
Oracle® Database
Graph Developer's Guide for RDF Graph

21c
F31379-20
January 2024

Oracle Database Graph Developer's Guide for RDF Graph, 21c

F31379-20

Copyright © 2005, 2024, Oracle and/or its affiliates.

Contributors: Lavanya Jayapalan

Contributors: Melliyal Annamalai , Maitreyee Chaliha, Chuck Murray, Eugene Inseok Chong, Souri Das, Joao
Paiva, Matt Perry, Jags Srinivasan, Seema Sundara, Zhe (Alan) Wu, Aravind Yalamanchi

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, MySQL and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xxvi

Documentation Accessibility xxvi

Related Documents xxvii

Conventions xxvii

 Changes in This Release for This Guide

Changes in Oracle Database Release 21c xxviii

Changes in Oracle Database Release 19c xxix

Changes in Oracle Database Release 18.1 xxxi

 How to Use This Book

Part I Conceptual and Usage Information

1 RDF Graph Overview

1.1 Introduction to Oracle Semantic Technologies Support 1-3

1.2 Semantic Data Modeling 1-4

1.3 Semantic Data in the Database 1-4

1.3.1 Semantic Networks 1-5

1.3.1.1 Schema-Private Semantic Networks 1-6

1.3.1.2 Types of Semantic Network Users 1-7

1.3.1.3 Naming Conventions for Semantic Network Objects 1-8

1.3.1.4 RDF_PARAMETER Table in Semantic Networks 1-8

1.3.1.5 Migrating from MDSYS to Schema-Private Semantic Networks 1-8

1.3.1.6 Sharing Schema-Private Semantic Networks 1-8

1.3.1.7 Migrating from Escaped to Unescaped Storage Form 1-12

1.3.2 Semantic Models 1-12

1.3.3 Statements 1-14

iii

1.3.3.1 Triple Uniqueness and Data Types for Literals 1-16

1.3.4 Subjects and Objects 1-17

1.3.5 Blank Nodes 1-17

1.3.6 Properties 1-17

1.3.7 Inferencing: Rules and Rulebases 1-17

1.3.8 Entailments (Rules Indexes) 1-20

1.3.9 Virtual Models 1-21

1.3.10 Named Graphs 1-24

1.3.10.1 Data Formats Related to Named Graph Support 1-25

1.3.11 Semantic Data Security Considerations 1-26

1.3.12 RDF Privilege Considerations 1-26

1.4 Semantic Metadata Tables and Views 1-27

1.5 Semantic Data Types, Constructors, and Methods 1-28

1.5.1 Constructors for Inserting Triples 1-30

1.6 Using the SEM_MATCH Table Function to Query Semantic Data 1-31

1.6.1 Performing Queries with Incomplete or Invalid Entailments 1-39

1.6.2 Graph Patterns: Support for Curly Brace Syntax, and OPTIONAL, FILTER,
UNION, and GRAPH Keywords 1-39

1.6.2.1 GRAPH Keyword Support 1-49

1.6.3 Graph Patterns: Support for SPARQL ASK Syntax 1-50

1.6.4 Graph Patterns: Support for SPARQL CONSTRUCT Syntax 1-51

1.6.4.1 Typical SPARQL CONSTRUCT Workflow 1-55

1.6.5 Graph Patterns: Support for SPARQL DESCRIBE Syntax 1-56

1.6.6 Graph Patterns: Support for SPARQL SELECT Syntax 1-58

1.6.7 Graph Patterns: Support for SPARQL 1.1 Constructs 1-62

1.6.7.1 Expressions in the SELECT Clause 1-62

1.6.7.2 Subqueries 1-63

1.6.7.3 Grouping and Aggregation 1-64

1.6.7.4 Negation 1-67

1.6.7.5 Value Assignment 1-68

1.6.7.6 Property Paths 1-71

1.6.8 Graph Patterns: Support for SPARQL 1.1 Federated Query 1-74

1.6.8.1 Privileges Required to Execute Federated SPARQL Queries 1-74

1.6.8.2 SPARQL SERVICE Join Push Down 1-75

1.6.8.3 SPARQL SERVICE SILENT 1-76

1.6.8.4 Using a Proxy Server with SPARQL SERVICE 1-76

1.6.8.5 Accessing SPARQL Endpoints with HTTP Basic Authentication 1-77

1.6.9 Inline Query Optimizer Hints 1-77

1.6.10 Full-Text Search 1-79

1.6.11 Spatial Support 1-82

1.6.11.1 OGC GeoSPARQL Support 1-83

iv

1.6.11.2 Representing Spatial Data in RDF 1-83

1.6.11.3 Validating Geometries 1-84

1.6.11.4 Indexing Spatial Data 1-85

1.6.11.5 Querying Spatial Data 1-87

1.6.11.6 Using Long Literals with GeoSPARQL Queries 1-88

1.6.12 Flashback Query Support 1-89

1.6.13 Speeding up Query Execution with SPM Auxiliary Tables 1-90

1.6.13.1 Single-Valued Property Tables 1-90

1.6.13.2 Multi-Valued Property Tables 1-91

1.6.13.3 Property Chain Tables 1-92

1.6.13.4 Creating SPM Tables 1-93

1.6.13.5 Including Lexical Values in SPM Auxiliary Tables 1-103

1.6.13.6 Creating Secondary Indexes on SPM Auxiliary Tables 1-111

1.6.13.7 Performing DML Operations on Models with SPM Auxiliary Tables 1-123

1.6.13.8 Performing Bulk Load Operations on Models with SPM Auxiliary Tables 1-124

1.6.13.9 Gathering Statistics on SPM Auxiliary Tables 1-124

1.6.13.10 SPARQL Query Options for SPM Auxiliary Tables 1-124

1.6.13.11 Special Considerations when Using SPM Auxiliary Tables 1-125

1.6.14 Best Practices for Query Performance 1-125

1.6.14.1 FILTER Constructs Involving xsd:dateTime, xsd:date, and xsd:time 1-126

1.6.14.2 Indexes for FILTER Constructs Involving Typed Literals 1-126

1.6.14.3 FILTER Constructs Involving Relational Expressions 1-126

1.6.14.4 Optimizer Statistics and Dynamic Sampling 1-127

1.6.14.5 Multi-Partition Queries 1-127

1.6.14.6 Compression on Systems with OLTP Index Compression 1-128

1.6.14.7 Unbounded Property Path Expressions 1-128

1.6.14.8 Nested Loop Pushdown for Property Paths 1-128

1.6.14.9 Grouping and Aggregation 1-129

1.6.14.10 Use of Bind Variables to Reduce Compilation Time 1-129

1.6.14.11 Non-Null Expression Hints 1-131

1.6.14.12 Automatic JOIN Hints 1-132

1.6.14.13 Semantic Network Indexes 1-132

1.6.14.14 Using RDF with Oracle Database In-Memory 1-133

1.6.14.15 Using Language Tags in FILTER Expressions 1-134

1.6.14.16 Type Casting for More Efficient FILTER Evaluation 1-134

1.6.14.17 Spatial Indexing for GeoSPARQL Queries 1-134

1.6.15 Special Considerations When Using SEM_MATCH 1-135

1.7 Using the SEM_APIS.SPARQL_TO_SQL Function to Query Semantic Data 1-136

1.7.1 Using Bind Variables with SEM_APIS.SPARQL_TO_SQL 1-137

1.7.2 SEM_MATCH and SEM_APIS.SPARQL_TO_SQL Compared 1-141

1.8 Loading and Exporting Semantic Data 1-141

v

1.8.1 Bulk Loading Semantic Data Using a Staging Table 1-142

1.8.1.1 Loading the Staging Table 1-143

1.8.1.2 Recording Event Traces During Bulk Loading 1-145

1.8.2 Loading Semantic Data Using INSERT Statements 1-145

1.8.2.1 Loading Data into Named Graphs Using INSERT Statements 1-146

1.8.3 Exporting Semantic Data 1-146

1.8.3.1 Retrieving Semantic Data from an Application Table 1-146

1.8.3.2 Retrieving Semantic Data from an RDF Model 1-147

1.8.3.3 Removing Model and Graph Information from Retrieved Blank Node
Identifiers 1-148

1.8.4 Exporting or Importing a Semantic Network Using Oracle Data Pump 1-149

1.8.5 Moving, Restoring, and Appending a Semantic Network 1-149

1.8.6 Purging Unused Values 1-154

1.9 Using Semantic Network Indexes 1-154

1.9.1 SEM_NETWORK_INDEX_INFO View 1-156

1.10 Using Data Type Indexes 1-156

1.11 Managing Statistics for Semantic Models and the Semantic Network 1-158

1.11.1 Saving Statistics at a Model Level 1-159

1.11.2 Restoring Statistics at a Model Level 1-160

1.11.3 Saving Statistics at the Network Level 1-160

1.11.4 Dropping Extended Statistics at the Network Level 1-161

1.11.5 Restoring Statistics at the Network Level 1-161

1.11.6 Setting Statistics at a Model Level 1-161

1.11.7 Deleting Statistics at a Model Level 1-161

1.12 Support for SPARQL Update Operations on a Semantic Model 1-162

1.12.1 Tuning the Performance of SPARQL Update Operations 1-172

1.12.2 Transaction Management with SPARQL Update Operations 1-174

1.12.2.1 Transaction Isolation Levels 1-176

1.12.3 Support for Bulk Operations 1-177

1.12.3.1 Materialization of Intermediate Data (STREAMING=F) 1-177

1.12.3.2 Using SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE 1-178

1.12.3.3 Using Delete as Insert (DEL_AS_INS=T) 1-179

1.12.4 Setting UPDATE_MODEL Options at the Session Level 1-179

1.12.5 Load Operations: Special Considerations for SPARQL Update 1-180

1.12.6 Long Literals: Special Considerations for SPARQL Update 1-181

1.12.7 Blank Nodes: Special Considerations for SPARQL Update 1-181

1.13 RDF Support for Oracle Database In-Memory 1-182

1.13.1 Enabling Oracle Database In-Memory for RDF 1-183

1.13.2 Using In-Memory Virtual Columns with RDF 1-184

1.13.3 Using Invisible Indexes with Oracle Database In-Memory 1-184

1.14 RDF Support for Materialized Join Views 1-185

vi

1.15 RDF Support in Oracle SQL Developer 1-186

1.16 Enhanced RDF ORDER BY Query Processing 1-186

1.17 Applying Oracle Machine Learning Algorithms to RDF Data 1-187

1.18 Semantic Data Examples (PL/SQL and Java) 1-188

1.18.1 Example: Journal Article Information 1-188

1.18.2 Example: Family Information 1-189

1.19 Software Naming Changes Since Release 11.1 1-194

1.20 For More Information About RDF Semantic Graph 1-195

1.21 Required Migration of Pre-12.2 Semantic Data 1-195

1.22 Oracle RDF Graph Features that Support Accessibility 1-196

2 Quick Start for Using Semantic Data

2.1 Getting Started with Semantic Data in a Schema-Private Network 2-1

2.2 Getting Started with Semantic Data in an MDSYS-Owned Network 2-2

2.3 Quick Start for Using RDF Semantic Data in Oracle Autonomous Database 2-3

2.3.1 Getting Started with Semantic Data in Oracle Autonomous Database 2-4

2.3.2 Deploying RDF Graph Server and Query UI from Oracle Cloud Marketplace 2-6

2.3.3 Getting Started with RDF Graphs in Graph Studio 2-7

3 OWL Concepts

3.1 Ontologies 3-1

3.1.1 Example: Disease Ontology 3-1

3.1.2 Supported OWL Subsets 3-3

3.2 Using OWL Inferencing 3-5

3.2.1 Creating a Simple OWL Ontology 3-6

3.2.2 Performing Native OWL inferencing 3-6

3.2.3 Performing OWL and User-Defined Rules Inferencing 3-7

3.2.4 Generating OWL inferencing Proofs 3-8

3.2.5 Validating OWL Models and Entailments 3-10

3.2.6 Using SEM_APIS.CREATE_ENTAILMENT for RDFS Inference 3-11

3.2.7 Enhancing Inference Performance 3-11

3.2.8 Optimizing owl:sameAs Inference 3-12

3.2.8.1 Querying owl:sameAs Consolidated Inference Graphs 3-13

3.2.9 Performing Incremental Inference 3-14

3.2.10 Using Parallel Inference 3-15

3.2.11 Using Named Graph Based Inferencing (Global and Local) 3-16

3.2.11.1 Named Graph Based Global Inference (NGGI) 3-16

3.2.11.2 Named Graph Based Local Inference (NGLI) 3-17

3.2.11.3 Using NGGI and NGLI Together 3-19

vii

3.2.12 Performing Selective Inferencing (Advanced Information) 3-19

3.3 Using Semantic Operators to Query Relational Data 3-20

3.3.1 Using the SEM_RELATED Operator 3-21

3.3.2 Using the SEM_DISTANCE Ancillary Operator 3-22

3.3.2.1 Computation of Distance Information 3-23

3.3.3 Creating a Semantic Index of Type MDSYS.SEM_INDEXTYPE 3-24

3.3.4 Using SEM_RELATED and SEM_DISTANCE When the Indexed Column Is
Not the First Parameter 3-25

3.3.5 Using URIPREFIX When Values Are Not Stored as URIs 3-26

4 Simple Knowledge Organization System (SKOS) Support

4.1 Supported and Unsupported SKOS Semantics 4-2

4.1.1 Supported SKOS Semantics 4-2

4.1.2 Unsupported SKOS Semantics 4-3

4.2 Performing Inference on SKOS Models 4-3

4.2.1 Validating SKOS Models and Entailments 4-4

4.2.2 Property Chain Handling 4-4

5 Semantic Indexing for Documents

5.1 Information Extractors for Semantically Indexing Documents 5-3

5.2 Extractor Policies 5-5

5.3 Semantically Indexing Documents 5-5

5.4 SEM_CONTAINS and Ancillary Operators 5-6

5.4.1 SEM_CONTAINS_SELECT Ancillary Operator 5-7

5.4.2 SEM_CONTAINS_COUNT Ancillary Operator 5-8

5.5 Searching for Documents Using SPARQL Query Patterns 5-8

5.6 Bindings for SPARQL Variables in Matching Subgraphs in a Document
(SEM_CONTAINS_SELECT Ancillary Operator) 5-9

5.7 Improving the Quality of Document Search Operations 5-10

5.8 Indexing External Documents 5-11

5.9 Configuring the Calais Extractor type 5-12

5.10 Working with General Architecture for Text Engineering (GATE) 5-13

5.11 Creating a New Extractor Type 5-14

5.12 Creating a Local Semantic Index on a Range-Partitioned Table 5-15

5.13 Altering a Semantic Index 5-16

5.13.1 Rebuilding Content for All Existing Policies in a Semantic Index 5-16

5.13.2 Rebuilding to Add Content for a New Policy to a Semantic Index 5-17

5.13.3 Rebuilding Content for an Existing Policy from a Semantic Index 5-17

5.13.4 Rebuilding to Drop Content for an Existing Policy from a Semantic Index 5-17

5.14 Passing Extractor-Specific Parameters in CREATE INDEX and ALTER INDEX 5-17

viii

5.15 Performing Document-Centric Inference 5-17

5.16 Metadata Views for Semantic Indexing 5-18

5.16.1 MDSYS.RDFCTX_POLICIES View 5-19

5.16.2 RDFCTX_INDEX_POLICIES View 5-19

5.16.3 RDFCTX_INDEX_EXCEPTIONS View 5-20

5.17 Default Style Sheet for GATE Extractor Output 5-20

6 Fine-Grained Access Control for RDF Data

6.1 Triple-Level Security 6-1

6.1.1 Fine-Grained Security for Inferred Data and Ladder-Based Inference (LBI) 6-2

6.1.2 Extended Example: Applying OLS Triple-Level Security on Semantic Data 6-4

7 RDF Semantic Graph Support for Apache Jena

7.1 Setting Up the Software Environment 7-3

7.1.1 If You Used a Previous Version of the Support for Apache Jena 7-4

7.2 Setting Up the SPARQL Service 7-4

7.2.1 Client Identifiers 7-7

7.2.2 Using OLTP Compression for Application Tables and Staging Tables 7-7

7.2.3 N-Triples Encoding for Non-ASCII Characters 7-8

7.3 Setting Up the RDF Semantic Graph Environment 7-8

7.4 SEM_MATCH and RDF Semantic Graph Support for Apache Jena Queries
Compared 7-9

7.5 Retrieving User-Friendly Java Objects from SEM_MATCH or SQL-Based Query
Results 7-10

7.6 Optimized Handling of SPARQL Queries 7-13

7.6.1 Compilation of SPARQL Queries to a Single SEM_MATCH Call 7-13

7.6.2 Optimized Handling of Property Paths 7-14

7.7 Additions to the SPARQL Syntax to Support Other Features 7-15

7.7.1 SQL Hints 7-16

7.7.2 Using Bind Variables in SPARQL Queries 7-16

7.7.3 Additional WHERE Clause Predicates 7-18

7.7.4 Additional Query Options 7-18

7.7.4.1 JOIN Option and Federated Queries 7-20

7.7.4.2 S2S Option Benefits and Usage Information 7-21

7.7.5 Midtier Resource Caching 7-22

7.8 Functions Supported in SPARQL Queries through RDF Semantic Graph Support for
Apache Jena 7-22

7.8.1 Functions in the ARQ Function Library 7-22

7.8.2 Native Oracle Database Functions for Projected Variables 7-23

7.8.3 User-Defined Functions 7-24

ix

7.9 SPARQL Update Support 7-27

7.10 Analytical Functions for RDF Data 7-29

7.10.1 Generating Contextual Information about a Path in a Graph 7-34

7.11 Support for Server-Side APIs 7-35

7.11.1 Virtual Models Support 7-36

7.11.2 Connection Pooling Support 7-37

7.11.3 Semantic Model PL/SQL Interfaces 7-38

7.11.4 Inference Options 7-39

7.11.5 PelletInfGraph Class Support Deprecated 7-41

7.12 Bulk Loading Using RDF Semantic Graph Support for Apache Jena 7-42

7.12.1 Using prepareBulk in Parallel (Multithreaded) Mode 7-44

7.12.2 Handling Illegal Syntax During Data Loading 7-47

7.13 Automatic Variable Renaming 7-48

7.14 JavaScript Object Notation (JSON) Format Support 7-48

7.15 Other Recommendations and Guidelines 7-51

7.15.1 BOUND or !BOUND Instead of EXISTS or NOT EXISTS 7-51

7.15.2 SPARQL 1.1 SELECT Expressions 7-51

7.15.3 Syntax Involving Bnodes (Blank Nodes) 7-51

7.15.4 Limit in the SERVICE Clause 7-52

7.15.5 OracleGraphWrapperForOntModel Class for Better Performance 7-52

7.16 Example Queries Using RDF Semantic Graph Support for Apache Jena 7-54

7.16.1 Test.java: Query Family Relationships 7-55

7.16.2 Test6.java: Load OWL Ontology and Perform OWLPrime inference 7-56

7.16.3 Test7.java: Bulk Load OWL Ontology and Perform OWLPrime inference 7-58

7.16.4 Test8.java: SPARQL OPTIONAL Query 7-59

7.16.5 Test9.java: SPARQL Query with LIMIT and OFFSET 7-60

7.16.6 Test10.java: SPARQL Query with TIMEOUT and DOP 7-62

7.16.7 Test11.java: Query Involving Named Graphs 7-63

7.16.8 Test12.java: SPARQL ASK Query 7-64

7.16.9 Test13.java: SPARQL DESCRIBE Query 7-65

7.16.10 Test14.java: SPARQL CONSTRUCT Query 7-66

7.16.11 Test15.java: Query Multiple Models and Specify "Allow Duplicates" 7-67

7.16.12 Test16.java: SPARQL Update 7-69

7.16.13 Test17.java: SPARQL Query with ARQ Built-In Functions 7-69

7.16.14 Test18.java: SELECT Cast Query 7-70

7.16.15 Test19.java: Instantiate Oracle Database Using OracleConnection 7-72

7.16.16 Test20.java: Oracle Database Connection Pooling 7-73

7.17 SPARQL Gateway and Semantic Data 7-74

7.17.1 SPARQL Gateway Features and Benefits Overview 7-74

7.17.2 Installing and Configuring SPARQL Gateway 7-75

x

7.17.2.1 Download the RDF Semantic Graph Support for Apache Jena .zip File
(if Not Already Done) 7-75

7.17.2.2 Deploy SPARQL Gateway in WebLogic Server 7-76

7.17.2.3 Modify Proxy Settings, if Necessary 7-76

7.17.2.4 Configure the OracleSGDS Data Source, if Necessary 7-76

7.17.2.5 Add and Configure the SparqlGatewayAdminGroup Group, if Desired 7-77

7.17.3 Using SPARQL Gateway with Semantic Data 7-77

7.17.3.1 Storing SPARQL Queries and XSL Transformations 7-78

7.17.3.2 Specifying a Timeout Value 7-79

7.17.3.3 Specifying Best Effort Query Execution 7-80

7.17.3.4 Specifying a Content Type Other Than text/xml 7-80

7.17.4 Customizing the Default XSLT File 7-81

7.17.5 Using the SPARQL Gateway Java API 7-81

7.17.6 Using the SPARQL Gateway Graphical Web Interface 7-84

7.17.6.1 Main Page (index.html) 7-84

7.17.6.2 Navigation and Browsing Page (browse.jsp) 7-86

7.17.6.3 XSLT Management Page (xslt.jsp) 7-88

7.17.6.4 SPARQL Management Page (sparql.jsp) 7-89

7.17.7 Using SPARQL Gateway as an XML Data Source to OBIEE 7-90

7.18 Deploying Fuseki in Apache Tomcat 7-93

7.19 ORARDFLDR Utility for Bulk Loading RDF Data 7-94

7.19.1 Using ORARDFLDR with Oracle Autonomous Database 7-95

8 RDF Semantic Graph Support for Eclipse RDF4J

8.1 Oracle RDF Graph Support for Eclipse RDF4J Overview 8-2

8.2 Prerequisites for Using Oracle RDF Graph Adapter for Eclipse RDF4J 8-3

8.3 Setup and Configuration for Using Oracle RDF Graph Adapter for Eclipse RDF4J 8-3

8.3.1 Setting up Oracle RDF Graph Adapter for Eclipse RDF4J for Use with Java 8-4

8.3.2 Setting Up Oracle RDF Graph Adapter for Eclipse RDF4J for Use in RDF4J
Server and Workbench 8-7

8.3.2.1 Using the Adapter for Eclipse RFD4J Through RDF4J Workbench 8-15

8.3.3 Setting Up Oracle RDF Graph Adapter for Eclipse RDF4J for Use As SPARQL
Service 8-17

8.3.3.1 Using the Adapter Over SPARQL Endpoint in Eclipse RDF4J Workbench 8-17

8.4 Database Connection Management 8-19

8.5 SPARQL Query Execution Model 8-19

8.5.1 Using BIND Values 8-20

8.5.2 Using JDBC BIND Values 8-21

8.5.2.1 Limitations for JDBC Bind Value Support 8-22

8.5.3 Additions to the SPARQL Query Syntax to Support Other Features 8-22

8.5.3.1 Query Execution Options 8-23

xi

8.5.3.2 SPARQL_TO_SQL (SEM_MATCH) Options 8-23

8.5.4 Special Considerations for SPARQL Query Support 8-23

8.6 SPARQL Update Execution Model 8-24

8.6.1 Transaction Management for SPARQL Update 8-25

8.6.2 Additions to the SPARQL Syntax to Support Other Features 8-25

8.6.2.1 UPDATE_MODEL Options 8-25

8.6.2.2 UPDATE_MODEL Match Options 8-26

8.6.3 Special Considerations for SPARQL Update Support 8-26

8.7 Efficiently Loading RDF Data 8-27

8.8 Best Practices for Oracle RDF Graph Adapter for Eclipse RDF4J 8-27

8.9 Blank Nodes Support in Oracle RDF Graph Adapter for Eclipse RDF4J 8-29

8.10 Unsupported Features in Oracle RDF Graph Adapter for Eclipse RDF4J 8-30

8.11 Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J 8-30

8.11.1 Example 1: Basic Operations 8-32

8.11.2 Example 2: Add a Data File in TRIG Format 8-34

8.11.3 Example 3: Simple Query 8-36

8.11.4 Example 4: Simple Bulk Load 8-38

8.11.5 Example 5: Bulk Load RDF/XML 8-41

8.11.6 Example 6: SPARQL Ask Query 8-43

8.11.7 Example 7: SPARQL CONSTRUCT Query 8-45

8.11.8 Example 8: Named Graph Query 8-47

8.11.9 Example 9: Get COUNT of Matches 8-50

8.11.10 Example 10: Specify Bind Variable for Constant in Query Pattern 8-52

8.11.11 Example 11: SPARQL Update 8-55

8.11.12 Example 12: Oracle Hint 8-59

8.11.13 Example 13: Using JDBC Bind Values 8-62

8.11.14 Example 14: Simple Inference 8-65

8.11.15 Example 15: Simple Virtual Model 8-68

9 User-Defined Inferencing and Querying

9.1 User-Defined Inferencing 9-1

9.1.1 Problem Solved and Benefit Provided by User-Defined Inferencing 9-1

9.1.2 API Support for User-Defined Inferencing 9-2

9.1.2.1 User-Defined Inference Function Requirements 9-3

9.1.3 User-Defined Inference Extension Function Examples 9-4

9.1.3.1 Example 1: Adding Static Triples 9-5

9.1.3.2 Example 2: Adding Dynamic Triples 9-7

9.1.3.3 Example 3: Optimizing Performance 9-10

9.1.3.4 Example 4: Temporal Reasoning (Several Related Examples) 9-13

9.1.3.5 Example 5: Spatial Reasoning 9-21

xii

9.1.3.6 Example 6: Calling a Web Service 9-25

9.2 User-Defined Functions and Aggregates 9-28

9.2.1 Data Types for User-Defined Functions and Aggregates 9-28

9.2.2 API Support for User-Defined Functions 9-29

9.2.2.1 PL/SQL Function Implementation 9-29

9.2.2.2 Invoking User-Defined Functions from a SPARQL Query Pattern 9-30

9.2.2.3 User-Defined Function Examples 9-30

9.2.3 API Support for User-Defined Aggregates 9-32

9.2.3.1 ODCIAggregate Interface 9-32

9.2.3.2 Invoking User-Defined Aggregates 9-33

9.2.3.3 User-Defined Aggregate Examples 9-33

10

RDF Views: Relational Data as RDF

10.1 Why Use RDF Views on Relational Data? 10-1

10.2 API Support for RDF Views 10-1

10.2.1 Creating an RDF View Model with Direct Mapping 10-2

10.2.2 Creating an RDF View Model with R2RML Mapping 10-3

10.2.3 Dropping an RDF View Model 10-5

10.2.4 Exporting Virtual Content of an RDF View Model into a Staging Table 10-6

10.3 Example: Using an RDF View Model with Direct Mapping 10-6

10.4 Combining Native RDF Data with Virtual RDB2RDF Data 10-8

10.4.1 Nested Loop Pushdown with Overloaded Service 10-10

11

RDF Integration with Property Graph Data Stored in Oracle Database

11.1 About RDF Integration with Property Graph Data 11-1

11.2 R2RML Mapping for the Property Graph Relational Schema 11-4

11.3 PL/SQL API for Creating and Maintaining Property Graph RDF Views 11-9

11.4 Sample RDF Workflow with Property Graph Data 11-10

11.5 Special Considerations When Using Property Graph RDF Views 11-11

Part II RDF Graph Server and Query UI

12

Introduction to RDF Graph Server and Query UI

xiii

13

RDF Graph Server and Query UI Concepts

13.1 Data Sources 13-1

13.1.1 Oracle Data Sources 13-1

13.1.2 Endpoint URL Data Sources 13-3

13.2 RDF Datasets 13-4

13.3 REST Services 13-4

14

Oracle RDF Graph Query UI

14.1 Installing RDF Graph Query UI 14-1

14.2 Managing User Roles for RDF Graph Query UI 14-2

14.2.1 Managing Groups and Users in WebLogic Server 14-2

14.2.1.1 Creating User Groups in WebLogic Server 14-3

14.2.1.2 Creating RDF and Guest Users in WebLogic Server 14-4

14.2.2 Managing Users and Roles in Tomcat Server 14-6

14.3 Getting Started with RDF Graph Query UI 14-7

14.3.1 Data Sources Page 14-7

14.3.1.1 Creating a JDBC URL Data Source 14-8

14.3.1.2 Creating an Oracle Container Data Source 14-9

14.3.1.3 Creating an Oracle Wallet Data Source 14-13

14.3.1.4 Creating an Endpoint URL Data Source 14-14

14.3.2 RDF Data Page 14-16

14.3.2.1 Data Source Selection 14-17

14.3.2.2 Semantic Network Actions 14-18

14.3.2.3 Importing Data 14-18

14.3.2.4 SPARQL Query Cache Manager 14-19

14.3.2.5 RDF Objects Navigator 14-20

14.3.2.6 Data Source Published Datasets Navigator 14-22

14.3.2.7 Performing SPARQL Query and SPARQL Update Operations 14-22

14.3.2.8 Publishing Oracle RDF Models 14-24

14.3.2.9 Published Dataset Playground 14-27

14.3.2.10 Support for Auxiliary Tables 14-29

14.3.2.11 Advanced Graph View 14-33

14.3.2.12 Database Views from RDF Models 14-38

14.3.3 Configuration Files for RDF Server and Client 14-43

14.3.3.1 Data Sources JSON Configuration File 14-44

14.3.3.2 General JSON configuration file 14-45

14.3.3.3 Proxy JSON Configuration File 14-46

14.3.3.4 Logging JSON Configuration File 14-47

xiv

14.4 Accessibility 14-47

Part III Reference Information

15

SEM_APIS Package Subprograms

15.1 SEM_APIS.ADD_DATATYPE_INDEX 15-4

15.2 SEM_APIS.ADD_SEM_INDEX 15-5

15.3 SEM_APIS.ALTER_DATATYPE_INDEX 15-6

15.4 SEM_APIS.ALTER_ENTAILMENT 15-7

15.5 SEM_APIS.ALTER_MODEL 15-8

15.6 SEM_APIS.ALTER_SEM_INDEX_ON_ENTAILMENT 15-9

15.7 SEM_APIS.ALTER_SEM_INDEX_ON_MODEL 15-11

15.8 SEM_APIS.ALTER_SEM_INDEXES 15-12

15.9 SEM_APIS.ALTER_SPM_TAB 15-13

15.10 SEM_APIS.ANALYZE_ENTAILMENT 15-14

15.11 SEM_APIS.ANALYZE_MODEL 15-16

15.12 SEM_APIS.APPEND_SEM_NETWORK_DATA 15-18

15.13 SEM_APIS.BUILD_PG_RDFVIEW_INDEXES 15-19

15.14 SEM_APIS.BUILD_SPM_TAB 15-22

15.15 SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE 15-24

15.16 SEM_APIS.CLEANUP_BNODES 15-26

15.17 SEM_APIS.CLEANUP_FAILED 15-27

15.18 SEM_APIS.COMPOSE_RDF_TERM 15-28

15.19 SEM_APIS.CONVERT_TO_GML311_LITERAL 15-30

15.20 SEM_APIS.CONVERT_TO_WKT_LITERAL 15-31

15.21 SEM_APIS.CREATE_ENTAILMENT 15-33

15.22 SEM_APIS.CREATE_INDEX_ON_SPM_TAB 15-42

15.23 SEM_APIS.CREATE_MATERIALIZED_VIEW 15-43

15.24 SEM_APIS.SEM_APIS.CREATE_MV_BITMAP_INDEX 15-45

15.25 SEM_APIS.CREATE_PG_RDFVIEW 15-46

15.26 SEM_APIS.CREATE_RDFVIEW_MODEL 15-48

15.27 SEM_APIS.CREATE_RULEBASE 15-52

15.28 SEM_APIS.CREATE_SEM_MODEL 15-52

15.29 SEM_APIS.CREATE_SEM_NETWORK 15-54

15.30 SEM_APIS.CREATE_SOURCE_EXTERNAL_TABLE 15-56

15.31 SEM_APIS.CREATE_SPARQL_UPDATE_TABLES 15-57

15.32 SEM_APIS.CREATE_VIRTUAL_MODEL 15-58

15.33 SEM_APIS.DELETE_ENTAILMENT_STATS 15-61

15.34 SEM_APIS.DELETE_MODEL_STATS 15-62

15.35 SEM_APIS.DISABLE_CHANGE_TRACKING 15-63

xv

15.36 SEM_APIS.DISABLE_INC_INFERENCE 15-63

15.37 SEM_APIS.DISABLE_INMEMORY 15-64

15.38 SEM_APIS.DISABLE_INMEMORY_FOR_ENT 15-65

15.39 SEM_APIS.DISABLE_INMEMORY_FOR_MODEL 15-65

15.40 SEM_APIS.DISABLE_NETWORK_SHARING 15-66

15.41 SEM_APIS.DROP_DATATYPE_INDEX 15-67

15.42 SEM_APIS.DROP_ENTAILMENT 15-68

15.43 SEM_APIS.SEM_APIS.DROP_MATERIALIZED_VIEW 15-69

15.44 SEM_APIS.SEM_APIS.DROP_MV_BITMAP_INDEX 15-69

15.45 SEM_APIS.DROP_PG_RDFVIEW 15-70

15.46 SEM_APIS.DROP_PG_RDFVIEW_INDEXES 15-71

15.47 SEM_APIS.DROP_RDFVIEW_MODEL 15-72

15.48 SEM_APIS.DROP_RULEBASE 15-73

15.49 SEM_APIS.DROP_SEM_INDEX 15-74

15.50 SEM_APIS.DROP_SEM_MODEL 15-74

15.51 SEM_APIS.DROP_SEM_NETWORK 15-75

15.52 SEM_APIS.DROP_SPARQL_UPDATE_TABLES 15-76

15.53 SEM_APIS.DROP_SPM_TAB 15-77

15.54 SEM_APIS.DROP_USER_INFERENCE_OBJS 15-79

15.55 SEM_APIS.DROP_VIRTUAL_MODEL 15-80

15.56 SEM_APIS.ENABLE_CHANGE_TRACKING 15-80

15.57 SEM_APIS.ENABLE_INC_INFERENCE 15-81

15.58 SEM_APIS.ENABLE_INMEMORY 15-82

15.59 SEM_APIS.ENABLE_INMEMORY_FOR_ENT 15-83

15.60 SEM_APIS.ENABLE_INMEMORY_FOR_MODEL 15-84

15.61 SEM_APIS.ENABLE_NETWORK_SHARING 15-85

15.62 SEM_APIS.ESCAPE_CLOB_TERM 15-85

15.63 SEM_APIS.ESCAPE_CLOB_VALUE 15-86

15.64 SEM_APIS.ESCAPE_RDF_TERM 15-87

15.65 SEM_APIS.ESCAPE_RDF_VALUE 15-88

15.66 SEM_APIS.EXPORT_ENTAILMENT_STATS 15-89

15.67 SEM_APIS.EXPORT_MODEL_STATS 15-90

15.68 SEM_APIS.EXPORT_RDFVIEW_MODEL 15-90

15.69 SEM_APIS.GATHER_SPM_INFO 15-92

15.70 SEM_APIS.GET_CHANGE_TRACKING_INFO 15-93

15.71 SEM_APIS.GET_INC_INF_INFO 15-94

15.72 SEM_APIS.GET_MODEL_ID 15-95

15.73 SEM_APIS.GET_MODEL_NAME 15-96

15.74 SEM_APIS.GET_TRIPLE_ID 15-96

15.75 SEM_APIS.GETV$DATETIMETZVAL 15-97

15.76 SEM_APIS.GETV$DATETZVAL 15-98

xvi

15.77 SEM_APIS.GETV$GEOMETRYVAL 15-99

15.78 SEM_APIS.GETV$NUMERICVAL 15-100

15.79 SEM_APIS.GETV$STRINGVAL 15-101

15.80 SEM_APIS.GETV$TIMETZVAL 15-102

15.81 SEM_APIS.GRANT_MODEL_ACCESS_PRIV 15-103

15.82 SEM_APIS.GRANT_MODEL_ACCESS_PRIVS 15-105

15.83 SEM_APIS.GRANT_NETWORK_ACCESS_PRIVS 15-106

15.84 SEM_APIS.GRANT_NETWORK_SHARING_PRIVS 15-107

15.85 SEM_APIS.IMPORT_ENTAILMENT_STATS 15-108

15.86 SEM_APIS.IMPORT_MODEL_STATS 15-109

15.87 SEM_APIS.IS_TRIPLE 15-110

15.88 SEM_APIS.LOAD_INTO_STAGING_TABLE 15-111

15.89 SEM_APIS.LOOKUP_ENTAILMENT 15-112

15.90 SEM_APIS.MERGE_MODELS 15-113

15.91 SEM_APIS.MIGRATE_DATA_TO_CURRENT 15-114

15.92 SEM_APIS.MIGRATE_DATA_TO_STORAGE_V2 15-116

15.93 SEM_APIS.MOVE_SEM_NETWORK_DATA 15-117

15.94 SEM_APIS.PRIVILEGE_ON_APP_TABLES 15-118

15.95 SEM_APIS.PURGE_UNUSED_VALUES 15-118

15.96 SEM_APIS.SEM_APIS.REFRESH_MATERIALIZED_VIEW 15-119

15.97 SEM_APIS.REFRESH_SEM_NETWORK_INDEX_INFO 15-120

15.98 SEM_APIS.REMOVE_DUPLICATES 15-121

15.99 SEM_APIS.RENAME_ENTAILMENT 15-122

15.100 SEM_APIS.RENAME_MODEL 15-123

15.101 SEM_APIS.RES2VID 15-124

15.102 SEM_APIS.RESTORE_SEM_NETWORK_DATA 15-125

15.103 SEM_APIS.REVOKE_MODEL_ACCESS_PRIV 15-126

15.104 SEM_APIS.REVOKE_MODEL_ACCESS_PRIVS 15-127

15.105 SEM_APIS.REVOKE_NETWORK_ACCESS_PRIVS 15-129

15.106 SEM_APIS.REVOKE_NETWORK_SHARING_PRIVS 15-130

15.107 SEM_APIS.SET_ENTAILMENT_STATS 15-130

15.108 SEM_APIS.SET_MODEL_STATS 15-131

15.109 SEM_APIS.SPARQL_TO_SQL 15-132

15.110 SEM_APIS.SWAP_NAMES 15-134

15.111 SEM_APIS.TRUNCATE_SEM_MODEL 15-134

15.112 SEM_APIS.UNESCAPE_CLOB_TERM 15-135

15.113 SEM_APIS.UNESCAPE_CLOB_VALUE 15-136

15.114 SEM_APIS.UNESCAPE_RDF_TERM 15-137

15.115 SEM_APIS.UNESCAPE_RDF_VALUE 15-137

15.116 SEM_APIS.UPDATE_MODEL 15-138

15.117 SEM_APIS.VALIDATE_ENTAILMENT 15-141

xvii

15.118 SEM_APIS.VALIDATE_GEOMETRIES 15-142

15.119 SEM_APIS.VALIDATE_MODEL 15-144

15.120 SEM_APIS.VALUE_NAME_PREFIX 15-145

15.121 SEM_APIS.VALUE_NAME_SUFFIX 15-146

16

SEM_OLS Package Subprograms

16.1 SEM_OLS.APPLY_POLICY_TO_APP_TAB 16-1

16.2 SEM_OLS.REMOVE_POLICY_FROM_APP_TAB 16-2

17

SEM_PERF Package Subprograms

17.1 SEM_PERF.ANALYZE_AUX_TABLES 17-1

17.2 SEM_PERF.DELETE_NETWORK_STATS 17-2

17.3 SEM_PERF.DROP_EXTENDED_STATS 17-3

17.4 SEM_PERF.EXPORT_NETWORK_STATS 17-4

17.5 SEM_PERF.GATHER_STATS 17-5

17.6 SEM_PERF.IMPORT_NETWORK_STATS 17-7

18

SEM_RDFCTX Package Subprograms

18.1 SEM_RDFCTX.ADD_DEPENDENT_POLICY 18-1

18.2 SEM_RDFCTX.CREATE_POLICY 18-2

18.3 SEM_RDFCTX.DROP_POLICY 18-4

18.4 SEM_RDFCTX.MAINTAIN_TRIPLES 18-4

18.5 SEM_RDFCTX.SET_DEFAULT_POLICY 18-6

18.6 SEM_RDFCTX.SET_EXTRACTOR_PARAM 18-7

19

SEM_RDFSA Package Subprograms

19.1 SEM_RDFSA.APPLY_OLS_POLICY 19-1

19.2 SEM_RDFSA.DISABLE_OLS_POLICY 19-4

19.3 SEM_RDFSA.ENABLE_OLS_POLICY 19-5

19.4 SEM_RDFSA.REMOVE_OLS_POLICY 19-6

19.5 SEM_RDFSA.RESET_MODEL_LABELS 19-6

19.6 SEM_RDFSA.SET_PREDICATE_LABEL 19-7

19.7 SEM_RDFSA.SET_RDFS_LABEL 19-9

19.8 SEM_RDFSA.SET_RESOURCE_LABEL 19-10

19.9 SEM_RDFSA.SET_RULE_LABEL 19-12

xviii

Part IV Appendixes

A Enabling, Downgrading, or Removing RDF Semantic Graph Support

A.1 Enabling RDF Semantic Graph Support A-1

A.1.1 Enabling RDF Semantic Graph Support in a New Database Installation A-2

A.1.2 Upgrading RDF Semantic Graph Support from Release 11.1, 11.2, or 12.1 A-2

A.1.2.1 Required Data Migration After Upgrade A-4

A.1.2.2 Handling of Empty RDF Literals A-6

A.1.3 Workspace Manager and Virtual Private Database Desupport A-6

A.2 Downgrading RDF Semantic Graph Support to a Previous Release A-7

A.2.1 Downgrading to Release 12.1 Semantic Graph Support A-7

A.3 Removing RDF Semantic Graph Support A-8

B SEM_MATCH Support for Spatial Queries

B.1 GeoSPARQL Functions for Spatial Support B-1

B.1.1 ogcf:boundary B-2

B.1.2 ogcf:buffer B-2

B.1.3 ogcf:convexHull B-3

B.1.4 ogcf:difference B-4

B.1.5 ogcf:distance B-5

B.1.6 ogcf:envelope B-6

B.1.7 ogcf:getSRID B-7

B.1.8 ogcf:intersection B-8

B.1.9 ogcf:relate B-9

B.1.10 ogcf:sfContains B-10

B.1.11 ogcf:sfCrosses B-11

B.1.12 ogcf:sfDisjoint B-12

B.1.13 ogcf:sfEquals B-13

B.1.14 ogcf:sfIntersects B-14

B.1.15 ogcf:sfOverlaps B-15

B.1.16 ogcf:sfTouches B-16

B.1.17 ogcf:sfWithin B-17

B.1.18 ogcf:symDifference B-18

B.1.19 ogcf:union B-19

B.2 Oracle-Specific Functions for Spatial Support B-19

B.2.1 orageo:aggrCentroid B-20

B.2.2 orageo:aggrConvexHull B-21

B.2.3 orageo:aggrMBR B-22

B.2.4 orageo:aggrUnion B-22

xix

B.2.5 orageo:area B-23

B.2.6 orageo:buffer B-24

B.2.7 orageo:centroid B-25

B.2.8 orageo:convexHull B-26

B.2.9 orageo:difference B-27

B.2.10 orageo:distance B-27

B.2.11 orageo:getSRID B-29

B.2.12 orageo:intersection B-29

B.2.13 orageo:length B-30

B.2.14 orageo:mbr B-31

B.2.15 orageo:nearestNeighbor B-32

B.2.16 orageo:relate B-33

B.2.17 orageo:sdoDistJoin B-35

B.2.18 orageo:sdoJoin B-36

B.2.19 orageo:union B-37

B.2.20 orageo:withinDistance B-38

B.2.21 orageo:xor B-39

C RDF Support in SQL Developer

C.1 About RDF Support in SQL Developer C-1

C.2 Setting Up the RDF Semantic Graph Support In SQL Developer C-1

C.3 Working with RDF Semantic Networks Using SQL Developer C-4

C.3.1 Creating an RDF Semantic Network Using SQL Developer C-4

C.3.1.1 Creating Tablespaces for Semantic Networks Using SQL Developer C-6

C.3.2 Refreshing Semantic Network Indexes Using SQL Developer C-7

C.3.3 Gathering RDF Statistics Using SQL Developer C-8

C.3.4 Purging Unused Values from a Network Using SQL Developer C-8

C.3.5 Dropping a Semantic Network Using SQL Developer C-9

C.4 Bulk Loading RDF Data Using SQL Developer C-9

Glossary

Index

xx

List of Figures

1-1 Oracle Semantic Capabilities 1-3

1-2 Inferencing 1-18

1-3 Family Tree for RDF Example 1-190

2-1 Running SPARQL Query in RDF Graph Query UI 2-6

3-1 Disease Ontology Example 3-2

7-1 Visual Representation of Analytical Function Output 7-35

7-2 Graphical Interface Main Page (index.html) 7-85

7-3 SPARQL Query Main Page Response 7-86

7-4 Graphical Interface Navigation and Browsing Page (browse.jsp) 7-87

7-5 Browsing and Navigation Page: Response 7-87

7-6 Query and Response from Clicking URI Link 7-88

7-7 XSLT Management Page 7-89

7-8 SPARQL Management Page 7-90

7-9 Import Metadata - Select Data Source 7-91

7-10 Import Metadata - Select Metadata Types 7-92

7-11 Import Metadata - Select Metadata Objects 7-93

8-1 Data Source Repository in RDF4J Workbench 8-8

8-2 RDF4J Workbench Repository 8-15

8-3 RDF4J Workbench New Repository 8-16

8-4 Create New Repository in RDF4J Workbench 8-16

8-5 Summary of New Repository in RDF4J Workbench 8-16

11-1 Equivalent Property Graph and RDF Representations of the Same Graph 11-3

12-1 RDF Graph Server and Query UI 12-1

14-1 Oracle Graph Webapps deployment 14-1

14-2 User Roles for RDF Graph Query 14-2

14-3 WebLogic Server Administration Console 14-3

14-4 Creating new user groups in WebLogic Server 14-3

14-5 Created User Groups in WebLogic Server 14-4

14-6 Create new users in WebLogic Server 14-4

14-7 New RDF and Guest users 14-4

14-8 RDF User 14-5

14-9 RDF Guest User 14-6

14-10 Query UI Main Page 14-7

14-11 Data Sources Page 14-8

14-12 Creating a JDBC URL Data Source 14-9

xxi

14-13 Create Container Data Source 14-10

14-14 Generic Data Source 14-10

14-15 JDBC Data Source and JNDI 14-11

14-16 Create JDBC Data Source 14-11

14-17 Validate connection 14-12

14-18 Create JDBC Data Source 14-12

14-19 Cloud Wallet 14-13

14-20 Wallet Data Source from cloud zip 14-14

14-21 DBpedia Data Source 14-15

14-22 Apache Jena Fuseki Data Source 14-16

14-23 RDF Data Page 14-17

14-24 RDF Network 14-18

14-25 RDF Semantic Network Actions 14-18

14-26 RDF Import Data Actions 14-18

14-27 SPARQL Query Cache Manager 14-19

14-28 Manage SPARQL Query Cache 14-20

14-29 RDF Objects for Oracle Data Source 14-20

14-30 RDF Objects from capabilities 14-21

14-31 Default RDF Object 14-21

14-32 RDF Navigator - Context Menu 14-21

14-33 Data Source Published Datasets Navigator 14-22

14-34 SPARQL Query Page 14-23

14-35 SQL EXPLAIN PLAN for SPARQL Translation 14-23

14-36 Map Visualization for GeoSPARQL Data Types in a SPARQL Query 14-24

14-37 Publish Menu 14-25

14-38 Publish RDF Model 14-25

14-39 GET URL Endpoint 14-26

14-40 Open an RDF Dataset Definition 14-26

14-41 RDF Dataset Definition 14-27

14-42 Public Web Page 14-28

14-43 Opening a Published Dataset on the Public Page 14-28

14-44 Auxiliary tables Menu 14-29

14-45 Predicates Table 14-30

14-46 Predicate List 14-30

14-47 Creating an Auxiliary Table 14-30

14-48 List of Auxiliary Tables 14-31

14-49 Viewing the Predicate Information for an SPM table 14-31

xxii

14-50 Viewing the Secondary Indexes 14-32

14-51 Creating a Secondary Index 14-32

14-52 Dropping an SPM Table 14-33

14-53 Advanced Graph View Components 14-33

14-54 Visualize Menu 14-34

14-55 Query Selector 14-34

14-56 Advanced Graph View 14-35

14-57 Expanding a Node 14-36

14-58 Viewing Node Values 14-36

14-59 Expanding an Edge Predicate 14-37

14-60 Circular Layout Graph 14-37

14-61 Create Graph View Option 14-39

14-62 RDF Classes 14-39

14-63 Sample Graph Definition 14-40

14-64 Action Menu Options 14-40

14-65 Graph Visualization for RDF Database Views 14-40

14-66 Create Views 14-41

14-67 RDF Database Graph Views 14-41

14-68 Creating a Vertex View 14-42

14-69 Vertex View Definitions 14-42

14-70 Edge Views 14-43

14-71 Edge View Definition 14-43

14-72 General SPARQL Parameters 14-45

14-73 General JDBC Parameters 14-46

14-74 General File Upload Parameters 14-46

14-75 Proxy JSON Configuration File 14-46

14-76 Logging JSON Configuration File 14-47

14-77 Disabled Accessibility 14-47

14-78 Enabled Accessibility 14-48

14-79 Disabled Graph View 14-48

C-1 RDF Semantic Graph Setup C-2

C-2 Apply RDF Semantic Graph Setup C-3

C-3 Create Semantic Network C-5

xxiii

List of Tables

1-1 network_owner and network_name Parameters 1-7

1-2 SEM_MODEL$ View Columns 1-13

1-3 SEMM_model-name View Columns 1-13

1-4 RDF_VALUE$ Table Columns 1-14

1-5 SEMR_rulebase-name View Columns 1-19

1-6 SEM_RULEBASE_INFO View Columns 1-19

1-7 SEM_RULES_INDEX_INFO View Columns 1-21

1-8 SEM_RULES_INDEX_DATASETS View Columns 1-21

1-9 SEM_MODEL$ View Column Explanations for Virtual Models 1-23

1-10 SEM_VMODEL_INFO View Columns 1-23

1-11 SEM_VMODEL_DATASETS View Columns 1-24

1-12 Semantic Metadata Tables and Views 1-27

1-13 Built-in Functions Available for FILTER Clause 1-40

1-14 Oracle-Specific Query Functions 1-45

1-15 SEM_MATCH graphs and named_graphs Values, and Resulting Dataset Configurations 1-49

1-16 Built-in Aggregates 1-64

1-17 Property Path Syntax Constructs 1-71

1-18 Single-Valued Table Columns 1-91

1-19 Multi-Valued Table Columns 1-92

1-20 Property Chain Table Columns 1-92

1-21 Predicate Information Table Columns 1-93

1-22 Lexical Values Columns in MVN, PCN and SVP Tables 1-103

1-23 SEM_APIS.CREATE_INDEX_ON_SPM_TAB Procedure Parameters 1-111

1-24 SEM_NETWORK_INDEX_INFO View Columns (Partial List) 1-156

1-25 Data Types for Data Type Indexing 1-157

1-26 SEM_DTYPE_INDEX_INFO View Columns 1-158

1-27 Semantic Technology Software Objects: Old and New Names 1-194

3-1 PATIENTS Table Example Data 3-2

3-2 RDFS/OWL Vocabulary Constructs Included in Each Supported Rulebase 3-4

3-3 SEMC_entailment_name View Columns 3-13

5-1 MDSYS.RDFCTX_POLICIES View Columns 5-19

5-2 MDSYS.RDFCTX_INDEX_POLICIES View Columns 5-19

5-3 MDSYS.RDFCTX_INDEX_EXCEPTIONS View Columns 5-20

7-1 Functions and Return Values for my_strlen Example 7-24

xxiv

7-2 PL/SQL Subprograms and Corresponding RDF Semantic Graph support for Apache Jena

Java Class and Methods 7-38

13-1 External Data source Parameters 13-3

15-1 Inferencing Keywords for inf_components_in Parameter 15-36

15-2 SEM_RDFSA Package Constants for label_gen Parameter 15-39

19-1 SEM_RDFSA Package Constants for rdfsa_options Parameter 19-2

C-1 RDF Semantic Graph Setup Specific To SQL Developer and Oracle DB Version C-2

C-2 Recommended Semantic Network Type C-4

C-3 Release Specific Instructions to Create a Semantic Network C-5

xxv

Preface

Oracle Spatial and Graph RDF Semantic Graph Developer's Guide provides usage
and reference information about Oracle Database Enterprise Edition support for
semantic technologies, including storage, inference, and query capabilities for data
and ontologies based on Resource Description Framework (RDF), RDF Schema
(RDFS), and Web Ontology Language (OWL). The RDF Semantic Graph feature is
licensed with the Oracle Spatial and Graph option to Oracle Database Enterprise
Edition, and it requires the Oracle Partitioning option to Oracle Database Enterprise
Edition.

Note:

You must perform certain actions and meet prerequisites before you can use
any types, synonyms, or PL/SQL packages related to RDF Semantic Graph
support. These actions and prerequisites are explained in Enabling RDF
Semantic Graph Support.

• Audience

• Documentation Accessibility

• Related Documents

• Conventions

Audience
This guide is intended for those who need to use semantic technology to store,
manage, and query semantic data in the database.

You should be familiar with at least the main concepts and techniques for the
Resource Description Framework (RDF) and the Web Ontology Language (OWL).

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/

Preface

xxvi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info

lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you
are hearing impaired.

Related Documents
For an excellent explanation of RDF concepts, see the World Wide Web Consortium (W3C)
RDF Primer at http://www.w3.org/TR/rdf-primer/.

For information about OWL, see the OWL Web Ontology Language Reference at http://
www.w3.org/TR/owl-ref/.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

xxvii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/owl-ref/

Changes in This Release for This Guide

This topic contains the following.

• Changes in Oracle Database Release 21c

• Changes in Oracle Database Release 19c

• Changes in Oracle Database Release 18.1

Changes in Oracle Database Release 21c
The following are the changes in Oracle Database Graph Developer's Guide for RDF
Graph for Oracle Database Release 21c.

Required Migration of Pre-21c Semantic Data

After the database upgrade to Release 21, existing semantic networks must be
migrated to reflect minor storage changes and to update the definitions of several
triggers, views, and PL/SQL packages in the network owner’s schema. Note that this
includes migration of long literals, but does not include migration to escaped network
storage form.

For MDSYS-owned networks, you must run the following as SYSTEM or some other
DBA user:

EXEC SEM_APIS.MIGRATE_DATA_TO_CURRENT;

For each schema-private semantic network, you must run the following as the network
owner:

EXEC
SEM_APIS.MIGRATE_DATA_TO_CURRENT(network_owner=>'<NETWORK_OWNER>',
network_name=>'<NETWORK_NAME>');

Native Unicode Storage

RDF Knowledge Graph can now store special characters and Unicode characters
natively, which means that such characters no longer need to be escaped into
\u<HEX><HEX><HEX><HEX> form before being stored in the RDF_VALUE$ table. Using
this unescaped storage form reduces storage cost and improves query performance.

The storage form for a network can be specified at network creation time in the options
parameter of SEM_APIS.CREATE_SEM_NETWORK. Unescaped storage form is the
default storage form for newly create semantic networks, and it is strongly
recommended that you migrate existing semantic networks to unescaped storage
form.

Changes in This Release for This Guide

xxviii

Existing semantic networks using escaped storage form can be migrated to unescaped
storage form with the SEM_APIS.MIGRATE_DATA_TO_STORAGE_V2 procedure. Existing
applications should not be affected by any changes in network storage form. Such changes
only affect internal operations of RDF Knowledge Graph.

Long-Literal Storage Changes

A new hashing scheme is used for long literal values that are stored as CLOBs. The hashing
scheme improves loading performance and removes the need for the VALUE$HASHCLOB
index on RDF_LINK$.

Note that you must run the SEM_APIS.MIGRATE_DATA_TO_CURRENT procedure after
upgrade to Release 20c to migrate long literal data to the new hashing scheme.

Support for Subject-Property-Matrix Tables

Subject-Property-Matrix (SPM) auxiliary tables can now be used to speed up SPARQL query
execution. For a given model, you can create one or more Single-Valued Property (SVP)
tables that, for each subject, holds the values for many predicates in the same row. Using
SVP tables reduces the number of joins required to evaluate “star pattern” SPARQL queries.

In addition, you can create one or more Multi-Valued Property (MVP) tables that hold all the
triples for a given property. MVP tables allow for better query optimizer statistics and
improved query plans.

You can also create one or more Property Chain (PCN) tables that hold sequences of triples
joined by previous object value equal to next subject value. PCN tables improve performance
by eliminating joins required to evaluate sequences of triple patterns that form a path.

SVP, MVP and PCN tables are automatically updated when DML operations happen on the
underlying model.

For more information, see Speeding up Query Execution with SPM Auxiliary Tables .

RDF Semantic Graph support added for Eclipse RDF4J

Using Oracle RDF Graph Adapter for Eclipse RDF4J, you can now utilize the powerful
Eclipse RDF4J framework to work with RDF graph data. The adapter for Eclipse RDF4J
provides integration with Eclipse RDF4J SAIL API, Eclipse RDF4J Server and Eclipse RDF4J
Workbench.

The main features of the Oracle RDF Graph Adapter for Eclipse RDF4J include Java APIs to
load RDF data (bulk and incremental) into the database, query RDF graphs, and update RDF
data managed by the database.

See RDF Semantic Graph Support for Eclipse RDF4J for more information.

Changes in Oracle Database Release 19c
The following are changes in Oracle Spatial and Graph RDF Knowledge Graph Developer's
Guide for Oracle Database Release 19c.

• Support Added for Schema-Private Semantic Networks

• Feature Name Change: RDF Knowledge Graph

• Support Added for Database Vault and Rolling Upgrades in 19.3

• Reduced Default Privileges for MDSYS

Changes in This Release for This Guide

xxix

• Reduced Tablespace Privileges for MDSYS

• RDF Semantic Graph support added for Eclipse RDF4J

Support Added for Schema-Private Semantic Networks
Semantic networks can now be created in a regular user’s schema. Such networks are
called schema-private semantic networks because the associated database objects
are created in the network owner’s schema, and the network owner has exclusive
privileges to those objects. (DBA users also have such privileges, and the network
owner or a DBA can grant and revoke the privileges for other users.)

In previous releases, the only scenario was a single semantic network owned by the
MDSYS user and asvailable to the entire database. That scenario is still supported,
but you are encouraged to use schema-private semantic networks instead.

For more information, see Semantic Networks.

Feature Name Change: RDF Knowledge Graph
The feature name previously called RDF Semantic Graph is now called RDF
Knowledge Graph.

The terms semantic network and semantic data are still widely used throughout this
guide.

Support Added for Database Vault and Rolling Upgrades in 19.3
Effective with Oracle Database Release 19.3, RDF knowledge graphs are supported
for:

• Oracle Database Vault

• Rolling upgrades

Reduced Default Privileges for MDSYS
Starting with Release 12.2, MDSYS no longer has the INHERIT ANY PRIVILEGES
privilege, so MDSYS-owned invoker rights procedures can no longer be executed as
SYS. Administrative procedures, such as creating a semantic network, must be
executed by a non-SYS user with DBA role (such as SYSTEM). If you execute such
procedures as SYS, you will get an ORA-01031: insufficient privileges error.

See RDF Privilege Considerations.

Reduced Tablespace Privileges for MDSYS
Effective with Release 19, the MDSYS user no longer has the UNLIMITED
TABLESPACE privilege, and so MDSYS must be explicitly granted quota on the
tablespace used for an MDSYS-owned semantic network.

See RDF Privilege Considerations.

Changes in This Release for This Guide

xxx

RDF Semantic Graph support added for Eclipse RDF4J
Using Oracle RDF Graph Adapter for Eclipse RDF4J, you can now utilize the powerful
Eclipse RDF4J framework to work with RDF graph data. The adapter for Eclipse RDF4J
provides integration with Eclipse RDF4J SAIL API, Eclipse RDF4J Server and Eclipse RDF4J
Workbench.

The main features of the Oracle RDF Graph Adapter for Eclipse RDF4J include Java APIs to
load RDF data (bulk and incremental) into the database, query RDF graphs, and update RDF
data managed by the database.

See RDF Semantic Graph Support for Eclipse RDF4J for more information.

Changes in Oracle Database Release 18.1
The following are changes in Oracle Spatial and Graph RDF Semantic Graph Developer's
Guide for Oracle Database Release 18.1.

• Support Added for Oracle Database In-Memory

• Support Added for Semantic Networks with Composite Partitioning

• Enhanced CLOB Support for Bulk Load Operations

• Native Support for Turtle and Trig RDF Formats

• Support for RDF Added to SQL Developer

Support Added for Oracle Database In-Memory
RDF data can easily be loaded into memory to take advantage of the Oracle Database In-
Memory feature. A semantic network can now be loaded into memory with the
SEM_APIS.ENABLE_INMEMORY procedure. In addition, in-memory virtual columns can be
used at the virtual model level to add lexical values for RDF terms to the in-memory
representation of the MDSYS.RDF_LINK$ table, thus reducing the number of joins required
to evaluate SPARQL queries.

For more information, see RDF Support for Oracle Database In-Memory.

Support Added for Semantic Networks with Composite Partitioning
Semantic networks can now be created with list-hash composite partitioning. With this
scheme, a semantic network is initially list-partitioned by model id, and then each partition is
subpartitioned using a hash of the RDF predicate ID. Composite partitioning improves
SPARQL query performance through increased parallelization and better query optimizer
statistics.

For more information, see Semantic Networks.

Enhanced CLOB Support for Bulk Load Operations
Staging tables that contain RDF quads with long literals (RDF object values greater than
4000 bytes in size) can now be efficiently loaded with
SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE.

Changes in This Release for This Guide

xxxi

New options have also been added to SEM_APIS.LOAD_INTO_STAGING_TABLE for
better handling of long literals when loading from an external table. The VC_ONLY option
loads only RDF quads with object values not larger than 4000 bytes into a staging
table, and the CLOB_ONLY option loads only RDF quads with object values larger than
4000 bytes. These options allow a very efficient two-phase bulk load where
VARCHAR-only data is loaded in one bulk load operation and CLOB-only data is
loaded in a second bulk load operation.

Native Support for Turtle and Trig RDF Formats
Turtle and Trig RDF formats can now be directly loaded into Oracle Database without
the need for third-party tools. SPARQL LOAD operations executed through
SEM_APIS.UPDATE_MODEL can now parse and insert RDF data serialized in Turtle
and Trig formats in addition to the N-Triple and N-Quad formats that were previously
supported.

RDF Views can now be created directly from R2RML mappings specified in Turtle or
N-Triple format. New R2RML_STRING and R2RML_STRING_FMT arguments have
been added to SEM_APIS.CREATE_RDFVIEW_MODEL so that an R2RML mapping
string can be used to create an RDF View model.

Support for RDF Added to SQL Developer
You can use Oracle SQL Developer to create RDF-related objects and use RDF and
OWL features.

For more information, see RDF Support in Oracle SQL Developer.

Changes in This Release for This Guide

xxxii

How to Use This Book

This book is organized into three parts:

• Part I provides conceptual and usage information about RDF Semantic Graph.

• Part II provides information about using RDF Graph Server and Query UI.

• Part III provides reference information about RDF Semantic Graph subprograms.

All supplementary information is provided in Appendixes and specialized terms are defined in
the Glossary.

However, the following summary provides an outline of some of the main ideas in the book
that will help you to develop an understanding of RDF semantic graph support in Oracle
Database and how to store, load, query, infer and visualize RDF data.

Learn About Oracle RDF Graph

Introduction to Oracle Semantic Technologies
Support

Semantic Data in Oracle Database

OWL Concepts

RDF Views

Get Started With Oracle RDF Graph

Enabling RDF Semantic Graph Support

Quick Start for Using Semantic Data

Loading and Exporting Semantic Data

Performing SPARQL Query operations

Performing SPARQL Update operations

Performance Tuning for SPARQL Queries

Tuning the Performance of SPARQL Update
Operations

What's New In Oracle RDF Graph

Speeding up Query Execution with SPM
Auxiliary Tables

RDF Semantic Graph Support for Eclipse
RDF4J

RDF Graph Server and Query UI

Additional Oracle RDF Graph Features

RDF Semantic Graph Support for Apache
Jena

RDF Integration with Property Graph Data

RDF Support in SQL Developer

xxxiii

Using RDF with Oracle Database In-Memory

Applying Oracle Machine Learning Algorithms
to RDF Data

How to Use This Book

xxxiv

Part I
Conceptual and Usage Information

Part I provides conceptual and usage information about RDF Semantic Graph.

This part contains the following chapters:

• RDF Graph Overview
Oracle Graph support for semantic technologies consists mainly of Resource Description
Framework (RDF) and a subset of the Web Ontology Language (OWL). These
capabilities are referred to as the RDF Graph feature of Oracle Graph.

• Quick Start for Using Semantic Data
This section provides the steps to help you get started on working with semantic data in
an Oracle Database.

• OWL Concepts
You should understand key concepts related to the support for a subset of the Web
Ontology Language (OWL).

• Simple Knowledge Organization System (SKOS) Support
You can perform inferencing based on a core subset of the Simple Knowledge
Organization System (SKOS) data model, which is especially useful for representing
thesauri, classification schemes, taxonomies, and other types of controlled vocabulary.

• Semantic Indexing for Documents
Information extractors locate and extract meaningful information from unstructured
documents. The ability to search for documents based on this extracted information is a
significant improvement over the keyword-based searches supported by the full-text
search engines.

• Fine-Grained Access Control for RDF Data
The default control of access to the Oracle Database semantic data store is at the model
level: the owner of a model can grant select, delete, and insert privileges on the model to
other users by granting appropriate privileges on the view named
RDFM_<model_name>. However, for applications with stringent security requirements,
you can enforce a fine-grained access control mechanism by using the Oracle Label
Security option of Oracle Database.

• RDF Semantic Graph Support for Apache Jena
RDF Semantic Graph support for Apache Jena (also referred to here as support for
Apache Jena) provides a Java-based interface to Oracle Graph RDF Semantic Graph by
implementing the well-known Jena Graph, Model, and DatasetGraph APIs.

• RDF Semantic Graph Support for Eclipse RDF4J
Oracle RDF Graph Adapter for Eclipse RDF4J utilizes the popular Eclipse RDF4J
framework to provide Java developers support to use the RDF semantic graph feature of
Oracle Database.

• User-Defined Inferencing and Querying
RDF Semantic Graph extension architectures enable the addition of user-defined
capabilities.

• RDF Views: Relational Data as RDF
You can create and use RDF views over relational data in RDF Semantic Graph.

• RDF Integration with Property Graph Data Stored in Oracle Database
The property graph data model is supported in Oracle Graph. Oracle Graph
provides built-in support for RDF views of property graph data stored in Oracle
Database.

1
RDF Graph Overview

Oracle Graph support for semantic technologies consists mainly of Resource Description
Framework (RDF) and a subset of the Web Ontology Language (OWL). These capabilities
are referred to as the RDF Graph feature of Oracle Graph.

The RDF Graph feature enables you to create one or more semantic networks in an Oracle
database. Each network contains semantic data (also referred to as RDF data).

This chapter assumes that you are familiar with the major concepts associated with RDF and
OWL, such as {subject, predicate, object} triples, {subject, predicate, object, graph} quads,
URIs, blank nodes, plain and typed literals, and ontologies. It does not explain these
concepts in detail, but focuses instead on how the concepts are implemented in Oracle.

• For an excellent explanation of RDF concepts, see the World Wide Web Consortium
(W3C) RDF Primer at http://www.w3.org/TR/rdf-primer/.

• For information about OWL, see the OWL Web Ontology Language Reference at
http://www.w3.org/TR/owl-ref/.

The PL/SQL subprograms for working with semantic data are in the SEM_APIS package,
which is documented in SEM_APIS Package Subprograms.

The RDF and OWL support are features of Oracle Graph, which must be installed for these
features to be used. However, the use of RDF and OWL is not restricted to spatial data.

Note:

If you have any semantic data created using an Oracle Database release before
12.2, see Required Migration of Pre-12.2 Semantic Data.

For information about OWL concepts and the Oracle Database support for OWL capabilities,
see OWL Concepts .

Note:

Before performing any operations described in this guide, you must enable RDF
Graph support in the database and meet other prerequisites, as explained in
Enabling RDF Semantic Graph Support.

• Introduction to Oracle Semantic Technologies Support
Oracle Database enables you to store semantic data and ontologies, to query semantic
data and to perform ontology-assisted query of enterprise relational data, and to use
supplied or user-defined inferencing to expand the power of querying on semantic data.

1-1

http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/owl-ref/

• Semantic Data Modeling
In addition to its formal semantics, semantic data has a simple data structure that
is effectively modeled using a directed graph.

• Semantic Data in the Database
Semantic data in Oracle Database is stored in one or more semantic networks.

• Semantic Metadata Tables and Views
Oracle Database maintains several tables and views in the network owner’s
schema to hold metadata related to semantic data.

• Semantic Data Types, Constructors, and Methods
The SDO_RDF_TRIPLE_S object type is used for representing the edges (that is,
triples and quads) of RDF graphs.

• Using the SEM_MATCH Table Function to Query Semantic Data
To query semantic data, use the SEM_MATCH table function.

• Using the SEM_APIS.SPARQL_TO_SQL Function to Query Semantic Data
You can use the SEM_APIS.SPARQL_TO_SQL function as an alternative to the
SEM_MATCH table function to query semantic data.

• Loading and Exporting Semantic Data
You can load semantic data into a model in the database and export that data from
the database into a staging table.

• Using Semantic Network Indexes
Semantic network indexes are nonunique B-tree indexes that you can add, alter,
and drop for use with models and entailments in a semantic network.

• Using Data Type Indexes
Data type indexes are indexes on the values of typed literals stored in a semantic
network.

• Managing Statistics for Semantic Models and the Semantic Network
Statistics are critical to the performance of SPARQL queries and OWL inference
against semantic data stored in an Oracle database.

• Support for SPARQL Update Operations on a Semantic Model
Effective with Oracle Database Release 12.2, you can perform SPARQL Update
operations on a semantic model.

• RDF Support for Oracle Database In-Memory
RDF can use the in-memory Oracle Database In-Memory suite of features,
including in-memory column store, to improve performance for real-time analytics
and mixed workloads.

• RDF Support for Materialized Join Views
The most frequently used joins in RDF queries are subject-subject and subject-
object joins. To enhance the RDF query performance, you can create materialized
join views on those two columns.

• RDF Support in Oracle SQL Developer
You can use Oracle SQL Developer to perform operations related to the RDF
Knowledge Graph feature of Oracle Graph.

• Enhanced RDF ORDER BY Query Processing
Effective with Oracle Database Release 12.2, queries on RDF data that use
SPARQL ORDER BY semantics are processed more efficiently than in previous
releases.

• Applying Oracle Machine Learning Algorithms to RDF Data
You can apply Oracle Machine Learning algorithms to RDF data.

Chapter 1

1-2

• Semantic Data Examples (PL/SQL and Java)
PL/SQL examples are provided in this topic.

• Software Naming Changes Since Release 11.1
Because the support for semantic data has been expanded beyond the original focus on
RDF, the names of many software objects (PL/SQL packages, functions and procedures,
system tables and views, and so on) have been changed as of Oracle Database Release
11.1.

• For More Information About RDF Semantic Graph
More information is available about RDF Semantic Graph support and related topics.

• Required Migration of Pre-12.2 Semantic Data
If you have any semantic data created using Oracle Database 11.1. 11.2, or 12.1, then
before you use it in an Oracle Database 12.2 environment, you must migrate this data.

• Oracle RDF Graph Features that Support Accessibility
This section describes the accessibility support provided by Oracle RDF Graph features.

1.1 Introduction to Oracle Semantic Technologies Support
Oracle Database enables you to store semantic data and ontologies, to query semantic data
and to perform ontology-assisted query of enterprise relational data, and to use supplied or
user-defined inferencing to expand the power of querying on semantic data.

Figure 1-1 shows how these capabilities interact.

Figure 1-1 Oracle Semantic Capabilities

Q
u

e
ry

 R
D

F
/O

W
L

d

a
ta

 a
n

d

o
n

to
lo

g
ie

s

O
n

to
lo

g
y
-a

s
s
is

te
d

q

u
e

ry
 o

f

e
n

te
rp

ri
s
e

 d
a

ta

R
D

F
/O

W
L

d

a
ta

 a
n

d

o
n

to
lo

g
ie

s

E
n

te
rp

ri
s
e

(r

e
la

ti
o

n
a

l)

d
a

ta

User-defined

RDF/S

OWL subset

I
N
F
E
R

Q
U
E
R
Y

S
T
O
R
E

B
u

lk
 L

o
a

d

In
c
re

m
e

n
ta

l

L
o

a
d

 &
 D

M
L

D
a

ta
b

a
s
e

As shown in Figure 1-1, the database contains semantic data and ontologies (RDF/OWL
models), as well as traditional relational data. To load semantic data, bulk loading is the most
efficient approach, although you can load data incrementally using transactional INSERT
statements.

Chapter 1
Introduction to Oracle Semantic Technologies Support

1-3

Note:

If you want to use existing semantic data from a release before Oracle
Database 11.1, the data must be upgraded as described in Enabling RDF
Semantic Graph Support.

You can query semantic data and ontologies, and you can also perform ontology-
assisted queries of semantic and traditional relational data to find semantic
relationships. To perform ontology-assisted queries, use the SEM_RELATED operator,
which is described in Using Semantic Operators to Query Relational Data.

You can expand the power of queries on semantic data by using inferencing, which
uses rules in rulebases. Inferencing enables you to make logical deductions based on
the data and the rules. For information about using rules and rulebases for inferencing,
see Inferencing: Rules and Rulebases.

1.2 Semantic Data Modeling
In addition to its formal semantics, semantic data has a simple data structure that is
effectively modeled using a directed graph.

The metadata statements are represented as triples: nodes are used to represent two
parts of the triple, and the third part is represented by a directed link that describes the
relationship between the nodes. The triples are stored in a semantic data network. In
addition, information is maintained about specific semantic data models created by
database users. A user-created model has a model name, and refers to triples stored
in a specified table column.

Statements are expressed in triples: {subject or resource, predicate or property, object
or value}. In this manual, {subject, property, object} is used to describe a triple, and the
terms statement and triple may sometimes be used interchangeably. Each triple is a
complete and unique fact about a specific domain, and can be represented by a link in
a directed graph.

1.3 Semantic Data in the Database
Semantic data in Oracle Database is stored in one or more semantic networks.

All triples are parsed and stored in the system as entries in tables is a semantic
network, and each semantic network is under a database schema (either a regular
database user schema or the Oracle-supplied MDSYS schema). A triple {subject,
property, object} is treated as one database object. As a result, a single document
containing multiple triples results in multiple database objects.

All the subjects and objects of triples are mapped to nodes in a semantic data network,
and properties are mapped to network links that have their start node and end node as
subject and object, respectively. The possible node types are blank nodes, URIs, plain
literals, and typed literals.

The following requirements apply to the specifications of URIs and the storage of
semantic data in the database:

• A subject must be a URI or a blank node.

Chapter 1
Semantic Data Modeling

1-4

• A property must be a URI.

• An object can be any type, such as a URI, a blank node, or a literal. (However, null
values and null strings are not supported.)

• Semantic Networks

• Semantic Models

• Statements

• Subjects and Objects

• Blank Nodes

• Properties

• Inferencing: Rules and Rulebases

• Entailments (Rules Indexes)

• Virtual Models

• Named Graphs

• Semantic Data Security Considerations

• RDF Privilege Considerations

1.3.1 Semantic Networks
A semantic network is a set of tables and views that holds RDF data (that is, semantic
data). A semantic network is not created during installation. A database user must explicitly
call SEM_APIS.CREATE_SEM_NETWORK to create a semantic network before any RDF
data can be stored in the database.

A semantic network contains, among other things, an RDF_LINK$ table for storing RDF
triples or quads. By default, the RDF_LINK$ table is list-partitioned into a set of Semantic
Models, which are user-created containers for storing RDF triples or quads.

The RDF_LINK$ table can optionally use list-hash composite partitioning where each model
partition is subpartitioned by a hash of the predicate. Composite partitioning can improve
SPARQL query performance on larger data sets through better parallelization and improved
query optimizer statistics. For more information about how to enable composite partitioning,
see:

• The options parameter descriptions for SEM_APIS.CREATE_SEM_MODEL and
SEM_APIS.CREATE_SEM_NETWORK

• The usage notes for the options parameter for SEM_APIS.CREATE_ENTAILMENT,
specifically for the MODEL_PARTITIONS=n option.

An RDF_VALUE$ table is used to store a mapping of RDF values to internal numeric
identifiers. Starting with version 21c, values stored in the RDF_VALUE$ table can be stored
using an unescaped storage form; that is, Unicode characters and special characters are
stored as a single character instead of being stored as an ASCII escape sequence (such as
the single character 'ñ' instead of the ASCII escape sequence '\u00F1'). This unescaped
storage form reduces storage costs and increases query performance.

The network storage form can be specified in the options parameter of the
SEM_APIS.CREATE_SEM_NETWORK procedure at network creation time. Unescaped
storage form is the default in version 21c and later. Existing semantic networks can be

Chapter 1
Semantic Data in the Database

1-5

migrated using the SEM_APIS.MIGRATE_DATA_TO_STORAGE_V2 procedure..
Existing applications should not be affected by any changes in network storage form.

A semantic network can be created in and owned by either the MDSYS schema or a
regular database user schema:

• If a network is created in the MDSYS schema, it is an unnamed semantic network
available to the entire database.

Having a single unnamed network was the only scenario available before Oracle
Database Release 19c. That usage is still supported, but discouraged, for
networks created starting with Release 19c.

• Regardless of the presence or absence of a network in the MDSYS schema in a
database, you can create or one more semantic networks in one or more regular
database user schemas. Each such network is called a schema-private semantic
network.

The use of schema-private networks is encouraged.

You can have both an MDSYS-owned network and one or more schema-private
networks in a single database or pluggable database.

An existing MDSYS-owned semantic network can be migrated to a shared schema-
private semantic network by using the SEM_APIS.MOVE_SEM_NETWORK_DATA
and SEM_APIS.APPEND_SEM_NETWORK_DATA procedures. See Moving,
Restoring, and Appending a Semantic Network for details.

• Schema-Private Semantic Networks

• Types of Semantic Network Users

• Naming Conventions for Semantic Network Objects

• RDF_PARAMETER Table in Semantic Networks

• Migrating from MDSYS to Schema-Private Semantic Networks

• Sharing Schema-Private Semantic Networks

• Migrating from Escaped to Unescaped Storage Form

1.3.1.1 Schema-Private Semantic Networks
In a schema-private semantic network, the associated database objects are created in
the network owner’s schema, and the network owner has exclusive privileges to those
objects. (DBA users also have such privileges, and the network owner or a DBA can
grant and revoke the privileges for other users.)

Schema-private semantic networks have several benefits:

• They provide better security and isolation because multiple users do not share
tables and indexes.

The network owner’s schema contains all semantic network database objects, and
the network owner has exclusive privileges to those objects by default.

Schema-private semantic networks provide better isolation because database
objects are not shared among multiple database users by default. However, after
granting appropriate privileges, a network owner may share his or her schema-
private semantic network with other users.

Chapter 1
Semantic Data in the Database

1-6

• Regular users can perform administration operations on their own networks, for example,
index creation or network-wide statistics gathering.

The network owner can perform administration operations on the network without
needing DBA privileges. (By contrast, with an MDSYS-owned network, DBA privileges
are required to perform administration operations.)

Several schema-private semantic networks can coexist in a single database, PDB, or
even schema, which allows custom data type indexing schemes for different sets of RDF
data. For example, NETWORK1 can have only a spatial data type index while
NETWORK2 has only a text data type index.

Most SEM_APIS package subprograms now have network_owner and network_name
parameters to support schema-private semantic networks. Schema-private semantic
networks are identified by the two-element combination of network owner and network name,
which is specified in the last two parameters of the SEM_APIS.CREATE_SEM_NETWORK
call that created the network.

The following table describes the usage of the network_owner and network_name parameters
in subprograms that include them.

Table 1-1 network_owner and network_name Parameters

Parameter Name Description

network_owner Name of the schema that owns the network. The default is NULL.
• For a schema-private network, must not be null, and must specify a regular

database user (that is, not MDSYS or another predefined Oracle-supplied
user).

• For an MDSYS-owned network, must be null.

network_name Name of the network. The default is NULL.
• For a schema-private network, must not be null, and must specify the name

of the network.

The name must be unique within the schema of the network owner. For
example, schema SCOTT cannot have two networks named NET1; but
schemas SCOTT and ANNA can each have a network named NET1.

• For an MDSYS-owned network, must be null.

1.3.1.2 Types of Semantic Network Users
Schema-private an MDSYS-owned semantic networks can be differentiated based on three
key types of users: network creator, network owner, and network user.

• The network creator is the user that invokes SEM_APIS.CREATE_SEM_NETWORK.
The network creator is either a database user with DBA privileges or it is the same as the
network owner.

• The network owner is the user whose schema will hold the tables, triggers and views
that make up the semantic network.

• A network user is a database user that performs operations on the semantic network.

In many examples in this book, the name RDFUSER is given as a sample network user
name. There is nothing special about that name string; it could be the name of any
database user such as SCOTT, ANNA, or MARKETING.

For a schema-private network, the network owner is initially the only network user.
(However, other database users can be granted privileges on the network, thus making
them additional potential network users.)

Chapter 1
Semantic Data in the Database

1-7

1.3.1.3 Naming Conventions for Semantic Network Objects
Semantic network database objects follow specific naming conventions.

All semantic network database objects in a schema-private network are prefixed with
NETWORK_NAME#, for example, USER3.MYNET#SEM_MODEL$ instead of
MDSYS.SEM_MODEL$. This book uses the portion of the database object name after
the prefix to refer to the object. That is, SEM_MODEL$ refers to
MDSYS.SEM_MODEL$ in the case of an MDSYS-owned network, and to
NETWORK_OWNER.NETWORK_NAME#SEM_MODEL$ in the case of a schema-
private semantic network.

1.3.1.4 RDF_PARAMETER Table in Semantic Networks
The MDSYS.RDF_PARAMETER table holds database-wide RDF Semantic Graph
installation information such as the installed version, and it holds network-specific
information for the MDSYS semantic network.

The MDSYS.RDF_PARAMETER table is created during installation and always exists.
It is not dependent on the existence of the MDSYS semantic network.

In schema-private semantic networks, a NETWORK_NAME#RDF_PARAMETER table
holds network-specific information such as network compression settings and any
RDFCTX or RDFOLS policies used in the schema-private network.

A schema-private NETWORK_NAME#RDF_PARAMETER table is dependent on the
existence of the NETWORK_NAME semantic network. This table is created during
schema-private network creation and is dropped when the schema-private network is
dropped.

1.3.1.5 Migrating from MDSYS to Schema-Private Semantic Networks
An existing MDSYS-owned semantic network can be migrated to a shared schema-
private semantic network by using the SEM_APIS.MOVE_SEM_NETWORK_DATA
and SEM_APIS.APPEND_SEM_NETWORK_DATA procedures. See Moving,
Restoring, and Appending a Semantic Network for details.

1.3.1.6 Sharing Schema-Private Semantic Networks
After a schema-private network is created, it can optionally be shared, that is, made
available for use by other database users besides the network owner. Other users can
be allowed to have either of the following access capabilities:

• Read-only access to RDF data, which provides the ability to query the semantic
data in the network.
Granting read-only or query-only access to an RDF network can be done by:

1. The network owner by using the single command
SEM_APIS.GRANT_NETWORK_ACCESS_PRIVS with QUERY_ONLY=T included in the
OPTIONS parameter.

2. The network owner or the model owner by using
SEM_APIS.GRANT_MODEL_ACCESS_PRIVS with appropriate privileges such as
QUERY or SELECT for the individual models in the network.

See Example 1-1 for more details.

Chapter 1
Semantic Data in the Database

1-8

• Read/write access to RDF objects and data in the network, such as the ability to create,
alter, or drop semantic models and entailments, and to read, insert, modify, or delete RDF
data.
The logical sequence of steps for granting both read and write access is as follows:

1. A DBA must grant network sharing privileges to the network owner. This needs to be
done only once for a given network owner.

2. The network owner must enable the specific network for sharing. This needs to be
done only once for a given network.

3. The network owner must grant network access privileges to the user(s) that will be
allowed to access the network.
Each of these grants can subsequently be revoked, if necessary.

See Example 1-2 for more details.

Note:

Having the above access capabilities for a network allows a user to access only the
dictionary and metadata tables for the network. Models and entailments not owned
by the user are not accessible unless the network owner or the owner of the
individual models use the SEM_APIS.GRANT_MODEL_ACCESS_PRIV or
SEM_APIS.GRANT_MODEL_ACCESS_PRIVS subprogram to grant appropriate
privilege(s) for individual models or entailments in the network to the user.

Example 1-1 Sharing a Network and Granting Query Only Privilege to Another User

The following example shares a network named NET1, owned by user RDFUSER.
RDFUSER grants query-only access on NET1 with user RDFQ.

-- As RDFUSER, create a schema-private network owned by RDFUSER named NET1
CONNECT rdfuser/<password>;
EXECUTE
SEM_APIS.CREATE_SEM_NETWORK('RDFTBS',network_owner=>'RDFUSER',network_name=>'
NET1');

-- As RDFUSER, grant query only network access privilege for NET1 to RDFQ
EXECUTE
SEM_APIS.GRANT_NETWORK_ACCESS_PRIVS(network_owner=>'RDFUSER',network_name=>'N
ET1',network_user=>'RDFQ', options=>' QUERY_ONLY=T ');

-- As RDFUSER, create a semantic model M1 in network NET1
EXECUTE
SEM_APIS.CREATE_SEM_MODEL('M1',null,null,network_owner=>'RDFUSER',network_nam
e=>'NET1');

-- Check metadata
SELECT *
FROM rdfuser.net1#sem_model$;

-- Insert some data
INSERT INTO rdfuser.net1#rdft_m1(triple)
VALUES
(SDO_RDF_TRIPLE_S('M1','<urn:person1>','<urn:name>','"Peter"','RDFUSER','NET1

Chapter 1
Semantic Data in the Database

1-9

'));
COMMIT;

-- Allow RDFQ to select and query a model that RDFUSER owns
EXECUTE
SEM_APIS.GRANT_MODEL_ACCESS_PRIVS('M1','RDFQ',sys.odcivarchar2list('SEL
ECT','QUERY'),network_owner=>'RDFUSER',network_name=>'NET1');

-- As RDFQ, verify that model M1 is visible for querying
CONNECT rdfq/<password>;
SELECT *
FROM rdfuser.net1#rdf_model$
WHERE model_name='M1';

-- Query with SEM_MATCH
SELECT s$rdfterm, p$rdfterm, o$rdfterm
FROM TABLE(SEM_MATCH(
'SELECT ?s ?p ?o
 WHERE { ?s ?p ?o }'
,SEM_MODELS('M1')
,null,null,null,null
,' PLUS_RDFT=VC '
,null,null
,'RDFUSER','NET1'));

Example 1-2 Sharing a Network and Granting Read and Write Privileges to
Another User

The following example shares a network named NET1, owned by user RDFUSER,
with user RDFUSER2. Also RDFUSER grants query-only access on NET1 with user
RDFUSER3.

-- As RDFUSER, create a schema-private network owned by RDFUSER named
NET1
CONNECT rdfuser/<password>;
EXECUTE
SEM_APIS.CREATE_SEM_NETWORK('RDFTBS',network_owner=>'RDFUSER',network_n
ame=>'NET1');

-- As a DBA, grant required privileges for network sharing to RDFUSER
CONNECT system/<password>;
EXECUTE SEM_APIS.GRANT_NETWORK_SHARING_PRIVS(network_owner=>'RDFUSER');

-- As RDFUSER, enable sharing for NET1
CONNECT rdfuser/<password>;
EXECUTE
SEM_APIS.ENABLE_NETWORK_SHARING(network_owner=>'RDFUSER',network_name=>
'NET1');

-- As RDFUSER, grant network access privileges for NET1 to RDFUSER2
EXECUTE
SEM_APIS.GRANT_NETWORK_ACCESS_PRIVS(network_owner=>'RDFUSER',network_na
me=>'NET1',network_user=>'RDFUSER2');

-- As RDFUSER2, create a semantic model M2 in network NET1

Chapter 1
Semantic Data in the Database

1-10

CONNECT rdfuser2/<password>;
EXECUTE
SEM_APIS.CREATE_SEM_MODEL('M2',null,null,network_owner=>'RDFUSER',network_nam
e=>'NET1');

-- Check metadata
SELECT *
FROM rdfuser.net1#sem_model$;

-- Insert some data
INSERT INTO rdfuser.net1#rdft_m2(triple)
VALUES
(SDO_RDF_TRIPLE_S('M2','<urn:person1>','<urn:name>','"John"','RDFUSER','NET1'
));
COMMIT;

-- Query with SEM_MATCH
SELECT s$rdfterm, p$rdfterm, o$rdfterm
FROM TABLE(SEM_MATCH(
'SELECT ?s ?p ?o
 WHERE { ?s ?p ?o }'
,SEM_MODELS('M2')
,null,null,null,null
,' PLUS_RDFT=VC '
,null,null
,'RDFUSER','NET1'));

-- As RDFUSER, grant query only network access privileges for NET1 to
RDFUSER3
CONNECT rdfuser/<password>
EXECUTE
SEM_APIS.GRANT_NETWORK_ACCESS_PRIVS(network_owner=>'RDFUSER',network_name=>'N
ET1',network_user=>'RDFUSER3', options=>' QUERY_ONLY=T ');

-- As RDFUSER2, allow RDFUSER3 to select and query a model that RDFUSER2 owns
CONNECT rdfuser2/<password>
EXECUTE
SEM_APIS.GRANT_MODEL_ACCESS_PRIVS('M2','RDFUSER3',sys.odcivarchar2list('SELEC
T','QUERY'),network_owner=>'RDFUSER',network_name=>'NET1');

-- As RDFUSER3, verify that model M2 is visible for querying
CONNECT rdfuser3/<password>
SELECT *
FROM rdfuser.net1#rdf_model$
WHERE model_name='M2';

-- Query with SEM_MATCH
SELECT s$rdfterm, p$rdfterm, o$rdfterm
FROM TABLE(SEM_MATCH(
'SELECT ?s ?p ?o
 WHERE { ?s ?p ?o }'
,SEM_MODELS('M2')
,null,null,null,null
,' PLUS_RDFT=VC '

Chapter 1
Semantic Data in the Database

1-11

,null,null
,'RDFUSER','NET1'));

1.3.1.7 Migrating from Escaped to Unescaped Storage Form
You can migrate an existing semantic network from escaped storage form to
unescaped storage form by using the
SEM_APIS.MIGRATE_DATA_TO_STORAGE_V2 procedure. This procedure must be
called by a DBA or the network owner.

Note that migration in the reverse direction is not possible. That is, you cannot migrate
a semantic network from unescaped storage form to escaped storage form.

1.3.2 Semantic Models
A semantic model is a user-created container for storing RDF triples or quads. A
semantic network contains zero or more models (that is, semantic models). You can
use the SEM_APIS.CREATE_SEM_MODEL procedure to create a semantic model.
Each model is physically stored as a partition in the network’s RDF_LINK$ table.
Besides the corresponding RDF_LINK$ partition, each model is associated with two
other database objects. The exact nature of these objects differs depending on the
type of semantic network.

• In the traditional unnamed MDSYS network, each model is associated with (1) a
SEMM_<model_name> view of the model’s RDF_LINK$ partition, and (2) an
application table for the model. The SEMM_<model_name> view is stored in the
network owner’s schema and is created automatically when the model is created.
The model owner is given SELECT privilege WITH GRANT OPTION on
SEMM_<model_name>.

In this traditional approach, the application table is a user-created table that must
be created before the semantic model is created. An application table is required
to have a column of type SDO_RDF_TRIPLE_S. The application table is used to
perform SQL DMLs on the associated model. For example, inserting a row into the
application table using one of the SDO_RDF_TRIPLE_S constructors inserts a
corresponding row into the RDF_LINK$ partition for that model.

• In a schema-private semantic network, each model is associated with (1) a
SEMM_<model_name> view of the model’s RDF_LINK$ partition, and (2) an
RDFT_<model_name> application view for the model. The
SEMM_<model_name> view is identical to the one created for the MDSYS
network.

In this approach, the RDFT_<model_name> view serves as a replacement for the
application table used in the MDSYS network case. RDFT_<model_name> is
created automatically in the network owner’s schema and has one column named
TRIPLE with type SDO_RDF_TRIPLE_S. RDFT_<model_name> is an updatable
view that can be used to perform SQL DMLs on the associated model in the same
way that the application table can in MDSYS networks. However, there is one
exception: SEM_APIS.TRUNCATE_SEM_MODEL should be used instead of a
SQL TRUNCATE operation on RDFT_<model_name>. The model owner is given
SELECT, INSERT, UPDATE, and DELETE privileges WITH GRANT OPTION on
RDFT_<model_name>.

The SEM_MODEL$ view contains information about all models defined in a semantic
network. When you create a model using the SEM_APIS.CREATE_SEM_MODEL

Chapter 1
Semantic Data in the Database

1-12

procedure, you specify a name for the model, as well as a table and column to hold
references to the semantic data, and the system automatically generates a model ID.

Oracle maintains the SEM_MODEL$ view automatically when you create and drop models.
Users should never modify this view directly. For example, do not use SQL INSERT,
UPDATE, or DELETE statements with this view.

The SEM_MODEL$ view contains the columns shown in Table 1-2.

Table 1-2 SEM_MODEL$ View Columns

Column Name Data Type Description

OWNER VARCHAR2(30) Schema of the owner of the model.

MODEL_ID NUMBER Unique model ID number, automatically generated.

MODEL_NAME VARCHAR2(25) Name of the model.

TABLE_NAME VARCHAR2(30) Name of the application table to hold references to
semantic data for the model. (This value will be NULL for a
schema-private network.)

COLUMN_NAME VARCHAR2(30) Name of the column of type SDO_RDF_TRIPLE_S in the
application table to hold references to semantic data for the
model. (This value will be NULL for a schema-private
network.)

MODEL_TABLESP
ACE_NAME

VARCHAR2(30) Name of the tablespace to be used for storing the triples
for this model.

MODEL_TYPE VARCHAR2(40) A value indicating the type of RDF model: M for regular
model; V for virtual model; X for model created to store the
contents of the semantic index; or D for model created on
relational data.

INMEMORY VARCHAR2(1) String value indicating if the virtual model is an Oracle
Database In-Memory virtual model: T for in-memory, or F
for not in-memory.

When you create a model, a view for the triples associated with the model is also created
under the network owner’s schema. This view has a name in the format SEMM_model-name,
and it is visible only to the owner of the model and to users with suitable privileges. Each
SEMM_model-name view contains a row for each triple (stored as a link in a network), and it
has the columns shown in Table 1-3.

Table 1-3 SEMM_model-name View Columns

Column Name Data Type Description

P_VALUE_ID NUMBER The VALUE_ID for the text value of the predicate of
the triple. Part of the primary key.

START_NODE_ID NUMBER The VALUE_ID for the text value of the subject of the
triple. Also part of the primary key.

CANON_END_NODE_
ID

NUMBER The VALUE_ID for the text value of the canonical
form of the object of the triple. Also part of the
primary key.

END_NODE_ID NUMBER The VALUE_ID for the text value of the object of the
triple

MODEL_ID NUMBER The ID for the RDF model to which the triple belongs.

Chapter 1
Semantic Data in the Database

1-13

Table 1-3 (Cont.) SEMM_model-name View Columns

Column Name Data Type Description

COST NUMBER (Reserved for future use)

CTXT1 NUMBER (Reserved column; can be used for fine-grained
access control)

CTXT2 VARCHAR2(4000) (Reserved for future use)

DISTANCE NUMBER (Reserved for future use)

EXPLAIN VARCHAR2(4000) (Reserved for future use)

PATH VARCHAR2(4000) (Reserved for future use)

G_ID NUMBER The VALUE_ID for the text value of the graph name
for the triple. Null indicates the default graph (see
Named Graphs).

LINK_ID VARCHAR2(71) Unique triple identifier value. (It is currently a
computed column, and its definition may change in a
future release.)

Note:

In Table 1-3, for columns P_VALUE_ID, START_NODE_ID, END_NODE_ID,
CANON_END_NODE_ID, and G_ID, the actual ID values are computed from
the corresponding lexical values. However, a lexical value may not always
map to the same ID value.

1.3.3 Statements
The RDF_VALUE$ table contains information about the subjects, properties, and
objects used to represent RDF statements. It uniquely stores the text values (URIs or
literals) for these three pieces of information, using a separate row for each part of
each triple.

Oracle maintains the RDF_VALUE$ table automatically. Users should never modify
this view directly. For example, do not use SQL INSERT, UPDATE, or DELETE
statements with this view.

The RDF_VALUE$ table contains the columns shown in Table 1-4.

Table 1-4 RDF_VALUE$ Table Columns

Column Name Data Type Description

VALUE_ID NUMBER Unique value ID number, automatically generated.

Chapter 1
Semantic Data in the Database

1-14

Table 1-4 (Cont.) RDF_VALUE$ Table Columns

Column Name Data Type Description

VALUE_TYPE VARCHAR2(10) The type of text information stored in the
VALUE_NAME column. Possible values: UR for URI, BN
for blank node, PL for plain literal, PL@ for plain literal
with a language tag, PLL for plain long literal, PLL@ for
plain long literal with a language tag, TL for typed
literal, or TLL for typed long literal. A long literal is a
literal with more than 4000 bytes.

VNAME_PREFIX VARCHAR2(4000) If the length of the lexical value is 4000 bytes or less,
this column stores a prefix of a portion of the lexical
value. The SEM_APIS.VALUE_NAME_PREFIX
function can be used for prefix computation. For
example, the prefix for the portion of the lexical value
<http://www.w3.org/1999/02/22-rdf-syntax-
ns#type> without the angle brackets is http://
www.w3.org/1999/02/22-rdf-syntax-ns#.

VNAME_SUFFIX VARCHAR2(512) If the length of the lexical value is 4000 bytes or less,
this column stores a suffix of a portion of the lexical
value. The SEM_APIS.VALUE_NAME_SUFFIX
function can be used for suffix computation. For the
lexical value mentioned in the description of the
VNAME_PREFIX column, the suffix is type.

LITERAL_TYPE VARCHAR2(4000) For typed literals, the type information; otherwise, null.
For example, for a row representing a creation date of
1999-08-16, the VALUE_TYPE column can contain TL,
and the LITERAL_TYPE column can contain http://
www.w3.org/2001/XMLSchema#date.

LANGUAGE_TYP
E

VARCHAR2(80) Language tag (for example, fr for French) for a literal
with a language tag (that is, if VALUE_TYPE is PL@ or
PLL@). Otherwise, this column has a null value.

CANON_ID NUMBER The ID for the canonical lexical value for the current
lexical value. (The use of this column may change in a
future release.)

COLLISION_EXT VARCHAR2(64) Used for collision handling for the lexical value. (The
use of this column may change in a future release.)

CANON_COLLISI
ON_EXT

VARCHAR2(64) Used for collision handling for the canonical lexical
value. (The use of this column may change in a future
release.)

ORDER_TYPE NUMBER Represents order based on data type. Used to improve
performance on ORDER BY queries.

ORDER_NUM NUMBER Represents order for number type. Used to improve
performance on ORDER BY queries.

ORDER_DATE TIMESTAMP
WITH TIME ZONE

Represents order based on date type Used to improve
performance on ORDER BY queries.

LONG_VALUE CLOB The character string if the length of the lexical value is
greater than 4000 bytes. Otherwise, this column has a
null value.

GEOM SDO_GEOMETRY A geometry value when a spatial index is defined.

Chapter 1
Semantic Data in the Database

1-15

Table 1-4 (Cont.) RDF_VALUE$ Table Columns

Column Name Data Type Description

VALUE_NAME VARCHAR2(4000) This is a computed column. If length of the lexical
value is 4000 bytes or less, the value of this column is
the concatenation of the values of VNAME_PREFIX
column and the VNAME_SUFFIX column.

• Triple Uniqueness and Data Types for Literals

1.3.3.1 Triple Uniqueness and Data Types for Literals
Duplicate triples are not stored in a semantic network. To check if a triple is a duplicate
of an existing triple, the subject, property, and object of the incoming triple are checked
against triple values in the specified model. If the incoming subject, property, and
object are all URIs, an exact match of their values determines a duplicate. However, if
the object of incoming triple is a literal, an exact match of the subject and property, and
a value (canonical) match of the object, determine a duplicate. For example, the
following two triples are duplicates:

<eg:a> <eg:b> <"123"^^http://www.w3.org/2001/XMLSchema#int>
<eg:a> <eg:b> <"123"^^http://www.w3.org/2001/XMLSchema#unsignedByte>

The second triple is treated as a duplicate of the first, because "123"^^<http://
www.w3.org/2001/XMLSchema#int> has an equivalent value (is canonically equivalent)
to "123"^^<http://www.w3.org/2001/XMLSchema#unsignedByte>. Two entities are
canonically equivalent if they can be reduced to the same value.

To use a non-RDF example, A*(B-C), A*B-C*A, (B-C)*A, and -A*C+A*B all convert into
the same canonical form.

Note:

Although duplicate triples and quads are not stored in the underlying table
partition for the RDFM_<model> view, it is possible to have duplicate rows in
an application table. For example, if a triple is inserted multiple times into an
application table, it will appear once in the RDFM_<model> view, but will
occupy multiple rows in the application table.

Value-based matching of lexical forms is supported for the following data types:

• STRING: plain literal, xsd:string and some of its XML Schema subtypes

• NUMERIC: xsd:decimal and its XML Schema subtypes, xsd:float, and xsd:double.
(Support is not provided for float/double INF, -INF, and NaN values.)

• DATETIME: xsd:datetime, with support for time zone. (Without time zone there are
still multiple representations for a single value, for example,
"2004-02-18T15:12:54" and "2004-02-18T15:12:54.0000".)

• DATE: xsd:date, with or without time zone

• OTHER: Everything else. (No attempt is made to match different representations).

Chapter 1
Semantic Data in the Database

1-16

Canonicalization is performed when the time zone is present for literals of type xsd:time and
xsd:dateTime.

The following namespace definition is used: xmlns:xsd="http://www.w3.org/2001/
XMLSchema"
The first occurrence of a long literal in the RDF_VALUE$ table is taken as the canonical form
and given the VALUE_TYPE value of CPLL, CPLL@, or CTLL as appropriate; that is, a C for
canonical is prefixed to the actual value type. If a long literal with the same canonical form
(but a different lexical representation) as a previously inserted long literal is inserted into the
RDF_VALUE$ table, the VALUE_TYPE value assigned to the new insertion is PLL, PLL@, or
TLL as appropriate.

Canonically equivalent text values having different lexical representations are thus stored in
the RDF_VALUE$ table; however, canonically equivalent triples are not stored in the
database.

1.3.4 Subjects and Objects
RDF subjects and objects are mapped to nodes in a semantic data network. Subject nodes
are the start nodes of links, and object nodes are the end nodes of links. Non-literal nodes
(that is, URIs and blank nodes) can be used as both subject and object nodes. Literals can
be used only as object nodes.

1.3.5 Blank Nodes
Blank nodes can be used as subject and object nodes in the semantic network. Blank node
identifiers are different from URIs in that they are scoped within a semantic model. Thus,
although multiple occurrences of the same blank node identifier within a single semantic
model necessarily refer to the same resource, occurrences of the same blank node identifier
in two different semantic models do not refer to the same resource.

In an Oracle semantic network, this behavior is modeled by requiring that blank nodes are
always reused (that is, are used to represent the same resource if the same blank node
identifier is used) within a semantic model, and never reused between two different models.
Thus, when inserting triples involving blank nodes into a model, you must use the
SDO_RDF_TRIPLE_S constructor that supports reuse of blank nodes.

1.3.6 Properties
Properties are mapped to links that have their start node and end node as subjects and
objects, respectively. Therefore, a link represents a complete triple.

When a triple is inserted into a model, the subject, property, and object text values are
checked to see if they already exist in the database. If they already exist (due to previous
statements in other models), no new entries are made; if they do not exist, three new rows
are inserted into the RDF_VALUE$ table (described in Statements).

1.3.7 Inferencing: Rules and Rulebases
Inferencing is the ability to make logical deductions based on rules. Inferencing enables you
to construct queries that perform semantic matching based on meaningful relationships
among pieces of data, as opposed to just syntactic matching based on string or other values.
Inferencing involves the use of rules, either supplied by Oracle or user-defined, placed in
rulebases.

Chapter 1
Semantic Data in the Database

1-17

Figure 1-2 shows triple sets being inferred from model data and the application of rules
in one or more rulebases. In this illustration, the database can have any number of
semantic models, rulebases, and inferred triple sets, and an inferred triple set can be
derived using rules in one or more rulebases.

Figure 1-2 Inferencing

Model 1

Model 2

Rulebase 1 Rulebase 2

Inferred
Triple Set 1

Inferred
Triple Set 2

. .

. .

.

.

.

A rule is an object that can be applied to draw inferences from semantic data. A rule is
identified by a name and consists of:

• An IF side pattern for the antecedents

• A THEN side pattern for the consequents

For example, the rule that a chairperson of a conference is also a reviewer of the
conference could be represented as follows:

('chairpersonRule', -- rule name
 '(?r :ChairPersonOf ?c)', -- IF side pattern
 NULL, -- filter condition
 '(?r :ReviewerOf ?c)', -- THEN side pattern
 SEM_ALIASES (SEM_ALIAS('', 'http://some.org/test/'))
)

For best performance, use a single-triple pattern on the THEN side of the rule. If a rule
has multiple triple patterns on the THEN side, you can easily break it into multiple
rules, each with a single-triple pattern, on the THEN side.

A rulebase is an object that contains rules. The following Oracle-supplied rulebases
are provided:

• RDFS

• RDF (a subset of RDFS)

• OWLSIF (empty)

• RDFS++ (empty)

• OWL2EL (empty)

• OWL2RL (empty)

• OWLPrime (empty)

• SKOSCORE (empty)

The RDFS and RDF rulebases are created when you call the
SEM_APIS.CREATE_SEM_NETWORK procedure to add RDF support to the

Chapter 1
Semantic Data in the Database

1-18

database. The RDFS rulebase implements the RDFS entailment rules, as described in the
World Wide Web Consortium (W3C) RDF Semantics document at http://www.w3.org/TR/
rdf-mt/. The RDF rulebase represents the RDF entailment rules, which are a subset of the
RDFS entailment rules. You can see the contents of these rulebases by examining the
SEMR_RDFS and SEMR_RDF views.

You can also create user-defined rulebases using the SEM_APIS.CREATE_RULEBASE
procedure. User-defined rulebases enable you to provide additional specialized inferencing
capabilities.

For each rulebase, a table is created to hold rules in the rulebase, along with a view with a
name in the format SEMR_rulebase-name (for example, SEMR_FAMILY_RB for a rulebase
named FAMILY_RB). You must use this view to insert, delete, and modify rules in the rulebase.
Each SEMR_rulebase-name view has the columns shown in Table 1-5.

Table 1-5 SEMR_rulebase-name View Columns

Column Name Data Type Description

RULE_NAME VARCHAR2(30) Name of the rule

ANTECEDENTS VARCHAR2(4000) IF side pattern for the antecedents

FILTER VARCHAR2(4000) (Not supported.)

CONSEQUENTS VARCHAR2(4000) THEN side pattern for the consequents

ALIASES SEM_ALIASES One or more namespaces to be used. (The SEM_ALIASES
data type is described in Using the SEM_MATCH Table
Function to Query Semantic Data.)

Information about all rulebases is maintained in the SEM_RULEBASE_INFO view, which has
the columns shown in Table 1-6 and one row for each rulebase.

Table 1-6 SEM_RULEBASE_INFO View Columns

Column Name Data Type Description

OWNER VARCHAR2(30) Owner of the rulebase

RULEBASE_NAME VARCHAR2(25) Name of the rulebase

RULEBASE_VIEW
_NAME

VARCHAR2(30) Name of the view that you must use for any SQL
statements that insert, delete, or modify rules in the
rulebase

STATUS VARCHAR2(30) Contains VALID if the rulebase is valid, INPROGRESS if the
rulebase is being created, or FAILED if a system failure
occurred during the creation of the rulebase.

Example 1-3 Inserting a Rule into a Rulebase

Example 1-3 creates a rulebase named family_rb, and then inserts a rule named
grandparent_rule into the family_rb rulebase. This rule says that if a person is the parent of
a child who is the parent of a child, that person is a grandparent of (that is, has the
grandParentOf relationship with respect to) his or her child's child. It also specifies a
namespace to be used. (This example is an excerpt from Example 1-122 in Example: Family
Information.)

EXECUTE SEM_APIS.CREATE_RULEBASE('family_rb', network_owner=>'RDFUSER',
network_name=>'NET1');

Chapter 1
Semantic Data in the Database

1-19

http://www.w3.org/TR/rdf-mt/
http://www.w3.org/TR/rdf-mt/

INSERT INTO rdfuser.net1#semr_family_rb VALUES(
 'grandparent_rule',
 '(?x :parentOf ?y) (?y :parentOf ?z)',
 NULL,
 '(?x :grandParentOf ?z)',
 SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')));

Note that the kind of grandparent rule shown in Example 1-3 can be implemented
using the OWL 2 property chain construct. For information about property chain
handling, see Property Chain Handling.

Example 1-4 Using Rulebases for Inferencing

You can specify one or more rulebases when calling the SEM_MATCH table function
(described in Using the SEM_MATCH Table Function to Query Semantic Data), to
control the behavior of queries against semantic data. Example 1-4 refers to the
family_rb rulebase and to the grandParentOf relationship created in Example 1-3, to
find all grandfathers (grandparents who are male) and their grandchildren. (This
example is an excerpt from Example 1-122 in Example: Family Information.)

-- Select all grandfathers and their grandchildren from the family model.
-- Use inferencing from both the RDFS and family_rb rulebases.
SELECT x$rdfterm grandfather, y$rdfterm grandchild
 FROM TABLE(SEM_MATCH(
 'PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
 PREFIX : <http://www.example.org/family/>
 SELECT ?x ?y
 WHERE {?x :grandParentOf ?y . ?x rdf:type :Male}',
 SEM_Models('family'),
 SEM_Rulebases('RDFS','family_rb'),
 null, null, null,
 ' PLUS_RDFT=VC ',
 null, null,
 'RDFUSER', 'NET1'));

For information about support for native OWL inferencing, see Using OWL Inferencing.

1.3.8 Entailments (Rules Indexes)
An entailment (rules index) is an object containing precomputed triples that can be
inferred from applying a specified set of rulebases to a specified set of models. If a
SEM_MATCH query refers to any rulebases, an entailment must exist for each
rulebase-model combination in the query.

To create an entailment, use the SEM_APIS.CREATE_ENTAILMENT procedure. To
drop (delete) an entailment, use the SEM_APIS.DROP_ENTAILMENT procedure.

When you create an entailment, a view for the triples associated with the entailment is
also created under the network owner’s schema. This view has a name in the format
SEMI_entailment-name, and it is visible only to the owner of the entailment and to
users with suitable privileges. Each SEMI_entailment-name view contains a row for
each triple (stored as a link in a network), and it has the same columns as the
SEMM_model-name view, which is described in Table 1-3 in Metadata for Models.

Information about all entailments is maintained in the SEM_RULES_INDEX_INFO
view, which has the columns shown in Table 1-7 and one row for each entailment.

Chapter 1
Semantic Data in the Database

1-20

Table 1-7 SEM_RULES_INDEX_INFO View Columns

Column Name Data Type Description

OWNER VARCHAR2(30) Owner of the entailment

INDEX_NAME VARCHAR2(25) Name of the entailment

INDEX_VIEW_NA
ME

VARCHAR2(30) Name of the view that you must use for any SQL
statements that insert, delete, or modify rules in the
entailment

STATUS VARCHAR2(30) Contains VALID if the entailment is valid, INVALID if the
entailment is not valid, INCOMPLETE if the entailment is
incomplete (similar to INVALID but requiring less time to
re-create), INPROGRESS if the entailment is being created,
or FAILED if a system failure occurred during the creation
of the entailment.

MODEL_COUNT NUMBER Number of models included in the entailment

RULEBASE_COUN
T

NUMBER Number of rulebases included in the entailment

Information about all database objects, such as models and rulebases, related to entailments
is maintained in the SEM_RULES_INDEX_DATASETS view. This view has the columns
shown in Table 1-8 and one row for each unique combination of values of all the columns.

Table 1-8 SEM_RULES_INDEX_DATASETS View Columns

Column Name Data Type Description

INDEX_NAME VARCHAR2(25) Name of the entailment

DATA_TYPE VARCHAR2(8) Type of data included in the entailment. Examples: MODEL
and RULEBASE

DATA_NAME VARCHAR2(25) Name of the object of the type in the DATA_TYPE column

Example 1-5 creates an entailment named family_rb_rix_family, using the family model
and the RDFS and family_rb rulebases. (This example is an excerpt from Example 1-122 in
Example: Family Information.)

Example 1-5 Creating an Entailment

BEGIN
 SEM_APIS.CREATE_ENTAILMENT(
 'rdfs_rix_family',
 SEM_Models('family'),
 SEM_Rulebases('RDFS','family_rb'),
 network_owner=>'RDFUSER', network_name=>'NET1');
END;
/

1.3.9 Virtual Models
A virtual model is a logical graph that can be used in a SEM_MATCH query. A virtual model is
the result of a UNION or UNION ALL operation on one or more models and/or entailments.

Using a virtual model can provide several benefits:

Chapter 1
Semantic Data in the Database

1-21

• It can simplify management of access privileges for semantic data. For example,
assume that you have created three semantic models and one entailment based
on the three models and the OWLPrime rulebase. Without a virtual model, you
must individually grant and revoke access privileges for each model and the
entailment. However, if you create a virtual model that contains the three models
and the entailment, you will only need to grant and revoke access privileges for the
single virtual model.

• It can facilitate rapid updates to semantic models. For example, assume that
virtual model VM1 contains model M1 and entailment R1 (that is, VM1 = M1
UNION ALL R1), and assume that semantic model M1_UPD is a copy of M1 that
has been updated with additional triples and that R1_UPD is an entailment created
for M1_UPD. Now, to have user queries over VM1 go to the updated model and
entailment, you can redefine virtual model VM1 (that is, VM1 = M1_UPD UNION
ALL R1_UPD).

• It can simplify query specification because querying a virtual model is equivalent to
querying multiple models in a SEM_MATCH query. For example, assume that
models m1, m2, and m3 already exist, and that an entailment has been created for
m1, m2 ,and m3 using the OWLPrime rulebase. You could create a virtual model
vm1 as follows:

EXECUTE sem_apis.create_virtual_model('vm1', sem_models('m1', 'm2', 'm3'),
 sem_rulebases('OWLPRIME'),
 network_owner=>'RDFUSER',
 network_name=>'NET1');

To query the virtual model, use the virtual model name as if it were a model in a
SEM_MATCH query. For example, the following query on the virtual model:

SELECT * FROM TABLE (sem_match('{…}', sem_models('vm1'), null, …));

is equivalent to the following query on all the individual models:

SELECT * FROM TABLE (sem_match('{…}', sem_models('m1', 'm2', 'm3'),
 sem_rulebases('OWLPRIME'), …));

A SEM_MATCH query over a virtual model will query either the SEMV or SEMU
view (SEMU by default and SEMV if the 'ALLOW_DUP=T' option is specified)
rather than querying the UNION or UNION ALL of each model and entailment. For
information about these views and options, see the reference section for the
SEM_APIS.CREATE_VIRTUAL_MODEL procedure.

Virtual models use views (described later in this section) and add some metadata
entries, but do not significantly increase system storage requirements.

To create a virtual model, use the SEM_APIS.CREATE_VIRTUAL_MODEL procedure.
To drop (delete) a virtual model, use the SEM_APIS.DROP_VIRTUAL_MODEL
procedure. A virtual model is dropped automatically if any of its component models,
rulebases, or entailment are dropped. To replace a virtual model without dropping it,
use the SEM_APIS.CREATE_VIRTUAL_MODEL procedure with the REPLACE=T
option. Replacing a virtual model allows you to redefine it while maintaining any
access privileges.

To query a virtual model, specify the virtual model name in the models parameter of the
SEM_MATCH table function, as shown in Example 1-6.

For information about the SEM_MATCH table function, see Using the SEM_MATCH
Table Function to Query Semantic Data, which includes information using certain
attributes when querying a virtual model.

Chapter 1
Semantic Data in the Database

1-22

When you create a virtual model, an entry is created for it in the SEM_MODEL$ view, which
is described in Table 1-2 in Metadata for Models. However, the values in several of the
columns are different for virtual models as opposed to semantic models, as explained in
Table 1-9.

Table 1-9 SEM_MODEL$ View Column Explanations for Virtual Models

Column Name Data Type Description

OWNER VARCHAR2(30) Schema of the owner of the virtual model

MODEL_ID NUMBER Unique model ID number, automatically generated. Will be a
negative number, to indicate that this is a virtual model.

MODEL_NAME VARCHAR2(25) Name of the virtual model

TABLE_NAME VARCHAR2(30) Null for a virtual model

COLUMN_NAME VARCHAR2(30) Null for a virtual model

MODEL_TABLESPA
CE_NAME

VARCHAR2(30) Null for a virtual model

Information about all virtual models is maintained in the SEM_VMODEL_INFO view, which
has the columns shown in Table 1-10 and one row for each virtual model.

Table 1-10 SEM_VMODEL_INFO View Columns

Column Name Data Type Description

OWNER VARCHAR2(30) Owner of the virtual model

VIRTUAL_MODEL_
NAME

VARCHAR2(25) Name of the virtual model

UNIQUE_VIEW_N
AME

VARCHAR2(30) Name of the view that contains unique triples in the virtual
model, or null if the view was not created

DUPLICATE_VIEW
_NAME

VARCHAR2(30) Name of the view that contains duplicate triples (if any) in
the virtual model

STATUS VARCHAR2(30) Contains VALID if the associated entailment is valid,
INVALID if the entailment is not valid, INCOMPLETE if the
entailment is incomplete (similar to INVALID but requiring
less time to re-create), INPROGRESS if the entailment is
being created, FAILED if a system failure occurred during
the creation of the entailment, or NORIDX if no entailment is
associated with the virtual model.

In the case of multiple entailments, the lowest status
among all of the component entailments is used as the
virtual model's status (INVALID < INCOMPLETE < VALID).

MODEL_COUNT NUMBER Number of models in the virtual model

RULEBASE_COUN
T

NUMBER Number of rulebases used for the virtual model

RULES_INDEX_C
OUNT

NUMBER Number of entailments in the virtual model

Information about all objects (models, rulebases, and entailments) related to virtual models is
maintained in the SEM_VMODEL_DATASETS view. This view has the columns shown in
Table 1-11 and one row for each unique combination of values of all the columns.

Chapter 1
Semantic Data in the Database

1-23

Table 1-11 SEM_VMODEL_DATASETS View Columns

Column Name Data Type Description

VIRTUAL_MODE
L_NAME

VARCHAR2(25) Name of the virtual model

DATA_TYPE VARCHAR2(8) Type of object included in the virtual model. Examples:
MODEL for a semantic model, RULEBASE for a rulebase,
or RULEIDX for an entailment

DATA_NAME VARCHAR2(25) Name of the object of the type in the DATA_TYPE
column

Example 1-6 Querying a Virtual Model

SELECT COUNT(protein)
 FROM TABLE (SEM_MATCH (
 'SELECT ?protein
 WHERE {
 ?protein rdf:type :Protein .
 ?protein :citation ?citation .
 ?citation :author "Bairoch A."}',
 SEM_MODELS('UNIPROT_VM'),
 NULL,
 SEM_ALIASES(SEM_ALIAS('', 'http://purl.uniprot.org/core/')),
 NULL,
 NULL,
 'ALLOW_DUP=T',
 NULL,
 NULL,
 'RDFUSER','NET1'));

1.3.10 Named Graphs
RDF Semantic Graph supports the use of named graphs, which are described in the
"RDF Dataset" section of the W3C SPARQL Query Language for RDF
recommendation (http://www.w3.org/TR/rdf-sparql-query/#rdfDataset).

This support is provided by extending an RDF triple consisting of the traditional
subject, predicate, and object, to include an additional component to represent a
graph name. The extended RDF triple, despite having four components, will continue
to be referred to as an RDF triple in this document. In addition, the following terms are
sometimes used:

• N-Triple is a format that does not allow extended triples. Thus, n-triples can
include only triples with three components.

• N-Quad is a format that allows both "regular" triples (three components) and
extended triples (four components, including the graph name). For more
information, see http://www.w3.org/TR/2013/NOTE-n-quads-20130409/.

To load a file containing extended triples (possibly mixed with regular triples) into
an Oracle database, the input file must be in N-Quad format.

The graph name component of an RDF triple must either be null or a URI. If it is null,
the RDF triple is said to belong to a default graph; otherwise it is said to belong to a
named graph whose name is designated by the URI.

Chapter 1
Semantic Data in the Database

1-24

http://www.w3.org/TR/rdf-sparql-query/#rdfDataset
http://www.w3.org/TR/2013/NOTE-n-quads-20130409/

Additionally, to support named graphs in SDO_RDF_TRIPLE_S object type (described in
Semantic Data Types_ Constructors_ and Methods), a new syntax is provided for specifying
a model-graph, that is, a combination of model and graph (if any) together, and the
RDF_M_ID attribute holds the identifier for a model-graph: a combination of model ID and
value ID for the graph (if any). The name of a model-graph is specified as model_name, and
if a graph is present, followed by the colon (:) separator character and the graph name
(which must be a URI and enclosed within angle brackets < >).

For example, in a medical data set the named graph component for each RDF triple might be
a URI based on patient identifier, so there could be as many named graphs as there are
unique patients, with each named graph consisting of data for a specific patient.

For information about performing specific operations with named graphs, see the following:

• Using constructors and methods: Semantic Data Types_ Constructors_ and Methods

• Loading: Loading N-Quad Format Data into a Staging Table Using an External Table and
Loading Data into Named Graphs Using INSERT Statements

• Querying: GRAPH Keyword Support and Expressions in the SELECT Clause

• Inferencing: Using Named Graph Based Inferencing (Global and Local)

• Data Formats Related to Named Graph Support

1.3.10.1 Data Formats Related to Named Graph Support
TriG and N-QUADS are two popular data formats that provide graph names (or context) to
triple data. The graph names (context) can be used in a variety of different ways. Typical
usage includes, but is not limited to, the grouping of triples for ease of management, localized
query, localized inference, and provenance.

Example 1-7 RDF Data Encoded in TriG Format

Example 1-7 shows an RDF data set encoded in TriG format. It contains a default graph and
a named graph.

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix dc: <http://purl.org/dc/elements/1.1/> .

Default graph
{
 <http://my.com/John> dc:publisher <http://publisher/Xyz> .
}

A named graph
<http://my.com/John> {
 <http://my.com/John> foaf:name "John Doe" .
}

When loading the TriG file from Example 1-7 into a DatasetGraphOracleSem object (for
example, using Example 7-12 in Bulk Loading Using RDF Semantic Graph Support for
Apache Jena, but replacing the constant "N-QUADS" with "TRIG"), the triples in the default
graph will be loaded into Oracle Database as triples with null graph names, and the triples in
the named graphs will be loaded into Oracle Database with the designated graph names.

Chapter 1
Semantic Data in the Database

1-25

https://www.w3.org/TR/trig/
http://www.w3.org/TR/n-quads/.

Example 1-8 N-QUADS Format Representation

N-QUADS format is a simple extension of the existing N-TRIPLES format by adding an
optional fourth column (graph name or context). Example 1-8 shows the N-QUADS
format representation of the TriG file from Example 1-7.

<http://my.com/John> <http://purl.org/dc/elements/1.1/publisher> <http://
publisher/Xyz> .
<http://my.com/John> <http://xmlns.com/foaf/0.1/name> "John Doe" <http://my.com/
John>

When loading an N-QUADS file into a DatasetGraphOracleSem object (see
Example 7-12), lines without the fourth column will be loaded into Oracle Database as
triples with null graph names, and lines with a fourth column will be loaded into Oracle
Database with the designated graph names.

1.3.11 Semantic Data Security Considerations
The following database security considerations apply to the use of semantic data:

• When a model or entailment is created, the owner gets the SELECT privilege with
the GRANT option on the associated view. Users that have the SELECT privilege
on these views can perform SEM_MATCH queries against the associated model
or entailment.

• When a rulebase is created, the owner gets the SELECT, INSERT, UPDATE, and
DELETE privileges on the rulebase, with the GRANT option. Users that have the
SELECT privilege on a rulebase can create an entailment that includes the
rulebase. The INSERT, UPDATE, and DELETE privileges control which users can
modify the rulebase and how they can modify it.

• To perform data manipulation language (DML) operations on a model, a user must
have DML privileges for the corresponding base table.

• The creator of the base table corresponding to a model can grant privileges to
other users.

• To perform data manipulation language (DML) operations on a rulebase, a user
must have the appropriate privileges on the corresponding database view.

• The creator of a model can grant SELECT privileges on the corresponding
database view to other users.

• A user can query only those models for which that user has SELECT privileges to
the corresponding database views.

• Only the creator of a model or a rulebase can drop it.

1.3.12 RDF Privilege Considerations
The following database privilege-related considerations apply to the use of semantic
networks:

• Effective with Release 12.2, administrative procedures, such as creating a
semantic network, must be run as SYSTEM (or another non-SYS user that has the
DBA role). These procedures cannot be run as SYS because MDSYS no longer
has the INHERIT ANY PRIVILEGES privilege.

Chapter 1
Semantic Data in the Database

1-26

• Effective with Release 18, the MDSYS user no longer has the UNLIMITED TABLESPACE
privilege, and so MDSYS must be explicitly granted quota on the tablespace used for an
MDSYS-owned semantic network.

1.4 Semantic Metadata Tables and Views
Oracle Database maintains several tables and views in the network owner’s schema to hold
metadata related to semantic data.

Some of these tables and views are created by the SEM_APIS.CREATE_SEM_NETWORK
procedure, as explained in Quick Start for Using Semantic Data, and some are created only
as needed.Table 1-12 lists the tables and views in alphabetical order. (In addition, several
tables and views are created for Oracle internal use, and these are accessible only by users
with DBA privileges or network owners of schema-private semantic networks.)

Table 1-12 Semantic Metadata Tables and Views

Name Contains Information About Described In

RDF_CRS_URI$ Available EPSG spatial
reference system URIs

Spatial Support

RDF_VALUE$ Subjects, properties, and
objects used to represent
statements

Statements

SEM_DTYPE_IND
EX_INFO

All data type indexes in the
network

Using Data Type Indexes

SEM_MODEL$ All models defined in the
database

Metadata for Models

SEM_NETWORK_
INDEX_INFO$

Semantic network indexes MDSYS.SEM_NETWORK_INDEX_INFO View

SEM_RULEBASE
_INFO

Rulebases Inferencing: Rules and Rulebases

SEM_RULES_IND
EX_DATASETS

Database objects used in
entailments

Entailments (Rules Indexes)

SEM_RULES_IND
EX_INFO

Entailments (rules indexes) Entailments (Rules Indexes)

SEM_VMODEL_I
NFO

Virtual models Virtual Models

SEM_VMODEL_D
ATASETS

Database objects used in virtual
models

Virtual Models

SEMCL_entailmen
t-name

owl:sameAs clique members
and canonical representatives

Optimizing owl:sameAs Inference

SEMI_entailment-
name

Triples in the specified
entailment

Entailments (Rules Indexes)

SEMM_model-
name

Triples in the specified model Metadata for Models

SEMR_rulebase-
name

Rules in the specified rulebase Inferencing: Rules and Rulebases

SEMU_virtual-
model-name

Unique triples in the virtual
model

Virtual Models

Chapter 1
Semantic Metadata Tables and Views

1-27

Table 1-12 (Cont.) Semantic Metadata Tables and Views

Name Contains Information About Described In

SEMV_virtual-
model-name

Triples in the virtual model Virtual Models

1.5 Semantic Data Types, Constructors, and Methods
The SDO_RDF_TRIPLE_S object type is used for representing the edges (that is,
triples and quads) of RDF graphs.

The SDO_RDF_TRIPLE_S object type (the _S for storage) stores persistent semantic
data in the database.

The SDO_RDF_TRIPLE_S type has references to the data, because the actual
semantic data is stored only in the central RDF schema. This type has methods to
retrieve the entire triple or part of the triple.

Note:

Blank nodes are always reused within an RDF model and cannot be reused
across models

The SDO_RDF_TRIPLE_S type is used to store the triples in database tables.

The SDO_RDF_TRIPLE_S object type has the following attributes:

SDO_RDF_TRIPLE_S (
 RDF_C_ID NUMBER, -- Canonical object value ID
 RDF_M_ID NUMBER, -- Model (or Model-Graph) ID
 RDF_S_ID NUMBER, -- Subject value ID
 RDF_P_ID NUMBER, -- Property value ID
 RDF_O_ID NUMBER) -- Object value ID

The SDO_RDF_TRIPLE_S type has the following methods that retrieve the name of
the RDF model (or model-graph), or a part (subject, property, or object) of a triple:

GET_MODEL(
 NETWORK_OWNER VARCHAR2 DEFAULT NULL,
 NETWORK_NAME VARCHAR2 DEFAULT NULL) RETURNS VARCHAR2
GET_SUBJECT(
 NETWORK_OWNER VARCHAR2 DEFAULT NULL,
 NETWORK_NAME VARCHAR2 DEFAULT NULL) RETURNS VARCHAR2
GET_PROPERTY(
 NETWORK_OWNER VARCHAR2 DEFAULT NULL,
 NETWORK_NAME VARCHAR2 DEFAULT NULL) RETURNS VARCHAR2
GET_OBJECT(
 NETWORK_OWNER VARCHAR2 DEFAULT NULL,
 NETWORK_NAME VARCHAR2 DEFAULT NULL) RETURNS CLOB
GET_OBJ_VALUE(
 NETWORK_OWNER VARCHAR2 DEFAULT NULL,
 NETWORK_NAME VARCHAR2 DEFAULT NULL) RETURNS VARCHAR2

Chapter 1
Semantic Data Types, Constructors, and Methods

1-28

Example 1-9 shows some of the SDO_RDF_TRIPLE_S methods.

Example 1-9 SDO_RDF_TRIPLE_S Methods

-- Find all articles that reference Article2.
SELECT a.triple.GET_SUBJECT('RDFUSER','NET1') AS subject
 FROM RDFUSER.NET1#RDFT_ARTICLES a
 WHERE a.triple.GET_PROPERTY('RDFUSER','NET1') = '<http://purl.org/dc/terms/
references>'
 AND a.triple.GET_OBJ_VALUE('RDFUSER','NET1') = '<http://nature.example.com/
Article2>';

SUBJECT
--
<http://nature.example.com/Article1>

-- Find all triples with Article1 as subject.
SELECT a.triple.GET_SUBJECT('RDFUSER','NET1') AS subject,
 a.triple.GET_PROPERTY('RDFUSER','NET1') AS property,
 a.triple.GET_OBJ_VALUE('RDFUSER','NET1') AS object
 FROM RDFUSER.NET1#RDFT_ARTICLES a
 WHERE a.triple.GET_SUBJECT('RDFUSER','NET1') = '<http://nature.example.com/
Article1>';

SUBJECT
--
PROPERTY
--
OBJECT
--
<http://nature.example.com/Article1>
<http://purl.org/dc/elements/1.1/title>
"All about XYZ"

<http://nature.example.com/Article1>
<http://purl.org/dc/elements/1.1/creator>
"Jane Smith"

<http://nature.example.com/Article1>
<http://purl.org/dc/terms/references>
<http://nature.example.com/Article2>

<http://nature.example.com/Article1>
<http://purl.org/dc/terms/references>
<http://nature.example.com/Article3

-- Find all objects where the subject is Article1.
SELECT a.triple.GET_OBJ_VALUE('RDFUSER','NET1') AS object
 FROM RDFUSER.NET1#RDFT_ARTICLES a
 WHERE a.triple.GET_SUBJECT('RDFUSER','NET1') = '<http://nature.example.com/
Article1>';

OBJECT
--
"All about XYZ"
"Jane Smith"
<http://nature.example.com/Article2>
<http://nature.example.com/Article3>

-- Find all triples where Jane Smith is the object.
SELECT a.triple.GET_SUBJECT('RDFUSER','NET1') AS subject,

Chapter 1
Semantic Data Types, Constructors, and Methods

1-29

 a.triple.GET_PROPERTY('RDFUSER','NET1') AS property,
 a.triple.GET_OBJ_VALUE('RDFUSER','NET1') AS object
 FROM RDFUSER.NET1#RDFT_ARTICLES a
 WHERE a.triple.GET_OBJ_VALUE('RDFUSER','NET1') = '"Jane Smith"';

SUBJECT
--
PROPERTY
--
OBJECT
--
<http://nature.example.com/Article1>
<http://purl.org/dc/elements/1.1/creator>
"Jane Smith"

• Constructors for Inserting Triples

1.5.1 Constructors for Inserting Triples
The following constructor formats are available for inserting triples into a model table.
The only difference is that in the second format the data type for the object is CLOB, to
accommodate very long literals.

SDO_RDF_TRIPLE_S (
 model_name VARCHAR2, -- Model name
 subject VARCHAR2, -- Subject
 property VARCHAR2, -- Property
 object VARCHAR2, -- Object
 network_owner VARCHAR2 DEFAULT NULL,
 network_name VARCHAR2 DEFAULT NULL)
 RETURN SELF;

SDO_RDF_TRIPLE_S (
 model_name VARCHAR2, -- Model name
 subject VARCHAR2, -- Subject
 property VARCHAR2, -- Property
 object CLOB, -- Object
 network_owner VARCHAR2 DEFAULT NULL,
 network_name VARCHAR2 DEFAULT NULL)
 RETURN SELF;

Example 1-10 uses the first constructor format to insert several triples.

Example 1-10 SDO_RDF_TRIPLE_S Constructor to Insert Triples

INSERT INTO RDFUSER.NET1#RDFT_ARTICLES VALUES (
 SDO_RDF_TRIPLE_S ('articles','<http://nature.example.com/Article1>',
 '<http://purl.org/dc/elements/1.1/creator>',
 '"Jane Smith"',
 'RDFUSER',
 'NET1'));

INSERT INTO RDFUSER.NET1#RDFT_ARTICLES VALUES (
 SDO_RDF_TRIPLE_S ('articles:<http://examples.com/ns#Graph1>',
 '<http://nature.example.com/Article102>',
 '<http://purl.org/dc/elements/1.1/creator>',
 '_:b1',
 'RDFUSER',
 'NET1'));

Chapter 1
Semantic Data Types, Constructors, and Methods

1-30

INSERT INTO RDFUSER.NET1#RDFT_ARTICLES VALUES (
 SDO_RDF_TRIPLE_S ('articles:<http://examples.com/ns#Graph1>',
 '_:b2',
 '<http://purl.org/dc/elements/1.1/creator>',
 '_:b1',
 'RDFUSER',
 'NET1'));

1.6 Using the SEM_MATCH Table Function to Query Semantic
Data

To query semantic data, use the SEM_MATCH table function.

This function has the following attributes:

SEM_MATCH(
 query VARCHAR2,
 models SEM_MODELS,
 rulebases SEM_RULEBASES,
 aliases SEM_ALIASES,
 filter VARCHAR2,
 index_status VARCHAR2 DEFAULT NULL,
 options VARCHAR2 DEFAULT NULL,
 graphs SEM_GRAPHS DEFAULT NULL,
 named_graphs SEM_GRAPHS DEFAULT NULL,
 network_owner VARCHAR2 DEFAULT NULL,
 network_name VARCHAR2 DEFAULT NULL
) RETURN ANYDATASET;

The query and models attributes are required. The other attributes are optional (that is, each
can be a null value).

The query attribute is a string literal (or concatenation of string literals) with one or more triple
patterns, usually containing variables. (The query attribute cannot be a bind variable or an
expression involving a bind variable.) A triple pattern is a triple of atoms followed by a period.
Each atom can be a variable (for example, ?x), a qualified name (for example, rdf:type) that
is expanded based on the default namespaces and the value of the aliases attribute, or a full
URI (for example, <http://www.example.org/family/Male>). In addition, the third atom can
be a numeric literal (for example, 3.14), a plain literal (for example, "Herman"), a language-
tagged plain literal (for example, "Herman"@en), or a typed literal (for example,
"123"^^xsd:int).

For example, the following query attribute specifies three triple patterns to find grandfathers
(that is, grandparents who are also male) and the height of each of their grandchildren:

'SELECT * WHERE { ?x :grandParentOf ?y . ?x rdf:type :Male . ?y :height ?h }'

The models attribute identifies the model or models to use. Its data type is SEM_MODELS,
which has the following definition: TABLE OF VARCHAR2(25). If you are querying a virtual
model, specify only the name of the virtual model and no other models. (Virtual models are
explained in Virtual Models.)

The rulebases attribute identifies one or more rulebases whose rules are to be applied to the
query. Its data type is SDO_RDF_RULEBASES, which has the following definition: TABLE OF
VARCHAR2(25). If you are querying a virtual model, this attribute must be null.

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-31

The aliases attribute identifies one or more namespaces, in addition to the default
namespaces, to be used for expansion of qualified names in the query pattern. Its data
type is SEM_ALIASES, which has the following definition: TABLE OF SEM_ALIAS, where
each SEM_ALIAS element identifies a namespace ID and namespace value. The
SEM_ALIAS data type has the following definition: (namespace_id VARCHAR2(30),
namespace_val VARCHAR2(4000))
The following default namespaces (namespace_id and namespace_val attributes) are
used by the SEM_MATCH table function and the SEM_CONTAINS and
SEM_RELATED operators:

('ogc', 'http://www.opengis.net/ont/geosparql#')
('ogcf', 'http://www.opengis.net/def/function/geosparql/')
('ogcgml', 'http://www.opengis.net/ont/gml#')
('ogcsf', 'http://www.opengis.net/ont/sf#')
('orardf', 'http://xmlns.oracle.com/rdf/')
('orageo', 'http://xmlns.oracle.com/rdf/geo/')
('owl', 'http://www.w3.org/2002/07/owl#')
('rdf', 'http://www.w3.org/1999/02/22-rdf-syntax-ns#')
('rdfs', 'http://www.w3.org/2000/01/rdf-schema#')
('xsd', 'http://www.w3.org/2001/XMLSchema#')

You can override any of these defaults by specifying the namespace_id value and a
different namespace_val value in the aliases attribute.

The filter attribute identifies any additional selection criteria. If this attribute is not
null, it should be a string in the form of a WHERE clause without the WHERE keyword. For
example: '(h >= ''6'')' to limit the result to cases where the height of the
grandfather's grandchild is 6 or greater (using the example of triple patterns earlier in
this section).

Note:

Instead of using the filter attribute, you are encouraged to use the FILTER
keyword inside your query pattern whenever possible (as explained in Graph
Patterns: Support for Curly Brace Syntax_ and OPTIONAL_ FILTER_
UNION_ and GRAPH Keywords). Using the FILTER keyword is likely to give
better performance because of internal optimizations. The filter argument,
however, can be useful if you require SQL constructs that cannot be
expressed with the FILTER keyword.

The index_status attribute lets you query semantic data even when the relevant
entailment does not have a valid status. (If you are querying a virtual model, this
attribute refers to the entailment associated with the virtual model.) If this attribute is
null, the query returns an error if the entailment does not have a valid status. If this
attribute is not null, it must be the string INCOMPLETE or INVALID. For an explanation of
query behavior with different index_status values, see Performing Queries with
Incomplete or Invalid Entailments.

The options attribute identifies options that can affect the results of queries. Options
are expressed as keyword-value pairs. The following options are supported:

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-32

• ALL_AJ_HASH, ALL_AJ_MERGE, and ALL_BGP_NL are global query optimizer hints that specify
that all anti joins for NOT EXISTS and MINUS operations should use the specified join
type.

• ALL_BGP_HASH and ALL_BGP_NL are global query optimizer hints that specify that all inter-
BGP joins (for example. the join between the root BGP and an OPTIONAL BGP) should
use the specified join type. (BGP stands for basic graph pattern. From the W3C SPARQL
Query Language for RDF Recommendation: "SPARQL graph pattern matching is defined
in terms of combining the results from matching basic graph patterns. A sequence of
triple patterns interrupted by a filter comprises a single basic graph pattern. Any graph
pattern terminates a basic graph pattern."

The BGP_JOIN(USE_NL) and BGP_JOIN(USE_HASH) HINT0 query optimizer hints can be
used to control the join type with finer granularity.

Example 1-17 shows the ALL_BGP_HASH option used in a SEM_MATCH query.

• AUTO_HINTS=T automatically detects and generates USE_HASH hints for unselective
SPARQL queries.

• ALL_LINK_HASH and ALL_LINK_NL are global query optimizer hints that specify the join
type for all RDF_LINK$ joins (that is, all joins between triple patterns within a BGP).
ALL_LINK_HASH and ALL_LINK_NL can also be used within a HINT0 query optimizer hint
for finer granularity.

• ALL_MAX_PP_DEPTH(n) is a global query optimizer hint that sets the maximum depth to
use when evaluating * and + property path operators. The default value is 10. The
MAX_PP_DEPTH(n) HINT0 hint can be used to specify maximum depth with finer
granularity.

• ALL_NO_MERGE is a global query optimizer hint that adds NO_MERGE to each subquery in the
generated SQL for a SPARQL query.This hint is used to ensure that a selective subquery
in a SPARQL query is not merged with the other parts of the SPARQL query.

• ALL_ORDERED is a global query optimizer hint that specifies that the triple patterns in each
BGP in the query should be evaluated in order.

Example 1-17 shows the ALL_ORDERED option used in a SEM_MATCH query.

• ALL_USE_PP_HASH and ALL_USE_PP_NL are global query optimizer hints that specify the
join type to use when evaluating property path expressions. The USE_PP_HASH and
USE_PP_NL HINT0 hints can be used for specifying join type with finer granularity.

• ALLOW_DUP=T generates an underlying SQL statement that performs a "union all" instead
of a union of the semantic models and inferred data (if applicable). This option may
introduce more rows (duplicate triples) in the result set, and you may need to adjust the
application logic accordingly. If you do not specify this option, duplicate triples are
automatically removed across all the models and inferred data to maintain the set
semantics of merged RDF graphs; however, removing duplicate triples increases query
processing time. In general, specifying 'ALLOW_DUP=T' improves performance
significantly when multiple semantic models are involved in a SEM_MATCH query.

If you are querying a virtual model, specifying ALLOW_DUP=T causes the SEMV_vm_name
view to be queried; otherwise, the SEMU_vm_name view is queried.

• ALLOW_PP_DUP=T allows duplicate results for + and * property path queries. Allowing
duplicate results may return the first result rows faster.

• AS_OF [SCN, <SCN_VALUE>] , where <SCN_VALUE> is a valid system change number,
indicates that Flashback Query should be used to query the state of the semantic
network as of the specified SCN.

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-33

• AS_OF [TIMESTAMP, <TIMESTAMP_VALUE>] , where <TIMESTAMP_VALUE> is a
valid timestamp string with format 'YYYY/MM/DD HH24:MI:SS.FF', indicates that
Flashback Query should be used to query the state of the semantic network as of
the specified timestamp.

• CLOB_AGG_SUPPORT=T enables support for CLOB values for the following
aggregates: MIN, MAX, GROUP_CONCAT, SAMPLE. Note that enabling CLOB
support incurs a significant performance penalty.

• CLOB_EXP_SUPPORT=T enables support for CLOB values for some built-in SPARQL
functions. Note that enabling CLOB support incurs a significant performance
penalty.

• CONSTRUCT_STRICT=T eliminates invalid RDF triples from the result of SPARQL
CONSTRUCT or SPARQL DESCRIBE syntax queries. RDF triples with literals in
the subject position or literals or blank nodes in the predicate position are
considered invalid.

• CONSTRUCT_UNIQUE=T eliminates duplicate RDF triples from the result of SPARQL
CONSTRUCT or SPARQL DESCRIBE syntax queries.

• DISABLE_IM_VIRTUAL_COL specifies that the query compiler should not use in-
memory virtual columns.

• DISABLE_MVIEW specifies that the query compiler should not use materialized
views.

• DISABLE_NULL_EXPR_JOIN specifies that the query compiler should assume that all
SELECT expressions produce non-null output.

• DISABLE_SAMEAS_BLOOM specifies that the query compiler should not use a Bloom
filter when owl:sameAs triples are joined. (For detailed information, see the
explanation of Bloom filters in Oracle Database SQL Tuning Guide.)

• DO_UNESCAPE=T causes characters in the following return columns to be unescaped
according to the W3C N-Triples specification (http://www.w3.org/TR/rdf-
testcases/#ntriples): var, var$_PREFIX, var$_SUFFIX, var$RDFCLOB,
var$RDFLTYP, var$RDFLANG, and var$RDFTERM.

See also the reference information for SEM_APIS.ESCAPE_CLOB_TERM,
SEM_APIS.ESCAPE_CLOB_VALUE, SEM_APIS.ESCAPE_RDF_TERM,
SEM_APIS.ESCAPE_RDF_VALUE, SEM_APIS.UNESCAPE_CLOB_TERM,
SEM_APIS.UNESCAPE_CLOB_VALUE, SEM_APIS.UNESCAPE_RDF_TERM,
and SEM_APIS.UNESCAPE_RDF_VALUE.

• FINAL_VALUE_HASH and FINAL_VALUE_NL are global query optimizer hints that
specify the join method that should be used to obtain the lexical values for any
query variables that are not used in a FILTER clause.

• GRAPH_MATCH_UNNAMED=T allows unnamed triples (null G_ID) to be matched inside
GRAPH clauses. That is, two triples will satisfy the graph join condition if their
graphs are equal or if one or both of the graphs are null. This option may be useful
when your dataset includes unnamed TBOX triples or unnamed entailed triples.

• HINT0={<hint-string>} (pronounced and written "hint" and the number zero)
specifies one or more keywords with hints to influence the execution plan and
results of queries. Conceptually, a graph pattern with n triple patterns and referring
to m distinct variables results in an (n+m)-way join: n-way self-join of the target
RDF model or models and optionally the corresponding entailment, and then m

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-34

http://www.w3.org/TR/rdf-testcases/#ntriples
http://www.w3.org/TR/rdf-testcases/#ntriples

joins with RDF_VALUE$ for looking up the values for the m variables. A hint specification
affects the join order and join type used for the query execution.

The hint specification, <hint-string>, uses keywords, some of which have parameters
consisting of a sequence or set of aliases, or references, for individual triple patterns and
variables used in the query. Aliases for triple patterns are of the form ti where i refers to
the 0-based ordinal numbers of triple patterns in the query. For example, the alias for the
first triple pattern in a query is t0, the alias for the second one is t1, and so on. Aliases
for the variables used in a query are simply the names of those variables. Thus, ?x will be
used in the hint specification as the alias for a variable ?x used in the graph pattern.

Hints used for influencing query execution plans include LEADING(<sequence of
aliases>), USE_NL(<set of aliases>), USE_HASH(<set of aliases>), and INDEX(<alias>
<index_name>). These hints have the same format and basic meaning as hints in SQL
statements, which are explained in Oracle Database SQL Language Reference.

Example 1-12 shows the HINT0 option used in a SEM_MATCH query.

• HTTP_METHOD=POST_PAR indicates that the HTTP POST method with URL-encoded
parameters pass should be used for the SERVICE request. The default option for
requests is the HTTP GET method. For more information about SPARQL protocol, see
http://www.w3.org/TR/2013/REC-sparql11-protocol-20130321/#protocol.

• INF_ONLY=T queries only the entailed graph for the specified models and rulebases.

• OVERLOADED_NL=T specifies that a procedural nested loop execution should be used to
join with an overloaded SERVICE clause.

• PLUS_RDFT=T can be used with SPARQL SELECT syntax (see Expressions in the
SELECT Clause) to additionally return a var$RDFTERM CLOB column for each
projected query variable. The value for this column is equivalent to the result of
SEM_APIS.COMPOSE_RDF_TERM(var, var$RDFVTYP, var$RDFLTYP, var$RDFLANG,
var$RDFCLOB). When using this option, the return columns for each variable var will be
var, var$RDFVID, var$_PREFIX, var$_SUFFIX, var$RDFVTYP, var$RDFCLOB,
var$RDFLTYP, var$RDFLANG, and var$RDFTERM.

• PLUS_RDFT=VC can be used with SPARQL SELECT syntax (see Expressions in the
SELECT Clause) to additionally return a var$RDFTERM VARCHAR2(4000) column for
each projected query variable. The value for this column is equivalent to the result of
SEM_APIS.COMPOSE_RDF_TERM(var, var$RDFVTYP, var$RDFLTYP,
var$RDFLANG). When using this option, the return columns for each variable var will be
var, var$RDFVID, var$_PREFIX, var$_SUFFIX, var$RDFVTYP, var$RDFCLOB,
var$RDFLTYP, var$RDFLANG, and var$RDFTERM.

• PROJ_EXACT_VALUES=T disables canonicalization of values returned from functions and of
constant values used in value assignment statements. Such values are canonicalized by
default.

• SERVICE_CLOB=F sets the column values of var$RDFCLOB to null instead of saving
values when calling the service. If CLOB data is not needed in your application,
performance can be improved by using this option to skip CLOB processing.

• SERVICE_ESCAPE=F disables character escaping for RDF literal values returned by
SPARQL SERVICE calls. RDF literal values are escaped by default. If character escaping
is not relevant for your application, performance can be improved by disabling character
escaping.

• SERVICE_JPDWN=T is a query optimizer hint for using nested loop join in SPARQL
SERVICE. Example 1-73 shows the SERVICE_JPDWN=T option used in a SEM_MATCH
query.

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-35

http://www.w3.org/TR/2013/REC-sparql11-protocol-20130321/#protocol

• SERVICE_PROXY=<proxy-string> sets a proxy address to be used when
performing http connections. The given proxy-string will be used in SERVICE
queries. Example 1-76 shows a SEM_MATCH query including a proxy address.

• STRICT_AGG_CARD=T uses SPARQL semantics (one null row) instead of SQL
semantics (zero rows) for aggregate queries with graph patterns that fail to match.
This option incurs a slight performance penalty.

• STRICT_DEFAULT=T restricts the default graph to unnamed triples when no dataset
information is specified.

The graphs attribute specifies the set of named graphs from which to construct the
default graph for a SEM_MACH query. Its data type is SEM_GRAPHS, which has the
following definition: TABLE OF VARCHAR2(4000). The default value for this attribute is
NULL. When graphs is NULL, the "union all" of all graphs in the set of query models is
used as the default graph.

The named_graphs attribute specifies the set of named graphs that can be matched by
a GRAPH clause. Its data type is SEM_GRAPHS, which has the following definition:
TABLE OF VARCHAR2(4000). The default value for this attribute is NULL. When
named_graphs is NULL, all named graphs in the set of query models can be matched
by a GRAPH clause.

The network_owner attribute specifies the schema that owns the semantic network
that contains the RDF model or virtual model specified in the models attribute. This
attribute should be non-null to query a schema-private semantic network. A NULL value
for network_owner implies the MDSYS-owned semantic network

The network_name attribute specifies the name of the semantic network that contains
the RDF model or virtual model specified in the models attribute. This attribute should
be non-null to query a schema-private semantic network. A NULL value for
network_name implies the unnamed MDSYS-owned semantic network.

The SEM_MATCH table function returns an object of type ANYDATASET, with
elements that depend on the input variables. In the following explanations, var
represents the name of a variable used in the query. For each variable var, the result
elements have the following attributes: var, var$RDFVID, var$_PREFIX,
var$_SUFFIX, var$RDFVTYP, var$RDFCLOB, var$RDFLTYP, and var$RDFLANG.

In such cases, var has the lexical value bound to the variable, var$RDFVID has the
VALUE_ID of the value bound to the variable, var$_PREFIX and var$_SUFFIX are the
prefix and suffix of the value bound to the variable, var$RDFVTYP indicates the type
of value bound to the variable (URI, LIT [literal], or BLN [blank node]), var$RDFCLOB
has the lexical value bound to the variable if the value is a long literal, var$RDFLTYP
indicates the type of literal bound if a literal is bound, and var$RDFLANG has the
language tag of the bound literal if a literal with language tag is bound. var$RDFCLOB
is of type CLOB, while all other attributes are of type VARCHAR2.

For a literal value or a blank node, its prefix is the value itself and its suffix is null. For a
URI value, its prefix is the left portion of the value up to and including the rightmost
occurrence of any of the three characters / (slash), # (pound), or : (colon), and its suffix
is the remaining portion of the value to the right. For example, the prefix and suffix for
the URI value http://www.example.org/family/grandParentOf are http://
www.example.org/family/ and grandParentOf, respectively.

Along with columns for variable values, a SEM_MATCH query that uses SPARQL
SELECT syntax returns one additional NUMBER column, SEM$ROWNUM, which can

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-36

be used to ensure the correct result ordering for queries that involve a SPARQL ORDER BY
clause.

A SEM_MATCH query that uses SPARQL ASK syntax returns the columns ASK,
ASK$RDFVID, ASK$_PREFIX, ASK$_SUFFIX, ASK$RDFVTYP, ASK$RDFCLOB,
ASK$RDFLTYP, ASK$RDFLANG, and SEM$ROWNUM. This is equivalent to a SPARQL
SELECT syntax query that projects a single ?ask variable.

A SEM_MATCH query that uses SPARQL CONSTRUCT or SPARQL DESCRIBE syntax
returns columns that contain RDF triple data rather than query result bindings. Such queries
return values for subject, predicate and object components. See Graph Patterns: Support for
SPARQL CONSTRUCT Syntaxfor details.

To use the SEM_RELATED operator to query an OWL ontology, see Using Semantic
Operators to Query Relational Data.

When you are querying multiple models or querying one or more models and the
corresponding entailment, consider using virtual models (explained in Virtual Models)
because of the potential performance benefits.

Example 1-11 SEM_MATCH Table Function

Example 1-11 selects all grandfathers (grandparents who are male) and their grandchildren
from the family model, using inferencing from both the RDFS and family_rb rulebases. (This
example is an excerpt from Example 1-122 in Example: Family Information.)

SELECT x$rdfterm grandfather, y$rdfterm grandchild
 FROM TABLE(SEM_MATCH(
 'PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
 PREFIX : <http://www.example.org/family/>
 SELECT ?x ?y
 WHERE {?x :grandParentOf ?y . ?x rdf:type :Male}',
 SEM_Models('family'),
 SEM_Rulebases('RDFS','family_rb'),
 null, null, null,
 ' PLUS_RDFT=VC ',
 null, null,
 'RDFUSER', 'NET1'));

Example 1-12 HINT0 Option with SEM_MATCH Table Function

Example 1-12 is functionally the same as Example 1-11, but it adds the HINT0 option.

SELECT x$rdfterm grandfather, y$rdfterm grandchild
 FROM TABLE(SEM_MATCH(
 'PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
 PREFIX : <http://www.example.org/family/>
 SELECT ?x ?y
 WHERE {?x :grandParentOf ?y . ?x rdf:type :Male}',
 SEM_Models('family'),
 SEM_Rulebases('RDFS','family_rb'),
 null, null, null,
 ' PLUS_RDFT=VC HINT0={LEADING(t0 t1) USE_NL(?x ?y)}',
 null, null,
 'RDFUSER', 'NET1'));

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-37

Example 1-13 DISABLE_SAMEAS_BLOOM Option with SEM_MATCH Table
Function

Example 1-12 specifies that the query compiler should not use a Bloom filter when
owl:sameAs triples are joined.

SELECT select s, o
FROM table(sem_match('{ # HINT0={LEADING(t1 t0) USE_HASH(t0 t1)}
 ?s owl:sameAs ?o. ?o owl:sameAs ?s}', sem_models('M1'), null,null,null,null,
 ' DISABLE_SAMEAS_BLOOM ')) order by 1,2;

Example 1-14 SEM_MATCH Table Function

Example 1-14 uses the Pathway/Genome BioPax ontology to get all chemical
compound types that belong to both Proteins and Complexes:

SELECT t.r
 FROM TABLE (SEM_MATCH (
 'PREFIX : <http://www.biopax.org/release1/biopax-release1.owl>
 SELECT ?r
 WHERE {
 ?r rdfs:subClassOf :Proteins .
 ?r rdfs:subClassOf :Complexes}',
 SEM_Models ('BioPax'),
 SEM_Rulebases ('rdfs'),
 NULL, NULL, NULL, '', NULL, NULL,
 'RDFUER','NET1')) t;

As shown in Example 1-14, the search pattern for the SEM_MATCH table function is
specified using SPARQL syntax where the variable starts with the question-mark
character (?). In this example, the variable ?r must match to the same term, and thus it
must be a subclass of both Proteins and Complexes.

• Performing Queries with Incomplete or Invalid Entailments

• Graph Patterns: Support for Curly Brace Syntax, and OPTIONAL, FILTER,
UNION, and GRAPH Keywords

• Graph Patterns: Support for SPARQL ASK Syntax

• Graph Patterns: Support for SPARQL CONSTRUCT Syntax

• Graph Patterns: Support for SPARQL DESCRIBE Syntax

• Graph Patterns: Support for SPARQL SELECT Syntax

• Graph Patterns: Support for SPARQL 1.1 Constructs

• Graph Patterns: Support for SPARQL 1.1 Federated Query

• Inline Query Optimizer Hints

• Full-Text Search

• Spatial Support

• Flashback Query Support

• Speeding up Query Execution with SPM Auxiliary Tables

• Best Practices for Query Performance

• Special Considerations When Using SEM_MATCH

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-38

1.6.1 Performing Queries with Incomplete or Invalid Entailments
You can query semantic data even when the relevant entailment does not have a valid status
if you specify the string value INCOMPLETE or INVALID for the index_status attribute of the
SEM_MATCH table function. (The entailment status is stored in the STATUS column of the
SEM_RULES_INDEX_INFO view, which is described in Entailments (Rules Indexes). The
SEM_MATCH table function is described in Using the SEM_MATCH Table Function to Query
Semantic Data.)

The index_status attribute value affects the query behavior as follows:

• If the entailment has a valid status, the query behavior is not affected by the value of the
index_status attribute.

• If you provide no value or specify a null value for index_status, the query returns an
error if the entailment does not have a valid status.

• If you specify the string INCOMPLETE for the index_status attribute, the query is
performed if the status of the entailment is incomplete or valid.

• If you specify the string INVALID for the index_status attribute, the query is performed
regardless of the actual status of the entailment (invalid, incomplete, or valid).

However, the following considerations apply if the status of the entailment is incomplete or
invalid:

• If the status is incomplete, the content of an entailment may be approximate, because
some triples that are inferable (due to the recent insertions into the underlying models)
may not actually be present in the entailment, and therefore results returned by the query
may be inaccurate.

• If the status is invalid, the content of the entailment may be approximate, because some
triples that are no longer inferable (due to recent modifications to the underlying models
or rulebases, or both) may still be present in the entailment, and this may affect the
accuracy of the result returned by the query. In addition to possible presence of triples
that are no longer inferable, some inferable rows may not actually be present in the
entailment.

1.6.2 Graph Patterns: Support for Curly Brace Syntax, and OPTIONAL,
FILTER, UNION, and GRAPH Keywords

The SEM_MATCH table function accepts the syntax for the graph pattern in which a
sequence of triple patterns is enclosed within curly braces. The period is usually required as
a separator unless followed by the OPTIONAL, FILTER, UNION, or GRAPH keyword. With
this syntax, you can do any combination of the following:

• Use the OPTIONAL construct to retrieve results even in the case of a partial match

• Use the FILTER construct to specify a filter expression in the graph pattern to restrict the
solutions to a query

• Use the UNION construct to match one of multiple alternative graph patterns

• Use the GRAPH construct (explained in GRAPH Keyword Support) to scope graph
pattern matching to a set of named graphs

In addition to arithmetic operators (+, -, *, /), Boolean operators and logical connectives (||,
&&, !), and comparison operators (<, >, <=, >=, =, !=), several built-in functions are available

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-39

for use in FILTER clauses. Table 1-13 lists built-in functions that you can use in the
FILTER clause. In the Description column of Table 1-13, x, y, and z are arguments of
the appropriate types.

Table 1-13 Built-in Functions Available for FILTER Clause

Function Description

ABS(RDF term) Returns the absolute value of term. If term is
a non-numerical value, returns null.

BNODE(literal) or BNODE() Constructs a blank node that is distinct from all
blank nodes in the dataset of the query, and
those created by this function in other queries.
The form with no arguments results in a
distinct blank node in every call. The form with
a simple literal results in distinct blank nodes
for different simple literals, and the same blank
node for calls with the same simple literal.

BOUND(variable) BOUND(x) returns true if x is bound (that is,
non-null) in the result, false otherwise.

CEIL(RDF term) Returns the closest number with no fractional
part which is not less than term. If term is a
non-numerical value, returns null.

COALESCE(term list) Returns the first element on the argument list
that is evaluated without raising an error.
Unbound variables raise an error if evaluated.
Returns null if there are no valid elements in
the term list.

CONCAT(term list) Returns an xsd:String value resulting of the
concatenation of the string values in the term
list.

CONTAINS(literal, match) Returns true if the string match is found
anywhere in literal. It returns false
otherwise.

DATATYPE(literal) DATATYPE(x) returns a URI representing the
datatype of x.

DAY(argument) Returns an integer corresponding to the day
part of argument. If the argument is not a
dateTime or date data type, it returns a null
value.

ENCODE_FOR_URI(literal) Returns a string where the reserved
characters in literal are escaped and
converted to its percent-encode form.

EXISTS(pattern) Returns true if the pattern matches the query
data set, using the current bindings in the
containing group graph pattern and the current
active graph. If there are no matches, it returns
false.

FLOOR(RDF term) Returns the closest number with no fractional
part which is less than term. If term is a non-
numerical value, returns null.

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-40

Table 1-13 (Cont.) Built-in Functions Available for FILTER Clause

Function Description

HOURS(argument) Returns an integer corresponding to the hours
part of argument. If the argument is not a
dateTime or date data type, it returns a null
value.

IF(condition , expression1, expression2) Evaluates the condition and obtains the
effective Boolean value. If true, the first
expression is evaluated and its value returned.
If false, the second expression is used. If the
condition raises an error, the error is passed
as the result of the IF statement.

IRI(RDF term) Returns an IRI resolving the string
representation of argument term. If there is a
base IRI defined in the query, the IR is resolve
against it, and the result must result in an
absolute IRI.

isBLANK(RDF term) isBLANK(x) returns true if x is a blank node,
false otherwise.

isIRI(RDF term) isIRI(x) returns true if x is an IRI, false
otherwise.

isLITERAL(RDF term) isLiteral(x) returns true if x is a literal, false
otherwise.

IsNUMERIC(RDF term) Returns true if term is a numeric value,
false otherwise.

isURI(RDF term) isURI(x) returns true if x is a URI, false
otherwise.

LANG(literal) LANG(x) returns a plain literal serializing the
language tag of x.

LANGMATCHES(literal, literal) LANGMATCHES(x, y) returns true if
language tag x matches language range y,
false otherwise.

LCASE(literal) Returns a string where each character in literal
is converted to its lowercase correspondent.

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-41

Table 1-13 (Cont.) Built-in Functions Available for FILTER Clause

Function Description

MD5(literal)

Note:

Starting from
Oracle Database
21c Release, the
use of MD5
algorithm is
deprecated. As
this function will
be desupported
in a future
release, it is
recommended to
replace MD5 with
one of the SHA
hash functions.

Returns the checksum for literal,
corresponding to the MD5 hash function.

MINUTES(argument) Returns an integer corresponding to the
minutes part of argument. If the argument is
not a dateTime or date data type, it returns a
null value.

MONTH(argument) Returns an integer corresponding to the month
part of argument. If the argument is not a
dateTime or date data type, it returns a null
value.

NOT_EXISTS(pattern) Returns true if the pattern does not match the
query data set, using the current bindings in
the containing group graph pattern and the
current active graph. It returns false
otherwise.

NOW() Returns an xsd:dateTime value
corresponding to the current time at the
moment of the query execution.

RAND() Generates a numeric value in the range of
[0,1).

REGEX(string, pattern) REGEX(x,y) returns true if x matches the
regular expression y, false otherwise. For
more information about the regular
expressions supported, see the Oracle
Regular Expression Support appendix in
Oracle Database SQL Language Reference.

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-42

Table 1-13 (Cont.) Built-in Functions Available for FILTER Clause

Function Description

REGEX(string, pattern, flags) REGEX(x,y,z) returns true if x matches the
regular expression y using the options given in
z, false otherwise. Available options: 's' –
dot all mode ('.' matches any character
including the newline character); 'm' –
multiline mode ('^' matches the beginning of
any line and '$' matches the end of any line);
'i' – case insensitive mode; 'x' – remove
whitespace characters from the regular
expression before matching.

REPLACE(string, pattern, replacement) Returns a string where each match of the
regular expression pattern in string is
replaced by replacement. For more
information about the regular expressions
supported, see the Oracle Regular Expression
Support appendix in Oracle Database SQL
Language Reference.

REPLACE(string, pattern, replacement, flags) Returns a string where each match of the
regular expression pattern in string is
replaced by replacement. Available options:
's' – dot all mode ('.' matches any
character including the newline character); 'm'
– multiline mode ('^' matches the beginning
of any line and '$' matches the end of any
line); 'i' – case insensitive mode; 'x' –
remove whitespace characters from the
regular expression before matching.

For more information about the regular
expressions supported, see the Oracle
Regular Expression Support appendix in
Oracle Database SQL Language Reference.

ROUND(RDF term) Returns the closest number with no fractional
part to term. If two values exist, the value
closer to positive infinite is returned. If term is
a non-numerical value, returns null.

sameTerm(RDF term, RDF term) sameTerm(x, y) returns true if x and y are the
same RDF term, false otherwise.

SECONDS(argument) Returns an integer corresponding to the
seconds part of argument. If the argument is
not a dateTime or date data type, it returns a
null value.

SHA1(literal) Returns the checksum for literal,
corresponding to the SHA1 hash function.

SHA256(literal) Returns the checksum for literal,
corresponding to the SHA256 hash function.

SHA384(literal) Returns the checksum for literal,
corresponding to the SHA384 hash function.

SHA512(literal) Returns the checksum for literal,
corresponding to the SHA512 hash function.

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-43

Table 1-13 (Cont.) Built-in Functions Available for FILTER Clause

Function Description

STR(RDF term) STR(x) returns a plain literal of the string
representation of x (that is, what would be
stored in the VALUE_NAME column of
MDSYS.RDF_VALUE$ enclosed within double
quotes).

STRAFTER(literal, literal) StrAfter (x,y) returns the portion of the string
corresponding to substring that precedes in x
the first match of y, and the end of x. If y
cannot be matched inside x, the empty string
is returned.

STRBEFORE(literal, literal) StrBefore (x,y) returns the portion of the string
corresponding to the start of x and the first
match of y. If y cannot be matched inside x,
the empty string is returned.

STRDT(string, datatype) Construct a literal term composed by the
string lexical form and the datatype passed
as arguments. datatype must be a URI;
otherwise, the function returns a null value.

STRENDS(literal, match) Returns true if the string literal ends with
the string match. It returns false otherwise.

STRLANG (string, languageTag) Constructs a string composed by the string
lexical form and language tag passed as
arguments.

STRLEN(literal) Returns the length of the lexical form of the
literal.

STRSTARTS(literal, match) Returns true if the string literal starts with
the string match. It returns false otherwise.

STRUUID() Returns a string containing the scheme
section of a new UUID.

SUBSTR(term, startPos) Returns the string corresponding to the portion
of term that starts at startPos and continues
until term ends. The index of the first character
is 1.

SUBSTR(term, startPos, length) Returns the string corresponding to the portion
of term that starts at startPos and continues
for length characters. The index of the first
character is 1.

term IN (term list) The expression x IN(term list) returns true if x
can be found in any of the values in
termlist. Returns false if not found. Zero-
length lists are legal. An error is raised if any of
the values in termlist raises an error and x
is not found.

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-44

Table 1-13 (Cont.) Built-in Functions Available for FILTER Clause

Function Description

term NOT IN (term list) The expression x NOT IN(term list) returns
false if x can be found in any of the values in
term list. Returns true if not found. Zero-
length lists are legal. An error is raised if any of
the values in term list raises an error and x is
not found.

TIMEZONE(argument) Returns the time zones section of argument
as an xsd:dayTimeDuration value. If the
argument is not a dateTime or date data
type, it returns a null value.

TZ(argument) Returns an integer corresponding to the time
zone part of argument. If the argument is not
a dateTime or date data type, it returns a null
value.

UCASE(literal) Returns a string where each character in
literal is converted to its uppercase
correspondent.

URI(RDF term) (Synonym for IRI(RDF term)

UUID() Returns a URI with a new Universal Unique
Identifier. The value and the version
correspond to the PL/SQL function sys_guid
().

YEAR(argument) Returns an integer corresponding to the year
part of argument.

See also the descriptions of the built-in functions defined in the SPARQL query language
specification (http://www.w3.org/TR/sparql11-query/), to better understand the built-in
functions available in SEM_MATCH.

In addition, Oracle provides some proprietary query functions that take advantage of Oracle
Database features and help improve query performance. The following table lists these
Oracle-specific query functions. Note that the built-in namespace prefix orardf expands to
<http://xmlns.oracle.com/rdf/>.

Table 1-14 Oracle-Specific Query Functions

Function Description

orardf:like(RDF term, pattern) Returns true if the given term matches with the given like pattern,
false otherwise. See Full-Text Search for more information.

orardf:sameCanonTerm(RDF
term, RDF term)

Returns true if two terms represent the same canonical RDF term,
false otherwise. Allows a VALUE_ID-based comparison, which is
more efficient than sameTerm(?x, ?y) or (?x = ?y).

orardf:textContains(RDF term,
pattern)

Returns true if the given term matches with the given Oracle Text
search pattern, false otherwise. See Full-Text Search for more
information.

orardf:textScore(invocation id) Returns the score of an orardf:textContains match. See Full-Text
Search for more information.

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-45

http://www.w3.org/TR/sparql11-query/

Table 1-14 (Cont.) Oracle-Specific Query Functions

Function Description

(Spatial built-in functions) (See Spatial Support.)

The following XML Schema casting functions are available for use in FILTER clauses.
These functions take an RDF term as input and return a new RDF term of the desired
type or raise an error if the term cannot be cast to the desired type. Details of type
casting can be found in Section 17.1 of the XPath query specification: http://
www.w3.org/TR/xpath-functions/#casting-from-primitive-to-primitive. These
functions use the XML Namespace xsd : http://www.w3.org/2001/XMLSchema#.

• xsd:string (RDF term)

• xsd:dateTime (RDF term)

• xsd:boolean (RDF term)

• xsd:integer (RDF term)

• xsd:float (RDF term)

• xsd:double (RDF term)

• xsd:decimal (RDF term)

If you use the syntax with curly braces to express a graph pattern:

• The query always returns canonical lexical forms for the matching values for the
variables.

• Any hints specified in the options argument using HINT0={<hint-string>}
(explained in Using the SEM_MATCH Table Function to Query Semantic Data),
should be constructed only on the basis of the portion of the graph pattern inside
the root BGP. For example, the only valid aliases for use in a hint specification for
the query in Example 1-16 are t0, t1, ?x, and ?y. Inline query optimizer hints can
be used to influence other parts of the graph pattern (see Inline Query Optimizer
Hints).

• The FILTER construct is not supported for variables bound to long literals.

Example 1-15 Curly Brace Syntax

Example 1-15 uses the syntax with curly braces and a period to express a graph
pattern in the SEM_MATCH table function.

SELECT x, y
 FROM TABLE(SEM_MATCH(
 '{?x :grandParentOf ?y . ?x rdf:type :Male}',
 SEM_Models('family'),
 SEM_Rulebases('RDFS','family_rb'),
 SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
 null, null, '', null, null,
 'RDFUSER', 'NET1'));

Example 1-16 Curly Brace Syntax and OPTIONAL Construct

Example 1-16 uses the OPTIONAL construct to modify Example 1-15, so that it also
returns, for each grandfather, the names of the games that he plays or null if he does
not play any games.

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-46

http://www.w3.org/TR/xpath-functions/#casting-from-primitive-to-primitive
http://www.w3.org/TR/xpath-functions/#casting-from-primitive-to-primitive

SELECT x, y, game
 FROM TABLE(SEM_MATCH(
 '{?x :grandParentOf ?y . ?x rdf:type :Male .
 OPTIONAL{?x :plays ?game}
 }',
 SEM_Models('family'),
 SEM_Rulebases('RDFS','family_rb'),
 SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
 null,
 null,
 'HINT0={LEADING(t0 t1) USE_NL(?x ?y)}',
 null,
 null,
 'RDFUSER', 'NET1'));

Example 1-17 Curly Brace Syntax and Multi-Pattern OPTIONAL Construct

When multiple triple patterns are present in an OPTIONAL graph pattern, values for optional
variables are returned only if a match is found for each triple pattern in the OPTIONAL graph
pattern. Example 1-17 modifies Example 1-16 so that it returns, for each grandfather, the
names of the games both he and his grandchildren play, or null if he and his grandchildren
have no such games in common. It also uses global query optimizer hints to specify that triple
patterns should be evaluated in order within each BGP and that a hash join should be used to
join the root BGP with the OPTIONAL BGP.

SELECT x, y, game
 FROM TABLE(SEM_MATCH(
 '{?x :grandParentOf ?y . ?x rdf:type :Male .
 OPTIONAL{?x :plays ?game . ?y :plays ?game}
 }',
 SEM_Models('family'),
 SEM_Rulebases('RDFS','family_rb'),
 SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
 null, null,
 'ALL_ORDERED ALL_BGP_HASH',
 null, null,
 'RDFUSER', 'NET1'));

Example 1-18 Curly Brace Syntax and Nested OPTIONAL Construct

A single query can contain multiple OPTIONAL graph patterns, which can be nested or
parallel. Example 1-18 modifies Example 1-17 with a nested OPTIONAL graph pattern. This
example returns, for each grandfather, (1) the games he plays or null if he plays no games
and (2) if he plays games, the ages of his grandchildren that play the same game, or null if he
has no games in common with his grandchildren. Note that in Example 1-18 a value is
returned for ?game even if the nested OPTIONAL graph pattern ?y :plays ?game . ?
y :age ?age is not matched.

SELECT x, y, game, age
 FROM TABLE(SEM_MATCH(
 '{?x :grandParentOf ?y . ?x rdf:type :Male .
 OPTIONAL{?x :plays ?game
 OPTIONAL {?y :plays ?game . ?y :age ?age} }
 }',
 SEM_Models('family'),
 SEM_Rulebases('RDFS','family_rb'),
 SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
 null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-47

Example 1-19 Curly Brace Syntax and Parallel OPTIONAL Construct

Example 1-19 modifies Example 1-17 with a parallel OPTIONAL graph pattern. This
example returns, for each grandfather, (1) the games he plays or null if he plays no
games and (2) his email address or null if he has no email address. Note that, unlike
nested OPTIONAL graph patterns, parallel OPTIONAL graph patterns are treated
independently. That is, if an email address is found, it will be returned regardless of
whether or not a game was found; and if a game was found, it will be returned
regardless of whether an email address was found.

SELECT x, y, game, email
 FROM TABLE(SEM_MATCH(
 '{?x :grandParentOf ?y . ?x rdf:type :Male .
 OPTIONAL{?x :plays ?game}
 OPTIONAL{?x :email ?email}
 }',
 SEM_Models('family'),
 SEM_Rulebases('RDFS','family_rb'),
 SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
 null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

Example 1-20 Curly Brace Syntax and FILTER Construct

Example 1-20 uses the FILTER construct to modify Example 1-15, so that it returns
grandchildren information for only those grandfathers who are residents of either NY or
CA.

SELECT x, y
 FROM TABLE(SEM_MATCH(
 '{?x :grandParentOf ?y . ?x rdf:type :Male . ?x :residentOf ?z
 FILTER (?z = "NY" || ?z = "CA")}',
 SEM_Models('family'),
 SEM_Rulebases('RDFS','family_rb'),
 SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
 null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

Example 1-21 Curly Brace Syntax and FILTER with REGEX and STR Built-In
Constructs

Example 1-21 uses the REGEX built-in function to select all grandfathers who have an
Oracle email address. Note that backslash (\) characters in the regular expression
pattern must be escaped in the query string; for example, \\. produces the following
pattern: \.
SELECT x, y, z
 FROM TABLE(SEM_MATCH(
 '{?x :grandParentOf ?y . ?x rdf:type :Male . ?x :email ?z
 FILTER (REGEX(STR(?z), "@oracle\\.com$"))}',
 SEM_Models('family'),
 SEM_Rulebases('RDFS','family_rb'),
 SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
 null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-48

Example 1-22 Curly Brace Syntax and UNION and FILTER Constructs

Example 1-22 uses the UNION construct to modify Example 1-20, so that grandfathers are
returned only if they are residents of NY or CA or own property in NY or CA, or if both
conditions are true (they reside in and own property in NY or CA).

SELECT x, y
 FROM TABLE(SEM_MATCH(
 '{?x :grandParentOf ?y . ?x rdf:type :Male
 {{?x :residentOf ?z} UNION {?x :ownsPropertyIn ?z}}
 FILTER (?z = "NY" || ?z = "CA")}',
 SEM_Models('family'),
 SEM_Rulebases('RDFS','family_rb'),
 SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
 null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

• GRAPH Keyword Support

1.6.2.1 GRAPH Keyword Support
A SEM_MATCH query is executed against an RDF Dataset. An RDF Dataset is a collection
of graphs that includes one unnamed graph, known as the default graph, and one or more
named graphs, which are identified by a URI. Graph patterns that appear inside a GRAPH
clause are matched against the set of named graphs, and graph patterns that do not appear
inside a graph clause are matched against the default graph. The graphs and named_graphs
SEM_MATCH parameters are used to construct the default graph and set of named graphs
for a given SEM_MATCH query. A summary of possible dataset configurations is shown in
Table 1-15.

Table 1-15 SEM_MATCH graphs and named_graphs Values, and Resulting Dataset
Configurations

Parameter Values Default Graph Set of Named Graphs

graphs: NULL

named_graphs: NULL

Union All of all unnamed triples and all named graph
triples. (But if the options parameter contains
STRICT_DEFAULT=T, only unnamed triples are included in
the default graph.)

All named graphs

graphs: NULL

named_graphs: {g1,…, gn}

Empty set {g1,…, gn}

graphs: {g1,…, gm}

named_graphs: NULL

Union All of {g1,…, gm} Empty set

graphs: {g1,…, gm}

named_graphs: {gn,…, gz}

Union All of {g1,…, gm} {gn,…, gz}

See also the W3C SPARQL specification for more information on RDF data sets and the
GRAPH construct, specifically: http://www.w3.org/TR/rdf-sparql-query/#rdfDataset
Example 1-23 Named Graph Construct

Example 1-23 uses the GRAPH construct to scope graph pattern matching to a specific
named graph. This example finds the names and email addresses of all people in the
<http://www.example.org/family/Smith> named graph.

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-49

http://www.w3.org/TR/rdf-sparql-query/#rdfDataset

SELECT name, email
 FROM TABLE(SEM_MATCH(
 '{GRAPH :Smith {
 ?x :name ?name . ?x :email ?email } }',
 SEM_Models('family'),
 SEM_Rulebases('RDFS','family_rb'),
 SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
 null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

Example 1-24 Using the named_graphs Parameter

In addition to URIs, variables can appear after the GRAPH keyword. Example 1-24
uses a variable, ?g, with the GRAPH keyword, and uses the named_graphs parameter
to restrict the possible values of ?g to the <http://www.example.org/family/Smith>
and <http://www.example.org/family/Jones> named graphs. Aliases specified in
SEM_ALIASES argument can be used in the graphs and named_graphs parameters.

SELECT name, email
 FROM TABLE(SEM_MATCH(
 '{GRAPH ?g {
 ?x :name ?name . ?x :email ?email } }',
 SEM_Models('family'),
 SEM_Rulebases('RDFS','family_rb'),
 SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
 null,null,null,null,
 SEM_GRAPHS('<http://www.example.org/family/Smith>',
 ':Jones'),
 'RDFUSER', 'NET1'));

Example 1-25 Using the graphs Parameter

Example 1-25 uses the default graph to query the union of the <http://
www.example.org/family/Smith> and <http://www.example.org/family/Jones>
named graphs.

FROM TABLE(SEM_MATCH(
 '{?x :name ?name . ?x :email ?email }',
 SEM_Models('family'),
 SEM_Rulebases('RDFS','family_rb'),
 SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
 null,null,null,
 SEM_GRAPHS('<http://www.example.org/family/Smith>',
 ':Jones'),
 null,
 'RDFUSER', 'NET1'));

1.6.3 Graph Patterns: Support for SPARQL ASK Syntax
SEM_MATCH allows fully-specified SPARQL ASK queries in the query parameter.

ASK queries are used to test whether or not a solution exists for a given query pattern.
In contrast to other forms of SPARQL queries, ASK queries do not return any
information about solutions to the query pattern. Instead, such queries return
"true"^^xsd:boolean if a solution exists and "false"^^xsd:boolean if no solution
exists.

All SPARQL ASK queries return the same columns: ASK, ASK$RDFVID,
ASK$_PREFIX, ASK$_SUFFIX, ASK$RDFVTYP, ASK$RDFCLOB, ASK$RDFLTYP,

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-50

ASK$RDFLANG, SEM$ROWNUM. Note that these columns are the same as a SPARQL
SELECT syntax query that projects a single ?ask variable.

SPARQL ASK queries will generally give better performance than an equivalent SPARQL
SELECT syntax query because the ASK query does not have to retrieve lexical values for
query variables, and query execution can stop after a single result has been found.

SPARQL ASK queries use the same syntax as SPARQL SELECT queries, but the topmost
SELECT clause must be replaced with the keyword ASK.

Example 1-26 SPARQL ASK

Example 1-26 shows a SPARQL ASK query that determines whether or not any cameras are
for sale with more than 10 megapixels that cost less than 50 dollars.

SELECT ask
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/electronics/>
 ASK
 WHERE
 {?x :price ?p .
 ?x :megapixels ?m .
 FILTER (?p < 50 && ?m > 10)
 }',
 SEM_Models('electronics'),
 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

See also the W3C SPARQL specification for more information on SPARQL ASK queries,
specifically: http://www.w3.org/TR/sparql11-query/#ask

1.6.4 Graph Patterns: Support for SPARQL CONSTRUCT Syntax
SEM_MATCH allows fully-specified SPARQL CONSTRUCT queries in the query parameter.

CONSTRUCT queries are used to build RDF graphs from stored RDF data. In contrast to
SPARQL SELECT queries, CONSTRUCT queries return a set of RDF triples rather than a set
of query solutions (variable bindings).

All SPARQL CONSTRUCT queries return the same columns from SEM_MATCH. These
columns correspond to the subject, predicate and object of an RDF triple, and there are 10
columns for each triple component. In addition, a SEM$ROWNUM column is returned. More
specifically, the following columns are returned:

SUBJ
SUBJ$RDFVID
SUBJ$_PREFIX
SUBJ$_SUFFIX
SUBJ$RDFVTYP
SUBJ$RDFCLOB
SUBJ$RDFLTYP
SUBJ$RDFLANG
SUBJ$RDFTERM
SUBJ$RDFCLBT
PRED
PRED$RDFVID
PRED$_PREFIX
PRED$_SUFFIX
PRED$RDFVTYP
PRED$RDFCLOB

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-51

http://www.w3.org/TR/sparql11-query/#ask

PRED$RDFLTYP
PRED$RDFLANG
PRED$RDFTERM
PRED$RDFCLBT
OBJ
OBJ$RDFVID
OBJ$_PREFIX
OBJ$_SUFFIX
OBJ$RDFVTYP
OBJ$RDFCLOB
OBJ$RDFLTYP
OBJ$RDFLANG
OBJ$RDFTERM
OBJ$RDFCLBT
SEM$ROWNUM

For each component, COMP, COMP$RDFVID, COMP$_PREFIX, COMP$_SUFFIX,
COMP$RDFVTYP, COMP$RDFCLOB, COMP$RDFLTYP, and COMP$RDFLANG
correspond to the same values as those from SPARQL SELECT queries.
COMP$RDFTERM holds a VARCHAR2(4000) RDF term in N-Triple syntax, and
COMP$RDFCLBT holds a CLOB RDF term in N-Triple syntax.

SPARQL CONSTRUCT queries use the same syntax as SPARQL SELECT queries,
except the topmost SELECT clause is replaced with a CONSTRUCT template. The
CONSTRUCT template determines how to construct the result RDF graph using the
results of the query pattern defined in the WHERE clause. A CONSTRUCT template
consists of the keyword CONSTRUCT followed by sequence of SPARQL triple
patterns that are enclosed within curly braces. The keywords OPTIONAL, UNION,
FILTER, MINUS, BIND, VALUES, and GRAPH are not allowed within CONSTRUCT
templates, and property path expressions are not allowed within CONSTRUCT
templates. These keywords, however, are allowed within the query pattern inside the
WHERE clause.

SPARQL CONSTRUCT queries build result RDF graphs in the following manner. For
each result row returned by the WHERE clause, variable values are substituted into
the CONSTRUCT template to create one or more RDF triples. Suppose the graph
pattern in the WHERE clause of Example 1-27 returns the following result rows.

E$RDFTERM FNAME$RDFTERM LNAME$RDFTERM

ent:employee1 "Fred" "Smith"

ent:employee2 "Jane" "Brown"

ent:employee3 "Bill" "Jones"

The overall SEM_MATCH CONSTRUCT query in Example 1-27 would then return the
following rows, which correspond to six RDF triples (two for each result row of the
query pattern).

SUBJ$RDFTERM PRED$RDFTERM OBJ$RDFTERM

ent:employee1 foaf:givenName "Fred"

ent:employee1 foaf:familyName "Smith"

ent:employee2 foaf:givenName "Jane"

ent:employee2 foaf:familyName "Brown"

ent:employee3 foaf:givenName "Bill"

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-52

SUBJ$RDFTERM PRED$RDFTERM OBJ$RDFTERM

ent:employee3 foaf:familyName "Jones"

There are two SEM_MATCH query options that influence the behavior of SPARQL
CONSTRUCT: CONSTRUCT_UNIQUE=T and CONSTRUCT_STRICT=T. Using the
CONSTRUCT_UNIQUE=T query option ensures that only unique RDF triples are returned from the
CONSTRUCT query. Using the CONSTRUCT_STRICT=T query option ensures that only valid
RDF triples are returned from the CONSTRUCT query. Valid RDF triples are those that have
(1) a URI or blank node in the subject position, (2) a URI in the predicate position, and (3) a
URI, blank node or RDF literal in the object position. Both of these query options are turned
off by default for improved query performance.

Example 1-27 SPARQL CONSTRUCT

Example 1-27 shows a SPARQL CONSTRUCT query that builds an RDF graph of employee
names using the foaf vocabulary.

SELECT subj$rdfterm, pred$rdfterm, obj$rdfterm
 FROM TABLE(SEM_MATCH(
 'PREFIX ent: <http://www.example.org/enterprise/>
 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
 CONSTRUCT
 {?e foaf:givenName ?fname .
 ?e foaf:familyName ?lname
 }
 WHERE
 {?e ent:fname ?fname .
 ?e ent:lname ?lname
 }',
 SEM_Models('enterprise'),
 SEM_Rulebases('RDFS'),
 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

Example 1-28 CONSTRUCT with Solution Modifiers

SPARQL SOLUTION modifiers can be used with CONSTRUCT queries. Example 1-28
shows the use of ORDER BY and LIMIT to build a graph about the top two highest-paid
employees. Note that the LIMIT 2 clause applies to the query pattern not to the overall
CONSTRUCT query. That is, the query pattern will return two result rows, but the overall
CONSTRUCT query will return 6 RDF triples (three for each of the two employees bound to ?
e).

SELECT subj$rdfterm, pred$rdfterm, obj$rdfterm
 FROM TABLE(SEM_MATCH(
 'PREFIX ent: <http://www.example.org/enterprise/>
 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
 CONSTRUCT
 { ?e ent:fname ?fname .
 ?e ent:lname ?lname .
 ?e ent:dateOfBirth ?dob }
 WHERE
 { ?e ent:fname ?fname .
 ?e ent:lname ?lname .
 ?e ent:salary ?sal
 }
 ORDER BY DESC(?sal)
 LIMIT 2',

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-53

 SEM_Models('enterprise'),
 SEM_Rulebases('RDFS'),
 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

Example 1-29 SPARQL 1.1 Features with CONSTRUCT

SPARQL 1.1 features are supported within CONSTRUCT query patterns.
Example 1-29 shows the use of subqueries and SELECT expressions within a
CONSTRUCT query.

SELECT subj$rdfterm, pred$rdfterm, obj$rdfterm
 FROM TABLE(SEM_MATCH(
 'PREFIX ent: <http://www.example.org/enterprise/>
 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
 CONSTRUCT
 { ?e foaf:name ?name }
 WHERE
 { SELECT ?e (CONCAT(?fname," ",?lname) AS ?name)
 WHERE { ?e ent:fname ?fname .
 ?e ent:lname ?lname }
 }',
 SEM_Models('enterprise'),
 SEM_Rulebases('RDFS'),
 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

Example 1-30 SPARQL CONSTRUCT with Named Graphs

Named graph data cannot be returned from SPARQL CONSTRUCT queries because,
in accordance with the W3C SPARQL specification, only RDF triples are returned, not
RDF quads. The FROM, FROM NAMED and GRAPH keywords, however, can be
used when matching the query pattern defined in the WHERE clause.

Example 1-30 constructs an RDF graph with ent:name triples from the UNION of
named graphs ent:g1 and ent:g2, ent:dateOfBirth triples from named graph
ent:g3, and ent:ssn triples from named graph ent:g4.

SELECT subj$rdfterm, pred$rdfterm, obj$rdfterm
 FROM TABLE(SEM_MATCH(
 'PREFIX ent: <http://www.example.org/enterprise/>
 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
 CONSTRUCT
 { ?e ent:name ?name .
 ?e ent:dateOfBirth ?dob .
 ?e ent:ssn ?ssn
 }
 FROM ent:g1
 FROM ent:g2
 FROM NAMED ent:g3
 FROM NAMED ent:g4
 WHERE
 { ?e foaf:name ?name .
 GRAPH ent:g3 { ?e ent:dateOfBirth ?dob }
 GRAPH ent:g4 { ?e ent:ssn ?ssn }
 }',
 SEM_Models('enterprise'),
 SEM_Rulebases('RDFS'),
 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-54

Example 1-31 SPARQL CONSTRUCT Normal Form

SELECT subj$rdfterm, pred$rdfterm, obj$rdfterm
 FROM TABLE(SEM_MATCH(
 'PREFIX ent: <http://www.example.org/enterprise/>
 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
 CONSTRUCT
 {?e foaf:givenName ?fname .
 ?e foaf:familyName ?lname
 }
 WHERE
 {?e ent:fname ?fname .
 ?e ent:lname ?lname
 }',
 SEM_Models('enterprise'),
 SEM_Rulebases('RDFS'),
 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

Example 1-32 SPARQL CONSTRUCT Short Form

A short form of CONSTRUCT is supported when the CONSTRUCT template is exactly the
same as the WHERE clause. In this case, only the keyword CONSTRUCT is needed, and the
graph pattern in the WHERE clause will also be used as a CONSTRUCT template.
Example 1-32 shows the short form of Example 1-31.

