objects on the CDB and
PDBs with a recompilation driver script.

4-1



• Check PL/SQL Packages and Dependent Procedures
It is possible that packages that you installed in the earlier release Oracle
Database are not available in the new release, which can affect applications.

• Configuring the FTP and HTTP Ports and HTTP Authentication for Oracle XML DB
Oracle Database Configuration Assistant (DBCA) does not configure ports for
Oracle XML DB on Oracle Database 12c and later releases. Upgrades use digest
authentication.

• Install Oracle Text Supplied Knowledge Bases After Upgrading Oracle Database
After an Oracle Database upgrade, all user extensions to the Oracle Text supplied
knowledge bases must be regenerated.

• Replace the DEMO Directory in Read-Only Oracle Homes
After upgrading Read-Only Oracle homes, make a copy of the earlier release
Oracle Database demo directory, and replace the demo directory in the Read-Only
Oracle home with the new release demo directory.

• Configure Access Control Lists (ACLs) to External Network Services
Oracle Database 12c and later releases include fine-grained access control to the
UTL_TCP, UTL_SMTP, UTL_MAIL, UTL_HTTP, or UTL_INADDR packages.

• Enabling Oracle Database Vault After Upgrading Oracle Database
Depending on your target database release, you can be required to reenable
Oracle Database Vault, or revoke Oracle Database Vault role granted for upgrade.

• Check for the SQLNET.ALLOWED_LOGON_VERSION Parameter Behavior
Connections to Oracle Database from clients earlier than release 10g fail with the
error ORA-28040: No matching authentication protocol.

Setting Environment Variables on Linux and Unix Systems After
Manual Upgrades

Check that required operating system environment variables point to the directories of
the new Oracle Database release.

Typically, operating system environment variables are set in profiles and shell scripts.
Confirm that the following Oracle user environment variables point to the directories of
the new Oracle home:

• ORACLE_HOME
• PATH
Look for other environment variables that refer to the earlier release Oracle home,
such as LD_LIBRARY_PATH. In general, you should replace all occurrences of the old
Oracle home in your environment variables with the new Oracle home paths.

Related Topics

• Step 2: Ensure That the Required Environment Variables Are Set

Recompile Invalid Objects in the Database
After you install, patch, or upgrade a database, recompile invalid objects on the CDB
and PDBs with a recompilation driver script.

Oracle provides the recompilation scripts utlrp.sql, utlprp.sql, and utlprpom.sql.
These scripts are located in the Oracle_home/rdbms/admin directory.

Chapter 4
Required Tasks to Complete After Upgrading Oracle Database

4-2



Note:

Starting with AutoUpgrade 23.1, when you run the AutoUpgrade utility,
AutoUpgrade runs the utlprpom.sql script, and does not run utlrp.sql. When
AutoUpgrade is used for upgrades to Oracle Database 12c Release 2 (12.2.0.1)
and later releases, AutoUpgrade only recompiles invalid objects owned by Oracle-
maintained schemas. Because database upgrades do not need to touch user
objects, AutoUpgrade maintains this policy when it recompiles invalid objects.

After installing a database, recomplile all invalid objects;

1. Change directory to Oracle_home/rdbms/admin. For example

$ cd $ORACLE_HOME/rdbms/admin

2. Use the catcon.pl script in the Oracle home to run utlrp.sql. For example:

$ORACLE_HOME/perl/bin/perl catcon.pl --n 1 --e --b utlrp --d '''.''' 
utlrp.sql

Note the following conditions of this use case:

• --n parameter: is set to 1, so the script runs each PDB recompilation in sequence.

• --e parameter: turns echo on.

• --b parameter: Sets the log file base name. It is set to utlrp.

Expect a time delay for the serial recompilation of PDBs to complete. Depending on the
number of PDBs that you are upgrading, the recompilation can extend significantly
beyond the time required for the upgrade scripts to complete.

The utlrp.sql script automatically recompiles invalid objects in either serial or parallel
recompilation, based on both the number of invalid objects, and on the number of CPUs
available. CPUs are calculated using the number of CPUs (cpu_count) multiplied by the
number of threads for each CPU (parallel_threads_per_cpu). On Oracle Real Application
Clusters (Oracle RAC), this number is added across all Oracle RAC nodes.

After patching or upgrading a database, there is more than one approach you can use to
recompile invalid Oracle-owned and user-owned objects:

Recompile all invalid objects (the invalid objects in both Oracle and user schemas) by using
utlrp.sql or utlprp.sql.

If time is a factor and the type of invalid objects is predominately application owned, then you
can recompile Oracle-owned invalid objects first, and defer recompiling application-owned
invalid objects to a later time. To recompile invalid objects in Oracle schemas, use
utlprpom.sql. To recompile the remaining invalid objects, use utlrp.sql or utlprp.sql.

Chapter 4
Required Tasks to Complete After Upgrading Oracle Database

4-3



Note:

When you use either utlprp.sql or utlprpom.sql, note that both scripts
require you to define the degree of parallelism that the script should use, or
determine the number of parallel recompile jobs to use.

The script uses syntax as follows, where base is the base name you want to have
given to log files, N is the number of PDBs on which you want to run recompilation jobs
in parallel (degrees of parallelism), script.sql is the Oracle recompilation script you
chose to use, and P is the number of PDBs on which you want to run in parallel:

$ORACLE_HOME/perl/bin/perl $ORACLE_HOME/rdbms/admin/catcon.pl -b base -
d $ORACLE_HOME/rdbms/admin
          -n N -l /tmp script.sql '--pP'

Suppose you are running recompilation in a CDB using the log file base name recomp,
with a degrees of parallelism setting of 3 jobs per PDB container, the script you choose
to use is utlprp.sql, and you want to recompile across at most 10 PDBs at a time. In
that case, the syntax you use to run the recompile operation is similar to the following,

$ORACLE_HOME/perl/bin/perl $ORACLE_HOME/rdbms/admin/catcon.pl -b 
recomp -d $ORACLE_HOME/rdbms/admin -n 10 -l /tmp utlprp.sql '--p3'

Related Topics

• Syntax and Parameters for catcon.pl

Check PL/SQL Packages and Dependent Procedures
It is possible that packages that you installed in the earlier release Oracle Database
are not available in the new release, which can affect applications.

After the upgrade, if you use AutoUpgrade, review the AutoUpgrade report on invalid
objects. If you use a replay upgrade, then check to ensure that any packages that you
may have used in your own scripts, or that you call from your scripts, are available in
the new release. Testing procedures dependent on packages should be part of your
upgrade plan.

Code in database applications can reference objects in the connected database. For
example, Oracle Call Interface (OCI) and precompiler applications can submit
anonymous PL/SQL blocks. Triggers in Oracle Forms applications can reference a
schema object. Such applications are dependent on the schema objects they
reference. Dependency management techniques vary, depending on the development
environment. Oracle Database does not automatically track application dependencies.

Related Topics

• Oracle Database Administrator’s Guide

Chapter 4
Required Tasks to Complete After Upgrading Oracle Database

4-4



Configuring the FTP and HTTP Ports and HTTP Authentication for Oracle
XML DB

Oracle Database Configuration Assistant (DBCA) does not configure ports for Oracle XML
DB on Oracle Database 12c and later releases. Upgrades use digest authentication.

Oracle recommends that when you configure ports, you also configure the authentication for
HTTP for accessing Oracle XML DB Repository to take advantage of improved security
features.

Starting with Oracle Database 12c, Oracle enhanced database security by supporting digest
authentication. Digest authentication is an industry-standard protocol that is commonly used
with the HTTP protocol. It is supported by most HTTP clients. Digest authentication ensures
that passwords are always transmitted in a secure manner, even when an encrypted
(HTTPS) connection is not in use. Support for digest authentication enables organizations to
deploy applications that use Oracle XML DB HTTP, without having to worry about passwords
being compromised. Digest authentication support in Oracle XML DB also ensures that the
Oracle XML DB HTTP server remains compatible with Microsoft Web Folders WebDAV
clients.

After installing or upgrading for the new release, you must manually configure the FTP and
HTTP ports for Oracle XML DB as follows:

1. Use DBMS_XDB_CONFIG.setHTTPPort(HTTP_port_number) to set the HTTP port for Oracle
XML DB:

SQL> exec DBMS_XDB_CONFIG.setHTTPPort(port_number);

2. Use DBMS_XDB_CONFIG.setFTPPort(FTP_port_number) to set the FTP port for Oracle
XML DB:

SQL> exec DBMS_XDB_CONFIG.setFTPPort(FTP_port_number);

Note:

You can query the port numbers to use for FTP and HTTP in the procedure by
using DBMS_XDB_CONFIG.getFTPPort and DBMS_XDB_CONFIG.getHTTPPort
respectively.

3. To see all the used port numbers, query DBMS_XDB_CONFIG.usedport.

Install Oracle Text Supplied Knowledge Bases After Upgrading Oracle
Database

After an Oracle Database upgrade, all user extensions to the Oracle Text supplied knowledge
bases must be regenerated.

Regenerating the user extensions affect all databases installed in the given Oracle home.

After an upgrade, the Oracle Text-supplied knowledge bases that are part of the companion
products for the new Oracle Database are not immediately available. Any Oracle Text

Chapter 4
Required Tasks to Complete After Upgrading Oracle Database

4-5



features dependent on the supplied knowledge bases that were available before the
upgrade do not function after the upgrade. To re-enable such features, you must install
the Oracle Text supplied knowledge bases from the installation media for the new
Oracle Database release.

See Also:

• Oracle Text Application Developer's Guide for information about Oracle
Text-supplied knowledge bases

• Oracle Database Installation Guide for companion products

Replace the DEMO Directory in Read-Only Oracle Homes
After upgrading Read-Only Oracle homes, make a copy of the earlier release Oracle
Database demo directory, and replace the demo directory in the Read-Only Oracle home
with the new release demo directory.

Oracle Database 18c and later releases contain a product demonstration directory in
the file path Oracle_home/rdbms/demo. These directories include examples and
product demonstrations that are specific to the options and features for each Oracle
Database release, some of which you can add to after upgrade by installing Oracle
Database Examples. In your earlier release, if you downloaded and worked with the
earlier release demonstration files, then you have two problems: you want to save your
earlier release work for review and testing with the new release, and you want to
obtain refreshes of the demonstrations that are specific to the new release.

After upgrading the Oracle home, and downloading and doing any other work you
want to do with the new demonstration files, you can then refresh your old
demonstration files.

Example 4-1    Copying the Earlier Release Demo Directory and Refreshing the
Demonstrations in the Read-Only Oracle Home

After the upgrade, use this procedure to save any work in your earlier demo directory in
the Read-Only Oracle home, and and replace the earlier release demo directory with
the new release demo directory:

1. Log in as the Oracle software owner user (oracle).

2. Check if the rdbms/demo directory is copied to the Read Only Oracle home.

In this example, the environment variable ORACLE_BASE_HOME is defined as the path
to the Read-Only Oracle home.

Linux and Unix platforms:

$ ls -l -d $ORACLE_BASE_HOME/rdbms/demo
/u01/app/oracle/product/19.0.0/dbhome_1/rdbms/demo

Chapter 4
Required Tasks to Complete After Upgrading Oracle Database

4-6



Microsoft Windows platforms

ls -l -d %ORACLE_BASE_HOME%\rdbms\demo 
%ORACLE_BASE_HOME%\rdbms\demo

3. Change directory to the Read-Only Oracle home, and make a copy, where
demo.old_release18 is the name you give to your earlier release demonstration files:

cd $ORACLE_BASE_HOME/rdbms
mv demo demo.old_release18

4. Copy the new demo directory from the upgraded Oracle home to the Read-Only Oracle
home.

In this example, the environment variable ORACLE_HOME is defined as the new release
Oracle home.

Linux and Unix:

cp -r $ORACLE_HOME/rdbms/demo demo

Microsoft Windows

xcopy c:\%ORACLE_HOME%\rdbms\demo c:%ORACLE_BASE_HOME%\rdbms\demo /E

Configure Access Control Lists (ACLs) to External Network Services
Oracle Database 12c and later releases include fine-grained access control to the UTL_TCP,
UTL_SMTP, UTL_MAIL, UTL_HTTP, or UTL_INADDR packages.

If you have applications that use these packages, then after upgrading Oracle Database you
must configure network access control lists (ACLs) in the database before the affected
packages can work as they did in earlier releases. Without the ACLs, your applications can
fail with the error "ORA-24247: network access denied by access control list (ACL)."

See Also:

Oracle Database Security Guide for more complicated situations, such as
connecting some users to host A and other users to host B

Enabling Oracle Database Vault After Upgrading Oracle Database
Depending on your target database release, you can be required to reenable Oracle
Database Vault, or revoke Oracle Database Vault role granted for upgrade.

• Upgrading Oracle Database Without Disabling Oracle Database Vault
To upgrade to Oracle Database 12c Release 2 (12.2.0.1) or later releases, either grant
the DV_PATCH_ADMIN role to SYS commonly in the root container, and revoke after the
upgrade, or disable Oracle Database Vault and reenable it after upgrade.

Chapter 4
Required Tasks to Complete After Upgrading Oracle Database

4-7



• Postupgrade Scenarios with Oracle Database Vault
Postupgrade tasks for Oracle Database Vault change, depending on your target
Oracle Database release, and the option you chose to prepare for upgrade.

Upgrading Oracle Database Without Disabling Oracle Database Vault
To upgrade to Oracle Database 12c Release 2 (12.2.0.1) or later releases, either grant
the DV_PATCH_ADMIN role to SYS commonly in the root container, and revoke after the
upgrade, or disable Oracle Database Vault and reenable it after upgrade.

If Oracle Database Vault is enabled and you are upgrading an entire CDB, then use
one of the following methods:

• CDB upgrade method 1: Temporarily grant the DV_PATCH_ADMIN to user SYS
commonly by logging into the root container as a common user with the DV_OWNER
role, and then issuing the GRANT DV_PATCH_ADMIN TO SYS CONTAINER=ALL
statement. Oracle Database Vault controls will be in the same state as it was
before the upgrade. When the upgrade is complete, log into the root container as
the DV_OWNER user, and revoke the DV_PATCH_ADMIN role from SYS by issuing the
REVOKE DV_PATCH_ADMIN FROM SYS CONTAINER=ALL statement.

• CDB upgrade method 2: Log into each container as a user who has the DV_OWNER
role, and then run the DBMS_MACADM.DISABLE_DV procedure. You must first disable
Oracle Database Vault on the PDBs, and then after that, disable Oracle Database
Vault on the root container last. If you are upgrading only one PDB, then you can
disable Oracle Database Vault in that PDB only. After you have completed the
upgrade, you can enable Oracle Database Vault by logging into each container as
the DV_OWNER user and then executing the DVSYS.DBMS_MACADM.ENABLE_DV
procedure. The order of enabling Oracle Database Vault must be the root
container first and PDBs afterward. You can enable the PDBs in any order, but the
root container must be enabled first.

If you manually disable Oracle Database Vault before the upgrade, then you must
enable Oracle Database Vault manually after the upgrade.

If you did not have Oracle Database Vault enabled before the upgrade, then you can
enable it manually after the upgrade.

Note:

This procedure applies to non-CDB upgrades as well

Related Topics

• Oracle Database - Overview of Database Patch Delivery Methods for 12.2.0.1 and
greater (Doc ID 2337415.1)

• Disabling and Enabling Oracle Database Vault Oracle Database Vault
Administrator’s Guide

Postupgrade Scenarios with Oracle Database Vault
Postupgrade tasks for Oracle Database Vault change, depending on your target
Oracle Database release, and the option you chose to prepare for upgrade.

Chapter 4
Required Tasks to Complete After Upgrading Oracle Database

4-8

https://support.oracle.com/rs?type=doc&id=2337415.1
https://support.oracle.com/rs?type=doc&id=2337415.1


Upgrades to Oracle Database 21c and Later

You must choose one of the following options:

• Grant the DV_PATCH_ADMIN role to SYS commonly (container=all).