SELECT subj$rdfterm, pred$rdfterm, obj$rdfterm
 FROM TABLE(SEM_MATCH(
 'PREFIX ent: <http://www.example.org/enterprise/>
 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
 CONSTRUCT
 WHERE
 {?e ent:fname ?fname .
 ?e ent:lname ?lname
 }',
 SEM_Models('enterprise'),
 SEM_Rulebases('RDFS'),
 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

• Typical SPARQL CONSTRUCT Workflow

1.6.4.1 Typical SPARQL CONSTRUCT Workflow
A typical workflow for SPARQL CONSTRUCT would be to execute a CONSTRUCT query to
extract and/or transform RDF triple data from an existing semantic model and then load this
data into an existing or new semantic model. The data loading can be accomplished through
simple INSERT statements or executing the
SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE procedure.

Example 1-33 SPARQL CONSTRUCT Workflow

Example 1-33 constructs foaf:name triples from existing ent:fname and ent:lname triples
and then bulk loads these new triples back into the original model. Afterward, you can query
the original model for foaf:name values.

-- Use create table as select to build a staging table
CREATE TABLE STAB(RDFSTC_sub, RDFSTC_pred, RDF$STC_obj) AS
SELECT subj$rdfterm, pred$rdfterm, obj$rdfterm
FROM TABLE(SEM_MATCH(

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-55

 'PREFIX ent: <http://www.example.org/enterprise/>
 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
 CONSTRUCT
 { ?e foaf:name ?name }
 WHERE
 { SELECT ?e (CONCAT(?fname," ",?lname) AS ?name)
 WHERE { ?e ent:fname ?fname .
 ?e ent:lname ?lname }
 }',
 SEM_Models('enterprise'),
 null, null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

-- Bulk load data back into the enterprise model
BEGIN
 SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE(
 model_name=>'enterprise',
 table_owner=>'rdfuser',
 table_name=>'stab',
 flags=>' parallel_create_index parallel=4 ',
 network_owner=>'RDFUSER',
 network_name=>'NET1');
END;
/

-- Query for foaf:name data
SELECT e$rdfterm, name$rdfterm
FROM TABLE(SEM_MATCH(
 'PREFIX foaf: <http://xmlns.com/foaf/0.1/>
 SELECT ?e ?name
 WHERE { ?e foaf:name ?name }',
 SEM_Models('enterprise'),
 null, null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

See also the W3C SPARQL specification for more information on SPARQL
CONSTRUCT queries, specifically: http://www.w3.org/TR/sparql11-query/
#construct

1.6.5 Graph Patterns: Support for SPARQL DESCRIBE Syntax
SEM_MATCH allows fully-specified SPARQL DESCRIBE queries in the query
parameter.

SPARQL DESCRIBE queries are useful for exploring RDF data sets. You can easily
find information about a given resource or set of resources without knowing
information about the exact RDF properties used in the data set. A DESCRIBE query
returns a "description" of a resource r, where a "description" is the set of RDF triples in
the query data set that contain r in either the subject or object position.

Like CONSTRUCT queries, DESCRIBE queries return an RDF graph instead of result
bindings. Each DESCRIBE query, therefore, returns the same columns as a
CONSTRUCT query (see Graph Patterns: Support for SPARQL CONSTRUCT Syntax
for a listing of return columns).

SPARQL DESCRIBE queries use the same syntax as SPARQL SELECT queries,
except the topmost SELECT clause is replaced with a DESCRIBE clause. A

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-56

http://www.w3.org/TR/sparql11-query/#construct
http://www.w3.org/TR/sparql11-query/#construct

DESCRIBE clause consists of the DESCRIBE keyword followed by a sequence of URIs
and/or variables separated by whitespace or the DESCRIBE keyword followed by a single *
(asterisk).

Two SEM_MATCH query options affect SPARQL DESCRIBE queries: CONSTRUCT_UNIQUE=T
and CONSTRUCT_STRICT=T. CONSTRUCT_UNIQUE=T ensures that duplicate triples are eliminated
from the result, and CONSTRUCT_STRICT=T ensures that invalid triples are eliminated from the
result. Both of these options are turned off by default. These options are described in more
detail in Graph Patterns: Support for SPARQL CONSTRUCT Syntax.

See also the W3C SPARQL specification for more information on SPARQL DESCRIBE
queries, specifically: http://www.w3.org/TR/sparql11-query/#describe
Example 1-34 SPARQL DESCRIBE Short Form

A short form of SPARQL DESCRIBE is provided to describe a single constant URI. In the
short form, only a DESCRIBE clause is needed. Example 1-34 shows a short form SPARQL
DESCRIBE query.

SELECT subj$rdfterm, pred$rdfterm, obj$rdfterm
FROM TABLE(SEM_MATCH(
 'DESCRIBE <http://www.example.org/enterprise/emp_1>',
 SEM_Models('enterprise'),
 null, null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

Example 1-35 SPARQL DESCRIBE Normal Form

The normal form of SPARQL DESCRIBE specifies a DESCRIBE clause and a SPARQL
query pattern, possibly including solution modifiers. Example 1-35 shows a SPARQL
DESCRIBE query that describes all employees whose departments are located in New
Hampshire.

SELECT subj$rdfterm, pred$rdfterm, obj$rdfterm
FROM TABLE(SEM_MATCH(
 'PREFIX ent: <http://www.example.org/enterprise/>
 DESCRIBE ?e
 WHERE
 { ?e ent:department ?dept .
 ?dept ent:locatedIn "New Hampshire" }',
 SEM_Models('enterprise'),
 null, null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

Example 1-36 DESCRIBE *

With the normal form of DESCRIBE, as shown in Example 1-35, all resources bound to
variables listed in the DESCRIBE clause are described. In Example 1-35, all employees
returned from the query pattern and bound to ?e will be described. When DESCRIBE * is
used, all visible variables in the query are described.

Example 1-36 shows a modified version of Example 1-35 that describes both employees
(bound to ?e) and departments (bound to ?dept).

SELECT subj$rdfterm, pred$rdfterm, obj$rdfterm
FROM TABLE(SEM_MATCH(
 'PREFIX ent: <http://www.example.org/enterprise/>
 DESCRIBE *
 WHERE
 { ?e ent:department ?dept .

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-57

http://www.w3.org/TR/sparql11-query/#describe

 ?dept ent:locatedIn "New Hampshire" }',
 SEM_Models('enterprise'),
 null, null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

1.6.6 Graph Patterns: Support for SPARQL SELECT Syntax
In addition to curly-brace graph patterns, SEM_MATCH allows fully-specified SPARQL
SELECT queries in the query parameter. When using the SPARQL SELECT syntax
option, SEM_MATCH supports the following query constructs: BASE, PREFIX,
SELECT, SELECT DISTINCT, FROM, FROM NAMED, WHERE, ORDER BY, LIMIT,
and OFFSET. Each SPARQL SELECT syntax query must include a SELECT clause
and a graph pattern.

A key difference between curly-brace and SPARQL SELECT syntax when using
SEM_MATCH is that only variables appearing in the SPARQL SELECT clause are
returned from SEM_MATCH when using SPARQL SELECT syntax.

One additional column, SEM$ROWNUM, is returned from SEM_MATCH when using
SPARQL SELECT syntax. This NUMBER column can be used to order the results of a
SEM_MATCH query so that the result order matches the ordering specified by a
SPARQL ORDER BY clause.

The SPARQL ORDER BY clause can be used to order the results of SEM_MATCH
queries. This clause specifies a sequence of comparators used to order the results of
a given query. A comparator consists of an expression composed of variables, RDF
terms, arithmetic operators (+, -, *, /), Boolean operators and logical connectives (||,
&&, !), comparison operators (<, >, <=, >=, =, !=), and any functions available for use
in FILTER expressions.

The following order of operations is used when evaluating SPARQL SELECT queries:

1. Graph pattern matching

2. Grouping (see Grouping and Aggregation.)

3. Aggregates (see Grouping and Aggregation)

4. Having (see Grouping and Aggregation)

5. Values (see Value Assignment)

6. Select expressions

7. Order by

8. Projection

9. Distinct

10. Offset

11. Limit

See also the W3C SPARQL specification for more information on SPARQL BASE,
PREFIX, SELECT, SELECT DISTINCT, FROM, FROM NAMED, WHERE, ORDER BY,
LIMIT, and OFFSET constructs, specifically: http://www.w3.org/TR/sparql11-query/
Example 1-37 SPARQL PREFIX, SELECT, and WHERE Clauses

Example 1-37 uses the following SPARQL constructs:

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-58

http://www.w3.org/TR/sparql11-query/

• SPARQL PREFIX clause to specify an abbreviation for the http://www.example.org/
family/ and http://xmlns.com/foaf/0.1/ namespaces

• SPARQL SELECT clause to specify the set of variables to project out of the query

• SPARQL WHERE clause to specify the query graph pattern

SELECT y, name
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/family/>
 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
 SELECT ?y ?name
 WHERE
 {?x :grandParentOf ?y .
 ?x foaf:name ?name }',
 SEM_Models('family'),
 SEM_Rulebases('RDFS','family_rb'),
 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

Example 1-37 returns the following columns: y, y$RDFVID, y$_PREFIX, y$_SUFFIX,
y$RDFVTYP, y$RDFCLOB, y$RDFLTYP, y$RDFLANG, name, name$RDFVID,
name$_PREFIX, name$_SUFFIX, name$RDFVTYP, name$RDFCLOB, name$RDFLTYP,
name$RDFLANG, and SEM$ROWNUM.

Example 1-38 SPARQL SELECT * (All Variables in Triple Pattern)

The SPARQL SELECT clause specifies either (A) a sequence of variables and/or
expressions (see Expressions in the SELECT Clause), or (B) * (asterisk), which projects all
variables that appear in a specified triple pattern. Example 1-38 uses the SPARQL SELECT
clause to select all variables that appear in a specified triple pattern.

SELECT x, y, name
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/family/>
 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
 SELECT *
 WHERE
 {?x :grandParentOf ?y .
 ?x foaf:name ?name }',
 SEM_Models('family'),
 SEM_Rulebases('RDFS','family_rb'),
 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

Example 1-39 SPARQL SELECT DISTINCT

The DISTINCT keyword can be used after SELECT to remove duplicate result rows.
Example 1-39 uses SELECT DISTINCT to select only the distinct names.

SELECT name
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/family/>
 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
 SELECT DISTINCT ?name
 WHERE
 {?x :grandParentOf ?y .
 ?x foaf:name ?name }',
 SEM_Models('family'),
 SEM_Rulebases('RDFS','family_rb'),
 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-59

Example 1-40 RDF Dataset Specification Using FROM and FROM NAMED

SPARQL FROM and FROM NAMED are used to specify the RDF dataset for a query.
FROM clauses are used to specify the set of graphs that make up the default graph,
and FROM NAMED clauses are used to specify the set of graphs that make up the set
of named graphs. Example 1-40 uses FROM and FROM NAMED to select email
addresses and friend of relationships from the union of the <http://
www.friends.com/friends> and <http://www.contacts.com/contacts> graphs and
grandparent information from the <http://www.example.org/family/Smith> and
<http://www.example.org/family/Jones> graphs.

SELECT x, y, z, email
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/family/>
 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
 PREFIX friends: <http://www.friends.com/>
 PREFIX contacts: <http://www.contacts.com/>
 SELECT *
 FROM friends:friends
 FROM contacts:contacts
 FROM NAMED :Smith
 FROM NAMED :Jones
 WHERE
 {?x foaf:frendOf ?y .
 ?x :email ?email .
 GRAPH ?g {
 ?x :grandParentOf ?z }
 }',
 SEM_Models('family'),
 SEM_Rulebases('RDFS','family_rb'),
 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

Example 1-41 SPARQL ORDER BY

In a SPARQL ORDER BY clause:

• Single variable ordering conditions do not require enclosing parenthesis, but
parentheses are required for more complex ordering conditions.

• An optional ASC() or DESC() order modifier can be used to indicate the desired
order (ascending or descending, respectively). Ascending is the default order.

• When using SPARQL ORDER BY in SEM_MATCH, the containing SQL query
should be ordered by SEM$ROWNUM to ensure that the desired ordering is
maintained through any enclosing SQL blocks.

Example 1-41 uses a SPARQL ORDER BY clause to select all cameras, and it
specifies ordering by descending type and ascending total price (price * (1 -
discount) * (1 + tax)).

SELECT *
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/electronics/>
 SELECT *
 WHERE
 {?x :price ?p .
 ?x :discount ?d .
 ?x :tax ?t .
 ?x :cameraType ?cType .
 }

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-60

 ORDER BY DESC(?cType) ASC(?p * (1-?d) * (1+?t))',
 SEM_Models('electronics'),
 SEM_Rulebases('RDFS'),
 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'))
ORDER BY SEM$ROWNUM;

Example 1-42 SPARQL LIMIT

SPARQL LIMIT and SPARQL OFFSET can be used to select different subsets of the query
solutions. Example 1-42 uses SPARQL LIMIT to select the five cheapest cameras, and
Example 1-43 uses SPARQL LIMIT and OFFSET to select the fifth through tenth cheapest
cameras.

SELECT *
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/electronics/>
 SELECT ?x ?cType ?p
 WHERE
 {?x :price ?p .
 ?x :cameraType ?cType .
 }
 ORDER BY ASC(?p)
 LIMIT 5',
 SEM_Models('electronics'),
 SEM_Rulebases('RDFS'),
 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'))
ORDER BY SEM$ROWNUM;

Example 1-43 SPARQL OFFSET

SELECT *
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/electronics/>
 SELECT ?x ?cType ?p
 WHERE
 {?x :price ?p .
 ?x :cameraType ?cType .
 }
 ORDER BY ASC(?p)
 LIMIT 5
 OFFSET 5',
 SEM_Models('electronics'),
 SEM_Rulebases('RDFS'),
 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'))
ORDER BY SEM$ROWNUM;

Example 1-44 Query Using Full URIs

The SPARQL BASE keyword is used to set a global prefix. All relative IRIs will be resolved
with the BASE IRI using the basic algorithm described in Section 5.2 of the Uniform Resource
Identifier (URI): Generic Syntax (RFC3986) (http://www.ietf.org/rfc/rfc3986.txt).
Example 1-44 is a simple query using full URIs, and Example 1-45 is an equivalent query
using a base IRI.

SELECT *
 FROM TABLE(SEM_MATCH(
 'SELECT ?employee ?position
 WHERE

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-61

http://www.ietf.org/rfc/rfc3986.txt

 {?x <http://www.example.org/employee> ?p .
 ?p <http://www.example.org/employee/name> ?employee .
 ?p <http://www.example.org/employee/position> ?pos .
 ?pos <http://www.example.org/positions/name> ?position
 }',
 SEM_Models('enterprise'),
 null,
 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'))
ORDER BY 1,2;

Example 1-45 Query Using a Base IRI

SELECT *
 FROM TABLE(SEM_MATCH(
 'BASE <http://www.example.org/>
 SELECT ?employee ?position
 WHERE
 {?x <employee> ?p .
 ?p <employee/name> ?employee .
 ?p <employee/position> ?pos .
 ?pos <positions/name> ?position
 }',
 SEM_Models('enterprise'),
 null,
 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'))
ORDER BY 1,2;

1.6.7 Graph Patterns: Support for SPARQL 1.1 Constructs
SEM_MATCH supports the following SPARQL 1.1 constructs:

• An expanded set of functions (all items in Table 1-13 in Graph Patterns: Support
for Curly Brace Syntax_ and OPTIONAL_ FILTER_ UNION_ and GRAPH
Keywords)

• Expressions in the SELECT Clause

• Subqueries

• Grouping and Aggregation

• Negation

• Value Assignment

• Property Paths

1.6.7.1 Expressions in the SELECT Clause
Expressions can be used in the SELECT clause to project the value of an expression
from a query. A SELECT expression is composed of variables, RDF terms, arithmetic
operators (+, -, *, /), Boolean operators and logical connectives (||, &&, !), comparison
operators (<, >, <=, >=, =, !=), and any functions available for use in FILTER
expressions. The expression must be aliased to a single variable using the AS
keyword, and the overall <expression> AS <alias> fragment must be enclosed in
parentheses. The alias variable cannot already be defined in the query. A SELECT
expression may reference the result of a previous SELECT expression (that is, an
expression that appears earlier in the SELECT clause).

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-62

Example 1-46 SPARQL SELECT Expression

Example 1-46 uses a SELECT expression to project the total price for each camera.

SELECT *
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/electronics/>
 SELECT ?x ((?p * (1-?d) * (1+?t)) AS ?totalPrice)
 WHERE
 {?x :price ?p .
 ?x :discount ?d .
 ?x :tax ?t .
 ?x :cameraType ?cType .
 }',
 SEM_Models('electronics'),
 SEM_Rulebases('RDFS'),
 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

Example 1-47 SPARQL SELECT Expressions (2)

Example 1-47 uses two SELECT expressions to project the discount price with and without
sales tax.

SELECT *
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/electronics/>
 SELECT ?x ((?p * (1-?d)) AS ?preTaxPrice) ((?preTaxPrice * (1+?t)) AS ?finalPrice)
 WHERE
 {?x :price ?p .
 ?x :discount ?d .
 ?x :tax ?t .
 ?x :cameraType ?cType .
 }',
 SEM_Models('electronics'),
 SEM_Rulebases('RDFS'),
 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

1.6.7.2 Subqueries
Subqueries are allowed with SPARQL SELECT syntax. That is, fully-specified SPARQL
SELECT queries may be embedded within other SPARQL SELECT queries. Subqueries
have many uses, for example, limiting the number of results from a subcomponent of a query.

Example 1-48 SPARQL SELECT Subquery

Example 1-48 uses a subquery to find the manufacturer that makes the cheapest camera and
then finds all other cameras made by this manufacturer.

SELECT *
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/electronics/>
 SELECT ?c1
 WHERE {?c1 rdf:type :Camera .
 ?c1 :manufacturer ?m .
 {
 SELECT ?m
 WHERE {?c2 rdf:Type :Camera .
 ?c2 :price ?p .
 ?c2 :manufacturer ?m .

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-63

 }
 ORDER BY ASC(?p)
 LIMIT 1
 }
 }',
 SEM_Models('electronics'),
 SEM_Rulebases('RDFS'),
 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

Subqueries are logically evaluated first, and the results are projected up to the outer
query. Note that only variables projected in the subquery's SELECT clause are visible
to the outer query.

1.6.7.3 Grouping and Aggregation
The GROUP BY keyword used to perform grouping. Syntactically, the GROUP BY
keyword must appear after the WHERE clause and before any solution modifiers such
as ORDER BY or LIMIT.

Aggregates are used to compute values across results within a group. An aggregate
operates over a collection of values and produces a single value as a result.
SEM_MATCH supports the following built-in Aggregates: COUNT, SUM, MIN, MAX,
AVG, GROUP_CONCAT and SAMPLE. These aggregates are described in
Table 1-16.

Table 1-16 Built-in Aggregates

Aggregate Description

AVG(expression) Returns the numeric average of expression over the values
within a group.

COUNT(* | expression) Counts the number of times expression has a bound, non-error
value within a group; asterisk (*) counts the number of results
within a group.

GROUP_CONCAT(expressi
on [; SEPARATOR =
"STRING"])

Performs string concatenation of expression over the values
within a group. If provided, an optional separator string will be
placed between each value.

MAX(expression) Returns the maximum value of expression within a group based
on the ordering defined by SPARQL ORDER BY.

MIN(expression) Returns the minimum value of expression within a group based
on the ordering defined by SPARQL ORDER BY.

SAMPLE(expression) Returns expression evaluated for a single arbitrary value from a
group.

SUM(expression) Calculates the numeric sum of expression over the values within
a group.

Certain restrictions on variable references apply when using grouping and
aggregation. Only group-by variables (single variables in the GROUP BY clause) and
alias variables from GROUP BY value assignments can be used in non-aggregate
expressions in the SELECT or HAVING clauses.

Example 1-49 Simple Grouping Query

Example 1-49 shows a query that uses the GROUP BY keyword to find all the different
types of cameras.

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-64

SELECT *
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/electronics/>
 SELECT ?cType
 WHERE
 {?x rdf:type :Camera .
 ?x :cameraType ?cType .
 }
 GROUP BY ?cType',
 SEM_Models('electronics'),
 SEM_Rulebases('RDFS'),
 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

A grouping query partitions the query results into a collection of groups based on a grouping
expression (?cType in Example 1-49) such that each result within a group has the same
values for the grouping expression. The final result of the grouping operation will include one
row for each group.

Example 1-50 Complex Grouping Expression

A grouping expression consists of a sequence of one or more of the following: a variable, an
expression, or a value assignment of the form (<expression> as <alias>). Example 1-50
shows a grouping query that uses one of each type of component in the grouping expression.

SELECT *
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/electronics/>
 SELECT ?cType ?totalPrice
 WHERE
 {?x rdf:type :Camera .
 ?x :cameraType ?cType .
 ?x :manufacturer ?m .
 ?x :price ?p .
 ?x :tax ?t .
 }
 GROUP BY ?cType (STR(?m)) ((?p*(1+?t)) AS ?totalPrice)',
 SEM_Models('electronics'),
 SEM_Rulebases('RDFS'),
 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

Example 1-51 Aggregation

Example 1-51 uses aggregates to select the maximum, minimum, and average price for each
type of camera.

SELECT *
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/electronics/>
 SELECT ?cType
 (MAX(?p) AS ?maxPrice)
 (MIN(?p) AS ?minPrice)
 (AVG(?p) AS ?avgPrice)
 WHERE
 {?x rdf:type :Camera .
 ?x :cameraType ?cType .
 ?x :manufacturer ?m .
 ?x :price ?p .
 }
 GROUP BY ?cType',

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-65

 SEM_Models('electronics'),
 SEM_Rulebases('RDFS'),
 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

Example 1-52 Aggregation Without Grouping

If an aggregate is used without a grouping expression, then the entire result set is
treated as a single group. Example 1-52 computes the total number of cameras for the
whole data set.

SELECT *
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/electronics/>
 SELECT (COUNT(?x) as ?cameraCnt)
 WHERE
 { ?x rdf:type :Camera
 }',
 SEM_Models('electronics'),
 SEM_Rulebases('RDFS'),
 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

Example 1-53 Aggregation with DISTINCT

The DISTINCT keyword can optionally be used as a modifier for each aggregate.
When DISTINCT is used, duplicate values are removed from each group before
computing the aggregate. Syntactically, DISTINCT must appear as the first argument
to the aggregate. Example 1-53 uses DISTINCT to find the number of distinct camera
manufacturers. In this case, duplicate values of STR(?m) are removed before counting.

SELECT *
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/electronics/>
 SELECT (COUNT(DISTINCT STR(?m)) as ?mCnt)
 WHERE
 { ?x rdf:type :Camera .
 ?x :manufacturer ?m
 }',
 SEM_Models('electronics'),
 SEM_Rulebases('RDFS'),
 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

Example 1-54 HAVING Clause

The HAVING keyword can be used to filter groups based on constraints. HAVING
expressions can be composed of variables, RDF terms, arithmetic operators (+, -, *, /),
Boolean operators and logical connectives (||, &&, !), comparison operators (<, >, <=,
>=, =, !=), aggregates, and any functions available for use in FILTER expressions.
Syntactically, the HAVING keyword appears after the GROUP BY clause and before
any other solution modifiers such as ORDER BY or LIMIT.

Example 1-54 uses a HAVING expression to find all manufacturers that sell cameras
for less than $200.

SELECT *
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/electronics/>
 SELECT ?m
 WHERE

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-66

 { ?x rdf:type :Camera .
 ?x :manufacturer ?m .
 ?x :price ?p
 }
 GROUP BY ?m
 HAVING (MIN(?p) < 200)
 ORDER BY ASC(?m)',
 SEM_Models('electronics'),
 SEM_Rulebases('RDFS'),
 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

1.6.7.4 Negation
SEM_MATCH supports two forms of negation in SPARQL query patterns: NOT EXISTS and
MINUS. NOT EXISTS can be used to filter results based on whether or not a graph pattern
matches, and MINUS can be used to remove solutions based on their relation to another
graph pattern.

Example 1-55 Negation with NOT EXISTS

Example 1-55 uses a NOT EXISTS FILTER to select those cameras that do not have any
user reviews.

SELECT *
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/electronics/>
 SELECT ?x ?cType ?p
 WHERE
 {?x :price ?p .
 ?x :cameraType ?cType .
 FILTER(NOT EXISTS({?x :userReview ?r}))
 }',
 SEM_Models('electronics'),
 SEM_Rulebases('RDFS'),
 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

Example 1-56 EXISTS

Conversely, the EXISTS operator can be used to ensure that a pattern matches.
Example 1-56 uses an EXISTS FILTER to select only those cameras that have a user review.

SELECT *
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/electronics/>
 SELECT ?x ?cType ?p
 WHERE
 {?x :price ?p .
 ?x :cameraType ?cType .
 FILTER(EXISTS({?x :userReview ?r}))
 }',
 SEM_Models('electronics'),
 SEM_Rulebases('RDFS'),
 null, null, null, ' ', null, null,
 RDFUSER', 'NET1'));

Example 1-57 Negation with MINUS

Example 1-57 uses MINUS to arrive at the same result as Example 1-55. Only those
solutions that are not compatible with solutions from the MINUS pattern are included in the

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-67

result. That is, if a solution has the same values for all shared variables as a solution
from the MINUS pattern, it is removed from the result.

SELECT *
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/electronics/>
 SELECT ?x ?cType ?p
 WHERE
 {?x :price ?p .
 ?x :cameraType ?cType .
 MINUS {?x :userReview ?r}
 }',
 SEM_Models('electronics'),
 SEM_Rulebases('RDFS'),
 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

Example 1-58 Negation with NOT EXISTS (2)

NOT EXISTS and MINUS represent two different styles of negation and have different
results in certain cases. One such case occurs when no variables are shared between
the negation pattern and the rest of the query. For example, the NOT EXISTS query in
Example 1-58 removes all solutions because {?subj ?prop ?obj} matches any triple,
but the MINUS query in Example 1-59 removes no solutions because there are no
shared variables.

SELECT *
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/electronics/>
 SELECT ?x ?cType ?p
 WHERE
 {?x :price ?p .
 ?x :cameraType ?cType .
 FILTER(NOT EXISTS({?subj ?prop ?obj}))
 }',
 SEM_Models('electronics'),
 SEM_Rulebases('RDFS'),
 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

Example 1-59 Negation with MINUS (2)

SELECT *
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/electronics/>
 SELECT ?x ?cType ?p
 WHERE
 {?x :price ?p .
 ?x :cameraType ?cType .
 MINUS {?subj ?prop ?obj}
 }',
 SEM_Models('electronics'),
 SEM_Rulebases('RDFS'),
 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

1.6.7.5 Value Assignment
SEM_MATCH provides a variety of ways to assign values to variables in a SPARQL
query.

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-68

The value of an expression can be assigned to a new variable in three ways: (1) expressions
in the SELECT clause, (2) expressions in the GROUP BY clause, and (3) the BIND keyword.
In each case, the new variable must not already be defined in the query. After assignment,
the new variable can be used in the query and returned in results. As discussed in
Expressions in the SELECT Clause, the syntax for value assignment is (<expression> AS
<alias>) where alias is the new variable, for example, ((?price * (1+?tax)) AS ?
totalPrice).

Example 1-60 Nested SELECT Expression

Example 1-60 uses a nested SELECT expression to compute the total price of a camera and
assign the value to a variable (?totalPrice). This variable is then used in a FILTER in the
outer query to find cameras costing less than $200.

SELECT *
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/electronics/>
 SELECT ?x ?cType ?totalPrice
 WHERE
 {?x :cameraType ?cType .
 { SELECT ?x (((?price*(1+?tax)) AS ?totalPrice)
 WHERE { ?x :price ?price .
 ?x :tax ?tax }
 }
 FILTER (?totalPrice < 200)
 }',
 SEM_Models('electronics'),
 SEM_Rulebases('RDFS'),
 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

Example 1-61 BIND

The BIND keyword can be used inside a basic graph pattern to assign a value and is
syntactically more compact than an equivalent nested SELECT expression. Example 1-61
uses the BIND keyword to expresses a query that is logically equivalent to Example 1-60.

SELECT *
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/electronics/>
 SELECT ?x ?cType ?totalPrice
 WHERE
 {?x :cameraType ?cType .
 ?x :price ?price .
 ?x :tax ?tax .
 BIND (((?price*(1+?tax)) AS ?totalPrice)
 FILTER (?totalPrice < 200)
 }',
 SEM_Models('electronics'),
 SEM_Rulebases('RDFS'),
 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

Example 1-62 GROUP BY Expression

Value assignments in the GROUP BY clause can subsequently be used in the SELECT
clause, the HAVING clause, and the outer query (in the case of a nested grouping query).
Example 1-62 uses a GROUP BY expression to find the maximum number of megapixels for
cameras at each price point less than $1000.

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-69

SELECT *
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/electronics/>
 SELECT ?totalPrice (MAX(?mp) as ?maxMP)
 WHERE
 {?x rdf:type :Camera .
 ?x :price ?price .
 ?x :tax ?tax .
 GROUP BY (((?price*(1+?tax)) AS ?totalPrice)
 HAVING (?totalPrice < 1000)
 }',
 SEM_Models('electronics'),
 SEM_Rulebases('RDFS'),
 null, null));

Example 1-63 VALUES

In addition to the preceding three ways to assign the value of an expression to a new
variable, the VALUES keyword can be used to introduce an unordered solution
sequence that is combined with the query results through a join operation. A VALUES
block can appear inside a query pattern or at the end of a SPARQL SELECT query
block after any solution modifiers. The VALUES construct can be used in subqueries.

Example 1-63 uses the VALUES keyword to constrain the query results to DSLR
cameras made by :Company1 or any type of camera made by :Company2. The keyword
UNDEF is used to represent an unbound variable in the solution sequence.

SELECT *
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/electronics/>
 SELECT ?x ?cType ?m
 WHERE
 { ?x rdf:type :Camera .
 ?x :cameraType ?cType .
 ?x :manufacturer ?m
 }
 VALUES (?cType ?m)
 { ("DSLR" :Company1)
 (UNDEF :Company2)
 }',
 SEM_Models('electronics'),
 SEM_Rulebases('RDFS'),
 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

Example 1-64 Simplified VALUES Syntax

A simplified syntax can be used for the common case of a single variable. Specifically,
the parentheses around the variable and each solution can be omitted. Example 1-64
uses the simplified syntax to constrain the query results to cameras made
by :Company1 or :Company2.

SELECT *
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/electronics/>
 SELECT ?x ?cType ?m
 WHERE
 { ?x rdf:type :Camera .
 ?x :cameraType ?cType .
 ?x :manufacturer ?m
 }

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-70

 VALUES ?m
 { :Company1
 :Company2
 }',
 SEM_Models('electronics'),
 SEM_Rulebases('RDFS'),
 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

Example 1-65 Inline VALUES Block

Example 1-65 also constrains the query results to any camera made by :Company1
or :Company2, but specifies the VALUES block inside the query pattern.

SELECT *
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/electronics/>
 SELECT ?x ?cType ?m
 WHERE
 { VALUES ?m { :Company1 :Company2 }
 ?x rdf:type :Camera .
 ?x :cameraType ?cType .
 ?x :manufacturer ?m
 }',
 SEM_Models('electronics'),
 SEM_Rulebases('RDFS'),
 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

1.6.7.6 Property Paths
A SPARQL Property Path describes a possible path between two RDF resources (nodes) in
an RDF graph. A property path appears in the predicate position of a triple pattern and uses a
regular expression-like syntax to place constraints on the properties (edges) making up a
path from the subject of the triple pattern to the object of a triple pattern. Property paths allow
SPARQL queries to match arbitrary length paths in the RDF graph and also provide a more
concise way to express other graph patterns.

Table 1-17 describes the syntax constructs available for constructing SPARQL Property
Paths. Note that iri is either an IRI or a prefixed name, and elt is a property path element,
which may itself be composed of other property path elements.

Table 1-17 Property Path Syntax Constructs

Syntax Construct Matches

iri An IRI or a prefixed name. A path of length 1 (one).

^elt Inverse path (object to subject).

!iri or !(iri1 | … | irin) Negated property set. An IRI that is not one of irii.

!^iri or !(iri1 | … | irij | ^irij+1
| … | ^irin)

Negated property set with some inverse properties. An IRI that is not one
of irii, nor one of irij+1...irin as reverse paths. !^iri is short for !(^iri). The
order of properties and inverse properties is not important. They can
occur in mixed order.

(elt) A group path elt; brackets control precedence.

elt1 / elt2 A sequence path of elt1, followed by elt2.

elt1 | elt2 An alternative path of elt1, or elt2 (all possibilities are tried).

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-71

Table 1-17 (Cont.) Property Path Syntax Constructs

Syntax Construct Matches

elt* A path of zero or more occurrences of elt.

elt+ A path of one or more occurrences of elt.

elt? A path of zero or one occurrence of elt.

The precedence of the syntax constructs is as follows (from highest to lowest):

• IRI, prefixed names

• Negated property sets

• Groups

• Unary operators *, ?, +

• Unary ^ inverse links

• Binary operator /

• Binary operator |

Precedence is left-to-right within groups.

Special Considerations for Property Path Operators + and *

In general, truly unbounded graph traversals using the + (plus sign) and * (asterisk)
operator can be very expensive. For this reason, a depth-limited version of the + and *
operator is used by default, and the default depth limit is 10. In addition, the depth-
limited implementation can be run in parallel. The ALL_MAX_PP_DEPTH(n) SEM_MATCH
query option or the MAX_PP_DEPTH(n) inline HINT0 query optimizer hint can be used to
change the depth-limit setting. To achieve a truly unbounded traversal, you can set a
depth limit of less than 1 to fall back to a CONNECT BY-based implementation.

Query Hints for Property Paths

Other query hints are available to influence the performance of property path queries.
The ALLOW_PP_DUP=T query option can be used with * and + queries to allow duplicate
results. Allowing duplicate results may return the first rows from a query faster. In
addition, ALL_USE_PP_HASH and ALL_USE_PP_NL query options are available to influence
the join types used when evaluating property path expressions. Analogous
USE_PP_HASH and USE_PP_NL inline HINT0 query optimizer hints can also be used.

Example 1-66 SPARQL Property Path (Using rdfs:subClassOf Relations)

Example 1-66 uses a property path to find all Males based on transitivity of the
rdfs:subClassOf relationship. A property path allows matching an arbitrary number
of consecutive rdfs:subClassOf relations.

SELECT x, name
 FROM TABLE(SEM_MATCH(
 '{ ?x foaf:name ?name .
 ?x rdf:type ?t .
 ?t rdfs:subClassOf* :Male }',
 SEM_Models('family'),
 null,
 SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-72

 SEM_ALIAS('foaf',' http://xmlns.com/foaf/0.1/')),
 null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

Example 1-67 SPARQL Property Path (Using foaf:friendOf or foaf:knows
Relationships)

Example 1-67 uses a property path to find all of Scott's close friends (those people reachable
within two hops using foaf:friendOf or foaf:knows relationships).

SELECT name
 FROM TABLE(SEM_MATCH(
 '{ { :Scott (foaf:friendOf | foaf:knows) ?f }
 UNION
 { :Scott (foaf:friendOf | foaf:knows)/(foaf:friendOf | foaf:knows) ?f }
 ?f foaf:name ?name .
 FILTER (!sameTerm(?f, :Scott)) }',
 SEM_Models('family'),
 null,
 SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/'),
 SEM_ALIAS('foaf',' http://xmlns.com/foaf/0.1/')),
 null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

Example 1-68 Specifying Property Path Maximum Depth Value

Example 1-68 specifies a maximum depth of 12 for all property path expressions with the
ALL_MAX_PP_DEPTH(n) query option value.

SELECT x, name
 FROM TABLE(SEM_MATCH(
 '{ ?x foaf:name ?name .
 ?x rdf:type ?t .
 ?t rdfs:subClassOf* :Male }',
 SEM_Models('family'),
 null,
 SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')
 SEM_ALIAS('foaf',' http://xmlns.com/foaf/0.1/')),
 null,
 null,
 ' ALL_MAX_PP_DEPTH(12) ',
 null, null,
 'RDFUSER', 'NET1'));

Example 1-69 Specifying Property Path Join Hint

Example 1-69 shows an inline HINT0 query optimizer hint that requests a nested loop join for
evaluating the property path expression.

SELECT x, name
 FROM TABLE(SEM_MATCH(
 '{ # HINT0={ USE_PP_NL }
 ?x foaf:name ?name .
 ?x rdf:type ?t .
 ?t rdfs:subClassOf* :Male }',
 SEM_Models('family'),
 null,
 SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')
 SEM_ALIAS('foaf',' http://xmlns.com/foaf/0.1/')),
 null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-73

1.6.8 Graph Patterns: Support for SPARQL 1.1 Federated Query
SEM_MATCH supports SPARQL 1.1 Federated Query (see http://www.w3.org/TR/
sparql11-federated-query/#SPROT). The SERVICE construct can be used to retrieve
results from a specified SPARQL endpoint URL. With this capability, you can combine
local RDF data (native RDF data or RDF views of relational data) with other, possibly
remote, RDF data served by a W3C standards-compliant SPARQL endpoint.

Example 1-70 SPARQL SERVICE Clause to Retrieve All Triples

Example 1-70 shows a query that uses a SERVICE clause to retrieve all triples from
the SPARQL endpoint available at http://www.example1.org/sparql.

SELECT s, p, o
 FROM TABLE(SEM_MATCH(
 'SELECT ?s ?p ?o
 WHERE {
 SERVICE <http://www.example1.org/sparql>{ ?s ?p ?o }
 }',
 SEM_Models('electronics'),
 null, null, null, null, ' ',
 null, null,
 'RDFUSER', 'NET1'));

Example 1-71 SPARQL SERVICE Clause to Join Remote and Local RDF Data

Example 1-71 joins remote RDF data with local RDF data. This example joins camera
types ?cType from local model electronics with the camera names ?name from the
SPARQL endpoint at http://www.example1.org/sparql.

SELECT cType, name
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/electronics/>
 SELECT ?cType ?name
 WHERE {
 ?s :cameraType ?cType
 SERVICE <http://www.example1.org/sparql>{ ?s :name ?name }
 }',
 SEM_Models('electronics'),
 null, null, null, null, ' ',
 null, null,
 'RDFUSER', 'NET1'));

• Privileges Required to Execute Federated SPARQL Queries

• SPARQL SERVICE Join Push Down

• SPARQL SERVICE SILENT

• Using a Proxy Server with SPARQL SERVICE

• Accessing SPARQL Endpoints with HTTP Basic Authentication

1.6.8.1 Privileges Required to Execute Federated SPARQL Queries
You need certain database privileges to use the SERVICE construct within
SEM_MATCH queries. You should be granted EXECUTE privilege on the
SPARQL_SERVICE MDSYS function by a user with DBA privileges: The following
example grants this access to a user named RDFUSER:

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-74

http://www.w3.org/TR/sparql11-federated-query/#SPROT
http://www.w3.org/TR/sparql11-federated-query/#SPROT

grant execute on mdsys.sparql_service to rdfuser;

Also, an Access Control List (ACL) should be used to grant the CONNECT privilege to the
user attempting a federated query. Example 1-72 creates a new ACL to grant the user
RDFUSER the CONNECT privilege and assigns the domain * to the ACL. For more
information about ACLs, see Oracle Database PL/SQL Packages and Types Reference.

Example 1-72 Access Control List and Host Assignment

dbms_network_acl_admin.create_acl (
 acl => 'rdfuser.xml',
 description => 'Allow rdfuser to query SPARQL endpoints',
 principal => 'RDFUSER',
 is_grant => true,
 privilege => 'connect'
);

dbms_network_acl_admin.assign_acl (
 acl => 'rdfuser.xml',
 host => '*'
);

After the necessary privileges are granted, you are ready to execute federated queries from
SEM_MATCH

1.6.8.2 SPARQL SERVICE Join Push Down
The SPARQL SERVICE Join Push Down (SERVICE_JPDWN=T) feature can be used to improve
the performance of certain SPARQL SERVICE queries. By default, the query pattern within
the SERVICE clause is executed first on the remote SPARQL endpoint. The full result of this
remote execution is then joined with the local portion of the query. This strategy can result in
poor performance if the local portion of the query is very selective and the remote portion of
the query is very unselective.

The SPARQL SERVICE Join Push Down feature cannot be used in a query that contains
more than one SERVICE clause.

Example 1-73 SPARQL SERVICE Join Push Down

Example 1-73 shows the SPARQL SERVICE Join Push Down feature.

SELECT s, prop, obj
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/electronics/>
 SELECT ?s ?prop ?obj
 WHERE {
 ?s rdf:type :Camera .
 ?s :modelName "Camera 12345"
 SERVICE <http://www.example1.org/sparql> { ?s ?prop ?obj }
 }',
 SEM_Models('electronics'),
 null, null, null, null, ' SERVICE_JPDWN=T ',
 null, null,
 'RDFUSER', 'NET1'));

In Example 1-73, the local portion of the query will return a very small number of rows, but
the remote portion of the query is completely unbound and will return the entire remote
dataset. When the SERVICE_JPDWN=T option is specified, SEM_MATCH performs a nested-
loop style evaluation by first executing the local portion of the query and then executing a
modified version of the remote query once for each row returned by the local portion. The

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-75

remote query is modified with a FILTER clause that effectively performs a substitution
for the join variable ?s. For example, if <urn:camera1> and <urn:camera2> are
returned from the local portion of Example 1-73 as bindings for ?s, then the following
two queries are sent to the remote endpoint: { ?s ?prop ?obj FILTER (?s =
<urn:camera1>) } and { s ?prop ?obj FILTER (?s = <urn:camera2>) }.

1.6.8.3 SPARQL SERVICE SILENT
When the SILENT keyword is used in federated queries, errors while accessing the
specified remote SPARQL endpoint will be ignored. If the SERVICE SILENT request
fails, a single solution with no bindings will be returned.

Example 1-74 uses SERVICE with the SILENT keyword inside an OPTIONAL clause,
so that, when connection errors accessing http://www.example1.org/sparql appear,
such errors will be ignored and all the rows retrieved from triple ?s :cameratype ?k
will be combined with a null value for ?n.

Example 1-74 SPARQL SERVICE with SILENT Keyword

SELECT s, n
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/electronics/>
 SELECT ?s ?n
 WHERE {
 ?s :cameraType ?k
 OPTIONAL { SERVICE SILENT <http://www.example1.org/sparql>{ ?k :name ?
n } }
 }',
 SEM_Models('electronics'),
 null, null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

1.6.8.4 Using a Proxy Server with SPARQL SERVICE
The following methods are available for sending SPARQL SERVICE requests through
an HTTP proxy:

• Specifying the HTTP proxy that should be used for requests in the current session.
This can be done through the SET_PROXY function of UTL_HTTP package.
Example 1-75 sets the proxy proxy.example.com to be used for HTTP requests,
excluding those to hosts in the domain example2.com. (For more information about
the SET_PROXY procedure, see Oracle Database PL/SQL Packages and Types
Reference.)

• Using the SERVICE_PROXY SEM_MATCH option, which allows setting the proxy
address for SPARQL SERVICE request. However, in this case no exceptions can
be specified, and all requests are sent to the given proxy server. Example 1-76
shows a SEM_MATCH query where the proxy address proxy.example.com at port
80 is specified.

Example 1-75 Setting Proxy Server with UTL_HTTP.SET_PROXY

BEGIN
 UTL_HTTP.SET_PROXY('proxy.example.com:80', 'example2.com');
END;
/

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-76

Example 1-76 Setting Proxy Server in SPARQL SERVICE

SELECT *
 FROM TABLE(SEM_MATCH(
 'SELECT *
 WHERE {
 SERVICE <http://www.example1.org/sparql>{ ?s ?p ?o }
 }',
 SEM_Models('electronics'),
 null, null, null, null, ' SERVICE_PROXY=proxy.example.com:80 ',
 null, null,
 'RDFUSER', 'NET1'));

1.6.8.5 Accessing SPARQL Endpoints with HTTP Basic Authentication
To allow accessing of SPARQL endpoints with HTTP Basic Authentication, user credentials
should be saved in Session Context SDO_SEM_HTTP_CTX. A user with DBA privileges
must grant EXECUTE on this context to the user that wishes to use basic authentication. The
following example grants this access to a user named RDFUSER:

grant execute on mdsys.sdo_sem_http_ctx to rdfuser;

After the privilege is granted, the user should save the user name and password for each
SPARQL Endpoint with HTTP Authentication through functions
mdsys.sdo_sem_http_ctx.set_usr and mdsys.sdo_sem_http_ctx.set_pwd. The following
example sets a user name and password for the SPARQL endpoint at http://
www.example1.org/sparql:

BEGIN
 mdsys.sdo_sem_http_ctx.set_usr('http://www.example1.org/sparql','user');
 mdsys.sdo_sem_http_ctx.set_pwd('http://www.example1.org/sparql','pwrd');
END;
/

1.6.9 Inline Query Optimizer Hints
In SEM_MATCH, the SPARQL comment construct has been overloaded to allow inline HINT0
query optimizer hints. In SPARQL, the hash (#) character indicates that the remainder of the
line is a comment. To associate an inline hint with a particular BGP, place a HINT0 hint string
inside a SPARQL comment and insert the comment between the opening curly bracket ({)
and the first triple pattern in the BGP. Inline hints enable you to influence the execution plan
for each BGP in a query.

Inline optimizer hints override any hints passed to SEM_MATCH through the options
argument. For example, a global ALL_ORDERED hint applies to each BGP that does not
specify an inline optimizer hint, but those BGPs with an inline hint use the inline hint instead
of the ALL_ORDERED hint.

Example 1-77 Inline Query Optimizer Hints (BGP_JOIN)

The following example shows a query with inline query optimizer hints.

SELECT x, y, hp, cp
 FROM TABLE(SEM_MATCH(
 '{ # HINT0={ LEADING(t0) USE_NL(?x ?y ?bd) }
 ?x :grandParentOf ?y . ?x rdf:type :Male . ?x :birthDate ?bd
 OPTIONAL { # HINT0={ LEADING(t0 t1) BGP_JOIN(USE_HASH) }
 ?x :homepage ?hp . ?x :cellPhoneNum ?cp }
 }',

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-77

 SEM_Models('family'),
 SEM_Rulebases('RDFS','family_rb'),
 SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
 null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

The BGP_JOIN hint influences inter-BGP joins and has the following syntax:
BGP_JOIN(<join_type>), where <join_type> is USE_HASH or USE_NL. Example 1-77
uses the BGP_JOIN(USE_HASH) hint to specify that a hash join should be used when
joining the OPTIONAL BGP with its parent BGP.

Inline optimizer hints override any hints passed to SEM_MATCH through the options
argument. For example, a global ALL_ORDERED hint applies to each BGP that does
not specify an inline optimizer hint, but those BGPs with an inline hint use the inline
hint instead of the ALL_ORDERED hint.

Example 1-78 Inline Query Optimizer Hints (ANTI_JOIN)

The ANTI_JOIN hint influences the evaluation of NOT EXISTS and MINUS clauses.
This hint has the syntax ANTI_JOIN(<join_type>), where <join_type> is HASH_AJ,
NL_AJ, or MERGE_AJ. The following example uses a hint to indicate that a hash anti
join should be used. Global ALL_AJ_HASH, ALL_AJ_NL, ALL_AJ_MERGE can be
used in the options argument of SEM_MATCH to influence the join type of all NOT
EXISTS and MINUS clauses in the entire query.

SELECT x, y
 FROM TABLE(SEM_MATCH(
 'SELECT ?x ?y
 WHERE {
 ?x :grandParentOf ?y . ?x rdf:type :Male . ?x :birthDate ?bd
 FILTER (
 NOT EXISTS {# HINT0={ ANTI_JOIN(HASH_AJ) }
 ?x :homepage ?hp . ?x :cellPhoneNum ?cp })
 }',
 SEM_Models('family'),
 SEM_Rulebases('RDFS','family_rb'),
 SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
 null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

Example 1-79 Inline Query Optimizer Hints (NON_NULL)

HINT0={ NON_NULL} is supported in SPARQL SELECT clauses to signify that a
particular variable is always bound (that is, has a non-null value in each result row).
This hint allows the query compiler to optimize joins for values produced by SELECT
expressions. These optimizations cannot be applied by default because it cannot be
guaranteed that expressions will produce non-null values for all possible input. If you
know that a SELECT expression will not produce any null values for a particular query,
using this NON_NULL hint can significantly increase performance. This hint should be
specified in the comment in a line before the 'AS' keyword of a SELECT expression.

The following example shows the NON_NULL hint option used in a SEM_MATCH
query, specifying that variable ?full_name is definitely bound.

SELECT s, t
 FROM TABLE(SEM_MATCH(
 'SELECT * WHERE {
 ?s :name ?full_name
 { SELECT (CONCAT(?fname, " ", ?lname) # HINT0={ NON_NULL }
 AS ?full_name)

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-78

 WHERE {
 ?t :fname ?fname .
 ?t :lname ?lname }
 }
 }',
 SEM_Models('family'),
 SEM_Rulebases('RDFS','family_rb'),
 SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
 null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

1.6.10 Full-Text Search
The Oracle-specific orardf:textContains SPARQL FILTER function uses full-text indexes on
the RDF_VALUE$ table. This function has the following syntax (where orardf is a built-in
prefix that expands to <http://xmlns.oracle.com/rdf/>):

orardf:textContains(variable, pattern)

The first argument to orardf:textContains must be a local variable (that is, a variable
present in the BGP that contains the orardf:textContains filter), and the second argument
must be a constant plain literal.

For example, orardf:textContains(x, y) returns true if x matches the expression y, where
y is a valid expression for the Oracle Text SQL operator CONTAINS. For more information
about such expressions, see Oracle Text Reference.

Before using orardf:textContains, you must create an Oracle Text index for the RDF
network. To create such an index, invoke the SEM_APIS.ADD_DATATYPE_INDEX
procedure as follows:

EXECUTE SEM_APIS.ADD_DATATYPE_INDEX('http://xmlns.oracle.com/rdf/text',
network_owner=>'RDFUSER', network_name=>'NET1');

Performance for wildcard searches like orardf:textContains(?x, "%abc%") can be
improved by using prefix and substring indexes. You can include any of the following options
to the SEM_APIS.ADD_DATATYPE_INDEX procedure to control prefix and substring index
settings:

• prefix_index=true: For adding prefix index

• prefix_min_length=<number>: Minimum length for prefix index tokens

• prefix_max_length=<number>: Maximum length for prefix index tokens

• substring_index=true: For adding substring index

For more information about Oracle Text indexing elements, see Oracle Text Reference.

Overall text index performance for SPARQL queries can be improved with a Value-Subset
Text (VST) index. All RDF terms in an RDF network are included in a text index by default,
but a VST index restricts the indexed values to one of the following:

• Plain and xsd:string RDF literals

• Object values of triples with predicates that appear on an input include list

VST indexes contain fewer values, which results in a smaller, better performing text index.
You can include any of the following options to the SEM_APIS.ADD_DATATYPE_INDEX
procedure to control VST index settings:

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-79

• PREDLIST=(<predicate1> <predicate2> … <predicateN>): List of predicates for
which to index object values, specified with a full IRI reference including
surrounding angle brackets or with a prefixed name using a namespace prefix
from PREFIXES=() (for example, PREDLIST=(<http://example.com/predicate1>
ex:predicate2)).

• PREFIXES=(<SPARQL_prefix1> <SPARQL_prefix2> … <SPARQL_prefixN>): List of
prefixes to use when expanding prefixed names in PREDLIST=(), specified using
SPARQL syntax (for example, PREFIXES=(PREFIX ex: <http://example.com/>
PREFIX ex2: <http://example2.com>)).

• STRING_LITERALS_ONLY=T: When specified, only string literal RDF terms will be
indexed. Note, this cannot be used if PREDLIST based options are also specified.

When performing large bulk loads into a semantic network with a text index, the overall
load time may be faster if you drop the text index, perform the bulk load, and then re-
create the text index. See Using Data Type Indexes for more information about data
type indexing.

After creating a text index, you can use the orardf:textContains FILTER function in
SEM_MATCH queries. Example 1-80 uses orardf:textContains to find all
grandfathers whose names start with the letter A or B.

Example 1-80 Full-Text Search

SELECT x, y, n
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/family/>
 SELECT *
 WHERE {
 ?x :grandParentOf ?y . ?x rdf:type :Male . ?x :name ?n
 FILTER (orardf:textContains(?n, " A% | B% ")) }',
 SEM_Models('family'),
 SEM_Rulebases('RDFS','family_rb'),
 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

Example 1-81 orardf:textScore

The ancillary operator orardf:textScore can be used in combination with
orardf:textContains to rank results by the goodness of their text match. There are,
however, limitations when using orardf:textScore. The orardf:textScore invocation
must appear as a SELECT expression in the SELECT clause immediately surrounding
the basic graph pattern that contains the corresponding orardf:textContains
FILTER. The alias for this SELECT expression can then be used in other parts of the
query. In addition, a REWRITE=F' query hint must be used in the options argument of
SEM_MATCH.

The following example finds text matches with score greater than 0.5. Notice that an
additional invocation id argument is required for orardf:textContains, so that it can
be linked to the orardf:textScore invocation with the same invocation id. The
invocation ID is an arbitrary integer constant used to match a primary operator with its
ancillary operator.

SELECT x, y, n, scr
 FROM TABLE(SEM_MATCH(
 'PREFIX <http://www.example.org/family/>
 SELECT *

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-80

 WHERE {
 { SELECT ?x ?y ?n (orardf:textScore(123) AS ?scr)
 WHERE {
 ?x :grandParentOf ?y . ?x rdf:type :Male . ?x :name ?n
 FILTER (orardf:textContains(?n, " A% | B% ", 123)) }
 }
 FILTER (?scr > 0.5)
 }',
 SEM_Models('family'),
 SEM_Rulebases('RDFS','family_rb'),
 null,
 null,
 null,
 ' REWRITE=F ',
 null, null,
 'RDFUSER', 'NET1'));

Example 1-82 orardf:like

For a lightweight text search, you can use the orardf:like function, which performs simple
test for pattern matching using the Oracle SQL operator LIKE. The orardf:like function has
the following syntax:

orardf:like(string, pattern)

The first argument of orardf:like can be any variable or RDF term, as opposed to
orardf:Contains, which requires the first argument to be a local variable. When the first
argument to orardf:like is a URI, the match is performed against the URI suffix only. The
second argument must be a pattern expression, which can contain the following special
pattern-matching characters:

• The percent sign (%) can match zero or more characters.

• The underscore (_) matches exactly one character.

The following example shows a percent sign (%) wildcard search to find all grandparents
whose URIs start with Ja.

SELECT x, y, n
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/family/>
 SELECT *
 WHERE {
 ?x :grandParentOf ?y . ?y :name ?n
 FILTER (orardf:like(?x, "Ja%")) }',
 SEM_Models('family'),
 SEM_Rulebases('RDFS','family_rb'),

 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-81

The following example shows an underscore (_) wildcard search to find all the
grandchildren whose names start with J followed by two characters and end with k..

SELECT x, y, n
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/family/>
 SELECT *
 WHERE {
 ?x :grandParentOf ?y . ?y :name ?n
 FILTER (orardf:like(?n, "J__k"))
 }',
 SEM_Models('family'),
 SEM_Rulebases('RDFS','family_rb'),

 null, null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

For efficient execution of orardf:like, you can create an index using the
SEM_APIS.ADD_DATATYPE_INDEX procedure with http://xmlns.oracle.com/rdf/
like as the data type URI. This index can speed up queries when the first argument is
a local variable and the leading character of the search pattern is not a wildcard. The
underlying index is a simple function-based B-Tree index on a varchar function, which
has lower maintenance and storage costs than a full Oracle Text index. The index for
orardf:like is created as follows:

EXECUTE SEM_APIS.ADD_DATATYPE_INDEX('http://xmlns.oracle.com/rdf/
like');

1.6.11 Spatial Support
RDF Semantic Graph supports storage and querying of spatial geometry data through
the OGC GeoSPARQL standard and through Oracle-specific SPARQL extensions.
Geometry data can be stored as orageo:WKTLiteral, ogc:wktLiteral, or
ogc:gmlLiteral typed literals, and geometry data can be queried using several query
functions for spatial operations. Spatial indexing for increased performance is also
supported.

orageo is a built-in prefix that expands to <http://xmlns.oracle.com/rdf/geo/>, ogc
is a built-in prefix that expands to <http://www.opengis.net/ont/geosparql#>, and
ogcf is a built-in prefix that expands to <http://www.opengis.net/def/function/
geosparql>.

• OGC GeoSPARQL Support

• Representing Spatial Data in RDF

• Validating Geometries

• Indexing Spatial Data

• Querying Spatial Data

• Using Long Literals with GeoSPARQL Queries

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-82

1.6.11.1 OGC GeoSPARQL Support
RDF Semantic Graph supports the following conformance classes for the OGC GeoSPARQL
standard (http://www.opengeospatial.org/standards/geosparql) using well-known text
(WKT) serialization and the Simple Features relation family.

• Core

• Topology Vocabulary Extension (Simple Features)

• Geometry Extension (WKT, 1.2.0)

• Geometry Topology Extension (Simple Features, WKT, 1.2.0)

• RDFS Entailment Extension (Simple Features, WKT, 1.2.0)

In addition, RDF Semantic Graph supports the following conformance classes for OGC
GeoSPARQL using Geography Markup Language (GML) serialization and the Simple
Features relation family.

• Core

• Topology Vocabulary Extension (Simple Features)

• Geometry Extension (GML, 3.1.1)

• Geometry Topology Extension (Simple Features, GML, 3.1.1)

• RDFS Entailment Extension (Simple Features, GML, 3.1.1)

Specifics for representing and querying spatial data using GeoSPARQL are covered in
sections that follow this one.

1.6.11.2 Representing Spatial Data in RDF
Spatial geometries can be represented in RDF as orageo:WKTLiteral, ogc:wktLiteral, or
ogc:gmlLiteral typed literals.

Example 1-83 Spatial Point Geometry Represented as orageo:WKTLiteral

The following example shows the orageo:WKTLiteral encoding for a simple point geometry.

"Point(-83.4 34.3)"^^<http://xmlns.oracle.com/rdf/geo/WKTLiteral>

Example 1-84 Spatial Point Geometry Represented as ogc:wktLiteral

The following example shows the ogc:wktLiteral encoding for the same point as in the
preceding example.

"Point(-83.4 34.3)"^^<http://www.opengis.net/ont/geosparql#wktLiteral>

Both orageo:WKTLiteral and ogc:wktLiteral encodings consist of an optional spatial
reference system URI, followed by a Well-Known Text (WKT) string that encodes a geometry
value. The spatial reference system URI and the WKT string should be separated by a
whitespace character. (In this document the term geometry literal is used to refer to both
orageo:WKTLiteral and ogc:wktLiteral typed literals.)

Supported spatial reference system URIs have the following form <http://
www.opengis.net/def/crs/EPSG/0/{srid}>, where {srid} is a valid spatial reference
system ID defined by the European Petroleum Survey Group (EPSG). For URIs that are not
in the EPSG Geodetic Parameter Dataset, the spatial reference system URIs used have the

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-83

http://www.opengeospatial.org/standards/geosparql

form <http://xmlns.oracle.com/rdf/geo/srid/{srid}>., where {srid} is a valid
spatial reference system ID from Oracle Spatial. If a geometry literal value does not
include a spatial reference system URI, then the default spatial reference system,
WGS84 Longitude-Latitude (URI <http://www.opengis.net/def/crs/OGC/1.3/
CRS84>), is used. The same default spatial reference system is used when geometry
literal values are encountered in a query string.

Example 1-85 Spatial Point Geometry Represented as ogc:gmlLiteral

The following example shows the ogc:gmlLiteral encoding for a point geometry.

"<gml:Point srsName=\"urn:ogc:def:crs:EPSG::8307\" xmlns:gml=\"http://
www.opengis.net/gml\"><gml:posList srsDimension=\"2\">-83.4 34.3</gml:posList></
gml:Point>"^^<http://www.opengis.net/ont/geosparql#gmlLiteral>

ogc:gmlLiteral encodings consist of a valid element from the GML schema that
implements a subtype of GM_Object. In contrast to WKT literals, A GML encoding
explicitly includes spatial reference system information, so a spatial reference system
URI prefix is not needed.

Several geometry types can be represented as geometry literal values, including point,
linestring, polygon, polyhedral surface, triangle, TIN, multipoint, multi-linestring,
multipolygon, and geometry collection. Up to 500,000 vertices per geometry are
supported for two-dimensional geometries.

Example 1-86 Spatial Data Encoded Using orageo:WKTLiteral Values

The following example shows some RDF spatial data (in N-triple format) encoded
using orageo:WKTLiteral values. In this example, the first two geometries (in lot1) use
the default coordinate system (SRID 8307), but the other two geometries (in lot2)
specify SRID 8265.

spatial data for lot1 using the default WGS84 Longitude-Latitude spatial
reference system
<urn:lot1> <urn:hasExactGeometry> "Polygon((-83.6 34.1, -83.6 34.5, -83.2 34.5,
-83.2 34.1, -83.6 34.1))"^^<http://xmlns.oracle.com/rdf/geo/WKTLiteral> .
<urn:lot1> <urn:hasPointGeometry> "Point(-83.4 34.3)"^^<http://
xmlns.oracle.com/rdf/geo/WKTLiteral> .
spatial data for lot2 using the NAD83 Longitude-Latitude spatial reference
system
<urn:lot2> <urn:hasExactGeometry> "<http://xmlns.oracle.com/rdf/geo/srid/8265>
Polygon((-83.6 34.1, -83.6 34.3, -83.4 34.3, -83.4 34.1, -83.6 34.1))"^^<http://
xmlns.oracle.com/rdf/geo/WKTLiteral> .
<urn:lot2> <urn:hasPointGeometry> "<http://xmlns.oracle.com/rdf/geo/srid/8265>
Point(-83.5 34.2)"^^<http://xmlns.oracle.com/rdf/geo/WKTLiteral> .

For more information, see the chapter about coordinate systems (spatial reference
systems) in Oracle Spatial Developer's Guide. See also the material about the WKT
geometry representation in the Open Geospatial Consortium (OGC) Simple Features
document, available at: http://www.opengeospatial.org/standards/sfa

1.6.11.3 Validating Geometries
Before manipulating spatial data, you should check that there are no invalid geometry
literals stored in your RDF model. The procedure
SEM_APIS.VALIDATE_GEOMETRIES allows verifying geometries in an RDF model.
The geometries are validated using an input SRID and tolerance value. (SRID and
tolerance are explained in Indexing Spatial Data.)

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-84

http://www.opengeospatial.org/standards/sfa

If there are invalid geometries, a table with name {model_name}_IVG$, is created in the user
schema, where {model_name} is the name of the RDF model specified. Such table contains,
for each invalid geometry literal, the value_id of the geometry literal in the RDF_VALUE$
table, the error message explaining the reason the geometry is not valid and a corrected
geometry literal if the geometry can be rectified. For more information about geometry
validation, see the reference information for the Oracle Spatial subprograms
SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT and
SDO_GEOM.VALIDATE_LAYER_WITH_CONTEXT.

Example 1-87 Validating Geometries in a Model

The following example validates a model m, using SRID=8307 and tolerance=0.1.

-- Validate
EXECUTE sem_apis.validate_geometries(model_name=>'m',SRID=>8307,tolerance=>0.1,
network_owner=>'RDFUSER', network_name=>'NET1');-- Check for invalid geometries
SELECT original_vid, error_msg, corrected_wkt_literal FROM M_IVG$;

1.6.11.4 Indexing Spatial Data
Before you can use any of the SPARQL extension functions (introduced in Querying Spatial
Data) to query spatial data, you must create a spatial index on the RDF network by calling the
SEM_APIS.ADD_DATATYPE_INDEX procedure.

When you create the spatial index, you must specify the following information:

• SRID - The ID for the spatial reference system in which to create the spatial index. Any
valid spatial reference system ID from Oracle Spatial and Graph can be used as an SRID
value.

• TOLERANCE – The tolerance value for the spatial index. Tolerance is a positive number
indicating how close together two points must be to be considered the same point. The
units for this value are determined by the default units for the SRID used (for example,
meters for WGS84 Long-Lat). Tolerance is explained in detail in Oracle Spatial
Developer's Guide.

• DIMENSIONS - A text string encoding dimension information for the spatial index. Each
dimension is represented by a sequence of three comma-separated values: name,
minimum value, and maximum value. Each dimension is enclosed in parentheses, and
the set of dimensions is enclosed by an outer parenthesis.

Example 1-88 Adding a Spatial Data Type Index on RDF Data

Example 1-88 adds a spatial data type index on the RDF network, specifying the WGS84
Longitude-Latitude spatial reference system, a tolerance value of 0.1, and the recommended
dimensions for the indexing of spatial data that uses this coordinate system. The
TOLERANCE, SRID, and DIMENSIONS keywords are case sensitive, and creating a data
type index for <http://xmlns.oracle.com/rdf/geo/WKTLiteral> will also index <http://
www.opengis.net/ont/geosparql#wktLiteral> geometry literals, and vice versa (that is,
creating a data type index for <http://www.opengis.net/ont/geosparql#wktLiteral> will
also index <http://xmlns.oracle.com/rdf/geo/WKTLiteral> geometry literals).

EXECUTE sem_apis.add_datatype_index('http://xmlns.oracle.com/rdf/geo/WKTLiteral',
options=>'TOLERANCE=10 SRID=8307 DIMENSIONS=((LONGITUDE,-180,180) (LATITUDE,-90,90))',
network_owner=>'RDFUSER', network_name=>'NET1');

No more than one spatial data type index is supported for an RDF network. Geometry literal
values stored in the RDF network are automatically normalized to the spatial reference
system used for the index, so a single spatial index can simultaneously support geometry

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-85

literal values from different spatial reference systems. This coordinate transformation is
done transparently for indexing and spatial computations. When geometry literal
values are returned from a SEM_MATCH query, the original, untransformed geometry
is returned.

For more information about spatial indexing, see the chapter about indexing and
querying spatial data in Oracle Spatial Developer's Guide.

Example 1-89 Adding a Spatial Data Type Materialized Index on RDF Data

When you manipulate spatial data, conversions from geometry literals to geometry
objects may be needed, but several conversions may lead to poor performance. To
avoid this situation, all the stored geometry literals can be transformed into
SDO_GEOMETRY objects and materialized at index creation time.

This can be achieved using the MATERIALIZE=T option when adding a spatial data type
index. If the amount of geometry literals to be indexed is very large, using the option
INS_AS_SEL=T may help to speed up the materialized index creation.

The following example shows the creation of a materialized spatial index.

EXECUTE sem_apis.add_datatype_index('http://xmlns.oracle.com/rdf/geo/
WKTLiteral', options=>'TOLERANCE=0.1 SRID=8307
DIMENSIONS=((LONGITUDE,-180,180) (LATITUDE,-90,90)) MATERIALIZE=T ');

Example 1-90 Adding a 3D Spatial Data Type Index on RDF Data

Spatial indexes with three coordinates can be created in Oracle Spatial. To create a
3D index, you must specify SDO_INDX_DIMS=3 option in the options argument of the
SEM_APIS.ADD_DATATYPE_INDEX procedure.

The following example shows creation and indexing of 3D data. Note that coordinates
are specified in (X, Y, Z) order, and linear rings for outer polygon boundaries are given
in counter-clockwise order.

Note: For information about support for geometry operations with 3D data, including
any restrictions, see Three Dimensional Spatial Objects.

conn rdfuser/<password>;

create table geo3d_tab(tri sdo_rdf_triple_s);

exec sem_apis.create_sem_model('geo3d','geo3d_tab','tri');

-- 3D Polygon
insert into geo3d_tab(tri) values(sdo_rdf_triple_s('geo3d','<http://
example.org/ApplicationSchema#A>', '<http://example.org/
ApplicationSchema#hasExactGeometry>', '<http://example.org/
ApplicationSchema#AExactGeom>'));
insert into geo3d_tab(tri) values(sdo_rdf_triple_s('geo3d','<http://
example.org/ApplicationSchema#AExactGeom>', '<http://
www.opengis.net/ont/geosparql#asWKT>', '"<http://
xmlns.oracle.com/rdf/geo/srid/31468> Polygon ((4467504.578 5333958.396
513.9, 4467508.939 5333956.379 513.9, 4467509.736 5333958.101 513.9,
4467505.374 5333960.118 513.9, 4467504.578 5333958.396
513.9))"^^<http://xmlns.oracle.com/rdf/geo/WKTLiteral>'));

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-86

-- 3D Point at same elevation as Polygon
insert into geo3d_tab(tri) values(sdo_rdf_triple_s('geo3d','<http://
example.org/ApplicationSchema#B>', '<http://example.org/
ApplicationSchema#hasExactGeometry>', '<http://example.org/
ApplicationSchema#BExactGeom>'));
insert into geo3d_tab(tri) values(sdo_rdf_triple_s('geo3d','<http://
example.org/ApplicationSchema#BExactGeom>', '<http://www.opengis.net/ont/
geosparql#asWKT>', '"<http://xmlns.oracle.com/rdf/geo/srid/31468> Point
(4467505.000 5333959.000 513.9)"^^<http://xmlns.oracle.com/rdf/geo/
WKTLiteral>'));

-- 3D Point at different elevation from Polygon
insert into geo3d_tab(tri) values(sdo_rdf_triple_s('geo3d','<http://
example.org/ApplicationSchema#C>', '<http://example.org/
ApplicationSchema#hasExactGeometry>', '<http://example.org/
ApplicationSchema#CExactGeom>'));
insert into geo3d_tab(tri) values(sdo_rdf_triple_s('geo3d','<http://
example.org/ApplicationSchema#CExactGeom>', '<http://www.opengis.net/ont/
geosparql#asWKT>', '"<http://xmlns.oracle.com/rdf/geo/srid/31468> Point
(4467505.000 5333959.000 13.9)"^^<http://xmlns.oracle.com/rdf/geo/
WKTLiteral>'));
commit;

-- Create 3D index
conn system/manager;
exec sem_apis.add_datatype_index('http://xmlns.oracle.com/rdf/geo/
WKTLiteral' ,options=>'TOLERANCE=0.1 SRID=3148
DIMENSIONS=((x,4386596.4101,4613610.5843) (y,5237914.5325,6104496.9694)
(z,0,10000)) SDO_INDX_DIMS=3 ');

conn rdfuser/rdfuser;
-- Find geometries within 200 M of my:A
-- Returns only one point because of 3D index
SELECT aGeom, f, fGeom, aWKT, fWKT
FROM TABLE(SEM_MATCH(
 '{ my:A my:hasExactGeometry ?aGeom .
 ?aGeom ogc:asWKT ?aWKT .
 ?f my:hasExactGeometry ?fGeom .
 ?fGeom ogc:asWKT ?fWKT .
 FILTER (orageo:withinDistance(?aWKT, ?fWKT,200,"M") &&
 !sameTerm(?aGeom,?fGeom))
 }',
 SEM_Models('geo3d'),
 null,
 SEM_ALIASES(
 SEM_ALIAS('my','http://example.org/ApplicationSchema#')),
 null));

1.6.11.5 Querying Spatial Data
Several SPARQL extension functions are available for performing spatial queries in
SEM_MATCH. For example, for spatial RDF data, you can find the area and perimeter
(length) of a geometry, the distance between two geometries, and the centroid and the

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-87

minimum bounding rectangle (MBR) of a geometry, and you can check various
topological relationships between geometries.

SEM_MATCH Support for Spatial Queries contains reference and usage information
about the available functions, including:

• GeoSPARQL functions

• Oracle-specific functions

1.6.11.6 Using Long Literals with GeoSPARQL Queries
Geometry literals can become very long, which make the use of CLOBs necessary to
represent them. CLOB constants cannot be used directly in a SEM_MATCH query.
However, a user-defined SPARQL function can be used to bind CLOB constants into
SEM_MATCH queries.

The following example does this by using a temporary table.

Example 1-91 Binding a CLOB Constant into a SPARQL Query

conn rdfuser/<password>;

-- Create temporary table
create global temporary table local_value$(
 VALUE_TYPE VARCHAR2(10),
 VALUE_NAME VARCHAR2(4000),
 LITERAL_TYPE VARCHAR2(1000),
 LANGUAGE_TYPE VARCHAR2(80),
 LONG_VALUE CLOB)
on commit preserve rows;

-- Create user-defined function to transform a CLOB into an RDF term
CREATE OR REPLACE FUNCTION myGetClobTerm
RETURN MDSYS.SDO_RDF_TERM
AS
 term SDO_RDF_TERM;
BEGIN
 select sdo_rdf_term(
 value_type,
 value_name,
 literal_type,
 language_type,
 long_value)
 into term
 from local_value$
 where rownum < 2;

 RETURN term;
END;
/

-- Insert a row with CLOB geometry
insert into local_value$
(value_type,value_name,literal_type,language_type,long_value)
values ('LIT','','http://www.opengis.net/ont/

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-88

geosparql#wktLiteral','','Some_CLOB_WKT');

-- Use the CLOB constant in a SEM_MATCH query
SELECT cdist
FROM table(sem_match(
'{ ?cdist ogc:asWKT ?cgeom
 FILTER (
 orageo:withinDistance(?cgeom, oraextf:myGetClobTerm(), 200, "M")) }'
,sem_models('gov_all_vm')
,null, null, null, null, ' ALLOW_DUP=T ', null, null
,'RDFUSER', 'NET1'));

1.6.12 Flashback Query Support
You can perform SEM_MATCH queries that return past data using Flashback Query. A
TIMESTAMP or a System Change Number (SCN) value is passed to SEM_MATCH through
the AS_OF hint. The AS_OF hint can have one of the following forms:

• AS_OF[TIMESTAMP,<TIMESTAMP_VALUE>], where <TIMESTAMP_VALUE> is a valid
timestamp string with format 'YYYY/MM/DD HH24:MI:SS.FF'.

• AS_OF[SCN,<SCN_VALUE>], where <SCN_VALUE> is a valid SCN.

The AS_OF hint is internally transformed to perform a Flashback Query (SELECT AS OF)
against the queried table or view containing triples of the specified model. This allows you to
query the model as it existed in a prior time. For this feature to work, the invoker needs a
flashback privilege on the queried metadata table or view (RDFM_model-name view for
native models, SEMU_virtual-model-name and SEMV_virtual-model-name for virtual models,
and underlying relational tables for RDF view models). For example: grant flashback on
RDFUSER.NET1#RDFM_FAMILY to scott

Restrictions on Using Flashback Query with RDF Data

Adding or removing a partition from a partitioned table disables Flashback Query for previous
versions of the partitioned table. As a consequence, creating or dropping a native RDF model
or creating or dropping an entailment will disable Flashback Query for previous versions of all
native RDF models in a semantic network. Therefore, be sure to control such operations
when using Flashback Query in a semantic network.

Example 1-92 Flashback Query Using TIMESTAMP

The following example shows the use of the AS_OF clause defining a TIMESTAMP.

SELECT x, name
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/family/>
 SELECT *
 WHERE { ?x :name ?name }',
 SEM_Models('family'),
 null, null,
 null,null,' AS_OF=[TIMESTAMP,2016/05/02 13:06:03.979546]',
 null, null,
 'RDFUSER', 'NET1'));

Example 1-93 Flashback Query Using SCN

The following example shows the use of the AS_OF clause specifying an SCN.

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-89

SELECT x, name
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/family/>
 SELECT *
 WHERE { ?x :name ?name }',
 SEM_Models('family'),
 null, null,
 null,null,' AS_OF=[SCN,1429849]',
 null, null,
 'RDFUSER', 'NET1'));

1.6.13 Speeding up Query Execution with SPM Auxiliary Tables
You can use Subject-Property-Matrix (SPM) auxiliary tables to speed up SPARQL
query execution.

A set of SPM auxiliary tables for a given model includes zero or more Single-Valued
Property (SVP) tables, zero or more Multi-Valued Property (MVP) tables, and zero or
more Property Chain (PCN) tables. The SVP and PCN tables speed up query
execution by reducing joins, and MVP tables speed up query execution by allowing
better query optimizer statistics and query plans.

• Single-Valued Property Tables

• Multi-Valued Property Tables

• Property Chain Tables

• Creating SPM Tables

• Including Lexical Values in SPM Auxiliary Tables

• Creating Secondary Indexes on SPM Auxiliary Tables

• Performing DML Operations on Models with SPM Auxiliary Tables

• Performing Bulk Load Operations on Models with SPM Auxiliary Tables

• Gathering Statistics on SPM Auxiliary Tables

• SPARQL Query Options for SPM Auxiliary Tables

• Special Considerations when Using SPM Auxiliary Tables

1.6.13.1 Single-Valued Property Tables
A Single-Valued Property (SVP) table holds values for single-valued RDF properties.

A property p is single-valued in an RDF model if each resource in the model has at
most one value for p. For example, a property such as :date_of_birth is likely to be
single-valued, but a property such as :friend_of is likely to be multi-valued. An SVP
table created for a set of RDF properties holds the values for those properties in a
single row for each subject resource. This allows retrieving several properties for a
resource through a single table lookup rather than with multiple self joins of the
RDF_LINK$ table. By default, only ids for each property value are stored. SVP tables
give dramatic speedup of “star pattern” queries like the following.

SELECT ?s ?fname ?lname ?height ?ssn
 WHERE {
 ?s :first_name ?fname;
 :last_name ?lname;

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-90

 :date_of_birth ?height;
 :ssn ?ssn .
 }

An SVP table can have either of the following two naming conventions:

• <NETWORK_NAME>#RDF_XT$SVP_<MODEL_NAME>: This is the default naming convention and
is used when the user does not supply an SVP table name. At the most, only one of a
model's SVP tables can use this default name.

• <NETWORK_NAME>#RDF_XT$SVP_<MODEL_NAME>__<USER_SUPPLIED_NAME>: This is used when
the user supplies an SVP table name.

The columns of an SVP table are shown in the following table.

Table 1-18 Single-Valued Table Columns

Column Name Datatype Description

START_NODE_ID NUMBER The value id of subject resource and primary key of the table.

G<PREDICATE_ID_1
>

NUMBER The value id of the named graph that contains the triple with subject
id = START_NODE_ID and predicate id = PREDICATE_ID_1 or NULL
if no such named graph exists.

P<PREDICATE_ID_1
>

NUMBER The value id of the object of the triple with subject id =
START_NODE_ID and predicate id = PREDICATE_ID_1 or NULL if no
such triple exists.

G<PREDICATE_ID_2
>

NUMBER The value id of the named graph that contains the triple with subject
id = START_NODE_ID and predicate id = PREDICATE_ID_2 or NULL
if no such named graph exists.

P<PREDICATE_ID_2
>

NUMBER The value id of the object of the triple with subject id =
START_NODE_ID and predicate id = PREDICATE_ID_2 or NULL if no
such triple exists.

G<PREDICATE_ID_n
>

NUMBER The value id of the named graph that contains the triple with subject
id = START_NODE_ID and predicate id = PREDICATE_ID_n or NULL
if no such named graph exists.

P<PREDICATE_ID_n
>

NUMBER The value id of the object of the triple with subject id =
START_NODE_ID and predicate id = PREDICATE_ID_n or NULL if no
such triple exists.

START_NODE_ID is a primary key, and each predicate covered by the SVP table has two
columns: one column for the named graph id (G<PREDICATE_ID>) and one column for the
object id (P<PREDICATE_ID).

By default, an SVP table has a unique index on the START_NODE_ID column using the
following naming convention:
<NETWORK_NAME>#RDF_XX$SVP_<MODEL_NAME>_UQ__<USER_SUPPLIED_NAME>.

1.6.13.2 Multi-Valued Property Tables
Multi-Valued Property (MVP) tables hold values for multi-valued RDF properties.

A property p is multi-valued in an RDF model if there exists two triples in the model (s p o1)
and (s p o2) with o1 not equal to o2. That is, s has more than one distinct object value for
the property p. All the triples for a multi-valued property p are stored in the same MVP table,
which allows the query optimizer to get statistics that are more accurate for the property p.

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-91

The naming convention for an MVP table is:
<NETWORK_NAME>#RDF_XT$MVP_<MODEL_NAME>_P<PREDICATE_ID>
The columns for an MVP table are shown in the following table:

Table 1-19 Multi-Valued Table Columns

Column Name Datatype Description

START_NODE_ID NUMBER The value id of subject resource.

G<PREDICATE_ID> NUMBER The value id of the named graph that contains the triple with subject
id = START_NODE_ID and predicate id = PREDICATE_ID or NULL if
no such named graph exists.

P<PREDICATE_ID> NUMBER The value id of the object of the triple with subject id =
START_NODE_ID and predicate id = PREDICATE_ID.

By default, an MVP table has a non-unique index on the START_NODE_ID column using
the following naming convention:
<NETWORK_NAME>#RDF_XX$MVP_<MODEL_NAME>_P<PREDICATE_ID>

1.6.13.3 Property Chain Tables
Property Chain (PCN) tables hold paths in the RDF graph.

A set of triples t1, t2, …, tn form a path if for each ti where i > 1, the object
value of ti-1 is equal to the subject value of ti. A PCN table is based on a user-
supplied sequence or list of property URIs. Each row in the corresponding PCN table
represents a path of triples that match the property URI sequence. A path of triples t1,
t2,…,tn matches a sequence of property URIs p1,p2,…,pn if for each i, the predicate
URI of ti is equal to pi. PCN tables allow paths of triple patterns in a SPARQL query
to be evaluated with a single table lookup instead of using several object-subject joins
of RDF_LINK$.

For example, each result of the following query can be found as a single row in a PCN
table for (:hasAddress, :addrCityState, :addrCity, instead of requiring two self
joins of RDF_LINK$.

SELECT ?s ?city
 WHERE {
 ?s :hasAddress/:addrCityState/:addrCity ?city
 }

The naming convention for a PCN table is:
<NETWORK_NAME>#RDF_XT$PCN_<MODEL_NAME>__<USER_SUPPLIED_NAME>.

The following table shows the PCN table columns for a property chain:
(<PREDICATE_ID_1>, <PREDICATE_ID_2>, …, <PREDICATE_ID_n>):

Table 1-20 Property Chain Table Columns

Column Name Datatype Description

START_NODE_I
D

NUMBER The value id of the subject of the first triple in the path.

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-92

Table 1-20 (Cont.) Property Chain Table Columns

Column Name Datatype Description

G<PREDICATE_I
D_1>

NUMBER The value id of the named graph that contains the triple
with subject id = START_NODE_ID and predicate id =
PREDICATE_ID_1 or NULL if no such named graph
exists.

P<PREDICATE_I
D_1>

NUMBER The value id of the object of the triple with subject id =
START_NODE_ID and predicate id = PREDICATE_ID_1.

G<PREDICATE_I
D_2>

NUMBER The value id of the named graph that contains the triple
with subject id = P<PREDICATE_ID_1> and predicate id
= PREDICATE_ID_2 or NULL if no such named graph
exists.

P<PREDICATE_I
D_2>

NUMBER The value id of the object of the triple with subject id =
P<PREDICATE_ID_1> and predicate id =
PREDICATE_ID_2.

G<PREDICATE_I
D_n>

NUMBER The value id of the named graph that contains the triple
with subject id = P<PREDICATE_ID_n-1> and predicate
id = PREDICATE_ID_n or NULL if no such named graph
exists.

P<PREDICATE_I
D_n>

NUMBER The value id of the object of the triple with subject id =
P<PREDICATE_ID_n-1> and predicate id =
PREDICATE_ID_n.

By default, a PCN table has a non-unique index on START_NODE_ID and all P<PREDICATE_ID>
columns.

The naming convention for the indexes are as follows:

• START_NODE_ID:
<NETWORK_NAME>#RDF_XX$PCN_<MODEL_NAME>_UQ__<USER_SUPPLIED_NAME>

• P<PREDICATE_ID>:
<NETWORK_NAME>#RDF_XX$PCN_<MODEL_NAME>__<USER_SUPPLIED_NAME>_P<PREDICATE_ID>

1.6.13.4 Creating SPM Tables
SPM tables are created based on a predicate information table. This table records statistics
about each predicate in a model to determine which predicates are single-valued and which
predicates are multi-valued.

You can use the SEM_APIS.GATHER_SPM_INFO procedure to create and populate this
table for a given model. A predicate information table has the following columns.

Table 1-21 Predicate Information Table Columns

Column
Name

Type Description

P_VALUE_ID NUMBER The value id for the predicate.

PRED_NAME NUMBER The lexical value for the predicate.

MIN_CNT NUMBER The minimum number of distinct values a subject resource has for this
predicate.

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-93

Table 1-21 (Cont.) Predicate Information Table Columns

Column
Name

Type Description

MAX_CNT NUMBER The maximum number of distinct values a subject resource has for this
predicate.

MED_CNT NUMBER The median number of distinct values a subject resource has for this
predicate.

AVG_CNT NUMBER The average number of distinct values a subject resource has for this
predicate.

TOT_CNT NUMBER The total number of triples that have this predicate.

INCLUDE VARCHAR2(3
0)

'N' if the predicate should not be included in a SVP table. 'Y' or
NULL if the predicate should be included in an SVP table. 'V' if the
predicate should be included in an SVP table and the lexical value
components of its object should also be included.
'<SEQUENCE_POSITION>C' if the predicate should be included in
position <SEQUENCE_POSITION> of a PCN table, and
'<SEQUENCE_POSITION>CV' if the predicate should be included in
position <SEQUENCE_POSITION> of a PCN table and the lexical value
components of its object should also be included.

A second procedure, SEM_APIS.BUILD_SPM_TAB, creates and populates SVP, MVP
and PCN tables.

When you supply a predicate information table as input to SEM_APIS.BUILD_SPM_TAB to
build an SVP table, the procedure creates an SVP table that contains each predicate
with a MAX_CNT value of 1 and an INCLUDE value of NULL, 'Y', or 'V'. Predicates with
an INCLUDE value of 'N' will not be added to the SVP table.

When you supply a predicate information table as input to SEM_APIS.BUILD_SPM_TAB to
build a PCN table, the procedure creates a PCN table for the sequence of properties
with an INCLUDE value of '<SEQUENCE_POSITION>C' or '<SEQUENCE_POSITION>CV' in
the order specified by their sequence positions starting from position 1. Predicates with
other INCLUDE values will not be added to the PCN table.

When you supply a predicate URI to SEM_APIS.BUILD_SPM_TAB, the procedure creates
an MVP table for the supplied predicate.

Note:

Ensure that the network owner must have read privileges on the predicate
information table when building an SVP or a PCN table.

The following example illustrates creation of a set of SPM tables for an RDF model
with SEM_APIS.GATHER_SPM_INFO and SEM_APIS.BUILD_SPM_TAB. These SPM tables
are automatically used for SPARQL query execution. This example uses SEM_MATCH,
but SPARQL queries executed through other APIs, such as Support for Apache Jena
or RDF server will also automatically use SPM tables.

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-94

Example 1-94 Creating SPM Tables

SQL> connect rdfuser/rdfuser;
Connected.
SQL>
SQL> -- create a schema-private network named NET1 owned by RDFUSER
SQL> exec
sem_apis.create_sem_network('tbs_3',network_owner=>'RDFUSER',network_name=>'NET1');

PL/SQL procedure successfully completed.

SQL>
SQL> -- create a semantic model
SQL> exec
sem_apis.create_sem_model('M1',null,null,network_owner=>'RDFUSER',network_name=>'NET1')
;

PL/SQL procedure successfully completed.

SQL>
SQL> -- add some data
SQL> begin
 2 sem_apis.update_model('M1',
 3 'PREFIX : <http://www.example.com#>
 4 PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
 5 INSERT DATA {
 6 :john :fname "John"
 7 ; :lname "Brown"
 8 ; :height 72
 9 ; :email "john@email-example.com"
 10 ; :email "johnnyB@email-example.com"
 11 ; :nickName "Johnny B"
 12 ; :friendOf :ann
 13 ; :address [
 14 :addrNum 20
 15 ; :addrStreet "Elm Street"
 16 ; :addrCityState [
 17 :addrCity "Boston"
 18 ; :addrState "MA"]] .
 19 :ann :fname "Ann"
 20 ; :lname "Green"
 21 ; :height 65
 22 ; :email "ann@email-example.com"
 23 ; :nickName "Annie"
 24 ; :friendOf :john
 25 ; :friendOf :bill
 26 ; :address [
 27 :addrNum 10
 28 ; :addrStreet "Main Street"
 29 ; :addrCityState [
 30 :addrCity "New York"
 31 ; :addrState "NY"]] .
 32 :bill :fname "Bill"
 33 ; :lname "Red"
 34 ; :height 70
 35 ; :email "bill@email-example.com"
 36 ; :nickName "Billy"
 37 ; :friendOf :ann
 38 ; :friendOf :jane
 39 ; :address [

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-95

 40 :addrNum 5
 41 ; :addrStreet "Peachtree Street"
 42 ; :addrCityState [
 43 :addrCity "Atlanta"
 44 ; :addrState "GA"]] .
 45 :jane :fname "Jane"
 46 ; :lname "Blue"
 47 ; :height 68
 48 ; :email "jane@email-example.com"
 49 ; :email "jane2@email-example.com"
 50 ; :friendOf :bill
 51 ; :address [
 52 :addrNum 101
 53 ; :addrStreet "Maple Street"
 54 ; :addrCityState [
 55 :addrCity "Chicago"
 56 ; :addrState "IL"]] .
 57 }'
 58 ,network_owner=>'RDFUSER'
 59 ,network_name=>'NET1');
 60 end;
 61 /

PL/SQL procedure successfully completed.

SQL>
SQL> -- gather optimizer statistics
SQL> begin
 2 sem_perf.gather_stats(
 3 network_owner=>'RDFUSER',
 4 network_name=>'NET1');
 5 end;
 6 /

PL/SQL procedure successfully completed.

SQL>
SQL> -- create and populate a predicate information table named M1_PRED_INFO
SQL> begin
 2 sem_apis.gather_spm_info(
 3 model_name=>'M1',
 4 pred_info_tabname=>'M1_PRED_INFO',
 5 degree=>2,
 6 network_owner=>'RDFUSER',
 7 network_name=>'NET1');
 8 end;
 9 /

PL/SQL procedure successfully completed.

SQL>
SQL> -- check M1_PRED_INFO
SQL> select * from M1_PRED_INFO;

 P_VALUE_ID PRED_NAME MIN_CNT MAX_CNT
MED_CNT AVG_CNT TOT_CNT INCLUDE
-------------------- -- ------- -------
------- ------- ------- -------
 911778881896408883 http://www.example.com#addrCity 1
1 1.0 1.0 4
 1285894645615718351 http://www.example.com#friendOf 1

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-96

2 1.5 1.5 6
 2282073771135796724 http://www.example.com#addrCityState 1 1
1.0 1.0 4
 6664054864634376526 http://www.example.com#addrNum 1 1
1.0 1.0 4
 7644445801044650266 http://www.example.com#lname 1 1
1.0 1.0 4
 8337314745347241189 http://www.example.com#fname 1 1
1.0 1.0 4
 594560333771551504 http://www.example.com#addrState 1 1
1.0 1.0 4
 2558054308995111125 http://www.example.com#nickName 1 1
1.0 1.0 3
 2930492586059823454 http://www.example.com#email 1 2
1.5 1.5 6
 3131489775428233363 http://www.example.com#addrStreet 1 1
1.0 1.0 4
 4791477124431525340 http://www.example.com#height 1 1
1.0 1.0 4
 5055192271510902740 http://www.example.com#address 1 1
1.0 1.0 4

12 rows selected.

SQL>
SQL> -- mark all properties with 'N' to initialize pred
SQL> update M1_PRED_INFO
 2 set INCLUDE = 'N';

12 rows updated.

SQL> commit;

Commit complete.

SQL>
SQL> -- create a SVP table for single-valued predicates :fname, :lname, :height
SQL> -- mark the desired properties for inclusion
SQL> update M1_PRED_INFO
 2 set INCLUDE = 'Y'
 3 where PRED_NAME IN
 4 ('http://www.example.com#fname',
 5 'http://www.example.com#lname',
 6 'http://www.example.com#height');

3 rows updated.

SQL> commit;

Commit complete.

SQL>
SQL> begin
 2 sem_apis.build_spm_tab(
 3 model_name=>'M1',
 4 pred_info_tabname=>'M1_PRED_INFO',
 5 pred_name=>NULL,
 6 options=>' svp_name=fnm_lnm_hght ',
 7 degree=>2,
 8 network_owner=>'RDFUSER',
 9 network_name=>'NET1');

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-97

 10 end;
 11 /

PL/SQL procedure successfully completed.

SQL>
SQL> -- check the SVP table
SQL> select * from NET1#RDF_XT$SVP_M1__FNM_LNM_HGHT;

 START_NODE_ID G4791477124431525340 P4791477124431525340
G7644445801044650266 P7644445801044650266 G8337314745347241189
P8337314745347241189
-------------------- -------------------- --------------------
-------------------- -------------------- --------------------

 1399946303865654932
7949294891880010615
5036507830384741776 2838435233532231409
 8972322488425499169
2028730158517518732
6648986869806945928 3239737248730612593
 7024748068782994892
7603694794035016230
8802343394415720481 9071571320455459462
 8531245907959123227
4318017261525689661
9011354822640550059 50859040499294923

4 rows selected.

SQL>
SQL> -- create a PCN table for :address/:addrCityState/:addrState
SQL> update M1_PRED_INFO
 2 set INCLUDE = 'N';

12 rows updated.

SQL> commit;

Commit complete.

SQL>
SQL> update M1_PRED_INFO
 2 set INCLUDE = '1C'
 3 where PRED_NAME = 'http://www.example.com#address';

1 row updated.

SQL> update M1_PRED_INFO
 2 set INCLUDE = '2C'
 3 where PRED_NAME = 'http://www.example.com#addrCityState';

1 row updated.

SQL> update M1_PRED_INFO
 2 set INCLUDE = '3C'
 3 where PRED_NAME = 'http://www.example.com#addrState';

1 row updated.

SQL> commit;

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-98

Commit complete.

SQL>
SQL> begin
 2 sem_apis.build_spm_tab(
 3 model_name=>'M1',
 4 pred_info_tabname=>'M1_PRED_INFO',
 5 pred_name=>NULL,
 6 options=>' pcn_name=addr_state ',
 7 degree=>2,
 8 network_owner=>'RDFUSER',
 9 network_name=>'NET1');
 10 end;
 11 /

PL/SQL procedure successfully completed.

SQL>
SQL> -- check the PCN table
SQL> select * from NET1#RDF_XT$PCN_M1__ADDR_STATE;

 START_NODE_ID G5055192271510902740 P5055192271510902740 G2282073771135796724
P2282073771135796724 G594560333771551504 P594560333771551504
-------------------- -------------------- -------------------- --------------------
-------------------- -------------------- --------------------
 8972322488425499169 2996607272891371652
505150577263043324 4933462079191011078
 1399946303865654932 2974015839258705958
729260529101069318 2028557412112123936
 7024748068782994892 2903848673573351428
3356095188852695398 7995579594576433205
 8531245907959123227 7284477346582444972
5572563681970943459 5359878998404290171

4 rows selected.

SQL>
SQL> -- create MVP tables for :email and :friendOf
SQL> -- :email
SQL> begin
 2 sem_apis.build_spm_tab(
 3 model_name=>'M1',
 4 pred_info_tabname=>NULL,
 5 pred_name=>'<http://www.example.com#email>',
 6 degree=>2,
 7 network_owner=>'RDFUSER',
 8 network_name=>'NET1');
 9 end;
 10 /

PL/SQL procedure successfully completed.

SQL>
SQL> -- check the MVP table
SQL> select * from NET1#RDF_XT$MVP_M1_P2930492586059823454 order by
P2930492586059823454;

START_NODE_ID G2930492586059823454 P2930492586059823454
-------------------- -------------------- --------------------
8531245907959123227 1846003049324830366

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-99

7024748068782994892 2096397932624357828
1399946303865654932 6100245385739701229
7024748068782994892 6480436012276020283
8972322488425499169 7251371240613573863
8531245907959123227 7834835188342349976

6 rows selected.

SQL>
SQL> -- :friendOf
SQL> begin
 2 sem_apis.build_spm_tab(
 3 model_name=>'M1',
 4 pred_info_tabname=>NULL,
 5 pred_name=>'<http://www.example.com#friendOf>',
 6 degree=>2,
 7 network_owner=>'RDFUSER',
 8 network_name=>'NET1');
 9 end;
 10 /

PL/SQL procedure successfully completed.

SQL>
SQL> -- check the MVP table
SQL> select * from NET1#RDF_XT$MVP_M1_P1285894645615718351;

 START_NODE_ID G1285894645615718351 P1285894645615718351
-------------------- -------------------- --------------------
 7024748068782994892 1399946303865654932
 8972322488425499169 1399946303865654932
 1399946303865654932 7024748068782994892
 8972322488425499169 8531245907959123227
 1399946303865654932 8972322488425499169
 8531245907959123227 8972322488425499169

6 rows selected.

SQL>
SQL> -- gather optimizer statistics on SPM auxiliary tables
SQL> begin
 2 sem_perf.analyze_aux_tables(
 3 model_name=>'M1',
 4 network_owner=>'RDFUSER',
 5 network_name=>'NET1');
 6 end;
 7 /

PL/SQL procedure successfully completed.

SQL>
SQL> -- Execute a SPARQL query that uses SPM tables
SQL> SELECT s, fname, lname, height, email, nick, friend, state
 2 FROM TABLE(SEM_MATCH(
 3 'PREFIX : <http://www.example.com#>
 4 SELECT *
 5 WHERE {
 6 ?s :fname ?fname
 7 ; :lname ?lname
 8 ; :height ?height

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-100

 9 ; :email ?email
 10 ; :nickName ?nick
 11 ; :friendOf ?friend
 12 ; :address/:addrCityState/:addrState ?state
 13 }'
 14 ,sem_models('M1')
 15 ,null,null,null,null
 16 ,' '
 17 ,null,null
 18 ,'RDFUSER','NET1'))
 19 ORDER BY 1,2,3,4,5,6,7;

S FNAME LNAME HEIGHT EMAIL
NICK FRIEND STATE
------------------------------ ------- ------- ------ ----------------------------
---------- ------------------------------ -----
http://www.example.com#ann Ann Green 65 ann@email-example.com
Annie http://www.example.com#bill NY
http://www.example.com#ann Ann Green 65 ann@email-example.com
Annie http://www.example.com#john NY
http://www.example.com#bill Bill Red 70 bill@email-example.com
Billy http://www.example.com#ann GA
http://www.example.com#bill Bill Red 70 bill@email-example.com
Billy http://www.example.com#jane GA
http://www.example.com#john John Brown 72 john@email-example.com
Johnny B http://www.example.com#ann MA
http://www.example.com#john John Brown 72 johnnyB@email-example.com
Johnny B http://www.example.com#ann MA

6 rows selected.

SQL>
SQL> -- Look at the SQL translation to show SPM table usage.
SQL> --
SQL> -- This SQL evaluates 9 triple patterns with only 4 joins
SQL> -- instead of the 8 joins that would normally be required
SQL> -- without SPM tables.
SQL> --
SQL> -- The SVP table is used for :fname, :lname, :height.
SQL> -- MVP tables are used for :email and :friendOf.
SQL> -- RDF_LINK$ isused for :nickName.
SQL> -- The PCN table is used for the sequence
SQL> -- :address/:addrCityState/:addrState
SQL> SELECT SEM_APIS.SPARQL_TO_SQL(
 2 'PREFIX : <http://www.example.com#>
 3 SELECT *
 4 WHERE {
 5 ?s :fname ?fname
 6 ; :lname ?lname
 7 ; :height ?height
 8 ; :email ?email
 9 ; :nickName ?nick
 10 ; :friendOf ?friend
 11 ; :address/:addrCityState/:addrState ?state
 12 }'
 13 ,sem_models('M1')
 14 ,null,null,null
 15 ,' '
 16 ,null,null
 17 ,'RDFUSER','NET1') AS SQL_TRANS
 18 FROM SYS.DUAL;

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-101

SQL_TRANS

SELECT * FROM (
SELECT /*+ NO_MERGE(R) NO_SWAP_JOIN_INPUTS(R) LEADING(R V0 V1 V2 V3 V4 V5 V6 V7)
NO_SWAP_JOIN_INPUTS(V0) NO_SWAP_JOIN_INPUTS(V1) NO_SWAP_JOIN_INPUTS(V2)
NO_SWAP_JOIN_INPUTS(V3) NO_SWAP_JOIN_INPUTS(V4) NO_SWAP_JOIN_INPUTS(V5)
NO_SWAP_JOIN_INPUTS(V6) NO_SWAP_JOIN_INPUTS(V7) */ V0.VNAME_PREFIX ||
V0.VNAME_SUFFIX AS S,
V0.VALUE_ID AS S$RDFVID, V0.VNAME_PREFIX AS S$_PREFIX, V0.VNAME_SUFFIX AS
S$_SUFFIX, (CASE WHEN V0.VALUE_TYPE IS NULL THEN NULL WHEN V0.VALUE_TYPE IN
('UR','URI') THEN 'URI'
 WHEN V0.VALUE_TYPE IN ('BN', 'BLN') THEN 'BLN'
 ELSE 'LIT'
END) AS S$RDFVTYP, V0.LONG_VALUE AS S$RDFCLOB, V0.LITERAL_TYPE AS S$RDFLTYP,
V0.LANGUAGE_TYPE AS S$RDFLANG,
… OMITTED …
1 AS SEM$ROWNUM
FROM (SELECT SVP0.START_NODE_ID AS S$RDFVID,
SVP0.P7644445801044650266 AS LNAME$RDFVID,
MVP1.P1285894645615718351 AS FRIEND$RDFVID,
T4.CANON_END_NODE_ID AS NICK$RDFVID,
PCN0.P594560333771551504 AS STATE$RDFVID,
SVP0.P4791477124431525340 AS HEIGHT$RDFVID,
MVP0.P2930492586059823454 AS EMAIL$RDFVID,
SVP0.P8337314745347241189 AS FNAME$RDFVID,
SVP0.START_NODE_ID AS BGP$1
FROM (
SELECT * FROM "RDFUSER".NET1#RDFM_M1) T4,
"RDFUSER".NET1#RDF_XT$SVP_M1__FNM_LNM_HGHT SVP0,
"RDFUSER".NET1#RDF_XT$PCN_M1__ADDR_STATE PCN0,
"RDFUSER".NET1#RDF_XT$MVP_M1_P2930492586059823454 MVP0,
"RDFUSER".NET1#RDF_XT$MVP_M1_P1285894645615718351 MVP1
WHERE SVP0.P8337314745347241189 IS NOT NULL AND
SVP0.P7644445801044650266 IS NOT NULL AND
SVP0.P4791477124431525340 IS NOT NULL AND
T4.P_VALUE_ID = 2558054308995111125 AND
SVP0.START_NODE_ID = MVP0.START_NODE_ID AND
SVP0.START_NODE_ID = T4.START_NODE_ID AND
SVP0.START_NODE_ID = MVP1.START_NODE_ID AND
SVP0.START_NODE_ID = PCN0.START_NODE_ID
) R,
"RDFUSER".NET1#RDF_VALUE$ V0, "RDFUSER".NET1#RDF_VALUE$ V1,
"RDFUSER".NET1#RDF_VALUE$ V2, "RDFUSER".NET1#RDF_VALUE$ V3,
"RDFUSER".NET1#RDF_VALUE$ V4, "RDFUSER".NET1#RDF_VALUE$ V5,
"RDFUSER".NET1#RDF_VALUE$ V6, "RDFUSER".NET1#RDF_VALUE$ V7
WHERE (1=1) AND (R.S$RDFVID = V0.VALUE_ID) AND (R.LNAME$RDFVID = V1.VALUE_ID)
AND (R.FRIEND$RDFVID = V2.VALUE_ID) AND (R.NICK$RDFVID = V3.VALUE_ID) AND
(R.STATE$RDFVID = V4.VALUE_ID) AND (R.HEIGHT$RDFVID = V5.VALUE_ID) AND
(R.EMAIL$RDFVID = V6.VALUE_ID) AND (R.FNAME$RDFVID = V7.VALUE_ID)
) WHERE (1=1)

1 row selected.

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-102

1.6.13.5 Including Lexical Values in SPM Auxiliary Tables
SPM auxiliary tables include value ids for object values by default. You can also include
lexical values for objects in SPM tables. Including lexical values can eliminate joins with the
RDF_VALUE$ table for faster query execution at the expense of extra storage requirements.

If you choose to include lexical values for a property, new columns for the lexical property
values are added to the SVP, PCN tables. Note that these columns correspond exactly to the
columns with the same name in RDF_VALUE$. The following table describes the columns that
are added to include lexical property values:

Table 1-22 Lexical Values Columns in MVN, PCN and SVP Tables

Column Name Type Description

<PREDICATE_ID>_VALUE_TYPE VARCHAR2(10) The type of text information stored in the
VALUE_NAME column. Possible values are:
• UR - URI

• BN - blank node

• PL - plain literal

• PL@ - plain literal with a language tag

• PLL - plain long literal
• PLL@ - plain long literal with a language

tag
• TL - typed literal
• TLL - typed long literal.

A long literal is a literal with more than
4000 bytes.

<PREDICATE_ID>_VNAME_PRE
FIX

VARCHAR2(4000) If the length of the lexical value is 4000 bytes
or less, this column stores a prefix of a
portion of the lexical value. The
SEM_APIS.VALUE_NAME_PREFIX procedure
can be used for prefix computation.

For example, the prefix for the portion of the
lexical value <http://www.w3.org/
1999/02/22-rdf-syntax-ns#type>
without the angle brackets is http://
www.w3.org/1999/02/22-rdf-syntax-
ns#.

<PREDICATE_ID>_VNAME_SUF
FIX

VARCHAR2(512) If the length of the lexical value is 4000 bytes
or less, this column stores a suffix of a
portion of the lexical value. The
SEM_APIS.VALUE_NAME_SUFFIX function
can be used for suffix computation. For the
lexical value mentioned in the description of
the VNAME_PREFIX column, the suffix is type

<PREDICATE_ID>_LITERAL_TYP
E

VARCHAR2(1000) For typed literals, the type information;
otherwise, null. For example, for a row
representing a creation date of 1999-08-16,
the VALUE_TYPE column can contain TL, and
the LITERAL_TYPE column can contain
http://www.w3.org/2001/
XMLSchema#date.

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-103

Table 1-22 (Cont.) Lexical Values Columns in MVN, PCN and SVP Tables

Column Name Type Description

<PREDICATE_ID>_LANGUAGE_T
YPE

VARCHAR2(80) Language tag (for example, fr for French) for
a literal with a language tag (that is, if
VALUE_TYPE is PL@ or PLL@). Otherwise, this
column has a null value.

<PREDICATE_ID>_ORDER_NUM NUMBER Represents order for number type. Used to
improve performance on ORDER BY queries.

<PREDICATE_ID>_ORDER_DAT
E

TIMESTAMP(6)
WITH TIME ZONE

Represents order based on date type Used
to improve performance on ORDER BY
queries.

<PREDICATE_ID>_LONG_VALUE VARCHAR2(30) The character string if the length of the
lexical value is greater than 4000 bytes.
Otherwise, this column has a null value.

.

There are several ways to include lexical values when building SPM auxiliary tables.
The inclusion of lexical values can be controlled for each predicate. The various ways
to include lexical values are shown below:

• When building or re-building an SVP, MVP or a PCN table:

– Setting the value of INCLUDE to 'V' or '<SEQUENCE_POSITION>CV' for each
predicate in the predicate information table for which you would like to include
lexical values.

– Executing SEM_APIS.BUILD_SPM_TAB with the string 'INCLUDE_VALUE=T' added
to the options argument.

Note:

The above two options are the most efficient ways for adding a large
number of in-line lexical values, when building or rebuilding an SVP,
MVP or a PCN table.

• When altering an existing SVP, PCN or MVP table:

– Executing SEM_APIS.ALTER_SPM_TAB with the command equal to 'ADD_VALUE'
and pred_name equal to the predicate for which you would like to include
lexical values.

The example below continues from Example 1-94. It illustrates how to add lexical
values for :fname, :height, :email and :addrState.

Example 1-95 Including Lexical Values in SPM Auxiliary Tables

SQL> -- Rebuild the SVP table so that it includes lexical values for
SQL> -- :fname and :height
SQL> -- Set INCLUDE='Y' for :lname
SQL> -- Set INCLUDE='V' for :fname and :height
SQL> create or replace view M1_pred_info_view as
 2 select p_value_id, pred_name, max_cnt
 3 , (case pred_name
 4 when 'http://www.example.com#fname' then 'V'

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-104

 5 when 'http://www.example.com#lname' then 'Y'
 6 when 'http://www.example.com#height' then 'V'
 7 else 'N'
 8 end) include
 9 from M1_pred_info
 10 ;

View created.

SQL>
SQL> -- Rebuild the SVP table. Note the use of CREATE_ANYWAY=T for rebuild.
SQL> -- Note that a rebuild is the most efficient way to add a large number
SQL> -- of in-line lexical values.
SQL> begin
 2 sem_apis.build_spm_tab(
 3 model_name=>'M1',
 4 pred_info_tabname=>'M1_PRED_INFO_VIEW',
 5 pred_name=>NULL,
 6 degree=>2,
 7 options=>' svp_name=fnm_lnm_hght CREATE_ANYWAY=T ',
 8 network_owner=>'RDFUSER',
 9 network_name=>'NET1');
 10 end;
 11 /

PL/SQL procedure successfully completed.

SQL>
SQL> -- Check columns in the SVP table
SQL> desc NET1#RDF_XT$SVP_M1__FNM_LNM_HGHT;
Name Null? Type
---------------------------------- -------- ---------------------------
START_NODE_ID NOT NULL NUMBER
G4791477124431525340 NUMBER
P4791477124431525340 NUMBER
G8337314745347241189 NUMBER
P8337314745347241189 NUMBER
G7644445801044650266 NUMBER
P7644445801044650266 NUMBER
P4791477124431525340_VALUE_TYPE VARCHAR2(10)
P4791477124431525340_VNAME_PREFIX VARCHAR2(4000)
P4791477124431525340_VNAME_SUFFIX VARCHAR2(512)
P4791477124431525340_LITERAL_TYPE VARCHAR2(1000)
P4791477124431525340_LANGUAGE_TYPE VARCHAR2(80)
P4791477124431525340_ORDER_NUM NUMBER
P4791477124431525340_ORDER_DATE TIMESTAMP(6) WITH TIME ZONE
P4791477124431525340_LONG_VALUE CLOB
P8337314745347241189_VALUE_TYPE VARCHAR2(10)
P8337314745347241189_VNAME_PREFIX VARCHAR2(4000)
P8337314745347241189_VNAME_SUFFIX VARCHAR2(512)
P8337314745347241189_LITERAL_TYPE VARCHAR2(1000)
P8337314745347241189_LANGUAGE_TYPE VARCHAR2(80)
P8337314745347241189_ORDER_NUM NUMBER
P8337314745347241189_ORDER_DATE TIMESTAMP(6) WITH TIME ZONE
P8337314745347241189_LONG_VALUE
CLOB

CLOB

SQL>
SQL> -- create a PCN table for :address/:addrCityState/:addrState

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-105

SQL> -- Add in-line lexical value for :addrState
SQL> -- Add trailing V to indicate value inclusion
SQL> create or replace view M1_pred_info_view as
 2 select p_value_id, pred_name, max_cnt,
 3 (case pred_name
 4 when 'http://www.example.com#address' then '1C'
 5 when 'http://www.example.com#addrCityState' then '2C'
 6 when 'http://www.example.com#addrState' then '3CV'
 7 else 'N'
 8 end) include
 9 from M1_pred_info
 10 ;

View created.
SQL>
SQL> begin
 2 sem_apis.build_spm_tab(
 3 model_name=>'M1',
 4 pred_info_tabname=>'M1_PRED_INFO_VIEW',
 5 pred_name=>NULL,
 6 options=>' pcn_name=addr_state CREATE_ANYWAY=T ',
 7 degree=>2,
 8 network_owner=>'RDFUSER',
 9 network_name=>'NET1');
 10 end;
 11 /

PL/SQL procedure successfully completed.

SQL>
SQL> -- check the PCN table columns
SQL> desc NET1#RDF_XT$PCN_M1__ADDR_STATE;
Name Null? Type
--------------------------------- -------- ---------------------------
START_NODE_ID NOT NULL NUMBER
G5055192271510902740 NUMBER
P5055192271510902740 NUMBER
G2282073771135796724 NUMBER
P2282073771135796724 NUMBER
G594560333771551504 NUMBER
P594560333771551504 NUMBER
P594560333771551504_VALUE_TYPE VARCHAR2(10)
P594560333771551504_VNAME_PREFIX VARCHAR2(4000)
P594560333771551504_VNAME_SUFFIX VARCHAR2(512)
P594560333771551504_LITERAL_TYPE VARCHAR2(1000)
P594560333771551504_LANGUAGE_TYPE VARCHAR2(80)
P594560333771551504_ORDER_NUM NUMBER
P594560333771551504_ORDER_DATE TIMESTAMP(6) WITH TIME ZONE
P594560333771551504_LONG_VALUE
CLOB

 CLOB

SQL>
SQL> -- Add in-line lexical value for email
SQL> begin
 2 sem_apis.alter_spm_tab(
 3 model_name=>'m1',
 4 pred_name=>'<http://www.example.com#email>',
 5 command=>'ADD_VALUE',
 6 network_owner=>'RDFUSER',

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-106

 7 network_name=>'NET1');
 8 end;
 9 /

PL/SQL procedure successfully completed.

SQL>
SQL> -- Check columns in the MVP table for email
SQL> desc NET1#RDF_XT$MVP_M1_P2930492586059823454;
Name Null? Type
---------------------------------- -------- ---------------------------
START_NODE_ID NOT NULL NUMBER
G2930492586059823454 NUMBER
P2930492586059823454 NUMBER
P2930492586059823454_VALUE_TYPE VARCHAR2(10)
P2930492586059823454_VNAME_PREFIX VARCHAR2(4000)
P2930492586059823454_VNAME_SUFFIX VARCHAR2(512)
P2930492586059823454_LITERAL_TYPE VARCHAR2(1000)
P2930492586059823454_LANGUAGE_TYPE VARCHAR2(80)
P2930492586059823454_ORDER_NUM NUMBER
P2930492586059823454_ORDER_DATE TIMESTAMP(6) WITH TIME ZONE
P2930492586059823454_LONG_VALUE CLOB

SQL>
SQL> -- Gather statistics since the tables have changed
SQL> begin
 2 sem_perf.analyze_aux_tables(
 3 model_name=>'M1',
 4 network_owner=>'RDFUSER',
 5 network_name=>'NET1');
 6 end;
 7 /

PL/SQL procedure successfully completed.

SQL>
SQL> -- Run a SPARQL query using the new auxiliary tables
SQL> SELECT s, fname, lname, height, email, nick, friend, state
 2 FROM TABLE(SEM_MATCH(
 3 'PREFIX : <http://www.example.com#>
 4 SELECT *
 5 WHERE {
 6 ?s :fname ?fname
 7 ; :lname ?lname
 8 ; :height ?height
 9 ; :email ?email
 10 ; :nickName ?nick
 11 ; :friendOf ?friend
 12 ; :address/:addrCityState/:addrState ?state .
 13 }'
 14 ,sem_models('M1')
 15 ,null,null,null,null
 16 ,' '
 17 ,null,null
 18 ,'RDFUSER','NET1'))
 19 ORDER BY 1,2,3,4,5,6,7;

S FNAME LNAME HEIGHT EMAIL
NICK FRIEND STATE
------------------------------ ------- ------- ------ ---------------------------
---------- ------------------------------ -----

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-107

http://www.example.com#ann Ann Green 65 ann@email-
example.com Annie http://www.example.com#bill NY
http://www.example.com#ann Ann Green 65 ann@email-
example.com Annie http://www.example.com#john NY
http://www.example.com#bill Bill Red 70 bill@email-
example.com Billy http://www.example.com#ann GA
http://www.example.com#bill Bill Red 70 bill@email-
example.com Billy http://www.example.com#jane GA
http://www.example.com#john John Brown 72 john@email-
example.com Johnny B http://www.example.com#ann MA
http://www.example.com#john John Brown 72 johnnyB@email-
example.com Johnny B http://www.example.com#ann MA

6 rows selected.

SQL>
SQL> -- Look at the SQL translation to show in-line lexical
SQL> -- value usage.
SQL> --
SQL> -- This SQL has eliminated 4 RDF_VALUE$ joins compared
SQL> -- to the previous query execution.
SQL> SELECT SEM_APIS.SPARQL_TO_SQL(
 2 'PREFIX : <http://www.example.com#>
 3 SELECT *
 4 WHERE {
 5 ?s :fname ?fname
 6 ; :lname ?lname
 7 ; :height ?height
 8 ; :email ?email
 9 ; :nickName ?nick
 10 ; :friendOf ?friend
 11 ; :address/:addrCityState/:addrState ?state .
 12 }'
 13 ,sem_models('M1')
 14 ,null,null,null
 15 ,' '
 16 ,null,null
 17 ,'RDFUSER','NET1') AS SQL_TRANS
 18 FROM SYS.DUAL;

SQL_TRANS

SELECT * FROM (
SELECT /*+ NO_MERGE(R) NO_SWAP_JOIN_INPUTS(R) LEADING(R V0 V1 V2 V3)
NO_SWAP_JOIN_INPUTS(V0) NO_SWAP_JOIN_INPUTS(V1) NO_SWAP_JOIN_INPUTS(V2)
NO_SWAP_JOIN_INPUTS(V3) */ V0.VNAME_PREFIX || V0.VNAME_SUFFIX AS S, V0.VALUE_ID
AS S$RDFVID, V0.VNAME_PREFIX AS S$_PREFIX, V0.VNAME_SUFFIX AS S$_SUFFIX, (CASE
WHEN V0.VALUE_TYPE
IS NULL THEN NULL WHEN V0.VALUE_TYPE IN ('UR','URI') THEN 'URI'
 WHEN V0.VALUE_TYPE IN ('BN', 'BLN') THEN 'BLN'
 ELSE 'LIT'
END) AS S$RDFVTYP, V0.LONG_VALUE AS S$RDFCLOB, V0.LITERAL_TYPE AS S$RDFLTYP,
V0.LANGUAGE_TYPE AS S$RDFLANG,
… OMITTED …
1 AS SEM$ROWNUM
FROM (SELECT SVP0.START_NODE_ID AS S$RDFVID,
SVP0.P7644445801044650266 AS LNAME$RDFVID,
MVP1.P1285894645615718351 AS FRIEND$RDFVID,

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-108

T4.CANON_END_NODE_ID AS NICK$RDFVID,
PCN0.P594560333771551504_VNAME_PREFIX || PCN0.P594560333771551504_VNAME_SUFFIX AS
STATE, (CASE WHEN PCN0.P594560333771551504_VALUE_TYPE IS NULL THEN NULL WHEN
PCN0.P594560333771551504_VALUE_TYPE IN ('UR','URI') THEN 'URI'
 WHEN PCN0.P594560333771551504_VALUE_TYPE IN ('BN', 'BLN') THEN 'BLN'
 ELSE 'LIT'
END) AS STATE$RDFVTYP, PCN0.P594560333771551504 AS STATE$RDFVID,
PCN0.P594560333771551504_VNAME_PREFIX AS STATE$_PREFIX,
PCN0.P594560333771551504_VNAME_SUFFIX AS STATE$_SUFFIX,
PCN0.P594560333771551504_LITERAL_TYPE AS STATE$RDFLTYP,
PCN0.P594560333771551504_LANGUAGE_TYPE AS STATE$RDFLANG, PCN0.P594560333771551504_LONG
_VALUE AS STATE$RDFCLOB,
SVP0.P4791477124431525340_VNAME_PREFIX || SVP0.P4791477124431525340_VNAME_SUFFIX AS
HEIGHT, (CASE WHEN SVP0.P4791477124431525340_VALUE_TYPE IS NULL THEN NULL WHEN
SVP0.P4791477124431525340_VALUE_TYPE IN ('UR','URI') THEN 'URI'
 WHEN SVP0.P4791477124431525340_VALUE_TYPE IN ('BN', 'BLN') THEN 'BLN'
 ELSE 'LIT'
END) AS HEIGHT$RDFVTYP, SVP0.P4791477124431525340 AS HEIGHT$RDFVID,
SVP0.P4791477124431525340_VNAME_PREFIX AS HEIGHT$_PREFIX,
SVP0.P4791477124431525340_VNAME_SUFFIX AS HEIGHT$_SUFFIX,
SVP0.P4791477124431525340_LITERAL_TYPE AS HEIGHT$RDFLTYP,
SVP0.P4791477124431525340_LANGUAGE_TYPE AS HEIGHT$RDFLANG, SVP0.P479147712443
1525340_LONG_VALUE AS HEIGHT$RDFCLOB,
MVP0.P2930492586059823454_VNAME_PREFIX || MVP0.P2930492586059823454_VNAME_SUFFIX AS
EMAIL, (CASE WHEN MVP0.P2930492586059823454_VALUE_TYPE IS NULL THEN NULL WHEN
MVP0.P2930492586059823454_VALUE_TYPE IN ('UR','URI') THEN 'URI'
 WHEN MVP0.P2930492586059823454_VALUE_TYPE IN ('BN', 'BLN') THEN 'BLN'
 ELSE 'LIT'
END) AS EMAIL$RDFVTYP, MVP0.P2930492586059823454 AS EMAIL$RDFVID,
MVP0.P2930492586059823454_VNAME_PREFIX AS EMAIL$_PREFIX,
MVP0.P2930492586059823454_VNAME_SUFFIX AS EMAIL$_SUFFIX,
MVP0.P2930492586059823454_LITERAL_TYPE AS EMAIL$RDFLTYP,
MVP0.P2930492586059823454_LANGUAGE_TYPE AS EMAIL$RDFLANG, MVP0.P293049258605982345
4_LONG_VALUE AS EMAIL$RDFCLOB,
SVP0.P8337314745347241189_VNAME_PREFIX || SVP0.P8337314745347241189_VNAME_SUFFIX AS
FNAME, (CASE WHEN SVP0.P8337314745347241189_VALUE_TYPE IS NULL THEN NULL WHEN
SVP0.P8337314745347241189_VALUE_TYPE IN ('UR','URI') THEN 'URI'
 WHEN SVP0.P8337314745347241189_VALUE_TYPE IN ('BN', 'BLN') THEN 'BLN'
 ELSE 'LIT'
END) AS FNAME$RDFVTYP, SVP0.P8337314745347241189 AS FNAME$RDFVID,
SVP0.P8337314745347241189_VNAME_PREFIX AS FNAME$_PREFIX,
SVP0.P8337314745347241189_VNAME_SUFFIX AS FNAME$_SUFFIX,
SVP0.P8337314745347241189_LITERAL_TYPE AS FNAME$RDFLTYP,
SVP0.P8337314745347241189_LANGUAGE_TYPE AS FNAME$RDFLANG, SVP0.P833731474534724118
9_LONG_VALUE AS FNAME$RDFCLOB,
SVP0.START_NODE_ID AS BGP$1
FROM (
SELECT * FROM "RDFUSER".NET1#RDFM_M1) T4,
"RDFUSER".NET1#RDF_XT$SVP_M1__FNM_LNM_HGHT SVP0,
"RDFUSER".NET1#RDF_XT$PCN_M1__ADDR_STATE PCN0,
"RDFUSER".NET1#RDF_XT$MVP_M1_P2930492586059823454 MVP0,
"RDFUSER".NET1#RDF_XT$MVP_M1_P1285894645615718351 MVP1
WHERE
SVP0.P8337314745347241189 IS NOT NULL AND
SVP0.P7644445801044650266 IS NOT NULL AND
SVP0.P4791477124431525340 IS NOT NULL AND
T4.P_VALUE_ID = 2558054308995111125 AND
SVP0.START_NODE_ID = MVP0.START_NODE_ID AND
SVP0.START_NODE_ID = T4.START_NODE_ID AND
SVP0.START_NODE_ID = MVP1.START_NODE_ID AND
SVP0.START_NODE_ID = PCN0.START_NODE_ID

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-109

) R,
"RDFUSER".NET1#RDF_VALUE$ V0, "RDFUSER".NET1#RDF_VALUE$ V1,
"RDFUSER".NET1#RDF_VALUE$ V2, "RDFUSER".NET1#RDF_VALUE$ V3
WHERE (1=1) AND (R.S$RDFVID = V0.VALUE_ID) AND (R.LNAME$RDFVID = V1.VALUE_ID)
AND (R.FRIEND$RDFVID = V2.VALUE_ID) AND (R.NICK$RDFVID = V3.VALUE_ID)
) WHERE (1=1)

1 row selected.

SQL>
SQL> -- In addition to value projection. In-line lexical values
SQL> -- can be used to evaluate FILTER conditions.
SQL> -- The value for ?height can be taken directly from the
SQL> -- SVP table in this case.
SQL> SELECT s, height
 2 FROM TABLE(SEM_MATCH(
 3 'PREFIX : <http://www.example.com#>
 4 SELECT ?s ?height
 5 WHERE {
 6 ?s :fname ?fname
 7 ; :lname ?lname
 8 ; :height ?height
 9 FILTER (?height >= 72)
 10 }'
 11 ,sem_models('M1')
 12 ,null,null,null,null
 13 ,' '
 14 ,null,null
 15 ,'RDFUSER','NET1'))
 16 ORDER BY 1,2;

S HEIGHT
------------------------------ ------
http://www.example.com#john 72

1 row selected.

SQL>
SQL> -- Look at the SQL translation to show in-line lexical
SQL> -- value usage for ?height >= 72.
SQL> SELECT SEM_APIS.SPARQL_TO_SQL(
 2 'PREFIX : <http://www.example.com#>
 3 SELECT ?s ?height
 4 WHERE {
 5 ?s :fname ?fname
 6 ; :lname ?lname
 7 ; :height ?height
 8 FILTER (?height >= 72)
 9 }'
 10 ,sem_models('M1')
 11 ,null,null,null
 12 ,' '
 13 ,null,null
 14 ,'RDFUSER','NET1') AS SQL_TRANS
 15 FROM SYS.DUAL;

SQL_TRANS

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-110

SELECT * FROM (
SELECT /*+ NO_MERGE(R) NO_SWAP_JOIN_INPUTS(R) LEADING(R V0) NO_SWAP_JOIN_INPUTS(V0) */
V0.VNAME_PREFIX || V0.VNAME_SUFFIX AS S, V0.VALUE_ID AS S$RDFVID, V0.VNAME_PREFIX AS
S$_PREFIX, V0.VNAME_SUFFIX AS S$_SUFFIX, (CASE WHEN V0.VALUE_TYPE IS NULL THEN NULL
WHEN V0.VALUE_TYPE IN ('UR','URI') THEN 'URI'
 WHEN V0.VALUE_TYPE IN ('BN', 'BLN') THEN 'BLN'
 ELSE 'LIT'
END) AS S$RDFVTYP, V0.LONG_VALUE AS S$RDFCLOB, V0.LITERAL_TYPE AS S$RDFLTYP,
V0.LANGUAGE_TYPE AS S$RDFLANG,
R.HEIGHT, R.HEIGHT$RDFVID, R.HEIGHT$_PREFIX, R.HEIGHT$_SUFFIX, R.HEIGHT$RDFVTYP,
R.HEIGHT$RDFCLOB, R.HEIGHT$RDFLTYP, R.HEIGHT$RDFLANG,
1 AS SEM$ROWNUM
FROM (SELECT SVP0.START_NODE_ID AS S$RDFVID,
SVP0.P7644445801044650266 AS LNAME$RDFVID,
SVP0.P4791477124431525340_VNAME_PREFIX || SVP0.P4791477124431525340_VNAME_SUFFIX AS
HEIGHT, (CASE WHEN SVP0.P4791477124431525340_VALUE_TYPE IS NULL THEN NULL WHEN
SVP0.P4791477124431525340_VALUE_TYPE IN ('UR','URI') THEN 'URI'
 WHEN SVP0.P4791477124431525340_VALUE_TYPE IN ('BN', 'BLN') THEN 'BLN'
 ELSE 'LIT'
END) AS HEIGHT$RDFVTYP, SVP0.P4791477124431525340 AS HEIGHT$RDFVID,
SVP0.P4791477124431525340_VNAME_PREFIX AS HEIGHT$_PREFIX,
SVP0.P4791477124431525340_VNAME_SUFFIX AS HEIGHT$_SUFFIX,
SVP0.P4791477124431525340_LITERAL_TYPE AS HEIGHT$RDFLTYP,
SVP0.P4791477124431525340_LANGUAGE_TYPE AS HEIGHT$RDFLANG, SVP0.P479147712443
1525340_LONG_VALUE AS HEIGHT$RDFCLOB,
SVP0.P8337314745347241189 AS FNAME$RDFVID,
SVP0.START_NODE_ID AS BGP$1
FROM "RDFUSER".NET1#RDF_XT$SVP_M1__FNM_LNM_HGHT SVP0
WHERE
SVP0.P8337314745347241189 IS NOT NULL AND
SVP0.P7644445801044650266 IS NOT NULL AND
SVP0.P4791477124431525340 IS NOT NULL AND
(SVP0.P4791477124431525340_ORDER_NUM >= to_number(72))
) R,
"RDFUSER".NET1#RDF_VALUE$ V0
WHERE (1=1) AND (R.S$RDFVID = V0.VALUE_ID)
) WHERE (1=1)

1 row selected.

1.6.13.6 Creating Secondary Indexes on SPM Auxiliary Tables
For a given SPARQL workload, some predicates are typically accessed together as a group.
Secondary indexes on the SVP tables can speed up such workloads.

The SEM_APIS.CREATE_INDEX_ON_SPM_TAB procedure creates index on the SVP, MVP
and PCN tables for an RDF model.

Table 1-23 SEM_APIS.CREATE_INDEX_ON_SPM_TAB Procedure Parameters

Argument Type Default Description

INDEX_NAME VARCHAR2 Name of the index to be created.

MODEL_NAME VARCHAR2 RDF model that is the source for the data in the
target auxiliary table.

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-111

Table 1-23 (Cont.) SEM_APIS.CREATE_INDEX_ON_SPM_TAB Procedure Parameters

Argument Type Default Description

KEY_STRING VARCHAR2 Index keys are whitespace-separated values, with:

• upto one use of 'S' to indicate position of
start_node_id (if specified, unique index is
created).

• upto one use of G* to indicate position of
parallel-list of all G_IDs corresponding to the
list of predicates (G* precludes use of G+ or
+G).

• multiple 'G+' or '+G' symbols to indicate
selective (associating with immediately
following or immediately preceding predicate)
inclusion of G_ID corresponding to a
predicate in the list(note: +G before any
occurrence of predicates and G+ after all
occurrences of predicates is illegal).

• selected value columns to the index: VP, VS,
VT, LT, LA, VN, VD. As in the case of G, we
can use '+' as prefix or suffix to indicate
association with the P<pid> cols. The '*' suffix
is not allowed.(VP: vname_prefix, VS:
vname_suffix, VT: value type, LT: literal type,
LA: language type, VN: order number, VD:
order date).

PRED_NAME VARCHAR2 NULL A non-NULL value identifies the MVP table to build
the index on.

TABLESPACE_NA
ME

DBMS_ID NULL

DEGREE NUMBER NULL Degree of parallelism.

PREFIXES VARCHAR2 NULL SPARQL preamble style string as shown in the
following examples:
• PREFIX ex: <http://www.example.org/>
• PREFIX xsd: <http://www.w3.org/2001/

XMLSchema#>
• PREFIX dc: <http://purl.org/dc/

elements/1.1/>
PREFIX_LENGTH NUMBER NULL Number of columns to be compressed.

OPTIONS VARCHAR2 NULL • PCN_NAME= : index is created on the named
PCN table

• SVP_NAME= : index is created on the named
SVP table

• CREATE_ANYWAY=T: the index is replaced

NETWORK_OWN
ER

DBMS_ID NULL Name of the network owner.

NETWORK_NAME VARCHAR2 NULL Name of the network.

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-112

Example 1-96 Creating a View to Inspect Indexes on SPM Auxiliary Tables

The following example creates a view to inspect the indexes on all SPM tables in the MYNET
network owned by the current user:

CREATE VIEW spm_index_info AS
SELECT x.index_name, x.table_name, x.uniqueness, x.compression,
x.prefix_length, x.tablespace_name
 , listagg(xc.column_name,',') WITHIN GROUP (ORDER BY
xc.column_position) key
 FROM sys.user_indexes x, sys.user_ind_columns xc
 WHERE x.table_name like 'MYNET#RDF_XT$%' and x.index_name = xc.index_name
GROUP BY x.table_name, x.index_name, x.uniqueness, x.compression,
x.prefix_length, x.tablespace_name;

Example 1-97 Creating Secondary Indexes on SPM Auxiliary Tables

The following example illustrates creation of secondary indexes on SPM auxiliary tables:

SQL> -- create index
SQL> -- SVP
SQL> exec sem_apis.create_index_on_spm_tab('idx1', 'm1', 'ex:works_for +G G+
ex:friend_of S', prefixes=>' PREFIX : <http://wwww.nothing.org/> PREFIX ex: <http://
www.example.org/>', prefix_length=> 4, network_owner=>'rdfuser',
network_name=>'mynet');

PL/SQL procedure successfully completed.

SQL>
SQL> select * from spm_index_info order by 1,2;

INDEX_NAME TABLE_NAME
UNIQUENES COMPRESSION PREFIX_LENGTH TABLESPACE_NAME
-- --
--------- ------------- ------------- ------------------------------
KEY

IDX1 MYNET#RDF_XT$SVP_M1
UNIQUE ENABLED 4 TBS_3
P805152655817489328,G805152655817489328,G2302183899373633243,P2302183899373633243,START
_NODE_ID

MYNET#RDF_XX$MVP_M1_P4326314471650369210 MYNET#RDF_XT$MVP_M1_P4326314471650369210
NONUNIQUE ENABLED 1 TBS_3
START_NODE_ID
MYNET#RDF_XX$PCN_M1_UQ__DRIVES MYNET#RDF_XT$PCN_M1__DRIVES
NONUNIQUE ENABLED 1 TBS_3
START_NODE_ID
MYNET#RDF_XX$PCN_M1_UQ__LINKED MYNET#RDF_XT$PCN_M1__LINKED
NONUNIQUE ENABLED 1 TBS_3
START_NODE_ID
MYNET#RDF_XX$PCN_M1__DRIVES_P14284748913 MYNET#RDF_XT$PCN_M1__DRIVES
NONUNIQUE ENABLED 1 TBS_3
81274755
P1428474891381274755
MYNET#RDF_XX$PCN_M1__DRIVES_P43263144716 MYNET#RDF_XT$PCN_M1__DRIVES
NONUNIQUE ENABLED 1 TBS_3
50369210

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-113

P4326314471650369210
MYNET#RDF_XX$PCN_M1__LINKED_P12357259844
MYNET#RDF_XT$PCN_M1__LINKED NONUNIQUE ENABLED 1
TBS_3
93469672
P1235725984493469672
MYNET#RDF_XX$PCN_M1__LINKED_P23021838993
MYNET#RDF_XT$PCN_M1__LINKED NONUNIQUE ENABLED 1
TBS_3
73633243
P2302183899373633243
MYNET#RDF_XX$PCN_M1__LINKED_P80515265581
MYNET#RDF_XT$PCN_M1__LINKED NONUNIQUE ENABLED 1
TBS_3
7489328
P805152655817489328

MYNET#RDF_XX$SVP_M1_UQ
MYNET#RDF_XT$SVP_M1 UNIQUE DISABLED
TBS_3
START_NODE_ID
10 rows selected.

SQL> drop index idx1;

Index dropped.

SQL>
SQL> -- SVP no prefixes
SQL> exec sem_apis.create_index_on_spm_tab('idx1', 'm1', '<http://
www.example.org/works_for> +G G+ <http://www.example.org/friend_of> S',
network_owner=>'rdfuser', network_name=>'mynet');

PL/SQL procedure successfully completed.

SQL>
SQL> select * from spm_index_info order by 1,2;

INDEX_NAME
TABLE_NAME UNIQUENES COMPRESSION PREFIX_LENGTH
TABLESPACE_NAME
--
-- --------- ------------- -------------

KEY

IDX1
MYNET#RDF_XT$SVP_M1 UNIQUE DISABLED
TBS_3
P805152655817489328,G805152655817489328,G2302183899373633243,P2302183899373633243
,START_NODE_ID

MYNET#RDF_XX$MVP_M1_P4326314471650369210
MYNET#RDF_XT$MVP_M1_P4326314471650369210 NONUNIQUE ENABLED 1
TBS_3
START_NODE_ID
MYNET#RDF_XX$PCN_M1_UQ__DRIVES
MYNET#RDF_XT$PCN_M1__DRIVES NONUNIQUE ENABLED 1

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-114

TBS_3
START_NODE_ID
MYNET#RDF_XX$PCN_M1_UQ__LINKED MYNET#RDF_XT$PCN_M1__LINKED
NONUNIQUE ENABLED 1 TBS_3
START_NODE_ID
MYNET#RDF_XX$PCN_M1__DRIVES_P14284748913 MYNET#RDF_XT$PCN_M1__DRIVES
NONUNIQUE ENABLED 1 TBS_3
81274755
P1428474891381274755
MYNET#RDF_XX$PCN_M1__DRIVES_P43263144716 MYNET#RDF_XT$PCN_M1__DRIVES
NONUNIQUE ENABLED 1 TBS_3
50369210
P4326314471650369210
MYNET#RDF_XX$PCN_M1__LINKED_P12357259844 MYNET#RDF_XT$PCN_M1__LINKED
NONUNIQUE ENABLED 1 TBS_3
93469672
P1235725984493469672
MYNET#RDF_XX$PCN_M1__LINKED_P23021838993 MYNET#RDF_XT$PCN_M1__LINKED
NONUNIQUE ENABLED 1 TBS_3
73633243
P2302183899373633243
MYNET#RDF_XX$PCN_M1__LINKED_P80515265581 MYNET#RDF_XT$PCN_M1__LINKED
NONUNIQUE ENABLED 1 TBS_3
7489328
P805152655817489328

MYNET#RDF_XX$SVP_M1_UQ MYNET#RDF_XT$SVP_M1
UNIQUE DISABLED TBS_3
START_NODE_ID
10 rows selected.

SQL> drop index idx1;

Index dropped.

SQL>
SQL> -- PCN no prefixes
SQL> exec sem_apis.create_index_on_spm_tab('idx1', 'm1', '<http://www.example.org/
works_for> +G G+ <http://www.example.org/friend_of> S', options=>' PCN_NAME=linked',
network_owner=>'rdfuser', network_name=>'mynet');
PL/SQL procedure successfully completed.
SQL>
SQL> select * from spm_index_info order by 1,2;
INDEX_NAME TABLE_NAME
UNIQUENES COMPRESSION PREFIX_LENGTH TABLESPACE_NAME
-- --
--------- ------------- ------------- ------------------------------
KEY

IDX1 MYNET#RDF_XT$PCN_M1__LINKED
NONUNIQUE DISABLED TBS_3
P805152655817489328,G805152655817489328,G2302183899373633243,P2302183899373633243,START
_NODE_ID
MYNET#RDF_XX$MVP_M1_P4326314471650369210 MYNET#RDF_XT$MVP_M1_P4326314471650369210
NONUNIQUE ENABLED 1 TBS_3
START_NODE_ID
MYNET#RDF_XX$PCN_M1_UQ__DRIVES MYNET#RDF_XT$PCN_M1__DRIVES
NONUNIQUE ENABLED 1 TBS_3

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-115

START_NODE_ID
MYNET#RDF_XX$PCN_M1_UQ__LINKED
MYNET#RDF_XT$PCN_M1__LINKED NONUNIQUE ENABLED 1
TBS_3
START_NODE_ID
MYNET#RDF_XX$PCN_M1__DRIVES_P14284748913
MYNET#RDF_XT$PCN_M1__DRIVES NONUNIQUE ENABLED 1
TBS_3
81274755
P1428474891381274755
MYNET#RDF_XX$PCN_M1__DRIVES_P43263144716
MYNET#RDF_XT$PCN_M1__DRIVES NONUNIQUE ENABLED 1
TBS_3
50369210
P4326314471650369210
MYNET#RDF_XX$PCN_M1__LINKED_P12357259844
MYNET#RDF_XT$PCN_M1__LINKED NONUNIQUE ENABLED 1
TBS_3
93469672
P1235725984493469672
MYNET#RDF_XX$PCN_M1__LINKED_P23021838993
MYNET#RDF_XT$PCN_M1__LINKED NONUNIQUE ENABLED 1
TBS_3
73633243
P2302183899373633243
MYNET#RDF_XX$PCN_M1__LINKED_P80515265581
MYNET#RDF_XT$PCN_M1__LINKED NONUNIQUE ENABLED 1
TBS_3
7489328
P805152655817489328
MYNET#RDF_XX$SVP_M1_UQ
MYNET#RDF_XT$SVP_M1 UNIQUE DISABLED
TBS_3
START_NODE_ID
10 rows selected.
SQL> drop index idx1;
Index dropped.
SQL>
SQL> -- MVP
SQL> exec sem_apis.create_index_on_spm_tab('idx1', 'm1', 'P G S', 'ex:drives',
prefixes=>' PREFIX : <http://wwww.nothing.org/> PREFIX ex: <http://
www.example.org/>', prefix_length=> 3, network_owner=>'rdfuser',
network_name=>'mynet');

PL/SQL procedure successfully completed.

SQL>
SQL> select * from spm_index_info order by 1,2;

INDEX_NAME
TABLE_NAME UNIQUENES COMPRESSION PREFIX_LENGTH
TABLESPACE_NAME
--
-- --------- ------------- -------------

KEY

IDX1
MYNET#RDF_XT$MVP_M1_P4326314471650369210 NONUNIQUE ENABLED 3
TBS_3

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-116

P4326314471650369210,G4326314471650369210,START_NODE_ID

MYNET#RDF_XX$MVP_M1_P4326314471650369210 MYNET#RDF_XT$MVP_M1_P4326314471650369210
NONUNIQUE ENABLED 1 TBS_3
START_NODE_ID
MYNET#RDF_XX$PCN_M1_UQ__DRIVES MYNET#RDF_XT$PCN_M1__DRIVES
NONUNIQUE ENABLED 1 TBS_3
START_NODE_ID
MYNET#RDF_XX$PCN_M1_UQ__LINKED MYNET#RDF_XT$PCN_M1__LINKED
NONUNIQUE ENABLED 1 TBS_3
START_NODE_ID
MYNET#RDF_XX$PCN_M1__DRIVES_P14284748913 MYNET#RDF_XT$PCN_M1__DRIVES
NONUNIQUE ENABLED 1 TBS_3
81274755
P1428474891381274755
MYNET#RDF_XX$PCN_M1__DRIVES_P43263144716 MYNET#RDF_XT$PCN_M1__DRIVES
NONUNIQUE ENABLED 1 TBS_3
50369210
P4326314471650369210
MYNET#RDF_XX$PCN_M1__LINKED_P12357259844 MYNET#RDF_XT$PCN_M1__LINKED
NONUNIQUE ENABLED 1 TBS_3
93469672
P1235725984493469672
MYNET#RDF_XX$PCN_M1__LINKED_P23021838993 MYNET#RDF_XT$PCN_M1__LINKED
NONUNIQUE ENABLED 1 TBS_3
73633243
P2302183899373633243
MYNET#RDF_XX$PCN_M1__LINKED_P80515265581 MYNET#RDF_XT$PCN_M1__LINKED
NONUNIQUE ENABLED 1 TBS_3
7489328
P805152655817489328

MYNET#RDF_XX$SVP_M1_UQ MYNET#RDF_XT$SVP_M1
UNIQUE DISABLED TBS_3
START_NODE_ID
10 rows selected.

SQL> drop index idx1;

Index dropped.

SQL>
SQL> -- PCN index
SQL> exec sem_apis.create_index_on_spm_tab('idx1', 'm1', 'ex:drives +G S', null,
prefixes=>' PREFIX : <http://wwww.nothing.org/> PREFIX ex: <http://
www.example.org/>', prefix_length=> 2, options=>' PCN_NAME=drives',
network_owner=>'rdfuser', network_name=>'mynet');
PL/SQL procedure successfully completed.
SQL>
SQL> select * from spm_index_info order by 1,2;
INDEX_NAME TABLE_NAME
UNIQUENES COMPRESSION PREFIX_LENGTH TABLESPACE_NAME
-- --
--------- ------------- ------------- ------------------------------
KEY

IDX1 MYNET#RDF_XT$PCN_M1__DRIVES
NONUNIQUE ENABLED 2 TBS_3

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-117

P4326314471650369210,G4326314471650369210,START_NODE_ID
MYNET#RDF_XX$MVP_M1_P4326314471650369210
MYNET#RDF_XT$MVP_M1_P4326314471650369210 NONUNIQUE ENABLED 1
TBS_3
START_NODE_ID
MYNET#RDF_XX$PCN_M1_UQ__DRIVES
MYNET#RDF_XT$PCN_M1__DRIVES NONUNIQUE ENABLED 1
TBS_3
START_NODE_ID
MYNET#RDF_XX$PCN_M1_UQ__LINKED
MYNET#RDF_XT$PCN_M1__LINKED NONUNIQUE ENABLED 1
TBS_3
START_NODE_ID
MYNET#RDF_XX$PCN_M1__DRIVES_P14284748913
MYNET#RDF_XT$PCN_M1__DRIVES NONUNIQUE ENABLED 1
TBS_3
81274755
P1428474891381274755
MYNET#RDF_XX$PCN_M1__DRIVES_P43263144716
MYNET#RDF_XT$PCN_M1__DRIVES NONUNIQUE ENABLED 1
TBS_3
50369210
P4326314471650369210
MYNET#RDF_XX$PCN_M1__LINKED_P12357259844
MYNET#RDF_XT$PCN_M1__LINKED NONUNIQUE ENABLED 1
TBS_3
93469672
P1235725984493469672
MYNET#RDF_XX$PCN_M1__LINKED_P23021838993
MYNET#RDF_XT$PCN_M1__LINKED NONUNIQUE ENABLED 1
TBS_3
73633243
P2302183899373633243
MYNET#RDF_XX$PCN_M1__LINKED_P80515265581
MYNET#RDF_XT$PCN_M1__LINKED NONUNIQUE ENABLED 1
TBS_3
7489328
P805152655817489328
MYNET#RDF_XX$SVP_M1_UQ
MYNET#RDF_XT$SVP_M1 UNIQUE DISABLED
TBS_3
START_NODE_ID
10 rows selected.
SQL> drop index idx1;
Index dropped.
SQL>
SQL> -- add value to index
SQL> -- SVP
SQL> select * from spm_index_info order by 1,2;

INDEX_NAME
TABLE_NAME UNIQUENES COMPRESSION PREFIX_LENGTH
TABLESPACE_NAME
--
-- --------- ------------- -------------

KEY

MYNET#RDF_XX$MVP_M1_P4326314471650369210
MYNET#RDF_XT$MVP_M1_P4326314471650369210 NONUNIQUE ENABLED 1

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-118

TBS_3
START_NODE_ID
MYNET#RDF_XX$PCN_M1_UQ__DRIVES MYNET#RDF_XT$PCN_M1__DRIVES
NONUNIQUE ENABLED 1 TBS_3
START_NODE_ID
MYNET#RDF_XX$PCN_M1_UQ__LINKED MYNET#RDF_XT$PCN_M1__LINKED
NONUNIQUE ENABLED 1 TBS_3
START_NODE_ID
MYNET#RDF_XX$PCN_M1__DRIVES_P14284748913 MYNET#RDF_XT$PCN_M1__DRIVES
NONUNIQUE ENABLED 1 TBS_3
81274755
P1428474891381274755
MYNET#RDF_XX$PCN_M1__DRIVES_P43263144716 MYNET#RDF_XT$PCN_M1__DRIVES
NONUNIQUE ENABLED 1 TBS_3
50369210
P4326314471650369210
MYNET#RDF_XX$PCN_M1__LINKED_P12357259844 MYNET#RDF_XT$PCN_M1__LINKED
NONUNIQUE ENABLED 1 TBS_3
93469672
P1235725984493469672
MYNET#RDF_XX$PCN_M1__LINKED_P23021838993 MYNET#RDF_XT$PCN_M1__LINKED
NONUNIQUE ENABLED 1 TBS_3
73633243
P2302183899373633243
MYNET#RDF_XX$PCN_M1__LINKED_P80515265581 MYNET#RDF_XT$PCN_M1__LINKED
NONUNIQUE ENABLED 1 TBS_3
7489328
P805152655817489328

MYNET#RDF_XX$SVP_M1_UQ MYNET#RDF_XT$SVP_M1
UNIQUE DISABLED TBS_3
START_NODE_ID
9 rows selected.

SQL> exec sem_apis.alter_spm_tab('m1','<http://www.example.org/
friend_of>','ADD_VALUE');

PL/SQL procedure successfully completed.

SQL> exec sem_apis.alter_spm_tab('m1','<http://www.example.org/
works_for>','ADD_VALUE');

PL/SQL procedure successfully completed.
SQL> exec sem_apis.alter_spm_tab('m1','<http://www.example.org/drives>','ADD_VALUE');
PL/SQL procedure successfully completed.

SQL> select * from spm_index_info order by 1,2;

INDEX_NAME TABLE_NAME
UNIQUENES COMPRESSION PREFIX_LENGTH TABLESPACE_NAME
-- --
--------- ------------- ------------- ------------------------------
KEY

MYNET#RDF_XX$MVP_M1_P4326314471650369210 MYNET#RDF_XT$MVP_M1_P4326314471650369210
NONUNIQUE ENABLED 1 TBS_3
START_NODE_ID
MYNET#RDF_XX$PCN_M1_UQ__DRIVES MYNET#RDF_XT$PCN_M1__DRIVES

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-119

NONUNIQUE ENABLED 1 TBS_3
START_NODE_ID
MYNET#RDF_XX$PCN_M1_UQ__LINKED
MYNET#RDF_XT$PCN_M1__LINKED NONUNIQUE ENABLED 1
TBS_3
START_NODE_ID
MYNET#RDF_XX$PCN_M1__DRIVES_P14284748913
MYNET#RDF_XT$PCN_M1__DRIVES NONUNIQUE ENABLED 1
TBS_3
81274755
P1428474891381274755
MYNET#RDF_XX$PCN_M1__DRIVES_P43263144716
MYNET#RDF_XT$PCN_M1__DRIVES NONUNIQUE ENABLED 1
TBS_3
50369210
P4326314471650369210
MYNET#RDF_XX$PCN_M1__LINKED_P12357259844
MYNET#RDF_XT$PCN_M1__LINKED NONUNIQUE ENABLED 1
TBS_3
93469672
P1235725984493469672
MYNET#RDF_XX$PCN_M1__LINKED_P23021838993
MYNET#RDF_XT$PCN_M1__LINKED NONUNIQUE ENABLED 1
TBS_3
73633243
P2302183899373633243
MYNET#RDF_XX$PCN_M1__LINKED_P80515265581
MYNET#RDF_XT$PCN_M1__LINKED NONUNIQUE ENABLED 1
TBS_3
7489328
P805152655817489328

MYNET#RDF_XX$SVP_M1_UQ
MYNET#RDF_XT$SVP_M1 UNIQUE DISABLED
TBS_3
START_NODE_ID
9 rows selected.

SQL>
SQL> exec sem_apis.create_index_on_spm_tab('idx1', 'm1', 'VP+ ex:works_for +G
G+ +VS ex:friend_of S +VT', prefixes=>' PREFIX : <http://wwww.nothing.org/>
PREFIX ex: <http://www.example.org/>', prefix_length=> 4,
network_owner=>'rdfuser', network_name=>'mynet');

PL/SQL procedure successfully completed.

SQL>
SQL> select * from spm_index_info order by 1,2;

INDEX_NAME
TABLE_NAME UNIQUENES COMPRESSION PREFIX_LENGTH
TABLESPACE_NAME
--
-- --------- ------------- -------------

KEY

IDX1

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-120

MYNET#RDF_XT$SVP_M1 UNIQUE ENABLED 4 TBS_3
P805152655817489328_VNAME_PREFIX,P805152655817489328,G805152655817489328,G2302183899373
633243,P805152655817489328_VNAME_SUFFIX,P2302183899373633243,ST
ART_NODE_ID,P2302183899373633243_VALUE_TYPE

MYNET#RDF_XX$MVP_M1_P4326314471650369210 MYNET#RDF_XT$MVP_M1_P4326314471650369210
NONUNIQUE ENABLED 1 TBS_3
START_NODE_ID
MYNET#RDF_XX$PCN_M1_UQ__DRIVES MYNET#RDF_XT$PCN_M1__DRIVES
NONUNIQUE ENABLED 1 TBS_3
START_NODE_ID
MYNET#RDF_XX$PCN_M1_UQ__LINKED MYNET#RDF_XT$PCN_M1__LINKED
NONUNIQUE ENABLED 1 TBS_3
START_NODE_ID
MYNET#RDF_XX$PCN_M1__DRIVES_P14284748913 MYNET#RDF_XT$PCN_M1__DRIVES
NONUNIQUE ENABLED 1 TBS_3
81274755
P1428474891381274755
MYNET#RDF_XX$PCN_M1__DRIVES_P43263144716 MYNET#RDF_XT$PCN_M1__DRIVES
NONUNIQUE ENABLED 1 TBS_3
50369210
P4326314471650369210
MYNET#RDF_XX$PCN_M1__LINKED_P12357259844 MYNET#RDF_XT$PCN_M1__LINKED
NONUNIQUE ENABLED 1 TBS_3
93469672
P1235725984493469672
MYNET#RDF_XX$PCN_M1__LINKED_P23021838993 MYNET#RDF_XT$PCN_M1__LINKED
NONUNIQUE ENABLED 1 TBS_3
73633243
P2302183899373633243
MYNET#RDF_XX$PCN_M1__LINKED_P80515265581 MYNET#RDF_XT$PCN_M1__LINKED
NONUNIQUE ENABLED 1 TBS_3
7489328
P805152655817489328

MYNET#RDF_XX$SVP_M1_UQ MYNET#RDF_XT$SVP_M1
UNIQUE DISABLED TBS_3
START_NODE_ID
10 rows selected.

SQL> drop index idx1;

Index dropped.

SQL>
SQL> -- PCN
SQL> exec sem_apis.create_index_on_spm_tab('idx1', 'm1', 'VP+ ex:works_for +G G+ +VS
ex:friend_of S', prefixes=>' PREFIX : <http://wwww.nothing.org/> PREFIX ex: <http://
www.example.org/>', prefix_length=> 4, options=>' PCN_NAME=linked',
network_owner=>'rdfuser', network_name=>'mynet');
PL/SQL procedure successfully completed.
SQL>
SQL> select * from spm_index_info order by 1,2;
INDEX_NAME TABLE_NAME
UNIQUENES COMPRESSION PREFIX_LENGTH TABLESPACE_NAME
-- --
--------- ------------- ------------- ------------------------------
KEY

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-121

IDX1
MYNET#RDF_XT$PCN_M1__LINKED NONUNIQUE ENABLED 4
TBS_3
P805152655817489328_VNAME_PREFIX,P805152655817489328,G805152655817489328,G2302183
899373633243,P805152655817489328_VNAME_SUFFIX,P2302183899373633243,ST
ART_NODE_ID
MYNET#RDF_XX$MVP_M1_P4326314471650369210
MYNET#RDF_XT$MVP_M1_P4326314471650369210 NONUNIQUE ENABLED 1
TBS_3
START_NODE_ID
MYNET#RDF_XX$PCN_M1_UQ__DRIVES
MYNET#RDF_XT$PCN_M1__DRIVES NONUNIQUE ENABLED 1
TBS_3
START_NODE_ID
MYNET#RDF_XX$PCN_M1_UQ__LINKED
MYNET#RDF_XT$PCN_M1__LINKED NONUNIQUE ENABLED 1
TBS_3
START_NODE_ID
MYNET#RDF_XX$PCN_M1__DRIVES_P14284748913
MYNET#RDF_XT$PCN_M1__DRIVES NONUNIQUE ENABLED 1
TBS_3
81274755
P1428474891381274755
MYNET#RDF_XX$PCN_M1__DRIVES_P43263144716
MYNET#RDF_XT$PCN_M1__DRIVES NONUNIQUE ENABLED 1
TBS_3
50369210
P4326314471650369210
MYNET#RDF_XX$PCN_M1__LINKED_P12357259844
MYNET#RDF_XT$PCN_M1__LINKED NONUNIQUE ENABLED 1
TBS_3
93469672
P1235725984493469672
MYNET#RDF_XX$PCN_M1__LINKED_P23021838993
MYNET#RDF_XT$PCN_M1__LINKED NONUNIQUE ENABLED 1
TBS_3
73633243
P2302183899373633243
MYNET#RDF_XX$PCN_M1__LINKED_P80515265581
MYNET#RDF_XT$PCN_M1__LINKED NONUNIQUE ENABLED 1
TBS_3
7489328
P805152655817489328
MYNET#RDF_XX$SVP_M1_UQ
MYNET#RDF_XT$SVP_M1 UNIQUE DISABLED
TBS_3
START_NODE_ID
10 rows selected.
SQL> drop index idx1;
Index dropped.
SQL>
SQL>
SQL> exec sem_apis.create_index_on_spm_tab('idx1', 'm1', 'VP+ ex:works_for +G
G+ +VS ex:friend_of S +VT', prefixes=>' PREFIX : <http://wwww.nothing.org/>
PREFIX ex: <http://www.example.org/>', prefix_length=> 4, options=>'
PCN_NAME=linked', network_owner=>'rdfuser', network_name=>'mynet');
PL/SQL procedure successfully completed.
SQL>
SQL> --MVP
SQL> select * from spm_index_info order by 1,2;

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-122

INDEX_NAME TABLE_NAME
UNIQUENES COMPRESSION PREFIX_LENGTH TABLESPACE_NAME
-- --
--------- ------------- ------------- ------------------------------
KEY

IDX1 MYNET#RDF_XT$PCN_M1__LINKED
NONUNIQUE ENABLED 4 TBS_3
P805152655817489328_VNAME_PREFIX,P805152655817489328,G805152655817489328,G2302183899373
633243,P805152655817489328_VNAME_SUFFIX,P2302183899373633243,ST
ART_NODE_ID,P2302183899373633243_VALUE_TYPE
MYNET#RDF_XX$MVP_M1_P4326314471650369210 MYNET#RDF_XT$MVP_M1_P4326314471650369210
NONUNIQUE ENABLED 1 TBS_3
START_NODE_ID
MYNET#RDF_XX$PCN_M1_UQ__DRIVES MYNET#RDF_XT$PCN_M1__DRIVES
NONUNIQUE ENABLED 1 TBS_3
START_NODE_ID
MYNET#RDF_XX$PCN_M1_UQ__LINKED MYNET#RDF_XT$PCN_M1__LINKED
NONUNIQUE ENABLED 1 TBS_3
START_NODE_ID
MYNET#RDF_XX$PCN_M1__DRIVES_P14284748913 MYNET#RDF_XT$PCN_M1__DRIVES
NONUNIQUE ENABLED 1 TBS_3
81274755
P1428474891381274755
MYNET#RDF_XX$PCN_M1__DRIVES_P43263144716 MYNET#RDF_XT$PCN_M1__DRIVES
NONUNIQUE ENABLED 1 TBS_3
50369210
P4326314471650369210
MYNET#RDF_XX$PCN_M1__LINKED_P12357259844 MYNET#RDF_XT$PCN_M1__LINKED
NONUNIQUE ENABLED 1 TBS_3
93469672
P1235725984493469672
MYNET#RDF_XX$PCN_M1__LINKED_P23021838993 MYNET#RDF_XT$PCN_M1__LINKED
NONUNIQUE ENABLED 1 TBS_3
73633243
P2302183899373633243
MYNET#RDF_XX$PCN_M1__LINKED_P80515265581 MYNET#RDF_XT$PCN_M1__LINKED
NONUNIQUE ENABLED 1 TBS_3
7489328
P805152655817489328

MYNET#RDF_XX$SVP_M1_UQ MYNET#RDF_XT$SVP_M1
UNIQUE DISABLED TBS_3
START_NODE_ID
10 rows selected.
SQL> drop index idx1;
Index dropped.

1 row selected.

1.6.13.7 Performing DML Operations on Models with SPM Auxiliary Tables
Though DML operations are supported on SPM Auxiliary tables, some operations may cause
constraint violations in SVP table.

All SVP, MVP and PCN tables are automatically maintained for DML operations:

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-123

• Delete: For delete operations, corresponding rows from the MVP table are
deleted. In PCN and SVP tables, the corresponding column value is set to null
including value columns.

• Insert: For insert operations, a new subject row or the corresponding column
value is inserted into the MVP table if it does not exist including value columns.
For SVP and PCN tables, a new subject row or the column value is inserted if the
existing value is null. If a different value is inserted than the existing value, an error
is raised for constraint violation for SVP table.

1.6.13.8 Performing Bulk Load Operations on Models with SPM Auxiliary
Tables

Bulk load to an RDF model is not supported if SPM auxiliary tables are present for that
model. Before invoking bulk load, all the SPM auxiliary tables for that model must be
dropped. You can call the SEM_APIS.DROP_SPM_TAB procedure to drop the SPM
auxiliary tables.

1.6.13.9 Gathering Statistics on SPM Auxiliary Tables
Having up-to-date statistics on SPM auxiliary tables is critical for good query
performance. You can call the SEM_PERF.ANALYZE_AUX_TABLES procedure to
gather statistics for your SPM auxiliary tables.

1.6.13.10 SPARQL Query Options for SPM Auxiliary Tables
SPARQL queries will automatically use SPM auxiliary tables if they are present. An
existing SPARQL workload does not need to change to take advantage of SPM tables.
However, several new query options and optimizer hints can be used to fine-tune SPM
table usage.

The following query options can be used in the options argument of SEM_MATCH or in
the SEM_FS_NS prefix used by Support for Apache Jena and RDF Server.

• DISABLE_SPM_OPT – do not use SPM auxiliary tables (SVP, PCN and MVP)

• DISABLE_SVP_OPT – do not use SVP auxiliary tables

• DISABLE_PCN_OPT – do not use PCN auxiliary tables

• DISABLE_MVP_OPT – do not use MVP auxiliary tables

• DISABLE_SPM_VALUES_OPT – do not use in-line lexical values in SPM auxiliary
tables for value projection or filter evaluation (SVP, PCN and MVP)

• DISABLE_SPM_VALUE_PROJ_OPT – dot not use in-line lexical values in SPM auxiliary
tables for value projection (SVP, PCN and MVP)

• MIN_SVP_CLUSTER_SIZE(n) – only use the SVP auxiliary table for star pattern
clusters that reference at least n properties contained in the SVP table (n = 1 by
default)

• PREFER_PCN=T – when a triple pattern can be evaluated using either an SVP or a
PCN table, choose the PCN table (the default behavior is to use the SVP table)

The following query optimizer hints can be used in HINT0 hint strings, the options
argument of SEM_MATCH, and the SEM_FS_NS prefix used by Support for Apache Jena
and RDF Server.

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-124

• ALL_SPM_HASH / ALL_SPM_NL – use hash / nested-loop join for all joins with SPM tables
(SVP, PCN and MVP)

• ALL_SVP_HASH / ALL_SVP_NL – use hash / nested-loop join for all joins with SVP tables

• ALL_MVP_HASH / ALL_MVP_NL – use hash / nested-loop join for all joins with MVP tables

• ALL_PCN_HASH / ALL_PCN_NL – use hash / nested-loop join for all joins with PCN tables

1.6.13.11 Special Considerations when Using SPM Auxiliary Tables
The following are a few limitations to be considered when using SPM Auxiliary tables:

• SPM auxiliary tables are only supported for a single RDF model. Virtual models and
entailments are not supported.

• SPM auxiliary tables are not supported on semantic networks that are using Oracle Label
Security.

• Flashback queries are not supported with SPM auxiliary tables.

• A model with SPM auxiliary tables cannot be used as the destination model in a
SEM_APIS.MERGE_MODELS operation.

• SPARQL queries that use GeoSPARQL functions or Oracle Text functions do not utilize
SPM auxiliary tables.

• Evaluation of + and * property path expressions does not utilize SPM auxiliary tables.

• SPM auxiliary tables in MDSYS networks are not imported or exported by Oracle Data
Pump.

• SPM auxiliary tables are not supported for SEM_APIS.APPEND_SEM_NETWORK_DATA,
SEM_APIS.MOVE_SEM_NETWORK_DATA or SEM_APIS.RESTORE_SEM_NETWORK_DATA operations.

1.6.14 Best Practices for Query Performance
This section describes some recommended practices for using the SEM_MATCH table
function to query semantic data. It includes the following subsections:

• FILTER Constructs Involving xsd:dateTime, xsd:date, and xsd:time

• Indexes for FILTER Constructs Involving Typed Literals

• FILTER Constructs Involving Relational Expressions

• Optimizer Statistics and Dynamic Sampling

• Multi-Partition Queries

• Compression on Systems with OLTP Index Compression

• Unbounded Property Path Expressions

• Nested Loop Pushdown for Property Paths

• Grouping and Aggregation

• Use of Bind Variables to Reduce Compilation Time

• Non-Null Expression Hints

• Automatic JOIN Hints

• Semantic Network Indexes

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-125

• Using RDF with Oracle Database In-Memory

• Using Language Tags in FILTER Expressions

• Type Casting for More Efficient FILTER Evaluation

• Spatial Indexing for GeoSPARQL Queries

1.6.14.1 FILTER Constructs Involving xsd:dateTime, xsd:date, and xsd:time
By default, SEM_MATCH complies with the XML Schema standard for comparison of
xsd:date, xsd:time, and xsd:dateTime values. According to this standard, when
comparing two calendar values c1 and c2 where c1 has an explicitly specified time
zone and c2 does not have a specified time zone, c2 is converted into the interval
[c2-14:00, c2+14:00]. If c2-14:00 <= c1 <= c2+14:00, then the comparison is undefined
and will always evaluate to false. If c1 is outside this interval, then the comparison is
defined.

However, the extra logic required to evaluate such comparisons (value with a time
zone and value without a time zone) can significantly slow down queries with FILTER
constructs that involve calendar values. For improved query performance, you can
disable this extra logic by specifying FAST_DATE_FILTER=T in the options parameter of
the SEM_MATCH table function. When FAST_DATE_FILTER=T is specified, all calendar
values without time zones are assumed to be in Greenwich Mean Time (GMT).

Note that using FAST_DATE_FILTER=T does not affect query correctness when either (1)
all calendar values in the data set have a time zone or (2) all calendar values in the
data set do not have a time zone.

1.6.14.2 Indexes for FILTER Constructs Involving Typed Literals
The evaluation of SEM_MATCH queries involving the FILTER construct often uses
order columns on the RDF_VALUE$ table. For example, the filter (?x <
"1929-11-16Z"^^xsd:date) uses the ORDER_DATE column.

Indexes can be used to improve the performance of queries that contain a filter
condition involving a typed literal. For example, an xsd:date index may speed up
evaluation of the filter (?x < "1929-11-16Z"^^xsd:date).

Convenient interfaces are provided for creating, altering, and dropping these indexes
for order columns. For more information, see Using Data Type Indexes.

Note, however, that the existence of these indexes on the RDF_VALUE$ table can
significantly slow down bulk load operations. In many cases it may be faster to drop
the indexes, perform the bulk load, and then re-create the indexes, as opposed to
doing the bulk load with the indexes in place.

1.6.14.3 FILTER Constructs Involving Relational Expressions
The following recommendations apply to FILTER constructs involving relational
expressions:

• The orardf:sameCanonTerm extension function is the most efficient way to
compare two RDF terms for equality because it allows an id-based comparison in
all cases.

• When using standard SPARQL features, the sameTerm built-in function is more
efficient than using = or != when comparing two variables in a FILTER clause, so

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-126

(for example) use sameTerm(?a, ?b) instead of (?a = ?b) and use (!sameTerm(?a, ?
b)) instead of (?a != ?b) whenever possible.

• When comparing values in FILTER expressions, you may get better performance by
reducing the use of negation. For example, it is more efficient to evaluate (?x <=
"10"^^xsd:int) than it is to evaluate the expression (!(?x > "10"^^xsd:int)).

1.6.14.4 Optimizer Statistics and Dynamic Sampling
Having sufficient statistics for the query optimizer is critical for good query performance. In
general, you should ensure that you have gathered basic statistics for the semantic network
using the SEM_PERF.GATHER_STATS procedure (described in SEM_PERF Package
Subprograms).

Due to the inherent flexibility of the RDF data model, static information may not produce
optimal execution plans for SEM_MATCH queries. Dynamic sampling can often produce
much better query execution plans. Dynamic sampling levels can be set at the session or
system level using the optimizer_dynamic_sampling parameter, and at the individual query
level using the dynamic_sampling(level) SQL query hint. In general, it is good to experiment
with dynamic sampling levels between 3 and 6. For information about estimating statistics
with dynamic sampling, see Oracle Database SQL Tuning Guide.

Example 1-98 uses a SQL hint for a dynamic sampling level of 6.

Example 1-98 SQL Hint for Dynamic Sampling

SELECT /*+ DYNAMIC_SAMPLING(6) */ x, y
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/family/>
 SELECT *
 WHERE {
 ?x :grandParentOf ?y .
 ?x rdf:type :Male .
 ?x :birthDate ?bd }',
 SEM_Models('family'),
 SEM_Rulebases('RDFS','family_rb'),
 null, null, null, '', null, null,
 'RDFUSER', 'NET1'));

1.6.14.5 Multi-Partition Queries
The following recommendations apply to the use of multiple semantic models, semantic
models plus entailments, and virtual models:

• If you execute SEM_MATCH queries against multiple semantic models or against
semantic models plus entailments, you can probably improve query performance if you
create a virtual model (see Virtual Models) that contains all the models and entailments
you are querying and then query this single virtual model.

• Use the ALLOW_DUP=T query option. If you do not use this option, then an expensive (in
terms of processing) duplicate-elimination step is required during query processing, in
order to maintain set semantics for RDF data. However, if you use this option, the
duplicate-elimination step is not performed, and this results in significant performance
gains.

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-127

1.6.14.6 Compression on Systems with OLTP Index Compression
On systems where OLTP index compression is supported (such as Exadata). you can
take advantage of the feature to improve the compression ratio for some of the B-tree
indexes used by the semantic network.

For example, a DBA or the owner of a schema-private network can use the following
command to change the compression scheme on the
RDF_VAL_NAMETYLITLNG_IDX index from prefix compression to OLTP index
compression:

SQL> alter index rdfuser.net1#RDF_VAL_NAMETYLITLNG_IDX rebuild compress for oltp
high;

1.6.14.7 Unbounded Property Path Expressions
A depth-limited search should be used for + and * property path operators whenever
possible. The depth-limited implementation for * and + is likely to significantly
outperform the CONNECT BY-based implementation in large and/or highly connected
graphs. A depth limit of 10 is used by default. For a given graph, depth limits larger
than the graph's diameter are not useful. See Property Paths for more information on
setting depth limits.

A backward chaining style inference using rdfs:subClassOf+ for ontologies with very
deep class hierarchies may be an exception to this rule. In such cases, unbounded
CONNECT BY-based evaluations may perform better than depth-limited evaluations
with very high depth limits (for example, 50).

1.6.14.8 Nested Loop Pushdown for Property Paths
If an unbounded CONNECT BY evaluation is performed for a property path, and if the
subject of the property path triple pattern is a variable, a CONNECT BY WITHOUT
FILTERING operation will most likely be used. If this subject variable is only bound to a
small number of values during query execution, a nested loop strategy (see Nested
Loop Pushdown with Overloaded Service) could be a good option to run the query. In
this case, the property path can be pushed down into an overloaded SERVICE clause
and the OVERLOADED_NL=T hint can be used.

For example, consider the following query where there is an unbounded property path
search { ?s :hasManager+ ?x }, but the triple { ?s :ename "ADAMS" } only has a
small number of possible values for ?s.

select s, x
from table(sem_match(
'PREFIX : <http://scott-hr.org#>
 SELECT *
 WHERE {
 ?s :ename "ADAMS" .
 ?s :hasManager+ ?x .
 }',
sem_models('scott_hr_data'),
null,null,null,null,' ALL_MAX_PP_DEPTH(0) ', null, null,
'RDFUSER', 'NET1'));

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-128

The query can be transformed to force the nested-loop strategy. Notice that the model
specified in the SERVICE graph is the same as the model specified in the SEM_MATCH call.

select s, x
from table(sem_match(
'PREFIX : <http://scott-hr.org#>
 SELECT *
 WHERE {
 ?s :ename "ADAMS" .
 service oram:scott_hr_data { ?s :hasManager+ ?x . }
 }',
sem_models('scott_hr_data'),
null,null,null,null,' ALL_MAX_PP_DEPTH(0) OVERLOADED_NL=T ', null, null,
'RDFUSER', 'NET1'));

With this nested-loop strategy, { ?s :hasManager_ ?x } is evaluated once for each value
of ?s, and in each evaluation, a constant value is substituted for ?s. This constant in the
subject position allows a CONNECT BY WITH FILTERING operation, which usually provides
a substantial performance improvement.

1.6.14.9 Grouping and Aggregation
MIN, MAX and GROUP_CONCAT aggregates require special logic to fully capture SPARQL
semantics for input of non-uniform type (for example, MAX(?x)). For certain cases where a
uniform input type can be determined at compile time (for example, MAX(STR(?x)) – plain
literal input), optimizations for built-in SQL aggregates can be used. Such optimizations
generally give an order of magnitude increase in performance. The following cases are
optimized:

• MIN/MAX(<plain literal>)

• MIN/MAX(<numeric>)

• MIN/MAX(<dateTime>)

• GROUP_CONCAT(<plain literal>)

Example 1-99 uses MIN/MAX(<numeric>) optimizations.

Example 1-99 Aggregate Optimizations

SELECT dept, minSal, maxSal
 FROM TABLE(SEM_MATCH(
 'SELECT ?dept (MIN(xsd:decimal(?sal)) AS ?minSal) (MAX(xsd:decimal(?sal)) AS ?
maxSal)
 WHERE
 {?x :salary ?y .
 ?x :department ?dept }
 GROUP BY ?dept',
 SEM_Models('hr_data'),
 null, null, null, null, '', null, null,
 'RDFUSER', 'NET1'));

1.6.14.10 Use of Bind Variables to Reduce Compilation Time
For some queries, query compilation can be more expensive than query execution, which can
limit throughput on workloads of small queries. If the queries in your workload differ only in
the constants used, then session context-based bind variables can be used to skip the

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-129

compilation step for SEM_MATCH queries. See also Using Bind Variables with
SEM_APIS.SPARQL_TO_SQL for a description of how to use JDBC bind variables
and PL/SQL bind variables with SPARQL queries.

The following example shows how to use a session context in combination with a user-
defined SPARQL function to compile a SEM_MATCH query once and then run it with
different constants. The basic idea is to create a user-defined function that reads an
RDF term value from the session context and returns it. A SEM_MATCH query with
this function will read the RDF term value at run time; so when the session context
variable changes, the same exact SEM_MATCH query will see a different value.

conn / as sysdba;
grant create any context to testuser;

conn testuser/testuser;

create or replace package MY_CTXT_PKG as
 procedure set_attribute(name varchar2, value varchar2);
 function get_attribute(name varchar2) return varchar2;
end MY_CTXT_PKG;
/

create or replace package body MY_CTXT_PKG as
 procedure set_attribute(
 name varchar2,
 value varchar2
) as
 begin
 dbms_session.set_context(namespace => 'MY_CTXT',
 attribute => name,
 value => value);
 end;

 function get_attribute(
 name varchar2
) return varchar2 as
 begin
 return sys_context('MY_CTXT', name);
 end;
end MY_CTXT_PKG;
/

create or replace function myCtxFunc(
 params in MDSYS.SDO_RDF_TERM_LIST
) return MDSYS.SDO_RDF_TERM
as
 name varchar2(4000);
 arg MDSYS.SDO_RDF_TERM;
begin
 arg := params(1);
 name := arg.value_name;
 return MDSYS.SDO_RDF_TERM(my_ctxt_pkg.get_attribute(name));
end;
/

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-130

CREATE OR REPLACE CONTEXT MY_CTXT using TESTUSER.MY_CTXT_PKG;

-- Set a value
exec MY_CTXT_PKG.set_attribute('value','<http://www.example.org/family/
Martha>');

-- Query using the function
-- Note the use of HINT0={ NON_NULL } to allow the most efficient join
SELECT s, p, o
 FROM TABLE(SEM_MATCH(
 'SELECT ?s ?p ?o
 WHERE {
 BIND (oraextf:myCtxFunc("value") # HINT0={ NON_NULL }
 AS ?s)
 ?s ?p ?o }',
 SEM_Models('family'),
 null,
 null,
 null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

-- Set another value
exec MY_CTXT_PKG.set_attribute('value','<http://www.example.org/family/
Sammy>');

-- Now the same query runs for Sammy without recompiling
SELECT s, p, o
 FROM TABLE(SEM_MATCH(
 'SELECT ?s ?p ?o
 WHERE {
 BIND (oraextf:myCtxFunc("value") # HINT0={ NON_NULL }
 AS ?s)
 ?s ?p ?o }',
 SEM_Models('family'),
 null,
 null,
 null, null, ' ', null, null,
 'RDFUSER', 'NET1'));

1.6.14.11 Non-Null Expression Hints
When performing a join of several graph patterns with common variables that can be
unbound, a more complex join condition is needed to handle null values to avoid performance
degradation. Unbound values can be introduced through SELECT expressions, binds,
OPTIONAL clauses, and unions. In many cases, SELECT expressions are not expected to
produce NULL values. In such cases, query performance can be substantially improved
through use of an inline HINT0={ NON_NULL } hint to mark a specific SELECT expression as
definitely non-null or through use of a DISABLE_NULL_EXPR_JOIN query option to signify
that all SELECT expressions produce only non-null values.

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-131

The following example includes the global DISABLE_NULL_EXPR_JOIN hint to signify
that variable ?fulltitle is always bound on both sides of the join. (See also Inline
Query Optimizer Hints.)

SELECT s, t
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/family/>
 SELECT * WHERE {
 { SELECT ?s (CONCAT(?title, ". ", ?fullname) AS ?fulltitle)
 WHERE { ?s :fullname ?fullname .
 ?s :title ?title }
 }
 { SELECT ?t (CONCAT(?title, ". ", ?fname, " ", ?lname) AS ?
fulltitle)
 WHERE {
 ?t :fname ?fname .
 ?t :lname ?lname .
 ?t :title ?title }
 }
 }',
 SEM_Models('family'),
 SEM_Rulebases('RDFS','family_rb'),
 null,
 null,
 null,
 ' DISABLE_NULL_EXPR_JOIN ', null, null,
 'RDFUSER', 'NET1'));

1.6.14.12 Automatic JOIN Hints
SEM_MATCH queries that are very unselective usually execute faster if the SQL
engine uses HASH joins to evaluate joins between triple patterns. The SPARQL-to-
SQL query translator used by SEM_MATCH will attempt to auto detect such queries
and automatically add appropriate USE_HASH hints if the string AUTO_HINTS=T appears
in the options argument string.

The following SEM_MATCH query uses AUTO_HINTS=T to automatically generate
USE_HASH hints.

SELECT f, l, n, e
 FROM table(sem_match(
 'PREFIX : <http://www.example.com#>
 SELECT ?f ?l ?n ?e
 WHERE { ?s :fname ?f . ?s :lname ?l . ?s :nickName ?n . ?s :email ?
e }',
 sem_models('m1'),
 null,null,null,null,
 ' AUTO_HINTS=T ')
);

1.6.14.13 Semantic Network Indexes
Semantic Network Indexes (described in Using Semantic Network Indexes) are
nonunique B-tree indexes on the RDF_LINK$ table. Network owners and DBAs can

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-132

manage these indexes with various SEM_APIS procedures. Columns to index in RDF_LINK$
are identified by an index code, which is a sequence of the following letters (without
repetition): P, C, S, G, M, H. These letters used in the index_code correspond to the following
columns in RDF_LINK$: P_VALUE_ID (predicate), CANON_END_NODE_ID (object),
START_NODE_ID (subject), G_ID (graph), MODEL_ID, and H - a function-based index on
(MODEL_ID, GID).

It is important to have the proper set of Semantic Network Indexes for your query workload.
In versions 19c and earlier, the default index setup is PCSGM, PSCGM. In versions 21c and later
the default index setup is PCSGM, SPCGM, CM, H.

The following are a few general recommendations for Semantic Network Indexes:

• Most SPARQL queries have triple patterns with bound predicates, so it is a good idea to
have P, PC, and PS combinations covered as leading columns in your overall index set.
Such a combination is captured by the default index setup (PCSGM, PSCGM in 19c, and
PCSGM, SPCGM in 21c).

• If you have queries with unbound predicates (for example, { ?s :ssn 1234 . ?s ?p ?
o }), then a network index with a leading column other than P may be needed. An SPCGM
index would be more suitable for this example because of the join on subject variable ?s.

• If you are running DESCRIBE queries or DESCRIBE-style patterns such as
{ { <urn:abc> ?p1 ?o1 } UNION { ?s2 ?p2 <urn:abc> } }, then a network index with
a leading C column (for example, CM) in addition to an index with a leading S column may
be needed.

• If you have named graph queries with selective FROM, FROM NAMED, or GRAPH
clauses, then a network index with a leading G column may be needed (for example,
GPCSM).

• An H index is needed for efficient SPARQL Update GRAPH operations (for example,
DROP GRAPH) on schema-private networks. An H index is not needed for MDSYS
networks because an index on the application table is used instead.

• A PSCGM index is usually smaller than an SPCGM index due to better prefix compression, so
if your workload does not include queries with unbound predicates, replacing an SPCGM
index with a PSCGM index may give better performance.

1.6.14.14 Using RDF with Oracle Database In-Memory
RDF data stored in the RDF_LINK$ and RDF_VALUE$ tables can be loaded into memory
using Oracle Database In-Memory. See RDF Support for Oracle Database In-Memory for
details on how to load RDF data into memory using SEM_APIS procedures.

In general, for the best and most consistent performance with Oracle Database In-Memory, it
is recommended to make indexes on the RDF_LINK$ (semantic network indexes) and
RDF_VALUE$ tables invisible, with the exception of <NETWORK_NAME>#C_PK_VID and
<NETWORK_NAME>#RDF_VAL_NAMETYLITLNG_IDX indexes on RDF_VALUE$. These
index settings can be achieved with the following SQL commands (assuming a semantic
network named NET1 owned by RDFUSER).

exec sem_apis.alter_sem_indexes('VISIBILITY','N', network_owner=>'RDFUSER',
network_name=>'NET1');

alter index NET1#C_PK_VID visible;

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-133

alter index NET1#RDF_VAL_NAMETYLITLNG_IDX visible;

Note that the performance of very selective queries may suffer with RDF_LINK$
indexes invisible, so you may need to experiment with index visibility depending on
your query workload.

In addition to these index settings, it is recommended to use parallel query execution
with Oracle Database In-Memory, as the speedup from parallelization can be
significant in many cases.

For larger datasets (100 M triples or more), it is also recommended to use a hash-
subpartitioned semantic network with Oracle Database In-Memory. Hash
subpartitioning is described in Semantic Networks.

1.6.14.15 Using Language Tags in FILTER Expressions
When filtering query results based on language tags, it is more efficient to use LANG
instead of LANGMATCHES whenever possible. For example, the simple filter
langMatches(lang(?x), "en") could be replaced with lang(?x) = "en" for a more
efficient evaluation. Language tags in stored RDF literals are canonicalized to lower
case, so a lower case language tag constant should be used in such filters.

1.6.14.16 Type Casting for More Efficient FILTER Evaluation
SPARQL FILTERs that compare two variables using operators other than equality, for
example ?x < ?y, can have poor performance in some cases because of weak typing
in SPARQL. Because datatypes for ?x and ?y cannot be determined at query
compilation time, complex logic for comparisons of multiple datatypes must be used at
run time.

If you know the datatypes of the values to which ?x and ?y will be bound, then it is best
to cast ?x and ?y to those datatypes in your FILTER expression, so that the types will
be known at query compilation time. For example, the following query casts salary
values to xsd:decimal in the FILTER clause for a more efficient single-datatype
comparison.

SELECT ?y
WHERE {
 :emp1 :salary ?s1 .
 ?y :salary ?s2 .
 FILTER (xsd:decimal(?s2) < xsd:decimal(?s1))
}

1.6.14.17 Spatial Indexing for GeoSPARQL Queries
Options used during spatial index creation can have significant effects on the
performance of GeoSPARQL queries.

The two most important options are:

• Type of index: function-based or materialized

• Spatial reference system: SRID used for the index

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-134

SEM_APIS.ADD_DATATYPE_INDEX creates a function-based spatial index by default. A
function-based index is adequate for simple point geometries, but you should use a
materialized spatial index if your dataset contains polygon or line geometries. You can create
a materialized spatial index by specifying MATERIALIZE=T in the options argument of
SEM_APIS.ADD_DATATYPE_INDEX.

The SRID used for a spatial index is also important for performance. Oracle's GeoSPARQL
implementation is very flexible in that it allows you to load geometry literals that have been
encoded in different spatial reference systems. These geometries must be canonicalized to a
single SRID for indexing and query evaluation. You can specify this canonical SRID at index
creation time. For best performance, you must choose the SRID that is most common among
your geometry literals to minimize required coordinate transformations.

See Indexing Spatial Data for more information on spatial index creation.

1.6.15 Special Considerations When Using SEM_MATCH
The following considerations apply to SPARQL queries executed by RDF Semantic Graph
using SEM_MATCH:

• Value assignment

– A compile-time error is raised when undefined variables are referenced in the source
of a value assignment.

• Grouping and aggregation

– Non-grouping variables (query variables not used for grouping and therefore not valid
for projection) cannot be reused as a target for value assignment.

– Non-numeric values are ignored by the AVG and SUM aggregates.

– By default, SEM_MATCH returns no rows for an aggregate query with a graph
pattern that fails to match. The W3C specification requires a single, null row for this
case. W3C-compliant behavior can be obtained with the STRICT_AGG_CARD=T query
option for a small performance penalty.

• ORDER BY

– When using SPARQL ORDER BY in SEM_MATCH, the containing SQL query should
be ordered by SEM$ROWNUM to ensure that the desired ordering is maintained
through any enclosing SQL blocks.

• Numeric computations

– The native Oracle NUMBER type is used internally for all arithmetic operations, and
the results of all arithmetic operations are serialized as xsd:decimal. Note that the
native Oracle NUMBER type is more precise than both BINARY_FLOAT and
BINARY_DOUBLE. See Oracle Database SQL Language Reference for more
information on the NUMBER built-in data type.

– Division by zero causes a runtime error instead of producing an unbound value.

• Negation

– EXISTS and NOT EXISTS filters that reference potentially unbound variables are not
supported in the following contexts:

* Non-aliased expressions in GROUP BY

* Input to aggregates

* Expressions in ORDER BY

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-135

* FILTER expressions within OPTIONAL graph patterns that also reference
variables that do not appear inside of the OPTIONAL graph pattern

The first three cases can be realized by first assigning the result of the
EXISTS or NOT EXISTS filter to a variable using a BIND clause or SELECT
expression.

These restrictions do not apply to EXISTS and NOT EXISTS filters that only
reference definitely bound variables.

• Blank nodes

– Blank nodes are not supported within graph patterns.

– The BNODE(literal) function returns the same blank node value every time it
is called with the same literal argument.

• Property paths

– Unbounded operators + and * use a 10-hop depth limit by default for
performance reasons. This behavior can be changed to a truly unbounded
search by setting a depth limit of 0. See Property Paths for details.

• Long literals (CLOBs)

– SPARQL functions and aggregates do not support long literals by default.

– Specifying the CLOB_EXP_SUPPORT=T query option enables long literal support
for the following SPARQL functions: IF, COALESCE, STRLANG, STRDT,
SUBSTR, STRBEFORE, STRAFTER, CONTAINS, STRLEN, STRSTARTS,
STRENDS.

– Specifying the CLOB_AGG_SUPPORT=T query option enables long literal support
for the following aggregates: MIN, MAX, SAMPLE, GROUP_CONCAT.

• Canonicalization of RDF literals

– By default, RDF literals returned from SPARQL functions and constant RDF
literals used in value assignment statements (BIND, SELECT expressions,
GROUP BY expressions) are canonicalized. This behavior is consistent with
the SPARQL 1.1 D-Entailment Regime.

– Canonicalization can be disabled with the PROJ_EXACT_VALUES=T query option.

1.7 Using the SEM_APIS.SPARQL_TO_SQL Function to
Query Semantic Data

You can use the SEM_APIS.SPARQL_TO_SQL function as an alternative to the
SEM_MATCH table function to query semantic data.

The SEM_APIS.SPARQL_TO_SQL function is provided as an alternative to the
SEM_MATCH table function. It can be used by application developers to obtain the
SQL translation for a SPARQL query. This is the same SQL translation that would be
executed by SEM_MATCH. The resulting SQL translation can then be executed in the
same way as any other SQL string (for example, with EXECUTE IMMEDIATE in
PL/SQL applications or with JDBC in Java applications).

The first (sparql_query) parameter to SEM_APIS.SPARQL_TO_SQL specifies a
SPARQL query string and corresponds to the query argument of SEM_MATCH. In this
case, however, sparql_query is of type CLOB, which allows query strings longer than

Chapter 1
Using the SEM_APIS.SPARQL_TO_SQL Function to Query Semantic Data

1-136

4000 bytes (or 32K bytes with long VARCHAR enabled). All other parameters are exactly
equivalent to the same arguments of SEM_MATCH (described in Using the SEM_MATCH
Table Function to Query Semantic Data). The SQL query string returned by
SEM_APIS.SPARQL_TO_SQL will produce the same return columns as an execution of
SEM_MATCH with the same arguments.

The following PL/SQL fragment is an example of using the SEM_APIS.SPARQL_TO_SQL
function.

DECLARE
 c sys_refcursor;
 sparql_stmt clob;
 sql_stmt clob;
 x_value varchar2(4000);
BEGIN
 sparql_stmt :=
 'PREFIX : <http://www.example.org/family/>
 SELECT ?x
 WHERE {
 ?x :grandParentOf ?y .
 ?x rdf:type :Male
 }';

 sql_stmt := sem_apis.sparql_to_sql(
 sparql_stmt,
 sem_models('family'),
 SEM_Rulebases('RDFS','family_rb'),
 null,
 null,
 ' PLUS_RDFT=VC ', null, null,
 'RDFUSER', 'NET1');

 open c for 'select x$rdfterm from(' || sql_stmt || ')';
 loop
 fetch c into x_value;
 exit when c%NOTFOUND;

 dbms_output.put_line('x_value: ' || x_value);
 end loop;
 close c;

END;
/

• Using Bind Variables with SEM_APIS.SPARQL_TO_SQL

• SEM_MATCH and SEM_APIS.SPARQL_TO_SQL Compared

1.7.1 Using Bind Variables with SEM_APIS.SPARQL_TO_SQL
The SEM_APIS.SPARQL_TO_SQL function allows the use of PL/SQL and JDBC bind
variables. This is possible because the SQL translation returned from
SEM_APIS.SPARQL_TO_SQL does not involve an ANYTYPE table function invocation. The
basic strategy is to transform simple SPARQL BIND clauses into either JDBC or PL/SQL bind

Chapter 1
Using the SEM_APIS.SPARQL_TO_SQL Function to Query Semantic Data

1-137

variables when the USE_BIND_VAR=PLSQL or USE_BIND_VAR=JDBC query option is
specified. A simple SPARQL BIND clause is one with the form BIND (<constant>
AS ?var).

With the bind variable option, the SQL translation will contain two bind variables for
each transformed SPARQL query variable: one for the value ID, and one for the RDF
term string. An RDF term value can be substituted for a SPARQL query variable by
specifying the value ID (from RDF_VALUE$ table) as the first bind value and the RDF
term string as the second bind value. The value ID for a bound-in RDF term is required
for performance reasons. The typical workflow would be to look up the value ID for an
RDF term from the RDF_VALUE$ table (or with SEM_APIS.RES2VID) and then bind
the ID and RDF term into the translated SQL.

Multiple query variables can be transformed into bind variables in a single query. In
such cases, bind variables in the SQL translation will appear in the same order as the
SPARQL BIND clauses appear in the SPARQL query string. That is, the (id, term) pair
for the first BIND clause should be bound first, and the (id, term) pair for the second
BIND clause should be bound second.

The following example shows the use of bind variables for
SEM_APIS.SPARQL_TO_SQL from a PL/SQL block. A dummy bind variable ?n is
declared..

DECLARE
 sparql_stmt clob;
 sql_stmt clob;
 cur sys_refcursor;
 vid number;
 term varchar2(4000);
 c_val varchar2(4000);
BEGIN
 -- Add a dummy bind clause in the SPARQL statement
 sparql_stmt := 'PREFIX : <http://www.example.org/family/>
 SELECT ?c WHERE {
 BIND("" as ?s)
 ?s :parentOf ?c }';
 -- Get the SQL translation for SPARQL statement
 sql_stmt := sem_apis.sparql_to_sql(
 sparql_stmt,
 sem_models('family'),
 SEM_Rulebases('RDFS','family_rb'),
 null,
 null,' USE_BIND_VAR=PLSQL PLUS_RDFT=VC ', null, null,
 'RDFUSER', 'NET1');

 -- Execute with <http://www.example.org/family/Martha>
 term := '<http://www.example.org/family/Martha>';
 vid := sem_apis.res2vid('RDFUSER.NET1#RDF_VALUE$',term);

 dbms_output.put_line(chr(10)||'?s='||term);
 open cur for 'select c$rdfterm from('|| sql_stmt || ')' using
vid,term;
 loop
 fetch cur into c_val;
 exit when cur%NOTFOUND;
 dbms_output.put_line('|-->?c='||c_val);

Chapter 1
Using the SEM_APIS.SPARQL_TO_SQL Function to Query Semantic Data

1-138

 end loop;
 close cur;

 -- Execute with <http://www.example.org/family/Sammy>
 term := '<http://www.example.org/family/Sammy>';
 vid := sem_apis.res2vid('RDFUSER.NET1#RDF_VALUE$',term);

 dbms_output.put_line(chr(10)||'?s='||term);
 open cur for 'select c$rdfterm from('|| sql_stmt || ')' using vid,term;
 loop
 fetch cur into c_val;
 exit when cur%NOTFOUND;
 dbms_output.put_line('|-->?c='||c_val);
 end loop;
 close cur;

END;
/

The following example shows the use of bind variables from Java for
SEM_APIS.SPARQL_TO_SQL. In this case, the hint USE_BIND_VAR=JDBC is used.

public static void sparqlToSqlTest() {

 try {
 // Get connection
 Connection conn=DriverManager.getConnection(

"jdbc:oracle:thin:@localhost:1521:orcl","testuser","testuser");

 String sparqlStmt =
 "PREFIX : http://www.example.org/family/ \n" +
 "SELECT ?c WHERE { \n" +
 " BIND(\"\" as ?s) \n" +
 " ?s :parentOf ?c \n" +
 "}";

 // Get SQL translation of SPARQL statement
 // through sem_apis.sparql_to_sql
 OracleCallableStatement ocs =
(OracleCallableStatement)conn.prepareCall(
 "begin" +
 " ? := " +
 " sem_apis.sparql_to_sql('" +
 " "+sparqlStmt+"'," +
 " sem_models('family')," +
 " SEM_Rulebases('RDFS','family_rb')," +
 " null,null," +
 " ' USE_BIND_VAR=JDBC PLUS_RDFT=VC " +
 " ',null,null,'RDFUSER','NET1');" +
 "end;");
 ocs.registerOutParameter(1,Types.VARCHAR);
 ocs.execute();
 String sqlStmt = ocs.getString(1);

Chapter 1
Using the SEM_APIS.SPARQL_TO_SQL Function to Query Semantic Data

1-139

 ocs.close();

 // Set up statement to look up value ids
 OracleCallableStatement ocsVid =
(OracleCallableStatement)conn.prepareCall(
 "begin" +
 " ? := sem_apis.res2vid(?,?);" +
 "end;");

 // Execute SQL setting values for a bind variable
 PreparedStatement stmt=conn.prepareStatement(sqlStmt);

 // Look up value id for first value
 long valueId = 0;
 String term = "<http://www.example.org/family/Martha>";
 ocsVid.registerOutParameter(1,Types.NUMERIC);
 ocsVid.setString(2,"RDFUSER.NET1#RDF_VALUE$");
 ocsVid.setString(3,term);
 ocsVid.execute();
 valueId = ocsVid.getLong(1);

 stmt.setLong(1, valueId);
 stmt.setString(2, term);
 ResultSet rs=stmt.executeQuery();

 // Print results
 System.out.println("\n?s="+term);
 while(rs.next()) {
 System.out.println("|-->?c=" + rs.getString("c$rdfterm"));
 }
 rs.close();

 // Execute the same query for a different URI
 // Look up value id for next value
 valueId = 0;
 term = "<http://www.example.org/family/Sammy>";
 ocsVid.registerOutParameter(1,Types.NUMERIC);
 ocsVid.setString(2,"RDFUSER.NET1#RDF_VALUE$");
 ocsVid.setString(3,term);
 ocsVid.execute();
 valueId = ocsVid.getLong(1);

 stmt.setLong(1, valueId);
 stmt.setString(2, term);
 rs=stmt.executeQuery();

 // Print results
 System.out.println("\n?s="+term);
 while(rs.next()) {
 System.out.println("|-->?c=" + rs.getString("c$rdfterm"));
 }
 rs.close();

 stmt.close();
 ocsVid.close();

Chapter 1
Using the SEM_APIS.SPARQL_TO_SQL Function to Query Semantic Data

1-140

 conn.close();

 } catch (SQLException e) {
 e.printStackTrace();
 }
}

1.7.2 SEM_MATCH and SEM_APIS.SPARQL_TO_SQL Compared
The SEM_APIS.SPARQL_TO_SQL function avoids some limitations that are inherent in the
SEM_MATCH table function due to its use of the rewritable table function interface.
Specifically, SEM_APIS.SPARQL_TO_SQL adds the following capabilities.

• SPARQL query string arguments larger than 4000 bytes (32K bytes with long varchar
support) can be used.

• The plain SQL returned from SEM_APIS.SPARQL_TO_SQL can be executed against
read-only databases.

• The plain SQL returned from SEM_APIS.SPARQL_TO_SQL can support PL/SQL and
JDBC bind variables.

SEM_MATCH, however, provides some unique capabilities that are not possible with
SEM_APIS.SPARQL_TO_SQL..

• Support for projection optimization: If only the VAR$RDFVID column of a projected
variable is selected from the SEM_MATCH invocation, the RDF_VALUE$ join for this
variable will be avoided.

• Support for advanced features that require the procedural start-fetch-close table function
execution: SERVICE_JPDWN=T and OVERLOADED_NL=T options with SPARQL SERVICE.

• The ability to execute queries interactively with tools like SQL*Plus.

1.8 Loading and Exporting Semantic Data
You can load semantic data into a model in the database and export that data from the
database into a staging table.

To load semantic data into a model, use one or more of the following options:

• Bulk load or append data into the model from a staging table, with each row containing
the three components -- subject, predicate, and object -- of an RDF triple and optionally a
named graph. This is explained in Bulk Loading Semantic Data Using a Staging Table.

This is the fastest option for loading large amounts of data.

• Load data into the application table using SQL INSERT statements that call the
SDO_RDF_TRIPLE_S constructor, which results in the corresponding RDF triple,
possibly including a graph name, to be inserted into the semantic data store, as
explained in Loading Semantic Data Using INSERT Statements.

This option is convenient for loading small amounts of data

• Load data into the model with SPARQL Update statements executed through
SEM_APIS.UPDATE_MODEL, as explained in Support for SPARQL Update Operations
on a Semantic Model.

This option is convenient for loading small amounts of data, and can also be used to load
larger amounts of data through LOAD statements.

Chapter 1
Loading and Exporting Semantic Data

1-141

• Load data into the model using the Apache Jena-based Java API, which is
explained in RDF Semantic Graph Support for Apache Jena .

This option provides several ways to load both small and large amounts of data,
and it supports many different RDF serialization formats.

Note:

Unicode data in the staging table should be escaped as specified in WC3 N-
Triples format (http://www.w3.org/TR/rdf-testcases/#ntriples). You can use
the SEM_APIS.ESCAPE_RDF_TERM function to escape Unicode values in
the staging table. For example:

create table esc_stage_tab(rdfstc_sub, rdfstc_pred,
rdf$stc_obj);

insert /*+ append nologging parallel */ into esc_stage_tab
(rdfstc_sub, rdfstc_pred, rdf$stc_obj)
select sem_apis.escape_rdf_term(rdf$stc_sub, options=>’
UNI_ONLY=T '), sem_apis.escape_rdf_term(rdf$stc_pred,
options=>’ UNI_ONLY=T '),
sem_apis.escape_rdf_term(rdf$stc_obj, options=>’ UNI_ONLY=T ')
from stage_tab;

To export semantic data, that is, to retrieve semantic data from Oracle Database
where the results are in N-Triple or N-Quad format that can be stored in a staging
table, use the SQL queries described in Exporting Semantic Data.

Note:

Effective with Oracle Database Release 12.1, you can export and import a
semantic network using the full database export and import features of the
Oracle Data Pump utility, as explained in Exporting or Importing a Semantic
Network Using Oracle Data Pump.

• Bulk Loading Semantic Data Using a Staging Table

• Loading Semantic Data Using INSERT Statements

• Exporting Semantic Data

• Exporting or Importing a Semantic Network Using Oracle Data Pump

• Moving, Restoring, and Appending a Semantic Network

• Purging Unused Values

1.8.1 Bulk Loading Semantic Data Using a Staging Table
You can load semantic data (and optionally associated non-semantic data) in bulk
using a staging table. Call the SEM_APIS.LOAD_INTO_STAGING_TABLE procedure

Chapter 1
Loading and Exporting Semantic Data

1-142

http://www.w3.org/TR/rdf-testcases/#ntriples

(described in SEM_APIS Package Subprograms) to load the data, and you can have during
the load operation to check for syntax correctness. Then, you can call the
SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE procedure to load the data into the
semantic store from the staging table. (If the data was not parsed during the load operation
into the staging table, you must specify the PARSE keyword in the flags parameter when you
call the SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE procedure.)

The following example shows the format for the staging table, including all required columns
and the required names for these columns, plus the optional RDF$STC_graph column which
must be included if one or more of the RDF triples to be loaded include a graph name:

CREATE TABLE stage_table (
 RDF$STC_sub varchar2(4000) not null,
 RDF$STC_pred varchar2(4000) not null,
 RDF$STC_obj varchar2(4000) not null,
 RDF$STC_graph varchar2(4000)
);

If you also want to load non-semantic data, specify additional columns for the non-semantic
data in the CREATE TABLE statement. The non-semantic column names must be different
from the names of the required columns. The following example creates the staging table
with two additional columns (SOURCE and ID) for non-semantic attributes.

CREATE TABLE stage_table_with_extra_cols (
 source VARCHAR2(4000),
 id NUMBER,
 RDF$STC_sub varchar2(4000) not null,
 RDF$STC_pred varchar2(4000) not null,
 RDF$STC_obj varchar2(4000) not null,
 RDF$STC_graph varchar2(4000)
);

Note:

For either form of the CREATE TABLE statement, you may want to add the
COMPRESS clause to use table compression, which will reduce the disk space
requirements and may improve bulk-load performance.

Both the invoker and the network owner user must have the following privileges: SELECT
privilege on the staging table, and INSERT privilege on the application table.

See also the following:

• Loading the Staging Table

• Recording Event Traces During Bulk Loading

1.8.1.1 Loading the Staging Table
You can load semantic data into the staging table, as a preparation for loading it into the
semantic store, in several ways. Some of the common ways are the following:

• Loading N-Triple Format Data into a Staging Table Using SQL*Loader

• Loading N-Quad Format Data into a Staging Table Using an External Table

Chapter 1
Loading and Exporting Semantic Data

1-143

1.8.1.1.1 Loading N-Triple Format Data into a Staging Table Using SQL*Loader
You can use the SQL*Loader utility to parse and load semantic data into a staging
table. If you installed the demo files from the Oracle Database Examples media (see
Oracle Database Examples Installation Guide), a sample control file is available
at $ORACLE_HOME/md/demo/network/rdf_demos/bulkload.ctl. You can modify and
use this file if the input data is in N-Triple format.

Objects longer than 4000 bytes cannot be loaded. If you use the sample SQL*Loader
control file, triples (rows) containing such long values will be automatically rejected and
stored in a SQL*Loader "bad" file. However, you can load these rejected rows by
inserting them into the application table using SQL INSERT statements (see Loading
Semantic Data Using INSERT Statements).

1.8.1.1.2 Loading N-Quad Format Data into a Staging Table Using an External Table
You can use an Oracle external table to load N-Quad format data (extended triple
having four components) into a staging table, as follows:

1. Call the SEM_APIS.CREATE_SOURCE_EXTERNAL_TABLE procedure to create
an external table, and then use the SQL STATEMENT ALTER TABLE to alter the
external table to include the relevant input file name or names. You must have
READ and WRITE privileges for the directory object associated with folder
containing the input file or files.

2. After you create the external table, grant the MDSYS user SELECT and INSERT
privileges on the table.

3. Call the SEM_APIS.LOAD_INTO_STAGING_TABLE procedure to populate the
staging table.

4. After the loading is finished, issue a COMMIT statement to complete the
transaction.

Example 1-100 Using an External Table to Load a Staging Table

-- Create a source external table (note: table names are case sensitive)
BEGIN
 sem_apis.create_source_external_table(
 source_table => 'stage_table_source'
 ,def_directory => 'DATA_DIR'
 ,bad_file => 'CLOBrows.bad'
);
END;
/
grant SELECT on "stage_table_source" to MDSYS;

-- Use ALTER TABLE to target the appropriate file(s)
alter table "stage_table_source" location ('demo_datafile.nt');

-- Load the staging table (note: table names are case sensitive)
BEGIN
 sem_apis.load_into_staging_table(
 staging_table => 'STAGE_TABLE'
 ,source_table => 'stage_table_source'
 ,input_format => 'N-QUAD');
END;
/

Chapter 1
Loading and Exporting Semantic Data

1-144

Rows where the objects and graph URIs (combined) are longer than 4000 bytes will be
rejected and stored in a "bad" file. However, you can load these rejected rows by inserting
them into the application table using SQL INSERT statements (see Loading Semantic Data
Using INSERT Statements).

Example 1-100 shows the use of an external table to load a staging table.

1.8.1.2 Recording Event Traces During Bulk Loading
If a table named RDF$ET_TAB exists in the invoker's schema and if the network owner user
has been granted the INSERT and UPDATE privileges on this table, event traces for some of
the tasks performed during executions of the
SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE procedure will be added to the table.
You may find the content of this table useful if you ever need to report any problems in bulk
load. The RDF$ET_TAB table must be created as follows:

CREATE TABLE RDF$ET_TAB (
 proc_sid VARCHAR2(128),
 proc_sig VARCHAR2(200),
 event_name varchar2(200),
 start_time timestamp,
 end_time timestamp,
 start_comment varchar2(1000) DEFAULT NULL,
 end_comment varchar2(1000) DEFAULT NULL
);
-- Grant privileges on RDF$ET_TAB to network owner if network owner
-- is not the owner of RDF$ET_TAB
GRANT SELECT, INSERT, UPDATE on RDF$ET_TAB to <network_owner>;

1.8.2 Loading Semantic Data Using INSERT Statements
To load semantic data using INSERT statements, the data should be encoded using < >
(angle brackets) for URIs, _: (underscore colon) for blank nodes, and " " (quotation marks)
for literals. Spaces are not allowed in URIs or blank nodes. Use the SDO_RDF_TRIPLE_S
constructor to insert the data, as described in Constructors for Inserting Triples. You must
have INSERT privilege on the application table.

Note:

If URIs are not encoded with < > and literals with " ", statements will still be
processed. However, the statements will take longer to load, since they will have to
be further processed to determine their VALUE_TYPE values.

The following example assumes a semantic network named NET1 owned by RDFUSER. It
includes statements with URIs, a blank node, a literal, a literal with a language tag, and a
typed literal:

INSERT INTO nsu_data VALUES (SDO_RDF_TRIPLE_S('nsu','<http://nature.example.com/nsu/rss.rdf>',
 '<http://purl.org/rss/1.0/title>', '"Nature''s Science Update"', 'RDFUSER', 'NET1'));
INSERT INTO nsu_data VALUES (SDO_RDF_TRIPLE_S('nsu', '_:BNSEQN1001A',
 '<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>',
 '<http://www.w3.org/1999/02/22-rdf-syntax-ns#Seq>', 'RDFUSER', 'NET1'));
INSERT INTO nsu_data VALUES (SDO_RDF_TRIPLE_S('nsu',
 '<http://nature.example.com/cgi-taf/dynapage.taf?file=/nature/journal/v428/n6978/index.html>',

Chapter 1
Loading and Exporting Semantic Data

1-145

 '<http://purl.org/dc/elements/1.1/language>', '"English"@en-GB', 'RDFUSER', 'NET1'));
INSERT INTO nature VALUES (SDO_RDF_TRIPLE_S('nsu', '<http://dx.doi.org/10.1038/428004b>',
 '<http://purl.org/dc/elements/1.1/date>', '"2004-03-04"^^xsd:date', 'RDFUSER', 'NET1'));

• Loading Data into Named Graphs Using INSERT Statements

1.8.2.1 Loading Data into Named Graphs Using INSERT Statements
To load an RDF triple with a non-null graph name using an INSERT statement, you
must append the graph name, enclosed within angle brackets (< >), after the model
name and colon (:) separator character, as shown in the following example:

INSERT INTO articles_rdf_data VALUES (
 SDO_RDF_TRIPLE_S ('articles:<http://examples.com/ns#Graph1>',
 '<http://nature.example.com/Article101>',
 '<http://purl.org/dc/elements/1.1/creator>',
 '"John Smith"', 'RDFUSER', 'NET1'));

1.8.3 Exporting Semantic Data
This section contains the following topics related to exporting semantic data, that is,
retrieving semantic data from Oracle Database where the results are in N-Triple or N-
Quad format that can be stored in a staging table.

• Retrieving Semantic Data from an Application Table

• Retrieving Semantic Data from an RDF Model

• Removing Model and Graph Information from Retrieved Blank Node Identifiers

1.8.3.1 Retrieving Semantic Data from an Application Table
Semantic data can be retrieved from an application table using the member functions
of SDO_RDF_TRIPLE_S, as shown in Example 1-101 (where the output is
reformatted for readability). The example assumes a semantic network named NET1
owned by a database user named RDFUSER.

Example 1-101 Retrieving Semantic Data from an Application Table

--
-- Retrieves model-graph, subject, predicate, and object
--
SQL> SELECT a.triple.GET_MODEL('RDFUSER','NET1') AS model_graph,
 a.triple.GET_SUBJECT('RDFUSER','NET1') AS sub,
 a.triple.GET_PROPERTY('RDFUSER','NET1') pred,
 a.triple.GET_OBJ_VALUE('RDFUSER','NET1') obj
 FROM RDFUSER.NET1#RDFT_ARTICLES a;

MODEL_GRAPH
--
SUB
--
PRED
--
OBJ
--
ARTICLES
<http://nature.example.com/Article1>
<http://purl.org/dc/elements/1.1/title>

Chapter 1
Loading and Exporting Semantic Data

1-146

"All about XYZ"

ARTICLES
<http://nature.example.com/Article1>
<http://purl.org/dc/elements/1.1/creator>
"Jane Smith"

ARTICLES
<http://nature.example.com/Article1>
<http://purl.org/dc/terms/references>
<http://nature.example.com/Article2>

ARTICLES
<http://nature.example.com/Article1>
<http://purl.org/dc/terms/references>
<http://nature.example.com/Article3>

ARTICLES
<http://nature.example.com/Article2>
<http://purl.org/dc/elements/1.1/title>
"A review of ABC"

ARTICLES
<http://nature.example.com/Article2>
<http://purl.org/dc/elements/1.1/creator>
"Joe Bloggs"

ARTICLES
<http://nature.example.com/Article2>
<http://purl.org/dc/terms/references>
<http://nature.example.com/Article3>

7 rows selected.

1.8.3.2 Retrieving Semantic Data from an RDF Model
Semantic data can be retrieved from an RDF model using the SEM_MATCH table function
(described in Using the SEM_MATCH Table Function to Query Semantic Data), as shown in
Example 1-102. The example assumes a semantic network named NET1 owned by a
database user named RDFUSER.

Example 1-102 Retrieving Semantic Data from an RDF Model

--
-- Retrieves graph, subject, predicate, and object
--
SQL> select to_char(g$rdfterm) graph, to_char(x$rdfterm) sub, to_char(p$rdfterm) pred,
y$rdfterm obj from table(sem_match('Select ?g ?x ?p ?y WHERE { { GRAPH ?g {?x ?p ?
y} } UNION { ?x ?p ?y }}',sem_models('articles'),null,null,null,null,'
STRICT_DEFAULT=T PLUS_RDFT=T ',null,null,'RDFUSER','NET1'));

GRAPH
--
SUB

Chapter 1
Loading and Exporting Semantic Data

1-147

--
PRED
--
OBJ

<http://examples.com/ns#Graph1>
_:m99g3C687474703A2F2F6578616D706C65732E636F6D2F6E73234772617068313Egmb2
<http://purl.org/dc/elements/1.1/creator>
_:m99g3C687474703A2F2F6578616D706C65732E636F6D2F6E73234772617068313Egmb1

<http://examples.com/ns#Graph1>
<http://nature.example.com/Article102>
<http://purl.org/dc/elements/1.1/creator>
_:m99g3C687474703A2F2F6578616D706C65732E636F6D2F6E73234772617068313Egmb1

<http://examples.com/ns#Graph1>
<http://nature.example.com/Article101>
<http://purl.org/dc/elements/1.1/creator>
"John Smith"

<http://nature.example.com/Article1>
<http://purl.org/dc/elements/1.1/creator>
"Jane Smith"

1.8.3.3 Removing Model and Graph Information from Retrieved Blank Node
Identifiers

Blank node identifiers retrieved during the retrieval of semantic data can be trimmed to
remove the occurrence of model and graph information using the transformations
shown in the code excerpt in Example 1-103, which are applicable to VARCHAR2 (for
example, subject component) and CLOB (for example, object component) data,
respectively.

Example 1-104 shows the results obtained after using these two transformations in
Example 1-103 on the sub and obj columns, respectively, using the semantic data
retrieval query described in Retrieving Semantic Data from an RDF Model.

Example 1-103 Retrieving Semantic Data from an Application Table

--
-- Transformation on column "sub VARCHAR2"
-- holding blank node identifier values
--
Select (case substr(sub,1,2) when '_:' then '_:' ||
substr(sub,instr(sub,'m',1,2)+1) else sub end) from …
--
-- Transformation on column "obj CLOB"
-- holding blank node identifier values
--
Select (case dbms_lob.substr(obj,2,1) when '_:' then to_clob('_:' ||
substr(obj,instr(obj,'m',1,2)+1)) else obj end) from …

Example 1-104 Results from Applying Transformations from Example 1-103

--
-- Results obtained by applying transformations on the sub and pred cols
--
SQL> select (case substr(sub,1,2) when '_:' then '_:' ||
substr(sub,instr(sub,'m',1,2)+1) else sub end) sub, pred, (case
dbms_lob.substr(obj,2,1) when '_:' then to_clob('_:' ||

Chapter 1
Loading and Exporting Semantic Data

1-148

substr(obj,instr(obj,'m',1,2)+1)) else obj end) obj from (select to_char(g$rdfterm)
graph, to_char(x$rdfterm) sub, to_char(p$rdfterm) pred, y$rdfterm obj from
table(sem_match('Select ?g ?x ?p ?y WHERE { { GRAPH ?g {?x ?p ?y} } UNION { ?x ?p ?
y }}',sem_models('articles'),null,null,null,null,' STRICT_DEFAULT=T PLUS_RDFT=T
',null,null,'RDFUSER','NET1'));

SUB
--
PRED
--
OBJ

_:b2
<http://purl.org/dc/elements/1.1/creator>
_:b1

<http://nature.example.com/Article102>
<http://purl.org/dc/elements/1.1/creator>
_:b1

1.8.4 Exporting or Importing a Semantic Network Using Oracle Data Pump
Effective with Oracle Database Release 12.1, you can export and import a semantic network
using the full database export and import features of the Oracle Data Pump utility. The
network is moved as part of the full database export or import, where the whole database is
represented in an Oracle dump (.dmp) file.

The following usage notes apply to using Data Pump to export or import a semantic network:

• The target database for an import must have the RDF Semantic Graph software installed,
and there cannot be a pre-existing semantic network.

• Semantic networks using fine-grained access control (triple-level or resource-level OLS
or VPD) cannot be exported or imported.

• Semantic document indexes for SEM_CONTAINS (MDSYS.SEMCONTEXT index type)
and semantic indexes for SEM_RELATED (MDSYS.SEM_INDEXTYPE index type) must
be dropped before an export and re-created after an import.

• Only default privileges for semantic network objects (those that exist just after object
creation) are preserved during export and import. For example, if user A creates
semantic model M and grants SELECT on RDFM_M to user B, only user A's SELECT
privilege on RDFM_M will be present after the import. User B will not have SELECT
privilege on RDFM_M after the import. Instead, user B's SELECT privilege will have to be
granted again.

• The Data Pump command line option transform=oid:n must be used when exporting or
importing semantic network data. For example, use a command in the following format:

impdp system/<password-for-system> directory=dpump_dir dumpfile=rdf.dmp full=YES
version=12 transform=oid:n

For Data Pump usage information and examples, see the relevant chapters in Part I of Oracle
Database Utilities.

1.8.5 Moving, Restoring, and Appending a Semantic Network
The SEM_APIS package includes utility procedures for transferring data into and out of a
semantic network.

Chapter 1
Loading and Exporting Semantic Data

1-149

The contents of a semantic network can be moved to a staging schema. A semantic
network in a staging schema can then be (1) exported with Oracle Data Pump or a
similar tool, (2) appended to a different semantic network, or (3) restored back into the
source semantic network. Move, restore and append operations mostly use partition
exchange to move data rather than SQL inserts to copy data. Consequently, these
operations are very efficient.

The procedures to move, restore, and append semantic network data are:

• SEM_APIS.MOVE_SEM_NETWORK_DATA

• SEM_APIS.RESTORE_SEM_NETWORK_DATA

• SEM_APIS.APPEND_SEM_NETWORK_DATA

Special Considerations When Performing Move, Restore, and Append
Operations

Move, restore, and append operations are not supported for semantic networks that
use any of the following features:

• Domain indexes on the RDF_VALUE$ table (for example, spatial indexes)

• Oracle Label Security for RDF

• Semantic indexing for documents

• Incremental inference

Domain indexes and entailments that use incremental inference should be dropped
before moving the semantic network and then recreated after any subsequent restore
or append operations.

Some restrictions apply to the target network used for an append operation.

• The set of RDF terms in the target network must be a subset of the set of RDF
terms in the source network.

• The set of model IDs used in the source and target semantic networks must be
disjoint.

• The set of entailment IDs used in the source and target semantic networks must
be disjoint.

• The set of rulebase IDs used in the source and target semantic networks must be
disjoint, with the exception of built-in rulebases such as OWL2RL.

The first two examples in this topic show how to move an MDSYS-owned semantic
network from one database to another. The third example shows how to move
(migrate) an MDSYS-owned semantic network in a database to a schema-private
semantic network in the same database.

• Example 1-105

• Example 1-106

• Example 1-107

Example 1-105 Moving and Exporting an MDSYS Semantic Network

This first example uses Data Pump Export to export relevant network data to
multiple .dmp files, so that the data can be imported into a semantic network in another
database (as shown in the second example).

Chapter 1
Loading and Exporting Semantic Data

1-150

This example performs the following major actions.

1. Creates a directory for a Data Pump Export operation.

2. Creates a database user (RDFEXPIMPU) that will hold the output of the export of the
semantic network.

3. Moves the semantic network data to the RDFEXPIMPU schema.

4. Uses Data Pump to export the moved semantic network data.

5. Uses Data Pump to export any user application tables referenced by models in the
semantic network.

6. Optionally, restores the semantic network data in the current network. (This allows you to
continue using the MDSYS-owned semantic network in the current database.)

conn sys/<password_for_sys> as sysdba;

-- create directory for datapump export
create directory dpump_dir as '<path_to_directory>';
grant read,write on directory dpump_dir to public;

-- create user to hold exported semantic network
grant connect, resource, unlimited tablespace to rdfexpimpu identified by
<password>;

-- connect as a privileged user to move the network
conn system/<password_for_system>
-- move semantic network data to RDFEXPIMPU schema
exec sem_apis.move_sem_network_data(dest_schema=>'RDFEXPIMPU');

-- export moved network data with datapump
-- export rdfexpimpu schema
host expdp rdfexpimpu/<password> DIRECTORY=dpump_dir DUMPFILE=expuser.dmp
version=12.2 logfile=export_move_sem_network_data.log

-- export any user application tables referenced by models in the semantic
network
host expdp rdfuser/<password> tables=ATAB,ATAB2,ATAB3,GTAB
DIRECTORY=dpump_dir DUMPFILE=exp_atabs.dmp version=12.2
logfile=export_move_atabs.log

-- export any user tables referenced in RDF Views
host expdp db_user1/<password> tables=EMP,WORKED_FOR,DEPT
DIRECTORY=dpump_dir DUMPFILE=exp_rdfviewtabs.dmp version=12.2
logfile=export_move_rdfview_tabs.log

-- optionally restore the network data or drop the source semantic network
exec sem_apis.restore_sem_network_data(from_schema=>'RDFEXPIMPU');

Example 1-106 Importing and Appending an MDSYS Semantic Network

This second example uses Data Pump Import to import relevant network data (from the first
example), creates necessary database users, creates a new MDSYS-owned semantic
network, and "appends" the imported network data into the newly created network.

This example performs the following major actions.

Chapter 1
Loading and Exporting Semantic Data

1-151

1. Creates a database user (RDFEXPIMPU), if it does not already exist in the
database, that will hold the output of the export of the semantic network.

2. Creates users RDFUSER and DB_USER1 if they do not already exist in the
database.

3. Uses Data Pump to import any application tables, RDF view component tables,
and previously moved semantic network data.

4. Creates a new semantic network in which to append the imported data.

5. Appends the imported data into the newly created semantic network.

conn sys/<password_for_sys>

-- create a user to hold the imported semantic network
grant connect, resource, unlimited tablespace to rdfexpimpu identified
by <password>;

-- create users that own any associated application tables
grant connect, resource, unlimited tablespace to rdfuser identified by
<password>;

-- create users that own any component tables of RDF views
grant connect, resource, unlimited tablespace to db_user1 identified
by <password>;

conn system/<password_for_system>

-- import any application tables
host impdp rdfuser/<password> tables=ATAB,ATAB2,ATAB3,GTAB
DIRECTORY=dpump_dir DUMPFILE=exp_atabs.dmp version=12.2
logfile=import_append_sem_network_data.log

-- import any RDF view component tables
host impdp db_user1/<password> tables=EMP,WORKED_FOR,DEPT
DIRECTORY=dpump_dir DUMPFILE=exp_rdfviewtabs.dmp version=12.2
logfile=import_append_rdfview_tabs.log

-- import the previously moved semantic network
host impdp rdfexpimpu/<password> DIRECTORY=dpump_dir
DUMPFILE=expuser.dmp version=12.2 logfile=import_append_atabs.log

-- create a new semantic network in which to append the imported one
exec sem_apis.create_sem_network('rdf_tablespace');

-- append the imported semantic network
exec sem_apis.append_sem_network_data(from_schema=>'RDFEXPIMPU');

Example 1-107 Migrating an MDSYS Semantic Network to a Shared Schema-
Private Semantic Network

This third example migrates an existing MDSYS semantic network to a shared
schema-private semantic network by using
SEM_APIS.MOVE_SEM_NETWORK_DATA and
SEM_APIS.APPEND_SEM_NETWORK_DATA.

Chapter 1
Loading and Exporting Semantic Data

1-152

This example performs the following major actions.

1. Creates a database user (RDFEXPIMPU), if it does not already exist in the database,
that will hold the moved existing MDSYS-owned semantic network.

2. Moves the existing semantic network data to the RDFEXPIMPU schema.

3. Creates a administrative database user (RDFADMIN), if it does not already exist in the
database, that will own the schema-private semantic network.

4. Creates the schema-private semantic network, named MY_NET and owned by
RDFADMIN.

5. Sets up network sharing for this newly created schema-private network.

a. Grants network sharing privileges to RDFADMIN.

b. Enables network sharing for all users of the old MDSYS-owned network.

c. Grants access privileges to two regular database users (UDFUSER and
DB_USER1). privileges to RDFADMIN.

6. Appends the previously moved network data into the shared schema-private semantic
network.

conn sys/<password_for_sys>

-- create a user to hold the moved semantic network
grant connect, resource, unlimited tablespace to rdfexpimpu identified by
rdfexpimpu;

conn system/<password_for_system>

-- move the existing MDSYS semantic network
exec sem_apis.move_sem_network_data(dest_schema=>'RDFEXPIMPU');

-- drop the existing MDSYS semantic network
exec sem_apis.drop_sem_network(cascade=>true);

-- create schema-private semantic network to hold the MDSYS network data
conn sys/<password_for_sys>

-- create an admin user to own the schema-private semantic network
create user rdfadmin identified by rdfadmin;
grant connect,resource,unlimited tablespace to rdfadmin;

conn system/<password_for_system>

-- create the schema-private semantic network
exec
sem_apis.create_sem_network(tablespace_name=>'rdf_tablespace',network_owner=>
'RDFADMIN',network_name=>'MYNET');

-- setup network sharing for rdfadmin’s schema-private semantic network
-- first grant network sharing privileges to rdfadmin
exec sem_apis.grant_network_sharing_privs(network_owner=>'RDFADMIN');
-- now connect as rdfadmin and enable sharing for all users of the old MDSYS
semantic network
conn rdfadmin/<password>

Chapter 1
Loading and Exporting Semantic Data

1-153

-- enable sharing for rdfadmin’s network
exec
sem_apis.enable_network_sharing(network_owner=>'RDFADMIN',network_name=
>'MYNET');

-- grant access privileges to RDFUSER
exec
sem_apis.grant_network_access_privs(network_owner=>'RDFADMIN',network_n
ame=>'MYNET',network_user=>'RDFUSER');
-- grant access privileges to DB_USER1
exec
sem_apis.grant_network_access_privs(network_owner=>'RDFADMIN',network_n
ame=>'MYNET',network_user=>'DB_USER1');

-- append the exported network into the shared schema-private semantic
network
-- after this step, migration will be complete, and the new shared
schema-private semantic network will be ready to use
conn system/<password_for_system>
exec
sem_apis.append_sem_network_data(from_schema=>'RDFEXPIMPU',network_owne
r=>'RDFADMIN',network_name=>'MYNET');

1.8.6 Purging Unused Values
Deletion of triples over time may lead to a subset of the values in the RDF_VALUE$
table becoming unused in any of the RDF triples or rules currently in the semantic
network. If the count of such unused values becomes large and a significant portion of
the RDF_VALUE$ table, you may want to purge the unused values using the
SEM_APIS.PURGE_UNUSED_VALUES subprogram.

For an MDSYS-owned network, before the purging, the network owner must be
granted SELECT privilege on application tables for all the RDF models. This can be
done directly using the GRANT command or by using the
SEM_APIS.PRIVILEGE_ON_APP_TABLES subprogram.

Event traces for tasks performed during the purge operation may be recorded into the
RDF$ET_TAB table, if present in the invoker's schema, as described in Recording
Event Traces During Bulk Loading.

1.9 Using Semantic Network Indexes
Semantic network indexes are nonunique B-tree indexes that you can add, alter, and
drop for use with models and entailments in a semantic network.

You can use such indexes to tune the performance of SEM_MATCH queries on the
models and entailments in the network. As with any indexes, semantic network
indexes enable index-based access that suits your query workload. This can lead to
substantial performance benefits, such as in the following example scenarios:

• If your graph pattern is '{<John> ?p <Mary>}', you may want to have a usable
'CSPGM'or 'SCPGM' index for the target model or models and on the corresponding
entailment, if used in the query.

Chapter 1
Using Semantic Network Indexes

1-154

• If your graph pattern is '{?x <talksTo> ?y . ?z ?p ?y}', you may want to have a
usable semantic network index on the relevant model or models and entailment, with C as
the leading key (for example, 'CPSGM').

However, using semantic network indexes can affect overall performance by increasing the
time required for DML, load, and inference operations.

You can create and manage semantic network indexes using the following subprograms:

• SEM_APIS.ADD_SEM_INDEX

• SEM_APIS.ALTER_SEM_INDEX_ON_MODEL

• SEM_APIS.ALTER_SEM_INDEX_ON_ENTAILMENT

• SEM_APIS.DROP_SEM_INDEX

All of these subprograms have an index_code parameter, which can contain any sequence of
the following letters (without repetition): P, C, S, G, M. These letters used in the index_code
correspond to the following columns in the SEMM_* and SEMI_* views: P_VALUE_ID,
CANON_END_NODE_ID, START_NODE_ID, G_ID, and MODEL_ID.

The SEM_APIS.ADD_SEM_INDEX procedure creates a semantic network index that results
in creation of a nonunique B-tree index in UNUSABLE status for each of the existing models
and entailments. The name of the index is RDF_LNK_<index_code>_IDX and the index is
owned by the network owner. This operation is allowed only if the invoker has DBA role or is
the network owner. The following example shows creation of the PSCGM index with the
following key: <P_VALUE_ID, START_NODE_ID, CANON_END_NODE_ID, G_ID,
MODEL_ID>.

EXECUTE SEM_APIS.ADD_SEM_INDEX('PSCGM' network_owner=>'RDFUSER', network_name=>'NET1');

After you create a semantic network index, each of the corresponding nonunique B-tree
indexes is in the UNUSABLE status, because making it usable can cause significant time and
resources to be used, and because subsequent index maintenance operations might involve
performance costs that you do not want to incur. You can make a semantic network index
usable or unusable for specific models or entailments that you own by calling the
SEM_APIS.ALTER_SEM_INDEX_ON_MODEL and
SEM_APIS.ALTER_SEM_INDEX_ON_ENTAILMENT procedures and specifying 'REBUILD'
or 'UNUSABLE' as the command parameter. Thus, you can experiment by making different
semantic network indexes usable and unusable, and checking for any differences in
performance. For example, the following statement makes the PSCGM index usable for the
FAMILY model:

EXECUTE SEM_APIS.ALTER_SEM_INDEX_ON_MODEL('FAMILY','PSCGM','REBUILD'
network_owner=>'RDFUSER', network_name=>'NET1');

Also note the following:

• Independent of any semantic network indexes that you create, when a semantic network
is created, one of the indexes that is automatically created is an index that you can
manage by referring to the index_code as 'PSCGM' when you call the subprograms
mentioned in this section.

• When you create a new model or a new entailment, a new nonunique B-tree index is
created for each of the semantic network indexes, and each such B-tree index is in the
USABLE status.

Chapter 1
Using Semantic Network Indexes

1-155

• Including the MODEL_ID column in a semantic network index key (by including 'M'
in the index_code value) may improve query performance. This is particularly
relevant when virtual models are used.

• SEM_NETWORK_INDEX_INFO View

1.9.1 SEM_NETWORK_INDEX_INFO View
Information about all network indexes on models and entailments is maintained in the
SEM_NETWORK_INDEX_INFO view, which includes (a partial list) the columns
shown in Table 1-24 and one row for each network index.

Table 1-24 SEM_NETWORK_INDEX_INFO View Columns (Partial List)

Column Name Data Type Description

NAME VARCHAR2(30) Name of the RDF model or entailment

TYPE VARCHAR2(10) Type of object on which the index is built: MODEL,
ENTAILMENT, or NETWORK

ID NUMBER ID number for the model or entailment, or zero (0) for
an index on the network

INDEX_CODE VARCHAR2(25) Code for the index (for example, PSCGM).

INDEX_NAME VARCHAR2(30) Name of the index (for example,
RDF_LNK_PSCGM_IDX)

LAST_REFRESH TIMESTAMP(6)
WITH TIME ZONE

Timestamp for the last time this content was
refreshed

In addition to the columns listed in Table 1-24, the SEM_NETWORK_INDEX_INFO
view contains columns from the ALL_INDEXES and ALL_IND_PARTITIONS views
(both described in Oracle Database Reference), including:

• From the ALL_INDEXES view: UNIQUENESS, COMPRESSION,
PREFIX_LENGTH

• From the ALL_IND_PARTITIONS view: STATUS, TABLESPACE_NAME, BLEVEL,
LEAF_BLOCKS, NUM_ROWS, DISTINCT_KEYS,
AVG_LEAF_BLOCKS_PER_KEY, AVG_DATA_BLOCKS_PER_KEY,
CLUSTERING_FACTOR, SAMPLE_SIZE, LAST_ANALYZED

Note that the information in the SEM_NETWORK_INDEX_INFO view may sometimes
be stale. You can refresh this information by using the
SEM_APIS.REFRESH_SEM_NETWORK_INDEX_INFO procedure.

1.10 Using Data Type Indexes
Data type indexes are indexes on the values of typed literals stored in a semantic
network.

These indexes may significantly improve the performance of SEM_MATCH queries
involving certain types of FILTER expressions. For example, a data type index on
xsd:dateTime literals may speed up evaluation of the filter (?x <
"1929-11-16T13:45:00Z"^^xsd:dateTime). Indexes can be created for several data
types, which are listed in Table 1-25.

Chapter 1
Using Data Type Indexes

1-156

Table 1-25 Data Types for Data Type Indexing

Data Type URI Oracle
Type

Index Type

http://www.w3.org/2001/
XMLSchema#decimal

NUMBER Non-unique B-tree (creates a single index
for all xsd numeric types, including
xsd:float, xsd:double, and
xsd:decimal and all of its subtypes)

http://www.w3.org/2001/XMLSchema#string VARCHAR2 Non-unique B-tree (creates a single index
for xsd:string typed literals and plain
literals)

http://www.w3.org/2001/XMLSchema#time TIMESTAM
P WITH
TIMEZONE

Non-unique B-tree

http://www.w3.org/2001/XMLSchema#date TIMESTAM
P WITH
TIMEZONE

Non-unique B-tree

http://www.w3.org/2001/
XMLSchema#dateTime

TIMESTAM
P WITH
TIMEZONE

Non-unique B-tree

http://xmlns.oracle.com/rdf/text (Not
applicable)

CTXSYS.CONTEXT

http://xmlns.oracle.com/rdf/geo/WKTLiteral SDO_GEO
METRY

MDSYS.SPATIAL_INDEX

http://www.opengis.net/geosparql#wktLiteral SDO_GEO
METRY

MDSYS.SPATIAL_INDEX

http://www.opengis.net/geosparql#gmlLiteral SDO_GEO
METRY

MDSYS.SPATIAL_INDEX

http://xmlns.oracle.com/rdf/like VARCHAR2 Non-unique B-tree

The suitability of data type indexes depends on your query workload. Data type indexes on
xsd data types can be used for filters that compare a variable with a constant value, and are
particularly useful when queries have an unselective graph pattern with a very selective filter
condition. Appropriate data type indexes are required for queries with spatial or text filters.

While data type indexes improve query performance, overhead from incremental index
maintenance can degrade the performance of DML and bulk load operations on the semantic
network. For bulk load operations, it may often be faster to drop data type indexes, perform
the bulk load, and then re-create the data type indexes.

You can add, alter, and drop data type indexes using the following procedures, which are
described in SEM_APIS Package Subprograms:

• SEM_APIS.ADD_DATATYPE_INDEX

• SEM_APIS.ALTER_DATATYPE_INDEX

• SEM_APIS.DROP_DATATYPE_INDEX

Information about existing data type indexes is maintained in the SEM_DTYPE_INDEX_INFO
view, which has the columns shown in Table 1-26 and one row for each data type index.

Chapter 1
Using Data Type Indexes

1-157

Table 1-26 SEM_DTYPE_INDEX_INFO View Columns

Column Name Data Type Description

DATATYPE VARCHAR2(51) Data type URI

INDEX_NAME VARCHAR2(30) Name of the index

STATUS VARCHAR2(8) Status of the index: USABLE or UNUSABLE
TABLESPACE_N
AME

VARCHAR2(30) Tablespace for the index

FUNCIDX_STAT
US

VARCHAR2(8) Status of the function-based index: NULL, ENABLED, or
DISABLED

You can use the HINT0 hint to ensure that data type indexes are used during query
evaluation, as shown in Example 1-108, which finds all grandfathers who were born
before November 16, 1929.

Example 1-108 Using HINT0 to Ensure Use of Data Type Index

SELECT x, y
 FROM TABLE(SEM_MATCH(
 'PREFIX : <http://www.example.org/family/>
 SELECT ?x ?y
 WHERE {?x :grandParentOf ?y . ?x rdf:type :Male . ?x :birthDate ?bd
 FILTER (?bd <= "1929-11-15T23:59:59Z"^^xsd:dateTime) }',
 SEM_Models('family'),
 SEM_Rulebases('RDFS','family_rb'),

 null, null, null,
 'HINT0={ LEADING(?bd) INDEX(?bd rdf_v$dateTime_idx) }
 FAST_DATE_FILTER=T',
 null, null,
 'RDFUSER', 'NET1'));

1.11 Managing Statistics for Semantic Models and the
Semantic Network

Statistics are critical to the performance of SPARQL queries and OWL inference
against semantic data stored in an Oracle database.

Oracle Database Release 11g introduced SEM_APIS.ANALYZE_MODEL,
SEM_APIS.ANALYZE_ENTAILMENT, and SEM_PERF.GATHER_STATS to analyze
semantic data and keep statistics up to date. These APIs are straightforward to use
and they are targeted at regular users who may not care about the internal details
about table and partition statistics.

You can export, import, set, and delete model and entailment statistics, and can
export, import, and delete network statistics, using the following subprograms:

• SEM_APIS.DELETE_ENTAILMENT_STATS

• SEM_APIS.DELETE_MODEL_STATS

• SEM_APIS.EXPORT_ENTAILMENT_STATS

• SEM_APIS.EXPORT_MODEL_STATS

Chapter 1
Managing Statistics for Semantic Models and the Semantic Network

1-158

• SEM_APIS.IMPORT_ENTAILMENT_STATS

• SEM_APIS.IMPORT_MODEL_STATS

• SEM_APIS.SET_ENTAILMENT_STATS

• SEM_APIS.SET_MODEL_STATS

• SEM_PERF.DELETE_NETWORK_STATS

• SEM_PERF.DROP_EXTENDED_STATS

• SEM_PERF.EXPORT_NETWORK_STATS

• SEM_PERF.IMPORT_NETWORK_STATS

This section contains the following topics related to managing statistics for semantic models
and the semantic network.

• Saving Statistics at a Model Level

• Restoring Statistics at a Model Level

• Saving Statistics at the Network Level

• Dropping Extended Statistics at the Network Level

• Restoring Statistics at the Network Level

• Setting Statistics at a Model Level

• Deleting Statistics at a Model Level

1.11.1 Saving Statistics at a Model Level
If queries and inference against an existing model are executed efficiently, as the owner of
the model, you can save the statistics of the existing model.

-- Login as the model owner (for example, SCOTT)
-- Create a stats table. This is required.
execute dbms_stats.create_stat_table('scott','rdf_stat_tab');

-- You must grant access to MDSYS
SQL> grant select, insert, delete, update on scott.rdf_stat_tab to MDSYS;

-- Now export the statistics of model TEST
execute sem_apis.export_model_stats('TEST','rdf_stat_tab',
'model_stat_saved_on_AUG_10', true, 'SCOTT', 'OBJECT_STATS', network_owner=>'RDFUSER',
network_name=>'NET1');

You can also save the statistics of an entailment (entailed graph) by using
SEM_APIS.EXPORT_ENTAILMENT_STATS .

execute
sem_apis.create_entailment('test_inf',sem_models('test'),sem_rulebases('owl2rl'),0,null
,network_owner=>'RDFUSER',network_name=>'NET1');
PL/SQL procedure successfully completed.

execute sem_apis.export_entailment_stats('TEST_INF','rdf_stat_tab',
'inf_stat_saved_on_AUG_10', true, 'SCOTT', 'OBJECT_STATS', network_owner=>'RDFUSER',
network_name=>'NET1');

Chapter 1
Managing Statistics for Semantic Models and the Semantic Network

1-159

1.11.2 Restoring Statistics at a Model Level
As the owner of a model, can restore the statistics that were previously saved with
SEM_APIS.EXPORT_MODEL_STATS . This may be necessary if updates have been
applied to this model and statistics have been re-collected. A change in statistics might
cause a plan change to existing SPARQL queries, and if such a plan change is
undesirable, then an old set of statistics can be restored.

execute sem_apis.import_model_stats('TEST','rdf_stat_tab',
'model_stat_saved_on_AUG_10', true, 'SCOTT', false, true, 'OBJECT_STATS',
network_owner=>'RDFUSER', network_name=>'NET1');

You can also restore the statistics of an entailment (entailed graph) by using
SEM_APIS.IMPORT_ENTAILMENT_STATS .

execute sem_apis.import_entailment_stats('TEST','rdf_stat_tab',
'inf_stat_saved_on_AUG_10', true, 'SCOTT', false, true, 'OBJECT_STATS',
network_owner=>'RDFUSER', network_name=>'NET1');

1.11.3 Saving Statistics at the Network Level
You can save statistics at the network level.

-- Network owners and DBAs have privileges to gather network-wide
-- statistics with the SEM_PERF package.
--
-- This example assumes a schema-private semantic network named NET1
-- owned by RDFUSER.
--

conn RDFUSER/<password>

execute dbms_stats.create_stat_table('RDFUSER','rdf_stat_tab');
-- The next grant is only necessary if using the MDSYS semantic network
grant select, insert, delete, update on RDFUSER.rdf_stat_tab to MDSYS;

--
-- This API call will save the statistics of both the RDF_VALUE$ table
-- and RDF_LINK$ table
--
execute sem_perf.export_network_stats('rdf_stat_tab',
'NETWORK_ALL_saved_on_Aug_10', true, 'RDFUSER', 'OBJECT_STATS',
network_owner=>'RDFUSER', network_name=>'NET1');

--
-- Alternatively, you can save statistics of only the RDF_VALUE$ table
--
execute sem_perf.export_network_stats('rdf_stat_tab',
'NETWORK_VALUE_TAB_saved_on_Aug_10', true, 'RDFUSER', 'OBJECT_STATS', options=>
mdsys.sdo_rdf.VALUE_TAB_ONLY, network_owner=>'RDFUSER', network_name=>'NET1');

--
-- Or, you can save statistics of only the RDF_LINK$ table
--
execute sem_perf.export_network_stats('rdf_stat_tab',
'NETWORK_LINK_TAB_saved_on_Aug_10', true, 'RDFUSER', 'OBJECT_STATS', options=>
mdsys.sdo_rdf.LINK_TAB_ONLY, network_owner=>'RDFUSER', network_name=>'NET1');

Chapter 1
Managing Statistics for Semantic Models and the Semantic Network

1-160

1.11.4 Dropping Extended Statistics at the Network Level
By default, SEM_PERF.GATHER_STATS creates extended statistics with column groups on
the RDF_LINK$ table. The privileged user from Saving Statistics at the Network Level can
drop these column groups using SEM_PERF.DROP_EXTENDED_STATS.

connect RDFUSER/<password>
execute sem_perf.drop_extended_stats(network_owner=>'RDFUSER', network_name=>'NET1');

See also the information about managing extended statistics in Oracle Database SQL Tuning
Guide.

1.11.5 Restoring Statistics at the Network Level
The privileged user from Saving Statistics at the Network Level can restore the network level
statistics using SEM_PERF.IMPORT_NETWORK_STATS .

conn RDFUSER/<password>

execute sem_perf.import_network_stats('rdf_stat_tab', 'NETWORK_ALL_saved_on_Aug_10',
true, 'RDFUSER', false, true, 'OBJECT_STATS', network_owner=>'RDFUSER',
network_name=>'NET1');

1.11.6 Setting Statistics at a Model Level
As the owner of a model, you can manually adjust the statistics for this model. (However,
before you adjust statistics, you should save the statistics first so that they can be restored if
necessary.) The following example sets two metrics: number of rows and number of blocks
for the model.

execute sem_apis.set_model_stats('TEST', numrows=>10,
numblks=>1,no_invalidate=>false,network_owner=>'RDFUSER',network_name=>'NET1');

You can also set the statistics for the entailment by using
SEM_APIS.SET_ENTAILMENT_STATS .

execute sem_apis.set_entailment_stats('TEST_INF', numrows=>10,
numblks=>1,no_invalidate=>false,network_owner=>'RDFUSER',network_name=>'NET1');

1.11.7 Deleting Statistics at a Model Level
Removing statistics can also have an impact on execution plans. As owner of a model, you
can remove the statistics for the model.

execute sem_apis.delete_model_stats('TEST', no_invalidate=> false,
network_owner=>'RDFUSER', network_name=>'NET1');

You can also remove the statistics for the entailment by using
SEM_APIS.DELETE_ENTAILMENT_STATS. (However, before you remove statistics of a
model or an entailment, you should save the statistics first so that they can be restored if
necessary.)

execute sem_apis.delete_entailment_stats('TEST_INF', no_invalidate=> false,
network_owner=>'RDFUSER', network_name=>'NET1');

Chapter 1
Managing Statistics for Semantic Models and the Semantic Network

1-161

1.12 Support for SPARQL Update Operations on a Semantic
Model

Effective with Oracle Database Release 12.2, you can perform SPARQL Update
operations on a semantic model.

The W3C provides SPARQL 1.1 Update (https://www.w3.org/TR/2013/REC-sparql11-
update-20130321/), an update language for RDF graphs. SPARQL 1.1 Update is
supported in Oracle Database semantic technologies through the
SEM_APIS.UPDATE_MODEL procedure.

Before performing any SPARQL Update operations on a model, some prerequisites
apply:

• The SEM_APIS.CREATE_SPARQL_UPDATE_TABLES procedure should be run
in the schema of each user that will be using the SEM_APIS.UPDATE_MODEL
procedure.

• Each user that will update a model using the SEM_APIS.UPDATE_MODEL
procedure must have the INSERT privilege on the application table associated
with the apply_model model, and the network owner user must be granted the
INSERT privilege on that table (for example, GRANT INSERT on APP_TAB1 to
MDSYS; in the case of an MDSYS-owned network).

The application table is the table that holds references to the semantic data for the
model.

• • To run a LOAD operation, the user must have the CREATE ANY DIRECTORY
and DROP ANY DIRECTORY privileges, or the user must be granted READ
privileges on an existing directory object whose name is supplied in the options
parameter.

Examples follow that show update operations being performed on an RDF model.
These examples assume a schema-private semantic network named NET1 owned by
a database user named RDFUSER.

Example 1-109 INSERT DATA Operation

This example shows an INSERT DATA operation that inserts several triples in the
default graph of the electronics model.

-- Dataset before operation:
#Empty default graph
-- Update operation:
BEGIN
 sem_apis.update_model('electronics',
 'PREFIX : <http://www.example.org/electronics/>
 INSERT DATA {
 :camera1 :name "Camera 1" .
 :camera1 :price 120 .
 :camera1 :cameraType :Camera .
 :camera2 :name "Camera 2" .
 :camera2 :price 150 .
 :camera2 :cameraType :Camera .
 } ',

Chapter 1
Support for SPARQL Update Operations on a Semantic Model

1-162

https://www.w3.org/TR/2013/REC-sparql11-update-20130321/
https://www.w3.org/TR/2013/REC-sparql11-update-20130321/

 network_owner=>'RDFUSER', network_name=>'NET1');
END;
/

-- Dataset after operation:
@prefix : <http://www.example.org/electronics/>
#Default graph
:camera1 :name "Camera 1";
 :price 120;
 :cameraType :Camera .
:camera2 :name "Camera 2";
 :price 150;
 :cameraType :Camera .

Example 1-110 DELETE DATA Operation

This example shows a DELETE DATA operation that removes a single triple from the default
graph of the electronics model.

-- Dataset before operation:
@prefix : <http://www.example.org/electronics/>
#Default graph
:camera1 :name "Camera 1";
 :price 120;
 :cameraType :Camera .
:camera2 :name "Camera 2";
 :price 150;
 :cameraType :Camera .
-- Update operation:
BEGIN
 sem_apis.update_model('electronics',
 'PREFIX : <http://www.example.org/electronics/>
 DELETE DATA { :camera1 :price 120 . } ',
 network_owner=>'RDFUSER', network_name=>'NET1');
END;
/

-- Dataset after operation:
@prefix : <http://www.example.org/electronics/>
#Default graph
:camera1 :name "Camera 1";
 :cameraType :Camera .
:camera2 :name "Camera 2";
 :price 150;
 :cameraType :Camera .

Example 1-111 DELETE/INSERT Operation on Default Graph

This example performs a DELETE/INSERT operation. The :cameraType of :camera1 is
updated to :digitalCamera.

-- Dataset before operation:
@prefix : <http://www.example.org/electronics/>
#Default graph

Chapter 1
Support for SPARQL Update Operations on a Semantic Model

1-163

:camera1 :name "Camera 1";
 :cameraType :Camera .
:camera2 :name "Camera 2";
 :price 150;
 :cameraType :Camera .

-- Update operation:
BEGIN
 sem_apis.update_model('electronics',
 'PREFIX : <http://www.example.org/electronics/>
 DELETE { :camera1 :cameraType ?type . }
 INSERT { :camera1 :cameraType :digitalCamera . }
 WHERE { :camera1 :cameraType ?type . }',
 network_owner=>'RDFUSER', network_name=>'NET1');
END;
/

-- Dataset after operation:
@prefix : <http://www.example.org/electronics/>
#Default graph
:camera1 :name "Camera 1";
 :cameraType :digitalCamera .
:camera2 :name "Camera 2";
 :price 150;
 :cameraType :Camera .

Example 1-112 DELETE/INSERT Operation Involving Default Graph and Named
Graph

Graphs can also be specified inside the DELETE and INSERT templates, as well as
inside the WHERE clause. This example moves all triples corresponding to digital
cameras from the default graph to the graph :digitalCameras.

-- Dataset before operation:
@prefix : <http://www.example.org/electronics/>
#Default graph
:camera1 :name "Camera 1";
 :cameraType :digitalCamera .
:camera2 :name "Camera 2";
 :price 150;
 :cameraType :Camera .
#Empty graph :digitalCameras

-- Update operation:
BEGIN
 sem_apis.update_model('electronics',
 'PREFIX : <http://www.example.org/electronics/>
 DELETE { ?s ?p ?o }
 INSERT { graph :digitalCameras { ?s ?p ?o } }
 WHERE { ?s :cameraType :digitalCamera .
 ?s ?p ?o }',
 network_owner=>'RDFUSER', network_name=>'NET1');
END;
/

Chapter 1
Support for SPARQL Update Operations on a Semantic Model

1-164

-- Dataset after operation:
@prefix : <http://www.example.org/electronics/>
#Default graph
:camera2 :name "Camera 2";
 :price 150;
 :cameraType :Camera .
#Graph :digitalCameras
GRAPH :digitalCameras {
 :camera1 :name "Camera 1";
 :cameraType :digitalCamera .
}

Example 1-113 INSERT WHERE and DELETE WHERE Operations

One of either the DELETE template or the INSERT template can be omitted from a DELETE/
INSERT operation. In addition, the template following DELETE can be omitted as a shortcut
for using the WHERE pattern as the DELETE template. This example uses an INSERT
WHERE statement to insert the contents of the :digitalCameras graph to the :cameras
graph, and it uses a DELETE WHERE statement (with syntactic shortcut) to delete all
contents of the :cameras graph.

-- INSERT WHERE
-- Dataset before operation:
@prefix : <http://www.example.org/electronics/>
#Default graph
:camera2 :name "Camera 2";
 :price 150;
 :cameraType :Camera .
#Graph :digitalCameras
GRAPH :digitalCameras {
 :camera1 :name "Camera 1";
 :cameraType :digitalCamera .
}
#Empty graph :cameras

-- Update operation:
BEGIN
 sem_apis.update_model('electronics',
 'PREFIX : <http://www.example.org/electronics/>
 INSERT { graph :cameras { ?s ?p ?o } }
 WHERE { graph :digitalCameras { ?s ?p ?o } }',
 network_owner=>'RDFUSER', network_name=>'NET1');
END;
/

-- Dataset after operation:
@prefix : <http://www.example.org/electronics/>
#Default graph
:camera2 :name "Camera 2";
 :price 150;
 :cameraType :Camera .
#Graph :digitalCameras
GRAPH :digitalCameras {
 :camera1 :name "Camera 1";

Chapter 1
Support for SPARQL Update Operations on a Semantic Model

1-165

 :cameraType :digitalCamera .
}
#Graph :cameras
GRAPH :cameras {
 :camera1 :name "Camera 1";
 :cameraType :digitalCamera .
}

-- DELETE WHERE
-- Dataset before operation:
@prefix : <http://www.example.org/electronics/>
#Default graph
:camera2 :name "Camera 2";
 :price 150;
 :cameraType :Camera .
#Graph :digitalCameras
GRAPH :digitalCameras {
 :camera1 :name "Camera 1";
 :cameraType :digitalCamera .
}
#Graph :cameras
GRAPH :cameras {
 :camera1 :name "Camera 1";
 :cameraType :digitalCamera .
}

-- Update operation:
BEGIN
 sem_apis.update_model('electronics',
 'PREFIX : <http://www.example.org/electronics/>
 DELETE WHERE { graph :cameras { ?s ?p ?o } }',
 network_owner=>'RDFUSER', network_name=>'NET1');
END;
/

-- Dataset after operation:
@prefix : <http://www.example.org/electronics/>
#Default graph
:camera2 :name "Camera 2";
 :price 150;
 :cameraType :Camera .
#Graph :digitalCameras
GRAPH :digitalCameras {
 :camera1 :name "Camera 1";
 :cameraType :digitalCamera .
}
#Empty graph :cameras

Chapter 1
Support for SPARQL Update Operations on a Semantic Model

1-166

Example 1-114 COPY Operation

This example performs a COPY operation. All data from the default graph is inserted into the
graph :cameras. Existing data from :cameras, if any, is removed before the insertion.

-- Dataset before operation:
@prefix : <http://www.example.org/electronics/>
#Default graph
:camera2 :name "Camera 2";
 :price 150;
 :cameraType :Camera .
#Graph :digitalCameras
GRAPH :digitalCameras {
 :camera1 :name "Camera 1";
 :cameraType :digitalCamera .
}
#Graph :cameras
GRAPH :cameras {
 :camera3 :name "Camera 3" .
}

-- Update operation:
BEGIN
 sem_apis.update_model('electronics',
 'PREFIX : <http://www.example.org/electronics/>
 COPY DEFAULT TO GRAPH :cameras',
 network_owner=>'RDFUSER', network_name=>'NET1');
END;
/

-- Dataset after operation:
@prefix : <http://www.example.org/electronics/>
#Default graph
:camera2 :name "Camera 2";
 :price 150;
 :cameraType :Camera .
#Graph :digitalCameras
GRAPH :digitalCameras {
 :camera1 :name "Camera 1";
 :cameraType :digitalCamera .
}
#Graph :cameras
GRAPH :cameras {
 :camera2 :name "Camera 2";
 :price 150;
 :cameraType :Camera .
}

Example 1-115 ADD Operation

This example adds all the triples in the graph :digitalCameras to the graph :cameras.

-- Dataset before operation:
@prefix : <http://www.example.org/electronics/>
#Default graph

Chapter 1
Support for SPARQL Update Operations on a Semantic Model

1-167

:camera2 :name "Camera 2";
 :price 150;
 :cameraType :Camera .
#Graph :digitalCameras
GRAPH :digitalCameras {
 :camera1 :name "Camera 1";
 :cameraType :digitalCamera .
}
#Graph :cameras
GRAPH :cameras {
 :camera2 :name "Camera 2";
 :price 150;
 :cameraType :Camera .
}

-- Update operation:
BEGIN
 sem_apis.update_model('electronics',
 'PREFIX : <http://www.example.org/electronics/>
 ADD GRAPH :digitalCameras TO GRAPH :cameras',
 network_owner=>'RDFUSER', network_name=>'NET1');
END;
/

-- Dataset after operation:
@prefix : <http://www.example.org/electronics/>
#Default graph
:camera2 :name "Camera 2";
 :price 150;
 :cameraType :Camera .
#Graph :digitalCameras
GRAPH :digitalCameras {
 :camera1 :name "Camera 1";
 :cameraType :digitalCamera .
}
#Graph :cameras
GRAPH :cameras {
 :camera1 :name "Camera 1";
 :cameraType :digitalCamera .
 :camera2 :name "Camera 2";
 :price 150;
 :cameraType :Camera .
}

Example 1-116 MOVE Operation

This example moves all the triples in the graph :digitalCameras to the
graph :digCam.

-- Dataset before operation:
@prefix : <http://www.example.org/electronics/>
#Default graph
:camera2 :name "Camera 2";
 :price 150;
 :cameraType :Camera .

Chapter 1
Support for SPARQL Update Operations on a Semantic Model

1-168

#Graph :digitalCameras
GRAPH :digitalCameras {
 :camera1 :name "Camera 1";
 :cameraType :digitalCamera .
}
#Graph :cameras
GRAPH :cameras {
 :camera1 :name "Camera 1";
 :cameraType :digitalCamera .
 :camera2 :name "Camera 2";
 :price 150;
 :cameraType :Camera .
}
#Graph :digCam
GRAPH :digCam {
 :camera4 :cameraType :digCamera .
}

-- Update operation:
BEGIN
 sem_apis.update_model('electronics',
 'PREFIX : <http://www.example.org/electronics/>
 MOVE GRAPH :digitalCameras TO GRAPH :digCam',
 network_owner=>'RDFUSER', network_name=>'NET1');
END;
/

-- Dataset after operation:
@prefix : <http://www.example.org/electronics/>
#Default graph
:camera2 :name "Camera 2" .
 :camera2 :price 150 .
 :camera2 :cameraType :Camera .
#Empty graph :digitalCameras
#Graph :cameras
GRAPH :cameras {
 :camera1 :name "Camera 1";
 :cameraType :digitalCamera .
 :camera2 :name "Camera 2";
 :price 150;
 :cameraType :Camera .
}
#Graph :digCam
GRAPH :digCam {
 :camera1 :name "Camera 1";
 :cameraType :digitalCamera .
}

Example 1-117 CLEAR Operation

This example performs a CLEAR operation, deleting all the triples in the default graph.
Because empty graphs are not stored in the RDF model, the CLEAR operation always

Chapter 1
Support for SPARQL Update Operations on a Semantic Model

1-169

succeeds and is equivalent to a DROP operation. (For the same reason, the CREATE
operation has no effect on the RDF model.)

-- Dataset before operation:
@prefix : <http://www.example.org/electronics/>
#Default graph
:camera2 :name "Camera 2";
 :price 150;
 :cameraType :Camera .
#Empty graph :digitalCameras
#Graph :cameras
GRAPH :cameras {
 :camera1 :name "Camera 1";
 :cameraType :digitalCamera
 :camera2 :name "Camera 2";
 :price 150;
 :cameraType :Camera .
}
#Graph :digCam
GRAPH :digCam {
 :camera1 :name "Camera 1";
 :cameraType :digitalCamera .
}

-- Update operation:
BEGIN
 sem_apis.update_model('electronics',
 'CLEAR DEFAULT ',
 network_owner=>'RDFUSER', network_name=>'NET1');
END;
/

-- Dataset after operation:
@prefix : <http://www.example.org/electronics/>
#Empty Default graph
#Empty graph :digitalCameras
#Graph :cameras
GRAPH :cameras {
 :camera1 :name "Camera 1";
 :cameraType :digitalCamera .
 :camera2 :name "Camera 2";
 :price 150;
 :cameraType :Camera .
}
#Graph :digCam
GRAPH :digCam {
 :camera1 :name "Camera 1";
 :cameraType :digitalCamera .
}

Example 1-118 LOAD Operation

N-Triple, N-Quad, Turtle, and Trig files can be loaded from the local file system using
the LOAD operation. Note that the simpler N-Triple, and N-Quad formats can be
loaded faster than Turtle and Trig. An optional INTO clause can be used to load the file

Chapter 1
Support for SPARQL Update Operations on a Semantic Model

1-170

into a specific named graph. To perform a LOAD operation, the user must either (1) have
CREATE ANY DIRECTORY and DROP ANY DIRECTORY privileges or (2) supply the name
of an existing directory object in the options parameter of UPDATE_MODEL. This example
loads the /home/oracle/example.nq N-Quad file into a semantic model..

Note that the use of an INTO clause with an N-Quad or Trig file will override any named
graph information in the file. In this example, INTO GRAPH :cameras overrides :myGraph for
the first quad, so the subject, property, object triple component of this quad is inserted into
the :cameras graph instead.

-- Datafile: /home/oracle/example.nq
<http://www.example.org/electronics/camera3> <http://www.example.org/
electronics/name> "Camera 3" <http://www.example.org/electronics/myGraph> .
<http://www.example.org/electronics/camera3> <http://www.example.org/
electronics/price> "125"^^<http://www.w3.org/2001/XMLSchema#decimal> .

-- Dataset before operation:
#Graph :cameras
GRAPH :cameras {
 :camera1 :name "Camera 1";
 :cameraType :digitalCamera .
 :camera2 :name "Camera 2";
 :price 150;
 :cameraType :Camera .
}
#Graph :digCam
GRAPH :digCam {
 :camera1 :name "Camera 1";
 :cameraType :digitalCamera .
}

-- Update operation:
CREATE OR REPLACE DIRECTORY MY_DIR AS '/home/oracle';

BEGIN
 sem_apis.update_model('electronics',
 'PREFIX : <http://www.example.org/electronics/>
 LOAD <file:///example.nq> INTO GRAPH :cameras',
 options=>'LOAD_DIR={MY_DIR}',
 network_owner=>'RDFUSER', network_name=>'NET1');
END;
END;
/

-- Dataset after operation:
@prefix : <http://www.example.org/electronics/>
#Graph :cameras
GRAPH :cameras {
 :camera1 :name "Camera 1";
 :cameraType :digitalCamera .
 :camera2 :name "Camera 2";
 :price 150;
 :cameraType :Camera .
 :camera3 :name "Camera 3";
 :price 125.

Chapter 1
Support for SPARQL Update Operations on a Semantic Model

1-171

}
#Graph :digCam
GRAPH :digCam {
 :camera1 :name "Camera 1";
 :cameraType :digitalCamera .
}

Several files under the same directory can be loaded in parallel with a single LOAD
operation. To specify extra N-Triple or N-Quad files to be loaded, you can use the
LOAD_OPTIONS hint. The degree of parallelism for the load can be specified with
PARALLEL(n) in the options string.. The following example shows how to load the
files /home/oracle/example1.nq, /home/oracle/example2.nq, and /home/oracle/
example3.nq into a semantic model. A degree of parallelism of 3 is used for this
example.

BEGIN
 sem_apis.update_model('electronics',
 'PREFIX : <http://www.example.org/electronics/>
 LOAD <file:///example1.nq>',
 options=> ' PARALLEL(3) LOAD_OPTIONS={ example2.nq example3.nq }
LOAD_DIR={MY_DIR} ',
 network_owner=>'RDFUSER', network_name=>'NET1');
END;
/

Related subtopics:

• Tuning the Performance of SPARQL Update Operations

• Transaction Management with SPARQL Update Operations

• Support for Bulk Operations

• Setting UPDATE_MODEL Options at the Session Level

• Load Operations: Special Considerations for SPARQL Update

• Long Literals: Special Considerations for SPARQL Update

• Blank Nodes: Special Considerations for SPARQL Update

1.12.1 Tuning the Performance of SPARQL Update Operations
In some cases it may be necessary to tune the performance of SPARQL Update
operations. Because SPARQL Update operations involve executing one or more
SPARQL queries based on the WHERE clause in the UPDATE statement, the Best
Practices for Query Performance also apply to SPARQL Update operations. The
following considerations also apply:

• Delete operations require an appropriate index on the application table (associated
with the apply_model model in SEM_APIS.UPDATE_MODEL) for good
performance. Assuming an application table named APP_TAB with the
SDO_RDF_TRIPLE_S column named TRIPLE, an index similar to the following is

Chapter 1
Support for SPARQL Update Operations on a Semantic Model

1-172

recommended (this is the same index used by RDF Semantic Graph Support for Apache
Jena):

-- Application table index for
-- (graph_id, subject_id, predicate_id, canonical_object_id)
CREATE INDEX app_tab_idx ON app_tab app (
 BITAND(app.triple.rdf_m_id,79228162514264337589248983040)/4294967296,
 app.triple.rdf_s_id,
 app.triple.rdf_p_id,
 app.triple.rdf_c_id)
COMPRESS;

• Performance-related SEM_MATCH options can be passed to the match_options
parameter of SEM_APIS.UPDATE_MODEL, and performance-related options such as
PARALLEL and DYNAMIC_SAMPLING can be specified in the options parameter of that
procedure. The following example uses the options parameter to specify a degree of
parallelism of 4 and an optimizer dynamic sampling level of 6 for the update. In addition,
the example uses ALLOW_DUP=T as a match option when matching against the virtual
model VM1.

BEGIN
 sem_apis.update_model(
 'electronics',
 'PREFIX : <http://www.example.org/electronics/>
 INSERT { graph :digitalCameras { ?s ?p ?o } }
 WHERE { ?s :cameraType :digitalCamera .
 ?s ?p ?o }',
 match_models=>sem_models('VM1'),
 match_models=>sem_models('VM1'),
 match_options=>' ALLOW_DUP=T ',
 options=>' PARALLEL(4) DYNAMIC_SAMPLING(6) ',
 network_owner=>'RDFUSER', network_name=>'NET1');
END;
/

• Inline Query Optimizer Hints can be specified in the WHERE clause. The following
example extends the preceding example by using the HINT0 hint in the WHERE clause
and the FINAL_VALUE_NL hint in the match_options parameter.

BEGIN
 sem_apis.update_model(
 'electronics',
 'PREFIX : <http://www.example.org/electronics/>
 INSERT { graph :digitalCameras { ?s ?p ?o } }
 WHERE { # HINT0={ LEADING(t0 t1) USE_NL(t0 t1)
 ?s :cameraType :digitalCamera .
 ?s ?p ?o }',
 match_models=>sem_models('VM1'),
 match_options=>' ALLOW_DUP=T FINAL_VALUE_NL ',
 options=>' PARALLEL(4) DYNAMIC_SAMPLING(6) ',
 network_owner=>'RDFUSER', network_name=>'NET1');
END;
/

Chapter 1
Support for SPARQL Update Operations on a Semantic Model

1-173

1.12.2 Transaction Management with SPARQL Update Operations
You can exercise some control over the number of transactions used and whether they
are automatically committed by a SEM_APIS.UPDATE_MODEL operation.

By default, the SEM_APIS.UPDATE_MODEL procedure executes in a single
transaction that is either committed upon successful completion or rolled back if an
error occurs. For example, the following call executes three update operations
(separated by semicolons) in a single transaction:

BEGIN
 sem_apis.update_model('electronics',
 'PREFIX elec: <http://www.example.org/electronics/>
 PREFIX ecom: <http://www.example.org/ecommerce/>
 # insert camera data
 INSERT DATA {
 elec:camera1 elec:name "Camera 1" .
 elec:camera1 elec:price 120 .
 elec:camera1 elec:cameraType elec:DigitalCamera .
 elec:camera2 elec:name "Camera 2" .
 elec:camera2 elec:price 150 .
 elec:camera2 elec:cameraType elec:DigitalCamera . };
 # insert ecom:price triples
 INSERT { ?c ecom:price ?p }
 WHERE { ?c elec:price ?p };
 # delete elec:price triples
 DELETE WHERE { ?c elec:price ?p }',
 network_owner=>'RDFUSER', network_name=>'NET1');
END;
/

PL/SQL procedure successfully completed.

By contrast, the following example uses three separate SEM_APIS.UPDATE_MODEL
calls to execute the same three update operations in three separate transactions:

BEGIN
 sem_apis.update_model('electronics',
 'PREFIX elec: <http://www.example.org/electronics/>
 PREFIX ecom: <http://www.example.org/ecommerce/>
 # insert camera data
 INSERT DATA {
 elec:camera1 elec:name "Camera 1" .
 elec:camera1 elec:price 120 .
 elec:camera1 elec:cameraType elec:DigitalCamera .
 elec:camera2 elec:name "Camera 2" .
 elec:camera2 elec:price 150 .
 elec:camera2 elec:cameraType elec:DigitalCamera . }',
 network_owner=>'RDFUSER', network_name=>'NET1');
END;

PL/SQL procedure successfully completed.

Chapter 1
Support for SPARQL Update Operations on a Semantic Model

1-174

BEGIN
 sem_apis.update_model('electronics',
 'PREFIX elec: <http://www.example.org/electronics/>
 PREFIX ecom: <http://www.example.org/ecommerce/>
 # insert ecom:price triples
 INSERT { ?c ecom:price ?p }
 WHERE { ?c elec:price ?p }',
 network_owner=>'RDFUSER', network_name=>'NET1');
END;
/

PL/SQL procedure successfully completed.

BEGIN
 sem_apis.update_model('electronics',
 'PREFIX elec: <http://www.example.org/electronics/>
 PREFIX ecom: <http://www.example.org/ecommerce/>
 # insert elec:price triples
 DELETE WHERE { ?c elec:price ?p }',
 network_owner=>'RDFUSER', network_name=>'NET1');
END;
/

PL/SQL procedure successfully completed.

The AUTOCOMMIT=F option can be used to prevent separate transactions for each
SEM_APIS.UPDATE_MODEL call. With this option, transaction management is the
responsibility of the caller. The following example shows how to execute the update
operations in the preceding example as a single transaction instead of three separate ones.

BEGIN
 sem_apis.update_model('electronics',
 'PREFIX elec: <http://www.example.org/electronics/>
 PREFIX ecom: <http://www.example.org/ecommerce/>
 # insert camera data
 INSERT DATA {
 elec:camera1 elec:name "Camera 1" .
 elec:camera1 elec:price 120 .
 elec:camera1 elec:cameraType elec:DigitalCamera .
 elec:camera2 elec:name "Camera 2" .
 elec:camera2 elec:price 150 .
 elec:camera2 elec:cameraType elec:DigitalCamera . }',
 options=>' AUTOCOMMIT=F ',
 network_owner=>'RDFUSER', network_name=>'NET1');
END;
/

PL/SQL procedure successfully completed.

BEGIN
 sem_apis.update_model('electronics',
 'PREFIX elec: <http://www.example.org/electronics/>
 PREFIX ecom: <http://www.example.org/ecommerce/>
 # insert ecom:price triples

Chapter 1
Support for SPARQL Update Operations on a Semantic Model

1-175

 INSERT { ?c ecom:price ?p }
 WHERE { ?c elec:price ?p }',
 options=>' AUTOCOMMIT=F ',
 network_owner=>'RDFUSER', network_name=>'NET1');
END;
/

PL/SQL procedure successfully completed.

BEGIN
 sem_apis.update_model('electronics',
 'PREFIX elec: <http://www.example.org/electronics/>
 PREFIX ecom: <http://www.example.org/ecommerce/>
 # insert elec:price triples
 DELETE WHERE { ?c elec:price ?p }',
 options=>' AUTOCOMMIT=F ',
 network_owner=>'RDFUSER', network_name=>'NET1');
END;
/

PL/SQL procedure successfully completed.

COMMIT;

Commit complete.

However, the following cannot be used with the AUTOCOMMIT=F option:

• Bulk operations (FORCE_BULK=T, DEL_AS_INS=T)

• LOAD operations

• Materialization of intermediate data (STREAMING=F)

• Transaction Isolation Levels

1.12.2.1 Transaction Isolation Levels
Oracle Database supports three different transaction isolation levels: read committed,
serializable, and read-only.

Read committed isolation level is the default. Queries in a transaction using this
isolation level see only data that was committed before the query – not the transaction
– began and any changes made by the transaction itself. This isolation level allows the
highest degree of concurrency.

Serializable isolation level queries see only data that was committed before the
transaction began and any changes made by the transaction itself.

Read-only isolation level behaves like serializable isolation level but data cannot be
modified by the transaction.

SEM_APIS.UPDATE_MODEL supports read committed and serializable transaction
isolation levels, and read committed is the default. SPARQL UPDATE operations are
processed in the following basic steps.

1. A query is executed to obtain a set of triples to be deleted.

Chapter 1
Support for SPARQL Update Operations on a Semantic Model

1-176

2. A query is executed to obtain a set of triples to be inserted.

3. Triples obtained in Step 1 are deleted.

4. Triples obtained in Step 2 are inserted.

With the default read committed isolation level, the underlying triple data may be modified by
concurrent transactions, so each step may see different data. In addition, changes made by
concurrent transactions will be visible to subsequent update operations within the same
SEM_APIS.UPDATE_MODEL call. Note that steps 1 and 2 happen as a single step when
using materialization of intermediate data (STREAMING=F), so underlying triple data cannot be
modified between steps 1 and 2 with this option. See Support for Bulk Operations for more
information about materialization of intermediate data.

Serializable isolation level can be used by specifying the SERIALIZABLE=T option. In this case,
each step will only see data that was committed before the update model operation began,
and multiple update operations executed in a single SEM_APIS.UPDATE_MODEL call will
not see modifications made by concurrent update operations in other transactions. However,
ORA-08177 errors will be raised if a SEM_APIS.UPDATE_MODEL execution tries to update
triples that were modified by a concurrent transaction. When using SERIALIZABLE=T, the
application should detect and handle ORA-08177 errors (for example, retry the update
command if it could not be serialized on the first attempt).

The following cannot be used with the SERIALIZABLE=T option:

• Bulk operations (FORCE_BULK=T, DEL_AS_INS=T)

• LOAD operations

• Materialization of intermediate data (STREAMING=F)

1.12.3 Support for Bulk Operations
SEM_APIS.UPDATE_MODEL supports bulk operations for efficient execution of large
updates. The following options are provided; however, when using any of these bulk
operations, serializable isolation (SERIALIZABLE=T) and autocommit false (AUTOCOMMMIT=F)
cannot be used.

• Materialization of Intermediate Data (STREAMING=F)

• Using SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE

• Using Delete as Insert (DEL_AS_INS=T)

1.12.3.1 Materialization of Intermediate Data (STREAMING=F)
By default, SEM_APIS.UPDATE_MODEL executes two queries for a basic DELETE INSERT
SPARQL Update operation: one query to find triples to delete and one query to find triples to
insert. For some update operations with WHERE clauses that are expensive to evaluate,
executing two queries may not give the best performance. In these cases, executing a single
query for the WHERE clause, materializing the results, and then using the materialized
results to construct triples to delete and triples to insert may give better performance. This
approach incurs overhead from a DDL operation, but overall performance is likely to be better
for complex update statements.

Chapter 1
Support for SPARQL Update Operations on a Semantic Model

1-177

The following example update using this option (STREAMING=F). Note that STREAMING=F
is not allowed with serializable isolation (SERIALIZABLE=T) or autocommit false
(AUTOCOMMIT=F).

BEGIN
 sem_apis.update_model('electronics',
 'PREFIX : <http://www.example.org/electronics/>
 DELETE { ?s ?p ?o }
 INSERT { graph :digitalCameras { ?s ?p ?o } }
 WHERE { ?s :cameraType :digitalCamera .
 ?s ?p ?o }',
 options=>' STREAMING=F ',
 network_owner=>'RDFUSER', network_name=>'NET1');
END;
/

1.12.3.2 Using SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE
For updates that insert a large number of triples (such as tens of thousands), the
default approach of incremental DML on the application table may not give acceptable
performance. In such cases, the FORCE_BULK=T option can be specified so that
SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE is used instead of incremental
DML.

However, not all update operations can use this optimization. The FORCE_BULK=T option
is only allowed for a SEM_APIS.UPDATE_MODEL call with either a single ADD
operation or a single INSERT WHERE operation. The use of
SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE forces a series of commits and
autonomous transactions, so the AUTOCOMMIT=F and SERIALIZABLE=T options are not
allowed with FORCE_BULK=T. In addition, bulk load cannot be used with
CLOB_UPDATE_SUPPORT=T.

SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE allows various customizations
through its flags parameter. SEM_APIS.UPDATE_MODEL supports the
BULK_OPTIONS={ OPTIONS_STRING } flag so that OPTIONS_STRING can be passed into
the flags input of SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE to customize
bulk load options. The following example shows a SEM_APIS.UPDATE_MODEL
invocation using the FORCE_BULK=T option and BULK_OPTIONS flag.

BEGIN
 sem_apis.update_model('electronics',
 'PREFIX elec: <http://www.example.org/electronics/>
 PREFIX ecom: <http://www.example.org/ecommerce/>
 INSERT { ?c ecom:price ?p }
 WHERE { ?c elec:price ?p }',
 options=>' FORCE_BULK=T BULK_OPTIONS={ parallel=4
parallel_create_index }',
 network_owner=>'RDFUSER', network_name=>'NET1');
END;
/

Chapter 1
Support for SPARQL Update Operations on a Semantic Model

1-178

1.12.3.3 Using Delete as Insert (DEL_AS_INS=T)
For updates that delete a large number of triples (such as tens of thousands), the default
approach of incremental DML on the application table may not give acceptable performance.
For such cases, the DEL_AS_INS=T option can be specified. With this option, a large delete
operation is implemented as INSERT, TRUNCATE, and EXCHANGE PARTITION operations.

The use of DEL_AS_INS=T causes a series of commits and autonomous transactions, so this
option cannot be used with SERIALIZABLE=T or AUTOCOMMIT=F. In addition, this option can only
be used with SEM_APIS.UPDATE_MODEL calls that involve a single DELETE WHERE
operation, a single DROP operation, or a single CLEAR operation.

Delete as insert internally uses SEM_APIS.MERGE_MODELS during intermediate
operations. The string OPTIONS_STRING from the MM_OPTIONS={ OPTIONS_STRING } flag can
be specified to customize options for merging. The following example shows a
SEM_APIS.UPDATE_MODEL invocation using the DEL_AS_INS=T option and MM_OPTIONS
flag.

BEGIN
 sem_apis.update_model('electronics',
 'CLEAR NAMED',
 options=>' DEL_AS_INS=T MM_OPTIONS={ dop=4 } ',
 network_owner=>'RDFUSER', network_name=>'NET1');
END;
/

1.12.4 Setting UPDATE_MODEL Options at the Session Level
Some settings that affect the SEM_APIS.UPDATE_MODEL procedure’s behavior can be
modified at the session level through the use of the special
MDSYS.SDO_SEM_UPDATE_CTX.SET_PARAM procedure. The following options can be
set to true or false at the session level: autocommit, streaming, strict_bnode, and
clob_support.

The MDSYS.SDO_SEM_UPDATE_CTX contains the following subprograms to get and set
SEM_APIS.UPDATE_MODEL parameters at the session level:

SQL> describe mdsys.sdo_sem_update_ctx
FUNCTION GET_PARAM RETURNS VARCHAR2
 Argument Name Type In/Out Default?
 ------------------------------ ----------------------- ------ --------
 NAME VARCHAR2 IN
PROCEDURE SET_PARAM
 Argument Name Type In/Out Default?
 ------------------------------ ----------------------- ------ --------
 NAME VARCHAR2 IN
 VALUE VARCHAR2 IN

Chapter 1
Support for SPARQL Update Operations on a Semantic Model

1-179

The following example causes all subsequent calls to the
SEM_APIS.UPDATE_MODEL procedure to use the AUTOCOMMIT=F setting, until the
end of the session or the next call to SEM_APIS.UPDATE_MODEL that specifies a
different autocommit value.

begin
 mdsys.sdo_sem_update_ctx.set_param('autocommit','false');
end;
/

1.12.5 Load Operations: Special Considerations for SPARQL Update
The format of the file to load affects the amount of parallelism that can be used during
the load process. Load operations have two phases:

1. Loading from the file system to a staging table

2. Calling SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE to load from a staging
table into a semantic model

All supported data formats can use parallel execution in phase 2, but only N-Triple and
N-Quad formats can use parallel execution in phase 1. In addition, if a load operation
is interrupted during phase 2 after the staging table has been fully populated, loading
can be resumed with the RESUME_LOAD=T keyword in the options parameter.

Load operations for RDF documents that contain object values longer than 4000 bytes
may require additional operations. Load operations on Turtle and Trig documents will
automatically load all triples/quads regardless of object value size. However, load
operations on N-Triple and N-Quad documents will only load triples/quads with object
values that are less than 4000 bytes in length. For N-Triple and N-Quad data, a
second load operation should be issued with the LOAD_CLOB_ONLY=T option to also load
triples/quads with object values larger than 4000 bytes.

Loads from Unix named pipes are only supported for N-Triple and N-Quad formats.
Turtle and Trig files should be uncompressed, physical files.

Unicode characters are handled differently depending on the format of the RDF file to
load. Unicode characters in N-Triple and N-Quad files should be escaped as
\u<HEX><HEX><HEX><HEX> or \U<HEX><HEX><HEX><HEX><HEX><HEX><HEX><HEX> using
the hex value of the Unicode codepoint value. Turtle and Trig files do not require
Unicode escaping and can be directly loaded with unescaped Unicode values.

Example 1-119 Short and Long Literal Load for N-Quad Data

BEGIN
 -- short literal load
 sem_apis.update_model('electronics',
 'PREFIX : <http://www.example.org/electronics/>
 LOAD <file:///example1.nq>',
 options=> ' LOAD_DIR={MY_DIR} ',
 network_owner=>'RDFUSER', network_name=>'NET1');

 -- long literal load
 sem_apis.update_model('electronics',
 'PREFIX : <http://www.example.org/electronics/>
 LOAD <file:///example1.nq>',

Chapter 1
Support for SPARQL Update Operations on a Semantic Model

1-180

 options=> ' LOAD_DIR={MY_DIR} LOAD_CLOB_ONLY=T ',
 network_owner=>'RDFUSER', network_name=>'NET1');
END;
/

1.12.6 Long Literals: Special Considerations for SPARQL Update
By default, SPARQL Update operations do not manipulate values longer than 4000 bytes. To
enable long literals support, specify CLOB_UPDATE_SUPPORT=T in the options parameter with
the SEM_APIS.UPDATE_MODEL procedure.

Bulk load does not work for long literals; the FORCE_BULK=T option is ignored when used with
the CLOB_UPDATE_SUPPORT=T option.

1.12.7 Blank Nodes: Special Considerations for SPARQL Update
Some update operations only affect the graph of a set of RDF triples. Specifically, these
operations are ADD, COPY and MOVE. For example, the MOVE operation example in
Support for SPARQL Update Operations on a Semantic Model can be performed only
updating triples having :digitalCameras as the graph. However, the performance of such
operations can be improved by using ID-only operations over the RDF model. To run a large
ADD, COPY, or MOVE operation as an ID-only operation, you can specify the
STRICT_BNODE=F hint in the options parameter for the SEM_APIS.UPDATE_MODEL
procedure.

ID-only operations may lead to incorrect blank nodes, however, because no two graphs
should share the same blank node. RDF Semantic Graph uses a blank node prefixing
scheme based on the model and graph combination that contains a blank node. These
prefixes ensure that blank node identifiers are unique across models and graphs. An ID-only
approach for ADD, COPY, and UPDATE operations does not update blank node prefixes.

Example 1-120 ID-Only Update Causing Incorrect Blank Node Values

The update in the following example leads to the same blank node subject for both triples in
graphs :cameras and :cameras2. This can be verified running the provided SEM_MATCH
query.

BEGIN
 sem_apis.update_model('electronics',
 'PREFIX : <http://www.example.org/electronics/>
 INSERT DATA {
 GRAPH :cameras { :camera2 :owner _:bn1 .
 _:bn1 :name "Axel" }
 };
 COPY :cameras TO :cameras2',
 options=>' STRICT_BNODE=F ',
 network_owner=>'RDFUSER', network_name=>'NET1');
END;
/

SELECT count(s)
FROM TABLE(SEM_MATCH('
 PREFIX : <http://www.example.org/electronics/>
 SELECT *

Chapter 1
Support for SPARQL Update Operations on a Semantic Model

1-181

 WHERE { { graph :cameras {?s :name "Axel" } }
 { graph :cameras2 {?s :name "Axel" } } }
', sem_models('electronics'),null,null,null,null,' STRICT_DEFAULT=T ',
null, null, 'RDFUSER', 'NET1'));

To avoid such errors, you should specify the STRICT_BNODE=F hint in the options
parameter for the SEM_APIS.UPDATE_MODEL procedure only when you are sure
that blank nodes are not involved in the ADD, COPY, or MOVE update operation.

However, ADD, COPY, and MOVE operations on large graphs with the
STRICT_BNODE=F option may run significantly faster than they would run using the
default method. If you need to run a series of ID-only updates, another option is to use
the STRICT_BNODE=F option, and then execute the SEM_APIS.CLEANUP_BNODES
procedure at the end. This approach resets the prefix of all blank nodes in a given
model, which effectively corrects ("cleans up") all erroneous blank node labels.

Note that this two-step strategy should not be used with a small number of ADD,
COPY, or MOVE operations. Performing a few operations using the default approach
will execute faster than running a few ID-only operations and then executing the
SEM_APIS.CLEANUP_BNODES procedure.

The following example corrects blank nodes in a semantic model named electronics.

EXECUTE sem_apis.cleanup_bnodes('electronics');

1.13 RDF Support for Oracle Database In-Memory
RDF can use the in-memory Oracle Database In-Memory suite of features, including
in-memory column store, to improve performance for real-time analytics and mixed
workloads.

After Database In-Memory setup, the RDF in-memory loading can be performed using
the SEM_APIS.ENABLE_INMEMORY procedure. This requires an administrative
privilege and affects the entire semantic network. It loads frequently used columns
from the RDF_LINK$ and RDF_VALUE$ tables into memory.

After this procedure is executed, RDF in-memory virtual columns can be loaded into
memory. This is done at the virtual model level: when an RDF virtual model is created,
the in-memory option can be specified in the call to
SEM_APIS.CREATE_VIRTUAL_MODEL.

You can also enable and disable in-memory population of RDF data for specified
models and entailments (rules indexes) by using the
SEM_APIS.ENABLE_INMEMORY_FOR_MODEL,
SEM_APIS.ENABLE_INMEMORY_FOR_ENT,
SEM_APIS.DISABLE_INMEMORY_FOR_MODEL, and
SEM_APIS.DISABLE_INMEMORY_FOR_ENT procedures.

Chapter 1
RDF Support for Oracle Database In-Memory

1-182

Note:

To use RDF with Oracle Database In-Memory, you must understand how to enable
and configure Oracle Database In-Memory, as explained in Oracle Database In-
Memory Guide.

• Enabling Oracle Database In-Memory for RDF

• Using In-Memory Virtual Columns with RDF

• Using Invisible Indexes with Oracle Database In-Memory

1.13.1 Enabling Oracle Database In-Memory for RDF
To load RDF data into memory, the compatibility must be set to 12.2 or later, and the
inmemory_size value must be at least 100MB. The semantic network can then be loaded into
memory using the SEM_APIS.ENABLE_INMEMORY procedure.

Before you use RDF data in memory, you should verify that the data is loaded into memory:

SQL> select pool, alloc_bytes, used_bytes, populate_status from V$INMEMORY_AREA;
POOL ALLOC_BYTES USED_BYTES POPULATE_STATUS
-------------------------- ----------- ---------- --------------------------
1MB POOL 5.0418E+10 4.4603E+10 DONE
64KB POOL 3202088960 9568256 DONE

If the POPULATE_STATUS value is DONE, the RDF data has been fully loaded into memory.

To check if RDF data in memory is used, search for ‘TABLE ACCESS INMEMORY FULL’ in the
execution plan:

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
Pstart| Pstop | TQ |IN-OUT| PQ Distrib |

| 0 | SELECT STATEMENT | | 1 | 13 | 580 (60)| 00:00:01
| | | | | |
| 1 | VIEW | | 1 | 13 | 580 (60)| 00:00:01
| | | | | |
| 2 | VIEW | | 1 | 13 | 580 (60)| 00:00:01
3	SORT AGGREGATE		1	16	
4	PX COORDINATOR				
5	PX SEND QC (RANDOM)	:TQ10000	1	16	
		Q1,00	P->S	QC (RAND)	
6	SORT AGGREGATE		1	16	
		Q1,00	PCWP		
7	PX BLOCK ITERATOR		242M	3697M	580 (60)
00:00:01	KEY(I)	KEY(I)	Q1,00	PCWC	
8	TABLE ACCESS INMEMORY FULL	RDF_LINK$	242M	3697M	580 (60)
00:00:01 |KEY(I) |KEY(I) | Q1,00 | PCWP | |

Chapter 1
RDF Support for Oracle Database In-Memory

1-183

To disable in-memory population of RDF data, use the
SEM_APIS.DISABLE_INMEMORY procedure.

1.13.2 Using In-Memory Virtual Columns with RDF
In addition to RDF data in memory, RDF in-memory virtual columns can be used to
load lexical values for RDF terms in the RDF_LINK$ table into memory. To load the
RDF in-memory virtual columns, you must first execute
SEM_APIS.ENABLE_INMEMORY with administrative privileges, setting the
inmemory_virtual_columns parameter to ENABLE. The in-memory virtual columns are
created in the RDF_LINK$ table and loaded into memory at the virtual model level.

To load the virtual columns into memory, use the option ‘PXN=F INMEMORY=T’ in the
call to SEM_APIS.CREATE_VIRTUAL_MODEL. For example (assuming a schema-
private network named NET1 owned by a database user named RDFUSER):

EXECUTE SEM_APIS.CREATE_VIRTUAL_MODEL
('vm2',SEM_MODELS('lubm1k','univbench'),SEM_RULEBASES
('owl2rl'),options=>'PXN=F INMEMORY=T', network_owner=>'RDFUSER',
network_name=>'NET1');

You can check for in-memory virtual models by examining the MDSYS.RDF_MODEL$
view, where the INMEMORY column is set to T for an in-memory virtual model.

The in-memory virtual model removes the need for joins with the RDF_VALUE$ table.
To check the usage of in-memory virtual models, use the same commands in Enabling
Oracle Database In-Memory for RDF.

For best performance, fully populate the in-memory virtual columns before any query
is processed, because unpopulated virtual columns are assembled at run time and this
overhead may impair performance.

1.13.3 Using Invisible Indexes with Oracle Database In-Memory
Sometimes, inconsistent query performance may result due to the use of indexes. If
you want consistent performance across different workloads, even though it may mean
negating some performance gains that normally result from indexing, you can make
the RDF semantic network indexes invisible so that the query execution is done by
pure memory scans. The following example makes the RDF semantic network indexes
invisible in a schema-private network named NET1 owned by a database user named
RDFUSER:

EXECUTE SEM_APIS.ALTER_SEM_INDEXES('VISIBILITY','N',
network_owner=>'RDFUSER', network_name=>'NET1');

To make the RDF semantic network indexes visible again, use the following

EXECUTE SEM_APIS.ALTER_SEM_INDEXES('VISIBILITY','Y',
network_owner=>'RDFUSER', network_name=>'NET1');

Chapter 1
RDF Support for Oracle Database In-Memory

1-184

Note:

RDF_VALUE$ indexes must be visible so that Oracle Database can efficiently look
up VALUE_IDs for query constants at compile time.

For an explanation of invisible and unusable indexes, see Oracle Database Administrator's
Guide.

1.14 RDF Support for Materialized Join Views
The most frequently used joins in RDF queries are subject-subject and subject-object joins.
To enhance the RDF query performance, you can create materialized join views on those two
columns.

Materialized join views can be created on a single model, or on more than one model by
creating a virtual model with the 'ALLOW_DUP=T' option, and then creating the materialized
join view on that virtual model. All materialized views are owned by the network owner. (To
create a materialized join view, use the SEM_APIS.CREATE_MATERIALIZED_VIEW
procedure.)

The materialized views are compressed by default, and in-memory can be enabled if the
IMDB option is installed. Two materialized views are created on subject-subject join (SS-join)
and subject-object join (SO-join) between two tables named, for example, T0 and T1, and all
G,S,P,O values are fetched by a deterministic function using the IDs. The values can
optionally be defined as a virtual column. In other words, only G,S,P,O IDs for both T0 and T1
are real columns, and the rest are virtual columns. It is recommended that the virtual columns
be used with in-memory virtual column enabled, so that the values are materialized in
memory if the IMDB option is installed.

A bitmap index can be created on a single column in the materialized view. The materialized
view columns are named as follows in each table in the join:

• Graph ID: G

• Subject ID: S

• Predicate ID: P

• Object ID: O

• Graph name: GV

• Subject name: SV

• Predicate name: PV

• Object name: OV

• value type: $RDFVTYP

• literal type: $RDFLTYP

• language type: $RDFLANG

• order_type: $RDFORDT

• order_num: $RDFORDN

• order_date: $RDFORDD

Chapter 1
RDF Support for Materialized Join Views

1-185

For example, if a materialized view named MVX is created, the following join views are
created:

SS-join (MVX$SS) and SO-join (MVX$SO)

MVX$SS(T0G, T0S, T0P, T0O, T1G, T1S, T1P, T1O,
 T0GV, T0G$RDFVTYP, T0G$RDFLTYP, T0G$RDFLANG, T0G$RDFORDT, T0G$RDFORDN,
T0G$RDFORDD
 T0SV, T0S$RDFVTYP, T0S$RDFLTYP, T0S$RDFLANG, T0S$RDFORDT, T0S$RDFORDN,
T0S$RDFORDD
 T0PV, T0P$RDFVTYP, T0P$RDFLTYP, T0P$RDFLANG, T0P$RDFORDT, T0P$RDFORDN,
T0P$RDFORDD
 T0OV, T0O$RDFVTYP, T0O$RDFLTYP, T0O$RDFLANG, T0O$RDFORDT, T0O$RDFORDN,
T0O$RDFORDD
 T1GV, T1G$RDFVTYP, T1G$RDFLTYP, T1G$RDFLANG, T1G$RDFORDT, T1G$RDFORDN,
T1G$RDFORDD
 T1SV, T1S$RDFVTYP, T1S$RDFLTYP, T1S$RDFLANG, T1S$RDFORDT, T1S$RDFORDN,
T1S$RDFORDD
 T1PV, T1P$RDFVTYP, T1P$RDFLTYP, T1P$RDFLANG, T1P$RDFORDT, T1P$RDFORDN,
T1P$RDFORDD
 T1OV, T1O$RDFVTYP, T1O$RDFLTYP, T1O$RDFLANG, T1O$RDFORDT, T1O$RDFORDN,
T1O$RDFORDD)

The same column names for the MVX$SO join view are specified as well.

When a bitmap index is created on a SS-join view, the index is named <MView
name><index column name>_I0$. Similarly, the index is named <MView name><index
column name>_I1$ for SO-join view. For example, if an index is created on a column
T0P in the materialized view MVX, then the index name would be MVXT0P_I0$ for the
SS-join view and MVXT0P_I1$ for the SO-join view.

1.15 RDF Support in Oracle SQL Developer
You can use Oracle SQL Developer to perform operations related to the RDF
Knowledge Graph feature of Oracle Graph.

For details, see RDF Support in SQL Developer.

1.16 Enhanced RDF ORDER BY Query Processing
Effective with Oracle Database Release 12.2, queries on RDF data that use SPARQL
ORDER BY semantics are processed more efficiently than in previous releases.

This internal efficiency involves the use of the ORDER_TYPE, ORDER_NUM, and
ORDER_DATE columns in the RDF_VALUE$ metadata table (documented in
Statements). The values for these three columns are populated during loading, and
this enables ORDER BY queries to reduce internal function calls and to execute faster.

Effective with Oracle Database Release 12.2, the procedure
SEM_APIS.ADD_DATATYPE_INDEX creates an index on the ORDER_NUM column
for numeric types (xsd:float, xsd:double, and xsd:decimal and all of its subtypes) and
an index on ORDER_DATE column for date-related types (xsd:date, xsd:time, and
xsd:dateTime) instead of a function-based index as in previous versions. If you want to
continue using a function-based index for these data types, you should use the
FUNCTION=T option of the SEM_APIS.ADD_DATATYPE_INDEX procedure. For

Chapter 1
RDF Support in Oracle SQL Developer

1-186

example (assuming a schema-private semantic network named NET1 owned by a database
user named RDFUSER):

EXECUTE sem_apis.add_datatype_index('http://www.w3.org/2001/
XMLSchema#decimal', options=>'FUNCTION=T', network_owner=>'RDFUSER',
network_name=>'NET1');

EXECUTE sem_apis.add_datatype_index('http://www.w3.org/2001/XMLSchema#date',
options=>'FUNCTION=T', network_owner=>'RDFUSER', network_name=>'NET1');

1.17 Applying Oracle Machine Learning Algorithms to RDF Data
You can apply Oracle Machine Learning algorithms to RDF data.

Oracle Data Mining requires data to be in a single table or view, and each row represents a
single case. Therefore, RDF data needs to be defined as a view mimicking this structure. To
accomplish that, do the following:

1. Find the number of predicates of interest: P1, P2, P3, … , Pn.

2. Create a view with columns (S, C1, C2, C3, …. , Cn), where columns correspond to the
subject, P1, P2, …, and Pn.

Depending upon requirements, such as a text column that needs to be defined in a table,
you can also create a table.

Convert numerical values using the TO_NUMBER or CAST function.

For example:

CREATE VIEW ML_TAB (S, C1, C2, C3, … , Cn)
AS
SELECT subj, O1, to_number(O2), CAST (O3 AS INTEGER), ... , On
FROM TABLE(SEM_MATCH(
'SELECT ?subj ?O1 ?O2 ?O3 … ?On
 WHERE {
 OPTIONAL { ?subj P1 ?O1 }
 OPTIONAL { ?subj P2 ?O2 }
 OPTIONAL { ?subj P3 ?O3 }
….
 OPTIONAL { ?subj Pn ?On }
 }'
, SEM_MODELS('M1')
,null, null, null, null));

Now the view looks something like this:

SQL> SELECT * FROM ML_TAB;
S C1 C2 C3
---------- -------------------- -------------------- --------------------
S1 O11 O21 O31
S2 O21 O32
S3 O23

Chapter 1
Applying Oracle Machine Learning Algorithms to RDF Data

1-187

After you have this structure defined, you can directly apply Oracle Machine Learning
algorithms on this view. Oracle Data Mining deals with three types of attributes:

• numerical attribute

• categorical attribute

• unstructured text

You must separate the data into three groups based on the data types of the three
types of attributes.

1.18 Semantic Data Examples (PL/SQL and Java)
PL/SQL examples are provided in this topic.

For Java examples, see RDF Semantic Graph Support for Apache Jena .

• Example: Journal Article Information

• Example: Family Information

1.18.1 Example: Journal Article Information
This section presents a simplified PL/SQL example of model for statements about
journal articles. Example 1-121 contains descriptive comments, refers to concepts that
are explained in this chapter, and uses functions and procedures documented in
SEM_APIS Package Subprograms.

Example 1-121 Using a Model for Journal Article Information

-- Basic steps:
-- After you have connected as a privileged user and called
-- SEM_APIS.CREATE_SEM_NETWORK to create a schema for storing RDF data,
-- connect as a regular database user and do the following.

-- 1. For each desired network, create a model (SEM_APIS.CREATE_SEM_MODEL).
-- Note that we are using the schema-private network NET1 created in
-- "Quick Start for Using Semantic Data".

EXECUTE SEM_APIS.CREATE_SEM_MODEL('articles', 'null', 'null',
network_owner=>'RDFUSER', network_name=>'NET1');

-- Information to be stored about some fictitious articles:
-- Article1, titled "All about XYZ" and written by Jane Smith, refers
-- to Article2 and Article3.
-- Article2, titled "A review of ABC" and written by Joe Bloggs,
-- refers to Article3.
-- Seven SQL statements to store the information. In each statement:
-- Each article is referred to by its complete URI The URIs in
-- this example are fictitious.
-- Each property is referred to by the URL for its definition, as
-- created by the Dublin Core Metadata Initiative.

-- 2. Use SEM_APIS.UPDATE_MODEL to insert data with SPARQL Update statements

BEGIN
 SEM_APIS.UPDATE_MODEL('articles',
 'PREFIX nature: <http://nature.example.com/>

Chapter 1
Semantic Data Examples (PL/SQL and Java)

1-188

 PREFIX dc: <http://purl.org/dc/elements/1.1/>
 PREFIX dcterms: <http://purl.org/dc/terms/>

 INSERT DATA {

 # article1 has the title "All about XYZ".
 # article1 was created (written) by Jane Smith.
 # article1 references (refers to) article2 and article3
 nature:article1 dc:title "All about XYZ" ;
 dc:creator "Jane Smith" ;
 dcterms:references nature:article2,
 nature:article3 .

 # article2 has the title "A review of ABC".
 # article2 was created (written) by Joe Bloggs.
 # article2 references (refers to) article3.
 nature:article2 dc:title "A Review of ABC" ;
 dc:creator "Joe Bloggs" ;
 dcterms:references nature:article3 .
 }',
 network_owner=>'RDFUSER',
 network_name=>'NET1');
END;
/

-- 3. Query semantic data with SEM_MATCH table function.
-- 3.a Get all article authors and titles
SELECT author$rdfterm, title$rdfterm
FROM TABLE(SEM_MATCH(
'PREFIX dc: <http://purl.org/dc/elements/1.1/>
 SELECT ?author ?title
 WHERE { ?article dc:creator ?author
 ; dc:title ?title . }'
, SEM_MODELS('articles')
, null, null, null, null
, ' PLUS_RDFT=VC '
, null, null
, 'RDFUSER', 'NET1'));

-- 3.b Find all articles referenced by Article1
SELECT ref$rdfterm
FROM TABLE(SEM_MATCH(
'PREFIX dcterms: <http://purl.org/dc/terms/>
 PREFIX nature: <http://nature.example.com/>
 SELECT ?ref
 WHERE { nature:article1 dcterms:references ?ref . }'
, SEM_MODELS('articles')
, null, null, null, null
, ' PLUS_RDFT=VC '
, null, null
, 'RDFUSER', 'NET1'));

1.18.2 Example: Family Information
This section presents a simplified PL/SQL example of a model for statements about family
tree (genealogy) information. Example 1-121 contains descriptive comments, refers to
concepts that are explained in this chapter, and uses functions and procedures documented
in SEM_APIS Package Subprograms.

Chapter 1
Semantic Data Examples (PL/SQL and Java)

1-189

The family relationships in this example reflect the family tree shown in Figure 1-3.
This figure also shows some of the information directly stated in the example: Cathy is
the sister of Jack, Jack and Tom are male, and Cindy is female.

Figure 1-3 Family Tree for RDF Example

J
o

h
n

J
a

n
ic

e

S
u

z
ie

M
a

tt
S

a
m

m
y

M
a

rt
h

a

C
a

th
y

J
a

c
k

T
o

m
C

in
d

y

(s
is

te
rO

f
J
a

c
k
)

(M
a

le
)

(M
a

le
)

(F
e

m
a

le
)

Example 1-122 Using a Model for Family Information

-- Preparation: create tablespace; enable RDF support.
-- Connect as a privileged user. Example: CONNECT SYSTEM/password-for-SYSTEM
-- Create a tablespace for the RDF data. Example:
CREATE TABLESPACE rdf_tblspace
 DATAFILE 'rdf_tblspace.dat'
 SIZE 128M REUSE
 AUTOEXTEND ON NEXT 128M MAXSIZE 4G
 SEGMENT SPACE MANAGEMENT AUTO;

-- Call SEM_APIS.CREATE_SEM_NETWORK to create a schema-private semantic
-- network named NET1 owned by RDFUSER, which will create database
-- objects to store RDF data. Example:
EXECUTE SEM_APIS.CREATE_SEM_NETWORK('rdf_tblspace', network_owner=>'RDFUSER',
network_name=>'NET1');

-- Connect as the user that is to perform the RDF operations (not SYSTEM),
-- and do the following:
-- 1. For each desired model, create an application table
-- 2. For each desired model, create a model (SEM_APIS.CREATE_SEM_MODEL).
-- 3. Use various subprograms and constructors.

-- Create the application table for the model.
CREATE TABLE family_rdf_data (triple SDO_RDF_TRIPLE_S) COMPRESS;

-- Create the model.
execute SEM_APIS.create_sem_model('family', 'family_rdf_data', 'triple',
network_owner=>'RDFUSER', network_name=>'NET1');

-- Insert RDF triples using SEM_APIS.UPDATE_MODEL. These express the following
information:

-- John and Janice have two children, Suzie and Matt.
-- Matt married Martha, and they have two children:
-- Tom (male) and Cindy (female).
-- Suzie married Sammy, and they have two children:
-- Cathy (female) and Jack (male).

-- Person is a class that has two subslasses: Male and Female.
-- parentOf is a property that has two subproperties: fatherOf and motherOf.

Chapter 1
Semantic Data Examples (PL/SQL and Java)

1-190

-- siblingOf is a property that has two subproperties: brotherOf and sisterOf.
-- The domain of the fatherOf and brotherOf properties is Male.
-- The domain of the motherOf and sisterOf properties is Female.

BEGIN

 -- Insert some TBox (schema) information.
 SEM_APIS.UPDATE_MODEL('family',
 'PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
 PREFIX family: <http://www.example.org/family/>

 INSERT DATA {

 # Person is a class.
 family:Person rdf:type rdfs:Class .

 # Male is a subclass of Person.
 family:Male rdfs:subClassOf family:Person .

 # Female is a subclass of Person.
 family:Female rdfs:subClassOf family:Person .

 # siblingOf is a property.
 family:siblingOf rdf:type rdf:Property .

 # parentOf is a property.
 family:parentOf rdf:type rdf:Property .

 # brotherOf is a subproperty of siblingOf.
 family:brotherOf rdfs:subPropertyOf family:siblingOf .

 # sisterOf is a subproperty of siblingOf.
 family:sisterOf rdfs:subPropertyOf family:siblingOf .

 # A brother is male.
 family:brotherOf rdfs:domain family:Male .

 # A sister is female.
 family:sisterOf rdfs:domain family:Female .

 # fatherOf is a subproperty of parentOf.
 family:fatherOf rdfs:subPropertyOf family:parentOf .

 # motherOf is a subproperty of parentOf.
 family:motherOf rdfs:subPropertyOf family:parentOf .

 # A father is male.
 family:fatherOf rdfs:domain family:Male .

 # A mother is female.
 family:motherOf rdfs:domain family:Female .
 }',
 network_owner=>'RDFUSER',
 network_name=>'NET1');

 -- Insert some ABox (instance) information.
 SEM_APIS.UPDATE_MODEL('family',
 'PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

Chapter 1
Semantic Data Examples (PL/SQL and Java)

1-191

 PREFIX family: <http://www.example.org/family/>

 INSERT DATA {
 # John is the father of Suzie and Matt
 family:John family:fatherOf family:Suzie .
 family:John family:fatherOf family:Matt .

 # Janice is the mother of Suzie and Matt
 family:Janice family:motherOf family:Suzie .
 family:Janice family:motherOf family:Matt .

 # Sammy is the father of Cathy and Jack
 family:Sammy family:fatherOf family:Cathy .
 family:Sammy family:fatherOf family:Jack .

 # Suzie is the mother of Cathy and Jack
 family:Suzie family:motherOf family:Cathy .
 family:Suzie family:motherOf family:Jack .

 # Matt is the father of Tom and Cindy
 family:Matt family:fatherOf family:Tom .
 family:Matt family:fatherOf family:Cindy .

 # Martha is the mother of Tom and Cindy
 family:Martha family:motherOf family:Tom .
 family:Martha family:motherOf family:Cindy .

 # Cathy is the sister of Jack
 family:Cathy family:sisterOf family:Jack .

 # Jack is male
 family:Jack rdf:type family:Male .

 # Tom is male.
 family:Tom rdf:type family:Male .

 # Cindy is female.
 family:Cindy rdf:type family:Female .
 }',
 network_owner=>'RDFUSER',
 network_name=>'NET1');

END;
/

-- RDFS inferencing in the family model
BEGIN
 SEM_APIS.CREATE_ENTAILMENT(
 'rdfs_rix_family',
 SEM_Models('family'),
 SEM_Rulebases('RDFS'),
 network_owner=>'RDFUSER',
 network_name=>'NET1');
END;
/

-- Select all males from the family model, without inferencing.
-- (Returns only Jack and Tom.)
SELECT m$rdfterm
 FROM TABLE(SEM_MATCH(

Chapter 1
Semantic Data Examples (PL/SQL and Java)

1-192

 'PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
 PREFIX : <http://www.example.org/family/>
 SELECT ?m
 WHERE {?m rdf:type :Male}',
 SEM_Models('family'),
 null, null, null, null,
 ' PLUS_RDFT=VC ',
 null, null,
 'RDFUSER', 'NET1'));

-- Select all males from the family model, with RDFS inferencing.
-- (Returns Jack, Tom, John, Sammy, and Matt.)
SELECT m$rdfterm
 FROM TABLE(SEM_MATCH(
 'PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
 PREFIX : <http://www.example.org/family/>
 SELECT ?m
 WHERE {?m rdf:type :Male}',
 SEM_Models('family'),
 SEM_Rulebases('RDFS'),
 null, null, null,
 ' PLUS_RDFT=VC ',
 null, null,
 'RDFUSER', 'NET1'));

-- General inferencing in the family model

EXECUTE SEM_APIS.CREATE_RULEBASE('family_rb', network_owner=>'RDFUSER',
network_name=>'NET1');

INSERT INTO rdfuser.net1#semr_family_rb VALUES(
 'grandparent_rule',
 '(?x :parentOf ?y) (?y :parentOf ?z)',
 NULL,
 '(?x :grandParentOf ?z)',
 SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')));

COMMIT;

-- Because a new rulebase has been created, and it will be used in the
-- entailment, drop the preceding entailment and then re-create it.
EXECUTE SEM_APIS.DROP_ENTAILMENT ('rdfs_rix_family', network_owner=>'RDFUSER',
network_name=>'NET1');

-- Re-create the entailment.
BEGIN
 SEM_APIS.CREATE_ENTAILMENT(
 'rdfs_rix_family',
 SEM_Models('family'),
 SEM_Rulebases('RDFS','family_rb'),
 network_owner=>'RDFUSER', network_name=>'NET1');
END;
/

-- Select all grandfathers and their grandchildren from the family model,
-- without inferencing. (With no inferencing, no results are returned.)
SELECT x$rdfterm grandfather, y$rdfterm grandchild
 FROM TABLE(SEM_MATCH(
 'PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

Chapter 1
Semantic Data Examples (PL/SQL and Java)

1-193

 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
 PREFIX : <http://www.example.org/family/>
 SELECT ?x ?y
 WHERE {?x :grandParentOf ?y . ?x rdf:type :Male}',
 SEM_Models('family'),
 null, null, null, null,
 ' PLUS_RDFT=VC ',
 null, null,
 'RDFUSER', 'NET1'));

-- Select all grandfathers and their grandchildren from the family model.
-- Use inferencing from both the RDFS and family_rb rulebases.
SELECT x$rdfterm grandfather, y$rdfterm grandchild
 FROM TABLE(SEM_MATCH(
 'PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
 PREFIX : <http://www.example.org/family/>
 SELECT ?x ?y
 WHERE {?x :grandParentOf ?y . ?x rdf:type :Male}',
 SEM_Models('family'),
 SEM_Rulebases('RDFS','family_rb'),
 null, null, null,
 ' PLUS_RDFT=VC ',
 null, null,
 'RDFUSER', 'NET1'));

1.19 Software Naming Changes Since Release 11.1
Because the support for semantic data has been expanded beyond the original focus
on RDF, the names of many software objects (PL/SQL packages, functions and
procedures, system tables and views, and so on) have been changed as of Oracle
Database Release 11.1.

In most cases, the change is to replace the string RDF with SEM. although in some
cases it may be to replace SDO_RDF with SEM.

All valid code that used the pre-Release 11.1 names will continue to work; your
existing applications will not be broken. However, it is suggested that you change
old applications to use new object names, and you should use the new names for any
new applications. This manual will document only the new names.

Table 1-27 lists the old and new names for some objects related to support for
semantic technologies, in alphabetical order by old name.

Table 1-27 Semantic Technology Software Objects: Old and New Names

Old Name New Name

RDF_ALIAS data type SEM_ALIAS

RDF_MODEL$ view SEM_MODEL$

RDF_RULEBASE_INFO view SEM_RULEBASE_INFO

RDF_RULES_INDEX_DATASETS view SEM_RULES_INDEX_DATASETS

RDF_RULES_INDEX_INFO view SEM_RULES_INDEX_INFO

RDFI_rules-index-name view SEMI_rules-index-name

RDFM_model-name view SEMM_model-name

Chapter 1
Software Naming Changes Since Release 11.1

1-194

Table 1-27 (Cont.) Semantic Technology Software Objects: Old and New Names

Old Name New Name

RDFR_rulebase-name view SEMR_rulebase-name

SDO_RDF package SEM_APIS

SDO_RDF_INFERENCE package SEM_APIS

SDO_RDF_MATCH table function SEM_MATCH

SDO_RDF_MODELS data type SEM_MODELS

SDO_RDF_RULEBASES data type SEM_RULEBASES

1.20 For More Information About RDF Semantic Graph
More information is available about RDF Semantic Graph support and related topics.

See the following resources:

• Oracle Graph RDF Semantic Graph page (OTN), which includes links for downloads,
technical and business white papers, a discussion forum, and other sources of
information: http://www.oracle.com/technetwork/database/options/
spatialandgraph/overview/rdfsemantic-graph-1902016.html

• World Wide Web Consortium (W3C) RDF Primer: http://www.w3.org/TR/rdf-primer/
• World Wide Web Consortium (W3C) OWL Web Ontology Language Reference: http://

www.w3.org/TR/owl-ref/

1.21 Required Migration of Pre-12.2 Semantic Data
If you have any semantic data created using Oracle Database 11.1. 11.2, or 12.1, then before
you use it in an Oracle Database 12.2 environment, you must migrate this data.

To perform the migration, use the SEM_APIS.MIGRATE_DATA_TO_CURRENT procedure.
This applies not only to your existing semantic data, but also to any other semantic data
introduced into your environment if that data was created using Oracle Database 11.1. 11.2,
or 12.1

The reason for this requirement is for optimal performance of queries that use ORDER BY.
Effective with Release 12.2, Oracle Database creates, populates, and uses the
ORDER_TYPE, ORDER_NUM, and ORDER_DATE columns (new in Release 12.2) in the
RDF_VALUE$ table (described in Statements). The
SEM_APIS.MIGRATE_DATA_TO_CURRENT procedure populates these order-related
columns. If you do not do this, those columns will be null for existing data.

You run this procedure after upgrading to Oracle Database Release 12.2. If you later bring
into your Release 12.2 environment any semantic data that was created using an earlier
release, you must also run the procedure before using that data. Running the procedure can
take a long time with large amounts of semantic data, so consider that in deciding when to
tun it. (Note that using the INS_AS_SEL=T option improves the performance of the
SEM_APIS.MIGRATE_DATA_TO_CURRENT procedure with large data sets.)

Chapter 1
For More Information About RDF Semantic Graph

1-195

http://www.oracle.com/technetwork/database/options/spatialandgraph/overview/rdfsemantic-graph-1902016.html
http://www.oracle.com/technetwork/database/options/spatialandgraph/overview/rdfsemantic-graph-1902016.html
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/owl-ref/

1.22 Oracle RDF Graph Features that Support Accessibility
This section describes the accessibility support provided by Oracle RDF Graph
features.

• The Oracle Adapter for Eclipse RDF4J enables developers to build applications
that can interact with the RDF graph feature in Oracle Database using the Eclipse
RDF4J framework. See the WCAG Documentation to create applications based on
WCAG 2.1 accessibility standards.

• The RDF Query UI is based on Oracle JET. For more information about
accessibility of Oracle JET components, see the Oracle JET Documentation.

• Additionally, by enabling accessibility in RDF Query UI, all SPARQL query
execution results are displayed in tabular format. See the Accessibility section for
more information.

Chapter 1
Oracle RDF Graph Features that Support Accessibility

1-196

https://www.w3.org/TR/2018/REC-WCAG21-20180605/
https://docs.oracle.com/en/middleware/developer-tools/jet/10/develop/oracle-jet-and-accessibility.html#GUID-9E3452C1-2A85-4700-83B1-B266F348C7E5

2
Quick Start for Using Semantic Data

This section provides the steps to help you get started on working with semantic data in an
Oracle Database.

To work with RDF data, you must create a semantic network either in the MDSYS schema or
in the user schema. Follow these general steps as applicable to your semantic network:

• Getting Started with Semantic Data in a Schema-Private Network

• Getting Started with Semantic Data in an MDSYS-Owned Network

• Quick Start for Using RDF Semantic Data in Oracle Autonomous Database

2.1 Getting Started with Semantic Data in a Schema-Private
Network

1. Create a tablespace for the system tables. You must be connected as a user with
appropriate privileges to create the tablespace. The following example creates a
tablespace named rdf_tblspace:

CREATE TABLESPACE rdf_tblspace
 DATAFILE 'rdf_tblspace.dat' SIZE 1024M REUSE
 AUTOEXTEND ON NEXT 256M MAXSIZE UNLIMITED
 SEGMENT SPACE MANAGEMENT AUTO;

2. Create a database user to work with semantic data in the database and grant the
necessary privileges to the database user. You must be connected as a user with
appropriate privileges to create the database user.

The following example creates a network owner user rdfuser and grants the necessary
privileges to rdfuser:

CREATE USER rdfuser
IDENTIFIED BY <password-for-rdfuser>
QUOTA 5G ON rdf_tblspace;

GRANT CONNECT, RESOURCE, CREATE VIEW TO rdfuser;

3. Connect as the network owner user.

CONNECT rdfuser/<password-for-rdfuser>

4. Create a schema-private semantic network.

Creating a semantic network adds semantic data support to an Oracle database. You
must create a semantic network as the intended owner of the schema-private network,
specifying a valid tablespace with adequate space.

2-1

The following example creates a schema-private semantic network named net1
owned by a database user named rdfuser using a tablespace named
rdf_tblspace:

EXECUTE SEM_APIS.CREATE_SEM_NETWORK('rdf_tblspace',
network_owner=>'rdfuser', network_name=>'net1');

5. Create a model.

When you create a model, you specify the model name, the table to hold
references to semantic data for the model, and the column of type
SDO_RDF_TRIPLE_S in that table.

The following command creates a model named articles in the net1 schema-
private network.

EXECUTE SEM_APIS.CREATE_SEM_MODEL('articles', NULL, NULL,
network_owner=>'rdfuser', network_name=>'net1');

After you create the model, you can insert triples into the model, as shown in the
examples in Semantic Data Examples (PL/SQL and Java).

2.2 Getting Started with Semantic Data in an MDSYS-
Owned Network

1. Create a tablespace for the system tables. You must be connected as a user with
appropriate privileges to create the tablespace. The following example creates a
tablespace named rdf_tblspace:

CREATE TABLESPACE rdf_tblspace
 DATAFILE 'rdf_tblspace.dat' SIZE 1024M REUSE
 AUTOEXTEND ON NEXT 256M MAXSIZE UNLIMITED
 SEGMENT SPACE MANAGEMENT AUTO;

2. Create an MDSYS-owned semantic network.

Creating a semantic network adds semantic data support to an Oracle database.
You must create a semantic network as a user with DBA privileges.

The following example creates a MDSYS-owned semantic network:

EXECUTE SEM_APIS.CREATE_SEM_NETWORK('rdf_tblspace');

3. Create a database user under whose schema you will manage your semantic data
and grant the necessary privileges to the database user. You must be connected
as a user with appropriate privileges to create the database user.

The following example creates a database user rdfuser and grants the necessary
privileges to rdfuser:

CREATE USER rdfuser
IDENTIFIED BY <password-for-rdfuser>
QUOTA 5G ON rdf_tblspace;

Chapter 2
Getting Started with Semantic Data in an MDSYS-Owned Network

2-2

GRANT CONNECT, RESOURCE, CREATE VIEW TO rdfuser;

4. Connect as the database user.

CONNECT rdfuser/<password-for-rdfuser>

Note:

You must not perform the following steps while connected as SYS, SYSTEM, or
MDSYS.

5. Create an application table to store references to the semantic data and manage
privileges for insert, update and delete operations. (You do not need to be connected as
a user with DBA privileges for this step and the remaining steps.)

This table must contain a column of type SDO_RDF_TRIPLE_S, which will contain
references to all data associated with a single model.

The following example creates a table named articles_rdf_data with one column to
hold the data for triples:

CREATE TABLE articles_rdf_data (triple SDO_RDF_TRIPLE_S) COMPRESS;

6. Create a model.

When you create a model, you must specify the model name, the table to hold references
to semantic data for the model, and the column of type SDO_RDF_TRIPLE_S in that
table.

The following command creates a model named articles in the MDSYS-owned network,
which will use the table created in the preceding step.

EXECUTE SEM_APIS.CREATE_SEM_MODEL('articles', 'articles_rdf_data',
'triple');

After you create the model, you can insert triples into the model, as shown in the examples in
Semantic Data Examples (PL/SQL and Java).

Note:

You must omit the network_owner and network_name arguments in the Semantic
Data Examples (PL/SQL and Java) when using an MDSYS-owned semantic
network.

2.3 Quick Start for Using RDF Semantic Data in Oracle
Autonomous Database

You can use any of the following options to work with semantic data in Autonomous
Database:

Chapter 2
Quick Start for Using RDF Semantic Data in Oracle Autonomous Database

2-3

• RDF feature of Oracle Graph is included in all versions of Oracle Autonomous
Data Warehouse and Oracle Autonomous Transaction Processing in both shared
and dedicated deployments.

• RDF Graph Server and Query UI is supported with all versions of Oracle
Autonomous Data Warehouse and Oracle Autonomous Transaction Processing in
both shared and dedicated deployments. RDF Graph Server enables you to create
a SPARQL endpoint and perform other RDF graph data management operations
using the Query UI.

• Graph Studio, a component of Autonomous Database in shared deployments,
allows you to easily create, manage, query, analyze, and visualize RDF graphs.
This web-based graph interface is supported on both Data Warehouse and
Transaction Processing workload types.

• Getting Started with Semantic Data in Oracle Autonomous Database

• Deploying RDF Graph Server and Query UI from Oracle Cloud Marketplace

• Getting Started with RDF Graphs in Graph Studio

2.3.1 Getting Started with Semantic Data in Oracle Autonomous
Database

This tutorial describes how you can quickly get started with RDF data in Autonomous
database.

You can run the SQL statements in the steps through one of the following options:

• Using any of the SQL based Oracle Database tools that is connected with your
Autonomous Database. See Connect to Autonomous Database Using Oracle
Database Tools for more details.

• Using the built-in Database Actions which provides a web-based interface. See
Connect with Built-in Oracle Database Actions for more details.

1. Connect to your autonomous database as a user with administrative privileges and
create a network owner user.

CREATE USER rdfuser
IDENTIFIED BY <password-for-rdfuser>
QUOTA 5G ON DATA;

Note:

If you are using Database Actions, you must REST Enable the user in
order to enable the new user to access Database Actions. See Create
User for more details.

2. Grant the required privileges to the newly created network owner user.

You must be connected as a user with administrative privileges to run the following
statement:

GRANT CONNECT, RESOURCE, CREATE VIEW TO rdfuser;

Chapter 2
Quick Start for Using RDF Semantic Data in Oracle Autonomous Database

2-4

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/autonomous-database&id=GUID-CF6C7E1B-D0D4-4641-BADA-5C57DEA7C73B
http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/autonomous-database&id=GUID-CF6C7E1B-D0D4-4641-BADA-5C57DEA7C73B
http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/autonomous-database&id=GUID-102845D9-6855-4944-8937-5C688939610F
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/sql-developer-web&id=GUID-856BBD92-DFEC-4C6E-A8EE-54368078F699
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/sql-developer-web&id=GUID-856BBD92-DFEC-4C6E-A8EE-54368078F699

Note:

If you are using Database Actions to create the new user in the preceding step,
the CONNECT and the RESOURCE privileges are provided by default. Hence, you
must only grant the CREATE VIEW privilege to the new user.

3. Connect as the network owner user.

CONNECT rdfuser/<password-for-rdfuser>

4. Create a semantic network by calling SEM_APIS.CREATE_SEM_NETWORK.

You must create a semantic network as the intended owner of the schema-private
network on the tablespace DATA.

The following example creates a schema-private semantic network named net1 owned
by network owner user rdfuser using the DATA tablespace.

EXECUTE SEM_APIS.CREATE_SEM_NETWORK('DATA', network_owner=>'rdfuser',
network_name=>'net1');

5. Create a model by calling SEM_APIS.CREATE_SEM_MODEL.

The following example creates a model named articles in the net1 schema-private
network.

EXECUTE SEM_APIS.CREATE_SEM_MODEL('articles', NULL, NULL,
network_owner=>'rdfuser', network_name=>'net1');

6. Insert triples into the model.

You can insert triples into your model using the SQL INSERT statement. For example:

INSERT INTO rdfuser.net1#rdft_articles(triple) VALUES (
 SDO_RDF_TRIPLE_S ('articles','<http://nature.example.com/Article1>',
 '<http://purl.org/dc/elements/1.1/title>','"All about XYZ"',
 network_owner=>'RDFUSER', network_name=>'NET1'));

INSERT INTO rdfuser.net1#rdft_articles(triple) VALUES (
 SDO_RDF_TRIPLE_S ('articles','<http://nature.example.com/Article1>',
 '<http://purl.org/dc/elements/1.1/creator>','"Jane Smith"',
 network_owner=>'RDFUSER', network_name=>'NET1'));

INSERT INTO rdfuser.net1#rdft_articles(triple) VALUES (
 SDO_RDF_TRIPLE_S ('articles',
 '<http://nature.example.com/Article1>',
 '<http://purl.org/dc/terms/references>',
 '<http://nature.example.com/Article2>',
 network_owner=>'RDFUSER', network_name=>'NET1'));

INSERT INTO rdfuser.net1#rdft_articles(triple) VALUES (
 SDO_RDF_TRIPLE_S ('articles','<http://nature.example.com/Article2>',
 '<http://purl.org/dc/elements/1.1/title>','"A review of ABC"',
 network_owner=>'RDFUSER', network_name=>'NET1'));

Chapter 2
Quick Start for Using RDF Semantic Data in Oracle Autonomous Database

2-5

INSERT INTO rdfuser.net1#rdft_articles(triple) VALUES (
 SDO_RDF_TRIPLE_S ('articles','<http://nature.example.com/
Article2>',
 '<http://purl.org/dc/elements/1.1/creator>','"Joe Bloggs"',
 network_owner=>'RDFUSER', network_name=>'NET1'));

INSERT INTO rdfuser.net1#rdft_articles(triple) VALUES (
 SDO_RDF_TRIPLE_S ('articles',
 '<http://nature.example.com/Article2>',
 '<http://purl.org/dc/terms/references>',
 '<http://nature.example.com/Article3>',
 network_owner=>'RDFUSER', network_name=>'NET1'));

7. Execute SPARQL queries on the inserted data using RDF Graph Server and
Query UI.

See Deploying RDF Graph Server and Query UI from Oracle Cloud Marketplace to
launch the RDF Query UI application.

You can query the inserted data by running SPARQL queries on the SPARQL
query page in RDF Graph Query UI.

Figure 2-1 Running SPARQL Query in RDF Graph Query UI

Alternatively, you can also execute SPARQL queries using SPARQL editor in SQL
Developer in a dedicated Autonomous Database deployment. But if you are using
Autonomous Database in a shared deployment, then the SPARQL editor is only
supported in SQL Developer 21.2 or later. See Connect with Oracle SQL
Developer for creating a connection to your autonomous database using Cloud
Wallet.

2.3.2 Deploying RDF Graph Server and Query UI from Oracle Cloud
Marketplace

You can set up RDF Graph Server and Query UI in your Autonomous Database
instance using the Oracle Cloud Marketplace image.

As a prerequisite, you must have the following already created:

Chapter 2
Quick Start for Using RDF Semantic Data in Oracle Autonomous Database

2-6

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/autonomous-database&id=GUID-14217939-3E8F-4782-BFF2-021199A908FD
http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/autonomous-database&id=GUID-14217939-3E8F-4782-BFF2-021199A908FD

• Oracle Autonomous Database (shared or dedicated infrastructure) created using your
Oracle Cloud account

• Virtual Cloud Network (VCN) in your tenancy

• OCI compartment to create the stack instance

• SSH Key pair for ssh access to the instance

The Oracle Cloud Infrastructure (OCI) Marketplace displays two listings for Oracle RDF
Graph Server and Query UI. However, the deployment varies depending on the pricing model
as shown:

• Free: Apache Tomcat Server deployment

• BYOL: Oracle WebLogic Server deployment

The following steps apply to both Autonomous Data Warehouse or Autonomous Transaction
Processing workload types as applicable to your Autonomous Database.

1. Sign in to the OCI console and navigate to Marketplace.

2. Search RDF on the Cloud Marketplace page and click the RDF Graph Server and
Query UI listing that applies to you.

3. Review, accept the Oracle Standard Terms and Restrictions and click Launch Stack.

The Stack setup wizard gets triggered.

4. Enter the appropriate metadata, selecting the required options to create the Compute
Instance and configure the Instance Network variables.

5. Enter the ADMIN user credentials for your application server under Advanced
Configuration.

6. Review the information and click Create.

The stack deployment gets invoked and you can monitor the job progress on the Job
Details page.
Once the job completes and the stack is created successfully, the status shows as
SUCCEEDED on the Job Details page.

The RDF Graph Server and Query UI instance is now provisioned.

7. Scroll down to the bottom of the logs section and note the public URL to launch RDF
Graph Server and Query UI.

The URL follows the format as shown:

• Apache Tomcat Deployment: https://<public_IP>:4040/orardf
• WebLogic Server Deployment: https://<public_IP>:8001/orardf

8. Launch the RDF Graph Server and Query UI application in your browser.

The RDF Graph login screen appears. See RDF Graph Server and Query UI for more
details.

2.3.3 Getting Started with RDF Graphs in Graph Studio
Graph Studio is a feature of Oracle Autonomous Database in shared deployments. It is a fully
managed and automated graph data interface to create and query RDF graphs easily.
To work with RDF graphs in Graph Studio:

1. Sign in to Oracle Cloud Infrastructure (OCI) console and navigate to your Autonomous
Database instance.

Chapter 2
Quick Start for Using RDF Semantic Data in Oracle Autonomous Database

2-7

2. Create a graph user using Database Actions.

See Create a Graph User for more information.

3. Login to Graph Studio on your Autonomous Database instance.

See Access Graph Studio Using Oracle Cloud Infrastructure Console for more
information.

4. Create an RDF Graph.

See Create an RDF Graph in Graph Studio for more information.

5. Run SPARQL queries on the RDF graph to analyze and visualize the query
results.

You can query and update an RDF graph using one of the following options in
Graph Studio:

• Query Playground: See Explore and Validate RDF Graphs for more
information.

• SPARQL(RDF) interpreter in Notebooks: See SPARQL(RDF) Interpreter for
more information.

Chapter 2
Quick Start for Using RDF Semantic Data in Oracle Autonomous Database

2-8

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/autonomous-database&id=GUID-656507B4-A4D7-4BE5-A57A-70DBBF678A40
http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/autonomous-database&id=GUID-B565C9F8-1FC4-4C1C-AEBC-9D44215159DF
http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/autonomous-database&id=GUID-36EECE67-B2A5-493F-AE11-D161BACB63F9
http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/autonomous-database&id=GUID-C2D7AB05-96D7-46AF-9D89-3B195CFC425E
http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/autonomous-database&id=GUID-5D2EE7FA-4BB3-4F34-A3CA-A73B76817829

3
OWL Concepts

You should understand key concepts related to the support for a subset of the Web Ontology
Language (OWL).

This chapter builds on the information in RDF Semantic Graph Overview, and it assumes that
you are familiar with the major concepts associated with OWL, such as ontologies,
properties, and relationships. For detailed information about OWL, see the OWL Web
Ontology Language Reference at http://www.w3.org/TR/owl-ref/.

• Ontologies
An ontology is a shared conceptualization of knowledge in a particular domain.

• Using OWL Inferencing
You can use entailment rules to perform native OWL inferencing.

• Using Semantic Operators to Query Relational Data
You can use semantic operators to query relational data in an ontology-assisted manner,
based on the semantic relationship between the data in a table column and terms in an
ontology.

3.1 Ontologies
An ontology is a shared conceptualization of knowledge in a particular domain.

It consists of a collection of classes, properties, and optionally instances. Classes are
typically related by class hierarchy (subclass/ superclass relationship). Similarly, the
properties can be related by property hierarchy (subproperty/ superproperty relationship).
Properties can be symmetric or transitive, or both. Properties can also have domain, ranges,
and cardinality constraints specified for them.

RDFS-based ontologies only allow specification of class hierarchies, property hierarchies,
instanceOf relationships, and a domain and a range for properties.

OWL ontologies build on RDFS-based ontologies by additionally allowing specification of
property characteristics. OWL ontologies can be further classified as OWL-Lite, OWL-DL, and
OWL Full. OWL-Lite restricts the cardinality minimum and maximum values to 0 or 1. OWL-
DL relaxes this restriction by allowing minimum and maximum values. OWL Full allows
instances to be also defined as a class, which is not allowed in OWL-DL and OWL-Lite
ontologies.

Supported OWL Subsets describes OWL capabilities that are supported and not supported
with semantic data.

• Example: Disease Ontology

• Supported OWL Subsets

3.1.1 Example: Disease Ontology
Figure 3-1 shows part of a disease ontology, which describes the classes and properties
related to certain diseases. One requirement is to have a PATIENTS data table with a column

3-1

http://www.w3.org/TR/owl-ref/

named DIAGNOSIS, which must contain a value from the Diseases_and_Disorders
class hierarchy.

Figure 3-1 Disease Ontology Example

 Immune_System_Disorder

 T_Cell_Immunodeficiency

Autoimmune_Disease

 AIDS

 Rheumatoid_Arthritis

Immunodeficiency_
 Syndrome

In the disease ontology shown in Figure 3-1, the diagnosis Immune_System_Disorder
includes two subclasses, Autoimmune_Disease and Immunodeficiency_Syndrome. The
Autoimmune_Disease diagnosis includes the subclass Rheumatoid_Arthritis; and the
Immunodeficiency_Syndrome diagnosis includes the subclass
T_Cell_Immunodeficiency, which includes the subclass AIDS.

The data in the PATIENTS table might include the PATIENT_ID and DIAGNOSIS
column values shown in Table 3-1.

Table 3-1 PATIENTS Table Example Data

PATIENT_ID DIAGNOSIS

1234 Rheumatoid_Arthritis

2345 Immunodeficiency_Syndrome

3456 AIDS

To query ontologies, you can use the SEM_MATCH table function or the
SEM_RELATED operator and its ancillary operators.

Related Topics

• Using the SEM_MATCH Table Function to Query Semantic Data
To query semantic data, use the SEM_MATCH table function.

• Using Semantic Operators to Query Relational Data
You can use semantic operators to query relational data in an ontology-assisted
manner, based on the semantic relationship between the data in a table column
and terms in an ontology.

Chapter 3
Ontologies

3-2

3.1.2 Supported OWL Subsets
This section describes OWL vocabulary subsets that are supported.

Oracle Database supports the RDFS++, OWLSIF, and OWLPrime vocabularies, which have
increasing expressivity, as well as OWL 2 RL. Each supported vocabulary has a
corresponding rulebase; however, these rulebases do not need to be populated because the
underlying entailment rules of these three vocabularies are internally implemented. The
supported vocabularies are as follows:

• RDFS++: A minimal extension to RDFS; which is RDFS plus owl:sameAs and
owl:InverseFunctionalProperty.

• OWLSIF: OWL with IF Semantic, with the vocabulary and semantics proposed for pD*
semantics in Completeness, decidability and complexity of entailment for RDF Schema
and a semantic extension involving the OWL vocabulary, by H.J. Horst, Journal of Web
Semantics 3, 2 (2005), 79–115.

• OWLPrime: The following OWL capabilities:

– Basics: class, subclass, property, subproperty, domain, range, type

– Property characteristics: transitive, symmetric, functional, inverse functional, inverse

– Class comparisons: equivalence, disjointness

– Property comparisons: equivalence

– Individual comparisons: same, different

– Class expressions: complement

– Property restrictions: hasValue, someValuesFrom, allValuesFrom
As with pD*, the supported semantics for these value restrictions are only intensional
(IF semantics).

• OWL 2 RL: Described in the "OWL 2 RL" section of the W3C OWL 2 Web Ontology
Language Profiles recommendation (http://www.w3.org/TR/owl2-profiles/#OWL_2_RL)
as: "The OWL 2 RL profile is aimed at applications that require scalable reasoning
without sacrificing too much expressive power. It is designed to accommodate both OWL
2 applications that can trade the full expressivity of the language for efficiency, and
RDF(S) applications that need some added expressivity from OWL 2."

The system-defined rulebase OWL2RL supports all the standard production rules defined
for OWL 2 RL. As with OWLPRIME, users will not see any rules in this OWL2RL rulebase.
The rulebase OWL2RL will be created automatically if it does not already exist.

The following code excerpt uses the OWL2RL rulebase:

CREATE TABLE m1_tpl (triple SDO_RDF_TRIPLE_S) COMPRESS;
EXECUTE
sem_apis.create_sem_model('m1','m1_tpl','triple',network_owner=>'RDFUSER',network_n
ame=>'NET1');
-- Insert data into model M1. Details omitted
...
-- Now run inference using the OWL2RL rulebase
EXECUTE
sem_apis.create_entailment('m1_inf',sem_models('m1'),sem_rulebases('owl2rl'),networ
k_owner=>'RDFUSER',network_name=>'NET1');

Chapter 3
Ontologies

3-3

http://www.w3.org/TR/owl2-profiles/#OWL_2_RL

Note that inference-related optimizations, such as parallel inference and RAW8,
are all applicable when the OWL2RL rulebase is used.

• OWL 2 EL: Described in the "OWL 2 EL" section of the W3C OWL 2 Web
Ontology Language Profiles recommendation (http://www.w3.org/TR/owl2-
profiles/#OWL_2_EL) as: "The OWL 2 EL profile is designed as a subset of OWL
2 that

– is particularly suitable for applications employing ontologies that define very
large numbers of classes and/or properties,

– captures the expressive power used by many such ontologies, and

– for which ontology consistency, class expression subsumption, and instance
checking can be decided in polynomial time."

A prime example of OWL 2 EL ontology is the biomedical ontology SNOMED
Clinical Terms (SNOMED CT). For information about SNOMED CT, see: http://
www.ihtsdo.org/snomed-ct/
The system-defined rulebase OWL2EL supports the EL syntax.

As with OWLPRIME and OWL2RL, users will not see any rules in this OWL2EL rulebase,
and the OWL2EL rulebase will be created automatically if it does not already exist.

The following code excerpt uses the OWL2EL rulebase against the well known
SNOMED ontology:

CREATE TABLE snomed_tpl (triple SDO_RDF_TRIPLE_S) COMPRESS;
EXECUTE
sem_apis.create_sem_model('snomed','snomed_tpl','triple',network_owner=>'RDFU
SER',network_name=>'NET1') compress;
-- Insert data into model SNOMED. Details omitted
...
-- Now run inference using the OWL2EL rulebase
EXECUTE
sem_apis.create_entailment('snomed_inf',sem_models('snomed'),sem_rulebases('o
wl2el'),network_owner=>'RDFUSER',network_name=>'NET1');

Note that the OWL2EL rulebase support does not include reflexive object properties
(ReflexiveObjectProperty) simply because a reflexive object property will link
every individual with itself, which would probably cause an unnecessary and costly
expansion of the inference graph.

Table 3-2 lists the RDFS/OWL vocabulary constructs included in each supported
rulebase.

Table 3-2 RDFS/OWL Vocabulary Constructs Included in Each Supported
Rulebase

Rulebase Name RDFS/OWL Constructs Included

RDFS++ all RDFS vocabulary constructs

owl:InverseFunctionalProperty

owl:sameAs

Chapter 3
Ontologies

3-4

http://www.w3.org/TR/owl2-profiles/#OWL_2_EL
http://www.w3.org/TR/owl2-profiles/#OWL_2_EL
http://www.ihtsdo.org/snomed-ct/
http://www.ihtsdo.org/snomed-ct/

Table 3-2 (Cont.) RDFS/OWL Vocabulary Constructs Included in Each
Supported Rulebase

Rulebase Name RDFS/OWL Constructs Included

OWLSIF all RDFS vocabulary constructs

owl:FunctionalProperty

owl:InverseFunctionalProperty

owl:SymmetricProperty

owl:TransitiveProperty

owl:sameAs

owl:inverseOf

owl:equivalentClass

owl:equivalentProperty

owl:hasValue

owl:someValuesFrom

owl:allValuesFrom

OWLPrime rdfs:subClassOf

rdfs:subPropertyOf

rdfs:domain

rdfs:range

owl:FunctionalProperty

owl:InverseFunctionalProperty

owl:SymmetricProperty

owl:TransitiveProperty

owl:sameAs

owl:inverseOf

owl:equivalentClass

owl:equivalentProperty

owl:hasValue

owl:someValuesFrom

owl:allValuesFrom

owl:differentFrom

owl:disjointWith

owl:complementOf

OWL2RL (As described in http://www.w3.org/TR/owl2-profiles/
#OWL_2_RL)

OWL2EL (As described in http://www.w3.org/TR/owl2-profiles/
#OWL_2_EL)

3.2 Using OWL Inferencing
You can use entailment rules to perform native OWL inferencing.

This section creates a simple ontology, performs native inferencing, and illustrates some
more advanced features.

• Creating a Simple OWL Ontology

Chapter 3
Using OWL Inferencing

3-5

http://www.w3.org/TR/owl2-profiles/#OWL_2_RL
http://www.w3.org/TR/owl2-profiles/#OWL_2_RL
http://www.w3.org/TR/owl2-profiles/#OWL_2_EL
http://www.w3.org/TR/owl2-profiles/#OWL_2_EL

• Performing Native OWL inferencing

• Performing OWL and User-Defined Rules Inferencing

• Generating OWL inferencing Proofs

• Validating OWL Models and Entailments

• Using SEM_APIS.CREATE_ENTAILMENT for RDFS Inference

• Enhancing Inference Performance

• Optimizing owl:sameAs Inference

• Performing Incremental Inference

• Using Parallel Inference

• Using Named Graph Based Inferencing (Global and Local)

• Performing Selective Inferencing (Advanced Information)

3.2.1 Creating a Simple OWL Ontology
Example 3-1 creates a simple OWL ontology, inserts one statement that two URIs
refer to the same entity, and performs a query using the SEM_MATCH table function.

Example 3-1 Creating a Simple OWL Ontology

SQL> CREATE TABLE owltst(id number, triple sdo_rdf_triple_s);
Table created.

SQL> EXECUTE
sem_apis.create_sem_model('owltst','owltst','triple',network_owner=>'RDFUSER',net
work_name=>'NET1');
PL/SQL procedure successfully completed.

SQL> INSERT INTO owltst VALUES (1, sdo_rdf_triple_s('owltst',
 'http://example.com/name/John', 'http://www.w3.org/2002/07/owl#sameAs',
 'http://example.com/name/JohnQ','RDFUSER','NET1'));
1 row created.

SQL> commit;

SQL> -- Use SEM_MATCH to perform a simple query.
SQL> select s$rdfterm,p$rdfterm,o$rdfterm from table(SEM_MATCH('SELECT * WHERE {?
s ?p ?o}', SEM_Models('OWLTST'),
 null, null, null, null, 'PLUS_RDFT=VC', null, null, 'RDFUSER',
'NET1'));

3.2.2 Performing Native OWL inferencing
Example 3-2 calls the SEM_APIS.CREATE_ENTAILMENT procedure. You do not
need to create the rulebase and add rules to it, because the OWL rules are already
built into the RDF Semantic Graph inferencing engine.

Example 3-2 Performing Native OWL Inferencing

SQL> -- Invoke the following command to run native OWL inferencing that
SQL> -- understands the vocabulary defined in the preceding section.
SQL>
SQL> EXECUTE sem_apis.create_entailment('owltst_idx', sem_models('owltst'),
sem_rulebases('OWLPRIME'), network_owner=>'RDFUSER', network_name=>'NET1');

Chapter 3
Using OWL Inferencing

3-6

PL/SQL procedure successfully completed.

SQL> -- The following view is generated to represent the entailed graph (rules index).
SQL> desc mdsys.semi_owltst_idx;

SQL> -- Run the preceding query with an additional rulebase parameter to list
SQL> -- the original graph plus the inferred triples.
SQL> SELECT s$rdfterm,p$rdfterm,o$rdfterm FROM table(SEM_MATCH('SELECT * WHERE {?s ?
p ?o}', SEM_MODELS('OWLTST'),
 SEM_RULEBASES('OWLPRIME'), null, null, null, null, 'PLUS_RDFT=VC', null,
null, 'RDFUSER', 'NET1'));

3.2.3 Performing OWL and User-Defined Rules Inferencing
Example 3-3 creates a user-defined rulebase, inserts a simplified uncleOf rule (stating that
the brother of one's father is one's uncle), and calls the SEM_APIS.CREATE_ENTAILMENT
procedure.

Example 3-3 Performing OWL and User-Defined Rules Inferencing

SQL> -- First, insert the following assertions.

SQL> INSERT INTO owltst VALUES (1, sdo_rdf_triple_s('owltst',
 'http://example.com/name/John', 'http://example.com/rel/fatherOf',
 'http://example.com/name/Mary', 'RDFUSER', 'NET1'));

SQL> INSERT INTO owltst VALUES (1, sdo_rdf_triple_s('owltst',
 'http://example.com/name/Jack', 'http://example.com/rel/brotherOf',
 'http://example.com/name/John', 'RDFUSER', 'NET1'));

SQL> -- Create a user-defined rulebase.

SQL> EXECUTE sem_apis.create_rulebase('user_rulebase', network_owner=>'RDFUSER',
network_name=>'NET1');

SQL> -- Insert a simple "uncle" rule.

SQL> INSERT INTO RDFUSER.NET1#SEMR_USER_RULEBASE VALUES ('uncle_rule',
'(?x <http://example.com/rel/brotherOf> ?y)(?y <http://example.com/rel/fatherOf> ?z)',
NULL, '(?x <http://example.com/rel/uncleOf> ?z)', null);

SQL> -- In the following statement, 'USER_RULES=T' is required, to
SQL> -- include the original graph plus the inferred triples.
SQL> EXECUTE sem_apis.create_entailment('owltst2_idx', sem_models('owltst'),
 sem_rulebases('OWLPRIME','USER_RULEBASE'),
 SEM_APIS.REACH_CLOSURE, null, 'USER_RULES=T', network_owner=>'RDFUSER',
network_name=>'NET1');

SQL> -- In the result of the following query, :Jack :uncleOf :Mary is inferred.
SQL> SELECT s$rdfterm,p$rdfterm,o$rdfterm FROM table(SEM_MATCH('SELECT * WHERE {?s ?
p ?o}',
 SEM_MODELS('OWLTST'),
 SEM_RULEBASES('OWLPRIME','USER_RULEBASE'), null, null, null, null,
'PLUS_RDFT=VC', null, null, 'RDFUSER', 'NET1'));

For performance, the inference engine by default executes each user rule without checking
the syntax legality of inferred triples (for example, literal value as a subject, blank node as a
predicate) until after the last round of entailment. After completing the last entailment round,
the inference engine removes all syntactically illegal triples without throwing any errors for

Chapter 3
Using OWL Inferencing

3-7

these triples. However, because triples with illegal syntax may exist during multiple
rounds of inference, rules can use these triples as part of their antecedents. For
example, consider the following user-defined rules:

• Rule 1:

(?s :account ?y)
(?s :country :Spain) --> (?y rdf:type :SpanishAccount)

• Rule 2:

(?s :account ?y)
(?y rdf:type :SpanishAccount) --> (?s :language "es_ES")

Rule 1 finds all Spanish users and designates their accounts as Spanish accounts.
Rule 2 sets the language for all users with Spanish accounts to es_ES (Spanish).
Consider the following data, displayed in Turtle format:

:Juan :account "123ABC4Z"
 :country :Spain

:Alejandro :account "5678DEF9Y"
 :country :Spain

Applying Rule 1 and Rule 2 produces the following inferred triples:

(:Juan :language "es_ES")
(:Alejandro :language "es_ES")

Note there are no triples specifying which accounts are of type :SpanishAccount. The
user-defined rules infer those triples during creation of the entailment, but the
inference engine removes them after the last round of inference because they contain
illegal syntax. The accounts are the literal values, which cannot be used as subjects in
an RDF triple.

To force the checking of syntax legality of inferred triples, add the /*+
ENABLE_SYNTAX_CHECKING */ optimizer hint to the beginning of the rule's FILTER
expression. Forcing syntax checking for a rule can result in a performance penalty and
will throw an exception for any syntactically illegal triples. The following example,
similar to Rule 1, forces syntax checking. (In addition, merely to illustrate the use of a
filter expression, the example restricts accounts to those that do not end with the letter
'Z'.)

INSERT INTO RDFUSER.NET1#SEMR_USER_RULEBASE VALUES (
 'spanish_account_rule',
 '(?s <http://example.com/account> ?y)(?y <http://example.com/account> <http://
example.com/Spain>)',
 '/*+ ENABLE_SYNTAX_CHECKING */ y not like ''%Z'' ',
 '(?y <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://example.com/
SpanishAccount>)',
 NULL
);

3.2.4 Generating OWL inferencing Proofs
OWL inference can be complex, depending on the size of the ontology, the actual
vocabulary (set of language constructs) used, and the interactions among those
language constructs. To enable you to find out how a triple is derived, you can use
proof generation during inference. (Proof generation does require additional CPU time
and disk resources.)

Chapter 3
Using OWL Inferencing

3-8

To generate the information required for proof, specify PROOF=T in the call to the
SEM_APIS.CREATE_ENTAILMENT procedure, as shown in the following example:

EXECUTE sem_apis.create_entailment('owltst_idx', sem_models('owltst'), -
 sem_rulebases('owlprime'), SEM_APIS.REACH_CLOSURE, 'SAM', 'PROOF=T',
network_owner=>'RDFUSER', network_name=>'NET1');

Specifying PROOF=T causes a view to be created containing proof for each inferred triple. The
view name is the entailment name prefixed by MDSYS.SEMI_. Two relevant columns in this
view are LINK_ID and EXPLAIN (the proof). The following example displays the LINK_ID
value and proof of each generated triple (with LINK_ID values shortened for simplicity):

SELECT link_id || ' generated by ' || explain as
 triple_and_its_proof FROM RDFUSER.NET1#SEMI_OWLST_IDX;

TRIPLE_AND_ITS_PROOF
--
8_5_5_4 generated by 4_D_5_5 : SYMM_SAMH_SYMM
8_4_5_4 generated by 8_5_5_4 4_D_5_5 : SAM_SAMH
. . .

A proof consists of one or more triple (link) ID values and the name of the rule that is applied
on those triples:

link-id1 [link-id2 ... link-idn] : rule-name

Example 3-4 Displaying Proof Information

To get the full subject, predicate, and object URIs for proofs, you can query the model view
and the entailment (rules index) view. Example 3-4 displays the LINK_ID value and
associated triple contents using the model view SEMM_OWLTST and the entailment view
SEMI_OWLTST_IDX.

SELECT to_char(x.triple.rdf_m_id, 'FMXXXXXXXXXXXXXXXX') ||'_'||
 to_char(x.triple.rdf_s_id, 'FMXXXXXXXXXXXXXXXX') ||'_'||
 to_char(x.triple.rdf_p_id, 'FMXXXXXXXXXXXXXXXX') ||'_'||
 to_char(x.triple.rdf_c_id, 'FMXXXXXXXXXXXXXXXX'),
 x.triple.get_triple()
 FROM (
 SELECT sdo_rdf_triple_s(
 t.canon_end_node_id,
 t.model_id,
 t.start_node_id,
 t.p_value_id,
 t.end_node_id) triple
 FROM (select * from rdfuser.net1#semm_owltst union all
 select * from rdfuser.net1#semi_owltst_idx
) t
 WHERE t.link_id IN ('4_D_5_5','8_5_5_4')
) x;

 LINK_ID X.TRIPLE.GET_TRIPLE()(SUBJECT, PROPERTY, OBJECT)
---------- --
4_D_5_5 SDO_RDF_TRIPLE('<http://example.com/name/John>', '<http://www.w3.org/2002/07/
owl#sameAs>', '<http://example.com/name/JohnQ>')
8_5_5_4 SDO_RDF_TRIPLE('<http://example.com/name/JohnQ>', '<http://www.w3.org/2002/07/
owl#sameAs>', '<http://example.com/name/John>')

Chapter 3
Using OWL Inferencing

3-9

In Example 3-4, for the proof entry 8_5_5_4 generated by 4_D_5_5 :
SYMM_SAMH_SYMM for the triple with LINK_ID = 8_5_5_4, it is inferred from the
triple with 4_D_5_5 using the symmetricity of owl:sameAs.

If the entailment status is INCOMPLETE and if the last entailment was generated
without proof information, you cannot invoke SEM_APIS.CREATE_ENTAILMENT with
PROOF=T. In this case, you must first drop the entailment and create it again specifying
PROOF=T.

3.2.5 Validating OWL Models and Entailments
An OWL ontology may contain errors, such as unsatisfiable classes, instances
belonging to unsatisfiable classes, and two individuals asserted to be same and
different at the same time. You can use the SEM_APIS.VALIDATE_MODEL and
SEM_APIS.VALIDATE_ENTAILMENT functions to detect inconsistencies in the
original data model and in the entailment, respectively.

Example 3-5 Validating an Entailment

Example 3-5 shows uses the SEM_APIS.VALIDATE_ENTAILMENT function, which
returns a null value if no errors are detected or a VARRAY of strings if any errors are
detected.

SQL> -- Insert an offending triple.
SQL> insert into owltst values (1, sdo_rdf_triple_s('owltst',
 'urn:C1', 'http://www.w3.org/2000/01/rdf-schema#subClassOf',
'http://www.w3.org/2002/07/owl#Nothing', 'RDFUSER', 'NET1'));

SQL> -- Drop entailment first.
SQL> exec sem_apis.drop_entailment('owltst_idx', network_owner=>'RDFUSER',
network_name=>'NET1');
PL/SQL procedure successfully completed.

SQL> -- Perform OWL inferencing.
SQL> exec sem_apis.create_entailment('owltst_idx', sem_models('OWLTST'),
sem_rulebases('OWLPRIME') , network_owner=>'RDFUSER', network_name=>'NET1');
PL/SQL procedure successfully completed.

SQL > set serveroutput on;
SQL > -- Now invoke validation API: sem_apis.validate_entailment
SQL >
declare
 lva mdsys.rdf_longVarcharArray;
 idx int;
begin
 lva := sem_apis.validate_entailment(sem_models('OWLTST'),
sem_rulebases('OWLPRIME'), network_owner=>'RDFUSER', network_name=>'NET1') ;

 if (lva is null) then
 dbms_output.put_line('No errors found.');
 else
 for idx in 1..lva.count loop
 dbms_output.put_line('Offending entry := ' || lva(idx)) ;
 end loop ;
 end if;
end ;
/

SQL> -- NOTE: The LINK_ID value and the numbers in the following

Chapter 3
Using OWL Inferencing

3-10

SQL> -- line are shortened for simplicity in this example. --

 Offending entry := 1 10001 (4_2_4_8 2 4 8) Unsatisfiable class.

Each item in the validation report array includes the following information:

• Number of triples that cause this error (1 in Example 3-5)

• Error code (10001 Example 3-5)

• One or more triples (shown in parentheses in the output; (4_2_4_8 2 4 8) in
Example 3-5).

These numbers are the LINK_ID value and the ID values of the subject, predicate, and
object.

• Descriptive error message (Unsatisfiable class. in Example 3-5)

The output in Example 3-5 indicates that the error is caused by one triple that asserts that a
class is a subclass of an empty class owl:Nothing.

3.2.6 Using SEM_APIS.CREATE_ENTAILMENT for RDFS Inference
In addition to accepting OWL vocabularies, the SEM_APIS.CREATE_ENTAILMENT
procedure accepts RDFS rulebases. The following example shows RDFS inference (all
standard RDFS rules are defined in http://www.w3.org/TR/rdf-mt/):

EXECUTE sem_apis.create_entailment('rdfstst_idx', sem_models('my_model'),
sem_rulebases('RDFS'), network_owner=>'RDFUSER', network_name=>'NET1');

Because rules RDFS4A, RDFS4B, RDFS6, RDFS8, RDFS10, RDFS13 may not generate
meaningful inference for your applications, you can deselect those components for faster
inference. The following example deselects these rules.

EXECUTE sem_apis.create_entailment('rdfstst_idx', sem_models('my_model'),
sem_rulebases('RDFS'), SEM_APIS.REACH_CLOSURE, -
 'RDFS4A-, RDFS4B-, RDFS6-, RDFS8-, RDFS10-, RDFS13-'), network_owner=>'RDFUSER',
network_name=>'NET1');

3.2.7 Enhancing Inference Performance
This section describes suggestions for improving the performance of inference operations.

• Collect statistics before inferencing. After you load a large RDF/OWL data model, you
should execute the SEM_PERF.GATHER_STATS procedure. See the Usage Notes for
that procedure (in SEM_PERF Package Subprograms) for important usage information.

• Allocate sufficient temporary tablespace for inference operations. OWL inference support
in Oracle relies heavily on table joins, and therefore uses significant temporary
tablespace.

• Use the appropriate implementations of the SVFH and AVFH inference components.

The default implementations of the SVFH and AVFH inference components work best
when the number of restriction classes defined by owl:someValuesFrom and/or
owl:allValuesFrom is low (as in the LUBM data sets). However, when the number of
such classes is high (as in the Gene Ontology http://www.geneontology.org/), using
non-procedural implementations of SVFH and AVFH may significantly improve
performance.

Chapter 3
Using OWL Inferencing

3-11

http://www.geneontology.org/

To disable the procedural implementations and to select the non-procedural
implementations of SVFH and AVFH, include 'PROCSVFH=F' and/or 'PROCAVFH=F'
in the options to SEM_APIS.CREATE_ENTAILMENT. Using the appropriate
implementation for an ontology can provide significant performance benefits. For
example, selecting the non-procedural implementation of SVFH for the NCI
Thesaurus ontology (see http://www.cancer.gov/research/resources/
terminology) produced a 960% performance improvement for the SVFH inference
component (tested on a dual-core, 8GB RAM desktop system with 3 SATA disks
tied together with Oracle ASM).

See also Optimizing owl:sameAs Inference.

Related Topics

• Optimizing owl:sameAs Inference

3.2.8 Optimizing owl:sameAs Inference
You can optimize inference performance for large owl:sameAs cliques by specifying
'OPT_SAMEAS=T' in the options parameter when performing OWLPrime entailment. (A
clique is a graph in which every node of it is connected to, bidirectionally, every other
node in the same graph.)

According to OWL semantics, the owl:sameAs construct is treated as an equivalence
relation, so it is reflexive, symmetric, and transitive. As a result, during inference a full
materialization of owl:sameAs-related entailments could significantly increase the size
of the inferred graph. Consider the following example triple set:

:John owl:sameAs :John1 .
:John owl:sameAs :John2 .
:John2 :hasAge "32" .

Applying OWLPrime inference (with the SAM component specified) to this set would
generate the following new triples:

:John1 owl:sameAs :John .
:John2 owl:sameAs :John .
:John1 owl:sameAs :John2 .
:John2 owl:sameAs :John1 .
:John owl:sameAs :John .
:John1 owl:sameAs :John1 .
:John2 owl:sameAs :John2 .
:John :hasAge "32" .
:John1 :hasAge "32" .

In the preceding example, :John, :John1 and :John2 are connected to each other with
the owl:sameAs relationship; that is, they are members of an owl:sameAs clique. To
provide optimized inference for large owl:sameAs cliques, you can consolidate
owl:sameAs triples without sacrificing correctness by specifying 'OPT_SAMEAS=T' in the
options parameter when performing OWLPrime entailment. For example:

EXECUTE sem_apis.create_entailment('M_IDX',sem_models('M'),
 sem_rulebases('OWLPRIME'),null,null,'OPT_SAMEAS=T', network_owner=>'RDFUSER',
network_name=>'NET1');

When you specify this option, for each owl:sameAs clique, one resource from the
clique is chosen as a canonical representative and all of the inferences for that clique
are consolidated around that resource. Using the preceding example, if :John1 is the

Chapter 3
Using OWL Inferencing

3-12

http://www.cancer.gov/research/resources/terminology
http://www.cancer.gov/research/resources/terminology

clique representative, after consolidation the inferred graph would contain only the following
triples:

:John1 owl:sameAs :John1 .
:John1 :hasAge "32" .

Some overhead is incurred with owl:sameAs consolidation. During inference, all asserted
models are copied into the inference partition, where they are consolidated together with the
inferred triples. Additionally, for very large asserted graphs, consolidating and removing
duplicate triples incurs a large runtime overhead, so the OPT_SAMEAS=T option is
recommended only for ontologies that have a large number of owl:sameAs relationships and
large clique sizes.

After the OPT_SAMEAS=T option has been used for an entailment, all subsequent uses of
SEM_APIS.CREATE_ENTAILMENT for that entailment must also use OPT_SAMEAS=T, or an
error will be reported. To disable optimized sameAs handling, you must first drop the
entailment.

Clique membership information is stored in a view named SEMC_entailment-name, where
entailment-name is the name of the entailment (rules index). Each SEMC_entailment-name
view has the columns shown in Table 3-3.

Table 3-3 SEMC_entailment_name View Columns

Column Name Data Type Description

MODEL_ID NUMBER ID number of the inferred model

VALUE_ID NUMBER) ID number of a resource that is a member of the
owl:sameAs clique identified by CLIQUE_ID

CLIQUE_ID NUMBER ID number of the clique representative for the VALUE_ID
resource

To save space, the SEMC_entailment-name view does not contain reflexive rows like
(CLIQUE_ID, CLIQUE_ID).

• Querying owl:sameAs Consolidated Inference Graphs

3.2.8.1 Querying owl:sameAs Consolidated Inference Graphs
At query time, if the entailment queried was created using the OPT_SAMEAS=T option, the
results are returned from an owl:sameAs-consolidated inference partition. The query results
are not expanded to include the full owl:sameAs closure.

In the following example query, the only result returned would be :John1, which is the
canonical clique representative.

SELECT A FROM TABLE (
 SEM_MATCH ('SELECT ?A WHERE {?A :hasAge "32"}',SEM_MODELS('M'),
 SEM_RULEBASES('OWLPRIME'),null, null, null, null, 'PLUS_RDFT=VC', null, null,
'RDFUSER', 'NET1'));

With the preceding example, even though :John2 :hasAge "32" occurs in the model, it has
been replaced during the inference consolidation phase where redundant triples are
removed. However, you can expand the query results by performing a join with the
MDSYS.SEMC_rules-index-name view that contains the consolidated owl:sameAs

Chapter 3
Using OWL Inferencing

3-13

information. For example, to get expanded result set for the preceding SEM_MATCH
query, you can use the following expanded query:

SELECT V.VALUE_NAME A_VAL FROM TABLE (
 SEM_MATCH ('SELECT ?A WHERE {?A :hasAge "32"}',SEM_MODELS('M'),
 SEM_RULEBASES('OWLPRIME'), null, null, null, null, 'PLUS_RDFT=VC', null,
null, 'RDFUSER', 'NET1')) Q,
 RDFUSER.NET1#RDF_VALUE$ V, RDFUSER.NET1#SEMC_M_IDX C
 WHERE V.VALUE_ID = C.VALUE_ID
 AND C.CLIQUE_ID = Q.A$RDFVID
 UNION ALL
 SELECT A A_VAL FROM TABLE (
 SEM_MATCH ('SELECT ?A WHERE {?A :hasAge "32"}',SEM_MODELS('M'),
 SEM_RULEBASES('OWLPRIME'), null, null, null, null, 'PLUS_RDFT=VC', null,
null, 'RDFUSER', 'NET1'));

Or, you could rewrite the preceding expanded query using a left outer join, as follows:

SELECT V.VALUE_NAME A_VAL FROM TABLE (
 SEM_MATCH ('(?A <http://hasAge> "33")',SEM_MODELS('M'),
 SEM_RULEBASES('OWLPRIME'), null, null, null, null, 'PLUS_RDFT=VC', null,
null, 'RDFUSER', 'NET1')) Q,
 RDFUSER.NET1#RDF_VALUE$ V,
 (SELECT value_id, clique_id FROM RDFUSER.NET1#SEMC_M_IDX
 UNION ALL
 SELECT DISTINCT clique_id, clique_id
 FROM RDFUSER.NET1#SEMC_M_IDX) C
 WHERE Q.A$RDFVID = c.clique_id (+)
 AND V.VALUE_ID = nvl(C.VALUE_ID, Q.A$RDFVID);

3.2.9 Performing Incremental Inference
Incremental inference can be used to update entailments (rules indexes) efficiently
after triple additions. There are two ways to enable incremental inference for an
entailment:

• Specify the options parameter value INC=T when creating the entailment. For
example:

EXECUTE sem_apis.create_entailment ('M_IDX',sem_models('M'),
 sem_rulebases('OWLPRIME'),null,null, 'INC=T', network_owner=>'RDFUSER',
network_name=>'NET1');

• Use the SEM_APIS.ENABLE_INC_INFERENCE procedure.

If you use this procedure, the entailment must have a VALID status. Before calling
the procedure, if you do not own the models involved in the entailment, you must
ensure that the respective model owners have used the
SEM_APIS.ENABLE_CHANGE_TRACKING procedure to enable change tracking
for those models.

When incremental inference is enabled for an entailment, the parameter INC=T must
be specified when invoking the SEM_APIS.CREATE_ENTAILMENT procedure for that
entailment.

Incremental inference for an entailment depends on triggers for the application tables
of the models involved in creating the entailment. This means that incremental
inference works only when triples are inserted in the application tables underlying the
entailment using conventional path loads, unless you specify the triples by using the
delta_in parameter in the call to the SEM_APIS.CREATE_ENTAILMENT procedure,

Chapter 3
Using OWL Inferencing

3-14

as in the following example, in which the triples from model M_NEW will be added to model M,
and entailment M_IDX will be updated with the new inferences:

EXECUTE sem_apis.create_entailment('M_IDX', sem_models('M'),
 sem_rulebases('OWLPRIME''), SEM_APIS.REACH_CLOSURE, null, null,
 sem_models('M_NEW'), network_owner=>'RDFUSER', network_name=>'NET1');

If multiple models are involved in the incremental inference call, then to specify the
destination model to which the delta_in model or models are to be added, specify
DEST_MODEL=<model_name> in the options parameter. For example, the following causes the
semantic data in model M_NEW to be added to model M2:

EXECUTE sem_apis.create_entailment('M_IDX', sem_models('M1','M2','M3'),
sem_rulebases('OWLPRIME''), SEM_APIS.REACH_CLOSURE, null, 'DEST_MODEL=M2',
sem_models('M_NEW')), network_owner=>'RDFUSER', network_name=>'NET1');

Another way to bypass the conventional path loading requirement when using incremental
inference is to set the UNDO_RETENTION parameter to cover the intervals between
entailments when you perform bulk loading. For example, if the last entailment was created 6
hours ago, the UNDO_RETENTION value should be set to greater than 6 hours; if it is less
than that, then (given a heavy workload and limited undo space) it is not guaranteed that all
relevant undo information will be preserved for incremental inference to apply. In such cases,
the SEM_APIS.CREATE_ENTAILMENT procedure falls back to regular (non-incremental)
inference.

To check if change tracking is enabled on a model, use the
SEM_APIS.GET_CHANGE_TRACKING_INFO procedure. To get additional information
about incremental inference for an entailment, use the SEM_APIS.GET_INC_INF_INFO
procedure.

The following restrictions apply to incremental inference:

• It does not work with optimized owl:sameAs handling (OPT_SAMEAS), user-defined rules,
VPD-enabled models, or version-enabled models.

• It supports only the addition of triples. With updates or deletions, the entailment will be
completely rebuilt.

• It depends on triggers on application tables.

• Column types (RAW8 or NUMBER) used in incremental inference must be consistent.
For instance, if RAW8=T is used to build the entailment initially, then for every subsequent
SEM_APIS.CREATE_ENTAILMENT call the same option must be used. To change the
column type to NUMBER, you must drop and rebuild the entailment.

3.2.10 Using Parallel Inference
Parallel inference can improve inference performance by taking advantage of the capabilities
of a multi-core or multi-CPU architectures. To use parallel inference, specify the DOP (degree
of parallelism) keyword and an appropriate value when using the
SEM_APIS.CREATE_ENTAILMENT procedure. For example:

EXECUTE sem_apis.create_entailment('M_IDX',sem_models('M'),
 sem_rulebases('OWLPRIME'), sem_apis.REACH_CLOSURE, null, 'DOP=4',
 network_owner=>'RDFUSER', network_name=>'NET1');

Specifying the DOP keyword causes parallel execution to be enabled for an Oracle-chosen
set of inference components

Chapter 3
Using OWL Inferencing

3-15

The success of parallel inference depends heavily on a good hardware configuration
of the system on which the database is running. The key is to have a "balanced"
system that implements the best practices for database performance tuning and
Oracle SQL parallel execution. For example, do not use a single 1 TB disk for an 800
GB database, because executing SQL statements in parallel on a single physical disk
can even be slower than executing SQL statements in serial mode. Parallel inference
requires ample memory; for each CPU core, you should have at least 4 GB of memory.

Parallel inference is best suited for large ontologies; however, inference performance
can also improve for small ontologies.

There is some transient storage overhead associated with using parallel inference.
Parallel inference builds a source table that includes all triples based on all the source
RDF/OWL models and existing inferred graph. This table might use an additional 10 to
30 percent of storage compared to the space required for storing data and index of the
source models.

3.2.11 Using Named Graph Based Inferencing (Global and Local)
The default inferencing in Oracle Database takes all asserted triples from all the
source model or models provided and applies semantic rules on top of all the asserted
triples until an inference closure is reached. Even if the given source models contain
one or more multiple named graphs, it makes no difference because all assertions,
whether part of a named graph or not, are treated the same as if they come from a
single graph. (For an introduction to named graph support in RDF Semantic Graph,
see Named Graphs.)

This default inferencing can be thought of as completely "global" in that it does not
consider named graphs at all.

However, if you use named graphs, you can override the default inferencing and have
named graphs be considered by using either of the following features:

• Named graph based global inference (NGGI), which treats all specified named
graphs as a unified graph. NGGI lets you narrow the scope of triples to be
considered, while enabling great flexibility; it is explained in Named Graph Based
Global Inference (NGGI).

• Named graph based local inference (NGLI), which treats each specified named
graph as a separate entity. NGLI is explained in Named Graph Based Local
Inference (NGLI).

For using NGGI and NGLI together, see a recommended usage flow in Using NGGI
and NGLI Together.

You specify NGGI or NGLI through certain parameters and options to the
SEM_APIS.CREATE_ENTAILMENT procedure when you create an entailment (rules
index).

• Named Graph Based Global Inference (NGGI)

• Named Graph Based Local Inference (NGLI)

• Using NGGI and NGLI Together

3.2.11.1 Named Graph Based Global Inference (NGGI)
Named graph based global inference (NGGI) enables you to narrow the scope of
triples used for inferencing at the named graph level (as opposed to the model level). It

Chapter 3
Using OWL Inferencing

3-16

also enables great flexibility in selecting the scope; for example, you can include triples from
zero or more named graphs and/or from the default graph, and you can include all triples with
a null graph name from specified models.

For example, in a hospital application you may only want to apply the inference rules on all
the information contained in a set of named graphs describing patients of a particular
hospital. If the patient-related named graphs contains only instance-related assertions
(ABox), you can specify one or multiple additional schema related-models (TBox), as in
Example 3-6.

Example 3-6 Named Graph Based Global Inference

EXECUTE sem_apis.create_entailment(
 'patients_inf',
 models_in => sem_models('patients','hospital_ontology'),
 rulebases_in => sem_rulebases('owl2rl'),
 passes => SEM_APIS.REACH_CLOSURE,
 inf_components_in => null,
 options => 'DOP=4,RAW8=T',
 include_default_g => sem_models('hospital_ontology'),
 include_named_g =>
sem_graphs('<urn:hospital1_patient1>','<urn:hospital1_patient2>'),
 inf_ng_name => '<urn:inf_graph_for_hospital1>',
 network_owner =>'RDFUSER',
 network_name =>'NET1'
);

In Example 3-6:

• Two models are involved: patients contains a set of named graphs where each named
graph holds triples relevant to a particular patient, and hospital_ontology contains
schema information describing concepts and relationships that are defined for hospitals.
These two models together are the source models, and they set up an overall scope for
the inference.

• The include_default_g parameter causes all triples with a NULL graph name in the
specified models to participate in NGGI. In this example, all triples with a NULL graph
name in model hospital_ontology will be included in NGGI.

• The include_named_g parameter causes all triples from the specified named graphs
(across all source models) to participate in NGGI. In this example, triples from named
graphs <urn:hospital1_patient1> and <urn:hospital1_patient2> will be included in
NGGI.

• The inf_ng_name parameter assigns graph name <urn:inf_graph_for_hospital1> to all
the new triples inferred by NGGI.

3.2.11.2 Named Graph Based Local Inference (NGLI)
Named graph based local inference (NGLI) treats each named graph as a separate entity
instead of viewing the graphs as a single unified graph. Inference logic is performed within
the boundary of each entity. You can specify schema-related assertions (TBox) in a default
graph, and that default graph will participate the inference of each named graph. For
example, inferred triples based on a graph with name G1 will be assigned the same graph
name G1 in the inferred data partition.

Assertions from any two separate named graphs will never jointly produce any new
assertions.

Chapter 3
Using OWL Inferencing

3-17

For example, assume the following:

• Graph G1 includes the following assertion:

:John :hasBirthMother :Mary .
• Graph G2 includes the following assertion:

:John :hasBirthMother :Bella .
• The default graph includes the assertion that :hasBirthMother is an

owl:FunctionalProperty. (This assertion has a null graph name.)

In this example, named graph based local inference (NGLI) will not infer that :Mary is
owl:sameAs :Bella because the two assertions are from two distinct graphs, G1 and
G2. By contrast, a named graph based global inference (NGGI) that includes G1, G2,
and the functional property definition would be able to infer that :Mary is
owl:sameAs :Bella.

NGLI currently does not work together with proof generation, user-defined rules,
optimized owl:sameAs handling, or incremental inference.

Example 3-7 Named Graph Based Local Inference

Example 3-7 shows NGLI.

EXECUTE sem_apis.create_entailment(
 'patients_inf',
 models_in => sem_models('patients','hospital_ontology'),
 rulebases_in => sem_rulebases('owl2rl'),
 passes => SEM_APIS.REACH_CLOSURE,
 inf_components_in => null,
 options => 'LOCAL_NG_INF=T',
 network_owner=>'RDFUSER',
 network_name=>'NET1'
);

In Example 3-7:

• The two models patients and hospital_ontology together are the source models,
and they set up an overall scope for the inference, similar to the case of global
inference in Example 3-6. All triples with a null graph name are treated as part of
the common schema (TBox). Inference is performed within the boundary of every
single named graph combined with the common schema.

• Then options parameter keyword-value pair LOCAL_NG_INF=T specifies that
named graph based local inference (NGLI) is to be performed.

Note that, by design, NGLI does not apply to the default graph itself. However, you can
easily apply named graph based global inference (NGGI) on the default graph and set
the inf_ng_name parameter to null. In this way, the TBox inference is precomputed,
improving the overall performance and storage consumption.

NGLI does not allow the following:

• Inferring new relationships based on a mix of triples from multiple named graphs

• Inferring new relationships using only triples from the default graph.

To get the inference that you would normally expect, you should keep schema
assertions and instance assertions separate. Schema assertions (for example, :A
rdfs:subClassOf :B and :p1 rdfs:subPropertyOf :p2) should be stored in the

Chapter 3
Using OWL Inferencing

3-18

default graph as unnamed triples (with null graph names). By contrast, instance assertions
(for example, :X :friendOf :Y) should be stored in one of the named graphs.

For a discussion and example of using NGLI to perform document-centric inference with
semantically indexed documents, see Performing Document-Centric Inference.

3.2.11.3 Using NGGI and NGLI Together
The following is a recommended usage flow for using NGGI and NGLI together. It assumes
that TBox and ABox are stored in two separate models, that TBox contains schema
definitions and all triples in the TBox have a null graph name, but that ABox consists of a set
of named graphs describing instance-related data.

1. Invoke NGGI on the TBox by itself. For example:

EXECUTE sem_apis.create_entailment(
 'TEST_INF',
 sem_models('abox','tbox'),
 sem_rulebases('owl2rl'),
 SEM_APIS.REACH_CLOSURE,
 include_default_g=>sem_models('tbox'),
 network_owner=>'RDFUSER',
 network_name=>'NET1'
);

2. Invoke NGLI for all named graphs. For example:

EXECUTE sem_apis.create_entailment(
 'TEST_INF',
 sem_models('abox','tbox'),
 sem_rulebases('owl2rl'),
 SEM_APIS.REACH_CLOSURE,
 options => 'LOCAL_NG_INF=T,ENTAIL_ANYWAY=T',
 network_owner=>'RDFUSER',
 network_name=>'NET1'
);

ENTAIL_ANYWAY=T is specified because the NGGI call in step 1will set the status of
inferred graph to VALID, and the SEM_APIS.CREATE_ENTAILMENT procedure call in
step 2 will quit immediately unless ENTAIL_ANYWAY=T is specified.

3.2.12 Performing Selective Inferencing (Advanced Information)
Selective inferencing is component-based inferencing, in which you limit the inferencing to
specific OWL components that you are interested in. To perform selective inferencing, use
the inf_components_in parameter to the SEM_APIS.CREATE_ENTAILMENT procedure to
specify a comma-delimited list of components. The final inferencing is determined by the
union of rulebases specified and the components specified.

Example 3-8 Performing Selective Inferencing

Example 3-8 limits the inferencing to the class hierarchy from subclass (SCOH) relationship
and the property hierarchy from subproperty (SPOH) relationship. This example creates an
empty rulebase and then specifies the two components ('SCOH,SPOH') in the call to the
SEM_APIS.CREATE_ENTAILMENT procedure.

EXECUTE sem_apis.create_rulebase('my_rulebase', network_owner=>'RDFUSER',
network_name=>'NET1');

Chapter 3
Using OWL Inferencing

3-19

EXECUTE sem_apis.create_entailment('owltst_idx', sem_models('owltst'),
sem_rulebases('my_rulebase'), SEM_APIS.REACH_CLOSURE, 'SCOH,SPOH',
network_owner=>'RDFUSER', network_name=>'NET1');

The following component codes are available: SCOH, COMPH, DISJH, SYMMH, INVH, SPIH,
MBRH, SPOH, DOMH, RANH, EQCH, EQPH, FPH, IFPH, DOM, RAN, SCO, DISJ, COMP, INV, SPO, FP,
IFP, SYMM, TRANS, DIF, SAM, CHAIN, HASKEY, ONEOF, INTERSECT, INTERSECTSCOH, MBRLST,
PROPDISJH, SKOSAXIOMS, SNOMED, SVFH, THINGH, THINGSAM, UNION, RDFP1, RDFP2, RDFP3,
RDFP4, RDFP6, RDFP7, RDFP8AX, RDFP8BX, RDFP9, RDFP10, RDFP11, RDFP12A, RDFP12B,
RDFP12C, RDFP13A, RDFP13B, RDFP13C, RDFP14A, RDFP14BX, RDFP15, RDFP16, RDFS2,
RDFS3, RDFS4a, RDFS4b, RDFS5, RDFS6, RDFS7, RDFS8, RDFS9, RDFS10, RDFS11, RDFS12,
RDFS13
The rules corresponding to components with a prefix of RDFP can be found in
Completeness, decidability and complexity of entailment for RDF Schema and a
semantic extension involving the OWL vocabulary, by H.J. Horst.

The syntax for deselecting a component is component_name followed by a minus (-)
sign. For example, the following statement performs OWLPrime inference without
calculating the subClassOf hierarchy:

EXECUTE sem_apis.create_entailment('owltst_idx', sem_models('owltst'),
sem_rulebases('OWLPRIME'), SEM_APIS.REACH_CLOSURE, 'SCOH-',
network_owner=>'RDFUSER', network_name=>'NET1');

By default, the OWLPrime rulebase implements the transitive semantics of
owl:sameAs. OWLPrime does not include the following rules (semantics):

U owl:sameAs V .
U p X . ==> V p X .

U owl:sameAs V .
X p U . ==> X p V .

The reason for not including these rules is that they tend to generate many assertions.
If you need to include these assertions, you can include the SAM component code in
the call to the SEM_APIS.CREATE_ENTAILMENT procedure.

3.3 Using Semantic Operators to Query Relational Data
You can use semantic operators to query relational data in an ontology-assisted
manner, based on the semantic relationship between the data in a table column and
terms in an ontology.

The SEM_RELATED semantic operator retrieves rows based on semantic
relatedness. The SEM_DISTANCE semantic operator returns distance measures for
the semantic relatedness, so that rows returned by the SEM_RELATED operator can
be ordered or restricted using the distance measure. The index type
MDSYS.SEM_INDEXTYPE allows efficient execution of such queries, enabling
scalable performance over large data sets.

Chapter 3
Using Semantic Operators to Query Relational Data

3-20

Note:

SEM_RELATED and SEM_DISTANCE are not supported on schema-private
semantic networks.

• Using the SEM_RELATED Operator

• Using the SEM_DISTANCE Ancillary Operator

• Creating a Semantic Index of Type MDSYS.SEM_INDEXTYPE

• Using SEM_RELATED and SEM_DISTANCE When the Indexed Column Is Not the First
Parameter

• Using URIPREFIX When Values Are Not Stored as URIs

3.3.1 Using the SEM_RELATED Operator
Referring to the ontology example in Example: Disease Ontology, consider the following
query that requires semantic matching: Find all patients whose diagnosis is of the type
'Immune_System_Disorder'. A typical database query of the PATIENTS table (described in
Example: Disease Ontology) involving syntactic match will not return any rows, because no
rows have a DIAGNOSIS column containing the exact value Immune_System_Disorder. For
example the following query will not return any rows:

SELECT diagnosis FROM patients WHERE diagnosis = 'Immune_System_Disorder';

Example 3-9 SEM_RELATED Operator

However, many rows in the patient data table are relevant, because their diagnoses fall under
this class. Example 3-9 uses the SEM_RELATED operator (instead of lexical equality) to
retrieve all the relevant rows from the patient data table. (In this example, the term
Immune_System_Disorder is prefixed with a namespace, and the default assumption is that
the values in the table column also have a namespace prefix. However, that might not always
be the case, as explained in Using URIPREFIX When Values Are Not Stored as URIs.)