• Disable Oracle Database Vault before upgrade.

If you granted the DV_PATCH_ADMIN role to SYS before the upgrade, then revoke the
DV_PATCH_ADMIN role from SYS after the upgrade. If you disabled Oracle Database Vault, then
reenable it after the upgrade is complete.

Upgrades to Oracle Database 18c and 19c

You do not need to disable Oracle Database Vault.

Note:

For all upgrades, after the upgrade is complete, Oracle Database Vault has the
same enforcement status that was in place for your source database before the
upgrade.

Check for the SQLNET.ALLOWED_LOGON_VERSION Parameter
Behavior

Connections to Oracle Database from clients earlier than release 10g fail with the error
ORA-28040: No matching authentication protocol.

Starting with Oracle Database 18c, the default value for the SQLNET.ALLOWED_LOGON_VERSION
parameter changed from 11 in Oracle Database 12c (12.2) to 12 in Oracle Database 18c and
later releases. The use of this parameter is deprecated.

SQLNET.ALLOWED_LOGON_VERSION is now replaced with the
SQLNET.ALLOWED_LOGON_VERSION_SERVER and SQLNET.ALLOWED_LOGON_VERSION_CLIENT
parameters. If you have not explicitly set the SQLNET.ALLOWED_LOGON_VERSION_SERVER
parameter in the upgraded database, then connections from clients earlier than release 10g
fail with the error ORA-28040: No matching authentication protocol. For better security,
check the password verifiers of your database users, and then configure the database to use
the correct password verifier by setting the SQLNET.ALLOWED_LOGON_VERSION_SERVER and
SQLNET.ALLOWED_LOGON_VERSION_CLIENT parameters.

If you have password-protected roles (secure roles) in your existing database, and if you
upgrade to Oracle Database 18c and later releases with the default
SQLNET.ALLOWED_LOGON_VERSION_SERVER setting of 12, because those secure roles only have
release 10g verifiers, then the password for each secure role must be reset by the
administrator so that the secure roles can remain usable after the upgrade.

Chapter 4
Required Tasks to Complete After Upgrading Oracle Database

4-9



See Also:

• Oracle Database Security Guide for information about ensuring against
password security threats

• Oracle Database Security GuideOracle Database Security Guide for
information about setting the password versions of users

Recommended and Best Practices to Complete After
Upgrading Oracle Database

Oracle recommends that you complete these good practices guidelines for updating
Oracle Database. Except where noted, these practices are recommended for all types
of upgrades.

• Back Up the Database
Oracle strongly recommends that you at least perform a level 1 backup, or if time
allows, perform a level 0 backup.

• Run AutoUpgrade Postupgrade Checks
If you did not run AutoUpgrade in deploy mode, then run Autoupgrade with the
preupgrade parameter, run in postfixups mode.

• Gathering Dictionary Statistics After Upgrading
To help to assure good performance, use this procedure to gather dictionary
statistics after completing your upgrade.

• Upgrading Statistics Tables Created by the DBMS_STATS Package After
Upgrading Oracle Database
If you created statistics tables using the DBMS_STATS.CREATE_STAT_TABLE
procedure, then upgrade these tables by running
DBMS_STATS.UPGRADE_STAT_TABLE.

• Regathering Fixed Objects Statistics with DBMS_STATS
After an upgrade, or after other database configuration changes, Oracle strongly
recommends that you regather fixed object statistics after you have run
representative workloads on Oracle Database.

• Reset Passwords to Enforce Case-Sensitivity
For upgraded databases, improve security by using case-sensitive passwords for
default user accounts and user accounts.

• Finding and Resetting User Passwords That Use the 10G Password Version
For better security, find and reset passwords for user accounts that use the 10G
password version so that they use later, more secure password versions.

• Understand Oracle Grid Infrastructure, Oracle ASM, and Oracle Clusterware
Oracle Clusterware and Oracle Automatic Storage Management (Oracle ASM) are
both part of an Oracle Grid Infrastructure installation.

• Oracle Grid Infrastructure Installation and Upgrade and Oracle ASM
Oracle ASM is installed with Oracle Grid Infrastructure.

• Add New Features as Appropriate
Review new features as part of your database upgrade plan.

Chapter 4
Recommended and Best Practices to Complete After Upgrading Oracle Database

4-10



• Develop New Administrative Procedures as Needed
Plan a review of your scripts and procedures, and change as needed.

• Migrating Tables from the LONG Data Type to the LOB Data Type
You can use the ALTER TABLE statement to change the data type of a LONG column to
CLOB and that of a LONG RAW column to BLOB.

• Turn Off Traditional Auditing in Upgraded Oracle Databases
Traditional Auditing is desupported in Oracle Database 23c. Oracle recommends that you
turn off traditional audit in your database and use only unified auditing.

• Identify Oracle Text Indexes for Rebuilds
You can run a script that helps you to identify Oracle Text index indexes with token tables
that can benefit by being rebuilt after upgrading to the new Oracle Database release..

• Dropping and Recreating DBMS_SCHEDULER Jobs
If DBMS_SCHEDULER jobs do not function after upgrading from an earlier release, drop
and recreate the jobs.

• Transfer Unified Audit Records After the Upgrade
Review these topics to understand how you can obtain better performance after you
upgrade and migrate to unified auditing

• About Recovery Catalog Upgrade After Upgrading Oracle Database
If you use a version of the recovery catalog schema that is older than that required by the
RMAN client, then you must upgrade it.

• Upgrading the Time Zone File Version After Upgrading Oracle Database
If the AutoUpgrade preupgrade report instructs you to upgrade the time zone files after
completing the database upgrade, and you do not set AutoUpgrade to complete this task
for you, then use any of the supported methods to upgrade the time zone file.

• Enabling Disabled Release Update Bug Fixes in the Upgraded Database
Because bug fixes in Release Updates that can cause execution plan changes are
disabled, Oracle recommends that you enable the disabled bug fixes that you want to
use.

• About Testing the Upgraded Production Oracle Database
Repeat tests on your production database that you carried out on your test database to
ensure applications operate as expected.

Back Up the Database
Oracle strongly recommends that you at least perform a level 1 backup, or if time allows,
perform a level 0 backup.

Related Topics

• Backing Up the Database

Run AutoUpgrade Postupgrade Checks
If you did not run AutoUpgrade in deploy mode, then run Autoupgrade with the preupgrade
parameter, run in postfixups mode.

Chapter 4
Recommended and Best Practices to Complete After Upgrading Oracle Database

4-11



Note:

If you ran AutoUpgrade in deploy mode, then this step was already
completed for you, so you do not need to complete it now.

To see how to check your database after upgrades, use the following example.

Example 4-2    Running AutoUpgrade Using Postupgrade Fixup Mode

1. Set the Oracle home environment to the source Oracle Database home:

setenv ORACLE_HOME /u01/app/oracle/product/12.2.0/dbhome_1

.

2. Set the Oracle System Identifier (SID) to the source Oracle Database SID:

setenv ORACLE_SID db122

.

3. Run AutoUpgrade using the preupgrade parameter in postfixups mode, setting the
target home to the target Oracle Database Oracle home. For example:

java -jar autoupgrade.jar -preupgrade "target_home=/u01/app/oracle/
product/21.0.0/dbhome_1,dir=/autoupgrade/test/log" –mode postfixups

4. Check the results of the postfixup script checks in the file postfixups.xml under
directory /autoupgrade/test/log/db122/102/postfixups.

Gathering Dictionary Statistics After Upgrading
To help to assure good performance, use this procedure to gather dictionary statistics
after completing your upgrade.

Oracle recommends that you gather dictionary statistics both before and after
upgrading the database, because Data Dictionary tables are modified and created
during the upgrade. You gather statistics as a manual procedure after the upgrade,
when you bring the database up in normal mode.

Note:

If you completed your upgrade using the AutoUpgrade utility, then you do not
need to complete this task. The AutoUpgrade utility completes it for you.