SELECT diagnosis FROM patients
 WHERE SEM_RELATED (diagnosis,
 '<http://www.w3.org/2000/01/rdf-schema#subClassOf>',
 '<http://www.example.org/medical_terms/Immune_System_Disorder>',
 sem_models('medical_ontology'), sem_rulebases('owlprime')) = 1;

The SEM_RELATED operator has the following attributes:

SEM_RELATED(
 sub VARCHAR2,
 predExpr VARCHAR2,
 obj VARCHAR2,
 ontologyName SEM_MODELS,
 ruleBases SEM_RULEBASES,
 index_status VARCHAR2,
 lower_bound INTEGER,
 upper_bound INTEGER
) RETURN INTEGER;

The sub attribute is the name of table column that is being searched. The terms in the table
column are typically the subject in a <subject, predicate, object> triple pattern.

Chapter 3
Using Semantic Operators to Query Relational Data

3-21

The predExpr attribute represents the predicate that can appear as a label of the edge
on the path from the subject node to the object node.

The obj attribute represents the term in the ontology for which related terms (related
by the predExpr attribute) have to be found in the table (in the column specified by the
sub attribute). This term is typically the object in a <subject, predicate, object> triple
pattern. (In a query with the equality operator, this would be the query term.)

The ontologyName attribute is the name of the ontology that contains the relationships
between terms.

The rulebases attribute identifies one or more rulebases whose rules have been
applied to the ontology to infer new relationships. The query will be answered based
both on relationships from the ontology and the inferred new relationships when this
attribute is specified.

The index_status optional attribute lets you query the data even when the relevant
entailment (created when the specified rulebase was applied to the ontology) does not
have a valid status. If this attribute is null, the query returns an error if the entailment
does not have a valid status. If this attribute is not null, it must be the string VALID,
INCOMPLETE, or INVALID, to specify the minimum status of the entailment for the query
to succeed. Because OWL does not guarantee monotonicity, the value INCOMPLETE
should not be used when an OWL Rulebase is specified.

The lower_bound and upper_bound optional attributes let you specify a bound on the
distance measure of the relationship between terms that are related. See Using the
SEM_DISTANCE Ancillary Operator for the description of the distance measure.

The SEM_RELATED operator returns 1 if the two input terms are related with respect
to the specified predExpr relationship within the ontology, and it returns 0 if the two
input terms are not related. If the lower and upper bounds are specified, it returns 1 if
the two input terms are related with a distance measure that is greater than or equal to
lower_bound and less than or equal to upper_bound.

3.3.2 Using the SEM_DISTANCE Ancillary Operator
The SEM_DISTANCE ancillary operator computes the distance measure for the rows
filtered using the SEM_RELATED operator. The SEM_DISTANCE operator has the
following format:

SEM_DISTANCE (number) RETURN NUMBER;

The number attribute can be any number, as long as it matches the number that is the
last attribute specified in the call to the SEM_RELATED operator (see Example 3-10).
The number is used to match the invocation of the ancillary operator SEM_DISTANCE
with a specific SEM_RELATED (primary operator) invocation, because a query can
have multiple invocations of primary and ancillary operators.

Example 3-10 SEM_DISTANCE Ancillary Operator

Example 3-10 expands Example 3-9 to show several statements that include the
SEM_DISTANCE ancillary operator, which gives a measure of how closely the two
terms (here, a patient's diagnosis and the term Immune_System_Disorder) are related
by measuring the distance between the terms. Using the ontology described in
Example: Disease Ontology, the distance between AIDS and Immune_System_Disorder
is 3.

Chapter 3
Using Semantic Operators to Query Relational Data

3-22

SELECT diagnosis, SEM_DISTANCE(123) FROM patients
 WHERE SEM_RELATED (diagnosis,
 '<http://www.w3.org/2000/01/rdf-schema#subClassOf>',
 '<http://www.example.org/medical_terms/Immune_System_Disorder>',
 sem_models('medical_ontology'), sem_rulebases('owlprime'), 123) = 1;

SELECT diagnosis FROM patients
 WHERE SEM_RELATED (diagnosis,
 '<http://www.w3.org/2000/01/rdf-schema#subClassOf>',
 '<http://www.example.org/medical_terms/Immune_System_Disorder>',
 sem_models('medical_ontology'), sem_rulebases('owlprime'), 123) = 1
 ORDER BY SEM_DISTANCE(123);

SELECT diagnosis, SEM_DISTANCE(123) FROM patients
 WHERE SEM_RELATED (diagnosis,
 '<http://www.w3.org/2000/01/rdf-schema#subClassOf>',
 '<http://www.example.org/medical_terms/Immune_System_Disorder>',
 sem_models('medical_ontology'), sem_rulebases('owlprime'), 123) = 1
 AND SEM_DISTANCE(123) <= 3;

Example 3-11 Using SEM_DISTANCE to Restrict the Number of Rows Returned

Example 3-11 uses distance information to restrict the number of rows returned by the
primary operator. All rows with a term related to the object attribute specified in the
SEM_RELATED invocation, but with a distance of greater than or equal to 2 and less than or
equal to 4, are retrieved.

SELECT diagnosis FROM patients
 WHERE SEM_RELATED (diagnosis,
 '<http://www.w3.org/2000/01/rdf-schema#subClassOf>',
 '<http://www.example.org/medical_terms/Immune_System_Disorder>',
 sem_models('medical_ontology'), sem_rulebases('owlprime'), 2, 4) = 1;

In Example 3-11, the lower and upper bounds are specified using the lower_bound and
upper_bound parameters in the SEM_RELATED operator instead of using the
SEM_DISTANCE operator. The SEM_DISTANCE operator can be also be used for restricting
the rows returned, as shown in the last SELECT statement in Example 3-10.

• Computation of Distance Information

3.3.2.1 Computation of Distance Information
Distances are generated for the following properties during inference (entailment): OWL
properties defined as transitive properties, and RDFS subClassOf and RDFS subPropertyOf
properties. The distance between two terms linked through these properties is computed as
the shortest distance between them in a hierarchical class structure. Distances of two terms
linked through other properties are undefined and therefore set to null.

Each transitive property link in the original model (viewed as a hierarchical class structure)
has a distance of 1, and the distance of an inferred triple is generated according to the
number of links between the two terms. Consider the following hypothetical sample
scenarios:

• If the original graph contains C1 rdfs:subClassOf C2 and C2 rdfs:subClassOf C3, then
C1 rdfs:subClassof of C3 will be derived. In this case:

– C1 rdfs:subClassOf C2: distance = 1, because it exists in the model.

– C2 rdfs:subClassOf C3: distance = 1, because it exists in the model.

Chapter 3
Using Semantic Operators to Query Relational Data

3-23

– C1 rdfs:subClassOf C3: distance = 2, because it is generated during
inference.

• If the original graph contains P1 rdfs:subPropertyOf P2 and P2
rdfs:subPropertyOf P3, then P1 rdfs:subPropertyOf P3 will be derived. In this
case:

– P1 rdfs:subPropertyOf P2: distance = 1, because it exists in the model.

– P2 rdfs:subPropertyOf P3: distance = 1, because it exists in the model.

– P1 rdfs:subPropertyOf P3: distance = 2, because it is generated during
inference.

• If the original graph contains C1 owl:equivalentClass C2 and C2
owl:equivalentClass C3, then C1 owl:equivalentClass C3 will be derived. In
this case:

– C1 owl:equivalentClass C2: distance = 1, because it exists in the model.

– C2 owl:equivalentClass C3: distance = 1, because it exists in the model.

– C1 owl:equivalentClass C3: distance = 2, because it is generated during
inference.

The SEM_RELATED operator works with user-defined rulebases. However, using the
SEM_DISTANCE operator with a user-defined rulebase is not yet supported, and will
raise an error.

3.3.3 Creating a Semantic Index of Type MDSYS.SEM_INDEXTYPE
When using the SEM_RELATED operator, you can create a semantic index of type
MDSYS.SEM_INDEXTYPE on the column that contains the ontology terms. Creating
such an index will result in more efficient execution of the queries. The CREATE
INDEX statement must contain the INDEXTYPE IS MDSYS.SEM_INDEXTYPE clause, to
specify the type of index being created.

Example 3-12 Creating a Semantic Index

Example 3-12 creates a semantic index named DIAGNOSIS_SEM_IDX on the
DIAGNOSIS column of the PATIENTS table using the ontology in Example: Disease
Ontology.

CREATE INDEX diagnosis_sem_idx
 ON patients (diagnosis)
 INDEXTYPE IS MDSYS.SEM_INDEXTYPE;

The column on which the index is built (DIAGNOSIS in Example 3-12) must be the first
parameter to the SEM_RELATED operator, in order for the index to be used. If it not
the first parameter, the index is not used during the execution of the query.

Example 3-13 Creating a Semantic Index Specifying a Model and Rulebase

To improve the performance of certain semantic queries, you can cause statistical
information to be generated for the semantic index by specifying one or more models
and rulebases when you create the index. Example 3-13 creates an index that will also
generate statistics information for the specified model and rulebase. The index can be
used with other models and rulebases during query, but the statistical information will
be used only if the model and rulebase specified during the creation of the index are
the same model and rulebase specified in the query.

Chapter 3
Using Semantic Operators to Query Relational Data

3-24

CREATE INDEX diagnosis_sem_idx
 ON patients (diagnosis)
 INDEXTYPE IS MDSYS.SEM_INDEXTYPE('ONTOLOGY_MODEL(medical_ontology),
 RULEBASE(OWLPrime)');

Example 3-14 Query Benefitting from Generation of Statistical Information

The statistical information is useful for queries that return top-k results sorted by semantic
distance. Example 3-14 shows such a query.

SELECT /*+ FIRST_ROWS */ diagnosis FROM patients
 WHERE SEM_RELATED (diagnosis,
 '<http://www.w3.org/2000/01/rdf-schema#subClassOf>',
 '<http://www.example.org/medical_terms/Immune_System_Disorder>',
 sem_models('medical_ontology'), sem_rulebases('owlprime'), 123) = 1
 ORDER BY SEM_DISTANCE(123);

3.3.4 Using SEM_RELATED and SEM_DISTANCE When the Indexed
Column Is Not the First Parameter

If an index of type MDSYS.SEM_INDEXTYPE has been created on a table column that is the
first parameter to the SEM_RELATED operator, the index will be used. For example, the
following query retrieves all rows that have a value in the DIAGNOSIS column that is a
subclass of (rdfs:subClassOf) Immune_System_Disorder.

SELECT diagnosis FROM patients
 WHERE SEM_RELATED (diagnosis,
 '<http://www.w3.org/2000/01/rdf-schema#subClassOf>',
 '<http://www.example.org/medical_terms/Immune_System_Disorder>',
 sem_models('medical_ontology'), sem_rulebases('owlprime')) = 1;

Assume, however, that this query instead needs to retrieve all rows that have a value in the
DIAGNOSIS column for which Immune_System_Disorder is a subclass. You could rewrite the
query as follows:

SELECT diagnosis FROM patients
 WHERE SEM_RELATED
 ('<http://www.example.org/medical_terms/Immune_System_Disorder>',
 '<http://www.w3.org/2000/01/rdf-schema#subClassOf>',
 diagnosis,
 sem_models('medical_ontology'), sem_rulebases('owlprime')) = 1;

However, in this case a semantic index on the DIAGNOSIS column will not be used, because
it is not the first parameter to the SEM_RELATED operator. To cause the index to be used,
you can change the preceding query to use the inverseOf keyword, as follows:

SELECT diagnosis FROM patients
 WHERE SEM_RELATED (diagnosis,
 'inverseOf(http://www.w3.org/2000/01/rdf-schema#subClassOf)',
 '<http://www.example.org/medical_terms/Immune_System_Disorder>',
 sem_models('medical_ontology'), sem_rulebases('owlprime')) = 1;

This form causes the table column (on which the index is built) to be the first parameter to the
SEM_RELATED operator, and it retrieves all rows that have a value in the DIAGNOSIS
column for which Immune_System_Disorder is a subclass.

Chapter 3
Using Semantic Operators to Query Relational Data

3-25

3.3.5 Using URIPREFIX When Values Are Not Stored as URIs
By default, the semantic operator support assumes that the values stored in the table
are URIs. These URIs can be from different namespaces. However, if the values in the
table do not have URIs, you can use the URIPREFIX keyword to specify a URI when
you create the semantic index. In this case, the specified URI is prefixed to the value
in the table and stored in the index structure. (One implication is that multiple URIs
cannot be used).

Example 3-15 creates a semantic index that uses a URI prefix.

Example 3-15 Specifying a URI Prefix During Semantic Index Creation

CREATE INDEX diagnosis_sem_idx
 ON patients (diagnosis)
 INDEXTYPE IS MDSYS.SEM_INDEXTYPE
 PARAMETERS('URIPREFIX(<http://www.example.org/medical/>)');

The slash (/) character at the end of the URI is important, because the URI is prefixed
to the table value (in the index structure) without any parsing.

Chapter 3
Using Semantic Operators to Query Relational Data

3-26

4
Simple Knowledge Organization System
(SKOS) Support

You can perform inferencing based on a core subset of the Simple Knowledge Organization
System (SKOS) data model, which is especially useful for representing thesauri, classification
schemes, taxonomies, and other types of controlled vocabulary.

SKOS is based on standard semantic web technologies including RDF and OWL, which
makes it easy to define the formal semantics for those knowledge organization systems and
to share the semantics across applications.

Support is provided for most, but not all, of the features of SKOS, the detailed specification of
which is available at http://www.w3.org/TR/skos-reference/.

Around 40 SKOS-specific terms are included in the RDF Semantic Graph support, such as
skos:broader, skos:relatedMatch, and skos:Concept. Over 100 SKOS axiomatic triples
have been added, providing the basic coverage of SKOS semantics. However, support is not
included for the integrity conditions described in the SKOS specification.

To perform SKOS-based inferencing, specify the system-defined SKOSCORE rulebase in the
rulebases_in parameter in the call to the SEM_APIS.CREATE_ENTAILMENT procedure, as
in the following example:

EXECUTE sem_apis.create_entailment('tstidx',sem_models('tst'),
sem_rulebases('skoscore'), network_owner=>'RDFUSER', network_name=>'NET1');

Example 4-1 defines, in Turtle format, a simple electronics scheme and two relevant
concepts, cameras and digital cameras. Its meaning is straightforward and its representation
is in RDF. It can be managed by Oracle Database in the same way as other RDF and OWL
data.

Example 4-1 SKOS Definition of an Electronics Scheme

ex1:electronicsScheme rdf:type skos:ConceptScheme;

ex1:cameras rdf:type skos:Concept;
 skos:prefLabel "cameras"@en;
 skos:inScheme ex1:electronicsScheme.

ex1:digitalCameras rdf:type skos:Concept;
 skos:prefLabel "digital cameras"@en;
 skos:inScheme ex1:electronicsScheme.

ex1:digitalCameras skos:broader ex1:cameras.

• Supported and Unsupported SKOS Semantics
This section describes features of SKOS semantics that are and are not supported by
Oracle Database.

• Performing Inference on SKOS Models
Performing inference on a SKOS model is similar to performing inference on a semantic
model.

4-1

http://www.w3.org/TR/skos-reference/

4.1 Supported and Unsupported SKOS Semantics
This section describes features of SKOS semantics that are and are not supported by
Oracle Database.

• Supported SKOS Semantics

• Unsupported SKOS Semantics

4.1.1 Supported SKOS Semantics
All terms defined in SKOS and SKOS extension for labels are recognized. When the
SKOSCORE rulebase is chosen for inference, the recognized terms include the
following:

skos:altLabel
skos:broader
skos:broaderTransitive
skos:broadMatch
skos:changeNote
skos:closeMatch
skos:Collection
skos:Concept
skos:ConceptScheme
skos:definition
skos:editorialNote
skos:exactMatch
skos:example
skos:hasTopConcept
skos:hiddenLabel
skos:historyNote
skos:inScheme
skos:mappingRelation
skos:member
skos:memberList
skos:narrower
skos:narrowerTransitive
skos:narrowMatch
skos:notation
skos:note
skos:OrderedCollection
skos:prefLabel
skos:related
skos:relatedMatch
skos:scopeNote
skos:semanticRelation
skos:topConceptOf
skosxl:altLabel
skosxl:hiddenLabel
skosxl:Label
skosxl:labelRelation
skosxl:literalForm
skosxl:prefLabel

Most SKOS axioms and definitions are supported including the following: S1-S8, S10-
S11, S15-S26, S28-S31, S33-S36, S38-S45, S47-S50, and S53-S54. (See the SKOS
detailed specification for definitions.)

Chapter 4
Supported and Unsupported SKOS Semantics

4-2

Most SKOS integrity conditions are supported, including S9, S13, S27, S37, and S46.

S52 is partially supported.

S55, S56, and S57 are not supported by default.

• S55, the property chain (skosxl:prefLabel, skosxl:literalForm), is a subproperty of
skos:prefLabel.

• S56, the property chain (skosxl:altLabel, skosxl:literalForm), is a subproperty of
skos:altLabel.

• S57, the property chain (skosxl:hiddenLabel, skosxl:literalForm), is a subproperty
of skos:hiddenLabel.chains.

However, S55, S56, and S57 can be implemented using the OWL 2 subproperty chain
construct. For information about property chain handling, see Property Chain Handling.

4.1.2 Unsupported SKOS Semantics
The following features of SKOS semantics are not supported:

• S12 and S51: The rdfs:range of the relevant predicates is the class of RDF plain literals.
There is no check that the object values of these predicates are indeed plain literals;
however, applications can perform such a check.

• S14: A resource has no more than one value of skos:prefLabel per language tag. This
integrity condition is even beyond OWL FULL semantics, and it is not enforced in the
current release.

• S32: The rdfs:range of skos:member is the union of classes skos:Concept and
skos:Collection. This integrity condition is not enforced.

• S55, S56, and S57 are not supported by default, but they can be implemented using the
OWL 2 subproperty chain construct, as explained in Supported SKOS Semantics.

4.2 Performing Inference on SKOS Models
Performing inference on a SKOS model is similar to performing inference on a semantic
model.

To create an SKOS model, use the same procedure (SEM_APIS.CREATE_SEM_MODEL) as
for creating a semantic model. You can load data into an SKOS model in the same way as for
semantic models.

To infer new relationships for one or more SKOS models, use the
SEM_APIS.CREATE_ENTAILMENT procedure with the system-defined rulebase SKOSCORE.
For example:

EXECUTE sem_apis.create_entailment('tstidx',sem_models('tst'),
sem_rulebases('skoscore')), network_owner=>'RDFUSER', network_name=>'NET1');

The inferred data will include many of the axioms defined in the SKOS detailed specification.
Like other system-defined rulebases, SKOSCORE has no explicit rules; all the semantics
supported are coded into the implementation.

• Validating SKOS Models and Entailments

• Property Chain Handling

Chapter 4
Performing Inference on SKOS Models

4-3

4.2.1 Validating SKOS Models and Entailments
You can use the SEM_APIS.VALIDATE_ENTAILMENT and
SEM_APIS.VALIDATE_MODEL procedures to validate the supported integrity
conditions. The output will include any inconsistencies caused by the supported
integrity conditions, such as OWL 2 propertyDisjointWith and S52.

Example 4-2 validates an SKOS entailment.

Example 4-2 Validating an SKOS Entailment

set serveroutput on
declare
 lva mdsys.rdf_longVarcharArray;
 idx int;
begin
 lva := sem_apis.validate_entailment(sdo_rdf_models('tstskos'),
sem_rulebases('skoscore'), network_owner=>'RDFUSER',network_name=>'NET1');
 if (lva is null) then
 dbms_output.put_line('No conflicts');
 else
 for idx in 1..lva.count loop
 dbms_output.put_line('entry ' || idx || ' ' || lva(idx));
 end loop;
 end if;
end;
 /

4.2.2 Property Chain Handling
The SKOS S55, S56, and S57 semantics are not supported by default. However, you
can add support for them by using the OWL 2 subproperty chain construct.

Example 4-3 inserts the necessary chain definition triples for S55 into an SKOS model.
After the insertion, an invocation of SEM_APIS.CREATE_ENTAILMENT that specifies
the SKOSCORE rulebase will include the semantics defined in S55.

Example 4-3 Property Chain Insertions to Implement S55

INSERT INTO tst VALUES(sdo_rdf_triple_s('tst','<http://www.w3.org/2004/02/skos/
core#prefLabel>', '<http://www.w3.org/2002/07/owl#propertyChainAxiom>', '_:jA1',
'RDFUSER', 'NET1'));
INSERT INTO tst VALUES(sdo_rdf_triple_s('tst','_:jA1', '<http://www.w3.org/
1999/02/22-rdf-syntax-ns#first>', '<http://www.w3.org/2008/05/skos-
xl#prefLabel>', 'RDFUSER', 'NET1'));
INSERT INTO tst VALUES(sdo_rdf_triple_s('tst','_:jA1', '<http://www.w3.org/
1999/02/22-rdf-syntax-ns#rest>', '_:jA2', 'RDFUSER', 'NET1'));
INSERT INTO tst VALUES(sdo_rdf_triple_s('tst','_:jA2', '<http://www.w3.org/
1999/02/22-rdf-syntax-ns#first>', '<http://www.w3.org/2008/05/skos-
xl#literalForm>', 'RDFUSER', 'NET1'));
INSERT INTO tst VALUES(sdo_rdf_triple_s('tst','_:jA2', '<http://www.w3.org/
1999/02/22-rdf-syntax-ns#rest>', '<http://www.w3.org/1999/02/22-rdf-syntax-
ns#nil>', 'RDFUSER', 'NET1'));

Chapter 4
Performing Inference on SKOS Models

4-4

5
Semantic Indexing for Documents

Information extractors locate and extract meaningful information from unstructured
documents. The ability to search for documents based on this extracted information is a
significant improvement over the keyword-based searches supported by the full-text search
engines.

Semantic indexing for documents introduces an index type that can make use of information
extractors and annotators to semantically index documents stored in relational tables.
Documents indexed semantically can be searched using SEM_CONTAINS operator within a
standard SQL query. The search criteria for these documents are expressed using SPARQL
query patterns that operate on the information extracted from the documents, as in the
following example.

SELECT docId
FROM Newsfeed
WHERE SEM_CONTAINS (article,
 ' { ?org rdf:type typ:Organization .
 ?org pred:hasCategory cat:BusinessFinance } ', ..) = 1

The key components that facilitate Semantic Indexing for documents in an Oracle Database
include:

• Extensible information extractor framework, which allows third-party information
extractors to be plugged into the database

• SEM_CONTAINS operator to identify documents of interest, based on their extracted
information, using standard SQL queries

• SEM_CONTAINS_SELECT ancillary operator to return relevant information about the
documents identified using SEM_CONTAINS operator

• SemContext index type to interact with the information extractor and manage the
information extracted from a document set in an index structure and to facilitate
semantically meaningful searches on the documents

The application program interface (API) for managing extractor policies and semantic indexes
created for documents is provided in the SEM_RDFCTX PL/SQL package. SEM_RDFCTX
Package Subprograms provides the reference information about the subprograms in
SEM_RDFCTX package.

• Information Extractors for Semantically Indexing Documents
Information extractors process unstructured documents and extract meaningful
information from them, often using natural-language processing engines with the aid of
ontologies.

• Extractor Policies
An extractor policy is a named dictionary entity that determines the characteristics of a
semantic index that is created using the policy.

• Semantically Indexing Documents
Textual documents stored in a CLOB or VARCHAR2 column of a relational table can be
indexed using the MDSYS.SEMCONTEXT index type, to facilitate semantically
meaningful searches.

5-1

• SEM_CONTAINS and Ancillary Operators
You can use the SEM_CONTAINS operator in a standard SQL statement to
search for documents or document references that are stored in relational tables.

• Searching for Documents Using SPARQL Query Patterns
Documents that are semantically indexed (that is, indexed using the
mdsys.SemContext index type) can be searched using SEM_CONTAINS operator
within a standard SQL query.

• Bindings for SPARQL Variables in Matching Subgraphs in a Document
(SEM_CONTAINS_SELECT Ancillary Operator)
You can use the SEM_CONTAINS_SELECT ancillary operator to return additional
information about each document matched using the SEM_CONTAINS operator.

• Improving the Quality of Document Search Operations
The quality of a document search operation depends on the quality of the
information produced by the extractor used to index the documents. If the
information extracted is incomplete, you may want to add some annotations to a
document.

• Indexing External Documents
You can use semantic indexing on documents that are stored in a file system or on
the network. In such cases, you store the references to external documents in a
table column, and you create a semantic index on the column using an appropriate
extractor policy.

• Configuring the Calais Extractor type
The CALAIS_EXTRACTOR type, which is a subtype of the
RDFCTX_WS_EXTRACTOR type, enables you to access a Web service end point
anywhere on the network, including the one that is publicly accessible
(OpenCalais.com).

• Working with General Architecture for Text Engineering (GATE)
General Architecture for Text Engineering (GATE) is an open source natural
language processor and information extractor.

• Creating a New Extractor Type
You can create a new extractor type by extending the RDFCTX_EXTRACTOR or
RDFCTX_WS_EXTRACTOR extractor type.

• Creating a Local Semantic Index on a Range-Partitioned Table
A local index can be created on a VARCHAR2 or CLOB column of a range-
partitioned table.

• Altering a Semantic Index
You can use the ALTER INDEX statement with a semantic index.

• Passing Extractor-Specific Parameters in CREATE INDEX and ALTER INDEX
The CREATE INDEX and ALTER INDEX statements allow the passing of
parameters needed by extractors.

• Performing Document-Centric Inference
Document-centric inference refers to the ability to infer from each document
individually.

• Metadata Views for Semantic Indexing
This section describes views that contain metadata about semantic indexing

Chapter 5

5-2

• Default Style Sheet for GATE Extractor Output
This section lists the default XML style sheet that the mdsys.gatenlp_extractor
implementation uses to convert the annotation set (encoded in XML) into RDF/XML.

5.1 Information Extractors for Semantically Indexing Documents
Information extractors process unstructured documents and extract meaningful information
from them, often using natural-language processing engines with the aid of ontologies.

The quality and the completeness of information extracted from a document vary from one
extractor to another. Some extractors simply identify the entities (such as names of persons,
organizations, and geographic locations from a document), while the others attempt to
identify the relationships among the identified entities and additional description for those
entities. You can search for a specific document from a large set when the information
extracted from the documents is maintained as a semantic index.

You can use an information extractor to create a semantic index on the documents stored in a
column of a relational table. An extensible framework allows any third-party information
extractor that is accessible from the database to be plugged into the database. An object type
created for an extractor encapsulates the extraction logic, and has methods to configure the
extractor and receive information extracted from a given document in RDF/XML format.

An abstract type MDSYS.RDFCTX_EXTRACTOR defines the common interfaces to all
information extractors. An implementation of this abstract type interacts with a specific
information extractor to produce RDF/XML for a given document. An implementation for this
type can access a third-party information extractor that either is available as a database
application or is installed on the network (accessed using Web service callouts). Example 5-1
shows the definition of the RDFCTX_EXTRACTOR abstract type.

Example 5-1 RDFCTX_EXTRACTOR Abstract Type Definition

create or replace type rdfctx_extractor authid current_user as object (
 extr_type VARCHAR2(32),
 member function getDescription return VARCHAR2,
 member function rdfReturnType return VARCHAR2,
 member function getContext(attribute VARCHAR2) return VARCHAR2,
 member procedure startDriver,
 member function extractRDF(document CLOB,
 docId VARCHAR2) return CLOB,
 member function extractRdf(document CLOB,
 docId VARCHAR2,
 params VARCHAR2,
 options VARCHAR2 default NULL) return CLOB
 member function batchExtractRdf(docCursor SYS_REFCURSOR,
 extracted_info_table VARCHAR2,
 params VARCHAR2,
 partition_name VARCHAR2 default NULL,
 docId VARCHAR2 default NULL,
 preferences SYS.XMLType default NULL,
 options VARCHAR2 default NULL)
 return CLOB,
 member procedure closeDriver
) not instantiable not final
/

A specific implementation of the RDFCTX_EXTRACTOR type sets an identifier for the
extractor type in the extr_type attribute, and it returns a short description for the extractor
type using getDescription method. All implementations of this abstract type return the

Chapter 5
Information Extractors for Semantically Indexing Documents

5-3

extracted information as RDF triples. In the current release, the RDF triples are
expected to be serialized using RDF/XML format, and therefore the rdfReturnType
method should return 'RDF/XML'.

An extractor type implementation uses the extractRDF method to encapsulate the
extraction logic, possibly by invoking external information extractor using proprietary
interfaces, and returns the extracted information in RDF/XML format. When a third-
party extractor uses some proprietary XML Schema to capture the extracted
information, an XML style sheet can be used to generate an equivalent RDF/XML. The
startDriver and closeDriver methods can perform any housekeeping operations
pertaining to the information extractor. The optional params parameter allows the
extractor to obtain additional information about the type of extraction needed (for
example, the desired quality of extraction).

Optionally, an extractor type implementation may support a batch interface by
providing an implementation of the batchExtractRdf member function. This function
accepts a cursor through the input parameter docCursor and typically uses that cursor
to retrieve each document, extract information from the document, and then insert the
extracted information into (the specified partition identified by the partition_name
partition of the extracted_info_table table. The preferences parameter is used to
obtain the preferences value associated with the policy (as described in Indexing
External Documents and in the SEM_RDFCTX.CREATE_POLICY reference section).

The getContext member function accepts an attribute name and returns the value for
that attribute. Currently this function is used only for extractors supporting the batch
interface. The attribute names and corresponding possible return values are the
following:

• For the BATCH_SUPPORT attribute, the return values are 'YES' or 'NO' depending on
whether the extractor supports the batch interface.

• For the DBUSER attribute, the return value is the name of a database user that will
connect to the database to retrieve rows from the cursor (identified by the
docCursor parameter) and that will write to the table extracted_info_table.

This information is used for granting appropriate privileges to the table being indexed
and the table extracted_info_table.

The startDriver and closeDriver methods can perform any housekeeping
operations pertaining to the information extractor.

An extractor type for the General Architecture for Text Engineering (GATE) engine is
defined as a subtype of the RDFCTX_EXTRACTOR type. The implementation of this
extractor type sends the documents to a GATE engine over a TCP connection,
receives annotations extracted by the engine in XML format, and converts this
proprietary XML document to an RDF/XML document. For more information on
configuring a GATE engine to work with Oracle Database, see Working with General
Architecture for Text Engineering (GATE). For an example of creating a new
information extractor, see Creating a New Extractor Type.

Information extractors that are deployed as Web services can be invoked from the
database by extending the RDFCTX_WS_EXTRACTOR type, which is a subtype of
the RDFCTX_EXTRACTOR type. The RDFCTX_WS_EXTRACTOR type
encapsulates the Web service callouts in the extractRDF method; specific
implementations for network-based extractors can reuse this implementation by setting
relevant attribute values in the type constructor.

Chapter 5
Information Extractors for Semantically Indexing Documents

5-4

Thomson Reuters Calais is an example of a network-based information extractor that can be
accessed using web-service callouts. The CALAIS_EXTRACTOR type, which is a subtype of
the RDFCTX_WS_EXTRACTOR type, encapsulates the Calais extraction logic, and it can be
used to semantically index the documents. The CALAIS_EXTRACTOR type must be
configured for the database instance before it can be used to create semantic indexes, as
explained in Configuring the Calais Extractor type.

5.2 Extractor Policies
An extractor policy is a named dictionary entity that determines the characteristics of a
semantic index that is created using the policy.

Each extractor policy refers, directly or indirectly, to an instance of an extractor type. An
extractor policy with a direct reference to an extractor type instance can be used to compose
other extractor policies that include additional RDF models for ontologies.

The following example creates a basic extractor policy created using the GATE extractor
type:

begin
 sem_rdfctx.create_policy (policy_name => 'SEM_EXTR',
 extractor => mdsys.gatenlp_extractor());
end;
/

The following example creates a dependent extractor policy that combines the metadata
extracted by the policy in the preceding example with a user-defined RDF model named
geo_ontology:

begin
 sem_rdfctx.create_policy (policy_name => 'SEM_EXTR_PLUS_GEOONT',
 base_policy => 'SEM_EXTR',
 user_models => SEM_MODELS ('geo_ontology'));
end;
/

You can use an extractor policy to create one or more semantic indexes on columns that
store unstructured documents, as explained in Semantically Indexing Documents.

5.3 Semantically Indexing Documents
Textual documents stored in a CLOB or VARCHAR2 column of a relational table can be
indexed using the MDSYS.SEMCONTEXT index type, to facilitate semantically meaningful
searches.

The extractor policy specified at index creation determines the information extractor used to
semantically index the documents. The extracted information, captured as a set of RDF
triples for each document, is managed in the semantic data store. Each instance of the
semantic index is associated with a system-generated RDF model, which maintains the RDF
triples extracted from the corresponding documents.

The following example creates a semantic index named ArticleIndex on the textual
documents in the ARTICLE column of the NEWSFEED table, using the extractor policy
named SEM_EXTR:

CREATE INDEX ArticleIndex on Newsfeed (article)
 INDEXTYPE IS mdsys.SemContext PARAMETERS ('SEM_EXTR');

Chapter 5
Extractor Policies

5-5

The RDF model created for an index is managed internally and it is not associated
with an application table. The triples stored in such model are automatically
maintained for any modifications (such as update, insert, or delete) made to the
documents stored in the table column. Although a single RDF model is used to index
all documents stored in a table column, the triples stored in the model maintain
references to the documents from which they are extracted; therefore, all the triples
extracted from a specific document form an individual graph within the RDF model.
The documents that are semantically indexed can then be searched using a SPARQL
query pattern that operates on the triples extracted from the documents.

When creating a semantic index for documents, you can use a basic extractor policy
or a dependent policy, which may include one or more user-defined RDF models.
When you create an index with a dependent extractor policy, the document search
pattern specified using SPARQL could span the triples extracted from the documents
as well as those defined in user-defined models.

You can create an index using multiple extractor policies, in which case the triples
extracted by the corresponding extractors are maintained separately in distinct RDF
models. A document search query using one such index can select the specific policy
to be used for answering the query. For example, an extractor policy named CITY_EXTR
can be created to extract the names of the cities from a given document, and this
extractor policy can be used in combination with the SEM_EXTR policy to create a
semantic index, as in the following example:

CREATE INDEX ArticleIndex on Newsfeed (article)
 INDEXTYPE IS mdsys.SemContext PARAMETERS ('SEM_EXTR CITY_EXTR');

The first extractor policy in the PARAMETERS list is considered to be the default policy
if a query does not refer to a specific policy; however, you can change the default
extractor policy for a semantic index by using the
SEM_RDFCTX.SET_DEFAULT_POLICY procedure, as in the following example:

begin
 sem_rdfctx.set_default_policy (index_name => 'ArticleIndex',
 policy_name => 'CITY_EXTR');
end;
/

5.4 SEM_CONTAINS and Ancillary Operators
You can use the SEM_CONTAINS operator in a standard SQL statement to search for
documents or document references that are stored in relational tables.

This operator has the following syntax:

SEM_CONTAINS(
 column VARCHAR2 / CLOB,
 sparql VARCHAR2,
 policy VARCHAR2,
 aliases SEM_ALIASES,
 index_status NUMBER,
 ancoper NUMBER
) RETURN NUMBER;

The column and sparql attributes attribute are required. The other attributes are
optional (that is, each can be a null value).

Chapter 5
SEM_CONTAINS and Ancillary Operators

5-6

The column attribute identifies a VARCHAR2 or CLOB column in a relational table that stores
the documents or references to documents that are semantically indexed. An index of type
MDSYS.SEMCONTEXT must be defined in this column for the SEM_CONTAINS operator to
use.

The sparql attribute is a string literal that defines the document search criteria, expressed in
SPARQL format.

The optional policy attribute specifies the name of an extractor policy, usually to override the
default policy. A semantic document index can have one or more extractor policies specified
at index creation, and one of these policies is the default, which is used if the policy attribute
is null in the call to SEM_CONTAINS.

The optional aliases attribute identifies one or more namespaces, including a default
namespace, to be used for expansion of qualified names in the query pattern. Its data type is
SEM_ALIASES, which has the following definition: TABLE OF SEM_ALIAS, where each
SEM_ALIAS element identifies a namespace ID and namespace value. The SEM_ALIAS
data type has the following definition: (namespace_id VARCHAR2(30), namespace_val
VARCHAR2(4000))
The optional index_status attribute is relevant only when a dependent policy involving one
or more entailments is being used for the SEM_CONTAINS invocation. The index_status
value identifies the minimum required validity status of the entailments. The possible values
are 0 (for VALID, the default), 1 (for INCOMPLETE), and 2 (for INVALID).

The optional ancoper attribute specifies a number as the binding to be used when the
SEM_CONTAINS_SELECT ancillary operator is used with this operator in a query. The
number specified for the ancoper attribute should be the same as number specified for the
operbind attribute in the SEM_CONTAINS_SELECT ancillary operator.

The SEM_CONTAINS operator returns 1 for each document instance matching the specified
search criteria, and returns 0 for all other cases.

For more information about using the SEM_CONTAINS operator, including an example, see
Searching for Documents Using SPARQL Query Patterns.

• SEM_CONTAINS_SELECT Ancillary Operator

• SEM_CONTAINS_COUNT Ancillary Operator

5.4.1 SEM_CONTAINS_SELECT Ancillary Operator
You can use the SEM_CONTAINS_SELECT ancillary operator to return additional
information about each document that matches some search criteria. This ancillary operator
has a single numerical attribute (operbind) that associates an instance of the
SEM_CONTAINS_SELECT ancillary operator with a SEM_CONTAINS operator by using the
same value for the binding. This ancillary operator returns an object of type CLOB that
contains the additional information from the matching document, formatted in SPARQL Query
Results XML format.

The SEM_CONTAINS_SELECT ancillary operator has the following syntax:

SEM_CONTAINS_SELECT(
 operbind NUMBER
) RETURN CLOB;

Chapter 5
SEM_CONTAINS and Ancillary Operators

5-7

For more information about using the SEM_CONTAINS_SELECT ancillary operator,
including examples, see Bindings for SPARQL Variables in Matching Subgraphs in a
Document (SEM_CONTAINS_SELECT Ancillary Operator).

5.4.2 SEM_CONTAINS_COUNT Ancillary Operator
You can use the SEM_CONTAINS_COUNT ancillary operator for a SEM_CONTAINS
operator invocation. For each matched document, it returns the count of matching
subgraphs for the SPARQL graph pattern specified in the SEM_CONTAINS invocation.

The SEM_CONTAINS_COUNT ancillary operator has the following syntax:

SEM_CONTAINS_COUNT(
 operbind NUMBER
) RETURN NUMBER;

The following example excerpt shows the use of the SEM_CONTAINS_COUNT
ancillary operator to return the count of matching subgraphs for each matched
document:

SELECT docId, SEM_CONTAINS_COUNT(1) as matching_subgraph_count
FROM Newsfeed
WHERE SEM_CONTAINS (article,
 '{ ?org rdf:type class:Organization .
 ?org pred:hasCategory cat:BusinessFinance }', ..,
 1)= 1;

5.5 Searching for Documents Using SPARQL Query
Patterns

Documents that are semantically indexed (that is, indexed using the
mdsys.SemContext index type) can be searched using SEM_CONTAINS operator
within a standard SQL query.

In the query, the SEM_CONTAINS operator must have at least two parameters, the
first specifying the column in which the documents are stored and the second
specifying the document search criteria expressed as a SPARQL query pattern, as in
the following example:

SELECT docId FROM Newsfeed
WHERE SEM_CONTAINS (article,
 '{ ?org rdf:type <http://www.example.com/classes/Organization> .
 ?org <http://example.com/pred/hasCategory>
 <http://www.example.com/category/BusinessFinance> }'
)= 1;

The SPARQL query pattern specified with the SEM_CONTAINS operator is matched
against the individual graphs corresponding to each document, and a document is
considered to match a search criterion if the triples from the corresponding graph
satisfy the query pattern. In the preceding example, the SPARQL query pattern
identifies the individual graphs (thus, the documents) that refer to an Organization
that belong to BusinessFinance category. The SQL query returns the rows
corresponding to the matching documents in its result set. The preceding example
assumes that the URIs used in the query are generated by the underlying extractor,
and that you (the user searching for documents) are aware of the properties and terms
that are generated by the extractor in use.

Chapter 5
Searching for Documents Using SPARQL Query Patterns

5-8

When you create an index using a dependent extractor policy that includes one or more user-
defined RDF models, the triples asserted in the user models are considered to be common to
all the documents. Document searches involving such policies test the search criteria against
the triples in individual graphs corresponding to the documents, combined with the triples in
the user models. For example, the following query identifies all articles referring to
organizations in the state of New Hampshire, using the geographical ontology (geo_ontology
RDF Model from a preceding example) that maps cities to states:

SELECT docId FROM Newsfeed
WHERE SEM_CONTAINS (article,
 '{ ?org rdf:type class:Organization .
 ?org pred:hasLocation ?city .
 ?city geo:hasState state:NewHampshire }',
 'SEM_EXTR_PLUS_GEOONT',
 sem_aliases(
 sem_alias('class', 'http://www.myorg.com/classes/'),
 sem_alias('pred', 'http://www.myorg.com/pred/'),
 sem_alias('geo', 'http://geoont.org/rel/'),
 sem_alias('state', 'http://geoont.org/state/'))) = 1;

The preceding query, with a reference to the extractor policy SEM_EXTR_PLUS_GEOONT
(created in an example in Extractor Policies), combines the triples extracted from the indexed
documents and the triples in the user model to find matching documents. In this example, the
name of the extractor policy is optional if the corresponding index is created with just this
policy or if this is the default extractor policy for the index. When the query pattern uses some
qualified names, an optional parameter to the SEM_CONTAINS operator can specify the
namespaces to be used for expanding the qualified names.

SPARQL-based document searches can make use of the SPARQL syntax that is supported
through SEM_MATCH queries.

5.6 Bindings for SPARQL Variables in Matching Subgraphs in a
Document (SEM_CONTAINS_SELECT Ancillary Operator)

You can use the SEM_CONTAINS_SELECT ancillary operator to return additional
information about each document matched using the SEM_CONTAINS operator.

Specifically, the bindings for the variables used in SPARQL-based document search criteria
can be returned using this operator. This operator is ancillary to the SEM_CONTAINS
operator, and a literal number is used as an argument to this operator to associate it with a
specific instance of SEM_CONTAINS operator, as in the following example:

SELECT docId, SEM_CONTAINS_SELECT(1) as result
FROM Newsfeed
WHERE SEM_CONTAINS (article,
 '{ ?org rdf:type class:Organization .
 ?org pred:hasCategory cat:BusinessFinance }', ..,
 1)= 1;

The SEM_CONTAINS_SELECT ancillary operator returns the bindings for the variables in
SPARQL Query Results XML format, as CLOB data. The variables may be bound to multiple
data instances from a single document, in which case all bindings for the variables are
returned. The following example is an excerpt from the output of the preceding query: a value
returned by the SEM_CONTAINS_SELECT ancillary operator for a document matching the
specified search criteria.

Chapter 5
Bindings for SPARQL Variables in Matching Subgraphs in a Document (SEM_CONTAINS_SELECT Ancillary Operator)

5-9

<results>
 <result>
 <binding name="ORG">
 <uri>http://newscorp.com/Org/AcmeCorp</uri>
 </binding>
 </result>
 <result>
 <binding name="ORG">
 <uri>http://newscorp.com/Org/ABCCorp</uri>
 </binding>
 </result>
</results>

You can rank the search results by creating an instance of XMLType for the CLOB
value returned by the SEM_CONTAINS_SELECT ancillary operator and applying an
XPath expression to sort the results on some attribute values.

By default, the SEM_CONTAINS_SELECT ancillary operator returns bindings for all
variables used in the SPARQL-based document search criteria. However, when the
values for only a subset of the variables are relevant for a search, the SPARQL pattern
can include a SELECT clause with space-separated list of variables for which the
values should be returned, as in the following example:

SELECT docId, SEM_CONTAINS_SELECT(1) as result
FROM Newsfeed
WHERE SEM_CONTAINS (article,
 'SELECT ?org ?city
 WHERE { ?org rdf:type class:Organization .
 ?org pred:hasLocation ?city .
 ?city geo:hasState state:NewHampshire }', ..,
 1) = 1;

5.7 Improving the Quality of Document Search Operations
The quality of a document search operation depends on the quality of the information
produced by the extractor used to index the documents. If the information extracted is
incomplete, you may want to add some annotations to a document.

You can use the SEM_RDFCTX.MAINTAIN_TRIPLES procedure to add annotations,
in the form of RDF triples, to specific documents in order to improve the quality of
search, as shown in the following example:

begin
 sem_rdfctx.maintain_triples(
 index_name => 'ArticleIndex',
 where_clause => 'docid in (1,15,20)',
 rdfxml_content => sys.xmltype(
 '<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:pred="http://example.com/pred/">
 <rdf:Description rdf:about=" http://newscorp.com/Org/ExampleCorp">
 <pred:hasShortName
 rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
 Example
 </pred:hasShortName>
 </rdf:Description>
 </rdf:RDF>'));
end;
/

Chapter 5
Improving the Quality of Document Search Operations

5-10

The index name and the WHERE clause specified in the preceding example identify specific
instances of the document to be annotated, and the RDF/XML content passed in is used to
add additional triples to the individual graphs corresponding to those documents. This allows
domain experts and user communities to improve the quality of search by adding relevant
triples to annotate some documents.

5.8 Indexing External Documents
You can use semantic indexing on documents that are stored in a file system or on the
network. In such cases, you store the references to external documents in a table column,
and you create a semantic index on the column using an appropriate extractor policy.

To index external documents, define an extractor policy with appropriate preferences, using
an XML document that is assigned to the preferences parameter of the
SEM_RDFCTX.CREATE_POLICY procedure, as in the following example:

begin
 sem_rdfctx.create_policy (
 policy_name => 'SEM_EXTR_FROM_FILE',
 extractor => mdsys.gatenlp_extractor()),
 preferences => sys.xmltype('<RDFCTXPreferences>
 <Datastore type="FILE">
 <Path>EXTFILES_DIR</Path>
 </Datastore>
 </RDFCTXPreferences>'));
end;
/

The <Datastore> element in the preferences document specifies the type of repository used
for the documents to be indexed. When the value for the type attribute is set to FILE, the
<Path> element identifies a directory object in the database (created using the SQL statement
CREATE DIRECTORY). A table column indexed using the specified extractor policy is
expected to contain relative paths to individual files within the directory object, as shown in
the following example:

CREATE TABLE newsfeed (docid number,
 articleLoc VARCHAR2(100));
INSERT INTO into newsfeed (docid, articleLoc) values
 (1, 'article1.txt');
INSERT INTO newsfeed (docid, articleLoc) values
 (2, 'folder/article2.txt');

CREATE INDEX ArticleIndex on newsfeed (articleLoc)
 INDEXTYPE IS mdsys.SemContext PARAMETERS ('SEM_EXTR_FROM_FILE');

To index documents that are accessed using HTTP protocol, create a extractor policy with
preferences that set the type attribute of the <Datastore> element to URL and that list one or
more hosts in the <Path> elements, as shown in the following excerpt:

<RDFCTXPreferences>
 <Datastore type="URL">
 <Path>http://cnn.com</Path>
 <Path>http://abc.com</Path>
 </Datastore>
</RDFCTXPreferences>

Chapter 5
Indexing External Documents

5-11

The schema in which a semantic index for external documents is created must have
the necessary privileges to access the external objects, including access to any proxy
server used to access documents outside the firewall, as shown in the following
example:

-- Grant read access to the directory object for FILE data store --
grant read on directory EXTFILES_DIR to SEMUSR;

-- Grant connect access to set of hosts for URL data store --
begin
 dbms_network_acl_admin.create_acl (
 acl => 'network_docs.xml',
 description => 'Normal Access',
 principal => 'SEMUSR',
 is_grant => TRUE,
 privilege => 'connect');
end;
/

begin
 dbms_network_acl_admin.assign_acl (
 acl => 'network_docs.xml',
 host => 'cnn.com',
 lower_port => 1,
 upper_port => 10000);
end;
/

External documents that are semantically indexed in the database may be in one of
the well-known formats such as Microsoft Word, RTF, and PDF. This takes advantage
of the Oracle Text capability to extract plain text version from formatted documents
using filters (see the CTX_DOC.POLICY_FILTER procedure, described in Oracle Text
Reference). To semantically index formatted documents, you must specify the name of
a CTX policy in the extractor preferences, as shown in the following excerpt:

<RDFCTXPreferences>
 <Datastore type="FILE" filter="CTX_FILTER_POLICY">
 <Path>EXTFILES_DIR</Path>
 </Datastore>
</RDFCTXPreferences>

In the preceding example, the CTX_FILTER_POLICY policy, created using the
CTX_DDL.CREATE_POLICY procedure, must exist in your schema. The table
columns that are semantically indexed using this preferences document can store
paths to formatted documents, from which plain text is extracted using the specified
CTX policy. The information extractor associated with the extractor policy then
processes the plain text further, to extract the semantics in RDF/XML format.

5.9 Configuring the Calais Extractor type
The CALAIS_EXTRACTOR type, which is a subtype of the
RDFCTX_WS_EXTRACTOR type, enables you to access a Web service end point
anywhere on the network, including the one that is publicly accessible
(OpenCalais.com).

To do so, you must connect as SYSTEM (not SYS … AS SYSDBA) or another non-
SYS user with the DBA role, and configure the Calais extractor type with Web service

Chapter 5
Configuring the Calais Extractor type

5-12

end point, the SOAP action, and the license key by setting corresponding parameters, as
shown in the following example:

begin
 sem_rdfctx.set_extractor_param (
 param_key => 'CALAIS_WS_ENDPOINT',
 param_value => 'http://api1.opencalais.com/enlighten/calais.asmx',
 param_desc => 'Calais web service end-point');

 sem_rdfctx.set_extractor_param (
 param_key => 'CALAIS_KEY',
 param_value => '<Calais license key goes here>',
 param_desc => 'Calais extractor license key');

 sem_rdfctx.set_extractor_param (
 param_key => 'CALAIS_WS_SOAPACTION',
 param_value => 'http://clearforest.com/Enlighten',
 param_desc => 'Calais web service SOAP Action');
end;

To enable access to a Web service outside the firewall, you must also set the parameter for
the proxy host, as in the following example:

begin
 sem_rdfctx.set_extractor_param (
 param_key => 'HTTP_PROXY',
 param_value => 'www-proxy.example.com',
 param_desc => 'Proxy server');
end;

5.10 Working with General Architecture for Text Engineering
(GATE)

General Architecture for Text Engineering (GATE) is an open source natural language
processor and information extractor.

For details about GATE, see http://gate.ac.uk.

You can use GATE to perform semantic indexing of documents stored in the database. The
extractor type mdsys.gatenlp_extractor is defined as a subtype of the
RDFCTX_EXTRACTOR type. The implementation of this extractor type sends an
unstructured document to a GATE engine over a TCP connection, receives corresponding
annotations, and converts them into RDF following a user-specified XML style sheet.

The requests for information extraction are handled by a server socket implementation, which
instantiates the GATE components and listens to extraction requests at a pre-determined
port. The host and the post for the GATE listener are recorded in the database, as shown in
the following example, for all instances of the mdsys.gatenlp_extractor type to use.

begin
 sem_rdfctx.set_extractor_param (
 param_key => 'GATE_NLP_HOST',
 param_value => 'gateserver.example.com',
 param_desc => 'Host for GATE NLP Listener ');

 sem_rdfctx.set_extractor_param (
 param_key => 'GATE_NLP_PORT',
 param_value => '7687',

Chapter 5
Working with General Architecture for Text Engineering (GATE)

5-13

http://gate.ac.uk

 param_desc => 'Port for Gate NLP Listener');
end;

The server socket application receives an unstructured document and constructs an
annotation set with the desired types of annotations. Each annotation in the set may
be customized to include additional features, such as the relevant phrase from the
input document and some domain specific features. The resulting annotation set is
serialized into XML (using the annotationSetToXml method in the
gate.corpora.DocumentXmlUtils Java package) and returned back to the socket
client.

A sample Java implementation for the GATE listener is available for download from the
code samples and examples page on OTN (see Semantic Data Examples (PL/SQL
and Java) for information about this page).

The mdsys.gatenlp_extractor implementation in the database receives the
annotation set encoded in XML, and converts it to RDF/XML using an XML style sheet.
You can replace the default style sheet (listed in Default Style Sheet for GATE
Extractor Output) used by the mdsys.gatenlp_extractor implementation with a
custom style sheet when you instantiate the type.

The following example creates an extractor policy that uses a custom style sheet to
generate RDF from the annotation set produced by the GATE extractor:

begin
 sem_rdfctx.create_policy (policy_name => 'GATE_EXTR',
 extractor => mdsys.gatenlp_extractor(
 sys.XMLType('<?xml version="1.0"?>
 <xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform" >
 ..
 </xsl:stylesheet>')));
end;
/

5.11 Creating a New Extractor Type
You can create a new extractor type by extending the RDFCTX_EXTRACTOR or
RDFCTX_WS_EXTRACTOR extractor type.

The extractor type to be extended must be accessible using Web service calls. The
schema in which the new extractor type is created must be granted additional
privileges to allow creation of the subtype. For example, if a new extractor type is
created in the schema RDFCTXU, you must enter the following commands to grant
the UNDER and RDFCTX_ADMIN privileges to that schema:

GRANT under ON mdsys.rdfctx_extractor TO rdfctxu;
GRANT rdfctx_admin TO rdfctxu;

As an example, assume that an information extractor can process an incoming
document and return an XML document that contains extracted information. To enable
the information extractor to be invoked using a PL/SQL wrapper, you can create the
corresponding extractor type implementation, as in the following example:

create or replace type rdfctxu.info_extractor under rdfctx_extractor (
 xsl_trans sys.XMLtype,
 constructor function info_extractor (
 xsl_trans sys.XMLType) return self as result,

Chapter 5
Creating a New Extractor Type

5-14

 overriding member function getDescription return VARCHAR2,
 overriding member function rdfReturnType return VARCHAR2,
 overriding member function extractRDF(document CLOB,
 docId VARCHAR2) return CLOB
)
/

create or replace type body rdfctxu.info_extractor as
 constructor function info_extractor (
 xsl_trans sys.XMLType) return self as result is
 begin
 self.extr_type := 'Info Extractor Inc.';
 -- XML style sheet to generate RDF/XML from proprietary XML documents
 self.xsl_trans := xsl_trans;
 return;
 end info_extractor;

 overriding member function getDescription return VARCHAR2 is
 begin
 return 'Extactor by Info Extractor Inc.';
 end getDescription;

 overriding member function rdfReturnType return VARCHAR2 is
 begin
 return 'RDF/XML';
 end rdfReturnType;

 overriding member function extractRDF(document CLOB,
 docId VARCHAR2) return CLOB is
 ce_xmlt sys.xmltype;
 begin
 EXECUTE IMMEDIATE
 'begin :1 = info_extract_xml(doc => :2); end;'
 USING IN OUT ce_xmlt, IN document;

 -- Now pass the ce_xmlt through RDF/XML transformation --
 return ce_xmlt.transform(self.xsl_trans).getClobVal();
 end extractRdf;

end;

In the preceding example:

• The implementation for the created info_extractor extractor type relies on the XML
style sheet, set in the constructor, to generate RDF/XML from the proprietary XML
schema used by the underlying information extractor.

• The extractRDF function assumes that the info_extract_xml function contacts the
desired information extractor and returns an XML document with the information
extracted from the document that was passed in.

• The XML style sheet is applied on the XML document to generate equivalent RDF/XML,
which is returned by the extractRDF function.

5.12 Creating a Local Semantic Index on a Range-Partitioned
Table

A local index can be created on a VARCHAR2 or CLOB column of a range-partitioned table.

Chapter 5
Creating a Local Semantic Index on a Range-Partitioned Table

5-15

To do so, use the following syntax:

CREATE INDEX <index-name> … LOCAL;

The following example creates a range-partitioned table and a local semantic index on
that table:

CREATE TABLE part_newsfeed (
 docid number, article CLOB, cdate DATE)
partition by range (cdate)
(partition p1 values less than (to_date('01-Jan-2001')),
 partition p2 values less than (to_date('01-Jan-2004')),
 partition p3 values less than (to_date('01-Jan-2008')),
 partition p4 values less than (to_date('01-Jan-2012'))
);

CREATE INDEX ArticleLocalIndex on part_newsfeed (article)
 INDEXTYPE IS mdsys.SemContext PARAMETERS ('SEM_EXTR')
LOCAL;

Note that every partition of the local semantic index will have content generated for the
same set of policies. When you use the ALTER INDEX statement on a local index to
add or drop policies associated with a semantic index partition, you should try to keep
the same set of policies associated with each partition. You can achieve this result by
using ALTER INDEX statements in a loop over the set of partitions. (For more
information about altering semantic indexes, see Altering a Semantic Index,)

5.13 Altering a Semantic Index
You can use the ALTER INDEX statement with a semantic index.

For a local semantic index, the ALTER INDEX statement applies to a specified
partition. The general syntax of the ALTER INDEX command for a semantic index is as
follows:

ALTER INDEX <index-name> REBUILD [PARTITION <index-partition-name>]
 [PARAMETERS ('-<action_for_policy> <policy-name>')];

• Rebuilding Content for All Existing Policies in a Semantic Index

• Rebuilding to Add Content for a New Policy to a Semantic Index

• Rebuilding Content for an Existing Policy from a Semantic Index

• Rebuilding to Drop Content for an Existing Policy from a Semantic Index

5.13.1 Rebuilding Content for All Existing Policies in a Semantic Index
If the PARAMETERS clause is not included in the ALTER INDEX statement, the
content of the semantic index (or index partition) is rebuilt for every policy presently
associated with the index. The following are two examples:

ALTER INDEX ArticleIndex REBUILD;
ALTER INDEX ArticleLocalIndex REBUILD PARTITION p1;

Chapter 5
Altering a Semantic Index

5-16

5.13.2 Rebuilding to Add Content for a New Policy to a Semantic Index
Using add_policy for <action_for_policy>, you can add content for a new base policy or a
dependent policy to a semantic index (or index partition). If a dependent policy is being added
and if its base policy is not already a part of the index, then content for the base policy is also
added implicitly (by invoking the extractor specified as part of the base policy definition). The
following is an example:

ALTER INDEX ArticleIndex REBUILD PARAMETERS ('-add_policy MY_POLICY');

5.13.3 Rebuilding Content for an Existing Policy from a Semantic Index
Using rebuild_policy for <action_for_policy>, you can rebuild the content of the semantic
index (or index partition) for an existing policy presently associated with the index. The
following is an example:

ALTER INDEX ArticleIndex REBUILD PARAMETERS ('-rebuild_policy MY_POLICY');

5.13.4 Rebuilding to Drop Content for an Existing Policy from a Semantic
Index

Using drop_policy for <action_for_policy>, you can drop content corresponding to an
existing base policy or a dependent policy from a semantic index (or index partition). Note
that dropping the content for a base policy will fail if it is the only policy for the index (or index
partition) or if it is used by dependent policies associated with this index (or index partition).

The following example drops the content for a policy from an index:

ALTER INDEX ArticleIndex REBUILD PARAMETERS ('-drop_policy MY_POLICY');

5.14 Passing Extractor-Specific Parameters in CREATE INDEX
and ALTER INDEX

The CREATE INDEX and ALTER INDEX statements allow the passing of parameters needed
by extractors.

These parameters are passed on to the extractor using the params parameter of the
extractRdf and batchExtractRdf methods. The following two examples show their use:

CREATE INDEX ArticleIndex on Newsfeed (article)
 INDEXTYPE IS mdsys.SemContext PARAMETERS ('SEM_EXTR=(NE_ONLY)');

ALTER INDEX ArticleIndex REBUILD
 PARAMETERS ('-add_policy MY_POLICY=(NE_ONLY)');

5.15 Performing Document-Centric Inference
Document-centric inference refers to the ability to infer from each document individually.

It does not allow triples extracted from two different documents to be used together for
inference. It contrasts with the more common corpus-centric inference, where new triples can
be inferred from combinations of triples extracted from multiple documents.

Chapter 5
Passing Extractor-Specific Parameters in CREATE INDEX and ALTER INDEX

5-17

Document-centric inference can be desirable in document search applications
because inclusion of a document in the search result is based on the extracted and/or
inferred triples for that document only, that is, triples extracted and/or inferred from any
other documents in the corpus do not play any role in the selection of this document.
(Document-centric inference might be preferred, for example, if there is inconsistency
among documents because of differences in the reliability of the data or in the biases
of the document creators.)

To perform document-centric inference, use named graph based local inference
(explained in Named Graph Based Local Inference (NGLI)) by specifying options =>
'LOCAL_NG_INF=T' in the call to the SEM_APIS.CREATE_ENTAILMENT procedure.

Entailments created through document-centric inference can be included as content of
a semantic index by creating a dependent policy and adding that policy to the
semantic index, as shown in Example 5-2.

Example 5-2 Using Document-Centric Inference

-- Create entailment 'extr_data_inf' using document-centric inference
-- assuming:
-- model_name for semantic index based on base policy: 'RDFCTX_MOD_1'
-- (model name is available from the RDFCTX_INDEX_POLICIES view;
-- see RDFCTX_INDEX_POLICIES View)
-- ontology: dataOntology
-- rulebase: OWL2RL
-- options: 'LOCAL_NG_INF=T' (for document-centric inference)
BEGIN
sem_apis.create_entailment('extr_data_inf',
 models_in => sem_models('RDFCTX_MOD_1', 'dataOntology'),
 rulebases_in => sem_rulebases('OWL2RL'),
 options => 'LOCAL_NG_INF=T');
END;
/
-- Create a dependent policy to augment data extracted using base policy
-- with content of entailment extr_data_inf (computed in previous statement)
BEGIN
sem_rdfctx.create_policy (
 policy_name => 'SEM_EXTR_PLUS_DATA_INF',
 base_policy => 'SEM_EXTR',
 user_models => NULL,
 user_entailments => sem_models('extr_data_inf'));
END;
/
-- Add the dependent policy to the ARTICLEINDEX index.
EXECUTE sem_rdfctx.add_dependent_policy('ARTICLEINDEX','SEM_EXTR_PLUS_DATA_INF');

5.16 Metadata Views for Semantic Indexing
This section describes views that contain metadata about semantic indexing

• MDSYS.RDFCTX_POLICIES View

• RDFCTX_INDEX_POLICIES View

• RDFCTX_INDEX_EXCEPTIONS View

Chapter 5
Metadata Views for Semantic Indexing

5-18

5.16.1 MDSYS.RDFCTX_POLICIES View
Information about extractor policies defined in the current schema is maintained in the
MDSYS.RDFCTX_POLICIES view, which has the columns shown in Table 5-1 and one row
for each extractor policy.

Table 5-1 MDSYS.RDFCTX_POLICIES View Columns

Column Name Data Type Description

POLICY_OWNER VARCHAR2(32) Owner of the extractor policy

POLICY_NAME VARCHAR2(32) Name of the extractor policy

EXTRACTOR MDSYS.RDFCTX_EXTRACTOR Instance of extractor type

IS_DEPENDENT VARCHAR2(3) Contains YES if the extractor
policy is dependent on a base
policy; contains NO if the
extractor policy is not dependent
on a base policy.

BASE_POLICY VARCHAR2(32) For a dependent policy, the name
of the base policy

USER_MODELS MDSYS.RDF_MODELS For a dependent policy, a list of
the RDF models included in the
policy

5.16.2 RDFCTX_INDEX_POLICIES View
Information about semantic indexes defined in the current schema and the extractor policies
used to create the index is maintained in the MDSYS.RDFCTX_POLICIES view, which has
the columns shown in Table 5-2 and one row for each combination of semantic index and
extractor policy.

Table 5-2 MDSYS.RDFCTX_INDEX_POLICIES View Columns

Column Name Data Type Description

INDEX_OWNER VARCHAR2(32) Owner of the semantic index

INDEX_NAME VARCHAR2(32) Name of the semantic index

INDEX_PARTITION VARCHAR2(32) Name of the index partition (for
LOCAL index only)

POLICY_NAME VARCHAR2(32) Name of the extractor policy

EXTR_PARAMETERS VARCHAR2(100) Parameters specified for the
extractor

IS_DEFAULT VARCHAR2(3) Contains YES if POLICY_NAME
is the default extractor policy for
the index; contains NO if
POLICY_NAME is not the default
extractor policy for the index.

Chapter 5
Metadata Views for Semantic Indexing

5-19

Table 5-2 (Cont.) MDSYS.RDFCTX_INDEX_POLICIES View Columns

Column Name Data Type Description

STATUS VARCHAR2(10) Contains VALID if the index is
valid, INPROGRESS if the index is
being created, or FAILED if a
system failure occurred during
the creation of the index.

RDF_MODEL VARCHAR2(32) Name of the RDF model
maintaining the index data

5.16.3 RDFCTX_INDEX_EXCEPTIONS View
Information about exceptions encountered while creating or maintaining semantic
indexes in the current schema is maintained in the
MDSYS.RDFCTX_INDEX_EXCEPTIONS view, which has the columns shown in
Table 5-3 and one row for each exception.

Table 5-3 MDSYS.RDFCTX_INDEX_EXCEPTIONS View Columns

Column Name Data Type Description

INDEX_OWNER VARCHAR2(32) Owner of the semantic index
associated with the exception

INDEX_NAME VARCHAR2(32) Name of the semantic index
associated with the exception

POLICY_NAME VARCHAR2(32) Name of the extractor policy
associated with the exception

DOC_IDENTIFIER VARCHAR2(38) Row identifier (rowid) of the
document associated with the
exception

EXCEPTION_TYPE VARCHAR2(13) Type of exception

EXCEPTION_CODE NUMBER Error code associated with the
exception

EXCEPTION_TEXT CLOB Text associated with the
exception

EXTRACTED_AT TIMESTAMP Time at which the exception
occurred

5.17 Default Style Sheet for GATE Extractor Output
This section lists the default XML style sheet that the mdsys.gatenlp_extractor
implementation uses to convert the annotation set (encoded in XML) into RDF/XML.

(This extractor is explained in Working with General Architecture for Text Engineering
(GATE).)

<?xml version="1.0"?>
 <xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform" >
 <xsl:output encoding="utf-8" indent="yes"/>

Chapter 5
Default Style Sheet for GATE Extractor Output

5-20

 <xsl:param name="docbase">http://xmlns.oracle.com/rdfctx/</xsl:param>
 <xsl:param name="docident">0</xsl:param>
 <xsl:param name="classpfx">
 <xsl:value-of select="$docbase"/>
 <xsl:text>class/</xsl:text>
 </xsl:param>
 <xsl:template match="/">
 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns:prop="http://xmlns.oracle.com/rdfctx/property/">
 <xsl:for-each select="AnnotationSet/Annotation">
 <rdf:Description>
 <xsl:attribute name="rdf:about">
 <xsl:value-of select="$docbase"/>
 <xsl:text>docref/</xsl:text>
 <xsl:value-of select="$docident"/>
 <xsl:text>/</xsl:text>
 <xsl:value-of select="@Id"/>
 </xsl:attribute>
 <xsl:for-each select="./Feature">
 <xsl:choose>
 <xsl:when test="./Name[text()='majorType']">
 <rdf:type>
 <xsl:attribute name="rdf:resource">
 <xsl:value-of select="$classpfx"/>
 <xsl:text>major/</xsl:text>
 <xsl:value-of select="translate(./Value/text(),
 ' ', '#')"/>
 </xsl:attribute>
 </rdf:type>
 </xsl:when>
 <xsl:when test="./Name[text()='minorType']">
 <xsl:element name="prop:hasMinorType">
 <xsl:attribute name="rdf:resource">
 <xsl:value-of select="$docbase"/>
 <xsl:text>minorType/</xsl:text>
 <xsl:value-of select="translate(./Value/text(),
 ' ', '#')"/>
 </xsl:attribute>
 </xsl:element>
 </xsl:when>
 <xsl:when test="./Name[text()='kind']">
 <xsl:element name="prop:hasKind">
 <xsl:attribute name="rdf:resource">
 <xsl:value-of select="$docbase"/>
 <xsl:text>kind/</xsl:text>
 <xsl:value-of select="translate(./Value/text(),
 ' ', '#')"/>
 </xsl:attribute>
 </xsl:element>
 </xsl:when>
 <xsl:when test="./Name[text()='locType']">
 <xsl:element name="prop:hasLocType">
 <xsl:attribute name="rdf:resource">
 <xsl:value-of select="$docbase"/>
 <xsl:text>locType/</xsl:text>
 <xsl:value-of select="translate(./Value/text(),
 ' ', '#')"/>
 </xsl:attribute>
 </xsl:element>

Chapter 5
Default Style Sheet for GATE Extractor Output

5-21

 </xsl:when>
 <xsl:when test="./Name[text()='entityValue']">
 <xsl:element name="prop:hasEntityValue">
 <xsl:attribute name="rdf:datatype">
 <xsl:text>
 http://www.w3.org/2001/XMLSchema#string
 </xsl:text>
 </xsl:attribute>
 <xsl:value-of select="./Value/text()"/>
 </xsl:element>
 </xsl:when>
 <xsl:otherwise>
 <xsl:element name="prop:has{translate(
 substring(./Name/text(),1,1),
 'abcdefghijklmnopqrstuvwxyz',
 'ABCDEFGHIJKLMNOPQRSTUVWXYZ')}{
 substring(./Name/text(),2)}">
 <xsl:attribute name="rdf:datatype">
 <xsl:text>
 http://www.w3.org/2001/XMLSchema#string
 </xsl:text>
 </xsl:attribute>
 <xsl:value-of select="./Value/text()"/>
 </xsl:element>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:for-each>
 </rdf:Description>
 </xsl:for-each>
 </rdf:RDF>
 </xsl:template>
 </xsl:stylesheet>

Chapter 5
Default Style Sheet for GATE Extractor Output

5-22

6
Fine-Grained Access Control for RDF Data

The default control of access to the Oracle Database semantic data store is at the model
level: the owner of a model can grant select, delete, and insert privileges on the model to
other users by granting appropriate privileges on the view named RDFM_<model_name>.
However, for applications with stringent security requirements, you can enforce a fine-grained
access control mechanism by using the Oracle Label Security option of Oracle Database.

Oracle Label Security (OLS) for RDF data allows sensitivity labels to be associated with
individual triples stored in an RDF model. For each query, access to specific triples is granted
by comparing their labels with the user's session labels. This triple-level security option
provides a thin layer of RDF-specific capabilities on top of the Oracle Database native
support for label security.

For information about using OLS, see Oracle Label Security Administrator's Guide.

• Triple-Level Security
The triple-level security option provides a thin layer of RDF-specific capabilities on top of
the Oracle Database native support for label security.

6.1 Triple-Level Security
The triple-level security option provides a thin layer of RDF-specific capabilities on top of the
Oracle Database native support for label security.

To use triple-level security, specify SEM_RDFSA.TRIPLE_LEVEL_ONLY as the rdfsa_options
parameter value when you execute the SEM_RDFSA.APPLY_OLS_POLICY procedure. For
example:

EXECUTE sem_rdfsa.apply_ols_policy('defense', SEM_RDFSA.TRIPLE_LEVEL_ONLY,
network_owner=>'FGAC_ADMIN', network_name=>'OLS_NET');

Do not specify any of the other available parameters for the
SEM_RDFSA.APPLY_OLS_POLICY procedure.

When you use triple-level security, OLS is applied to each semantic model in the network.
That is, label security is applied to the relevant internal tables and to all the application tables;
there is no need to manually apply policies to the application tables of existing semantic
models. However, if you need to create additional models after applying the OLS policy, you
must use the SEM_OLS.APPLY_POLICY_TO_APP_TAB procedure to apply OLS to the
application table before creating the model. Similarly, if you have dropped a semantic model
and you no longer need to protect the application table, you can use the
SEM_OLS.REMOVE_POLICY_FROM_APP_TAB procedure. (These procedures are
described in SEM_OLS Package Subprograms.)

With triple-level security, duplicate triples with different labels can be inserted in the semantic
model. (Such duplicates are not allowed with resource-level security.) For example, assume
that you have a triple with a very sensitive label, such as:

(<urn:X>,<urn:P>,<urn:Y>, "TOPSECRET")

6-1

This does not prevent a low-privileged (UNCLASSIFIED) user from inserting the triple
(<urn:X>,<urn:P>,<urn:Y>, "UNCLASSIFIED"). Because SPARQL and SEM_MATCH
do not return label information, a query will return both rows (assuming the user has
appropriate privileges), and it will not be easy to distinguish between the TOPSECRET
and UNCLASSIFIED triples.

To filter out such low-security triples when querying the semantic models, you can one
or more the following options with SEM_MATCH:

• POLICY_NAME specifies the OLS policy name.

• MIN_LABEL specifies the minimum label for triples that are included in the query

In other words, every triple that contains a label that is strictly dominated by MIN_LABEL
is not included in the query. For example, to filter out the "UNCLASSIFIED" triple, you
could use the following query (assuming the OLS policy name is DEFENSE and that the
query user has read privileges over UNCLASSIFIED and TOPSECRET triples):

SELECT s,p,y FROM table(sem_match('{?s ?p ?y}' ,
 sem_models(TEST'), null, null, null, null,
 'MIN_LABEL=TOPSECRET POLICY_NAME=DEFENSE',
 null, null, ‘FGAC_ADMIN’, 'OLS_NET'));

Note that the filtering in the preceding example occurs in addition to the security
checks performed by the native OLS software.

After a triple has been inserted, you can view and update the label information through
the CTXT1 column in the application table for the semantic model (assuming that you
have the WRITEUP and WRITEDOWN privileges to modify the labels).

There are no restrictions on who can perform inference or bulk loading with triple-level
security; all of the inferred or bulk loaded triples are inserted with the user's session
row label. Note that you can change the session labels by using the SA_UTL package.
(For more information about SA_UTL, see Oracle Label Security Administrator's
Guide.)

• Fine-Grained Security for Inferred Data and Ladder-Based Inference (LBI)

• Extended Example: Applying OLS Triple-Level Security on Semantic Data

6.1.1 Fine-Grained Security for Inferred Data and Ladder-Based
Inference (LBI)

When triple-level security is turned on for RDF data stored in Oracle Database,
asserted facts are tagged with data labels to enforce mandatory access control. In
addition, when a user invokes the forward-chaining based inference function through
the SEM_APIS.CREATE_ENTAILMENT procedure, the newly inferred relationships
will be tagged with the current row label (SA_UTL.NUMERIC_ROW_LABEL).

These newly inferred relationships are derived solely based on the information that the
user is allowed to access. These relationships do, however, share the same data label.
This is understandable because a SEM_APIS.CREATE_ENTAILMENT call can be
viewed as a three-step process: read operation, followed by a logical inference
computation, followed by a write operation. The read operation gathers information
upon which inference computation is based, and it is restricted by access privileges,
the user's label, and the data labels; the logical inference computation step is purely
mathematical; and the final write of inferred information into the entailed graph is no

Chapter 6
Triple-Level Security

6-2

different from the same user asserting some new facts (which happen to be calculated by the
previous step).

Having all inferred assertions tagged with a single label is sufficient if a user only owns a
single label. It is, however, not fine-grained enough when there are multiple labels owned by
the same user, which is a common situation in a multitenancy setup.

For example, assume a user sets its user label and data label as TopSecret, invokes
SEM_APIS.CREATE_ENTAILMENT, switches to a weaker label named Secret, and finally
performs a SPARQL query. The query will not be able to see any of those newly inferred
relationships because they were all tagged with the TopSecret label. However, if the user
switches back to the TopSecret label, now every single inferred relationship is visible. It is "all
or nothing" (that is, all visible or nothing visible) as far as inferred relationships are
concerned.

When multiple labels are available for use by a given user, you normally want to assign
different labels to different inferred relationships. There are two ways to achieve this goal:

• Invoking SEM_APIS.CREATE_ENTAILMENT Multiple Times

• Using Ladder-Based Inference (LBI)

Ladder-based inference, effective with Oracle Database 12c Release 1 (12.1), is probably the
simpler and more convenient of the two approaches.

Invoking SEM_APIS.CREATE_ENTAILMENT Multiple Times

Assume a security policy named DEFENSE, a user named SCOTT, and a sequence of user
labels Label1, Label2,..., Labeln owned by SCOTT. The following call by SCOTT sets the
label as Label1, runs the inference for the first time, and tags the newly inferred triples with
Label1:

EXECUTE sa_utl.set_label('defense',char_to_label('defense','Label1'));
EXECUTE sa_utl.set_row_label('defense',char_to_label('defense','Label1'));
EXECUTE sem_apis.create_entailment('inf', sem_models('contracts'),
sem_rulebases('owlprime'), SEM_APIS.REACH_CLOSURE,
null,'',network_owner=>'FGAC_ADMIN',network_name=>'OLS_NET');

Now, SCOTT switches the label to Label2, runs the inference a second time, and tags the
newly inferred triples with Label2. Obviously, if Label2 is dominated by Label1, then no new
triples will be inferred because Label2 cannot see anything beyond what Label1 is allowed to
see. If Label2 is not dominated by Label1, the read step of the inference process will probably
see a different set of triples, and consequently the inference call can produce some new
triples, which will in turn be tagged with Label2.

For the purpose of this example, assume the following condition holds true: for any 1 <= i < j
<= n, Labelj is not dominated by Labeli.

EXECUTE sa_utl.set_label('defense',char_to_label('defense','Label2'));
EXECUTE sa_utl.set_row_label('defense',char_to_label('defense','Label2'));
EXECUTE sem_apis.create_entailment('inf', sem_models('contracts'),
sem_rulebases('owlprime'), SEM_APIS.REACH_CLOSURE, null, 'ENTAIL_ANYWAY=T',
network_owner=>'FGAC_ADMIN', network_name=>'OLS_NET');

SCOTT continues the preceding actions using the rest of the labels in the label sequence:
Label1, Label2, ..., Labeln. The last step will be as follows:

EXECUTE sa_utl.set_label('defense',char_to_label('defense','Labeln'));
EXECUTE sa_utl.set_row_label('defense',char_to_label('defense','Labeln'));
EXECUTE sem_apis.create_entailment('inf', sem_models('contracts'),

Chapter 6
Triple-Level Security

6-3

sem_rulebases('owlprime'), SEM_APIS.REACH_CLOSURE, null, 'ENTAIL_ANYWAY=T',
network_owner=>'FGAC_ADMIN', network_name=>'OLS_NET');

After all these actions are performed, the inference graph probably consists of triples
tagged with various different labels.

Using Ladder-Based Inference (LBI)

Basically, ladder-based inference (LBI) wraps in one API call all the actions described
in the Invoking SEM_APIS.CREATE_ENTAILMENT Multiple Times approach. Visually,
those actions are like climbing up a ladder. When proceeding from one label to the
next, more asserted facts become visible or accessible (assuming the new label is not
dominated by any of the previous ones), and therefore new relationships can be
inferred.

The syntax to invoke LBI is shown in the following example.

EXECUTE sem_apis.create_entailment('inf',
 sem_models('contracts'),
 sem_rulebases('owlprime'),
 SEM_APIS.REACH_CLOSURE,
 null,
 null,
 ols_ladder_inf_lbl_seq=>'numericLabel1 numericLabel2 numericLabel3
numericLabel4',
 network_owner=>'FGAC_ADMIN',
 network_name=>'OLS_NET'
);

The parameter ols_ladder_inf_lbl_seq specifies a sequence of labels. This
sequence is provided as a list of numeric labels delimited by spaces. When using LBI,
it is a good practice to arrange the sequence of labels so that weaker labels are put
before stronger labels. This will reduce the size of the inferred graph. (If labels do not
dominate each other, they can be specified in any order.)

6.1.2 Extended Example: Applying OLS Triple-Level Security on
Semantic Data

This section presents an extended example illustrating how to apply OLS triple-level
security to semantic data. It assumes that OLS has been configured and enabled. The
examples are very simplified, and do not reflect recommended practices regarding
user names and passwords.

Unless otherwise indicated, perform the steps while connected AS SYSDBA.

1. Perform some necessary setup steps.

a. As SYSDBA, create database users named A, B, and C.

create user a identified by <password-for-a>;
grant connect, unlimited tablespace, resource to a;
create user b identified by <password-for-b>;
grant connect, unlimited tablespace, resource to b;
create user c identified by <password-for-c>;
grant connect, unlimited tablespace, resource to c;

b. As SYSDBA, create a security administrator and grant privileges.

Chapter 6
Triple-Level Security

6-4

CREATE USER fgac_admin identified by <password-for-fgac_admin>;
GRANT connect, unlimited tablespace,resource to fgac_admin;

-- Needed to administer OLS on a shared schema-private network
GRANT execute on MDSYS.SEM_RDFSA to fgac_admin;
GRANT exempt access policy to fgac_admin;

-- Needed to administer an OLS policy
GRANT EXECUTE ON sa_components TO fgac_admin;
GRANT EXECUTE ON sa_user_admin TO fgac_admin;
GRANT EXECUTE ON sa_label_admin TO fgac_admin;
GRANT EXECUTE ON sa_policy_admin TO fgac_admin;
GRANT EXECUTE ON sa_sysdba to fgac_admin;
GRANT EXECUTE ON TO_LBAC_DATA_LABEL to fgac_admin;
GRANT lbac_dba to fgac_admin;

c. Connect as SYSTEM and create a schema-private semantic network owned by the
security administrator with sharing privileges.

CONNECT system/<password-for-system>;
EXECUTE
sem_apis.create_sem_network('tbs_3',network_owner=>'FGAC_ADMIN',network_name=>'
OLS_NET');
EXECUTE sem_apis.grant_network_sharing_privs('FGAC_ADMIN');

d. Connect as the security administrator and set up network sharing for users a, b, and
c.

CONNECT fgac_admin/<password-for- fgac_admin>;
EXECUTE
sem_apis.enable_network_sharing(network_owner=>'FGAC_ADMIN',network_name=>'OLS_
NET');
EXECUTE
sem_apis.grant_network_access_privs(network_owner=>'FGAC_ADMIN',network_name=>'
OLS_NET', network_user=>'A');
EXECUTE
sem_apis.grant_network_access_privs(network_owner=>'FGAC_ADMIN',network_name=>'
OLS_NET', network_user=>'B');
EXECUTE
sem_apis.grant_network_access_privs(network_owner=>'FGAC_ADMIN',network_name=>'
OLS_NET', network_user=>'C');

e. Connect as the security administrator and create a policy named defense.

CONNECT fgac_admin/<password-for-fgac_admin>;
EXECUTE SA_SYSDBA.CREATE_POLICY('defense','ctxt1');

f. Create three security levels (For simplicity, compartments and groups are omitted.)

EXECUTE SA_COMPONENTS.CREATE_LEVEL('defense',3000,'TS','TOP SECRET');
EXECUTE SA_COMPONENTS.CREATE_LEVEL('defense',2000,'SE','SECRET');
EXECUTE SA_COMPONENTS.CREATE_LEVEL('defense',1000,'UN','UNCLASSIFIED');

g. Create three labels.

EXECUTE SA_LABEL_ADMIN.CREATE_LABEL('defense',1000,'UN');
EXECUTE SA_LABEL_ADMIN.CREATE_LABEL('defense',1500,'SE');
EXECUTE SA_LABEL_ADMIN.CREATE_LABEL('defense',3100,'TS');

h. Assign labels and privileges.

EXECUTE SA_USER_ADMIN.SET_USER_LABELS('defense','A','UN');
EXECUTE SA_USER_ADMIN.SET_USER_LABELS('defense','B','SE');
EXECUTE SA_USER_ADMIN.SET_USER_LABELS('defense','C','TS');

Chapter 6
Triple-Level Security

6-5

EXECUTE SA_USER_ADMIN.SET_USER_LABELS('defense','fgac_admin','TS');
EXECUTE SA_USER_ADMIN.SET_USER_PRIVS('defense','FGAC_ADMIN', 'full');

2. Create a semantic model.

a. Create a model and share it with some other users.

CONNECT a/<password-for-a>
CREATE TABLE project_tpl (triple sdo_rdf_triple_s) compress for oltp;
EXECUTE sem_apis.create_sem_model('project', 'project_tpl',
'triple' ,network_owner=>'FGAC_ADMIN',network_name=>'OLS_NET');
GRANT select on fgac_admin.ols_net#rdfm_project to B;
GRANT select on fgac_admin.ols_net#rdfm_project to C;
GRANT select, insert, update, delete on project_tpl to B, C;

b. Ensure that the bulk loading API can be executed.

GRANT insert on project_tpl to fgac_admin;
3. Apply the OLS policy for RDF.

CONNECT fgac_admin/<password-for-fgac_admin>
BEGIN
 sem_rdfsa.apply_ols_policy('defense',
sem_rdfsa.TRIPLE_LEVEL_ONLY,network_owner=>'FGAC_ADMIN',network_name=>'OLS_NE
T');
END;
/

/

Note that the application table now has an extra column named CTXT1:

CONNECT a/<password-for-a>
DESCRIBE project_tpl;
Name Null? Type
--- -------- --------------------------
 TRIPLE PUBLIC.SDO_RDF_TRIPLE_S
 CTXT1 NUMBER(10)

4. Add data to the semantic model.

-- User A uses incremental APIs to add semantic data
connect a/<password-for-a>
INSERT INTO project_tpl(triple) values
(sdo_rdf_triple_s('project','<urn:A>','<urn:hasManager>','<urn:B>','FGAC_ADMI
N','OLS_NET'));
INSERT INTO project_tpl(triple) values
(sdo_rdf_triple_s('project','<urn:B>','<urn:hasManager>','<urn:C>','FGAC_ADMI
N','OLS_NET'));
INSERT INTO project_tpl(triple) values
(sdo_rdf_triple_s('project','<urn:A>','<urn:expenseReportAmount>','"100"','FG
AC_ADMIN','OLS_NET'));
INSERT INTO project_tpl(triple) values
(sdo_rdf_triple_s('project','<urn:expenseReportAmount>','rdfs:subPropertyOf',
'<urn:projExp>','FGAC_ADMIN','OLS_NET'));
COMMIT;

-- User B uses bulk API to add semantic data
connect b/<password-for-b>
CREATE TABLE project_stab(RDF$STC_GRAPH varchar2(4000),
RDF$STC_sub varchar2(4000),
RDF$STC_pred varchar2(4000),

Chapter 6
Triple-Level Security

6-6

RDF$STC_obj varchar2(4000)) compress;
GRANT select on project_stab to fgac_admin;

-- For simplicity, data types are omitted.
INSERT INTO project_stab values(null,
'<urn:B>','<urn:expenseReportAmount>','"200"');
INSERT INTO project_stab values(null,
'<urn:proj1>','<urn:deadline>','"2012-12-25"');
EXECUTE
sem_apis.bulk_load_from_staging_table('project','b','project_stab' ,network_owner=>
'FGAC_ADMIN',network_name=>'OLS_NET');

-- As User B, check the contents in the application table
 connect b/<password-for-b>
SELECT * from a.project_tpl order by ctxt1;

SDO_RDF_TRIPLE_S(8.5963E+18, 7, 1.4711E+18, 2.0676E+18, 8.5963E+18) 1000
SDO_RDF_TRIPLE_S(5.1676E+18, 7, 8.5963E+18, 2.0676E+18, 5.1676E+18) 1000
SDO_RDF_TRIPLE_S(2.3688E+18, 7, 1.4711E+18, 4.6588E+18, 2.3688E+18) 1000
SDO_RDF_TRIPLE_S(7.6823E+18, 7, 4.6588E+18, 1.1911E+18, 7.6823E+18) 1000
SDO_RDF_TRIPLE_S(6.6322E+18, 7, 8.5963E+18, 4.6588E+18, 6.6322E+18) 1500
SDO_RDF_TRIPLE_S(8.4800E+18, 7, 6.2294E+18, 5.4118E+18, 8.4800E+18) 1500

6 rows selected.
SELECT count(1) from fgac_admin.ols_net#rdfm_project;
6

-- As User A, check the contents in the application table
-- As expected, A can only see 4 triples
SQL> conn a/<password>
SQL> select * from a.project_tpl order by ctxt1;
SDO_RDF_TRIPLE_S(8.5963E+18, 7, 1.4711E+18, 2.0676E+18, 8.5963E+18) 1000

SDO_RDF_TRIPLE_S(5.1676E+18, 7, 8.5963E+18, 2.0676E+18, 5.1676E+18) 1000

SDO_RDF_TRIPLE_S(2.3688E+18, 7, 1.4711E+18, 4.6588E+18, 2.3688E+18) 1000

SDO_RDF_TRIPLE_S(7.6823E+18, 7, 4.6588E+18, 1.1911E+18, 7.6823E+18) 1000

SQL> select count(1) fromfgac_admin.ols_net#rdfm_project;
4

-- User C uses incremental APIs to add semantic data including 2 quads
connect c/<password-for-c>
INSERT INTO a.project_tpl(triple) values
(sdo_rdf_triple_s('project','<urn:C>','<urn:expenseReportAmount>','"400"','FGAC_ADM
IN','OLS_NET'));
INSERT INTO a.project_tpl(triple) values
(sdo_rdf_triple_s('project','<urn:proj1>','<urn:hasBudget>','"10000"','FGAC_ADMIN',
'OLS_NET'));
INSERT INTO a.project_tpl(triple) values
(sdo_rdf_triple_s('project:<urn:proj2>','<urn:proj2>','<urn:hasBudget>','"20000"','
FGAC_ADMIN','OLS_NET'));
INSERT INTO a.project_tpl(triple) values
(sdo_rdf_triple_s('project:<urn:proj2>','<urn:proj2>','<urn:dependsOn>','<urn:proj1
>','FGAC_ADMIN','OLS_NET'));
COMMIT;

5. Query the data as different users using the default label.

-- Now as user A, B, C, execute the following query
select lpad(nvl(g, ' '), 20) || ' ' || s || ' ' || p || ' ' || o from

Chapter 6
Triple-Level Security

6-7

table(sem_match('select * where { graph ?g { ?s ?p ?o }}',
sem_models('project'),
null,
null,
null,
null,
'GRAPH_MATCH_UNNAMED=T',
null,
null,
'FGAC_ADMIN',
'OLS_NET'))
 order by g, s, p, o;

connect a/<password-for-a>
-- Repeat the preceding query
SQL> /

urn:A urn:expenseReportAmount 100
urn:A urn:hasManager urn:B
urn:B urn:hasManager urn:C
urn:expenseReportAmount http://www.w3.org/2000/01/rdf-schema#subPropertyOf
urn:projExp
SQL> connect b/<password-for-b>
SQL> /

urn:A urn:expenseReportAmount 100
urn:A urn:hasManager urn:B
urn:B urn:expenseReportAmount 200
urn:B urn:hasManager urn:C
urn:expenseReportAmount http://www.w3.org/2000/01/rdf-schema#subPropertyOf
urn:projExp
urn:proj1 urn:deadline 2012-12-25
SQL> connect c/<password-for-c>
SQL> /

urn:proj2 urn:proj2 urn:dependsOn urn:proj1
urn:proj2 urn:proj2 urn:hasBudget 20000
urn:A urn:expenseReportAmount 100
urn:A urn:hasManager urn:B
urn:B urn:expenseReportAmount 200
urn:B urn:hasManager urn:C
urn:C urn:expenseReportAmount 400
urn:expenseReportAmount http://www.w3.org/2000/01/rdf-schema#subPropertyOf
urn:projExp
urn:proj1 urn:deadline 2012-12-25
urn:proj1 urn:hasBudget 10000

As expected, different users (with different labels) can see different sets of triples
in the project RDF graph.

6. Query the same data as user C using different labels.

exec sa_utl.set_label('defense',char_to_label('defense','SE'));
exec sa_utl.set_row_label('defense',char_to_label('defense','SE'));

The same query used in the preceding step produces just 6 matches with label set
to SE:

urn:A urn:expenseReportAmount 100
urn:A urn:hasManager urn:B
urn:B urn:expenseReportAmount 200
urn:B urn:hasManager urn:C

Chapter 6
Triple-Level Security

6-8

urn:expenseReportAmount http://www.w3.org/2000/01/rdf-schema#subPropertyOf
urn:projExp
urn:proj1 urn:deadline 2012-12-25

6 rows selected.

If user C picks the weakest label ("unclassified"), then user C sees even less

exec sa_utl.set_label('defense',char_to_label('defense','UN'));
exec sa_utl.set_row_label('defense',char_to_label('defense','UN'));

The same query used in the preceding step produces just 4 matches:

urn:A urn:expenseReportAmount 100
urn:A urn:hasManager urn:B
urn:B urn:hasManager urn:C
urn:expenseReportAmount http://www.w3.org/2000/01/rdf-schema#subPropertyOf
urn:projExp

If user C wants to run the query only against triples/quads with data label that dominates
"Secret":

-- First set the label back
exec sa_utl.set_label('defense',char_to_label('defense','TS'));
exec sa_utl.set_row_label('defense',char_to_label('defense','TS'));

select lpad(nvl(g, ' '), 20) || ' ' || s || ' ' || p || ' ' || o
from table(sem_match('select * where { graph ?g { ?s ?p ?o }}',
sem_models('project'),
null,
null,
null,
null,
'MIN_LABEL=SE POLICY_NAME=DEFENSE GRAPH_MATCH_UNNAMED=T',
null,
null,
'FGAC_ADMIN',
'OLS_NET'))
order by g, s, p, o;

The query response excludes those assertions made by user A:

urn:proj2 urn:proj2 urn:dependsOn urn:proj1
urn:proj2 urn:proj2 urn:hasBudget 20000
urn:B urn:expenseReportAmount 200
urn:C urn:expenseReportAmount 400
urn:proj1 urn:deadline 2012-12-25
urn:proj1 urn:hasBudget 10000

6 rows selected.

The same query can be executed as User A. However, no matches are returned, as
expected.

You can delete semantic data when OLS is enabled for RDF. In the following example,
assume that SEM_RDFSA.APPLY_OLS_POLICY has been executed successfully, and that
the same user setup and label designs are used as in the preceding example.

-- First, create a test model as user A and grant access to users B and C
connect a/<password-for-a>

create table test_tpl (triple sdo_rdf_triple_s) compress for oltp;

Chapter 6
Triple-Level Security

6-9

grant select, insert, update, delete on test_tpl to B, C;

-- The following will fail with an error message
-- "Error while creating triggers: If OLS
-- is enabled, you have to apply table policy
-- before creating an OLS-enabled model"
--
EXECUTE sem_apis.create_sem_model('test', 'test_tpl',
'triple',network_owner=>'FGAC_ADMIN',network_name=>'OLS_NET');

-- Grant select on the model view to users B and C
grant select on fgac_admin.ols_net#rdfm_test to B,C;

-- You need to run this API first

connect fgac_admin/<password-for-fgac_admin>

EXECUTE sem_ols.apply_policy_to_app_tab('defense', 'A',
'TEST_TPL',network_owner=>'FGAC_ADMIN',network_name=>'OLS_NET');

-- Now model creation (after OLS policy has been applied) can go through
connect a/<password-for-a>
EXECUTE sem_apis.create_sem_model('test', 'test_tpl',
'triple',network_owner=>'FGAC_ADMIN',network_name=>'OLS_NET');

-- Add a triple as User A
INSERT INTO test_tpl(triple) values
(sdo_rdf_triple_s('test','<urn:A>','<urn:p>','<urn:B>','FGAC_ADMIN','OLS_NET'));
COMMIT;

-- Add the same triple as User B
connect b/<password-for-b>
INSERT INTO a.test_tpl(triple) values
(sdo_rdf_triple_s('test','<urn:A>','<urn:p>','<urn:B>','FGAC_ADMIN','OLS_NET'));
COMMIT;

-- Now User B can see both triples in the application table as well as the model
view
set numwidth 20
SELECT * from a.test_tpl;

SDO_RDF_TRIPLE_S(8596269297967065604, 19, 1471072612573670395, 28121856352072361
78, 8596269297967065604)
 1000

SDO_RDF_TRIPLE_S(8596269297967065604, 19, 1471072612573670395, 28121856352072361
78, 8596269297967065604)
 1500

SELECT count(1) from fgac_admin.ols_net#rdfm_test;
 2

-- User A can only see one triple due to A's label assignment, as expected.

SELECT * from a.test_tpl;

SDO_RDF_TRIPLE_S(8596269297967065604, 19, 1471072612573670395, 28121856352072361
78, 8596269297967065604)
 1000

Chapter 6
Triple-Level Security

6-10

SELECT count(1) from fgac_admin.ols_net#rdfm_test;
 1

-- User A issues a delete to remove A's assertions
SQL> delete from a.test_tpl;
1 row deleted.

COMMIT;
Commit complete.

-- Now user A has no assertions left.

SELECT * from a.test_tpl;
no rows selected

SELECT count(1) from fgac_admin.ols_net#rdfm_test;
 0

-- Note that the preceding delete does not affect the same assertion made by B.
connect b/<password-for-b>
SELECT * from a.test_tpl;

SDO_RDF_TRIPLE_S(8596269297967065604, 19, 1471072612573670395, 28121856352072361
78, 8596269297967065604)
 1500

SELECT count(1) from fgac_admin.ols_net#rdfm_test;
 1

-- User B can remove this assertion using a DELETE statement.
-- The following DELETE statement uses the oracle_orardf_res2vid function
-- to narrow down the scope to triples with a particular subject.
DELETE FROM a.test_tpl app_tab
 where app_tab.triple.rdf_s_id =
 sem_apis.res2vid('FGAC_ADMIN.OLS_NET#RDF_VALUE$','<urn:A>');

1 row deleted.

Chapter 6
Triple-Level Security

6-11

7
RDF Semantic Graph Support for Apache
Jena

RDF Semantic Graph support for Apache Jena (also referred to here as support for Apache
Jena) provides a Java-based interface to Oracle Graph RDF Semantic Graph by
implementing the well-known Jena Graph, Model, and DatasetGraph APIs.

Note:

This feature was previously referred to as the Jena Adapter for Oracle Database
and the Jena Adapter.

Support for Apache Jena extends the semantic data management capabilities of Oracle
Database RDF/OWL.

(Apache Jena is an open source framework. For license and copyright conditions, see
http://www.apache.org/licenses/ and http://www.apache.org/licenses/LICENSE-2.0.)

The DatasetGraph APIs are for managing named graph data, also referred to as quads. In
addition, RDF Semantic Graph support for Apache Jena provides network analytical functions
on top of semantic data through integrating with the Oracle Spatial Network Data Model
Graph feature.

This chapter assumes that you are familiar with major concepts explained in RDF Semantic
Graph Overview and OWL Concepts . It also assumes that you are familiar with the overall
capabilities and use of the Jena Java framework. For information about the Jena framework,
see http://jena.apache.org/, especially the Jena Documentation page. If you use the
network analytical function, you should also be familiar with the Network Data Model Graph
feature, which is documented in Oracle Spatial Topology and Network Data Model
Developer's Guide.

Note:

The current RDF Semantic Graph support for Apache Jena release has been tested
against Apache Jena 3.1.0, and it supports the RDF schema-private networks
environment in Release 19c databases. Because of the nature of open source
projects, you should not use this support for Apache Jena with later versions of
Jena.

Apache Joseki support has been deprecated, although it still is part of the OTN kit
distribution for adapter version 3.1.0 with support for Release 19c databases.
References to Joseki have been removed from this book for Release 19c, but you
can find information about Joseki in previous versions of the book.

7-1

http://www.apache.org/licenses/
http://www.apache.org/licenses/LICENSE-2.0
http://jena.apache.org/

• Setting Up the Software Environment
To use the support for Apache Jena, you must first ensure that the system
environment has the necessary software, including Oracle Database with RDF
Semantic Graph support enabled, Apache Jena 3.12.0, and JDK 1.8 or later.

• Setting Up the SPARQL Service
This section explains how to set up a SPARQL web service endpoint by deploying
the fuseki.war file in WebLogic Server.

• Setting Up the RDF Semantic Graph Environment
To use the support for Apache Jena to perform queries, you can connect as any
user (with suitable privileges) and use any models in the semantic network.

• SEM_MATCH and RDF Semantic Graph Support for Apache Jena Queries
Compared
There are two ways to query semantic data stored in Oracle Database:
SEM_MATCH-based SQL statements and SPARQL queries through the support
for Apache Jena.

• Retrieving User-Friendly Java Objects from SEM_MATCH or SQL-Based Query
Results
You can query a semantic graph using any of the following approaches.

• Optimized Handling of SPARQL Queries
This section describes some performance-related features of the support for
Apache Jena that can enhance SPARQL query processing. These features are
performed automatically by default.

• Additions to the SPARQL Syntax to Support Other Features
RDF Semantic Graph support for Apache Jena allows you to pass in hints and
additional query options. It implements these capabilities by overloading the
SPARQL namespace prefix syntax by using Oracle-specific namespaces that
contain query options.

• Functions Supported in SPARQL Queries through RDF Semantic Graph Support
for Apache Jena
SPARQL queries through the support for Apache Jena can use the following kinds
of functions.

• SPARQL Update Support
RDF Semantic Graph support for Apache Jena supports SPARQL Update
(http://www.w3.org/TR/sparql11-update/), also referred to as SPARUL.

• Analytical Functions for RDF Data
You can perform analytical functions on RDF data by using the
SemNetworkAnalyst class in the oracle.spatial.rdf.client.jena package.

• Support for Server-Side APIs
This section describes some of the RDF Semantic Graph features that are
exposed by RDF Semantic Graph support for Apache Jena.

• Bulk Loading Using RDF Semantic Graph Support for Apache Jena
To load thousands to hundreds of thousands of RDF/OWL data files into an Oracle
database, you can use the prepareBulk and completeBulk methods in the
OracleBulkUpdateHandler Java class to simplify the task.

• Automatic Variable Renaming
Automatic variable renaming can enable certain queries that previously failed to
run successfully.

Chapter 7

7-2

• JavaScript Object Notation (JSON) Format Support
JavaScript Object Notation (JSON) format is supported for SPARQL query responses.
JSON data format is simple, compact, and well suited for JavaScript programs.

• Other Recommendations and Guidelines
This section contains various recommendations and other information related to SPARQL
queries.

• Example Queries Using RDF Semantic Graph Support for Apache Jena
This section includes example queries using the support for Apache Jena. Each example
is self-contained: it typically creates a model, creates triples, performs a query that may
involve inference, displays the result, and drops the model.

• SPARQL Gateway and Semantic Data
SPARQL Gateway is a J2EE web application that is included with the support for Apache
Jena. It is designed to make semantic data (RDF/OWL/SKOS) easily available to
applications that operate on relational and XML data, including Oracle Business
Intelligence Enterprise Edition (OBIEE) 11g.

• Deploying Fuseki in Apache Tomcat
To deploy Fuseki in Apache Tomcat, you can use the Tomcat admin web page, or you
can just copy the Fuseki .war file into the webapps folder of Tomcat and it will be
automatically deployed.

• ORARDFLDR Utility for Bulk Loading RDF Data
This section describes using the ORARDFLDR utility program for Bulk Loading RDF
Data.

7.1 Setting Up the Software Environment
To use the support for Apache Jena, you must first ensure that the system environment has
the necessary software, including Oracle Database with RDF Semantic Graph support
enabled, Apache Jena 3.12.0, and JDK 1.8 or later.

You can set up the software environment by performing these actions:

1. Install Oracle Database Enterprise Edition with the Oracle Spatial and Partitioning
Options.

2. Enable the support for RDF Semantic Graph, as explained in Enabling RDF Semantic
Graph Support.

3. Download RDF Semantic Graph support for Apache Jena from Oracle Software Delivery
Cloud.

4. Unzip the kit into a temporary directory, such as (on a Linux system) /tmp/jena_adapter.
(If this temporary directory does not already exist, create it before the unzip operation.)

The RDF Semantic Graph support for Apache Jena has the following top-level
directories:

 |-- examples
 |-- fuseki
 |-- fuseki_web_app
 |-- jar
 |-- javadoc
 |-- joseki
 |-- joseki_web_app
 |-- protege_plugin
 |-- README
 |-- sparqlgateway_web_app

Chapter 7
Setting Up the Software Environment

7-3

https://edelivery.oracle.com
https://edelivery.oracle.com

5. Install JDK 1.8 or later (if not already installed).

6. Ensure that the JAVA_HOME environment variable is referencing the JDK
installation. For example:

setenv JAVA_HOME /usr/local/packages/jdk18/
7. If the SPARQL service to support the SPARQL protocol is not set up, set it up as

explained in Setting Up the SPARQL Service.

After setting up the software environment, ensure that your RDF Semantic Graph
environment can enable you to use the support for Apache Jena to perform queries,
as explained in Setting Up the RDF Semantic Graph Environment.

• If You Used a Previous Version of the Support for Apache Jena

7.1.1 If You Used a Previous Version of the Support for Apache Jena
If you used a previous version of the support for Apache Jena, you must drop all
functions/procedure installed by previous Jena adapter in user schemas. Installing the
new kit will automatically load the updated functions and procedures, which are
compatible with new RDF schema private networks in 19c, and with the support in
previous releases.

Connect to the user schema that you have used with the previous Jena adapter and
execute the following commands to clean the internal functions and procedures.
(Some of the functions and procedures referenced in these commands might not exist
in the previous installation, so any failed commands can be ignored.)

drop procedure ORACLE_ORARDF_S2SGETSRC;
drop procedure ORACLE_ORARDF_S2SGETSRCCLOB;
drop procedure ORACLE_ORARDF_S2SSVR;
drop procedure ORACLE_ORARDF_S2SSVRNG;
drop procedure ORACLE_ORARDF_S2SSVRNGCLOB;
drop procedure ORACLE_ORARDF_GRANT;
drop procedure ORACLE_ORARDF_VID2NAME_TYPE;
drop procedure ORACLE_ORARDF_S2SSVRNGNPV;
drop procedure ORACLE_ORARDF_S2SSVRNGCLOBNPV;
drop function ORACLE_ORARDF_SGC;
drop function ORACLE_ORARDF_SGCCLOB;
drop function ORACLE_ORARDF_S2SUSR;
drop function ORACLE_ORARDF_S2SUSRNG;
drop function ORACLE_ORARDF_S2SUSRNGL;
drop function ORACLE_ORARDF_S2SUSRNGCLOB;
drop function ORACLE_ORARDF_S2SLG;
drop function ORACLE_ORARDF_GETPLIST;
drop function ORACLE_ORARDF_RES2VID;
drop function ORACLE_ORARDF_VID2URI;

7.2 Setting Up the SPARQL Service
This section explains how to set up a SPARQL web service endpoint by deploying the
fuseki.war file in WebLogic Server.

Although there are several ways to deploy applications in WebLogic Server, this topic
refers to the autodeploy option.

Chapter 7
Setting Up the SPARQL Service

7-4

Note:

If you want to deploy Fuseki in Apache Tomcat instead of WebLogic Server, see
Deploying Fuseki in Apache Tomcat.

1. Download and Install Oracle WebLogic Server 12c or later.

2. Ensure that you have Java 8 or later installed.

3. Set the FUSEKI_BASE parameter, which defines the location of the Fuseki configuration
files. By default, this parameter is set to /etc/fuseki.

You can set this parameter to the the fuseki folder from downloaded OTN kit, which
already contains the fuseki configuration files. See the Jena Fuseki documentation for
more details: https://jena.apache.org/documentation/fuseki2/fuseki-layout.html

4. Configure an Oracle dataset in the fuseki configuration file: config.ttl
a. Before editing the Fuseki configuration file, create an RDF schema-private network

(explained in Schema-Private Semantic Networks). For example, assuming a
network with name SAMPLE_NET in user schema RDFUSER and tablespace
RDFTBS, the following command creates the semantic network.

EXECUTE SEM_APIS.CREATE_SEM_NETWORK('RDFTBS',
options=>'MODEL_PARTITIONING=BY_HASH_P MODEL_PARTITIONS=16',
network_owner=>'RDFUSER', network_name=>'SAMPLE_NET');

b. Edit file config.ttl, and add an oracle:Dataset definition using a model named
M_NAMED_GRAPHS. The following snippet shows the configuration. The
oracle:allGraphs predicate denotes that the SPARQL service endpoint will serve
queries using all graphs stored in the M_NAMED_GRAPHS model.

<#oracle> rdf:type oracle:Dataset;
oracle:connection
[a oracle:OracleConnection ;
oracle:jdbcURL "jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)
(HOST=<host>)(PORT=<port>))(CONNECT_DATA=(SERVER=DEDICATED)
(SERVICE_NAME=<service_name>)))";
oracle:User "RDFUSER"
oracle:Password "<password>"
];
oracle:allGraphs [oracle:firstModel "M_NAMED_GRAPHS";
 oracle:networkOwner "RDFUSER";
 oracle:networkName "SAMPLE_NET"] .

c. Link the oracle dataset in the service section of the Fuseki configuration file:

<#service> rdf:type fuseki:Service ;
 # URI of the dataset -- http://host:port/ds
 fuseki:name "oracle" ;

 # SPARQL query services e.g. http://host:port/ds/sparql?query=...
 fuseki:serviceQuery "sparql" ;
 fuseki:serviceQuery "query" ;

Chapter 7
Setting Up the SPARQL Service

7-5

https://jena.apache.org/documentation/fuseki2/fuseki-layout.html

 # SPARQL Update service -- http://host:port/ds/update?
request=...
 fuseki:serviceUpdate "update" ; # SPARQL query
service -- /ds/update

 # Upload service -- http://host:port/ds/upload?graph=default
or ?graph=URI or ?default
 # followed by a multipart body, each part being RDF syntax.
 # Syntax determined by the file name extension.
 fuseki:serviceUpload "upload" ; # Non-SPARQL
upload service

 # SPARQL Graph store protocol (read and write)
 # GET, PUT, POST DELETE to http://host:port/ds/data?graph=
or ?default=
 fuseki:serviceReadWriteGraphStore "data" ;

 # A separate read-only graph store endpoint:
 fuseki:serviceReadGraphStore "get" ; # Graph store
protocol (read only) -- /ds/get

 fuseki:dataset <#oracle> ;
 .

The M_NAMED_GRAPHS model will be created automatically (if it does not
already exist) upon the first SPARQL query request. You can add a few example
triples and quads to test the named graph functions. For example, for a database
before Release 19.3:

SQL> CONNECT username/password
SQL> INSERT INTO m_named_graphs_tpl
VALUES(sdo_rdf_triple_s('m_named_graphs','<urn:s>','<urn:p>','<urn:o
>'));
SQL> INSERT INTO m_named_graphs_tpl
VALUES(sdo_rdf_triple_s('m_named_graphs:<urn:G1>','<urn:g1_s>','<urn
:g1_p>','<urn:g1_o>'));
SQL> INSERT INTO m_named_graphs_tpl
VALUES(sdo_rdf_triple_s('m_named_graphs:<urn:G2>','<urn:g2_s>','<urn
:g2_p>','<urn:g2_o>'));
SQL> COMMIT;

5. Go to the autodeploy directory of WebLogic Server and copy files, as follows. (For
information about automatically deploying applications in development domains,
see: http://docs.oracle.com/cd/E24329_01/web.1211/e24443/autodeploy.htm)

cd <domain_name>/autodeploy
cp -rf /tmp/jena_adapter/fuseki_web_app/fuseki.war <domain_name>/autodeploy

In the preceding example, <domain_name> is the name of a WebLogic Server
domain.

Note that while you can run a WebLogic Server domain in two different modes,
development and production, only development mode allows you use the
autodeploy feature.

Chapter 7
Setting Up the SPARQL Service

7-6

http://docs.oracle.com/cd/E24329_01/web.1211/e24443/autodeploy.htm

6. Verify your deployment by using your Web browser to connect to a URL in the following
format (assume that the Web application is deployed at port 7001): http://
<hostname>:7001/fuseki
You should see a page titled Apache Jena Fuseki, and a list of datasets on the server.
This example should show the /oracle dataset.

7. Execute the query by clicking on the Query button on the /oracle dataset and entering the
following query:

SELECT ?g ?s ?p ?o
WHERE
{ GRAPH ?g { ?s ?p ?o} }

The result should be an HTML table with four columns and two sets of result bindings.

• Client Identifiers

• Using OLTP Compression for Application Tables and Staging Tables

• N-Triples Encoding for Non-ASCII Characters

7.2.1 Client Identifiers
For every database connection created or used by the support for Apache Jena, a client
identifier is associated with the connection. The client identifier can be helpful, especially in a
Real Application Cluster (Oracle RAC) environment, for isolating RDF Semantic Graph
support for Apache Jena-related activities from other database activities when you are doing
performance analysis and tuning.

By default, the client identifier assigned is JenaAdapter. However, you can specify a different
value by setting the Java VM clientIdentifier property using the following format:

-Doracle.spatial.rdf.client.jena.clientIdentifier=<identificationString>

To start the tracing of only RDF Semantic Graph support for Apache Jena-related activities on
the database side, you can use the DBMS_MONITOR.CLIENT_ID_TRACE_ENABLE
procedure. For example:

SQL> EXECUTE DBMS_MONITOR.CLIENT_ID_TRACE_ENABLE('JenaAdapter', true, true);

7.2.2 Using OLTP Compression for Application Tables and Staging Tables
By default, the support for Apache Jena creates the application tables and any staging tables
(the latter used for bulk loading, as explained in Bulk Loading Using RDF Semantic Graph
Support for Apache Jena) using basic table compression with the following syntax:

CREATE TABLE (... column definitions ...) ... compress;

However, if you are licensed to use the Oracle Advanced Compression option no the
database, you can set the following JVM property to turn on OLTP compression, which
compresses data during all DML operations against the underlying application tables and
staging tables:

-Doracle.spatial.rdf.client.jena.advancedCompression="compress for oltp"

Chapter 7
Setting Up the SPARQL Service

7-7

7.2.3 N-Triples Encoding for Non-ASCII Characters
For any non-ASCII characters in the lexical representation of RDF resources, \uHHHH
N-Triples encoding is used when the characters are inserted into the Oracle database.
(For details about N-Triples encoding, see http://www.w3.org/TR/rdf-testcases/
#ntrip_grammar.) Encoding of the constant resources in a SPARQL query is handled
in a similar fashion.

Using \uHHHH N-Triples encoding enables support for international characters, such as
a mix of Norwegian and Swedish characters, in the Oracle database even if a
supported Unicode character set is not being used.

7.3 Setting Up the RDF Semantic Graph Environment
To use the support for Apache Jena to perform queries, you can connect as any user
(with suitable privileges) and use any models in the semantic network.

If your RDF Semantic Graph environment already meets the requirements, you can go
directly to compiling and running Java code that uses the support for Apache Jena. If
your RDF Semantic Graph environment is not yet set up to be able to use the support
for Apache Jena, you can perform actions similar to the following example steps:

1. Connect as SYSTEM:

sqlplus system/<password-for-system>
2. Create a tablespace for the system tables. For example:

CREATE TABLESPACE rdf_users datafile 'rdf_users01.dbf'
 size 128M reuse autoextend on next 64M
 maxsize unlimited segment space management auto;

3. Create a database user (for connecting to the database to use the semantic
network and the support for Apache Jena). For example:

CREATE USER rdfusr IDENTIFIED BY <password-for-udfusr>
 DEFAULT TABLESPACE rdf_users;

4. Grant the necessary privileges to this database user. For example:

GRANT connect, resource TO rdfusr;
5. Create the semantic network. For example:

For Oracle Database 18c and earlier (where all RDF metadata is stored in the
MDSYS schema):

EXECUTE sem_apis.create_sem_network('RDF_USERS');

For Oracle Database 19c and later (schema-private network):

EXECUTE sem_apis.create_sem_network('RDF_USERS', network_owner=>'RDFUSR',
network_name=>'LOCALNET');

6. To use the support for Apache Jena with your own semantic data, perform the
appropriate steps to store data, create a model, and create database indexes, as
explained in Quick Start for Using Semantic Data. Then perform queries by
compiling and running Java code; see Example Queries Using RDF Semantic
Graph Support for Apache Jena for information about example queries.

Chapter 7
Setting Up the RDF Semantic Graph Environment

7-8

http://www.w3.org/TR/rdf-testcases/#ntrip_grammar
http://www.w3.org/TR/rdf-testcases/#ntrip_grammar

To use the support for Apache Jena with supplied example data, see Example Queries
Using RDF Semantic Graph Support for Apache Jena.

7.4 SEM_MATCH and RDF Semantic Graph Support for Apache
Jena Queries Compared

There are two ways to query semantic data stored in Oracle Database: SEM_MATCH-based
SQL statements and SPARQL queries through the support for Apache Jena.

Queries using each approach are similar in appearance, but there are important behavioral
differences. To ensure consistent application behavior, you must understand the differences
and use care when dealing with query results coming from SEM_MATCH queries and
SPARQL queries.

The following simple examples show the two approaches.

Query 1 (SEM_MATCH-based)

select s, p, o
 from table(sem_match('{?s ?p ?o}', sem_models('Test_Model'),))

Query 2 (SPARQL query through Support for Apache Jena)

select ?s ?p ?o
where {?s ?p ?o}

These two queries perform the same kind of functions; however, there are some important
differences. Query 1 (SEM_MATCH-based):

• Reads all triples out of Test_Model.

• Does not differentiate among URI, bNode, plain literals, and typed literals, and it does not
handle long literals.

• Does not unescape certain characters (such as '\n').

Query 2 (SPARQL query executed through the support for Apache Jena) also reads all triples
out of Test_Model (assume it executed a call to ModelOracleSem referring to the same
underlying Test_Model). However, Query 2:

• Reads out additional columns (as opposed to just the s, p, and o columns with the
SEM_MATCH table function), to differentiate URI, bNodes, plain literals, typed literals,
and long literals. This is to ensure proper creation of Jena Node objects.

• Unescapes those characters that are escaped when stored in Oracle Database

Blank node handling is another difference between the two approaches:

• In a SEM_MATCH-based query, blank nodes are always treated as constants.

• In a SPARQL query, a blank node that is not wrapped inside < and > is treated as a
variable when the query is executed through the support for Apache Jena. This matches
the SPARQL standard semantics. However, a blank node that is wrapped inside < and >
is treated as a constant when the query is executed, and the support for Apache Jena
adds a proper prefix to the blank node label as required by the underlying data modeling.

The maximum length for the name of a semantic model created using the support for Apache
Jena API is 22 characters.

Chapter 7
SEM_MATCH and RDF Semantic Graph Support for Apache Jena Queries Compared

7-9

7.5 Retrieving User-Friendly Java Objects from
SEM_MATCH or SQL-Based Query Results

You can query a semantic graph using any of the following approaches.

• SPARQL (through Java methods or web service end point)

• SEM_MATCH (table function that has SPARQL queries embedded)

• SQL (by querying the MDSYS.RDFM_<model> view and joining with
MDSYS.RDF_VALUE$ and/or other tables; or if using schema private networks,
by querying the <user>.<network_name>#RDFM<model> view and joining with
<user>.<network_name>#RDF_VALUE$ and/or other tables)

For Java developers, the results from the first approach are easy to consume. The
results from the second and third approaches, however, can be difficult for Java
developers because you must parse various columns to get properly typed Java
objects that are mapped from typed RDF literals. RDF Semantic Graph support for
Apache Jena supports several methods and helper functions to simplify the task of
getting properly typed Java objects from a JDBC result set. These methods and helper
functions are shown in the following examples:

• Example 7-1

• Example 7-2

• Example 7-3

These examples use a test table TGRAPH_TPL (and model TGRAPH based on it),
into which a set of typed literals is added, as in the following code:

create table tgraph_tpl(triple sdo_rdf_triple_s);
exec sem_apis.create_sem_model('tgraph','tgraph_tpl','triple');
truncate table tgraph_tpl;

-- Add some triples
insert into tgraph_tpl values(sdo_rdf_triple_s('tgraph','<urn:s1>','<urn:p1>', '<urn:o1>'));
insert into tgraph_tpl values(sdo_rdf_triple_s('tgraph','<urn:s2>','<urn:p2>', '"hello world"'));
insert into tgraph_tpl values(sdo_rdf_triple_s('tgraph','<urn:s3>','<urn:p3>', '"hello
world"@en'));
insert into tgraph_tpl values(sdo_rdf_triple_s('tgraph','<urn:s4>','<urn:p4>', '" o1o "^^<http://
www.w3.org/2001/XMLSchema#string>'));
insert into tgraph_tpl values(sdo_rdf_triple_s('tgraph','<urn:s4>','<urn:p4>', '"xyz"^^<http://
mytype>'));
insert into tgraph_tpl values(sdo_rdf_triple_s('tgraph','<urn:s5>','<urn:p5>', '"123"^^<http://
www.w3.org/2001/XMLSchema#integer>'));
insert into tgraph_tpl values(sdo_rdf_triple_s('tgraph','<urn:s5>','<urn:p5>',
'"123.456"^^<http://www.w3.org/2001/XMLSchema#double>'));
insert into tgraph_tpl values(sdo_rdf_triple_s('tgraph','<urn:s6>','<urn:p6>', '_:bn1'));

-- Add some quads
insert into tgraph_tpl values(sdo_rdf_triple_s('tgraph:<urn:g1>','<urn:s1>','<urn:p1>',
'<urn:o1>'));
insert into tgraph_tpl values(sdo_rdf_triple_s('tgraph:<urn:g2>','<urn:s1>','<urn:p1>',
'<urn:o1>'));
insert into tgraph_tpl values(sdo_rdf_triple_s('tgraph:<urn:g2>','<urn:s2>','<urn:p2>', '"hello
world"'));
insert into tgraph_tpl values(sdo_rdf_triple_s('tgraph:<urn:g2>','<urn:s3>','<urn:p3>', '"hello
world"@en'));

Chapter 7
Retrieving User-Friendly Java Objects from SEM_MATCH or SQL-Based Query Results

7-10

insert into tgraph_tpl values(sdo_rdf_triple_s('tgraph:<urn:g2>','<urn:s4>','<urn:p4>', '" o1o
"^^<http://www.w3.org/2001/XMLSchema#string>'));
insert into tgraph_tpl values(sdo_rdf_triple_s('tgraph:<urn:g2>','<urn:s4>','<urn:p4>', '"xyz"^^<http://
mytype>'));
insert into tgraph_tpl values(sdo_rdf_triple_s('tgraph:<urn:g2>','<urn:s5>','<urn:p5>', '"123"^^<http://
www.w3.org/2001/XMLSchema#integer>'));
insert into tgraph_tpl values(sdo_rdf_triple_s('tgraph:<urn:g2>','<urn:s5>','<urn:p5>',
'"123.456"^^<http://www.w3.org/2001/XMLSchema#double>'));
insert into tgraph_tpl values(sdo_rdf_triple_s('tgraph:<urn:g2>','<urn:s6>','<urn:p6>', '_:bn1'));
insert into tgraph_tpl values(sdo_rdf_triple_s('tgraph:<urn:g2>','<urn:s7>','<urn:p7>',
'"2002-10-10T12:00:00-05:00"^^<http://www.w3.org/2001/XMLSchema#dateTime>'));

Example 7-1 SQL-Based Graph Query

Example 7-1 runs a pure SQL-based graph query and constructs Jena objects.

iTimeout = 0; // no time out
iDOP = 1; // degree of parallelism
iStartColPos = 2;
queryString = "select 'hello'||rownum as extra,
o.VALUE_TYPE,o.LITERAL_TYPE,o.LANGUAGE_TYPE,o.LONG_VALUE,o.VALUE_NAME "
 + " from mdsys.rdfm_tgraph g, mdsys.rdf_value$ o where
g.canon_end_node_id = o.value_id";

rs = oracle.executeQuery(queryString, iTimeout, iDOP, bindValues);

while (rs.next()) {
 node = OracleSemIterator.retrieveNodeFromRS(rs, iStartColPos,
OracleSemQueryPlan.CONST_FIVE_COL, translator);
 System.out.println("Result " + node.getClass().getName() + " = " + node + " " +
rs.getString(1));
}

Example 7-1 might generate the following output:

Result org.apache.jena.graph.Node_Literal = "123"^^http://www.w3.org/2001/
XMLSchema#decimal hello1
Result org.apache.jena.graph.Node_Literal = "123"^^http://www.w3.org/2001/
XMLSchema#decimal hello2
Result org.apache.jena.graph.Node_URI = urn:o1 hello3
Result org.apache.jena.graph.Node_URI = urn:o1 hello4
Result org.apache.jena.graph.Node_URI = urn:o1 hello5
Result org.apache.jena.graph.Node_Literal = "hello world" hello6
Result org.apache.jena.graph.Node_Literal = "hello world" hello7
Result org.apache.jena.graph.Node_Literal = "hello world"@en hello8
Result org.apache.jena.graph.Node_Literal = "hello world"@en hello9
Result org.apache.jena.graph.Node_Literal = " o1o " hello10
Result org.apache.jena.graph.Node_Literal = " o1o " hello11
Result org.apache.jena.graph.Node_Literal = "xyz"^^http://mytype hello12
Result org.apache.jena.graph.Node_Literal = "xyz"^^http://mytype hello13
Result org.apache.jena.graph.Node_Literal = "1.23456E2"^^http://www.w3.org/2001/
XMLSchema#double hello14
Result org.apache.jena.graph.Node_Literal = "1.23456E2"^^http://www.w3.org/2001/
XMLSchema#double hello15
Result org.apache.jena.graph.Node_Blank = m15mbn1 hello16
Result org.apache.jena.graph.Node_Blank = m15g3C75726E3A67323Egmbn1 hello17
Result org.apache.jena.graph.Node_Literal = "2002-10-10T17:00:00Z"^^http://www.w3.org/
2001/XMLSchema#dateTime hello18

Chapter 7
Retrieving User-Friendly Java Objects from SEM_MATCH or SQL-Based Query Results

7-11

Example 7-2 Hybrid Query Mixing SEM_MATCH with Regular SQL Constructs

Example 7-2 uses the OracleSemIterator.retrieveNodeFromRS API to construct a
Jena object by reading the five consecutive columns (in the exact order of value type,
literal type, language type, long value, and value name), and by performing the
necessary unescaping and object instantiations. This example bypasses
SEM_MATCH and directly joins the graph view with MDSYS.RDF_VALUE$.

iStartColPos = 1;
queryString = "select g$RDFVTYP, g, count(1) as cnt "
 + " from table(sem_match('{ GRAPH ?g { ?s ?p ?
o . } }',sem_models('tgraph'),null,null,null,null,null)) "
 + " group by g$RDFVTYP, g";

rs = oracle.executeQuery(queryString, iTimeout, iDOP, bindValues);
while (rs.next()) {
 node = OracleSemIterator.retrieveNodeFromRS(rs, iStartColPos,
OracleSemQueryPlan.CONST_TWO_COL, translator);
 System.out.println("Result " + node.getClass().getName() + " = " + node + " "
+ rs.getInt(iStartColPos + 2));
}

Example 7-2 might generate the following output:

Result org.apache.jena.graph.Node_URI = urn:g2 9
Result org.apache.jena.graph.Node_URI = urn:g1 1

In Example 7-2:

• The helper function executeQuery in the Oracle class is used to run the SQL
statement, and the OracleSemIterator.retrieveNodeFromRS API (also used in
Example 7-1) is used to construct Jena objects.

• Only two columns are used in the output: value type (g$RDFVTYP) and value
name (g), it is known that this g variable can never be a literal RDF resource.

• The column order is significant. For a two-column variable, the first column must
be the value type and the second column must be the value name.

Example 7-3 SEM_MATCH Query

Example 7-3 runs a SEM_MATCH query and constructs an iterator (instance of
OracleSemIterator) that returns a list of Jena objects.

queryString = "select g$RDFVTYP, g, s$RDFVTYP, s, p$RDFVTYP, p,
o$RDFVTYP,o$RDFLTYP,o$RDFLANG,o$RDFCLOB,o "
 + " from table(sem_match('{ GRAPH ?g { ?s ?p ?
o . } }',sem_models('tgraph'),null,null,null,null,null))";

guide = new ArrayList<String>();
guide.add(OracleSemQueryPlan.CONST_TWO_COL);
guide.add(OracleSemQueryPlan.CONST_TWO_COL);
guide.add(OracleSemQueryPlan.CONST_TWO_COL);
guide.add(OracleSemQueryPlan.CONST_FIVE_COL);

rs = oracle.executeQuery(queryString, iTimeout, iDOP, bindValues);
osi = new OracleSemIterator(rs);
osi.setGuide(guide);
osi.setTranslator(translator);

while (osi.hasNext()) {
 result = osi.next();

Chapter 7
Retrieving User-Friendly Java Objects from SEM_MATCH or SQL-Based Query Results

7-12

 System.out.println("Result " + result.getClass().getName() + " = " + result);
}

Example 7-3 might generate the following output:

Result oracle.spatial.rdf.client.jena.Domain = <domain 0:urn:g2 1:urn:s5 2:urn:p5
3:"123"^^http://www.w3.org/2001/XMLSchema#decimal>
Result oracle.spatial.rdf.client.jena.Domain = <domain 0:urn:g2 1:urn:s5 2:urn:p5
3:"1.23456E2"^^http://www.w3.org/2001/XMLSchema#double>
Result oracle.spatial.rdf.client.jena.Domain = <domain 0:urn:g2 1:urn:s7 2:urn:p7
3:"2002-10-10T17:00:00Z"^^http://www.w3.org/2001/XMLSchema#dateTime>
Result oracle.spatial.rdf.client.jena.Domain = <domain 0:urn:g2 1:urn:s2 2:urn:p2
3:"hello world">
Result oracle.spatial.rdf.client.jena.Domain = <domain 0:urn:g2 1:urn:s4 2:urn:p4 3:"
o1o ">
Result oracle.spatial.rdf.client.jena.Domain = <domain 0:urn:g2 1:urn:s4 2:urn:p4
3:"xyz"^^http://mytype>
Result oracle.spatial.rdf.client.jena.Domain = <domain 0:urn:g2 1:urn:s6 2:urn:p6
3:m15g3C75726E3A67323Egmbn1>
Result oracle.spatial.rdf.client.jena.Domain = <domain 0:urn:g2 1:urn:s1 2:urn:p1
3:urn:o1>
Result oracle.spatial.rdf.client.jena.Domain = <domain 0:urn:g1 1:urn:s1 2:urn:p1
3:urn:o1>
Result oracle.spatial.rdf.client.jena.Domain = <domain 0:urn:g2 1:urn:s3 2:urn:p3
3:"hello world"@en>

In Example 7-3:

• OracleSemIterator takes in a JDBC result set. OracleSemIterator needs guidance on
parsing all the columns that represent the bind values of SPARQL variables. A guide is
simply a list of string values. Two constants have been defined to differentiate a 2-column
variable (for subject or predicate position) from a 5-column variable (for object position).
A translator is also required.

• Four variables are used in the output. The first three variables are not RDF literal
resources, so CONST_TWO_COL is used as their guide. The last variable can be an
RDF literal resource, so CONST_FIVE_COL is used as its guide.

• The column order is significant, and it must be as shown in the example.

7.6 Optimized Handling of SPARQL Queries
This section describes some performance-related features of the support for Apache Jena
that can enhance SPARQL query processing. These features are performed automatically by
default.

It assumes that you are familiar with SPARQL, including the CONSTRUCT feature and
property paths.

• Compilation of SPARQL Queries to a Single SEM_MATCH Call

• Optimized Handling of Property Paths

7.6.1 Compilation of SPARQL Queries to a Single SEM_MATCH Call
SPARQL queries involving DISTINCT, OPTIONAL, FILTER, UNION, ORDER BY, and LIMIT
are converted to a single Oracle SEM_MATCH table function. If a query cannot be converted
directly to SEM_MATCH because it uses SPARQL features not supported by SEM_MATCH
(for example, CONSTRUCT), the support for Apache Jena employs a hybrid approach and

Chapter 7
Optimized Handling of SPARQL Queries

7-13

tries to execute the largest portion of the query using a single SEM_MATCH function
while executing the rest using the Jena ARQ query engine.

For example, the following SPARQL query is directly translated to a single
SEM_MATCH table function:

PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?person ?name
 WHERE {
 {?alice foaf:knows ?person . }
 UNION {
 ?person ?p ?name. OPTIONAL { ?person ?x ?name1 }
 }
 }

However, the following example query is not directly translatable to a single
SEM_MATCH table function because of the CONSTRUCT keyword:

PREFIX vcard: <http://www.w3.org/2001/vcard-rdf/3.0#>
CONSTRUCT { <http://example.org/person#Alice> vcard:FN ?obj }
 WHERE { { ?x <http://pred/a> ?obj.}
 UNION
 { ?x <http://pred/b> ?obj.} }

In this case, the support for Apache Jena converts the inner UNION query into a single
SEM_MATCH table function, and then passes on the result set to the Jena ARQ query
engine for further evaluation.

7.6.2 Optimized Handling of Property Paths
As defined in Jena, a property path is a possible route through an RDF graph between
two graph nodes. Property paths are an extension of SPARQL and are more
expressive than basic graph pattern queries, because regular expressions can be
used over properties for pattern matching RDF graphs. For more information about
property paths, see the documentation for the Jena ARQ query engine.

RDF Semantic Graph support for Apache Jena supports all Jena property path types
through the integration with the Jena ARQ query engine, but it converts some common
path types directly to native SQL hierarchical queries (not based on SEM_MATCH) to
improve performance. The following types of property paths are directly converted to
SQL by the support for Apache Jena when dealing with triple data:

• Predicate alternatives: (p1 | p2 | … | pn) where pi is a property URI

• Predicate sequences: (p1 / p2 / … / pn) where pi is a property URI

• Reverse paths : (^ p) where p is a predicate URI

• Complex paths: p+, p*, p{0, n} where p could be an alternative, sequence, reverse
path, or property URI

Path expressions that cannot be captured in this grammar are not translated directly to
SQL by the support for Apache Jena, and they are answered using the Jena query
engine.

The following example contains a code snippet using a property path expression with
path sequences:

Chapter 7
Optimized Handling of SPARQL Queries

7-14

String m = "PROP_PATH";

ModelOracleSem model = ModelOracleSem.createOracleSemModel(oracle, m);

GraphOracleSem graph = new GraphOracleSem(oracle, m);

// populate the RDF Graph
 graph.add(Triple.create(Node.createURI("http://a"),
 Node.createURI("http://p1"),
 Node.createURI("http://b")));

graph.add(Triple.create(Node.createURI("http://b"),
 Node.createURI("http://p2"),
 Node.createURI("http://c")));

graph.add(Triple.create(Node.createURI("http://c"),
 Node.createURI("http://p5"),
 Node.createURI("http://d")));

String query =
" SELECT ?s " +
" WHERE {?s (<http://p1>/<http://p2>/<http://p5>)+ <http://d>.}";

QueryExecution qexec =
 QueryExecutionFactory.create(QueryFactory.create(query,
 Syntax.syntaxARQ), model);

try {
 ResultSet results = qexec.execSelect();
 ResultSetFormatter.out(System.out, results);
}
finally {
 if (qexec != null)
 qexec.close();
}

OracleUtils.dropSemanticModel(oracle, m);
model.close();

7.7 Additions to the SPARQL Syntax to Support Other Features
RDF Semantic Graph support for Apache Jena allows you to pass in hints and additional
query options. It implements these capabilities by overloading the SPARQL namespace prefix
syntax by using Oracle-specific namespaces that contain query options.

The namespaces are in the form PREFIX ORACLE_SEM_xx_NS, where xx indicates the type of
feature (such as HT for hint or AP for additional predicate)

• SQL Hints

• Using Bind Variables in SPARQL Queries

• Additional WHERE Clause Predicates

• Additional Query Options

• Midtier Resource Caching

Chapter 7
Additions to the SPARQL Syntax to Support Other Features

7-15

7.7.1 SQL Hints
SQL hints can be passed to a SEM_MATCH query including a line in the following
form:

PREFIX ORACLE_SEM_HT_NS: <http://oracle.com/semtech#hint>

Where hint can be any hint supported by SEM_MATCH. For example:

PREFIX ORACLE_SEM_HT_NS: <http://oracle.com/semtech#leading(t0,t1)>
SELECT ?book ?title ?isbn
WHERE { ?book <http://title> ?title. ?book <http://ISBN> ?isbn }

In this example, t0,t1 refers to the first and second patterns in the query.

Note the slight difference in specifying hints when compared to SEM_MATCH. Due to
restrictions of namespace value syntax, a comma (,) must be used to separate t0 and
t1 (or other hint components) instead of a space.

For more information about using SQL hints, see Using the SEM_MATCH Table
Function to Query Semantic Data, specifically the material about the HINT0 keyword in
the options attribute.

7.7.2 Using Bind Variables in SPARQL Queries
In Oracle Database, using bind variables can reduce query parsing time and increase
query efficiency and concurrency. Bind variable support in SPARQL queries is
provided through namespace pragma specifications similar to ORACLE_SEM_FS_NS.

Consider a case where an application runs two SPARQL queries, where the second
(Query 2) depends on the partial or complete results of the first (Query 1). Some
approaches that do not involve bind variables include:

• Iterating through results of Query 1 and generating a set of queries. (However, this
approach requires as many queries as the number of results of Query 1.)

• Constructing a SPARQL filter expression based on results of Query 1.

• Treating Query 1 as a subquery.

Another approach in this case is to use bind variables, as in the following sample
scenario:

Query 1:

 SELECT ?x
 WHERE { ... <some complex query> ... };

Query 2:

 SELECT ?subject ?x
 WHERE {?subject <urn:related> ?x .};

The following example shows Query 2 with the syntax for using bind variables with the
support for Apache Jena:

PREFIX ORACLE_SEM_FS_NS: <http://oracle.com/semtech#no_fall_back,s2s>
PREFIX ORACLE_SEM_UEAP_NS: <http://oracle.com/semtech#x$RDFVID%20in(?,?,?)>

Chapter 7
Additions to the SPARQL Syntax to Support Other Features

7-16

PREFIX ORACLE_SEM_UEPJ_NS: <http://oracle.com/semtech#x$RDFVID>
PREFIX ORACLE_SEM_UEBV_NS: <http://oracle.com/semtech#1,2,3>
SELECT ?subject ?x
WHERE {
 ?subject <urn:related> ?x
};

This syntax includes using the following namespaces:

• ORACLE_SEM_UEAP_NS is like ORACLE_SEM_AP_NS, but the value portion of
ORACLE_SEM_UEAP_NS is URL Encoded. Before the value portion is used, it must be
URL decoded, and then it will be treated as an additional predicate to the SPARQL query.

In this example, after URL decoding, the value portion (following the # character) of this
ORACLE_SEM_UEAP_NS prefix becomes "x$RDFVID in(?,?,?)". The three question
marks imply a binding to three values coming from Query 1.

• ORACLE_SEM_UEPJ_NS specifies the additional projections involved. In this case,
because ORACLE_SEM_UEAP_NS references the x$RDFVID column, which does not
appear in the SELECT clause of the query, it must be specified. Multiple projections are
separated by commas.

• ORACLE_SEM_UEBV_NS specifies the list of bind values that are URL encoded first,
and then concatenated and delimited by commas.

Conceptually, the preceding example query is equivalent to the following non-SPARQL syntax
query, in which 1, 2, and 3 are treated as bind values:

SELECT ?subject ?x
 WHERE {
 ?subject <urn:related> ?x
 }
 AND ?x$RDFVID in (1,2,3);

In the preceding SPARQL example of Query 2, the three integers 1, 2, and 3 come from
Query 1. You can use the oext:build-uri-for-id function to generate such internal integer
IDs for RDF resources. The following example gets the internal integer IDs from Query 1:

PREFIX oext: <http://oracle.com/semtech/jena-adaptor/ext/function#>
SELECT ?x (oext:build-uri-for-id(?x) as ?xid)
WHERE { ... <some complex query> ... };

The values of ?xid have the form of <rdfvid:integer-value>. The application can strip out the
angle brackets and the "rdfvid:" strings to get the integer values and pass them to Query 2.

Consider another case, with a single query structure but potentially many different constants.
For example, the following SPARQL query finds the hobby for each user who has a hobby
and who logs in to an application. Obviously, different users will provide different <uri> values
to this SPARQL query, because users of the application are represented using different URIs.

SELECT ?hobby
 WHERE { <uri> <urn:hasHobby> ?hobby };

One approach, which would not use bind variables, is to generate a different SPARQL query
for each different <uri> value. For example, user Jane Doe might trigger the execution of the
following SPARQL query:

SELECT ?hobby WHERE {
<http://www.example.com/Jane_Doe> <urn:hasHobby> ?hobby };

Chapter 7
Additions to the SPARQL Syntax to Support Other Features

7-17

However, another approach is to use bind variables, as in the following example
specifying user Jane Doe:

PREFIX ORACLE_SEM_FS_NS: <http://oracle.com/semtech#no_fall_back,s2s>
PREFIX ORACLE_SEM_UEAP_NS: <http://oracle.com/
semtech#subject$RDFVID%20in(ORACLE_ORARDF_RES2VID(?))>
PREFIX ORACLE_SEM_UEPJ_NS: <http://oracle.com/semtech#subject$RDFVID>
PREFIX ORACLE_SEM_UEBV_NS: <http://oracle.com/
semtech#http%3a%2f%2fwww.example.com%2fJohn_Doe>
SELECT ?subject ?hobby
 WHERE {
 ?subject <urn:hasHobby> ?hobby
 };

Conceptually, the preceding example query is equivalent to the following non-SPARQL
syntax query, in which http://www.example.com/Jane_Doe is treated as a bind
variable:

SELECT ?subject ?hobby
WHERE {
 ?subject <urn:hasHobby> ?hobby
}
AND ?subject$RDFVID in (ORACLE_ORARDF_RES2VID('http://www.example.com/
Jane_Doe'));

In this example, ORACLE_ORARDF_RES2VID is a function that translates URIs and
literals into their internal integer ID representation. This function is created
automatically when the support for Apache Jena is used to connect to an Oracle
database.

7.7.3 Additional WHERE Clause Predicates
The SEM_MATCH filter attribute can specify additional selection criteria as a string
in the form of a WHERE clause without the WHERE keyword. Additional WHERE
clause predicates can be passed to a SEM_MATCH query including a line in the
following form:

PREFIX ORACLE_SEM_AP_NS: <http://oracle.com/semtech#pred>

Where pred reflects the WHERE clause content to be appended to the query. For
example:

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX ORACLE_SEM_AP_NS:<http://www.oracle.com/semtech#label$RDFLANG='fr'>
SELECT DISTINCT ?inst ?label
 WHERE { ?inst a <http://someCLass>. ?inst rdfs:label ?label . }
 ORDER BY (?label) LIMIT 20

In this example, a restriction is added to the query that the language type of the label
variable must be 'fr'.

7.7.4 Additional Query Options
Additional query options can be passed to a SEM_MATCH query including a line in the
following form:

PREFIX ORACLE_SEM_FS_NS: <http://oracle.com/semtech#option>

Chapter 7
Additions to the SPARQL Syntax to Support Other Features

7-18

Where option reflects a query option (or multiple query options delimited by commas) to be
appended to the query. For example:

PREFIX ORACLE_SEM_FS_NS:
<http://oracle.com/semtech#timeout=3,dop=4,INF_ONLY,ORDERED,ALLOW_DUP=T>
SELECT * WHERE {?subject ?property ?object }

The following query options are supported:

• ALLOW_DUP=t chooses a faster way to query multiple semantic models, although duplicate
results may occur.

• BEST_EFFORT_QUERY=t, when used with the TIMEOUT=n option, returns all matches found
in n seconds for the SPARQL query.

• DEGREE=n specifies, at the statement level, the degree of parallelism (n) for the query.
With multi-core or multi-CPU processors, experimenting with different DOP values (such
as 4 or 8) may improve performance.

Contrast DEGREE with DOP, which specifies parallelism at the session level. DEGREE is
recommended over DOP for use with the support for Apache Jena, because DEGREE
involves less processing overhead.

• DOP=n specifies, at the session level, the degree of parallelism (n) for the query. With
multi-core or multi-CPU processors, experimenting with different DOP values (such as 4 or
8) may improve performance.

• FETCH_SIZE=n specifies the JDBC fetch size parameter (the number of rows to be read
from the result set and put in memory on one trip to the database). This parameter can
be used to improve performance. A higher value means fewer trips to the database to
retrieve all results. The default value is 1000.

• INF_ONLY causes only the inferred model to be queried.

• JENA_EXECUTOR disables the compilation of SPARQL queries to SEM_MATCH (or native
SQL); instead, the Jena native query executor will be used.

• JOIN=n specifies how results from a SPARQL SERVICE call to a federated query can be
joined with other parts of the query. For information about federated queries and the JOIN
option, see JOIN Option and Federated Queries.

• NO_FALL_BACK causes the underlying query execution engine not to fall back on the Jena
execution mechanism if a SQL exception occurs.

• ODS=n specifies, at the statement level, the level of dynamic sampling. (For an
explanation of dynamic sampling, see the section about estimating statistics with dynamic
sampling in Oracle Database SQL Tuning Guide.) Valid values for n are 1 through 10. For
example, you could try ODS=3 for complex queries.

• ORDERED is translated to a LEADING SQL hint for the query triple pattern joins, while
performing the necessary RDF_VALUE$ joins last.

• PLAIN_SQL_OPT=F disables the native compilation of queries directly to SQL.

• QID=n specifies a query ID number; this feature can be used to cancel the query if it is not
responding.

• RESULT_CACHE uses the Oracle RESULT_CACHE directive for the query.

• REWRITE=F disables ODCI_Table_Rewrite for the SEM_MATCH table function.

• S2S (SPARQL to pure SQL) causes the underlying SEM_MATCH-based query or queries
generated based on the SPARQL query to be further converted into SQL queries without

Chapter 7
Additions to the SPARQL Syntax to Support Other Features

7-19

using the SEM_MATCH table function. The resulting SQL queries are executed by
the Oracle cost-based optimizer, and the results are processed by the support for
Apache Jena before being passed on to the client. For more information about the
S2S option, including benefits and usage information, see S2S Option Benefits and
Usage Information.

S2S is enabled by default for all SPARQL queries. If you want to disable S2S, set
the following JVM system property:

-Doracle.spatial.rdf.client.jena.defaultS2S=false
• SKIP_CLOB=T causes CLOB values not to be returned for the query.

• STRICT_DEFAULT=F allows the default graph to include triples in named graphs. (By
default, STRICT_DEFAULT=T restricts the default graph to unnamed triples when no
data set information is specified.)

• TIMEOUT=n (query timeout) specifies the number of seconds (n) that the query will
run until it is terminated. The underlying SQL generated from a SPARQL query
can return many matches and can use features like subqueries and assignments,
all of which can take considerable time. The TIMEOUT and BEST_EFFORT_QUERY=t
options can be used to prevent what you consider excessive processing time for
the query.

• JOIN Option and Federated Queries

• S2S Option Benefits and Usage Information

7.7.4.1 JOIN Option and Federated Queries
A SPARQL federated query, as described in W3C documents, is a query "over
distributed data" that entails "querying one source and using the acquired information
to constrain queries of the next source." For more information, see SPARQL 1.1
Federation Extensions (http://www.w3.org/2009/sparql/docs/fed/service).

You can use the JOIN option (described in Additional Query Options) and the
SERVICE keyword in a federated query that uses the support for Apache Jena. For
example, assume the following query:

SELECT ?s ?s1 ?o
 WHERE { ?s1 ?p1 ?s .
 {
 SERVICE <http://sparql.org/books> { ?s ?p ?o }
 }
 }

If the local query portion (?s1 ?p1 ?s,) is very selective, you can specify join=2, as
shown in the following query:

PREFIX ORACLE_SEM_FS_NS: <http://oracle.com/semtech#join=2>
SELECT ?s ?s1 ?o
 WHERE { ?s1 ?p1 ?s .
 {
 SERVICE <http://sparql.org/books> { ?s ?p ?o }
 }
 }

In this case, the local query portion (?s1 ?p1 ?s,) is executed locally against the
Oracle database. Each binding of ?s from the results is then pushed into the SERVICE

Chapter 7
Additions to the SPARQL Syntax to Support Other Features

7-20

http://www.w3.org/2009/sparql/docs/fed/service

part (remote query portion), and a call is made to the service endpoint specified.
Conceptually, this approach is somewhat like nested loop join.

If the remote query portion (?s ?s1 ?o) is very selective, you can specify join=3, as shown in
the following query, so that the remote portion is executed first and results are used to drive
the execution of local portion:

PREFIX ORACLE_SEM_FS_NS: <http://oracle.com/semtech#join=3>
SELECT ?s ?s1 ?o
 WHERE { ?s1 ?p1 ?s .
 {
 SERVICE <http://sparql.org/books> { ?s ?p ?o }
 }
 }

In this case, a single call is made to the remote service endpoint and each binding of ?s
triggers a local query. As with join=2, this approach is conceptually a nested loop based join,
but the difference is that the order is switched.

If neither the local query portion nor the remote query portion is very selective, then we can
choose join=1, as shown in the following query:

PREFIX ORACLE_SEM_FS_NS: <http://oracle.com/semtech#join=1>
SELECT ?s ?s1 ?o
 WHERE { ?s1 ?p1 ?s .
 {
 SERVICE <http://sparql.org/books> { ?s ?p ?o }
 }
 }

In this case, the remote query portion and the local portion are executed independently, and
the results are joined together by Jena. Conceptually, this approach is somewhat like a hash
join.

For debugging or tracing federated queries, you can use the HTTP Analyzer in Oracle
JDeveloper to see the underlying SERVICE calls.

7.7.4.2 S2S Option Benefits and Usage Information
The S2S option, described in Additional Query Options, provides the following potential
benefits:

• It works well with the RESULT_CACHE option to improve query performance. Using the S2S
and RESULT_CACHE options is especially helpful for queries that are executed frequently.

• It reduces the parsing time of the SEM_MATCH table function, which can be helpful for
applications that involve many dynamically generated SPARQL queries.

• It eliminates the limit of 4000 bytes for the query body (the first parameter of the
SEM_MATCH table function), which means that longer, more complex queries are
supported.

The S2S option causes an internal in-memory cache to be used for translated SQL query
statements. The default size of this internal cache is 1024 (that is, 1024 SQL queries);
however, you can adjust the size by using the following Java VM property:

-Doracle.spatial.rdf.client.jena.queryCacheSize=<size>

Chapter 7
Additions to the SPARQL Syntax to Support Other Features

7-21

7.7.5 Midtier Resource Caching
When semantic data is stored, all of the resource values are hashed into IDs, which
are stored in the triples table. The mappings from value IDs to full resource values are
stored in the MDSYS.RDF_VALUE$ table or the schema-private RDF_VALUE$ table.
At query time, for each selected variable, Oracle Database must perform a join with
the RDF_VALUE$ table to retrieve the resource.

However, to reduce the number of joins, you can use the midtier cache option, which
causes an in-memory cache on the middle tier to be used for storing mappings
between value IDs and resource values. To use this feature, include the following
PREFIX pragma in the SPARQL query:

PREFIX ORACLE_SEM_FS_NS: <http://oracle.com/semtech#midtier_cache>

To control the maximum size (in bytes) of the in-memory cache, use the
oracle.spatial.rdf.client.jena.cacheMaxSize system property. The default cache
maximum size is 1GB.

Midtier resource caching is most effective for queries using ORDER BY or DISTINCT
(or both) constructs, or queries with multiple projection variables. Midtier cache can be
combined with the other options specified in Additional Query Options.

If you want to pre-populate the cache with all of the resources in a model, use the
GraphOracleSem.populateCache or DatasetGraphOracleSem.populateCache method.
Both methods take a parameter specifying the number of threads used to build the
internal midtier cache. Running either method in parallel can significantly increase the
cache building performance on a machine with multiple CPUs (cores).

7.8 Functions Supported in SPARQL Queries through RDF
Semantic Graph Support for Apache Jena

SPARQL queries through the support for Apache Jena can use the following kinds of
functions.

• Functions in the function library of the Jena ARQ query engine

• Native Oracle Database functions for projected variables

• User-defined functions

• Functions in the ARQ Function Library

• Native Oracle Database Functions for Projected Variables

• User-Defined Functions

7.8.1 Functions in the ARQ Function Library
SPARQL queries through the support for Apache Jena can use functions in the
function library of the Jena ARQ query engine. These queries are executed in the
middle tier.

Chapter 7
Functions Supported in SPARQL Queries through RDF Semantic Graph Support for Apache Jena

7-22

The following examples use the upper-case and namespace functions. In these examples, the
prefix fn is <http://www.w3.org/2005/xpath-functions#> and the prefix afn is <http://
jena.hpl.hp.com/ARQ/function#>.

PREFIX fn: <http://www.w3.org/2005/xpath-functions#>
PREFIX afn: <http://jena.hpl.hp.com/ARQ/function#>
SELECT (fn:upper-case(?object) as ?object1)
WHERE { ?subject dc:title ?object }

PREFIX fn: <http://www.w3.org/2005/xpath-functions#>
PREFIX afn: <http://jena.hpl.hp.com/ARQ/function#>
SELECT ?subject (afn:namespace(?object) as ?object1)
WHERE { ?subject <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> ?object }

7.8.2 Native Oracle Database Functions for Projected Variables
SPARQL queries through the support for Apache Jena can use native Oracle Database
functions for projected variables. These queries and the functions are executed inside the
database. Note that the functions described in this section should not be used together with
ARQ functions (described in Functions in the ARQ Function Library).

This section lists the supported native functions and provides some examples. In the
examples, the prefix oext is <http://oracle.com/semtech/jena-adaptor/ext/function#>.

Note:

In the preceding URL, note the spelling jena-adaptor, which is retained for
compatibility with existing applications and which must be used in queries. The
adapter spelling is used in regular text, to follow Oracle documentation style
guidelines.

• oext:upper-literal converts literal values (except for long literals) to uppercase. For
example:

PREFIX oext: <http://oracle.com/semtech/jena-adaptor/ext/function#>
SELECT (oext:upper-literal(?object) as ?object1)
WHERE { ?subject dc:title ?object }

• oext:lower-literal converts literal values (except for long literals) to lowercase. For
example:

PREFIX oext: <http://oracle.com/semtech/jena-adaptor/ext/function#>
SELECT (oext:lower-literal(?object) as ?object1)
WHERE { ?subject dc:title ?object }

• oext:build-uri-for-id converts the value ID of a URI, bNode, or literal into a URI form.
For example:

PREFIX oext: <http://oracle.com/semtech/jena-adaptor/ext/function#>
SELECT (oext:build-uri-for-id(?object) as ?object1)
WHERE { ?subject dc:title ?object }

An example of the output might be: <rdfvid:1716368199350136353>
One use of this function is to allow Java applications to maintain in memory a mapping of
those value IDs to the lexical form of URIs, bNodes, or literals. The
MDSYS.RDF_VALUE$ table provides such a mapping in Oracle Database.

Chapter 7
Functions Supported in SPARQL Queries through RDF Semantic Graph Support for Apache Jena

7-23

For a given variable ?var, if only oext:build-uri-for-id(?var) is projected, the
query performance is likely to be faster because fewer internal table join
operations are needed to answer the query.

• oext:literal-strlen returns the length of literal values (except for long literals).
For example:

PREFIX oext: <http://oracle.com/semtech/jena-adaptor/ext/function#>
SELECT (oext:literal-strlen(?object) as ?objlen)
WHERE { ?subject dc:title ?object }

7.8.3 User-Defined Functions
SPARQL queries through the support for Apache Jena can use user-defined functions
that are stored in the database.

In the following example, assume that you want to define a string length function
(my_strlen) that handles long literals (CLOB) as well as short literals. On the SPARQL
query side, this function can be referenced under the namespace of ouext, which is
http://oracle.com/semtech/jena-adaptor/ext/user-def-function#.

PREFIX ouext: <http://oracle.com/semtech/jena-adaptor/ext/user-def-function#>
SELECT ?subject ?object (ouext:my_strlen(?object) as ?obj1)
WHERE { ?subject dc:title ?object }

Inside the database, functions including my_strlen, my_strlen_cl, my_strlen_la,
my_strlen_lt, and my_strlen_vt are defined to implement this capability.
Conceptually, the return values of these functions are mapped as shown in Table 7-1.

Table 7-1 Functions and Return Values for my_strlen Example

Function Name Return Value

my_strlen <VAR>

my_strlen_cl <VAR>$RDFCLOB

my_strlen_la <VAR>$RDFLANG

my_strlen_lt <VAR>$RDFLTYP

my_strlen_vt <VAR>$RDFVTYP

A set of functions (five in all) is used to implement a user-defined function that can be
referenced from SPARQL, because this aligns with the internal representation of an
RDF resource (in MDSYS.RDF_VALUE$). There are five major columns describing an
RDF resource in terms of its value, language, literal type, long value, and value type,
and these five columns can be selected out using SEM_MATCH. In this context, a
user-defined function simply converts one RDF resource that is represented by five
columns to another RDF resource.

These functions are defined as follows:

create or replace function my_strlen(rdfvtyp in varchar2,
 rdfltyp in varchar2,
 rdflang in varchar2,
 rdfclob in clob,
 value in varchar2
) return varchar2
 as

Chapter 7
Functions Supported in SPARQL Queries through RDF Semantic Graph Support for Apache Jena

7-24

 ret_val varchar2(4000);
 begin
 -- value
 if (rdfvtyp = 'LIT') then
 if (rdfclob is null) then
 return length(value);
 else
 return dbms_lob.getlength(rdfclob);
 end if;
 else
 -- Assign -1 for non-literal values so that application can
 -- easily differentiate
 return '-1';
 end if;
 end;
 /

 create or replace function my_strlen_cl(rdfvtyp in varchar2,
 rdfltyp in varchar2,
 rdflang in varchar2,
 rdfclob in clob,
 value in varchar2
) return clob
 as
 begin
 return null;
 end;
 /

 create or replace function my_strlen_la(rdfvtyp in varchar2,
 rdfltyp in varchar2,
 rdflang in varchar2,
 rdfclob in clob,
 value in varchar2
) return varchar2
 as
 begin
 return null;
 end;
 /

 create or replace function my_strlen_lt(rdfvtyp in varchar2,
 rdfltyp in varchar2,
 rdflang in varchar2,
 rdfclob in clob,
 value in varchar2
) return varchar2
 as
 ret_val varchar2(4000);
 begin
 -- literal type
 return 'http://www.w3.org/2001/XMLSchema#integer';
 end;
 /

 create or replace function my_strlen_vt(rdfvtyp in varchar2,
 rdfltyp in varchar2,
 rdflang in varchar2,
 rdfclob in clob,
 value in varchar2
) return varchar2

Chapter 7
Functions Supported in SPARQL Queries through RDF Semantic Graph Support for Apache Jena

7-25

 as
 ret_val varchar2(3);
 begin
 return 'LIT';
 end;
 /

User-defined functions can also accept a parameter of VARCHAR2 type. The following
five functions together define a my_shorten_str function that accepts an integer (in
VARCHAR2 form) for the substring length and returns the substring. (The substring in
this example is 12 characters, and it must not be greater than 4000 bytes.)

-- SPARQL query that returns the first 12 characters of literal values.
--
PREFIX ouext: <http://oracle.com/semtech/jena-adaptor/ext/user-def-function#>
SELECT (ouext:my_shorten_str(?object, "12") as ?obj1) ?subject
WHERE { ?subject dc:title ?object }

create or replace function my_shorten_str(rdfvtyp in varchar2,
 rdfltyp in varchar2,
 rdflang in varchar2,
 rdfclob in clob,
 value in varchar2,
 arg in varchar2
) return varchar2
as
 ret_val varchar2(4000);
begin
 -- value
 if (rdfvtyp = 'LIT') then
 if (rdfclob is null) then
 return substr(value, 1, to_number(arg));
 else
 return dbms_lob.substr(rdfclob, to_number(arg), 1);
 end if;
 else
 return null;
 end if;
end;
/

create or replace function my_shorten_str_cl(rdfvtyp in varchar2,
 rdfltyp in varchar2,
 rdflang in varchar2,
 rdfclob in clob,
 value in varchar2,
 arg in varchar2
) return clob
as
 ret_val clob;
begin
 -- lob
 return null;
end;
/

create or replace function my_shorten_str_la(rdfvtyp in varchar2,
 rdfltyp in varchar2,
 rdflang in varchar2,
 rdfclob in clob,
 value in varchar2,

Chapter 7
Functions Supported in SPARQL Queries through RDF Semantic Graph Support for Apache Jena

7-26

 arg in varchar2
) return varchar2
as
 ret_val varchar2(4000);
begin
 -- lang
 if (rdfvtyp = 'LIT') then
 return rdflang;
 else
 return null;
 end if;
end;
/

create or replace function my_shorten_str_lt(rdfvtyp in varchar2,
 rdfltyp in varchar2,
 rdflang in varchar2,
 rdfclob in clob,
 value in varchar2,
 arg in varchar2
) return varchar2
as
 ret_val varchar2(4000);
begin
 -- literal type
 ret_val := rdfltyp;
 return ret_val;
end;
/

create or replace function my_shorten_str_vt(rdfvtyp in varchar2,
 rdfltyp in varchar2,
 rdflang in varchar2,
 rdfclob in clob,
 value in varchar2,
 arg in varchar2
) return varchar2
as
 ret_val varchar2(3);
begin
 return 'LIT';
end;
/

7.9 SPARQL Update Support
RDF Semantic Graph support for Apache Jena supports SPARQL Update (http://
www.w3.org/TR/sparql11-update/), also referred to as SPARUL.

The primary programming APIs involve the Jena class
org.apache.jena.update.UpdateAction and RDF Semantic Graph support for Apache Jena
classes GraphOracleSem and DatasetGraphOracleSem. Example 7-4 shows a SPARQL
Update operation removes all triples in named graph <http://example/graph> from the
relevant model stored in the database.

Example 7-4 Simple SPARQL Update

GraphOracleSem graphOracleSem = ;
DatasetGraphOracleSem dsgos = DatasetGraphOracleSem.createFrom(graphOracleSem);

Chapter 7
SPARQL Update Support

7-27

// SPARQL Update operation
String szUpdateAction = "DROP GRAPH <http://example/graph>";

// Execute the Update against a DatasetGraph instance (can be a Jena Model as
well)
UpdateAction.parseExecute(szUpdateAction, dsgos);

Note that Oracle Database does not keep any information about an empty named
graph. This implies if you invoke CREATE GRAPH <graph_name> without adding any
triples into this graph, then no additional rows in the application table or the underlying
RDF_LINK$ table will be created. To an Oracle database, you can safely skip the
CREATE GRAPH step, as is the case in Example 7-4.

Example 7-5 SPARQL Update with Insert and Delete Operations

Example 7-5 shows a SPARQL Update operation (from ARQ 2.8.8) involving multiple
insert and delete operations.

PREFIX : <http://example/>
CREATE GRAPH <http://example/graph> ;
INSERT DATA { :r :p 123 } ;
INSERT DATA { :r :p 1066 } ;
DELETE DATA { :r :p 1066 } ;
INSERT DATA {
 GRAPH <http://example/graph> { :r :p 123 . :r :p 1066 }
} ;
DELETE DATA {
 GRAPH <http://example/graph> { :r :p 123 }
}

After running the update operation in Example 7-5 against an empty
DatasetGraphOracleSem, running the SPARQL query SELECT ?s ?p ?o WHERE {?s ?
p ?o} generates the following response:

| s | p |
o |
===
==============
| <http://example/r> | <http://example/p> | "123"^^<http://www.w3.org/2001/
XMLSchema#decimal>

Using the same data, running the SPARQL query SELECT ?g ?s ?p ?o where
{GRAPH ?g {?s ?p ?o}} generates the following response:

--
| g | s | p |
o |
===
==
| <http://example/graph> | <http://example/r> | <http://example/p> |
"1066"^^<http://www.w3.org/2001/XMLSchema#decimal>
--

Chapter 7
SPARQL Update Support

7-28

7.10 Analytical Functions for RDF Data
You can perform analytical functions on RDF data by using the SemNetworkAnalyst class in
the oracle.spatial.rdf.client.jena package.

This support integrates the Network Data Model Graph logic with the underlying RDF data
structures. Therefore, to use analytical functions on RDF data, you must be familiar with the
Network Data Model Graph feature, which is documented in Oracle Spatial Topology and
Network Data Model Developer's Guide.

The required NDM Java libraries, including sdonm.jar and sdoutl.jar, are under the
directory $ORACLE_HOME/md/jlib. Note that xmlparserv2.jar (under $ORACLE_HOME/xdk/lib)
must be included in the classpath definition.

Example 7-6 Performing Analytical functions on RDF Data

Example 7-6 uses the SemNetworkAnalyst class, which internally uses the NDM
NetworkAnalyst API

Oracle oracle = new Oracle(jdbcUrl, user, password);
GraphOracleSem graph = new GraphOracleSem(oracle, modelName);

Node nodeA = Node.createURI("http://A");
Node nodeB = Node.createURI("http://B");
Node nodeC = Node.createURI("http://C");
Node nodeD = Node.createURI("http://D");
Node nodeE = Node.createURI("http://E");
Node nodeF = Node.createURI("http://F");
Node nodeG = Node.createURI("http://G");
Node nodeX = Node.createURI("http://X");

// An anonymous node
Node ano = Node.createAnon(new AnonId("m1"));

Node relL = Node.createURI("http://likes");
Node relD = Node.createURI("http://dislikes");
Node relK = Node.createURI("http://knows");
Node relC = Node.createURI("http://differs");

graph.add(new Triple(nodeA, relL, nodeB));
graph.add(new Triple(nodeA, relC, nodeD));
graph.add(new Triple(nodeB, relL, nodeC));
graph.add(new Triple(nodeA, relD, nodeC));

graph.add(new Triple(nodeB, relD, ano));
graph.add(new Triple(nodeC, relL, nodeD));
graph.add(new Triple(nodeC, relK, nodeE));
graph.add(new Triple(ano, relL, nodeD));
graph.add(new Triple(ano, relL, nodeF));
graph.add(new Triple(ano, relD, nodeB));

// X only likes itself
graph.add(new Triple(nodeX, relL, nodeX));

graph.commitTransaction();
HashMap<Node, Double> costMap = new HashMap<Node, Double>();
costMap.put(relL, Double.valueOf((double)0.5));
costMap.put(relD, Double.valueOf((double)1.5));

Chapter 7
Analytical Functions for RDF Data

7-29

costMap.put(relC, Double.valueOf((double)5.5));

graph.setDOP(4); // this allows the underlying LINK/NODE tables
 // and indexes to be created in parallel.

SemNetworkAnalyst sna = SemNetworkAnalyst.getInstance(
 graph, // network data source
 true, // directed graph
 true, // cleanup existing NODE and LINK table
 costMap
);

psOut.println("From nodeA to nodeC");
Node[] nodeArray = sna.shortestPathDijkstra(nodeA, nodeC);
printNodeArray(nodeArray, psOut);

psOut.println("From nodeA to nodeD");
nodeArray = sna.shortestPathDijkstra(nodeA, nodeD);
printNodeArray(nodeArray, psOut);

psOut.println("From nodeA to nodeF");
nodeArray = sna.shortestPathAStar(nodeA, nodeF);
printNodeArray(nodeArray, psOut);

psOut.println("From ano to nodeC");
nodeArray = sna.shortestPathAStar(ano, nodeC);
printNodeArray(nodeArray, psOut);

psOut.println("From ano to nodeX");
nodeArray = sna.shortestPathAStar(ano, nodeX);
printNodeArray(nodeArray, psOut);

graph.close();
oracle.dispose();
...
...

// A helper function to print out a path
public static void printNodeArray(Node[] nodeArray, PrintStream psOut)
{
 if (nodeArray == null) {
 psOut.println("Node Array is null");
 return;
 }
 if (nodeArray.length == 0) {psOut.println("Node Array is empty"); }
 int iFlag = 0;
 psOut.println("printNodeArray: full path starts");
 for (int iHops = 0; iHops < nodeArray.length; iHops++) {
 psOut.println("printNodeArray: full path item " + iHops + " = "
 + ((iFlag == 0) ? "[n] ":"[e] ") + nodeArray[iHops]);
 iFlag = 1 - iFlag;
 }
}

In Example 7-6:

• A GraphOracleSem object is constructed and a few triples are added to the
GraphOracleSem object. These triples describe several individuals and their
relationships including likes, dislikes, knows, and differs.

Chapter 7
Analytical Functions for RDF Data

7-30

• A cost mapping is constructed to assign a numeric cost value to different links/predicates
(of the RDF graph). In this case, 0.5, 1.5, and 5.5 are assigned to predicates likes,
dislikes, and differs, respectively. This cost mapping is optional. If the mapping is absent,
then all predicates will be assigned the same cost 1. When cost mapping is specified, this
mapping does not need to be complete; for predicates not included in the cost mapping,
a default value of 1 is assigned.

The output of Example 7-6 is as follows. In this output, the shortest paths are listed for the
given start and end nodes. Note that the return value of sna.shortestPathAStar(ano,
nodeX) is null because there is no path between these two nodes.

From nodeA to nodeC
printNodeArray: full path starts
printNodeArray: full path item 0 = [n] http://A ## "n" denotes
Node
printNodeArray: full path item 1 = [e] http://likes ## "e" denotes Edge (Link)
printNodeArray: full path item 2 = [n] http://B
printNodeArray: full path item 3 = [e] http://likes
printNodeArray: full path item 4 = [n] http://C

From nodeA to nodeD
printNodeArray: full path starts
printNodeArray: full path item 0 = [n] http://A
printNodeArray: full path item 1 = [e] http://likes
printNodeArray: full path item 2 = [n] http://B
printNodeArray: full path item 3 = [e] http://likes
printNodeArray: full path item 4 = [n] http://C
printNodeArray: full path item 5 = [e] http://likes
printNodeArray: full path item 6 = [n] http://D

From nodeA to nodeF
printNodeArray: full path starts
printNodeArray: full path item 0 = [n] http://A
printNodeArray: full path item 1 = [e] http://likes
printNodeArray: full path item 2 = [n] http://B
printNodeArray: full path item 3 = [e] http://dislikes
printNodeArray: full path item 4 = [n] m1
printNodeArray: full path item 5 = [e] http://likes
printNodeArray: full path item 6 = [n] http://F

From ano to nodeC
printNodeArray: full path starts
printNodeArray: full path item 0 = [n] m1
printNodeArray: full path item 1 = [e] http://dislikes
printNodeArray: full path item 2 = [n] http://B
printNodeArray: full path item 3 = [e] http://likes
printNodeArray: full path item 4 = [n] http://C

From ano to nodeX
Node Array is null

The underlying RDF graph view (SEMM_<model_name> or RDFM_<model_name>) cannot
be used directly by NDM functions, and so SemNetworkAnalyst creates necessary tables that
contain the nodes and links that are derived from a given RDF graph. These tables are not
updated automatically when the RDF graph changes; rather, you can set the cleanup
parameter in SemNetworkAnalyst.getInstance to true, to remove old node and link tables
and to rebuild updated tables.

Chapter 7
Analytical Functions for RDF Data

7-31

Example 7-7 Implementing NDM nearestNeighbors Function on Top of
Semantic Data

Example 7-7 implements the NDM nearestNeighbors function on top of semantic
data. This gets a NetworkAnalyst object from the SemNetworkAnalyst instance, gets
the node ID, creates PointOnNet objects, and processes LogicalSubPath objects.

%cat TestNearestNeighbor.java

import java.io.*;
import java.util.*;
import org.apache.jena.graph.*;
import org.apache.jena.update.*;
import oracle.spatial.rdf.client.jena.*;
import oracle.spatial.rdf.client.jena.SemNetworkAnalyst;
import oracle.spatial.network.lod.LODGoalNode;
import oracle.spatial.network.lod.LODNetworkConstraint;
import oracle.spatial.network.lod.NetworkAnalyst;
import oracle.spatial.network.lod.PointOnNet;
import oracle.spatial.network.lod.LogicalSubPath;

/**
 * This class implements a nearestNeighbors function on top of semantic data
 * using public APIs provided in SemNetworkAnalyst and Oracle Spatial NDM
 */
public class TestNearestNeighbor
{
 public static void main(String[] args) throws Exception
 {
 String szJdbcURL = args[0];
 String szUser = args[1];
 String szPasswd = args[2];

 PrintStream psOut = System.out;

 Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);

 String szModelName = "test_nn";
 // First construct a TBox and load a few axioms
 ModelOracleSem model = ModelOracleSem.createOracleSemModel(oracle,
szModelName);
 String insertString =
 " PREFIX my: <http://my.com/> " +
 " INSERT DATA " +
 " { my:A my:likes my:B . " +
 " my:A my:likes my:C . " +
 " my:A my:knows my:D . " +
 " my:A my:dislikes my:X . " +
 " my:A my:dislikes my:Y . " +
 " my:C my:likes my:E . " +
 " my:C my:likes my:F . " +
 " my:C my:dislikes my:M . " +
 " my:D my:likes my:G . " +
 " my:D my:likes my:H . " +
 " my:F my:likes my:M . " +
 " } ";
 UpdateAction.parseExecute(insertString, model);

 GraphOracleSem g = model.getGraph();
 g.commitTransaction();
 g.setDOP(4);

Chapter 7
Analytical Functions for RDF Data

7-32

 HashMap<Node, Double> costMap = new HashMap<Node, Double>();
 costMap.put(Node.createURI("http://my.com/likes"), Double.valueOf(1.0));
 costMap.put(Node.createURI("http://my.com/dislikes"), Double.valueOf(4.0));
 costMap.put(Node.createURI("http://my.com/knows"), Double.valueOf(2.0));

 SemNetworkAnalyst sna = SemNetworkAnalyst.getInstance(
 g, // source RDF graph
 true, // directed graph
 true, // cleanup old Node/Link tables
 costMap
);

 Node nodeStart = Node.createURI("http://my.com/A");
 long origNodeID = sna.getNodeID(nodeStart);

 long[] lIDs = {origNodeID};

 // translate from the original ID
 long nodeID = (sna.mapNodeIDs(lIDs))[0];

 NetworkAnalyst networkAnalyst = sna.getEmbeddedNetworkAnalyst();

 LogicalSubPath[] lsps = networkAnalyst.nearestNeighbors(
 new PointOnNet(nodeID), // startPoint
 6, // numberOfNeighbors
 1, // searchLinkLevel
 1, // targetLinkLevel
 (LODNetworkConstraint) null, // constraint
 (LODGoalNode) null // goalNodeFilter
);

 if (lsps != null) {
 for (int idx = 0; idx < lsps.length; idx++) {
 LogicalSubPath lsp = lsps[idx];
 Node[] nodePath = sna.processLogicalSubPath(lsp, nodeStart);
 psOut.println("Path " + idx);
 printNodeArray(nodePath, psOut);
 }
 }

 g.close();
 sna.close();
 oracle.dispose();
 }

 public static void printNodeArray(Node[] nodeArray, PrintStream psOut)
 {
 if (nodeArray == null) {
 psOut.println("Node Array is null");
 return;
 }
 if (nodeArray.length == 0) {
 psOut.println("Node Array is empty");
 }
 int iFlag = 0;
 psOut.println("printNodeArray: full path starts");
 for (int iHops = 0; iHops < nodeArray.length; iHops++) {
 psOut.println("printNodeArray: full path item " + iHops + " = "
 + ((iFlag == 0) ? "[n] ":"[e] ") + nodeArray[iHops]);

Chapter 7
Analytical Functions for RDF Data

7-33

 iFlag = 1 - iFlag;
 }
 }
}

The output of Example 7-7 is as follows.

Path 0
printNodeArray: full path starts
printNodeArray: full path item 0 = [n] http://my.com/A
printNodeArray: full path item 1 = [e] http://my.com/likes
printNodeArray: full path item 2 = [n] http://my.com/C

Path 1
printNodeArray: full path starts
printNodeArray: full path item 0 = [n] http://my.com/A
printNodeArray: full path item 1 = [e] http://my.com/likes
printNodeArray: full path item 2 = [n] http://my.com/B

Path 2
printNodeArray: full path starts
printNodeArray: full path item 0 = [n] http://my.com/A
printNodeArray: full path item 1 = [e] http://my.com/knows
printNodeArray: full path item 2 = [n] http://my.com/D

Path 3
printNodeArray: full path starts
printNodeArray: full path item 0 = [n] http://my.com/A
printNodeArray: full path item 1 = [e] http://my.com/likes
printNodeArray: full path item 2 = [n] http://my.com/C
printNodeArray: full path item 3 = [e] http://my.com/likes
printNodeArray: full path item 4 = [n] http://my.com/E

Path 4
printNodeArray: full path starts
printNodeArray: full path item 0 = [n] http://my.com/A
printNodeArray: full path item 1 = [e] http://my.com/likes
printNodeArray: full path item 2 = [n] http://my.com/C
printNodeArray: full path item 3 = [e] http://my.com/likes
printNodeArray: full path item 4 = [n] http://my.com/F

Path 5
printNodeArray: full path starts
printNodeArray: full path item 0 = [n] http://my.com/A
printNodeArray: full path item 1 = [e] http://my.com/knows
printNodeArray: full path item 2 = [n] http://my.com/D
printNodeArray: full path item 3 = [e] http://my.com/likes
printNodeArray: full path item 4 = [n] http://my.com/H

• Generating Contextual Information about a Path in a Graph

7.10.1 Generating Contextual Information about a Path in a Graph
It is sometimes useful to see contextual information about a path in a graph, in addition
to the path itself. The buildSurroundingSubGraph method in the SemNetworkAnalyst
class can output a DOT file (graph description language file, extension .gv) into the
specified Writer object. For each node in the path, up to ten direct neighbors are used
to produce a surrounding subgraph for the path. The following example shows the

Chapter 7
Analytical Functions for RDF Data

7-34

usage of generating a DOT file with contextual information, specifically the output from the
analytical functions used in Example 7-6.

nodeArray = sna.shortestPathDijkstra(nodeA, nodeD);
printNodeArray(nodeArray, psOut);

FileWriter dotWriter = new FileWriter("Shortest_Path_A_to_D.gv");
sna.buildSurroundingSubGraph(nodeArray, dotWriter);

The generated output DOT file from the preceding example is straightforward, as shown in
the following example:

% cat Shortest_Path_A_to_D.gv
digraph { rankdir = LR; charset="utf-8";

"Rhttp://A" [label="http://A" shape=rectangle,color=red,style = filled,];
"Rhttp://B" [label="http://B" shape=rectangle,color=red,style = filled,];
"Rhttp://A" -> "Rhttp://B" [label="http://likes" color=red, style=bold,];
"Rhttp://C" [label="http://C" shape=rectangle,color=red,style = filled,];
"Rhttp://A" -> "Rhttp://C" [label="http://dislikes"];
"Rhttp://D" [label="http://D" shape=rectangle,color=red,style = filled,];
"Rhttp://A" -> "Rhttp://D" [label="http://differs"];
"Rhttp://B" -> "Rhttp://C" [label="http://likes" color=red, style=bold,];
"Rm1" [label="m1" shape=ellipse,color=blue,];
"Rhttp://B" -> "Rm1" [label="http://dislikes"];
"Rm1" -> "Rhttp://B" [label="http://dislikes"];
"Rhttp://C" -> "Rhttp://D" [label="http://likes" color=red, style=bold,];
"Rhttp://E" [label="http://E" shape=ellipse,color=blue,];
"Rhttp://C" -> "Rhttp://E" [label="http://knows"];
"Rm1" -> "Rhttp://D" [label="http://likes"];
}

You can also use methods in the SemNetworkAnalyst and GraphOracleSem classes to
produce more sophisticated visualization of the analytical function output.

You can convert the preceding DOT file into a variety of image formats. Figure 7-1 is an
image representing the information in the preceding DOT file.

Figure 7-1 Visual Representation of Analytical Function Output

7.11 Support for Server-Side APIs
This section describes some of the RDF Semantic Graph features that are exposed by RDF
Semantic Graph support for Apache Jena.

Chapter 7
Support for Server-Side APIs

7-35

For comprehensive documentation of the API calls that support the available features,
see the RDF Semantic Graph support for Apache Jena reference information
(Javadoc). For additional information about the server-side features exposed by the
support for Apache Jena, see the relevant chapters in this manual.

• Virtual Models Support

• Connection Pooling Support

• Semantic Model PL/SQL Interfaces

• Inference Options

• PelletInfGraph Class Support Deprecated

7.11.1 Virtual Models Support
Virtual models (explained in Virtual Models) are specified in the GraphOracleSem
constructor, and they are handled transparently. If a virtual model exists for the model-
rulebase combination, it is used in query answering; if such a virtual model does not
exist, it is created in the database.

Note:

Virtual model support through the support for Apache Jena is available only
with Oracle Database Release 11.2 or later.

The following example reuses an existing virtual model.

String modelName = "EX";
String m1 = "EX_1";

ModelOracleSem defaultModel =
 ModelOracleSem.createOracleSemModel(oracle, modelName);

// create these models in case they don't exist
ModelOracleSem model1 = ModelOracleSem.createOracleSemModel(oracle, m1);

String vmName = "VM_" + modelName;

//create a virtual model containing EX and EX_1
oracle.executeCall(
"begin sem_apis.create_virtual_model(?,sem_models('"+ m1 + "','"+
modelName+"'),null); end;",vmName);

String[] modelNames = {m1};
String[] rulebaseNames = {};

Attachment attachment = Attachment.createInstance(modelNames, rulebaseNames,
InferenceMaintenanceMode.NO_UPDATE, QueryOptions.ALLOW_QUERY_VALID_AND_DUP);

// vmName is passed to the constructor, so GraphOracleSem will use the virtual
// model named vmname (if the current user has read privileges on it)
GraphOracleSem graph = new GraphOracleSem(oracle, modelName, attachment, vmName);
graph.add(Triple.create(Node.createURI("urn:alice"),
 Node.createURI("http://xmlns.com/foaf/0.1/mbox"),

Chapter 7
Support for Server-Side APIs

7-36

 Node.createURI("mailto:alice@example")));
ModelOracleSem model = new ModelOracleSem(graph);

String queryString =

 " SELECT ?subject ?object WHERE { ?subject ?p ?object } ";

Query query = QueryFactory.create(queryString) ;
QueryExecution qexec = QueryExecutionFactory.create(query, model) ;

try {
 ResultSet results = qexec.execSelect() ;
 for (; results.hasNext() ;) {
 QuerySolution soln = results.nextSolution() ;
 psOut.println("soln " + soln);
 }
}
finally {
 qexec.close() ;
}

OracleUtils.dropSemanticModel(oracle, modelName);
OracleUtils.dropSemanticModel(oracle, m1);

oracle.dispose();

You can also use the GraphOracleSem constructor to create a virtual model, as in the
following example:

GraphOracleSem graph = new GraphOracleSem(oracle, modelName, attachment, true);

In this example, the fourth parameter (true) specifies that a virtual model needs to be created
for the specified modelName and attachment.

7.11.2 Connection Pooling Support
Oracle Database Connection Pooling is provided through the support for Apache Jena
OraclePool class. Once this class is initialized, it can return Oracle objects out of its pool of
available connections. Oracle objects are essentially database connection wrappers. After
dispose is called on the Oracle object, the connection is returned to the pool. More
information about using OraclePool can be found in the API reference information (Javadoc).

The following example sets up an OraclePool object with five (5) initial connections.

public static void main(String[] args) throws Exception
 {
 String szJdbcURL = args[0];
 String szUser = args[1];
 String szPasswd = args[2];
 String szModelName = args[3];

 // test with connection properties
 java.util.Properties prop = new java.util.Properties();
 prop.setProperty("MinLimit", "2"); // the cache size is 2 at least
 prop.setProperty("MaxLimit", "10");
 prop.setProperty("InitialLimit", "2"); // create 2 connections at startup
 prop.setProperty("InactivityTimeout", "1800"); // seconds
 prop.setProperty("AbandonedConnectionTimeout", "900"); // seconds
 prop.setProperty("MaxStatementsLimit", "10");
 prop.setProperty("PropertyCheckInterval", "60"); // seconds

Chapter 7
Support for Server-Side APIs

7-37

 System.out.println("Creating OraclePool");
 OraclePool op = new OraclePool(szJdbcURL, szUser, szPasswd, prop,
 "OracleSemConnPool");
 System.out.println("Done creating OraclePool");

 // grab an Oracle and do something with it
 System.out.println("Getting an Oracle from OraclePool");
 Oracle oracle = op.getOracle();
 System.out.println("Done");
 System.out.println("Is logical connection:" +
 oracle.getConnection().isLogicalConnection());
 GraphOracleSem g = new GraphOracleSem(oracle, szModelName);
 g.add(Triple.create(Node.createURI("u:John"),
 Node.createURI("u:parentOf"),
 Node.createURI("u:Mary")));
 g.close();
 // return the Oracle back to the pool
 oracle.dispose();

 // grab another Oracle and do something else
 System.out.println("Getting an Oracle from OraclePool");
 oracle = op.getOracle();
 System.out.println("Done");
 System.out.println("Is logical connection:" +
 oracle.getConnection().isLogicalConnection());
 g = new GraphOracleSem(oracle, szModelName);
 g.add(Triple.create(Node.createURI("u:John"),
 Node.createURI("u:parentOf"),
 Node.createURI("u:Jack")));
 g.close();

 OracleUtils.dropSemanticModel(oracle, szModelName);

 // return the Oracle object back to the pool
 oracle.dispose();
}

7.11.3 Semantic Model PL/SQL Interfaces
Several semantic PL/SQL subprograms are available through the support for Apache
Jena. Table 7-2 lists the subprograms and their corresponding Java class and
methods.

Table 7-2 PL/SQL Subprograms and Corresponding RDF Semantic Graph
support for Apache Jena Java Class and Methods

PL/SQL Subprogram Corresponding Java Class and Methods

SEM_APIS.DROP_SEM_MODEL OracleUtils.dropSemanticModel

SEM_APIS.MERGE_MODELS OracleUtils.mergeModels

SEM_APIS.SWAP_NAMES OracleUtils.swapNames

SEM_APIS.REMOVE_DUPLICATES OracleUtils.removeDuplicates

SEM_APIS.RENAME_MODEL OracleUtils.renameModels

For information about these PL/SQL utility subprograms, see the reference information
in SEM_APIS Package Subprograms. For information about the corresponding Java

Chapter 7
Support for Server-Side APIs

7-38

class and methods, see the RDF Semantic Graph support for Apache Jena API Reference
documentation (Javadoc).

7.11.4 Inference Options
You can add options to entailment calls by using the following methods in the Attachment
class (in package oracle.spatial.rdf.client.jena):

public void setUseLocalInference(boolean useLocalInference)
public boolean getUseLocalInference()

public void setDefGraphForLocalInference(String defaultGraphName)
public String getDefGraphForLocalInference()

public String getInferenceOption()
public void setInferenceOption(String inferenceOption)

Example 7-8 Specifying Inference Options

For more information about these methods, see the Javadoc.

Example 7-8 enables parallel inference (with a degree of 4) and RAW format when creating
an entailment. The example also uses the performInference method to create the entailment
(comparable to using the SEM_APIS.CREATE_ENTAILMENT PL/SQL procedure).

import java.io.*;
import org.apache.jena.query.*;
import oracle.spatial.rdf.client.jena.*;
import org.apache.jena.update.*;
import org.apache.jena.sparql.core.DatasetImpl;

public class TestNewInference
{
 public static void main(String[] args) throws Exception
 {
 String szJdbcURL = args[0];
 String szUser = args[1];
 String szPasswd = args[2];

 PrintStream psOut = System.out;

 Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);

 String szTBoxName = "test_new_tbox";
 {
 // First construct a TBox and load a few axioms
 ModelOracleSem modelTBox = ModelOracleSem.createOracleSemModel(oracle,
szTBoxName);
 String insertString =
 " PREFIX my: <http://my.com/> " +
 " PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> " +
 " INSERT DATA " +
 " { my:C1 rdfs:subClassOf my:C2 . " +
 " my:C2 rdfs:subClassOf my:C3 . " +
 " my:C3 rdfs:subClassOf my:C4 . " +
 " } ";
 UpdateAction.parseExecute(insertString, modelTBox);
 modelTBox.close();
 }

Chapter 7
Support for Server-Side APIs

7-39

 String szABoxName = "test_new_abox";
 {
 // Construct an ABox and load a few quads
 ModelOracleSem modelABox = ModelOracleSem.createOracleSemModel(oracle,
szABoxName);
 DatasetGraphOracleSem dataset =
DatasetGraphOracleSem.createFrom(modelABox.getGraph());
 modelABox.close();

 String insertString =
 " PREFIX my: <http://my.com/> " +
 " PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> " +
 " INSERT DATA " +
 " { GRAPH my:G1 { my:I1 rdf:type my:C1 . " +
 " my:I2 rdf:type my:C2 . " +
 " } " +
 " }; " +
 " INSERT DATA " +
 " { GRAPH my:G2 { my:J1 rdf:type my:C3 . " +
 " } " +
 " } ";
 UpdateAction.parseExecute(insertString, dataset);
 dataset.close();
 }

 String[] attachedModels = new String[1];
 attachedModels[0] = szTBoxName;

 String[] attachedRBs = {"OWL2RL"};

 Attachment attachment = Attachment.createInstance(
 attachedModels, attachedRBs,
 InferenceMaintenanceMode.NO_UPDATE,
 QueryOptions.ALLOW_QUERY_INVALID);

 // We are going to run named graph based local inference
 attachment.setUseLocalInference(true);

 // Set the default graph (TBox)
 attachment.setDefGraphForLocalInference(szTBoxName);

 // Set the inference option to use parallel inference
 // with a degree of 4, and RAW format.
 attachment.setInferenceOption("DOP=4,RAW8=T");

 GraphOracleSem graph = new GraphOracleSem(
 oracle,
 szABoxName,
 attachment
);
 DatasetGraphOracleSem dsgos = DatasetGraphOracleSem.createFrom(graph);
 graph.close();

 // Invoke create_entailment PL/SQL API
 dsgos.performInference();

 psOut.println("TestNewInference: # of inferred graph " +
 Long.toString(dsgos.getInferredGraphSize()));

 String queryString =

Chapter 7
Support for Server-Side APIs

7-40

 " SELECT ?g ?s ?p ?o WHERE { GRAPH ?g {?s ?p ?o } } " ;

 Query query = QueryFactory.create(queryString, Syntax.syntaxARQ);
 QueryExecution qexec = QueryExecutionFactory.create(
 query, DatasetImpl.wrap(dsgos));
 ResultSet results = qexec.execSelect();

 ResultSetFormatter.out(psOut, results);

 dsgos.close();
 oracle.dispose();
 }
}

The output of Example 7-8 is as follows.

TestNewInference: # of inferred graph 9

| g | s |
p | o |
===
=============================
| <http://my.com/G1> | <http://my.com/I2> | <http://www.w3.org/1999/02/22-rdf-syntax-
ns#type> | <http://my.com/C3> |
| <http://my.com/G1> | <http://my.com/I2> | <http://www.w3.org/1999/02/22-rdf-syntax-
ns#type> | <http://my.com/C2> |
| <http://my.com/G1> | <http://my.com/I2> | <http://www.w3.org/1999/02/22-rdf-syntax-
ns#type> | <http://my.com/C4> |
| <http://my.com/G1> | <http://my.com/I1> | <http://www.w3.org/1999/02/22-rdf-syntax-
ns#type> | <http://my.com/C3> |
| <http://my.com/G1> | <http://my.com/I1> | <http://www.w3.org/1999/02/22-rdf-syntax-
ns#type> | <http://my.com/C1> |
| <http://my.com/G1> | <http://my.com/I1> | <http://www.w3.org/1999/02/22-rdf-syntax-
ns#type> | <http://my.com/C2> |
| <http://my.com/G1> | <http://my.com/I1> | <http://www.w3.org/1999/02/22-rdf-syntax-
ns#type> | <http://my.com/C4> |
| <http://my.com/G2> | <http://my.com/J1> | <http://www.w3.org/1999/02/22-rdf-syntax-
ns#type> | <http://my.com/C3> |
| <http://my.com/G2> | <http://my.com/J1> | <http://www.w3.org/1999/02/22-rdf-syntax-
ns#type> | <http://my.com/C4> |

For information about using OWL inferencing, see Using OWL Inferencing.