CDB: Oracle recommends that you use catcon to gather Data Dictionary statistics
across the entire multitenant architecture

To gather dictionary statistics for all PDBs in a container database, use the following
syntax

Chapter 4
Recommended and Best Practices to Complete After Upgrading Oracle Database

4-12



$ORACLE_HOME/perl/bin/perl $ORACLE_HOME/rdbms/admin/catcon.pl -l /tmp -b
gatherstats -- --x"exec dbms_stats.gather_dictionary_stats"
To gather dictionary statistics on a particular PDB, use syntax similar to the following:

$ORACLE_HOME/perl/bin/perl $ORACLE_HOME/rdbms/admin/catcon.pl -l /tmp -c
'SALES1' -b gatherstats -- --x"exec dbms_stats.gather_dictionary_stats"

In the preceding example the -c SALES1 option specifies a PDB inclusion list for the
command that you run, specifying the database named SALES1. The option -b gatherstats
specifies the base name for the logs. The option --x specifies the SQL command that you
want to execute. The SQL command itself is inside the quotation marks.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

Upgrading Statistics Tables Created by the DBMS_STATS Package After
Upgrading Oracle Database

If you created statistics tables using the DBMS_STATS.CREATE_STAT_TABLE procedure,
then upgrade these tables by running DBMS_STATS.UPGRADE_STAT_TABLE.

In the following example, green is the owner of the statistics table and STAT_TABLE is the
name of the statistics table.

EXECUTE DBMS_STATS.UPGRADE_STAT_TABLE('green', 'stat_table'); 

Perform this procedure for each statistics table.

See Also:

Oracle Database PL/SQL Packages and Types Reference for information about the
DBMS_STATS package

Regathering Fixed Objects Statistics with DBMS_STATS
After an upgrade, or after other database configuration changes, Oracle strongly
recommends that you regather fixed object statistics after you have run representative
workloads on Oracle Database.

Note:

To provide the most correct fixed object statistics for performance tuning, Oracle
strongly recommends that you gather baseline statistics at a point when the system
is running with a representative workload. For useful results, never run
DBMS_STATS.GATHER_FIXED_OBJECTS_STATS immediately after the upgrade.

Chapter 4
Recommended and Best Practices to Complete After Upgrading Oracle Database

4-13



Fixed objects are the X$ tables and their indexes. V$ performance views are defined
through X$ tables. Gathering fixed object statistics is valuable for database
performance, because these statistics help the optimizer to generate good execution
plans, which can improve database performance. Failing to obtain representative
statistics can lead to suboptimal execution plans, which can cause significant
performance problems.

Ensure that your database has run representative workloads, and then gather fixed
objects statistics by using the DBMS_STATS.GATHER_FIXED_OBJECTS_STATS PL/SQL
procedure. DBMS_STATS.GATHER_FIXED_OBJECTS_STATS also displays recommendations
for removing all hidden or underscore parameters and events from the INIT.ORA or
SPFILE.

Because of the transient nature of X$ tables, you must gather fixed objects statistics
when there is a representative workload on the system. If you cannot gather fixed
objects statistics during peak load, then Oracle recommends that you do it after the
system is in a runtime state, and the most important types of fixed object tables are
populated.

To gather statistics for fixed objects, run the following PL/SQL procedure:

SQL> execute dbms_stats.gather_fixed_objects_stats;

Related Topics

• Gathering Database Statistics

Reset Passwords to Enforce Case-Sensitivity
For upgraded databases, improve security by using case-sensitive passwords for
default user accounts and user accounts.

For greater security, Oracle recommends that you enable case sensitivity in
passwords. In Oracle Database 21c and later release, the IGNORECASE parameter for
the orapwd file is desupported. All newly created password files are case-sensitive.
Case sensitivity increases the security of passwords by requiring that users enter both
the correct password string, and the correct case for each character in that string. For
example, the password hPP5620qr fails if it is entered as hpp5620QR or hPp5620Qr.

Upgraded password files from earlier Oracle Database releases can retain original
case-insensitive passwords. To ensure that password files are case-sensitive, Oracle
recommends that you force case sensitivity by migrating password files from one
format to another, using the following syntax:

orapwd input_file=input_password _file file=output_password_file

To secure your database, create passwords in a secure fashion. If you have default
passwords in your database, then change these passwords. Every password should
satisfy the Oracle recommended password requirements, including passwords for
predefined user accounts.

For new databases created after the upgrade, there are no additional tasks or
management requirements.

Chapter 4
Recommended and Best Practices to Complete After Upgrading Oracle Database

4-14



Existing Database Requirements and Guidelines for Password Changes

• Passwords must be at least eight characters, and passwords such as welcome and
oracle are not allowed.

• For existing databases, to take advantage of password case-sensitivity, you must reset
the passwords of existing users during the database upgrade procedure. Reset the
password for each existing database user with an ALTER USER statement.

• Query the PASSWORD_VERSIONS column of DBA_USERS to find the USERNAME of accounts that
only have the 10G password version, and do not have either the 11G or the 12C password
version. Reset the password for any account that has only the 10G password version.

Related Topics

• Managing the Complexity of Passwords

• Guidelines for Securing User Accounts and Privileges

Finding and Resetting User Passwords That Use the 10G Password
Version

For better security, find and reset passwords for user accounts that use the 10G password
version so that they use later, more secure password versions.

Finding All Password Versions of Current Users

You can query the DBA_USERS data dictionary view to find a list of all the password versions
configured for user accounts.

For example:

SELECT USERNAME,PASSWORD_VERSIONS FROM DBA_USERS;

USERNAME                       PASSWORD_VERSIONS
------------------------------ -----------------
JONES                          10G 11G 12C 
ADAMS                          10G 11G
CLARK                          10G 11G
PRESTON                        11G
BLAKE                          10G

The PASSWORD_VERSIONS column shows the list of password versions that exist for the
account. 10G refers to the earlier case-insensitive Oracle password version, 11G refers to the
SHA-1-based password version, and 12C refers to the SHA-2-based SHA-512 password
version.

• User jones: The password for this user was reset in Oracle Database 12c Release 12.1
when the SQLNET.ALLOWED_LOGON_VERSION_SERVER parameter setting was 8. This enabled
all three password versions to be created.

• Users adams and clark: The passwords for these accounts were originally created in
Oracle Database 10g and then reset in Oracle Database 11g. The Oracle Database 11g
software was using the default SQLNET.ALLOWED_LOGON_VERSION setting of 8 at that time.

Chapter 4
Recommended and Best Practices to Complete After Upgrading Oracle Database

4-15



Because case insensitivity is enabled by default, their passwords are now case
sensitive, as is the password for preston.

• User preston: This account was imported from an Oracle Database 11g database
that was running in Exclusive Mode (SQLNET.ALLOWED_LOGON_VERSION = 12).

• User blake: This account still uses the Oracle Database 10g password version. At
this stage, user blake is prevented from logging in.

Resetting User Passwords That Use the 10G Password Version

You should remove the 10G password version from the accounts of all users. In the
following procedure, to reset the passwords of users who have the 10G password
version, you must temporarily relax the SQLNET.ALLOWED_LOGON_VERSION_SERVER
setting, which controls the ability level required of clients before login can be allowed.
Relaxing the setting enables these users to log in and change their passwords, and
hence generate the newer password versions in addition to the 10G password version.
Afterward, you can set the database to use Exclusive Mode and ensure that the clients
have the O5L_NP capability. Then the users can reset their passwords again, so that
their password versions no longer include 10G, but only have the more secure 11G and
12C password versions.

1. Query the DBA_USERS view to find users who only use the 10G password version.

SELECT USERNAME FROM DBA_USERS 
WHERE ( PASSWORD_VERSIONS = '10G '
OR PASSWORD_VERSIONS = '10G HTTP ')
AND USERNAME <> 'ANONYMOUS';

2. Configure the database so that it does not run in Exclusive Mode, as follows:

a. Edit the SQLNET.ALLOWED_LOGON_VERSION_SERVER setting in the sqlnet.ora file
so that it is more permissive than the default. For example:

SQLNET.ALLOWED_LOGON_VERSION_SERVER=11
b. If you are in the CDB root, then restart the database (for example, SHUTDOWN

IMMEDIATE followed by STARTUP). If you are in a PDB, connect to the root using
the SYSDBA administrative privilege, and then enter the following statements:

ALTER PLUGGABLE DATABASE pdb_name CLOSE IMMEDIATE;
ALTER PLUGGABLE DATABASE pdb_name OPEN;

3. Expire the users that you found when you queried the DBA_USERS view to find
users who only use the 10G password version.

You must expire the users who have only the 10G password version, and do not
have one or both of the 11G or 12C password versions.

For example:

ALTER USER username PASSWORD EXPIRE;

4. Ask the users whose passwords you expired to log in.

When the users log in, they are prompted to change their passwords. The
database generates the missing 11G and 12C password versions for their account,
in addition to the 10G password version. The 10G password version continues to be
present, because the database is running in the permissive mode.

Chapter 4
Recommended and Best Practices to Complete After Upgrading Oracle Database

4-16



5. Ensure that the client software with which the users are connecting has the O5L_NP ability.

All Oracle Database release 11.2.0.3 and later clients have the O5L_NP ability. If you have
an earlier Oracle Database client, then you must install the CPUOct2012 patch.

6. After all clients have the O5L_NP capability, set the security for the server back to
Exclusive Mode, as follows:

a. Remove the SQLNET.ALLOWED_LOGON_VERSION_SERVER parameter from the server
sqlnet.ora file, or set the value of SQLNET.ALLOWED_LOGON_VERSION_SERVER in the
server sqlnet.ora file back to 12, to set it to an Exclusive Mode.

SQLNET.ALLOWED_LOGON_VERSION_SERVER = 12
b. If you are in the CDB root, then restart the database (for example, SHUTDOWN

IMMEDIATE followed by STARTUP). If you are in a PDB, connect to the root using the
SYSDBA administrative privilege, and then enter the following statements:

ALTER PLUGGABLE DATABASE pdb_name CLOSE IMMEDIATE;
ALTER PLUGGABLE DATABASE pdb_name OPEN;

7. Find the accounts that still have the 10G password version.

SELECT USERNAME FROM DBA_USERS
WHERE PASSWORD_VERSIONS LIKE '%10G%' 
AND USERNAME <> 'ANONYMOUS';

8. Expire the accounts that still have the 10G password version.

ALTER USER username PASSWORD EXPIRE;
9. Ask these users to log in to their accounts.

When the users log in, they are prompted to reset their passwords. The database then
generates only the 11G and 12C password versions for their accounts. Because the
database is running in Exclusive Mode, the 10G password version is no longer generated.

10. Rerun the following query:

SELECT USERNAME FROM DBA_USERS
WHERE PASSWORD_VERSIONS LIKE '%10G%' 
AND USERNAME <> 'ANONYMOUS';

If this query does not return any results, then it means that no user accounts have the
10G password version. Hence, the database is running in a more secure mode than in
previous releases.

Understand Oracle Grid Infrastructure, Oracle ASM, and Oracle
Clusterware

Oracle Clusterware and Oracle Automatic Storage Management (Oracle ASM) are both part
of an Oracle Grid Infrastructure installation.

If Oracle Grid Infrastructure is installed for a single server, then it is deployed as an Oracle
Restart installation with Oracle ASM. If Oracle Grid Infrastructure is installed for a cluster,
then it is deployed as an Oracle Clusterware installation with Oracle ASM.

Oracle Restart enhances the availability of Oracle Database in a single-instance
environment. If you install Oracle Restart, and there is a temporary failure of any part of the
Oracle Database software stack, including the database, listener, and Oracle ASM instance,
Oracle Restart automatically restarts the failed component. In addition, Oracle Restart starts

Chapter 4
Recommended and Best Practices to Complete After Upgrading Oracle Database

4-17



all these components when the database host computer is restarted. The components
are started in the proper order, taking into consideration the dependencies among
components.

Oracle Clusterware is portable cluster software that enables clustering of single
servers so that they cooperate as a single system. Oracle Clusterware also provides
the required infrastructure for Oracle RAC. In addition, Oracle Clusterware enables the
protection of any Oracle application or any other application within a cluster. In any
case Oracle Clusterware is the intelligence in those systems that ensures required
cooperation between the cluster nodes.

Oracle Grid Infrastructure Installation and Upgrade and Oracle ASM
Oracle ASM is installed with Oracle Grid Infrastructure.

In earlier releases, Oracle ASM was installed as part of the Oracle Database
installation. Starting with Oracle Database release 11.2, Oracle ASM is installed when
you install the Grid Infrastructure components. Oracle ASM shares an Oracle home
with Oracle Clusterware.

See Also:

Oracle Grid Infrastructure Installation Guide for your platform for information
about Oracle homes, role-allocated system privileges groups, different
installation software owner users, and other changes.

Add New Features as Appropriate
Review new features as part of your database upgrade plan.

Oracle Database New Features Guide describes many of the new features available in
the new Oracle Database release. Determine which of these new features can benefit
the database and applications. You can then develop a plan for using these features.

It is not necessary to make any immediate changes to begin using your new Oracle
Database software. You can choose to introduce new feature enhancements into your
database and applications gradually.

See Also:

Learning Database New Features

Develop New Administrative Procedures as Needed
Plan a review of your scripts and procedures, and change as needed.

Chapter 4
Recommended and Best Practices to Complete After Upgrading Oracle Database

4-18



After familiarizing yourself with the features of the new Oracle Database release, review your
database administration scripts and procedures to determine whether any changes are
necessary.

Coordinate your changes to the database with the changes that are necessary for each
application. For example, by enabling integrity constraints in the database, you may be able
to remove some data checking from your applications.

Migrating Tables from the LONG Data Type to the LOB Data Type
You can use the ALTER TABLE statement to change the data type of a LONG column to CLOB
and that of a LONG RAW column to BLOB.

The LOB data types (BFILE, BLOB, CLOB, and NCLOB) can provide many advantages over LONG
data types.

In the following example, the LONG column named long_col in table long_tab is changed to
data type CLOB:

SQL> ALTER TABLE Long_tab MODIFY ( long_col CLOB );

After using this method to change LONG columns to LOBs, all the existing constraints and
triggers on the table are still usable. However, all the indexes, including Domain indexes and
Functional indexes, on all columns of the table become unusable and must be rebuilt using
an ALTER INDEX...REBUILD statement. Also, the Domain indexes on the LONG column must
be dropped before changing the LONG column to a LOB.

See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide for information
about modifying applications to use LOB data

Turn Off Traditional Auditing in Upgraded Oracle Databases
Traditional Auditing is desupported in Oracle Database 23c. Oracle recommends that you
turn off traditional audit in your database and use only unified auditing.

Unified Auditing and Traditional Auditing (mixed mode) has been the default auditing mode
from Oracle Database 12c onward. Mixed mode auditing was offered to enable you to
become familiar with Unified Auditing, and to transition from Traditional Auditing. With the
deprecation of Traditional Auditing in Oracle Database 21c, and the desupport of Traditional
Auditing in 23c, Oracle recommends that you transition to Unified Auditing. Oracle
recommends that you turn off traditional audit in your database and use only unified auditing.

• Understanding Auditing for Oracle Database
Decide which audit policies you want to use in the upgraded database.

• Turning Off Traditional Auditing and Using Unified Auditing for Oracle Database
Use this procedure for multitenant container (CDB) databases to turn off traditional
auditing, and to use unified auditing.

Chapter 4
Recommended and Best Practices to Complete After Upgrading Oracle Database

4-19



• About Managing Earlier Audit Records After You Move to Unified Auditing
Review, archive, and purge earlier audit trails in preparation for using the unified
audit trail.

• Moving From Pure Unified Auditing to Mixed-Mode Auditing
Use this procedure to turn on traditional auditing in mixed-mode audit
configuration.

• Obtaining Documentation References if You Choose Not to Use Unified Auditing
You can access documentation listed here to obtain configuration information
about how to use non-unified auditing.

Related Topics

• How the Unified Auditing Migration Affects Individual Audit Features

Understanding Auditing for Oracle Database
Decide which audit policies you want to use in the upgraded database.