7.11.5 PelletInfGraph Class Support Deprecated
The support for the PelletInfGraph class within the support for Apache Jena is deprecated.
You should instead use the more optimized Oracle/Pellet integration through the PelletDb
OWL 2 reasoner for Oracle Database.

Chapter 7
Support for Server-Side APIs

7-41

7.12 Bulk Loading Using RDF Semantic Graph Support for
Apache Jena

To load thousands to hundreds of thousands of RDF/OWL data files into an Oracle
database, you can use the prepareBulk and completeBulk methods in the
OracleBulkUpdateHandler Java class to simplify the task.

The addInBulk method in the OracleBulkUpdateHandler class can load triples of a
graph or model into an Oracle database in bulk loading style. If the graph or model is a
Jena in-memory graph or model, the operation is limited by the size of the physical
memory. The prepareBulk method bypasses the Jena in-memory graph or model and
takes a direct input stream to an RDF data file, parses the data, and load the triples
into an underlying staging table. If the staging table and an accompanying table for
storing long literals do not already exist, they are created automatically.

The prepareBulk method can be invoked multiple times to load multiple data files into
the same underlying staging table. It can also be invoked concurrently, assuming the
hardware system is balanced and there are multiple CPU cores and sufficient I/O
capacity.

Once all the data files are processed by the prepareBulk method, you can invoke
completeBulk to load all the data into the semantic network.

Example 7-9 Loading Data into the Staging Table (prepareBulk)

Example 7-9 shows how to load all data files in directory dir_1 into the underlying
staging table. Long literals are supported and will be stored in a separate table. The
data files can be compressed using GZIP to save storage space, and the prepareBulk
method can detect automatically if a data file is compressed using GZIP or not.

Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);
GraphOracleSem graph = new GraphOracleSem(oracle, szModelName);

PrintStream psOut = System.out;

String dirname = "dir_1";
File fileDir = new File(dirname);
String[] szAllFiles = fileDir.list();

// loop through all the files in a directory
for (int idx = 0; idx < szAllFiles.length; idx++) {
 String szIndFileName = dirname + File.separator + szAllFiles[idx];
 psOut.println("process to [ID = " + idx + "] file " + szIndFileName);
 psOut.flush();

 try {
 InputStream is = new FileInputStream(szIndFileName);
 graph.getBulkUpdateHandler().prepareBulk(
 is, // input stream
 "http://example.com", // base URI
 "RDF/XML", // data file type: can be RDF/XML, N-TRIPLE, etc.
 "SEMTS", // tablespace
 null, // flags
 null, // listener
 null // staging table name.
);

Chapter 7
Bulk Loading Using RDF Semantic Graph Support for Apache Jena

7-42

 is.close();
 }
 catch (Throwable t) {
 psOut.println("Hit exception " + t.getMessage());
 }
}

graph.close();
oracle.dispose();

The code in Example 7-9, starting from creating a new Oracle object and ending with
disposing of the Oracle object, can be executed in parallel. Assume there is a quad-core CPU
and enough I/O capacity on the database hardware system; you can divide up all the data
files and save them into four separate directories: dir_1, dir_2, dir_3, and dir_4. Four Java
threads of processes can be started to work on those directories separately and concurrently.
(For more information, see Using prepareBulk in Parallel (Multithreaded) Mode.)

Example 7-10 Loading Data from the Staging Table into the Semantic Network
(completeBulk)

After all data files are processed, you can invoke, just once, the completeBulk method to load
the data from staging table into the semantic network, as shown in Example 7-10. Triples with
long literals will be loaded also.

graph.getBulkUpdateHandler().completeBulk(
 null, // flags for invoking SEM_APIS.bulk_load_from_staging_table
 null // staging table name
);

The prepareBulk method can also take a Jena model as an input data source, in which case
triples in that Jena model are loaded into the underlying staging table. For more information,
see the Javadoc.

Example 7-11 Using prepareBulk with RDFa

In addition to loading triples from Jena models and data files, the prepareBulk method
supports RDFa, as shown in Example 7-11. (RDFa is explained in http://www.w3.org/TR/
xhtml-rdfa-primer/.)

graph.getBulkUpdateHandler().prepareBulk(
 rdfaUrl, // url to a web page using RDFa
 "SEMTS", // tablespace
 null, // flags
 null, // listener
 null // staging table name
);

To parse RDFa, the relevant java-rdfa libraries must be included in the classpath. No
additional setup or API calls are required. (For information about java-rdfa, see http://
www.rootdev.net/maven/projects/java-rdfa/ and the other topics there under Project
Information.)

Note that if the rdfaUrl is located outside a firewall, you may need to set the following HTTP
Proxy-related Java VM properties:

-Dhttp.proxyPort=...
-Dhttp.proxyHost=...

Chapter 7
Bulk Loading Using RDF Semantic Graph Support for Apache Jena

7-43

http://www.w3.org/TR/xhtml-rdfa-primer/
http://www.w3.org/TR/xhtml-rdfa-primer/
http://www.rootdev.net/maven/projects/java-rdfa/
http://www.rootdev.net/maven/projects/java-rdfa/

Example 7-12 Loading Quads into a DatasetGraph

The preceding examples in this section load triple data into a single graph. Loading
quad data that may span across multiple named graphs (such as data in NQUADS
format) requires the use of the DatasetGraphOracleSem class. The
DatasetGraphOracleSem class does not use the BulkUpdateHandler API, but does
provide a similar prepareBulk and completeBulk interface, as shown in Example 7-12.

Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);

// Can only create DatasetGraphOracleSem from an existing GraphOracleSem
GraphOracleSem graph = new GraphOracleSem(oracle, szModelName);
DatasetGraphOracleSem dataset = DatasetGraphOracleSem.createFrom(graph);

// Don't need graph anymore, close it to free resources
graph.close();

try {
 InputStream is = new FileInputStream(szFileName);
 // load NQUADS file into a staging table. This file can be gzipp'ed.
 dataset.prepareBulk(
 is, // input stream
 "http://my.base/", // base URI
 "N-QUADS", // data file type; can be "TRIG"
 "SEMTS", // tablespace
 null, // flags
 null, // listener
 null, // staging table name
 false // truncate staging table before load
);
 // Load quads from staging table into the dataset
 dataset.completeBulk(
 null, // flags; can be "PARSE PARALLEL_CREATE_INDEX PARALLEL=4
 // mbv_method=shadow" on a quad core machine
 null // staging table name
);
}
catch (Throwable t) {
 System.out.println("Hit exception " + t.getMessage());
}
finally {
 dataset.close();
 oracle.dispose();
}

• Using prepareBulk in Parallel (Multithreaded) Mode

• Handling Illegal Syntax During Data Loading

7.12.1 Using prepareBulk in Parallel (Multithreaded) Mode
Example 7-9 provided a way to load, sequentially, a set of files under a file system
directory to an Oracle Database table (staging table). Example 7-13 loads,
concurrently, a set of files to an Oracle table (staging table). The degree of parallelism
is controlled by the input parameter iMaxThreads.

On a balanced hardware setup with 4 or more CPU cores, setting iMaxThreads to 8 (or
16) can improve significantly the speed of prepareBulk operation when there are
many data files to be processed.

Chapter 7
Bulk Loading Using RDF Semantic Graph Support for Apache Jena

7-44

Example 7-13 Using prepareBulk with iMaxThreads

public void testPrepareInParallel(String jdbcUrl, String user,
 String password, String modelName,
 String lang,
 String tbs,
 String dirname,
 int iMaxThreads,
 PrintStream psOut)
 throws SQLException, IOException, InterruptedException
 {
 File dir = new File(dirname);
 File[] files = dir.listFiles();

 // create a set of physical Oracle connections and graph objects
 Oracle[] oracles = new Oracle[iMaxThreads];
 GraphOracleSem[] graphs = new GraphOracleSem[iMaxThreads];
 for (int idx = 0; idx < iMaxThreads; idx++) {
 oracles[idx] = new Oracle(jdbcUrl, user, password);
 graphs[idx] = new GraphOracleSem(oracles[idx], modelName);
 }

 PrepareWorker[] workers = new PrepareWorker[iMaxThreads];
 Thread[] threads = new Thread[iMaxThreads];
 for (int idx = 0; idx < iMaxThreads; idx++) {
 workers[idx] = new PrepareWorker(
 graphs[idx],
 files,
 idx,
 iMaxThreads,
 lang,
 tbs,
 psOut
);
 threads[idx] = new Thread(workers[idx], workers[idx].getName());
 psOut.println("testPrepareInParallel: PrepareWorker " + idx + " running");
 threads[idx].start();
 }

 psOut.println("testPrepareInParallel: all threads started");

 for (int idx = 0; idx < iMaxThreads; idx++) {
 threads[idx].join();
 }
 for (int idx = 0; idx < iMaxThreads; idx++) {
 graphs[idx].close();
 oracles[idx].dispose();
 }
 }

 static class PrepareWorker implements Runnable
 {
 GraphOracleSem graph = null;
 int idx;
 int threads;
 File[] files = null;
 String lang = null;
 String tbs = null;
 PrintStream psOut;

 public void run()

Chapter 7
Bulk Loading Using RDF Semantic Graph Support for Apache Jena

7-45

 {
 long lStartTime = System.currentTimeMillis();
 for (int idxFile = idx; idxFile < files.length; idxFile += threads) {
 File file = files[idxFile];
 try {
 FileInputStream fis = new FileInputStream(file);
 graph.getBulkUpdateHandler().prepareBulk(
 fis,
 "http://base.com/",
 lang,
 tbs,
 null, // flags
 new MyListener(psOut), // listener
 null // table name
);
 fis.close();
 }
 catch (Exception e) {
 psOut.println("PrepareWorker: thread ["+getName()+"] error "+
e.getMessage());
 }
 psOut.println("PrepareWorker: thread ["+getName()+"] done to "
 + idxFile + ", file = " + file.toString()
 + " in (ms) " + (System.currentTimeMillis() - lStartTime));
 }
 }

 public PrepareWorker(GraphOracleSem graph,
 File[] files,
 int idx,
 int threads,
 String lang,
 String tbs,
 PrintStream psOut)
 {
 this.graph = graph;
 this.files = files;
 this.psOut = psOut;
 this.idx = idx;
 this.threads = threads;
 this.files = files;
 this.lang = lang;
 this.tbs = tbs ;
 }

 public String getName()
 {
 return "PrepareWorker" + idx;
 }
 }

 static class MyListener implements StatusListener
 {
 PrintStream m_ps = null;
 public MyListener(PrintStream ps) { m_ps = ps; }
 long lLastBatch = 0;

 public void statusChanged(long count)
 {
 if (count - lLastBatch >= 10000) {
 m_ps.println("process to " + Long.toString(count));

Chapter 7
Bulk Loading Using RDF Semantic Graph Support for Apache Jena

7-46

 lLastBatch = count;
 }
 }

 public int illegalStmtEncountered(Node graphNode, Triple triple, long count)
 {
 m_ps.println("hit illegal statement with object " +
triple.getObject().toString());
 return 0; // skip it
 }
 }

7.12.2 Handling Illegal Syntax During Data Loading
You can skip illegal triples and quads when using prepareBulk. This feature is useful if the
source RDF data may contain syntax errors. In Example 7-14, a customized implementation
of the StatusListener interface (defined in package oracle.spatial.rdf.client.jena) is
passed as a parameter to prepareBulk. In this example, the illegalStmtEncountered
method prints the object field of the illegal triple, and returns 0 so that prepareBulk can skip
that illegal triple and move on.

Example 7-14 Skipping Triples with Illegal Syntax

....

Oracle oracle = new Oracle(jdbcUrl, user, password);
GraphOracleSem graph = new GraphOracleSem(oracle, modelName);
PrintStream psOut = System.err;

graph.getBulkUpdateHandler().prepareBulk(
 new FileInputStream(rdfDataFilename),
 "http://base.com/", // base
 lang, // data format, can be "N-TRIPLES" "RDF/XML" ...
 tbs, // tablespace name
 null, // flags
 new MyListener(psOut), // call back to show progress and also process illegal
triples/quads
 null, // tableName, if null use default names
 false // truncate existing staging tables
);

 graph.close();
 oracle.dispose();

 // A customized StatusListener interface implementation
 public class MyListener implements StatusListener
 {
 PrintStream m_ps = null;
 public MyListener(PrintStream ps) { m_ps = ps; }

 public void statusChanged(long count)
 {
 // m_ps.println("process to " + Long.toString(count));
 }

 public int illegalStmtEncountered(Node graphNode, Triple triple, long count)
 {
 m_ps.println("hit illegal statement with object " + triple.getObject().toString());
 return 0; // skip it

Chapter 7
Bulk Loading Using RDF Semantic Graph Support for Apache Jena

7-47

 }
 }

7.13 Automatic Variable Renaming
Automatic variable renaming can enable certain queries that previously failed to run
successfully.

Previously, variable names used in SPARQL queries were passed directly on to Oracle
Database as a part of a SQL statement. If the variable names included a SQL or
PL/SQL reserved keyword, the query failed to execute. For example, the following
SPARQL query used to fail because the word date as a special meaning to the Oracle
Database SQL processing engine.

select ?date { :event :happenedOn ?date }

Currently, this query does not fail, because a "smart scan" is performed and automatic
replacement is done on certain reserved variable names (or variable names that are
very long) before the query is sent to Oracle database for execution. The replacement
is based on a list of reserved keywords that are stored in the following file embedded
in sdordfclient.jar:

oracle/spatial/rdf/client/jena/oracle_sem_reserved_keywords.lst

This file contains over 100 entries, and you can edit the file to add entries if necessary.

The following are examples of SPARQL queries that use SQL or PL/SQL reserved
keywords as variables, and that will succeed because of automatic variable renaming:

• Query using SELECT as a variable name:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
select ?SELECT ?z
where
{ ?SELECT foaf:name ?y.
 optional {?SELECT foaf:knows ?z.}
}

• Query using ARRAY and DATE as variable names:

PREFIX x: <http://example.com#>
construct {
 ?ARRAY x:date ?date .
}
where {
 ?ARRAY x:happenedOn ?date .
}

7.14 JavaScript Object Notation (JSON) Format Support
JavaScript Object Notation (JSON) format is supported for SPARQL query responses.
JSON data format is simple, compact, and well suited for JavaScript programs.

For example, assume the following Java code snippet, which calls the
ResultSetFormatter.outputAsJSON method:

Oracle oracle = new Oracle(jdbcUrl, user, password);

GraphOracleSem graph = new GraphOracleSem(oracle, modelName);

Chapter 7
Automatic Variable Renaming

7-48

ModelOracleSem model = new ModelOracleSem(graph);

graph.add(new Triple(
 Node.createURI("http://ds1"),
 Node.createURI("http://dp1"),
 Node.createURI("http://do1")
)
);

graph.add(new Triple(
 Node.createURI("http://ds2"),
 Node.createURI("http://dp2"),
 Node.createURI("http://do2")
)
);
graph.commitTransaction();

Query q = QueryFactory.create("select ?s ?p ?o where {?s ?p ?o}",
 Syntax.syntaxARQ);
QueryExecution qexec = QueryExecutionFactory.create(q, model);

ResultSet results = qexec.execSelect();
ResultSetFormatter.outputAsJSON(System.out, results);

The JSON output is as follows:

{
 "head": {
 "vars": ["s" , "p" , "o"]
 } ,
 "results": {
 "bindings": [
 {
 "s": { "type": "uri" , "value": "http://ds1" } ,
 "p": { "type": "uri" , "value": "http://dp1" } ,
 "o": { "type": "uri" , "value": "http://do1" }
 } ,
 {
 "s": { "type": "uri" , "value": "http://ds2" } ,
 "p": { "type": "uri" , "value": "http://dp2" } ,
 "o": { "type": "uri" , "value": "http://do2" }
 }
]
 }
}

The preceding example can be changed as follows to query a remote SPARQL endpoint
instead of directly against an Oracle database. (If the remote SPARQL endpoint is outside a
firewall, then the HTTP Proxy probably needs to be set.)

Query q = QueryFactory.create("select ?s ?p ?o where {?s ?p ?o}",
 Syntax.syntaxARQ);
QueryExecution qe = QueryExecutionFactory.sparqlService(sparqlURL, q);

ResultSet results = qexec.execSelect();
ResultSetFormatter.outputAsJSON(System.out, results);

To extend the first example in this section to named graphs, the following code snippet adds
two quads to the same Oracle model, executes a named graph-based SPARQL query, and
serializes the query output into JSON format:

Chapter 7
JavaScript Object Notation (JSON) Format Support

7-49

DatasetGraphOracleSem dsgos = DatasetGraphOracleSem.createFrom(graph);
graph.close();

dsgos.add(new Quad(Node.createURI("http://g1"),
 Node.createURI("http://s1"),
 Node.createURI("http://p1"),
 Node.createURI("http://o1")
)
);
dsgos.add(new Quad(Node.createURI("http://g2"),
 Node.createURI("http://s2"),
 Node.createURI("http://p2"),
 Node.createURI("http://o2")
)
);

Query q1 = QueryFactory.create(
 "select ?g ?s ?p ?o where { GRAPH ?g {?s ?p ?o} }");

QueryExecution qexec1 = QueryExecutionFactory.create(q1,
 DatasetImpl.wrap(dsgos));

ResultSet results1 = qexec1.execSelect();
ResultSetFormatter.outputAsJSON(System.out, results1);

dsgos.close();
oracle.dispose();

The JSON output is as follows:

{
 "head": {
 "vars": ["g" , "s" , "p" , "o"]
 } ,
 "results": {
 "bindings": [
 {
 "g": { "type": "uri" , "value": "http://g1" } ,
 "s": { "type": "uri" , "value": "http://s1" } ,
 "p": { "type": "uri" , "value": "http://p1" } ,
 "o": { "type": "uri" , "value": "http://o1" }
 } ,
 {
 "g": { "type": "uri" , "value": "http://g2" } ,
 "s": { "type": "uri" , "value": "http://s2" } ,
 "p": { "type": "uri" , "value": "http://p2" } ,
 "o": { "type": "uri" , "value": "http://o2" }
 }
]
 }
}

You can also get a JSON response through HTTP against a Fuseki-based SPARQL
endpoint, as in the following example. Normally, when executing a SPARQL query
against a SPARQL Web service endpoint, the Accept request-head field is set to be
application/sparql-results+xml. For JSON output format, replace the Accept
request-head field with application/sparql-results+json.

http://hostname:7001/fuseki/oracle?query=<URL_ENCODED_SPARQL_QUERY>&output=json

Chapter 7
JavaScript Object Notation (JSON) Format Support

7-50

7.15 Other Recommendations and Guidelines
This section contains various recommendations and other information related to SPARQL
queries.

• BOUND or !BOUND Instead of EXISTS or NOT EXISTS

• SPARQL 1.1 SELECT Expressions

• Syntax Involving Bnodes (Blank Nodes)

• Limit in the SERVICE Clause

• OracleGraphWrapperForOntModel Class for Better Performance

7.15.1 BOUND or !BOUND Instead of EXISTS or NOT EXISTS
For better performance, use BOUND or !BOUND instead of EXISTS or NOT EXISTS.

7.15.2 SPARQL 1.1 SELECT Expressions
You can use SPARQL 1.1 SELECT expressions without any significant performance
overhead, even if the function is not currently supported within Oracle Database. Examples
include the following:

-- Query using SHA1 function
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX eg: <http://biometrics.example/ns#>
SELECT ?name ?email (sha1(?email) as ?sha1)
WHERE
{
 ?x foaf:name ?name ; eg:email ?email .
}

-- Query using CONCAT function
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT (CONCAT(?G, " ", ?S) AS ?name)
WHERE
{
 ?P foaf:givenName ?G ; foaf:surname ?S
}

7.15.3 Syntax Involving Bnodes (Blank Nodes)
Syntax involving bnodes can be used freely in query patterns. For example, the following
bnode-related syntax is supported at the parser level, so each is equivalent to its full triple-
query-pattern-based version.

:x :q [:p "v"] .

(1 ?x 3 4) :p "w" .

(1 [:p :q] (2)) .

Chapter 7
Other Recommendations and Guidelines

7-51

7.15.4 Limit in the SERVICE Clause
When writing a SPARQL 1.1 federated query, you can set a limit on returned rows in
the subquery inside the SERVICE clause. This can effectively constrain the amount of
data to be transported between the local repository and the remote SPARQL endpoint.

For example, the following query specifies limit 100 in the subquery in the SERVICE
clause:

PREFIX : <http://example.com/>
SELECT ?s ?o
 WHERE
 {
 ?s :name "CA"
 SERVICE <http://REMOTE_SPARQL_ENDPOINT_HERE>
 {
 select ?s ?o
 {?s :info ?o}
 limit 100
 }
 }

7.15.5 OracleGraphWrapperForOntModel Class for Better
Performance

The Jena OntModel class lets you create, modify, and analyze an ontology stored in a
Jena model. However, the OntModel implementation is not optimized for semantic data
stored in a database. This results in suboptimal performance when using OntModel
with an Oracle model. Therefore, the class OracleGraphWrapperForOntModel has
been created to alleviate this performance issue.

The OracleGraphWrapperForOntModel class implements the Jena Graph interface and
represents a graph backed by an Oracle RDF/OWL model that is meant for use with
the Jena OntModel API. The OracleGraphWrapperForOntModel class uses two
semantic stores in a hybrid approach for persisting changes and responding to
queries. Both semantic stores contain the same data, but one resides in memory while
the other resides in the Oracle database.

When queried through OntModel, the OracleGraphWrapperForOntModel graph runs the
queries against the in-memory store to improve performance. However, the
OracleGraphWrapperForOntModel class persists changes made through OntModel,
such as adding or removing classes, by applying changes to both stores.

Due to its hybrid approach, an OracleGraphWrapperForOntModel graph requires that
sufficient memory be allocated to the JVM to store a copy of the ontology in memory.
In internal experiments, it was found that an ontology with approximately 3 million
triples requires 6 or more GB of physical memory.

Example 7-15 Using OntModel with Ontology Stored in Oracle Database

Example 7-15 shows how to use the OntModel APIs with an existing ontology stored in
an Oracle model.

// Set up connection to Oracle semantic store and the Oracle model
// containing the ontology
Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);

Chapter 7
Other Recommendations and Guidelines

7-52

GraphOracleSem oracleGraph = new GraphOracleSem(oracle, szModelName);

// Create a new hybrid graph using the oracle graph to persist
// changes. This method will copy all the data from the oracle graph
// into an in-memory graph, which may significantly increase JVM memory
// usage.
Graph hybridGraph = OracleGraphWrapperForOntModel.getInstance(oracleGraph);

// Build a model around the hybrid graph and wrap the model with Jena's
// OntModel
Model model = ModelFactory.createModelForGraph(hybridGraph);
OntModel ontModel = ModelFactory.createOntologyModel(ontModelSpec, model);

// Perform operations on the ontology
OntClass personClass = ontModel.createClass("<http://someuri/person>");
ontModel.createIndividual(personClass);

// Close resources (will also close oracleGraph)!
hybridGraph.close();
ontModel.close();

Note that any OntModel object created using OracleGraphWrapperForOntModel will not reflect
changes made to the underlying Oracle model by another process, through a separate
OntModel, or through a separate Oracle graph referencing the same underlying model. All
changes to an ontology should go through a single OntModel object and its underlying
OracleGraphWrapperForOntModel graph until the model or graph have been closed.

Example 7-16 Using a Custom In-Memory Graph

If the default in-memory semantic store used by OracleGraphWrapperForOntModel is not
sufficient for an ontology and system, the class provides an interface for specifying a custom
graph to use as the in-memory store. Example 7-16 shows how to create an
OracleGraphWrapperForOntModel that uses a custom in-memory graph to answer queries
from OntModel.

// Set up connection to Oracle semantic store and the Oracle model
// containing the ontology
Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);
GraphOracleSem oracleGraph = new GraphOracleSem(oracle, szModelName);

// Create a custom in-memory graph to use instead of the default
// Jena in-memory graph for quickly answering OntModel queries.
// Note that this graph does not *need* to be in-memory, but in-memory
// is preferred.
GraphBase queryGraph = new CustomInMemoryGraphImpl();

// Create a new hybrid graph using the oracle graph to persist
// changes and the custom in-memory graph to answer queries.
// Also set the degree of parallelism to use when copying data from
// the oracle graph to the querying graph.
int degreeOfParallelism = 4;
Graph hybridGraph = OracleGraphWrapperForOntModel.getInstance(oracleGraph, queryGraph,
degreeOfParallelism);

// Build a model and wrap the model with Jena's OntModel
Model model = ModelFactory.createModelForGraph(hybridGraph);
OntModel ontModel = ModelFactory.createOntologyModel(ontModelSpec, model);

// Perform operations on the ontology
// ...

Chapter 7
Other Recommendations and Guidelines

7-53

// Close resources (will close oracleGraph and queryGraph)!
hybridGraph.close();
ontModel.close();

7.16 Example Queries Using RDF Semantic Graph Support
for Apache Jena

This section includes example queries using the support for Apache Jena. Each
example is self-contained: it typically creates a model, creates triples, performs a
query that may involve inference, displays the result, and drops the model.

This section includes queries that do the following:

• Count asserted triples and asserted plus inferred triples in an example "university"
ontology, both by referencing the ontology by a URL and by bulk loading the
ontology from a local file

• Run several SPARQL queries using a "family" ontology, including features such as
LIMIT, OFFSET, TIMEOUT, DOP (degree of parallelism), ASK, DESCRIBE,
CONSTRUCT, GRAPH, ALLOW_DUP (duplicate triples with multiple models),
SPARUL (inserting data)

• Use the ARQ built-in function

• Use a SELECT cast query

• Instantiate Oracle Database using OracleConnection

• Use Oracle Database connection pooling

To run a query, you must do the following:

1. Include the code in a Java source file. The examples used in this section are
supplied in files in the examples directory of the support for Apache Jena
download.

2. Compile the Java source file. For example:

> javac -classpath ../jar/'*' Test.java

Note:

The javac and java commands must each be on a single command line.

3. Run the compiled file. For example:

> java -classpath ./:../jar/'*' Test jdbc:oracle:thin:@localhost:1521:orcl
scott <password-for-scott> M1

Chapter 7
Example Queries Using RDF Semantic Graph Support for Apache Jena

7-54

Note:

All examples in the following subtopics are based on RDF metadata stored in the
MDSYS schema. For schema-private networks (supported starting in Oracle
Database 19c, the equivalent Java test files can be found in the OTN kit.

The main difference is that for schema-private networks, extra parameters defining
the network owner and network name should be used when creating the semantic
model objects.

• Test.java: Query Family Relationships

• Test6.java: Load OWL Ontology and Perform OWLPrime inference

• Test7.java: Bulk Load OWL Ontology and Perform OWLPrime inference

• Test8.java: SPARQL OPTIONAL Query

• Test9.java: SPARQL Query with LIMIT and OFFSET

• Test10.java: SPARQL Query with TIMEOUT and DOP

• Test11.java: Query Involving Named Graphs

• Test12.java: SPARQL ASK Query

• Test13.java: SPARQL DESCRIBE Query

• Test14.java: SPARQL CONSTRUCT Query

• Test15.java: Query Multiple Models and Specify "Allow Duplicates"

• Test16.java: SPARQL Update

• Test17.java: SPARQL Query with ARQ Built-In Functions

• Test18.java: SELECT Cast Query

• Test19.java: Instantiate Oracle Database Using OracleConnection

• Test20.java: Oracle Database Connection Pooling

7.16.1 Test.java: Query Family Relationships
Example 7-17 Query Family Relationships

Example 7-17 specifies that John is the father of Mary, and it selects and displays the subject
and object in each fatherOf relationship

import oracle.spatial.rdf.client.jena.*;
import org.apache.jena.rdf.model.Model;
import org.apache.jena.graph.*;
import org.apache.jena.query.*;
public class Test {

 public static void main(String[] args) throws Exception
 {
 String szJdbcURL = args[0];
 String szUser = args[1];
 String szPasswd = args[2];
 String szModelName = args[3];

Chapter 7
Example Queries Using RDF Semantic Graph Support for Apache Jena

7-55

 Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);
 Model model = ModelOracleSem.createOracleSemModel(
 oracle, szModelName);

 model.getGraph().add(Triple.create(
 Node.createURI("http://example.com/John"),
 Node.createURI("http://example.com/fatherOf"),
 Node.createURI("http://example.com/Mary")));
 Query query = QueryFactory.create(
 "select ?f ?k WHERE {?f <http://example.com/fatherOf> ?k .}");
 QueryExecution qexec = QueryExecutionFactory.create(query, model);
 ResultSet results = qexec.execSelect();
 ResultSetFormatter.out(System.out, results, query);
 model.close();
 oracle.dispose();
 }
}

The following are the commands to compile and run Example 7-17, as well as the
expected output of the java command.

javac -classpath ../jar/'*' Test.java
java -classpath ./:../jar/'*' Test jdbc:oracle:thin:@localhost:1521:orcl scott
<password-for-scott> M1

| f | k |
===
| <http://example.com/John> | <http://example.com/Mary> |

7.16.2 Test6.java: Load OWL Ontology and Perform OWLPrime
inference

Example 7-18 loads an OWL ontology and performs OWLPrime inference. Note that
the OWL ontology is in RDF/XML format, and after it is loaded into Oracle it will be
serialized out in N-TRIPLE form. The example also queries for the number of asserted
and inferred triples.

The ontology in this example can be retrieved from http://swat.cse.lehigh.edu/
onto/univ-bench.owl, and it describes roles, resources, and relationships in a
university environment.

Example 7-18 Load OWL Ontology and Perform OWLPrime inference

import java.io.*;
import org.apache.jena.query.*;
import org.apache.jena.rdf.model.Model;
import org.apache.jena.util.FileManager;
import oracle.spatial.rdf.client.jena.*;
public class Test6 {
 public static void main(String[] args) throws Exception
 {
 String szJdbcURL = args[0];
 String szUser = args[1];
 String szPasswd = args[2];
 String szModelName = args[3];

 Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);

Chapter 7
Example Queries Using RDF Semantic Graph Support for Apache Jena

7-56

http://swat.cse.lehigh.edu/onto/univ-bench.owl
http://swat.cse.lehigh.edu/onto/univ-bench.owl

 Model model = ModelOracleSem.createOracleSemModel(oracle, szModelName);

 // load UNIV ontology
 InputStream in = FileManager.get().open("./univ-bench.owl");
 model.read(in, null);
 OutputStream os = new FileOutputStream("./univ-bench.nt");
 model.write(os, "N-TRIPLE");
 os.close();

 String queryString =
 " SELECT ?subject ?prop ?object WHERE { ?subject ?prop ?object } ";

 Query query = QueryFactory.create(queryString) ;
 QueryExecution qexec = QueryExecutionFactory.create(query, model) ;

 try {
 int iTriplesCount = 0;
 ResultSet results = qexec.execSelect() ;
 for (; results.hasNext() ;) {
 QuerySolution soln = results.nextSolution() ;
 iTriplesCount++;
 }
 System.out.println("Asserted triples count: " + iTriplesCount);
 }
 finally {
 qexec.close() ;
 }

 Attachment attachment = Attachment.createInstance(
 new String[] {}, "OWLPRIME",
 InferenceMaintenanceMode.NO_UPDATE, QueryOptions.DEFAULT);

 GraphOracleSem graph = new GraphOracleSem(oracle, szModelName, attachment);
 graph.analyze();
 graph.performInference();

 query = QueryFactory.create(queryString) ;
 qexec = QueryExecutionFactory.create(query,new ModelOracleSem(graph)) ;

 try {
 int iTriplesCount = 0;
 ResultSet results = qexec.execSelect() ;
 for (; results.hasNext() ;) {
 QuerySolution soln = results.nextSolution() ;
 iTriplesCount++;
 }
 System.out.println("Asserted + Infered triples count: " + iTriplesCount);
 }
 finally {
 qexec.close() ;
 }
 model.close();

 OracleUtils.dropSemanticModel(oracle, szModelName);
 oracle.dispose();
 }
}

The following are the commands to compile and run Example 7-18, as well as the expected
output of the java command.

Chapter 7
Example Queries Using RDF Semantic Graph Support for Apache Jena

7-57

javac -classpath ../jar/'*' Test6.java
java -classpath ./:../jar/'*' Test6 jdbc:oracle:thin:@localhost:1521:orcl scott
<password-for-scott> M1
Asserted triples count: 293
Asserted + Infered triples count: 340

Note that this output reflects an older version of the LUBM ontology. The latest version
of the ontology has more triples.

7.16.3 Test7.java: Bulk Load OWL Ontology and Perform OWLPrime
inference

Example 7-19 loads the same OWL ontology as in Test6.java: Load OWL Ontology
and Perform OWLPrime inference, but stored in a local file using Bulk Loader.
Ontologies can also be loaded using an incremental and batch loader; these two
methods are also listed in the example for completeness.

Example 7-19 Bulk Load OWL Ontology and Perform OWLPrime inference

import java.io.*;
import org.apache.jena.graph.*;
import org.apache.jena.rdf.model.*;
import org.apache.jena.util.*;
import oracle.spatial.rdf.client.jena.*;

public class Test7
{
 public static void main(String[] args) throws Exception
 {
 String szJdbcURL = args[0];
 String szUser = args[1];
 String szPasswd = args[2];
 String szModelName = args[3];
 // in memory Jena Model
 Model model = ModelFactory.createDefaultModel();
 InputStream is = FileManager.get().open("./univ-bench.owl");
 model.read(is, "", "RDF/XML");
 is.close();

 Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);
 ModelOracleSem modelDest = ModelOracleSem.createOracleSemModel(oracle,
szModelName);

 GraphOracleSem g = modelDest.getGraph();
 g.dropApplicationTableIndex();

 int method = 2; // try bulk loader
 String tbs = "SYSAUX"; // can be customized
 if (method == 0) {
 System.out.println("start incremental");
 modelDest.add(model);
 System.out.println("end size " + modelDest.size());
 }
 else if (method == 1) {
 System.out.println("start batch load");
 g.getBulkUpdateHandler().addInBatch(
 GraphUtil.findAll(model.getGraph()), tbs);
 System.out.println("end size " + modelDest.size());
 }

Chapter 7
Example Queries Using RDF Semantic Graph Support for Apache Jena

7-58

 else {
 System.out.println("start bulk load");
 g.getBulkUpdateHandler().addInBulk(
 GraphUtil.findAll(model.getGraph()), tbs);
 System.out.println("end size " + modelDest.size());
 }
 g.rebuildApplicationTableIndex();

 long lCount = g.getCount(Triple.ANY);
 System.out.println("Asserted triples count: " + lCount);
 model.close();
 OracleUtils.dropSemanticModel(oracle, szModelName);
 oracle.dispose();
 }
}

The following are the commands to compile and run Example 7-19, as well as the expected
output of the java command.

javac -classpath ../jar/'*' Test7.java
java -classpath ./:../jar/'*' Test7 jdbc:oracle:thin:@localhost:1521:orcl scott
<password-for-scott> M1
start bulk load
end size 293
Asserted triples count: 293

Note that this output reflects an older version of the LUBM ontology. The latest version of the
ontology has more triples.

7.16.4 Test8.java: SPARQL OPTIONAL Query
Example 7-20 shows a SPARQL OPTIONAL query. It inserts triples that postulate the
following:

• John is a parent of Mary.

• John is a parent of Jack.

• Mary is a parent of Jill.

It then finds parent-child relationships, optionally including any grandchild (gkid) relationships.

Example 7-20 SPARQL OPTIONAL Query

import org.apache.jena.query.*;
import oracle.spatial.rdf.client.jena.*;
import org.apache.jena.graph.*;

public class Test8
{
 public static void main(String[] args) throws Exception
 {
 String szJdbcURL = args[0];
 String szUser = args[1];
 String szPasswd = args[2];
 String szModelName = args[3];

 Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);
 ModelOracleSem model = ModelOracleSem.createOracleSemModel(oracle,
szModelName);
 GraphOracleSem g = model.getGraph();

Chapter 7
Example Queries Using RDF Semantic Graph Support for Apache Jena

7-59

 g.add(Triple.create(
 Node.createURI("u:John"), Node.createURI("u:parentOf"),
Node.createURI("u:Mary")));
 g.add(Triple.create(
 Node.createURI("u:John"), Node.createURI("u:parentOf"),
Node.createURI("u:Jack")));
 g.add(Triple.create(
 Node.createURI("u:Mary"), Node.createURI("u:parentOf"),
Node.createURI("u:Jill")));

 String queryString =
 " SELECT ?s ?o ?gkid " +
 " WHERE { ?s <u:parentOf> ?o . OPTIONAL {?o <u:parentOf> ?gkid }} ";

 Query query = QueryFactory.create(queryString) ;
 QueryExecution qexec = QueryExecutionFactory.create(query, model) ;

 try {
 int iMatchCount = 0;
 ResultSet results = qexec.execSelect() ;
 ResultSetFormatter.out(System.out, results, query);
 }
 finally {
 qexec.close() ;
 }
 model.close();

 OracleUtils.dropSemanticModel(oracle, szModelName);
 oracle.dispose();
 }
}

The following are the commands to compile and run Example 7-20, as well as the
expected output of the java command.

javac -classpath ../jar/'*' Test8.java
java -classpath ./:../jar/'*' Test8 jdbc:oracle:thin:@localhost:1521:orcl scott
<password-for-scott> M1

| s | o | gkid |
==================================
<u:John>	<u:Mary>	<u:Jill>
<u:Mary>	<u:Jill>	
<u:John>	<u:Jack>	

7.16.5 Test9.java: SPARQL Query with LIMIT and OFFSET
Example 7-21 shows a SPARQL query with LIMIT and OFFSET. It inserts triples that
postulate the following:

• John is a parent of Mary.

• John is a parent of Jack.

• Mary is a parent of Jill.

It then finds one parent-child relationship (LIMIT 1), skipping the first two parent-child
relationships encountered (OFFSET 2), and optionally includes any grandchild (gkid)
relationships for the one found.

Chapter 7
Example Queries Using RDF Semantic Graph Support for Apache Jena

7-60

Example 7-21 SPARQL Query with LIMIT and OFFSET

import org.apache.jena.query.*;
import oracle.spatial.rdf.client.jena.*;
import org.apache.jena.graph.*;
public class Test9
{
 public static void main(String[] args) throws Exception
 {
 String szJdbcURL = args[0];
 String szUser = args[1];
 String szPasswd = args[2];
 String szModelName = args[3];

 Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);
 ModelOracleSem model = ModelOracleSem.createOracleSemModel(oracle,
szModelName);
 GraphOracleSem g = model.getGraph();

 g.add(Triple.create(Node.createURI("u:John"), Node.createURI("u:parentOf"),
 Node.createURI("u:Mary")));
 g.add(Triple.create(Node.createURI("u:John"), Node.createURI("u:parentOf"),
 Node.createURI("u:Jack")));
 g.add(Triple.create(Node.createURI("u:Mary"),
Node.createURI("u:parentOf"),
 Node.createURI("u:Jill")));

 String queryString =
 " SELECT ?s ?o ?gkid " +
 " WHERE { ?s <u:parentOf> ?o . OPTIONAL {?o <u:parentOf> ?gkid }} " +
 " LIMIT 1 OFFSET 2";

 Query query = QueryFactory.create(queryString) ;
 QueryExecution qexec = QueryExecutionFactory.create(query, model) ;

 int iMatchCount = 0;
 ResultSet results = qexec.execSelect() ;
 ResultSetFormatter.out(System.out, results, query);
 qexec.close() ;
 model.close();

 OracleUtils.dropSemanticModel(oracle, szModelName);
 oracle.dispose();
 }
}

The following are the commands to compile and run Example 7-21, as well as the expected
output of the java command.

javac -classpath ../jar/'*' Test9.java
java -classpath ./:../jar/'*' Test9 jdbc:oracle:thin:@localhost:1521:orcl scott
<password-for-scott> M1

| s | o | gkid |
==============================
| <u:John> | <u:Jack> | |

Chapter 7
Example Queries Using RDF Semantic Graph Support for Apache Jena

7-61

7.16.6 Test10.java: SPARQL Query with TIMEOUT and DOP
Example 7-22 shows the SPARQL query from Test9.java: SPARQL Query with LIMIT
and OFFSET with additional features, including a timeout setting (TIMEOUT=1, in
seconds) and parallel execution setting (DOP=4).

Example 7-22 SPARQL Query with TIMEOUT and DOP

import org.apache.jena.query.*;
import oracle.spatial.rdf.client.jena.*;
import org.apache.jena.graph.*;

public class Test10 {
 public static void main(String[] args) throws Exception {
 String szJdbcURL = args[0];
 String szUser = args[1];
 String szPasswd = args[2];
 String szModelName = args[3];

 Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);
 ModelOracleSem model = ModelOracleSem.createOracleSemModel(oracle,
szModelName);
 GraphOracleSem g = model.getGraph();

 g.add(Triple.create(Node.createURI("u:John"), Node.createURI("u:parentOf"),
 Node.createURI("u:Mary")));
 g.add(Triple.create(Node.createURI("u:John"), Node.createURI("u:parentOf"),
 Node.createURI("u:Jack")));
 g.add(Triple.create(Node.createURI("u:Mary"), Node.createURI("u:parentOf"),
 Node.createURI("u:Jill")));
 String queryString =
 " PREFIX ORACLE_SEM_FS_NS: <http://oracle.com/semtech#dop=4,timeout=1> "
 + " SELECT ?s ?o ?gkid WHERE { ?s <u:parentOf> ?o . "
 + " OPTIONAL {?o <u:parentOf> ?gkid }} "
 + " LIMIT 1 OFFSET 2";

 Query query = QueryFactory.create(queryString) ;
 QueryExecution qexec = QueryExecutionFactory.create(query, model) ;

 int iMatchCount = 0;
 ResultSet results = qexec.execSelect() ;
 ResultSetFormatter.out(System.out, results, query);
 qexec.close() ;
 model.close();

 OracleUtils.dropSemanticModel(oracle, szModelName);
 oracle.dispose();
 }
}

The following are the commands to compile and run Example 7-22, as well as the
expected output of the java command.

javac -classpath ../jar/'*' Test10.java
java -classpath ./:../jar/'*' Test10 jdbc:oracle:thin:@localhost:1521:orcl
scott <password-for-scott> M1

| s | o | gkid |
==============================

Chapter 7
Example Queries Using RDF Semantic Graph Support for Apache Jena

7-62

| <u:John> | <u:Jack> | |

7.16.7 Test11.java: Query Involving Named Graphs
Example 7-23 shows a query involving named graphs. It involves a default graph that has
information about named graph URIs and their publishers. The query finds graph names,
their publishers, and within each named graph finds the mailbox value using the foaf:mbox
predicate.

Example 7-23 Named Graph Based Query

import org.apache.jena.query.*;
import oracle.spatial.rdf.client.jena.*;
import org.apache.jena.graph.*;

public class Test11
{
 public static void main(String[] args) throws Exception
 {
 String szJdbcURL = args[0];
 String szUser = args[1];
 String szPasswd = args[2];
 String szModelName = args[3];

 Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);
 GraphOracleSem graph = new GraphOracleSem(oracle, szModelName);
 DatasetGraphOracleSem dataset = DatasetGraphOracleSem.createFrom(graph);

 // don't need the GraphOracleSem anymore, release resources
 graph.close();

 // add data to the default graph
 dataset.add(new Quad(
 Quad.defaultGraphIRI, // specifies default graph
 Node.createURI("http://example.org/bob"),
 Node.createURI("http://purl.org/dc/elements/1.1/publisher"),
 Node.createLiteral("Bob Hacker")));
 dataset.add(new Quad(
 Quad.defaultGraphIRI, // specifies default graph
 Node.createURI("http://example.org/alice"),
 Node.createURI("http://purl.org/dc/elements/1.1/publisher"),
 Node.createLiteral("alice Hacker")));

 // add data to the bob named graph
 dataset.add(new Quad(
 Node.createURI("http://example.org/bob"), // graph name
 Node.createURI("urn:bob"),
 Node.createURI("http://xmlns.com/foaf/0.1/name"),
 Node.createLiteral("Bob")));
 dataset.add(new Quad(
 Node.createURI("http://example.org/bob"), // graph name
 Node.createURI("urn:bob"),
 Node.createURI("http://xmlns.com/foaf/0.1/mbox"),
 Node.createURI("mailto:bob@example")));

 // add data to the alice named graph
 dataset.add(new Quad(
 Node.createURI("http://example.org/alice"), // graph name
 Node.createURI("urn:alice"),

Chapter 7
Example Queries Using RDF Semantic Graph Support for Apache Jena

7-63

 Node.createURI("http://xmlns.com/foaf/0.1/name"),
 Node.createLiteral("Alice")));
 dataset.add(new Quad(
 Node.createURI("http://example.org/alice"), // graph name
 Node.createURI("urn:alice"),
 Node.createURI("http://xmlns.com/foaf/0.1/mbox"),
 Node.createURI("mailto:alice@example")));

 DataSource ds = DatasetFactory.create(dataset);

 String queryString =
 " PREFIX foaf: <http://xmlns.com/foaf/0.1/> "
 + " PREFIX dc: <http://purl.org/dc/elements/1.1/> "
 + " SELECT ?who ?graph ?mbox "
 + " FROM NAMED <http://example.org/alice> "
 + " FROM NAMED <http://example.org/bob> "
 + " WHERE "
 + " { "
 + " ?graph dc:publisher ?who . "
 + " GRAPH ?graph { ?x foaf:mbox ?mbox } "
 + " } ";

 Query query = QueryFactory.create(queryString);
 QueryExecution qexec = QueryExecutionFactory.create(query, ds);

 ResultSet results = qexec.execSelect();
 ResultSetFormatter.out(System.out, results, query);

 qexec.close();
 dataset.close();

 oracle.dispose();
 }
}

The following are the commands to compile and run Example 7-23, as well as the
expected output of the java command.

javac -classpath ./:./jena-2.6.4.jar:./sdordfclient.jar:./ojdbc6.jar:./slf4j-
api-1.5.8.jar:./slf4j-log4j12-1.5.8.jar:./arq-2.8.8.jar:./xercesImpl-2.7.1.jar
Test11.java
java -classpath ./:../jar/'*' Test11 jdbc:oracle:thin:@localhost:1521:orcl
scott <password-for-scott> M1
--
| who | graph | mbox |
==
| "alice Hacker" | <http://example.org/alice> | <mailto:alice@example> |
| "Bob Hacker" | <http://example.org/bob> | <mailto:bob@example> |
--

7.16.8 Test12.java: SPARQL ASK Query
Example 7-24 shows a SPARQL ASK query. It inserts a triple that postulates that John
is a parent of Mary. It then finds whether John is a parent of Mary.

Example 7-24 SPARQL ASK Query

import org.apache.jena.query.*;
import oracle.spatial.rdf.client.jena.*;
import org.apache.jena.graph.*;

Chapter 7
Example Queries Using RDF Semantic Graph Support for Apache Jena

7-64

{
 public static void main(String[] args) throws Exception
 {
 String szJdbcURL = args[0];
 String szUser = args[1];
 String szPasswd = args[2];
 String szModelName = args[3];

 Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);
 ModelOracleSem model = ModelOracleSem.createOracleSemModel(oracle,
 szModelName);
 GraphOracleSem g = model.getGraph();

 g.add(Triple.create(Node.createURI("u:John"), Node.createURI("u:parentOf"),
 Node.createURI("u:Mary")));
 String queryString = " ASK { <u:John> <u:parentOf> <u:Mary> } ";

 Query query = QueryFactory.create(queryString) ;
 QueryExecution qexec = QueryExecutionFactory.create(query, model) ;
 boolean b = qexec.execAsk();
 System.out.println("ask result = " + ((b)?"TRUE":"FALSE"));
 qexec.close() ;

 model.close();
 OracleUtils.dropSemanticModel(oracle, szModelName);
 oracle.dispose();
 }
}

The following are the commands to compile and run Example 7-24, as well as the expected
output of the java command.

javac -classpath ../jar/'*' Test12.java
java -classpath ./:../jar/'*' Test12 jdbc:oracle:thin:@localhost:1521:orcl scott
<password-for-scott> M1
ask result = TRUE

7.16.9 Test13.java: SPARQL DESCRIBE Query
Example 7-25 shows a SPARQL DESCRIBE query. It inserts triples that postulate the
following:

• John is a parent of Mary.

• John is a parent of Jack.

• Amy is a parent of Jack.

It then finds all relationships that involve any parents of Jack.

Example 7-25 SPARQL DESCRIBE Query

import org.apache.jena.query.*;
import org.apache.jena.rdf.model.Model;
import oracle.spatial.rdf.client.jena.*;
import org.apache.jena.graph.*;

public class Test13
{
 public static void main(String[] args) throws Exception
 {
 String szJdbcURL = args[0];

Chapter 7
Example Queries Using RDF Semantic Graph Support for Apache Jena

7-65

 String szUser = args[1];
 String szPasswd = args[2];
 String szModelName = args[3];

 Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);
 ModelOracleSem model = ModelOracleSem.createOracleSemModel(oracle,
szModelName);
 GraphOracleSem g = model.getGraph();

 g.add(Triple.create(Node.createURI("u:John"), Node.createURI("u:parentOf"),
 Node.createURI("u:Mary")));
 g.add(Triple.create(Node.createURI("u:John"), Node.createURI("u:parentOf"),
 Node.createURI("u:Jack")));
 g.add(Triple.create(Node.createURI("u:Amy"), Node.createURI("u:parentOf"),
 Node.createURI("u:Jack")));
 String queryString = " DESCRIBE ?x WHERE {?x <u:parentOf> <u:Jack>}";

 Query query = QueryFactory.create(queryString) ;
 QueryExecution qexec = QueryExecutionFactory.create(query, model) ;
 Model m = qexec.execDescribe();
 System.out.println("describe result = " + m.toString());

 qexec.close() ;
 model.close();
 OracleUtils.dropSemanticModel(oracle, szModelName);
 oracle.dispose();
 }
}

The following are the commands to compile and run Example 7-25, as well as the
expected output of the java command.

javac -classpath ../jar/'*' Test13.java
java -classpath ./:../jar/'*' Test13 jdbc:oracle:thin:@localhost:1521:orcl
scott <password-for-scott> M1
describe result = <ModelCom {u:Amy @u:parentOf u:Jack;
 u:John @u:parentOf u:Jack; u:John @u:parentOf u:Mary} | [u:Amy,
u:parentOf, u:Jack] [u:John, u:parentOf,
 u:Jack] [u:John, u:parentOf, u:Mary]>

7.16.10 Test14.java: SPARQL CONSTRUCT Query
Example 7-26 shows a SPARQL CONSTRUCT query. It inserts triples that postulate
the following:

• John is a parent of Mary.

• John is a parent of Jack.

• Amy is a parent of Jack.

• Each parent loves all of his or her children.

It then constructs an RDF graph with information about who loves whom.

Example 7-26 SPARQL CONSTRUCT Query

import org.apache.jena.query.*;
import org.apache.jena.rdf.model.Model;
import oracle.spatial.rdf.client.jena.*;
import org.apache.jena.graph.*;

Chapter 7
Example Queries Using RDF Semantic Graph Support for Apache Jena

7-66

public class Test14
{
 public static void main(String[] args) throws Exception
 {
 String szJdbcURL = args[0];
 String szUser = args[1];
 String szPasswd = args[2];
 String szModelName = args[3];

 Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);
 ModelOracleSem model = ModelOracleSem.createOracleSemModel(oracle, szModelName);
 GraphOracleSem g = model.getGraph();

 g.add(Triple.create(Node.createURI("u:John"), Node.createURI("u:parentOf"),
 Node.createURI("u:Mary")));
 g.add(Triple.create(Node.createURI("u:John"), Node.createURI("u:parentOf"),
 Node.createURI("u:Jack")));
 g.add(Triple.create(Node.createURI("u:Amy"), Node.createURI("u:parentOf"),
 Node.createURI("u:Jack")));
 String queryString = " CONSTRUCT { ?s <u:loves> ?o } WHERE {?s <u:parentOf> ?o}";

 Query query = QueryFactory.create(queryString) ;
 QueryExecution qexec = QueryExecutionFactory.create(query, model) ;
 Model m = qexec.execConstruct();
 System.out.println("Construct result = " + m.toString());

 qexec.close() ;
 model.close();
 OracleUtils.dropSemanticModel(oracle, szModelName);
 oracle.dispose();
 }
}

The following are the commands to compile and run Example 7-26, as well as the expected
output of the java command.

javac -classpath ../jar/'*' Test14.java
java -classpath ./:../jar/'*' Test14 jdbc:oracle:thin:@localhost:1521:orcl scott
<password-for-scott> M1
Construct result = <ModelCom {u:Amy @u:loves u:Jack;
 u:John @u:loves u:Jack; u:John @u:loves u:Mary} | [u:Amy, u:loves, u:Jack] [u:John,
u:loves,
 u:Jack] [u:John, u:loves, u:Mary]>

7.16.11 Test15.java: Query Multiple Models and Specify "Allow Duplicates"
Example 7-27 queries multiple models and uses the "allow duplicates" option. It inserts triples
that postulate the following:

• John is a parent of Jack (in Model 1).

• Mary is a parent of Jack (in Model 2).

• Each parent loves all of his or her children.

It then finds out who loves whom. It searches both models and allows for the possibility of
duplicate triples in the models (although there are no duplicates in this example).

Example 7-27 Query Multiple Models and Specify "Allow Duplicates"

import org.apache.jena.query.*;
import org.apache.jena.rdf.model.Model;

Chapter 7
Example Queries Using RDF Semantic Graph Support for Apache Jena

7-67

import oracle.spatial.rdf.client.jena.*;
import org.apache.jena.graph.*;

public class Test15
{
 public static void main(String[] args) throws Exception
 {
 String szJdbcURL = args[0];
 String szUser = args[1];
 String szPasswd = args[2];
 String szModelName1 = args[3];
 String szModelName2 = args[4];

 Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);
 ModelOracleSem model1 = ModelOracleSem.createOracleSemModel(oracle,
szModelName1);
 model1.getGraph().add(Triple.create(Node.createURI("u:John"),
 Node.createURI("u:parentOf"), Node.createURI("u:Jack")));
 model1.close();

 ModelOracleSem model2 = ModelOracleSem.createOracleSemModel(oracle,
szModelName2);
 model2.getGraph().add(Triple.create(Node.createURI("u:Mary"),
 Node.createURI("u:parentOf"), Node.createURI("u:Jack")));
 model2.close();

 String[] modelNamesList = {szModelName2};
 String[] rulebasesList = {};
 Attachment attachment = Attachment.createInstance(modelNamesList,
rulebasesList,
 InferenceMaintenanceMode.NO_UPDATE,
 QueryOptions.ALLOW_QUERY_VALID_AND_DUP);

 GraphOracleSem graph = new GraphOracleSem(oracle, szModelName1, attachment);
 ModelOracleSem model = new ModelOracleSem(graph);

 String queryString = " CONSTRUCT { ?s <u:loves> ?o } WHERE {?s <u:parentOf> ?
o}";
 Query query = QueryFactory.create(queryString) ;
 QueryExecution qexec = QueryExecutionFactory.create(query, model) ;
 Model m = qexec.execConstruct();
 System.out.println("Construct result = " + m.toString());

 qexec.close() ;
 model.close();
 OracleUtils.dropSemanticModel(oracle, szModelName1);
 OracleUtils.dropSemanticModel(oracle, szModelName2);
 oracle.dispose();
 }
}

The following are the commands to compile and run Example 7-27, as well as the
expected output of the java command.

javac -classpath ../jar/'*' Test15.java
java -classpath ./:../jar/'*' Test15 jdbc:oracle:thin:@localhost:1521:orcl
scott <password-for-scott> M1 M2
Construct result = <ModelCom {u:Mary @u:loves u:Jack; u:John @u:loves u:Jack}
| [u:Mary, u:loves, u:Jack] [u:John, u:loves, u:Jack]>

Chapter 7
Example Queries Using RDF Semantic Graph Support for Apache Jena

7-68

7.16.12 Test16.java: SPARQL Update
Example 7-28 inserts two triples into a model.

Example 7-28 SPARQL Update

import org.apache.jena.util.iterator.*;
import oracle.spatial.rdf.client.jena.*;
import org.apache.jena.graph.*;
import org.apache.jena.update.*;

public class Test16
{
 public static void main(String[] args) throws Exception
 {
 String szJdbcURL = args[0];
 String szUser = args[1];
 String szPasswd = args[2];
 String szModelName = args[3];

 Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);
 ModelOracleSem model = ModelOracleSem.createOracleSemModel(oracle, szModelName);
 GraphOracleSem g = model.getGraph();
 String insertString =
 " PREFIX dc: <http://purl.org/dc/elements/1.1/> " +
 " INSERT DATA " +
 " { <http://example/book3> dc:title \"A new book\" ; " +
 " dc:creator \"A.N.Other\" . " +
 " } ";

 UpdateAction.parseExecute(insertString, model);
 ExtendedIterator ei = GraphUtil.findAll(g);
 while (ei.hasNext()) {
 System.out.println("Triple " + ei.next().toString());
 }
 model.close();
 OracleUtils.dropSemanticModel(oracle, szModelName);
 oracle.dispose();
 }
}

The following are the commands to compile and run Example 7-28, as well as the expected
output of the java command.

javac -classpath ../jar/'*' Test16.java
java -classpath ./:../jar/'*' Test16 jdbc:oracle:thin:@localhost:1521:orcl scott
<password-for-scott> M1
Triple http://example/book3 @dc:title "A new book"
Triple http://example/book3 @dc:creator "A.N.Other"

7.16.13 Test17.java: SPARQL Query with ARQ Built-In Functions
Example 7-29 inserts data about two books, and it displays the book titles in all uppercase
characters and the length of each title string.

Example 7-29 SPARQL Query with ARQ Built-In Functions

import org.apache.jena.query.*;
import oracle.spatial.rdf.client.jena.*;

Chapter 7
Example Queries Using RDF Semantic Graph Support for Apache Jena

7-69

import org.apache.jena.update.*;

public class Test17 {
 public static void main(String[] args) throws Exception {
 String szJdbcURL = args[0];
 String szUser = args[1];
 String szPasswd = args[2];
 String szModelName = args[3];

 Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);
 ModelOracleSem model = ModelOracleSem.createOracleSemModel(oracle,
szModelName);
 GraphOracleSem g = model.getGraph();
 String insertString =
 " PREFIX dc: <http://purl.org/dc/elements/1.1/> " +
 " INSERT DATA " +
 " { <http://example/book3> dc:title \"A new book\" ; " +
 " dc:creator \"A.N.Other\" . " +
 " <http://example/book4> dc:title \"Semantic Web Rocks\" ; " +
 " dc:creator \"TB\" . " +
 " } ";

 UpdateAction.parseExecute(insertString, model);
 String queryString = "PREFIX dc: <http://purl.org/dc/elements/1.1/> " +
 " PREFIX fn: <http://www.w3.org/2005/xpath-functions#> " +
 " SELECT ?subject (fn:upper-case(?object) as ?object1) " +
 " (fn:string-length(?object) as ?strlen) " +
 " WHERE { ?subject dc:title ?object } "
 ;
 Query query = QueryFactory.create(queryString, Syntax.syntaxARQ);
 QueryExecution qexec = QueryExecutionFactory.create(query, model);
 ResultSet results = qexec.execSelect();
 ResultSetFormatter.out(System.out, results, query);
 model.close();
 OracleUtils.dropSemanticModel(oracle, szModelName);
 oracle.dispose();
 }
}

The following are the commands to compile and run Example 7-29, as well as the
expected output of the java command.

javac -classpath ../jar/'*' Test17.java
java -classpath ./:../jar/'*' Test17 jdbc:oracle:thin:@localhost:1521:orcl
scott <password-for-scott> M1
--
| subject | object1 | strlen |
==
| <http://example/book3> | "A NEW BOOK" | 10 |
| <http://example/book4> | "SEMANTIC WEB ROCKS" | 18 |
--

7.16.14 Test18.java: SELECT Cast Query
Example 7-30 "converts" two Fahrenheit temperatures (18.1 and 32.0) to Celsius
temperatures.

Chapter 7
Example Queries Using RDF Semantic Graph Support for Apache Jena

7-70

Example 7-30 SELECT Cast Query

import org.apache.jena.query.*;
import oracle.spatial.rdf.client.jena.*;
import org.apache.jena.update.*;

public class Test18 {
 public static void main(String[] args) throws Exception {
 String szJdbcURL = args[0];
 String szUser = args[1];
 String szPasswd = args[2];
 String szModelName = args[3];

 Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);
 ModelOracleSem model = ModelOracleSem.createOracleSemModel(oracle,
szModelName);
 GraphOracleSem g = model.getGraph();
 String insertString =
 " PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> " +
 " INSERT DATA " +
 " { <u:Object1> <u:temp> \"18.1\"^^xsd:float ; " +
 " <u:name> \"Foo... \" . " +
 " <u:Object2> <u:temp> \"32.0\"^^xsd:float ; " +
 " <u:name> \"Bar... \" . " +
 " } ";

 UpdateAction.parseExecute(insertString, model);
 String queryString =
 " PREFIX fn: <http://www.w3.org/2005/xpath-functions#> " +
 " SELECT ?subject ((?temp - 32.0)*5/9 as ?celsius_temp) " +
 "WHERE { ?subject <u:temp> ?temp } "
 ;
 Query query = QueryFactory.create(queryString, Syntax.syntaxARQ);
 QueryExecution qexec = QueryExecutionFactory.create(query, model);
 ResultSet results = qexec.execSelect();
 ResultSetFormatter.out(System.out, results, query);

 model.close();
 OracleUtils.dropSemanticModel(oracle, szModelName);
 oracle.dispose();
 }
}

The following are the commands to compile and run Example 7-30, as well as the expected
output of the java command.

javac -classpath ../jar/'*' Test18.java
java -classpath ./:../jar/'*' Test18 jdbc:oracle:thin:@localhost:1521:orcl scott
<password-for-scott> M1
--
| subject | celsius_temp |
==
| <u:Object1> | "-7.7222223"^^<http://www.w3.org/2001/XMLSchema#float> |
| <u:Object2> | "0.0"^^<http://www.w3.org/2001/XMLSchema#float> |
--

Chapter 7
Example Queries Using RDF Semantic Graph Support for Apache Jena

7-71

7.16.15 Test19.java: Instantiate Oracle Database Using
OracleConnection

Example 7-31 shows a different way to instantiate an Oracle object using a given
OracleConnection object. (In a J2EE Web application, users can normally get an
OracleConnection object from a J2EE data source.)

Example 7-31 Instantiate Oracle Database Using OracleConnection

import org.apache.jena.query.*;
import org.apache.jena.graph.*;
import oracle.spatial.rdf.client.jena.*;
import oracle.jdbc.pool.*;
import oracle.jdbc.*;

public class Test19 {
 public static void main(String[] args) throws Exception {
 String szJdbcURL = args[0];
 String szUser = args[1];
 String szPasswd = args[2];
 String szModelName = args[3];

 OracleDataSource ds = new OracleDataSource();
 ds.setURL(szJdbcURL);
 ds.setUser(szUser);
 ds.setPassword(szPasswd);
 OracleConnection conn = (OracleConnection) ds.getConnection();
 Oracle oracle = new Oracle(conn);

 ModelOracleSem model = ModelOracleSem.createOracleSemModel(oracle,
szModelName);
 GraphOracleSem g = model.getGraph();

 g.add(Triple.create(Node.createURI("u:John"), Node.createURI("u:parentOf"),
 Node.createURI("u:Mary")));
 g.add(Triple.create(Node.createURI("u:John"),
Node.createURI("u:parentOf"),
 Node.createURI("u:Jack")));
 g.add(Triple.create(Node.createURI("u:Mary"), Node.createURI("u:parentOf"),
 Node.createURI("u:Jill")));
 String queryString =
 " SELECT ?s ?o WHERE { ?s <u:parentOf> ?o .} ";
 Query query = QueryFactory.create(queryString) ;
 QueryExecution qexec = QueryExecutionFactory.create(query, model) ;

 ResultSet results = qexec.execSelect() ;
 ResultSetFormatter.out(System.out, results, query);
 qexec.close() ;
 model.close();
 OracleUtils.dropSemanticModel(oracle, szModelName);
 oracle.dispose();
 }
}

The following are the commands to compile and run Example 7-31, as well as the
expected output of the java command.

Chapter 7
Example Queries Using RDF Semantic Graph Support for Apache Jena

7-72

javac -classpath ../jar/'*' Test19.java
java -classpath ./:../jar/'*' Test19 jdbc:oracle:thin:@localhost:1521:orcl scott
<password-for-scott> M1

| s | o |
=======================
<u:John>	<u:Mary>
<u:John>	<u:Jack>
<u:Mary>	<u:Jill>

7.16.16 Test20.java: Oracle Database Connection Pooling
Example 7-32 uses Oracle Database connection pooling.

Example 7-32 Oracle Database Connection Pooling

import org.apache.jena.graph.*;
import oracle.spatial.rdf.client.jena.*;

public class Test20
{
 public static void main(String[] args) throws Exception
 {
 String szJdbcURL = args[0];
 String szUser = args[1];
 String szPasswd = args[2];
 String szModelName = args[3];

 // test with connection properties (taken from some example)
 java.util.Properties prop = new java.util.Properties();
 prop.setProperty("MinLimit", "2"); // the cache size is 2 at least
 prop.setProperty("MaxLimit", "10");
 prop.setProperty("InitialLimit", "2"); // create 2 connections at startup
 prop.setProperty("InactivityTimeout", "1800"); // seconds
 prop.setProperty("AbandonedConnectionTimeout", "900"); // seconds
 prop.setProperty("MaxStatementsLimit", "10");
 prop.setProperty("PropertyCheckInterval", "60"); // seconds

 System.out.println("Creating OraclePool");
 OraclePool op = new OraclePool(szJdbcURL, szUser, szPasswd, prop,
 "OracleSemConnPool");
 System.out.println("Done creating OraclePool");

 // grab an Oracle and do something with it
 System.out.println("Getting an Oracle from OraclePool");
 Oracle oracle = op.getOracle();
 System.out.println("Done");
 System.out.println("Is logical connection:" +
 oracle.getConnection().isLogicalConnection());
 GraphOracleSem g = new GraphOracleSem(oracle, szModelName);
 g.add(Triple.create(Node.createURI("u:John"), Node.createURI("u:parentOf"),
 Node.createURI("u:Mary")));
 g.close();
 // return the Oracle back to the pool
 oracle.dispose();

 // grab another Oracle and do something else
 System.out.println("Getting an Oracle from OraclePool");
 oracle = op.getOracle();
 System.out.println("Done");

Chapter 7
Example Queries Using RDF Semantic Graph Support for Apache Jena

7-73

 System.out.println("Is logical connection:" +
 oracle.getConnection().isLogicalConnection());
 g = new GraphOracleSem(oracle, szModelName);
 g.add(Triple.create(Node.createURI("u:John"), Node.createURI("u:parentOf"),
 Node.createURI("u:Jack")));
 g.close();

 OracleUtils.dropSemanticModel(oracle, szModelName);

 // return the Oracle back to the pool
 oracle.dispose();
 }
}

The following are the commands to compile and run Example 7-32, as well as the
expected output of the java command.

javac -classpath ../jar/'*' Test20.java
java -classpath ./:../jar/'*' Test20 jdbc:oracle:thin:@localhost:1521:orcl
scott <password-for-scott> M1
Creating OraclePool
Done creating OraclePool
Getting an Oracle from OraclePool
Done
Is logical connection:true
Getting an Oracle from OraclePool
Done
Is logical connection:true

7.17 SPARQL Gateway and Semantic Data
SPARQL Gateway is a J2EE web application that is included with the support for
Apache Jena. It is designed to make semantic data (RDF/OWL/SKOS) easily available
to applications that operate on relational and XML data, including Oracle Business
Intelligence Enterprise Edition (OBIEE) 11g.

• SPARQL Gateway Features and Benefits Overview

• Installing and Configuring SPARQL Gateway

• Using SPARQL Gateway with Semantic Data

• Customizing the Default XSLT File

• Using the SPARQL Gateway Java API

• Using the SPARQL Gateway Graphical Web Interface

• Using SPARQL Gateway as an XML Data Source to OBIEE

7.17.1 SPARQL Gateway Features and Benefits Overview
SPARQL Gateway handles several challenges in exposing semantic data to a non-
semantic application:

• RDF syntax, SPARQL query syntax and SPARQL protocol must be understood.

• The SPARQL query response syntax must be understood.

• A transformation must convert a SPARQL query response to something that the
application can consume.

Chapter 7
SPARQL Gateway and Semantic Data

7-74

To address these challenges, SPARQL Gateway manages SPARQL queries and XSLT
operations, executes SPARQL queries against any arbitrary standard-compliant SPARQL
endpoints, and performs necessary XSL transformations before passing the response back to
applications. Applications can then consume semantic data as if it is coming from an existing
data source.

Different triple stores or quad stores often have different capabilities. For example, the
SPARQL endpoint supported by Oracle Database, with RDF Semantic Graph support for
Apache Jena, allows parallel execution, query timeout, dynamic sampling, result cache, and
other features, in addition to the core function of parsing and answering a given standard-
compliant SPARQL query. However, these features may not be available from another given
semantic data store.

With the RDF Semantic Graph SPARQL Gateway, you get certain highly desirable
capabilities, such as the ability to set a timeout on a long running query and the ability to get
partial results from a complex query in a given amount of time. Waiting indefinitely for a query
to finish is a challenge for end users, as is an application with a response time constraint.
SPARQL Gateway provides both timeout and best effort query functions on top of a SPARQL
endpoint. This effectively removes some uncertainty from consuming semantic data through
SPARQL query executions. (See Specifying a Timeout Value and Specifying Best Effort
Query Execution.)

7.17.2 Installing and Configuring SPARQL Gateway
To install and configure SPARQL Gateway, follow these major steps, which are explained in
their own topics:

1. Download the RDF Semantic Graph Support for Apache Jena .zip File (if Not Already
Done)

2. Deploy SPARQL Gateway in WebLogic Server

3. Modify Proxy Settings_ if Necessary

4. Configure the OracleSGDS Data Source_ if Necessary

5. Add and Configure the SparqlGatewayAdminGroup Group_ if Desired

• Download the RDF Semantic Graph Support for Apache Jena .zip File (if Not Already
Done)

• Deploy SPARQL Gateway in WebLogic Server

• Modify Proxy Settings, if Necessary

• Configure the OracleSGDS Data Source, if Necessary

• Add and Configure the SparqlGatewayAdminGroup Group, if Desired

7.17.2.1 Download the RDF Semantic Graph Support for Apache Jena .zip File (if
Not Already Done)

If you have not already done so, download the RDF Semantic Graph support for Apache
Jena file from the RDF Semantic Graph page and unzip it into a temporary directory, as
explained in Setting Up the Software Environment.

Note that the SPARQL Gateway Java class implementations are embedded in
sdordfclient.jar (see Using the SPARQL Gateway Java API).

Chapter 7
SPARQL Gateway and Semantic Data

7-75

7.17.2.2 Deploy SPARQL Gateway in WebLogic Server
Deploy SPARQL Gateway in Oracle WebLogic Server, as follows:

1. Go to the autodeploy directory of WebLogic Server, and copy over the prebuilt
sparqlgateway.war file as follows. (For information about auto-deploying
applications in development domains, see: http://docs.oracle.com/cd/
E11035_01/wls100/deployment/autodeploy.html)

cp -rf /tmp/jena_adapter/sparqlgateway_web_app/sparqlgateway.war
<domain_name>/autodeploy/sparqgateway.war

In this example, <domain_name> is the name of a WebLogic Server domain.

You can customize the prebuilt application in the following ways:

• Modify the WEB-INF/web.xml file embedded in sparqlgateway_web_app/
sparqlgateway.war as needed. Be sure to specify appropriate values for the
sparql_gateway_repository_filedir and sparql_gateway_repository_url
parameters.

• Add XSLT files or SPARQL query files to the top-level directory of
sparqlgateway_web_app/sparqlgateway.war, if necessary.

The following files are provided by Oracle in that directory: default.xslt,
noop.xslt, and qb1.sparql. The default.xslt file is intended mainly for
transforming SPARQL query responses (XML) to a format acceptable to
Oracle.

(These files are described in Storing SPARQL Queries and XSL
Transformations; using SPARQL Gateway with OBIEE is explained in Using
SPARQL Gateway as an XML Data Source to OBIEE.)

2. Verify your deployment by using your Web browser to connect to a URL in the
following format (assume that the Web application is deployed at port 7001):

http://<hostname>:7001/sparqlgateway

7.17.2.3 Modify Proxy Settings, if Necessary
If your SPARQL Gateway is behind a firewall and you want SPARQL Gateway to
communicate with SPARQL endpoints on the Internet as well as those inside the
firewall, you probably need to use the following JVM settings:

-Dhttp.proxyHost=<your_proxy_host>
-Dhttp.proxyPort=<your_proxy_port>
-Dhttp.nonProxyHosts=127.0.0.1|<hostname_1_for_sparql_endpoint_inside_firewall>|
<hostname_2_for_sparql_endpoint_inside_firewall>|...|
<hostname_n_for_sparql_endpoint_inside_firewall>

You can specify these settings in the startWebLogic.sh script.

7.17.2.4 Configure the OracleSGDS Data Source, if Necessary
If an Oracle database is used for storage of and access to SPARQL queries and XSL
transformations for SPARQL Gateway, then a data source named OracleSGDS must be
available.

Chapter 7
SPARQL Gateway and Semantic Data

7-76

http://docs.oracle.com/cd/E11035_01/wls100/deployment/autodeploy.html
http://docs.oracle.com/cd/E11035_01/wls100/deployment/autodeploy.html

If the OracleSGDS data source is configured and available, SPARQL Gateway servlet will
automatically create all the necessary tables and indexes upon initialization.

7.17.2.5 Add and Configure the SparqlGatewayAdminGroup Group, if Desired
The following JSP files in SPARQL Gateway can help you to view, edit, and update SPARQL
queries and XSL transformations that are stored in an Oracle database:

http://<host>:7001/sparqlgateway/admin/sparql.jsp
http://<host>:7001/sparqlgateway/admin/xslt.jsp

These files are protected by HTTP Basic Authentication. In WEB-INF/weblogic.xml, a
principal named SparqlGatewayAdminGroup is defined.

To be able to log in to either of these JSP pages, you must use the WebLogic Server to add a
group named SparqlGatewayAdminGroup, and create a new user or assign an existing user to
this group.

7.17.3 Using SPARQL Gateway with Semantic Data
The primary interface for an application to interact with SPARQL Gateway is through a URL
with the following format:

http://host:port/sparqlgateway/sg?<SPARQL_ENDPOINT>&<SPARQL_QUERY>&<XSLT>

In the preceding format:

• <SPARQL_ENDPOINT> specifies the ee parameter, which contains a URL encoded form
of a SPARQL endpoint.

For example, ee=http%3A%2F%2Fsparql.org%2Fbooks is the URL encoded string for
SPARQL endpoint http://sparql.org/books. It means that SPARQL queries are to be
executed against endpoint http://sparql.org/books.

• <SPARQL_QUERY> specifies either the SPARQL query, or the location of the SPARQL
query.

If it is feasible for an application to accept a very long URL, you can encode the whole
SPARQL query and set eq=<encoded_SPARQL_query> in the URL If it is not feasible for an
application to accept a very long URL, you can store the SPARQL queries and make
them available to SPARQL Gateway using one of the approaches described in Storing
SPARQL Queries and XSL Transformations.

• <XSLT> specifies either the XSL transformation, or the location of the XSL
transformation.

If it is feasible for an application to accept a very long URL, you can encode the whole
XSL transformation and set ex=<encoded_XSLT> in the URL If it is not feasible for an
application to accept a very long URL, you can store the XSL transformations and make
them available to SPARQL Gateway using one of the approaches described in Storing
SPARQL Queries and XSL Transformations.

• Storing SPARQL Queries and XSL Transformations

• Specifying a Timeout Value

• Specifying Best Effort Query Execution

• Specifying a Content Type Other Than text/xml

Chapter 7
SPARQL Gateway and Semantic Data

7-77

7.17.3.1 Storing SPARQL Queries and XSL Transformations
If it is not feasible for an application to accept a very long URL, you can specify the
location of the SPARQL query and the XSL transformation in the <SPARQL_QUERY>
and <XSLT> portions of the URL format described in Using SPARQL Gateway with
Semantic Data, using any of the following approaches:

• Store the SPARQL queries and XSL transformations in the SPARQL Gateway
Web application itself.

To do this, unpack the sparqlgateway.war file, and store the SPARQL queries and
XSL transformations in the top-level directory; then pack the sparqlgateway.war
file and redeploy it.

The sparqlgateway.war file includes the following example files: qb1.sparql
(SPARQL query) and default.xslt (XSL transformation).

Tip:

Use the file extension .sparql for SPARQL query files, and the file
extension .xslt for XSL transformation files.

The syntax for specifying these files (using the provided example file names) is
wq=qb1.sparql for a SPARQL query file and wx=default.xslt for an XSL
transformation file.

If you want to customize the default XSL transformations, see the examples in
Customizing the Default XSLT File.

If you specify wx=noop.xslt, XSL transformation is not performed and the
SPARQL response is returned "as is" to the client.

• Store the SPARQL queries and XSL transformations in a file system directory, and
make sure that the directory is accessible for the deployed SPARQL Gateway Web
application.

By default, the directory is set to /tmp, as shown in the following <init-param>
setting:

<init-param>
 <param-name>sparql_gateway_repository_filedir</param-name>
 <param-value>/tmp/</param-value>
</init-param>

It is recommended that you customize this directory before deploying the SPARQL
Gateway. To change the directory setting, edit the text in between the <param-
value> and </param-value> tags.

The following example specifies a SPARQL query file and an XSL transformation
file that are in the directory specified in the <init-param> element for
sparql_gateway_repository_filedir:

fq=qb1.sparql
fx=myxslt1.xslt

• Make the SPARQL queries and XSL transformations accessible from a website.

Chapter 7
SPARQL Gateway and Semantic Data

7-78

By default, the website directory is set to http://127.0.0.1/queries/, as shown in the
following <init-param> setting:

<init-param>
 <param-name>sparql_gateway_repository_url</param-name>
 <param-value>http://127.0.0.1/queries/</param-value>
</init-param>

Customize this directory before deploying the SPARQL Gateway. To change the website
setting, edit the text in between the <param-value> and </param-value> tags.

The following example specifies a SPARQL query file and an XSL transformation file that
are in the URL specified in the <init-param> element for
sparql_gateway_repository_url.

uq=qb1.sparql
ux=myxslt1.xslt

Internally, SPARQL Gateway computes the appropriate complete URL, fetches the
content, starts query execution, and applies the XSL transformation to the query
response XML.

• Store the SPARQL queries and XSL transformations in an Oracle database.

This approach requires that the J2EE data source OracleSGDS be defined. After SPARQL
Gateway retrieves a database connection from the OracleSGDS data source, a SPARQL
query is read from the database table ORACLE_ORARDF_SG_QUERY using the integer
ID provided.

The syntax for fetching a SPARQL query from an Oracle database is dq=<integer-id>,
and the syntax for fetching an XSL transformation from an Oracle database is
dx=<integer-id>.

Upon servlet initialization, the following tables are created automatically if they do not
already exist (you do not need to create them manually):

– ORACLE_ORARDF_SG_QUERY with a primary key of QID (integer type)

– ORACLE_ORARDF_SG_XSLT with a primary key of XID (integer type)

7.17.3.2 Specifying a Timeout Value
When you submit a potentially long-running query using the URL format described in Using
SPARQL Gateway with Semantic Data, you can limit the execution time by specifying a
timeout value in milliseconds. For example, the following shows the URL format and a
timeout specification that the SPARQL query execution started from SPARQL Gateway is to
be ended after 1000 milliseconds (1 second):

http://host:port/sparqlgateway/sg?<SPARQL_ENDPOINT>&<SPARQL_QUERY>&<XSLT>&t=1000

If a query does not finish when timeout occurs, then an empty SPARQL response is
constructed by SPARQL Gateway.

Note that even if SPARQL Gateway times out a query execution at the HTTP connection
level, the query may still be running on the server side. The actual behavior will be vendor-
dependent.

Chapter 7
SPARQL Gateway and Semantic Data

7-79

7.17.3.3 Specifying Best Effort Query Execution

Note:

You can specify best effort query execution only if you also specify a timeout
value (described in Specifying a Timeout Value).

When you submit a potentially long-running query using the URL format described in
Using SPARQL Gateway with Semantic Data, if you specify a timeout value, you can
also specify a "best effort" limitation on the query. For example, the following shows
the URL format with a timeout specification of 1000 milliseconds (1 second) and a best
effort specification (&b=t):

http://host:port/sparqlgateway/sg?
<SPARQL_ENDPOINT>&<SPARQL_QUERY>&<XSLT>&t=1000&b=t

The web.xml file includes two parameter settings that affect the behavior of the best
effort option: sparql_gateway_besteffort_maxrounds and
sparql_gateway_besteffort_maxthreads. The following show the default definitions:

<init-param>
 <param-name>sparql_gateway_besteffort_maxrounds</param-name>
 <param-value>10</param-value>
</init-param>

<init-param>
 <param-name>sparql_gateway_besteffort_maxthreads</param-name>
 <param-value>3</param-value>
</init-param>

When a SPARQL SELECT query is executed in best effort style, a series of queries
will be executed with an increasing LIMIT value setting in the SPARQL query body.
(The core idea is based on the observation that a SPARQL query runs faster with a
smaller LIMIT setting.) SPARQL Gateway starts query execution with a "LIMIT 1"
setting. Ideally, this query can finish before the timeout is due. Assume that is the
case, the next query will have its LIMIT setting is increased, and subsequent queries
have higher limits. The maximum number of query executions is controlled by the
sparql_gateway_besteffort_maxrounds parameter.

If it is possible to run the series of queries in parallel, the
sparql_gateway_besteffort_maxthreads parameter controls the degree of
parallelism.

7.17.3.4 Specifying a Content Type Other Than text/xml
By default, SPARQL Gateway assumes that XSL transformations generate XML, and
so the default content type set for HTTP response is text/xml. However, if your
application requires a response format other than XML, you can specify the format in
an additional URL parameter (with syntax &rt=), using the following format:

http://host:port/sparqlgateway/sg?
<SPARQL_ENDPOINT>&<SPARQL_QUERY>&<XSLT>&rt=<content_type>

Chapter 7
SPARQL Gateway and Semantic Data

7-80

Note that <content_type> must be URL encoded.

7.17.4 Customizing the Default XSLT File
You can customize the default XSL transformation file (the one referenced using
wx=default.xslt). This section presents some examples of customizations.

The following example implements this namespace prefix replacement logic: if a variable
binding returns a URI that starts with http://purl.org/goodrelations/v1#, that portion is
replaced by gr:; and if a variable binding returns a URI that starts with http://www.w3.org/
2000/01/rdf-schema#, that portion is replaced by rdfs:.

<xsl:when test="starts-with(text(),'http://purl.org/goodrelations/v1#')">
 <xsl:value-of select="concat('gr:',substring-after(text(),'http://purl.org/
goodrelations/v1#'))"/>
</xsl:when>
...
<xsl:when test="starts-with(text(),'http://www.w3.org/2000/01/rdf-schema#')">
 <xsl:value-of select="concat('rdfs:',substring-after(text(),'http://www.w3.org/
2000/01/rdf-schema#'))"/>
</xsl:when>

The following example implements logic to trim a leading http://localhost/ or a leading
http://127.0.0.1/.

<xsl:when test="starts-with(text(),'http://localhost/')">
 <xsl:value-of select="substring-after(text(),'http://localhost/')"/>
</xsl:when>
<xsl:when test="starts-with(text(),'http://127.0.0.1/')">
 <xsl:value-of select="substring-after(text(),'http://127.0.0.1/')"/>
</xsl:when>

7.17.5 Using the SPARQL Gateway Java API
In addition to a Web interface, the SPARQL Gateway administration service provides a
convenient Java application programming interface (API) for managing SPARQL queries and
their associated XSL transformations. The Java API is included in the RDF Semantic Graph
support for Apache Jena library, sdordfclient.jar.

Java API reference information is available in the javadoc_sparqlgateway.zip file that is
included in the SPARQL Gateway .zip file (described in Download the RDF Semantic Graph
Support for Apache Jena .zip File (if Not Already Done)).

The main entry point for this API is the oracle.spatial.rdf.client.jena.SGDBHandler
class (SPARQL Gateway Database Handler), which provides the following static methods for
managing queries and transformations:

• deleteSparqlQuery(Connection, int)
• deleteXslt(Connection, int)
• insertSparqlQuery(Connection, int, String, String, boolean)
• insertXslt(Connection, int, String, String, boolean)
• getSparqlQuery(Connection, int, StringBuilder, StringBuilder)
• getXslt(Connection, int, StringBuilder, StringBuilder)

Chapter 7
SPARQL Gateway and Semantic Data

7-81

These methods manipulate and retrieve entries in the SPARQL Gateway associated
tables that are stored in an Oracle Database instance. To use these methods, the
necessary associated tables must already exist. If the tables do not exist, deploy the
SPARQL Gateway on a Web server and access a URL in the following format:

http://<host>:<port>/sparqlgateway/sg?

where <host> is the host name of the Web server and <port> is the listening port of the
Web server. Accessing this URL will automatically create the necessary tables if they
do not already exist.

Any changes made through the Java API affect the SPARQL Gateway Web service in
the same way as changes made through the administration Web interface. This
provides the flexibility to manage queries and transformations using the interface you
find most convenient.

Note that the insert methods provided by the Java API will not replace existing queries
or transformations stored in the tables. Attempting to replace an existing query or
transformation will fail. To replace a query or transformation, you must remove the
existing entry in the table using one of the delete methods, and then insert the new
query or transformation using one of the insert methods.

The following examples demonstrate how to perform common management tasks
using the Java API. The examples assume a connection has already been established
to the underlying Oracle Database instance backing the SPARQL Gateway.

Example 7-33 Storing a SPARQL Query and an XSL Transformation

Example 7-33 adds a query and an XSL transformation to the database backing the
SPARQL Gateway. After the query and transformation are added, other programs can
use the query and transformation through the gateway by specifying the appropriate
query ID (qid) and XSL transformation ID (xid) in the request URL.

Note that Although Example 7-33 inserts both a query and transformation, the query
and transformation are not necessarily related and do not need to be used together
when accessing SPARQL Gateway. Any query in the database can be used with any
transformation in the database when submitting a request to SPARQL Gateway.

String query = "PREFIX ... SELECT ..."; // full SPARQL query text
String xslt = "<?xml ...> ..."; // full XSLT transformation text

String queryDesc = "Conference attendee information"; // description of SPARQL
query
String xsltDesc = "BIEE table widget transformation"; // description of XSLT
transformation

int queryId = queryIdCounter++; // assign a unique ID to this query
int xsltId = xsltIdCounter++; // assign a unique ID to this transformation

// Inserting a query or transformation will fail if the table already contains
// an entry with the same ID. Setting this boolean to true will ignore these
// exceptions (but the table will remain unchanged). Here we specify that we
// want an exception thrown if we encounter a duplicate ID.
boolean ignoreDupException = false;

// add the query
try {
 // Delete query if one already exists with this ID (this will not throw an
 // error if no such entry exists)
 SGDBHandler.deleteSparqlQuery(connection, queryId);

Chapter 7
SPARQL Gateway and Semantic Data

7-82

 SGDBHandler.insertSparqlQuery(connection, queryId, query, queryDesc,
ignoreDupException);
} catch(SQLException sqle) {
 // Handle exception
} catch(QueryException qe) {
 // Handle query syntax exception
}

// add the XSLT
try {
 // Delete xslt if one already exists with this ID (this will not throw an
 // error if no such entry exists)
 SGDBHandler.deleteXslt(connection, xsltId);
 SGDBHandler.insertXslt(connection, xsltId, xslt, xsltDesc, ignoreDupException);
} catch(SQLException sqle) {
 // Handle database exception
} catch(TransformerConfigurationException tce) {
 // Handle XSLT syntax exception
}

Example 7-34 Modifying a Query

Example 7-34 retrieves an existing query from the database, modifies it, then stores the
updated version of the query back in the database. These steps simulate editing a query and
saving the changes. (Note that if the query does not exist, an exception is thrown.)

StringBuilder query;
StringBuilder description;

// Populate these with the query text and description from the database
query = new StringBuilder();
description = new StringBuilder();

// Get the query from the database
try {
 SGDBHandler.getSparqlQuery(connection, queryId, query, description);
} catch(SQLException sqle) {
 // Handle exception
 // NOTE: exception is thrown if query with specified ID does not exist
}

// The query and description should be populated now

// Modify the query
String updatedQuery = query.toString().replaceAll("invite", "attendee");

// Insert the query back into the database
boolean ignoreDup = false;
try {
 // First must delete the old query
 SGDBHandler.deleteSparqlQuery(connection, queryId);
 // Now we can add
 SGDBHandler.insertSparqlQuery(connection, queryId, updatedQuery,
description.toString(), ignoreDup);
} catch(SQLException sqle) {
 // Handle exception
} catch(QueryException qe) {
 // Handle query syntax exception
}

Chapter 7
SPARQL Gateway and Semantic Data

7-83

Example 7-35 Retrieving and Printing an XSL Transformation

Example 7-35 retrieves an existing XSL transformation and prints it to standard output.
(Note that if the transformation does not exist, an exception is thrown.)

StringBuilder xslt;
StringBuilder description;

// Populate these with the XSLT text and description from the database
xslt = new StringBuilder();
description = new StringBuilder();

try {
 SGDBHandler.getXslt(connection, xsltId, xslt, description);
} catch(SQLException sqle) {
 // Handle exception
 // NOTE: exception is thrown if transformation with specified ID does not exist
}

// Print it to standard output
System.out.printf("XSLT description: %s\n", description.toString());
System.out.printf("XSLT body:\n%s\n", xslt.toString());

7.17.6 Using the SPARQL Gateway Graphical Web Interface
SPARQL Gateway provides several browser-based interfaces to help you test queries,
navigate semantic data, and manage SPQARQL query and XSLT files.

• Main Page (index.html)

• Navigation and Browsing Page (browse.jsp)

• XSLT Management Page (xslt.jsp)

• SPARQL Management Page (sparql.jsp)

7.17.6.1 Main Page (index.html)
http://<host>:<port>/sparqlgateway/index.html provides a simple interface for
executing SPARQL queries and then applying the transformations in the default.xslt
file to the response. Figure 7-2 shows this interface for executing a query.

Chapter 7
SPARQL Gateway and Semantic Data

7-84

Figure 7-2 Graphical Interface Main Page (index.html)

Enter or select a SPARQL Endpoint, specify the SPARQL SELECT Query Body, and press
Submit Query.

For example, if you specify http://dbpedia.org/sparql as the SPARQL endpoint and use
the SPARQL query body from Figure 7-2, the response will be similar to Figure 7-3. Note that
the default transformations (in default.xslt) have been applied to the XML output in this
figure.

Chapter 7
SPARQL Gateway and Semantic Data

7-85

Figure 7-3 SPARQL Query Main Page Response

7.17.6.2 Navigation and Browsing Page (browse.jsp)
http://<host>:<port>/sparqlgateway/browse.jsp provides navigation and browsing
capabilities for semantic data. It works against any standard compliant SPARQL
endpoint. Figure 7-4 shows this interface for executing a query.

Chapter 7
SPARQL Gateway and Semantic Data

7-86

Figure 7-4 Graphical Interface Navigation and Browsing Page (browse.jsp)

Enter or select a SPARQL Endpoint, specify the SPARQL SELECT Query Body, optionally
specify a Timeout (ms) value in milliseconds and the Best Effort option, and press Submit
Query.

The SPARQL response is parsed and then presented in table form, as shown in Figure 7-5.

Figure 7-5 Browsing and Navigation Page: Response

In Figure 7-5, note that URIs are clickable to allow navigation, and that when users move the
cursor over a URI, tool tips are shown for the URIs which have been shortened for readability
(as in http://purl.org.dc/elements/1.1/title being displayed as the tool tip for dc:title
in the figure).

If you click the URI http://example.org/book/book5 in the output shown in Figure 7-5, a
new SPARQL query is automatically generated and executed. This generated SPARQL query
has three query patterns that use this particular URI as subject, predicate, and object, as

Chapter 7
SPARQL Gateway and Semantic Data

7-87

shown in Figure 7-6. Such a query can give you a good idea about how this URI is
used and how it is related to other resources in the data set.

Figure 7-6 Query and Response from Clicking URI Link

When there are many matches of a query, the results are organized in pages and you
can click on any page. The page size by default is 50 results. To display more (or
fewer) than 50 rows per page in a response with the Browsing and Navigation Page
(browse.jsp), you can specify the &resultsPerPage parameter in the URL. For
example, to allow 100 rows per page, include the following in the URL:

&resultsPerPage=100

7.17.6.3 XSLT Management Page (xslt.jsp)
http://<host>:<port>/sparqlgateway/admin/xslt.jsp provides a simple XSLT
management interface. You can enter an XSLT ID (integer) and click Get XSLT to
retrieve both the Description and XSLT Body. You can modify the XSLT Body text and
then save the changes by clicking Save XSLT. Note that there is a previewer to help
you navigate among available XSLT definitions.

Figure 7-7 shows the XSLT Management Page.

Chapter 7
SPARQL Gateway and Semantic Data

7-88

Figure 7-7 XSLT Management Page

7.17.6.4 SPARQL Management Page (sparql.jsp)
http://<host>:<port>/sparqlgateway/admin/xslt.jsp provides a simple SPARQL
management interface. You can enter a SPARQL ID (integer) and click Get SPARQL to
retrieve both the Description and SPARQL Body. You can modify the SPARQL Body text and
then save the changes by clicking Save SPARQL. Note that there is a previewer to help you
navigate among available SPARQL queries.

Figure 7-8 shows the SPARQL Management Page.

Chapter 7
SPARQL Gateway and Semantic Data

7-89

Figure 7-8 SPARQL Management Page

7.17.7 Using SPARQL Gateway as an XML Data Source to OBIEE
This section explains how to create an XML Data source for Oracle Business
Intelligence Enterprise Edition (OBIEE), by integrating OBIEE with RDF using
SPARQL Gateway as a bridge. (The specific steps and illustrations reflect the Oracle
BI Administration Tool Version 11.1.1.3.0.100806.0408.000.)

1. Start the Oracle BI Administration Tool.

2. Click File, then Import Metadata. The first page of the Import Metadata wizard is
displayed, as shown in Figure 7-9.

Chapter 7
SPARQL Gateway and Semantic Data

7-90

Figure 7-9 Import Metadata - Select Data Source

Connection Type: Select XML.

URL: URL for an application to interact with SPARQL Gateway, as explained in Using
SPARQL Gateway with Semantic Data. You can also include the timeout and best effort
options.

Ignore the User Name and Password fields.

3. Click Next. The second page of the Import Metadata wizard is displayed, as shown in
Figure 7-10.

Chapter 7
SPARQL Gateway and Semantic Data

7-91

Figure 7-10 Import Metadata - Select Metadata Types

Select the desired metadata types to be imported. Be sure that Tables is included
in the selected types.

4. Click Next. The third page of the Import Metadata wizard is displayed, as shown in
Figure 7-11.

Chapter 7
SPARQL Gateway and Semantic Data

7-92

Figure 7-11 Import Metadata - Select Metadata Objects

In the Data Source View, expand the node that has the table icon, select the column
names (mapped from projected variables defined in the SPARQL SELECT statement),
and click the right-arrow (>) button to move the selected columns to the Repository
View.

5. Click Finish.

6. Complete the remaining steps for the usual BI Business Model work and Mapping and
Presentation definition work, which are not specific to SPARQL Gateway or RDF data.

7.18 Deploying Fuseki in Apache Tomcat
To deploy Fuseki in Apache Tomcat, you can use the Tomcat admin web page, or you can
just copy the Fuseki .war file into the webapps folder of Tomcat and it will be automatically
deployed.

This topic describe the auto-deploy steps. It assumes that the $FUSEKI_BASE setup is done
and the configuration files exist (by default, Fuseki uses /etc/fuseki as the directory to store
its configuration files).

1. Download and install the latest version of Apache Tomcat.

The directory root for Apache Tomcat installation will be referred to in these instructions
as $CATALINA_HOME.

Chapter 7
Deploying Fuseki in Apache Tomcat

7-93

2. Copy the fuseki.war into the Tomcat webapps folder. For example:

cd $CATALINA_HOME/webapps
cp /tmp/jena_adapter/fuseki_web_app/fuseki.war .

3. Start Tomcat:

$CATALINA_HOME/bin/startup.sh

If this file does not have executable permission, enter the following command and
then again attempt to start Tomcat:

chmod u+x $CATALINA_HOME/bin/startup.sh
4. In a browser go to: http://hostname:8080/fuseki

7.19 ORARDFLDR Utility for Bulk Loading RDF Data
This section describes using the ORARDFLDR utility program for Bulk Loading RDF
Data.

This utility program loads all files in a directory into a semantic model in Oracle
database. It supports several RDF serializations like RDF/XML, Turtle, N-Triple, N-
Quads and Trig. Files compressed with gzip can be directly loaded without
uncompressing the gzip file. In addition, Unicode character escaping and long literals
(CLOBs) are handled automatically.

Running ORARDFLDR Utility Program

The following describes the commands to execute ORARDFLDR:

Prerequisite: Ensure that the environment variable ${ORACLE_JENA_HOME} is pointing
to the directory where the OTN kit is stored.

Usage:

java -cp ${ORACLE_JENA_HOME}/jar/'*'
oracle.spatial.rdf.client.jena.utilities.RDFLoader <command_line_arguments>

For help details:

java -cp ${ORACLE_JENA_HOME}/jar/'*'
oracle.spatial.rdf.client.jena.utilities.RDFLoader --help

For convenience, a shell script in the bin directory can also be executed. The following
describes the commands to use this script

Prerequisite: Set ${ORACLE_JENA_HOME} and ensure ${ORACLE_JENA_HOME}/bin is in
your Unix PATH environment variable.

Usage:

orardfldr <command_line_arguments>

For help details:

orardfldr --help

• Using ORARDFLDR with Oracle Autonomous Database

Chapter 7
ORARDFLDR Utility for Bulk Loading RDF Data

7-94

7.19.1 Using ORARDFLDR with Oracle Autonomous Database

This section describes using the ORARDFLDR utility with Oracle Autonomous Database.

The ORARDFLDR utility included with support for Apache Jena can be used to bulk load
RDF files from your client computer to Oracle Autonomous Database. The connection with
the database is based on a cloud wallet.

General instructions for connecting to an Oracle Autonomous Database with JDBC can be
found in Java connectivity to ATP.

The following example describes establishing a JDBC connection to Oracle Autonomous
Database following the Plain JDBC using JKS files procedure.

Example 7-36 JDBC connectivity to Oracle Autonomous Database

Prerequisite: Ensure you have the following Oracle jar files: ojdbc8.jar, ucp.jar,
oraclepki.jar, osdt_core.jar, and osdt_cert.jar.

1. Unzip your wallet_<dbname>.zip file. You should see something similar to the listing
below after unzipping the file.

[oracle@localhost Wallet_Info]$ ls
cwallet.sso keystore.jks README tnsnames.ora
ewallet.p12 ojdbc.properties sqlnet.ora truststore.jks

2. Modify ojdbc.properties to add JKS related connection properties. The final version of
your ojdbc.properties file should be similar as shown below:

Connection property while using Oracle wallets.
#oracle.net.wallet_location=(SOURCE=(METHOD=FILE)(METHOD_DATA=(DIRECTORY=$
{TNS_ADMIN})))
FOLLOW THESE STEPS FOR USING JKS
(1) Uncomment the following properties to use JKS.
(2) Comment out the oracle.net.wallet_location property above
(3) Set the correct password for both trustStorePassword and keyStorePassword.
It's the password you specified when downloading the wallet from OCI Console or
the Service Console.
javax.net.ssl.trustStore=${TNS_ADMIN}/truststore.jks
javax.net.ssl.trustStorePassword=password
javax.net.ssl.keyStore=${TNS_ADMIN}/keystore.jks
javax.net.ssl.keyStorePassword=password

Use the following JDBC URL:

jdbc:oracle:thin:@dbname_alias?TNS_ADMIN=<path_to_wallet_directory>
The following examples loads the RDF files using the ORAFLDR utility for a database named
rdfdb and having a wallet directory as /home/oracle/RDF/Wallet_Info/ .

Example 7-37 Using ORAFLDR Utility to load RDF Data files

Prerequisite: Ensure you have copied the prerequisite jars listed in Example 7-36
to $ORACLE_JENA_HOME/jar/.

Invoke ORARDFLDR to load RDF files from your client computer to an Autonomous database.

orardfldr --modelName=M1 --fileDir=./data --lang=N-TRIPLE
 --jdbcUrl=jdbc:oracle:thin:@rdfdb_medium?TNS_ADMIN=/home/oracle/RDF/Wallet_Info/
 --user="RDFUSER" --password=password --networkOwner="RDFUSER" --networkName=NET1

Chapter 7
ORARDFLDR Utility for Bulk Loading RDF Data

7-95

https://www.oracle.com/database/technologies/java-connectivity-to-atp.html
https://www.oracle.com/database/technologies/java-connectivity-to-atp.html

It loads RDF data in N-Triple format into a model named M1 in a network named NET1
owned by RDFUSER. RDFUSER is also used for the database connection.

Chapter 7
ORARDFLDR Utility for Bulk Loading RDF Data

7-96

8
RDF Semantic Graph Support for Eclipse
RDF4J

Oracle RDF Graph Adapter for Eclipse RDF4J utilizes the popular Eclipse RDF4J framework
to provide Java developers support to use the RDF semantic graph feature of Oracle
Database.

Note:

This feature was previously referred to as the Sesame Adapter for Oracle Database
and the Sesame Adapter.

The Eclipse RDF4J is a powerful Java framework for processing and handling RDF data.
This includes creating, parsing, scalable storage, reasoning and querying with RDF and
Linked Data. See https://rdf4j.org for more information.

This chapter assumes that you are familiar with major concepts explained in RDF Semantic
Graph Overview and OWL Concepts . It also assumes that you are familiar with the overall
capabilities and use of the Eclipse RDF4J Java framework. See https://rdf4j.org for more
information.

The Oracle RDF Graph Adapter for Eclipse RDF4J extends the semantic data management
capabilities of Oracle Database RDF/OWL by providing a popular standards based API for
Java developers.

• Oracle RDF Graph Support for Eclipse RDF4J Overview
The Oracle RDF Graph Adapter for Eclipse RDF4J API provides a Java-based interface
to Oracle semantic data through an API framework and tools that adhere to the Eclipse
RDF4J SAIL API.

• Prerequisites for Using Oracle RDF Graph Adapter for Eclipse RDF4J
Before you start using the Oracle RDF Graph Adapter for Eclipse RDF4J, you must
ensure that your system environment meets certain prerequisites.

• Setup and Configuration for Using Oracle RDF Graph Adapter for Eclipse RDF4J
To use the Oracle RDF Graph Adapter for Eclipse RDF4J, you must first setup and
configure the system environment.

• Database Connection Management
The Oracle RDF Graph Adapter for Eclipse RDF4J provides support for Oracle Database
Connection Pooling.

• SPARQL Query Execution Model
SPARQL queries executed through the Oracle RDF Graph Adapter for Eclipse RDF4J
API run as SQL queries against Oracle’s relational schema for storing RDF data.

• SPARQL Update Execution Model
This section explains the SPARQL Update Execution Model for Oracle RDF Graph
Adapter for Eclipse RDF4J.

8-1

https://rdf4j.org/
https://rdf4j.org/

• Efficiently Loading RDF Data
The Oracle RDF Graph Adapter for Eclipse RDF4J provides additional or
improved Java methods for efficiently loading a large amount of RDF data from
files or collections.

• Best Practices for Oracle RDF Graph Adapter for Eclipse RDF4J
This section explains the performance best practices for Oracle RDF Graph
Adapter for Eclipse RDF4J.

• Blank Nodes Support in Oracle RDF Graph Adapter for Eclipse RDF4J

• Unsupported Features in Oracle RDF Graph Adapter for Eclipse RDF4J
The unsupported features in the current version of Oracle RDF Graph Adapter for
Eclipse RDF4J are discussed in this section.

• Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

8.1 Oracle RDF Graph Support for Eclipse RDF4J Overview
The Oracle RDF Graph Adapter for Eclipse RDF4J API provides a Java-based
interface to Oracle semantic data through an API framework and tools that adhere to
the Eclipse RDF4J SAIL API.

The RDF Semantic Graph support for Eclipse RDF4J is similar to the RDF Semantic
Graph support for Apache Jena as described in RDF Semantic Graph Support for
Apache Jena .

The adapter for Eclipse RDF4J provides a Java API for interacting with semantic data
stored in Oracle Database. It also provides integration with the following Eclipse
RDF4J tools:

• Eclipse RDF4J Server, which provides an HTTP SPARQL endpoint.

• Eclipse RDF4J Workbench, which is a web-based client UI for managing
databases and executing queries.

The features provided by the adapter for Eclispe RDF4J include:

• Loading (bulk and incremental), exporting, and removing statements, with and
without context

• Querying data, with and without context

• Updating data, with and without context

Oracle RDF Graph Adapter for Eclipse RDF4J implements various interfaces of the
Eclipse RDF4J Storage and Inference Layer (SAIL) API.

For example, the class OracleSailConnection is an Oracle implementation of the
Eclipse RDF4J SailConnection interface, and the class OracleSailStore extends
AbstractSail which is an Oracle implementation of the Eclipse RDF4J Sail interface.

The following example demonstrates a typical usage flow for the RDF Semantic Graph
support for Eclipse RDF4J.

Example 8-1 Sample Usage flow for RDF Semantic Graph Support for Eclipse
RDF4J Using a Schema-Private Semantic Network

String networkOwner = "SCOTT";
String networkName = "NET1";
String modelName = "UsageFlow";
OraclePool oraclePool = new OraclePool(jdbcurl, user, password);

Chapter 8
Oracle RDF Graph Support for Eclipse RDF4J Overview

8-2

SailRepository sr = new SailRepository(new OracleSailStore(oraclePool, modelName,
networkOwner, networkName));
SailRepositoryConnection conn = sr.getConnection();

//A ValueFactory factory for creating IRIs, blank nodes, literals and statements
ValueFactory vf = conn.getValueFactory();
IRI alice = vf.createIRI("http://example.org/Alice");
IRI friendOf = vf.createIRI("http://example.org/friendOf");
IRI bob = vf.createIRI("http://example.org/Bob");
Resource context1 = vf.createIRI("http://example.org/");

// Data loading can happen here.
conn.add(alice, friendOf, bob, context1);
String query =
 " PREFIX foaf: <http://xmlns.com/foaf/0.1/> " +
 " PREFIX dc: <http://purl.org/dc/elements/1.1/> " +
 " select ?s ?p ?o ?name WHERE {?s ?p ?o . OPTIONAL {?o foaf:name ?name .} } ";
TupleQuery tq = conn.prepareTupleQuery(QueryLanguage.SPARQL, query);
TupleQueryResult tqr = tq.evaluate();
while (tqr.hasNext()) {
 System.out.println((tqr.next().toString()));
}
tqr.close();
conn.close();
sr.shutDown();

8.2 Prerequisites for Using Oracle RDF Graph Adapter for
Eclipse RDF4J

Before you start using the Oracle RDF Graph Adapter for Eclipse RDF4J, you must ensure
that your system environment meets certain prerequisites.

The following are the prerequistes required for using the adapter for Eclipse RDF4J:

• Oracle Database Standard Edition 2 (SE2) or Enterprise Edition (EE) for version 18c or
later (user managed database in the cloud or on-premise)

• Eclipse RDF4J version 4.2.1

• JDK 11

8.3 Setup and Configuration for Using Oracle RDF Graph
Adapter for Eclipse RDF4J

To use the Oracle RDF Graph Adapter for Eclipse RDF4J, you must first setup and configure
the system environment.

The adapter can be used in the following three environments:

• Programmatically through Java code

• Accessed over HTTP as a SPARQL Service

• Used within the Eclipse RDF4J workbench environment

The following sections describe the actions for using the adapter for Eclipse RDF4J in the
above mentioned environments:

Chapter 8
Prerequisites for Using Oracle RDF Graph Adapter for Eclipse RDF4J

8-3

• Setting up Oracle RDF Graph Adapter for Eclipse RDF4J for Use with Java

• Setting Up Oracle RDF Graph Adapter for Eclipse RDF4J for Use in RDF4J Server
and Workbench

• Setting Up Oracle RDF Graph Adapter for Eclipse RDF4J for Use As SPARQL
Service

8.3.1 Setting up Oracle RDF Graph Adapter for Eclipse RDF4J for Use
with Java

To use the Oracle RDF Graph Adapter for Eclipse RDF4J programatically through
Java code, you must first ensure that the system environment meets all the
prerequisites as explained in Prerequisites for Using Oracle RDF Graph Adapter for
Eclipse RDF4J.

Before you can start using the adapter to store, manage, and query RDF graphs in the
Oracle database, you need to create a semantic network. A semantic network acts like
a folder that can hold multiple RDF graphs, referred to as “semantic (or RDF) models”,
created by database users. Semantic networks can be created in the MDSYS system
schema (referred to as the MDSYS network) or in a user schema (referred to as a
schema-private network).

A network can be created by invoking the following command:

• MDSYS semantic network
sem_apis.create_sem_network(<tablespace_name>, options=>’
NETWORK_STORAGE_FORM=ESC ‘)

• Schema-private semantic network
sem_apis.create_sem_network(<tablespace_name>,
network_owner=><network_owner>, network_name=><network_name>,
options=>’ NETWORK_STORAGE_FORM=ESC ‘)

See Semantic Networks for more information.

Note:

The only difference in the command for creating an MDSYS-owned semantic
network in an Oracle Database 18c or 19c and Oracle Database 21c and
later is the use of the options parameter to pass the property
NETWORK_STORAGE_FORM=ESC (as seen in the preceding command) .

See Also:

• Setting up Oracle RDF Graph Adapter for Eclipse RDF4J for Use with
Java for Oracle Database 19c

• Setting up Oracle RDF Graph Adapter for Eclipse RDF4J for Use with
Java for Oracle Database 18c

Chapter 8
Setup and Configuration for Using Oracle RDF Graph Adapter for Eclipse RDF4J

8-4

http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/19&id=GUID-FFFB137D-8ED0-44A0-A220-28B5A6B7BBD0
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/19&id=GUID-FFFB137D-8ED0-44A0-A220-28B5A6B7BBD0
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/18&id=GUID-FFFB137D-8ED0-44A0-A220-28B5A6B7BBD0
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/18&id=GUID-FFFB137D-8ED0-44A0-A220-28B5A6B7BBD0

Note:

RDF4J Server, Workbench and SPARQL Service only supports the MDSYS-owned
semantic network in the current version of Oracle RDF Graph Adapter for Eclipse
RDF4J.

Creating an MDSYS-owned Semantic Network

You can create an MDSYS-owned semantic network by performing the following actions from
a SQL based interface such as SQL Developer, SQLPLUS, or from a Java program using
JDBC:

1. Connect to Oracle Database as a SYSTEM user with a DBA privilege.

CONNECT system/<password-for-system-user>
2. Create a tablespace for storing the RDF graphs. Use a suitable operating system folder

and filename.

CREATE TABLESPACE rdftbs
 DATAFILE 'rdftbs.dat'
 SIZE 128M REUSE
 AUTOEXTEND ON NEXT 64M
 MAXSIZE UNLIMITED
 SEGMENT SPACE MANAGEMENT AUTO;

3. Grant quota on rdftbs to MDSYS.

ALTER USER MDSYS QUOTA UNLIMITED ON rdftbs;
4. Create a tablespace for storing the user data. Use a suitable operating system folder

and filename.

CREATE TABLESPACE usertbs
 DATAFILE 'usertbs.dat'
 SIZE 128M REUSE
 AUTOEXTEND ON NEXT 64M
 MAXSIZE UNLIMITED
 SEGMENT SPACE MANAGEMENT AUTO;

5. Create a database user to create or use RDF graphs or do both using the adapter.

CREATE USER rdfuser
 IDENTIFIED BY <password-for-rdfuser>
 DEFAULT TABLESPACE usertbs
 QUOTA 5G ON usertbs;

6. Grant quota on rdftbs to RDFUSER.

ALTER USER RDFUSER QUOTA 5G ON rdftbs;
7. Grant the necessary privileges to the new database user.

GRANT CONNECT, RESOURCE TO rdfuser;
8. Create an MDSYS-owned semantic network.

EXECUTE SEM_APIS.CREATE_SEM_NETWORK(tablespace_name =>'rdftbs');
9. Verify that MDSYS-owned semantic network has been created successfully.

Chapter 8
Setup and Configuration for Using Oracle RDF Graph Adapter for Eclipse RDF4J

8-5

SELECT table_name
 FROM sys.all_tables
 WHERE table_name = 'RDF_VALUE$' AND owner='MDSYS';

Presence of RDF_VALUE$ table in the MDSYS schema shows that the MDSYS-
owned semantic network has been created successfully.

TABLE_NAME

RDF_VALUE$

Creating a Schema-Private Semantic Network

You can create a schema-private semantic network by performing the following actions
from a SQL based interface such as SQL Developer, SQLPLUS, or from a Java
program using JDBC:

1. Connect to Oracle Database as a SYSTEM user with a DBA privilege.

CONNECT system/<password-for-system-user>
2. Create a tablespace for storing the user data. Use a suitable operating system

folder and filename.

CREATE TABLESPACE usertbs
 DATAFILE 'usertbs.dat'
 SIZE 128M REUSE
 AUTOEXTEND ON NEXT 64M
 MAXSIZE UNLIMITED
 SEGMENT SPACE MANAGEMENT AUTO;

3. Create a database user to create and own the semantic network. This user can
create or use RDF graphs or do both within this schema-private network using the
adapter.

CREATE USER rdfuser
 IDENTIFIED BY <password-for-rdfuser>
 DEFAULT TABLESPACE usertbs
 QUOTA 5G ON usertbs;

4. Grant the necessary privileges to the new database user.

GRANT CONNECT, RESOURCE, CREATE VIEW TO rdfuser;
5. Connect to Oracle Database as rdfuser.

CONNECT rdfuser/<password-for-rdf-user>
6. Create a schema-private semantic network named NET1.

EXECUTE SEM_APIS.CREATE_SEM_NETWORK(tablespace_name =>'usertbs',
network_owner=>'RDFUSER', network_name=>'NET1');

7. Verify that schema-private semantic network has been created successfully.

SELECT table_name
 FROM sys.all_tables
 WHERE table_name = 'NET1#RDF_VALUE$' AND owner='RDFUSER';

Presence of <NETWORK_NAME>#RDF_VALUE$ table in the network owner’s schema
shows that the schema-private semantic network has been created successfully.

Chapter 8
Setup and Configuration for Using Oracle RDF Graph Adapter for Eclipse RDF4J

8-6

TABLE_NAME

NET1#RDF_VALUE$

You can now set up the Oracle RDF Graph Adapter for Eclipse RDF4J for use with Java code
by performing the following actions:

1. Download and configure Eclipse RDF4J Release 4.2.1 from RDF4J Downloads page.

2. Download the adapter for Eclipse RDF4J, (Oracle Adapter for Eclipse RDF4J) from
Oracle Software Delivery Cloud.

3. Unzip the downloaded kit (V1033016-01.zip) into a temporary directory, such as /tmp/
oracle_adapter, on a Linux system. If this temporary directory does not already exist,
create it before the unzip operation.

4. Include the following three supporting libraries in your CLASSPATH, in order to run your
Java code via your IDE:

• eclipse-rdf4j-4.2.1-onejar.jar: Download this Eclipse RDF4J jar library from
RDF4J Downloads page.

• ojdbc8.jar: Download this JDBC thin driver for your database version from JDBC
Downloads page.

• ucp.jar: Download this Universal Connection Pool jar file for your database version
from JDBC Downloads page.

• log4j-api-2.17.2.jar, log4j-core-2.17.2.jar, log4j-slf4j-impl-2.17.2.jar,
slf4j-api-1.7.36.jar, and commons-io-2.11.0.jar: Download from Apache
Software Foundation.

5. Install JDK 11 if it is not already installed.

6. Set the JAVA_HOME environment variable to refer to the JDK 11 installation. Define and
verify the setting by executing the following command:

echo $JAVA_HOME

8.3.2 Setting Up Oracle RDF Graph Adapter for Eclipse RDF4J for Use in
RDF4J Server and Workbench

This section describes the installation and configuration of the Oracle RDF Graph Adapter for
Eclipse RDF4J in RDF4J Server and RDF4J Workbench.

The RDF4J Server is a database management application that provides HTTP access to
RDF4J repositories, exposing them as SPARQL endpoints. RDF4J Workbench provides a
web interface for creating, querying, updating and exploring the repositories of an RDF4J
Server.

Note:

RDF4J Server, Workbench and SPARQL Service only supports the MDSYS-owned
semantic network in the current version of Oracle RDF Graph Adapter for Eclipse
RDF4J.

Prerequisites

Chapter 8
Setup and Configuration for Using Oracle RDF Graph Adapter for Eclipse RDF4J

8-7

https://www.eclipse.org/downloads/download.php?file=/rdf4j/eclipse-rdf4j-4.2.1-sdk.zip
https://edelivery.oracle.com/osdc/faces/Home.jspx;jsessionid=o7SOt_nhVgyg7wPozwTIoO0wvr28wPQU1z05mcWxvjl2mVAwMM40!-762490782
https://www.eclipse.org/downloads/download.php?file=/rdf4j/eclipse-rdf4j-4.2.1-onejar.jar
https://www.oracle.com/database/technologies/appdev/jdbc-downloads.html
https://www.oracle.com/database/technologies/appdev/jdbc-downloads.html
https://www.oracle.com/database/technologies/appdev/jdbc-downloads.html

Ensure the following prerequisites are configured to use the adapter for Eclipse RDF4J
in RDF4J Server and Workbench:

1. Java 11 runtime environment.

2. Download the supporting libraries as explained in Include Supporting Libraries.

3. A Java Servlet Container that supports Java Servlet API 3.1 and Java Server
Pages (JSP) 2.2, or newer.

Note:

All examples in this chapter are executed on a recent, stable version of
Apache Tomcat (9.0.78).

4. Standard Installation of the RDF4J Server, RDF4J Workbench, and RDF4J
Console . See RDF4J Server and Workbench Installation and RDF4J Console
installation for more information.

5. Verify that Oracle is not listed as a default repository in the drop-down in the
following Figure 8-1.

Figure 8-1 Data Source Repository in RDF4J Workbench

Note:

If the Oracle data source repository is already set up in the RDF4J
Workbench repository, then it will appear in the preceding drop-down list.

Adding the Oracle Data Source Repository in RDF4J Workbench

Chapter 8
Setup and Configuration for Using Oracle RDF Graph Adapter for Eclipse RDF4J

8-8

https://rdf4j.org/documentation/tools/server-workbench
https://rdf4j.org/documentation/tools/console/
https://rdf4j.org/documentation/tools/console/

To add the Oracle data source repository in RDF4J Workbench, you must execute the
following steps:

1. Add the Data Source to context.xml in Tomcat main $CATALINA_HOME/conf/
context.xml directory, by updating the following highlighted fields.

- Using JDBC driver
 <Resource name="jdbc/OracleSemDS" auth="Container"
 driverClassName="oracle.jdbc.OracleDriver"
 factory="oracle.jdbc.pool.OracleDataSourceFactory"
 scope="Shareable"
 type="oracle.jdbc.pool.OracleDataSource"
 user="<<username>>"
 password="<<pwd>>"
 url="jdbc:oracle:thin:@<< host:port:sid >>"
 maxActive="100"
 minIdle="15"
 maxIdel="15"
 initialSize="15"
 removeAbandonedTimeout="30"
 validationQuery="select 1 from dual"
 />

- Using UCP
 <Resource name="jdbc/OracleSemDS" auth="Container"
 factory="oracle.ucp.jdbc.PoolDataSourceImpl"
 type="oracle.ucp.jdbc.PoolDataSource"
 connectionFactoryClassName="oracle.jdbc.pool.OracleDataSource"
 minPoolSize="15"
 maxPoolSize="100"
 inactiveConnectionTimeout="60"
 abandonedConnectionTimeout="30"
 initialPoolSize="15"
 user="<<username>>"
 password="<<pwd>>"
 url="jdbc:oracle:thin:@<< host:port:sid >>"
 />

2. Copy Oracle jdbc and ucp driver to Tomcat lib folder.

cp -f ojdbc8.jar $CATALINA_HOME/lib
cp -f ucp.jar $CATALINA_HOME/lib

3. Copy the oracle-rdf4j-adapter-4.2.1.jar to RDF4J Server lib folder.

cp -f oracle-rdf4j-adapter-4.2.1.jar $CATALINA_HOME/webapps/rdf4j-server/WEB-
INF/lib

4. Copy the oracle-rdf4j-adapter-4.2.1.jar to RDF4J Workbench lib folder.

cp -f oracle-rdf4j-adapter-4.2.1.jar $CATALINA_HOME/webapps/rdf4j-workbench/WEB-
INF/lib

5. Create the configuration file create-oracle.xsl within the Tomcat $CATALINA_HOME/
webapps/rdf4j-workbench/transformations folder.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE xsl:stylesheet [
 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >
]>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform" xmlns:sparql="http://www.w3.org/

Chapter 8
Setup and Configuration for Using Oracle RDF Graph Adapter for Eclipse RDF4J

8-9

2005/sparql-results#"
 xmlns="http://www.w3.org/1999/xhtml">

 <xsl:include href="../locale/messages.xsl" />
 <xsl:variable name="title">
 <xsl:value-of select="$repository-create.title" />
 </xsl:variable>
 <xsl:include href="template.xsl" />
 <xsl:template match="sparql:sparql">
 <form action="create">
 <table class="dataentry">
 <tbody>
 <tr>
 <th>
 <xsl:value-of select="$repository-type.label" />
 </th>
 <td>
 <select id="type" name="type">
 <option value="memory">
 Memory Store
 </option>
 <option value="memory-lucene">
 Memory Store + Lucene
 </option>
 <option value="memory-rdfs">
 Memory Store + RDFS
 </option>
 <option value="memory-rdfs-dt">
 Memory Store + RDFS and Direct Type
 </option>
 <option value="memory-rdfs-lucene">
 Memory Store + RDFS and Lucene
 </option>
 <option value="memory-customrule">
 Memory Store + Custom Graph Query Inference
 </option>
 <option value="memory-spin">
 Memory Store + SPIN support
 </option>
 <option value="memory-spin-rdfs">
 Memory Store + RDFS and SPIN support
 </option>
 <option value="memory-shacl">
 Memory Store + SHACL
 </option>
 <!-- disabled pending GH-1304 option value="memory-spin-rdfs-
lucene">
 In Memory Store with RDFS+SPIN+Lucene support
 </option -->
 <option value="native">
 Native Store
 </option>
 <option value="native-lucene">
 Native Store + Lucene
 </option>
 <option value="native-rdfs">
 Native Store + RDFS
 </option>
 <option value="native-rdfs-dt">
 Native Store + RDFS and Direct Type
 </option>

Chapter 8
Setup and Configuration for Using Oracle RDF Graph Adapter for Eclipse RDF4J

8-10

 <option value="memory-rdfs-lucene">
 Native Store + RDFS and Lucene
 </option>
 <option value="native-customrule">
 Native Store + Custom Graph Query Inference
 </option>
 <option value="native-spin">
 Native Store + SPIN support
 </option>
 <option value="native-spin-rdfs">
 Native Store + RDFS and SPIN support
 </option>
 <option value="native-shacl">
 Native Store + SHACL
 </option>
 <!-- disabled pending GH-1304 option value="native-spin-rdfs-
lucene">
 Native Java Store with RDFS+SPIN+Lucene support
 </option -->
 <option value="remote">
 Remote RDF Store
 </option>
 <option value="sparql">
 SPARQL endpoint proxy
 </option>
 <option value="federate">Federation</option>
 <option value="lmdb">LMDB Store</option>
 <option value="oracle">Oracle</option>
 </select>
 </td>
 <td></td>
 </tr>
 <tr>
 <th>
 <xsl:value-of select="$repository-id.label" />
 </th>
 <td>
 <input type="text" id="id" name="id" size="16" />
 </td>
 <td></td>
 </tr>
 <tr>
 <th>
 <xsl:value-of select="$repository-title.label" />
 </th>
 <td>
 <input type="text" id="title" name="title" size="48" />
 </td>
 <td></td>
 </tr>
 <tr>
 <td></td>
 <td>
 <input type="button" value="{$cancel.label}" style="float:right"
 data-href="repositories"
 onclick="document.location.href=this.getAttribute('data-href')" />
 <input type="submit" name="next" value="{$next.label}" />
 </td>
 </tr>
 </tbody>
 </table>

Chapter 8
Setup and Configuration for Using Oracle RDF Graph Adapter for Eclipse RDF4J

8-11

 </form>
 </xsl:template>
</xsl:stylesheet>

6. Create the configuration file create.xsl within the Tomcat $CATALINA_HOME/
webapps/rdf4j-workbench/transformations transformation folder.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE xsl:stylesheet [
 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >
]>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:sparql="http://www.w3.org/2005/sparql-results#"
 xmlns="http://www.w3.org/1999/xhtml">

 <xsl:include href="../locale/messages.xsl" />
 <xsl:variable name="title">
 <xsl:value-of select="$repository-create.title" />
 </xsl:variable>
 <xsl:include href="template.xsl" />
 <xsl:template match="sparql:sparql">
 <form action="create">
 <table class="dataentry">
 <tbody>
 <tr>
 <th>
 <xsl:value-of select="$repository-type.label" />
 </th>
 <td>
 <select id="type" name="type">
 <option value="memory">
 Memory Store
 </option>
 <option value="memory-lucene">
 Memory Store + Lucene
 </option>
 <option value="memory-rdfs">
 Memory Store + RDFS
 </option>
 <option value="memory-rdfs-dt">
 Memory Store + RDFS and Direct Type
 </option>
 <option value="memory-rdfs-lucene">
 Memory Store + RDFS and Lucene
 </option>
 <option value="memory-customrule">
 Memory Store + Custom Graph Query Inference
 </option>
 <option value="memory-spin">
 Memory Store + SPIN support
 </option>
 <option value="memory-spin-rdfs">
 Memory Store + RDFS and SPIN support
 </option>
 <option value="memory-shacl">

Chapter 8
Setup and Configuration for Using Oracle RDF Graph Adapter for Eclipse RDF4J

8-12

 Memory Store + SHACL
 </option>
 <!-- disabled pending GH-1304 option value="memory-spin-
rdfs-lucene">
 In Memory Store with RDFS+SPIN+Lucene support
 </option -->
 <option value="native">
 Native Store
 </option>
 <option value="native-lucene">
 Native Store + Lucene
 </option>
 <option value="native-rdfs">
 Native Store + RDFS
 </option>
 <option value="native-rdfs-dt">
 Native Store + RDFS and Direct Type
 </option>
 <option value="memory-rdfs-lucene">
 Native Store + RDFS and Lucene
 </option>
 <option value="native-customrule">
 Native Store + Custom Graph Query Inference
 </option>
 <option value="native-spin">
 Native Store + SPIN support
 </option>
 <option value="native-spin-rdfs">
 Native Store + RDFS and SPIN support
 </option>
 <option value="native-shacl">
 Native Store + SHACL
 </option>
 <!-- disabled pending GH-1304 option value="native-spin-
rdfs-lucene">
 Native Java Store with RDFS+SPIN+Lucene support
 </option -->
 <option value="remote">
 Remote RDF Store
 </option>
 <option value="sparql">
 SPARQL endpoint proxy
 </option>
 <option value="federate">Federation</option>
 <option value="lmdb">LMDB Store</option>
 <option value="oracle">Oracle</option>
 </select>
 </td>
 <td></td>
 </tr>
 <tr>
 <th>
 <xsl:value-of select="$repository-id.label" />
 </th>
 <td>

Chapter 8
Setup and Configuration for Using Oracle RDF Graph Adapter for Eclipse RDF4J

8-13

 <input type="text" id="id" name="id" size="16" />
 </td>
 <td></td>
 </tr>
 <tr>
 <th>
 <xsl:value-of select="$repository-title.label" />
 </th>
 <td>
 <input type="text" id="title" name="title" size="48" />
 </td>
 <td></td>
 </tr>
 <tr>
 <td></td>
 <td>
 <input type="button" value="{$cancel.label}"
style="float:right"
 data-href="repositories"

onclick="document.location.href=this.getAttribute('data-href')" />
 <input type="submit" name="next" value="{$next.label}" />
 </td>
 </tr>
 </tbody>
 </table>
 </form>
 </xsl:template>
</xsl:stylesheet>

7. Restart Tomcat and navigate to https://localhost:8080/rdf4j-workbench.

Note:

The configuration files, create-oracle.xsl and create.xsl contain the word
"Oracle", which you can see in the drop-down in Figure 8-2

"Oracle" appears as an option in the drop-down list in RDF4J Workbench.

Chapter 8
Setup and Configuration for Using Oracle RDF Graph Adapter for Eclipse RDF4J

8-14

Figure 8-2 RDF4J Workbench Repository

• Using the Adapter for Eclipse RFD4J Through RDF4J Workbench
You can use RDF4J Workbench for creating and querying repositories.

8.3.2.1 Using the Adapter for Eclipse RFD4J Through RDF4J Workbench
You can use RDF4J Workbench for creating and querying repositories.

RDF4J Workbench provides a web interface for creating, querying, updating and exploring
repositories in RDF4J Server.

Creating a New Repository using RDF4J Workbench

1. Start RDF4J Workbench by entering the url https://localhost:8080/rdf4j-workbench
in your browser.

2. Click New Repository in the sidebar menu and select the new repository Type as
"Oracle".

3. Enter the new repository ID and Title as shown in the following figure and click Next.

Chapter 8
Setup and Configuration for Using Oracle RDF Graph Adapter for Eclipse RDF4J

8-15

Figure 8-3 RDF4J Workbench New Repository

4. Enter your Model details and click Create to create the new repository.

Figure 8-4 Create New Repository in RDF4J Workbench

The newly created repository summary is display as shown:

Figure 8-5 Summary of New Repository in RDF4J Workbench

Chapter 8
Setup and Configuration for Using Oracle RDF Graph Adapter for Eclipse RDF4J

8-16

You can also view the newly created repository in the List of Repositories page in
RDF4J Workbench.

8.3.3 Setting Up Oracle RDF Graph Adapter for Eclipse RDF4J for Use As
SPARQL Service

In order to use the SPARQL service via the RDF4J Workbench, ensure that the Eclipse
RDF4J server is installed and the Oracle Data Source repository is configured as explained in
Setting Up Oracle RDF Graph Adapter for Eclipse RDF4J for Use in RDF4J Server and
Workbench

The Eclipse RDF4J server installation provides a REST API that uses the HTTP Protocol and
covers a fully compliant implementation of the SPARQL 1.1 Protocol W3C Recommendation.
This ensures that RDF4J server functions as a fully standards-compliant SPARQL endpoint.
See The RDF4J REST API for more information on this feature.

Note:

RDF4J Server, Workbench and SPARQL Service only supports the MDSYS-owned
semantic network in the current version of Oracle RDF Graph Adapter for Eclipse
RDF4J.

The following section presents the examples of usage:

• Using the Adapter Over SPARQL Endpoint in Eclipse RDF4J Workbench

8.3.3.1 Using the Adapter Over SPARQL Endpoint in Eclipse RDF4J Workbench
This section provides a few examples of using the adapter for Eclipse RDF4J through a
SPARQL Endpoint served by the Eclipse RDF4J Workbench.

Example 8-2 Request to Perform a SPARQL Update

The following example inserts some simple triples using HTTP POST. Assume that the
content of the file sparql_update.rq is as follows:

Chapter 8
Setup and Configuration for Using Oracle RDF Graph Adapter for Eclipse RDF4J

8-17

https://rdf4j.org/documentation/reference/rest-api/

PREFIX ex: <http://example.oracle.com/>
INSERT DATA {
 ex:a ex:value "A" .
 ex:b ex:value "B" .
}

You can then run the preceding SPARQL update using the curl command line tool as
shown:

curl -X POST --data-binary "@sparql_update.rq" \
-H "Content-Type: application/sparql-update" \
"http://localhost:8080/rdf4j-server/repositories/MyRDFRepo/statements"

Example 8-3 Request to Execute a SPARQL Query Using HTTP GET

This curl example executes a SPARQL query using HTTP GET.

curl -X GET -H "Accept: application/sparql-results+json" \
"http://localhost:8080/rdf4j-server/repositories/MyRDFRepo?
query=SELECT%20%3Fs%20%3Fp%20%3Fo%0AWHERE%20%7B%20%3Fs%20%3Fp%20%3Fo%20%7D%0ALIMI
T%2010"

Assuming that the previous SPARQL update example was executed on an empty
repository, this REST request should return the following response.

{
 "head" : {
 "vars" : [
 "s",
 "p",
 "o"
]
 },
 "results" : {
 "bindings" : [
 {
 "p" : {
 "type" : "uri",
 "value" : "http://example.oracle.com/value"
 },
 "s" : {
 "type" : "uri",
 "value" : "http://example.oracle.com/b"
 },
 "o" : {
 "type" : "literal",
 "value" : "B"
 }
 },
 {
 "p" : {
 "type" : "uri",
 "value" : "http://example.oracle.com/value"
 },
 "s" : {
 "type" : "uri",
 "value" : "http://example.oracle.com/a"
 },
 "o" : {
 "type" : "literal",
 "value" : "A"

Chapter 8
Setup and Configuration for Using Oracle RDF Graph Adapter for Eclipse RDF4J

8-18

 }
 }
]
 }
}

8.4 Database Connection Management
The Oracle RDF Graph Adapter for Eclipse RDF4J provides support for Oracle Database
Connection Pooling.

Instances of OracleSailStore use a connection pool to manage connections to an Oracle
database. Oracle Database Connection Pooling is provided through the OraclePool class.
Usually, OraclePool is initialized with a DataSource, using the OraclePool (DataSource
ods) constructor. In this case, OraclePool acts as an extended wrapper for the DataSource,
while using the connection pooling capabilities of the data source. When you create an
OracleSailStore object, it is sufficient to specify the OraclePool object in the store
constructor, the database connections will then be managed automatically by the adapter for
Eclipse RDF4J. Several other constructors are also provided for OraclePool, which, for
example, allow you to create an OraclePool instance using a JDBC URL and database
username and password. See the Javadoc included in the Oracle RDF Graph Adapter for
Eclipse RDF4J download for more details.

If you need to retrieve Oracle connection objects (which are essentially database connection
wrappers) explicitly, you can invoke the OraclePool.getOracle method. After finishing with
the connection, you can invoke the OraclePool.returnOracleDBtoPool method to return the
object to the connection pool.

When you get an OracleSailConnection from OracleSailStore or an
OracleSailRepositoryConnection from an OracleRepository, a new OracleDB object is
obtained from the OraclePool and used to create the RDF4J connection object.
READ_COMMITTED transaction isolation is maintained between different RDF4J connection
objects.

The one exception to this behavior occurs when you obtain an
OracleSailRepositoryConnection by calling the asRepositoryConnection method on an
existing instance of OracleSailConnection. In this case, the original OracleSailConnection
and the newly obtained OracleSailRepositoryConnection will use the same OracleDB
object. When you finish using an OracleSailConnection or
OracleSailRepositoryConnection object, you should call its close method to return the
OracleDB object to the OraclePool. Failing to do so will result in connection leaks in your
application.

8.5 SPARQL Query Execution Model
SPARQL queries executed through the Oracle RDF Graph Adapter for Eclipse RDF4J API
run as SQL queries against Oracle’s relational schema for storing RDF data.

Utilizing Oracle’s SQL engine allows SPARQL query execution to take advantage of many
performance features such as parallel query execution, in-memory columnar representation,
and Exadata smart scan.

There are two ways to execute a SPARQL query:

Chapter 8
Database Connection Management

8-19

• You can obtain an implementation of Query or one of its subinterfaces from the
prepareQuery functions of a RepositoryConnection that has an underlying
OracleSailConnection.

• You can obtain an Oracle-specific implementation of TupleExpr from
OracleSPARQLParser and call the evaluate method of OracleSailConnection.

The following code snippet illustrates the first approach.

//run a query against the repository
String queryString =
 "PREFIX ex: <http://example.org/ontology/>\n" +
 "SELECT * WHERE {?x ex:name ?y} LIMIT 1 ";
TupleQuery tupleQuery = conn.prepareTupleQuery(QueryLanguage.SPARQL,
queryString);

try (TupleQueryResult result = tupleQuery.evaluate()) {
 while (result.hasNext()) {
 BindingSet bindingSet = result.next();
 psOut.println("value of x: " + bindingSet.getValue("x"));
 psOut.println("value of y: " + bindingSet.getValue("y"));
 }
}

When an OracleSailConnection evaluates a query, it calls the
SEM_APIS.SPARQL_TO_SQL stored procedure on the database server with the SPARQL
query string and obtains an equivalent SQL query, which is then executed on the
database server. The results of the SQL query are processed and returned through
one of the standard RDF4J query result interfaces.

• Using BIND Values

• Using JDBC BIND Values

• Additions to the SPARQL Query Syntax to Support Other Features

• Special Considerations for SPARQL Query Support

8.5.1 Using BIND Values
Oracle RDF Graph Adapter for Eclipse RDF4J supports bind values through the
standard RDF4J bind value APIs, such as the setBinding procedures defined on the
Query interface. Oracle implements bind values by adding SPARQL BIND clauses to the
original SPARQL query string.

For example, consider the following SPARQL query:

SELECT * WHERE { ?s <urn:fname> ?fname }

In the above query, you can set the value <urn:john> for the query variable ?s. The
tansformed query in that case would be:

SELECT * WHERE { BIND (<urn:john> AS ?s) ?s <urn:fname> ?fname }

Chapter 8
SPARQL Query Execution Model

8-20

Note:

This approach is subject to the standard variable scoping rules of SPARQL. So
query variables that are not visible in the outermost graph pattern, such as variables
that are not projected out of a subquery, cannot be replaced with bind values.

8.5.2 Using JDBC BIND Values
Oracle RDF Graph Adapter for Eclipse RDF4J allows the use of JDBC bind values in the
underlying SQL statement that is executed for a SPARQL query. The JDBC bind value
implementation is much more performant than the standard RDF4J bind value support
described in the previous section.

JDBC bind value support uses the standard RDF4J setBinding API, but bind variables must
be declared in a specific way, and a special query option must be passed in with the
ORACLE_SEM_SM_NS namespace prefix. To enable JDBC bind variables for a query, you must
include USE_BIND_VAR=JDBC in the ORACLE_SEM_SM_NS namespace prefix (for example, PREFIX
ORACLE_SEM_SM_NS: <http://oracle.com/semtech#USE_BIND_VAR=JDBC>). When a SPARQL
query includes this query option, all query variables that appear in a simple SPARQL BIND
clause will be treated as JDBC bind values in the corresponding SQL query. A simple
SPARQL BIND clause is one with the form BIND (<constant> as ?var), for example
BIND("dummy" AS ?bindVar1).

The following code snippet illustrates how to use JDBC bind values.

Example 8-4 Using JDBC Bind Values

// query that uses USE_BIND_VAR=JDBC option and declares ?name as a JDBC
bind variable
String queryStr =
 "PREFIX ex: <http://example.org/>\n"+
 "PREFIX foaf: <http://xmlns.com/foaf/0.1/>\n"+
 "PREFIX ORACLE_SEM_SM_NS: <http://oracle.com/semtech#USE_BIND_VAR=JDBC>\n"+
 "SELECT ?friend\n" +
 "WHERE {\n" +
 " BIND(\"\" AS ?name)\n" +
 " ?x foaf:name ?name\n" +
 " ?x foaf:knows ?y\n" +
 " ?y foaf:name ?friend\n" +
 "}";

// prepare the TupleQuery with JDBC bind var option
TupleQuery tupleQuery = conn.prepareTupleQuery(QueryLanguage.SPARQL,
queryStr);

// find friends for Jack
tupleQuery.setBinding("name", vf.createLiteral("Jack");

try (TupleQueryResult result = tupleQuery.evaluate()) {
 while (result.hasNext()) {
 BindingSet bindingSet = result.next();
 System.out.println(bindingSet.getValue("friend").stringValue());
 }

Chapter 8
SPARQL Query Execution Model

8-21

}

// find friends for Jill
tupleQuery.setBinding("name", vf.createLiteral("Jill");

try (TupleQueryResult result = tupleQuery.evaluate()) {
 while (result.hasNext()) {
 BindingSet bindingSet = result.next();
 System.out.println(bindingSet.getValue("friend").stringValue());
 }
}

Note:

The JDBC bind value capability of Oracle RDF Graph Adapter for Eclipse
RDF4J utilizes the bind variables feature of SEM_APIS.SPARQL_TO_SQL
described in Using Bind Variables with SEM_APIS.SPARQL_TO_SQL.

• Limitations for JDBC Bind Value Support

8.5.2.1 Limitations for JDBC Bind Value Support
Only SPARQL SELECT and ASK queries support JDBC bind values.

The following are the limitations for JDBC bind value support:

• JDBC bind values are not supported in:

– SPARQL CONSTRUCT queries

– DESCRIBE queries

– SPARQL Update statements

• Long RDF literal values of more than 4000 characters in length cannot be used as
JDBC bind values.

• Blank nodes cannot be used as JDBC bind values.

8.5.3 Additions to the SPARQL Query Syntax to Support Other
Features

The Oracle RDF Graph Adapter for Eclipse RDF4J allows you to pass in options for
query generation and execution. It implements these capabilities by overloading the
SPARQL namespace prefix syntax by using Oracle-specific namespaces that contain
query options. The namespaces are in the form PREFIX ORACLE_SEM_xx_NS, where xx
indicates the type of feature (such as SM - SEM_MATCH).

• Query Execution Options

• SPARQL_TO_SQL (SEM_MATCH) Options

Chapter 8
SPARQL Query Execution Model

8-22

8.5.3.1 Query Execution Options
You can pass query execution options to the database server by including a SPARQL PREFIX
of the following form:

PREFIX ORACLE_SEM_FS_NS: <http://oracle.com/semtech#option>

The option in the above SPARQL PREFIX reflects a query option (or multiple options
separated by commas) to be used during query execution.

The following options are supported:

• DOP=n: specifies the degree of parallelism (n) to use during query execution.

• ODS=n: specifies the level of optimizer dynamic sampling to use when generating an
execution plan.

The following example query uses the ORACLE_SEM_FS_NS prefix to specify that a degree of
parallelism of 4 should be used for query execution.

PREFIX ORACLE_SEM_FS_NS: <http://oracle.com/semtech#dop=4>
PREFIX ex: <http://www.example.com/>
SELECT *
WHERE {?s ex:fname ?fname ;
 ex:lname ?lname ;
 ex:dob ?dob}

8.5.3.2 SPARQL_TO_SQL (SEM_MATCH) Options
You can pass SPARQL_TO_SQL options to the database server to influence the SQL generated
for a SPARQL query by including a SPARQL PREFIX of the following form:

PREFIX ORACLE_SEM_SM_NS: <http://oracle.com/semtech#option>

The option in the above PREFIX reflects a SPARQL_TO_SQL option (or multiple options
separated by commas) to be used during query execution.

The available options are detailed in Using the SEM_MATCH Table Function to Query
Semantic Data. Any valid keywords or keyword – value pairs listed as valid for the options
argument of SEM_MATCH or SEM_APIS.SPARQL_TO_SQL can be used with this prefix.

The following example query uses the ORACLE_SEM_SM_NS prefix to specify that HASH join
should be used to join all triple patterns in the query.

PREFIX ORACLE_SEM_SM_NS: <http://oracle.com/semtech#all_link_hash>
PREFIX ex: <http://www.example.org/>
SELECT *
WHERE {?s ex:fname ?fname ;
 ex:lname ?lname ;
 ex:dob ?dob}

8.5.4 Special Considerations for SPARQL Query Support
This section explains the special considerations for SPARQL Query Support.

Unbounded Property Path Queries

Chapter 8
SPARQL Query Execution Model

8-23

By default Oracle RDF Graph Adapter for Eclipse RDF4J limits the evaluation of the
unbounded SPARQL property path operators + and * to at most 10 repetitions. This
can be controlled with the all_max_pp_depth(n) SPARQL_TO_SQL option, where n is the
maximum allowed number of repetitions when matching + or *. Specifying a value of
zero results in unlimited maximum repetitions.

The following example uses all_max_pp_depth(0) for a fully unbounded search.

PREFIX ORACLE_SEM_SM_NS: <http://oracle.com/semtech#all_max_pp_depth(0)>
PREFIX ex: <http://www.example.org/>
SELECT (COUNT(*) AS ?cnt)
WHERE {ex:a ex:p1* ?y}

SPARQL Dataset Specification

The adapter for Eclipse RDF4J does not allow dataset specification outside of the
SPARQL query string. Dataset specification through the setDataset() method of
Operation and its subinterfaces is not supported, and passing a Dataset object into
the evaluate method of SailConnection is also not supported. Instead, use the FROM
and FROM NAMED SPARQL clauses to specify the query dataset in the SPARQL query
string itself.

Query Timeout

Query timeout through the setMaxExecutionTime method on Operation and its
subinterfaces is not supported.

Long RDF Literals

Large RDF literal values greater than 4000 bytes in length are not supported by some
SPARQL query functions. See Special Considerations When Using SEM_MATCH for
more information.

8.6 SPARQL Update Execution Model
This section explains the SPARQL Update Execution Model for Oracle RDF Graph
Adapter for Eclipse RDF4J.

The adapter for Eclipse RDF4J implements SPARQL update operations by executing
the SEM_APIS.UPDATE_MODEL stored procedure on the database server. You can
execute a SPARQL update operation by getting an Update object from the
prepareUpdate function of an instance of OracleSailRepositoryConnection.

Note:

You must have an OracleSailRepositoryConnection instance. A plain
SailRepository instance created from an OracleSailStore will not run the
update properly.

The following example illustrates how to update an Oracle RDF model through the
RDF4J API:

String updString =
 "PREFIX people: <http://www.example.org/people/>\n"+
 "PREFIX ont: <http://www.example.org/ontology/>\n"+

Chapter 8
SPARQL Update Execution Model

8-24

 "INSERT DATA { GRAPH <urn:g1> { \n"+
 " people:Sue a ont:Person; \n"+
 " ont:name \"Sue\" . } }";
 Update upd = conn.prepareUpdate(QueryLanguage.SPARQL, updString);
 upd.execute();

• Transaction Management for SPARQL Update

• Additions to the SPARQL Syntax to Support Other Features

• Special Considerations for SPARQL Update Support

8.6.1 Transaction Management for SPARQL Update
SPARQL update operations executed through the RDF4J API follow standard RDF4J
transaction management conventions. SPARQL updates are committed automatically by
default. However, if an explicit transaction is started on the SailRepositoryConnection with
begin, then subsequent SPARQL update operations will not be committed until the active
transaction is explicitly committed with commit. Any uncommitted update operations can be
rolled back with rollback.

8.6.2 Additions to the SPARQL Syntax to Support Other Features
Just as it does with SPARQL queries, Oracle RDF Graph Adapter for Eclipse RDF4J allows
you to pass in options for SPARQL update execution. It implements these capabilities by
overloading the SPARQL namespace prefix syntax by using Oracle-specific namespaces that
contain SEM_APIS.UPDATE_MODEL options.

• UPDATE_MODEL Options

• UPDATE_MODEL Match Options

8.6.2.1 UPDATE_MODEL Options
You can pass options to SEM_APIS.UPDATE_MODEL by including a PREFIX declaration with the
following form:

PREFIX ORACLE_SEM_UM_NS: <http://oracle.com/semtech#option>

The option in the above PREFIX reflects an UPDATE_MODEL option (or multiple options
separated by commas) to be used during update execution.

See SEM_APIS.UPDATE_MODEL for more information on available options. Any valid
keywords or keyword – value pairs listed as valid for the options argument of UPDATE_MODEL
can be used with this PREFIX.

The following example query uses the ORACLE_SEM_UM_NS prefix to specify a degree of
parallelism of 2 for the update.

PREFIX ORACLE_SEM_UM_NS: <http://oracle.com/semtech#parallel(2)>
PREFIX ex: <http://www.example.org/>
INSERT {GRAPH ex:g1 {ex:a ex:reachable ?y}}
WHERE {ex:a ex:p1* ?y}

Chapter 8
SPARQL Update Execution Model

8-25

8.6.2.2 UPDATE_MODEL Match Options
You can pass match options to SEM_APIS.UPDATE_MODEL by including a PREFIX
declaration with the following form:

PREFIX ORACLE_SEM_SM_NS: <http://oracle.com/semtech#option>

The option reflects an UPDATE_MODEL match option (or multiple match options
separated by commas) to be used during SPARQL update execution.

The available options are detailed in SEM_APIS.UPDATE_MODEL. Any valid
keywords or keyword – value pairs listed as valid for the match_options argument of
UPDATE_MODEL can be used with this PREFIX.

The following example uses the ORACLE_SEM_SM_NS prefix to specify a maximum
unbounded property path depth of 5.

PREFIX ORACLE_SEM_SM_NS: <http://oracle.com/semtech#all_max_pp_depth(5)>
PREFIX ex: <http://www.example.org/>
INSERT {GRAPH ex:g1 {ex:a ex:reachable ?y}}
WHERE {ex:a ex:p1* ?y}

8.6.3 Special Considerations for SPARQL Update Support
Unbounded Property Paths in Update Operations

As mentioned in the previous section, Oracle RDF Graph Adapter for Eclipse RDF4J
limits the evaluation of the unbounded SPARQL property path operators + and * to at
most 10 repetitions. This default setting will affect SPARQL update operations that use
property paths in the WHERE clause. The max repetition setting can be controlled with
the all_max_pp_depth(n) option, where n is the maximum allowed number of
repetitions when matching + or *. Specifying a value of zero results in unlimited
maximum repetitions.

The following example uses all_max_pp_depth(0) as a match option for
SEM_APIS.UPDATE_MODEL for a fully unbounded search.

PREFIX ORACLE_SEM_SM_NS: <http://oracle.com/semtech#all_max_pp_depth(0)>
PREFIX ex: <http://www.example.org/>
INSERT { GRAPH ex:g1 { ex:a ex:reachable ?y}}
WHERE { ex:a ex:p1* ?y}

SPARQL Dataset Specification

Oracle RDF Graph Adapter for Eclipse RDF4J does not allow dataset specification
outside of the SPARQL update string. Dataset specification through the setDataset
method of Operation and its subinterfaces is not supported. Instead, use the WITH,
USING and USING NAMED SPARQL clauses to specify the dataset in the SPARQL update
string itself.

Bind Values

Bind values are not supported for SPARQL update operations.

Long RDF Literals

Chapter 8
SPARQL Update Execution Model

8-26

As noted in the previous section, large RDF literal values greater than 4000 bytes in length
are not supported by some SPARQL query functions. This limitation will affect SPARQL
update operations using any of these functions on long literal data. See Special
Considerations When Using SEM_MATCH for more information.

Update Timeout

Update timeout through the setMaxExecutionTime method on Operation and its
subinterfaces is not supported.

8.7 Efficiently Loading RDF Data
The Oracle RDF Graph Adapter for Eclipse RDF4J provides additional or improved Java
methods for efficiently loading a large amount of RDF data from files or collections.

Bulk Loading of RDF Data

The bulk loading capability of the adapter involves the following two steps:

1. Loading RDF data from a file or collection of statements to a staging table.

2. Loading RDF data from the staging table to the RDF storage tables.

The OracleBulkUpdateHandler class in the adapter provides methods that allow two different
pathways for implementing a bulk load:

1. addInBulk: These methods allow performing both the steps mentioned in Bulk Loading of
RDF Data with a single invocation. This pathway is better when you have only a single
file or collection to load from.

2. prepareBulk and completeBulk: You can use one or more invocations of prepareBulk.
Each call implements the step 1 of Bulk Loading of RDF Data.
Later, a single invocation of completeBulk can be used to perform step 2 of Bulk Loading
of RDF Data to load staging table data obtained from those multiple prepareBulk calls.
This pathway works better when there are multiple files to load from.

In addition, the OracleSailRepositoryConnection class in the adapter provides bulk loading
implementation for the following method in SailRepositoryConnection class: .

public void add(InputStream in,
 String baseURI,
 RDFFormat dataFormat,
 Resource... contexts)

Bulk loading from compressed file is supported as well, but currently limited to gzip files only.

8.8 Best Practices for Oracle RDF Graph Adapter for Eclipse
RDF4J

This section explains the performance best practices for Oracle RDF Graph Adapter for
Eclipse RDF4J.

Closing Resources

Application programmers should take care to avoid resource leaks. For Oracle RDF Graph
Adapter for Eclipse RDF4J, the two most important types of resource leaks to prevent are
JDBC connection leaks and database cursor leaks.

Chapter 8
Efficiently Loading RDF Data

8-27

Preventing JDBC Connection Leaks

A new JDBC connection is obtained from the OraclePool every time you call
getConnection on an OracleRepository or OracleSailStore to create an
OracleSailConnection or OracleSailRepositoryConnection object. You must ensure
that these JDBC connections are returned to the OraclePool by explicitly calling the
close method on the OracleSailConnection or OracleSailRepositoryConnection
objects that you create.

Preventing Database Cursor Leaks

Several RDF4J API calls return an Iterator. When using the adapter for Eclipse
RDF4J, many of these iterators have underlying JDBC ResultSets that are opened
when the iterator is created and therefore must be closed to prevent database cursor
leaks.

Oracle’s iterators can be closed in two ways:

1. By creating them in try-with-resources statements and relying on Java
Autoclosable to close the iterator.

String queryString =
 "PREFIX ex: <http://example.org/ontology/>\n"+
 "SELECT * WHERE {?x ex:name ?y}\n" +
 "ORDER BY ASC(STR(?y)) LIMIT 1 ";

TupleQuery tupleQuery =
conn.prepareTupleQuery(QueryLanguage.SPARQL, queryString);

try (TupleQueryResult result = tupleQuery.evaluate()) {
 while (result.hasNext()) {
 BindingSet bindingSet = result.next();
 System.out.println("value of x: " + bindingSet.getValue("x"));
 System.out..println("value of y: " + bindingSet.getValue("y"))
 }
}

2. By explicitly calling the close method on the iterator.

String queryString =
 "PREFIX ex: <http://example.org/ontology/>\n"+
 "SELECT * WHERE {?x ex:name ?y}\n" +
 "ORDER BY ASC(STR(?y)) LIMIT 1 ";
TupleQuery tupleQuery =
conn.prepareTupleQuery(QueryLanguage.SPARQL, queryString);
TupleQueryResult result = tupleQuery.evaluate();
try {
 while (result.hasNext()) {
 BindingSet bindingSet = result.next();
 System.out.println("value of x: " +
bindingSet.getValue("x"));
 System.out..println("value of y: " +
bindingSet.getValue("y"))

Chapter 8
Best Practices for Oracle RDF Graph Adapter for Eclipse RDF4J

8-28

 }
}
finally {
 result.close();
}

Gathering Statistics

It is strongly recommended that you analyze the application table, semantic model, and
inferred graph in case it exists before performing inference and after loading a significant
amount of semantic data into the database. Performing the analysis operations causes
statistics to be gathered, which will help the Oracle optimizer select efficient execution plans
when answering queries.

To gather relevant statistics, you can use the following methods in the
OracleSailConnection:

• OracleSailConnection.analyze
• OracleSailConnection.analyzeApplicationTable
For information about these methods, including their parameters, see the RDF Semantic
Graph Support for Eclipse RDF4J Javadoc.

JDBC Bind Values

It is strongly recommended that you use JDBC bind values whenever you execute a series of
SPARQL queries that differ only in constant values. Using bind values saves significant query
compilation overhead and can lead to much higher throughput for your query workload.

For more information about JDBC bind values, see Using JDBC BIND Values and Example
13: Using JDBC Bind Values.

8.9 Blank Nodes Support in Oracle RDF Graph Adapter for
Eclipse RDF4J

In a SPARQL query, a blank node that is not wrapped inside < and > is treated as a variable
when the query is executed through the support for the adapter for Eclipse RDF4J. This
matches the SPARQL standard semantics.

However, a blank node that is wrapped inside < and > is treated as a constant when the query
is executed, and the support for Eclipse RDF4J adds a proper prefix to the blank node label
as required by the underlying data modeling. Do not use blank nodes for the CONTEXT column
in the application table, because blank nodes in named graphs from two different semantic
models will be treated as the same resource if they have the same label. This is not the case
for blank nodes in triples, where they are stored separately if coming from different models.

The blank node when stored in Oracle database is embedded with a prefix based on the
model ID and graph name. Therefore, a conversion is needed between blank nodes used in
RDF4J API’s and Oracle Database. This can be done using the following methods:

• OracleUtils.addOracleBNodePrefix
• OracleUtils.removeOracleBNodePrefix

Chapter 8
Blank Nodes Support in Oracle RDF Graph Adapter for Eclipse RDF4J

8-29

https://rdf4j.org/javadoc/latest/

8.10 Unsupported Features in Oracle RDF Graph Adapter
for Eclipse RDF4J

The unsupported features in the current version of Oracle RDF Graph Adapter for
Eclipse RDF4J are discussed in this section.

The following features of Oracle RDF Graph are not supported in this version of the
adapter for Eclipse RDF4J:

• RDF View Models

• Native Unicode Storage (available in Oracle Database version 21c and later)

• Managing RDF Graphs in Oracle Autonomous Database

The following features of the Eclipse RDF4J API are not supported in this version of
the adapter for Eclipse RDF4J:

• SPARQL Dataset specification using the setDataset method of Operation and its
subinterfaces is not supported. The dataset should be specified in the SPARQL
query or update string itself.

• Specifying Query and Update timeout through the setMaxExecutionTime method
on Operation and its subinterfaces is not supported.

• A TupleExpr that does not implement OracleTuple cannot be passed to the
evaluate method in OracleSailConnection.

• An Update object created from a RepositoryConnection implementation other
than OracleSailRepositoryConnection cannot be executed against Oracle RDF

8.11 Example Queries Using Oracle RDF Graph Adapter for
Eclipse RDF4J

This section includes the example queries for using Oracle RDF Graph Adapter for
Eclipse RDF4J.

To run these examples, ensure that all the supporting libraries mentioned in
Supporting libraries for using adapter with Java code are included in the CLASSPATH
definition.

To run a query, you must execute the following actions:

1. Include the example code in a Java source file.

2. Define a CLASSPATH environment variable named CP to include the relevant jar
files. For example, it may be defined as follows:

setenv CP .:ojdbc8.jar:ucp.jar:oracle-rdf4j-adapter-4.2.1.jar:log4j-
api-2.17.2.jar:log4j-core-2.17.2.jar:log4j-slf4j-
impl-2.17.2.jar:slf4j-api-1.7.36.jar:eclipse-rdf4j-4.2.1-
onejar.jar:commons-io-2.11.0.jar

Chapter 8
Unsupported Features in Oracle RDF Graph Adapter for Eclipse RDF4J

8-30

Note:

The preceding setenv command assumes that the jar files are located in the
current directory. You may need to alter the command to indicate the location of
these jar files in your environment.

3. Compile the Java source file. For example, to compile the source file Test.java, run the
following command:

javac -classpath $CP Test.java

4. Run the compiled file by passing the command line arguments required by the specific
Java program.

• You can run the compiled file for the examples in this section for an existing MDSYS
network. For example, to run the compiled file on an RDF graph (model) named
TestModel in an existing MDSYS network, execute the following command:

java -classpath $CP Test jdbc:oracle:thin:@localhost:1521:orcl scott
<password-for-scott> TestModel

• The examples also allow optional use of schema-private network. Therefore, you can
run the compiled file for the examples in this section for an existing schema-private
network. For example, to run the compiled file on an RDF graph (model) named
TestModel in an existing schema-private network whose owner is SCOTT and name
is NET1, execute the following command:

java -classpath $CP Test jdbc:oracle:thin:@localhost:1521:orcl scott
<password-for-scott> TestModel scott net1

• Example 1: Basic Operations

• Example 2: Add a Data File in TRIG Format

• Example 3: Simple Query

• Example 4: Simple Bulk Load

• Example 5: Bulk Load RDF/XML

• Example 6: SPARQL Ask Query

• Example 7: SPARQL CONSTRUCT Query

• Example 8: Named Graph Query

• Example 9: Get COUNT of Matches

• Example 10: Specify Bind Variable for Constant in Query Pattern

• Example 11: SPARQL Update

• Example 12: Oracle Hint

• Example 13: Using JDBC Bind Values

• Example 14: Simple Inference

• Example 15: Simple Virtual Model

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

8-31

8.11.1 Example 1: Basic Operations
Example 8-5 shows the BasicOper.java file, which performs some basic operations
such as add and remove statements.

Example 8-5 Basic Operations

import java.io.IOException;
import java.io.PrintStream;
import java.sql.SQLException;
import oracle.rdf4j.adapter.OraclePool;
import oracle.rdf4j.adapter.OracleRepository;
import oracle.rdf4j.adapter.OracleSailConnection;
import oracle.rdf4j.adapter.OracleSailStore;
import oracle.rdf4j.adapter.exception.ConnectionSetupException;
import oracle.rdf4j.adapter.utils.OracleUtils;
import org.eclipse.rdf4j.common.iteration.CloseableIteration;
import org.eclipse.rdf4j.model.IRI;
import org.eclipse.rdf4j.model.Statement;
import org.eclipse.rdf4j.model.ValueFactory;
import org.eclipse.rdf4j.repository.Repository;
import org.eclipse.rdf4j.sail.SailException;

public class BasicOper {
 public static void main(String[] args) throws
ConnectionSetupException, SQLException, IOException {
 PrintStream psOut = System.out;
 String jdbcUrl = args[0];
 String user = args[1];
 String password = args[2];
 String model = args[3];
 String networkOwner = (args.length > 5) ? args[4] : null;
 String networkName = (args.length > 5) ? args[5] : null;
 OraclePool op = null;
 OracleSailStore store = null;
 Repository sr = null;
 OracleSailConnection conn = null;

 try {
 op = new OraclePool(jdbcUrl, user, password);
 store = new OracleSailStore(op, model, networkOwner,
networkName);
 sr = new OracleRepository(store);

 ValueFactory f = sr.getValueFactory();
 conn = store.getConnection();

 // create some resources and literals to make statements out of
 IRI p = f.createIRI("http://p");
 IRI domain = f.createIRI("http://www.w3.org/2000/01/rdf-
schema#domain");
 IRI cls = f.createIRI("http://cls");
 IRI a = f.createIRI("http://a");
 IRI b = f.createIRI("http://b");

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

8-32

 IRI ng1 = f.createIRI("http://ng1");

 conn.addStatement(p, domain, cls);
 conn.addStatement(p, domain, cls, ng1);
 conn.addStatement(a, p, b, ng1);
 psOut.println("size for given contexts " + ng1 + ": " +
conn.size(ng1));

 // returns OracleStatements
 CloseableIteration < ?extends Statement, SailException > it;
 int cnt;

 // retrieves all statements that appear in the repository(regardless
of context)
 cnt = 0;
 it = conn.getStatements(null, null, null, false);
 while (it.hasNext()) {
 Statement stmt = it.next();
 psOut.println("getStatements: stmt#" + (++cnt) + ":" +
stmt.toString());
 }
 it.close();
 conn.removeStatements(null, null, null, ng1);
 psOut.println("size of context " + ng1 + ":" + conn.size(ng1));
 conn.removeAll();
 psOut.println("size of store: " + conn.size());
 }

 finally {
 if (conn != null && conn.isOpen()) {
 conn.close();
 }
 if (op != null && op.getOracleDB() != null)

 OracleUtils.dropSemanticModelAndTables(op.getOracleDB(), model, null,
null, networkOwner, networkName);
 if (sr != null) sr.shutDown();
 if (store != null) store.shutDown();
 if (op != null) op.close();
 }
 }
}

To compile this example, execute the following command:

javac -classpath $CP BasicOper.java

To run this example for an existing MDSYS network, execute the following command:

java -classpath $CP BasicOper jdbc:oracle:thin:@localhost:1521:ORCL scott
<password-for-scott> TestModel

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

8-33

To run this example for an existing schema-private network whose owner is SCOTT
and name is NET1, execute the following command:

java -classpath $CP BasicOper jdbc:oracle:thin:@localhost:1521:ORCL
scott <password-for-scott> TestModel scott net1

The expected output of the java command might appear as follows:

size for given contexts http://ng1: 2
getStatements: stmt#1: (http://a, http://p, http://b) [http://ng1]
getStatements: stmt#2: (http://p, http://www.w3.org/2000/01/rdf-
schema#domain, http://cls) [http://ng1]
getStatements: stmt#3: (http://p, http://www.w3.org/2000/01/rdf-
schema#domain, http://cls) [null]
size of context http://ng1:0
size of store: 0

8.11.2 Example 2: Add a Data File in TRIG Format
Add a Data File in TRIG Format shows the LoadFile.java file, which demonstrates
how to load a file in TRIG format.

Example 8-6 Add a Data File in TRIG Format

import java.io. * ;
import java.sql.SQLException;
import org.eclipse.rdf4j.repository.Repository;
import org.eclipse.rdf4j.repository.RepositoryConnection;
import org.eclipse.rdf4j.repository.RepositoryException;
import org.eclipse.rdf4j.rio.RDFParseException;
import org.eclipse.rdf4j.sail.SailException;
import org.eclipse.rdf4j.rio.RDFFormat;
import oracle.rdf4j.adapter.OraclePool;
import oracle.rdf4j.adapter.OracleRepository;
import oracle.rdf4j.adapter.OracleSailConnection;
import oracle.rdf4j.adapter.OracleSailStore;
import oracle.rdf4j.adapter.exception.ConnectionSetupException;
import oracle.rdf4j.adapter.utils.OracleUtils;

public class LoadFile {
 public static void main(String[] args) throws
ConnectionSetupException,
 SQLException, SailException, RDFParseException,
RepositoryException,
 IOException {

 PrintStream psOut = System.out;
 String jdbcUrl = args[0];
 String user = args[1];
 String password = args[2];
 String model = args[3];
 String trigFile = args[4];
 String networkOwner = (args.length > 6) ? args[5] : null;

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

8-34

 String networkName = (args.length > 6) ? args[6] : null;

 OraclePool op = null;
 OracleSailStore store = null;
 Repository sr = null;
 RepositoryConnection repConn = null;

 try {
 op = new OraclePool(jdbcUrl, user, password);
 store = new OracleSailStore(op, model, networkOwner, networkName);
 sr = new OracleRepository(store);
 repConn = sr.getConnection();
 psOut.println("testBulkLoad: start: before-load Size=" +
repConn.size());
 repConn.add(new File(trigFile), "http://my.com/", RDFFormat.TRIG);
 repConn.commit();
 psOut.println("size " + Long.toString(repConn.size()));
 }
 finally {
 if (repConn != null) {
 repConn.close();
 }
 if (op != null)
OracleUtils.dropSemanticModelAndTables(op.getOracleDB(), model, null, null,
networkOwner, networkName);
 if (sr != null) sr.shutDown();
 if (store != null) store.shutDown();
 if (op != null) op.close();
 }
 }
}

For running this example, assume that a sample TRIG data file named test.trig was
created as:

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
@prefix swp: <http://www.w3.org/2004/03/trix/swp-1/>.
@prefix dc: <http://purl.org/dc/elements/1.1/>.
@prefix foaf: <http://xmlns.com/foaf/0.1/>.
@prefix ex: <http://example.org/>.
@prefix : <http://example.org/>.
default graph
{
 <http://example.org/bob> dc:publisher "Bob Hacker".
 <http://example.org/alice> dc:publisher "Alice Hacker".
}
:bob{
 _:a foaf:mbox <mailto:bob@oldcorp.example.org>.
 }
:alice{
 _:a foaf:name "Alice".

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

8-35

 _:a foaf:mbox <mailto:alice@work.example.org>.
 }
:jack {
 _:a foaf:name "Jack".
 _:a foaf:mbox <mailto:jack@oracle.example.org>.
 }

To compile this example, execute the following command:

javac -classpath $CP LoadFile.java

To run this example for an existing MDSYS network, execute the following command:

java -classpath $CP LoadFile jdbc:oracle:thin:@localhost:1521:ORCL
scott <password> TestModel ./test.trig

To run this example for an existing schema-private network whose owner is SCOTT
and name is NET1, execute the following command:

java -classpath $CP LoadFile jdbc:oracle:thin:@localhost:1521:ORCL
scott <password> TestModel ./test.trig scott net1

The expected output of the java command might appear as follows:

testBulkLoad: start: before-load Size=0
size 7

8.11.3 Example 3: Simple Query
Example 3: Simple Query shows the SimpleQuery.java file, which demonstrates how
to perform a simple query.

Example 8-7 Simple Query

import java.io.IOException;
import java.io.PrintStream;
import java.sql.SQLException;
import oracle.rdf4j.adapter.OraclePool;
import oracle.rdf4j.adapter.OracleRepository;
import oracle.rdf4j.adapter.OracleSailStore;
import oracle.rdf4j.adapter.exception.ConnectionSetupException;
import oracle.rdf4j.adapter.utils.OracleUtils;
import org.eclipse.rdf4j.model.IRI;
import org.eclipse.rdf4j.model.Literal;
import org.eclipse.rdf4j.model.ValueFactory;
import org.eclipse.rdf4j.model.vocabulary.RDF;
import org.eclipse.rdf4j.query.BindingSet;
import org.eclipse.rdf4j.query.QueryLanguage;
import org.eclipse.rdf4j.query.TupleQuery;
import org.eclipse.rdf4j.query.TupleQueryResult;
import org.eclipse.rdf4j.repository.Repository;

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

8-36

import org.eclipse.rdf4j.repository.RepositoryConnection;

public class SimpleQuery {
 public static void main(String[] args) throws ConnectionSetupException,
SQLException, IOException {
 PrintStream psOut = System.out;
 String jdbcUrl = args[0];
 String user = args[1];
 String password = args[2];
 String model = args[3];
 String networkOwner = (args.length > 5) ? args[4] : null;
 String networkName = (args.length > 5) ? args[5] : null;

 OraclePool op = null;
 OracleSailStore store = null;
 Repository sr = null;
 RepositoryConnection conn = null;

 try {
 op = new OraclePool(jdbcUrl, user, password);
 store = new OracleSailStore(op, model, networkOwner, networkName);
 sr = new OracleRepository(store);

 ValueFactory f = sr.getValueFactory();
 conn = sr.getConnection();

 // create some resources and literals to make statements out of
 IRI alice = f.createIRI("http://example.org/people/alice");
 IRI name = f.createIRI("http://example.org/ontology/name");
 IRI person = f.createIRI("http://example.org/ontology/Person");
 Literal alicesName = f.createLiteral("Alice");

 conn.clear(); // to start from scratch
 conn.add(alice, RDF.TYPE, person);
 conn.add(alice, name, alicesName);
 conn.commit();

 //run a query against the repository
 String queryString =
 "PREFIX ex: <http://example.org/ontology/>\n" +
 "SELECT * WHERE {?x ex:name ?y}\n" +
 "ORDER BY ASC(STR(?y)) LIMIT 1 ";
 TupleQuery tupleQuery = conn.prepareTupleQuery(QueryLanguage.SPARQL,
queryString);

 try (TupleQueryResult result = tupleQuery.evaluate()) {
 while (result.hasNext()) {
 BindingSet bindingSet = result.next();
 psOut.println("value of x: " + bindingSet.getValue("x"));
 psOut.println("value of y: " + bindingSet.getValue("y"));
 }
 }
 }
 finally {

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

8-37

 if (conn != null && conn.isOpen()) {
 conn.clear();
 conn.close();
 }
 OracleUtils.dropSemanticModelAndTables(op.getOracleDB(), model,
null, null, networkOwner, networkName);
 sr.shutDown();
 store.shutDown();
 op.close();
 }
 }
}

To compile this example, execute the following command:

javac -classpath $CP SimpleQuery.java

To run this example for an existing MDSYS network, execute the following command:

java -classpath $CP SimpleQuery jdbc:oracle:thin:@localhost:1521:ORCL
scott <password-for-scott> TestModel

To run this example for an existing schema-private network whose owner is SCOTT
and name is NET1, execute the following command:

java -classpath $CP SimpleQuery jdbc:oracle:thin:@localhost:1521:ORCL
scott <password-for-scott> TestModel scott net1

The expected output of the java command might appear as follows:

value of x: http://example.org/people/alice
value of y: "Alice"

8.11.4 Example 4: Simple Bulk Load
Example 8-8 shows the SimpleBulkLoad.java file, which demonstrates how to do a
bulk load from NTriples data.

Example 8-8 Simple Bulk Load

import java.io. * ;
import java.sql.SQLException;
import org.eclipse.rdf4j.model.IRI;
import org.eclipse.rdf4j.model.ValueFactory;
import org.eclipse.rdf4j.model.Resource;
import org.eclipse.rdf4j.repository.RepositoryException;
import org.eclipse.rdf4j.rio.RDFParseException;
import org.eclipse.rdf4j.sail.SailException;
import org.eclipse.rdf4j.rio.RDFFormat;
import org.eclipse.rdf4j.repository.Repository;

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

8-38

import oracle.rdf4j.adapter.OraclePool;
import oracle.rdf4j.adapter.OracleRepository;
import oracle.rdf4j.adapter.OracleSailConnection;
import oracle.rdf4j.adapter.OracleSailStore;
import oracle.rdf4j.adapter.exception.ConnectionSetupException;
import oracle.rdf4j.adapter.utils.OracleUtils;

public class SimpleBulkLoad {
 public static void main(String[] args) throws ConnectionSetupException,
SQLException,
 SailException, RDFParseException, RepositoryException, IOException {
 PrintStream psOut = System.out;
 String jdbcUrl = args[0];
 String user = args[1];
 String password = args[2];
 String model = args[3];
 String filename = args[4]; // N-TRIPLES file
 String networkOwner = (args.length > 6) ? args[5] : null;
 String networkName = (args.length > 6) ? args[6] : null;

 OraclePool op = new OraclePool(jdbcUrl, user, password);
 OracleSailStore store = new OracleSailStore(op, model, networkOwner,
networkName);
 OracleSailConnection osc = store.getConnection();
 Repository sr = new OracleRepository(store);
 ValueFactory f = sr.getValueFactory();

 try {
 psOut.println("testBulkLoad: start");

 FileInputStream fis = new
 FileInputStream(filename);

 long loadBegin = System.currentTimeMillis();
 IRI ng1 = f.createIRI("http://QuadFromTriple");
 osc.getBulkUpdateHandler().addInBulk(
 fis, "http://abc", // baseURI
 RDFFormat.NTRIPLES, // dataFormat
 null, // tablespaceName
 50, // batchSize
 null, // flags
 ng1 // Resource... for contexts
);

 long loadEnd = System.currentTimeMillis();
 long size_no_contexts = osc.size((Resource) null);
 long size_all_contexts = osc.size();

 psOut.println("testBulkLoad: " + (loadEnd - loadBegin) +
 "ms. Size:" + " NO_CONTEXTS=" + size_no_contexts + " ALL_CONTEXTS="
+ size_all_contexts);
 // cleanup
 osc.removeAll();
 psOut.println("size of store: " + osc.size());

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

8-39

 }
 finally {
 if (osc != null && osc.isOpen()) osc.close();
 if (op != null)
OracleUtils.dropSemanticModelAndTables(op.getOracleDB(), model, null,
null, networkOwner, networkName);
 if (sr != null) sr.shutDown();
 if (store != null) store.shutDown();
 if (op != null) op.close();
 }
 }
}

For running this example, assume that a sample ntriples data file named
test.ntriples was created as:

<urn:JohnFrench> <urn:name> "John".
<urn:JohnFrench> <urn:speaks> "French".
<urn:JohnFrench> <urn:height> <urn:InchValue>.
<urn:InchValue> <urn:value> "63".
<urn:InchValue> <urn:unit> "inch".
<http://data.linkedmdb.org/movie/onto/genreNameChainElem1> <http://
www.w3.org/1999/02/22-rdf-syntax-ns#first> <http://data.linkedmdb.org/
movie/genre>.

To compile this example, execute the following command:

javac -classpath $CP SimpleBulkLoad.java

To run this example for an existing MDSYS network, execute the following command:

java -classpath $CP SimpleBulkLoad
jdbc:oracle:thin:@localhost:1521:ORCL scott <password> TestModel ./
test.ntriples

To run this example for an existing schema-private network whose owner is SCOTT
and name is NET1, execute the following command:

java -classpath $CP SimpleBulkLoad
jdbc:oracle:thin:@localhost:1521:ORCL scott <password> TestModel ./
test.ntriples scott net1

The expected output of the java command might appear as follows:

testBulkLoad: start
testBulkLoad: 8222ms.
Size: NO_CONTEXTS=0 ALL_CONTEXTS=6
size of store: 0

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

8-40

8.11.5 Example 5: Bulk Load RDF/XML
Example 5: Bulk Load RDF/XML shows the BulkLoadRDFXML.java file, which demonstrates
how to do a bulk load from RDF/XML file.

Example 8-9 Bulk Load RDF/XML

import java.io. * ;
import java.sql.SQLException;
import org.eclipse.rdf4j.model.Resource;
import org.eclipse.rdf4j.repository.Repository;
import org.eclipse.rdf4j.repository.RepositoryConnection;
import org.eclipse.rdf4j.repository.RepositoryException;
import org.eclipse.rdf4j.rio.RDFParseException;
import org.eclipse.rdf4j.sail.SailException;
import org.eclipse.rdf4j.rio.RDFFormat;
import oracle.rdf4j.adapter.OraclePool;
import oracle.rdf4j.adapter.OracleRepository;
import oracle.rdf4j.adapter.OracleSailConnection;
import oracle.rdf4j.adapter.OracleSailStore;
import oracle.rdf4j.adapter.exception.ConnectionSetupException;
import oracle.rdf4j.adapter.utils.OracleUtils;

public class BulkLoadRDFXML {
 public static void main(String[] args) throws
 ConnectionSetupException, SQLException, SailException,
 RDFParseException, RepositoryException, IOException {
 PrintStream psOut = System.out;
 String jdbcUrl = args[0];
 String user = args[1];
 String password = args[2];
 String model = args[3];
 String rdfxmlFile = args[4]; // RDF/XML-format data file
 String networkOwner = (args.length > 6) ? args[5] : null;
 String networkName = (args.length > 6) ? args[6] : null;

 OraclePool op = null;
 OracleSailStore store = null;
 Repository sr = null;
 OracleSailConnection conn = null;

 try {
 op = new OraclePool(jdbcUrl, user, password);
 store = new OracleSailStore(op, model, networkOwner, networkName);
 sr = new OracleRepository(store);
 conn = store.getConnection();

 FileInputStream fis = new FileInputStream(rdfxmlFile);
 psOut.println("testBulkLoad: start: before-load Size=" +
conn.size());
 long loadBegin = System.currentTimeMillis();
 conn.getBulkUpdateHandler().addInBulk(

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

8-41

 fis,
 "http://abc", // baseURI
 RDFFormat.RDFXML, // dataFormat
 null, // tablespaceName
 null, // flags
 null, // StatusListener
 (Resource[]) null // Resource...for contexts
);

 long loadEnd = System.currentTimeMillis();
 psOut.println("testBulkLoad: " + (loadEnd - loadBegin) + "ms.
Size=" + conn.size() + "\n");
 }
 finally {
 if (conn != null && conn.isOpen()) {
 conn.close();
 }
 if (op != null)
OracleUtils.dropSemanticModelAndTables(op.getOracleDB(), model, null,
null, networkOwner, networkName);
 if (sr != null) sr.shutDown();
 if (store != null) store.shutDown();
 if (op != null) op.close();
 }
 }
}

For running this example, assume that a sample file named RdfXmlData.rdfxml was
created as:

<?xml version="1.0"?>
<!DOCTYPE owl [
 <!ENTITY owl "http://www.w3.org/2002/07/owl#" >
 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >
]>
<rdf:RDF
 xmlns = "http://a/b#" xml:base = "http://a/b#" xmlns:my =
"http://a/b#"
 xmlns:owl = "http://www.w3.org/2002/07/owl#"
 xmlns:rdf = "http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs= "http://www.w3.org/2000/01/rdf-schema#"
 xmlns:xsd = "http://www.w3.org/2001/XMLSchema#">
 <owl:Class rdf:ID="Color">
 <owl:oneOf rdf:parseType="Collection">
 <owl:Thing rdf:ID="Red"/>
 <owl:Thing rdf:ID="Blue"/>
 </owl:oneOf>
 </owl:Class>
</rdf:RDF>

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

8-42

To compile this example, execute the following command:

javac -classpath $CP BulkLoadRDFXML.java

To run this example for an existing MDSYS network, execute the following command:

java -classpath $CP BulkLoadRDFXML jdbc:oracle:thin:@localhost:1521:ORCL
scott <password> TestModel ./RdfXmlData.rdfxml

To run this example for an existing schema-private network whose owner is SCOTT and
name is NET1, execute the following command:

java -classpath $CP BulkLoadRDFXML jdbc:oracle:thin:@localhost:1521:ORCL
scott <password> TestModel ./RdfXmlData.rdfxml scott net1

The expected output of the java command might appear as follows:

testBulkLoad: start: before-load Size=0
testBulkLoad: 6732ms. Size=8

8.11.6 Example 6: SPARQL Ask Query
Example 6: SPARQL Ask Query shows the SparqlASK.java file, which demonstrates how to
perform a SPARQL ASK query.

Example 8-10 SPARQL Ask Query

import java.io.PrintStream;
import java.sql.SQLException;
import oracle.rdf4j.adapter.OraclePool;
import oracle.rdf4j.adapter.OracleRepository;
import oracle.rdf4j.adapter.OracleSailConnection;
import oracle.rdf4j.adapter.OracleSailRepositoryConnection;
import oracle.rdf4j.adapter.OracleSailStore;
import oracle.rdf4j.adapter.exception.ConnectionSetupException;
import oracle.rdf4j.adapter.utils.OracleUtils;
import org.eclipse.rdf4j.model.IRI;
import org.eclipse.rdf4j.model.ValueFactory;
import org.eclipse.rdf4j.model.vocabulary.RDFS;
import org.eclipse.rdf4j.query.BooleanQuery;
import org.eclipse.rdf4j.query.QueryLanguage;
import org.eclipse.rdf4j.repository.Repository;
import org.eclipse.rdf4j.repository.RepositoryConnection;

public class SparqlASK {
 public static void main(String[] args) throws ConnectionSetupException,
SQLException {
 PrintStream psOut = System.out;
 String jdbcUrl = args[0];
 String user = args[1];
 String password = args[2];
 String model = args[3];

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

8-43

 String networkOwner = (args.length > 5) ? args[4] : null;
 String networkName = (args.length > 5) ? args[5] : null;

 OraclePool op = null;
 OracleSailStore store = null;
 Repository sr = null;
 RepositoryConnection conn = null;

 try {
 op = new OraclePool(jdbcUrl, user, password);
 store = new OracleSailStore(op, model, networkOwner,
networkName);
 sr = new OracleRepository(store);
 conn = sr.getConnection();
 OracleSailConnection osc =
 (OracleSailConnection)((OracleSailRepositoryConnection)
conn).getSailConnection();

 ValueFactory vf = sr.getValueFactory();
 IRI p = vf.createIRI("http://p");
 IRI cls = vf.createIRI("http://cls");

 conn.clear();
 conn.add(p, RDFS.DOMAIN, cls);
 conn.commit();

 osc.analyze(); // analyze the semantic model
 osc.analyzeApplicationTable(); // and then the application table
 BooleanQuery tq = null;
 tq = conn.prepareBooleanQuery(QueryLanguage.SPARQL, "ASK { ?x ?p
<http://cls> }");
 boolean b = tq.evaluate();
 psOut.println("\nAnswer is " + Boolean.toString(b));
 }
 finally {
 if (conn != null && conn.isOpen()) {
 conn.clear();
 conn.close();
 }
 OracleUtils.dropSemanticModelAndTables(op.getOracleDB(), model,
null, null, networkOwner, networkName);
 sr.shutDown();
 store.shutDown();
 op.close();
 }
 }
}

To compile this example, execute the following command:

javac -classpath $CP SparqlASK.java

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

8-44

To run this example for an existing MDSYS network, execute the following command:

java -classpath $CP SparqlASK jdbc:oracle:thin:@localhost:1521:ORCL scott
<password> TestModel

To run this example for an existing schema-private network whose owner is SCOTT and
name is NET1, execute the following command:

java -classpath $CP SparqlASK jdbc:oracle:thin:@localhost:1521:ORCL scott
<password> TestModel scott net1

The expected output of the java command might appear as follows:

Answer is true

8.11.7 Example 7: SPARQL CONSTRUCT Query
Example 8-11 shows the SparqlConstruct.java file, which demonstrates how to perform a
SPARQL CONSTRUCT query.

Example 8-11 SPARQL CONSTRUCT Query

import java.io.PrintStream;
import java.sql.SQLException;
import oracle.rdf4j.adapter.OraclePool;
import oracle.rdf4j.adapter.OracleRepository;
import oracle.rdf4j.adapter.OracleSailConnection;
import oracle.rdf4j.adapter.OracleSailRepositoryConnection;
import oracle.rdf4j.adapter.OracleSailStore;
import oracle.rdf4j.adapter.exception.ConnectionSetupException;
import oracle.rdf4j.adapter.utils.OracleUtils;
import org.eclipse.rdf4j.model.IRI;
import org.eclipse.rdf4j.model.Statement;
import org.eclipse.rdf4j.model.ValueFactory;
import org.eclipse.rdf4j.model.vocabulary.RDFS;
import org.eclipse.rdf4j.query.GraphQuery;
import org.eclipse.rdf4j.query.GraphQueryResult;
import org.eclipse.rdf4j.query.QueryLanguage;
import org.eclipse.rdf4j.repository.Repository;
import org.eclipse.rdf4j.repository.RepositoryConnection;

public class SparqlConstruct {
 public static void main(String[] args) throws ConnectionSetupException,
SQLException {
 PrintStream psOut = System.out;
 String jdbcUrl = args[0];
 String user = args[1];
 String password = args[2];
 String model = args[3];
 String networkOwner = (args.length > 5) ? args[4] : null;
 String networkName = (args.length > 5) ? args[5] : null;

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

8-45

 OraclePool op = null;
 OracleSailStore store = null;
 Repository sr = null;
 RepositoryConnection conn = null;

 try {
 op = new OraclePool(jdbcUrl, user, password);
 store = new OracleSailStore(op, model, networkOwner,
networkName);
 sr = new OracleRepository(store);
 conn = sr.getConnection();

 ValueFactory vf = sr.getValueFactory();
 IRI p = vf.createIRI("http://p");
 IRI cls = vf.createIRI("http://cls");

 conn.clear();
 conn.add(p, RDFS.DOMAIN, cls);
 conn.commit();
 OracleSailConnection osc =
 (OracleSailConnection)((OracleSailRepositoryConnection)
conn).getSailConnection();
 osc.analyze(); // analyze the semantic model
 osc.analyzeApplicationTable(); // and then the application table

 GraphQuery tq = null; // Construct Query
 tq = conn.prepareGraphQuery(QueryLanguage.SPARQL,
 "CONSTRUCT {?x <http://new_eq_p> ?o } WHERE { ?x ?p ?o }");
 psOut.println("Start construct query");

 try (GraphQueryResult result = tq.evaluate()) {
 while (result.hasNext()) {
 Statement stmt = (Statement) result.next();
 psOut.println(stmt.toString());
 }
 }
 }
 finally {
 if (conn != null && conn.isOpen()) {
 conn.clear();
 conn.close();
 }
 OracleUtils.dropSemanticModelAndTables(op.getOracleDB(), model,
null, null, networkOwner, networkName);
 sr.shutDown();
 store.shutDown();
 op.close();
 }
 }
}

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

8-46

To compile this example, execute the following command:

javac -classpath $CP SparqlConstruct.java

To run this example for an existing MDSYS network, execute the following command:

java -classpath $CP SparqlConstruct jdbc:oracle:thin:@localhost:1521:ORCL
scott <password> TestModel

To run this example for an existing schema-private network whose owner is SCOTT and
name is NET1, execute the following command:

java -classpath $CP SparqlConstruct jdbc:oracle:thin:@localhost:1521:ORCL
scott <password> TestModel scott net1

The expected output of the java command might appear as follows:

Start construct query
(http://p, http://new_eq_p, http://cls)

8.11.8 Example 8: Named Graph Query
Example 8-12 shows the NamedGraph.java file, which demonstrates how to perform a Named
Graph query.

Example 8-12 Named Graph Query

import java.io.File;
import java.io.IOException;
import java.io.PrintStream;
import java.sql.SQLException;
import oracle.rdf4j.adapter.OraclePool;
import oracle.rdf4j.adapter.OracleRepository;
import oracle.rdf4j.adapter.OracleSailConnection;
import oracle.rdf4j.adapter.OracleSailRepositoryConnection;
import oracle.rdf4j.adapter.OracleSailStore;
import oracle.rdf4j.adapter.exception.ConnectionSetupException;
import oracle.rdf4j.adapter.utils.OracleUtils;
import org.eclipse.rdf4j.query.BindingSet;
import org.eclipse.rdf4j.query.QueryLanguage;
import org.eclipse.rdf4j.query.TupleQuery;
import org.eclipse.rdf4j.query.TupleQueryResult;
import org.eclipse.rdf4j.repository.Repository;
import org.eclipse.rdf4j.repository.RepositoryConnection;
import org.eclipse.rdf4j.rio.RDFFormat;

public class NamedGraph {
 public static void main(String[] args) throws ConnectionSetupException,
SQLException, IOException {
 PrintStream psOut = System.out;
 String jdbcUrl = args[0];

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

8-47

 String user = args[1];
 String password = args[2];
 String model = args[3];
 String trigFile = args[4]; // TRIG-format data file
 String networkOwner = (args.length > 6) ? args[5] : null;
 String networkName = (args.length > 6) ? args[6] : null;

 OraclePool op = null;
 OracleSailStore store = null;
 Repository sr = null;
 RepositoryConnection conn = null;

 try {
 op = new OraclePool(jdbcUrl, user, password);
 store = new OracleSailStore(op, model, networkOwner,
networkName);
 sr = new OracleRepository(store);
 conn = sr.getConnection();

 conn.begin();
 conn.clear();

 // load the data incrementally since it is very small file
 conn.add(new File(trigFile), "http://my.com/", RDFFormat.TRIG);
 conn.commit();

 OracleSailConnection osc = (OracleSailConnection)
((OracleSailRepositoryConnection) conn).getSailConnection();

 osc.analyze(); // analyze the semantic model
 osc.analyzeApplicationTable(); // and then the application table
 TupleQuery tq = null;
 tq = conn.prepareTupleQuery(QueryLanguage.SPARQL,
 "PREFIX : <http://purl.org/dc/elements/1.1/>\n" +
 "SELECT ?g ?s ?p ?o\n" +
 "WHERE {?g :publisher ?o1 . GRAPH ?g {?s ?p ?o}}\n" +
 "ORDER BY ?g ?s ?p ?o");
 try (TupleQueryResult result = tq.evaluate()) {
 int idx = 0;
 while (result.hasNext()) {
 idx++;
 BindingSet bindingSet = result.next();
 psOut.print("\nsolution " + bindingSet.toString());
 }
 psOut.println("\ntotal # of solution " +
Integer.toString(idx));
 }
 }
 finally {
 if (conn != null && conn.isOpen()) {
 conn.clear();
 conn.close();
 }
 OracleUtils.dropSemanticModelAndTables(op.getOracleDB(), model,

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

8-48

null, null, networkOwner, networkName);
 sr.shutDown();
 store.shutDown();
 op.close();
 }
 }
}

For running this example, assume that the test.trig file in TRIG format has been created as
follows:

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
@prefix swp: <http://www.w3.org/2004/03/trix/swp-1/>.
@prefix dc: <http://purl.org/dc/elements/1.1/>.
@prefix foaf: <http://xmlns.com/foaf/0.1/>.
@prefix : <http://example.org/>.
default graph
{
 :bobGraph dc:publisher "Bob Hacker" .
 :aliceGraph dc:publisher "Alice Hacker" .
}

:bobGraph {
 :bob foaf:mbox <mailto:bob@oldcorp.example.org> .
}

:aliceGraph {
 :alice foaf:name "Alice" .
 :alice foaf:mbox <mailto:alice@work.example.org> .
}

:jackGraph {
 :jack foaf:name "Jack" .
 :jack foaf:mbox <mailto:jack@oracle.example.org> .
}

To compile this example, execute the following command:

javac -classpath $CP NamedGraph.java

To run this example for an existing MDSYS network, execute the following command:

java -classpath $CP NamedGraph jdbc:oracle:thin:@localhost:1521:ORCL scott
<password> TestModel ./test.trig

To run this example for an existing schema-private network whose owner is SCOTT and
name is NET1, execute the following command:

java -classpath $CP NamedGraph jdbc:oracle:thin:@localhost:1521:ORCL scott
<password> TestModel ./test.trig scott net1

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

8-49

The expected output of the java command might appear as follows:

solution
[p=http://xmlns.com/foaf/0.1/mbox;s=http://example.org/alice;g=http://
example.org/aliceGraph;o=mailto:alice@work.example.org]
solution
[p=http://xmlns.com/foaf/0.1/name;s=http://example.org/alice;g=http://
example.org/aliceGraph;o="Alice"]
solution
[p=http://xmlns.com/foaf/0.1/mbox;s=http://example.org/bob;g=http://
example.org/bobGraph;o=mailto:bob@oldcorp.example.org]
total # of solution 3

8.11.9 Example 9: Get COUNT of Matches
Example 8-13 shows the CountQuery.java file, which demonstrates how to perform a
query that returns the total number (COUNT) of matches.