For newly created databases, unified auditing is enabled by default. The predefined
audit policies ORA_SECURECONFIG and ORA_LOGIN_LOGOUT policies are enabled out-of-
box.

Note:

If the database is not writable, then audit records write to new format
operating system files in the $ORACLE_BASE/audit/$ORACLE_SID
directory.

Related Topics

• Auditing Activities with the Predefined Unified Audit Policies

• Secure Options Predefined Unified Audit Policy

Turning Off Traditional Auditing and Using Unified Auditing for Oracle Database
Use this procedure for multitenant container (CDB) databases to turn off traditional
auditing, and to use unified auditing.

Perform the following procedure in the root. The procedure configures both the root
CDB and any associated PDBs to use unified auditing.

Chapter 4
Recommended and Best Practices to Complete After Upgrading Oracle Database

4-20



Note:

Oracle recommends that you start using unified auditing now. It is deprecated in
Oracle Database 21c, and desupported in Oracle Database 23c.

If you need to continue using traditional auditing as a transition, you can disable
unified auditing from the container database (CDB) root only, not for individual
pluggable databases (PDBs).

However, when unified auditing is disabled, individual PDBs can use the mixed
mode auditing, depending on whether or not the local audit policy is enabled in that
PDB. If you have a CDB common audit policy enabled, then all PDBs use mixed
mode auditing.

1. Log in to SQL*Plus as user SYS with the SYSDBA privilege.

sqlplus sys as sysdba
Enter password: password

In the multitenant environment, this login connects you to root.

2. Check if your Oracle Database is migrated to unified auditing using this query:

SQL> SELECT VALUE FROM V$OPTION WHERE PARAMETER = 'Unified Auditing';

If the output for the VALUE column is TRUE, then unified auditing is already enabled in your
database. You can proceed to Managing Earlier Audit Records. If the output is FALSE,
then complete the remaining steps in this procedure.

3. Stop the database. For single-instance environments, enter the following commands from
SQL*Plus:

SQL> SHUTDOWN IMMEDIATE
SQL> EXIT

For Windows systems, stop the Oracle service:

net stop OracleService%ORACLE_SID%

For Oracle Real Application Clusters (Oracle RAC) installations, shut down each
database instance as follows:

srvctl stop database -db db_name

4. Stop the listener. (Stopping the listener is not necessary for Oracle RAC and Oracle Grid
Infrastructure listeners.)

lsnrctl stop listener_name

Chapter 4
Recommended and Best Practices to Complete After Upgrading Oracle Database

4-21



You can find the name of the listener by running the lsnrctl status command.
The Alias setting indicates the name.

5. Go to the directory $ORACLE_HOME/rdbms/lib.

6. Enable unified auditing for the Oracle user.

• Linux and Unix

make -f ins_rdbms.mk uniaud_on oracle ORACLE_HOME=$ORACLE_HOME

• Microsoft Windows

Rename the file %ORACLE_HOME%/bin/orauniaud12.dll.dbl to
%ORACLE_HOME%/bin/orauniaud12.dll.

Note:

For Oracle RAC databases that have non-shared Oracle homes, you
must repeat this step on each cluster member node, so that the binaries
are updated inside the local ORACLE_HOME on each cluster node.

7. Restart the listener.

lsnrctl start listener_name

8. Restart the database.

Log in to SQL*Plus and then enter the STARTUP command:

sqlplus sys as sysoper
Enter password: password

SQL> STARTUP

For Microsoft Windows systems, start the Oracle service:

net start OracleService%ORACLE_SID%

For Oracle RAC installations, start each database instance:

srvctl start database -db db_name

After you migrate to unified auditing, refer to My Oracle Support Doc ID 2369172.1,
"LOB Columns of Database Audit Trails should use Securefile Storage" and review
information about the Oracle home script Oracle_home/rdbms/admin/
auditpostupgrade.sql. To obtain performance benefits of unified auditing, Oracle
strongly recommends that you run this script after completing the upgrade.

Related Topics

• LOB Columns of Database Audit Trails should use Securefile Storage (Doc ID
2659172.1)

Chapter 4
Recommended and Best Practices to Complete After Upgrading Oracle Database

4-22

https://support.oracle.com/rs?type=doc&id=2369172.1
https://support.oracle.com/rs?type=doc&id=2369172.1


About Managing Earlier Audit Records After You Move to Unified Auditing
Review, archive, and purge earlier audit trails in preparation for using the unified audit trail.

After you complete the procedure in Oracle Database to turn off traditional auditing and use
unified auditing, any audit records that your database had before remain in their earlier audit
trails. You can archive these audit records and then purge their audit trails. With unified
auditing in place, any new audit records write to the unified audit trail.

Related Topics

• Archiving the Audit Trail

• Purging Audit Trail Records

Moving From Pure Unified Auditing to Mixed-Mode Auditing
Use this procedure to turn on traditional auditing in mixed-mode audit configuration.

If you decide that you want to re-enable traditional auditing in mixed-mode, then you can use
this procedure to turn on traditional auditing. In this case, your database uses the mixed-
mode audit facility.

Note:

Be aware that traditional auditing is deprecated, and is desupported in Oracle
Database 23c. Plan accordingly.

1. Stop the database.

sqlplus sys as sysoper
Enter password: password

SQL> SHUTDOWN IMMEDIATE
SQL> EXIT

For Microsoft Windows systems, stop the Oracle service:

net stop OracleService%ORACLE_SID%

For Oracle RAC installations, shut down each database instance as follows:

srvctl stop database -db db_name

2. Go to the $ORACLE_HOME/rdbms/lib directory.

3. Disable the unified auditing executable.

• Linux/Unix: Run the following command:

make -f ins_rdbms.mk uniaud_off oracle ORACLE_HOME=$ORACLE_HOME

Chapter 4
Recommended and Best Practices to Complete After Upgrading Oracle Database

4-23



• Microsoft Windows: Rename the %ORACLE_HOME%/bin/
orauniaud12.dll file to %ORACLE_HOME%/bin/orauniaud12.dll.dbl.

4. Restart the database.

sqlplus sys as sysoper
Enter password: password

SQL> STARTUP
SQL> EXIT

For Microsoft Windows systems, start the Oracle service again.

net start OracleService%ORACLE_SID%

For Oracle RAC installations, start each database instance using the following
syntax:

srvctl start database -db db_name

Obtaining Documentation References if You Choose Not to Use Unified
Auditing

You can access documentation listed here to obtain configuration information about
how to use non-unified auditing.

After upgrading to the new release Oracle Database, if you choose not to change to
unified auditing, then Oracle documentation and Oracle Technology Network provide
information about traditional non-unified auditing.

• Oracle Database Security Guide: This guide is the main source of information for
configuring auditing. You must use the Oracle Database Release 11g version of
this manual. To access this guide:

1. Visit the database page on docs.oracle.com site on Oracle Technology
Network:

https://docs.oracle.com/en/database/index.html
2. Select Oracle Database.

3. In the Downloads page, select the Documentation tab.

4. On the release list field, select Earlier Releases, and select Oracle Database
11g Release 2 (11.2).

5. From the Oracle Database 11g Release 2 (11.2) Documentation page, select
the All Books link to display publications in the documentation set.

6. Search for Security Guide.

7. Select either the HTML or the PDF link for this guide.

Chapter 4
Recommended and Best Practices to Complete After Upgrading Oracle Database

4-24

https://docs.oracle.com/en/database/index.html


Identify Oracle Text Indexes for Rebuilds
You can run a script that helps you to identify Oracle Text index indexes with token tables that
can benefit by being rebuilt after upgrading to the new Oracle Database release..

When you upgrade from Oracle Database 12c release 1 (12.2.0.1) to Oracle Database 18c
and later releases, the Oracle Text token tables ($I, $P, and so on) are expanded from 64
bytes to 255 bytes. However, if you have indexes with existing token tables using the smaller
size range, then the Oracle Text indexes cannot take advantage of this widened token
column range. You must rebuild the indexes to use the 255 byte size range. Oracle provides
a script that can assist you to identify indexes that can benefit by being rebuilt.

Obtain the script from My Oracle Support:

https://support.oracle.com/rs?type=doc&id=2287094.1

Dropping and Recreating DBMS_SCHEDULER Jobs
If DBMS_SCHEDULER jobs do not function after upgrading from an earlier release, drop and
recreate the jobs.

If you find that DBMS_SCHEDULER jobs are not functioning after an upgrade. drop and
recreate those jobs. This issue can occur even if the upgrade process does not report issues,
and system objects are valid.

Transfer Unified Audit Records After the Upgrade
Review these topics to understand how you can obtain better performance after you upgrade
and migrate to unified auditing

• About Transferring Unified Audit Records After an Upgrade
Transferring the unified audit records from Oracle Database 12c release 12.1 to the new
relational table under the AUDSYS schema for the new Oracle Database release improves
the read performance of the unified audit trail.

• Transferring Unified Audit Records After an Upgrade
You can transfer unified audit records to the new relational table in AUDSYS by using the
DBMS_AUDIT_MGMT.TRANSFER_UNIFIED_AUDIT_RECORDS PL/SQL procedure.

About Transferring Unified Audit Records After an Upgrade
Transferring the unified audit records from Oracle Database 12c release 12.1 to the new
relational table under the AUDSYS schema for the new Oracle Database release improves the
read performance of the unified audit trail.

Starting with Oracle Database 12c Release 2, unified audit records are written directly to a
new internal relational table that is located in the AUDSYS schema. In Oracle Database 12c
release 12.1, the unified audit records were written to the common logging infrastructure
(CLI) SGA queues. If you migrated to unified auditing in that release, then to obtain better
read performance, you can transfer the unified audit records that are from that release to the
new Oracle Database release internal table. It is not mandatory that you perform this transfer,
but Oracle recommends that you do so to obtain better unified audit trail read performance.
This is a one-time operation. All new unified audit records that are generated after the
upgrade are written to the new table. The table is a read-only table. Any attempt to modify the
metadata or data of this table is mandatorily audited.

Chapter 4
Recommended and Best Practices to Complete After Upgrading Oracle Database

4-25

https://support.oracle.com/rs?type=doc&id=2287094.1


After you upgrade to the new Oracle Database release, if you have any unified audit
records present in the UNIFIED_AUDIT_TRAIL from the earlier release, then consider
transferring them to the new internal relational table by using the transfer procedure for
better read performance of the unified audit trail.

As with the SYS schema, you cannot query the AUDSYS schema if you have the
SELECT ANY TABLE system privilege. In addition, this table is not listed as a schema
object in the ALL_TABLES data dictionary view unless you have either the SELECT
ANY DICTIONARY system privilege or an explicit SELECT privilege on this internal
table. Until the database is open read write, the audit records are written to operating
system spillover files (.bin format). However, you can transfer the audit records in
these operating system files to the internal relational table after the database opens in
the read write mode by using the
DBMS_AUDIT_MGMT.LOAD_UNIFIED_AUDIT_FILES procedure.

Transferring Unified Audit Records After an Upgrade
You can transfer unified audit records to the new relational table in AUDSYS by using
the DBMS_AUDIT_MGMT.TRANSFER_UNIFIED_AUDIT_RECORDS PL/SQL procedure.

1. Log in to the database instance as a user who has been granted the
AUDIT_ADMIN role.

For example, in a non-multitenant environment:

sqlplus sec_admin
Enter password: password

For a multitenant environment, connect to the root:

sqlplus c##sec_admin@root
Enter password: password

You can perform this procedure execution in the root as well as in a PDB, because
the UNIFIED_AUDIT_TRAIL view is container specific. In addition, the transfer
procedure is container specific. That is, performing the transfer from the root does
not affect the unified audit records that are present in the unified audit trail for the
PDB.

2. For a multitenant environment, query the DBA_PDB_HISTORY view to find the
correct GUID that is associated with the CLI table that is specific to the container
from which audit records must be transferred.

For example:

SQL> SELECT PDB_NAME, PDB_GUID FROM DBA_PDB_HISTORY;

PDB_NAME  PDB_GUID
--------  --------------------------------
HR_PDB    33D96CA7862D53DFE0534DC0E40A7C9B
...

3. In a multitenant environment, connect to the container for which you want to
transfer the audit records.

You cannot perform the transfer operation on a container that is different from the
one in which you are currently connected.

4. Run the DBMS_AUDIT_MGMT.TRANSFER_UNIFIED_AUDIT_RECORDS procedure.

For example:

Chapter 4
Recommended and Best Practices to Complete After Upgrading Oracle Database

4-26



SQL> EXEC DBMS_AUDIT_MGMT.TRANSFER_UNIFIED_AUDIT_RECORDS;

PL/SQL procedure successfully completed.

Or, to specify the PDB GUID:

SQL> EXEC DBMS_AUDIT_MGMT.TRANSFER_UNIFIED_AUDIT_RECORDS 
('33D96CA7862D53DFE0534DC0E40A7C9B');

PL/SQL procedure successfully completed.
5. If the database is in open read write mode, then run the

DBMS_AUDIT_MGMT.LOAD_UNIFIED_AUDIT_FILES procedure.

Until the database is in open read write mode, audit records are written to operating
system (OS) files. The DBMS_AUDIT_MGMT.LOAD_UNIFIED_AUDIT_FILES procedure
moves the unified audit records that are present in the files to database tables. You can
find the unified audit records that are present in the OS spillover files by querying the
V$UNIFIED_AUDIT_TRAIL dynamic view.

For example, if you want to run this procedure for audit records in the HR_PDB container,
then you must connect to that PDB first:

SQL> CONNECT sec_admin@HR_PDB
Enter password: password

SQL> EXEC DBMS_AUDIT_MGMT.LOAD_UNIFIED_AUDIT_FILES;

PL/SQL procedure successfully completed.
6. Query the UNIFIED_AUDIT_TRAIL data dictionary view to check if the records

transferred correctly.

Oracle highly recommends that you query UNIFIED_AUDIT_TRAIL. After a successful
audit record transfer, you should query the UNIFIED_AUDIT_TRAIL because querying
the V$UNIFIED_AUDIT_TRAIL dynamic view will show the audit records that are
present only in the OS spillover files.

About Recovery Catalog Upgrade After Upgrading Oracle Database
If you use a version of the recovery catalog schema that is older than that required by the
RMAN client, then you must upgrade it.

See Also:

• Maintaining RMAN Backups and Repository Records

• Upgrading the Recovery Catalog

• My Oracle Support RMAN Compatibility Matrix (Doc ID 73431.1)

Upgrading the Time Zone File Version After Upgrading Oracle Database
If the AutoUpgrade preupgrade report instructs you to upgrade the time zone files after
completing the database upgrade, and you do not set AutoUpgrade to complete this task for
you, then use any of the supported methods to upgrade the time zone file.

Chapter 4
Recommended and Best Practices to Complete After Upgrading Oracle Database

4-27

https://support.oracle.com/rs?type=doc&id=73431.1


By default, AutoUpgrade changes the database time zone to the latest available level.
If you don’t want the time zone to be upgraded, then you must explicitly set the local
parameter timezone_upg in your AutoUpgrade configuration file to no. For example:

upg1.timezone_upg=no

Note:

If you explicitly disable the time zone file upgrade in your AutoUpgrade
configuration file, then Oracle recommends that you perform this task either
as part of your upgrade plan, or at a later point in time.

Related Topics

• Datetime and Time Zone Parameters and Environment Variables

• Primary Note DST FAQ : Updated DST Transitions and New Time Zones in Oracle
RDBMS and OJVM Time Zone File Patches (Doc ID 412160.1)

Enabling Disabled Release Update Bug Fixes in the Upgraded
Database

Because bug fixes in Release Updates that can cause execution plan changes are
disabled, Oracle recommends that you enable the disabled bug fixes that you want to
use.