Example 8-13 Get COUNT of Matches

import java.io.PrintStream;
import java.sql.SQLException;
import oracle.rdf4j.adapter.OraclePool;
import oracle.rdf4j.adapter.OracleRepository;
import oracle.rdf4j.adapter.OracleSailConnection;
import oracle.rdf4j.adapter.OracleSailRepositoryConnection;
import oracle.rdf4j.adapter.OracleSailStore;
import oracle.rdf4j.adapter.exception.ConnectionSetupException;
import oracle.rdf4j.adapter.utils.OracleUtils;
import org.eclipse.rdf4j.model.IRI;
import org.eclipse.rdf4j.model.Literal;
import org.eclipse.rdf4j.model.ValueFactory;
import org.eclipse.rdf4j.model.vocabulary.RDF;
import org.eclipse.rdf4j.query.BindingSet;
import org.eclipse.rdf4j.query.QueryLanguage;
import org.eclipse.rdf4j.query.TupleQuery;
import org.eclipse.rdf4j.query.TupleQueryResult;
import org.eclipse.rdf4j.repository.Repository;
import org.eclipse.rdf4j.repository.RepositoryConnection;

public class CountQuery {
 public static void main(String[] args) throws
 ConnectionSetupException, SQLException
 {
 PrintStream psOut = System.out;
 String jdbcUrl = args[0];
 String user = args[1];
 String password = args[2];
 String model = args[3];
 String networkOwner = (args.length > 5) ? args[4] : null;
 String networkName = (args.length > 5) ? args[5] : null;

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

8-50

 OraclePool op = null;
 OracleSailStore store = null;
 Repository sr = null;
 RepositoryConnection conn = null;

 try {
 op = new OraclePool(jdbcUrl, user, password);
 store = new OracleSailStore(op, model, networkOwner, networkName);
 sr = new OracleRepository(store);
 conn = sr.getConnection();

 ValueFactory f = conn.getValueFactory();

 // create some resources and literals to make statements out of
 IRI alice = f.createIRI("http://example.org/people/alice");
 IRI name = f.createIRI("http://example.org/ontology/name");
 IRI person = f.createIRI("http://example.org/ontology/Person");
 Literal alicesName = f.createLiteral("Alice");

 conn.begin();
 // clear model to start fresh
 conn.clear();
 conn.add(alice, RDF.TYPE, person);
 conn.add(alice, name, alicesName);
 conn.commit();

 OracleSailConnection osc =
 (OracleSailConnection)((OracleSailRepositoryConnection)
conn).getSailConnection();
 osc.analyze();
 osc.analyzeApplicationTable();

 // Run a query and only return the number of matches (the count !)
 String queryString = " SELECT (COUNT(*) AS ?totalCount) WHERE {?s ?p ?
y} ";

 TupleQuery tupleQuery = conn.prepareTupleQuery(
 QueryLanguage.SPARQL, queryString);

 try (TupleQueryResult result = tupleQuery.evaluate()) {
 if (result.hasNext()) {
 BindingSet bindingSet = result.next();
 String totalCount =
bindingSet.getValue("totalCount").stringValue();
 psOut.println("number of matches: " + totalCount);
 }
 }
 }
 finally {
 if (conn != null && conn.isOpen()) {
 conn.clear();
 conn.close();
 }
 OracleUtils.dropSemanticModelAndTables(op.getOracleDB(), model, null,
null, networkOwner, networkName);

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

8-51

 sr.shutDown();
 store.shutDown();
 op.close();
 }
 }
}

To compile this example, execute the following command:

javac -classpath $CP CountQuery.java

To run this example for an existing MDSYS network, execute the following command:

java -classpath $CP CountQuery jdbc:oracle:thin:@localhost:1521:ORCL
scott <password> TestModel

To run this example for an existing schema-private network whose owner is SCOTT
and name is NET1, execute the following command:

java -classpath $CP CountQuery jdbc:oracle:thin:@localhost:1521:ORCL
scott <password> TestModel scott net1

The expected output of the java command might appear as follows:

number of matches: 2

8.11.10 Example 10: Specify Bind Variable for Constant in Query
Pattern

Example 8-13 shows the BindVar.java file, which demonstrates how to perform a
query that specifies a bind variable for a constant in the SPARQL query pattern.

Example 8-14 Specify Bind Variable for Constant in Query Pattern

import java.io.PrintStream;
import java.sql.SQLException;
import oracle.rdf4j.adapter.OraclePool;
import oracle.rdf4j.adapter.OracleRepository;
import oracle.rdf4j.adapter.OracleSailStore;
import oracle.rdf4j.adapter.exception.ConnectionSetupException;
import oracle.rdf4j.adapter.utils.OracleUtils;
import org.eclipse.rdf4j.model.IRI;
import org.eclipse.rdf4j.model.Literal;
import org.eclipse.rdf4j.model.ValueFactory;
import org.eclipse.rdf4j.model.vocabulary.RDF;
import org.eclipse.rdf4j.query.BindingSet;
import org.eclipse.rdf4j.query.QueryLanguage;
import org.eclipse.rdf4j.query.TupleQuery;
import org.eclipse.rdf4j.query.TupleQueryResult;

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

8-52

import org.eclipse.rdf4j.repository.Repository;
import org.eclipse.rdf4j.repository.RepositoryConnection;

public class BindVar {
 public static void main(String[] args) throws ConnectionSetupException,
SQLException {
 PrintStream psOut = System.out;
 String jdbcUrl = args[0];
 String user = args[1];
 String password = args[2];
 String model = args[3];
 String networkOwner = (args.length > 5) ? args[4] : null;
 String networkName = (args.length > 5) ? args[5] : null;

 OraclePool op = null;
 OracleSailStore store = null;
 Repository sr = null;
 RepositoryConnection conn = null;

 try {
 op = new OraclePool(jdbcUrl, user, password);
 store = new OracleSailStore(op, model, networkOwner, networkName);
 sr = new OracleRepository(store);
 conn = sr.getConnection();
 ValueFactory f = conn.getValueFactory();

 conn.begin();
 conn.clear();

 // create some resources and literals to make statements out of

 // Alice
 IRI alice = f.createIRI("http://example.org/people/alice");
 IRI name = f.createIRI("http://example.org/ontology/name");
 IRI person = f.createIRI("http://example.org/ontology/Person");
 Literal alicesName = f.createLiteral("Alice");
 conn.add(alice, RDF.TYPE, person);
 conn.add(alice, name, alicesName);

 //Bob
 IRI bob = f.createIRI("http://example.org/people/bob");
 Literal bobsName = f.createLiteral("Bob");
 conn.add(bob, RDF.TYPE, person);
 conn.add(bob, name, bobsName);

 conn.commit();

 String queryString =
 " PREFIX ex: <http://example.org/ontology/> " +
 " Select ?name \n" + " WHERE \n" + " { SELECT * WHERE { ?person
ex:name ?name} }\n" +
 " ORDER BY ?name";

 TupleQuery tupleQuery = conn.prepareTupleQuery(

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

8-53

 QueryLanguage.SPARQL, queryString);

 // set binding for ?person = Alice
 tupleQuery.setBinding("person", alice);
 try (TupleQueryResult result = tupleQuery.evaluate()) {
 if (result.hasNext()) {
 BindingSet bindingSet = result.next();
 psOut.println("solution " + bindingSet.toString());
 }
 }

 // re-run with ?person = Bob
 tupleQuery.setBinding("person", bob);
 try (TupleQueryResult result = tupleQuery.evaluate()) {
 if (result.hasNext()) {
 BindingSet bindingSet = result.next();
 psOut.println("solution " + bindingSet.toString());
 }
 }
 }
 finally {
 if (conn != null && conn.isOpen()) {
 conn.clear();
 conn.close();
 }
 OracleUtils.dropSemanticModelAndTables(op.getOracleDB(), model,
null, null, networkOwner, networkName);
 sr.shutDown();
 store.shutDown();
 op.close();
 }
 }
}

To compile this example, execute the following command:

javac -classpath $CP BindVar.java

To run this example for an existing MDSYS network, execute the following command:

java -classpath $CP BindVar jdbc:oracle:thin:@localhost:1521:ORCL
scott <password> TestModel

To run this example for an existing schema-private network whose owner is SCOTT
and name is NET1, execute the following command:

java -classpath $CP BindVar jdbc:oracle:thin:@localhost:1521:ORCL
scott <password> TestModel scott net1

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

8-54

The expected output of the java command might appear as follows:

solution [name="Alice";person=http://example.org/people/alice]
solution [name="Bob";person=http://example.org/people/bob]

8.11.11 Example 11: SPARQL Update
Example 8-15 shows the SparqlUpdate.java file, which demonstrates how to perform
SPARQL Update statements.

Example 8-15 SPARQL Update

import java.io.PrintStream;
import java.sql.SQLException;
import oracle.rdf4j.adapter.OraclePool;
import oracle.rdf4j.adapter.OracleRepository;
import oracle.rdf4j.adapter.OracleSailStore;
import oracle.rdf4j.adapter.exception.ConnectionSetupException;
import oracle.rdf4j.adapter.utils.OracleUtils;
import org.eclipse.rdf4j.query.BindingSet;
import org.eclipse.rdf4j.query.QueryLanguage;
import org.eclipse.rdf4j.query.TupleQuery;
import org.eclipse.rdf4j.query.TupleQueryResult;
import org.eclipse.rdf4j.query.Update;
import org.eclipse.rdf4j.repository.Repository;
import org.eclipse.rdf4j.repository.RepositoryConnection;

public class SparqlUpdate {
 private static final String DATA_1 =
 "[p=http://example.org/ontology/name;g=urn:g1;x=http://example.org/
people/Sue;y=\"Sue\"]" +
 "[p=http://www.w3.org/1999/02/22-rdf-syntax-ns#type;g=urn:g1;x=http://
example.org/people/Sue;y=http://example.org/ontology/Person]";

 private static final String DATA_2 =
 "[p=http://example.org/ontology/name;g=urn:g1;x=http://example.org/
people/Sue;y=\"Susan\"]" +
 "[p=http://www.w3.org/1999/02/22-rdf-syntax-ns#type;g=urn:g1;x=http://
example.org/people/Sue;y=http://example.org/ontology/Person]";

 private static final String DATA_3 =
 "[p=http://example.org/ontology/name;g=urn:g1;x=http://example.org/
people/Sue;y=\"Susan\"]" +
 "[p=http://www.w3.org/1999/02/22-rdf-syntax-ns#type;g=urn:g1;x=http://
example.org/people/Sue;y=http://example.org/ontology/Person]" +
 "[p=http://example.org/ontology/name;g=urn:g2;x=http://example.org/
people/Sue;y=\"Susan\"]" +
 "[p=http://www.w3.org/1999/02/22-rdf-syntax-ns#type;g=urn:g2;x=http://
example.org/people/Sue;y=http://example.org/ontology/Person]";

 private static final String DATA_4 =
 "[p=http://www.w3.org/1999/02/22-rdf-syntax-ns#type;g=urn:g1;x=http://
example.org/people/Sue;y=http://example.org/ontology/Person]" +

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

8-55

 "[p=http://example.org/ontology/name;g=urn:g2;x=http://example.org/
people/Sue;y=\"Susan\"]" +
 "[p=http://www.w3.org/1999/02/22-rdf-syntax-
ns#type;g=urn:g2;x=http://example.org/people/Sue;y=http://example.org/
ontology/Person]";

 private static final String DATA_5 =
 "[p=http://example.org/ontology/name;g=urn:g1;x=http://example.org/
people/Sue;y=\"Susan\"]" +
 "[p=http://www.w3.org/1999/02/22-rdf-syntax-
ns#type;g=urn:g1;x=http://example.org/people/Sue;y=http://example.org/
ontology/Person]" +
 "[p=http://example.org/ontology/name;g=urn:g2;x=http://example.org/
people/Sue;y=\"Susan\"]" +
 "[p=http://www.w3.org/1999/02/22-rdf-syntax-
ns#type;g=urn:g2;x=http://example.org/people/Sue;y=http://example.org/
ontology/Person]";

 private static String getRepositoryData(RepositoryConnection conn,
PrintStream out)
 {
 String dataStr = "";
 String queryString = "SELECT * WHERE { GRAPH ?g { ?x ?p ?y } }
ORDER BY ?g ?x ?p ?y";
 TupleQuery tupleQuery =
conn.prepareTupleQuery(QueryLanguage.SPARQL, queryString);
 try (TupleQueryResult result = tupleQuery.evaluate()) {
 while (result.hasNext()) {
 BindingSet bindingSet = result.next();
 out.println(bindingSet.toString());
 dataStr += bindingSet.toString();
 }
 }
 return dataStr;
 }
 public static void main(String[] args) throws
 ConnectionSetupException, SQLException
 {
 PrintStream out = new PrintStream(System.out);
 String jdbcUrl = args[0];
 String user = args[1];
 String password = args[2];
 String model = args[3];
 String networkOwner = (args.length > 5) ? args[4] : null;
 String networkName = (args.length > 5) ? args[5] : null;

 OraclePool op = null;
 OracleSailStore store = null;
 Repository sr = null;
 RepositoryConnection conn = null;
 try {
 op = new OraclePool(jdbcUrl, user, password);
 store = new OracleSailStore(op, model, networkOwner,
networkName);

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

8-56

 sr = new OracleRepository(store);
 conn = sr.getConnection();

 conn.clear(); // to start from scratch

 // Insert some initial data
 String updString = "PREFIX people: <http://example.org/people/>\n" +
 "PREFIX ont: <http://example.org/ontology/>\n" +
 "INSERT DATA { GRAPH <urn:g1> { \n" +
 " people:Sue a ont:Person; \n" +
 " ont:name \"Sue\" . } }";
 Update upd = conn.prepareUpdate(QueryLanguage.SPARQL, updString);
 upd.execute();
 conn.commit();
 String repositoryData = getRepositoryData(conn, out);
 if (! (DATA_1.equals(repositoryData))) out.println("DATA_1 mismatch");
 // Change Sue's name to Susan
 updString = "PREFIX people: <http://example.org/people/>\n" +
 "PREFIX ont: <http://example.org/ontology/>\n" +
 "DELETE { GRAPH ?g { ?s ont:name ?n } }\n" +
 "INSERT { GRAPH ?g { ?s ont:name \"Susan\" } }\n" +
 "WHERE { GRAPH ?g { ?s ont:name ?n FILTER (?n =
\"Sue\") }}";
 upd = conn.prepareUpdate(QueryLanguage.SPARQL, updString);
 upd.execute();
 conn.commit();
 repositoryData = getRepositoryData(conn, out);
 if (! (DATA_2.equals(repositoryData))) out.println("DATA_2 mismatch");

 // Copy to contents of g1 to a new graph g2
 updString = "PREFIX people: <http://example.org/people/>\n" +
 "PREFIX ont: <http://example.org/ontology/>\n" +
 "COPY <urn:g1> TO <urn:g2>";
 upd = conn.prepareUpdate(QueryLanguage.SPARQL, updString);
 upd.execute();
 conn.commit();

 repositoryData = getRepositoryData(conn, out);
 if (! (DATA_3.equals(repositoryData))) out.println("DATA_3 mismatch");

 // Delete ont:name triple from graph g1
 updString = "PREFIX people: <http://example.org/people/>\n" +
 "PREFIX ont: <http://example.org/ontology/>\n" +
 "DELETE DATA { GRAPH <urn:g1> { people:Sue ont:name
\"Susan\" } }";
 upd = conn.prepareUpdate(QueryLanguage.SPARQL, updString);
 upd.execute();
 conn.commit();
 repositoryData = getRepositoryData(conn, out);
 if (! (DATA_4.equals(repositoryData))) out.println("DATA_4 mismatch");

 // Add contents of g2 to g1
 updString = "PREFIX people: <http://example.org/people/>\n" +
 "PREFIX ont: <http://example.org/ontology/>\n" +
 "ADD <urn:g2> TO <urn:g1>";

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

8-57

 upd = conn.prepareUpdate(QueryLanguage.SPARQL, updString);
 upd.execute();
 conn.commit();
 repositoryData = getRepositoryData(conn, out);
 if (! (DATA_5.equals(repositoryData))) out.println("DATA_5
mismatch");
 }
 finally {
 if (conn != null && conn.isOpen()) {
 conn.clear();
 conn.close();
 }
 OracleUtils.dropSemanticModelAndTables(op.getOracleDB(), model,
null, null, networkOwner, networkName);
 sr.shutDown();
 store.shutDown();
 op.close();
 }
 }
}

To compile this example, execute the following command:

javac -classpath $CP SparqlUpdate.java

To run this example for an existing MDSYS network, execute the following command:

java -classpath $CP SparqlUpdate jdbc:oracle:thin:@localhost:1521:ORCL
scott <password> TestModel

To run this example for an existing schema-private network whose owner is SCOTT
and name is NET1, execute the following command:

java -classpath $CP SparqlUpdate jdbc:oracle:thin:@localhost:1521:ORCL
scott <password> TestModel scott net1

The expected output of the java command might appear as follows:

[p=http://example.org/ontology/name;g=urn:g1;x=http://example.org/
people/Sue;y="Sue"]
[p=http://www.w3.org/1999/02/22-rdf-syntax-ns#type;g=urn:g1;x=http://
example.org/people/Sue;y=http://example.org/ontology/Person]
[p=http://example.org/ontology/name;g=urn:g1;x=http://example.org/
people/Sue;y="Susan"]
[p=http://www.w3.org/1999/02/22-rdf-syntax-ns#type;g=urn:g1;x=http://
example.org/people/Sue;y=http://example.org/ontology/Person]
[p=http://example.org/ontology/name;g=urn:g1;x=http://example.org/
people/Sue;y="Susan"]
[p=http://www.w3.org/1999/02/22-rdf-syntax-ns#type;g=urn:g1;x=http://
example.org/people/Sue;y=http://example.org/ontology/Person]
[p=http://example.org/ontology/name;g=urn:g2;x=http://example.org/
people/Sue;y="Susan"]

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

8-58

[p=http://www.w3.org/1999/02/22-rdf-syntax-ns#type;g=urn:g2;x=http://
example.org/people/Sue;y=http://example.org/ontology/Person]
[p=http://www.w3.org/1999/02/22-rdf-syntax-ns#type;g=urn:g1;x=http://
example.org/people/Sue;y=http://example.org/ontology/Person]
[p=http://example.org/ontology/name;g=urn:g2;x=http://example.org/people/
Sue;y="Susan"]
[p=http://www.w3.org/1999/02/22-rdf-syntax-ns#type;g=urn:g2;x=http://
example.org/people/Sue;y=http://example.org/ontology/Person]
[p=http://example.org/ontology/name;g=urn:g1;x=http://example.org/people/
Sue;y="Susan"]
[p=http://www.w3.org/1999/02/22-rdf-syntax-ns#type;g=urn:g1;x=http://
example.org/people/Sue;y=http://example.org/ontology/Person]
[p=http://example.org/ontology/name;g=urn:g2;x=http://example.org/people/
Sue;y="Susan"]
[p=http://www.w3.org/1999/02/22-rdf-syntax-ns#type;g=urn:g2;x=http://
example.org/people/Sue;y=http://example.org/ontology/Person]

8.11.12 Example 12: Oracle Hint
Example 8-16 shows the OracleHint.java file, which demonstrates how to use Oracle hint in
a SPARQL query or a SPARQL update.

Example 8-16 Oracle Hint

import java.sql.SQLException;
import oracle.rdf4j.adapter.OracleDB;
import oracle.rdf4j.adapter.OraclePool;
import oracle.rdf4j.adapter.OracleRepository;
import oracle.rdf4j.adapter.OracleSailStore;
import oracle.rdf4j.adapter.exception.ConnectionSetupException;
import oracle.rdf4j.adapter.utils.OracleUtils;
import org.eclipse.rdf4j.query.BindingSet;
import org.eclipse.rdf4j.query.QueryLanguage;
import org.eclipse.rdf4j.query.TupleQuery;
import org.eclipse.rdf4j.query.TupleQueryResult;
import org.eclipse.rdf4j.query.Update;
import org.eclipse.rdf4j.repository.Repository;
import org.eclipse.rdf4j.repository.RepositoryConnection;

public class OracleHint {
 public static void main(String[] args) throws ConnectionSetupException,
SQLException {
 String jdbcUrl = args[0];
 String user = args[1];
 String password = args[2];
 String model = args[3];
 String networkOwner = (args.length > 5) ? args[4] : null;
 String networkName = (args.length > 5) ? args[5] : null;

 OraclePool op = null;
 OracleSailStore store = null;
 Repository sr = null;
 RepositoryConnection conn = null;

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

8-59

 try {
 op = new OraclePool(jdbcUrl, user, password);
 store = new OracleSailStore(op, model, networkOwner,
networkName);
 sr = new OracleRepository(store);
 conn = sr.getConnection();

 conn.clear(); // to start from scratch

 // Insert some initial data
 String updString =
 "PREFIX ex: <http://example.org/>\n" +
 "INSERT DATA { " +
 " ex:a ex:p1 ex:b . " +
 " ex:b ex:p1 ex:c . " +
 " ex:c ex:p1 ex:d . " +
 " ex:d ex:p1 ex:e . " +
 " ex:e ex:p1 ex:f . " +
 " ex:f ex:p1 ex:g . " +
 " ex:g ex:p1 ex:h . " +
 " ex:h ex:p1 ex:i . " +
 " ex:i ex:p1 ex:j . " +
 " ex:j ex:p1 ex:k . " +
 "}";
 Update upd = conn.prepareUpdate(QueryLanguage.SPARQL, updString);
 upd.execute();
 conn.commit();

 // default behavior for property path is 10 hop max, so we get
11 results
 String sparql =
 "PREFIX ex: <http://example.org/>\n" +
 "SELECT (COUNT(*) AS ?cnt)\n" +
 "WHERE { ex:a ex:p1* ?y }";

 TupleQuery tupleQuery =
conn.prepareTupleQuery(QueryLanguage.SPARQL, sparql);

 try (TupleQueryResult result = tupleQuery.evaluate()) {
 while (result.hasNext()) {
 BindingSet bindingSet = result.next();
 if (11 !=
Integer.parseInt(bindingSet.getValue("cnt").stringValue()))
System.out.println("cnt mismatch: expecting 11");
 }
 }

 // ORACLE_SEM_FS_NS prefix hint to use parallel(2) and
dynamic_sampling(6)
 // ORACLE_SEM_SM_NS prefix hint to use a 5 hop max and to use
CONNECT BY instead of simple join
 sparql =
 "PREFIX ORACLE_SEM_FS_NS: <http://oracle.com/
semtech#dop=2,ods=6>\n" +

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

8-60

 "PREFIX ORACLE_SEM_SM_NS: <http://oracle.com/
semtech#all_max_pp_depth(5),all_disable_pp_sj>\n" +
 "PREFIX ex: <http://example.org/>\n" +
 "SELECT (COUNT(*) AS ?cnt)\n" +
 "WHERE { ex:a ex:p1* ?y }";

 tupleQuery = conn.prepareTupleQuery(QueryLanguage.SPARQL, sparql,
"http://example.org/");

 try (TupleQueryResult result = tupleQuery.evaluate()) {
 while (result.hasNext()) {
 BindingSet bindingSet = result.next();
 if (6 !=
Integer.parseInt(bindingSet.getValue("cnt").stringValue()))
System.out.println("cnt mismatch: expecting 6");
 }
 }

 // query options for SPARQL Update
 sparql =
 "PREFIX ORACLE_SEM_UM_NS: <http://oracle.com/semtech#parallel(2)>\n"
+
 "PREFIX ORACLE_SEM_SM_NS: <http://oracle.com/
semtech#all_max_pp_depth(5),all_disable_pp_sj>\n" +
 "PREFIX ex: <http://example.org/>\n" +
 "INSERT { GRAPH ex:g1 { ex:a ex:reachable ?y } }\n" +
 "WHERE { ex:a ex:p1* ?y }";

 Update u = conn.prepareUpdate(sparql);
 u.execute();

 // graph ex:g1 should have 6 results because of all_max_pp_depth(5)
 sparql =
 "PREFIX ex: <http://example.org/>\n" +
 "SELECT (COUNT(*) AS ?cnt)\n" +
 "WHERE { GRAPH ex:g1 { ?s ?p ?o } }";

 tupleQuery = conn.prepareTupleQuery(QueryLanguage.SPARQL, sparql,
"http://example.org/");

 try (TupleQueryResult result = tupleQuery.evaluate()) {
 while (result.hasNext()) {
 BindingSet bindingSet = result.next();
 if (6 !=
Integer.parseInt(bindingSet.getValue("cnt").stringValue()))
System.out.println("cnt mismatch: expecting 6");
 }
 }
 }
 finally {
 if (conn != null && conn.isOpen()) {
 conn.clear();
 conn.close();
 }
 OracleUtils.dropSemanticModelAndTables(op.getOracleDB(), model, null,

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

8-61

null, networkOwner, networkName);
 sr.shutDown();
 store.shutDown();
 op.close();
 }
 }
}

To compile this example, execute the following command:

javac -classpath $CP OracleHint.java

To run this example for an existing MDSYS network, execute the following command:

java -classpath $CP OracleHint jdbc:oracle:thin:@localhost:1521:ORCL
scott <password> TestModel

To run this example for an existing schema-private network whose owner is SCOTT
and name is NET1, execute the following command:

java -classpath $CP OracleHint jdbc:oracle:thin:@localhost:1521:ORCL
scott <password> TestModel scott net1

8.11.13 Example 13: Using JDBC Bind Values
Example 8-17 shows the JDBCBindVar.java file, which demonstrates how to use
JDBC bind values.

Example 8-17 Using JDBC Bind Values

import java.io.PrintStream;
import java.sql.SQLException;
import oracle.rdf4j.adapter.OracleDB;
import oracle.rdf4j.adapter.OraclePool;
import oracle.rdf4j.adapter.OracleRepository;
import oracle.rdf4j.adapter.OracleSailStore;
import oracle.rdf4j.adapter.exception.ConnectionSetupException;
import oracle.rdf4j.adapter.utils.OracleUtils;
import org.eclipse.rdf4j.model.IRI;
import org.eclipse.rdf4j.model.Literal;
import org.eclipse.rdf4j.model.ValueFactory;
import org.eclipse.rdf4j.model.vocabulary.RDF;
import org.eclipse.rdf4j.query.BindingSet;
import org.eclipse.rdf4j.query.QueryLanguage;
import org.eclipse.rdf4j.query.TupleQuery;
import org.eclipse.rdf4j.query.TupleQueryResult;
import org.eclipse.rdf4j.repository.Repository;
import org.eclipse.rdf4j.repository.RepositoryConnection;

public class JDBCBindVar {

 public static void main(String[] args) throws

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

8-62

ConnectionSetupException, SQLException {
 PrintStream psOut = System.out;

 String jdbcUrl = args[0];
 String user = args[1];
 String password = args[2];
 String model = args[3];
 String networkOwner = (args.length > 5) ? args[4] : null;
 String networkName = (args.length > 5) ? args[5] : null;
 OraclePool op = null;
 OracleSailStore store = null;
 Repository sr = null;
 RepositoryConnection conn = null;

 try {
 op = new OraclePool(jdbcUrl, user, password);
 store = (networkName == null) ? new OracleSailStore(op, model) : new
OracleSailStore(op, model, networkOwner, networkName);
 sr = new OracleRepository(store);
 conn = sr.getConnection();

 ValueFactory f = conn.getValueFactory();

 conn.begin();
 conn.clear();

 // create some resources and literals to make statements out of
 // Alice
 IRI alice = f.createIRI("http://example.org/people/alice");
 IRI name = f.createIRI("http://example.org/ontology/name");
 IRI person = f.createIRI("http://example.org/ontology/Person");
 Literal alicesName = f.createLiteral("Alice");
 conn.add(alice, RDF.TYPE, person);
 conn.add(alice, name, alicesName);

 //Bob
 IRI bob = f.createIRI("http://example.org/people/bob");
 Literal bobsName = f.createLiteral("Bob");
 conn.add(bob, RDF.TYPE, person);
 conn.add(bob, name, bobsName);

 conn.commit();

 // Query using USE_BIND_VAR=JDBC option for JDBC bind values
 // Simple BIND clause for ?person marks ?person as a bind variable
 String queryString =
 " PREFIX ORACLE_SEM_SM_NS: <http://oracle.com/
semtech#USE_BIND_VAR=JDBC>\n" +
 " PREFIX ex: <http://example.org/ontology/>\n" +
 " Select ?name \n" +
 " WHERE \n" +
 " { SELECT * WHERE { \n" +
 " BIND (\"\" AS ?person) \n" +
 " ?person ex:name ?name } \n" +
 " }\n" +

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

8-63

 " ORDER BY ?name";
 TupleQuery tupleQuery = conn.prepareTupleQuery(
 QueryLanguage.SPARQL, queryString);

 // set binding for ?person = Alice
 tupleQuery.setBinding("person", alice);
 try (TupleQueryResult result = tupleQuery.evaluate()) {
 if (result.hasNext()) {
 BindingSet bindingSet = result.next();
 psOut.println("solution " + bindingSet.toString());
 }
 }

 // re-run with ?person = Bob
 tupleQuery.setBinding("person", bob);
 try (TupleQueryResult result = tupleQuery.evaluate()) {
 if (result.hasNext()) {
 BindingSet bindingSet = result.next();
 psOut.println("solution " + bindingSet.toString());
 }
 }
 }
 finally {
 if (conn != null && conn.isOpen()) {
 conn.clear();
 conn.close();
 }
 if (op != null) {
 OracleDB oracleDB = op.getOracleDB();
 if (networkName == null)
 OracleUtils.dropSemanticModelAndTables(oracleDB, model);
 else
 OracleUtils.dropSemanticModelAndTables(oracleDB, model,
null, null, networkOwner, networkName);
 op.returnOracleDBtoPool(oracleDB);
 }
 sr.shutDown();
 store.shutDown();
 op.close();
 }
 }
}

To compile this example, execute the following command:

javac -classpath $CP JDBCBindVar.java

To run this example for an existing MDSYS network, execute the following command:

java -classpath $CP JDBCBindVar jdbc:oracle:thin:@localhost:1521:ORCL
scott <password-for-scott> TestModel

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

8-64

To run this example for an existing schema-private network whose owner is SCOTT and
name is NET1, execute the following command:

java -classpath $CP JDBCBindVar jdbc:oracle:thin:@localhost:1521:ORCL scott
<password-for-scott> TestModel scott net1

The expected output of the Java command might appear as follows:

solution [name="Alice";person=http://example.org/people/alice]
solution [name="Bob";person=http://example.org/people/bob]

8.11.14 Example 14: Simple Inference
Example 8-18 shows the SimpleInference.java file, which shows inference for a single RDF
graph (model) using the OWL2RL rule base.

Example 8-18 Simple Inference

import java.io.IOException;
import java.io.PrintStream;
import java.sql.SQLException;
import oracle.rdf4j.adapter.OraclePool;
import oracle.rdf4j.adapter.OracleRepository;
import oracle.rdf4j.adapter.OracleSailStore;
import oracle.rdf4j.adapter.OracleSailConnection;
import oracle.rdf4j.adapter.exception.ConnectionSetupException;
import oracle.rdf4j.adapter.utils.OracleUtils;
import org.eclipse.rdf4j.model.IRI;
import org.eclipse.rdf4j.model.Literal;
import org.eclipse.rdf4j.model.ValueFactory;
import org.eclipse.rdf4j.model.vocabulary.RDF;
import org.eclipse.rdf4j.model.vocabulary.RDFS;
import org.eclipse.rdf4j.query.BindingSet;
import org.eclipse.rdf4j.query.QueryLanguage;
import org.eclipse.rdf4j.query.TupleQuery;
import org.eclipse.rdf4j.query.TupleQueryResult;
import org.eclipse.rdf4j.repository.Repository;
import org.eclipse.rdf4j.repository.RepositoryConnection;
import oracle.rdf4j.adapter.Attachment;
import oracle.rdf4j.adapter.OracleSailConnection;
import oracle.rdf4j.adapter.OracleSailRepositoryConnection;

public class SimpleInference {
 public static void main(String[] args) throws ConnectionSetupException,
SQLException, IOException {
 PrintStream psOut = System.out;
 String jdbcUrl = args[0];
 String user = args[1];
 String password = args[2];
 String model = args[3];
 String networkOwner = (args.length > 5) ? args[4] : null;
 String networkName = (args.length > 5) ? args[5] : null;

 OraclePool op = null;

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

8-65

 OracleSailStore store = null;
 Repository sr = null;
 RepositoryConnection conn = null;

 try {
 op = new OraclePool(jdbcUrl, user, password);

 // create a single-model, single-rulebase OracleSailStore object
 Attachment attachment =
Attachment.createInstance(Attachment.NO_ADDITIONAL_MODELS, new
String[] {"OWL2RL"});
 store = new OracleSailStore(op, model, attachment, networkOwner,
networkName);
 sr = new OracleRepository(store);

 ValueFactory f = sr.getValueFactory();
 conn = sr.getConnection();

 // create some resources and literals to make statements out of
 IRI alice = f.createIRI("http://example.org/people/alice");
 IRI bob = f.createIRI("http://example.org/people/bob");
 IRI friendOf = f.createIRI("http://example.org/ontology/
friendOf");
 IRI Person = f.createIRI("http://example.org/ontology/Person");
 IRI Woman = f.createIRI("http://example.org/ontology/Woman");
 IRI Man = f.createIRI("http://example.org/ontology/Man");

 conn.clear(); // to start from scratch

 // add some statements to the RDF graph (model)
 conn.add(alice, RDF.TYPE, Woman);
 conn.add(bob, RDF.TYPE, Man);
 conn.add(alice, friendOf, bob);
 conn.commit();

 OracleSailConnection osc = (OracleSailConnection)
((OracleSailRepositoryConnection)conn).getSailConnection();

 // perform inference (this will not generate any inferred
triples)
 osc.performInference();

 // prepare a query to run against the repository
 String queryString =
 "PREFIX ex: <http://example.org/ontology/>\n" +
 "SELECT * WHERE {?x ex:friendOf ?y . ?x a ex:Person . ?y a
ex:Person}\n" ;
 TupleQuery tupleQuery =
conn.prepareTupleQuery(QueryLanguage.SPARQL, queryString);

 // run the query: no results will be returned because nobody is
a Person
 try (TupleQueryResult result = tupleQuery.evaluate()) {
 int resultCount = 0;
 while (result.hasNext()) {

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

8-66

 resultCount++;
 BindingSet bindingSet = result.next();
 psOut.println("value of x: " + bindingSet.getValue("x"));
 psOut.println("value of y: " + bindingSet.getValue("y"));
 }
 psOut.println("number of results: " + resultCount);
 }

 // add class hierarchy
 conn.add(Man, RDFS.SUBCLASSOF, Person);
 conn.add(Woman, RDFS.SUBCLASSOF, Person);
 conn.commit();

 // perform inference again
 osc.performInference();

 // run the same query again: returns some results because alice and
bob now belong to superclass Person
 try (TupleQueryResult result = tupleQuery.evaluate()) {
 while (result.hasNext()) {
 BindingSet bindingSet = result.next();
 psOut.println("value of x: " + bindingSet.getValue("x"));
 psOut.println("value of y: " + bindingSet.getValue("y"));
 }
 }
 }
 finally {
 if (conn != null && conn.isOpen()) {
 conn.clear();
 conn.close();
 }
 OracleUtils.dropSemanticModelAndTables(op.getOracleDB(), model, null,
null, networkOwner, networkName);
 sr.shutDown();
 store.shutDown();
 op.close();
 }
 }
}

To compile this example, execute the following command:

javac -classpath $CP SimpleInference.java

To run this example for an existing MDSYS network, execute the following command:

java -classpath $CP SimpleInference jdbc:oracle:thin:@localhost:1521:ORCL
scott <password-for-scott> TestModel

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

8-67

To run this example for an existing schema-private network whose owner is SCOTT
and name is NET1, execute the following command:

java -classpath $CP SimpleInference
jdbc:oracle:thin:@localhost:1521:ORCL scott <password-for-scott>
TestModel scott net1

The expected output of the Java command might appear as follows:

number of results: 0
value of x: http://example.org/people/alice
value of y: http://example.org/people/bob

8.11.15 Example 15: Simple Virtual Model
Example 8-19 shows the SimpleVirtualModel.java file, which shows the creation and
use of a virtual model consisting of two RDF graphs (models).

Example 8-19 Simple Virtual Model

import java.io.IOException;
import java.io.PrintStream;
import java.sql.SQLException;
import oracle.rdf4j.adapter.OraclePool;
import oracle.rdf4j.adapter.OracleRepository;
import oracle.rdf4j.adapter.OracleSailStore;
import oracle.rdf4j.adapter.exception.ConnectionSetupException;
import oracle.rdf4j.adapter.utils.OracleUtils;
import org.eclipse.rdf4j.model.IRI;
import org.eclipse.rdf4j.model.ValueFactory;
import org.eclipse.rdf4j.model.vocabulary.RDF;
import org.eclipse.rdf4j.model.vocabulary.RDFS;
import org.eclipse.rdf4j.query.BindingSet;
import org.eclipse.rdf4j.query.QueryLanguage;
import org.eclipse.rdf4j.query.TupleQuery;
import org.eclipse.rdf4j.query.TupleQueryResult;
import org.eclipse.rdf4j.repository.Repository;
import org.eclipse.rdf4j.repository.RepositoryConnection;
import oracle.rdf4j.adapter.Attachment;

public class SimpleVirtualModel {
 public static void main(String[] args) throws
ConnectionSetupException, SQLException, IOException {
 PrintStream psOut = System.out;
 String jdbcUrl = args[0];
 String user = args[1];
 String password = args[2];
 String model = args[3];
 String model2 = args[4];
 String virtualModelName = args[5];
 String networkOwner = (args.length > 7) ? args[6] : null;
 String networkName = (args.length > 7) ? args[7] : null;

 OraclePool op = null;

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

8-68

 OracleSailStore store = null;
 Repository sr = null;
 RepositoryConnection conn = null;

 OracleSailStore store2 = null;
 Repository sr2 = null;
 RepositoryConnection conn2 = null;

 OracleSailStore vmStore = null;
 Repository vmSr = null;
 RepositoryConnection vmConn = null;

 try {
 op = new OraclePool(jdbcUrl, user, password);

 // create two models and then a virtual model that uses those two
models

 // create the first model
 store = new OracleSailStore(op, model, networkOwner, networkName);
 sr = new OracleRepository(store);
 ValueFactory f = sr.getValueFactory();
 conn = sr.getConnection();

 // create the second model (this one will be used as an additional
model in the attachment object)
 store2 = new OracleSailStore(op, model2, networkOwner, networkName);
 sr2 = new OracleRepository(store2);
 conn2 = sr2.getConnection();

 // create a two-model virtual model OracleSailStore object
 Attachment attachment = Attachment.createInstance(model2);
 vmStore = new OracleSailStore(op, model, /*ignored*/true, /
useVirtualModel/true, virtualModelName, attachment, networkOwner,
networkName);
 vmSr = new OracleRepository(vmStore);
 vmConn = vmSr.getConnection();

 // create some resources and literals to make statements out of
 IRI alice = f.createIRI("http://example.org/people/alice");
 IRI bob = f.createIRI("http://example.org/people/bob");
 IRI friendOf = f.createIRI("http://example.org/ontology/friendOf");
 IRI Person = f.createIRI("http://example.org/ontology/Person");
 IRI Woman = f.createIRI("http://example.org/ontology/Woman");
 IRI Man = f.createIRI("http://example.org/ontology/Man");

 // clear any data (in case any of the two non-virtual models were
already present)
 conn.clear();
 conn2.clear();

 // add some statements to the first RDF model
 conn.add(alice, RDF.TYPE, Woman);
 conn.add(bob, RDF.TYPE, Man);

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

8-69

 conn.add(alice, friendOf, bob);
 conn.commit();

 // prepare a query to run against the virtual model repository
 String queryString =
 "PREFIX ex: <http://example.org/ontology/>\n" +
 "SELECT * WHERE {" +
 "?x ex:friendOf ?y . ?x rdf:type/rdfs:subClassOf* ?xC . ?y
rdf:type/rdfs:subClassOf* ?yC" +
 "} ORDER BY ?x ?xC ?y ?yC\n" ;
 ;
 TupleQuery tupleQuery =
vmConn.prepareTupleQuery(QueryLanguage.SPARQL, queryString);

 // run the query: no results will be returned because nobody is
a Person
 try (TupleQueryResult result = tupleQuery.evaluate()) {
 int resultCount = 0;
 while (result.hasNext()) {
 resultCount++;
 BindingSet bindingSet = result.next();
 psOut.println("values of x | xC | y | yC: " +
 bindingSet.getValue("x") + " | " +
bindingSet.getValue("xC") + " | " +
 bindingSet.getValue("y") + " | " +
bindingSet.getValue("yC"));
 }
 psOut.println("number of results: " + resultCount);
 }

 // add class hierarchy info to the second model
 conn2.add(Man, RDFS.SUBCLASSOF, Person);
 conn2.add(Woman, RDFS.SUBCLASSOF, Person);
 conn2.commit();

 // run the same query again: returns some additional info in the
results
 try (TupleQueryResult result = tupleQuery.evaluate()) {
 int resultCount = 0;
 while (result.hasNext()) {
 resultCount++;
 BindingSet bindingSet = result.next();
 psOut.println("values of x | xC | y | yC: " +
 bindingSet.getValue("x") + " | " +
bindingSet.getValue("xC") + " | " +
 bindingSet.getValue("y") + " | " +
bindingSet.getValue("yC"));
 }
 psOut.println("number of results: " + resultCount);
 }
 }
 finally {
 if (conn != null && conn.isOpen()) {
 conn.clear();
 conn.close();

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

8-70

 }
 OracleUtils.dropSemanticModelAndTables(op.getOracleDB(), model, null,
null, networkOwner, networkName);
 sr.shutDown();
 store.shutDown();

 if (conn2 != null && conn2.isOpen()) {
 conn2.clear();
 conn2.close();
 }
 OracleUtils.dropSemanticModelAndTables(op.getOracleDB(), model2, null,
null, networkOwner, networkName);
 sr2.shutDown();
 store2.shutDown();

 vmSr.shutDown();
 vmStore.shutDown();

 op.close();
 }
 }
}

To compile this example, execute the following command:

javac -classpath $CP SimpleVirtualModel.java

To run this example for an existing MDSYS network, execute the following command:

java -classpath $CP SimpleVirtualModel jdbc:oracle:thin:@localhost:1521:ORCL
scott <password-for-scott> TestModel TestOntology TestVM

To run this example for an existing schema-private network whose owner is SCOTT and
name is NET1, execute the following command:

java -classpath $CP SimpleVirtualModel jdbc:oracle:thin:@localhost:1521:ORCL
scott <password-for-scott> TestModel TestOntology TestVM scott net1

The expected output of the Java command might appear as follows:

values of x | xC | y | yC: http://example.org/people/alice | http://
example.org/ontology/Woman | http://example.org/people/bob | http://
example.org/ontology/Man
number of results: 1
values of x | xC | y | yC: http://example.org/people/alice | http://
example.org/ontology/Person | http://example.org/people/bob | http://
example.org/ontology/Man
values of x | xC | y | yC: http://example.org/people/alice | http://
example.org/ontology/Person | http://example.org/people/bob | http://
example.org/ontology/Person
values of x | xC | y | yC: http://example.org/people/alice | http://
example.org/ontology/Woman | http://example.org/people/bob | http://

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

8-71

example.org/ontology/Man
values of x | xC | y | yC: http://example.org/people/alice | http://
example.org/ontology/Woman | http://example.org/people/bob | http://
example.org/ontology/Person
number of results: 4

Chapter 8
Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J

8-72

9
User-Defined Inferencing and Querying

RDF Semantic Graph extension architectures enable the addition of user-defined capabilities.

Effective with Oracle Database 12c Release 1 (12.1):

• The inference extension architecture enables you to add user-defined inferencing to the
presupplied inferencing support.

• The query extension architecture enables you to add user-defined functions and
aggregates to be used in SPARQL queries, both through the SEM_MATCH table function
and through the support for Apache Jena.

Note:

The capabilities described in this chapter are intended for advanced users. You are
assumed to be familiar with the main concepts and techniques described in RDF
Semantic Graph Overview and OWL Concepts .

• User-Defined Inferencing
The RDF Semantic Graph inference extension architecture enables you to add user-
defined inferencing to the presupplied inferencing support.

• User-Defined Functions and Aggregates
The RDF Semantic Graph query extension architecture enables you to add user-defined
functions and aggregates to be used in SPARQL queries, both through the SEM_MATCH
table function and through the support for Apache Jena.

9.1 User-Defined Inferencing
The RDF Semantic Graph inference extension architecture enables you to add user-defined
inferencing to the presupplied inferencing support.

• Problem Solved and Benefit Provided by User-Defined Inferencing

• API Support for User-Defined Inferencing

• User-Defined Inference Extension Function Examples

9.1.1 Problem Solved and Benefit Provided by User-Defined Inferencing
Before Oracle Database 12c Release 1 (12.1), the Oracle Database inference engine
provided native support for OWL 2 RL,RDFS, SKOS, SNOMED (core EL), and user-defined
rules, which covered a wide range of applications and requirements. However, there was the
limitation that no new RDF resources could be created as part of the rules deduction
process.

As an example of the capabilities and the limitation before Oracle Database 12c Release 1
(12.1), consider the following straightforward inference rule:

9-1

?C rdfs:subClassOf ?D .
?x rdf:type ?C . ==> ?x rdf:type ?D

The preceding rule says that any instance x of a subclass C will be an instance of C's
superclass, D. The consequent part of the rule mentions two variables ?x and ?D.
However, these variables must already exist in the antecedents of the rule, which
further implies that these RDF resources must already exist in the knowledge base. In
other words, for example, you can derive that John is a Student only if you know that
John exists as a GraduateStudent and if an axiom specifies that the GraduateStudent
class is a subclass of the Student class.

Another example of a limitation is that before Oracle Database 12c Release 1 (12.1),
the inference functions did not support combining a person's first name and last name
to produce a full name as a new RDF resource in the inference process. Specifically,
this requirement can be captured as a rule like the following:

?x :firstName ?fn
?x :lastName ?ln ==> ?x :fullName concatenate(?fn ?ln)

Effective with Oracle Database 12c Release 1 (12.1), the RDF Semantic Graph
inference extension architecture opens the inference process so that users can
implement their own inference extension functions and integrate them into the native
inference process. This architecture:

• Supports rules that require the generation of new RDF resources.

Examples might include concatenation of strings or other string operations,
mathematical calculations, and web service callouts.

• Allows implementation of certain existing rules using customized optimizations.

Although the native OWL inference engine has optimizations for many rules and
these rules work efficiently for a variety of large-scale ontologies, for some new
untested ontologies a customized optimization of a particular inference component
may work even better. In such a case, you can disable a particular inference
component in the SEM_APIS.CREATE_ENTAILMENT call and specify a
customized inference extension function (using the inf_ext_user_func_name
parameter) that implements the new optimization.

• Allows the inference engine to be extended with sophisticated inference
capabilities.

Examples might include integrating geospatial reasoning, time interval reasoning,
and text analytical functions into the native database inference process.

9.1.2 API Support for User-Defined Inferencing
The primary application programming interface (API) for user-defined inferencing is the
SEM_APIS.CREATE_ENTAILMENT procedure, specifically the last parameter:

inf_ext_user_func_name IN VARCHAR2 DEFAULT NULL

The inf_ext_user_func_name parameter, if specified, identifies one or more user-
defined inference functions that implement the specialized logic that you want to use.

• User-Defined Inference Function Requirements

Chapter 9
User-Defined Inferencing

9-2

9.1.2.1 User-Defined Inference Function Requirements
Each user-defined inference function that is specified in the inf_ext_user_func_name
parameter in the call to the SEM_APIS.CREATE_ENTAILMENT procedure must:

• Have a name that starts with the following string: SEM_INF_
• Be created with definer's rights, not invoker's rights. (For an explanation of definer's rights

and invoker's rights, see Oracle Database Security Guide.)

The format of the user-defined inference function must be that shown in the following
example for a hypothetical function named SEM_INF_EXAMPLE:

create or replace function sem_inf_example(
 src_tab_view in varchar2,
 resource_id_map_view in varchar2,
 output_tab in varchar2,
 action in varchar2,
 num_calls in number,
 tplInferredLastRound in number,
 options in varchar2 default null,
 optimization_flag out number,
 diag_message out varchar2
)
return boolean
as
 pragma autonomous_transaction;
begin
 if (action = SDO_SEM_INFERENCE.INF_EXT_ACTION_START) then
 <... preparation work ...>
 end if;
 if (action = SDO_SEM_INFERENCE.INF_EXT_ACTION_RUN) then
 <... actual inference logic ...>
 commit;
 end if;
 if (action = SDO_SEM_INFERENCE.INF_EXT_ACTION_END) then
 <... clean up ...>
 end if;
return true; -- succeed
end;
/
grant execute on sem_inf_example to MDSYS;

In the user-defined function format, the optimization_flag output parameter can specify one
or more Oracle-defined names that are associated with numeric values. You can specify one
or more of the following:

• SDO_SEM_INFERENCE.INF_EXT_OPT_FLAG_NONE indicates that the inference engine should
not enable any optimizations for the extension function. (This is the default behavior of
the inference engine when the optimization_flag parameter is not set.)

• SDO_SEM_INFERENCE.INF_EXT_OPT_FLAG_ALL_IDS indicates that all triples/quads inferred
by the extension function use only resource IDs. In other words, the output_tab table
only contains resource IDs (columns gid, sid, pid, and oid) and does not contain any
lexical values (columns g, s, p, and o are all null). Enabling this optimization flag allows
the inference engine to skip resource ID lookups.

• SDO_SEM_INFERENCE.INF_EXT_OPT_FLAG_NEWDATA_ONLY indicates that all the triples/quads
inferred by the extension function are new and do not already exist in src_tab_view.

Chapter 9
User-Defined Inferencing

9-3

Enabling this optimization flag allows the inference engine to skip checking for
duplicates between the output_tab table and src_tab_view. Note that the
src_tab_view contains triples/quads from previous rounds of reasoning, including
triples/quads inferred from extension functions.

• SDO_SEM_INFERENCE.INF_EXT_OPT_FLAG_UNIQDATA_ONLY indicates that all the
triples/quads inferred by the extension function are unique and do not already exist
in the output_tab table. Enabling this optimization flag allows the inference engine
to skip checking for duplicates within the output_tab table (for example, no need
to check for the same triple inferred twice by an extension function). Note that the
output_tab table is empty at the beginning of each round of reasoning for an
extension function, so uniqueness of the data must only hold for the current round
of reasoning.

• SDO_SEM_INFERENCE.INF_EXT_OPT_FLAG_IGNORE_NULL indicates that the inference
engine should ignore an inferred triple or quad if the subject, predicate, or object
resource is null. The inference engine considers a resource null if both of its
columns in the output_tab table are null (for example, subject is null if the s and
sid columns are both null). Enabling this optimization flag allows the inference
engine to skip invalid triples/quads in the output_tab table. Note that the inference
engine interprets null graph columns (g and gid) as the default graph.

To specify more than one value for the optimization_flag output parameter, use the
plus sign (+) to concatenate the values. For example:

optimization_flag := SDO_SEM_INFERENCE.INF_EXT_OPT_FLAG_ALL_IDS +
 SDO_SEM_INFERENCE.INF_EXT_OPT_FLAG_NEWDATA_ONLY +
 SDO_SEM_INFERENCE.INF_EXT_OPT_FLAG_UNIQDATA_ONLY;

For more information about using the optimization_flag output parameter, see
Example 3: Optimizing Performance.

9.1.3 User-Defined Inference Extension Function Examples
The following examples demonstrate how to use user-defined inference extension
functions to create entailments.

• Example 1: Adding Static Triples, Example 2: Adding Dynamic Triples, and
Example 3: Optimizing Performance cover the basics of user-defined inference
extensions.

Example 1: Adding Static Triples and Example 2: Adding Dynamic Triples focus on
adding new, inferred triples.

Example 3: Optimizing Performance focuses on optimizing performance.

• Example 4: Temporal Reasoning (Several Related Examples) and Example 5:
Spatial Reasoning demonstrate how to handle special data types efficiently by
leveraging native Oracle types and operators.

Example 4: Temporal Reasoning (Several Related Examples) focuses on the
xsd:dateTime data type.

Example 5: Spatial Reasoning focuses on geospatial data types.

• Example 6: Calling a Web Service makes a web service call to the Oracle
Geocoder service.

The first three examples assume that the model EMPLOYEES exists and contains the
following semantic data, displayed in Turtle format:

Chapter 9
User-Defined Inferencing

9-4

:John :firstName "John" ;
 :lastName "Smith" .

:Mary :firstName "Mary" ;
 :lastName "Smith" ;
 :name "Mary Smith" .

:Alice :firstName "Alice" .

:Bob :firstName "Bob" ;
 :lastName "Billow" .

For requirements and guidelines for creating user-defined inference extension functions, see
API Support for User-Defined Inferencing.

• Example 1: Adding Static Triples

• Example 2: Adding Dynamic Triples

• Example 3: Optimizing Performance

• Example 4: Temporal Reasoning (Several Related Examples)

• Example 5: Spatial Reasoning

• Example 6: Calling a Web Service

9.1.3.1 Example 1: Adding Static Triples
The most basic method to infer new data in a user-defined inference extension function is
adding static data. Static data does not depend on any existing data in a model. This is not a
common case for a user-defined inference extension function, but it demonstrates the basics
of adding triples to an entailment. Inserting static data is more commonly done during the
preparation phase (that is, action='START') to expand on the existing ontology.

The following user-defined inference extension function (sem_inf_static) adds three static
triples to an entailment:

-- this user-defined rule adds static triples
create or replace function sem_inf_static(
 src_tab_view in varchar2,
 resource_id_map_view in varchar2,
 output_tab in varchar2,
 action in varchar2,
 num_calls in number,
 tplInferredLastRound in number,
 options in varchar2 default null,
 optimization_flag out number,
 diag_message out varchar2
)
return boolean
as
 query varchar2(4000);
 pragma autonomous_transaction;
begin
 if (action = 'RUN') then
 -- generic query we use to insert triples
 query :=
 'insert /*+ parallel append */ into ' || output_tab ||
 ' (s, p, o) VALUES ' ||
 ' (:1, :2, :3) ';

Chapter 9
User-Defined Inferencing

9-5

 -- execute the query with different values
 execute immediate query using
 '<http://example.org/S1>', '<http://example.org/P2>', '"O1"';

 execute immediate query using
 '<http://example.org/S2>', '<http://example.org/P2>', '"2"^^xsd:int';

 -- duplicate quad
 execute immediate query using
 '<http://example.org/S2>', '<http://example.org/P2>', '"2"^^xsd:int';

 execute immediate query using
 '<http://example.org/S3>', '<http://example.org/P3>', '"3.0"^^xsd:double';

 -- commit our changes
 commit;
 end if;

 -- return true to indicate success
 return true;
end sem_inf_static;
/
show errors;

The sem_inf_static function inserts new data by executing a SQL insert query, with
output_tab as the target table for insertion. The output_tab table will only contain
triples added by the sem_inf_static function during the current call (see the
num_calls parameter). The inference engine will always call a user-defined inference
extension function at least three times, once for each possible value of the action
parameter ('START', 'RUN', and 'END'). Because sem_inf_static does not need to
perform any preparation or cleanup, the function only adds data during the RUN phase.
The extension function can be called more than once during the RUN phase, depending
on the data inferred during the current round of reasoning.

Although the sem_inf_static function makes no checks for existing triples (to prevent
duplicate triples), the inference engine will not generate duplicate triples in the
resulting entailment. The inference engine will filter out duplicates from the output_tab
table (the data inserted by the extension function) and from the final entailment (the
model or models and other inferred data). Setting the appropriate optimization flags
(using the optimization_flag parameter) will disable this convenience feature and
improve performance. (See Example 3: Optimizing Performance for more information
about optimization flags.)

Although the table definition for output_tab shows a column for graph names, the
inference engine will ignore and override all graph names on triples added by
extension functions when performing Global Inference (default behavior of
SEM_APIS.CREATE_ENTAILMENT) and Named Graph Global Inference (NGGI). To
add triples to specific named graphs in a user-defined extension function, use NGLI
(Named Graph Local Inference). During NGLI, all triples must belong to a named
graph (that is, the gid and g columns of output_tab cannot both be null).

The MDSYS user must have execute privileges on the sem_inf_static function to use
the function for reasoning. The following example shows how to grant the appropriate
privileges on the sem_inf_static function and create an entailment using the function
(along with OWLPRIME inference logic):

-- grant appropriate privileges
grant execute on sem_inf_static to mdsys;

Chapter 9
User-Defined Inferencing

9-6

-- create the entailment
begin
 sem_apis.create_entailment(
 'EMPLOYEES_INF'
 , sem_models('EMPLOYEES')
 , sem_rulebases('OWLPRIME')
 , passes => SEM_APIS.REACH_CLOSURE
 , inf_ext_user_func_name => 'sem_inf_static'
);
end;
/

The following example displays the newly entailed data:

-- formatting
column s format a23;
column p format a23;
column o format a23;
set linesize 100;

-- show results
select s, p, o from table(SEM_MATCH(
 'select ?s ?p ?o where { ?s ?p ?o } order by ?s ?p ?o'
 , sem_models('EMPLOYEES')
 , sem_rulebases('OWLPRIME')
 , null, null, null
 , 'INF_ONLY=T'));

The preceding query returns the three unique static triples added by sem_inf_static, with no
duplicates:

S P O
---------------------- ---------------------- -----------------------
http://example.org/S1 http://example.org/P2 O1
http://example.org/S2 http://example.org/P2 2
http://example.org/S3 http://example.org/P3 3E0

9.1.3.2 Example 2: Adding Dynamic Triples
Adding static data is useful, but it is usually done during the preparation (that is,
action='START') phase. Adding dynamic data involves looking at existing data in the model
and generating new data based on the existing data. This is the most common case for a
user-defined inference extension function.

The following user-defined inference extension function (sem_inf_dynamic) concatenates the
first and last names of employees to create a new triple that represents the full name.

-- this user-defined rule adds static triples
create or replace function sem_inf_dynamic(
 src_tab_view in varchar2,
 resource_id_map_view in varchar2,
 output_tab in varchar2,
 action in varchar2,
 num_calls in number,
 tplInferredLastRound in number,
 options in varchar2 default null,
 optimization_flag out number,
 diag_message out varchar2
)

Chapter 9
User-Defined Inferencing

9-7

return boolean
as
 firstNamePropertyId number;
 lastNamePropertyId number;
 fullNamePropertyId number;

 sqlStmt varchar2(4000);
 insertStmt varchar2(4000);
 pragma autonomous_transaction;
begin
 if (action = 'RUN') then
 -- retrieve ID of resource that already exists in the data (will
 -- throw exception if resource does not exist). These will improve
 -- performance of our SQL queries.
 firstNamePropertyId := sdo_sem_inference.oracle_orardf_res2vid('http://
example.org/firstName');
 lastNamePropertyId := sdo_sem_inference.oracle_orardf_res2vid('http://
example.org/lastName');
 fullNamePropertyId := sdo_sem_inference.oracle_orardf_res2vid('http://
example.org/name');

 -- SQL query to find all employees and their first and last names
 sqlStmt :=
 'select ids1.sid employeeId,
 values1.value_name firstName,
 values2.value_name lastName
 from ' || resource_id_map_view || ' values1,
 ' || resource_id_map_view || ' values2,
 ' || src_tab_view || ' ids1,
 ' || src_tab_view || ' ids2
 where ids1.sid = ids2.sid
 AND ids1.pid = ' || to_char(firstNamePropertyId,'TM9') || '
 AND ids2.pid = ' || to_char(lastNamePropertyId,'TM9') || '
 AND ids1.oid = values1.value_id
 AND ids2.oid = values2.value_id
 /* below ensures we have NEWDATA (a no duplicate optimization flag) */
 AND not exists
 (select 1
 from ' || src_tab_view || '
 where sid = ids1.sid AND
 pid = ' || to_char(fullNamePropertyId,'TM9') || ')';

 -- create the insert statement that concatenates the first and
 -- last names from our sqlStmt into a new triple.
 insertStmt :=
 'insert /*+ parallel append */
 into ' || output_tab || ' (sid, pid, o)
 select employeeId, ' || to_char(fullNamePropertyId,'TM9') || ', ''"'' ||
firstName || '' '' || lastName || ''"''
 from (' || sqlStmt || ')';

 -- execute the insert statement
 execute immediate insertStmt;

 -- commit our changes
 commit;

 -- set our optimization flags indicating we already checked for
 -- duplicates in the model (src_tab_view)
 optimization_flag := SDO_SEM_INFERENCE.INF_EXT_OPT_FLAG_NEWDATA_ONLY;
 end if;

Chapter 9
User-Defined Inferencing

9-8

 -- return true to indicate success
 return true;
end sem_inf_dynamic;
/
show errors;

The sem_inf_dynamic function inserts new data using two main steps. First, the function
builds a SQL query that collects all first and last names from the existing data. The sqlStmt
variable stores this SQL query. Next, the function inserts new triples based on the first and
last names it collects, to form a full name for each employee. The insertStmt variable stores
this SQL query. Note that the insertStmt query includes the sqlStmt query because it is
performing an INSERT with a subquery.

The sqlStmt query performs a join across two main views: the resource view
(resource_id_map_view) and the existing data view (src_tab_view). The existing data view
contains all existing triples but stores the values of those triples using numeric IDs instead of
lexical values. Because the sqlStmt query must extract the lexical values of the first and last
names of an employee, it joins with the resource view twice (once for the first name and once
for the last name).

The sqlStmt query contains the PARALLEL SQL hint to help improve performance. Parallel
execution on a balanced hardware configuration can significantly improve performance. (See
Example 3: Optimizing Performance for more information.)

The insertStmt query also performs a duplicate check to avoid adding a triple if it already
exists in the existing data view (src_tab_view). The function indicates it has performed this
check by enabling the INF_EXT_OPT_FLAG_NEWDATA_ONLY optimization flag. Doing the check
inside the extension function improves overall performance of the reasoning. Note that the
existing data view does not contain the new triples currently being added by the
sem_inf_dynamic function, so duplicates may still exist within the output_tab table. If the
sem_inf_dynamic function additionally checked for duplicates within the output_tab table,
then it could also enable the INF_EXT_OPT_FLAG_UNIQUEDATA_ONLY optimization flag.

Both SQL queries use numeric IDs of RDF resources to perform their joins and inserts. Using
IDs instead of lexical values improves the performance of the queries. The sem_inf_dynamic
function takes advantage of this performance benefit by looking up the IDs of the lexical
values it plans to use. In this case, the function looks up three URIs representing the first
name, last name, and full name properties. If the sem_inf_dynamic function inserted all new
triples purely as IDs, then it could enable the INF_EXT_OPT_FLAG_ALL_IDS optimization flag.
For this example, however, the new triples each contain a single, new, lexical value: the full
name of the employee.

To create an entailment with the sem_inf_dynamic function, grant execution privileges to the
MDSYS user, then pass the function name to the SEM_APIS.CREATE_ENTAILMENT
procedure, as follows:

-- grant appropriate privileges
grant execute on sem_inf_dynamic to mdsys;

-- create the entailment
begin
 sem_apis.create_entailment(
 'EMPLOYEES_INF'
 , sem_models('EMPLOYEES')
 , sem_rulebases('OWLPRIME')
 , passes => SEM_APIS.REACH_CLOSURE
 , inf_ext_user_func_name => 'sem_inf_dynamic'

Chapter 9
User-Defined Inferencing

9-9

);
end;
/

The entailment should contain the following two new triples added by
sem_inf_dynamic:

S P O
------------------------ ------------------------ -----------------------
http://example.org/Bob http://example.org/name Bob Billow
http://example.org/John http://example.org/name John Smith

Note that the sem_inf_dynamic function in the preceding example did not infer a full
name for Mary Smith, because Mary Smith already had her full name specified in the
existing data.

9.1.3.3 Example 3: Optimizing Performance
Several techniques can improve the performance of an inference extension function.
One such technique is to use the numeric IDs of resources rather than their lexical
values in queries. By only using resource IDs, the extension function avoids having to
join with the resource view (resource_id_map_view), and this can greatly improve
query performance. Inference extension functions can obtain additional performance
benefits by also using resource IDs when adding new triples to the output_tab table
(that is, using only using the gid, sid, pid, and oid columns of the output_tab table).

The following user-defined inference extension function (sem_inf_related) infers a
new property, :possibleRelative, for employees who share the same last name. The
SQL queries for finding such employees use only resource IDs (no lexical values, no
joins with the resource view). Additionally, the inference extension function in this
example inserts the new triples using only resource IDs, allowing the function to
enable the INF_EXT_OPT_FLAG_ALL_IDS optimization flag.

-- this user-defined rule adds static triples
create or replace function sem_inf_related(
 src_tab_view in varchar2,
 resource_id_map_view in varchar2,
 output_tab in varchar2,
 action in varchar2,
 num_calls in number,
 tplInferredLastRound in number,
 options in varchar2 default null,
 optimization_flag out number,
 diag_message out varchar2
)
return boolean
as
 lastNamePropertyId number;
 relatedPropertyId number;

 sqlStmt varchar2(4000);
 insertStmt varchar2(4000);
 pragma autonomous_transaction;
begin
 if (action = 'RUN') then
 -- retrieve ID of resource that already exists in the data (will
 -- throw exception if resource does not exist).
 lastNamePropertyId := sdo_sem_inference.oracle_orardf_res2vid('http://
example.org/lastName');

Chapter 9
User-Defined Inferencing

9-10

 -- retreive ID of resource or generate a new ID if resource does
 -- not already exist
 relatedPropertyId := sdo_sem_inference.oracle_orardf_add_res('http://example.org/
possibleRelative');

 -- SQL query to find all employees that share a last name
 sqlStmt :=
 'select ids1.sid employeeId,
 ids2.sid relativeId
 from ' || src_tab_view || ' ids1,
 ' || src_tab_view || ' ids2
 where ids1.pid = ' || to_char(lastNamePropertyId,'TM9') || '
 AND ids2.pid = ' || to_char(lastNamePropertyId,'TM9') || '
 AND ids1.oid = ids2.oid
 /* avoid employees related to themselves */
 AND ids1.sid != ids2.sid
 /* below ensures we have NEWDATA (a no duplicate optimization flag) */
 AND not exists
 (select 1
 from ' || src_tab_view || '
 where sid = ids1.sid
 AND pid = ' || to_char(relatedPropertyId,'TM9') || '
 AND oid = ids2.sid)
 /* below ensures we have UNIQDATA (a no duplicate optimization flag) */
 AND not exists
 (select 1
 from ' || output_tab || '
 where sid = ids1.sid
 AND pid = ' || to_char(relatedPropertyId,'TM9') || '
 AND oid = ids2.sid)';

 -- create the insert statement that only uses resource IDs
 insertStmt :=
 'insert /*+ parallel append */
 into ' || output_tab || ' (sid, pid, oid)
 select employeeId, ' || to_char(relatedPropertyId,'TM9') || ', relativeId
 from (' || sqlStmt || ')';

 -- execute the insert statement
 execute immediate insertStmt;

 -- commit our changes
 commit;

 -- set flag indicating our new triples
 -- 1) are specified using only IDs
 -- 2) produce no duplicates with the model (src_tab_view)
 -- 3) produce no duplicates in the output (output_tab)
 optimization_flag := SDO_SEM_INFERENCE.INF_EXT_OPT_FLAG_ALL_IDS +
 SDO_SEM_INFERENCE.INF_EXT_OPT_FLAG_NEWDATA_ONLY +
 SDO_SEM_INFERENCE.INF_EXT_OPT_FLAG_UNIQDATA_ONLY;
 end if;

 -- return true to indicate success
 return true;
end sem_inf_related;
/
show errors;

Chapter 9
User-Defined Inferencing

9-11

The sem_inf_related function has a few key differences from previous examples.
First, the sem_inf_related function queries purely with resource IDs and inserts new
triples using only resource IDs. Because all the added triples in the output_tab table
only use resource IDs, the function can enable the INF_EXT_OPT_FLAG_ALL_IDS
optimization flag. For optimal performance, functions should try to use resource IDs
over lexical values. However, sometimes this is not possible, as in Example 2: Adding
Dynamic Triples, which concatenates lexical values to form a new lexical value. Note
that in cases like Example 2: Adding Dynamic Triples, it is usually better to join with
the resource view (resource_id_map_view) than to embed calls to
oracle_orardf_res2vid within the SQL query. This is due to the overhead of calling
the function for each possible match as opposed to joining with another table.

Another key difference in the sem_inf_related function is the use of the
oracle_orardf_add_res function (compared to oracle_orardf_res2vid). Unlike the
res2vid function, the add_res function will add a resource to the resource view
(resource_id_map_view) if the resource does not already exist. Inference extensions
functions should use the add_res function if adding the resource to the resource view
is not a concern. Calling the function multiple times will not generate duplicate entries
in the resource view.

The last main difference is the additional NOT EXISTS clause in the SQL query. The
first NOT EXISTS clause avoids adding any triples that may be duplicates of triples
already in the model or triples inferred by other rules (src_tab_view). Checking for
these duplicates allows sem_inf_related to enable the
INF_EXT_OPT_FLAG_NEWDATA_ONLY optimization flag. The second NOT EXISTS clause
avoids adding triples that may be duplicates of triples already added by the
sem_inf_related function to the output_tab table during the current round of
reasoning (see the num_calls parameter). Checking for these duplicates allows
sem_inf_related to enable the INF_EXT_OPT_FLAG_UNIQDATA_ONLY optimization flag.

Like the sem_inf_dynamic example, sem_inf_related example uses a PARALLEL SQL
query hint in its insert statement. Parallel execution on a balanced hardware
configuration can significantly improve performance. For a data-intensive application, a
good I/O subsystem is usually a critical component to the performance of the whole
system.

To create an entailment with the sem_inf_dynamic function, grant execution privileges
to the MDSYS user, then pass the function name to the
SEM_APIS.CREATE_ENTAILMENT procedure, as follows:

-- grant appropriate privileges
grant execute on sem_inf_related to mdsys;

-- create the entailment
begin
 sem_apis.create_entailment(
 'EMPLOYEES_INF'
 , sem_models('EMPLOYEES')
 , sem_rulebases('OWLPRIME')
 , passes => SEM_APIS.REACH_CLOSURE
 , inf_ext_user_func_name => 'sem_inf_related'
);
end;
/

The entailment should contain the following two new triples added by
sem_inf_related:

Chapter 9
User-Defined Inferencing

9-12

S P O
------------------------ ------------------------------------ ------------------------
http://example.org/John http://example.org/possibleRelative http://example.org/Mary
http://example.org/Mary http://example.org/possibleRelative http://example.org/John

9.1.3.4 Example 4: Temporal Reasoning (Several Related Examples)
User-defined extension functions enable you to better leverage certain data types (like
xsd:dateTime) in the triples. For example, with user-defined extension functions, it is possible
to infer relationships between triples based on the difference between two xsd:dateTime
values. The three examples in this section explore two different temporal reasoning rules and
how to combine them into one entailment. The examples assume the models EVENT and
EVENT_ONT exist and contain the following semantic data:

EVENT_ONT

@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix : <http://example.org/event/> .

we model two types of events
:Meeting rdfs:subClassOf :Event .
:Presentation rdfs:subClassOf :Event .

events have topics
:topic rdfs:domain :Event .

events have start and end times
:startTime rdfs:domain :Event ;
 rdfs:range xsd:dateTime .
:endTime rdfs:domain :Event ;
 rdfs:range xsd:dateTime .

duration (in minutes) of an event
:lengthInMins rdfs:domain :Event ;
 rdfs:range xsd:integer .

overlaps property identifies conflicting events
:overlaps rdfs:domain :Event ;
 rdf:type owl:SymmetricProperty .
:noOverlap rdfs:domain :Event ;
 rdf:type owl:SymmetricProperty .

EVENT_TBOX

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix : <http://example.org/event/> .

:m1 rdf:type :Meeting ;
 :topic "Beta1 launch" ;
 :startTime "2012-04-01T09:30:00-05:00"^^xsd:dateTime ;
 :endTime "2012-04-01T11:00:00-05:00"^^xsd:dateTime .

:m2 rdf:type :Meeting ;
 :topic "Standards compliance" ;
 :startTime "2012-04-01T12:30:00-05:00"^^xsd:dateTime ;
 :endTime "2012-04-01T13:30:00-05:00"^^xsd:dateTime .

Chapter 9
User-Defined Inferencing

9-13

:p1 rdf:type :Presentation ;
 :topic "OWL Reasoners" ;
 :startTime "2012-04-01T11:00:00-05:00"^^xsd:dateTime ;
 :endTime "2012-04-01T13:00:00-05:00"^^xsd:dateTime .

The examples are as follow.

• Example 4a: Duration Rule

• Example 4b: Overlap Rule

• Example 4c: Duration and Overlap Rules

9.1.3.4.1 Example 4a: Duration Rule
The following user-defined inference extension function (sem_inf_durations) infers
the duration in minutes of events, given the start and end times of an event. For
example, an event starting at 9:30 AM and ending at 11:00 AM has duration of 90
minutes. The following extension function extracts the start and end times for each
event, converts the xsd:dateTime values into Oracle timestamps, then computes the
difference between the timestamps. Notice that this extension function can handle time
zones.

create or replace function sem_inf_durations(
 src_tab_view in varchar2,
 resource_id_map_view in varchar2,
 output_tab in varchar2,
 action in varchar2,
 num_calls in number,
 tplInferredLastRound in number,
 options in varchar2 default null,
 optimization_flag out number,
 diag_message out varchar2
)
return boolean
as
 eventClassId number;
 rdfTypePropertyId number;
 startTimePropertyId number;
 endTimePropertyId number;
 durationPropertyId number;

 xsdTimeFormat varchar2(100);
 sqlStmt varchar2(4000);
 insertStmt varchar2(4000);

 pragma autonomous_transaction;
begin
 if (action = 'RUN') then
 -- retrieve ID of resource that already exists in the data (will
 -- throw exception if resource does not exist).
 eventClassId := sdo_sem_inference.oracle_orardf_res2vid('http://
example.org/event/Event');
 startTimePropertyId := sdo_sem_inference.oracle_orardf_res2vid('http://
example.org/event/startTime');
 endTimePropertyId := sdo_sem_inference.oracle_orardf_res2vid('http://
example.org/event/endTime');
 durationPropertyId := sdo_sem_inference.oracle_orardf_res2vid('http://
example.org/event/lengthInMins');
 rdfTypePropertyId := sdo_sem_inference.oracle_orardf_res2vid('http://

Chapter 9
User-Defined Inferencing

9-14

www.w3.org/1999/02/22-rdf-syntax-ns#type');

 -- set the TIMESTAMP format we will use to parse XSD times
 xsdTimeFormat := 'YYYY-MM-DD"T"HH24:MI:SSTZH:TZM';

 -- query we use to extract the event ID and start/end times.
 sqlStmt :=
 'select ids1.sid eventId,
 TO_TIMESTAMP_TZ(values1.value_name,''YYYY-MM-DD"T"HH24:MI:SSTZH:TZM'')
startTime,
 TO_TIMESTAMP_TZ(values2.value_name,''YYYY-MM-DD"T"HH24:MI:SSTZH:TZM'')
endTime
 from ' || resource_id_map_view || ' values1,
 ' || resource_id_map_view || ' values2,
 ' || src_tab_view || ' ids1,
 ' || src_tab_view || ' ids2,
 ' || src_tab_view || ' ids3
 where ids1.sid = ids3.sid
 AND ids3.pid = ' || to_char(rdfTypePropertyId,'TM9') || '
 AND ids3.oid = ' || to_char(eventClassId,'TM9') || '
 AND ids1.sid = ids2.sid
 AND ids1.pid = ' || to_char(startTimePropertyId,'TM9') || '
 AND ids2.pid = ' || to_char(endTimePropertyId,'TM9') || '
 AND ids1.oid = values1.value_id
 AND ids2.oid = values2.value_id
 /* ensures we have NEWDATA */
 AND not exists
 (select 1
 from ' || src_tab_view || '
 where sid = ids3.sid
 AND pid = ' || to_char(durationPropertyId,'TM9') || ')
 /* ensures we have UNIQDATA */
 AND not exists
 (select 1
 from ' || output_tab || '
 where sid = ids3.sid
 AND pid = ' || to_char(durationPropertyId,'TM9') || ')';

 -- compute the difference (in minutes) between the two Oracle
 -- timestamps from our sqlStmt query. Store the minutes as
 -- xsd:integer.
 insertStmt :=
 'insert /*+ parallel append */ into ' || output_tab || ' (sid, pid, o)
 select eventId,
 ' || to_char(durationPropertyId,'TM9') || ',
 ''"'' || minutes || ''"^^xsd:integer''
 from (
 select eventId,
 (extract(day from (endTime - startTime))*24*60 +
 extract(hour from (endTime - startTime))*60 +
 extract(minute from (endTime - startTime))) minutes
 from (' || sqlStmt || '))';

 -- execute the query
 execute immediate insertStmt;

 -- commit our changes
 commit;
 end if;

 -- we already checked for duplicates in src_tab_view (NEWDATA) and

Chapter 9
User-Defined Inferencing

9-15

 -- in output_tab (UNIQDATA)
 optimization_flag := SDO_SEM_INFERENCE.INF_EXT_OPT_FLAG_NEWDATA_ONLY +
 SDO_SEM_INFERENCE.INF_EXT_OPT_FLAG_UNIQDATA_ONLY;

 -- return true to indicate success
 return true;

 -- handle any exceptions
 exception
 when others then
 diag_message := 'error occurred: ' || SQLERRM;
 return false;
end sem_inf_durations;
/
show errors;

The sem_inf_durations function leverages built-in Oracle temporal functions to
compute the event durations. First, the function converts the xsd:dateTime literal value
to an Oracle TIMESTAMP object using the TO_TIMESTAMP_TZ function. Taking the
difference between two Oracle TIMESTAMP objects produces an INTERVAL object that
represents a time interval. Using the EXTRACT operator, the sem_inf_durations
function computes the duration of each event in minutes by extracting the days, hours,
and minutes out of the duration intervals.

Because the sem_inf_durations function checks for duplicates against both data in
the existing model (src_tab_view) and data in the output_tab table, it can enable the
INF_EXT_OPT_FLAG_NEWDATA_ONLY and INF_EXT_OPT_FLAG_UNIQDATA_ONLY optimization
flags. (See Example 3: Optimizing Performance for more information about
optimization flags.)

Notice that unlike previous examples, sem_inf_durations contains an exception
handler. Exception handlers are useful for debugging issues in user-defined inference
extension functions. To produce useful debugging messages, catch exceptions in the
extension function, set the diag_message parameter to reflect the error, and return
FALSE to indicate that an error occurred during execution of the extension function. The
sem_inf_durations function catches all exceptions and sets the diag_message value
to the exception message.

To create an entailment with the sem_inf_durations function, grant execution
privileges to the MDSYS user, then pass the function name to the
SEM_APIS.CREATE_ENTAILMENT procedure, as follows:

-- grant appropriate privileges
grant execute on sem_inf_durations to mdsys;

-- create the entailment
begin
 sem_apis.create_entailment(
 'EVENT_INF'
 , sem_models('EVENT', 'EVENT_ONT')
 , sem_rulebases('OWLPRIME')
 , passes => SEM_APIS.REACH_CLOSURE
 , inf_ext_user_func_name => 'sem_inf_durations'
);
end;
/

In addition to the triples inferred by OWLPRIME, the entailment should contain the
following three new triples added by sem_inf_durations:

Chapter 9
User-Defined Inferencing

9-16

S P O
---------------------------- -------------------------------------- ---------
http://example.org/event/m1 http://example.org/event/lengthInMins 90
http://example.org/event/m2 http://example.org/event/lengthInMins 60
http://example.org/event/p1 http://example.org/event/lengthInMins 120

9.1.3.4.2 Example 4b: Overlap Rule
The following user-defined inference extension function (sem_inf_overlap) infers whether
two events overlap. Two events overlap if one event starts while the other event is in
progress. The function extracts the start and end times for every pair of events, converts the
xsd:dateTime values into Oracle timestamps, then computes whether one event starts within
the other.

create or replace function sem_inf_overlap(
 src_tab_view in varchar2,
 resource_id_map_view in varchar2,
 output_tab in varchar2,
 action in varchar2,
 num_calls in number,
 tplInferredLastRound in number,
 options in varchar2 default null,
 optimization_flag out number,
 diag_message out varchar2
)
return boolean
as
 eventClassId number;
 rdfTypePropertyId number;
 startTimePropertyId number;
 endTimePropertyId number;
 overlapsPropertyId number;
 noOverlapPropertyId number;

 xsdTimeFormat varchar2(100);
 sqlStmt varchar2(4000);
 insertStmt varchar2(4000);

 pragma autonomous_transaction;
begin
 if (action = 'RUN') then
 -- retrieve ID of resource that already exists in the data (will
 -- throw exception if resource does not exist).
 eventClassId := sdo_sem_inference.oracle_orardf_res2vid('http://example.org/
event/Event');
 startTimePropertyId := sdo_sem_inference.oracle_orardf_res2vid('http://example.org/
event/startTime');
 endTimePropertyId := sdo_sem_inference.oracle_orardf_res2vid('http://example.org/
event/endTime');
 overlapsPropertyId := sdo_sem_inference.oracle_orardf_res2vid('http://example.org/
event/overlaps');
 noOverlapPropertyId := sdo_sem_inference.oracle_orardf_res2vid('http://example.org/
event/noOverlap');
 rdfTypePropertyId := sdo_sem_inference.oracle_orardf_res2vid('http://www.w3.org/
1999/02/22-rdf-syntax-ns#type');

 -- set the TIMESTAMP format we will use to parse XSD times
 xsdTimeFormat := 'YYYY-MM-DD"T"HH24:MI:SSTZH:TZM';

 -- query we use to extract the event ID and start/end times.

Chapter 9
User-Defined Inferencing

9-17

 sqlStmt :=
 'select idsA1.sid eventAId,
 idsB1.sid eventBId,
 TO_TIMESTAMP_TZ(valuesA1.value_name,''YYYY-MM-
DD"T"HH24:MI:SSTZH:TZM'') startTimeA,
 TO_TIMESTAMP_TZ(valuesA2.value_name,''YYYY-MM-
DD"T"HH24:MI:SSTZH:TZM'') endTimeA,
 TO_TIMESTAMP_TZ(valuesB1.value_name,''YYYY-MM-
DD"T"HH24:MI:SSTZH:TZM'') startTimeB,
 TO_TIMESTAMP_TZ(valuesB2.value_name,''YYYY-MM-
DD"T"HH24:MI:SSTZH:TZM'') endTimeB
 from ' || resource_id_map_view || ' valuesA1,
 ' || resource_id_map_view || ' valuesA2,
 ' || resource_id_map_view || ' valuesB1,
 ' || resource_id_map_view || ' valuesB2,
 ' || src_tab_view || ' idsA1,
 ' || src_tab_view || ' idsA2,
 ' || src_tab_view || ' idsA3,
 ' || src_tab_view || ' idsB1,
 ' || src_tab_view || ' idsB2,
 ' || src_tab_view || ' idsB3
 where idsA1.sid = idsA3.sid
 AND idsA3.pid = ' || to_char(rdfTypePropertyId,'TM9') || '
 AND idsA3.oid = ' || to_char(eventClassId,'TM9') || '
 AND idsB1.sid = idsB3.sid
 AND idsB3.pid = ' || to_char(rdfTypePropertyId,'TM9') || '
 AND idsB3.oid = ' || to_char(eventClassId,'TM9') || '
 /* only do half the checks, our TBOX ontology will handle symmetries */
 AND idsA1.sid < idsB1.sid
 /* grab values of startTime and endTime for event A */
 AND idsA1.sid = idsA2.sid
 AND idsA1.pid = ' || to_char(startTimePropertyId,'TM9') || '
 AND idsA2.pid = ' || to_char(endTimePropertyId,'TM9') || '
 AND idsA1.oid = valuesA1.value_id
 AND idsA2.oid = valuesA2.value_id
 /* grab values of startTime and endTime for event B */
 AND idsB1.sid = idsB2.sid
 AND idsB1.pid = ' || to_char(startTimePropertyId,'TM9') || '
 AND idsB2.pid = ' || to_char(endTimePropertyId,'TM9') || '
 AND idsB1.oid = valuesB1.value_id
 AND idsB2.oid = valuesB2.value_id
 /* ensures we have NEWDATA */
 AND not exists
 (select 1
 from ' || src_tab_view || '
 where sid = idsA1.sid
 AND oid = idsB1.sid
 AND pid in (' || to_char(overlapsPropertyId,'TM9') || ',' ||
 to_char(noOverlapPropertyId,'TM9') || '))
 /* ensures we have UNIQDATA */
 AND not exists
 (select 1
 from ' || output_tab || '
 where sid = idsA1.sid
 AND oid = idsB1.sid
 AND pid in (' || to_char(overlapsPropertyId,'TM9') || ',' ||
 to_char(noOverlapPropertyId,'TM9') || '))';

 -- compare the two event times
 insertStmt :=
 'insert /*+ parallel append */ into ' || output_tab || ' (sid, pid, oid)

Chapter 9
User-Defined Inferencing

9-18

 select eventAId, overlapStatusId, eventBId
 from (
 select eventAId,
 (case
 when (startTimeA < endTimeB and
 startTimeA > startTimeB) then
 ' || to_char(overlapsPropertyId,'TM9') || '
 when (startTimeB < endTimeA and
 startTimeB > startTimeA) then
 ' || to_char(overlapsPropertyId,'TM9') || '
 else
 ' || to_char(noOverlapPropertyId,'TM9') || '
 end) overlapStatusId,
 eventBId
 from (' || sqlStmt || '))';

 -- execute the query
 execute immediate insertStmt;

 -- commit our changes
 commit;
 end if;

 -- we only use ID values in the output_tab and we check for
 -- duplicates with our NOT EXISTS clause.
 optimization_flag := SDO_SEM_INFERENCE.INF_EXT_OPT_FLAG_ALL_IDS +
 SDO_SEM_INFERENCE.INF_EXT_OPT_FLAG_NEWDATA_ONLY +
 SDO_SEM_INFERENCE.INF_EXT_OPT_FLAG_UNIQDATA_ONLY;

 -- return true to indicate success
 return true;

 -- handle any exceptions
 exception
 when others then
 diag_message := 'error occurred: ' || SQLERRM;
 return false;
end sem_inf_overlap;
/
show errors;

The sem_inf_overlap function is similar to the sem_inf_durations function in Example 4b:
Overlap Rule. The main difference between the two is that the query in sem_inf_overlap
contains more joins and enables the INF_EXT_OPT_FLAG_ALL_IDS optimization flag
because it does not need to generate new lexical values. (See Example 3: Optimizing
Performance for more information about optimization flags.)

To create an entailment with the sem_inf_overlap function, grant execution privileges to the
MDSYS user, then pass the function name to the SEM_APIS.CREATE_ENTAILMENT
procedure, as follows:

-- grant appropriate privileges
grant execute on sem_inf_overlap to mdsys;

-- create the entailment
begin
 sem_apis.create_entailment(
 'EVENT_INF'
 , sem_models('EVENT', 'EVENT_ONT')
 , sem_rulebases('OWLPRIME')
 , passes => SEM_APIS.REACH_CLOSURE

Chapter 9
User-Defined Inferencing

9-19

 , inf_ext_user_func_name => 'sem_inf_overlap'
);
end;
/

In addition to the triples inferred by OWLPRIME, the entailment should contain the
following six new triples added by sem_inf_overlap:

S P O
---------------------------- -----------------------------------

http://example.org/event/m1 http://example.org/event/noOverlap http://
example.org/event/m2
http://example.org/event/m1 http://example.org/event/noOverlap http://
example.org/event/p1
http://example.org/event/m2 http://example.org/event/noOverlap http://
example.org/event/m1
http://example.org/event/m2 http://example.org/event/overlaps http://
example.org/event/p1
http://example.org/event/p1 http://example.org/event/noOverlap http://
example.org/event/m1
http://example.org/event/p1 http://example.org/event/overlaps http://
example.org/event/m2

9.1.3.4.3 Example 4c: Duration and Overlap Rules
The example in this section uses the extension functions from Example 4a: Duration
Rule (sem_inf_durations) and Example 4b: Overlap Rule (sem_inf_overlap) together
to produce a single entailment. The extension functions are left unmodified for this
example.

To create an entailment using multiple extension functions, use a comma to separate
each extension function passed to the inf_ext_user_func_name parameter of
SEM_APIS.CREATE_ENTAILMENT. The following example assumes that the MDSYS
user has already been granted the appropriate privileges on the extension functions.

-- use multiple user-defined inference functions
begin
 sem_apis.create_entailment(
 'EVENT_INF'
 , sem_models('EVENT', 'EVENT_ONT')
 , sem_rulebases('OWLPRIME')
 , passes => SEM_APIS.REACH_CLOSURE
 , inf_ext_user_func_name => 'sem_inf_durations,sem_inf_overlap'
);
end;
/

In addition to the triples inferred by OWLPRIME, the entailment should contain the
following nine new triples added by sem_inf_durations and sem_inf_overlap:

S P O
---------------------------- --------------------------------------

http://example.org/event/m1 http://example.org/event/lengthInMins 90
http://example.org/event/m1 http://example.org/event/noOverlap http://
example.org/event/m2
http://example.org/event/m1 http://example.org/event/noOverlap http://
example.org/event/p1
http://example.org/event/m2 http://example.org/event/lengthInMins 60

Chapter 9
User-Defined Inferencing

9-20

http://example.org/event/m2 http://example.org/event/noOverlap http://example.org/
event/m1
http://example.org/event/m2 http://example.org/event/overlaps http://example.org/
event/p1
http://example.org/event/p1 http://example.org/event/lengthInMins 120
http://example.org/event/p1 http://example.org/event/noOverlap http://example.org/
event/m1
http://example.org/event/p1 http://example.org/event/overlaps http://example.org/
event/m2

Notice that the extension functions, sem_inf_durations and sem_inf_overlap, did not need
to use the same optimization flags. It is possible to use extension functions with contradictory
optimization flags (for example, one function using INF_EXT_OPT_FLAG_ALL_IDS and another
function inserting all new triples as lexical values).

9.1.3.5 Example 5: Spatial Reasoning
User-defined inference extension functions can also leverage geospatial data types, like WKT
(well-known text), to perform spatial reasoning. For example, with user-defined extension
functions, it is possible to infer a "contains" relationship between geometric entities, such as
states and cities.

The example in this section demonstrates how to infer whether a geometry (a US state)
contains a point (a US city). This example assumes the RDF network already has a spatial
index (described in section 1.6.6.2). This example also assumes the model STATES exists and
contains the following semantic data:

@prefix orageo: <http://xmlns.oracle.com/rdf/geo/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix : <http://example.org/geo/> .

:Colorado rdf:type :State ;
 :boundary "Polygon((-109.0448 37.0004, -102.0424 36.9949, -102.0534 41.0006,
-109.0489 40.9996, -109.0448 37.0004))"^^orageo:WKTLiteral .
:Utah rdf:type :State ;
 :boundary "Polygon((-114.0491 36.9982, -109.0462 37.0026, -109.0503 40.9986,
-111.0471 41.0006, -111.0498 41.9993, -114.0395 41.9901, -114.0491
36.9982))"^^orageo:WKTLiteral .
:Wyoming rdf:type :State ;
 :boundary "Polygon((-104.0556 41.0037, -104.0584 44.9949, -111.0539 44.9998,
-111.0457 40.9986, -104.0556 41.0037))"^^orageo:WKTLiteral

:StateCapital rdfs:subClassOf :City ;

:Denver rdf:type :StateCapital ;
 :location "Point(-104.984722 39.739167)"^^orageo:WKTLiteral .
:SaltLake rdf:type :StateCaptial ;
 :location "Point(-111.883333 40.75)"^^orageo:WKTLiteral .
:Cheyenne rdf:type :StateCapital ;
 :location "Point(-104.801944 41.145556)"^^orageo:WKTLiteral .

The following user-defined inference extension function (sem_inf_capitals) searches for
capital cities within each state using the WKT geometries. If the function finds a capital city, it
infers the city is the capital of the state containing it.

create or replace function sem_inf_capitals(
 src_tab_view in varchar2,
 resource_id_map_view in varchar2,

Chapter 9
User-Defined Inferencing

9-21

 output_tab in varchar2,
 action in varchar2,
 num_calls in number,
 tplInferredLastRound in number,
 options in varchar2 default null,
 optimization_flag out number,
 diag_message out varchar2
)
return boolean
as
 stateClassId number;
 capitalClassId number;

 boundaryPropertyId number;
 locationPropertyId number;
 rdfTypePropertyId number;
 capitalPropertyId number;

 defaultSRID number := 8307;

 xsdTimeFormat varchar2(100);
 sqlStmt varchar2(4000);
 insertStmt varchar2(4000);

 pragma autonomous_transaction;
begin
 if (action = 'RUN') then
 -- retrieve ID of resource that already exists in the data (will
 -- throw exception if resource does not exist).
 stateClassId := sdo_sem_inference.oracle_orardf_res2vid('http://
example.org/geo/State');
 capitalClassId := sdo_sem_inference.oracle_orardf_res2vid('http://
example.org/geo/StateCapital');
 boundaryPropertyId := sdo_sem_inference.oracle_orardf_res2vid('http://
example.org/geo/boundary');
 locationPropertyId := sdo_sem_inference.oracle_orardf_res2vid('http://
example.org/geo/location');
 rdfTypePropertyId := sdo_sem_inference.oracle_orardf_res2vid('http://
www.w3.org/1999/02/22-rdf-syntax-ns#type');

 -- retreive ID of resource or generate a new ID if resource does
 -- not already exist
 capitalPropertyId := sdo_sem_inference.oracle_orardf_add_res('http://
example.org/geo/capital');

 -- query we use to extract the capital cities contained within state
boundaries
 sqlStmt :=
 'select idsA1.sid stateId,
 idsB1.sid cityId
 from ' || resource_id_map_view || ' valuesA,
 ' || resource_id_map_view || ' valuesB,
 ' || src_tab_view || ' idsA1,
 ' || src_tab_view || ' idsA2,
 ' || src_tab_view || ' idsB1,
 ' || src_tab_view || ' idsB2
 where idsA1.pid = ' || to_char(rdfTypePropertyId,'TM9') || '
 AND idsA1.oid = ' || to_char(stateClassId,'TM9') || '
 AND idsB1.pid = ' || to_char(rdfTypePropertyId,'TM9') || '
 AND idsB1.oid = ' || to_char(capitalClassId,'TM9') || '
 /* grab geometric lexical values */

Chapter 9
User-Defined Inferencing

9-22

 AND idsA2.sid = idsA1.sid
 AND idsA2.pid = ' || to_char(boundaryPropertyId,'TM9')|| '
 AND idsA2.oid = valuesA.value_id
 AND idsB2.sid = idsB1.sid
 AND idsB2.pid = ' || to_char(locationPropertyId,'TM9')|| '
 AND idsB2.oid = valuesB.value_id
 /* compare geometries to see if city is contained by state */
 AND SDO_RELATE(
 SDO_RDF.getV$GeometryVal(
 valuesA.value_type,
 valuesA.vname_prefix,
 valuesA.vname_suffix,
 valuesA.literal_type,
 valuesA.language_type,
 valuesA.long_value,
 ' || to_char(defaultSRID,'TM9') || '),
 SDO_RDF.getV$GeometryVal(
 valuesB.value_type,
 valuesB.vname_prefix,
 valuesB.vname_suffix,
 valuesB.literal_type,
 valuesB.language_type,
 valuesB.long_value,
 ' || to_char(defaultSRID,'TM9') || '),
 ''mask=CONTAINS'') = ''TRUE''
 /* ensures we have NEWDATA and only check capitals not assigned to a state */
 AND not exists
 (select 1
 from ' || src_tab_view || '
 where pid = ' || to_char(capitalPropertyId,'TM9') || '
 AND (sid = idsA1.sid OR oid = idsB1.sid))
 /* ensures we have UNIQDATA and only check capitals not assigned to a state */
 AND not exists
 (select 1
 from ' || output_tab || '
 where pid = ' || to_char(capitalPropertyId,'TM9') || '
 AND (sid = idsA1.sid OR oid = idsB1.sid))';

 -- insert new triples using only IDs
 insertStmt :=
 'insert /*+ parallel append */ into ' || output_tab || ' (sid, pid, oid)
 select stateId, ' || to_char(capitalPropertyId,'TM9') || ', cityId
 from (' || sqlStmt || ')';

 -- execute the query
 execute immediate insertStmt;

 -- commit our changes
 commit;
 end if;

 -- we only use ID values in the output_tab and we check for
 -- duplicates with our NOT EXISTS clauses.
 optimization_flag := SDO_SEM_INFERENCE.INF_EXT_OPT_FLAG_ALL_IDS +
 SDO_SEM_INFERENCE.INF_EXT_OPT_FLAG_NEWDATA_ONLY +
 SDO_SEM_INFERENCE.INF_EXT_OPT_FLAG_UNIQDATA_ONLY;

 -- return true to indicate success
 return true;

 -- handle any exceptions

Chapter 9
User-Defined Inferencing

9-23

 exception
 when others then
 diag_message := 'error occurred: ' || SQLERRM;
 return false;
end sem_inf_capitals;
/
show errors;

The sem_inf_capitals function is similar to the sem_inf_durations function in
Example 4a: Duration Rule, in that both functions must convert the lexical values of
some triples into Oracle types to leverage native Oracle operators. In the case of
sem_inf_capitals, the function converts the WKT lexical values encoding polygons
and points into the Oracle Spatial SDO_GEOMETRY type, using the
SDO_RDF.getV$GeometryVal function. The getV$GeometryVal function requires
arguments mostly provided by the resource view (resource_id_map_view) and an
additional argument, an ID to a spatial reference system (SRID). The
getV$GeometryVal function will convert the geometry into the spatial reference system
specified by SRID. The sem_inf_capitals function uses the default Oracle Spatial
reference system, WGS84 Longitude-Latitude, specified by SRID value 8307. (For
more information about support in RDF Semantic Graph for spatial references
systems, see Spatial Support.)

After converting the WKT values into SDO_GEOMETRY types using the
getV$GeometryVal function, the sem_inf_capitals function compares the state
geometry with the city geometry to see if the state contains the city. The SDO_RELATE
operator performs this comparison and returns the literal value 'TRUE' when the state
contains the city. The SDO_RELATE operator can perform various different types of
comparisons. (See Oracle Spatial Developer's Guide for more information about
SDO_RELATE and other spatial operators.)

To create an entailment with the sem_inf_capitals function, grant execution privileges
to the MDSYS user, then pass the function name to the
SEM_APIS.CREATE_ENTAILMENTprocedure, as follows:

-- grant appropriate privileges
grant execute on sem_inf_capitals to mdsys;

-- create the entailment
begin
 sem_apis.create_entailment(
 'STATES_INF'
 , sem_models('STATES')
 , sem_rulebases('OWLPRIME')
 , passes => SEM_APIS.REACH_CLOSURE
 , inf_ext_user_func_name => 'sem_inf_capitals'
);
end;
/

In addition to the triples inferred by OWLPRIME, the entailment should contain the
following three new triples added by sem_inf_capitals:

S P O
-------------------------------- -------------------------------

http://example.org/geo/Colorado http://example.org/geo/capital http://
example.org/geo/Denver
http://example.org/geo/Utah http://example.org/geo/capital http://
example.org/geo/SaltLake

Chapter 9
User-Defined Inferencing

9-24

http://example.org/geo/Wyoming http://example.org/geo/capital http://
example.org/geo/Cheyenne

9.1.3.6 Example 6: Calling a Web Service
This section contains a user-defined inference extension function (sem_inf_geocoding) and a
related helper procedure (geocoding), which enable you to make a web service call to the
Oracle Geocoder service. The user-defined inference extension function looks for the object
values of triples using predicate <urn:streetAddress>, makes callouts to the Oracle public
Geocoder service endpoint at http://maps.oracle.com/geocoder/gcserver, and inserts the
longitude and latitude information as two separate triples.

For example, assume that the semantic model contains the following assertion:

<urn:NEDC> <urn:streetAddress> "1 Oracle Dr., Nashua, NH"

In this case, an inference call using sem_inf_geocoding will produce the following new
assertions:

<urn:NEDC> <http://www.w3.org/2003/01/geo/wgs84_pos#long> "-71.46421"
<urn:NEDC> <http://www.w3.org/2003/01/geo/wgs84_pos#lat> "42.75836"
<urn:NEDC> <http://www.opengis.net/geosparql#asWKT> "POINT(-71.46421
42.75836)"^^<http://www.opengis.net/geosparql#wktLiteral>
<urn:NEDC> <http://xmlns.oracle.com/rdf/geo/asWKT> "POINT(-71.46421
42.75836)"^^<http://xmlns.oracle.com/rdf/geo/WKTLiteral>

The sem_inf_geocoding function is defined as follows:

create or replace function sem_inf_geocoding(
 src_tab_view in varchar2,
 resource_id_map_view in varchar2,
 output_tab in varchar2,
 action in varchar2,
 num_calls in number,
 tplInferredLastRound in number,
 options in varchar2 default null,
 optimization_flag out number,
 diag_message out varchar2
)
return boolean
as
 pragma autonomous_transaction;
 iCount integer;

 nLong number;
 nLat number;
 nWKT number;
 nOWKT number;
 nStreetAddr number;

 sidTab dbms_sql.number_table;
 oidTab dbms_sql.number_table;

 vcRequestBody varchar2(32767);
 vcStmt varchar2(32767);
 vcStreeAddr varchar2(3000);

 type cur_type is ref cursor;
 cursorFind cur_type;
 vcLong varchar2(100);

Chapter 9
User-Defined Inferencing

9-25

 vcLat varchar2(100);
begin
 if (action = 'START') then
 nLat := sdo_sem_inference.oracle_orardf_add_res('http://www.w3.org/
2003/01/geo/wgs84_pos#lat');
 nLong := sdo_sem_inference.oracle_orardf_add_res('http://www.w3.org/
2003/01/geo/wgs84_pos#long');
 nWKT := sdo_sem_inference.oracle_orardf_add_res('http://www.opengis.net/
geosparql#asWKT');
 nOWKT := sdo_sem_inference.oracle_orardf_add_res('http://
xmlns.oracle.com/rdf/geo/asWKT');
 end if;

 if (action = 'RUN') then
 nStreetAddr :=
sdo_sem_inference.oracle_orardf_res2vid('<urn:streetAddress>');
 nLat := sdo_sem_inference.oracle_orardf_res2vid('http://www.w3.org/
2003/01/geo/wgs84_pos#lat');
 nLong := sdo_sem_inference.oracle_orardf_res2vid('http://www.w3.org/
2003/01/geo/wgs84_pos#long');
 nWKT := sdo_sem_inference.oracle_orardf_res2vid('http://www.opengis.net/
geosparql#asWKT');
 nOWKT := sdo_sem_inference.oracle_orardf_res2vid('http://
xmlns.oracle.com/rdf/geo/asWKT');

 vcStmt := '
 select /*+ parallel */ distinct s1.sid as s_id, s1.oid as o_id
 from ' || src_tab_view || ' s1
 where s1.pid = :1
 and not exists (select 1
 from ' || src_tab_view || ' x
 where x.sid = s1.sid
 and x.pid = :2
) ';
 open cursorFind for vcStmt using nStreetAddr, nLong;

 loop
 fetch cursorFind bulk collect into sidTab, oidTab limit 10000;
 for i in 1..sidTab.count loop
 vcStreeAddr := sdo_sem_inference.oracle_orardf_vid2lit(oidTab(i));
 -- dbms_output.put_line('Now processing street addr ' || vcStreeAddr);
 geocoding(vcStreeAddr, vcLong, vcLat);
 execute immediate 'insert into ' || output_tab ||
'(sid,pid,oid,gid,s,p,o,g)
 values(:1, :2, null, null, null, null, :3, null) '
 using sidTab(i), nLong, '"'||vcLong||'"';
 execute immediate 'insert into ' || output_tab ||
'(sid,pid,oid,gid,s,p,o,g)
 values(:1, :2, null, null, null, null, :3, null) '
 using sidTab(i), nLat, '"'||vcLat||'"';
 execute immediate 'insert into ' || output_tab ||
'(sid,pid,oid,gid,s,p,o,g)
 values(:1, :2, null, null, null, null, :3, null) '
 using sidTab(i), nWKT, '"POINT('|| vcLong || ' ' ||vcLat
||')"^^<http://www.opengis.net/geosparql#wktLiteral>';
 execute immediate 'insert into ' || output_tab ||
'(sid,pid,oid,gid,s,p,o,g)
 values(:1, :2, null, null, null, null, :3, null) '
 using sidTab(i), nOWKT, '"POINT('|| vcLong || ' ' ||vcLat
||')"^^<http://xmlns.oracle.com/rdf/geo/WKTLiteral>';
 end loop;

Chapter 9
User-Defined Inferencing

9-26

 exit when cursorFind%notfound;
 end loop;
 commit;
 end if;
 return true;
end;
/
grant execute on sem_inf_geocoding to mdsys;

The sem_inf_geocoding function makes use of the following helper procedure named
geocoding, which does the actual HTTP communication with the Geocoder web service
endpoint. Note that proper privileges are required to connect to the web server.

create or replace procedure geocoding(addr varchar2,
 vcLong out varchar2,
 vcLat out varchar2
)
as
 httpReq utl_http.req;
 httpResp utl_http.resp;

 vcRequestBody varchar2(32767);

 vcBuffer varchar2(32767);
 idxLat integer;
 idxLatEnd integer;
begin
 vcRequestBody := utl_url.escape('xml_request=<?xml version="1.0" standalone="yes"?>
 <geocode_request vendor="elocation">
 <address_list>
 <input_location id="27010">
 <input_address match_mode="relax_street_type">
 <unformatted country="US">
 <address_line value="'|| addr ||'"/>
 </unformatted>
 </input_address>
 </input_location>
 </address_list>
 </geocode_request>
 ');
 dbms_output.put_line('request ' || vcRequestBody);

 -- utl_http.set_proxy('<your_proxy_here_if_necessary>', null);
 httpReq := utl_http.begin_request (
 'http://maps.oracle.com/geocoder/gcserver', 'POST');

 utl_http.set_header(httpReq, 'Content-Type', 'application/x-www-form-urlencoded');
 utl_http.set_header(httpReq, 'Content-Length', lengthb(vcRequestBody));

 utl_http.write_text(httpReq, vcRequestBody);

 httpResp := utl_http.get_response(httpReq);

 utl_http.read_text(httpResp, vcBuffer, 32767);
 utl_http.end_response(httpResp);

 -- dbms_output.put_line('response ' || vcBuffer);
 -- Here we are doing some simple string parsing out of an XML.
 -- It is more robust to use XML functions instead.
 idxLat := instr(vcBuffer, 'longitude="');
 idxLatEnd := instr(vcBuffer, '"', idxLat + 12);

Chapter 9
User-Defined Inferencing

9-27

 vcLong := substr(vcBuffer, idxLat + 11, idxLatEnd - idxLat - 11);
 dbms_output.put_line('long = ' || vcLong);

 idxLat := instr(vcBuffer, 'latitude="');
 idxLatEnd := instr(vcBuffer, '"', idxLat + 11);
 vcLat := substr(vcBuffer, idxLat + 10, idxLatEnd - idxLat - 10);
 dbms_output.put_line('lat = ' || vcLat);
exception
 when others then
 dbms_output.put_line('geocoding: error ' ||
dbms_utility.format_error_backtrace || ' '
 || dbms_utility.format_error_stack);
end;
/

9.2 User-Defined Functions and Aggregates
The RDF Semantic Graph query extension architecture enables you to add user-
defined functions and aggregates to be used in SPARQL queries, both through the
SEM_MATCH table function and through the support for Apache Jena.

The SPARQL 1.1 Standard provides several functions used mainly for filtering and
categorizing data obtained by a query. However, you may need specialized functions
not supported by the standard.

Some simple examples include finding values that belong to a specific type, or
obtaining values with a square sum value that is greater than a certain threshold.
Although this can be done by means of combining functions, it may be useful to have a
single function that handles the calculations, which also allows for a simpler and
shorter query.

The RDF Semantic Graph query extension allows you to include your own query
functions and aggregates. This architecture allows:

• Custom query functions that can be used just like built-in SPARQL query
functions, as explained in API Support for User-Defined Functions

• Custom aggregates that can be used just like built-in SPARQL aggregates, as
explained in API Support for User-Defined Aggregates

• Data Types for User-Defined Functions and Aggregates

• API Support for User-Defined Functions

• API Support for User-Defined Aggregates

9.2.1 Data Types for User-Defined Functions and Aggregates
The SDO_RDF_TERM object type is used to represent an RDF term when creating
user-defined functions and aggregates.

SDO_RDF_TERM has the following attributes, which correspond to columns in the
MDSYS.RDF_VALUE$ table (see Table 1-4 in Statements for a description of these
attributes). The CTX1 attribute is reserved for future use and does not have a
corresponding column in MDSYS.RDF_VALUE$.

SDO_RDF_TERM(
 VALUE_TYPE VARCHAR2(10),
 VALUE_NAME VARCHAR2(4000),

Chapter 9
User-Defined Functions and Aggregates

9-28

 VNAME_PREFIX VARCHAR2(4000),
 VNAME_SUFFIX VARCHAR2(512),
 LITERAL_TYPE VARCHAR2(1000),
 LANGUAGE_TYPE VARCHAR2(80),
 LONG_VALUE CLOB,
 CTX1 VARCHAR2(4000))

The following constructors are available for creating SDO_RDF_TERM objects. The first
constructor populates each attribute from a single, lexical RDF term string. The second and
third constructors receive individual attribute values as input. Only the first RDF term string
constructor sets values for VNAME_PREFIX and VNAME_SUFFIX. These values are
initialized to null by the other constructors.

SDO_RDF_TERM (
 rdf_term_str VARCHAR2)
 RETURN SELF;

SDO_RDF_TERM (
 value_type VARCHAR2,
 value_name VARCHAR2,
 literal_type VARCHAR2,
 language_type VARCHAR2,
 long_value CLOB)
 RETURN SELF;

SDO_RDF_TERM (
 value_type VARCHAR2,
 value_name VARCHAR2,
 literal_type VARCHAR2,
 language_type VARCHAR2,
 long_value CLOB,
 ctx1 VARCHAR2)
 RETURN SELF;

The SDO_RDF_TERM_LIST type is used to hold a list of SDO_RDF_TERM objects and is
defined as VARRAY(32767) of SDO_RDF_TERM.

9.2.2 API Support for User-Defined Functions
A user-defined function is created by implementing a PL/SQL function with a specific
signature, and a specific URI is used to invoke the function in a SPARQL query pattern.

After each successful inference extension function call, a commit is executed to persist
changes made in the inference extension function call. If an inference extension function is
defined as autonomous by specifying pragma autonomous_transaction, then it should either
commit or roll back at the end of its implementation logic. Note that the inference engine may
call an extension function multiple times when creating an entailment (once per round).
Commits and rollbacks from one call will not affect other calls.

• PL/SQL Function Implementation

• Invoking User-Defined Functions from a SPARQL Query Pattern

• User-Defined Function Examples

9.2.2.1 PL/SQL Function Implementation
Each user-defined function must be implemented by a PL/SQL function with a signature in
the following format:

Chapter 9
User-Defined Functions and Aggregates

9-29

FUNCTION user_function_name (params IN SDO_RDF_TERM_LIST)
 RETURN SDO_RDF_TERM

This signature supports an arbitrary number of RDF term arguments, which are
passed in using a single SDO_RDF_TERM_LIST object, and returns a single RDF
term as output, which is represented as a single SDO_RDF_TERM object. Type
checking or other verifications for these parameters are not performed. You should
take steps to validate the data according to the function goals.

Note that PL/SQL supports callouts to functions written in other programming
languages, such as C and Java, so the PL/SQL function that implements a user-
defined query function can serve only as a wrapper for functions written in other
programming languages.

9.2.2.2 Invoking User-Defined Functions from a SPARQL Query Pattern
After a user-defined function is implemented in PL/SQL, it can be invoked from a
SPARQL query pattern using a function URI constructed from the prefix <http://
xmlns.oracle.com/rdf/extensions/> followed by
schema.package_name.function_name if the corresponding PL/SQL function is part of
a PL/SQL package, or schema.function_name if the function is not part of a PL/SQL
package. The following are two example function URIs:

<http://xmlns.oracle.com/rdf/extensions/my_schema.my_package.my_function>(arg_1,
…, arg_n)

<http://xmlns.oracle.com/rdf/extensions/my_schema.my_function>(arg_1, …, arg_n)

9.2.2.3 User-Defined Function Examples
This section presents examples of the implementation of a user-defined function and
the use of that function in a FILTER clause, in a SELECT expression, and in a BIND
operation.

For the examples, assume that the following data, presented here in N-triple format,
exists inside a model called MYMODEL:

<a> <p> "1.0"^^xsd:double .
 <p> "1.5"^^xsd:float .
<c> <p> "3"^^xsd:decimal .
<d> <p> "4"^^xsd:string .

Example 9-1 User-Defined Function to Calculate Sum of Two Squares

Example 9-1 shows the implementation of a simple function that receives two values
and calculates the sum of the squares of each value.

CREATE OR REPLACE FUNCTION sum_squares (params IN MDSYS.SDO_RDF_TERM_LIST)
 RETURN MDSYS.SDO_RDF_TERM
 AS
 retTerm SDO_RDF_TERM;
 sqr1 NUMBER;
 sqr2 NUMBER;
 addVal NUMBER;
 val1 SDO_RDF_TERM;
 val2 SDO_RDF_TERM;
 BEGIN
 –- Set the return value to null.
 retTerm := SDO_RDF_TERM(NULL,NULL,NULL,NULL,NULL);

Chapter 9
User-Defined Functions and Aggregates

9-30

 –- Obtain the data from the first two parameters.
 val1 := params(1);
 val2 := params(2);
 –- Convert the value stored in the sdo_rdf_term to number.
 –- If any exception occurs, return the null value.
 BEGIN
 sqr1 := TO_NUMBER(val1.value_name);
 sqr2 := TO_NUMBER(val2.value_name);
 EXCEPTION WHEN OTHERS THEN RETURN retTerm;
 END;
 –- Compute the square sum of both values.
 addVal := (sqr1 * sqr1) + (sqr2 * sqr2);
 –- Set the return value to the desired rdf term type.
 retTerm := SDO_RDF_TERM('LIT',to_char(addVal),
 'http://www.w3.org/2001/XMLSchema#integer','',NULL);
 – Return the new value.
 RETURN retTerm;
END;
/
SHOW ERRORS;

Note that the sum_squares function in Example 9-1 does not verify the data type of the value
received. It is intended as a demonstration only, and relies on TO_NUMBER to obtain the
numeric value stored in the VALUE_NAME field of SDO_RDF_TERM.

Example 9-2 User-Defined Function Used in a FILTER Clause

Example 9-2 shows the sum_squares function (from Example 9-1) used in a FILTER clause.

SELECT s, o
FROM table(sem_match(
'SELECT ?s ?o
 WHERE { ?s ?p ?o
 FILTER (<http://xmlns.oracle.com/rdf/extensions/schema.sum_squares>(?o,?o) > 2)}',
sem_models('MYMODEL'),null,null,null,null,''));

The query in Example 9-2 returns the following result:

s o
-------------------- --------------------
b 1.5
c 3
d 4

Example 9-3 User-Defined Function Used in a SELECT Expression

Example 9-3 shows the sum_squares function (from Example 9-1) used in an expression in
the SELECT clause.

SELECT s, o, sqr_sum
FROM table(sem_match(
'SELECT ?s ?o
 (<http://xmlns.oracle.com/rdf/extensions/schema.sum_squares>(?o,?o) AS
 ?sqr_sum)
 WHERE { ?s ?p ?o }',
sem_models('MYMODEL'),null,null,null,null,''));

The query in Example 9-3 returns the following result:

s o sqr_sum
-------------------- -------------------- --------------------
a 1 2

Chapter 9
User-Defined Functions and Aggregates

9-31

b 1.5 4.5
c 3 18
d 4 32

Example 9-4 User-Defined Function Used in a BIND Operation

Example 9-4 shows the sum_squares function (from Example 9-1) used in a BIND
operation.

SELECT s, o, sqr_sum
FROM table(sem_match(
'SELECT ?s ?o ?sqr_sum
 WHERE { ?s ?p ?o .
 BIND (<http://xmlns.oracle.com/rdf/extensions/schema.sum_squares>(?o,?o) AS
 ?sqr_sum)}',
sem_models('MYMODEL'),null,null,null,null,''));

The query in Example 9-4 returns the following result:

s o sqr_sum
-------------------- -------------------- --------------------
a 1 2
b 1.5 4.5
c 3 18
d 4 32

9.2.3 API Support for User-Defined Aggregates
User-defined aggregates are implemented by defining a PL/SQL object type that
implements a set of interface methods. After the user-defined aggregate is created, a
specific URI is used to invoke it.

• ODCIAggregate Interface

• Invoking User-Defined Aggregates

• User-Defined Aggregate Examples

9.2.3.1 ODCIAggregate Interface
User-defined aggregates use the ODCIAggregate PL/SQL interface. For more detailed
information about this interface, see the chapter about user-defined aggregate
functions in Oracle Database Data Cartridge Developer's Guide.

The ODCIAggregate interface is implemented by a PL/SQL object type that implements
four main functions:

• ODCIAggregateInitialize
• ODCIAggregateIterate
• ODCIAggregateMerge
• ODCIAggregateTerminate
As with user-defined functions (described in API Support for User-Defined Functions),
user-defined aggregates receive an arbitrary number of RDF term arguments, which
are passed in as an SDO_RDF_TERM_LIST object, and return a single RDF term
value, which is represented as an SDO_RDF_TERM object.

Chapter 9
User-Defined Functions and Aggregates

9-32

This scheme results in the following signatures for the PL/SQL ODCIAggregate interface
functions (with my_aggregate_obj_type representing the actual object type name):

STATIC FUNCTION ODCIAggregateInitialize(
 sctx IN OUT my_aggregate_obj_type)
RETURN NUMBER

MEMBER FUNCTION ODCIAggregateIterate(
 self IN OUT my_aggregate_obj_type
 ,value IN MDSYS.SDO_RDF_TERM_LIST)
RETURN NUMBER

MEMBER FUNCTION ODCIAggregateMerge(
 self IN OUT my_aggregate_obj_type
 ,ctx2 IN my_aggregate_obj_type)
RETURN NUMBER

MEMBER FUNCTION ODCIAggregateTerminate (
 self IN my_aggregate_obj_type
 ,return_value OUT MDSYS.SDO_RDF_TERM
 ,flags IN NUMBER)
RETURN NUMBER

9.2.3.2 Invoking User-Defined Aggregates
After a user-defined aggregate is implemented in PL/SQL, it can be invoked from a SPARQL
query by referring to an aggregate URI constructed from the prefix <http://
xmlns.oracle.com/rdf/aggExtensions/> followed by schema_name.aggregate_name. The
following is an example aggregate URI:

<http://xmlns.oracle.com/rdf/aggExtensions/schema.my_aggregate>(arg_1, …, arg_n)

The DISTINCT modifier can be used with user-defined aggregates, as in the following
example:

<http://xmlns.oracle.com/rdf/aggExtensions/schema.my_aggregate>(DISTINCT arg_1)

In this case, only distinct argument values are passed to the aggregate. Note, however, that
the DISTINCT modifier can only be used with aggregates that have exactly one argument.

9.2.3.3 User-Defined Aggregate Examples
This section presents examples of implementing and using a user-defined aggregate. For the
examples, assume that the following data, presented here in N-triple format, exists inside a
model called MYMODEL:

<a> <p> "1.0"^^xsd:double .
 <p> "1.5"^^xsd:float .
<c> <p> "3"^^xsd:decimal .
<c> <p> "4"^^xsd:decimal .
<d> <p> "4"^^xsd:string .

Example 9-5 User-Defined Aggregate Implementation

Example 9-5 shows the implementation of a simple user-defined aggregate (countSameType).
This aggregate has two arguments: the first is any RDF term, and the second is a constant
data type URI. The aggregate counts how many RDF terms from the first argument position
have a data type equal to the second argument.

Chapter 9
User-Defined Functions and Aggregates

9-33

-- Aggregate type creation
CREATE OR REPLACE TYPE countSameType authid current_user AS OBJECT(

count NUMBER, –- Variable to store the number of same-type terms.

–- Mandatory Functions for aggregates
STATIC FUNCTION ODCIAggregateInitialize(
 sctx IN OUT countSameType)
RETURN NUMBER,

MEMBER FUNCTION ODCIAggregateIterate(
 self IN OUT countSameType
 , value IN MDSYS.SDO_RDF_TERM_LIST)
RETURN NUMBER,

MEMBER FUNCTION ODCIAggregateMerge(
 self IN OUT countSameType
 ,ctx2 IN countSameType)
RETURN NUMBER,

MEMBER FUNCTION ODCIAggregateTerminate (
 self IN countSameType
 ,return_value OUT MDSYS.SDO_RDF_TERM
 ,flags IN NUMBER)
RETURN NUMBER
);
/
SHOW ERRORS;

–- Interface function for the user-defined aggregate
CREATE OR REPLACE FUNCTION countSameAs (input MDSYS.SDO_RDF_TERM_LIST) RETURN
MDSYS.SDO_RDF_TERM
PARALLEL_ENABLE AGGREGATE USING countSameType;
/
show errors;

–- User-defined aggregate body
CREATE OR REPLACE TYPE BODY countSameType IS

STATIC FUNCTION ODCIAggregateInitialize(
 sctx IN OUT countSameType)
RETURN NUMBER IS
BEGIN
 sctx := countSameType (0); –- Aggregate initialization
 RETURN ODCIConst.Success;
END;

MEMBER FUNCTION ODCIAggregateIterate(
 self IN OUT countSameType
 , value IN MDSYS.SDO_RDF_TERM_LIST)
RETURN NUMBER IS
BEGIN
 -- Increment count if the first argument has a literal type
 -- URI equal to the value of the second argument
 IF (value(1).literal_type = value(2).value_name) THEN
 self.count := self.count + 1;
 END IF;
 RETURN ODCIConst.Success;
END;

MEMBER FUNCTION ODCIAggregateMerge(

Chapter 9
User-Defined Functions and Aggregates

9-34

 self IN OUT countSameType
 ,ctx2 IN countSameType)
RETURN NUMBER IS
BEGIN
 –- Sum count to merge parallel threads.
 self.count := self.count + ctx2.count;
 RETURN ODCIConst.Success;
END;

MEMBER FUNCTION ODCIAggregateTerminate(
 self IN countSameType
 ,return_value OUT MDSYS.SDO_RDF_TERM
 ,flags IN NUMBER)
RETURN NUMBER IS
BEGIN
 -- Set the return value
 return_value := MDSYS.SDO_RDF_TERM('LIT',to_char(self.count),
 'http://www.w3.org/2001/XMLSchema#decimal',NULL,NULL); RETURN ODCIConst.Success;
END;

END;
/
SHOW ERRORS;

Example 9-6 User-Defined Aggregate Used Without a GROUP BY Clause

Example 9-6 shows the countSameType aggregate (from Example 9-5) used over an entire
query result group.

FROM o
from table(sem_match(
'SELECT
 (<http://xmlns.oracle.com/rdf/aggExtensions/schema.countSameType>(?o,xsd:decimal)
 AS ?o)
 WHERE { ?s ?p ?o }',
sem_models('MYMODEL'),null,null,null,null,''));

The query in Example 9-6 returns the following result:

o

2

Example 9-7 User-Defined Aggregate Used With a GROUP BY Clause

Example 9-7 shows the countSameType aggregate (from Example 9-5) used over a set of
groups formed from a GROUP BY clause.

select s, o
from table(sem_match(
'SELECT ?s
 (<http://xmlns.oracle.com/rdf/aggExtensions/schema.countSameType>(?o,xsd:decimal)
 AS ?o)
 WHERE { ?s ?p ?o } GROUP BY ?s',
sem_models('MYMODEL'),null,null,null,null,''));

The query in Example 9-7 returns the following result:

s o
-------------------- --------------------
a 0
b 0

Chapter 9
User-Defined Functions and Aggregates

9-35

c 2
d 0

Chapter 9
User-Defined Functions and Aggregates

9-36

10
RDF Views: Relational Data as RDF

You can create and use RDF views over relational data in RDF Semantic Graph.

Relational data is viewed as virtual RDF triples using one of the two forms of RDB2RDF
mapping described in W3C documents on Direct Mapping and R2RML mapping:

• R2RML: RDB to RDF Mapping Language, W3C Recommendation (http://
www.w3.org/TR/r2rml/)

• A Direct Mapping of Relational Data to RDF, W3C Recommendation (http://
www.w3.org/TR/rdb-direct-mapping/)

This chapter explains the following topics:

• Why Use RDF Views on Relational Data?
Using RDF views on relational data enables you to query relational data using SPARQL
and integrate data available from different sources.

• API Support for RDF Views
Subprograms are included in the SEM_APIS package for creating, dropping, and
exporting (that is, materializing the content of) RDF views.

• Example: Using an RDF View Model with Direct Mapping
This section shows an example of using an RDF view model with direct mapping.

• Combining Native RDF Data with Virtual RDB2RDF Data
You can combine native triple data with virtual RDB2RDF triple data (from an RDF view
model) in a single SEM_MATCH query by means of the SERVICE keyword.

10.1 Why Use RDF Views on Relational Data?
Using RDF views on relational data enables you to query relational data using SPARQL and
integrate data available from different sources.

You can exploit the advantages of relational data without the need for physical storage of the
RDF triples that correspond to the relational data.

The simplest way to create a mapping of relational data to RDF data is by calling the
SEM_APIS.CREATE_RDFVIEW_MODEL procedure to create an RDF view model, supplying
the list of tables or views whose content you would like to be viewed as RDF. This provides a
direct mapping of those relational tables or views.

To get a more customized mapping, you can call the
SEM_APIS.CREATE_RDFVIEW_MODEL procedure to create an RDF view model, supplying
the R2RML mapping (using Turtle or N-Triple syntax) with the r2rml_string parameter.

10.2 API Support for RDF Views
Subprograms are included in the SEM_APIS package for creating, dropping, and exporting
(that is, materializing the content of) RDF views.

10-1

http://www.w3.org/TR/r2rml/
http://www.w3.org/TR/r2rml/
http://www.w3.org/TR/rdb-direct-mapping/
http://www.w3.org/TR/rdb-direct-mapping/

An RDF view model is created as an RDF model, but the RDF model physically
contains only the mapping metadata. The actual data remains in the relational tables
for which the RDF view model has been created. (The SEM_APIS subprograms are
documented in SEM_APIS Package Subprograms.)

Once an RDF view model is created, you can also materialize the RDF triples into a
staging table by using the SEM_APIS.EXPORT_RDFVIEW_MODEL subprogram.

For the examples throughout this chapter, assume that the relational tables, EMP and
DEPT, are present in the TESTUSER schema (see Section 10.3 for the definitions of these
two tables). Also, assume that a schema-private network, named NET1 and owned by
the RDFUSER schema, already exists and RDFUSER has READ privilege on these
two tables.

For the example illustrating the use of exporting of RDF triples, assume that the
staging table to which the materialized RDF triples will be stored are owned by
TESTUSER and the network owner has INSERT privilege on that table.

• Creating an RDF View Model with Direct Mapping

• Creating an RDF View Model with R2RML Mapping

• Dropping an RDF View Model

• Exporting Virtual Content of an RDF View Model into a Staging Table

10.2.1 Creating an RDF View Model with Direct Mapping
Example 10-1 creates an RDF view model using direct mapping of two tables, EMP
and DEPT (see Section 10.3 for the definitions of these two tables), with a base prefix
of http://empdb/ in a schema-private network. The (virtual) RDF terms are generated
according to A Direct Mapping of Relational Data to RDF, W3C Recommendation.

Example 10-1 Creating an RDF View Model with Direct Mapping in a Schema-
Private Network

BEGIN
 sem_apis.create_rdfview_model(
 model_name => 'empdb_model',
 tables => SYS.ODCIVarchar2List('"TESTUSER"."EMP"',
'"TESTUSER"."DEPT"'),
 prefix => 'http://empdb/',
 options => 'KEY_BASED_REF_PROPERTY=T',
 network_owner=>'RDFUSER',
 network_name=>'NET1'
);
END;
/

To see the properties that are generated, enter the following query:

SELECT p
 FROM TABLE(SEM_MATCH(
 'SELECT DISTINCT ?p {?s ?p ?o} ORDER BY ?p',
 SEM_Models('empdb_model'),
 NULL, NULL, NULL, NULL,
 NULL, NULL, NULL,

Chapter 10
API Support for RDF Views

10-2

https://www.w3.org/TR/rdb-direct-mapping/

 'RDFUSER', 'NET1'));
P

http://empdb/TESTUSER.EMP#EMPNO
http://empdb/TESTUSER.EMP#JOB
http://empdb/TESTUSER.EMP#ENAME
http://empdb/TESTUSER.EMP#DEPTNO
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://empdb/TESTUSER.EMP#ref-DEPTNO
http://empdb/TESTUSER.DEPT#DEPTNO
http://empdb/TESTUSER.DEPT#DNAME
http://empdb/TESTUSER.DEPT#LOC

9 rows selected.

10.2.2 Creating an RDF View Model with R2RML Mapping
You can create an RDF view model using the two tables EMP and DEPT, but with your own
customizations, by creating an R2RML mapping document specified using Turtle, as shown:

@prefix rr: <http://www.w3.org/ns/r2rml#>.
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
@prefix ex: <http://example.com/ns#>.

ex:TriplesMap_Dept
 rr:logicalTable [rr:tableName "TESTUSER.DEPT"];
 rr:subjectMap [
 rr:template "http://data.example.com/department/{DEPTNO}";
 rr:class ex:Department;
];
 rr:predicateObjectMap [
 rr:predicate ex:deptNum;
 rr:objectMap [rr:column "DEPTNO" ; rr:datatype xsd:integer];
];
 rr:predicateObjectMap [
 rr:predicate ex:deptName;
 rr:objectMap [rr:column "DNAME"];
];
 rr:predicateObjectMap [
 rr:predicate ex:deptLocation;
 rr:objectMap [rr:column "LOC"];
].

ex:TriplesMap_Emp
 rr:logicalTable [rr:tableName "TESTUSER.EMP"];
 rr:subjectMap [
 rr:template "http://data.example.com/employee/{EMPNO}";
 rr:class ex:Employee;
];
 rr:predicateObjectMap [
 rr:predicate ex:empNum;
 rr:objectMap [rr:column "EMPNO" ; rr:datatype xsd:integer];
];

Chapter 10
API Support for RDF Views

10-3

 rr:predicateObjectMap [
 rr:predicate ex:empName;
 rr:objectMap [rr:column "ENAME"];
];
 rr:predicateObjectMap [
 rr:predicate ex:jobType;
 rr:objectMap [rr:column "JOB"];
];
 rr:predicateObjectMap [
 rr:predicate ex:worksForDeptNum;
 rr:objectMap [rr:column "DEPTNO" ; rr:dataType xsd:integer];
];
 rr:predicateObjectMap [
 rr:predicate ex:worksForDept;
 rr:objectMap [
 rr:parentTriplesMap ex:TriplesMap_Dept ;
 rr:joinCondition [rr:child "DEPTNO"; rr:parent "DEPTNO"]]].

Example 10-2 Creating an RDF View Model with an R2RML Mapping String

The following example creates an RDF view model directly from an R2RML string,
using the preceding R2RML mapping:

DECLARE
 r2rmlStr CLOB;

BEGIN

 r2rmlStr :=
 '@prefix rr: <http://www.w3.org/ns/r2rml#>. '||
 '@prefix xsd: <http://www.w3.org/2001/XMLSchema#>. '||
 '@prefix ex: <http://example.com/ns#>. '||'

 ex:TriplesMap_Dept
 rr:logicalTable [rr:tableName "TESTUSER.DEPT"];
 rr:subjectMap [
 rr:template "http://data.example.com/department/{DEPTNO}";
 rr:class ex:Department;
];
 rr:predicateObjectMap [
 rr:predicate ex:deptNum;
 rr:objectMap [rr:column "DEPTNO" ; rr:datatype
xsd:integer];
];
 rr:predicateObjectMap [
 rr:predicate ex:deptName;
 rr:objectMap [rr:column "DNAME"];
];
 rr:predicateObjectMap [
 rr:predicate ex:deptLocation;
 rr:objectMap [rr:column "LOC"];
].'||'

 ex:TriplesMap_Emp
 rr:logicalTable [rr:tableName "TESTUSER.EMP"];

Chapter 10
API Support for RDF Views

10-4

 rr:subjectMap [
 rr:template "http://data.example.com/employee/{EMPNO}";
 rr:class ex:Employee;
];
 rr:predicateObjectMap [
 rr:predicate ex:empNum;
 rr:objectMap [rr:column "EMPNO" ; rr:datatype xsd:integer];
];
 rr:predicateObjectMap [
 rr:predicate ex:empName;
 rr:objectMap [rr:column "ENAME"];
];
 rr:predicateObjectMap [
 rr:predicate ex:jobType;
 rr:objectMap [rr:column "JOB"];
];
 rr:predicateObjectMap [
 rr:predicate ex:worksForDeptNum;
 rr:objectMap [rr:column "DEPTNO" ; rr:dataType xsd:integer];
];
 rr:predicateObjectMap [
 rr:predicate ex:worksForDept;
 rr:objectMap [
 rr:parentTriplesMap ex:TriplesMap_Dept ;
 rr:joinCondition [rr:child "DEPTNO"; rr:parent "DEPTNO"]]].';

 sem_apis.create_rdfview_model(
 model_name => 'empdb_model',
 tables => NULL,
 r2rml_string => r2rmlStr,
 r2rml_string_fmt => 'TURTLE',
 network_owner=>'RDFUSER',
 network_name=>'NET1'
);

END;
/

10.2.3 Dropping an RDF View Model
An RDF view model can be dropped using the SEM_APIS.DROP_RDFVIEW_MODEL
procedure, as shown in Example 10-3.

Example 10-3 Dropping an RDF View Model

BEGIN
 sem_apis.drop_rdfview_model(
 model_name => 'empdb_model',
 network_owner=>'RDFUSER',
 network_name=>'NET1'
);
END;
/

Chapter 10
API Support for RDF Views

10-5

10.2.4 Exporting Virtual Content of an RDF View Model into a Staging
Table

The content of an RDF view model is virtual; that is, the RDF triples corresponding to
the underlying relational data, as mapped by direct mapping or R2RML mapping, are
not materialized and stored anywhere. The SEM_APIS.EXPORT_RDFVIEW_MODEL
subprogram lets you materialize the virtual RDF triples of an RDF view model into a
staging table. The staging table can then be used for loading into an RDF model.

Example 10-4 Exporting an RDF View Model in a Schema-Private Network

Example 10-4 materializes (in N-Triples format) the content of RDF view empdb_model
into the staging table TESTUSER.R2RTAB.

BEGIN
 sem_apis.export_rdfview_model(
 model_name => 'empdb_model',
 rdf_table_owner => 'TESTUSER',
 rdf_table_name => 'R2RTAB',
 network_owner => 'RDFUSER',
 network_name => 'NET1'
);
END;
PL/SQL procedure successfully completed.

10.3 Example: Using an RDF View Model with Direct
Mapping

This section shows an example of using an RDF view model with direct mapping.

Perform the following steps for creating and using an RDF view model with direct
mapping.

1. Create two relational tables, EMP and DEPT, in the TESTUSER schema and grant READ
privilege on these two tables to RDFUSER.

-- Use the following relational tables.
CREATE TABLE TESTUSER.dept (
 deptno NUMBER CONSTRAINT pk_DeptTab_deptno PRIMARY KEY,
 dname VARCHAR2(30),
 loc VARCHAR2(30)
);

CREATE TABLE TESTUSER.emp (
 empno NUMBER PRIMARY KEY,
 ename VARCHAR2(30),
 job VARCHAR2(20),
 deptno NUMBER REFERENCES dept (deptno)
);

GRANT READ ON TESTUSER.dept TO RDFUSER;

Chapter 10
Example: Using an RDF View Model with Direct Mapping

10-6

GRANT READ ON TESTUSER.emp TO RDFUSER;

2. Insert data into the tables.

-- Insert some data.

INSERT INTO TESTUSER.dept (deptno, dname, loc)
 VALUES (1, 'Sales', 'Boston');
INSERT INTO TESTUSER.dept (deptno, dname, loc)
 VALUES (2, 'Manufacturing', 'Chicago');
INSERT INTO TESTUSER.dept (deptno, dname, loc)
 VALUES (3, 'Marketing', 'Boston');

INSERT INTO TESTUSER.emp (empno, ename, job, deptno)
 VALUES (1, 'Alvarez', 'SalesRep', 1);
INSERT INTO TESTUSER.emp (empno, ename, job, deptno)
 VALUES (2, 'Baxter', 'Supervisor', 2);
INSERT INTO TESTUSER.emp (empno, ename, job, deptno)
 VALUES (3, 'Chen', 'Writer', 3);
INSERT INTO TESTUSER.emp (empno, ename, job, deptno)
 VALUES (4, 'Davis', 'Technician', 2);

3. Connect as RDFUSER and create an RDF view model, empdb_model, using direct mapping
of the two tables created and populated in the preceding steps.

-- Create an RDF view model using direct mapping of two tables, EMP and
DEPT,
-- with a base prefix of http://empdb/.
-- Specify KEY_BASED_REF_PROPERTY=T for the options parameter.

BEGIN
 sem_apis.create_rdfview_model(
 model_name => 'empdb_model',
 tables => SYS.ODCIVarchar2List('"TESTUSER"."EMP"',
'"TESTUSER"."DEPT"'),
 prefix => 'http://empdb/',
 options => 'KEY_BASED_REF_PROPERTY=T'
 network_owner=>'RDFUSER',
 network_name=>'NET1'
);
END;
/

4. Query the newly created RDF view model using a SEM_MATCH-based SQL query.

SELECT emp
 FROM TABLE(SEM_MATCH(
 'PREFIX dept: <http://empdb/TESTUSER.DEPT#>
 PREFIX emp: <http://empdb/TESTUSER.EMP#>
 SELECT ?emp {?emp emp:ref-DEPTNO ?dept . ?dept dept:LOC "Boston"}',
 SEM_Models('empdb_model'),
 NULL,

Chapter 10
Example: Using an RDF View Model with Direct Mapping

10-7

 NULL,
 NULL, NULL,NULL, NULL,NULL, 'RDFUSER', 'NET1'));

EMP
--

http://empdb/TESTUSER.EMP/EMPNO=1
http://empdb/TESTUSER.EMP/EMPNO=3

The query shown in this step is functionally comparable to:

SQL> SELECT e.empno FROM emp e, dept d WHERE e.deptno = d.deptno
AND d.loc = 'Boston';

 EMPNO

 1
 3

10.4 Combining Native RDF Data with Virtual RDB2RDF
Data

You can combine native triple data with virtual RDB2RDF triple data (from an RDF
view model) in a single SEM_MATCH query by means of the SERVICE keyword.

The SERVICE keyword (explained in Graph Patterns: Support for SPARQL 1.1
Federated Query) is overloaded through the use of special SERVICE URLs that signify
local (virtual) RDF data. The following prefixes are used to denote special SERVICE
URLs:

• Native models - oram: <http://xmlns.oracle.com/models/>

• Native virtual models - oravm: <http://xmlns.oracle.com/virtual_models/>

• RDB2RDF models - orardbm: <http://xmlns.oracle.com/rdb_models/>

Example 10-5 Querying Multiple Data Sets

Example 10-5 queries multiple data sets. In this query, the first triple pattern { ?x
rdf:type :Person } will go against native model m1 as usual, but { ?x :name ?
name } will go against the local native model m2, and { ?x emp:JOB ?job } will go
against the local RDB2RDF model empdb_model.

SELECT * FROM TABLE (SEM_MATCH(
'PREFIX : <http://people.org/>
 PREFIX emp: <http://empdb/TESTUSER.EMP#>
 SELECT ?x ?name ?job
 WHERE {
 ?x rdf:type :Person .
 OPTIONAL { SERVICE oram:m2 { ?x :name ?name } }
 OPTIONAL { SERVICE orardbm:empdb_model { ?x emp:JOB ?job } }
 }',

Chapter 10
Combining Native RDF Data with Virtual RDB2RDF Data

10-8

 SEM_MODELS('m1'), NULL, NULL, NULL, NULL, ' ', NULL, NULL, 'RDFUSER',
'NET1'));

Overloaded SERVICE use is only allowed with a single model specified in the models
argument of SEM_MATCH. Overloaded SERVICE queries do not allow multiple models or a
rulebase as input. A virtual model that contains multiple models and/or entailments should be
used instead for such combinations. In addition, the index_status argument for
SEM_MATCH will only check the entailment contained in the virtual model passed as input in
the models parameter. This means the status of entailments that are referenced in
overloaded SERVICE calls will not be checked.

Example 10-6 queries two data sets: the empdb_model from Example: Using an RDF View
Model with Direct Mapping and a native model named people.

Example 10-6 Querying Virtual RDB2RDF Data and Native RDF Data in a Schema-
Private Network

-- Create native model people --
 EXECUTE SEM_APIS.CREATE_SEM_MODEL('people', NULL, NULL,
network_owner=>'rdfuser', network_name=>'net1');

BEGIN
 sem_apis.update_model('people',
 'PREFIX peop: <http://people.org/>
 INSERT DATA {
 <http://empdb/TESTUSER.EMP/EMPNO=1> peop:age 35 .
 <http://empdb/TESTUSER.EMP/EMPNO=2> peop:age 39 .
 <http://empdb/TESTUSER.EMP/EMPNO=3> peop:age 30 .
 <http://empdb/TESTUSER.EMP/EMPNO=4> peop:age 42 .
 } ');
END;
/
COMMIT;

-- Querying multiple datasets --
SELECT emp, age
 FROM TABLE(SEM_MATCH(
 'PREFIX dept: <http://empdb/TESTUSER.DEPT#>
 PREFIX emp: <http://empdb/TESTUSER.EMP#>
 PREFIX peop: <http://people.org/>
 SELECT ?emp ?age WHERE {
 ?emp peop:age ?age
 SERVICE orardbm:empdb_model { ?emp emp:ref-DEPTNO ?dept . ?dept
dept:LOC "Boston" }
 }',
 SEM_Models('people'),
 NULL,
 NULL,
 NULL, NULL, NULL, NULL, NULL, 'RDFUSER', 'NET1'));

The query produces the following output:

EMP AGE
--

Chapter 10
Combining Native RDF Data with Virtual RDB2RDF Data

10-9

--
http://empdb/TESTUSER.EMP/EMPNO=1 35
http://empdb/TESTUSER.EMP/EMPNO=3 30

• Nested Loop Pushdown with Overloaded Service

10.4.1 Nested Loop Pushdown with Overloaded Service
Using a nested loop service can improve performance is some scenarios. Consider
the following example queries against multiple data sets for a schema-private network.
The query finds the properties of all the departments with people who are 35 years old.

–- Query example for a schema-private network.

SELECT emp, dept, p, o
 FROM TABLE(SEM_MATCH(
 'PREFIX dept: <http://empdb/TESTUSER.DEPT#>
 PREFIX emp: <http://empdb/TESTUSER.EMP#>
 PREFIX peop: <http://people.org/>
 SELECT * WHERE{
 ?emp peop:age 35
 SERVICE orardbm:empdb_model{ ?emp emp:ref-DEPTNO ?dept . ?dept ?
p ?o }
 }',
 SEM_Models('people'),
 NULL,
 NULL,
 NULL, NULL, NULL, NULL, NULL, 'RDFUSER', 'NET1'));

The preceding query produces the following output:

EMP DEPT
P O
---------------------------------- -----------------------------------
--

http://empdb/TESTUSER.EMP/EMPNO=1 http://empdb/TESTUSER.DEPT/
DEPTNO=1 http://empdb/TESTUSER.DEPT#DEPTNO 1
http://empdb/TESTUSER.EMP/EMPNO=1 http://empdb/TESTUSER.DEPT/
DEPTNO=1 http://empdb/TESTUSER.DEPT#DNAME Sales
http://empdb/TESTUSER.EMP/EMPNO=1 http://empdb/TESTUSER.DEPT/
DEPTNO=1 http://empdb/TESTUSER.DEPT#LOC Boston
http://empdb/TESTUSER.EMP/EMPNO=1 http://empdb/TESTUSER.DEPT/
DEPTNO=1 http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://
empdb/TESTUSER.DEPT

To get all the results that match for given graph pattern, first the triple pattern { ?emp
peop:age 35 } is matched against model people, then the triple patterns { ?emp
emp:ref-DEPTNO ?d . ?d dept:DNAME ?dept } are matched against model
empdb_model, and finally the results are joined. Assume that there is only one 35-year-
old person in the model people, but there are 100,000 triples with information about
departments. Obviously, a strategy that retrieves all the results is not the most efficient,

Chapter 10
Combining Native RDF Data with Virtual RDB2RDF Data

10-10

and query may have poor performance because a large number of results that need to be
processed before being joined with the rest of the query.

An nested-loop service can improve performance in this case. If the hint OVERLOADED_NL=T is
used, the results of the first part of the query are computed and the SERVICE pattern is
executed procedurally in a nested loop once for each ?emp value from the root triple pattern.
The ?emp subject variable in the SERVICE pattern is replaced with a constant from the root
triple pattern in each execution. This effectively pushes the join condition down into the
SERVICE clause.

The following example shows the use of the OVERLOADED_NL=T hint for the preceding query.

SELECT emp, dept, p, o
 FROM TABLE(SEM_MATCH(
 'PREFIX dept: <http://empdb/TESTUSER.DEPT#>
 PREFIX emp: <http://empdb/TESTUSER.EMP#>
 PREFIX peop: <http://people.org/>
 SELECT * WHERE{
 ?emp peop:age 35
 SERVICE orardbm:empdb_model { ?emp emp:ref-DEPTNO ?dept . ?dept ?p ?
o }
 }',
 SEM_Models('people'),
 NULL,
 NULL,
 NULL, NULL,' OVERLOADED_NL=T ', NULL, NULL, 'RDFUSER', 'NET1'));

The hint OVERLOADED_NL=T can be specified among SEM_MATCH options or among inline
comments for a given SERVICE graph.

Chapter 10
Combining Native RDF Data with Virtual RDB2RDF Data

10-11

11
RDF Integration with Property Graph Data
Stored in Oracle Database

The property graph data model is supported in Oracle Graph. Oracle Graph provides built-in
support for RDF views of property graph data stored in Oracle Database.

• About RDF Integration with Property Graph Data

• R2RML Mapping for the Property Graph Relational Schema
You can use the built-in R2RML mapping to construct an RDF view from the property
graph relational schema.

• PL/SQL API for Creating and Maintaining Property Graph RDF Views
Subprograms in the SEM_APIS package simplify the creation and maintenance of
property graph RDF views.

• Sample RDF Workflow with Property Graph Data
This topic presents a sample RDF workflow with property graph data.

• Special Considerations When Using Property Graph RDF Views
The following special considerations apply when using property graph RDF views.

11.1 About RDF Integration with Property Graph Data
The property graph data model is simpler than the RDF data model in that it has no concept
of global resource identification (that is, no URIs) or formal semantics and entailment. In
addition, property graphs allow direct association of properties (key-value pairs) with edges.
RDF, by contrast, needs reification or a quad data model to associate properties with edges
(RDF triples).
Oracle Graph provides built-in support for RDF views of property graph data stored in Oracle
Database. These RDF views serve as an integration point between property graph data and
RDF data. RDF views of property graph data behave the same way as other RDF views; you
can run SPARQL queries against them and materialize them as native RDF models. Support
for RDF views of property graphs is provided through the following components:

• A built-in R2RML mapping for the relational schema used to store property graph data
[ref to schema].

• A PL/SQL API for creating and maintaining RDF views using the built-in R2RML mapping
for property graph data.

There are two main considerations when representing property graph data in RDF:

• How to generate syntactically valid RDF terms (URIs, literals, and so on) from property
graph identifiers and values

• How to represent edge properties (key-value pairs for edges)

Oracle Graph uses specific prefixes to generate URIs from property graph identifiers, and
uses XML Schema typed literals for property values. Named graphs are used to model edge
properties.

11-1

The example shown in the following figure illustrates a property graph to RDF
mapping. Note that edges in the property graph model become an RDF quad, where
the predicate is the edge label and the named graph is a URI constructed from the
edge identifier. Edge properties are then modeled as RDF quads within the named
graph for the edge. As an illustration, the Trig serialization for RDF graph in the
following figure is as follows:

@PREFIX edge: <http://xmlns.oracle.com/pg/edge/> .
@PREFIX vertex: <http://xmlns.oracle.com/pg/vertex/> .
@PREFIX ep: <http://xmlns.oracle.com/pg/property/edge/> .
@PREFIX vp: <http://xmlns.oracle.com/pg/property/vertex/> .
@PREFIX label: <http://xmlns.oracle.com/pg/property/edge/label/> .

vertex:v1 vp:name "John";
 vp:age 40 .
vertex:v2 vp:name "Jill"
 vp:age 35 .
vertex:v3 vp:name "Frank";
 vp:age 23 .
vertex:v4 vp:name "Susan";
 vp:age 50 .
edge:e5 { vertex:v1 label:friend_of vertex:v2 .
 edge:e5 ep:weight 1.0 . }
edge:e6 { vertex:v1 label:friend_of vertex:v3 .
 edge:e6 ep:weight 2.0 . }
edge:e7 { vertex:v2 label:friend_of vertex:v3 .
 edge:e7 ep:weight 1.5 . }
edge:e8 { vertex:v2 label:friend_of vertex:v4 .
 edge:e8 ep:weight 1.0 . }

Chapter 11
About RDF Integration with Property Graph Data

11-2

Figure 11-1 Equivalent Property Graph and RDF Representations of the Same Graph

In the preceding figure, the property graph model at the top is simpler than the RDF model at
the bottom. Both models show four vertices (nodes) representing four people (John, Jill,
Frank, Susan), but the property graph model shows simple boxes for name and label
information. The property graph model shows many edges with properties represented using
the following prefixes:

• PREFIX edge: <http://xminx,oracle.com/pg/edge/>

• PREFIX vertex: <http://xminx,oracle.com/pg/vertex/>

• PREFIX ep: <http://xminx,oracle.com/pg/property/edge/>

Chapter 11
About RDF Integration with Property Graph Data

11-3

• PREFIX vp http://xminx,oracle.com/pg/property/vertex/>

• PREFIX label: <http://xminx,oracle.com/pg/property/edge/label/>

11.2 R2RML Mapping for the Property Graph Relational
Schema

You can use the built-in R2RML mapping to construct an RDF view from the property
graph relational schema.

Several helper views are created to simplify the R2RML mapping and to convert
values from NVARCHAR to VARCHAR. These views are shown in the following output
(assuming RDF view model name M1, property graph name G1, and user name USER).
Note that substring length for edge label and property name can be customized, and
the M1$GT view will select directly from the G1GT$ table if you indicate that this table
is populated (with options=>'GT_TABLE=T').

-- 5 VT$ views --
-- Varchar --
create or replace view "USER"."M1$V1" as
select
 "VID",
 to_char(substr("K",1,200)) KC,
 "T",
 to_char("V") VC,
 "SL",
 "VTS",
 "VTE",
 "FE"
from "USER"."G1VT$"
where T=1;

-- Number --
create or replace view "USER"."M1$V2" as
select
 "VID",
 to_char(substr("K",1,200)) KC,
 "T",
 "VN",
 "SL",
 "VTS",
 "VTE",
 "FE"
from "USER"."G1VT$"
where T IN (2,3,4);

-- DateTime --
create or replace view "USER"."M1$V3" as
select
 "VID",
 to_char(substr("K",1,200)) KC,
 "T",
 "VT",
 "SL",

Chapter 11
R2RML Mapping for the Property Graph Relational Schema

11-4

 "VTS",
 "VTE",
 "FE"
from "USER"."G1VT$"
where T=5;

-- Boolean --
create or replace view "USER"."M1$V4" as
select
 "VID",
 to_char(substr("K",1,200)) KC,
 "T",
 DECODE("V",'y',to_char('true'),
 'Y',to_char('true'),
 'n',to_char('false'),
 'N',to_char('false')) VB,
 "SL",
 "VTS",
 "VTE",
 "FE"
from "USER"."G1VT$"
where T=6;

-- ID View –
create or replace view "USER"."M1$VT" as
select DISTINCT
 "VID"
from "USER"."G1VT$";

-- 4 GE$ Views --
-- Varchar --
create or replace view "USER"."M1$G1" as
select
 "EID",
 "SVID",
 "DVID",
 "EL",
 to_char(substr("K",1,200)) KC,
 "T",
 to_char("V") VC,
 "SL",
 "VTS",
 "VTE",
 "FE"
from "USER"."G1GE$"
where T=1;

-- Number --
create or replace view "USER"."M1$G2" as
select
 "EID",
 "SVID",
 "DVID",
 "EL",
 to_char(substr("K",1,200)) KC,

Chapter 11
R2RML Mapping for the Property Graph Relational Schema

11-5

 "T",
 "VN",
 "SL",
 "VTS",
 "VTE",
 "FE"
from "USER"."G1GE$"
where T IN (2,3,4);

-- DateTime --
create or replace view "USER"."M1$G3" as
select
 "EID",
 "SVID",
 "DVID",
 "EL",
 to_char(substr("K",1,200)) KC,
 "T",
 "VT",
 "SL",
 "VTS",
 "VTE",
 "FE"
from "USER"."G1GE$"
where T=5;

-- Boolean --
create or replace view "USER"."M1$G4" as
select
 "EID",
 "SVID",
 "DVID",
 "EL",
 to_char(substr("K",1,200)) KC,
 "T",
 DECODE("V",'y',to_char('true'),
 'Y',to_char('true'),
 'n',to_char('false'),
 'N',to_char('false')) VB,
 "SL",
 "VTS",
 "VTE",
 "FE"
from "USER"."G1GE$"
where T=6;

-- GT$ View –
create or replace view "USER"."M1$GT" as
select DISTINCT
 "EID",
 "SVID",
 "DVID",
 to_char(substr("EL",1,200)) LC
from "USER"."G1GE$";

Chapter 11
R2RML Mapping for the Property Graph Relational Schema

11-6

The built-in R2RML mapping that uses these views is shown in the following output in turtle
format.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix rr: <http://www.w3.org/ns/r2rml#>.
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
@prefix pg: <http://xmlns.oracle.com/pg/>.
@prefix pgvtpr: <http://xmlns.oracle.com/pg/property/vertex/>.
@prefix pgedpr: <http://xmlns.oracle.com/pg/property/edge/>.
Vertex Property views ===
pg:TMap_VERTEXPR_VC_TAB
 rr:logicalTable [rr:tableName "\"USER\".\"M1$V1\""] ;
 rr:subjectMap [
 rr:template "http://xmlns.oracle.com/pg/vertex/v{VID}" ;
 rr:class pg:VERTEX] ;
 rr:predicateObjectMap [
 rr:predicateMap [
 rr:template "http://xmlns.oracle.com/pg/property/vertex/{KC}"] ;
 rr:objectMap [rr:column "VC"]
]
.
pg:TMap_VERTEXPR_VN_TAB
 rr:logicalTable [rr:tableName "\"USER\".\"M1$V2\""] ;
 rr:subjectMap [
 rr:template "http://xmlns.oracle.com/pg/vertex/v{VID}" ;
 rr:class pg:VERTEX] ;
 rr:predicateObjectMap [
 rr:predicateMap [
 rr:template "http://xmlns.oracle.com/pg/property/vertex/{KC}"] ;
 rr:objectMap [
 rr:column "VN" ;
 rr:datatype xsd:decimal]
]
.
pg:TMap_VERTEXPR_VT_TAB
 rr:logicalTable [
 rr:tableName "\"USER\".\"M1$V3\""] ;
 rr:subjectMap [
 rr:template "http://xmlns.oracle.com/pg/vertex/v{VID}" ;
 rr:class pg:VERTEX] ;
 rr:predicateObjectMap [
 rr:predicateMap [
 rr:template "http://xmlns.oracle.com/pg/property/vertex/{KC}"] ;
 rr:objectMap [
 rr:column "VT" ;
 rr:datatype xsd:dateTime]
]
.
pg:TMap_VERTEXPR_VB_TAB
 rr:logicalTable [
 rr:tableName "\"USER\".\"M1$V4\""] ;
 rr:subjectMap [
 rr:template "http://xmlns.oracle.com/pg/vertex/v{VID}" ;
 rr:class pg:VERTEX] ;
 rr:predicateObjectMap [
 rr:predicateMap [
 rr:template "http://xmlns.oracle.com/pg/property/vertex/{KC}"] ;
 rr:objectMap [
 rr:column "VB" ;
 rr:datatype xsd:boolean]
]

Chapter 11
R2RML Mapping for the Property Graph Relational Schema

11-7

.
VERTEX ID view ==
pg:TMap_VERTEXID_TAB
 rr:logicalTable [
 rr:tableName "\"USER\".\"M1$VT\""] ;
 rr:subjectMap [
 rr:template "http://xmlns.oracle.com/pg/vertex/v{VID}" ;
 rr:class pg:VERTEX] ;
 rr:predicateObjectMap [
 rr:predicate pgvtpr:id ;
 rr:objectMap [
 rr:column "VID"]
]
.
Edge Property views ===
pg:TMap_EDGEPR_VC_TAB
 rr:logicalTable [
 rr:tableName "\"USER\".\"M1$G1\""] ;
 rr:subjectMap [
 rr:template "http://xmlns.oracle.com/pg/edge/e{EID}" ;
 rr:graphMap [
 rr:template "http://xmlns.oracle.com/pg/edge/e{EID}"]] ;
 rr:predicateObjectMap [
 rr:predicateMap [
 rr:template "http://xmlns.oracle.com/pg/property/edge/{KC}"] ;
 rr:objectMap [
 rr:column "VC"]
]
.
pg:TMap_EDGEPR_VN_TAB
 rr:logicalTable [
 rr:tableName "\"USER\".\"M1$G2\""] ;
 rr:subjectMap [
 rr:template "http://xmlns.oracle.com/pg/edge/e{EID}" ;
 rr:graphMap [
 rr:template "http://xmlns.oracle.com/pg/edge/e{EID}"]] ;
 rr:predicateObjectMap [
 rr:predicateMap [
 rr:template "http://xmlns.oracle.com/pg/property/edge/{KC}"] ;
 rr:objectMap [
 rr:column "VN" ;
 rr:datatype xsd:decimal]
]
.
pg:TMap_EDGEPR_VT_TAB
 rr:logicalTable [
 rr:tableName "\"USER\".\"M1$G3\""] ;
 rr:subjectMap [
 rr:template "http://xmlns.oracle.com/pg/edge/e{EID}" ;
 rr:graphMap [
 rr:template "http://xmlns.oracle.com/pg/edge/e{EID}"]] ;
 rr:predicateObjectMap [
 rr:predicateMap [
 rr:template "http://xmlns.oracle.com/pg/property/edge/{KC}"] ;
 rr:objectMap [
 rr:column "VT" ;
 rr:datatype xsd:dateTime]
]
.
pg:TMap_EDGEPR_VB_TAB
 rr:logicalTable [

Chapter 11
R2RML Mapping for the Property Graph Relational Schema

11-8

 rr:tableName "\"USER\".\"M1$G4\""] ;
 rr:subjectMap [
 rr:template "http://xmlns.oracle.com/pg/edge/e{EID}" ;
 rr:graphMap [
 rr:template "http://xmlns.oracle.com/pg/edge/e{EID}"]] ;
 rr:predicateObjectMap [
 rr:predicateMap [
 rr:template "http://xmlns.oracle.com/pg/property/edge/{KC}"] ;
 rr:objectMap [
 rr:column "VB" ;
 rr:datatype xsd:boolean]
]
.
Edge IDLABEL views ==
pg:TMap_EDGEIDLABEL_TAB
 rr:logicalTable [
 rr:tableName "\"USER\".\"M1$GT\""] ;
 rr:subjectMap [
 rr:template "http://xmlns.oracle.com/pg/edge/e{EID}" ;
 rr:class pg:EDGE ;
 rr:graphMap [
 rr:template "http://xmlns.oracle.com/pg/edge/e{EID}"]] ;
 rr:predicateObjectMap [
 rr:predicate pgedpr:id ;
 rr:objectMap [
 rr:column "EID"]
] ;
 rr:predicateObjectMap [
 rr:predicate pgedpr:label ;
 rr:objectMap [
 rr:column "LC"]
]
.
Edge views ===
pg:TMap_EDGE_TAB
 rr:logicalTable [
 rr:tableName "\"USER\".\"M1$GT\""] ;
 rr:subjectMap [
 rr:template "http://xmlns.oracle.com/pg/vertex/v{SVID}" ;
 rr:graphMap [
 rr:template "http://xmlns.oracle.com/pg/edge/e{EID}"]] ;
 rr:predicateObjectMap [
 rr:predicateMap [
 rr:template "http://xmlns.oracle.com/pg/label/{LC}"] ;
 rr:objectMap [
 rr:template "http://xmlns.oracle.com/pg/vertex/v{DVID}" ;
 rr:termType rr:IRI]
]
.

11.3 PL/SQL API for Creating and Maintaining Property Graph
RDF Views

Subprograms in the SEM_APIS package simplify the creation and maintenance of property
graph RDF views.

Reference and usage information for these subprograms is included in the SEM_APIS
Package Subprograms chapter.

Chapter 11
PL/SQL API for Creating and Maintaining Property Graph RDF Views

11-9

To create an property graph view from an existing model, use the
SEM_APIS.CREATE_PG_RDFVIEW procedure.

To drop a property graph RDF view, use the SEM_APIS.DROP_PG_RDFVIEW.

Indexes should be created on the property graph tables for improved performance of
RDF view queries. You can create any number of index schemes on these tables, but
the SEM_APIS.BUILD_PG_RDFVIEW_INDEXESprocedure is provided for
convenience. (To drop all indexes created by that procedure, you can use the
SEM_APIS.DROP_PG_RDFVIEW_INDEXES procedure.)

To return the VALUE_ID value for the canonical version of an RDF term (or NULL if the
term does not exist), you can use the SEM_APIS.RES2VID function.

11.4 Sample RDF Workflow with Property Graph Data
This topic presents a sample RDF workflow with property graph data.

The first example creates an RDF view named M1 from a property graph named G1
stored in Oracle Database, and creates indexes on that view. The other examples run
SPARQL queries using the SEM_MATCH table function.

Example 11-1 Creating the RDF View and Indexes

-- Create a property graph RDF view
EXECUTE sem_apis.create_pg_rdfview('M1','G1');
-- Create indexes
EXECUTE sem_apis.build_pg_rdfview_indexes('G1');

Example 11-2 Find the Names and Ages of All of John’s Friends

SELECT name$rdfterm, age$rdfterm
FROM TABLE(SEM_MATCH(
 'PREFIX edge: <http://xmlns.oracle.com/pg/edge/>
 PREFIX vertex: <http://xmlns.oracle.com/pg/vertex/>
 PREFIX ep: <http://xmlns.oracle.com/pg/property/edge/>
 PREFIX vp: <http://xmlns.oracle.com/pg/property/vertex/>
 PREFIX label: <http://xmlns.oracle.com/pg/property/edge/label/>
 SELECT ?name ?age
 WHERE {
 ?v1 vp:name "John" .
 ?v1 label:friend_of ?v2 .
 ?v2 vp:name ?name .
 ?v2 vp:age ?age . }'
, sem_models('M1')
, null, null, null, null
, ' PLUS_RDFT=VC '));

Example 11-3 Find the Names and Ages of All of John’s Good Friends (Weight
> 1.5)

SELECT name$rdfterm, age$rdfterm
FROM TABLE(SEM_MATCH(
 'PREFIX edge: <http://xmlns.oracle.com/pg/edge/>

Chapter 11
Sample RDF Workflow with Property Graph Data

11-10

 PREFIX vertex: <http://xmlns.oracle.com/pg/vertex/>
 PREFIX ep: <http://xmlns.oracle.com/pg/property/edge/>
 PREFIX vp: <http://xmlns.oracle.com/pg/property/vertex/>
 PREFIX label: <http://xmlns.oracle.com/pg/property/edge/label/>
 SELECT ?name ?age
 WHERE {
 ?v1 vp:name "John" .
 GRAPH ?e {
 ?v1 label:friend_of ?v2 .
 ?e ep:weight ?w .
 FILTER (?w > 1.5)
 }
 ?v2 vp:name ?name .
 ?v2 vp:age ?age . }'
, sem_models('M1')
, null, null, null, null
, ' PLUS_RDFT=VC '));

Example 11-4 Find John’s Best Friend (Highest Edge Weight)

SELECT name$rdfterm
FROM TABLE(SEM_MATCH(
 'PREFIX edge: <http://xmlns.oracle.com/pg/edge/>
 PREFIX vertex: <http://xmlns.oracle.com/pg/vertex/>
 PREFIX ep: <http://xmlns.oracle.com/pg/property/edge/>
 PREFIX vp: <http://xmlns.oracle.com/pg/property/vertex/>
 PREFIX label: <http://xmlns.oracle.com/pg/property/edge/label/>
 SELECT ?name
 WHERE {
 ?v1 vp:name "John" .
 GRAPH ?e {
 ?v1 label:friend_of ?v2 .
 ?e ep:weight ?w .
 }
 ?v2 vp:name ?name . }
 ORDER BY DESC(?w)
 LIMIT 1'
, sem_models('M1')
, null, null, null, null
, ' PLUS_RDFT=VC '));

11.5 Special Considerations When Using Property Graph RDF
Views

The following special considerations apply when using property graph RDF views.

• Vertex and edge property values greater than 4000 bytes in length are not supported.

• Edge label values will be replaced with the IRI-safe form (as described in the W3C
R2RML specification) when generating edge label URIs.

• Vertex and edge property names will be replaced with the IRI-safe form (as described in
the W3C R2RML specification) when generating vertex and edge property name URIs.

Chapter 11
Special Considerations When Using Property Graph RDF Views

11-11

• Special characters and non-ASCII characters in string-valued vertex and edge
property values will be escaped (as described in the W3C N-Triples specification).

Chapter 11
Special Considerations When Using Property Graph RDF Views

11-12

Part II
RDF Graph Server and Query UI

Part II provides information about using RDF Graph Server and Query UI.

This part contains the following chapters:

• Introduction to RDF Graph Server and Query UI
The RDF Graph Server and Query UI allows you to run SPARQL queries and perform
advanced RDF graph data management operations using a REST API and an Oracle
JET based query UI.

• RDF Graph Server and Query UI Concepts
Learn the key concepts for using the RDF Graph Server and Query UI.

• Oracle RDF Graph Query UI
The Oracle RDF Graph Query UI is an Oracle JET based client that can be used to
manage RDF objects from different data sources, and to perform SPARQL queries and
updates.

12
Introduction to RDF Graph Server and Query
UI

The RDF Graph Server and Query UI allows you to run SPARQL queries and perform
advanced RDF graph data management operations using a REST API and an Oracle JET
based query UI.

The RDF Graph Server and Query UI consists of RDF RESTful services and a Java EE client
application called RDF Graph Query UI. This client serves as an administrative console for
Oracle RDF and can be deployed to a Java EE container.

The RDF Graph Server and RDF RESTful services can be used to create a SPARQL
endpoint for RDF graphs in Oracle Database.

The following figure shows the RDF Graph Server and Query UI architecture:

Figure 12-1 RDF Graph Server and Query UI

The salient features of the RDF Graph Query UI are as follows:

• Uses RDF RESTful services to communicate with RDF data stores, which can be an
Oracle RDF data source or an external RDF data source.

12-1

• Allows you to perform CRUD operations on various RDF objects such as private
networks, models, rule bases, entailments, network indexes and data types for
Oracle data sources.

• Allows you to execute SPARQL queries and update RDF data.

• Provides a graph view of SPARQL query results.

• Uses Oracle JET for user application web pages.

Chapter 12

12-2

13
RDF Graph Server and Query UI Concepts

Learn the key concepts for using the RDF Graph Server and Query UI.

• Data Sources
Data sources are repositories of RDF objects.

• RDF Datasets
Each RDF data source contains metadata information that describe the avaliable RDF
objects.

• REST Services
An RDF REST API allows communication between client and backend RDF data stores.

13.1 Data Sources
Data sources are repositories of RDF objects.

A data source can refer to an Oracle database, or to an external RDF service that can be
accessed by an endpoint URL such as Dbpedia or Jena Apache Fuseki. The data source can
be defined by generic and as well as specific parameters. Some of the generic parameters
are name, type, and description. Specific parameters are JDBC properties (for database data
sources) and endpoint base URL (for external data sources).

• Oracle Data Sources

• Endpoint URL Data Sources

13.1.1 Oracle Data Sources

Oracle data sources are defined using JDBC connections. Three types of Oracle JDBC data
sources can be defined:

• A JDBC URL data source with standard Oracle JDCB parameters, which include SID or
service name, host, port, and user credentials.

• A container JDBC data source that can be defined inside the application Server
(WebLogic, Tomcat, or others).

• An Oracle wallet data source that contains the files needed to make the database
connection.

The parameters that define an Oracle database data source include:

• name: A generic name of the data source.

• type: The data source type. For databases, it must be ‘DATABASE’.

• description (optional): A generic description of the data source.

• properties: Specific mapping parameters with values for data source properties:

– For a JDBC URL:

* Database SID or service name

13-1

* Host machine

* Database listening port

* User name and password credentials

– For a container data source:

* JNDI name - Java naming and directory interface (JNDI) name

– For a wallet data source:

* A string describing the wallet service

* User name and password credentials (required if the user credentials are
not stored in the wallet)

* Optional proxy details

For a cloud wallet it is usually an alias name stored in the tnsnames.ora file,
but for a simple wallet it contains the host, port, and service name
information.

The following example shows the JSON representation of a JDBC URL data source.

{
 "name" : "rdfuser_jdbc_sid",
 "type" : "DATABASE",
 "description" : "",
 "properties" : {
 "host" : "127.0.0.1"
 "sid" : "orcl193"
 "port" : "1524",
 "user" : "rdfuser",
 "password" : "<password>"
 }
}

The following example shows the JSON representation of a container data source:

{
 "name": "rdfuser_ds_ct",
 "type": "DATABASE",
 "description": "Database Container connection",
 "properties": {
 "jndiName": "jdbc/RDFUSER193c"
 }
}

The following example shows the JSON representation of a wallet data source where
the credentials are stored in the wallet:

{
 "name": "rdfuser_ds_wallet",
 "type": "DATABASE",
 "description": "Database wallet connection",
 "properties": {

Chapter 13
Data Sources

13-2

 "walletService": "db202002041627_medium"
 }
}

13.1.2 Endpoint URL Data Sources

External RDF data sources are defined using an endpoint URL. In general, each RDF store
has a generic URL that accepts SPARQL queries and SPARQL updates. Depending on the
RDF store service, it may also provide some capabilities request to retrieve available
datasets.

Table 13-1 External Data source Parameters

Parameters Description

name A generic name of the data source.

type The type of the data source. For external data sources, the type must
be ‘ENDPOINT’.

description A generic description of the data source.

properties Specific mapping parameters with values for data source properties:

• base URL: the base URL to issue SPARQL queries to RDF store.
This is the default URL.

• query URL (optional): the URL to execute SPARQL queries. If
defined, it will overwrite the base URL value.

• update URL (optional): the URL to execute SPARQL updates. If
defined, it will overwrite the base URL value.

• capabilities (optional): Some RDF stores (like Apache Jena
Fuseki) may provide a capabilities URL that returns the datasets
available in service. A JSON response is expected in this case.

• get URL: the get capabilities URL.
• datasets parameter: defines the JSON parameter that contains the

RDF datasets information.
• dataset parameter name: defines the JSON parameter that

contains the RDF dataset name.

The following example shows the JSON representation of a Dbpedia external data source :

{
 "name": "dbpedia",
 "type": "ENDPOINT",
 "description": "Dbpedia RDF data - Dbpedia.org",
 "properties": {
 "baseUrl": "http://dbpedia.org/sparql",
 "provider": "Dbpedia"
 }
}

The following example shows the JSON representation of a Apache Jena Fuseki external
data source. The ${DATASET} is a parameter that is replaced at run time with the Fuseki
dataset name:

{
 "name": "Fuseki",
 "type": "ENDPOINT",
 "description": "Jena Fuseki server",

Chapter 13
Data Sources

13-3

 "properties": {
 "queryUrl": "http://localhost:8080/fuseki/${DATASET}/query",
 "baseUrl": "http://localhost:8080/fuseki",
 "capabilities": {
 "getUrl": "http://localhost:8080/fuseki/$/server",
 "datasetsParam": "datasets",
 "datasetNameParam": "ds.name"
 },
 "provider": "Apache",
 "updateUrl": "http://localhost:8080/fuseki/${DATASET}/update"
 }
}

13.2 RDF Datasets
Each RDF data source contains metadata information that describe the avaliable RDF
objects.

The following describes the metadata information defined by each provider.

• Oracle RDF data sources: The RDF metadata includes information about the
following RDF objects: private networks, models (real, virtual, view), rulebases,
entailments, network indexes and datatypes.

• External RDF providers: For Apache Jena Fuseki, the metadata includes dataset
names. Other external providers may not have a metadata concept, in which case
the base URL points to generic (default) metadata.

RDF datasets point to one or more RDF objects available in the RDF data source. A
dataset definition is used in SPARQL query requests. Each provider has its own set of
properties to describe the RDF dataset.

The following are a few examples of a JSON representation of a dataset.

Oracle RDF dataset definition:

[
 {
 "networkOwner": "RDFUSER",
 "networkName": "MYNET",
 "models": ["M1"]
 }
]

Apache RDF Jena Fuseki dataset definition:

[
 {
 "name": "dataset1"
 }
]

For RDF stores that do not have a specific dataset, a simple JSON {} or a 'Default'
name as shown for Apache Jena Fuseki in the above example can be used.

13.3 REST Services
An RDF REST API allows communication between client and backend RDF data
stores.

Chapter 13
RDF Datasets

13-4

The REST services can be divided into the following groups:

• Server generic services: allows access to available data sources, and configuration
settings for general, proxy, and logging parameters.

• Oracle RDF services: allows CRUD operations on Oracle RDF objects.

• SPARQL services: allows execution of SPARQL queries and updates on the data
sources.

Assuming the deployment of RDF web application with context-root set to orardf, on
localhost machine and port number 7101, the base URL for REST requests is http://
localhost:7101/orardf/api/v1.

Most of the REST services are protected with Form-based authentication. Administrator
users can define a public RDF data source using the RDF Graph Server and Query UI web
application. The public REST endpoints will then be available to perform SPARQL queries on
published datasets.

Note:

The examples in this section and throughout this chapter reference host machine as
localhost and port number as 7101. These values can vary depending on your
application deployment.

The following are some RDF REST examples:

• Get the server information:
The following is a public endpoint URL. It can be used to test if the server is up and
running.

http://localhost:7101/orardf/api/v1/utils/version
• Get a list of data sources:

http://localhost:7101/orardf/api/v1/datasources
• Get general configuration parameters:

http://localhost:7101/orardf/api/v1/configurations/general
• Get a list of RDF semantic networks for Oracle RDF:

http://localhost:7101/orardf/api/v1/networks?datasource=rdfuser_ds_193c
• Get a list of all Oracle RDF models for MDSYS network:

http://localhost:7101/orardf/api/v1/models?datasource=rdfuser_ds_193c
• Get a list of all Oracle RDF real models for a private semantic network (applies from 19c

databases):
http://localhost:7101/orardf/api/v1/models?
datasource=rdfuser_ds_193c&networkOwner=RDFUSER&networkName=LOCALNET&type=re
al

• Post request for SPARQL query:
http://localhost:7101/orardf/api/v1/datasets/query?
datasource=rdfuser_ds_193c&datasetDef={"metadata":
[{"networkOwner":"RDFUSER", "networkName":"LOCALNET","models":
["UNIV_BENCH"]}] }
Query Payload: select ?s ?p ?o where { ?s ?p ?o} limit 10

• Get request for SPARQL query:

Chapter 13
REST Services

13-5

http://localhost:7101/orardf/api/v1/datasets/query?
datasource=rdfuser_ds_193c&query=select ?s ?p ?o where { ?s ?p ?o}
limit 10&datasetDef={"metadata":[{"networkOwner":"RDFUSER",
"networkName":"LOCALNET","models":["UNIV_BENCH"]}] }

• Put request to publish an RDF model:
http://localhost:7101/orardf/api/v1/datasets/publish/DSETNAME?
datasetDef={"metadata":[{"networkOwner":"RDFUSER",
"networkName":"LOCALNET" "models":["UNIV_BENCH"]}]}
Default SPARQL Query Payload: select ?s ?p ?o where { ?s ?p ?o} limit 10
This default SPARQL can be overwritten when requesting the contents of a
published dataset. The datasource parameter in the preceding request is optional.
However, if you define this parameter on the URL, it must match the current
publishing data source name because this API version supports just one
publishing data source. Otherwise, the published data source name is
automatically used.

• Get request for a published dataset:
The following is a public endpoint URL. It is using the default parameters
(SPARQL query, output format, and others) that are stored in dataset definition.
However, these default parameters can be overwritten in REST request by
passing new parameter values.

http://localhost:7101/orardf/api/v1/datasets/query/published/DSETNAME
A detailed list of available REST services can be found in the Swagger json file,
orardf_swagger.json, which is packaged in the application documentation directory.

Chapter 13
REST Services

13-6

14
Oracle RDF Graph Query UI

The Oracle RDF Graph Query UI is an Oracle JET based client that can be used to manage
RDF objects from different data sources, and to perform SPARQL queries and updates.

This Java EE application helps to build application webpages that query and display RDF
graphs. It supports queries across multiple data sources.

• Installing RDF Graph Query UI

• Managing User Roles for RDF Graph Query UI

• Getting Started with RDF Graph Query UI

• Accessibility

14.1 Installing RDF Graph Query UI
In order to get started on Oracle RDF Graph Query UI, you must download and install the
application.

You can download RDF Graph Query UI using one of the following options:

• Download Oracle Property Graph and Oracle RDF Graph Webapps from Oracle
Graph Server and Client Downloads page on Oracle Technology Network.

• Download the Oracle Graph Webapps component in Oracle Graph Server and Client
deployment from Oracle Software Delivery Cloud.

The downloaded oracle-graph-webapps-<version>.zip deployment contains the files as
shown in the following figure:

Figure 14-1 Oracle Graph Webapps deployment

The deployment of the RDF .war file provides the Oracle RDF Graph Query UI console.

14-1

https://www.oracle.com/database/technologies/spatialandgraph/property-graph-features/graph-server-and-client/graph-server-and-client-downloads.html
https://www.oracle.com/database/technologies/spatialandgraph/property-graph-features/graph-server-and-client/graph-server-and-client-downloads.html
https://edelivery.oracle.com/osdc/faces/Home.jspx

Note:

Starting from Release 24.1.0, the RDF Graph Query UI web application is
based on JDK 11. Therefore, ensure that the application servers (WebLogic
or Tomcat) support JDK 11. In the case of the WebLogic server, use version
14.1.1.0.

The rdf-doc folder contains the User Guide documentation.

This deployment also includes the REST API running on the application server to
handle communication between users and backend RDF data stores.

14.2 Managing User Roles for RDF Graph Query UI
Users will have access to the application resources based on their role level. In order
to access the Query UI application, you need to enable a role for the user.

The following describes the different user roles and their privileges:

• Administrator: An administrator has full access to the Query UI application and
can update configuration files, manage RDF objects and can execute SPARQL
queries and SPARQL updates.

• RDF: A RDF user can read or write Oracle RDF objects and can execute SPARQL
queries and SPARQL updates. But, cannot modify configuration files.

• Guest: A guest user can only read Oracle RDF objects and can only execute
SPARQL queries.

Figure 14-2 User Roles for RDF Graph Query

Application servers, such as WebLogic Server, Tomcat, and others, allow you to define
and assign users to user groups. Administrators are set up at the time of the RDF
Graph server installation, but the RDF and guest users must be created to access the
application console.

• Managing Groups and Users in WebLogic Server

• Managing Users and Roles in Tomcat Server

14.2.1 Managing Groups and Users in WebLogic Server

Chapter 14
Managing User Roles for RDF Graph Query UI

14-2

The security realms in WebLogic Server ensures that the user information entered as a part
of installation is added by default to the Administrators group. Any user assigned to this group
will have full access to the RDF Graph Query UI application.

To open the WebLogic Server Administration Console, enter http://localhost:7101/
console in your browser and logon using your administrative credentials. Click on Security
Realms as shown in the following figure:

Figure 14-3 WebLogic Server Administration Console

• Creating User Groups in WebLogic Server

• Creating RDF and Guest Users in WebLogic Server

14.2.1.1 Creating User Groups in WebLogic Server

To create new user groups in WebLogic Server:

1. Select the security realm from the listed Realms in Figure 14-3.

2. Click Users and Groups and then Groups.

3. Click New to create new RDF user groups in Weblogic as shown below:

Figure 14-4 Creating new user groups in WebLogic Server

The following example creates the following two user groups:

Chapter 14
Managing User Roles for RDF Graph Query UI

14-3

• RDFreadUser: for guest users with just read access to application.

• RDFreadwriteUser: for users with read and write access to RDF objects.

Figure 14-5 Created User Groups in WebLogic Server

14.2.1.2 Creating RDF and Guest Users in WebLogic Server
In order to have RDF and guest users in the user groups you must first create the RDF
and guest users and then assign them to their respective groups.

To create new RDF and guest users in WebLogic server:

Prerequisites: RDF and guest users groups must be available or they must be
created. See Creating User Groups in WebLogic Server for creating user groups.

1. Select the security realm from the listed Realms as seen in Figure 14-3

2. Click Users and Groups tab and then Users.

3. Click New to create the RDF and guest users.

Figure 14-6 Create new users in WebLogic Server

The following example creates two new users :

• rdfuser: user to be assigned to group with read and write privileges.

• nonrdfuser: guest user to be assigned to group with just read privileges.

Figure 14-7 New RDF and Guest users

Chapter 14
Managing User Roles for RDF Graph Query UI

14-4

4. Select a user name and click Groups to assign the user to a specific group.

5. Assign rdfuser to RDFreadwriteUser group.

Figure 14-8 RDF User

6. Assign nonrdfuser to RDFreadUser group.

Chapter 14
Managing User Roles for RDF Graph Query UI

14-5

Figure 14-9 RDF Guest User

14.2.2 Managing Users and Roles in Tomcat Server

For Apache Tomcat, edit the Tomcat users file conf/tomcat-users.xml to include the
RDF user roles. For example:

<tomcat-users xmlns="http://tomcat.apache.org/xml" xmlns:xsi="http://www.w3.org/
2001/XMLSchema-instance" version="1.0" xsi:schemaLocation="http://
tomcat.apache.org/xml tomcat-users.xsd">

 <role rolename="rdf-admin-user"/>

 <role rolename="rdf-read-user"/>

 <role rolename="rdf-readwrite-user"/>

 <user password="adminpassword" roles="manager-script,admin,rdf-admin-user"

Chapter 14
Managing User Roles for RDF Graph Query UI

14-6

username="admin"/>

 <user password="rdfuserpassword" roles="rdf-readwrite-user" username="rdfuser"/>

 <user password="notrdfuserpassword" roles="rdf-read-user" username="notrdfuser"/>

</tomcat-users>

14.3 Getting Started with RDF Graph Query UI
The Oracle Graph Query UI contains a main page with RDF graph feature details and links to
get started.

Figure 14-10 Query UI Main Page

The main page includes the following:

• Home: Get an overview of the Oracle RDF Graph features.

• Data sources: Manage your data sources.

• Data: Manage, query or update RDF objects.

• Settings: Set your configuration parameters.

• Data Sources Page

• RDF Data Page

• Configuration Files for RDF Server and Client

14.3.1 Data Sources Page
The Data Sources page allows you to create different types of data sources. Only
administrator users can manage data sources. The RDF store can be linked to an Oracle

Chapter 14
Getting Started with RDF Graph Query UI

14-7

Database or to an external RDF data provider. For Oracle data sources, there are
three types of connections:

• JDBC data source defined with database parameters

• JDBC data source defined on an application server

• Oracle wallet connection defined in a zip file

These database connections must be available in order to link the RDF web
application to the data source.

To create a data source, click Data Sources, then Create.

Figure 14-11 Data Sources Page

• Creating a JDBC URL Data Source

• Creating an Oracle Container Data Source

• Creating an Oracle Wallet Data Source

• Creating an Endpoint URL Data Source

14.3.1.1 Creating a JDBC URL Data Source
Oracle JDBC URL is defined using the standard database parameters with user
credentials.
You can perform the following steps to create a JDBC URL data source:

1. Click JDBC URL in Figure 14-11.

Create JDBC URL Data source dialog opens as shown:

Chapter 14
Getting Started with RDF Graph Query UI

14-8

Figure 14-12 Creating a JDBC URL Data Source

2. Enter the Name of the data source.

3. Optionally, enter Description.

4. Select the JDBC Type.

5. Enter SID/Service Name as appropriate.

6. Enter the Host and Port details.

7. Enter the User and Password credentials.

8. Click OK to create the data source.

14.3.1.2 Creating an Oracle Container Data Source
As a prerequisite to create a container data source in the RDF Graph Server and Query UI
application, the JDBC data source must exist in the application server. See Creating a JDBC
Data Source in WebLogic Server and Creating a JDBC Data Source in Tomcat for more
information.

You can then perform the following steps to create an Oracle Container data source:

1. Click Container in Figure 14-11.

Create Container Data source dialog opens as shown:

Chapter 14
Getting Started with RDF Graph Query UI

14-9

Figure 14-13 Create Container Data Source

2. Enter the Name of the data source.

3. Optionally, enter Description.

4. Select the JNDI Name that exists on the application server.

5. Click OK to create the data source.

• Creating a JDBC Data Source in WebLogic Server

• Creating a JDBC Data Source in Tomcat

14.3.1.2.1 Creating a JDBC Data Source in WebLogic Server
To create a JDBC data source in WebLogic Server:

1. Log in to the WebLogic administration console as an administrator: http://
localhost:7101/console.

2. Click Services, then JDBC Data sources.

3. Click New and select the Generic data source menu option to create a JDBC
data source.

Figure 14-14 Generic Data Source

4. Enter the JDBC data source information (name and JNDI name), then click Next.

Chapter 14
Getting Started with RDF Graph Query UI

14-10

Figure 14-15 JDBC Data Source and JNDI

5. Accept the defaults on the next two pages.

6. Enter the database connection information: service name, host, port, and user
credentials.

Figure 14-16 Create JDBC Data Source

7. Click Next to continue.

8. Click the Test Configuration button to validate the connection and click Next to
continue.

Chapter 14
Getting Started with RDF Graph Query UI

14-11

Figure 14-17 Validate connection

9. Select the server target and click Finish.

Figure 14-18 Create JDBC Data Source

The JDBC data gets added to the data source table and the JNDI name is added to
the combo box list in the create container dialog.

14.3.1.2.2 Creating a JDBC Data Source in Tomcat
There are different ways to create a JDBC data source in Tomcat. See Tomcat
documentaion for more details.

The following examples denote creation of JDBC data source in Tomcat by modifying
the configuration files conf/server.xml and conf/content.xml.

• Add global JNDI resources on conf/server.xml.

<GlobalNamingResources>
 <Resource name="jdbc/RDFUSER19c" auth="Container" global="jdbc/
RDFUSER19c"
 type="javax.sql.DataSource"
driverClassName="oracle.jdbc.driver.OracleDriver"
 url="jdbc:oracle:thin:@host.name:db_port_number:db_sid"
 username="rdfuser" password="rdfuserpwd" maxTotal="20"
maxIdle="10"
 maxWaitMillis="-1"/>
 </GlobalNamingResources>

• Add the resource link to global JNDI’s on conf/context.xml:

<Context>
 <ResourceLink name="jdbc/RDFUSER19c"
 global="jdbc/RDFUSER19c"

Chapter 14
Getting Started with RDF Graph Query UI

14-12

http://tomcat.apache.org/tomcat-3.2-doc/index.html
http://tomcat.apache.org/tomcat-3.2-doc/index.html

 auth="Container"
 type="javax.sql.DataSource" />
</Context>

14.3.1.3 Creating an Oracle Wallet Data Source
To create a wallet data source in the Query UI application, you must have a wallet zip file. It
can be a simple wallet zip file created with Oracle utilities such as mkstore or orapki, or a
wallet downloaded from Oracle Autonomous Database.

In general, wallets are obtained from the Autonomous Database. See Download Client
Credentials (Wallets) for more information to download a wallet from Oracle Autonomous
Database.

The following figure displays the contents of the wallet zip file:

Figure 14-19 Cloud Wallet

Note that the tnsnames.ora file in the wallet zip file contains the wallet service alias names,
and TCPS information. It does not contain the user credentials for each service.

Using this wallet zip file, you can define an RDF wallet data source in the Query UI web
application by directly entering the user credentials. Optionally, you can also have the user
credentials stored inside the wallet for each desired service. If you choose to store the user
credentials in the wallet, then see Storing User Credentials in a Wallet for more information.

The following describes the steps to create a wallet data source:

1. Click Wallet in Figure 14-11.

Create Wallet Data source dialog opens as shown:

Chapter 14
Getting Started with RDF Graph Query UI

14-13

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/autonomous-database&id=GUID-B06202D2-0597-41AA-9481-3B174F75D4B1
http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/autonomous-database&id=GUID-B06202D2-0597-41AA-9481-3B174F75D4B1

Figure 14-20 Wallet Data Source from cloud zip

2. Click the upload icon and select the wallet zip file.

The zip file gets uploaded to the server.

3. Enter the data source Name.

4. Optionally, enter the Description.

5. Select the required Wallet Service name.

6. Provide the user credentials using one of the following options as it applies to you.

• Enable Use wallet credentials if you have stored the user credentials in the
wallet.

• Otherwise, enter directly the User and Password credentials.

7. Optionally, enter the proxy details.

• Storing User Credentials in a Wallet

14.3.1.3.1 Storing User Credentials in a Wallet
The following steps describe the process for adding the credentials to the wallet zip
file. It is important that you store this wallet file along with the credentials in a safe
location for security reasons.

1. Unzip the cloud wallet zip file in a temporary directory.

2. Use the service name alias in the tnsnames.ora to store credentials by running
the following command:
For example, if the service name alias is db202002041627_medium:

${ORACLE_HOME}/bin/mkstore –wrl /tmp/cloudwallet
 –createCredential db202002041627_medium username password

3. Zip the cloud wallet files into a new zip file.

14.3.1.4 Creating an Endpoint URL Data Source
External data sources are connected to the RDF data store using the endpoint URL.

Chapter 14
Getting Started with RDF Graph Query UI

14-14

You can execute SPARQL queries and updates to the RDF data store using a base URL. In
some cases, such as Apache Jena Fuseki, there are specific URLs based on the dataset
name. For example:

• DBpedia Base URL: http://dbpedia.org/sparql

• Apache Jena Fuseki (assuming a dataset name dset):

– Query URL: http://localhost:8080/fuseki/dset/query
– Update URL: http://localhost:8080/fuseki/dset/update

The RDF web application issues SPARQL queries to RDF datasets. These datasets can be
retrieved from provider if a get capabilities request is available. For DBpedia, there is a single
base URL to be used, and therefore a default single dataset is handled in application. For
Apache Jena Fuseki, there is a request that returns the available RDF datasets in server:
http://localhost:8080/fuseki/$/server. Using this request, the list of available datasets
can be retrieved for specific use in an application.

You can perform the following steps to create an external RDF data source:

1. Click Endpoint in Figure 14-11.

Create Endpoint URL Datasource dialog opens as shown. The following figure shows
an example for creating a Dbpedia data source.

Figure 14-21 DBpedia Data Source

2. Enter the Name of the data source.

3. Optionally, enter Description.

4. Optionally, enter the Provider name.

5. Enter the Base URL to access the RDF service.

6. Optionally, enter the Query URL to run SPARQL queries.

Note that if the Query URL is not defined, then the Base URL is used.

7. Optionally, enter the Update URL to run SPARQL updates.

Note that if the Update URL is not defined, then the Base URL is used.

Chapter 14
Getting Started with RDF Graph Query UI

14-15

http://dbpedia.org/sparql

8. Provide the Capabilities Datasets parameter properties to retrieve the dataset
information from the RDF server.

9. Enter the Get URL address that should return a JSON response with information
about the dataset.

10. Enter the Datasets parameter property in JSON response that contains the
dataset information.

11. Enter the Dataset name parameter property in datasets parameter that contains
the dataset name.

Note:

For Jena Fuseki, the expression ${DATASET} will be replaced by the
dataset name at runtime when SPARQL queries or SPARQL updates are
being executed.

12. Click OK to create the data source.

The following figure shows an example for creating an Apache Jena Fuseki data
source.

Figure 14-22 Apache Jena Fuseki Data Source

14.3.2 RDF Data Page
You can manage and query RDF objects in the RDF Data page.

Chapter 14
Getting Started with RDF Graph Query UI

14-16

Figure 14-23 RDF Data Page

The left panel contains information on the available RDF data in the data source. The right
panel is used for opening properties of a RDF object. Depending on the property type,
SPARQL queries and SPARQL updates can be executed.

• Data Source Selection

• Semantic Network Actions

• Importing Data

• SPARQL Query Cache Manager

• RDF Objects Navigator

• Data Source Published Datasets Navigator

• Performing SPARQL Query and SPARQL Update Operations

• Publishing Oracle RDF Models

• Published Dataset Playground

• Support for Auxiliary Tables

• Advanced Graph View

• Database Views from RDF Models

14.3.2.1 Data Source Selection
The data source can be selected from the list of available data sources present in the RDF
Data page.

Chapter 14
Getting Started with RDF Graph Query UI

14-17

Figure 14-24 RDF Network

Select the desired Oracle RDF semantic network for the selected data source. Each
network is identified by a network owner and network name.

14.3.2.2 Semantic Network Actions
You can execute the following semantic network actions:

Figure 14-25 RDF Semantic Network Actions

• Create a semantic network.

• Delete a semantic network.

• Gather statistics for a network.

• Refresh network indexes.

• Purge values not in use.

14.3.2.3 Importing Data
For Oracle semantic networks, the process of importing data into a RDF model is
generally done by bulk loading the RDF triples that are available on staging table.

Figure 14-26 RDF Import Data Actions

The available actions include:

• Upload one or more RDF files into a couple of Oracle RDF Graph staging tables.
The staging table with suffix _CLOB will contain records with object values having

Chapter 14
Getting Started with RDF Graph Query UI

14-18

length greater than 4k. These staging tables can be reused in other bulk load operations.
Files with extensions .nt (N-triples), .nq (N-quads), .ttl (Turtle), .trig (TriG),
and .jsonld (JsonLD) are supported for import. There is a limit of file size to be imported,
which can be tuned by administrator.

Also, zip files can be used to import multiple files at once. However, the zip file is
validated first, and will be rejected if any of the following conditions occur:

– Zip file contains directories

– Zip entry name extension is not a known RDF format (.nt, .nq, .ttl, .trig, .jsonld)

– Zip entry size or compressed size is undefined

– Zip entry size does exceed maximum unzipped entry size

– Inflate ratio between compressed size and file size is lower than minimum inflate ratio

– Zip entries total size does exceed maximum unzipped total size

• Bulk load the staging table records into an Oracle RDF model.

• View the status of bulk load events.

14.3.2.4 SPARQL Query Cache Manager
SPARQL queries are cached data source, and they apply to Oracle data sources. The
translations of the SPARQL queries into SQL expressions are cached for Oracle RDF
network models. Each model can stores up to 64 different SPARQL queries translations. The
Query Cache Manager dialog, allows user to browse data source network cache for queries
executed in models.

Figure 14-27 SPARQL Query Cache Manager

You can clear cache at different levels. The following describes the cache cleared against
each level:

• Data source: All network caches are cleared.

• Network: All model caches are cleared.

• Model: All cached queries for model are cleared.

• Model Cache Identifier: Selected cache identifier is cleared.

Chapter 14
Getting Started with RDF Graph Query UI

14-19

Figure 14-28 Manage SPARQL Query Cache

14.3.2.5 RDF Objects Navigator
The navigator tree shows the available RDF objects for the selected data source.

• For Oracle data sources, it will contain the different concept types like models,
virtual models, view models, RDF view models, rule bases, entailments, network
indexes, and datatype indexes.

Figure 14-29 RDF Objects for Oracle Data Source

• For endpoint RDF data sources, the RDF navigator will have a list of names
representing the available RDF datasets in the RDF store.

Chapter 14
Getting Started with RDF Graph Query UI

14-20

Figure 14-30 RDF Objects from capabilities

• If an external RDF data source does not have a capabilities URL, then just a default
dataset is shown.

Figure 14-31 Default RDF Object

To execute SPARQL queries and SPARQL updates, open the selected RDF object in the
RDF objects navigator. For Oracle RDF objects, SPARQL queries are available for models
(regular models, virtual models, and view models).

Different actions can be performed on the navigator tree nodes. Right-clicking on a node
under RDF objects will bring the context menu options (such as Open, Rename, Analyze,
Manage auxiliary tables, Delete, Create Graph Views, Visualize, and Publish) for that specific
node.

It is important to note the following:

• Publish menu item will be enabled only if the selected RDF data source is public.

• Guest users cannot perform actions that require a write privilege.

Figure 14-32 RDF Navigator - Context Menu

Chapter 14
Getting Started with RDF Graph Query UI

14-21

14.3.2.6 Data Source Published Datasets Navigator
If the selected RDF data source is public, a navigator node with the public datasets is
displayed on the menu tree as shown in the following figure:

Figure 14-33 Data Source Published Datasets Navigator

14.3.2.7 Performing SPARQL Query and SPARQL Update Operations
To execute SPARQL queries and updates, open the selected RDF object in the RDF
objects navigator. For Oracle RDF objects, SPARQL queries are available for regular
models, virtual models, and view models.

You can define the following parameters for SPARQL queries:

• SPARQL: The query string.

• RDF options: Oracle RDF options to be used when processing a query (See
Additional Query Options for more information.).

• Runtime parameters: Fetch size, query timeout and others (this is applied to
Oracle RDF data sources).

• Rulebases: Rulebase names associated with RDF model in an entailment. If
none, then the selection box will be empty.

• Binding parameters: The expression ?ora__bind is used as a binding parameter
in a SPARQL string. Each binding parameter is defined by a type (uri or literal) and
a value. For example:

SELECT ?s ?p ?o WHERE { ?s ?p ?ora__bind } LIMIT 500

An example of JSON representation of a binding parameter that can be passed to
a REST query service is: { "type" : "literal", "value" : "abcdef" }

The following figure shows the SPARQL query page, containing the graph view.

Chapter 14
Getting Started with RDF Graph Query UI

14-22

Figure 14-34 SPARQL Query Page

The number of results on the SPARQL query is determined by the limit parameter in SPARQL
string, or by the maximum number of rows that can be fetched from server. As an
administrator you can set the maximum number of rows to be fetched in the settings page.

A graph view can be displayed for the query results. On the graph view, you must map the
columns for the triple values (subject, predicate, and object). In a table view, the columns that
represent URI values have hyperlinks.

Besides the Execute button to run the SPARQL query, there is also the Explain Plan button
to retrieve the SQL query plan for the SPARQL. This basically displays a dialog with the
EXPLAIN PLAN results and the SPARQL translation.

Figure 14-35 SQL EXPLAIN PLAN for SPARQL Translation

Chapter 14
Getting Started with RDF Graph Query UI

14-23

For Oracle data sources, if the SPARQL query selects an RDF object value that
represents a GeoSPARQL data type (such as WKT, GML, KML, or GeoJSON), a map
visualization can be displayed by switching on Map view result. In this case, the
SPARQL query must select the geometry attribute which is an RDF literal of a
GeoSPARQL data type. On execution, this query will produce a GeoJSON result which
is then passed to the map component for visualization. For example:

Figure 14-36 Map Visualization for GeoSPARQL Data Types in a SPARQL Query

14.3.2.8 Publishing Oracle RDF Models
Oracle RDF models can be published as datasets. These are then available through a
public REST endpoint for SPARQL queries. Administrator users can define a public
RDF data source for publishing data by configuring the application general parameters
(see General JSON configuration file).

Note:

It is important to be aware that by enabling RDF data publishing and defining
a public RDF data source, your public URL endpoints for RDF datasets are
exposed. This endpoint URL can be used directly in applications without
entering credentials.

However, public endpoints have some security constraints related to execution of
SPARQL queries. SPARQL updates, SPARQL SERVICE, and SPARQL user-defined
functions are not allowed.

To publish an Oracle RDF model as a dataset:

1. Right-click on the RDF model and select Publish from the menu as shown:

Chapter 14
Getting Started with RDF Graph Query UI

14-24

Figure 14-37 Publish Menu

2. Enter the Dataset name (mandatory), Description, and Default SPARQL. This default
SPARQL can be overwritten on the REST request.

Figure 14-38 Publish RDF Model

3. Click OK.
The public endpoint GET URL for the dataset is displayed. Note that the POST request
can also be used to access the endpoint.

Chapter 14
Getting Started with RDF Graph Query UI

14-25

Figure 14-39 GET URL Endpoint

This URL uses the default values defined for the dataset and follows the pattern
shown:

http://${hostname}:${port_number}/orardf/api/v1/datasets/query/
published/${dataset_name}
You can override the default parameters stored in the dataset by modifying the
URL to include one or more of the following parameters:

• query: SPARQL query

• format: Output format (JSON, XML, CSV, TSV, GeoJSON, N-Triples, Turtle)

• options: String with Oracle RDF options

• rulebases: Rulebase names associated with dataset RDF model in an
entailment

• params: JSON string with runtime parameters (timeout, fetchSize, and
others)

• bindings: JSON string with binding parameters (URI or literal values)

The following shows the general pattern of the REST request to query published
datasets (assuming the context root as orardf):

http://${hostname}:${port_number}/orardf/api/v1/datasets/query/
published/${dataset_name}?datasource=${datasource_name}&query=$
{sparql}&format=${format}&options=${rdf_options}¶ms=$
{runtime_params}&bindings=${binding_params}
In order to modify the default parameters, you must open the RDF dataset
definition by selecting Open from the menu options shown in the following figure
or by double clicking the published dataset:

Figure 14-40 Open an RDF Dataset Definition

Chapter 14
Getting Started with RDF Graph Query UI

14-26

The RDF dataset definition for the selected published dataset opens as shown:

Figure 14-41 RDF Dataset Definition

You can update the default parameters and preview the results.

Note:

• RDF user with administrator privileges can update and unpublish any
dataset.

• RDF user with read and write privileges can only manage the datasets that
the user created.

• RDF user with read privileges can only query the dataset.

14.3.2.9 Published Dataset Playground
You can explore the published RDF datasets from a public web page.

You can access the page using the following URL format:

{protocol}://{host}:{port}/{app_name}/public.html
For example:

http://localhost:7101/orardf/public.html
The public web page is displayed as shown:

Chapter 14
Getting Started with RDF Graph Query UI

14-27

Figure 14-42 Public Web Page

The main components of this public page are:

• Published Datasets: contains the names of the published RDF datasets for public
RDF data source. To open the RDF dataset double click it or right click the tree
dataset and execute the Open menu item as shown:

Figure 14-43 Opening a Published Dataset on the Public Page

• The tab panel on the right allows you to execute SPARQL queries against the
published RDF dataset. SPARQL query results are displayed in tabular as well as
graph view formats. However, if the Accessibility switch on the top right corner of
the page is switched ON, then the results are only displayed in tabular format.
The following options are supported in the tab panel:

– Templates: SPARQL template queries to use.

– Add prefix: click to add the selected prefix in the combo box to a SPARQL
query.

– SPARQL: enter the SPARQL to be executed in the text area.

– select/ask: select the output format for SPARQL SELECT and SPARQL ASK
queries.

– construct/describe: select the output format for SPARQL CONSTRUCT and
SPARQL DESCRIBE queries.

– Execute: click this button to execute the SPARQL query against the RDF
public endpoint.

– Table: shows the result in a tabular format.

– Raw: shows the raw SPARQL result on specified format returned from server.

Chapter 14
Getting Started with RDF Graph Query UI

14-28

– Download: click to download the raw response.

14.3.2.10 Support for Auxiliary Tables
Subject-Property-Matrix (SPM) auxiliary tables can be used to speed up SPARQL query
execution. It is recommended you first refer to Speeding up Query Execution with SPM
Auxiliary Tables, for a detailed description of SPM tables.

Single-Valued Property (SVP) tables hold values for single-valued RDF properties. A property
p is single-valued in an RDF model if each resource in the model has at most one value for p.

Multi-Valued Property (MVP) tables hold values for multi-valued RDF properties. A property p
is multi-valued in an RDF model if there exist two triples in the model (s p o1) and (s p o2)
with o1 not equal to o2.

Property Chain (PCN) tables hold paths in the RDF graph. A set of triples t1, t2, …, tn
form a path if for each ti where i > 1, the object value of ti-1 is equal to the subject value
of ti.

SVP and PCN tables can be used to reduce joins on SPARQL query execution, while MVP
tables allow better query optimizer statistics and query plans, which can help in speeding up
the query execution. These auxiliary tables are associated with RDF models. Once they are
created, they are automatically used during SPARQL queries execution, unless options are
passed to not to use them.

The RDF Server and Query UI web application extends support to the SPM tables. You can
manage these auxiliary tables by right clicking the RDF model and selecting the Auxiliary
tables menu item as shown:

Figure 14-44 Auxiliary tables Menu

• Creating Auxiliary Tables

• Managing Auxiliary Tables

14.3.2.10.1 Creating Auxiliary Tables
You can create the SPM tables in the Predicates section of the UI by performing the
following steps as shown:

Chapter 14
Getting Started with RDF Graph Query UI

14-29

• Create a Predicates table, if one does not exist, with the statistics of each distinct
predicate.

This table contains the single and multi-valued predicates and their occurrences.
For example:

Figure 14-45 Predicates Table

• Select the required predicates and click Add to Predicate List.

This creates a selected list of predicates from which the different SPM tables can
be created.

• Optionally, you can define the predicate lexical values to be stored in an SPM
table, by setting the lexical value column on the selected predicates in the
Predicate List table.

For example, in the following figure, the predicate order on the table is used to
define the sequence order for PCN tables:

Figure 14-46 Predicate List

• Create one of the following types of auxiliary tables depending on your
requirement:

Figure 14-47 Creating an Auxiliary Table

Chapter 14
Getting Started with RDF Graph Query UI

14-30

– Click Create SVP table after entering the SVP table name to create an SVP table.

– Click Create MVP table to create an MVP table. Note that to create an MVP table,
you must select only one predicate in the Predicate List.

– Click Create PCN table after entering the PCN table name to create a PCN table.
Note that to create a PCN table, you must select at least two predicates in the
Predicate List.

14.3.2.10.2 Managing Auxiliary Tables
You can view the list of existing auxiliary tables for an RDF model in the Auxiliary tables
section.

• You can access the table information related to the predicates and manage the
secondary indexes as shown:

Figure 14-48 List of Auxiliary Tables

You can perform the following actions:

– Click View predicates to view the predicates that are associated with an SPM table.

Figure 14-49 Viewing the Predicate Information for an SPM table

– Click View Indexes to view the secondary indexes that are associated with an SPM
table.

Chapter 14
Getting Started with RDF Graph Query UI

14-31

Figure 14-50 Viewing the Secondary Indexes

Optionally, you can also drop selected indexes.

– Click Create Index to create a secondary index on an SPM table.

Figure 14-51 Creating a Secondary Index

This dialog aims to build the index key string value which is used for creating a
unique index on an SPM table. This index key string value is built as per your
configurations in the preceding figure and is displayed as a read only value.
For instance:

* The order of the columns defines the index order during creation.

* The number of compressed columns is determined by the row order in the
table. If the value is one, then the column in the first row will be
compressed. Similarly, if the value is two, then two columns in the first two
rows will be compressed, and so on. A zero value indicates that there are
no columns for compression.

See Creating Secondary Indexes on SPM Auxiliary Tables for more
information on this key column.

Chapter 14
Getting Started with RDF Graph Query UI

14-32

– Click Drop table and confirm to drop an SPM table.

Figure 14-52 Dropping an SPM Table

14.3.2.11 Advanced Graph View
The RDF Graph Query UI supports an advanced graph view feature that allows users to
interact directly with the graph visualization. This is unlike the graph displayed on the RDF
model editor or public component where the graph view is just an output of the SPARQL
results on the paging table.

This section describes the advanced graph view component, starting from the execution of a
SPARQL CONSTRUCT or SPARQL DESCRIBE query to advanced interaction with the graph
visualization.

The main user interface (UI) elements of the advanced graph view component are as shown:

Figure 14-53 Advanced Graph View Components

The following describes the UI components seen in the preceding figure:

• SPARQL Query selector contains:

– A text area with the SPARQL query (must be SPARQL CONSTRUCT or SPARQL
DESCRIBE)

Chapter 14
Getting Started with RDF Graph Query UI

14-33

– A tree with the root classes summaries (counts of incoming and outgoing
predicates) resulting from the SPARQL query

• A graph view area that displays the graph with the RDF nodes and edges

To access the advanced graph view feature, right-click on the RDF model and select
Visualize as shown:

Figure 14-54 Visualize Menu

• Query Selector Panel

• Graph View

14.3.2.11.1 Query Selector Panel
To start using the advanced graph view feature, you must first execute a SPARQL
CONSTRUCT or SPARQL DESCRIBE query. The resulting query output is organized as
summaries (counts for incoming and outgoing predicates) for the root classes (in
general URI or blank node values).

The following figure shows a SPARQL CONSTRUCT query that produces two root
classes, owl:Class and lehigh:Person:

Figure 14-55 Query Selector

Chapter 14
Getting Started with RDF Graph Query UI

14-34

Each root class has its own summary of incoming and outgoing predicates. You can double
click on a root class to view the graph representation in the graph view panel.

It is highly recommended to define PREFIX expressions on the query to shorten the result
labels in the graph nodes. It also helps to consume less space for the graphic representation
of the nodes. Some well known RDF SPARQL prefixes (such as rdf, rdfs, owl, and others) are
automatically recognized and can be avoided in the query expression.

As seen in the preceding figure, you can double click the tree node to open the element as a
graph in the graph view. You can then interact directly with the graph in the graph view
without using the root tree nodes in the Query selector panel. This panel can be collapsed to
provide more space on the page for the graph view.

The following figure shows the owl:Class and lehigh:Person elements displayed in the
graph view.

Figure 14-56 Advanced Graph View

Note that in some cases the SPARQL query execution may generate several root classes.
However, it is not necessary to add all the root classes to a graph. This also helps to maintain
a clean and readable graph area.

14.3.2.11.2 Graph View
The graph view panel, where the graph is displayed, consists of the following components:

• A toolbar with the following options:

– Zoom Options: Includes zoom in, zoom out, fit all, and clear all actions. Additionally,
zoom in and out actions can be achieved with the mouse wheel. Drag to pan graph is
also available.

– Layout: A few built-in layouts (such as random, grid, circle, concentric, breadth first,
and cose).

– Spacing factor: A slider to adjust the spacing between nodes (useful for lengthy
edges).

– Expand limit: The maximum number of node entries that can be expanded for an
edge.

• A drawing area with the RDF nodes and edges.

Chapter 14
Getting Started with RDF Graph Query UI

14-35

You can interact with the edges and nodes of the graph displayed in the graph view
area. Initially, the graph displayed is based on the root class summaries (counts), but
you can always expand the elements.

To expand a node in the graph, click on the node and then select Expand. New node
elements with new edges linked to the selected node gets added to the graph. For
example, in the following figure, the node lehigh:Person is shown expanded:

Figure 14-57 Expanding a Node

Star nodes (magenta color) contain the values associated with the edge predicate. To
see these values, click on the node and select View Values:

Figure 14-58 Viewing Node Values

To expand the edge predicate summary, click on the edge and select Expand. Then
the star node associated with it will be divided into new nodes and edges in the graph.
However, if the expand limit value is lower than the summary count, then all the nodes
will not be expanded. For example:

Chapter 14
Getting Started with RDF Graph Query UI

14-36

Figure 14-59 Expanding an Edge Predicate

The following figure displays the output for a circular layout:

Figure 14-60 Circular Layout Graph

Chapter 14
Getting Started with RDF Graph Query UI

14-37

The following basic conventions apply to the graph displayed in the graph view:

• URI nodes are displayed in orange color with labels inside the ellipse shape.

• Blank nodes are displayed in green color with circle shape. Mousing over the
blank node shows its label value.

• Collapsed edges have the predicate with the count (if more than 1).

• Star nodes in magenta color and circle shape contain the values associated with
the collapsed edge.

• Literal nodes are displayed with different colors depending on its type. A string
literal is shown in cyan color with the label value. For long string values, the label
length is reduced and mousing over literal node shows the full label value. Literals
with datatype are displayed in different colors, and mousing over them shows the
datatype name.

14.3.2.12 Database Views from RDF Models
You can create relational views from RDF models. These views can represent a vertex
or an edge view of a graph.

SPARQL query patterns can be used as a declarative language for specifying how to
build vertex and edge views from RDF data.

It is important to note the following when creating the vertex and edge views from an
RDF model:

• The RDF model must have classes defined and the application uses a SPARQL
query to retrieve the distinct classes defined on an RDF model. For example:

SELECT DISTINCT ?o
WHERE { ?s a ?o } order by ?o

• One or more RDF classes can define a vertex view. A vertex view consists of:

– Database vertex view name

– Key attribute name

– Vertex properties from RDF class

• One or two vertex views can define an edge view. An edge view consists of:

– Database edge view name

– Source and destination vertex keys

– Label property from RDF classes

The following sections explain the steps to create a database graph view:

• Creating a Graph View

• Creating a Vertex View

• Creating an Edge View

14.3.2.12.1 Creating a Graph View
Perform the following steps to create a database graph view:

1. Right-click the RDF model to open the context menu as shown:

Chapter 14
Getting Started with RDF Graph Query UI

14-38

Figure 14-61 Create Graph View Option

2. Click Create Graph Views.

The application opens an editor with the available RDF classes populated from a
SPARQL query as shown:

Figure 14-62 RDF Classes

Note that the database graph views cannot be created if there are no RDF classes.

3. Add Vertex Views as required.

See Creating a Vertex View for more information.

4. Add Edge Views as required.

See Creating an Edge View for more information.

5. Review and verify the graph representation of the Database Views.

The following figure shows a sample graph representation:

Chapter 14
Getting Started with RDF Graph Query UI

14-39

Figure 14-63 Sample Graph Definition

6. Optionally, you can hover over a table row and click the action menu icon to
Remove, Edit, or Preview a specific vertex or an edge view.

Figure 14-64 Action Menu Options

7. Click Graph View to visualize the sample graph.

Note that in a graph view, each node represents a vertex view and the link
between nodes have an edge label. The following figure shows a sample graph
visualization containing two vertex views with key attributes movieId and entityId
which are linked by the actor edge label.

Figure 14-65 Graph Visualization for RDF Database Views

Chapter 14
Getting Started with RDF Graph Query UI

14-40

8. Click Create to create the RDF graph view in the database.

The Create Views dialog opens as shown:

Figure 14-66 Create Views

a. Optionally, switch ON the Overwrite option to replace any existing view definition.

b. Click Create.

The database graph view gets created.
The following figure shows the views that are created in the database for the sample
graph definition shown in step-5:

Figure 14-67 RDF Database Graph Views

Chapter 14
Getting Started with RDF Graph Query UI

14-41

14.3.2.12.2 Creating a Vertex View
Perform the following steps to create a vertex view:

1. Click Add in the Vertex Views panel shown in the following figure:

Figure 14-68 Creating a Vertex View

2. Configure the Vertex View Definition.

Provide the following parameter values to define the vertex view:

• Vertex view: Name of the vertex view. This will be used for querying the
vertex.

• Vertex key: Vertex key attribute.

• RDF classes: One or more RDF classes. When RDF classes are added, the
application retrieves the available properties for the class and lists them in the
dialog. You can choose the properties to be added to the view. The Vertex
Properties table has the following columns:

– Include: At least one property must be included

– Label: Property label

– Data type: Displays the property data type

– Nullable: At least one FALSE property must be included

* TRUE: Vertices with NULL (missing) values for the property will be
included.

* FALSE: Vertices with NULL (missing) values for the property will be
excluded.

The following figure shows two examples of vertex view definitions (movie and
actor entities):

Figure 14-69 Vertex View Definitions

Chapter 14
Getting Started with RDF Graph Query UI

14-42

14.3.2.12.3 Creating an Edge View
An edge view can be defined using one or two vertex views.
To create an edge view:

1. Click Add in the Edge Views panel shown in the following figure:

Figure 14-70 Edge Views

2. Configure the Edge View Definition.

Provide the following parameter values to define the edge view:

• Edge view: Name of the edge view. This will be used for querying the edge.

• Source Vertex key: Source vertex key attribute.

• Edge label: Edge label value.

• Destination Vertex key: Destination vertex key attribute.

In the following figure, the edge links the movie and actor entities:

Figure 14-71 Edge View Definition

14.3.3 Configuration Files for RDF Server and Client
The Graph Query UI application settings are determined by the JSON files that are included
in the RDF Server and Client installation.

• datasource.json: File with RDF data source definitions.

• general.json: General configuration parameters.

• proxy.json: Proxy server parameters.

• logging.json: Logging settings.

• seed.json: Master seed key value generated at first deployment of the application. This
is a unique value to be used for encrypting and decrypting passwords for Oracle data

Chapter 14
Getting Started with RDF Graph Query UI

14-43

sources defined with credentials. This is an important file, and losing it will not
allow you to encrypt or to decrypt passwords values.

On the server side, the directory WEB-INF/workspace is the default directory to store
configuration information, logs, and temporary files. The configuration files are stored
by default in WEB-INF/workspace/config.

Note:

If the RDF Graph Query application is deployed from an unexploded .war
file, and if no JVM parameter is defined for the workspace folder location,
then the default workspace location for the application is WEB-INF/
workspace. However, any updates to the configuration, log, and temp files
done by the application may be lost if the application is redeployed. Also,
wallet data source files and published dataset files can be lost.

To overcome this, you must start the application server, such as Weblogic or
Tomcat, with the JVM parameter oracle.rdf.workspace.dir set. For
example: =Doracle.rdf.workspace.dir=/rdf/server/workspace. The
workspace folder must exist on the file system. Otherwise, the workspace
folder defaults to WEB-INF/workspace.

It is recommended to have a backup of the workspace folder, in case of
redeploying the application on a different location. Copying the workspace
folder contents to the location of the JVM parameter, allows to restore all
configurations in new deployment.

• Data Sources JSON Configuration File

• General JSON configuration file

• Proxy JSON Configuration File

• Logging JSON Configuration File

14.3.3.1 Data Sources JSON Configuration File

The JSON file for data sources stores the general attributes of a data source, including
specific properties associated with data source.

The following example shows a data source JSON file with two data sources: one an
Oracle container data source defined on the application server, and the other an
external data source.

{
 "datasources" : [
 {
 "name" : "rdfuser193c",
 "type" : "DATABASE",
 "description" : "19.3 Oracle database",
 "properties" : {
 "jndiName" : "jdbc/RDFUSER193c"
 }
 },
 {

Chapter 14
Getting Started with RDF Graph Query UI

14-44

 "name" : "dbpedia",
 "type" : "ENDPOINT",
 "description" : "Dbpedia RDF data - Dbpedia.org",
 "properties" : {
 "baseUrl" : "http://dbpedia.org/sparql",
 "provider" : "Dbpedia"
 }
 }
]
}

14.3.3.2 General JSON configuration file
The general JSON configuration file stores information related to SPARQL queries, JBDC
parameters and upload parameters.

The JSON file includes the following parameters:

• Maximum SPARQL rows: Defines the limit of rows to be fetched for a SPARQL query. If
a query returns more than this limit, the fetching process is stopped.

• SPARQL Query Timeout: Defines the time in seconds to wait for a query to complete.

• Allow publishing: Flag to enable public data source selection for using with SPARQL
query endpoints.

• Publishing data source: The RDF data source to publish datasets.

• JDBC Fetch size: The fetch size parameter for JDBC queries.

• JDBC CLOB Prefetch size: Number of characters to be prefetched when retrieving large
object values.

• JDBC Batch size: The batch parameter for JDBC updates.

• Maximum file size to upload: The maximum file size to be uploaded into server.

• Maximum unzipped item size: The maximum size for an item in a zip file.

• Maximum unzipped total size: The size limit for all entries in a zip file.

• Maximum zip inflate multiplier: Maximum allowed multiplier when inflating files.

These parameters can be updated as shown in the following figures

Figure 14-72 General SPARQL Parameters

Chapter 14
Getting Started with RDF Graph Query UI

14-45

Figure 14-73 General JDBC Parameters

Figure 14-74 General File Upload Parameters

14.3.3.3 Proxy JSON Configuration File
The Proxy JSON configuration file contains proxy information for your enterprise
network.

Figure 14-75 Proxy JSON Configuration File

The file includes the following parameters:

• Use proxy: flag to define if proxy parameters should be used.

• Host: proxy host value.

Chapter 14
Getting Started with RDF Graph Query UI

14-46

• Port: proxy port value.

14.3.3.4 Logging JSON Configuration File
The Logging JSON configuration file contains the logging settings. You can specify the
logging level.

For Administrators and RDF users, it is also possible to load the logs for further analysis.

Figure 14-76 Logging JSON Configuration File

14.4 Accessibility
You can turned on or off the accessibility during the user session.

Figure 14-77 Disabled Accessibility

Chapter 14
Accessibility

14-47

Figure 14-78 Enabled Accessibility

When accessibility is turned on, the graph view of SPARQL queries is disabled.

Figure 14-79 Disabled Graph View

Chapter 14
Accessibility

14-48

Part III
Reference Information

Part III provides reference information about RDF Semantic Graph subprograms.

This part contains the following chapters with reference information. To understand the
examples in the reference chapters, you must understand the conceptual and data type
information in RDF Semantic Graph Overview and OWL Concepts.

• SEM_APIS Package Subprograms
The SEM_APIS package contains subprograms (functions and procedures) for working
with the Resource Description Framework (RDF) and Web Ontology Language (OWL) in
an Oracle database.

• SEM_OLS Package Subprograms
The SEM_OLS package contains subprograms (functions and procedures) related to
triple-level security to RDF data, using Oracle Label Security (OLS).

• SEM_PERF Package Subprograms
The SEM_PERF package contains subprograms for examining and enhancing the
performance of the Resource Description Framework (RDF) and Web Ontology
Language (OWL) support in an Oracle database.

• SEM_RDFCTX Package Subprograms
The SEM_RDFCTX package contains subprograms (functions and procedures) to
manage extractor policies and semantic indexes created for documents.

• SEM_RDFSA Package Subprograms
The SEM_RDFSA package contains subprograms (functions and procedures) for
providing fine-grained access control to RDF data using Oracle Label Security (OLS).

15
SEM_APIS Package Subprograms

The SEM_APIS package contains subprograms (functions and procedures) for working with
the Resource Description Framework (RDF) and Web Ontology Language (OWL) in an
Oracle database.

To use the subprograms in this chapter, you must understand the conceptual and usage
information in RDF Semantic Graph Overview and OWL Concepts .

This chapter provides reference information about the subprograms, listed in alphabetical
order.

• SEM_APIS.ADD_DATATYPE_INDEX

• SEM_APIS.ADD_SEM_INDEX

• SEM_APIS.ALTER_DATATYPE_INDEX

• SEM_APIS.ALTER_ENTAILMENT

• SEM_APIS.ALTER_MODEL

• SEM_APIS.ALTER_SEM_INDEX_ON_ENTAILMENT

• SEM_APIS.ALTER_SEM_INDEX_ON_MODEL

• SEM_APIS.ALTER_SEM_INDEXES

• SEM_APIS.ALTER_SPM_TAB

• SEM_APIS.ANALYZE_ENTAILMENT

• SEM_APIS.ANALYZE_MODEL

• SEM_APIS.APPEND_SEM_NETWORK_DATA

• SEM_APIS.BUILD_PG_RDFVIEW_INDEXES

• SEM_APIS.BUILD_SPM_TAB

• SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE

• SEM_APIS.CLEANUP_BNODES

• SEM_APIS.CLEANUP_FAILED

• SEM_APIS.COMPOSE_RDF_TERM

• SEM_APIS.CONVERT_TO_GML311_LITERAL

• SEM_APIS.CONVERT_TO_WKT_LITERAL

• SEM_APIS.CREATE_ENTAILMENT

• SEM_APIS.CREATE_INDEX_ON_SPM_TAB

• SEM_APIS.CREATE_MATERIALIZED_VIEW

• SEM_APIS.SEM_APIS.CREATE_MV_BITMAP_INDEX

• SEM_APIS.CREATE_PG_RDFVIEW

• SEM_APIS.CREATE_RDFVIEW_MODEL

15-1

• SEM_APIS.CREATE_RULEBASE

• SEM_APIS.CREATE_SEM_MODEL

• SEM_APIS.CREATE_SEM_NETWORK

• SEM_APIS.CREATE_SOURCE_EXTERNAL_TABLE

• SEM_APIS.CREATE_SPARQL_UPDATE_TABLES

• SEM_APIS.CREATE_VIRTUAL_MODEL

• SEM_APIS.DELETE_ENTAILMENT_STATS

• SEM_APIS.DELETE_MODEL_STATS

• SEM_APIS.DISABLE_CHANGE_TRACKING

• SEM_APIS.DISABLE_INC_INFERENCE

• SEM_APIS.DISABLE_INMEMORY

• SEM_APIS.DISABLE_INMEMORY_FOR_ENT

• SEM_APIS.DISABLE_INMEMORY_FOR_MODEL

• SEM_APIS.DISABLE_NETWORK_SHARING

• SEM_APIS.DROP_DATATYPE_INDEX

• SEM_APIS.DROP_ENTAILMENT

• SEM_APIS.SEM_APIS.DROP_MATERIALIZED_VIEW

• SEM_APIS.SEM_APIS.DROP_MV_BITMAP_INDEX

• SEM_APIS.DROP_PG_RDFVIEW

• SEM_APIS.DROP_PG_RDFVIEW_INDEXES

• SEM_APIS.DROP_RDFVIEW_MODEL

• SEM_APIS.DROP_RULEBASE

• SEM_APIS.DROP_SEM_INDEX

• SEM_APIS.DROP_SEM_MODEL

• SEM_APIS.DROP_SEM_NETWORK

• SEM_APIS.DROP_SPARQL_UPDATE_TABLES

• SEM_APIS.DROP_SPM_TAB

• SEM_APIS.DROP_USER_INFERENCE_OBJS

• SEM_APIS.DROP_VIRTUAL_MODEL

• SEM_APIS.ENABLE_CHANGE_TRACKING

• SEM_APIS.ENABLE_INC_INFERENCE

• SEM_APIS.ENABLE_INMEMORY

• SEM_APIS.ENABLE_INMEMORY_FOR_ENT

• SEM_APIS.ENABLE_INMEMORY_FOR_MODEL

• SEM_APIS.ENABLE_NETWORK_SHARING

• SEM_APIS.ESCAPE_CLOB_TERM

• SEM_APIS.ESCAPE_CLOB_VALUE

Chapter 15

15-2

• SEM_APIS.ESCAPE_RDF_TERM

• SEM_APIS.ESCAPE_RDF_VALUE

• SEM_APIS.EXPORT_ENTAILMENT_STATS

• SEM_APIS.EXPORT_MODEL_STATS

• SEM_APIS.EXPORT_RDFVIEW_MODEL

• SEM_APIS.GATHER_SPM_INFO

• SEM_APIS.GET_CHANGE_TRACKING_INFO

• SEM_APIS.GET_INC_INF_INFO

• SEM_APIS.GET_MODEL_ID

• SEM_APIS.GET_MODEL_NAME

• SEM_APIS.GET_TRIPLE_ID

• SEM_APIS.GETV$DATETIMETZVAL

• SEM_APIS.GETV$DATETZVAL

• SEM_APIS.GETV$GEOMETRYVAL

• SEM_APIS.GETV$NUMERICVAL

• SEM_APIS.GETV$STRINGVAL

• SEM_APIS.GETV$TIMETZVAL

• SEM_APIS.GRANT_MODEL_ACCESS_PRIV

• SEM_APIS.GRANT_MODEL_ACCESS_PRIVS

• SEM_APIS.GRANT_NETWORK_ACCESS_PRIVS

• SEM_APIS.GRANT_NETWORK_SHARING_PRIVS

• SEM_APIS.IMPORT_ENTAILMENT_STATS

• SEM_APIS.IMPORT_MODEL_STATS

• SEM_APIS.IS_TRIPLE

• SEM_APIS.LOAD_INTO_STAGING_TABLE

• SEM_APIS.LOOKUP_ENTAILMENT

• SEM_APIS.MERGE_MODELS

• SEM_APIS.MIGRATE_DATA_TO_CURRENT

• SEM_APIS.MIGRATE_DATA_TO_STORAGE_V2

• SEM_APIS.MOVE_SEM_NETWORK_DATA

• SEM_APIS.PRIVILEGE_ON_APP_TABLES

• SEM_APIS.PURGE_UNUSED_VALUES

• SEM_APIS.SEM_APIS.REFRESH_MATERIALIZED_VIEW

• SEM_APIS.REFRESH_SEM_NETWORK_INDEX_INFO

• SEM_APIS.REMOVE_DUPLICATES

• SEM_APIS.RENAME_ENTAILMENT

• SEM_APIS.RENAME_MODEL

Chapter 15

15-3

• SEM_APIS.RES2VID

• SEM_APIS.RESTORE_SEM_NETWORK_DATA

• SEM_APIS.REVOKE_MODEL_ACCESS_PRIV

• SEM_APIS.REVOKE_MODEL_ACCESS_PRIVS

• SEM_APIS.REVOKE_NETWORK_ACCESS_PRIVS

• SEM_APIS.REVOKE_NETWORK_SHARING_PRIVS

• SEM_APIS.SET_ENTAILMENT_STATS

• SEM_APIS.SET_MODEL_STATS

• SEM_APIS.SPARQL_TO_SQL

• SEM_APIS.SWAP_NAMES

• SEM_APIS.TRUNCATE_SEM_MODEL

• SEM_APIS.UNESCAPE_CLOB_TERM

• SEM_APIS.UNESCAPE_CLOB_VALUE

• SEM_APIS.UNESCAPE_RDF_TERM

• SEM_APIS.UNESCAPE_RDF_VALUE

• SEM_APIS.UPDATE_MODEL

• SEM_APIS.VALIDATE_ENTAILMENT

• SEM_APIS.VALIDATE_GEOMETRIES

• SEM_APIS.VALIDATE_MODEL

• SEM_APIS.VALUE_NAME_PREFIX

• SEM_APIS.VALUE_NAME_SUFFIX

15.1 SEM_APIS.ADD_DATATYPE_INDEX
Format

SEM_APIS.ADD_DATATYPE_INDEX(
 datatype IN VARCHAR2,
 tablespace_name IN VARCHAR2 DEFAULT NULL,
 parallel IN PLS_INTEGER DEFAULT NULL,
 online IN BOOLEAN DEFAULT FALSE,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Adds a data type index for the specified data type to a semantic network.

Parameters

datatype
URI of the data type to index.

Chapter 15
SEM_APIS.ADD_DATATYPE_INDEX

15-4

tablespace_name
Destination tablespace for the index.

parallel
Degree of parallelism to use when building the index.

online
TRUE allows DML operations affecting the index during creation of the index; FALSE (the
default) does not allow DML operations affecting the index during creation of the index.

options
String specifying options for index creation using the form OPTION_NAME=option_value.
Supported options associated with spatial index creation are SRID, TOLERANCE, and
DIMENSIONS. For materialized spatial index creation, use MATERIALIZE=T. Supported options
associated with text index creation are PREFIX_INDEX, PREFIX_MIN_LENGTH,
PREFIX_MAX_LENGTH, SUBSTRING_INDEX, PREDLIST, PREFIXES, and STRING_LITERALS_ONLY.
For function-based numeric or dateTime index creation, use FUNCTION=T. The option name
keywords are case sensitive and must be specified in uppercase.

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

You must have DBA privileges or be the network owner to call this procedure.

For more information about data type indexing, see Using Data Type Indexes.

For information about creating a like index, see the lightweight text search material in Full-
Text Search.

For information about creating a data type index on RDF spatial data, see Indexing Spatial
Data.

For information about semantic network types and options, see Semantic Networks.

Examples

The following example creates an index on xsd:string typed literals and plain literals in the
MY_TBS tablespace.

EXECUTE SEM_APIS.ADD_DATATYPE_INDEX('http://www.w3.org/2001/XMLSchema#string',
tablespace_name=>'MY_TBS', parallel=>4);

15.2 SEM_APIS.ADD_SEM_INDEX
Format

SEM_APIS.ADD_SEM_INDEX(
 index_code IN VARCHAR2,
 tablespace_name IN VARCHAR2 DEFAULT NULL,
 comoression_length IN NUMBER(38) DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Chapter 15
SEM_APIS.ADD_SEM_INDEX

15-5

Description

Creates a semantic network index that results in creation of a nonunique B-tree index
in UNUSABLE status for each of the existing models and entailments of the semantic
network.

Parameters

index_code
Index code string.

tablespace_name
Destination tablespace for the index.

compression_length

options

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

You must have DBA privileges to call this procedure.

For an explanation of semantic network indexes, see Using Semantic Network
Indexes.

For information about semantic network types and options, see Semantic Networks.

Examples

The following example creates a semantic network index with the index code string
CSPGM on the models and entailments of the semantic network.

EXECUTE SEM_APIS.ADD_SEM_INDEX('CSPGM');

15.3 SEM_APIS.ALTER_DATATYPE_INDEX
Format

SEM_APIS.ALTER_DATATYPE_INDEX(
 datatype IN VARCHAR2,
 command IN VARCHAR2,
 tablespace_name IN VARCHAR2 DEFAULT NULL,
 parallel IN PLS_INTEGER DEFAULT NULL,
 online IN BOOLEAN DEFAULT FALSE,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Alters a data type index.

Chapter 15
SEM_APIS.ALTER_DATATYPE_INDEX

15-6

Parameters

datatype
URI of the data type to index.

command
String specifying the command to be performed: REBUILD to rebuild the data type index, or
UNUSABLE to marks the data type index as unusable. The value for this parameter is not case-
sensitive.

tablespace_name
Destination tablespace for the index.

parallel
Degree of parallelism to use when rebuilding the index.

online
TRUE allows DML operations affecting the index during rebuilding of the index; FALSE (the
default) does not allow DML operations affecting the index during rebuilding of the index.

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

You must have DBA privileges to call this procedure.

For an explanation of data type indexes, see Using Data Type Indexes.

For information about semantic network types and options, see Semantic Networks.

Examples

The following example rebuilds the index on xsd:string typed literals and plain literals in the
MY_TBS tablespace.

EXECUTE SEM_APIS.ALTER_DATATYPE_INDEX('http://www.w3.org/2001/XMLSchema#string',
command=>'REBUILD', tablespace_name=>'MY_TBS', parallel=>4);

15.4 SEM_APIS.ALTER_ENTAILMENT
Format

SEM_APIS.ALTER_ENTAILMENT(
 entailment_name IN VARCHAR2,
 command IN VARCHAR2,
 tablespace_name IN VARCHAR2,
 parallel IN NUMBER(38) DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Chapter 15
SEM_APIS.ALTER_ENTAILMENT

15-7

Description

Alters an entailment (rules index). Currently, the only action supported is to move the
entailment to a specified tablespace.

Parameters

entailment_name
Name of the entailment.

command
Must be the string MOVE.

tablespace_name
Name of the destination tablespace.

parallel
Degree of parallelism to be associated with the operation. For more information about
parallel execution, see Oracle Database VLDB and Partitioning Guide.

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

For an explanation of entailments, see Entailments (Rules Indexes).

For information about semantic network types and options, see Semantic Networks.

Examples

The following example moves the entailment named rdfs_rix_family to the
tablespace named my_tbs.

EEXECUTE SEM_APIS.ALTER_ENTAILMENT('rdfs_rix_family', 'MOVE', 'my_tbs');

15.5 SEM_APIS.ALTER_MODEL
Format

SEM_APIS.ALTER_MODEL(
 model_name IN VARCHAR2,
 command IN VARCHAR2,
 tablespace_name IN VARCHAR2,
 parallel IN NUMBER(38) DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Alters a model. Currently, the only action supported is to move the model to a specified
tablespace.

Chapter 15
SEM_APIS.ALTER_MODEL

15-8

Parameters

model_name
Name of the model.

command
Must be the string MOVE.

tablespace_name
Name of the destination tablespace.

parallel
Degree of parallelism to be associated with the operation. For more information about
parallel execution, see Oracle Database VLDB and Partitioning Guide.

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

For an explanation of models, see Semantic Data Modeling and Semantic Data in the
Database.

For information about semantic network types and options, see Semantic Networks.

Examples

The following example moves the model named family to the tablespace named my_tbs.

EEXECUTE SEM_APIS.ALTER_MODEL('family', 'MOVE', 'my_tbs');

15.6 SEM_APIS.ALTER_SEM_INDEX_ON_ENTAILMENT
Format

SEM_APIS.ALTER_SEM_INDEX_ON_ENTAILMENT(
 entailment_name IN VARCHAR2,
 index_code IN VARCHAR2,
 command IN VARCHAR2,
 tablespace_name IN VARCHAR2 DEFAULT NULL,
 use_compression IN BOOLEAN DEFAULT NULL,
 parallel IN NUMBER(38) DEFAULT NULL,
 online IN BOOLEAN DEFAULT FALSE),
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Alters a semantic network index on an entailment.

Chapter 15
SEM_APIS.ALTER_SEM_INDEX_ON_ENTAILMENT

15-9

Parameters

entailment_name
Name of the entailment.

index_code
Index code string.

command
String value containing one of the following commands: REBUILD rebuilds the semantic
network index on the entailment, or UNUSABLE marks as unusable the semantic
network index on the entailment. The value for this parameter is not case-sensitive.

tablespace_name
Name of the destination tablespace for the rebuild operation.

use_compression
Specifies whether compression should be used when rebuilding the index.

parallel
Degree of parallelism to be associated with the operation. For more information about
parallel execution, see Oracle Database VLDB and Partitioning Guide.

online
TRUE allows DML operations affecting the index during the rebuilding of the index;
FALSE (the default) does not allow DML operations affecting the index during the
rebuilding of the index.

options
(Not currently used.)

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

For an explanation of semantic network indexes, see Using Semantic Network
Indexes.

For information about semantic network types and options, see Semantic Networks.

Examples

The following example rebuilds (and makes usable if it is unusable) the semantic
network index on the entailment named rdfs_rix_family.

EXECUTE SEM_APIS.ALTER_SEM_INDEX_ON_ENTAILMENT('rdfs_rix_family', 'pscm',
'rebuild');

Chapter 15
SEM_APIS.ALTER_SEM_INDEX_ON_ENTAILMENT

15-10

15.7 SEM_APIS.ALTER_SEM_INDEX_ON_MODEL
Format

SEM_APIS.ALTER_SEM_INDEX_ON_MODEL(
 model_name IN VARCHAR2,
 index_code IN VARCHAR2,
 command IN VARCHAR2,
 tablespace_name IN VARCHAR2 DEFAULT NULL,
 use_compression IN BOOLEAN DEFAULT NULL,
 parallel IN NUMBER(38) DEFAULT NULL,
 online IN BOOLEAN DEFAULT FALSE),
 options IN VARCHAR2 DEFAULT NULL),
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Alters a semantic network index on a model.

Parameters

model_name
Name of the model.

index_code
Index code string.

command
String value containing one of the following commands: REBUILD rebuilds the semantic
network index on the model, or UNUSABLE marks as unusable the semantic network index on
the model. The value for this parameter is not case-sensitive.

tablespace_name
Name of the destination tablespace for the rebuild operation.

use_compression
Specifies whether compression should be used when rebuilding the index.

parallel
Degree of parallelism to be associated with the operation. For more information about
parallel execution, see Oracle Database VLDB and Partitioning Guide.

online
TRUE allows DML operations affecting the index during the rebuilding of the index; FALSE (the
default) does not allow DML operations affecting the index during the rebuilding of the index.

options
(Not currently used.)

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Chapter 15
SEM_APIS.ALTER_SEM_INDEX_ON_MODEL

15-11

Usage Notes

For an explanation of semantic network indexes, see Using Semantic Network
Indexes.

For information about semantic network types and options, see Semantic Networks.

Examples

The following example rebuilds (and makes usable if it is unusable) the semantic
network index on the model named family.

EXECUTE SEM_APIS.ALTER_SEM_INDEX_ON_MODEL('family', 'pscm', 'rebuild');

15.8 SEM_APIS.ALTER_SEM_INDEXES
Format

SEM_APIS.ALTER_SEM_INDEXES(
 attr_name IN VARCHAR2,
 new_val IN VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Alters an attribute of all indexes on RDF_VALUE$ and RDF_LINK$ tables.

Parameters

attr_name
Attribute to be altered..

new_val
New value for the attribute.

options
(Not currently used.)

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

You must have DBA privileges to call this procedure.

Currently, the only attr_name value supported is VISIBILITY, and the only new_val
values supported are Y (visible indexes) and N (invisible indexes).

For an explanation of semantic network indexes, see Using Semantic Network
Indexes, including the subtopic about using invisible indexes.

For information about semantic network types and options, see Semantic Networks.

Chapter 15
SEM_APIS.ALTER_SEM_INDEXES

15-12

Examples

The following example makes all semantic network indexes invisible.

EXECUTE SEM_APIS.ALTER_SEM_INDEXES(‘VISIBILITY’, 'N');

15.9 SEM_APIS.ALTER_SPM_TAB
Format

SEM_APIS.ALTER_SPM_TAB (
 model_name IN VARCHAR2,
 pred_name IN VARCHAR2,
 command IN VARCHAR2,
 degree IN NUMBER DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN DBMS_ID DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Alters the presence or extent of presence of the columns corresponding to a predicate in a
given SPM table.

Parameters

model_name
Name of the RDF model.

pred_name
Name of the target predicate.

command
Determines the type of alteration.
The supported commands are:

• ADD_PREDICATE: Adds columns for the target predicate to an SPM table, where the target
predicate is found. Applies to SVP tables only and succeeds only if the target predicate
is single-valued in the given RDF model.

• DROP_PREDICATE: Drops columns for the target predicate from the SPM table, where the
target predicate is found. Note that this applies to SVP tables only.

• ADD_VALUE: Adds value columns for the target predicate to an SPM table, where the
target predicate is found.

• DROP_VALUE: Drops value columns for the target predicate from an SPM table, where the
target predicate is found.

degree
Degree of parallelism to use for alter index operation.

options
String specifying any of the options to use during the operation.
Supported options are:

Chapter 15
SEM_APIS.ALTER_SPM_TAB

15-13

• SVP_NAME=<name>: Locates the target SVP table.

• PCN_NAME=<name>: Locates the target PCN table.

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

Examples

The following example adds in-line lexical value for email:

 begin
 sem_apis.alter_spm_tab(
 model_name =>'m1',
 pred_name =>'<http://www.example.com#email>',
 command =>'ADD_VALUE',
 network_owner =>'RDFUSER',
 network_name =>'NET1'
);
 end;

15.10 SEM_APIS.ANALYZE_ENTAILMENT
Format

SEM_APIS.ANALYZE_ENTAILMENT(
 entailment_name IN VARCHAR2,
 estimate_percent IN NUMBER DEFAULT to_estimate_percent_type
(get_param('ESTIMATE_PERCENT')),
 method_opt IN VARCHAR2 DEFAULT get_param('METHOD_OPT'),
 degree IN NUMBER DEFAULT to_degree_type(get_param('DEGREE')),
 cascade IN BOOLEAN DEFAULT to_cascade_type(get_param('CASCADE')),
 no_invalidate IN BOOLEAN DEFAULT to_no_invalidate_type
(get_param('NO_INVALIDATE')),
 force IN BOOLEAN DEFAULT FALSE),
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Collects statistics for a specified entailment (rules index).

Parameters

entailment_name
Name of the entailment.

estimate_percent
Percentage of rows to estimate in the internal table partition containing information
about the entailment (NULL means compute). The valid range is [0.000001,100]. Use
the constant DBMS_STATS.AUTO_SAMPLE_SIZE to have Oracle determine the appropriate
sample size for good statistics. This is the usual default.

Chapter 15
SEM_APIS.ANALYZE_ENTAILMENT

15-14

method_opt
Accepts either of the following options, or both in combination, for the internal table partition
containing information about the entailment:

• FOR ALL [INDEXED | HIDDEN] COLUMNS [size_clause]
• FOR COLUMNS [size clause] column|attribute [size_clause] [,column|attribute

[size_clause]...]

size_clause is defined as size_clause := SIZE {integer | REPEAT | AUTO | SKEWONLY}
column is defined as column := column_name | (extension)

- integer : Number of histogram buckets. Must be in the range [1,254].
- REPEAT : Collects histograms only on the columns that already have histograms.
- AUTO : Oracle determines the columns to collect histograms based on data distribution
and the workload of the columns.
- SKEWONLY : Oracle determines the columns to collect histograms based on the data
distribution of the columns.
- column_name : name of a column
- extension: Can be either a column group in the format of (column_name, column_name
[, ...]) or an expression.

The usual default is FOR ALL COLUMNS SIZE AUTO.

degree
Degree of parallelism for the internal table partition containing information about the
entailment. The usual default for degree is NULL, which means use the table default value
specified by the DEGREE clause in the CREATE TABLE or ALTER TABLE statement. Use the
constant DBMS_STATS.DEFAULT_DEGREE to specify the default value based on the initialization
parameters. The AUTO_DEGREE value determines the degree of parallelism automatically. This
is either 1 (serial execution) or DEFAULT_DEGREE (the system default value based on number
of CPUs and initialization parameters) according to size of the object.

cascade
Gathers statistics on the indexes for the internal table partition containing information about
the entailment. Use the constant DBMS_STATS.AUTO_CASCADE to have Oracle determine
whether index statistics are to be collected or not. This is the usual default.

no_invalidate
Does not invalidate the dependent cursors if set to TRUE. The procedure invalidates the
dependent cursors immediately if set to FALSE. Use DBMS_STATS.AUTO_INVALIDATE. to have
Oracle decide when to invalidate dependent cursors. This is the usual default.

force
TRUE gathers statistics even if the entailment is locked; FALSE (the default) does not gather
statistics if the entailment is locked.

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

Index statistics collection can be parellelized except for cluster, domain, and join indexes.

Chapter 15
SEM_APIS.ANALYZE_ENTAILMENT

15-15

This procedure internally calls the DBMS_STATS.GATHER_TABLE_STATS
procedure, which collects statistics for the internal table partition that contains
information about the entailment. The DBMS_STATS.GATHER_TABLE_STATS
procedure is documented in Oracle Database PL/SQL Packages and Types
Reference.

See also Managing Statistics for Semantic Models and the Semantic Network.

For information about entailments, see Entailments (Rules Indexes).

For information about semantic network types and options, see Semantic Networks.

Examples

The following example collects statistics for the entailment named rdfs_rix_family.

EXECUTE SEM_APIS.ANALYZE_ENTAILMENT('rdfs_rix_family');

15.11 SEM_APIS.ANALYZE_MODEL
Format

SEM_APIS.ANALYZE_MODEL(
 model_name IN VARCHAR2,
 estimate_percent IN NUMBER DEFAULT to_estimate_percent_type
(get_param('ESTIMATE_PERCENT')),
 method_opt IN VARCHAR2 DEFAULT get_param('METHOD_OPT'),
 degree IN NUMBER DEFAULT to_degree_type(get_param('DEGREE')),
 cascade IN BOOLEAN DEFAULT to_cascade_type(get_param('CASCADE')),
 no_invalidate IN BOOLEAN DEFAULT to_no_invalidate_type
(get_param('NO_INVALIDATE')),
 force IN BOOLEAN DEFAULT FALSE),
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Collects optimizer statistics for a specified model.

Parameters

model_name
Name of the model.

estimate_percent
Percentage of rows to estimate in the internal table partition containing information
about the model (NULL means compute). The valid range is [0.000001,100]. Use the
constant DBMS_STATS.AUTO_SAMPLE_SIZE to have Oracle determine the appropriate
sample size for good statistics. This is the usual default.

method_opt
Accepts either of the following options, or both in combination, for the internal table
partition containing information about the model:

• FOR ALL [INDEXED | HIDDEN] COLUMNS [size_clause]

Chapter 15
SEM_APIS.ANALYZE_MODEL

15-16

• FOR COLUMNS [size clause] column|attribute [size_clause] [,column|attribute
[size_clause]...]

size_clause is defined as size_clause := SIZE {integer | REPEAT | AUTO | SKEWONLY}
column is defined as column := column_name | (extension)

- integer : Number of histogram buckets. Must be in the range [1,254].
- REPEAT : Collects histograms only on the columns that already have histograms.
- AUTO : Oracle determines the columns to collect histograms based on data distribution
and the workload of the columns.
- SKEWONLY : Oracle determines the columns to collect histograms based on the data
distribution of the columns.
- column_name : name of a column
- extension: Can be either a column group in the format of (column_name, column_name
[, ...]) or an expression.

The usual default is FOR ALL COLUMNS SIZE AUTO.

degree
Degree of parallelism for the internal table partition containing information about the model.
The usual default for degree is NULL, which means use the table default value specified by
the DEGREE clause in the CREATE TABLE or ALTER TABLE statement. Use the constant
DBMS_STATS.DEFAULT_DEGREE to specify the default value based on the initialization
parameters. The AUTO_DEGREE value determines the degree of parallelism automatically. This
is either 1 (serial execution) or DEFAULT_DEGREE (the system default value based on number
of CPUs and initialization parameters) according to size of the object.

cascade
Gathers statistics on the indexes for the internal table partition containing information about
the model. Use the constant DBMS_STATS.AUTO_CASCADE to have Oracle determine whether
index statistics are to be collected or not. This is the usual default.

no_invalidate
Does not invalidate the dependent cursors if set to TRUE. The procedure invalidates the
dependent cursors immediately if set to FALSE. Use DBMS_STATS.AUTO_INVALIDATE. to have
Oracle decide when to invalidate dependent cursors. This is the usual default.

force
TRUE gathers statistics even if the model is locked; FALSE (the default) does not gather
statistics if the model is locked.

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

Index statistics collection can be parellelized except for cluster, domain, and join indexes.

This procedure internally calls the DBMS_STATS.GATHER_TABLE_STATS procedure, which
collects optimizer statistics for the internal table partition that contains information about the
model. The DBMS_STATS.GATHER_TABLE_STATS procedure is documented in Oracle
Database PL/SQL Packages and Types Reference.

See also Managing Statistics for Semantic Models and the Semantic Network.

Chapter 15
SEM_APIS.ANALYZE_MODEL

15-17

For information about semantic network types and options, see Semantic Networks.

Examples

The following example collects statistics for the semantic model named family.

EXECUTE SEM_APIS.ANALYZE_MODEL('family');

15.12 SEM_APIS.APPEND_SEM_NETWORK_DATA
Format

SEM_APIS.APPEND_SEM_NETWORK_DATA(
 from_schema IN DBMS_ID,
 degree IN INTEGER DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Appends moved semantic network data from a staging schema into a semantic
network.

Parameters

from_schema
The staging schema that contains moved semantic network data to be appended.

degree
Degree of parallelism to use for any SQL insert or index building operations. The
default is no parallel execution.

options
String specifying any options to use during the append operation. Supported options
are:

• PURGE=T – drop all remaining semantic network data in the staging schema
after the append operation completes.

network_owner
Owner of the destination semantic network for the append operation. (See Table 1-1.)

network_name
Name of the destination semantic network for the append operation. (See Table 1-1.)

Usage Notes

Partition exchange operations rather than SQL INSERT statements are used to move
most of the data during the append operation, so the staging schema will no longer
contain complete semantic network data after the operation is complete.

You must have DBA privileges to call this procedure.

For more information and examples, see Moving, Restoring, and Appending a
Semantic Network.

For information about semantic network types and options, see Semantic Networks.

Chapter 15
SEM_APIS.APPEND_SEM_NETWORK_DATA

15-18

Examples

The following example appends a semantic network from the RDFEXPIMPU staging schema
into the MYNET semantic network owned by RDFADMIN.

EXECUTE
sem_apis.append_sem_network_data(from_schema=>'RDFEXPIMPU',network_owner=>'RDFADMIN',ne
twork_name=>'MYNET'):

15.13 SEM_APIS.BUILD_PG_RDFVIEW_INDEXES
Format

SEM_APIS.BUILD_PG_RDFVIEW_INDEXES(
 pg_name IN VARCHAR2,
 tsblespace_name IN VARCHAR2 DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

or

SEM_APIS.BUILD_PG_RDFVIEW_INDEXES(
 pg_name IN VARCHAR2,
 tsblespace_name IN VARCHAR2 DEFAULT NULL,
 pg_edge_kv_tab IN VARCHAR2,
 pg_node_kv_tab IN VARCHAR2,
 pg_edge_tab IN VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Creates a set of default indexes to speed up queries against property graph RDF views.

Parameters

pg_name
Name of the property graph to index.

tablespace_name
Destination tablespace for the indexes.

pg_edge_kv_tab
Name of the table storing edge properties

 pg_node_kv_tab
Name of the table storing node properties.

pg_edge_tab
Name of the table storing distinct edges.

options
String specifying options for index creation using the form OPTION_NAME=option_value.
Supported options are:

Chapter 15
SEM_APIS.BUILD_PG_RDFVIEW_INDEXES

15-19

• SUB_K=N, SUB_EL=N (use a substring of N characters for property key name or
edge label)

• GT_TABLE=T (assume a populated GT$ table)

• PARALLEL=N (use a degree of parallelism of N during index creation)

• SKIP_VAL_IDX=T (skip creation of indexes on vertex/edge property values)

• SKIP_FUNC_IDX=T (skip creation of function based indexes on edge start and
end vertex URIs)

• SUB_V_IDX=N (use a substring of N characters when indexing string-valued
vertex and edge properties)

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

Indexes should be created on the property graph tables for improved performance of
RDF view queries. You can create any number of index schemes on these tables, but
the SEM_APIS.BUILD_PG_RDFVIEW_INDEXES procedure is provided for
convenience.

Several indexes are created by default by the
SEM_APIS.BUILD_PG_RDFVIEW_INDEXES procedure. The following indexes are
used to look up vertex and edge properties based on property name and type:

create index g1$ntk on g1vt$(
 T
, substr(K,1,200))
compress local nologging;

create index g1$etk on g1ge$(
 T
, substr(k,1,200))
compress local nologging;

The following indexes are used for graph traversals. If you indicate that the G1LGT$
table is populated (by specifying options => ‘GT_TABLE=T’), these indexes will be
created on the G1GT$ table instead of on the G1GE$ table.

create index g1$lsd on g1ge$(
 substr(el,1,200)
, svid
, dvid
, eid)
compress local nologging;

create index g1$lds on g1ge$(
 substr(el,1,200)
, dvid
, svid
, eid)
compress local nologging;

Chapter 15
SEM_APIS.BUILD_PG_RDFVIEW_INDEXES

15-20

The following function-based are used for graph traversals based on vertex URIs. These
function-based indexes can be skipped with the 'SKIP_FUNC_IDX=T' option. If you indicate
that the G1LGT$ table is populated (by specifying options => ‘GT_TABLE=T’), these indexes
will be created on the G1GT$ table instead of on the G1GE$ table.

create index g1$lsd on g1ge$(
 substr(el,1,200)
, svid
, dvid
, eid)
compress local nologging;

create index g1$lds on g1ge$(
 substr(el,1,200)
, dvid
, svid
, eid)
compress local nologging;

The following function-based indexes are used to look up vertices and edges based on their
URIs.

create index g1$idf on g1ge$(
 '<http://xmlns.oracle.com/pg/edge/e'||TO_CHAR("EID")||'>')
compress local nologging;

create index g1$vid on g1vt$(
 '<http://xmlns.oracle.com/pg/vertex/v'||TO_CHAR("VID")||'>')
compress local nologging;

The following indexes are used to lookup vertices and edges based on their property values.
These indexes can be skipped with the 'SKIP_VAL_IDX=T' option..

-- varchar --
create index g1$nvt on g1vt$(
 substr(to_char(V),1,200)
, T
compress local nologging;

-- number --
create index g1$nnt on g1vt$(
 VN
, T
compress local nologging;

-- date --
create index g1$ndt on g1vt$(
 VT
, T
compress local nologging;

-- varchar --
create index g1$evt on g1ge$(
 substr(to_char(V),1,200)
, T
compress local nologging;

-- number --
create index g1$ent on g1ge$(
 VN
, T

Chapter 15
SEM_APIS.BUILD_PG_RDFVIEW_INDEXES

15-21

compress local nologging;

-- date --
create index g1$edt on g1ge$(
 VT
, T
compress local nologging;

For more information, see RDF Integration with Property Graph Data Stored in Oracle
Database.

For information about semantic network types and options, see Semantic Networks.

Examples

The following example builds indexes for the property graph G1 in tablespace
MY_TBS and skips creation of value indexes.

EXECUTE SEM_APIS.BUILD_PG_RDFVIEW_INDEXES('G1', 'MY_TBS', ' SKIP_VAL_IDX=T ');

The following example builds indexes for the property graph G1in tablespace MY_TBS
with property graph tables MY_EDGE_KV_TAB, MY_NODE_KV_TAB, and
MY_EDGE_TAB. In addition, a populated distinct edges table is specified.

EXECUTE SEM_APIS.BUILD_PG_RDFVIEW_INDEXES('G1', 'MY_TBS', 'MY_EDGE_KV_TAB',
'MY_NODE_KV_TAB', 'MY_EDGE_TAB', 'GT_TABLE=T');

15.14 SEM_APIS.BUILD_SPM_TAB
Format

SEM_APIS.BUILD_SPM_TAB (
 model_name IN VARCHAR2,
 pred_info_tabname IN DBMS_ID DEFAULT NULL,
 pred_name IN VARCHAR2 DEFAULT NULL,
 tablespace_name IN DBMS_ID DEFAULT NULL,
 degree IN NUMBER DEFAULT NULL,
 pred_info_owner IN DBMS_ID DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN DBMS_ID DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Creates an SPM table for the specified RDF model.

The type of SPM table can be SVP, MVP, or PCN depending upon values passed for
the pred_info_tabname, pred_name, and options parameters. More information on
these parameters are described in the following Parameters section.

Parameters

model_name
Name of the RDF model.

pred_info_tabname
Name of the table to use to get predicate information, when creating an SVP or a
PCN table. Otherwise, this value must be NULL.

Chapter 15
SEM_APIS.BUILD_SPM_TAB

15-22

pred_name
Name of the target predicate, when creating an MVP table. Otherwise, this value must be
NULL.

tablespace_name
Name of the target tablespace for the SPM table.

degree
Degree of parallelism to use for alter index operation.

pred_info_owner
Owner of the pred_info_tabname. If NULL, then the invoker is assumed to be the owner.

options
String specifying any options to use during the operation.
Supported options are:

• CREATE_ANYWAY=T: Drops the target SPM table is it exists.

• PCN_NAME=<name>: Generates the given name for the PCN table.

• SVP_NAME=<name>: Generates the given name for the SVP table, if the specified name is
not DEFAULT.

• INCLUDE_VALUE=T: Includes the lexical value columns, when creating an MVP table.

• INCLUDE_VALUE: Same as INCLUDE_VALUE=T.

• S_INDEX=F: Index on the START_NODE_ID column, will not be created for an MVP table.

• P_INDEX=F: Indexes on the individual predicate columns (that make up the predicate-
chain) will not be created.

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

• This operation has a DDL semantics.

• The invoker must be the owner of the RDF model or the RDF network or both.

• The network owner must have READ privilege on table specified by pred_info_tabname.

• When creating SVP and PCN tables, content of the INCLUDE column in each row (that
corresponds to a predicate) in pred_info_tabname determines whether the ID column
and optionally the VALUE columns corresponding to a predicate must be included in the
SPM table that is being created.
The following are all the possibilities regarding inclusion (and relative position) or
exclusion of columns for a predicate, based on INCLUDE column content:

– INCLUDE=N: excluded in SVP table.

– INCLUDE=NULL and max_cnt=1: included in SVP table.

– INCLUDE=V and max_cnt=1: included in SVP table along with value columns.

– INCLUDE=<positiveInteger>C or INCLUDE=<positiveInteger>CV: included in PCN
table, along with value columns if V is present. The specified<positiveInteger>

Chapter 15
SEM_APIS.BUILD_SPM_TAB

15-23

determines the relative ordering of columns for different predicates included in
the PCN table.

Examples

The following example creates a SVP table:

begin
 sem_apis.build_spm_tab(
 model_name => 'M1',
 pred_info_tabname => 'M1_PRED_INFO',
 pred_name => NULL,
 options => 'svp_name=fnm_lnm_hght ',
 degree => 2,
 network_owner => 'RDFUSER',
 network_name => 'NET1'
);
end;

The following example creates a PCN table:

begin
 sem_apis.build_spm_tab(
 model_name => 'M1',
 pred_info_tabname => 'M1_PRED_INFO',
 pred_name => NULL,
 options => ' pcn_name=addr_state ',
 degree => 2,
 network_owner => 'RDFUSER',
 network_name => 'NET1'
);
end;

The following example creates a MVP table:

begin
 sem_apis.build_spm_tab(
 model_name => 'M1',
 pred_info_tabname => NULL,
 pred_name => '<http://www.example.com#friendOf>',
 options => ' mvp_pred_id=6549504896746291108 ',,
 degree => 2,
 network_owner => 'RDFUSER',
 network_name => 'NET1'
);
end;

15.15 SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE
Format

SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE(
 model_name IN VARCHAR2,
 table_owner IN VARCHAR2,
 table_name IN VARCHAR2,
 flags IN VARCHAR2 DEFAULT NULL,
 debug IN INTEGER DEFAULT NULL,

Chapter 15
SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE

15-24

 start_comment IN VARCHAR2 DEFAULT NULL,
 end_comment IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Loads semantic data from a staging table.

Parameters

model_name
Name of the model.

table_owner
Name of the schema that owns the staging table that holds semantic data to be loaded.

table_name
Name of the staging table that holds semantic data to be loaded.

flags
An optional quoted string with one or more of the following keyword specifications:

• COMPRESS=CSCQH uses COLUMN STORE COMPRESS FOR QUERY HIGH on the
RDF_LINK$ partition for the model.

• COMPRESS=CSCQL uses COLUMN STORE COMPRESS FOR QUERY LOW on the
RDF_LINK$ partition for the model.

• COMPRESS=RSCA uses ROW STORE COMPRESS ADVANCED on the RDF_LINK$
partition for the model.

• COMPRESS=RSCAB uses ROW STORE COMPRESS BASIC on the RDF_LINK$
partition for the model.

• DEL_BATCH_DUPS=USE_INSERT allows the use of an insertion-based strategy for duplicate
elimination that may lead to faster processing if the input data contains many duplicates.

• MBV_METHOD=SHADOW allows the use of a different value loading strategy that may lead to
faster processing for large loads.

• PARALLEL_CREATE_INDEX allows internal indexes to be created in parallel, which may
improve the performance of the bulk load processing.

• PARALLEL=<integer> allows much of the processing used during bulk load to be done in
parallel using the specified degree of parallelism to be associated with the operation.

• PARSE allows parsing of triples retrieved from the staging table (also parses triples
containing graph names).

• <task>_JOIN_HINT=<join_type>, where <task> can be any of the following internal tasks
performed during bulk load: IZC (is zero collisions), MBV (merge batch values), or MBT
(merge batch triples, used when adding triples to a non-empty model), and where
<join_type> can be USE_NL and USE_HASH.

debug
(Reserved for future use)

start_comment
Optional comment about the start of the load operation.

Chapter 15
SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE

15-25

end_comment
Optional comment about the end of the load operation.

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

You must first load semantic data into a staging table before calling this procedure.
See Bulk Loading Semantic Data Using a Staging Table for more information.

Using BULK_LOAD_FROM_STAGING_TABLE with Fine Grained Access Control
(OLS)

When fine-grained access control (explained in Fine-Grained Access Control for RDF
Data) is enabled for the entire network using OLS, only a user with FULL access
privileges to the associated policy may perform the bulk load operation. When OLS is
enabled, full access privileges to the OLS policy are granted using the
SA_USER_ADMIN.SET_USER_PRIVS procedure.

When the OLS is used, the label column in the tables storing the RDF triples must be
maintained. By default, with OLS enabled, the label column in the tables storing the
RDF triples is set to null. If you have FULL access, you can reset the labels for the
newly inserted triples as well as any resources introduced by the new batch of triples
by using appropriate subprograms (SEM_RDFSA.SET_RESOURCE_LABEL and
SEM_RDFSA.SET_PREDICATE_LABEL).

Optionally, you can define a numeric column named RDF$STC_CTXT1 in the staging
table and the application table, to assign the sensitivity label of the triple before the
data is loaded into the desired model. Such labels are automatically applied to the
corresponding triples stored in the RDF_LINK$ table. The labels for the newly
introduced resources may still have to be applied separately before or after the load,
and the system does not validate the labels assigned during bulk load operation.

The RDF$STC_CTXT1 column in the application table has no significance, and it may
be dropped after the bulk load operation.

By default, SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE uses the semantic
network compression setting (stored in RDF_PARAMETER table) for the model.

Examples

The following example loads semantic data stored in the staging table named
STAGE_TABLE in schema SCOTT into the semantic model named family. The
example includes some join hints.

EXECUTE SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE('family', 'scott', 'stage_table',
flags => 'IZC_JOIN_HINT=USE_HASH MBV_JOIN_HINT=USE_HASH');

15.16 SEM_APIS.CLEANUP_BNODES
Format

SEM_APIS.CLEANUP_BNODES(
 model_name IN VARCHAR2,

Chapter 15
SEM_APIS.CLEANUP_BNODES

15-26

 tablespace_name IN VARCHAR2 DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL);

Description

Corrects blank node identifiers for blank nodes in a specified model.

Parameters

model_name
Name of the model.

tablespace_name
Name of the tablespace to use for storing intermediate data.

options
String specifying one or more options to influence the behavior of the procedure. See the
Usage Notes for available option values.

Usage Notes

See Blank Nodes: Special Considerations for SPARQL Update.

The options parameter can contain one or more of the following keywords:

• APPEND: Uses the APPEND hint when populating tables during blank node correction.

• PARALLEL(n): Uses n as the degree of parallelism during blank node correction.

• RECOVER_FAILED=T: Include this option when a previous attempt to correct blank nodes
has been interrupted, and transient tables with intermediate data have not been deleted.

Examples

The following example corrects blank node identifiers for the electronics semantic model.

EXECUTE SEM_APIS.CLEANUP_BNODES('electronics');

15.17 SEM_APIS.CLEANUP_FAILED
Format

SEM_APIS.CLEANUP_FAILED(
 rdf_object_type IN VARCHAR2,
 rdf_object_name IN VARCHAR2),
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 default NULL);

Description

Drops (deletes) a specified rulebase or entailment if it is in a failed state.

Parameters

rdf_object_type
Type of the RDF object: RULEBASE for a rulebase or RULES_INDEX for an entailment (rules
index).

Chapter 15
SEM_APIS.CLEANUP_FAILED

15-27

rdf_object_name
Name of the RDF object of type rdf_object_type.

options
(Not currently used.)

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

This procedure checks to see if the specified RDF object is in a failed state; and if the
object is in a failed state, the procedure deletes the object.

A rulebase or entailment is in a failed state if a system failure occurred during the
creation of that object. You can check if a rulebase or entailment is in a failed state by
checking to see if the value of the STATUS column is FAILED in the
SDO_RULEBASE_INFO view (described in Inferencing: Rules and Rulebases) or the
SDO_RULES_INDEX_INFO view (described in Entailments (Rules Indexes)),
respectively.

If the rulebase or entailment is not in a failed state, this procedure performs no action
and returns a successful status.

An exception is generated if the RDF object is currently being used.

For information about semantic network types and options, see Semantic Networks.

Examples

The following example deletes the rulebase named family_rb if (and only if) that
rulebase is in a failed state.

EXECUTE SEM_APIS.CLEANUP_FAILED('RULEBASE', 'family_rb');

15.18 SEM_APIS.COMPOSE_RDF_TERM
Format

SEM_APIS.COMPOSE_RDF_TERM(
 value_name IN VARCHAR2,
 value_type IN VARCHAR2,
 literal_type IN VARCHAR2,
 language_type IN VARCHAR2
) RETURN VARCHAR2;

or

SEM_APIS.COMPOSE_RDF_TERM(
 value_name IN VARCHAR2,
 value_type IN VARCHAR2,
 literal_type IN VARCHAR2,
 language_type IN VARCHAR2,
 long_value IN CLOB,
 options IN VARCHAR2 DEFAULT NULL,
) RETURN CLOB;

Chapter 15
SEM_APIS.COMPOSE_RDF_TERM

15-28

Description

Creates and returns an RDF term using the specified parameters.

Parameters

value_name
Value name. Must match a value in the VALUE_NAME column in the RDF_VALUE$ table
(described in Statements) or in the var attribute returned from SEM_MATCH table function.

value_type
The type of text information. Must match a value in the VALUE_TYPE column in the
RDF_VALUE$ table (described in Statements) or in the var$RDFVTYP attribute returned
from SEM_MATCH table function.

literal_type
For typed literals, the type information; otherwise, null. Must either be a null value or match a
value in the LITERAL_TYPE column in the RDF_VALUE$ table (described in Statements) or
in the var$RDFLTYP attribute returned from SEM_MATCH table function.

language_type
Language tag. Must match a value in the LANGUAGE_TYPE column in the RDF_VALUE$
table (described in Statements) or in the var$RDFLANG attribute returned from
SEM_MATCH table function.

long_value
The character string if the length of the lexical value is greater than 4000 bytes. Must match
a value in the LONG_VALUE column in the RDF_VALUE$ table (described in Statements) or
in the var$RDFCLOB attribute returned from SEM_MATCH table function.

options
(Reserved for future use.)

Usage Notes

If you specify an inconsistent combination of values for the parameters, this function returns a
null value. If a null value is returned but you believe that the values for the parameters are
appropriate (reflecting columns from the same row in the RDF_VALUE$ table or from a
SEM_MATCH query for the same variable), contact Oracle Support.

Examples

The following example returns, for each member of the family whose height is known, the
RDF term for the height and also just the value portion of the height.

SELECT x, SEM_APIS.COMPOSE_RDF_TERM(h, h$RDFVTYP, h$RDFLTYP, h$RDFLANG)
 h_rdf_term, h
 FROM TABLE(SEM_MATCH(
 '{?x :height ?h}',
 SEM_Models('family'),
 null,
 SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
 null))
ORDER BY x;
X
--
H_RDF_TERM
--

Chapter 15
SEM_APIS.COMPOSE_RDF_TERM

15-29

H
--
http://www.example.org/family/Cathy
"5.8"^^<http://www.w3.org/2001/XMLSchema#decimal>
5.8

http://www.example.org/family/Cindy
"6"^^<http://www.w3.org/2001/XMLSchema#decimal>
6

http://www.example.org/family/Jack
"6"^^<http://www.w3.org/2001/XMLSchema#decimal>
6

http://www.example.org/family/Tom
"5.75"^^<http://www.w3.org/2001/XMLSchema#decimal>
5.75

4 rows selected.

The following example returns the RDF terms for a few of the values stored in the
RDF_VALUE$ table.

SELECT SEM_APIS.COMPOSE_RDF_TERM(value_name, value_type, literal_type,
 language_type)
 FROM RDF_VALUE$ WHERE ROWNUM < 5;

SEM_APIS.COMPOSE_RDF_TERM(VALUE_NAME,VALUE_TYPE,LITERAL_TYPE,LANGUAGE_TYPE)
--
<http://www.w3.org/1999/02/22-rdf-syntax-ns#object>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#subject>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#Property>

15.19 SEM_APIS.CONVERT_TO_GML311_LITERAL
Format

SEM_APIS.CONVERT_TO_GML311_LITERAL(
 geom IN SDO_GEOMETRY,
 options IN VARCHAR2 default NULL
)RETURN CLOB;

Description

Serializes an SDO_GEOMETRY object into an ogc:gmlLiteral value.

Parameters

geom
SDO_GEOMETRY object to be serialized.

options
(Reserved for future use.)

Usage Notes

The procedure SDO_UTIL.TO_GML311GEOMETRY is used internally to create the
geometry literal with a certain spatial reference system URI.

Chapter 15
SEM_APIS.CONVERT_TO_GML311_LITERAL

15-30

For more information about geometry serialization, see SDO_UTIL.TO_GML311GEOMETRY.

Examples

The following example shows the use of this function for a geometry with SRID 8307 The
COLA_MARKETS table is the one from the simple example in Oracle Spatial Developer's
Guide.

INSERT INTO cola_markets VALUES(
 10,
 'cola_x',
 SDO_GEOMETRY(
 2003,
 8307, -- SRID
 NULL,
 SDO_ELEM_INFO_ARRAY(1,1003,3),
 SDO_ORDINATE_ARRAY(1,1, 6,13)
)
);
commit;

SELECT
sem_apis.convert_to_gml311_literal(shape) as gml1
FROM cola_markets;

"<gml:Polygon srsName=\"SDO:8307\" xmlns:gml=\"http://www.opengis.net/gml\"><gml
:exterior><gml:LinearRing><gml:posList srsDimension=\"2\">1.0 1.0 6.0 1.0 6.0 13.0 1.0
13.0 1.0 1.0 </gml:posList></gml:LinearRing></gml:exterior></gml:Polygon>
"^^<http://www.opengis.net/ont/geosparql#gmlLiteral>

15.20 SEM_APIS.CONVERT_TO_WKT_LITERAL
Format

SEM_APIS.CONVERT_TO_WKT_LITERAL(
 geom IN SDO_GEOMETRY,
 srid_prefix IN VARCHAR2 default NULL,
 options IN VARCHAR2 default NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 default NULL
)RETURN CLOB;

Description

Serializes an SDO_GEOMETRY object into an ogc:wktLiteral value.

Parameters

geom
SDO_GEOMETRY object to be serialized.

srid_prefix
Spatial reference system URI prefix that should be used in the ogc:wktLiteral instead of
the default. The resulting SRID URI will be of the form <srid_prefix/{srid}>.

options
String specifying options for transformation. Available options are:

Chapter 15
SEM_APIS.CONVERT_TO_WKT_LITERAL

15-31

• ORACLE_PREFIX=T. Generate SRID URIs of the form <http://
xmlns.oracle.com/rdf/geo/srid/{srid}>.

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

The procedure SDO_UTIL.TO_WKTGEOMETRY is used internally to create the
geometry literal with a certain spatial reference system URI.

Standard SRID URIs are used by default (<http://www.opengis.net/def/crs/
EPSG/0/{srid}> or (<http://www.opengis.net/def/crs/OGC/1.3/CRS84>>).

For more information about geometry serialization, see
SDO_UTIL.TO_WKTGEOMETRY.

For information about semantic network types and options, see Semantic Networks.

Examples

The following example shows three different uses of this function for a geometry with
SRID 8307. The COLA_MARKETS table is the one from the simple example in Oracle
Spatial Developer's Guide.

INSERT INTO cola_markets VALUES(
 10,
 'cola_x',
 SDO_GEOMETRY(
 2003,
 8307, -- SRID
 NULL,
 SDO_ELEM_INFO_ARRAY(1,1003,3),
 SDO_ORDINATE_ARRAY(1,1, 6,13)
)
);
commit;

SELECT
sem_apis.convert_to_wkt_literal(shape) as wkt1,
sem_apis.convert_to_wkt_literal(shape,'http://my.org/') as wkt2,
sem_apis.convert_to_wkt_literal(shape,null,' ORACLE_PREFIX=T ') as wkt3
FROM cola_markets;

"<http://www.opengis.net/def/crs/OGC/1.3/CRS84> POLYGON ((1.0 1.0, 6.0 1.0, 6.0
13.0, 1.0 13.0, 1.0 1.0))"^^<http://www.opengis.net/ont/geosparql#wktLiteral>
"<http://my.org/8307> POLYGON ((1.0 1.0, 6.0 1.0, 6.0 13.0, 1.0 13.0, 1.0
1.0))"^^<http://www.opengis.net/ont/geosparql#wktLiteral>
"<http://xmlns.oracle.com/rdf/geo/srid/8307> POLYGON ((1.0 1.0, 6.0 1.0, 6.0
13.0, 1.0 13.0, 1.0 1.0))"^^<http://www.opengis.net/ont/geosparql#wktLiteral>

Chapter 15
SEM_APIS.CONVERT_TO_WKT_LITERAL

15-32

15.21 SEM_APIS.CREATE_ENTAILMENT
Format

SEM_APIS.CREATE_ENTAILMENT(
 index_name_in IN VARCHAR2,
 models_in IN SEM_MODELS,
 rulebases_in IN SEM_RULEBASES,
 passes IN NUMBER DEFAULT SEM_APIS.REACH_CLOSURE,
 inf_components_in IN VARCHAR2 DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL,
 delta_in IN SEM_MODELS DEFAULT NULL,
 label_gen IN RDFSA_LABELGEN DEFAULT NULL,
 include_named_g IN SEM_GRAPHS DEFAULT NULL,
 include_default_g IN SEM_MODELS DEFAULT NULL,
 include_all_g IN SEM_MODELS DEFAULT NULL,
 inf_ng_name IN VARCHAR2 DEFAULT NULL,
 inf_ext_user_func_name IN VARCHAR2 DEFAULT NULL,
 ols_ladder_inf_lbl_sec IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Creates an entailment (rules index) that can be used to perform OWL or RDFS inferencing,
and optionally use user-defined rules.

Parameters

index_name_in
Name of the entailment to be created.

models_in
One or more model names. Its data type is SEM_MODELS, which has the following
definition: TABLE OF VARCHAR2(25)

rulebases_in
One or more rulebase names. Its data type is SEM_RULEBASES, which has the following
definition: TABLE OF VARCHAR2(25). Rules and rulebases are explained in Inferencing: Rules
and Rulebases.

passes
The number of rounds that the inference engine should run. The default value is
SEM_APIS.REACH_CLOSURE, which means the inference engine will run till a closure is
reached. If the number of rounds specified is less than the number of actual rounds needed
to reach a closure, the status of the entailment will then be set to INCOMPLETE.

inf_components_in
A comma-delimited string of keywords representing inference components, for performing
selective or component-based inferencing. If this parameter is null, the default set of
inference components is used. See the Usage Notes for more information about inference
components.

Chapter 15
SEM_APIS.CREATE_ENTAILMENT

15-33

options
A comma-delimited string of options to control the inference process by overriding the
default inference behavior. To enable an option, specify option-name=T; to disable an
option, you can specify option-name=F (the default). The available option-name
values are COL_COMPRESS, DEST_MODEL, DISTANCE,DOP, ENTAIL_ANYWAY, HASH_PART,
INC, LOCAL_NG_INF, OPT_SAMEAS, RAW8, PROOF, and USER_RULES. See the Usage Notes
for explanations of each value.

delta_in
If incremental inference is in effect, specifies one or more models on which to perform
incremental inference. Its data type is SEM_MODELS, which has the following
definition: TABLE OF VARCHAR2(25)
The triples in the first model in delta_in are copied to the first model in models_in,
and the entailment (rules index) in rules_index_in is updated; then the triples in the
second model (if any) in delta_in are copied to the second model (if any) in
models_in, and the entailment in rules_index_in is updated; and so on until all
triples are copied and the entailment is updated. (The delta_in parameter has no
effect if incremental inference is not enabled for the entailment.)

label_gen
An instance of RDFSA_LABELGEN or a subtype of it, defining the logic for generating
Oracle Label Security (OLS) labels for inferred triples. What you specify for this
parameter depends on whether you use the default label generator or a custom label
generator:

• If you use the default label generator, specify one of the following constants:
SEM_RDFSA.LABELGEN_RULE for Use Rule Label, SEM_RDFSA.LABELGEN_SUBJECT for
Use Subject Label, SEM_RDFSA.LABELGEN_PREDICATE for Use Predicate Label,
SEM_RDFSA.LABELGEN_OBJECT for Use Object Label,
SEM_RDFSA.LABELGEN_DOMINATING for Use Dominating Label,
SEM_RDFSA.LABELGEN_ANTECED for Use Antecedent Labels.

• If you use a custom label generator, specify the custom label generator type.

include_named_g
Causes all triples from the specified named graphs (across all source models) to
participate in named graph based global inference (NGGI, explained in Named Graph
Based Global Inference (NGGI)). For example, include_named_g =>
sem_graphs('<urn:G1>','<urn:G2>') implies that triples from named graphs G1 and
G2 will be included in NGGI.
Its data type is SEM_GRAPHS, which has the following definition: TABLE OF
VARCHAR2(4000).

include_default_g
Causes all triples with a null graph name in the specified models to participate in
named graph based global inference (NGGI, explained in Named Graph Based
Global Inference (NGGI)). For example, include_default_g => sem_models('m1')
causes all triples with a null graph name from model M1 to be included in NGGI.

include_all_g
Causes all triples, regardless of their graph name values, in the specified models to
participate in named graph based global inference (NGGI, explained in Named Graph
Based Global Inference (NGGI)). For example, include_all_g =>
sem_models('m2')causes all triples in model M2 to be included in NGGI.

Chapter 15
SEM_APIS.CREATE_ENTAILMENT

15-34

inf_ng_name
Assigns the specified graph name to all the new triples inferred by the named graph based
global inference (NGGI, explained in Named Graph Based Global Inference (NGGI)).

inf_ext_user_func_name
The name of a user-defined inference function, or a comma-delimited list of names of user-
defined functions. For information about creating user-defined inference functions, including
format requirements and options for certain parameters, see API Support for User-Defined
Inferencing. (For information about user-defined inferencing, including examples, see User-
Defined Inferencing and Querying.)

ols_ladder_inf_lbl_sec

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

For the inf_components_in parameter, you can specify any combination of the following
keywords: SCOH, COMPH, DISJH, SYMMH, INVH, SPIH, MBRH, SPOH, DOMH, RANH, EQCH, EQPH, FPH,
IFPH, DOM, RAN, SCO, DISJ, COMP, INV, SPO, FP, IFP, SYMM, TRANS, DIF, SAM, CHAIN, HASKEY,
ONEOF, INTERSECT, INTERSECTSCOH, MBRLST, PROPDISJH, SKOSAXIOMS, SNOMED, SVFH, THINGH,
THINGSAM, UNION, RDFP1, RDFP2, RDFP3, RDFP4, RDFP6, RDFP7, RDFP8AX, RDFP8BX, RDFP9,
RDFP10, RDFP11, RDFP12A, RDFP12B, RDFP12C, RDFP13A, RDFP13B, RDFP13C, RDFP14A, RDFP14BX,
RDFP15, RDFP16, RDFS2, RDFS3, RDFS4a, RDFS4b, RDFS5, RDFS6, RDFS7, RDFS8, RDFS9, RDFS10,
RDFS11, RDFS12, RDFS13. For an explanation of the meaning of these keywords, see
Table 15-1, where the keywords are listed in alphabetical order.

The default set of inference components for the OWLPrime vocabulary includes the following:
SCOH, COMPH, DISJH, SYMMH, INVH, SPIH, SPOH, DOMH, RANH, EQCH, EQPH, FPH, IFPH, SAMH, DOM,
RAN, SCO, DISJ, COMP, INV, SPO, FP, IFP, SYMM, TRANS, DIF, RDFP14A, RDFP14BX, RDFP15, RDFP16.
However, note the following:

• Component SAM is not in this default OWLPrime list, because it tends to generate many
new triples for some ontologies.

• Effective with Release 11.2, the native OWL inference engine supports the following new
inference components: CHAIN, HASKEY, INTERSECT, INTERSECTSCOH, MBRLST, ONEOF,
PROPDISJH, SKOSAXIOMS, SNOMED, SVFH, THINGH, THINGSAM, UNION. However, for backward
compatibility, the OWLPrime rulebase and any existing rulebases do not include these
new components by default; instead, to use these new inference components, you must
specify them explicitly, and they are included in Table 15-1 The following example creates
an OWLPrime entailment for two OWL ontologies named LUBM and UNIV. Because of the
additional inference components specified, this entailment will include the new semantics
introduced in those inference components.

EXECUTE sem_apis.create_entailment('lubm1000_idx',sem_models('lubm','univ'),
 sem_rulebases('owlprime'), SEM_APIS.REACH_CLOSURE,
 'INTERSECT,INTERSECTSCOH,SVFH,THINGH,THINGSAM,UNION');

Chapter 15
SEM_APIS.CREATE_ENTAILMENT

15-35

Table 15-1 Inferencing Keywords for inf_components_in Parameter

Keyword Explanation

CHAIN Captures the property chain semantics defined in OWL 2. Only chains of
length 2 are supported. By default, this is included in the SKOSCORE
rulebase. Subproperty chaining is an OWL 2 feature, and for backward
compatibility this component is not by default included in the OWLPrime
rulebase. (For information about property chain handling, see Property
Chain Handling.) (New as of Release 11.2.)

COMPH Performs inference based on owl:complementOf assertions and the
interaction of owl:complementOf with other language constructs.

DIF Generates owl:differentFrom assertions based on the symmetricity of
owl:differentFrom.

DISJ Infers owl:differentFrom relationships at instance level using
owl:disjointWith assertions.

DISJH Performs inference based on owl:disjointWith assertions and their
interactions with other language constructs.

DOM Performs inference based on RDFS2.

DOMH Performs inference based on rdfs:domain assertions and their interactions
with other language constructs.

EQCH Performs inference that are relevant to owl:equivalentClass.

EQPH Performs inference that are relevant to owl:equivalentProperty.

FP Performs instance-level inference using instances of
owl:FunctionalProperty.

FPH Performs inference using instances of owl:FunctionalProperty.

HASKEY Covers the semantics behind "keys" defined in OWL 2. In OWL 2, a
collection of properties can be treated as a key to a class expression. For
efficiency, the size of the collection must not exceed 3. (New as of
Release 11.2.)

IFP Performs instance-level inference using instances of
owl:InverseFunctionalProperty.

IFPH Performs inference using instances of owl:InverseFunctionalProperty.

INTERSECT Handles the core semantics of owl:intersectionOf. For example, if class C
is the intersection of classes C1, C2 and C3, then C is a subclass of C1,
C2, and C3. In addition, common instances of all C1, C2, and C3 are also
instances of C. (New as of Release 11.2.)

INTERSECTSCOH Handles the fact that an intersection is the maximal common subset. For
example, if class C is the intersection of classes C1, C2, and C3, then any
common subclass of all C1, C2, and C3 is a subclass of C. (New as of
Release 11.2.)

INV Performs instance-level inference using owl:inverseOf assertions.

INVH Performs inference based on owl:inverseOf assertions and their
interactions with other language constructs.

MBRLST Captures the semantics that for any resource, every item in the list given
as the value of the skos:memberList property is also a value of the
skos:member property. (See S36 in the SKOS detailed specification.) By
default, this is included in the SKOSCORE rulebase. (New as of Release
11.2.)

Chapter 15
SEM_APIS.CREATE_ENTAILMENT

15-36

Table 15-1 (Cont.) Inferencing Keywords for inf_components_in Parameter

Keyword Explanation

ONEOF Generates classification assertions based on the definition of the
enumeration classes. In OWL, class extensions can be enumerated
explicitly with the owl:oneOf constructor. (New as of Release 11.2.)

PROPDISJH Captures the interaction between owl:propertyDisjointWith and
rdfs:subPropertyOf. By default, this is included in SKOSCORE
rulebase. propertyDisjointWith is an OWL 2 feature, and for backward
compatibility this component is not by default included in the OWLPrime
rulebase. (New as of Release 11.2.)

RANH Performs inference based on rdfs:range assertions and their
interactions with other language constructs.

RDFP* (The rules corresponding to components with a prefix of RDFP can be
found in Completeness, decidability and complexity of entailment for RDF
Schema and a semantic extension involving the OWL vocabulary, by H.J.
Horst.)

RDFS2, ...
RDFS13

RDFS2, RDFS3, RDFS4a, RDFS4b, RDFS5, RDFS6, RDFS7, RDFS8,
RDFS9, RDFS10, RDFS11, RDFS12, and RDFS13 are described in
Section 7.3 of RDF Semantics (http://www.w3.org/TR/rdf-mt/).
Note that many of the RDFS components are not relevant for OWL
inference.

SAM Performs inference about individuals based on existing assertions for
those individuals and owl:sameAs.

SAMH Infers owl:sameAs assertions using transitivity and symmetricity of
owl:sameAs.

SCO Performs inference based on RDFS9.

SCOH Generates the subClassOf hierarchy based on existing rdfs:subClassOf
assertions. Basically, C1 rdfs:subClassOf C2 and C2 rdfs:subClassOf C3
will infer C1 rdfs:subClassOf C3 based on transitivity. SCOH is also an
alias of RDFS11.

SKOSAXIOMS Captures most of the axioms defined in the SKOS detailed specification.
By default, this is included in the SKOSCORE rulebase. (New as of Release
11.2.)

SNOMED Performs inference based on the semantics of the OWL 2 EL profile,
which captures the expressiveness of SNOMED CT (Systematized
Nomenclature of Medicine - Clinical Terms), which is one of the most
expressive and complex medical terminologies. (New as of Release 11.2.)

SPIH Performs inference based on interactions between rdfs:subPropertyOf and
owl:inverseOf assertions.

SPO Performs inference based on RDFS7.

SPOH Generates rdfs:subPropertyOf hierarchy based on transitivity of
rdfs:subPropertyOf. It is an alias of RDFS5.

SVFH Handles the following semantics that involves the interaction between
owl:someValuesFrom and rdfs:subClassOf. Consider two existential
restriction classes C1 and C2 that both use the same restriction property.
Assume further that the owl:someValuesFrom constraint class for C1 is a
subclass of that for C2. Then C1 can be inferred as a subclass of C2.
(New as of Release 11.2.)

SYMM Performs instance-level inference using instances of
owl:SymmetricProperty.

Chapter 15
SEM_APIS.CREATE_ENTAILMENT

15-37

http://www.w3.org/TR/rdf-mt/

Table 15-1 (Cont.) Inferencing Keywords for inf_components_in Parameter

Keyword Explanation

SYMH Performs inference for properties of type owl:SymmetricProperty.

THINGH Handles the semantics that any defined OWL class is a subclass of
owl:Thing. The consequence of this rule is that instances of all defined
OWL classes will become instances of owl:Thing. The size of the inferred
graph will very likely be bigger with this component selected. (New as of
Release 11.2.)

THINGSAM Handles the semantics that instances of owl:Thing are equal to
(owl:sameAs) themselves. This component is provided for the
convenience of some applications. Note that an application does not have
to select this inference component to figure out an individual is equal to
itself; this kind of information can easily be built in the application logic.
(New as of Release 11.2.)

TRANS Calculates transitive closure for instances of owl:TransitiveProperty.

UNION Captures the core semantics of the owl:unionOf construct. Basically, the
union class is a superclass of all member classes. For backward
compatibility, this component is not by default included in the OWLPrime
rulebase. (New as of Release 11.2.)

To deselect a component, use the component name followed by a minus (-) sign. For
example, SCOH- deselects inference of the subClassOf hierarchy.

For the options parameter, you can enable the following options to override the
default inferencing behavior:

• COL_COMPRESS=T creates temporary, intermediate working tables. This option can
reduce the space required for such tables, and can improve the performance of
the CREATE_ENTAILMENT operation with large data sets.

By default COL_COMPRESS=T uses the "compress for query level low" setting;
however, you can add CPQH=T to change to the "compress for query level high"
setting.

Note:

You can specify COL_COMPRESS=T only on systems that support Hybrid
Columnar Compression (HCC). For information about HCC, see Oracle
Database Concepts.

• DEST_MODEL=<model_name> specifies, for incremental inference, the destination
model to which the delta_in model or models are to be added. The specified
destination model must be one of the models specified in the models_in
parameter.

• DISTANCE=T generates ancillary distance information that is useful for semantic
operators.

• DOP=n specifies the degree of parallelism for parallel inference, which can improve
inference performance. For information about parallel inference, see Using Parallel
Inference.

Chapter 15
SEM_APIS.CREATE_ENTAILMENT

15-38

• ENTAIL_ANYWAY=T forces OWL inferencing to proceed and reuse existing inferred data
(entailment) when the entailment has a valid status. By default,
SEM_APIS.CREATE_ENTAILMENT quits immediately if there is already a valid
entailment for the combination of models and rulebases.

• HASH_PART=n creates the specified number of hash partitions for internal working tables.
(The number must be a power of 2: 2, 4, 8, 16, 32, and so on.) You may want to specify a
value if there are many distinct predicates in the semantic data model. In Oracle internal
testing on benchmark ontologies, HASH_PART=32 worked well.

• INC=T enables incremental inference for the entailment. For information about
incremental inference, see Performing Incremental Inference.

• LOCAL_NG_INF=T causes named graph based local inference (NGLI) to be used instead of
named graph based global inference (NGGI). For information about NGLI, see Named
Graph Based Local Inference (NGLI).

• MODEL_PARTITIONS=n overrides the default number of subpartitions in a composite
partitioned semantic network and creates the specified number (n) of subpartitions in the
final entailment partition in RDF_LINK$.

• OPT_SAMEAS=T uses consolidated owl:sameAs entailment for the entailment. If you specify
this option, you cannot specify PROOF=T. For information about optimizing owl:sameAs
inference, see Optimizing owl:sameAs Inference.

• RAW8=T uses RAW8 data types for the auxiliary inference tables. This option can improve
entailment performance by up to 30% in some cases.

• PROOF=T generates proof for inferred triples. Do not specify this option unless you need
to; it slows inference performance because it causes more data to be generated. If you
specify this option, you cannot specify OPT_SAMEAS=T.

• USER_RULES=T causes any user-defined rules to be applied. If you specify this option, you
cannot specify PROOF=T or DISTANCE=T, and you must accept the default value for the
passes parameter.

For the delta_in parameter, inference performance is best if the value is small compared to
the overall size of those models. In a typical scenario, the best results might be achieved
when the delta contains fewer than 10,000 triples; however, some tests have shown
significant inference performance improvements with deltas as large as 100,000 triples.

For the label_gen parameter, if you want to use the default OLS label generator, specify the
appropriate SEM_RDFSA package constant value fromTable 15-2.

Table 15-2 SEM_RDFSA Package Constants for label_gen Parameter

Constant Description

SEM_RDFSA.LABELGEN_S
UBJECT

Label generator that applies the label associated with the inferred
triple's subject as the triple's label.

SEM_RDFSA.LABELGEN_P
REDICATE

Label generator that applies the label associated with the inferred
triple's subject as the triple's label.

SEM_RDFSA.LABELGEN_O
BJECT

Label generator that applies the label associated with the inferred
triple's subject as the triple's label.

SEM_RDFSA.LABELGEN_R
ULE

Label generator that applies the label associated with the rule that
directly produced the inferred triple as the triple's label. If you specify
this option, you must also specify PROOF=T in the options parameter.

Chapter 15
SEM_APIS.CREATE_ENTAILMENT

15-39

Table 15-2 (Cont.) SEM_RDFSA Package Constants for label_gen Parameter

Constant Description

SEM_RDFSA.LABELGEN_D
OMINATING

Label generator that computes a dominating label of all the available
labels for the triple's components (subject, predicate, object, and rule),
and applies it as the label for the inferred triple.

Fine-Grained Access Control (OLS) Considerations

When fine-grained access control is enabled for the entire network using OLS, only a
user with FULL access privileges to the associated policy may create an entailment.
When OLS is enabled, full access privileges to the OLS policy are granted using the
SA_USER_ADMIN.SET_USER_PRIVS procedure.

Inferred triples accessed through generated labels might not be same as conceptual
triples inferred directly from the user accessible triples and rules. The labels generated
using a subset of triple components may be weaker than intended. For example, one
of the antecedents for the inferred triple may have a higher label than any of the
components of the triple. When the label is generated based on just the triple
components, end users with no access to one of the antecedents may still have
access to the inferred triple. Even when the antecedents are used for custom label
generation, the generated label may be stronger than intended. The inference process
is not exhaustive, and information pertaining to any alternate ways of inferring the
same triple is not available. So, the label generated using a given set of antecedents
may be too strong, because the user with access to all the triples in the alternate path
could infer the triple with lower access.

Even when generating a label that dominates all its components and antecedents, the
label may not be precise. This is the case when labels considered for dominating
relationship have non-overlapping group information. For example, consider two labels
L:C:NY and L:C:NH where L is a level, C is a component and NY and NH are two
groups. A simple label that dominates these two labels is L:C:NY,NH, and a true
supremum for the two labels is L:C:US, where US is parent group for both NY and NH.
Unfortunately, neither of these two dominating labels is precise for the triple inferred
from the triples with first two labels. If L:C:NY,NH is used for the inferred triple, a user
with membership in either of these groups has access to the inferred triple, whereas
the same user does not have access to one of its antecedents. On the other hand, if
L:C:US is used for the inferred triple, a user with membership in both the groups and
not in the US group will not be able to access the inferred triple, whereas that user
could infer the triple by directly accessing its components and antecedents.

Because of these unique challenges with inferred triples, extra caution must be taken
when choosing or implementing the label generator.

See also the OLS example in the Examples section.

For information about semantic network types and options, see Semantic Networks.

Chapter 15
SEM_APIS.CREATE_ENTAILMENT

15-40

Note:

If the SEM_APIS.CREATE_ENTAILMENT procedure with OWL2RL reasoning takes a
long time to execute , then the create entailment procedure needs to be executed
with options as shown for the OWL2RL rulebase example in the Examples section.

Examples

The following example creates an entailment named OWLTST_IDX using the OWLPrime
rulebase, and it causes proof to be generated for inferred triples.

EXECUTE sem_apis.create_entailment('owltst_idx', sem_models('owltst'),
sem_rulebases('OWLPRIME'), SEM_APIS.REACH_CLOSURE, null, 'PROOF=T');

The following example assumes an OLS environment. It creates a rulebase with a rule, and it
creates an entailment.

-- Create an entailment with a rule. --
exec sdo_rdf_inference.create_entailment('contracts_rb');

insert into rdfr_contracts_rb values (
 'projectLedBy', '(?x :drivenBy ?y) (?y :hasVP ?z)', NULL,
 '(?x :isLedBy ?z)',
 SDO_RDF_Aliases(SDO_RDF_Alias('','http://www.myorg.com/pred/')));

-- Assign sensitivity label for the predicate to be inferred. --
-- Yhe predicate label may be set globally or it can be assign to --
-- the one or the models used to infer the data – e.g: CONTRACTS.
begin
 sem_rdfsa.set_predicate_label(
 model_name => 'rdf$global',
 predicate => 'http://www.myorg.com/pred/isLedBy',
 label_string => 'TS:US_SPCL');
end;
/

-- Create index with a specific label generator. --
begin
 sem_apis.create_entailment(
 index_name_in => 'contracts_inf',
 models_in => SDO_RDF_Models('contracts'),
 rulebases_in => SDO_RDF_Rulebases('contracts_rb'),
 options => 'USER_RULES=T',
 label_gen => sem_rdfsa.LABELGEN_PREDICATE);
end;
/

-- Check for any label exceptions and update them accordingly. --
update rdfi_contracts_inf set ctxt1 = 1100 where ctxt1 = -1;

-- The new entailment is now ready for use in SEM_MATCH queries. --

The following example shows the steps to overcome long execution time when creating
entailments with OWL2RL rulebase.

ALTER SESSION SET "_OPTIMIZER_GENERATE_TRANSITIVE_PRED"=FALSE;
EXECUTE SEM_APIS.CREATE_ENTAILMENT

Chapter 15
SEM_APIS.CREATE_ENTAILMENT

15-41

 ('m1_inf',SEM_MODELS('m1'),SEM_RULEBASES('OWL2RL'),NULL,NULL,
 'RAW8=T,DOP=8,HINTS=[rule:SCM-CLS,use_hash(m1),rule:SCM-OP-
DP,use_hash(m1)],PROCSVF=F,PROCAVF=F,PROCSCMHV=F,PROCSVFH=F,PROCAVFH=F,PROCDOM=F,
PROCRAN=F'
);

15.22 SEM_APIS.CREATE_INDEX_ON_SPM_TAB
Format

SEM_APIS.create_index_on_spm_tab (
 index_name IN VARCHAR2,
 model_name IN VARCHAR2,
 key_string IN VARCHAR2 DEFAULT NULL,
 pred_name IN VARCHAR2 DEFAULT NULL,
 tablespace_name IN DBMS_ID DEFAULT NULL,
 degree IN NUMBER DEFAULT NULL,
 prefixes IN VARCHAR2 DEFAULT NULL,
 prefix_length IN NUMBER DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN DBMS_ID DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Creates a unique or a nonunique B-tree index on Subject-Predicate Matrix table.

Parameters

index_name
Name of the index.

model_name
Source of the data used to build the index.

key_string
Index key is composed of subject ID, graph ID, and predicates and their
corresponding value components.
The following codes are used for representing index keys:

• G: graph ID

• S: subject ID

• VP: value prefix

• VS: value suffix

• VT: value type

• LT: literal type

• LA: language type

• VN: order number

• VD: order date

• ‘S’: can be used only once. If it is specified, a unique index is created. Otherwise,
a nonunique index is created.

Chapter 15
SEM_APIS.CREATE_INDEX_ON_SPM_TAB

15-42

• ‘+’: is used to represent the associated predicate. For example, in the following key
string ‘<p1> +G G+ <p2>,’, the first G is associated with <p1> whereas the second G is
associated with <p2>.

• ‘*’: is used to represent all corresponding IDs associated with all predicates. For
example, in the following key string ‘G* <p1> <p2>,’, the index key will have all graph
ID’s corresponding to <p1> and <p2>.

pred_name
Identifies an MVP table on which the index is built.

tablespace_name
Destination tablespace for the index.

degree
Degree of parallelism to use for create index operation.

prefixes
SPARQL preamble style string.
For example, ‘PREFIX bsbm: <http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/
vocabulary/> PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>‘

prefix_length
Number of columns to be compressed.

options
String specifying any options to use during the create index operation. Supported options
are:

• PCN_NAME= <name> - index is created on the named PCN table.

• SVP_NAME= <name> - index created on the named SVP table.

• CREATE_ANYWAY=T - the index is replaced.

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

Examples

The following example creates the index ‘idx1’ on model ‘berlin’.

EXECUTE sem_apis.create_index_on_spm_tab('idx1', 'berlin',
 'bsbm:productPropertyNumeric1 +G G+ bsbm:productPropertyNumeric2 S',
 prefixes=>' PREFIX bsbm: <http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/
vocabulary/>',
 network_owner=>'rdfuser', network_name=>'mynet');

15.23 SEM_APIS.CREATE_MATERIALIZED_VIEW
Format

SEM_APIS.CREATE_MATERIALIZED_VIEW (
 mv_name IN VARCHAR2,

Chapter 15
SEM_APIS.CREATE_MATERIALIZED_VIEW

15-43

 model_name IN VARCHAR2,
 compression IN BOOLEAN DEFAULT TRUE,
 inmemory IN BOOLEAN DEFAULT FALSE,
 values_as_vc IN BOOLEAN DEFAULT FALSE,
 refresh IN VARCHAR2 DEFAULT 'C',
 pred_list IN SYS.ODCIVARCHAR2LIST DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL,
);

Description

Creates a materialized view for an RDF graph stored in Oracle Database.

Parameters

mv_name
Name of the materialized view to create.

model_name
Name of the model on which to create the materialized view.

compression
Specifies whether the materialized view is compressed.

inmemory
Specifies whether the materialized view is created in IMC format.

values_as_vc
Specifies whether the values of G,S,P,O are created as virtual columns.

refresh
The materialized view refresh method.

pred_list
Specifies the predicates list.

options
String specifying any options to use during the create materialized view operation.
Supported options are:

• TABLESPACE= <name>: materialized view is created in the named tablespace.

• PARALLEL= <degree>: materialized view is created with the parallel degree
<degree>.

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

For conceptual and usage information, see RDF Support for Materialized Join Views.

For information about semantic network types and options, see Semantic Networks.

Chapter 15
SEM_APIS.CREATE_MATERIALIZED_VIEW

15-44

Examples

The following example creates the materialized view MVX for the RDF model M0.

EXECUTE SEM_APIS.CREATE_MATERIALIZED_VIEW('MVX', 'M0');

The following example creates the materialized view MVX for the RDF virtual model VM0.

EXECUTE SEM_APIS.CREATE_MATERIALIZED_VIEW('MVX', 'VM0');

The following example creates the materialized view MVY for the RDF model M1 using the
following supported options:

EXECUTE SEM_APIS.CREATE_MATERIALIZED_VIEW('MVY','M1',options=>'
TABLESPACE=TBS_3 PARALLEL=2 ');

The following example creates the materialized view MVX for the RDF model M0 using a list
of predicates.

EXECUTE SEM_APIS.CREATE_MATERIALIZED_VIEW('MVX','M0',
pred_list=>sys.odcivarchar2list('http://www.w3.org/2002/07/owl#sameAs',
'http://foo-example.com/name/hasSSN'));

15.24 SEM_APIS.SEM_APIS.CREATE_MV_BITMAP_INDEX
Format

SEM_APIS.CREATE_MV_BITMAP_INDEX (
 mv_name IN VARCHAR2,
 idx_columns IN VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL,
);

Description

Creates a bitmap index on a materialized join view for an RDF graph stored in Oracle
Database.

Parameters

mv_name
Name of the materialized view on which to create the bitmap index.

idx_columns
Name of the columns on which to create the bitmap index.

options
(Reserved for future use.)

Chapter 15
SEM_APIS.SEM_APIS.CREATE_MV_BITMAP_INDEX

15-45

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

For more information, see RDF Support for Materialized Join Views.

For information about semantic network types and options, see Semantic Networks.

Examples

The following example creates two bitmap indexes on columns T0P and T1O for the
materialized view MVX.

EXECUTE SEM_APIS.CREATE_MV_BITMAP_INDEX('MVX', 'T0P T1O');

The following example creates five bitmap indexes for the materialized view MVX..

EXECUTE SEM_APIS.CREATE_MV_BITMAP_INDEX('MVX', 'T0P T1O T0SV T1OV
T1P$RDFVTYP');

15.25 SEM_APIS.CREATE_PG_RDFVIEW
Format

SEM_APIS.CREATE_PG_RDFVIEW(
 model_name IN VARCHAR2,
 pg_name IN VARCHAR2,
 tsblespace_name IN VARCHAR2 DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

or

SEM_APIS.CREATE_PG_RDFVIEW(
 model_name IN VARCHAR2,
 pg_name IN VARCHAR2,
 tsblespace_name IN VARCHAR2 DEFAULT NULL,
 pg_stag_tab IN VARCHAR2,
 pg_edge_kv_tab IN VARCHAR2,
 pg_node_kv_tab IN VARCHAR2,
 pg_edge_tab IN VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 default NULL);

Description

Creates an RDF view model for a property graph stored in Oracle Database.

Chapter 15
SEM_APIS.CREATE_PG_RDFVIEW

15-46

Parameters

model_name
Name of the RDF view model to create.

pg_name
Name of the property graph for the RDF view.

tablespace_name
Destination tablespace for the RDF view model and the R2RML staging table.

pg_stag_tab
Name of the staging table. (See the Usage Notes for more information.)

pg_edge_kv_tab
Name of the table storing edge properties.

 pg_node_kv_tab
Name of the table storing node properties.

pg_edge_tab
Name of the table storing distinct edges.

options
String specifying options for index creation using the form OPTION_NAME=option_value.
Supported options are:

• SUB_K=N, SUB_EL=N (use a substring of N characters for property key name or edge
label)

• GT_TABLE=T (assume a populated GT$ table)

• RECREATE=T (re-create an existing property graph RDF view model)

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

This procedure has two formats. The first format has minimal input that uses default names
for the staging table and each table in the property graph schema, and that creates the
staging table automatically if it does not exist. The second format lets you specify custom
table names for the staging table and the property graph tables.

If you use the second format, the staging table must already exist. If the staging table is not
empty, you must specify the RECREATE=T option. (With the second format, if the staging table
is not empty and if you do not specify the RECREATE=T option, then an error is generated.)

For more information, see RDF Integration with Property Graph Data Stored in Oracle
Database.

For information about semantic network types and options, see Semantic Networks.

Chapter 15
SEM_APIS.CREATE_PG_RDFVIEW

15-47

Examples

The following example creates the RDF view M1 for the property graph G1 in
tablespace MY_TBS, and it specifies a populated distinct edges table.

EXECUTE SEM_APIS.CREATE_PG_RDFVIEW('M1', 'G1', 'MY_TBS', ' GT_TABLE=T ');

The following example creates the RDF view M1 for the property graph G1 in
tablespace MY_TBS with property graph tables MY_EDGE_KV_TAB,
MY_NODE_KV_TAB, and MY_EDGE_TAB. and staging table MY_STAB.

EXECUTE SEM_APIS.CREATE_PG_RDFVIEW('M1', 'G1', 'MY_TBS', 'MY_STAB',
'MY_EDGE_KV_TAB', 'MY_NODE_KV_TAB', 'MY_EDGE_TAB');

15.26 SEM_APIS.CREATE_RDFVIEW_MODEL
Format

SEM_APIS.CREATE_RDFVIEW_MODEL(
 model_name IN VARCHAR2,
 tables IN SYS.ODCIVarchar2List,
 prefix IN VARCHAR2 DEFAULT NULL,
 r2rml_table_owner IN VARCHAR2 DEFAULT NULL,
 r2rml_table_name IN VARCHAR2 DEFAULT NULL,
 schema_table_owner IN VARCHAR2 DEFAULT NULL,
 schema_table_name IN VARCHAR2 DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL,
 r2rml_string IN CLOB DEFAULT NULL,
 r2rml_string_fmt IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Creates an RDF view using direct mapping for the specified list of tables or views or
using R2RML mapping.

Parameters

model_name
Name of the RDF view to be created.

tables
List of tables or views that are the sources of relational data for the RDF view to be
created using direct mapping. This parameter must be null if you want to use R2RML
mapping.

prefix
Base prefix to be added at the beginning of the URIs in the RDF view.

r2rml_table_owner
For R2ML mapping, this parameter is required and specifies the name of the schema
that owns the staging table that holds the R2RML mapping (in N-triple format) to be
used for creating the RDF view.

Chapter 15
SEM_APIS.CREATE_RDFVIEW_MODEL

15-48

For direct mapping, this parameter is optional and specifies the name of the schema that
owns the staging table into which the R2RML mapping (in N-triple format) generated from
the direct mapping will be stored.

r2rml_table_name
For R2ML mapping, this parameter is required and specifies the name of the staging table
that holds the R2RML mapping (in N-triple format) to be used for creating the RDF view.
For direct mapping, this parameter is optional and specifies the name of the staging table
into which the R2RML mapping (in N-triple format) generated from the direct mapping will be
stored.

schema_table_owner
Name of the schema that owns the staging table where the RDF schema generated for the
RDF view will be stored.

schema_table_name
Name of the staging table where the RDF schema generated for the RDF view will be stored.

options
For direct mapping, you can optionally specify any combination (including none) of the
following:

• CONFORMANCE=T suppresses some of the information that would otherwise get included by
default, including use of database constraint names and schema-qualified table or view
names for constructing RDF predicate names.

• GENERATE_ONLY=T only generates the R2RML mapping for the specified tables and stores
it in the specified r2rml_table_name, but the underlying RDF view model is not created.
If you specify this option, the r2rml_table_name parameter must not be null.

• KEY_BASED_REF_PROPERTY=T uses the foreign key column names to construct the RDF
predicate name. If this option is not specified, then the database constraint name is used
for constructing the RDF predicate name.

For direct mapping, RDF predicate names are derived from the corresponding database
names; therefore, preserving the name for the foreign key constraint is the default
behavior.

For an example that uses KEY_BASED_REF_PROPERTY=T , see Example 10-1 in Creating
an RDF View with Direct Mapping.

• SCALAR_COLUMNS_ONLY=T generates the R2RML mapping for only the scalar columns in
the specified tables or views. Other non-scalar columns in the tables or views are
ignored. Without this option, if you attempt to create a direct mapping on a table with
user-defined types or LOB columns, an error is raised.

r2rml_string
An R2RML mapping string in Turtle or N-Triple format to be used for creating the RDF view.

r2rml_string_fmt
The format of the R2RML mapping string specified in r2rml_string. Possible values are
TURTLE and N-TRIPLE.

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Chapter 15
SEM_APIS.CREATE_RDFVIEW_MODEL

15-49

Usage Notes

You must grant the SELECT and INSERT privileges on r2rml_table_name and
schema_table_name to MDSYS.

For more information about RDF views, see RDF Views: Relational Data as RDF.

For information about semantic network types and options, see Semantic Networks.

Examples

The following example creates an RDF view using direct mapping for tables EMP and
DEPT. The prefix used for the URIs is http://empdb/.

BEGIN
 sem_apis.create_rdfview_model(
 model_name => 'empdb_model_direct',
 tables => sem_models('EMP', 'DEPT'),
 prefix => 'http://empdb/',
 network_owner=>'RDFUSER',
 network_name=>'NET1'
);
END;
/

The following example creates an RDF view using R2RML mapping as specified by
the RDF triples in the staging table SCOTT.R2RTAB.

BEGIN
 sem_apis.create_rdfview_model(
 model_name => 'empdb_model_R2RML',
 tables => NULL,
 r2rml_table_owner => 'SCOTT',
 r2rml_table_name => 'R2RTAB',
 network_owner=>'RDFUSER',
 network_name=>'NET1'
);
END;
/

The following example creates an RDF view using an R2RML mapping specified
directly as a string.

DECLARE
 r2rmlStr CLOB;
BEGIN

 r2rmlStr :=
 '@prefix rr: <http://www.w3.org/ns/r2rml#>. '||
 '@prefix xsd: <http://www.w3.org/2001/XMLSchema#>. '||
 '@prefix ex: <http://example.com/ns#>. '||'

 ex:TriplesMap_Emp
 rr:logicalTable [rr:tableName "EMP"];
 rr:subjectMap [
 rr:template "http://data.example.com/employee/{EMPNO}";
 rr:class ex:Employee;
];
 rr:predicateObjectMap [
 rr:predicate ex:empNum;

Chapter 15
SEM_APIS.CREATE_RDFVIEW_MODEL

15-50

 rr:objectMap [rr:column "EMPNO" ; rr:datatype xsd:integer];
];
 rr:predicateObjectMap [
 rr:predicate ex:empName;
 rr:objectMap [rr:column "ENAME"];
];
 rr:predicateObjectMap [
 rr:predicate ex:jobType;
 rr:objectMap [rr:column "JOB"];
];
 rr:predicateObjectMap [
 rr:predicate ex:worksForDeptNum;
 rr:objectMap [rr:column "DEPTNO" ; rr:dataType xsd:integer];
].';

 sem_apis.create_rdfview_model(
 model_name => 'empdb_model_R2RML',
 tables => NULL,
 r2rml_string => r2rmlStr,
 r2rml_string_fmt => 'TURTLE',
 network_owner=>'RDFUSER',
 network_name=>'NET1'
);

END;
/

The following example creates an RDF view using direct mapping as specified by the RDF
triples in the tables EMP and DEPT in the schema-private network owned by RDFUSER. It
also selects information about employees who work at the Boston location.

BEGIN
 sem_apis.create_rdfview_model(
 model_name => 'empdb_model',
 tables => SYS.ODCIVarchar2List('EMP', 'DEPT'),
 prefix => 'http://empdb/',
 options => 'KEY_BASED_REF_PROPERTY=T',
 network_owner=>'RDFUSER',
 network_name=>'NET1'
);
END;
/

SELECT e.empno FROM emp e, dept d WHERE e.deptno = d.deptno AND d.loc =
'Boston';

SELECT emp
FROM TABLE(SEM_MATCH('{?emp emp:ref-DEPTNO ?dept . ?dept dept:LOC
"Boston"}',SEM_Models('empdb_model'),NULL,SEM_ALIASES(
SEM_ALIAS('dept','http://empdb/RDFUSER.DEPT#'),SEM_ALIAS('emp','http://empdb/
RDFUSER.EMP#')),null,null,null,null,null,'RDF_USER','NET1'));

Chapter 15
SEM_APIS.CREATE_RDFVIEW_MODEL

15-51

15.27 SEM_APIS.CREATE_RULEBASE
Format

SEM_APIS.CREATE_RULEBASE(
 rulebase_name IN VARCHAR2),
 options IN VARCHAR2 DEFAULT NULL),
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Creates a rulebase.

Parameters

rulebase_name
Name of the rulebase.

options
(Not currently used.)

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

This procedure creates a user-defined rulebase. After creating the rulebase, you can
add rules to it. To cause the rules in the rulebase to be applied in a query of RDF data,
you can specify the rulebase in the call to the SEM_MATCH table function.

Rules and rulebases are explained in Inferencing: Rules and Rulebases. The
SEM_MATCH table function is described in Using the SEM_MATCH Table Function to
Query Semantic Data,

For information about semantic network types and options, see Semantic Networks.

Examples

The following example creates a rulebase named family_rb. (It is an excerpt from
Example 1-122 in Example: Family Information.)

EXECUTE SEM_APIS.CREATE_RULEBASE('family_rb');

15.28 SEM_APIS.CREATE_SEM_MODEL
Format

SEM_APIS.CREATE_SEM_MODEL(
 model_name IN VARCHAR2,
 table_name IN VARCHAR2,
 column_name IN VARCHAR2,
 model_tablespace IN VARCHAR2 DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL,

Chapter 15
SEM_APIS.CREATE_RULEBASE

15-52

 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Creates a semantic technology model.

Parameters

model_name
Name of the model.

table_name
Name of the table to hold references to semantic technology data for this model.
This parameter must be NULL for a schema-private network.

column_name
Name of the column of type SDO_RDF_TRIPLE_S in table_name.
This parameter must be NULL for a schema-private network.

model_tablespace
Name of the tablespace for the tables and other database objects used by Oracle to support
this model. The default value is the tablespace that was specified in the call to the
SEM_APIS.CREATE_SEM_NETWORK procedure.

options
An optional quoted string with one or more of the following model creation options:

• COMPRESS=CSCQH uses COLUMN STORE COMPRESS FOR QUERY HIGH on the
RDF_LINK$ partition for the model.

• COMPRESS=CSCQL uses COLUMN STORE COMPRESS FOR QUERY LOW on the
RDF_LINK$ partition for the model.

• COMPRESS=RSCA uses ROW STORE COMPRESS ADVANCED on the RDF_LINK$
partition for the model.

• COMPRESS=RSCB uses ROW STORE COMPRESS BASIC on the RDF_LINK$ partition for
the model.

• MODEL_PARTITIONS=n overrides the default number of subpartitions in a composite
partitioned semantic network and creates the specified number (n) of subpartitions in the
RDF_LINK$ partition for the model.

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

For an MDSYS-owned network, you must create the table to hold references to semantic
technology data before calling this procedure to create the semantic technology model.
However, this table creation step is not required when using a schema-private network. For
more information, see Quick Start for Using Semantic Data.

This procedure adds the model to the SEM_MODEL$ view, which is described in Metadata
for Models.

Chapter 15
SEM_APIS.CREATE_SEM_MODEL

15-53

This procedure is the only supported way to create a model. Do not use SQL INSERT
statements with the SEM_MODEL$ view.

To delete a model, use the SEM_APIS.DROP_SEM_MODEL procedure.

The options COMPRESS=CSCQH, COMPRESS=CSCQL, and COMPRESS=RSCA should be used
only if you have the appropriate licenses.

For information about semantic network types and options, see Semantic Networks.

Examples

The following example creates a semantic technology model named articles in the
schema-private network. (This example is an excerpt from Example 1-121 in Example:
Journal Article Information.)

EXECUTE SEM_APIS.CREATE_SEM_MODEL('articles', NULL, NULL,
network_owner=>'RDFUSER', network_name=>'NET1');

As part of this operation, a new updatable view, RDFUSER.NET1#RDFT_articles, gets
created automatically. You can use this view for any SQL DML statements affecting the
data. The following example uses the SDO_RDF_TRIPLE_S constructor to insert data
into the model:

INSERT INTO RDFUSER.NET1#RDFT_articles VALUES (
 SDO_RDF_TRIPLE_S ('articles','<http://nature.example.com/Article1>',
 '<http://purl.org/dc/elements/1.1/creator>',
 '"Jane Smith"',
 'RDFUSER',
 'NET1'));

15.29 SEM_APIS.CREATE_SEM_NETWORK
Format

SEM_APIS.CREATE_SEM_NETWORK(
 tablespace_name IN VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Creates structures for persistent storage of semantic data.

Parameters

tablespace_name
Name of the tablespace to be used for tables created by this procedure. This
tablespace will be the default for all models that you create, although you can override
the default when you create a model by specifying the model_tablespace parameter
in the call to the SEM_APIS.CREATE_SEM_MODEL procedure.

Chapter 15
SEM_APIS.CREATE_SEM_NETWORK

15-54

options
An optional quoted string with one or more of the following network creation options:

• COMPRESS=CSCQH uses COLUMN STORE COMPRESS FOR QUERY HIGH on the
RDF_LINK$ and RDF_VALUE$ tables.

• COMPRESS=CSCQL uses COLUMN STORE COMPRESS FOR QUERY LOW on the
RDF_LINK$ and RDF_VALUE$ tables.

• COMPRESS=RSCA uses ROW STORE COMPRESS ADVANCED on the RDF_LINK$ and
RDF_VALUE$ tables.

• COMPRESS=RSCB uses ROW STORE COMPRESS BASIC on the RDF_LINK$ and
RDF_VALUE$ tables. This is the default compression level.

• MODEL_PARTITIONING=BY_HASH_P uses list-hash composite partitioning to partition
RDF_LINK$ by model ID and further subpartition each model by a hash of the predicate
ID.

• MODEL_PARTITIONS=n sets the default number (n) of subpartitions to use for each model.
This option is used in conjunction with MODEL_PARTITIONING=BY_HASH_P.

• NETWORK_STORAGE_FORM=ESC specifies use of escaped storage form for lexical values in
RDF_VALUE$. Unicode characters and special characters will be stored using ASCII
escape sequences. (You cannot specify both the escaped and unescaped storage
forms.)

• NETWORK_STORAGE_FORM=UNESC specifies use of unescaped storage form for lexical
values in RDF_VALUE$. Unicode characters and special characters will be stored as
single characters. This is the default.

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

This procedure creates system tables and other database objects used for semantic
technology support.

You should create a tablespace for the semantic technology system tables and specify the
tablespace name in the call to this procedure. (You should not specify the SYSTEM
tablespace.) The size needed for the tablespace that you create will depend on the amount of
semantic technology data you plan to store.

You must connect to the database as a user with DBA privileges or as the intended network
owner in order to call this procedure, and you should call the procedure only once for the
database.

To drop these structures for persistent storage of semantic data, you must connect as a user
with DBA privileges or as the owner of the schema-private network, and call the
SEM_APIS.DROP_SEM_NETWORK procedure.

The options COMPRESS=CSCQH, COMPRESS=CSCQL, and COMPRESS=RSCA should be used only if
you have the appropriate licenses.

After the semantic network is created, a row in the RDF_PARAMETER table with
NAMESPACE = 'NETWORK' and ATTRIBUTE = 'COMPRESSION' will indicate the type of
compression used for the semantic network.

Chapter 15
SEM_APIS.CREATE_SEM_NETWORK

15-55

For information about semantic network types and options, see Semantic Networks.

Examples

The following example creates a tablespace for semantic technology system tables
and creates structures for persistent storage of semantic data in this tablespace.
Advanced compression is used for the semantic network.

CREATE TABLESPACE rdf_tblspace
 DATAFILE '/oradata/orcl/rdf_tblspace.dat' SIZE 1024M REUSE
 AUTOEXTEND ON NEXT 256M MAXSIZE UNLIMITED
 SEGMENT SPACE MANAGEMENT AUTO;
. . .
EXECUTE SEM_APIS.CREATE_SEM_NETWORK('rdf_tblspace',
options=>'MODEL_PARTITIONING=BY_HASH_P MODEL_PARTITIONS=16');

15.30 SEM_APIS.CREATE_SOURCE_EXTERNAL_TABLE
Format

SEM_APIS.CREATE_SOURCE_EXTERNAL_TABLE(
 source_table IN VARCHAR2,
 def_directory IN VARCHAR2,
 log_directory IN VARCHAR2 DEFAULT NULL,
 bad_directory IN VARCHAR2 DEFAULT NULL,
 log_file IN VARCHAR2 DEFAULT NULL,
 bad_file IN VARCHAR2 DEFAULT NULL,
 parallel IN INTEGER DEFAULT NULL,
 source_table_owner IN VARCHAR2 DEFAULT NULL,
 flags IN VARCHAR2 DEFAULT NULL);

Description

Creates an external table to map an N-Triple or N-Quad format file into a table.

Parameters

source_table
Name of the external table to be created.

def_directory
Database directory where the input files are located. To load from this staging table,
you must have READ privilege on this directory.

log_directory
Database directory where the log files will be generated when loading from the
external table. If not specified, the value of the def_directory parameter is used.
When loading from the external table, you must have WRITE privilege on this
directory.

bad_directory
Database directory where the bad files will be generated when loading from the
external table. If not specified, the value of the def_directory parameter is used.
When loading from the external table, you must have WRITE privilege on this
directory.

Chapter 15
SEM_APIS.CREATE_SOURCE_EXTERNAL_TABLE

15-56

log_file
Name of the log file. If not specified, the name will be generated automatically during a load
operation.

bad_file
Name of the bad file. If not specified, the name will be generated automatically during a load
operation.

parallel
Degree of parallelism to associate with the external table being created.

source_table_owner
Owner for the external table being created. If not specified, the invoker becomes the owner.

flags
(Reserved for future use)

Usage Notes

For more information and an example, see Loading N-Quad Format Data into a Staging Table
Using an External Table.

Examples

The following example creates a source external table. (This example is an excerpt from
Example 1-100 in Loading N-Quad Format Data into a Staging Table Using an External
Table.)

BEGIN
 sem_apis.create_source_external_table(
 source_table => 'stage_table_source'
 ,def_directory => 'DATA_DIR'
 ,bad_file => 'CLOBrows.bad'
);
END;

15.31 SEM_APIS.CREATE_SPARQL_UPDATE_TABLES
Format

SEM_APIS.CREATE_SPARQL_UPDATE_TABLES();

Description

Creates global temporary tables in the caller’s schema for use with SPARQL Update
operations.

Parameters

None.

Usage Notes

Invoking SEM_APIS.UPDATE_MODEL with STREAMING=F, FORCE_BULK=T, or DEL_AS_INS=T
option requires that the following temporary tables exist in the caller’s schema:

Chapter 15
SEM_APIS.CREATE_SPARQL_UPDATE_TABLES

15-57

RDF_UPD_DEL$, RDF_UPD_INS$, and RDF_UPD_INS_CLOB$. These tables are
created with the following definitions:

 CREATE GLOBAL TEMPORARY TABLE RDF_UPD_DEL$ (
 RDF$STC_GRAPH VARCHAR2(4000),
 RDF$STC_SUB VARCHAR2(4000),
 RDF$STC_PRED VARCHAR2(4000),
 RDF$STC_OBJ VARCHAR2(4000),
 RDF$STC_CLOB CLOB
) ON COMMIT PRESERVE ROWS';
 CREATE GLOBAL TEMPORARY TABLE RDF_UPD_INS$ (
 RDF$STC_GRAPH VARCHAR2(4000),
 RDF$STC_SUB VARCHAR2(4000),
 RDF$STC_PRED VARCHAR2(4000),
 RDF$STC_OBJ VARCHAR2(4000)
) ON COMMIT PRESERVE ROWS';
 CREATE GLOBAL TEMPORARY TABLE RDF_UPD_INS_CLOB$ (
 RDF$STC_GRAPH VARCHAR2(4000),
 RDF$STC_SUB VARCHAR2(4000),
 RDF$STC_PRED VARCHAR2(4000),
 RDF$STC_OBJ VARCHAR2(4000),
 RDF$STC_CLOB CLOB
) ON COMMIT PRESERVE ROWS';

If you need to drop these tables, use the
SEM_APIS.DROP_SPARQL_UPDATE_TABLES.

For more information, see Support for SPARQL Update Operations on a Semantic
Model.

Examples

The following example creates the necessary global temporary tables in the caller’s
schema for use with SPARQL Update operations.

EXECUTE SEM_APIS.CREATE_SPARQL_UPDATE_TABLES;

15.32 SEM_APIS.CREATE_VIRTUAL_MODEL
Format

SEM_APIS.CREATE_VIRTUAL_MODEL(
 vm_name IN VARCHAR2,
 models IN SEM_MODELS,
 rulebases IN SEM_RULEBASES DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL,
 entailments IN SEM_ENTAILMENTS DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Creates a virtual model containing the specified semantic models and/or entailments.
Entailments can be specified in one of the following ways:

Chapter 15
SEM_APIS.CREATE_VIRTUAL_MODEL

15-58

• By specifying one or more models and one or more rulebases. In this case, a virtual
model will be created using the single entailment that corresponds to the exact
combination of models and rulebases specified. An error is raised if no such entailment
exists.

• By specifying zero or more models and one or more entailments. In this case, the
contents of the models and entailments will be combined regardless of their relationship.

The first method ensures a sound and complete dataset, whereas the second method relaxes
the sound and complete constraints for more flexibility.

Parameters

vm_name
Name of the virtual model to be created.

models
One or more semantic model names. Its data type is SEM_MODELS, which has the
following definition: TABLE OF VARCHAR2(25). If this parameter is null, no models are included
in the virtual model definition.

rulebases
One or more rulebase names. Its data type is SEM_RULEBASES, which has the following
definition: TABLE OF VARCHAR2(25). If this parameter is null, no rulebases are included in the
virtual model definition. Rules and rulebases are explained in Inferencing: Rules and
Rulebases.
If you specify this parameter, you cannot also specify the entailments parameter.

options
Options for creation:

• PXN=T forces a UNION ALL-based view definition for the virtual model. This is the default
for virtual models with 16 or fewer components.

• PXN=F forces an IN LIST-based view definition for the virtual model. This is the default for
virtual models with more than 16 components.

• PXN=F INMEMORY=T (in combination) let you to create an in-memory virtual model.

If you specify INMEMORY=T but not PXN=F, then the in-memory virtual columns are created,
but the performance will suffer. If you do not specify INMEMORY=T, the virtual model is not
created in-memory. (See also Using In-Memory Virtual Columns with RDF.)

• REPLACE=T lets you to replace a virtual model without dropping it. (Using this option is
analogous to using CREATE OR REPLACE VIEW with a view.)

entailments
One or more entailment names. Its data type is SEM_ENTAILMENTS, which has the
following definition: TABLE OF VARCHAR2(25). If this parameter is null, no entailments are
included in the virtual model definition. Entailments are explained in Using OWL Inferencing.
If you specify this parameter, you cannot also specify the rulebases parameter.

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Chapter 15
SEM_APIS.CREATE_VIRTUAL_MODEL

15-59

Usage Notes

For an explanation of virtual models, including usage information, see Virtual Models.

An entailment must exist for each specified combination of semantic model and
rulebase.

To create a virtual model, you must either be (A) the owner of each specified model
and any corresponding entailments, or (B) a user with DBA privileges.

To replace a virtual model, you must be the owner of the virtual model or a user with
DBA privileges.

The option INMEMORY=T should be used only if you have the appropriate licenses.

This procedure creates views with names in the following format:

• SEMV_vm_name, which corresponds to a UNION ALL of the triples in each model
and entailment. This view may contain duplicates.

• SEMU_vm_name, which corresponds to a UNION of the triples in each model and
entailment. This view will not contain duplicates (thus, the U in SEMU indicates
unique).

To use the example in Virtual Models of a virtual model vm1 created from models m1,
m2, m3, and with an entailment created for m1, m2 ,and m3 using the OWLPrime
rulebase, this procedure will create the following two views (assuming that m1, m2,
and m3, and the OWLPRIME entailment have internal model_id values 1, 2, 3, 4):

CREATE VIEW MDSYS.SEMV_VM1 AS
 SELECT p_value_id, start_node_id, canon_end_node_id, end_node_id, g_id,
model_id
 FROM MDSYS.rdf_link$ partition (MODEL_1)
UNION ALL
 SELECT p_value_id, start_node_id, canon_end_node_id, end_node_id, g_id,
model_id
 FROM MDSYS.rdf_link$ partition (MODEL_2)
UNION ALL
 SELECT p_value_id, start_node_id, canon_end_node_id, end_node_id, g_id,
model_id
 FROM MDSYS.rdf_link$ partition (MODEL_3)
UNION ALL
 SELECT p_value_id, start_node_id, canon_end_node_id, end_node_id, g_id,
model_id
 FROM MDSYS.rdf_link$ partition (MODEL_4);

CREATE VIEW MDSYS.SEMU_VM1 AS
 SELECT p_value_id, start_node_id, canon_end_node_id, MIN(end_node_id)
end_node_id, g_id, MIN(model_id) model_id
 FROM MDSYS.rdf_link$
 WHERE model_id in (1, 2, 3, 4)
 GROUP BY p_value_id, start_node_id, canon_end_node_id, g_id;

The user that invokes this procedure will be the owner of the virtual model and will
have SELECT WITH GRANT privileges on the SEMU_vm_name and
SEMV_vm_name views. To query the corresponding virtual model, a user must have
select privileges on these views.

For information about semantic network types and options, see Semantic Networks.

Chapter 15
SEM_APIS.CREATE_VIRTUAL_MODEL

15-60

Examples

The following example creates a virtual model named VM1.

EXECUTE sem_apis.create_virtual_model('VM1', sem_models('model_1', 'model_2'),
sem_rulebases('OWLPRIME'));

The following example creates a virtual model named VM1 using the relaxed entailment
specification.

EXECUTE sem_apis.create_virtual_model('VM1', models=>sem_models('model_1', 'model_2'),
entailments=>sem_entailments('entailment1','entailment2'));

The following example effectively redefines virtual model VM1 by using the REPLACE=T option.

EXECUTE sem_apis.create_virtual_model('VM1', models=>sem_models('model_1', 'model_2'),
entailments=>sem_entailments('entailment1'), options=>'REPLACE=T');

15.33 SEM_APIS.DELETE_ENTAILMENT_STATS
Format

SEM_APIS.DELETE_ENTAILMENT_STATS (
 entailment_name IN VARCHAR2,
 cascade_parts IN BOOLEAN DEFAULT TRUE,
 cascade_columns IN BOOLEAN DEFAULT TRUE,
 cascade_indexes IN BOOLEAN DEFAULT TRUE,
 no_invalidate IN BOOLEAN DEFAULT DBMS_STATS.AUTO_INVALIDATE,
 force IN BOOLEAN DEFAULT FALSE,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Deletes statistics for a specified entailment.

Parameters

entailment_name
Name of the entailment.

(other parameters)
See the parameter explanations for the DBMS_STATS.DELETE_TABLE_STATS procedure
in Oracle Database PL/SQL Packages and Types Reference, although force here applies to
entailment statistics.

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

See the information about the DBMS_STATS package inOracle Database PL/SQL Packages
and Types Reference.

See also Managing Statistics for Semantic Models and the Semantic Network.

Chapter 15
SEM_APIS.DELETE_ENTAILMENT_STATS

15-61

For information about semantic network types and options, see Semantic Networks.

Examples

The following example deletes statistics for an entailment named OWLTST_IDX.

EXECUTE SEM_APIS.DELETE_ENTAILMENT_STATS('owltst_idx');

15.34 SEM_APIS.DELETE_MODEL_STATS
Format

SEM_APIS.DELETE_MODEL_STATS (
 model_name IN VARCHAR2,
 cascade_parts IN BOOLEAN DEFAULT TRUE,
 cascade_columns IN BOOLEAN DEFAULT TRUE,
 cascade_indexes IN BOOLEAN DEFAULT TRUE,
 no_invalidate IN BOOLEAN DEFAULT DBMS_STATS.AUTO_INVALIDATE,
 force IN BOOLEAN DEFAULT FALSE,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Deletes statistics for a specified model.

Parameters

model_name
Name of the model.

(other parameters)
See the parameter explanations for the DBMS_STATS.DELETE_TABLE_STATS
procedure in Oracle Database PL/SQL Packages and Types Reference, although
force here applies to model statistics.

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

Only the model owner or a users with DBA privileges can execute this procedure.

See the information about the DBMS_STATS package inOracle Database PL/SQL
Packages and Types Reference.

See also Managing Statistics for Semantic Models and the Semantic Network.

For information about semantic network types and options, see Semantic Networks.

Examples

The following example deletes statistics for a model named FAMILY.

EXECUTE SEM_APIS.DELETE_MODEL_STATS('family');

Chapter 15
SEM_APIS.DELETE_MODEL_STATS

15-62

15.35 SEM_APIS.DISABLE_CHANGE_TRACKING
Format

SEM_APIS.DISABLE_CHANGE_TRACKING(
 models_in IN SEM_MODELS,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Disables change tracking for a specified set of models.

Parameters

models_in
One or more model names. Its data type is SEM_MODELS, which has the following
definition: TABLE OF VARCHAR2(25)

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

Disabling change tracking on a model automatically disables incremental inference on all
entailment that use the model.

To use this procedure, you must be the owner of the specified model, and incremental
inference must have been previously enabled.

For an explanation of incremental inference, including usage information, see Performing
Incremental Inference.

For information about semantic network types and options, see Semantic Networks.

Examples

The following example disables change tracking for the family model.

EXECUTE sem_apis.disable_change_tracking(sem_models('family'));

15.36 SEM_APIS.DISABLE_INC_INFERENCE
Format

SEM_APIS.DISABLE_INC_INFERENCE(
 entailment_name IN VARCHAR2,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Disables incremental inference for a specified entailment (rules index).

Chapter 15
SEM_APIS.DISABLE_CHANGE_TRACKING

15-63

Parameters

entailment_name
Name of the entailment for which to disable incremental inference.

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

To use this procedure, you must be the owner of the specified entailment, and
incremental inference must have been previously enabled by the
SEM_APIS.ENABLE_INC_INFERENCE procedure.

Calling this procedure automatically disables change tracking for all models owned by
the invoking user that were having changes tracked only because of this particular
inference.

For an explanation of incremental inference, including usage information, see
Performing Incremental Inference.

For information about semantic network types and options, see Semantic Networks.

Examples

The following example enables incremental inference for the entailment named
RDFS_RIX_FAMILY.

EXECUTE sem_apis.disable_inc_inference('rdfs_rix_family');

15.37 SEM_APIS.DISABLE_INMEMORY
Format

SEM_APIS.DISABLE_INMEMORY(
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Disables in-memory population of RDF data in a semantic network.

Parameters

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

To use this procedure, you must have DBA privileges.

See the information in RDF Support for Oracle Database In-Memory.

Chapter 15
SEM_APIS.DISABLE_INMEMORY

15-64

For information about semantic network types and options, see Semantic Networks.

Examples

The following example disables in-memory population of RDF data in the semantic network.

EXECUTE SEM_APIS.DISABLE_INMEMORY;

15.38 SEM_APIS.DISABLE_INMEMORY_FOR_ENT
Format

SEM_APIS.DISABLE_INMEMORY_FOR_ENT(
 entailment_name IN VARCHAR2,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Disables in-memory population of RDF data for an entailment in a semantic network.

Parameters

entailment_name
Name of the entailment.

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

To use this procedure, you must have DBA privileges.

See the information in RDF Support for Oracle Database In-Memory.

For information about semantic network types and options, see Semantic Networks.

Examples

The following example disables in-memory population of RDF data for entailment RIDX1 in
the MDSYS-owned semantic network.

EXECUTE SEM_APIS.DISABLE_INMEMORY_FOR_ENT('RIDX1');

15.39 SEM_APIS.DISABLE_INMEMORY_FOR_MODEL
Format

SEM_APIS.DISABLE_INMEMORY_FOR_MODEL(
 model_name IN VARCHAR2,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Chapter 15
SEM_APIS.DISABLE_INMEMORY_FOR_ENT

15-65

Description

Disables in-memory population of RDF data for a model in a semantic network.

Parameters

model_name
Name of the model.

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

To use this procedure, you must have DBA privileges.

See the information in RDF Support for Oracle Database In-Memory.

For information about semantic network types and options, see Semantic Networks.

Examples

The following example enables in-memory population of RDF data for model M1 in the
MDSYS-owned semantic network.

EXECUTE SEM_APIS.DISABLE_INMEMORY_FOR_MODEL('M1');

15.40 SEM_APIS.DISABLE_NETWORK_SHARING
Format

SEM_APIS.DISABLE_NETWORK_SHARING(
 network_owner IN VARCHAR2,
 network_name IN VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL);

Description

Disables sharing of a semantic network.

Parameters

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

options
(Reserved for future use)

Usage Notes

To use this procedure, you must have DBA privileges or be the owner of the specified
network.

Chapter 15
SEM_APIS.DISABLE_NETWORK_SHARING

15-66

For information about semantic network types and options, see Semantic Networks.

Examples

The following example enables sharing of the mynetwork schema-private network owned by
database user scott.

EXECUTE SEM_APIS.DISABLE_NETWORK_SHARING('scott', 'mynetwork');

15.41 SEM_APIS.DROP_DATATYPE_INDEX
Format

SEM_APIS.DROP_DATATYPE_INDEX(
 datatype IN VARCHAR2,
 force_drop IN BOOLEAN default FALSE,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Drops (deletes) an existing data type index.

Parameters

datatype
URI of the data type for the index to drop.

force_drop
TRUE forces the index to be dropped if an error occurs during the processing of the
statement; FALSE (the default) does not drop the index if an error occurs during the
processing of the statement.

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

You must have DBA privileges to call this procedure.

For an explanation of data type indexes, see Using Data Type Indexes.

For information about semantic network types and options, see Semantic Networks.

Examples

The following example drops the data type index for xsd:string typed literals and plain
literals.

EXECUTE SEM_APIS.DROP_DATATYPE_INDEX('http://www.w3.org/2001/XMLSchema#string');

Chapter 15
SEM_APIS.DROP_DATATYPE_INDEX

15-67

15.42 SEM_APIS.DROP_ENTAILMENT
Format

SEM_APIS.DROP_ENTAILMENT(
 index_name_in IN VARCHAR2,
 named_g_in IN SEM_GRAPHS DEFAULT NULL,
 dop IN INT DEFAULT 1,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Drops (deletes) an entailment (rules index).

Parameters

index_name_in
Name of the entailment to be deleted.

named_g_in
Causes only the triples with the specified graph names in the entailment to be
deleted. A null value (the default) drops the entire entailment.
For example, named_g_in => sem_graphs('<urn:G1>','<urn:G2>') drops only the
triples in entailment with graph names G1 and G2; the rest of the entailment graph is
not dropped.

dop
Degree of parallelism for a parallel execution of triple deletion. Applies only if the
named_g_in parameter is not null.

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

You can use this procedure to delete an entailment that you created using the
SEM_APIS.CREATE_ENTAILMENT procedure.

If you drop only a subset of the entailment with specified named graphs (that is, when
named_g_in is not null) on an entailment with a VALID or INCOMPLETE status, then the
resulting status of the entailment after the drop is set to INCOMPLETE.

For information about semantic network types and options, see Semantic Networks.

Examples

The following example deletes a entailment named OWLTST_IDX.

EXECUTE sem_apis.drop_entailment('owltst_idx');

The following example deletes only inferred triples with graph names G1 and G2 that
belong to the entailment named OWLNG_IDX. Any inferred triples in the default graph
and other named graphs remain in the entailment.

Chapter 15
SEM_APIS.DROP_ENTAILMENT

15-68

EXECUTE sem_apis.drop_entailment('owlng_idx',sem_graphs('<urn:G1>','<urn:G2>'));

15.43 SEM_APIS.SEM_APIS.DROP_MATERIALIZED_VIEW
Format

SEM_APIS.DROP_MATERIALIZED_VIEW (
 mv_name IN VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL,
);

Description

Drops a materialized join view for an RDF graph stored in Oracle Database.

Parameters

mv_name
Name of the materialized view to drop.

options
(Reserved for future use.)

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

For more information, see RDF Support for Materialized Join Views.

For information about semantic network types and options, see Semantic Networks.

Examples

The following example drops the materialized view MVX.

EXECUTE SEM_APIS.DROP_MATERIALIZED_VIEW('MVX');

15.44 SEM_APIS.SEM_APIS.DROP_MV_BITMAP_INDEX
Format

SEM_APIS.DROP_MV_BITMAP_INDEX (
 mv_name IN VARCHAR2,
 idx_columns IN VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL,
);

Chapter 15
SEM_APIS.SEM_APIS.DROP_MATERIALIZED_VIEW

15-69

Description

Drops a bitmap index on a materialized join view for an RDF graph stored in Oracle
Database.

Parameters

mv_name
Name of the materialized view from which to drop the bitmap index.

idx_columns
Name of the columns on which to drop the bitmap index.

options
(Reserved for future use.)

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

For more information, see RDF Support for Materialized Join Views.

For information about semantic network types and options, see Semantic Networks.

Examples

The following example drops two bitmap indexes on columns T1O and T0SV for the
materialized view MVX.

EXECUTE SEM_APIS.DROP_MV_BITMAP_INDEX('MVX', 'T1O T0SV');

15.45 SEM_APIS.DROP_PG_RDFVIEW
Format

SEM_APIS.DROP_PG_RDFVIEW(
 model_name IN VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

or

SEM_APIS.DROP_PG_RDFVIEW(
 model_name IN VARCHAR2,
 pg_stag_tab IN VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Drops an RDF view model for a property graph stored in Oracle Database.

Chapter 15
SEM_APIS.DROP_PG_RDFVIEW

15-70

Parameters

model_name
Name of the RDF view model to drop.

pg_stag_tab
Name of the staging table. (See also the TRUNCATE=T option.)

options
String specifying options for index creation using the form OPTION_NAME=option_value.
Supported options are:

• TRUNCATE=T (truncate the staging table instead of dropping it)

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

For more information, see RDF Integration with Property Graph Data Stored in Oracle
Database.

For information about semantic network types and options, see Semantic Networks.

Examples

The following example drops the RDF view M1.

EXECUTE SEM_APIS.DROP_PG_RDFVIEW('M1');

The following example drops the RDF view with the staging table MY_STAB, and truncates
the staging table instead of dropping it.

EXECUTE SEM_APIS.DROP_PG_RDFVIEW('M1', 'MY_STAB', 'TRUNCATE_STAB=T');

15.46 SEM_APIS.DROP_PG_RDFVIEW_INDEXES
Format

SEM_APIS.DROP_PG_RDFVIEW_INDEXES(
 pg_name IN VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Drops indexes that were created using the SEM_APIS.BUILD_PG_RDFVIEW_INDEXES
procedure.

Parameters

pg_name
Name of the property graph to index.

Chapter 15
SEM_APIS.DROP_PG_RDFVIEW_INDEXES

15-71

options
(Reserved for future use.)

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

For more information, see RDF Integration with Property Graph Data Stored in Oracle
Database.

For information about semantic network types and options, see Semantic Networks.

Examples

The following example drops indexes for the property graph G1.

EXECUTE SEM_APIS.DROP_PG_RDFVIEW_INDEXES('G1');

15.47 SEM_APIS.DROP_RDFVIEW_MODEL
Format

SEM_APIS.DROP_RDFVIEW_MODEL(
 model_name IN VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Drops (deletes) an RDF view.

Parameters

model_name
Name of the RDF view to be dropped.

options
(Reserved for future use.)

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

You must be the owner of the RDF view to be dropped.

For more information about RDF views, see RDF Views: Relational Data as RDF.

For information about semantic network types and options, see Semantic Networks.

Chapter 15
SEM_APIS.DROP_RDFVIEW_MODEL

15-72

Examples

The following example drops an RDF view.

BEGIN
 sem_apis.drop_rdfview_model(
 model_name => 'empdb_model'
);
END;
/

15.48 SEM_APIS.DROP_RULEBASE
Format

SEM_APIS.DROP_RULEBASE(
 rulebase_name IN VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Deletes a rulebase.

Parameters

rulebase_name
Name of the rulebase.

options
(Reserved for future use.)

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

This procedure deletes the specified rulebase, making it no longer available for use in calls to
the SEM_MATCH table function. For information about rulebases, see Inferencing: Rules and
Rulebases.

Only the creator of a rulebase can delete the rulebase.

For information about semantic network types and options, see Semantic Networks.

Examples

The following example drops the rulebase named family_rb.

EXECUTE SEM_APIS.DROP_RULEBASE('family_rb');

Chapter 15
SEM_APIS.DROP_RULEBASE

15-73

15.49 SEM_APIS.DROP_SEM_INDEX
Format

SEM_APIS.DROP_SEM_INDEX(
 index_code IN VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Drops a semantic network index on the models and entailments of the semantic
network.

Parameters

index_code
Index code string. Must match the index_code value that was specified in an earlier
call to the SEM_APIS.ADD_SEM_INDEX procedure.

options
(Reserved for future use.)

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

For an explanation of semantic network indexes, see Using Semantic Network
Indexes.

For information about semantic network types and options, see Semantic Networks.

Examples

The following example drops a semantic network index with the index code string pcsm
on the models and entailments of the semantic network.

EXECUTE SEM_APIS.DROP_SEM_INDEX('pscm');

15.50 SEM_APIS.DROP_SEM_MODEL
Format

SEM_APIS.DROP_SEM_MODEL(
 model_name IN VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Chapter 15
SEM_APIS.DROP_SEM_INDEX

15-74

Description

Drops (deletes) a semantic technology model.

Parameters

model_name
Name of the model.

options
(Reserved for future use.)

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

This procedure deletes the model from the SEM_MODEL$ view, which is described in
Metadata for Models.

This procedure is the only supported way to delete a model. Do not use SQL DELETE
statements with the SEM_MODEL$ view.

Only the creator of a model can delete the model.

To truncate a model instead of deleting it, use the SEM_APIS.TRUNCATE_SEM_MODEL
procedure.

For information about semantic network types and options, see Semantic Networks.

Examples

The following example drops the semantic technology model named articles.

EXECUTE SEM_APIS.DROP_SEM_MODEL('articles');

15.51 SEM_APIS.DROP_SEM_NETWORK
Format

SEM_APIS.DROP_SEM_NETWORK(
 cascade IN BOOLEAN DEFAULT FALSE,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Removes structures used for persistent storage of semantic data.

Chapter 15
SEM_APIS.DROP_SEM_NETWORK

15-75

Parameters

cascade
TRUE drops any existing semantic technology models and rulebases, and removes
structures used for persistent storage of semantic data; FALSE (the default) causes the
operation to fail if any semantic technology models or rulebases exist.

options
(Reserved for future use.)

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

To remove structures used for persistent storage of semantic data, you must connect
as a user with DBA privileges or as the owner of the schema-private network, and call
this procedure.

If any version-enabled models exist, this procedure will fail regardless of the value of
the cascade parameter.

For information about semantic network types and options, see Semantic Networks.

Examples

The following example removes structures used for persistent storage of semantic
data.

EXECUTE SEM_APIS.DROP_SEM_NETWORK;

15.52 SEM_APIS.DROP_SPARQL_UPDATE_TABLES
Format

SEM_APIS.DROP_SPARQL_UPDATE_TABLES();

Description

Drops the global temporary tables in the caller’s schema for use with SPARQL Update
operations.

Parameters

None.

Usage Notes

This procedure drops the global temporary tables that were created by the
SEM_APIS.CREATE_SPARQL_UPDATE_TABLES procedure.

For more information, see Support for SPARQL Update Operations on a Semantic
Model.

Chapter 15
SEM_APIS.DROP_SPARQL_UPDATE_TABLES

15-76

Examples

The following example drops the global temporary tables that had been created in the caller’s
schema for use with SPARQL Update operations.

EXECUTE SEM_APIS.DROP_SPARQL_UPDATE_TABLES;

15.53 SEM_APIS.DROP_SPM_TAB
Format

SEM_APIS.DROP_SPM_TAB (
 model_name IN VARCHAR2,
 target IN VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN DBMS_ID DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Drops a specific SPM table identified by name and type, all SPM tables of given type, or all
SPM tables.

Parameters

model_name
Name of the RDF model.

target
Must be NULL, unless used for dropping all SPM tables or SPM tables belonging to a
specific category namely SVP, PCN, or MVP. In that case, the supported options are:

• ALL_SPM: drops all SPM tables.

• SVP_ALL: drops all SVP tables.

• MVP_ALL: drops all MVP tables.

• PCN_ALL: drops all PCN tables.

options
String specifying any of the following supported drop options:

• SVP_NAME=<name>: locates the target SVP table.

• PCN_NAME=<name>: locates the target PCN table.

• PRED_ID=<number>: locates the target MVP table.

• PRED_NAME=<absolute_IRI>: locates the target MVP table.

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

• This operation has a DDL semantics.

Chapter 15
SEM_APIS.DROP_SPM_TAB

15-77

• The invoker must be the owner of the target RDF model or the RDF network or
both.

Examples

The following example drops all SPM tables:

EXECUTE SEM_APIS.DROP_SPM_TAB('m1', ' ALL_SPM ',
network_owner=>'RDFUSER', network_name=>'NET1');

The following example drops all SVP tables:

EXECUTE SEM_APIS.DROP_SPM_TAB('m1', ' SVP_ALL ',
network_owner=>'RDFUSER', network_name=>'NET1');

The following example drops all MVP tables:

EXECUTE SEM_APIS.DROP_SPM_TAB('m1', ' MVP_ALL ',
network_owner=>'RDFUSER', network_name=>'NET1');

The following example drops all PCN tables:

EXECUTE SEM_APIS.DROP_SPM_TAB('m1', ' PCN_ALL ',
network_owner=>'RDFUSER', network_name=>'NET1');

The following example drops a specific SVP table named pinfo:

EXECUTE SEM_APIS.DROP_SPM_TAB('m1', null, options=>' svp_name=pinfo ',
network_owner=>'RDFUSER', network_name=>NET1)

The following example drops the default SVP table that was created without a name:

EXECUTE SEM_APIS.DROP_SPM_TAB('m1', null, options=>' svp_name=default
', network_owner=>'RDFUSER', network_name=>NET1)

The following example drops a specific PCN table named cof_dto_name:

EXECUTE SEM_APIS.DROP_SPM_TAB('m1', null, options=>'
pcn_name=cof_dto_name ', network_owner=>'RDFUSER', network_name=>NET1)

The following example drops a specific MVP table, identified by an ID specified for the
predicate, mvp_pred_id:

EXECUTE SEM_APIS.DROP_SPM_TAB('m1', null, options=>'
mvp_pred_id=6549504896746291108 ', network_owner=>'RDFUSER',
network_name=>NET1)

Chapter 15
SEM_APIS.DROP_SPM_TAB

15-78

The following example drops a specific MVP table, identified by a predicate specified as
shown:

EXECUTE SEM_APIS.DROP_SPM_TAB('m1', null, options=>' mvp_pred_name=<http://
demo/donatedTo> ' , network_owner=>'RDFUSER', network_name=>NET1)

15.54 SEM_APIS.DROP_USER_INFERENCE_OBJS
Format

SEM_APIS.DROP_USER_INFERENCE_OBJS(
 uname IN VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Drops (deletes) all rulebases and entailments owned by a specified database user.

Parameters

uname
Name of a database user. (This value is case-sensitive; for example, HERMAN and herman are
considered different users.)

options
(Reserved for future use.)

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

You must have sufficient privileges to delete rules and rulebases for the specified user.

This procedure does not delete the database user. It deletes only RDF rulebases and
entailments owned by that user.

For information about semantic network types and options, see Semantic Networks.

Examples

The following example deletes all rulebases and entailments owned by user SCOTT.

EXECUTE SEM_APIS.DROP_USER_INFERENCE_OBJS('SCOTT');

PL/SQL procedure successfully completed.

Chapter 15
SEM_APIS.DROP_USER_INFERENCE_OBJS

15-79

15.55 SEM_APIS.DROP_VIRTUAL_MODEL
Format

SEM_APIS.DROP_VIRTUAL_MODEL(
 vm_name IN VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Drops (deletes) a virtual model.

Parameters

vm_name
Name of the virtual model to be deleted.

options
(Reserved for future use.)

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

You can use this procedure to delete a virtual model that you created using the
SEM_APIS.CREATE_VIRTUAL_MODEL procedure. A virtual model is deleted
automatically if any of its component models, rulebases, or entailment are deleted.

To use this procedure, you must be the owner of the specified virtual model.

For an explanation of virtual models, including usage information, see Virtual Models.

For information about semantic network types and options, see Semantic Networks.

Examples

The following example deletes a virtual model named VM1.

EXECUTE sem_apis.drop_virtual_model('VM1');

15.56 SEM_APIS.ENABLE_CHANGE_TRACKING
Format

SEM_APIS.ENABLE_CHANGE_TRACKING(
 models_in IN SEM_MODELS,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Chapter 15
SEM_APIS.DROP_VIRTUAL_MODEL

15-80

Description

Enables change tracking for a specified set of models.

Parameters

models_in
One or more model names. Its data type is SEM_MODELS, which has the following
definition: TABLE OF VARCHAR2(25)

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

Change tracking must be enabled on a model before incremental inference can be enabled
on any entailments that use the model.

To use this procedure, you must be the owner of the specified model or models.

If the owner of an entailment is also an owner of any underlying models, then enabling
incremental inference on the entailment (by calling the
SEM_APIS.ENABLE_INC_INFERENCE procedure) automatically enables change tracking
on those models owned by that user.

To disable change tracking for a set of models, use the
SEM_APIS.DISABLE_CHANGE_TRACKING procedure.

For an explanation of incremental inference, including usage information, see Performing
Incremental Inference.

For information about semantic network types and options, see Semantic Networks.

Examples

The following example enables change tracking for the family model.

EXECUTE sem_apis.enable_change_tracking(sem_models('family'));

15.57 SEM_APIS.ENABLE_INC_INFERENCE
Format

SEM_APIS.ENABLE_INC_INFERENCE(
 entailment_name IN VARCHAR2,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Enables incremental inference for a specified entailment (rules index).

Chapter 15
SEM_APIS.ENABLE_INC_INFERENCE

15-81

Parameters

entailment_name
Name of the entailment for which to enable incremental inference.

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

To use this procedure, you must be the owner of the specified entailment.

Before this procedure is executed, all underlying models involved in the entailment
must have change tracking enabled. If the owner of the entailment is also an owner of
any underlying models, calling this procedure automatically enables change tracking
on those models. However, if some underlying model are not owned by the owner of
the entailment, the appropriate model owners must first call the
SEM_APIS.ENABLE_CHANGE_TRACKING procedure to enable change tracking on
those models.

To disable incremental inference for an entailment, use the
SEM_APIS.DISABLE_INC_INFERENCE procedure.

For an explanation of incremental inference, including usage information, see
Performing Incremental Inference.

For information about semantic network types and options, see Semantic Networks.

Examples

The following example enables incremental inference for the entailment named
RDFS_RIX_FAMILY.

EXECUTE sem_apis.enable_inc_inference('rdfs_rix_family');

15.58 SEM_APIS.ENABLE_INMEMORY
Format

SEM_APIS.ENABLE_INMEMORY(
 populate_wait IN BOOLEAN,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Loads RDF data for the semantic network into memory.

Chapter 15
SEM_APIS.ENABLE_INMEMORY

15-82

Parameters

populate_wait
Boolean value to indicate whether to wait until all RDF data is loaded into memory before
finishing:

• true: Wait until all RDF data is loaded into memory.

• false: Do not wait for RDF data loading into memory.

options
Options for in-memory data population:

• The string POPULATE_TRIPLES=F disables populating RDF_LINK$ table data in memory.
(RDF_VALUE$ table data is still populated in memory.) If this option is not specified,
RDF_LINK$ table data is populated in memory by default.

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

To use this procedure, you must have DBA privileges.

See the information in RDF Support for Oracle Database In-Memory.

To disable in-memory population of RDF data in the semantic network, use the
SEM_APIS.DISABLE_INMEMORY.

For information about semantic network types and options, see Semantic Networks.

Examples

The following example enables in-memory population of RDF data, and waits until all RDF
data is loaded into memory before finishing.

EXECUTE SEM_APIS.ENABLE_INMEMORY(true);

15.59 SEM_APIS.ENABLE_INMEMORY_FOR_ENT
Format

SEM_APIS.ENABLE_INMEMORY_FOR_ENT(
 entailment_name IN VARCHAR2,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Enables in-memory population of RDF data for an entailment in a semantic network.

Chapter 15
SEM_APIS.ENABLE_INMEMORY_FOR_ENT

15-83

Parameters

entailment_name
Name of the entailment.

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

To use this procedure, you must have DBA privileges.

See the information in RDF Support for Oracle Database In-Memory.

For information about semantic network types and options, see Semantic Networks.

Examples

The following example enables in-memory population of RDF data for entailment
RIDX1 in the MDSYS-owned semantic network.

EXECUTE SEM_APIS.ENABLE_INMEMORY_FOR_ENT('RIDX1');

15.60 SEM_APIS.ENABLE_INMEMORY_FOR_MODEL
Format

SEM_APIS.ENABLE_INMEMORY_FOR_MODEL(
 model_name IN VARCHAR2,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Enables in-memory population of RDF data for a model in a semantic network.

Parameters

model_name
Name of the model.

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

To use this procedure, you must have DBA privileges.

See the information in RDF Support for Oracle Database In-Memory.

For information about semantic network types and options, see Semantic Networks.

Chapter 15
SEM_APIS.ENABLE_INMEMORY_FOR_MODEL

15-84

Examples

The following example enables in-memory population of RDF data for model M1 in the
MDSYS-owned semantic network.

EXECUTE SEM_APIS.ENABLE_INMEMORY_FOR_MODEL('M1');

15.61 SEM_APIS.ENABLE_NETWORK_SHARING
Format

SEM_APIS.ENABLE_NETWORK_SHARING(
 network_owner IN VARCHAR2,
 network_name IN VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL);

Description

Enables sharing of a semantic network.

Parameters

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

options
(Reserved for future use)

Usage Notes

To use this procedure, you must have DBA privileges or be the owner of the specified
network.

For information about semantic network types and options, see Semantic Networks.

Examples

The following example enables sharing of the mynetwork schema-private network owned by
database user scott.

EXECUTE SEM_APIS.ENABLE_NETWORK_SHARING('scott', 'mynetwork');

15.62 SEM_APIS.ESCAPE_CLOB_TERM
Format

SEM_APIS.ESCAPE_CLOB_TERM(
 term IN CLOB CHARACTER SET ANY_CS,
 utf_encode IN NUMBER DEFAULT 1
) RETURN CLOB CHARACTER SET val%CHARSET;

Chapter 15
SEM_APIS.ENABLE_NETWORK_SHARING

15-85

Description

Returns the input RDF term with special characters and non-ASCII characters
escaped as specified by the W3C N-Triples format (http://www.w3.org/TR/rdf-
testcases/#ntriples).

Parameters

term
The RDF term to escape.

utf_encode
Set to 1 (the default) if non-ASCII characters and non-printable ASCII characters
other than chr(8), chr(9), chr(10), chr(12), and chr(13) should be escaped. Otherwise,
such characters will not be escaped.

Usage Notes

For information about using the DO_UNESCAPE keyword in the options parameter of the
SEM_MATCH table function, see Using the SEM_MATCH Table Function to Query
Semantic Data.

Examples

The following example escapes an input RDF term containing TAB and NEWLINE
characters.

SELECT SEM_APIS.ESCAPE_CLOB_TERM('"abc' || chr(9) || 'def' || chr(10) ||
'hij"^^<http://www.w3.org/2001/XMLSchema#string>')
 FROM DUAL;

15.63 SEM_APIS.ESCAPE_CLOB_VALUE
Format

SEM_APIS.ESCAPE_CLOB_VALUE(
 val IN CLOB CHARACTER SET ANY_CS,
 start_offset IN NUMBER DEFAULT 1,
 end_offset IN NUMBER DEFAULT 0,
 utf_encode IN NUMBER DEFAULT 1,
 include_start IN NUMBER DEFAULT 0
) RETURN VARCHAR2 CHARACTER SET val%CHARSET;

Description

Returns the input CLOB value with special characters and non-ASCII characters
escaped as specified by the W3C N-Triples format (http://www.w3.org/TR/rdf-
testcases/#ntriples).

Parameters

val
The CLOB text to escape.

Chapter 15
SEM_APIS.ESCAPE_CLOB_VALUE

15-86

http://www.w3.org/TR/rdf-testcases/#ntriples
http://www.w3.org/TR/rdf-testcases/#ntriples
http://www.w3.org/TR/rdf-testcases/#ntriples
http://www.w3.org/TR/rdf-testcases/#ntriples

start_offset
The offset in val from which to start character escaping. The default (1) causes escaping to
start at the first character of val.

end_offset
The offset in val from which to end character escaping. The default (0) causes escaping to
continue through the end of val.

utf_encode
Set to 1 (the default) if non-ASCII characters and non-printable ASCII characters other than
chr(8), chr(9), chr(10), chr(12), and chr(13) should be escaped. Otherwise, such characters
will not be escaped.

include_start
Set to 1 if the characters in val from 1 to start_offset should be prefixed (prepended) to
the return value. Otherwise, no such characters will be prefixed to the return value.

Usage Notes

For information about using the DO_UNESCAPE keyword in the options parameter of the
SEM_MATCH table function, see Using the SEM_MATCH Table Function to Query Semantic
Data.

Examples

The following example escapes an input character string containing TAB and NEWLINE
characters.

SELECT SEM_APIS.ESCAPE_CLOB_VALUE('abc' || chr(9) || 'def' || chr(10) || 'hij')
 FROM DUAL;

15.64 SEM_APIS.ESCAPE_RDF_TERM
Format

SEM_APIS.ESCAPE_RDF_TERM(
 term IN VARCHAR2 CHARACTER SET ANY_CS,
 utf_encode IN NUMBER DEFAULT 1
) RETURN VARCHAR2 CHARACTER SET val%CHARSET;

Description

Returns the input RDF term with special characters and non-ASCII characters escaped as
specified by the W3C N-Triples format (http://www.w3.org/TR/rdf-testcases/#ntriples).

Parameters

term
The RDF term to escape.

utf_encode
Set to 1 (the default) if non-ASCII characters and non-printable ASCII characters other than
chr(8), chr(9), chr(10), chr(12), and chr(13) should be escaped. Otherwise, such characters
will not be escaped.

Chapter 15
SEM_APIS.ESCAPE_RDF_TERM

15-87

http://www.w3.org/TR/rdf-testcases/#ntriples

Usage Notes

For information about using the DO_UNESCAPE keyword in the options parameter of the
SEM_MATCH table function, see Using the SEM_MATCH Table Function to Query
Semantic Data.

Examples

The following example escapes an input RDF term containing TAB and NEWLINE
characters.

SELECT SEM_APIS.ESCAPE_RDF_TERM('"abc' || chr(9) || 'def' || chr(10) ||
'hij"^^<http://www.w3.org/2001/XMLSchema#string>')
 FROM DUAL;

15.65 SEM_APIS.ESCAPE_RDF_VALUE
Format

SEM_APIS.ESCAPE_RDF_VALUE(
 val IN VARCHAR2 CHARACTER SET ANY_CS,
 utf_encode IN NUMBER DEFAULT 1
) RETURN VARCHAR2 CHARACTER SET val%CHARSET;

Description

Returns the input CLOB value with special characters and non-ASCII characters
escaped as specified by the W3C N-Triples format (http://www.w3.org/TR/rdf-
testcases/#ntriples).

Parameters

val
The text to escape.

utf_encode
Set to 1 (the default) if non-ASCII characters and non-printable ASCII characters
other than chr(8), chr(9), chr(10), chr(12), and chr(13) should be escaped. Otherwise,
such characters will not be escaped.

Usage Notes

For information about using the DO_UNESCAPE keyword in the options parameter of the
SEM_MATCH table function, see Using the SEM_MATCH Table Function to Query
Semantic Data.

Examples

The following example escapes an input character string containing TAB and
NEWLINE characters.

SELECT SEM_APIS.ESCAPE_RDF_VALUE('abc' || chr(9) || 'def' || chr(10) || 'hij')
 FROM DUAL;

Chapter 15
SEM_APIS.ESCAPE_RDF_VALUE

15-88

http://www.w3.org/TR/rdf-testcases/#ntriples
http://www.w3.org/TR/rdf-testcases/#ntriples

15.66 SEM_APIS.EXPORT_ENTAILMENT_STATS
Format

SEM_APIS.EXPORT_ENTAILMENT_STATS (
 entailment_name IN VARCHAR2,
 stattab IN VARCHAR2,
 statid IN VARCHAR2 DEFAULTNULL,
 cascade IN BOOLEAN DEFAULT TRUE,
 statown IN VARCHAR2 DEFAULT NULL,
 stat_category IN VARCHAR2 DEFAULT 'OBJECT_STATS',
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Exports statistics for a specified entailment and stores them in the user statistics table.

Parameters

entailment_name
Name of the entailment.

(other parameters)
See the parameter explanations for the DBMS_STATS.EXPORT_TABLE_STATS procedure
in Oracle Database PL/SQL Packages and Types Reference, although force here applies to
entailment statistics.
Specifying cascade also exports all index statistics associated with the entailment.

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

See the information about the DBMS_STATS package inOracle Database PL/SQL Packages
and Types Reference.

See also Managing Statistics for Semantic Models and the Semantic Network.

For information about semantic network types and options, see Semantic Networks.

Examples

The following example exports statistics for an entailment named OWLTST_IDX and stores
them in a table named STAT_TABLE.

EXECUTE SEM_APIS.EXPORT_ENTAILMENT_STATS('owltst_idx', 'stat_table');

Chapter 15
SEM_APIS.EXPORT_ENTAILMENT_STATS

15-89

15.67 SEM_APIS.EXPORT_MODEL_STATS
Format

SEM_APIS.EXPORT_MODEL_STATS (
 model_name IN VARCHAR2,
 stattab IN VARCHAR2,
 statid IN VARCHAR2 DEFAULT NULL,
 cascade IN BOOLEAN DEFAULT TRUE,
 statown IN VARCHAR2 DEFAULT NULL,
 stat_category IN VARCHAR2 DEFAULT 'OBJECT_STATS',
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Exports statistics for a specified model and stores them in the user statistics table.

Parameters

entailment_name
Name of the entailment.

(other parameters)
See the parameter explanations for the DBMS_STATS.EXPORT_TABLE_STATS
procedure in Oracle Database PL/SQL Packages and Types Reference.
Specifying cascade also exports all index statistics associated with the model.

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

See the information about the DBMS_STATS package inOracle Database PL/SQL
Packages and Types Reference.

See also Managing Statistics for Semantic Models and the Semantic Network.

For information about semantic network types and options, see Semantic Networks.

Examples

The following example exports statistics for a model named FAMILY and stores them in
a table named STAT_TABLE.

EXECUTE SEM_APIS.EXPORT_MODEL_STATS('family', 'stat_table');

15.68 SEM_APIS.EXPORT_RDFVIEW_MODEL
Format

SEM_APIS.EXPORT_RDFVIEW_MODEL(
 model_name IN VARCHAR2,

Chapter 15
SEM_APIS.EXPORT_MODEL_STATS

15-90

 rdf_table_owner IN VARCHAR2 DEFAULT NULL,
 rdf_table_name IN VARCHAR2 DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Exports (materializes) the virtual RDF triples of an RDF view to a staging table.

Parameters

model_name
Name of the RDF view to be exported.

rdf_table_owner
Name of the schema that owns the staging table where the RDF triples obtained from the
RDF view are to be stored.

rdf_table_name
Name of the staging table where the RDF triples obtained from the RDF view are to be
stored.

options
(Reserved for future use)

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

You must have the SELECT privilege for the database view SEMM_<model_name>.

For more information about RDF views, see RDF Views: Relational Data as RDF. For
information about exporting RDF views, see Exporting Virtual Content of an RDF View into a
Staging Table.

For information about semantic network types and options, see Semantic Networks.

Examples

The following example exports RDF triples from RDF view empdb_model to the staging table
SCOTT.RDFTAB.

BEGIN
 sem_apis.export_rdfview_model(
 model_name => 'empdb_model',
 rdf_table_owner => 'SCOTT',
 rdf_table_name => 'RDFTAB'
);
END;
/

Chapter 15
SEM_APIS.EXPORT_RDFVIEW_MODEL

15-91

15.69 SEM_APIS.GATHER_SPM_INFO
Format

SEM_APIS.GATHER_SPM_INFO (
 model_name IN VARCHAR2,
 pred_info_tabname IN DBMS_ID,
 tablespace_name IN DBMS_ID DEFAULT NULL,
 degree IN NUMBER DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN DBMS_ID DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Gathers information about predicate use in a given RDF model.

For more information on SPM tables content, see Creating SPM Tables.

Parameters

model_name
Name of the RDF model.

pred_info_tabname
Name of the table to be created to contain the information about predicate use.

tablespace_name
Name of the target tablespace for the pred_info_tabname table.

degree
Degree of parallelism.

options
String specifying the options to use during the operation.
Supported option is:
CREATE_ANYWAY=T: Truncate the table specified in pred_info_tabname.

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

• The pred_info_tabname table will be created in the invoker’s schema.

• Invoker must have READ privilege for the RDF model.

Examples

The following example creates a new table M1_PRED_INFO in the invoker’s schema.
This table contains predicate use information for the specified model M1 in the RDF
network named NET1 owned by RDFUSER.

Chapter 15
SEM_APIS.GATHER_SPM_INFO

15-92

 begin
 sem_apis.gather_spm_info(
 model_name => 'M1',
 pred_info_tabname => 'M1_PRED_INFO',
 degree => 2,
 network_owner => 'RDFUSER',
 network_name => 'NET1'
);
 end;

15.70 SEM_APIS.GET_CHANGE_TRACKING_INFO
Format

SEM_APIS.GET_CHANGE_TRACKING_INFO(
 model_name IN VARCHAR2,
 enabled OUT BOOLEAN,
 tracking_start_time OUT TIMESTAMP,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Returns change tracking information for a model.

Parameters

model_name
Name of the semantic technology model.

enabled
Boolean value returned by the procedure: TRUE if change tracking is enabled for the model,
or FALSE if change tacking is not enabled for the model.

tracking_start_time
Timestamp indicating when change tracking was enabled for the model (if it is enabled).

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

The model_name value must match a value in the MODEL_NAME column in the
SEM_MODEL$ view, which is described in Metadata for Models.

To enable change tracking for a set of models, use the
SEM_APIS.ENABLE_CHANGE_TRACKING procedure.

For an explanation of incremental inference, including usage information, see Performing
Incremental Inference.

For information about semantic network types and options, see Semantic Networks.

Chapter 15
SEM_APIS.GET_CHANGE_TRACKING_INFO

15-93

Examples

The following example displays change tracking information for a model.

DECLARE
 bEnabled boolean;
 tsEnabled timestamp;

BEGIN
 EXECUTE IMMEDIATE 'create table m1 (t SDO_RDF_TRIPLE_S)';
 sem_apis.create_sem_model('m1','m1','t');

 sem_apis.enable_change_tracking(sem_models('m1'));

 sem_apis.get_change_tracking_info('m1', bEnabled, tsEnabled);
 dbms_output.put_line('is enabled:' || case when bEnabled then 'true' else
'false' end);
 dbms_output.put_line('enabled at:' || tsEnabled);
END;
/

15.71 SEM_APIS.GET_INC_INF_INFO
Format

SEM_APIS.GET_INC_INF_INFO(
 entailment_name IN VARCHAR2,
 enabled OUT BOOLEAN,
 prev_inf_start_time OUT TIMESTAMP,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Returns incremental inference information for an entailment.

Parameters

entailment_name
Name of the entailment.

enabled
Boolean value returned by the procedure: TRUE if incremental inference is enabled for
the entailment, or FALSE if incremental inference is not enabled for the entailment.

prev_inf_start_time
Timestamp indicating when the entailment was most recently updated (if incremental
inference is enabled).

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Chapter 15
SEM_APIS.GET_INC_INF_INFO

15-94

Usage Notes

To enable incremental inference for an entailment, use the
SEM_APIS.ENABLE_INC_INFERENCE procedure.

For an explanation of incremental inference, including usage information, see Performing
Incremental Inference.

For information about semantic network types and options, see Semantic Networks.

Examples

The following example displays incremental inference information for an entailment.

DECLARE
 bEnabled boolean;
 tsEnabled timestamp;

DECLARE
 EXECUTE IMMEDIATE 'create table m1 (t SDO_RDF_TRIPLE_S)';
 sem_apis.create_sem_model('m1','m1','t');

 sem_apis.create_entailment('m1_inf',sem_models('m1'),
sem_rulebases('owlprime'),null,null,'INC=T');

 sem_apis.get_inc_inf_info('m1_inf', bEnabled, tsEnabled);
 dbms_output.put_line('is enabled:' || case when bEnabled then 'true' else 'false'
 end);
 dbms_output.put_line('enabled at:' || tsEnabled);
END
/

15.72 SEM_APIS.GET_MODEL_ID
Format

SEM_APIS.GET_MODEL_ID(
 model_name IN VARCHAR2
) RETURN NUMBER;

Description

Returns the model ID number of a semantic technology model.

Parameters

model_name
Name of the semantic technology model.

Usage Notes

The model_name value must match a value in the MODEL_NAME column in the
SEM_MODEL$ view, which is described in Metadata for Models.

Examples

The following example returns the model ID number for the model named articles. (This
example is an excerpt from Example 1-121 in Example: Journal Article Information.)

Chapter 15
SEM_APIS.GET_MODEL_ID

15-95

SELECT SEM_APIS.GET_MODEL_ID('articles') AS model_id FROM DUAL;

 MODEL_ID

 1

15.73 SEM_APIS.GET_MODEL_NAME
Format

SEM_APIS.GET_MODEL_NAME(
 model_id IN NUMBER
) RETURN VARCHAR2;

Description

Returns the model name of a semantic technology model.

Parameters

model_id
ID number of the semantic technology model.

Usage Notes

The model_id value must match a value in the MODEL_ID column in the
SEM_MODEL$ view, which is described in Metadata for Models.

Examples

The following example returns the model ID number for the model with the ID value of
1. This example is an excerpt from Example 1-121 in Example: Journal Article
Information.)

SQL> SELECT SEM_APIS.GET_MODEL_NAME(1) AS model_name FROM DUAL;

MODEL_NAME
--
ARTICLES

15.74 SEM_APIS.GET_TRIPLE_ID
Format

SEM_APIS.GET_TRIPLE_ID(
 model_id IN NUMBER,
 subject IN VARCHAR2,
 property IN VARCHAR2,
 object IN VARCHAR2
) RETURN VARCHAR2;

or

SEM_APIS.GET_TRIPLE_ID(
 model_name IN VARCHAR2,
 subject IN VARCHAR2,
 property IN VARCHAR2,

Chapter 15
SEM_APIS.GET_MODEL_NAME

15-96

 object IN VARCHAR2
) RETURN VARCHAR2;

Description

Returns the ID of a triple in the specified semantic technology model, or a null value if the
triple does not exist.

Parameters

model_id
ID number of the semantic technology model. Must match a value in the MODEL_ID column
of the SEM_MODEL$ view, which is described in Metadata for Models.

model_name
Name of the semantic technology model. Must match a value in the MODEL_NAME column
of the SEM_MODEL$ view, which is described in Metadata for Models.

subject
Subject. Must match a value in the VALUE_NAME column of the RDF_VALUE$ table, which
is described in Statements.

property
Property. Must match a value in the VALUE_NAME column of the RDF_VALUE$ table, which
is described in Statements.

object
Object. Must match a value in the VALUE_NAME column of the RDF_VALUE$ table, which
is described in Statements.

Usage Notes

This function has two formats, enabling you to specify the semantic technology model by its
model number or its name.

Examples

The following example returns the ID number of a triple. (This example is an excerpt from
Example 1-121 in Example: Journal Article Information.)

SELECT SEM_APIS.GET_TRIPLE_ID(
 'articles',
 'http://nature.example.com/Article2',
 'http://purl.org/dc/terms/references',
 'http://nature.example.com/Article3') AS RDF_triple_id FROM DUAL;

RDF_TRIPLE_ID
--
2_9F2BFF05DA0672E_90D25A8B08C653A_46854582F25E8AC5

15.75 SEM_APIS.GETV$DATETIMETZVAL
Format

SEM_APIS.GETV$DATETIMETZVAL(
 value_type IN VARCHAR2,
 vname_prefix IN VARCHAR2,
 vname_suffix IN VARCHAR2,

Chapter 15
SEM_APIS.GETV$DATETIMETZVAL

15-97

 literal_type IN VARCHAR2,
 language_type IN VARCHAR2,
) RETURN NUMBER;

Description

Returns a TIMESTAMP WITH TIME ZONE value for xsd:dateTime typed literals, and
returns a null value for all other RDF terms. Greenwich Mean Time is used as the
default time zone for xsd:dateTime values without time zones.