After you upgrade your database, the bug fix patches that can cause execution plan
changes included in the Release Updates are installed disabled by default. These bug
fixes will not be activated until you enable the fixes. You can either enable these fixes
manually, with PFILE or ALTER SYSTEM commands, or you can use the
DBMS_OPTIM_BUNDLE package. Starting with AutoUpgrade 19.12, the
DBMS_OPTIM_BUNDLE package includes 58 standard fixes. You can now add additional
fixes using DBMS_OPTIM_BUNDLE. If you add fixes, then the fixes that you add are run in
addition to the default fixes.

Oracle strongly recommends that you enable these disabled patches that you want to
use in your production system, and run complete workload performance tests using
these patches as part of your upgrade test plan.

For more information about using DBMS_OPTIM_BUNDLE to enable patches that were
disabled because they can change execution plans, see Oracle Database PL/SQL
Packages and Types Reference, and My Oracle Support note 2147007.1.

Related Topics

• DBMS_OPTIM_BUNDLE

• My Oracle Support Doc ID 2147007.1 Managing "installed but disabled" bug fixes
in Database Release Updates using DBMS_OPTIM_BUNDLE

About Testing the Upgraded Production Oracle Database
Repeat tests on your production database that you carried out on your test database
to ensure applications operate as expected.

Chapter 4
Recommended and Best Practices to Complete After Upgrading Oracle Database

4-28

https://support.oracle.com/rs?type=doc&id=412160.1
https://support.oracle.com/rs?type=doc&id=412160.1
https://support.oracle.com/rs?type=doc&id=2147007.1
https://support.oracle.com/rs?type=doc&id=2147007.1


If you upgraded a test database to the new Oracle Database release, and then tested it, then
you can now repeat those tests on the production database that you upgraded to the new
Oracle Database release. Compare the results, noting anomalies. Repeat the test upgrade as
many times as necessary.

To verify that your applications operate properly with a new Oracle Database release, test the
newly upgraded production database with your existing applications. You also can test
enhanced functions by adding available Oracle Database features, and then testing them.
However, first ensure that the applications operate in the same manner as they did before the
upgrade.

Chapter 4
Recommended and Best Practices to Complete After Upgrading Oracle Database

4-29


	Contents
	Preface
	Use Case Scenario for this Document
	Documentation Accessibility

	1 Checking Compatibility Before Upgrading Oracle Database
	Oracle Database Releases That Support Direct Upgrade
	Checking the Compatibility Level of Oracle Database
	Values for the COMPATIBLE Initialization Parameter in Oracle Database

	2 Preparing to Upgrade Oracle Database
	Prepare a Backup Strategy Before Upgrading Oracle Database Using AutoUpgrade
	Preparing for Upgrades of Databases with Oracle Database Vault
	Pre-Upgrade Information Check with AutoUpgrade
	Installing Oracle Software in a New Oracle Home
	Choose a New Location for Oracle Home when Upgrading or Patching
	Installing the New Oracle Database Software for Single Instance

	Database Preparation Tasks to Complete Before Starting Oracle Database Upgrades
	Release Updates and Requirements for Upgrading Oracle Database
	Understanding Password Case Sensitivity and Upgrades
	Checking for Accounts Using Case-Insensitive Password Version
	Running Upgrades with Read-Only Tablespaces

	Preparations for Running AutoUpgrade Processing Modes
	Create Configuration File for AutoUpgrade
	Locally Modifiable Global Parameters for AutoUpgrade Configuration File
	defer_standby_log_shipping
	dictionary_stats_after
	dictionary_stats_before
	drop_grp_after_upgrade
	enable_local_undo
	fixed_stats_before
	manage_network_files
	remove_underscore_parameters
	restoration
	target_base
	target_home
	target_version

	Local Parameters for the AutoUpgrade Configuration File
	add_after_upgrade_pfile
	add_during_upgrade_pfile
	after_action
	before_action
	catctl_options
	checklist
	close_source
	del_after_upgrade_pfile
	del_during_upgrade_pfile
	drop_win_src_service
	env
	exclusion_list
	ignore_errors
	keep_source_pdb
	log_dir
	manage_standbys_clause
	pdbs
	raise_compatible
	remove_rac_config
	remove_underscore_parameters
	replay
	restoration
	revert_after_action
	revert_before_action
	run_hcheck
	run_utlrp
	sid
	skip_tde_key_import
	source_base
	source_dblink
	source_home
	source_ldap_admin_dir
	source_tns_admin_dir
	start_time
	target_base
	target_cdb
	target_pdb_copy_option=file_name_convert
	target_pdb_name
	target_ldap_admin_dir
	target_tns_admin_dir
	timezone_upg
	tune_setting
	upgrade_node

	Global Parameters for the AutoUpgrade User Configuration File
	add_after_upgrade_pfile
	add_during_upgrade_pfile
	after_action
	autoupg_log_dir
	before_action
	catctl_options
	del_after_upgrade_pfile
	del_during_upgrade_pfile
	drop_grp_after_upgrade
	keystore
	raise_compatible
	replay
	target_base
	target_home
	target_version
	upgradexml

	Understanding Non-CDB to PDB Upgrades with AutoUpgrade
	Non-CDB to PDB Upgrade Guidelines and Examples
	Understanding Unplug-Plug Upgrades with AutoUpgrade
	Examples of Non-CDB to PDB Configuration Files for AutoUpgrade

	3 Using AutoUpgrade to Upgrade and convert Non-CDBs to PDBs
	AutoUpgrade with Source and Target Database Homes on Same Server (Typical)
	AutoUpgrade with Source and Target Database Homes on Different Servers

	4 Post-Upgrade Tasks for Oracle Database
	Check the Upgrade With Post-Upgrade Status Tool
	Required Tasks to Complete After Upgrading Oracle Database
	Setting Environment Variables on Linux and Unix Systems After Manual Upgrades
	Recompile Invalid Objects in the Database
	Check PL/SQL Packages and Dependent Procedures
	Configuring the FTP and HTTP Ports and HTTP Authentication for Oracle XML DB
	Install Oracle Text Supplied Knowledge Bases After Upgrading Oracle Database
	Replace the DEMO Directory in Read-Only Oracle Homes
	Configure Access Control Lists (ACLs) to External Network Services
	Enabling Oracle Database Vault After Upgrading Oracle Database
	Upgrading Oracle Database Without Disabling Oracle Database Vault
	Postupgrade Scenarios with Oracle Database Vault

	Check for the SQLNET.ALLOWED_LOGON_VERSION Parameter Behavior

	Recommended and Best Practices to Complete After Upgrading Oracle Database
	Back Up the Database
	Run AutoUpgrade Postupgrade Checks
	Gathering Dictionary Statistics After Upgrading
	Upgrading Statistics Tables Created by the DBMS_STATS Package After Upgrading Oracle Database
	Regathering Fixed Objects Statistics with DBMS_STATS
	Reset Passwords to Enforce Case-Sensitivity
	Finding and Resetting User Passwords That Use the 10G Password Version
	Understand Oracle Grid Infrastructure, Oracle ASM, and Oracle Clusterware
	Oracle Grid Infrastructure Installation and Upgrade and Oracle ASM
	Add New Features as Appropriate
	Develop New Administrative Procedures as Needed
	Migrating Tables from the LONG Data Type to the LOB Data Type
	Turn Off Traditional Auditing in Upgraded Oracle Databases
	Understanding Auditing for Oracle Database
	Turning Off Traditional Auditing and Using Unified Auditing for Oracle Database
	About Managing Earlier Audit Records After You Move to Unified Auditing
	Moving From Pure Unified Auditing to Mixed-Mode Auditing
	Obtaining Documentation References if You Choose Not to Use Unified Auditing

	Identify Oracle Text Indexes for Rebuilds
	Dropping and Recreating DBMS_SCHEDULER Jobs
	Transfer Unified Audit Records After the Upgrade
	About Transferring Unified Audit Records After an Upgrade
	Transferring Unified Audit Records After an Upgrade

	About Recovery Catalog Upgrade After Upgrading Oracle Database
	Upgrading the Time Zone File Version After Upgrading Oracle Database
	Enabling Disabled Release Update Bug Fixes in the Upgraded Database
	About Testing the Upgraded Production Oracle Database