Parameters

value_type
Type of the RDF term.

vname_prefix
Prefix value of the RDF term.

vname_suffix
Suffix value of the RDF term.

literal_type
Literal type of the RDF term.

language_type
Language type of the RDF term.

Usage Notes

For better performance, consider creating a function-based index on this function. For
more information, see Function-Based Indexes for FILTER Constructs Involving Typed
Literals.

Examples

The following example returns TIMESTAMP WITH TIME ZONE values for all
xsd:dateTime literals in the RDF_VALUE$ table:

SELECT SEM_APIS.GETV$DATETIMETZVAL(value_type, vname_prefix, vname_suffix,
 literal_type, language_type)
 FROM RDF_VALUE$;

15.76 SEM_APIS.GETV$DATETZVAL
Format

SEM_APIS.GETV$DATETZVAL(
 value_type IN VARCHAR2,
 vname_prefix IN VARCHAR2,
 vname_suffix IN VARCHAR2,
 literal_type IN VARCHAR2,
 language_type IN VARCHAR2,
) RETURN TIMESTAMP WITH TIME ZONE;

Chapter 15
SEM_APIS.GETV$DATETZVAL

15-98

Description

Returns a TIMESTAMP WITH TIME ZONE value for xsd:date typed literals, and returns a null
value for all other RDF terms. Greenwich Mean Time is used as the default time zone for
xsd:date values without time zones.

Parameters

value_type
Type of the RDF term.

vname_prefix
Prefix value of the RDF term.

vname_suffix
Suffix value of the RDF term.

literal_type
Literal type of the RDF term.

language_type
Language type of the RDF term.

Usage Notes

For better performance, consider creating a function-based index on this function. For more
information, see Function-Based Indexes for FILTER Constructs Involving Typed Literals.

Examples

The following example returns TIMESTAMP WITH TIME ZONE values for all xsd:date literals
in the RDF_VALUE$ table:

SELECT SEM_APIS.GETV$DATETZVAL(value_type, vname_prefix, vname_suffix,
 literal_type, language_type)
 FROM RDF_VALUE$;

15.77 SEM_APIS.GETV$GEOMETRYVAL
Format

SEM_APIS.GETV$GEOMETRYVAL(
 value_type IN VARCHAR2,
 vname_prefix IN VARCHAR2,
 vname_suffix IN VARCHAR2,
 literal_type IN VARCHAR2,
 language_type IN VARCHAR2,
 long_value IN CLOB,
 srid IN NUMBER,
) RETURN SDO_GEOMETRY;

Description

Returns an SDO_GEOMETRY object in the spatial reference system identified by an input
SRID for ogc:wktLiteral or ogc:gmlLiteral typed literals, and returns a null value for all other
RDF terms.

Chapter 15
SEM_APIS.GETV$GEOMETRYVAL

15-99

Parameters

value_type
Type of the RDF term.

vname_prefix
Prefix value of the RDF term.

vname_suffix
Suffix value of the RDF term.

literal_type
Literal type of the RDF term.

language_type
Language type of the RDF term.

long_value
CLOB value for long literals.

srid
Target coordinate system (spatial reference system) identifier for the
SDO_GEOMETRY object to be returned.

Usage Notes

ogc:wktLiteral and ogc:gmlLiteral values encode spatial reference system information
in the literal value itself (referred to as the source SRID).

If the srid parameter value (the target SRID) is different from the source SRID, the
newly created SDO_GEOMETRY object is transformed to the target SRID before it is
returned.

This operation can be expensive in terms of performance.

For information about the SDO_GEOMETRY type (including SRID values), see Oracle
Spatial Developer's Guide.

Examples

The following example returns SDO_GEOMETRY values in the WGS84 (Longitude,
Latitude) spatial reference system (SRID 8307) for all geometry literals in the
RDF_VALUE$ table:

SELECT SEM_APIS.GETV$GEOMETRYVAL(value_type, vname_prefix, vname_suffix,
 literal_type, language_type, long_value, 8307)
 FROM RDF_VALUE$;

15.78 SEM_APIS.GETV$NUMERICVAL
Format

SEM_APIS.GETV$NUMERICVAL(
 value_type IN VARCHAR2,
 vname_prefix IN VARCHAR2,
 vname_suffix IN VARCHAR2,
 literal_type IN VARCHAR2,

Chapter 15
SEM_APIS.GETV$NUMERICVAL

15-100

 language_type IN VARCHAR2,
) RETURN NUMBER;

Description

Returns a numeric value for XML Schema numeric typed literals, and returns a null value for
all other RDF terms.

Parameters

value_type
Type of the RDF term.

vname_prefix
Prefix value of the RDF term.

vname_suffix
Suffix value of the RDF term.

literal_type
Literal type of the RDF term.

language_type
Language type of the RDF term.

Usage Notes

For better performance, consider creating a function-based index on this function. For more
information, see Function-Based Indexes for FILTER Constructs Involving Typed Literals.

Examples

The following example returns numeric values for all numeric literals in the RDF_VALUE$
table:

SELECT SEM_APIS.GETV$NUMERICVAL(value_type, vname_prefix, vname_suffix,
 literal_type, language_type)
 FROM RDF_VALUE$;

15.79 SEM_APIS.GETV$STRINGVAL
Format

SEM_APIS.GETV$STRINGVAL(
 value_type IN VARCHAR2,
 vname_prefix IN VARCHAR2,
 vname_suffix IN VARCHAR2,
 literal_type IN VARCHAR2,
 language_type IN VARCHAR2,
) RETURN TIMESTAMP WITH TIME ZONE;

Description

Returns a VARCHAR2 string of the lexical form of plain literals and xsd:string typed literals,
and returns a null value for all other RDF terms. CHR(0) is returned for empty literals.

Chapter 15
SEM_APIS.GETV$STRINGVAL

15-101

Parameters

value_type
Type of the RDF term.

vname_prefix
Prefix value of the RDF term.

vname_suffix
Suffix value of the RDF term.

literal_type
Literal type of the RDF term.

language_type
Language type of the RDF term.

Usage Notes

For better performance, consider creating a function-based index on this function. For
more information, see Function-Based Indexes for FILTER Constructs Involving Typed
Literals.

Examples

The following example returns lexical values for all plain literals and xsd:string literals
in the RDF_VALUE$ table:

SELECT SEM_APIS.GETV$STRINGVAL(value_type, vname_prefix, vname_suffix,
 literal_type, language_type)
 FROM RDF_VALUE$;

15.80 SEM_APIS.GETV$TIMETZVAL
Format

SEM_APIS.GETV$TIMETZVAL(
 value_type IN VARCHAR2,
 vname_prefix IN VARCHAR2,
 vname_suffix IN VARCHAR2,
 literal_type IN VARCHAR2,
 language_type IN VARCHAR2,
) RETURN TIMESTAMP WITH TIME ZONE;

Description

Returns a TIMESTAMP WITH TIME ZONE value for xsd:time typed literals, and
returns a null value for all other RDF terms. Greenwich Mean Time is used as the
default time zone for xsd:time values without time zones. 2009-06-26 is used as the
default date in all the generated TIMESTAMP WITH TIME ZONE values.

Parameters

value_type
Type of the RDF term.

Chapter 15
SEM_APIS.GETV$TIMETZVAL

15-102

vname_prefix
Prefix value of the RDF term.

vname_suffix
Suffix value of the RDF term.

literal_type
Literal type of the RDF term.

language_type
Language type of the RDF term.

Usage Notes

For better performance, consider creating a function-based index on this function. For more
information, see Function-Based Indexes for FILTER Constructs Involving Typed Literals.

Because xsd:time values include only a time but not a date, the returned TIMESTAMP WITH
TIME ZONE values (which include a date component) have 2009-06-26 added as the date.
This is done so that the returned values can be indexed internally, and so that the date is the
same for all of them.

Examples

The following example returns TIMESTAMP WITH TIME ZONE values (using the default
2009-06-26 for the date) for all xsd:time literals in the RDF_VALUE$ table. (

SELECT SEM_APIS.GETV$DATETIMETZVAL(value_type, vname_prefix, vname_suffix,
 literal_type, language_type)
 FROM RDF_VALUE$;

15.81 SEM_APIS.GRANT_MODEL_ACCESS_PRIV
Format

SEM_APIS.GRANT_MODEL_ACCESS_PRIV(
 model_name IN VARCHAR2,
 user_name IN VARCHAR2,
 privilege IN VARCHAR2,
 user_view IN VARCHAR2 DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Grants access privilege on a model or entailment.

Parameters

model_name
Name of the model.

user_name
Database user that is recipient of this privilege.

Chapter 15
SEM_APIS.GRANT_MODEL_ACCESS_PRIV

15-103

privilege
Specifies the type of privilege that is granted. Currently allowed values include the
following:

• QUERY: Query the model using SPARQL

• SELECT, READ: Retrieve model content using SQL. For schema-private network,
the source for the content is the RDFT_<model> view in the network owner's
schema or the view name, if any, specified for the user_view parameter. For
MDSYS-owned network, the source for the content is the application table.

• INSERT, UPDATE, DELETE: Perform SPARQL Update (DML) operations on the
model or SQL DML operations. For SQL DML, the target object is different
depending upon the type of network. For schema-private network, it is the
RDFT_<model> view in the network owner's schema and for MDSYS-owned
network, it is the application table.

Note:

QUERY is the only valid choice if the model is not a regular model (that is, not
created using sem_apis.create_sem_model).

user_view
Applicable to schema-private network only. If a view was created on the RDFT_<model>
view at model creation time using sem_apis.create_sem_model or later, privilege is
granted on that view.

options
If user specifies the word ENTAILMENT as part of the string value, then the specified
model_name is taken as the name of an entailment (rules index). (Additional words or
phrases may be allowed in future.)

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

The recipient must already have query-only or full access to the semantic network
(which guarantees access to dictionary tables, but not individual models). This
operation grants access to the specified model.

Examples

The following example grants privilege to database user USER1 to use SPARQL query
against a semantic technology model named articles in the schema-private network
NET1 owned by database user RDFUSER. (This example refers to the model described in
Example 1-121.)

EXECUTE SEM_APIS.GRANT_MODEL_ACCESS_PRIV('articles', 'USER1', 'QUERY',
network_owner=>'RDFUSER', network_name=>'NET1');

Chapter 15
SEM_APIS.GRANT_MODEL_ACCESS_PRIV

15-104

15.82 SEM_APIS.GRANT_MODEL_ACCESS_PRIVS
Format

SEM_APIS.GRANT_MODEL_ACCESS_PRIVS(
 model_name IN VARCHAR2,
 user_name IN VARCHAR2,
 priv_list IN SYS.ODCIVARCHAR2LIST,
 user_view IN VARCHAR2 DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Grants access privileges on a model or entailment.

Parameters

model_name
Name of the model.

user_name
Database user that is recipient of this privilege.

priv_list
Specifies the list of privileges that are granted. Currently allowed values include the
following:

• QUERY: Query the model using SPARQL

• SELECT, READ: Retrieve model content using SQL. For schema-private network, the
source for the content is the RDFT_<model> view in the network owner's schema or the
view name, if any, specified for the user_view parameter. For MDSYS-owned network,
the source for the content is the application table.

• INSERT, UPDATE, DELETE: Perform SPARQL Update (DML) operations on the model or
SQL DML operations. For SQL DML, the target object is different depending upon the
type of network. For schema-private network, it is the RDFT_<model> view in the network
owner's schema and for MDSYS-owned network, it is the application table.

Note:

QUERY is the only valid choice if the model is not a regular model (that is, not
created using sem_apis.create_sem_model).

user_view
Applicable to schema-private network only. If a view was created on the RDFT_<model> view
at model creation time using sem_apis.create_sem_model or later, privileges are granted on
that view.

Chapter 15
SEM_APIS.GRANT_MODEL_ACCESS_PRIVS

15-105

options
If user specifies the word ENTAILMENT as part of the string value, then the specified
model_name is taken as the name of an entailment (rules index).(Additional words or
phrases may be allowed in future.)

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

The recipient must already have query-only or full access to the semantic network
(which guarantees access to dictionary tables, but not individual models). This
operation grants access to the specified model.

Examples

The following example grants privileges to perform DML operations against a semantic
technology model named articles in the schema-private network NET1 owned by
database user RDFUSER. (This example refers to the model described in
Example 1-121.)

EXECUTE SEM_APIS.GRANT_MODEL_ACCESS_PRIVS('articles', 'USER1',
sys.odcivarchar2list('INSERT','UPDATE','DELETE'), network_owner=>'RDFUSER',
network_name=>'NET1');

15.83 SEM_APIS.GRANT_NETWORK_ACCESS_PRIVS
Format

SEM_APIS.GRANT_NETWORK_ACCESS_PRIVS(
 network_owner IN VARCHAR2,
 network_name IN VARCHAR2,
 network_user IN VARCHAR2,
 options IN VARCHAR2 default NULL);

Description

Grants query-only or full access privileges to a database user other than the owner of
a schema-private semantic network.

Parameters

network_owner
Owner of the network. (Cannot be MDSYS.)

network_name
Name of the network. (Must be a schema-private network.)

network_user
Database user (other than the network owner) to which to grant access privileges to
the network.

Chapter 15
SEM_APIS.GRANT_NETWORK_ACCESS_PRIVS

15-106

options
String specifying options for access using the form OPTION_NAME=option_value. By
default, full access privileges are given; but to give query-only access, specify QUERY_ONLY=T
for the option value.

Usage Notes

You must have DBA privileges or be the owner of the specified network to call this procedure.

For information about semantic network types and options, see Semantic Networks.

Examples

The following example grants full access on the mynet1 network owned by scott to rdfuser1.

EXECUTE SEM_APIS.GRANT_NETWORK_ACCESS_PRIVS('scott','mynet1','rdfuser1');

The following example grants query-only access on the mynet1 network owned by scott to
rdfuser2.

EXECUTE SEM_APIS.GRANT_NETWORK_ACCESS_PRIVS('scott','mynet1','rdfuser2', options=>'
QUERY_ONLY=T ');

15.84 SEM_APIS.GRANT_NETWORK_SHARING_PRIVS
Format

SEM_APIS.GRANT_NETWORK_SHARING_PRIVS(
 network_owner IN VARCHAR2,
 options IN VARCHAR2 default NULL);

Description

Grants to a database user the privileges required for sharing, with other database users, any
schema-private networks owned (currently or in the future) by the database user.

Parameters

network_owner
Owner of the semantic network. (See Table 1-1.)

options
(Reserved for future use)

Usage Notes

You must have DBA privileges to call this procedure.

For information about semantic network types and options, see Semantic Networks.

Examples

The following example grants to database user scott the privileges for sharing any schema-
private networks that this user owns or will own.

EXECUTE SEM_APIS.GRANT_NETWORK_SHARING_PRIVS('scott');

Chapter 15
SEM_APIS.GRANT_NETWORK_SHARING_PRIVS

15-107

15.85 SEM_APIS.IMPORT_ENTAILMENT_STATS
Format

SEM_APIS.IMPORT_ENTAILMENT_STATS (
 entailment_name IN VARCHAR2,
 stattab IN VARCHAR2,
 statid IN VARCHAR2 DEFAULT NULL,
 cascade IN BOOLEAN DEFAULT TRUE,
 statown IN VARCHAR2 DEFAULT NULL,
 no_invalidate IN BOOLEAN DEFAULT FALSE,
 force IN BOOLEAN DEFAULT FALSE,
 stat_category IN VARCHAR2 DEFAULT 'OBJECT_STATS',
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Retrieves statistics for an entailment from a user statistics table and stores them in the
dictionary.

Parameters

entailment_name
Name of the entailment.

(other parameters)
See the parameter explanations for the DBMS_STATS.IMPORT_TABLE_STATS
procedure in Oracle Database PL/SQL Packages and Types Reference, although
force here applies to entailment statistics.
Specifying cascade also exports all index statistics associated with the model.

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

See the information about the DBMS_STATS package inOracle Database PL/SQL
Packages and Types Reference.

See also Managing Statistics for Semantic Models and the Semantic Network.

For information about semantic network types and options, see Semantic Networks.

Examples

The following example imports statistics for an entailment named OWLTST_IDX from a
table named STAT_TABLE.

EXECUTE SEM_APIS.IMPORT_ENTAILMENT_STATS('owltst_idx', 'stat_table');

Chapter 15
SEM_APIS.IMPORT_ENTAILMENT_STATS

15-108

15.86 SEM_APIS.IMPORT_MODEL_STATS
Format

SEM_APIS.IMPORT_MODEL_STATS (
 model_name IN VARCHAR2,
 stattab IN VARCHAR2,
 statid IN VARCHAR2 DEFAULT NULL,
 cascade IN BOOLEAN DEFAULT TRUE,
 statown IN VARCHAR2 DEFAULT NULL,
 no_invalidate IN BOOLEAN DEFAULT FALSE,
 force IN BOOLEAN DEFAULT FALSE,
 stat_category IN VARCHAR2 DEFAULT 'OBJECT_STATS,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Retrieves statistics for a specified model from a user statistics table and stores them in the
dictionary.

Parameters

model_name
Name of the entailment.

(other parameters)
See the parameter explanations for the DBMS_STATS.IMPORT_TABLE_STATS procedure
in Oracle Database PL/SQL Packages and Types Reference.
Specifying cascade also imports all index statistics associated with the model.

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

See the information about the DBMS_STATS package inOracle Database PL/SQL Packages
and Types Reference.

See also Managing Statistics for Semantic Models and the Semantic Network.

For information about semantic network types and options, see Semantic Networks.

Examples

The following example imports statistics for a model named FAMILY from a table named
STAT_TABLE, and stores them in the dictionary.

EXECUTE SEM_APIS.IMOPRT_MODEL_STATS('family', 'stat_table');

Chapter 15
SEM_APIS.IMPORT_MODEL_STATS

15-109

15.87 SEM_APIS.IS_TRIPLE
Format

SEM_APIS.IS_TRIPLE(
 model_id IN NUMBER,
 subject IN VARCHAR2,
 property IN VARCHAR2,
 object IN VARCHAR2) RETURN VARCHAR2;

or

SEM_APIS.IS_TRIPLE(
 model_name IN VARCHAR2,
 subject IN VARCHAR2,
 property IN VARCHAR2,
 object IN VARCHAR2) RETURN VARCHAR2;

Description

Checks if a statement is an existing triple in the specified model in the database.

Parameters

model_id
ID number of the semantic technology model. Must match a value in the MODEL_ID
column of the SEM_MODEL$ view, which is described in Metadata for Models.

model_name
Name of the semantic technology model. Must match a value in the MODEL_NAME
column of the SEM_MODEL$ view, which is described in Metadata for Models.

subject
Subject. Must match a value in the VALUE_NAME column of the RDF_VALUE$ table,
which is described in Statements.

property
Property. Must match a value in the VALUE_NAME column of the RDF_VALUE$
table, which is described in Statements.

object
Object. Must match a value in the VALUE_NAME column of the RDF_VALUE$ table,
which is described in Statements.

Usage Notes

This function returns the string value FALSE, TRUE, or TRUE (EXACT):

• FALSE means that the statement is not a triple in the specified model the database.

• TRUE means that the statement matches the value of a triple or is the canonical
representation of the value of a triple in the specified model the database.

• TRUE (EXACT) means that the specified subject, property, and object values
have exact matches in a triple in the specified model in the database.

Chapter 15
SEM_APIS.IS_TRIPLE

15-110

Examples

The following example checks if a statement is a triple in the database. In this case, there is
an exact match. (This example is an excerpt from Example 1-121 in Example: Journal Article
Information.)

SELECT SEM_APIS.IS_TRIPLE(
 'articles',
 'http://nature.example.com/Article2',
 'http://purl.org/dc/terms/references',
 'http://nature.example.com/Article3') AS is_triple FROM DUAL;

IS_TRIPLE
--
TRUE (EXACT)

15.88 SEM_APIS.LOAD_INTO_STAGING_TABLE
Format

SEM_APIS.LOAD_INTO_STAGING_TABLE(
 stagong_table IN VARCHAR2,
 source_table IN VARCHAR2,
 input_format IN VARCHAR2 DEFAULT NULL,
 parallel IN INTEGER DEFAULT NULL,
 staging_table_owner IN VARCHAR2 DEFAULT NULL,
 source_table_owner IN VARCHAR DEFAULT NULL,
 flags IN VARCHAR DEFAULT NULL);

Description

Loads data into a staging table from an external table mapped to an N-Triple or N-Quad
format input file.

Parameters

staging_table
Name of the staging table.

source_table
Name of the source external table.

input_format
Format of the input file mapped by the source external table: N-TRIPLE or N-QUAD

parallel
Degree of parallelism to use during the load.

staging_table_owner
Owner for the staging table being created. If not specified, the invoker is assumed to be the
owner.

source_table_owner
Owner for the source table. If not specified, the invoker is assumed to be the owner.

Chapter 15
SEM_APIS.LOAD_INTO_STAGING_TABLE

15-111

flags
(Reserved for future use)

Usage Notes

For more information and an example, see Loading N-Quad Format Data into a
Staging Table Using an External Table.

Examples

The following example loads the staging table. (This example is an excerpt from
Example 1-100 in Loading N-Quad Format Data into a Staging Table Using an
External Table.)

BEGIN
 sem_apis.load_into_staging_table(
 staging_table => 'STAGE_TABLE'
 ,source_table => 'stage_table_source'
 ,input_format => 'N-QUAD');
END;

15.89 SEM_APIS.LOOKUP_ENTAILMENT
Format

SEM_APIS.LOOKUP_ENTAILMENT (
 models IN SEM_MODELS,
 rulebases IN SEM_RULEBASES
) RETURN VARCHAR2;

Description

Returns the name of the entailment (rules index) based on the specified models and
rulebases.

Parameters

models
One or more model names. Its data type is SEM_MODELS, which has the following
definition: TABLE OF VARCHAR2(25)

rulebases
One or more rulebase names. Its data type is SEM_RULEBASES, which has the
following definition: TABLE OF VARCHAR2(25)Rules and rulebases are explained in
Inferencing: Rules and Rulebases.

Usage Notes

For a rulebase index to be returned, it must be based on all specified models and
rulebases.

Examples

The following example finds the entailment that is based on the family model and the
RDFS and family_rb rulebases. (It is an excerpt from Example 1-122 in Example:
Family Information.)

Chapter 15
SEM_APIS.LOOKUP_ENTAILMENT

15-112

SELECT SEM_APIS.LOOKUP_ENTAILMENT(SEM_MODELS('family'),
 SEM_RULEBASES('RDFS','family_rb')) AS lookup_entailment FROM DUAL;

LOOKUP_ENTAILMENT
--
RDFS_RIX_FAMILY

15.90 SEM_APIS.MERGE_MODELS
Format

SEM_APIS.MERGE_MODELS(
 source_model IN VARCHAR2,
 destination_model IN VARCHAR2,
 rebuild_apptab_index IN BOOLEAN DEFAULT TRUE,
 drop_source_model IN BOOLEAN DEFAULT FALSE,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Inserts the content from a source model into a destination model, and updates the destination
application table.

Parameters

source_model
Name of the source model.

destination_model
Name of the destination model.

rebuild_apptab_index
TRUE causes indexes on the destination application table to be rebuilt after the models are
merged; FALSE does not rebuild any indexes.

drop_source_model
TRUE causes the source model (source_model) to be deleted after the models are merged;
FALSE (the default) does not delete the source model.

options
A comma-delimited string of options that overrides the default behavior of the procedure.
Currently, only the DOP (degree of parallelism) option is supported, to enable parallel
execution of this procedure and to specify the degree of parallelism to be associated with the
operation.

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

Before you merge any models, if you are using positional parameters, check to be sure that
you are specifying the correct models for the first and second parameters (source model for

Chapter 15
SEM_APIS.MERGE_MODELS

15-113

the first, destination model for the second). This is especially important if you plan to
specify drop_source_model=TRUE.

If appropriate, make copies of the destination model or both models before performing
the merge. To make a copy of a model, use SEM_APIS.CREATE_SEM_MODEL to
create an empty model with the desired name for the copy, and use
SEM_APIS.MERGE_MODELS to populate the newly created copy as the destination
model.

Some common uses for this procedure include the following:

• If you have read-only access to a model that you want to modify, you can clone
that model into an empty model on which you have full access, and then modify
this latter model.

• If you want to consolidate multiple models, you can use this procedure as often as
necessary to merge the necessary models. Merging all models beforehand and
using only the merged model simplifies entailment and can improve entailment
performance.

On a multi-core or multi-cpu machine, the DOP (degree of parallelism) option can be
beneficial. See Examples for an example that uses the DOP option.

If the source model is large, you may want to update the optimizer statistics on the
destination after the merge operation by calling the SEM_APIS.ANALYZE_MODEL
procedure.

The following considerations apply to the use of this procedure:

• You must be the owner of the destination model and have SELECT privilege on
the source model. If drop_second_model=TRUE, you must also be owner of the
source model.

• This procedure is not supported on virtual models (explained in Virtual Models).

• No table constraints are allowed on the destination application table.

For information about semantic network types and options, see Semantic Networks.

Examples

The following example inserts the contents of model M1 into M2.

EXECUTE SEM_APIS.MERGE_MODELS('M1', 'M2');

The following example inserts the contents of model M1 into M2, and it specifies a
degree of parallelism of 4 (up to four parallel threads for execution of the merge
operation).

EXECUTE SEM_APIS.MERGE_MODELS('M1', 'M2', null, null, 'DOP=4');

15.91 SEM_APIS.MIGRATE_DATA_TO_CURRENT
Format

SEM_APIS.MIGRATE_DATA_TO_CURRENT(
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Chapter 15
SEM_APIS.MIGRATE_DATA_TO_CURRENT

15-114

Description

Migrates semantic data from before Oracle Database Release 20 data format to the format
needed for use with RDF in the current Oracle Database release.

Parameters

options
If you specify INS_AS_SEL=T, the migration is performed using a bulk load operation. If you
do not specify that value, then by default update operations are performed. See the Usage
Notes for more information.

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

You must use this procedure to migrate semantic data created using versions of Oracle
Database earlier than Release 20, as explained in Required Migration of Pre-12.2 Semantic
Data.

This procedure does not perform any operation on semantic data that is already in the current
format.

For schema-private semantic networks, this procedure also updates the definition of semantic
network triggers, views, and PL/SQL packages in the network owner’s schema.

For the options parameter, if the amount of data to be migrated is small, the default (not
specifying the parameter) probably provides adequate performance. However, for large
amounts of data, specifying INS_AS_SEL=T can improve performance significantly.

For an MDSYS-owned network, this procedure must be run as a DBA user. For a schema-
private network, this procedure must be run as the network owner.

Examples

The following example migrates Release 19 semantic data in the MDSYS-owned network to
the format for the current Oracle Database version. It performs the migration using a bulk
load operation.

EXECUTE sem_apis.migrate_data_to_current('INS_AS_SEL=T');

The following example migrates Release 19 semantic data in the MDSYS-owned network to
the format for the current Oracle Database version. It performs the migration using update
operations (the default).

EXECUTE sem_apis.migrate_data_to_current;

The following example migrates Release 19 semantic data in a schema-private network
(named NET1 and owned by RDFUSER) to the format for the current Oracle Database
version. It performs the migration using update operations (the default).

EXECUTE sem_apis.migrate_data_to_current(network_owner=>'RDFUSER',
network_name=>'NET1');

Chapter 15
SEM_APIS.MIGRATE_DATA_TO_CURRENT

15-115

15.92 SEM_APIS.MIGRATE_DATA_TO_STORAGE_V2
Format

SEM_APIS.MIGRATE_DATA_TO_STORAGE_V2(
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Migrates semantic data from escaped storage form to unescaped storage form.

Parameters

options
If you specify PARALLEL=<n>, the migration is performed using the specified degree of
parallelism. If you do not specify this option, then by default no parallel processing is
used.

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

It is strongly recommended that you use unescaped storage form for your semantic
network, because it reduces storage cost and improves query performance, while
requiring no changes to your existing applications.

For an MDSYS-owned network, this procedure must be run as a DBA user. For a
schema-private network, this procedure must be run as the network owner.

After executing this procedure, a row with the following column values should be
present in the network’s RDF_PARAMETER table (described in RDF_PARAMETER
Table in Semantic Networks):

• Namespace: NETWORK

• Attribute: STORAGE_FORM

• Value: UNESC

• Description: Storage form setting for a semantic network.

See also Migrating from Escaped to Unescaped Storage Form.

Examples

The following example migrates the MDSYS semantic network from escaped storage
form to unescaped storage form. A degree of parallelism of 4 is used for the operation.

EXECUTE sem_apis.migrate_data_to_storage_v2(options=>' PARALLEL=4 ');

The following example migrates a schema-private semantic network named NET1
owned by RDFUSER from escaped storage form to unescaped storage form.

Chapter 15
SEM_APIS.MIGRATE_DATA_TO_STORAGE_V2

15-116

EXECUTE sem_apis.migrate_data_to_storage_v2(network_owner=>'RDFUSER',
network_name=>'NET1');

15.93 SEM_APIS.MOVE_SEM_NETWORK_DATA
Format

SEM_APIS.MOVE_SEM_NETWORK_DATA(
 dest_schema IN DBMS_ID,
 dest_tbs_name IN DBMS_ID DEFAULT NULL,
 degree IN INTEGER DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Moves semantic network data from a source semantic network to a destination (staging)
schema.

Parameters

dest_schema
The staging schema to which the semantic network data will be moved.

dest_tbs_name
The tablespace to use for objects created in the destination (staging) schema. If null, the
default tablespace for the destination schema will be used.

degree
Degree of parallelism to use for any SQL insert or index building operations. The default is
no parallel execution.

options
(Reserved for future use.)

network_owner
Owner of the source semantic network for the move operation. (See Table 1-1.)

network_name
Name of the source semantic network for the move operation. (See Table 1-1.)

Usage Notes

You must have DBA privileges to call this procedure.

For more information and examples, see Moving, Restoring, and Appending a Semantic
Network.

For information about semantic network types and options, see Semantic Networks.

Examples

The following example moves a semantic network from the MYNET semantic network owned
by RDFADMIN to the RDFEXPIMPU staging schema>

EXECUTE
sem_apis.move_sem_network_data(dest_schema=>'RDFEXPIMPU',network_owner=>'RDFADMIN',netw
ork_name=>'MYNET');

Chapter 15
SEM_APIS.MOVE_SEM_NETWORK_DATA

15-117

15.94 SEM_APIS.PRIVILEGE_ON_APP_TABLES
Format

SEM_APIS.PRIVILEGE_ON_APP_TABLES(
 command IN VARCHAR2 DEFAULT 'GRANT',
 privilege IN VARCHAR2 DEFAULT 'SELECT',
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Grants (or revokes) SELECT or INSERT privilege to (or from) MDSYS on application
tables corresponding to all the RDF models owned by the invoker.

Parameters

command
SQL statement, with possible values GRANT (the default) or REVOKE (case insensitive).

privilege
Privilege name, with possible values SELECT (the default) or INSERT (case insensitive).

network_owner

Owner of the semantic network. (See Table 1-1.)

network_name

Name of the semantic network. (See Table 1-1.)

Usage Notes

For information about semantic network types and options, see Semantic Networks.

Examples

The following example grants SELECT privilege to MDSYS on application tables
corresponding to all the RDF models owned by the invoker.

EXECUTE SEM_APIS.PRIVILEGE_ON_APP_TABLES('grant', 'select');

15.95 SEM_APIS.PURGE_UNUSED_VALUES
Format

SEM_APIS.PURGE_UNUSED_VALUES(
 flags IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Purges purges invalid geometry literal values from the semantic network.

Chapter 15
SEM_APIS.PRIVILEGE_ON_APP_TABLES

15-118

Parameters

flags
An optional quoted string with one or more of the following keyword specifications:

• MBV_METHOD=SHADOW allows the use of a different value loading strategy that may lead to
faster processing when a large number of values need to be purged.

• PARALLEL=<integer> allows much of the processing to be done in parallel using the
specified integer degree of parallelism to be associated with the operation. If only
PARALLEL is specified without a degree, a default degree will be used.

• PUV_COMPUTE_VIDS_USED allows use of a different strategy that may lead to faster
processing when most of the values are expected to be purged.

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

Before calling this procedure, you must grant to MDSYS the SELECT privilege on application
tables for all the currently existing RDF models.

For more usage information and an extended example, see Purging Unused Values.

It is recommended that you execute this procedure after using
SEM_APIS.VALIDATE_GEOMETRIES to check that all geometry literals in the specified
model are valid for the provided SRID and tolerance values.

For information about semantic network types and options, see Semantic Networks.

Examples

The following example purges unused values using a degree of parallelism of 4.

EXECUTE SEM_APIS.PURGE_UNUSED_VALUES(flags => 'PARALLEL=4');

15.96
SEM_APIS.SEM_APIS.REFRESH_MATERIALIZED_VIEW

Format

SEM_APIS.REFRESH_MATERIALIZED_VIEW (
 mv_name IN VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL,
);

Description

Refreshes a materialized join view for an RDF graph stored in Oracle Database.

Chapter 15
SEM_APIS.SEM_APIS.REFRESH_MATERIALIZED_VIEW

15-119

Parameters

mv_name
Name of the materialized view to refresh.

options
(Reserved for future use.)

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

For more information, see RDF Support for Materialized Join Views.

For information about semantic network types and options, see Semantic Networks.

Examples

The following example refreshes the materialized view MVX.

EXECUTE SEM_APIS.REFRESH_MV_BITMAP_INDEX('MVX');

15.97
SEM_APIS.REFRESH_SEM_NETWORK_INDEX_INFO

Format

SEM_APIS.REFRESH_SEM_NETWORK_INDEX_INFO(
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Refreshes the information about semantic network indexes.

Parameters

options
(Reserved for future use)

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

This procedure updates the information in the SEM_NETWORK_INDEX_INFO view,
which is described in SEM_NETWORK_INDEX_INFO View.

Chapter 15
SEM_APIS.REFRESH_SEM_NETWORK_INDEX_INFO

15-120

For information about semantic network types and options, see Semantic Networks.

Examples

The following example refreshes the information about semantic network indexes.

EXECUTE sem_apis.refresh_sem_network_index_info;

15.98 SEM_APIS.REMOVE_DUPLICATES
Format

SEM_APIS.REMOVE_DUPLICATES(
 model_name IN VARCHAR2,
 threshold IN FLOAT DEFAULT 0.3,
 rebuild_apptab_index IN BOOLEAN DEFAULT TRUE,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Removes duplicate triples from a model.

Parameters

model_name
Name of the model.

threshold
A value to determine how numerous triples must be in order for the removal operation to be
performed. This procedure removes triples only if the number of triples in the model exceeds
the following formula: (total-triples - total-unique-triples + 0.01) / (total-unique-triples + 0.01).
For the default value of 0.3 and a model containing 1000 total triples (including duplicates),
duplicate triples would be removed only if the number of duplicates exceeds approximately
230.
The lower the threshold value, the fewer duplicates are needed for the procedure to remove
duplicates; the higher the threshold value, the more duplicates are needed for the procedure
to remove duplicates.

rebuild_apptab_index
TRUE (the default) causes all usable indexes on tables that were affected by this operation to
be rebuilt after the duplicate triples are removed; FALSE does not rebuild any indexes.

options
(Reserved for future use.)

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

When duplicate triples are removed, all information in the removed rows is lost, including
information in columns other than the triple column.

Chapter 15
SEM_APIS.REMOVE_DUPLICATES

15-121

This procedure is not supported on virtual models (explained in Virtual Models).

If the model is empty, or if it contains no duplicate triples or not enough duplicate
triples (as computed using the threshold value), this procedure does not perform any
removal operations.

If there are not enough duplicates (as computed using the threshold value) to perform
the operation, an informational message is displayed.

If unusable indexes are involved, be sure that the SKIP_UNUSABLE_INDEXES
system parameter is set to TRUE. Although TRUE is the default value for this parameter,
some production databases may use the value FALSE; therefore, if you need to change
it, enter the following:

SQL> alter session set skip_unusable_indexes=true;

To use this procedure on an application table with one or more user-defined triggers,
you must connect as a DBA user and grant the ALTER ANY TRIGGER privilege to the
MDSYS user, as follows:

SQL> grant alter any trigger to MDSYS;

For information about semantic network types and options, see Semantic Networks.

Examples

The following example removes duplicate triples in the model named family. It
accepts the default threshold value of 0.3 and (by default) rebuilds indexes after the
duplicates are removed.

EXECUTE SEM_APIS.REMOVE_DUPLICATES('family');

15.99 SEM_APIS.RENAME_ENTAILMENT
Format

SEM_APIS.RENAME_ENTAILMENT(
 old_name IN VARCHAR2,
 new_name IN VARCHAR2,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Renames an entailment (rules index).

Parameters

old_name
Name of the existing entailment to be renamed.

new_name
New name for the entailment.

network_owner
Owner of the semantic network. (See Table 1-1.)

Chapter 15
SEM_APIS.RENAME_ENTAILMENT

15-122

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

For information about semantic network types and options, see Semantic Networks.

Examples

The following example renames a entailment named OWLTST_IDX to MY_OWLTST_IDX.

EXECUTE sem_apis.rename_entailment('owltst_idx', 'my_owltst_idx');

15.100 SEM_APIS.RENAME_MODEL
Format

SEM_APIS.RENAME_MODEL(
 old_name IN VARCHAR2,
 new_name IN VARCHAR2,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Renames a model.

Parameters

old_name
Name of the existing model to be renamed.

new_name
New name for the model.

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

The following considerations apply to the use of this procedure:

• You must be the owner of the existing model.

• This procedure is not supported on virtual models (explained in Virtual Models).

Contrast this procedure with SEM_APIS.SWAP_NAMES, which swaps (exchanges) the
names of two existing models.

For information about semantic network types and options, see Semantic Networks.

Examples

The following example renames a model named MODEL1 to MODEL2.

EXECUTE sem_apis.rename_model('model1', 'model2');

Chapter 15
SEM_APIS.RENAME_MODEL

15-123

15.101 SEM_APIS.RES2VID
Format

SEM_APIS.RES2VID(
 vTab IN VARCHAR2,
 uri IN VARCHAR2,
 lt IN VARCHAR2 DEFAULT NULL,
 lang IN VARCHAR2 DEFAULT NULL,
 lval IN CLOB DEFAULT NULL,
) RETURN NUMBER;

Description

Returns the VALUE_ID for the canonical version of an RDF term, or NULL if the term
does not exist in the values table.

Parameters

vTab
Values table to query for the VALUE_ID value. (Usually RDF_VALUE$)

uri
Prefix value of the RDF term.

lt
Data type URI of a types literal to look up. Do not include the enclosing angle brackets
(‘<’ and ‘>’).

lang
Language tag of a language tagged literal to look up.

lval
The plain literal portion of a long literal to look up.

Usage Notes

For information about the components of an RDF term stored in the RDF_VALUE$
table, see Semantic Metadata Tables and Views..

See also RDF Integration with Property Graph Data Stored in Oracle Database.

Examples

The following example returns VALUE_ID values for the canonical versions of RDF
terms. Comments before each SQL statement describe the purpose of the statement.

-- Look up the VALUE_ID for the RDF term <http://www.example.com/a>.
SELECT sem_apis.res2vid('RDF_VALUE$','<http://www.example.com/a>') FROM DUAL;

-- Look up the VALUE_ID for the RDF term "abc".
SELECT sem_apis.res2vid('RDF_VALUE$','"abc"') FROM DUAL;

-- Look up the VALUE_ID for the RDF term "10"^^<http://www.w3.org/2001/
XMLSchema#decimal>.
SELECT sem_apis.res2vid('RDF_VALUE$','"10"','http://www.w3.org/2001/
XMLSchema#decimal') FROM DUAL;

Chapter 15
SEM_APIS.RES2VID

15-124

-- Look up the VALUE_ID for the RDF term "abc"@en.
SELECT sem_apis.res2vid('RDF_VALUE$','"abc"',lang=>'en') FROM DUAL;

-- Look up the VALUE_ID for the long literal RDF term '"a CLOB literal"'.
SELECT sem_apis.res2vid('RDF_VALUE$',null,lval=>'"a CLOB literal"') FROM DUAL;

15.102 SEM_APIS.RESTORE_SEM_NETWORK_DATA
Format

SEM_APIS.RESTORE_SEM_NETWORK_DATA(
 from_schema DBMS_ID,
 degree INTEGER DEFAULT NULL,
 options VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Restores moved semantic network data from a staging schema back into a source semantic
network.

Parameters

from_schema
The staging schema that contains moved semantic network data to be restored.

degree
Degree of parallelism to use for any SQL insert or index building operations. The default is
no parallel execution.

options
String specifying any options to use during the append operation. Supported options are:

• PURGE=T – drop all remaining semantic network data in the staging schema after the
append operation completes.

network_owner
Owner of the destination semantic network for the restore operation. (See Table 1-1.)

network_name
Name of the destination semantic network for the restore operation. (See Table 1-1.)

Usage Notes

Partition exchange operations rather than SQL INSERT statements are used to move most of
the data during the append operation, so the staging schema will no longer contain complete
semantic network data after the restore operation is complete.

Moved semantic network data can only be restored into the original source semantic network
from which it was moved.

You must have DBA privileges to call this procedure.

For more information, see Moving, Restoring, and Appending a Semantic Network.

For information about semantic network types and options, see Semantic Networks.

Chapter 15
SEM_APIS.RESTORE_SEM_NETWORK_DATA

15-125

Examples

The following example restores a semantic network from the RDFEXPIMPU staging
schema into the MYNET semantic network owned by RDFADMIN.

EXECUTE
sem_apis.restore_sem_network_data(from_schema=>'RDFEXPIMPU',network_owner=>'RDFAD
MIN',network_name=>'MYNET');

15.103 SEM_APIS.REVOKE_MODEL_ACCESS_PRIV
Format

SEM_APIS.REVOKE_MODEL_ACCESS_PRIV(
 model_name IN VARCHAR2,
 user_name IN VARCHAR2,
 privilege IN VARCHAR2,
 user_view IN VARCHAR2 DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Revokes access privilege on a model or entailment.

Parameters

model_name
Name of the model.

user_name
Database user that is recipient of this privilege.

privilege
Specifies the type of privilege that is granted. Currently allowed values include the
following:

• QUERY: Query the model using SPARQL

• SELECT, READ: Retrieve model content using SQL. For schema-private network,
the source for the content is the RDFT_<model> view in the network owner's
schema or the view name, if any, specified for the user_view parameter. For
MDSYS-owned network, the source for the content is the application table.

• INSERT, UPDATE, DELETE: Perform SPARQL Update (DML) operations on the
model or SQL DML operations. For SQL DML, the target object is different
depending upon the type of network. For schema-private network, it is the
RDFT_<model> view in the network owner's schema and for MDSYS-owned
network, it is the application table.

Chapter 15
SEM_APIS.REVOKE_MODEL_ACCESS_PRIV

15-126

Note:

QUERY is the only valid choice if the model is not a regular model (that is, not
created using sem_apis.create_sem_model).

user_view
Applicable to schema-private network only. If a view was created on the RDFT_<model> view
at model creation time using sem_apis.create_sem_model or later, privilege is revoked on
that view.

options
If user specifies the word ENTAILMENT as part of the string value, then the specified
model_name is taken as the name of an entailment (rules index). (Additional words or phrases
may be allowed in future.)

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

This does not affect the recipient's query-only or full access to the semantic network (which
guarantees access to dictionary tables, but not individual models). This operation revokes
access to the specified model only.

Examples

The following example revokes privilege from database user USER1 for use of SPARQL query
against a semantic technology model named articles in the schema-private network NET1
owned by database user RDFUSER. (This example refers to the model described in
Example 1-121.)

EXECUTE SEM_APIS.REVOKE_MODEL_ACCESS_PRIV('articles', 'USER1', 'QUERY',
network_owner=>'RDFUSER', network_name=>'NET1');

15.104 SEM_APIS.REVOKE_MODEL_ACCESS_PRIVS
Format

SEM_APIS.REVOKE_MODEL_ACCESS_PRIVS(
 model_name IN VARCHAR2,
 user_name IN VARCHAR2,
 priv_list IN VARCHAR2,
 user_view IN VARCHAR2 DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Revokes access privileges on a model or entailment.

Chapter 15
SEM_APIS.REVOKE_MODEL_ACCESS_PRIVS

15-127

Parameters

model_name
Name of the model.

user_name
Database user that is recipient of this privilege.

privilege
Specifies the type of privilege that is granted. Currently allowed values include the
following:

• QUERY: Query the model using SPARQL

• SELECT, READ: Retrieve model content using SQL. For schema-private network,
the source for the content is the RDFT_<model> view in the network owner's
schema or the view name, if any, specified for the user_view parameter. For
MDSYS-owned network, the source for the content is the application table.

• INSERT, UPDATE, DELETE: Perform SPARQL Update (DML) operations on the
model or SQL DML operations. For SQL DML, the target object is different
depending upon the type of network. For schema-private network, it is the
RDFT_<model> view in the network owner's schema and for MDSYS-owned
network, it is the application table.

Note:

QUERY is the only valid choice if the model is not a regular model (that is, not
created using sem_apis.create_sem_model).

user_view
Applicable to schema-private network only. If a view was created on the RDFT_<model>
view at model creation time using sem_apis.create_sem_model or later, privileges are
revoked on that view.

options
If user specifies the word ENTAILMENT as part of the string value, then the specified
model_name is taken as the name of an entailment (rules index). (Additional words or
phrases may be allowed in future.)

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

This does not affect the recipient's query-only or full access to the semantic network
(which guarantees access to dictionary tables, but not individual models). This
operation revokes access to the specified model only.

Chapter 15
SEM_APIS.REVOKE_MODEL_ACCESS_PRIVS

15-128

Examples

The following example revokes privilege from database user USER1 for performing DML
operations against a semantic technology model named articles in the schema-private
network NET1 owned by database user RDFUSER. (This example refers to the model described
in Example 1-121.)

EXECUTE SEM_APIS.REVOKE_MODEL_ACCESS_PRIVS('articles', 'USER1',
sys.odcivarchar2list('INSERT','UPDATE','DELETE'), network_owner=>'RDFUSER',
network_name=>'NET1');

15.105 SEM_APIS.REVOKE_NETWORK_ACCESS_PRIVS
Format

SEM_APIS.REVOKE_NETWORK_ACCESS_PRIVS(
 network_owner IN VARCHAR2,
 network_name IN VARCHAR2,
 network_user IN VARCHAR2,
 options IN VARCHAR2 default NULL);

Description

Revokes access privileges from a database user other than the owner of a schema-private
semantic network.

Parameters

network_owner
Owner of the network. (Cannot be MDSYS.)

network_name
Name of the network. (Must be a schema-private network.)

network_user
Database user (other than the network owner) from which to revoke access privileges to the
network.

options
String specifying options for access using the form OPTION_NAME=option_value.
If CASCADE=T is specified, any RDF objects owned by the database user will be dropped as
part of this operation.

Usage Notes

You must have DBA privileges or be the owner of the specified network to call this procedure.

If the database user (network_user) owns any RDF objects in the schema-private network
and if CASCADE=T is not specified, an error will be raised.

For information about semantic network types and options, see Semantic Networks.

Examples

The following example revokes full access on the mynet1 network owned by scott from
rdfuser1.

Chapter 15
SEM_APIS.REVOKE_NETWORK_ACCESS_PRIVS

15-129

EXECUTE SEM_APIS.REVOKE_NETWORK_ACCESS_PRIVS('scott','mynet1','rdfuser1');

15.106
SEM_APIS.REVOKE_NETWORK_SHARING_PRIVS

Format

SEM_APIS.REVOKE_NETWORK_SHARING_PRIVS(
 network_owner IN VARCHAR2,
 options IN VARCHAR2 default NULL);

Description

Revokes from a database user the privileges required for sharing, with other database
users, any schema-private networks owned (currently or in the future) by the database
user

Parameters

network_owner
Owner of the network. (Cannot be MDSYS.)

options
(Reserved for future use)

Usage Notes

You must have DBA privileges to call this procedure.

If the database user owns at least one schema-private network that has sharing
enabled, an exception will be raised. (The user must first disable sharing of any such
networks.)

For information about semantic network types and options, see Semantic Networks.

Examples

The following example revokes from database user scott the privileges for sharing
any schema-private networks that this user owns or will own.

EXECUTE SEM_APIS.REVOKE_NETWORK_SHARING_PRIVS('scott');

15.107 SEM_APIS.SET_ENTAILMENT_STATS
Format

SEM_APIS.SET_ENTAILMENT_STATS (
 entailment_name IN VARCHAR2,
 numrows IN NUMBER DEFAULT NULL,
 numblks IN NUMBER DEFAULT NULL,
 avgrlen IN NUMBER DEFAULT NULL,
 flags IN NUMBER DEFAULT NULL,
 no_invalidate IN BOOLEAN DEFAULT DBMS_STATS.AUTO_INVALIDATE,
 cachedblk IN NUMBER DEFAULT NULL,
 cachehit IN NUMBER DEFAULT NULL,
 force IN BOOLEAN DEFAULT FALSE,

Chapter 15
SEM_APIS.REVOKE_NETWORK_SHARING_PRIVS

15-130

 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Sets statistics for a specified entailment.

Parameters

entailment_name
Name of the entailment.

(other parameters)
See the parameter explanations for the DBMS_STATS.SET_TABLE_STATS procedure in
Oracle Database PL/SQL Packages and Types Reference, although force here applies to
entailment statistics.

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

See the information about the DBMS_STATS package inOracle Database PL/SQL Packages
and Types Reference.

See also Managing Statistics for Semantic Models and the Semantic Network.

For information about semantic network types and options, see Semantic Networks.

Examples

The following example sets statistics for an entailment named OWLTST_IDX.

EXECUTE SEM_APIS.SET_ENTAILMENT_STATS('owltst_idx', numrows => 100);

15.108 SEM_APIS.SET_MODEL_STATS
Format

SEM_APIS.SET_MODEL_STATS (
 model_name IN VARCHAR2,
 numrows IN NUMBER DEFAULT NULL,
 numblks IN NUMBER DEFAULT NULL,
 avgrlen IN NUMBER DEFAULT NULL,
 flags IN NUMBER DEFAULT NULL,
 no_invalidate IN BOOLEAN DEFAULT DBMS_STATS.AUTO_INVALIDATE,
 cachedblk IN NUMBER DEFAULT NULL,
 cachehit IN NUMBER DEFAULT NULL,
 force IN BOOLEAN DEFAULT FALSE,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Sets statistics for a specified model.

Chapter 15
SEM_APIS.SET_MODEL_STATS

15-131

Parameters

model_name
Name of the model.

(other parameters)
See the parameter explanations for the DBMS_STATS.DELETE_TABLE_STATS
procedure in Oracle Database PL/SQL Packages and Types Reference, although
force here applies to model statistics.

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

See the information about the DBMS_STATS package inOracle Database PL/SQL
Packages and Types Reference.

See also Managing Statistics for Semantic Models and the Semantic Network.

For information about semantic network types and options, see Semantic Networks.

Examples

The following example sets statistics for a model named FAMILY.

EXECUTE SEM_APIS.SET_MODEL_STATS('family', numrows => 100);

15.109 SEM_APIS.SPARQL_TO_SQL
Format

SEM_APIS.SPARQL_TO_SQL(
 sparql_query IN CLOB,
 models IN RDF_MODELS DEFAULT NULL,
 rulebases IN RDF_RULEBASES DEFAULT NULL,
 aliases IN RDF_ALIASES DEFAULT NULL,
 index_status IN VARCHAR2 DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL
 graphs IN RDF_GRAPHS DEFAULT NULL,
 named_graphs IN RDF_GRAPHS DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL) RETURN CLOB;

Description

Translates a SPARQL query into a SQL query string that can be executed by an
application programl.

Parameters

sparql_query
A string literal with one or more triple patterns, usually containing variables.

Chapter 15
SEM_APIS.SPARQL_TO_SQL

15-132

models
The model or models to use.

rulebases
One or more rulebases whose rules are to be applied to the query

aliases
One or more namespaces to be used for expansion of qualified names in the query pattern.

index_status
The status of the relevant entailment for this query.

options
Options that can affect the results of queries.

graphs
The set of named graphs from which to construct the default graph for the query.

named_graphs
The set of named graphs that can be matched by a GRAPH clause.

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

Before using this procedure, be sure you understand the material in Using the
SEM_APIS.SPARQL_TO_SQL Function to Query Semantic Data.

For information about semantic network types and options, see Semantic Networks.

Examples

The following example translates a SPARQL query into a SQL query string.

DECLARE
 sparql_stmt clob;
 sql_stmt clob;
BEGIN
 sparql_stmt := '{?x :grandParentOf ?y . ?x rdf:type :Male}';
 sql_stmt := sem_apis.sparql_to_sql(
 sparql_stmt,
 sem_models('family'),
 SEM_Rulebases('RDFS','family_rb'),
 SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
 null);
 execute immediate
 'create table gf_table as
 select x grandfather, y grandchild from('|| sql_stmt || ')';
END;
/

Chapter 15
SEM_APIS.SPARQL_TO_SQL

15-133

15.110 SEM_APIS.SWAP_NAMES
Format

SEM_APIS.SWAP_NAMES(
 model1 IN VARCHAR2,
 model2 IN VARCHAR2,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Swaps (exchanges) the names of two existing models.

Parameters

model1
Name of a model.

model2
Name of another model.

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

As a result of this procedure, the name of model model1 is changed to the (old) name
of model2, and the name of model model2 is changed to the (old) name of model1.

The order of the names does not affect the result. For example, you could specify TEST
for model1 and PRODUCTION for model2, or PRODUCTION for model1 and TEST for model2,
and the result will be the same.

Contrast this procedure with SEM_APIS.RENAME_MODEL, which renames an
existing model.

For information about semantic network types and options, see Semantic Networks.

Examples

The following example changes the name of the (old) TEST model to PRODUCTION,
and the name of the (old) PRODUCTION model to TEST.

EXECUTE sem_apis.swap_names('test', 'production');

15.111 SEM_APIS.TRUNCATE_SEM_MODEL
Format

SEM_APIS.TRUNCATE_SEM_MODEL(
 model_name IN VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL,

Chapter 15
SEM_APIS.SWAP_NAMES

15-134

 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Truncates a semantic technology model.

Parameters

model_name
Name of the model.

options
(Reserved for future use)

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

This procedure removes all triples and quads from the specified semantic model. For an
MDSYS-owned network, it also truncates the corresponding application table.

For a schema-private network, this is the only supported way to truncate a model. For the
MDSYS-owned network, you can truncate the model by using this procedure or by truncating
the corresponding application table.

To delete a model, use the SEM_APIS.DROP_SEM_MODEL procedure.

For information about semantic network types and options, see Semantic Networks.

Examples

The following example truncates a semantic technology model named articles. (This
example refers to the model described in Example 1-121.)

EXECUTE SEM_APIS.TRUNCATE_SEM_MODEL('articles', NULL, network_owner=>'RDFUSER',
network_name=>'NET1');

15.112 SEM_APIS.UNESCAPE_CLOB_TERM
Format

SEM_APIS.UNESCAPE_CLOB_TERM(
 term IN CLOB CHARACTER SET ANY_CS
) RETURN CLOB CHARACTER SET val%CHARSET;

Description

Returns the input RDF term with special characters and non-ASCII characters unescaped as
specified by the W3C N-Triples format (http://www.w3.org/TR/rdf-testcases/#ntriples).

Chapter 15
SEM_APIS.UNESCAPE_CLOB_TERM

15-135

http://www.w3.org/TR/rdf-testcases/#ntriples

Parameters

term
The RDF term to unescape.

Usage Notes

For information about using the DO_UNESCAPE keyword in the options parameter of the
SEM_MATCH table function, see Using the SEM_MATCH Table Function to Query
Semantic Data.

Examples

The following example unescapes an input RDF term containing TAB and NEWLINE
characters.

SEM_APIS.UNESCAPE_CLOB_TERM('"abc\tdef\nhij"^^<http://www.w3.org/2001/
XMLSchema#string>')
 FROM DUAL;

15.113 SEM_APIS.UNESCAPE_CLOB_VALUE
Format

SEM_APIS.UNESCAPE_CLOB_VALUE(
 val IN CLOB CHARACTER SET ANY_CS,
 start_offset IN NUMBER DEFAULT 1,
 end_offset IN NUMBER DEFAULT 0,
 include_start IN NUMBER DEFAULT 0
) RETURN VARCHAR2 CHARACTER SET val%CHARSET;

Description

Returns the input CLOB value with special characters and non-ASCII characters
unescaped as specified by the W3C N-Triples format (http://www.w3.org/TR/rdf-
testcases/#ntriples).

Parameters

val
The CLOB text to unescape.

start_offset
The offset in val from which to start character unescaping. The default (1) causes
escaping to start at the first character of val.

end_offset
The offset in val from which to end character unescaping. The default (0) causes
escaping to continue through the end of val.

include_start
Set to 1 if the characters in val from 1 to start_offset should be prefixed
(prepended) to the return value. Otherwise, no such characters will be prefixed to the
return value.

Chapter 15
SEM_APIS.UNESCAPE_CLOB_VALUE

15-136

http://www.w3.org/TR/rdf-testcases/#ntriples
http://www.w3.org/TR/rdf-testcases/#ntriples

Usage Notes

For information about using the DO_UNESCAPE keyword in the options parameter of the
SEM_MATCH table function, see Using the SEM_MATCH Table Function to Query Semantic
Data.

Examples

The following example unescapes an input character string containing TAB and NEWLINE
characters.

SELECT SEM_APIS.UNESCAPE_CLOB_VALUE('abc\tdef\nhij')
 FROM DUAL;

15.114 SEM_APIS.UNESCAPE_RDF_TERM
Format

SEM_APIS.UNESCAPE_RDF_TERM(
 term IN VARCHAR2 CHARACTER SET ANY_CS
) RETURN VARCHAR2 CHARACTER SET val%CHARSET;

Description

Returns the input RDF term with special characters and non-ASCII characters unescaped as
specified by the W3C N-Triples format (http://www.w3.org/TR/rdf-testcases/#ntriples).

Parameters

term
The RDF term to unescape.

Usage Notes

For information about using the DO_UNESCAPE keyword in the options parameter of the
SEM_MATCH table function, see Using the SEM_MATCH Table Function to Query Semantic
Data.

Examples

The following example unescapes an input RDF term containing TAB and NEWLINE
characters.

SELECT SEM_APIS.UNESCAPE_RDF_TERM('"abc\tdef\nhij"^^<http://www.w3.org/2001/
XMLSchema#string>')
 FROM DUAL;

15.115 SEM_APIS.UNESCAPE_RDF_VALUE
Format

SEM_APIS.UNESCAPE_RDF_VALUE(
 val IN VARCHAR2 CHARACTER SET ANY_CS
) RETURN VARCHAR2 CHARACTER SET val%CHARSET;

Chapter 15
SEM_APIS.UNESCAPE_RDF_TERM

15-137

http://www.w3.org/TR/rdf-testcases/#ntriples

Description

Returns the input CLOB value with special characters and non-ASCII characters
unescaped as specified by the W3C N-Triples format (http://www.w3.org/TR/rdf-
testcases/#ntriples).

Parameters

val
The text to unescape.

utf_encode
Set to 1 (the default) if non-ASCII characters and non-printable ASCII characters
other than chr(8), chr(9), chr(10), chr(12), and chr(13) should be escaped. Otherwise,
such characters will not be escaped.

Usage Notes

For information about using the DO_UNESCAPE keyword in the options parameter of the
SEM_MATCH table function, see Using the SEM_MATCH Table Function to Query
Semantic Data.

Examples

The following example unescapes an input character string containing TAB and
NEWLINE characters.

SELECT SEM_APIS.UNESCAPE_RDF_VALUE('abc\tdef\nhij')
 FROM DUAL;

15.116 SEM_APIS.UPDATE_MODEL
Format

SEM_APIS.UPDATE_MODEL(
 apply_model IN VARCHAR2,
 update_stmt IN CLOB,
 match_models IN RDF_MODELS DEFAULT NULL,
 match_rulebases IN RDF_RULEBASES DEFAULT NULL,
 match_index_status IN VARCHAR2 DEFAULT NULL,
 match_options IN VARCHAR2 DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Executes a SPARQL Update statement on a semantic model.

Parameters

apply_model
Name of the RDF model to be updated. This is the name specified when the model
was created using the SEM_APIS.CREATE_SEM_MODEL procedure.
It cannot be a virtual model (see Virtual Models) or an RDF view).

Chapter 15
SEM_APIS.UPDATE_MODEL

15-138

http://www.w3.org/TR/rdf-testcases/#ntriples
http://www.w3.org/TR/rdf-testcases/#ntriples

update_stmt
One or more SPARQL Update commands to be executed on the apply_model model. Use
the semicolon (;) to separate commands.

match_models
A list of models that forms the SPARQL data set to query for graph pattern matching during a
SPARQL Update operation (INSERT WHERE, DELETE WHERE, COPY, MOVE, ADD). Can
include virtual models and/or RDF views If this parameter is not specified, the apply_model
model is used.

match_rulebases
A list of rulebases to use with match_models to provide an entailment that generates
additional triples or quads to use for graph pattern matching during a SPARQL Update
operation.

match_index_status
The desired status for any entailments used for graph pattern matching during a SPARQL
Update operation.

match_options
String specifying hints to influence graph pattern matching during a SPARQL Update
operation. The set of hints that can be used here is identical to those that can be used in the
options parameter of SEM_MATCH.

options
String specifying hints that affect SPARQL operations. See the Usage Notes for a list of
available options.

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

Before using this procedure, be sure you understand the material in Support for SPARQL
Update Operations on a Semantic Model.

The options parameter can specify one or more of the following options:

• APP_TAB_IDX={INDEX_NAME} uses an INDEX optimizer hint for INDEX_NAME when
doing DML operations on the application table.

• APPEND uses the SQL APPEND hint with DML operations.

• AUTOCOMMIT=F avoids starting and committing a transaction for each
SEM_APIS.UPDATE_MODEL call. Instead, this option gives transaction control to the
caller. Each SEM_APIS.UPDATE_MODEL call will execute as part of a main transaction
that is started, committed, or rolled back by the caller.

• BULK_OPTIONS={OPTIONS_STRING} uses OPTIONS_STRING as the flags
parameter when calling SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE.

• CLOB_UPDATE_SUPPORT=T turns on CLOB functionality.

• DEL_AS_INS=T performs a large delete operation by inserting all data that should
remain after the delete operation instead of doing deletions. This option may significantly
improve the performance of large delete operations.

Chapter 15
SEM_APIS.UPDATE_MODEL

15-139

• DYNAMIC_SAMPLING(n) uses DYNAMIC_SAMPLING(n) SQL optimizer hint with
query operations.

• FORCE_BULK=T uses the SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE
procedure for bulk insertion of triples. This option may provide better performance
on large updates.

• LOAD_CLOB_ONLY=T loads only triples/quads with object values longer than
4000 bytes in length when executing LOAD operations on N-Triple or N-Quad
documents.

• LOAD_OPTIONS={ OPTIONS_STRING } uses OPTIONS_STRING as the extra file
names when performing a LOAD operation.

• MM_OPTIONS={ OPTIONS_STRING } uses OPTIONS_STRING as the options
parameter for operations calling SEM_APIS.MERGE_MODELS.

• PARALLEL(n) uses the SQL PARALLEL(n) hint for query and DML operations.

• RESUME_LOAD=T allows resuming an interrupted LOAD operation.

• SERIALIZABLE=T uses the SERIALIZABLE transaction isolation level for
SEM_APIS.UPDATE_MODEL operations. READ COMMITTED is the default
transaction isolation level.

• STREAMING=F materializes intermediate data and uses INSERT AS SELECT
operations instead of streaming through JDBC Result Sets. This mode may
provide better performance on large updates or updates with complex patterns in
the WHERE clause.

• STRICT_BNODE=F enables ID-only operations for ADD, COPY, and MOVE. (ID-
only operations are explained in Blank Nodes: Special Considerations for SPARQL
Update.)

You can override some options settings at the session level by using the
MDSYS.SDO_SEM_UPDATE_CTX.SET_PARAM procedure, as explained in Setting
UPDATE_MODEL Options at the Session Level.

For information about semantic network types and options, see Semantic Networks.

Examples

The following example inserts six triples into a semantic model.

BEGIN
 sem_apis.update_model('electronics',
 'PREFIX : <http://www.example.org/electronics/>
 INSERT DATA {
 :camera1 :name "Camera 1" .
 :camera1 :price 120 .
 :camera1 :cameraType :Camera .
 :camera2 :name "Camera 2" .
 :camera2 :price 150 .
 :camera2 :cameraType :Camera .
 } ');
END;
/

Chapter 15
SEM_APIS.UPDATE_MODEL

15-140

15.117 SEM_APIS.VALIDATE_ENTAILMENT
Format

SEM_APIS.VALIDATE_ENTAILMENT(
 models_in IN SEM_MODELS,
 rulebases_in IN SEM_RULEBASES,
 criteria_in IN VARCHAR2 DEFAULT NULL,
 max_conflict IN NUMBER DEFAULT 100,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL
) RETURN RDF_LONGVARCHARARRAY;

Description

Validates entailments (rules indexes) that can be used to perform OWL or RDFS inferencing
for one or more models.

Parameters

models_in
One or more model names. Its data type is SEM_MODELS, which has the following
definition: TABLE OF VARCHAR2(25)

rulebases_in
One or more rulebase names. Its data type is SEM_RULEBASES, which has the following
definition: TABLE OF VARCHAR2(25). Rules and rulebases are explained in Inferencing: Rules
and Rulebases.

criteria_in
A comma-delimited string of validation checks to run. If you do not specify this parameter, by
default all of the following checks are run:

• UNSAT: Find unsatisfiable classes.

• EMPTY: Find instances that belong to unsatisfiable classes.

• SYNTAX_S: Find triples whose subject is neither URI nor blank node.

• SYNTAX_P: Find triples whose predicate is not URI.

• SELF_DIF: Find individuals that are different from themselves.

• INST: Find individuals that simultaneously belong to two disjoint classes.

• SAM_DIF: Find pairs of individuals that are same (owl:sameAs) and different
(owl:differentFrom) at the same time.

To specify fewer checks, specify a string with only the checks to be performed. For example,
criteria_in => 'UNSAT' causes the validation process to search only for unsatisfiable
classes.

max_conflict
The maximum number of conflicts to find before the validation process stops. The default
value is 100.

Chapter 15
SEM_APIS.VALIDATE_ENTAILMENT

15-141

options
(Not currently used. Reserved for Oracle use.).

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

This procedure can be used to detect inconsistencies in the original entailment. For
more information, see Validating OWL Models and Entailments.

This procedure returns a null value if no errors are detected or (if errors are detected)
an object of type RDF_LONGVARCHARARRAY, which has the following definition:
VARRAY(32767) OF VARCHAR2(4000)
To create an entailment, use the SEM_APIS.CREATE_ENTAILMENT procedure.

For information about semantic network types and options, see Semantic Networks.

Examples

For an example of this procedure, see Example 3-5 in Validating OWL Models and
Entailments.

15.118 SEM_APIS.VALIDATE_GEOMETRIES
Format

SEM_APIS.VALIDATE_GEOMETRIES(
 model_name IN VARCHAR2,
 SRID IN NUMBER,
 tolerance IN NUMBER,
 parallel IN PLS_INTEGER DEFAULT NULL,
 tablespace_name IN VARCHAR2 DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Determines if all geometry literals in the specified model are valid for the provided
SRID and tolerance values.

Parameters

model_name
Name of the model containing geometry literals to validate. Only native models can be
specified.

SRID
SRID for the spatial reference system.

tolerance
Tolerance value that should be used for validation.

Chapter 15
SEM_APIS.VALIDATE_GEOMETRIES

15-142

parallel
Degree of parallelism to be associated with the operation. For more information about
parallel execution, see Oracle Database VLDB and Partitioning Guide.

tablespace_name
Destination tablespace for the tables {model_name}_IVG$, {model_name}_FXT$, and
{model_name}_NFT$.

options
String specifying options for validation. Supported options are:

• RECTIFY=T. Staging tables {model_name}_FXT$ and {model_name}_NFT$ are
created, containing rectifiable and non-rectifiable triples, respectively. You can use these
tables to correct the model.

• AUTOCORRECT=T. Triples containing invalid but rectifiable geometries are corrected.
Also, table {model_name}_NFT$ containing triples with non-rectifiable geometries is
created so that you can correct such triples manually.

• STANDARD_CRS_URI=T. Use standard CRS (coordinate reference systems) URIs.

• GML_LIT_SRL=T. Use ogc:gmlLiteral serialization for corrected geometry literals.
ogc:wktLiteral serialization is the default.

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

This procedure is a wrapper for SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT
function.

A table {model_name}_IVG$ containing invalid WKT literals is created. Optionally, staging
tables {model_name}_FXT$ and {model_name}_NFT$ can be created, containing rectifiable
and non-rectifiable triples, respectively. Staging tables allow the user to correct invalid
geometries. Invalid but rectifiable geometry literals in a model can also be rectified
automatically if specified.

After correction of invalid geometries in a model, it is recommended that you execute
SEM_APIS.PURGE_UNUSED_VALUES to purge invalid geometry literal values from the
semantic network.

For an explanation of models, see Semantic Data Modeling and Semantic Data in the
Database.

For information about semantic network types and options, see Semantic Networks.

Examples

The following example creates a model with some invalid geometry literals and then validates
the model using the RECTIFY=T and STANDARD_CRS_URI=T options.

-- Create model
CREATE TABLE atab (id int, tri sdo_rdf_triple_s);
GRANT INSERT ON atab TO mdsys;
EXEC sem_apis.create_sem_model('m','atab','tri');

-- Insert invalid geometries

Chapter 15
SEM_APIS.VALIDATE_GEOMETRIES

15-143

-- Duplicated coordinates - rectifiable
insert into atab(tri) values (sdo_rdf_triple_s('m','<http://my.org/geom1>',
'<http://www.opengis.net/rdf#asWKT>', '"POLYGON((1.0 2.0, 3.0 2.0, 1.0 4.0, 1.0
2.0, 1.0 2.0))"^^<http://xmlns.oracle.com/rdf/geo/WKTLiteral>'));
-- Boundary is not closed – rectifiable
insert into atab(tri) values (sdo_rdf_triple_s('m','<http://my.org/geom2>',
'<http://www.opengis.net/rdf#asWKT>', '"POLYGON((1.0 2.0, 3.0 2.0, 3.0 4.0, 1.0
4.0))"^^<http://xmlns.oracle.com/rdf/geo/WKTLiteral>'));
-- Less than 4 points – non rectifiable
insert into atab(tri) values (sdo_rdf_triple_s('m:<http://my.org/g2>','<http://
my.org/geom3>', '<http://www.opengis.net/rdf#asWKT>', '"POLYGON((1.0 2.0, 3.0
2.0, 1.0 4.0))"^^<http://xmlns.oracle.com/rdf/geo/WKTLiteral>'));
commit;

-- Validate
EXEC sem_apis.validate_geometries(model_name=>'m',SRID=>8307,tolerance=>1.0,
options=>'STANDARD_CRS_URI=T RECTIFY=T');

-- Check invalid geometries
SELECT original_vid, error_msg, corrected_geom_literal FROM M_IVG$;

-- Check rectified triples
select RDFSTC_GRAPH, RDFSTC_SUB, RDFSTC_PRED, RDFSTC_OBJ from M_FXT$;

-- Check non-rectified triples
select RDFSTC_GRAPH, RDFSTC_SUB, RDFSTC_PRED, RDFSTC_OBJ, ERROR_MSG from
M_NFT$;

15.119 SEM_APIS.VALIDATE_MODEL
Format

SEM_APIS.VALIDATE_MODEL(
 models_in IN SEM_MODELS,
 criteria_in IN VARCHAR2 DEFAULT NULL,
 max_conflict IN NUMBER DEFAULT 100,
 options IN VARCHAR2 DEFAULT NULL
) RETURN RDF_LONGVARCHARARRAY;

Description

Validates one or more models.

Parameters

models_in
One or more model names. Its data type is SEM_MODELS, which has the following
definition: TABLE OF VARCHAR2(25)

criteria_in
A comma-delimited string of validation checks to run. If you do not specify this
parameter, by default all of the following checks are run:

• UNSAT: Find unsatisfiable classes.

• EMPTY: Find instances that belong to unsatisfiable classes.

• SYNTAX_S: Find triples whose subject is neither URI nor blank node.

Chapter 15
SEM_APIS.VALIDATE_MODEL

15-144

• SYNTAX_P: Find triples whose predicate is not URI.

• SELF_DIF: Find individuals that are different from themselves.

• INST: Find individuals that simultaneously belong to two disjoint classes.

• SAM_DIF: Find pairs of individuals that are same (owl:sameAs) and different
(owl:differentFrom) at the same time.

To specify fewer checks, specify a string with only the checks to be performed. For example,
criteria_in => 'UNSAT' causes the validation process to search only for unsatisfiable
classes.

max_conflict
The maximum number of conflicts to find before the validation process stops. The default
value is 100.

options
(Not currently used. Reserved for Oracle use.).

Usage Notes

This procedure can be used to detect inconsistencies in the original data model. For more
information, see Validating OWL Models and Entailments.

This procedure returns a null value if no errors are detected or (if errors are detected) an
object of type RDF_LONGVARCHARARRAY, which has the following definition:
VARRAY(32767) OF VARCHAR2(4000)

Examples

The following example validates the model named family.

SELECT SEM_APIS.VALIDATE_MODEL(SEM_MODELS('family')) FROM DUAL;

15.120 SEM_APIS.VALUE_NAME_PREFIX
Format

SEM_APIS.VALUE_NAME_PREFIX (
 value_name IN VARCHAR2,
 value_type IN VARCHAR2
) RETURN VARCHAR2;

Description

Returns the value in the VNAME_PREFIX column for the specified value name and value
type pair in the RDF_VALUE$ table.

Parameters

value_name
Value name. Must match a value in the VALUE_NAME column in the RDF_VALUE$ table,
which is described in Statements.

value_type
Value type. Must match a value in the VALUE_TYPE column in the RDF_VALUE$ table,
which is described in Statements.

Chapter 15
SEM_APIS.VALUE_NAME_PREFIX

15-145

Usage Notes

This function usually causes an index on the RDF_VALUE$ table to be used for
processing a lookup for values, and thus can make a query run faster.

Examples

The following query returns value name portions of all the lexical values in
RDF_VALUE$ table with a prefix value same as that returned by the
VALUE_NAME_PREFIX function. This query uses an index on the RDF_VALUE$
table, thereby providing efficient lookup.

SELECT value_name FROM RDF_VALUE$
 WHERE vname_prefix = SEM_APIS.VALUE_NAME_PREFIX(
 'http://www.w3.org/1999/02/22-rdf-syntax-ns#type','UR');

VALUE_NAME
--
http://www.w3.org/1999/02/22-rdf-syntax-ns#Alt
http://www.w3.org/1999/02/22-rdf-syntax-ns#Bag
http://www.w3.org/1999/02/22-rdf-syntax-ns#List
http://www.w3.org/1999/02/22-rdf-syntax-ns#Property
http://www.w3.org/1999/02/22-rdf-syntax-ns#Seq
http://www.w3.org/1999/02/22-rdf-syntax-ns#Statement
http://www.w3.org/1999/02/22-rdf-syntax-ns#XMLLiteral
http://www.w3.org/1999/02/22-rdf-syntax-ns#first
http://www.w3.org/1999/02/22-rdf-syntax-ns#nil
http://www.w3.org/1999/02/22-rdf-syntax-ns#object
http://www.w3.org/1999/02/22-rdf-syntax-ns#predicate
http://www.w3.org/1999/02/22-rdf-syntax-ns#rest
http://www.w3.org/1999/02/22-rdf-syntax-ns#subject
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/1999/02/22-rdf-syntax-ns#value

15 rows selected.

15.121 SEM_APIS.VALUE_NAME_SUFFIX
Format

SEM_APIS.VALUE_NAME_SUFFIX (
 value_name IN VARCHAR2,
 value_type IN VARCHAR2
) RETURN VARCHAR2;

Description

Returns the value in the VNAME_SUFFIX column for the specified value name and
value type pair in the RDF_VALUE$ table.

Parameters

value_name
Value name. Must match a value in the VALUE_NAME column in the RDF_VALUE$
table, which is described in Statements.

Chapter 15
SEM_APIS.VALUE_NAME_SUFFIX

15-146

value_type
Value type. Must match a value in the VALUE_TYPE column in the RDF_VALUE$ table,
which is described in Statements.

Usage Notes

This function usually causes an index on the RDF_VALUE$ table to be used for processing a
lookup for values, and thus can make a query run faster.

Examples

The following query returns value name portions of all the lexical values in RDF_VALUE$
table with a suffix value same as that returned by the VALUE_NAME_SUFFIX function. This
query uses an index on the RDF_VALUE$ table, thereby providing efficient lookup.

SELECT value_name FROM RDF_VALUE$
 WHERE vname_suffix = SEM_APIS.VALUE_NAME_SUFFIX(
 'http://www.w3.org/1999/02/22-rdf-syntax-ns#type','UR');

VALUE_NAME
--
http://www.w3.org/1999/02/22-rdf-syntax-ns#type

Chapter 15
SEM_APIS.VALUE_NAME_SUFFIX

15-147

16
SEM_OLS Package Subprograms

The SEM_OLS package contains subprograms (functions and procedures) related to triple-
level security to RDF data, using Oracle Label Security (OLS).

To use the subprograms in this chapter, you should understand the conceptual and usage
information in RDF Semantic Graph Overview and Fine-Grained Access Control for RDF
Data.

This chapter provides reference information about the subprograms, listed in alphabetical
order.

• SEM_OLS.APPLY_POLICY_TO_APP_TAB

• SEM_OLS.REMOVE_POLICY_FROM_APP_TAB

16.1 SEM_OLS.APPLY_POLICY_TO_APP_TAB
Format

SEM_OLS.APPLY_POLICY_TO_APP_TAB(
 policy_name IN VARCHAR2,
 schema_name IN VARCHAR2,
 table_name IN VARCHAR2,
 predicate IN VARCHAR2 DEFAULT NULL);

Description

Applies an OLS policy to an application table in the MDSYS-owned network.

Parameters

policy_name
Name of an existing OLS policy.

schema_name
Name of the schema containing the application table.

table_name
Name of the application table.

predicate
An additional predicate to combine with the label-based predicate.

Usage Notes

When you use triple-level security, OLS is applied to each semantic model in the network.
That is, label security is applied to the relevant internal tables and to all the application tables;
there is no need to manually apply policies to the application tables of existing semantic
models. However, if you need to create additional models after applying the OLS policy, you
must use the SEM_OLS.APPLY_POLICY_TO_APP_TAB procedure to apply OLS to the
application table before creating the model.

16-1

You must have the following to execute this procedure: EXECUTE privilege for the
SA_POLICY_ADMIN package, and the policy_DBA role.

Before executing this procedure, you must have executed the
SEM_RDFSA.APPLY_OLS_POLICY procedure specifying
SEM_RDFSA.TRIPLE_LEVEL_ONLY for the rdfsa_options parameter.

To remove the OLS policy from the application table, use the
SEM_OLS.REMOVE_POLICY_FROM_APP_TAB procedure.

For information about support for OLS, see Fine-Grained Access Control for RDF
Data.

This procedure applies only to the MDSYS-owned network, not to schema-private
networks. (If you try to apply this procedure to a schema-private network, the error
"ORA-20000: No application tables for schema-private network" is returned.) For
information about semantic network types and options, see Semantic Networks.

Examples

The following example applies an OLS policy named defense to the
MY_SCHEMA.MY_APP_TABLE application table.

begin
 sem_ols.apply_policy_to_app_table(
 policy_name => 'defense',
 schema_name => 'my_schema',
 table_name => 'my_app_table');
end;
/

16.2 SEM_OLS.REMOVE_POLICY_FROM_APP_TAB
Format

SEM_OLS.REMOVE_POLICY_FROM_APP_TAB(
 policy_name IN VARCHAR2,
 schema_name IN VARCHAR2,
 table_name IN VARCHAR2,
 check_model IN BOOLEAN DEFAULT TRUE);

Description

Permanently removes or detaches the OLS policy from an application table associated
with a model in the MDSYS-owned network.

Parameters

policy_name
Name of the existing OLS policy.

schema_name
Name of the schema containing the application table.

table_name
Name of the application table.

Chapter 16
SEM_OLS.REMOVE_POLICY_FROM_APP_TAB

16-2

check_model
TRUE (the default) checks if the model associated with the application table exists (and
generates an exception if the model exists); FALSE does not check if the model exists before
performing the operation.

Usage Notes

If you have dropped a semantic model and you no longer need to protect the application
table, you can use this procedure.

You must have the following to execute this procedure: EXECUTE privilege for the
SA_POLICY_ADMIN package, and the policy_DBA role.

Before executing this procedure, you must have executed the
SEM_RDFSA.APPLY_OLS_POLICY procedure specifying SEM_RDFSA.TRIPLE_LEVEL_ONLY
for the rdfsa_options parameter.

If check_model is TRUE (the default), an exception is generated if the associated model exists.
In this case, if you want to execute this procedure, you must first drop the model.

For information about support for OLS, see Fine-Grained Access Control for RDF Data.

This procedure applies only to the MDSYS-owned network, not to schema-private networks.
(If you try to apply this procedure to a schema-private network, the error "ORA-20000: No
application tables for schema-private network" is returned.) For information about semantic
network types and options, see Semantic Networks.

Examples

The following example removes the OLS policy named defense from the
MY_SCHEMA.MY_APP_TABLE application table.

begin
 sem_ols.remove_policy_from_app_table(
 policy_name => 'defense',
 schema_name => 'my_schema',
 table_name => 'my_app_table');
end;
/

Chapter 16
SEM_OLS.REMOVE_POLICY_FROM_APP_TAB

16-3

17
SEM_PERF Package Subprograms

The SEM_PERF package contains subprograms for examining and enhancing the
performance of the Resource Description Framework (RDF) and Web Ontology Language
(OWL) support in an Oracle database.

To use the subprograms in this chapter, you must understand the conceptual and usage
information in RDF Semantic Graph Overview and OWL Concepts.

This chapter provides reference information about the subprograms, listed in alphabetical
order.

• SEM_PERF.ANALYZE_AUX_TABLES

• SEM_PERF.DELETE_NETWORK_STATS

• SEM_PERF.DROP_EXTENDED_STATS

• SEM_PERF.EXPORT_NETWORK_STATS

• SEM_PERF.GATHER_STATS

• SEM_PERF.IMPORT_NETWORK_STATS

17.1 SEM_PERF.ANALYZE_AUX_TABLES
Format

SEM_PERF.ANALYZE_AUX_TABLES(
 model_name IN VARCHAR2,
 estimate_percent IN NUMBER DEFAULT DBMS_STATS.AUTO_SAMPLE_SIZE,
 method_opt IN VARCHAR2 DEFAULT NULL,
 degree IN NUMBER DEFAULT DBMS_STATS.AUTO_DEGREE,
 network_owner IN DBMS_ID DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Analyzes all the SPM tables currently present for the given RDF model.

Parameters

model_name
Name of the RDF model.

estimate_percent
Determines the percentage of rows to sample. For more information on gathering the
estimate_percent statistics, see DBMS_STATS.GATHER_TABLE_STATS procedure.

method_opt
Determines the column statistics collection. For more information on gathering the column
statistics, see DBMS_STATS.GATHER_TABLE_STATS

17-1

degree
Determines the degree of parallelism used for gathering statistics. For more
information on this procedure parameter see
DBMS_STATS.GATHER_TABLE_STATS

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

Examples

The following example gathers statistics for SPM auxiliary tables.

EXECUTE
SEM_PERF.ANALYZE_AUX_TABLES('m1',network_owner=>'RDFUSER',network_name=>'NET1');

17.2 SEM_PERF.DELETE_NETWORK_STATS
Format

SEM_PERF.DELETE_NETWORK_STATS (
 cascade_parts IN BOOLEAN DEFAULT TRUE,
 cascade_columns IN BOOLEAN DEFAULT TRUE,
 cascade_indexes IN BOOLEAN DEFAULT TRUE,
 no_invalidate IN BOOLEAN DEFAULT DBMS_STATS.AUTO_INVALIDATE,
 force IN BOOLEAN DEFAULT FALSE,
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Deletes statistics for the semantic network.

Parameters

options
Controls the scope of the operation:

• If MDSYS.SDO_RDF.VALUE_TABLE_ONLY, the operation applies only to the
MDSYS.RDF_VALUE$ table.

• If MDSYS.SDO_RDF.LINK_TABLE_ONLY, the operation applies only to the
MDSYS.RDF_LINK$ table.

• If null (the default), the operation applies to both the MDSYS.RDF_VALUE$ and
MDSYS.RDF_LINK$ tables.

(other parameters)
See the parameter explanations for the DBMS_STATS.DELETE_TABLE_STATS
procedure in Oracle Database PL/SQL Packages and Types Reference, although
force here applies to network statistics.

Chapter 17
SEM_PERF.DELETE_NETWORK_STATS

17-2

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

See the information about the DBMS_STATS package inOracle Database PL/SQL Packages
and Types Reference.

See also Managing Statistics for Semantic Models and the Semantic Network.

For information about semantic network types and options, see Semantic Networks.

Examples

The following example deletes statistics for the semantic network:

EXECUTE SEM_APIS.DELETE_NETWORK_STATS;

17.3 SEM_PERF.DROP_EXTENDED_STATS
Format

SEM_PERF.DROP_EXTENDED_STATS (
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Drops column groups used for extended optimizer statistics on the RDF_LINK$ table.

Parameters

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

To use this procedure, you must connect as a user with permission to execute it. By default,
when Spatial and Graph is installed as part of Oracle Database, only the MDSYS user can
execute this procedure; however, execution permission on this procedure can be granted to
users as needed.

The default column groups that will be dropped from RDF_LINK$ are: (CANON_END_NODE_ID,
START_NODE_ID) (P_VALUE_ID, CANON_END_NODE_ID) (P_VALUE_ID, START_NODE_ID)
See also:

• Dropping Extended Statistics at the Network Level

• The information about the DBMS_STATS package in Oracle Database PL/SQL Packages
and Types Reference

For information about semantic network types and options, see Semantic Networks.

Chapter 17
SEM_PERF.DROP_EXTENDED_STATS

17-3

Examples

The following example drops extended statistics for the semantic network:

EXECUTE SEM_PERF.DROP_EXTENDED_STATS;

17.4 SEM_PERF.EXPORT_NETWORK_STATS
Format

SEM_PERF.EXPORT_NETWORK_STATS (
 stattab IN VARCHAR2,
 statid IN VARCHAR2 DEFAULT NULL,
 cascade IN BOOLEAN DEFAULT TRUE,
 statown IN VARCHAR2 DEFAULT NULL,
 stat_category IN VARCHAR2 DEFAULT 'OBJECT_STATS',
 options IN VARCHAR2 DEFAULT NULL);

Description

Exports the statistics for the semantic network and stores them in the user statistics
table.

Parameters

options
Controls the scope of the operation:

• If MDSYS.SDO_RDF.VALUE_TABLE_ONLY, the operation applies only to the
MDSYS.RDF_VALUE$ table.

• If MDSYS.SDO_RDF.LINK_TABLE_ONLY, the operation applies only to the
MDSYS.RDF_LINK$ table.

• If null (the default), the operation applies to both the MDSYS.RDF_VALUE$ and
MDSYS.RDF_LINK$ tables.

(other parameters)
See the parameter explanations for the DBMS_STATS.EXPORT_TABLE_STATS
procedure in Oracle Database PL/SQL Packages and Types Reference.

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

See the information about the DBMS_STATS package inOracle Database PL/SQL
Packages and Types Reference.

See also Managing Statistics for Semantic Models and the Semantic Network.

For information about semantic network types and options, see Semantic Networks.

Chapter 17
SEM_PERF.EXPORT_NETWORK_STATS

17-4

Examples

The following example exports the statistics for the semantic network and stores them in a
table named STAT_TABLE.

EXECUTE SEM_APIS.EXPORT_NETWORK_STATS('stat_table');

17.5 SEM_PERF.GATHER_STATS
Format

SEM_PERF.GATHER_STATS(
 just_on_values_table IN BOOLEAN DEFAULT FALSE,
 degree IN NUMBER(38) DEFAULT NULL,
 estimate_percent IN NUMBER DEFAULT DBMS_STATS.AUTO_SAMPLE_SIZE,
 value_method_opt IN VARCHAR2 DEFAULT NULL,
 link_method_opt IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Gathers statistics about RDF and OWL tables and their indexes.

Parameters

just_on_values_table
TRUE collects statistics only on the table containing the lexical values of triples; FALSE (the
default) collects statistics on all major tables related to the storage of RDF and OWL data.
A value of TRUE reduces the execution time for the procedure; and it may be sufficient if you
need only to collect statistics on the values table (for example, if you use other interfaces to
collect any other statistics that you might need).

degree
Degree of parallelism. For more information about parallel execution, see Oracle Database
VLDB and Partitioning Guide.

estimate_percent
Determines the percentage of rows in MDSYS.RDF_LINK$ and MDSYS.RDF_VALUE$ to
sample.
The valid range is between 0.000001 and 100. You can use the constant
DBMS_STATS.AUTO_SAMPLE_SIZE (the default) to enable Oracle Database to determine the
appropriate sample size for optimal statistics.

value_method_opt
Accepts either of the following options, or both in combination, for the MDSYS.RDF_VALUE$
table:

• FOR ALL [INDEXED | HIDDEN] COLUMNS [size_clause]
• FOR COLUMNS [size clause] column|attribute [size_clause] [,column|attribute

[size_clause]...]
size_clause is defined as: size_clause := SIZE {integer | REPEAT | AUTO | SKEWONLY}
column is defined as: column := column_name | (extension)

Chapter 17
SEM_PERF.GATHER_STATS

17-5

• integer : Number of histogram buckets. Must be in the range [1, 2048].

• REPEAT : Collects histograms only on the columns that already have histograms.

• AUTO : Oracle Database determines the columns to collect histograms based on
data distribution and the workload of the columns.

• SKEWONLY : Oracle Database determines the columns to collect histograms based
on the data distribution of the columns.

• column_name : name of a column

• extension: Can be either a column group in the format of (column_name,
column_name [, ...]) or an expression.

The usual default is: FOR ALL COLUMNS SIZE 2048

link_method_opt
Accepts either of the following options, or both in combination, for the
MDSYS.RDF_LINK$ table:

• FOR ALL [INDEXED | HIDDEN] COLUMNS [size_clause]
• FOR COLUMNS [size clause] column|attribute [size_clause] [,column|

attribute [size_clause]...]
size_clause is defined as: size_clause := SIZE {integer | REPEAT | AUTO |
SKEWONLY}
column is defined as: column := column_name | (extension)
• integer : Number of histogram buckets. Must be in the range [1,2048].

• REPEAT : Collects histograms only on the columns that already have histograms.

• AUTO : Oracle Database determines the columns to collect histograms based on
data distribution and the workload of the columns.

• SKEWONLY : Oracle Database determines the columns to collect histograms based
on the data distribution of the columns.

• column_name : Name of a column.

• extension: Can be either a column group in the format of (column_name,
column_name [, ...]) or an expression.

The usual default is: FOR ALL COLUMNS SIZE AUTO FOR COLUMNS SIZE 2048
P_VALUE_ID CANON_END_NODE_ID START_NODE_ID G_ID (CANON_END_NODE_ID,
START_NODE_ID) (P_VALUE_ID, CANON_END_NODE_ID) (P_VALUE_ID,
START_NODE_ID)

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

To use this procedure, you must connect as a user with permission to execute it. By
default, when Spatial and Graph is installed as part of Oracle Database, only the
MDSYS user can execute this procedure; however execution permission on this
procedure can be granted to users as needed.

Chapter 17
SEM_PERF.GATHER_STATS

17-6

This procedure collects statistical information that can help you to improve inferencing
performance, as explained in Enhancing Inference Performance. This procedure internally
calls the DBMS_STATS.GATHER_TABLE_STATS procedure to collect statistics on RDF- and
OWL-related tables and their indexes, and stores the statistics in the Oracle Database data
dictionary. For information about using the DBMS_STATS package, see Oracle Database
PL/SQL Packages and Types Reference.

Gathering statistics uses significant system resources, so execute this procedure when it
cannot adversely affect essential applications and operations.

See also Managing Statistics for Semantic Models and the Semantic Network.

Examples

The following example gathers statistics about RDF and OWL related tables and their
indexes.

EXECUTE SEM_PERF.GATHER_STATS;

17.6 SEM_PERF.IMPORT_NETWORK_STATS
Format

SEM_PERF.IMPORT_NETWORK_STATS (
 stattab IN VARCHAR2,
 statid IN VARCHAR2 DEFAULT NULL,
 cascade IN BOOLEAN DEFAULT TRUE,
 statown IN VARCHAR2 DEFAULT NULL,
 no_invalidate IN BOOLEAN DEFAULT FALSE,
 force IN BOOLEAN DEFAULT FALSE,
 stat_category IN VARCHAR2 DEFAULT 'OBJECT_STATS',
 options IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Retrieves the statistics for the semantic network from a user statistics table and stores them
in the dictionary.

Parameters

options
Controls the scope of the operation:

• If MDSYS.SDO_RDF.VALUE_TABLE_ONLY, the operation applies only to the
MDSYS.RDF_VALUE$ table.

• If MDSYS.SDO_RDF.LINK_TABLE_ONLY, the operation applies only to the
MDSYS.RDF_LINK$ table.

• If null (the default), the operation applies to both the MDSYS.RDF_VALUE$ and
MDSYS.RDF_LINK$ tables.

(other parameters)
See the parameter explanations for the DBMS_STATS.IMPORT_TABLE_STATS procedure
in Oracle Database PL/SQL Packages and Types Reference, although force here applies to
network statistics.

Chapter 17
SEM_PERF.IMPORT_NETWORK_STATS

17-7

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

See the information about the DBMS_STATS package inOracle Database PL/SQL
Packages and Types Reference.

See also Managing Statistics for Semantic Models and the Semantic Network.

For information about semantic network types and options, see Semantic Networks.

Examples

The following example imports the statistics for the semantic network in a table named
STAT_TABLE, and stores them in the dictionary.

EXECUTE SEM_APIS.IMPORT_NETWORK_STATS('stat_table');

Chapter 17
SEM_PERF.IMPORT_NETWORK_STATS

17-8

18
SEM_RDFCTX Package Subprograms

The SEM_RDFCTX package contains subprograms (functions and procedures) to manage
extractor policies and semantic indexes created for documents.

To use the subprograms in this chapter, you should understand the conceptual and usage
information in Semantic Indexing for Documents.

This chapter provides reference information about the subprograms, listed in alphabetical
order.

• SEM_RDFCTX.ADD_DEPENDENT_POLICY

• SEM_RDFCTX.CREATE_POLICY

• SEM_RDFCTX.DROP_POLICY

• SEM_RDFCTX.MAINTAIN_TRIPLES

• SEM_RDFCTX.SET_DEFAULT_POLICY

• SEM_RDFCTX.SET_EXTRACTOR_PARAM

18.1 SEM_RDFCTX.ADD_DEPENDENT_POLICY
Format

SEM_RDFCTX.ADD_DEPENDENT_POLICY(
 index_name IN VARCHAR2,
 policy_name IN VARCHAR2,
 partition_name IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Adds a dependent policy to an (already created) index or index partition.

Parameters

index_name
Name of the index.

policy_name
Name of the dependent policy.

partition_name
If the specified index is local, the name of the target partition. (Otherwise, must be null.)

network_owner
Owner of the semantic network. (See Table 1-1.)

18-1

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

The base policy corresponding to the new dependent policy must already be a part of
the index.

For information about semantic network types and options, see Semantic Networks.

Examples

The following example adds a new dependent policy SEM_EXTR_PLUS_GEOONT to the
index ArticleIndex.

begin
 sem_rdfctx.add_dependent_policy (index_name => 'ArticleIndex',
 policy_name => 'SEM_EXTR_PLUS_GEOONT');
end;
/

18.2 SEM_RDFCTX.CREATE_POLICY
Format

SEM_RDFCTX.CREATE_POLICY(
 policy_name IN VARCHAR2,
 extractor IN mdsys.rdfctx_extractor,
 preferences IN sys.XMLType DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

or

SEM_RDFCTX.CREATE_POLICY(
 policy_name IN VARCHAR2,
 base_policy IN VARCHAR2,
 user_models IN SEM_MODELS DEFAULT NULL,
 user_entailments IN SEM_MODELS DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Creates an extractor policy. (The first format is for a base policy; the second format is
for a policy that is dependent on a base policy.)

Parameters

policy_name
Name of the extractor policy.

extractor
An instance of a subtype of the RDFCTX_EXTRACTOR type that encapsulates the
extraction logic for the information extractor.

preferences
Any preferences associated with the policy.

Chapter 18
SEM_RDFCTX.CREATE_POLICY

18-2

base_policy
Base extractor policy for a dependent policy.

user_models
List of user models for a dependent policy.

user_entailments
List of user entailments for a dependent policy.

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

An extractor policy created using this procedure determines the characteristics of a semantic
index that is created using the policy. Each extractor policy refers to an instance of an
extractor type, either directly or indirectly. An extractor policy with a direct reference to an
extractor type instance can be used to compose other extractor policies that include
additional RDF models for ontologies.

An instance of the extractor type assigned to the extractor parameter must be an instance of
a direct or indirect subtype of type mdsys.rdfctx_extractor.

The RDF models specified in the user_models parameter must be accessible to the user that
is creating the policy.

The RDF entailments specified in the user_entailments parameter must be accessible to the
user that is creating the policy. Note that the RDF models underlying the entailments do not
get automatically included in the dependent policy. To include one or more of those
underlying RDF models, you need to include the models in the user_models parameter.

The preferences specified for extractor policy determine the type of repository used for the
documents to be indexed and other relevant information. For more information, see Indexing
External Documents.

For information about semantic network types and options, see Semantic Networks.

Examples

The following example creates an extractor policy using the gatenlp_extractor extractor type,
which is included with the Oracle Database support for semantic indexing.

begin
 sem_rdfctx.create_policy (policy_name => 'SEM_EXTR',
 extractor => mdsys.gatenlp_extractor());
end;
/

The following example creates a dependent policy for the previously created extractor policy,
and it adds the user-defined RDF model geo_ontology to the dependent policy.

begin
 sem_rdfctx.create_policy (policy_name => 'SEM_EXTR_PLUS_GEOONT',
 base_policy => 'SEM_EXTR',
 user_models => SEM_MODELS ('geo_ontology'));
end;
/

Chapter 18
SEM_RDFCTX.CREATE_POLICY

18-3

18.3 SEM_RDFCTX.DROP_POLICY
Format

SEM_RDFCTX.DROP_POLICY(
 policy_name IN VARCHAR2,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Deletes (drops) an unused extractor policy.

Parameters

policy_name
Name of the extractor policy.

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

An exception is generated if the specified policy being is used for a semantic index for
documents or if a dependent extractor policy exists for the specified policy.

For information about semantic network types and options, see Semantic Networks.

Examples

The following example drops the SEM_EXTR_PLUS_GEOONT extractor policy.

begin
 sem_rdfctx.drop_policy (policy_name => 'SSEM_EXTR_PLUS_GEOONT');
end;
/

18.4 SEM_RDFCTX.MAINTAIN_TRIPLES
Format

SEM_RDFCTX.MAINTAIN_TRIPLES(
 index_name IN VARCHAR2,
 where_clause IN VARCHAR2,
 rdfxml_content IN sys.XMLType,
 policy_name IN VARCHAR2 DEFAULT NULL,
 action IN VARCHAR2 DEFAULT 'ADD',
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Adds one or more triples to graphs that contain information extracted from specific
documents.

Chapter 18
SEM_RDFCTX.DROP_POLICY

18-4

Parameters

index_name
Name of the semantic index for documents.

where_clause
A SQL predicate (WHERE clause text without the WHERE keyword) on the table in which the
documents are stored, to identify the rows for which to maintain the index.

rdfxml_content
Triples, in the form of an RDF/XML document, to be added to the individual graphs
corresponding to the documents.

policy_name
Name of the extractor policy. If policy_name is null (the default), the triples are added to the
information extracted by the default (or the only) extractor policy for the index; if you specify
a policy name, the triples are added to the information extracted by that policy.

action
Type of maintenance operation to perform on the triples. The only value currently supported
in ADD (the default), which adds the triples that are specified in the rdfxml_content
parameter.

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

The information extracted from the semantically indexed documents may be incomplete and
lacking in proper context. This procedure enables a domain expect to add triples to individual
graphs pertaining to specific semantically indexed documents, so that all subsequent
SEM_CONTAINS queries can consider these triples in their document search criteria.

This procedure accepts the index name and WHERE clause text to identify the specific
documents to be annotated with the additional triples. For example, the where_clause might
be specified as a simple predicate involving numeric data, such as 'docId IN (1,2,3)'.

For information about semantic network types and options, see Semantic Networks.

Examples

The following example annotates a specific document with the semantic index ArticleIndex
by adding triples to the corresponding individual graph.

begin
 sem_rdfctx.maintain_triples(
 index_name => 'ArticleIndex',
 where_clause => 'docid = 15',
 rdfxml_content => sys.xmltype(
 '<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:pred="http://myorg.com/pred/">
 <rdf:Description rdf:about=" http://newscorp.com/Org/ExampleCorp">
 <pred:hasShortName
 rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

Chapter 18
SEM_RDFCTX.MAINTAIN_TRIPLES

18-5

 Example
 </pred:hasShortName>
 </rdf:Description>
 </rdf:RDF>'));
end;
/

18.5 SEM_RDFCTX.SET_DEFAULT_POLICY
Format

SEM_RDFCTX.SET_DEFAULT_POLICY(
 index_name IN VARCHAR2,
 policy_name IN VARCHAR2,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Sets the default extractor policy for a semantic index that is configured with multiple
extractor policies.

Parameters

index_name
Name of the semantic index for documents.

policy_name
Name of the extractor policy to be used as the default extractor policy for the specified
semantic index. Must be one of the extractor policies listed in the PARAMETERS
clause of the CREATE INDEX statement that created index_name.

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

When you create a semantic index for documents, you can specify multiple extractor
policies as a space-separated list of names in the PARAMETERS clause of the
CREATE INDEX statement. As explained in Semantically Indexing Documents, the
first policy from this list is used as the default extractor policy for all SEM_CONTAINS
queries that do not identify an extractor policy by name. You can use the
SEM_RDFCTX.SET_DEFAULT_POLICY procedure to set a different default policy for
the index.

For information about semantic network types and options, see Semantic Networks.

Examples

The following example sets CITY_EXTR as the default extractor policy for the
ArticleIndex index.

begin
 sem_rdfctx.set_default_policy (index_name => 'ArticleIndex',
 policy_name => 'CITY_EXTR');

Chapter 18
SEM_RDFCTX.SET_DEFAULT_POLICY

18-6

end;
/

18.6 SEM_RDFCTX.SET_EXTRACTOR_PARAM
Format

SEM_RDFCTX.SET_EXTRACTOR_PARAM(
 param_key IN VARCHAR2,
 patam_value IN VARCHAR2,
 param_desc IN VARCHAR2,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Configures the Oracle Database semantic indexing support to work with external information
extractors, such as Calais and GATE.

Parameters

param_key
Key for the parameter to be set.

param_value
Value for the parameter to be set.

param_desc
Short description for the parameter to be set.

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

To use this procedure, you must be connected as SYSTEM (not SYS … AS SYSDBA) or
another non-SYS user with the DBA role.

To work with the Calais extractor type (see Configuring the Calais Extractor type), you must
specify values for the following parameters:

• CALAIS_WS_ENDPOINT: Web service end point for Calais.

• CALAIS_KEY: License key for Calais.

• CALAIS_WS_SOAPACTION: SOAP action for the Calais Web service.

To work with the General Architecture for Text Engineering (GATE) extractor type (see
Working with General Architecture for Text Engineering (GATE)), you must specify values for
the following parameters:

• GATE_NLP_HOST: Host for the GATE NLP Listener.

• GATE_NLP_PORT: Port for the GATE NLP Listener.

Chapter 18
SEM_RDFCTX.SET_EXTRACTOR_PARAM

18-7

In addition to these parameters, you may need to specify a value for the HTTP_PROXY
parameter to work with information extractors or index documents that are outside the
firewall.

A database instance only has one set of values for these parameters, and they are
used for all instances of semantic indexes using the corresponding information
extractor. You can use this procedure if you need to change the existing values of any
of the parameters.

For information about semantic network types and options, see Semantic Networks.

Examples

For examples, see the following sections:

• Configuring the Calais Extractor type

• Working with General Architecture for Text Engineering (GATE)

Chapter 18
SEM_RDFCTX.SET_EXTRACTOR_PARAM

18-8

19
SEM_RDFSA Package Subprograms

The SEM_RDFSA package contains subprograms (functions and procedures) for providing
fine-grained access control to RDF data using Oracle Label Security (OLS).

To use the subprograms in this chapter, you should understand the conceptual and usage
information in RDF Semantic Graph Overview and Fine-Grained Access Control for RDF
Data.

This chapter provides reference information about the subprograms, listed in alphabetical
order.

• SEM_RDFSA.APPLY_OLS_POLICY

• SEM_RDFSA.DISABLE_OLS_POLICY

• SEM_RDFSA.ENABLE_OLS_POLICY

• SEM_RDFSA.REMOVE_OLS_POLICY

• SEM_RDFSA.RESET_MODEL_LABELS

• SEM_RDFSA.SET_PREDICATE_LABEL

• SEM_RDFSA.SET_RDFS_LABEL

• SEM_RDFSA.SET_RESOURCE_LABEL

• SEM_RDFSA.SET_RULE_LABEL

19.1 SEM_RDFSA.APPLY_OLS_POLICY
Format

SEM_RDFSA.APPLY_OLS_POLICY(
 policy_name IN VARCHAR2,
 rdfsa_options IN NUMBER DEFAULT SEM_RDFSA.SECURE_SUBJECT,
 table_options IN VARCHAR2 DEFAULT 'ALL_CONTROL',
 label_function IN VARCHAR2 DEFAULT NULL,
 predicate IN VARCHAR2 DEFAULT NULL,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Applies an OLS policy to the semantic data store.

Parameters

policy_name
Name of an existing OLS policy.

19-1

rdfsa_options
Options specifying the mode of fine-grained access control to be enabled for RDF
data. The default option for securing RDF data involves assigning sensitivity labels for
the resources appearing the triples' subject position. You can override the defaults by
using the rdfsa_options parameter and specifying one of the constants defined in
Table 19-1 in the Usage Notes.

table_options
Policy enforcement options. The default value (ALL_CONTROL) is the only supported
value for this procedure.

label_function
A string invoking a function to return a label value to use as the default.

predicate
An additional predicate to combine with the label-based predicate.

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

The OLS policy specified with this procedure must be created with CTXT1 as the
column name, and it should use default policy options. For information about policy
options, see Oracle Label Security Administrator's Guide.

This procedure invokes the sa_policy_admin.apply_table_policy procedure on
multiple tables defined in the MDSYS schema. The parameters table_options,
label_function, and predicate for the SEM_RDFSA.APPLY_OLS_POLICY
procedure have same semantics as the parameters with same names in the
sa_policy_admin.apply_table_policy procedure.

For the rdfsa_options parameter, you can specify the package constant for the
desired option. Table 19-1 lists these constants and their descriptions.

Table 19-1 SEM_RDFSA Package Constants for rdfsa_options Parameter

Constant Description

SEM_RDFSA.SECURE_
SUBJECT

Assigns sensitivity labels for the resources appearing the triples'
subject position.

SEM_RDFSA.SECURE_
PREDICATE

Assigns sensitivity labels for the resources appearing the triples'
predicate position.

SEM_RDFSA.SECURE_
OBJECT

Assigns sensitivity labels for the resources appearing the triples'
object position.

SEM_RDFSA.TRIPLE_LE
VEL_ONLY

Applies triple-level security. Provides good performance, and
eliminates the need to assign labels to individual resources.
(Requires that Patch 9819833, available from My Oracle Support,
be installed.)

SEM_RDFSA.OPT_DEFI
NE_BEFORE_USE

Restricts the use of an RDF resource in a triple before the
sensitivity label is defined for the resource. If this option is not
specified, the user's initial row label is used as the default label for
the resource upon first use.

Chapter 19
SEM_RDFSA.APPLY_OLS_POLICY

19-2

Table 19-1 (Cont.) SEM_RDFSA Package Constants for rdfsa_options
Parameter

Constant Description

SEM_RDFSA.OPT_RELA
X_TRIPLE_LABEL

Relaxes the dominating relationship that exists between the triple
label and the labels associated with all its components. With this
option, a triple can be defined if the user has READ access to all
the triple components and the triple label may not bear any
relationship with the component labels. Without this option, the
triple label should at least cover the label for all its components.

You can specify a function in the label_function parameter to generate custom labels for
newly inserted triples. The label function is associated with the MDSYS.RDF_LINK$ table,
and the columns in this table may be configured as parameters to the label function as shown
in the following example:

fgac_admin.new_triple_label(:new.model_id,
 :new.start_node_id,
 :new.p_value_id,
 :new.canon_end_node_id)'

Because the OLS policy is applied to more than one table with different structures, the only
valid column reference in any predicates assigned to the predicate parameter is that of the
label column: CTXT1. If OLS is enabled for a semantic data store with existing data, you can
specify a predicate of the form 'OR CTXT1 is null' to be able to continue using this data
with no access restrictions.

An OLS-enabled semantic data store uses sensitivity labels for all the RDF triples organized
in multiple models. User access to such triples, through model views and SEM_MATCH
queries, is restricted by the OLS policy. Additionally, independent of a user owning the
application table, access to the triple column (of type SDO_RDF_TRIPLE_S) in the table is
restricted to users with FULL access privileges with the OLS policy.

The triples are inserted into a specific RDF model using the INSERT privileges on the
corresponding application table. A sensitivity label for the new triple is generated using the
user's session context (initial row label) or the label function. The triple is validated for any
RDF policy violations using labels associated with the triple components. Although the triple
information may not be accessed trough the application table, the model view may be queried
to access the triples, while enforcing the OLS policy restrictions. If you have the necessary
policy privileges (such as writeup, writeacross), you can update the CTXT1 column in the
model view to reset the label assigned to the triple. The new label is automatically validated
for any RDF policy violations involving the triple components. Update privilege on the CTXT1
column of the model view is granted to the owner of the model, and this user may selectively
grant this privilege to other users.

If the RDF models are created in schemas other than the user with FULL access, necessary
privileges on the model objects -- specifically, read/write access on the application table, read
access to the model view, and write access to the CTXT1 column in the model view -- can be
granted to such users for maintenance operations. These operations include bulk loading into
the model, resetting any sensitivity labels assigned to the triples, and creating entailments
using the model.

To disable the OLS policy, use the SEM_RDFSA.DISABLE_OLS_POLICY procedure.

For information about support for OLS, see Fine-Grained Access Control for RDF Data.

Chapter 19
SEM_RDFSA.APPLY_OLS_POLICY

19-3

For information about semantic network types and options, see Semantic Networks.

Examples

The following example enable secure access to RDF data with secure subject and
secure predicate options.

begin
 sem_rdfsa.apply_ols_policy(
 policy_name => 'defense',
 rdfsa_options => sem_rdfsa.SECURE_SUBJECT+
 sem_rdfsa.SECURE_PREDICATE);
end;
/

The following example extends the preceding example by specifying a Define Before
Use option, which allows a user to define a triple only if the triple components secured
(Subject, Predicate or Object) are predefined with an associated sensitivity label. This
configuration is effective if the user inserting the triple does not have execute privileges
on the SEM_RDFSA package.

begin
 sem_rdfsa.apply_ols_policy(
 policy_name => 'defense',
 rdfsa_options => sem_rdfsa.SECURE_SUBJECT+
 sem_rdfsa.SECURE_PREDICATE+
 sem_rdfsa.OPT_DEFINE_BEFORE_USE);
end;
/

19.2 SEM_RDFSA.DISABLE_OLS_POLICY
Format

SEM_RDFSA.DISABLE_OLS_POLICY(
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Disables the OLS policy that has been previously applied to or enabled on the
semantic data store.

Parameters

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

You can use this procedure to disable temporarily the OLS policy that had been
applied to or enabled for the semantic data store. The user disabling the policy should
have the necessary privileges to administer OLS policies and should also have access
to the OLS policy applied to RDF data.

Chapter 19
SEM_RDFSA.DISABLE_OLS_POLICY

19-4

The sensitivity labels assigned to various RDF resources and triples are preserved and the
OLS policy may be re-enabled to enforce them. New resources with specific labels can be
added, or labels for existing triples and resources can be updated when the OLS policy is
disabled.

To apply an OLS policy, use the SEM_RDFSA.APPLY_OLS_POLICY procedure; to enable
an OLS policy that had been disabled, use the SEM_RDFSA.ENABLE_OLS_POLICY
procedure.

For information about support for OLS, see Fine-Grained Access Control for RDF Data.

For information about semantic network types and options, see Semantic Networks.

Examples

The following example disables the OLS policy for the semantic data store.

begin
 sem_rdfsa.disable_ols_policy;
end;
/

19.3 SEM_RDFSA.ENABLE_OLS_POLICY
Format

SEM_RDFSA.ENABLE_OLS_POLICY(
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Enables the OLS policy that has been previously disabled.

Parameters

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

You can use this procedure to enable the OLS policy that had been disabled for the semantic
data store. The user enabling the policy should have the necessary privileges to administer
OLS policies and should also have access to the OLS policy applied to RDF data.

To disable an OLS policy, use the SEM_RDFSA.DISABLE_OLS_POLICY procedure.

For information about support for OLS, see Fine-Grained Access Control for RDF Data.

For information about support for OLS, see Fine-Grained Access Control for RDF Data.

Examples

The following example enables the OLS policy for the semantic data store.

begin
 sem_rdfsa.enable_ols_policy;

Chapter 19
SEM_RDFSA.ENABLE_OLS_POLICY

19-5

end;
/

19.4 SEM_RDFSA.REMOVE_OLS_POLICY
Format

SEM_RDFSA.REMOVE_OLS_POLICY(
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Permanently removes or detaches the OLS policy from the semantic data store.

Parameters

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

You should have the necessary privileges to administer OLS policies, and you should
also have access to the OLS policy applied to RDF data. Once the OLS policy is
detached from the semantic data store, all the sensitivity labels previously assigned to
the triples and resources are lost.

This operation drops objects that are specifically created to maintain the RDF security
policies.

To apply an OLS policy, use the SEM_RDFSA.APPLY_OLS_POLICY procedure.

For information about support for OLS, see Fine-Grained Access Control for RDF
Data.

For information about semantic network types and options, see Semantic Networks.

Examples

The following example removes the OLS policy that had been previously applied to the
semantic data store.

begin
 sem_rdfsa.remove_ols_policy;
end;
/

19.5 SEM_RDFSA.RESET_MODEL_LABELS
Format

SEM_RDFSA.RESET_MODEL_LABELS(
 model_name IN VARCHAR2,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Chapter 19
SEM_RDFSA.REMOVE_OLS_POLICY

19-6

Description

Resets the labels associated with a model or with global resources; requires that the
associated model or models be empty.

Parameters

model_name
Name of the model for which the labels should be reset, or the string RDF$GLOBAL to reset the
labels associated with all global resources.

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

If you specify a model name, the model must be empty. If you specify RDF$GLOBAL, all the
models must be empty (that is, no triples in the RDF repository).

You must have FULL access privilege with the OLS policy applied to the semantic data store.

For information about support for OLS, see Fine-Grained Access Control for RDF Data.

For information about semantic network types and options, see Semantic Networks.

Examples

The following example removes all resources and their labels associated with the Contracts
model.

begin
 sem_rdfsa.reset_model_labels(model_name => 'Contracts');
end;
/

19.6 SEM_RDFSA.SET_PREDICATE_LABEL
Format

SEM_RDFSA.SET_PREDICATE_LABEL(
 model_name IN VARCHAR2,
 predicate IN VARCHAR2,
 label_string IN VARCHAR2,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Sets a sensitivity label for a predicate at the model level or for the whole repository.

Chapter 19
SEM_RDFSA.SET_PREDICATE_LABEL

19-7

Parameters

model_name
Name of the model to which the predicate belongs, or the string RDF$GLOBAL if the
same label should applied for the use of the predicate in all models.

predicate
Predicate for which the label should be assigned.

label_string
OLS row label in string representation.

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

If you specify a model name, you must have read access to the model and execute
privileges on the SEM_RDFSA package to perform this operation. If you specify
RDF$GLOBAL, you must have FULL access privilege with the OLS policy applied to RDF
data.

You must have access to the specified label and OLS policy privilege to overwrite an
existing label if a label already exists for the predicate. The SECURE_PREDICATE
option must be enabled for RDF data.

If an existing predicate label is updated with this operation, the labels for the triples
using this predicate must all dominate the new predicate label. The only exception is
when the OPT_RELAX_TRIPLE_LABEL option is chosen for the OLS-enabled RDF
data.

If you specify RDF$GLOBAL, a global predicate with a unique sensitivity label across
models is created. If the same predicate is previously defined in one or more models,
the global label dominates all such labels and the model-specific labels are replaced
for the given predicate.

After a label for a predicate is set, new triples with the predicate can be added only if
the triple label (which may be initialized from user's initial row label or using a label
function) dominates the predicate's sensitivity label. This dominance relationship can
be relaxed with the OPT_RELAX_TRIPLE_LABEL option, in which case the user
should at least have read access to the predicate to be able to define a new triple
using the predicate.

For information about support for OLS, see Fine-Grained Access Control for RDF
Data.

For information about semantic network types and options, see Semantic Networks.

Examples

The following example sets a predicate label for Contracts model and another
predicate label for all models in the database instance.

begin
 sem_rdfsa.set_predicate_label(

Chapter 19
SEM_RDFSA.SET_PREDICATE_LABEL

19-8

 model_name => 'contracts',
 predicate => '<http://www.myorg.com/pred/hasContractValue>',
 label_string => 'TS:US_SPCL');
end;
/

begin
 sem_rdfsa.set_predicate_label(
 model_name => 'rdf$global',
 predicate => '<http://www.myorg.com/pred/hasStatus>',
 label_string => 'SE:US_SPCL:US');
end;
/

19.7 SEM_RDFSA.SET_RDFS_LABEL
Format

SEM_RDFSA.SET_RDFS_LABEL(
 label_string IN VARCHAR2,
 inf_override IN VARCHAR2,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Sets a sensitivity label for RDFS schema elements.

Parameters

label_string
OLS row label in string representation, to be used as the sensitivity label for all RDF schema
constructs.

inf_override
OLS row label to be used as the override for generating labels for inferred triples.

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

This procedure sets or resets the sensitivity label associated with the RDF schema
resources, often recognized by http://www.w3.org/1999/02/22-rdf-syntax-ns# and
http://www.w3.org/2000/01/rdf-schema# prefixes for their URIs. You can assign a
sensitivity label with restricted access to these resources, so that operations such as creating
new RDF classes and adding new properties can be restricted to users with higher privileges.

You must have FULL access privilege with policy applied to RDF data.

RDF schema elements implicitly use the relaxed triple label option, so that the triples using
RDFS and OWL constructs for subject, predicate, or object are not forced to have a
sensitivity label that dominates the labels associated with the schema constructs. Therefore,
a user capable of defining new RDF classes and properties must least have read access to
the schema elements.

Chapter 19
SEM_RDFSA.SET_RDFS_LABEL

19-9

When RDF schema elements are referred to in the inferred triples, the system-defined
and custom label generators consider the inference override label in determining the
appropriate label for the inferred triples. If a custom label generator is used, this
override label is passed instead of the actual label when an RDF schema element is
involved.

For information about support for OLS, see Fine-Grained Access Control for RDF
Data.

For information about semantic network types and options, see Semantic Networks.

Examples

The following example sets a label with a unique compartment for all RDF schema
elements. A user capable of defining new RDF classes and properties is expected to
have an exclusive membership to the compartment.

begin
 sem_rdfsa.set_rdfs_label(
 label_string => 'SE:RDFS:',
 inf_override => 'SE:US_SPCL:US');
end;
/

19.8 SEM_RDFSA.SET_RESOURCE_LABEL
Format

SEM_RDFSA.SET_RESOURCE_LABEL(
 model_name IN VARCHAR2,
 resource_uri IN VARCHAR2,
 label_string IN VARCHAR2,
 resource_pos IN VARCHAR2 DEFAULT 'S',
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Sets a sensitivity label for a resource that may be used in the subject and/or object
position of a triple.

Parameters

model_name
Name of the model to which the resource belongs, or the string RDF$GLOBAL if the
same label should applied for using the resource in all models.

resource_uri
URI for the resource that may be used as subject or object in one or more triples.

label_string
OLS row label in string representation.

resource_pos
Position of the resource within a triple: S, O, or S,O. You can specify up to two separate
labels for the same resource, one to be considered when the resource is used in the
subject position of a triple and the other to be considered when it appears in the

Chapter 19
SEM_RDFSA.SET_RESOURCE_LABEL

19-10

object position. The values 'S', 'O' or 'S,O' set a label for the resource in subject, object or both
subject and object positions, respectively.

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

If you specify a model name, you must have read access to the model and execute privileges
on the SEM_RDFSA package to perform this operation. If you specify RDF$GLOBAL, you must
have FULL access privilege with the OLS policy applied to RDF data.

You must have access to the specified label and OLS policy privilege to overwrite an existing
label if a label already exists for the predicate. The SECURE_PREDICATE option must be
enabled for RDF data.

If an existing resource label is updated with this operation, the labels for the triples using this
resource in the specified position must all dominate the new resource label. The only
exception is when the OPT_RELAX_TRIPLE_LABEL option is chosen for the OLS-enabled
RDF data.

If you specify RDF$GLOBAL, a global resource with a unique sensitivity label across models is
created. If the same resource is previously defined in one or more models with the same
triple position, the global label dominates all such labels and the model-specific labels are
replaced for the given resource in that position.

After a label for a predicate is set, new triples using the resource in the specified position can
be added only if the triple label dominates the resource's sensitivity label. This dominance
relationship can be relaxed with OPT_RELAX_TRIPLE_LABEL option, in which case, the
user should at least have read access to the resource.

For information about support for OLS, see Fine-Grained Access Control for RDF Data.

For information about semantic network types and options, see Semantic Networks.

Examples

The following example sets sensitivity labels for multiple resources based on their position.

begin
 sem_rdfsa.set_resource_label(
 model_name => 'contracts',
 resource_uri => '<http://www.myorg.com/contract/projectHLS>',
 label_string => 'SE:US_SPCL:US',
 resource_pos => 'S,O');
end;
/

begin
 sem_rdfsa.set_resource_label(
 model_name => 'rdf$global',
 resource_uri => '<http://www.myorg.com/contract/status/Complete>',
 label_string => 'SE:US_SPCL:US',
 resource_pos => 'O');
end;
/

Chapter 19
SEM_RDFSA.SET_RESOURCE_LABEL

19-11

19.9 SEM_RDFSA.SET_RULE_LABEL
Format

SEM_RDFSA.SET_RULE_LABEL(
 rule_base IN VARCHAR2,
 rule_name IN VARCHAR2,
 label_string IN VARCHAR2,
 network_owner IN VARCHAR2 DEFAULT NULL,
 network_name IN VARCHAR2 DEFAULT NULL);

Description

Sets sensitivity label for a rule belonging to a rulebase.

Parameters

rule_base
Name of an existing RDF rulebase.

rule_name
Name of the rule belonging to the rulebase.

label_string
OLS row label in string representation.

network_owner
Owner of the semantic network. (See Table 1-1.)

network_name
Name of the semantic network. (See Table 1-1.)

Usage Notes

The sensitivity label assigned to the rule is used to generate the label for the inferred
triples when an appropriate label generator option is chosen.

You must have access have access to the rulebase, and you must have FULL access
privilege with the OLS policy can assign labels for system-defined rules in the RDFS
rulebase.

There is no support for labels assigned to user-defined rules.

For information about support for OLS, see Fine-Grained Access Control for RDF
Data.

For information about semantic network types and options, see Semantic Networks.

Examples

The following example assigns a sensitivity label for an RDFS rule.

begin
sem_rdfsa.set_rule_label (rule_base => 'RDFS',
 rule_name => 'RDF-AXIOMS',
 label_string => 'SE:US_SPCL:');
end;
/

Chapter 19
SEM_RDFSA.SET_RULE_LABEL

19-12

Part IV
Appendixes

The following appendixes are included.

• Enabling, Downgrading, or Removing RDF Semantic Graph Support
You must perform certain steps before you can use any types, synonyms, or PL/SQL
packages related to RDF Semantic Graph support in the current Oracle Database
release.

• SEM_MATCH Support for Spatial Queries
This appendix provides reference information for SPARQL extension functions for
performing spatial queries in SEM_MATCH.

• RDF Support in SQL Developer
You can use Oracle SQL Developer to perform operations related to the RDF Graph
feature of Oracle Graph.

A
Enabling, Downgrading, or Removing RDF
Semantic Graph Support

You must perform certain steps before you can use any types, synonyms, or PL/SQL
packages related to RDF Semantic Graph support in the current Oracle Database release.

You must run one or more scripts, and you must ensure that Oracle Spatial is installed and
the Partitioning option is enabled. These requirements are explained in Enabling RDF
Semantic Graph Support and its related subtopics.

This appendix also describes the steps if, after enabling RDF Semantic Graph support, you
need to do any of the following:

• Downgrade the RDF Semantic Graph support to that provided with a previous Oracle
Database release, as explained in Downgrading RDF Semantic Graph Support to a
Previous Release.

• Remove all support for RDF Semantic Graph from the database, as explained in
Removing RDF Semantic Graph Support.

• Enabling RDF Semantic Graph Support
Before you can use any types, synonyms, or PL/SQL packages related to RDF Semantic
Graph support in the current Oracle Database release, you must either install the
capabilities in a new Oracle Database installation or upgrade the capabilities from a
previous release.

• Downgrading RDF Semantic Graph Support to a Previous Release
You can downgrade the RDF Semantic Graph support, in conjunction with an Oracle
Database downgrade to Release 12.1.

• Removing RDF Semantic Graph Support
You can remove the RDF Semantic Graph support from the database.

A.1 Enabling RDF Semantic Graph Support
Before you can use any types, synonyms, or PL/SQL packages related to RDF Semantic
Graph support in the current Oracle Database release, you must either install the capabilities
in a new Oracle Database installation or upgrade the capabilities from a previous release.

Install of RDF Semantic Graph support is included in install of Oracle Spatial. So you must
ensure that Oracle Spatial is installed. In addition, Partitioning must be enabled. Restricted
use of Partitioning is allowed free of charge for supporting Graph feature of Oracle Database.
See Restricted Use Licenses for more information.

• Enabling RDF Semantic Graph Support in a New Database Installation

• Upgrading RDF Semantic Graph Support from Release 11.1, 11.2, or 12.1

• Workspace Manager and Virtual Private Database Desupport

A-1

A.1.1 Enabling RDF Semantic Graph Support in a New Database
Installation

RDF Semantic Graph is automatically enabled when Oracle Spatial Release 12.2 or
later is installed. See Manually Installing Spatial if you do not have Oracle Spatial
installed by default at the time of Oracle Database installation.

If RDF Semantic Graph was enabled successfully, a row with the following column
values will exist in the MDSYS.RDF_PARAMETER table:

• NAMESPACE: MDSYS
• ATTRIBUTE: SEM_VERSION
• VALUE: (string starting with 12.2)

• DESCRIPTION: VALID

A.1.2 Upgrading RDF Semantic Graph Support from Release 11.1,
11.2, or 12.1

If you are upgrading from Oracle Database Release 11.1 or 11.2 that includes the
semantic technologies support, the semantic technologies support is automatically
upgraded to Release 12.1 or later when the database is upgraded.

However, you may also need to migrate RDF data if you have an existing Release 11.1
or 11.2 RDF network containing triples that include typed literal values of type
xsd:float, xsd:double, xsd:boolean, or xsd:time.

To check if you need to migrate RDF data, connect to the database as a user with
DBA privileges and query the MDSYS.RDF_PARAMETER table, as follows:

SELECT namespace, attribute, value FROM mdsys.rdf_parameter
 WHERE namespace='MDSYS'
 AND attribute IN ('FLOAT_DOUBLE_DECIMAL',
 'XSD_TIME', 'XSD_BOOLEAN',
 'DATA_CONVERSION_CHECK');

If the FLOAT_DOUBLE_DECIMAL, XSD_TIME, or XSD_BOOLEAN attributes have
the string value INVALID or if the DATA_CONVERSION_CHECK attribute has the
string value FAILED_UNABLE_TO_LOCK_APPLICATION_TABLES,
FAILED_INSUFFICIENT_WORKSPACE_PRIVILEGES, or
FAILED_OLS_POLICIES_ARE_ENABLED, you need to migrate RDF data.

However, if the FLOAT_DOUBLE_DECIMAL, XSD_TIME, and XSD_BOOLEAN
attributes do not exist or have the string value VALID and if the
DATA_CONVERSION_CHECK attribute does not exist, you do not need to migrate
RDF data. However, if your semantic network may have any empty RDF literals, see
Handling of Empty RDF Literals; and if you choose to migrate existing empty literals to
the new format, follow the steps in this section.

To migrate RDF data, follow these steps:

1. Connect to the database as the SYSTEM (not SYS .. AS SYSDBA) user or
another non-SYS user with the DBA role, and enter: SET CURRENT_SCHEMA=MDSYS

Appendix A
Enabling RDF Semantic Graph Support

A-2

2. Ensure that the user MDSYS has the following privileges:

• INSERT privilege on all application tables in the semantic network

• ALTER ANY INDEX privilege (optional: only necessary if Semantic Indexing for
Documents is being used)

• ACCESS privilege for any workspace in which version-enabled application tables
have been modified (optional: only necessary if Workspace Manager is being used
for RDF data)

3. Ensure that any OLS policies for RDF data are temporarily disabled (optional: only
necessary if OLS for RDF Data is being used). OLS policies can be re-enabled after
running convert_old_rdf_data.

4. Start SQL*Plus. If you want to migrate the RDF data without converting existing empty
literals to the new format (see Handling of Empty RDF Literals), enter the following
statement:

EXECUTE sdo_rdf_internal.convert_old_rdf_data;

If you want to migrate the RDF data and also convert existing empty literals to the new
format, call convert_old_rdf_data with the flags parameter set to
'CONVERT_ORARDF_NULL'. In addition, you can use an optional tablespace_name
parameter to specify the tablespace to use when creating intermediate tables during data
migration. For example, the following statement migrates old semantic data, converts
existing "orardf:null " values to "", and uses the MY_TBS tablespace for any
intermediate tables:

EXECUTE sdo_rdf_internal.convert_old_rdf_data(
 flags=>'CONVERT_ORARDF_NULL',
 tablespace_name=>'MY_TBS');

The sdo_rdf_internal.convert_old_rdf_data procedure may take a significant amount
of time to run if the semantic network contains many triples that are using (or affected by
use of) xsd:float, xsd:double, xsd:time, or xsd:boolean typed literals.

5. Connect to the database as the SYS user with SYSDBA privileges (SYS AS SYSDBA,
and enter the SYS account password when prompted). Then enter the following
statement:

• Linux: @$ORACLE_HOME/md/admin/semrelod.sql
• Windows: @%ORACLE_HOME%\md\admin\semrelod.sql

Note:

You may encounter the ORA-00904 (invalid identifier) error when executing a
SEM_MATCH query if the sdo_rdf_internal.convert_old_rdf_data procedure
and the semrelod.sql script were not run after the upgrade to Release 12.1 or later.

• Required Data Migration After Upgrade

• Handling of Empty RDF Literals

Appendix A
Enabling RDF Semantic Graph Support

A-3

A.1.2.1 Required Data Migration After Upgrade
After the database upgrade completes, if you have existing RDF data from a previous
release, you must migrate the RDF data. If you do not perform the data migration, you
will encounter the following error when running SEM_MATCH queries:

ORA-20000: RDF_VALUE$ Table needs data migration with
SEM_APIS.MIGRATE_DATA_TO_CURRENT

Columns were added to the MDSYS.RDF_VALUE$ table in Release 12.2 (see
Enhanced RDF ORDER BY Query Processing). These columns must be populated
after upgrading an existing RDF network. The need for migration will be noted with the
following row in the MDSYS.RDF_PARAMETER table:

• NAMESPACE: MDSYS
• ATTRIBUTE: RDF_VALUE$
• VALUE: INVALID_ORDER_COLUMNS
• DESCRIPTION: RDF_VALUE$ Table needs data migration with

SEM_APIS.MIGRATE_DATA_TO_CURRENT
If migration is needed, the RDF Semantic Graph installation will initially be marked as
INVALD, which is signified with the following row in MDSYS.RDF_PARAMETER:

• NAMESPACE: MDSYS
• ATTRIBUTE: SEM_VERSION
• VALUE: (string starting with 12.2)

• DESCRIPTION: INVALID
To perform data migration by populating new MDSYS.RDF_VALUE$ columns, follow
these steps:

1. 1. Connect to the database as the SYSTEM (not SYS .. AS SYSDBA) user or as
another non-SYS user with the DBA role.

2. Run the following statement:

EXECUTE sem_apis.migrate_data_to_current;

If data migration was successful, the INVALID_ORDER_COLUMNS row will be
removed from MDSYS.RDF_PARAMETER and the SEM_VERSION row will have a
DESCRIPTION value of VALID.

Moreover, additional data migration may be required if you are upgrading an existing
Release 11.1 or 11.2 RDF network containing triples that include typed literal values of
type xsd:float, xsd:double, xsd:boolean, or xsd:time.

To check if you need to perform this additional RDF data migration, connect to the
database as a user with DBA privileges and query the MDSYS.RDF_PARAMETER
table, as follows:

SELECT namespace, attribute, value FROM mdsys.rdf_parameter
 WHERE namespace='MDSYS'
 AND attribute IN ('FLOAT_DOUBLE_DECIMAL',
 'XSD_TIME', 'XSD_BOOLEAN',
 'DATA_CONVERSION_CHECK');

Appendix A
Enabling RDF Semantic Graph Support

A-4

If the FLOAT_DOUBLE_DECIMAL, XSD_TIME, or XSD_BOOLEAN attributes have the string
value INVALID or if the DATA_CONVERSION_CHECK attribute has the string value
FAILED_UNABLE_TO_LOCK_APPLICATION_TABLES,
FAILED_INSUFFICIENT_WORKSPACE_PRIVILEGES, or FAILED_OLS_POLICIES_ARE_ENABLED, you
need to migrate RDF data.

However, if the FLOAT_DOUBLE_DECIMAL, XSD_TIME, and XSD_BOOLEAN attributes do
not exist or have the string value VALID and if the DATA_CONVERSION_CHECK attribute
does not exist, you do not need to migrate RDF data. However, if your semantic network may
have any empty RDF literals, see Handling of Empty RDF Literals; and if you choose to
migrate existing empty literals to the new format, follow the steps in this section.

To migrate the RDF data, follow these steps:

1. Connect to the database as the SYSTEM (not SYS .. AS SYSDBA) user or as another
non-SYS user with the DBA role , and enter: SET CURRENT_SCHEMA=MDSYS

2. Ensure that the user MDSYS has the following privileges:

• INSERT privilege on all application tables in the semantic network

• ALTER ANY INDEX privilege (optional: only necessary if Semantic Indexing for
Documents is being used)

• ACCESS privilege for any workspace in which version-enabled application tables
have been modified (optional: only necessary if Workspace Manager is being used
for RDF data)

3. Ensure that any OLS policies for RDF data are temporarily disabled (optional: only
necessary if OLS for RDF Data is being used). OLS policies can be re-enabled after
running convert_old_rdf_data.

4. Start SQL*Plus. If you want to migrate the RDF data without converting existing empty
literals to the new format (see Handling of Empty RDF Literals), enter the following
statement:

EXECUTE sdo_rdf_internal.convert_old_rdf_data;

If you want to migrate the RDF data and also convert existing empty literals to the new
format, call convert_old_rdf_data with the flags parameter set to
'CONVERT_ORARDF_NULL'. In addition, you can use an optional tablespace_name
parameter to specify the tablespace to use when creating intermediate tables during data
migration. For example, the following statement migrates old semantic data, converts
existing "orardf:null " values to "", and uses the MY_TBS tablespace for any
intermediate tables:

EXECUTE sdo_rdf_internal.convert_old_rdf_data(
 flags=>'CONVERT_ORARDF_NULL',
 tablespace_name=>'MY_TBS');

The sdo_rdf_internal.convert_old_rdf_data procedure may take a significant amount
of time to run if the semantic network contains many triples that are using (or affected by
use of) xsd:float, xsd:double, xsd:time, or xsd:boolean typed literals.

5. Connect to the database as the SYS user with SYSDBA privileges (SYS AS SYSDBA),
and enter the SYS account password when prompted). Then enter the following
statement:

• Linux: @$ORACLE_HOME/md/admin/semrelod.sql
• Windows: @%ORACLE_HOME%\md\admin\semrelod.sql

Appendix A
Enabling RDF Semantic Graph Support

A-5

Note:

You may encounter the ORA-00904 (invalid identifier) error when executing a
SEM_MATCH query if the sdo_rdf_internal.convert_old_rdf_data
procedure and the semrelod.sql script were not run after the upgrade to
Release 12.1 or later.

A.1.2.2 Handling of Empty RDF Literals
The way empty-valued RDF literals are handled was changed in Release 11.2. Before
this release, the values of empty-valued literals were converted to "orardf:null". In
Release 11.2 and later, such values are stored without modification (that is, as "").
However, whether you migrate existing "orardf:null" values to "" is optional.

To check if "orardf:null" values exist in your semantic network, connect to the
database as a user with DBA privileges and query the MDSYS.RDF_PARAMETER
table, as follows:

SELECT namespace, attribute, value FROM mdsys.rdf_parameter
 WHERE namespace='MDSYS'
 AND attribute = 'NULL_LITERAL';

If the NULL_LITERAL attribute has the value EXISTS, then "orardf:null" values are
present in your semantic network.

A.1.3 Workspace Manager and Virtual Private Database Desupport
Effective with Oracle Database Release 12.2, the following are no longer supported:

• Workspace Manager support for RDF data

• Virtual Private Database (VPD) support for RDF data

If an existing semantic network that contains Workspace Manager (WM) or Virtual
Private Database (VPD) data is upgraded, the RDF Semantic Graph installation will be
marked as INVALID. In addition, the MDSYS.RDF_PARAMETER table will contain a
row with description Feature not supported in current version' for the
unsupported component. To correct this situation, all existing WM and VPD data
should be dropped, and the WM and VPD components should be uninstalled.

To uninstall Workspace Manager support for RDF data:

1. Connect to the database as the SYS user with SYSDBA privileges (SYS AS
SYSDBA, and enter the SYS account password when prompted).

2. Start SQL*Plus, and enter the following statement:

• Linux: @$ORACLE_HOME/md/admin/sdordfwm_rm.sql
• Windows: @%ORACLE_HOME%\md\admin\sdordfwm_rm.sql

Appendix A
Enabling RDF Semantic Graph Support

A-6

Note:

If you are in a multitenant environment, run the script with catcon.pl. See
“Running Oracle-Supplied SQL Scripts in a CDB” in Oracle Database
Administrator’s Guide.

To uninstall Virtual Private Database support for RDF data:

1. Connect to the database as the SYSTEM user (not SYS … AS SYSDBA) or as another
non-SYS user with the DBA role.

2. Start SQL*Plus, and enter the following statement:

EXECUTE mdsys.sem_rdfsa_dr.uninstall_vpd;

After performing the necessary uninstall operations, reset the network validity as follows:

1. Connect to the database as the SYS user with SYSDBA privileges (SYS AS SYSDBA,
and enter the SYS account password when prompted).

2. Start SQL*Plus, and enter the following statement:

• Linux: @$ORACLE_HOME/md/admin/semvalidate.sql
• Windows: @%ORACLE_HOME%\md\admin\semvalidate.sql

Note:

If you are in a multitenant environment, run the script with catcon.pl. See
“Running Oracle-Supplied SQL Scripts in a CDB” in Oracle Database
Administrator’s Guide.

A.2 Downgrading RDF Semantic Graph Support to a Previous
Release

You can downgrade the RDF Semantic Graph support, in conjunction with an Oracle
Database downgrade to Release 12.1.

However, downgrading is strongly discouraged, except for rare cases where it is necessary.
If you downgrade to a previous release, you will not benefit from bug fixes and enhancements
that have been made in intervening releases.

• Downgrading to Release 12.1 Semantic Graph Support

A.2.1 Downgrading to Release 12.1 Semantic Graph Support
If you need to downgrade to Oracle Database Release 12.1, the RDF semantic graph support
component will be downgraded automatically when you downgrade the database. However,
any RDF or OWL data that is specific to Release 12.2 (that is, Release 12.2 or later
RDF/OWL persistent structures that are not supported in previous versions) must be dropped
before you perform the downgrade, so that the database is compatible with Release 12.1.

Appendix A
Downgrading RDF Semantic Graph Support to a Previous Release

A-7

To check if any Release 12.2 or later RDF data is incompatible with Release 12.1,
perform the following steps:

1. Connect to the database (Release 12.2 or later) as the SYS user with SYSDBA
privileges (SYS AS SYSDBA, and enter the SYS account password when
prompted).

2. Start SQL*Plus, and enter the following statements:

SET SERVEROUT ON
EXECUTE SDO_SEM_DOWNGRADE.CHECK_121_COMPATIBLE;

If any RDF data is incompatible with Release 12.1, the procedure generates an error
and displays a list of the incompatible data. In this case, you must perform the
following steps:

1. Remove any Release 12.2 or later release-specific RDF or OWL data if you have
not already done so, as explained earlier in this section.

2. Perform the database downgrade.

3. Connect to the Release 12.1 database as the SYS user with SYSDBA privileges
(SYS AS SYSDBA, and enter the SYS account password when prompted).

4. Start SQL*Plus, and enter the following statement:

• Linux: @$ORACLE_HOME/md/admin/catsem.sql
• Windows: @%ORACLE_HOME%\md\admin\catsem.sql

Note:

If you are in a multitenant environment, run the script with
catcon.pl. See “Running Oracle-Supplied SQL Scripts in a CDB” in
Oracle Database Administrator’s Guide.

If the script completes successfully, a row with the following column values is
inserted into the MDSYS.RDF_PARAMETER table:

• NAMESPACE: MDSYS
• ATTRIBUTE: SEM_VERSION
• VALUE: (string starting with 12.1)

• DESCRIPTION: VALID
After the catsem.sql script completes successfully, Oracle semantic technologies
support for Release 11.2 is enabled and ready to use, and all Release 12.1-
compatible data is preserved.

A.3 Removing RDF Semantic Graph Support
You can remove the RDF Semantic Graph support from the database.

However, removing this support is strongly discouraged, unless you have a solid
reason for doing it. After you remove this support, no applications or database users
will be able to use any types, synonyms, or PL/SQL packages related to RDF
Semantic Graph support.

Appendix A
Removing RDF Semantic Graph Support

A-8

To remove the RDF Semantic Graph support from the database, perform the following steps:

1. Connect to the database as the SYS user with SYSDBA privileges (SYS AS SYSDBA,
and enter the SYS account password when prompted).

2. Start SQL*Plus, and enter the following statement:

• Linux: @$ORACLE_HOME/md/admin/semremov.sql
• Windows: @%ORACLE_HOME%\md\admin\semremov.sql

Note:

If you are in a multitenant environment, run the script with catcon.pl. See
“Running Oracle-Supplied SQL Scripts in a CDB” in Oracle Database
Administrator’s Guide.

The semremov.sql script drops the semantic network and removes any RDF Semantic Graph
types, tables, and PL/SQL packages.

Appendix A
Removing RDF Semantic Graph Support

A-9

B
SEM_MATCH Support for Spatial Queries

This appendix provides reference information for SPARQL extension functions for performing
spatial queries in SEM_MATCH.

To use these functions, you must understand the concepts explained in Spatial Support.

Note:

Throughout this appendix geomLiteral is used as a placeholder for
orageo:WKTLiteral, ogc:wktLiteral, and ogc:gmlLiteral, which can be used
interchangeably, in format representations and parameter descriptions. (However,
orageo:WKTLiteral or ogc:wktLiteral is used in actual examples.)

This appendix includes the GeoSPARQL and Oracle-specific functions which are explained in
the following sections:

• GeoSPARQL Functions for Spatial Support

• Oracle-Specific Functions for Spatial Support

B.1 GeoSPARQL Functions for Spatial Support
This section provides reference information about the GeoSPARQL functions:

• ogcf:boundary

• ogcf:buffer

• ogcf:convexHull

• ogcf:difference

• ogcf:distance

• ogcf:envelope

• ogcf:getSRID

• ogcf:intersection

• ogcf:relate

• ogcf:sfContains

• ogcf:sfCrosses

• ogcf:sfDisjoint

• ogcf:sfEquals

• ogcf:sfIntersects

• ogcf:sfOverlaps

B-1

• ogcf:sfTouches

• ogcf:sfWithin

• ogcf:symDifference

• ogcf:union

B.1.1 ogcf:boundary
Format

ogcf:boundary(geom : geomLiteral) : ogc:wktLiteral

Description

Returns a geometry object that is the closure of the boundary of geom.

Parameters

geom
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial
data in RDF.

See also the OGC GeoSPARQL specification.

Example

The following example finds the boundaries of U.S. Congressional district polygons.

SELECT cb
FROM table(sem_match(
'SELECT (ogcf:boundary(?cgeom) AS ?cb)
 WHERE
 { ?person usgovt:name ?name .
 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom }'
,sem_models('gov_all_vm'), null
,sem_aliases(
 sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
 sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/')
)
,null, null, ' ALLOW_DUP=T '));

B.1.2 ogcf:buffer
Format

ogcf:buffer(geom : geomLiteral, radius : xsd:decimal, units : xsd:anyURI) :
ogc:wktLiteral

Appendix B
GeoSPARQL Functions for Spatial Support

B-2

Description

Returns a buffer polygon the specified radius (measured in units) around a geometry.

Parameters

geom
Geometry object. Specified as a query variable or a constant geomLiteral value.

radius
Radius value used to define the buffer.

units
Unit of measurement: a URI of the form <http://xmlns.oracle.com/rdf/geo/uom/
{SDO_UNIT}> (for example, <http://xmlns.oracle.com/rdf/geo/uom/KM>). Any SDO_UNIT
value from the MDSYS.SDO_DIST_UNITS table will be recognized. See the section about
unit of measurement support in Oracle Spatial and Graph Developer's Guide for more
information about unit of measurement specification.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the OGC GeoSPARQL specification.

Example

The following example finds the U.S. Congressional district polygons that are within a 100–
kilometer buffer around a specified point.

SELECT name, cdist
FROM table(sem_match(
'{ # HINT0={LEADING(?cgeom)}
 ?person usgovt:name ?name .
 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom
 FILTER (
 ogcf:sfWithin(?cgeom,
 ogcf:buffer("POINT(-71.46444 42.7575)"^^ogc:wktLiteral,
 100,
 <http://xmlns.oracle.com/rdf/geo/uom/KM>))) }'
,sem_models('gov_all_vm'), null
,sem_aliases(
 sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
 sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/')
)
,null, null, ' ALLOW_DUP=T '));

B.1.3 ogcf:convexHull
Format

ogcf:convexHull(geom : geomLiteral) : ogc:wktLiteral

Appendix B
GeoSPARQL Functions for Spatial Support

B-3

Description

Returns a polygon geometry that represents the convex hull of geom. (The convex hull
is a simple convex polygon that completely encloses the geometry object, using as few
straight-line sides as possible to create the smallest polygon that completely encloses
the geometry object.)

Parameters

geom
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial
data in RDF.

See also the OGC GeoSPARQL specification.

Example

The following example finds the U.S. Congressional district polygons whose convex
hull contains a specified point.

SELECT name, cdist
FROM table(sem_match(
'{ ?person usgovt:name ?name .
 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom
 FILTER (ogcf:sfContains(ogcf:convexHull(?cgeom),
 "POINT(-71.46444 42.7575)"^^ogc:wktLiteral)) } '
,sem_models('gov_all_vm'), null
,sem_aliases(
 sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
 sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/')
)
,null, null, ' ALLOW_DUP=T '));

B.1.4 ogcf:difference
Format

ogcf:difference(geom1 : geomLiteral, geom2 : geomLiteral) : ogc:wktLiteral

Description

Returns a geometry object that is the topological difference (MINUS operation) of
geom1 and geom2.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

Appendix B
GeoSPARQL Functions for Spatial Support

B-4

geom2
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the OGC GeoSPARQL specification.

Example

The following example finds the U.S. Congressional district polygons whose centroid is within
the difference of two specified polygons.

SELECT name, cdist
FROM table(sem_match(
'{ ?person usgovt:name ?name .
 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom
 FILTER (ogcf:sfWithin(orageo:centroid(?cgeom),
 ogcf:difference(
 "Polygon((-83.6 34.1, -83.2 34.1, -83.2 34.5, -83.6 34.5, -83.6
34.1))"^^ogc:wktLiteral,
 "Polygon((-83.2 34.3, -83.0 34.3, -83.0 34.5, -83.2 34.5, -83.2
34.3))"^^ogc:wktLiteral))) } '
,sem_models('gov_all_vm'), null
,sem_aliases(
 sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
 sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/')
)
,null, null, ' ALLOW_DUP=T '));

B.1.5 ogcf:distance
Format

ogcf:distance(geom1 : geomLiteral, geom2 : geomLiteral, units : xsd:anyURI) : xsd:decimal

Description

Returns the distance in units between the two closest points of geom1 and geom2.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

geom2
Geometry object. Specified as a query variable or a constant geomLiteral value.

units
Unit of measurement: a URI of the form <http://xmlns.oracle.com/rdf/geo/uom/
{SDO_UNIT}> (for example, <http://xmlns.oracle.com/rdf/geo/uom/KM>). Any SDO_UNIT
value from the MDSYS.SDO_DIST_UNITS table will be recognized. See the section about

Appendix B
GeoSPARQL Functions for Spatial Support

B-5

unit of measurement support in Oracle Spatial and Graph Developer's Guide for more
information about unit of measurement specification.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial
data in RDF.

See also the OGC GeoSPARQL specification.

Example

The following example orders U.S. Congressional districts based on distance from a
specified point.

SELECT name, cdist
FROM table(sem_match(
'SELECT ?name ?cdist
 WHERE
 { # HINT0={LEADING(?cgeom)}
 ?person usgovt:name ?name .
 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom
 }
 ORDER BY ASC(ogcf:distance(?cgeom,
 "POINT(-71.46444 42.7575)"^^ogc:wktLiteral,
 <http://xmlns.oracle.com/rdf/geo/uom/KM>))'
,sem_models('gov_all_vm'), null
,sem_aliases(
 sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
 sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/')
)
,null, null, ' ALLOW_DUP=T '))
ORDER BY sem$rownum;

B.1.6 ogcf:envelope
Format

ogcf:envelope(geom : geomLiteral) : ogc:wktLiteral

Description

Returns the minimum bounding rectangle (MBR) of geom, that is, the single rectangle
that minimally encloses geom.

Parameters

geom
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial
data in RDF.

See also the OGC GeoSPARQL specification.

Appendix B
GeoSPARQL Functions for Spatial Support

B-6

Example

The following example finds the U.S. Congressional district polygons whose minimum
bounding rectangle contains a specified point.

SELECT name, cdist
FROM table(sem_match(
'{ ?person usgovt:name ?name .
 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom
 FILTER (ogcf:sfContains(ogcf:envelope(?cgeom),
 "POINT(-71.46444 42.7575)"^^ogc:wktLiteral)) } '
,sem_models('gov_all_vm'), null
,sem_aliases(
 sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
 sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/')
)
,null, null, ' ALLOW_DUP=T '));

B.1.7 ogcf:getSRID
Format

ogcf:getSRID(geom : geomLiteral) : xsd:anyURI

Description

Returns the spatial reference system URI for geom.

Parameters

geom
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

The URI returned has the form <http://www.opengis.net/def/crs/EPSG/0/{srid}>, where
{srid} is a valid spatial reference system ID from the European Petroleum Survey Group
(EPSG).

For URIs that are not in the EPSG Geodetic Parameter Dataset, the URI returned has the
form <http://xmlns.oracle.com/rdf/geo/srid/{srid}> , where {srid} is a valid spatial
reference system ID from Oracle Spatial and Graph.

For the default spatial reference system, WGS84 Longitude-Latitude, the URI <http://
www.opengis.net/def/crs/OGC/1.3/CRS84> is returned.

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the OGC GeoSPARQL specification.

Example

The following example finds spatial reference system URIs for U.S. Congressional district
polygons.

Appendix B
GeoSPARQL Functions for Spatial Support

B-7

SELECT csrid
FROM table(sem_match(
'SELECT (ogcf:getSRID(?cgeom) AS ?csrid)
 WHERE
 { ?person usgovt:name ?name .
 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom }'
,sem_models('gov_all_vm'), null
,sem_aliases(
 sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
 sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/')
)
,null, null, ' ALLOW_DUP=T '));

B.1.8 ogcf:intersection
Format

ogcf:intersection (geom1 : geomLiteral, geom2 : geomLiteral) : ogc:wktLiteral

Description

Returns a geometry object that is the topological intersection (AND operation) of geom1
and geom2.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

geom2
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial
data in RDF.

See also the OGC GeoSPARQL specification.

Example

The following example finds the U.S. Congressional district polygons whose centroid is
within the intersection of two specified polygons.

SELECT name, cdist
FROM table(sem_match(
'{ ?person usgovt:name ?name .
 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom
 FILTER (ogcf:sfWithin(orageo:centroid(?cgeom),
 ogcf:intersection(
 "Polygon((-83.6 34.1, -83.2 34.1, -83.2 34.5, -83.6 34.5, -83.6
34.1))"^^ogc:wktLiteral,
 "Polygon((-83.2 34.3, -83.0 34.3, -83.0 34.5, -83.2 34.5, -83.2

Appendix B
GeoSPARQL Functions for Spatial Support

B-8

34.3))"^^ogc:wktLiteral))) } '
,sem_models('gov_all_vm'), null
,sem_aliases(
 sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
 sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/')
)
,null, null, ' ALLOW_DUP=T '));

B.1.9 ogcf:relate
Format

ogcf:relate(geom1 : geomLiteral, geom2 : geomLiteral, pattern-matrix : xsd:string) :
xsd:boolean

Description

Returns true if the topological relationship between geom1 and geom2 satisfies the specified
DE-9IM pattern-matrix. Returns false otherwise.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

geom2
Geometry object. Specified as a query variable or a constant geomLiteral value.

pattern-matrix
A dimensionally extended 9-intersection model (DE-9IM) intersection pattern string
consisting of T (true) and F (false) values. A DE-9IM pattern string describes the
intersections between the interiors, boundaries, and exteriors of two geometries.

Usage Notes

When invoking ogcf:relate with a query variable and a constant geometry, always use the
query variable as the first parameter and the constant geometry as the second parameter.

For best performance, geom1 should be a local variable (that is, a variable that appears in the
basic graph pattern that contains the ogcf:relate spatial filter).

It is recommended to use a LEADING(?var) HINT0 hint when the query involves a restrictive
ogcf:relate spatial filter on ?var.

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See the OGC Simple Features Specification (OGC 06-103r3) for a detailed description of
DE-9IM intersection patterns. See also the OGC GeoSPARQL specification.

Example

The following example finds the U.S. Congressional district that contains a specified point.

SELECT name, cdist
FROM table(sem_match(
'{ # HINT0={LEADING(?cgeom)}
 ?person usgovt:name ?name .

Appendix B
GeoSPARQL Functions for Spatial Support

B-9

 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom
 FILTER (ogcf:relate(?cgeom,
 "POINT(-71.46444 42.7575)"^^ogc:wktLiteral,
 "TTTFFTFFT")) } '
,sem_models('gov_all_vm'), null
,sem_aliases(
 sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
 sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/')
)
,null, null, ' ALLOW_DUP=T '
));

B.1.10 ogcf:sfContains
Format

ogcf:sfContains(geom1 : geomLiteral, geom2 : geomLiteral) : xsd:boolean

Description

Returns true if geom1 spatially contains geom2 as defined by the OGC Simple Features
specification (OGC 06-103r3). Returns false otherwise.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

geom2
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

When invoking this function with a query variable and a constant geometry, always use
the query variable as the first parameter and the constant geometry as the second
parameter.

For best performance, geom1 should be a local variable (that is, a variable that appears
in the basic graph pattern that contains the ogcf:sfContains spatial filter).

It is recommended to use a LEADING(?var) HINT0 hint when the query involves a
restrictive ogcf:sfContains spatial filter on ?var.

See Spatial Support for information about representing, indexing, and querying spatial
data in RDF.

See also the OGC GeoSPARQL specification.

Example

The following example finds U.S. Congressional district polygons that spatially contain
a constant polygon.

SELECT name, cdist
FROM table(sem_match(
'{ # HINT0={LEADING(?cgeom)}

Appendix B
GeoSPARQL Functions for Spatial Support

B-10

 ?person usgovt:name ?name .
 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom
 FILTER (ogcf:sfContains(?cgeom,
 "Polygon((-83.6 34.1, -83.2 34.1, -83.2 34.5, -83.6 34.5, -83.6
34.1))"^^ogc:wktLiteral)) } '
,sem_models('gov_all_vm'), null
,sem_aliases(
 sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
 sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/')
)
,null, null, ' ALLOW_DUP=T '));

B.1.11 ogcf:sfCrosses
Format

ogcf:sfCrosses(geom1 : geomLiteral, geom2 : geomLiteral) : xsd:boolean

Description

Returns true if geom1 spatially crosses geom2 as defined by the OGC Simple Features
specification (OGC 06-103r3). Returns false otherwise.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

geom2
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

When invoking this function with a query variable and a constant geometry, always use the
query variable as the first parameter and the constant geometry as the second parameter.

For best performance, geom1 should be a local variable (that is, a variable that appears in the
basic graph pattern that contains the ogcf:sfCrosses spatial filter).

It is recommended to use a LEADING(?var) HINT0 hint when the query involves a restrictive
ogcf:sfCrosses spatial filter on ?var.

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the OGC GeoSPARQL specification.

Example

The following example finds U.S. Congressional district polygons that spatially cross a
constant polygon.

SELECT name, cdist
FROM table(sem_match(
'{ # HINT0={LEADING(?cgeom)}
 ?person usgovt:name ?name .

Appendix B
GeoSPARQL Functions for Spatial Support

B-11

 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom
 FILTER (ogcf:sfCrosses(?cgeom,
 "Polygon((-83.6 34.1, -83.2 34.1, -83.2 34.5, -83.6 34.5, -83.6
34.1))"^^ogc:wktLiteral)) } '
,sem_models('gov_all_vm'), null
,sem_aliases(
 sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
 sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/')
)
,null, null, ' ALLOW_DUP=T '));

B.1.12 ogcf:sfDisjoint
Format

ogcf:fDisjoint(geom1 : geomLiteral, geom2 : geomLiteral) : xsd:boolean

Description

Returns true if the two geometries are spatially disjoint as defined by the OGC Simple
Features specification (OGC 06-103r3). Returns false otherwise.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

geom2
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

The ogcf:sfDisjoint filter cannot use a spatial index for evaluation, so performance
will probably be much worse than with other simple features spatial functions.

See also the OGC GeoSPARQL specification.

Example

The following example finds U.S. Congressional district polygons that are spatially
disjoint from a constant polygon.

SELECT name, cdist
FROM table(sem_match(
'{ # HINT0={LEADING(?cgeom)}
 ?person usgovt:name ?name .
 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom
 FILTER (ogcf:sfDisjoint(?cgeom,
 "Polygon((-83.6 34.1, -83.2 34.1, -83.2 34.5, -83.6 34.5, -83.6
34.1))"^^ogc:wktLiteral)) } '
,sem_models('gov_all_vm'), null
,sem_aliases(
 sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),

Appendix B
GeoSPARQL Functions for Spatial Support

B-12

 sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/')
)
,null, null, ' ALLOW_DUP=T '));

B.1.13 ogcf:sfEquals
Format

ogcf:sfEquals(geom1 : geomLiteral, geom2 : geomLiteral) : xsd:boolean

Description

Returns true if the two geometries are spatially equal as defined by the OGC Simple
Features specification (OGC 06-103r3). Returns false otherwise.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

geom2
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

When invoking this function with a query variable and a constant geometry, always use the
query variable as the first parameter and the constant geometry as the second parameter.

For best performance, geom1 should be a local variable (that is, a variable that appears in the
basic graph pattern that contains the ogcf:sfEquals spatial filter).

It is recommended to use a LEADING(?var) HINT0 hint when the query involves a restrictive
ogcf:sfEquals spatial filter on ?var.

See Spatial Support for information about representing , indexing, and querying spatial data
in RDF.

See also the OGC GeoSPARQL specification.

Example

The following example finds U.S. Congressional district polygons that are spatially equal to a
constant polygon.

SELECT name, cdist
FROM table(sem_match(
'{ # HINT0={LEADING(?cgeom)}
 ?person usgovt:name ?name .
 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom
 FILTER (ogcf:sfEquals(?cgeom,
 "Polygon((-83.6 34.1, -83.2 34.1, -83.2 34.5, -83.6 34.5, -83.6
34.1))"^^ogc:wktLiteral)) } '
,sem_models('gov_all_vm'), null
,sem_aliases(
 sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
 sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/')

Appendix B
GeoSPARQL Functions for Spatial Support

B-13

)
,null, null, ' ALLOW_DUP=T '));

B.1.14 ogcf:sfIntersects
Format

ogcf:sfIntersects(geom1 : geomLiteral, geom2 : geomLiteral) : xsd:boolean

Description

Returns true if the two geometries are not disjoint as defined by the OGC Simple
Features specification (OGC 06-103r3). Returns false otherwise.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

geom2
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

When invoking this function with a query variable and a constant geometry, always use
the query variable as the first parameter and the constant geometry as the second
parameter.

For best performance, geom1 should be a local variable (that is, a variable that appears
in the basic graph pattern that contains the ogcf:sfIntersects spatial filter).

It is recommended to use a LEADING(?var) HINT0 hint when the query involves a
restrictive ogcf:sfIntersects spatial filter on ?var.

See Spatial Support for information about representing, indexing, and querying spatial
data in RDF.

See also the OGC GeoSPARQL specification.

Example

The following example finds U.S. Congressional district polygons that intersect a
constant polygon.

SELECT name, cdist
FROM table(sem_match(
'{ # HINT0={LEADING(?cgeom)}
 ?person usgovt:name ?name .
 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom
 FILTER (ogcf:sfIntersects(?cgeom,
 "Polygon((-83.6 34.1, -83.2 34.1, -83.2 34.5, -83.6 34.5, -83.6
34.1))"^^ogc:wktLiteral)) } '
,sem_models('gov_all_vm'), null
,sem_aliases(
 sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
 sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/')

Appendix B
GeoSPARQL Functions for Spatial Support

B-14

)
,null, null, ' ALLOW_DUP=T '));

B.1.15 ogcf:sfOverlaps
Format

ogcf:sfOverlaps(geom1 : geomLiteral, geom2 : geomLiteral) : xsd:boolean

Description

Returns true if geom1 spatially overlaps geom2 as defined by the OGC Simple Features
specification (OGC 06-103r3). Returns false otherwise.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

geom2
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

When invoking this function with a query variable and a constant geometry, always use the
query variable as the first parameter and the constant geometry as the second parameter.

For best performance, geom1 should be a local variable (that is, a variable that appears in the
basic graph pattern that contains the ogcf:sfOverlaps spatial filter).

It is recommended to use a LEADING(?var) HINT0 hint when the query involves a restrictive
ogcf:sfOverlaps spatial filter on ?var.

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the OGC GeoSPARQL specification.

Example

The following example finds U.S. Congressional district polygons that spatially overlap a
constant polygon.

SELECT name, cdist
FROM table(sem_match(
'{ # HINT0={LEADING(?cgeom)}
 ?person usgovt:name ?name .
 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom
 FILTER (ogcf:sfOverlaps(?cgeom,
 "Polygon((-83.6 34.1, -83.2 34.1, -83.2 34.5, -83.6 34.5, -83.6
34.1))"^^ogc:wktLiteral)) } '
,sem_models('gov_all_vm'), null
,sem_aliases(
 sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
 sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/')

Appendix B
GeoSPARQL Functions for Spatial Support

B-15

)
,null, null, ' ALLOW_DUP=T '));

B.1.16 ogcf:sfTouches
Format

ogcf:sfTouches(geom1 : geomLiteral, geom2 : geomLiteral) : xsd:boolean

Description

Returns true if the two geometries spatially touch as defined by the OGC Simple
Features specification (OGC 06-103r3). Returns false otherwise.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

geom2
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

When invoking this function with a query variable and a constant geometry, always use
the query variable as the first parameter and the constant geometry as the second
parameter.

For best performance, geom1 should be a local variable (that is, a variable that appears
in the basic graph pattern that contains the ogcf:sfTouches spatial filter).

It is recommended to use a LEADING(?var) HINT0 hint when the query involves a
restrictive ogcf:sfTouches spatial filter on ?var.

See Spatial Support for information about representing, indexing, and querying spatial
data in RDF.

See also the OGC GeoSPARQL specification.

Example

The following example finds U.S. Congressional district polygons that spatially touch a
constant polygon.

SELECT name, cdist
FROM table(sem_match(
'{ # HINT0={LEADING(?cgeom)}
 ?person usgovt:name ?name .
 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom
 FILTER (ogcf:sfTouches(?cgeom,
 "Polygon((-83.6 34.1, -83.2 34.1, -83.2 34.5, -83.6 34.5, -83.6
34.1))"^^ogc:wktLiteral)) } '
,sem_models('gov_all_vm'), null
,sem_aliases(
 sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
 sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/')

Appendix B
GeoSPARQL Functions for Spatial Support

B-16

)
,null, null, ' ALLOW_DUP=T '));

B.1.17 ogcf:sfWithin
Format

ogcf:sfWithin(geom1 : geomLiteral, geom2 : geomLiteral) : xsd:boolean

Description

Returns true if geom1 is spatially within geom2 as defined by the OGC Simple Features
specification (OGC 06-103r3). Returns false otherwise.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

geom2
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

When invoking this function with a query variable and a constant geometry, always use the
query variable as the first parameter and the constant geometry as the second parameter.

For best performance, geom1 should be a local variable (that is, a variable that appears in the
basic graph pattern that contains the ogcf:sfWithin spatial filter).

It is recommended to use a LEADING(?var) HINT0 hint when the query involves a restrictive
ogcf:sfWithin spatial filter on ?var.

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the OGC GeoSPARQL specification.

Example

The following example finds U.S. Congressional district polygons that are spatially within a
constant polygon.

SELECT name, cdist
FROM table(sem_match(
'{ # HINT0={LEADING(?cgeom)}
 ?person usgovt:name ?name .
 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom
 FILTER (ogcf:sfWithin(?cgeom,
 "Polygon((-83.6 34.1, -83.2 34.1, -83.2 34.5, -83.6 34.5, -83.6
34.1))"^^ogc:wktLiteral)) } '
,sem_models('gov_all_vm'), null
,sem_aliases(
 sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
 sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/')

Appendix B
GeoSPARQL Functions for Spatial Support

B-17

)
,null, null, ' ALLOW_DUP=T '));

B.1.18 ogcf:symDifference
Format

ogcf:symDifference(geom1 : geomLiteral, geom2 : geomLiteral) : ogc:wktLiteral

Description

Returns a geometry object that is the topological symmetric difference (XOR
operation) of geom1 and geom2.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

geom2
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial
data in RDF.

See also the OGC GeoSPARQL specification.

Example

The following example finds the U.S. Congressional district polygons that are within a
100-kilometer buffer around a specified point.

SELECT name, cdist
FROM table(sem_match(
'{ ?person usgovt:name ?name .
 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom
 FILTER (ogcf:sfWithin(orageo:centroid(?cgeom),
 ogcf:symDifference(
 "Polygon((-83.6 34.1, -83.2 34.1, -83.2 34.5, -83.6 34.5, -83.6
34.1))"^^ogc:wktLiteral,
 "Polygon((-83.2 34.3, -83.0 34.3, -83.0 34.5, -83.2 34.5, -83.2
34.3))"^^ogc:wktLiteral))) } '
,sem_models('gov_all_vm'), null
,sem_aliases(
 sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
 sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/')
)
,null, null, ' ALLOW_DUP=T '));

Appendix B
GeoSPARQL Functions for Spatial Support

B-18

B.1.19 ogcf:union
Format

ogcf:union(geom1 : geomLiteral, geom2 : geomLiteral) : ogc:wktLiteral

Description

Returns a geometry object that is the topological union (OR operation) of geom1 and geom2.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

geom2
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the OGC GeoSPARQL specification.

Example

The following example finds the U.S. Congressional district polygons whose centroid is within
the union of two specified polygons.

SELECT name, cdist
FROM table(sem_match(
'{ ?person usgovt:name ?name .
 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom
 FILTER (ogcf:sfWithin(orageo:centroid(?cgeom),
 ogcf:union(
 "Polygon((-83.6 34.1, -83.2 34.1, -83.2 34.5, -83.6 34.5, -83.6
34.1))"^^ogc:wktLiteral,
 "Polygon((-83.2 34.3, -83.0 34.3, -83.0 34.5, -83.2 34.5, -83.2
34.3))"^^ogc:wktLiteral))) } '
,sem_models('gov_all_vm'), null
,sem_aliases(
 sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
 sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/')
)
,null, null, ' ALLOW_DUP=T '));

B.2 Oracle-Specific Functions for Spatial Support
This section provides reference information about the Oracle-specific functions:

• orageo:aggrCentroid

• orageo:aggrConvexHull

Appendix B
Oracle-Specific Functions for Spatial Support

B-19

• orageo:aggrMBR

• orageo:aggrUnion

• orageo:area

• orageo:buffer

• orageo:centroid

• orageo:convexHull

• orageo:difference

• orageo:distance

• orageo:getSRID

• orageo:intersection

• orageo:length

• orageo:mbr

• orageo:nearestNeighbor

• orageo:relate

• orageo:sdoDistJoin

• orageo:sdoJoin

• orageo:union

• orageo:withinDistance

• orageo:xor

B.2.1 orageo:aggrCentroid
Format

orageo:aggrCentroid(geom : geomLiteral) : ogc:wktLiteral

Description

Returns a geometry literal that is the centroid of the group of specified geometry
objects. (The centroid is also known as the "center of gravity.")

Parameters

geom
Geometry objects. Specified as a query variable.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial
data in RDF.

See also the SDO_AGGR_CENTROID function in Oracle Spatial and Graph
Developer's Guide.

Appendix B
Oracle-Specific Functions for Spatial Support

B-20

Example

The following example finds the centroid of all the U.S. Congressional district polygons.

SELECT centroid
FROM table(sem_match(
'select (orageo:aggrCentroid(?cgeom) as ?centroid)
 {?cdist orageo:hasExactGeometry ?cgeom } '
,sem_models('gov_all_vm'), null
,sem_aliases(
 sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
 sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))
,null, null, ' ALLOW_DUP=T '));

B.2.2 orageo:aggrConvexHull
Format

orageo:aggrConvexhull(geom : geomLiteral) : ogc:wktLiteral

Description

Returns a geometry literal that is the convex hull of the group of specified geometry objects..
(The convex hull is a simple convex polygon that, for this funciton, completely encloses the
group of geometry objects, using as few straight-line sides as possible to create the smallest
polygon that completely encloses the geometry objects.)

Parameters

geom
Geometry objects. Specified as a query variable.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the SDO_AGGR_CONVEXHULL function in Oracle Spatial and Graph Developer's
Guide.

Example

The following example finds the convex hull of all the U.S. Congressional district polygons.

SELECT chull
FROM table(sem_match(
'select (orageo:aggrConvexhull(?cgeom) as ?chull)
 {
 ?cdist orageo:hasExactGeometry ?cgeom } '
,sem_models('gov_all_vm'), null
,sem_aliases(
 sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
 sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))
,null, null, ' ALLOW_DUP=T '));

Appendix B
Oracle-Specific Functions for Spatial Support

B-21

B.2.3 orageo:aggrMBR
Format

orageo:aggrMBR(geom : geomLiteral) : ogc:wktLiteral

Description

Returns a geometry literal that is the minimum bounding rectangle (MBR) of the group
of specified geometry objects.

Parameters

geom
Geometry objects. Specified as a query variable.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial
data in RDF.

See also the SDO_AGGR_MBR function in Oracle Spatial and Graph Developer's
Guide.

Example

The following example finds the MBR of all the U.S. Congressional district polygons.

SELECT mbr
FROM table(sem_match(
'select (orageo:aggrMBR(?cgeom) as ?mbr)
 {
 ?cdist orageo:hasExactGeometry ?cgeom } '
,sem_models('gov_all_vm'), null
,sem_aliases(
 sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
 sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))
,null, null, ' ALLOW_DUP=T '));

B.2.4 orageo:aggrUnion
Format

orageo:aggrUnion(geom : geomLiteral) : ogc:wktLiteral

Description

Returns a geometry literal that is the topological union of the group of specified
geometry objects.

Parameters

geom
Geometry objects. Specified as a query variable.

Appendix B
Oracle-Specific Functions for Spatial Support

B-22

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the SDO_GEOM.SDO_UNION function in Oracle Spatial and Graph Developer's
Guide.

Example

The following example finds the union of all the U.S. Congressional district polygons.

SELECT u
FROM table(sem_match(
'select (orageo:aggrUnion(?cgeom) as ?u)
 {
 ?cdist orageo:hasExactGeometry ?cgeom } '
,sem_models('gov_all_vm'), null
,sem_aliases(
 sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
 sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))
,null, null, ' ALLOW_DUP=T '));

B.2.5 orageo:area
Format

orageo:area(geom1 : geomLiteral, unit : Literal) : xsd:decimal

Description

Returns the area of geom1 in terms of the specified unit of measure.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

unit
Unit of measurement: a quoted string with an SDO_UNIT value from the
MDSYS.SDO_DIST_UNITS table (for example, "unit=SQ_KM"). See the section about unit of
measurement support in Oracle Spatial and Graph Developer's Guide for more information
about unit of measurement specification.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the SDO_GEOM.SDO_AREA function in Oracle Spatial and Graph Developer's
Guide.

Example

The following example finds the U.S. Congressional district polygons with areas greater than
10,000 square kilometers.

Appendix B
Oracle-Specific Functions for Spatial Support

B-23

SELECT name, cdist
FROM table(sem_match(
'{ ?person usgovt:name ?name .
 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom
 FILTER (orageo:area(?cgeom, "unit=SQ_KM") > 10000) }'
,sem_models('gov_all_vm'), null
,sem_aliases(
 sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
 sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))
,null, null, ' ALLOW_DUP=T '));

B.2.6 orageo:buffer
Format

orageo:buffer(geom1 : geomLiteral, distance : xsd:decimal, unit : Literal) : geomLiteral

Description

Returns a buffer polygon at a specified distance around or inside a geometry.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

distance
Distance value. Distance value. If the value is positive, the buffer is generated around
geom1; if the value is negative (valid only for polygons), the buffer is generated inside
geom1.

unit
Unit of measurement: a quoted string with an SDO_UNIT value from the
MDSYS.SDO_DIST_UNITS table (for example, "unit=KM"). See the section about
unit of measurement support in Oracle Spatial and Graph Developer's Guide for more
information about unit of measurement specification.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial
data in RDF.

See also the SDO_GEOM.SDO_BUFFER function in Oracle Spatial and Graph
Developer's Guide.

Example

The following example finds the U.S. Congressional district polygons that are
completely inside a 100-kilometer buffer around a specified point.

SELECT name, cdist
FROM table(sem_match(
'{ # HINT0={LEADING(?cgeom)}
 ?person usgovt:name ?name .
 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .

Appendix B
Oracle-Specific Functions for Spatial Support

B-24

 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom
 FILTER (
 orageo:relate(?cgeom,
 orageo:buffer("POINT(-71.46444 42.7575)"^^orageo:WKTLiteral,
 100, "unit=KM"),
 "mask=inside")) }'
,sem_models('gov_all_vm'), null
,sem_aliases(
 sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
 sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))
,null, null, ' ALLOW_DUP=T '));

B.2.7 orageo:centroid
Format

orageo:centroid(geom1 : geomLiteral) : geomLiteral

Description

Returns a point geometry that is the centroid of geom1. (The centroid is also known as the
"center of gravity.")

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

For an input geometry consisting of multiple objects, the result is weighted by the area of
each polygon in the geometry objects. If the geometry objects are a mixture of polygons and
points, the points are not used in the calculation of the centroid. If the geometry objects are
all points, the points have equal weight.

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the SDO_GEOM.SDO_CENTROID function in Oracle Spatial and Graph
Developer's Guide.

Example

The following example finds the U.S. Congressional district polygons with centroids within
200 kilometers of a specified point.

SELECT name, cdist
FROM table(sem_match(
'{ ?person usgovt:name ?name .
 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom
 FILTER (orageo:withinDistance(orageo:centroid(?cgeom),
 "POINT(-71.46444 42.7575)"^^orageo:WKTLiteral,
 "distance=200 unit=KM")) } '
,sem_models('gov_all_vm'), null
,sem_aliases(

Appendix B
Oracle-Specific Functions for Spatial Support

B-25

 sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
 sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))
,null, null, ' ALLOW_DUP=T '));

B.2.8 orageo:convexHull
Format

orageo:convexHull(geom1 : geomLiteral) : geomLiteral

Description

Returns a polygon-type object that represents the convex hull of geom1. (The convex
hull is a simple convex polygon that completely encloses the geometry object, using
as few straight-line sides as possible to create the smallest polygon that completely
encloses the geometry object.)

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

A convex hull is a convenient way to get an approximation of a complex geometry
object.

See Spatial Support for information about representing, indexing, and querying spatial
data in RDF.

See also the SDO_GEOM.SDO_CONVEX_HULL function in Oracle Spatial and Graph
Developer's Guide.

Example

The following example finds the U.S. Congressional district polygons whose convex
hull contains a specified point.

SELECT name, cdist
FROM table(sem_match(
'{ ?person usgovt:name ?name .
 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom
 FILTER (orageo:relate(orageo:convexHull(?cgeom),
 "POINT(-71.46444 42.7575)"^^orageo:WKTLiteral,
 "mask=contains")) } '
,sem_models('gov_all_vm'), null
,sem_aliases(
 sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
 sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))
,null, null, ' ALLOW_DUP=T '));

Appendix B
Oracle-Specific Functions for Spatial Support

B-26

B.2.9 orageo:difference
Format

orageo:difference(geom1 : geomLiteral, geom2 : geomLiteral) : geomLiteral

Description

Returns a geometry object that is the topological difference (MINUS operation) of geom1 and
geom2.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

geom2
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the SDO_GEOM.SDO_DIFFERENCE function in Oracle Spatial and Graph
Developer's Guide.

Example

The following example finds the U.S. Congressional district polygons whose centroid is inside
the difference of two specified polygons.

SELECT name, cdist
FROM table(sem_match(
'{ ?person usgovt:name ?name .
 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom
 FILTER (orageo:relate(orageo:centroid(?cgeom),
 orageo:difference(
 "Polygon((-83.6 34.1, -83.2 34.1, -83.2 34.5, -83.6 34.5,
-83.6 34.1))"^^orageo:WKTLiteral,
 "Polygon((-83.2 34.3, -83.0 34.3, -83.0 34.5, -83.2 34.5,
-83.2 34.3))"^^orageo:WKTLiteral),
 "mask=inside")) } '
,sem_models('gov_all_vm'), null
,sem_aliases(
 sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
 sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))
,null, null, ' ALLOW_DUP=T '));

B.2.10 orageo:distance
Format

orageo:distance(geom1 : geomLiteral, geom2 : geomLiteral, unit : Literal) : xsd:decimal

Appendix B
Oracle-Specific Functions for Spatial Support

B-27

Description

Returns the distance between the nearest pair of points or segments of geom1 and
geom2 in terms of the specified unit of measure.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

geom2
Geometry object. Specified as a query variable or a constant geomLiteral value.

unit
Unit of measurement: a quoted string with an SDO_UNIT value from the
MDSYS.SDO_DIST_UNITS table (for example, "unit=KM"). See the section about
unit of measurement support in Oracle Spatial and Graph Developer's Guide for more
information about unit of measurement specification.

Usage Notes

Use orageo:withinDistance instead of orageo:distance whenever possible, because
orageo:withinDistance has a more efficient index-based implementation.

See Spatial Support for information about representing, indexing, and querying spatial
data in RDF.

See also the SDO_GEOM.SDO_DISTANCE function in Oracle Spatial and Graph
Developer's Guide.

Example

The following example finds the ten nearest U.S. Congressional districts to a specified
point and orders them by distance from the point.

SELECT name, cdist
FROM table(sem_match(
'SELECT ?name ?cdist
 WHERE
 { # HINT0={LEADING(?cgeom)}
 ?person usgovt:name ?name .
 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom
 FILTER (orageo:nearestNeighbor(?cgeom,
 "POINT(-71.46444 42.7575)"^^orageo:WKTLiteral,
 "sdo_num_res=10")) }
 ORDER BY ASC(orageo:distance(?cgeom,
 "POINT(-71.46444 42.7575)"^^orageo:WKTLiteral,
 "unit=KM"))'
,sem_models('gov_all_vm'), null
,sem_aliases(
 sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
 sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))
,null, null, ' ALLOW_DUP=T '))
ORDER BY sem$rownum;

Appendix B
Oracle-Specific Functions for Spatial Support

B-28

B.2.11 orageo:getSRID
Format

orageo:getSRID(geom : geomLiteral) : xsd:anyURI

Description

Returns the oracle spatial reference system (SRID) URI for geom.

Parameters

geom
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

Example

The following example finds spatial reference system URIs for U.S. Congressional district
polygons.

SELECT csrid
FROM table(sem_match(
'SELECT (orageo:getSRID(?cgeom) AS ?csrid)
 WHERE
 { ?person usgovt:name ?name .
 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom }'
,sem_models('gov_all_vm'), null
,sem_aliases(
 sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
 sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/')
)
,null, null, ' ALLOW_DUP=T '));

B.2.12 orageo:intersection
Format

orageo:intersection(geom1 : geomLiteral, geom2 : geomLiteral) : geomLiteral

Description

Returns a geometry object that is the topological intersection (AND operation) of geom1 and
geom2.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

Appendix B
Oracle-Specific Functions for Spatial Support

B-29

geom2
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial
data in RDF.

See also the SDO_GEOM.SDO_INTERSECTION function in Oracle Spatial and
Graph Developer's Guide.

Example

The following example finds the U.S. Congressional district polygons whose centroid is
inside the intersection of two specified polygons.

SELECT name, cdist
FROM table(sem_match(
'{ ?person usgovt:name ?name .
 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom
 FILTER (orageo:relate(orageo:centroid(?cgeom),
 orageo:intersection(
 "Polygon((-83.6 34.1, -83.2 34.1, -83.2 34.5, -83.6
34.5, -83.6 34.1))"^^orageo:WKTLiteral,
 "Polygon((-83.2 34.3, -83.0 34.3, -83.0 34.5, -83.2
34.5, -83.2 34.3))"^^orageo:WKTLiteral),
 "mask=inside")) } '
,sem_models('gov_all_vm'), null
,sem_aliases(
 sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
 sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))
,null, null, ' ALLOW_DUP=T '));

B.2.13 orageo:length
Format

orageo:length(geom1 : geomLiteral, unit : Literal) : xsd:decimal

Description

Returns the length or perimeter of geom1 in terms of the specified unit of measure.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

unit
Unit of measurement: a quoted string with an SDO_UNIT value from the
MDSYS.SDO_DIST_UNITS table (for example, "unit=KM"). See the section about
unit of measurement support in Oracle Spatial and Graph Developer's Guide for more
information about unit of measurement specification.

Appendix B
Oracle-Specific Functions for Spatial Support

B-30

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the SDO_GEOM.SDO_LENGTH function in Oracle Spatial and Graph Developer's
Guide.

Example

The following example finds the U.S. Congressional district polygons with lengths
(perimeters) greater than 1000 kilometers.

SELECT name, cdist
FROM table(sem_match(
'{ ?person usgovt:name ?name .
 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom
 FILTER (orageo:legnth(?cgeom, "unit=KM") > 1000) }'
,sem_models('gov_all_vm'), null
,sem_aliases(
 sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
 sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))
,null, null, ' ALLOW_DUP=T '));

B.2.14 orageo:mbr
Format

orageo:mbr(geom1 : geomLiteral) : geomLiteral

Description

Returns the minimum bounding rectangle of geom1, that is, the single rectangle that minimally
encloses geom1.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the SDO_GEOM.SDO_MBR function in Oracle Spatial and Graph Developer's
Guide.

Example

The following example finds the U.S. Congressional district polygons whose minimum
bounding rectangle contains a specified point.

SELECT name, cdist
FROM table(sem_match(

Appendix B
Oracle-Specific Functions for Spatial Support

B-31

'{ ?person usgovt:name ?name .
 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom
 FILTER (orageo:relate(orageo:mbr(?cgeom),
 "POINT(-71.46444 42.7575)"^^orageo:WKTLiteral,
 "mask=contains")) } '
,sem_models('gov_all_vm'), null
,sem_aliases(
 sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
 sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))
,null, null, ' ALLOW_DUP=T '));

B.2.15 orageo:nearestNeighbor
Format

orageo:nearestNeighbor(geom1: geomLiteral, geom2 : geomLiteral, param : Literal) :
xsd:boolean

Description

Returns true if geom1 is a nearest neighbor of geom2, where the size of the nearest
neighbors set is specified by param; returns false otherwise.

Parameters

geom1
Geometry object. Specified as a query variable.

geom2
Geometry object. Specified as a query variable or a constant geomLiteral value.

param
Determines the behavior of the operator. See the Usage Notes for the available
keyword-value pairs.

Usage Notes

In the param parameter, the available keyword-value pairs are:

• distance=n specifies the maximum allowable distance for the nearest neighbor
search.

• sdo_num_res=n specifies the size of the set for the nearest neighbor search.

• unit=unit specifies the unit of measurement to use with distance value. If you do
not specify a value, the unit of measurement associated with the data is used.

geom1 must be a local variable (that is, a variable that appears in the basic graph
pattern that contains the orageo:nearestNeighbor spatial filter).

It is a good idea to use a 'LEADING(?var)' HINT0 hint when your query involves a
restrictive orageo:relate spatial filter on ?var.
See Spatial Support for information about representing, indexing, and querying spatial
data in RDF.

Appendix B
Oracle-Specific Functions for Spatial Support

B-32

See also the SDO_NN operator in Oracle Spatial and Graph Developer's Guide.

Example

The following example finds the ten nearest U.S. Congressional districts to a specified point.

SELECT name, cdist
FROM table(sem_match(
'{ # HINT0={LEADING(?cgeom)}
 ?person usgovt:name ?name .
 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom
 FILTER (orageo:nearestNeighbor(?cgeom,
 "POINT(-71.46444 42.7575)"^^orageo:WKTLiteral,
 "sdo_num_res=10")) } '
,sem_models('gov_all_vm'), null
,sem_aliases(
 sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
 sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))
,null, null, ' ALLOW_DUP=T '));

B.2.16 orageo:relate
Format

orageo:relate(geom1: geomLiteral, geom2 : geomLiteral, param : Literal) : xsd:boolean

Description

Returns true if geom1 and geom2 satisfy the topological spatial relation specified by the param
parameter; returns false otherwise.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

geom2
Geometry object. Specified as a query variable or a constant geomLiteral value.

param
Specifies a list of mask relationships to check. See the list of keywords in the Usage Notes.

Usage Notes

The following param values (mask relationships) can be tested:

• ANYINTERACT: Returns TRUE if the objects are not disjoint.

• CONTAINS: Returns TRUE if the second object is entirely within the first object and the
object boundaries do not touch; otherwise, returns FALSE.

• COVEREDBY: Returns TRUE if the first object is entirely within the second object and
the object boundaries touch at one or more points; otherwise, returns FALSE.

• COVERS: Returns TRUE if the second object is entirely within the first object and the
boundaries touch in one or more places; otherwise, returns FALSE.

Appendix B
Oracle-Specific Functions for Spatial Support

B-33

• DISJOINT: Returns TRUE if the objects have no common boundary or interior
points; otherwise, returns FALSE.

• EQUAL: Returns TRUE if the objects share every point of their boundaries and
interior, including any holes in the objects; otherwise, returns FALSE.

• INSIDE: Returns TRUE if the first object is entirely within the second object and
the object boundaries do not touch; otherwise, returns FALSE.

• ON: Returns ON if the boundary and interior of a line (the first object) is completely
on the boundary of a polygon (the second object); otherwise, returns FALSE.

• OVERLAPBDYDISJOINT: Returns TRUE if the objects overlap, but their
boundaries do not interact; otherwise, returns FALSE.

• OVERLAPBDYINTERSECT: Returns TRUE if the objects overlap, and their
boundaries intersect in one or more places; otherwise, returns FALSE.

• TOUCH: Returns TRUE if the two objects share a common boundary point, but no
interior points; otherwise, returns FALSE.

Values for param can be combined using the logical Boolean operator OR. For
example, 'INSIDE + TOUCH' returns TRUE if the relationship between the geometries is
INSIDE or TOUCH or both INSIDE and TOUCH; it returns FALSE if the relationship
between the geometries is neither INSIDE nor TOUCH.

When invoking orageo:relate with a query variable and a constant geometry, always
use the query variable as the first parameter and the constant geometry as the second
parameter.

For best performance, geom1 should be a local variable (that is, a variable that appears
in the basic graph pattern that contains the orageo:relate spatial filter).

It is a good idea to use a 'LEADING(?var)' HINT0 hint when your query involves a
restrictive orageo:relate spatial filter on ?var.
See Spatial Support for information about representing, indexing, and querying spatial
data in RDF.

See also the SDO_RELATE operator in Oracle Spatial and Graph Developer's Guide.

Example

The following example finds the U.S. Congressional district that contains a specified
point.

SELECT name, cdist
FROM table(sem_match(
'{ # HINT0={LEADING(?cgeom)}
 ?person usgovt:name ?name .
 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom
 FILTER (orageo:relate(?cgeom,
 "POINT(-71.46444 42.7575)"^^orageo:WKTLiteral,
 "mask=contains")) } '
,sem_models('gov_all_vm'), null
,sem_aliases(
 sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
 sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))

Appendix B
Oracle-Specific Functions for Spatial Support

B-34

,null, null, ' ALLOW_DUP=T '
));

B.2.17 orageo:sdoDistJoin
Format

orageo:sdoDistJoin(geom1 : geomLiteral, geom2 : geomLiteral, param : Literal) : xsd:boolean

Description

Performs a spatial join based on distance between two geometries. Returns true if the
distance between geom1 and geom2 is within the given value specified in param; returns false
otherwise.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

geom2
Geometry object. Specified as a query variable or a constant geomLiteral value.

param
Specifies a distance value and unit of measure to use for the distance-based spatial join.
The distance value is added to the tolerance value of the associated spatial index. For
example if "distance=100 and unit=m" is used with a tolerance value of 10 meters, then
orageo:sdoDistJoin returns true if the distance between two geometries is no more than 110
meters.

Usage Notes

orageo:sdoDistJoin should be used when performing a distance-based spatial join between
two large geometry collections. When performing a distance-based spatial join between one
small geometry collection and one large geometry collection, invoking orageo:withinDistance
with the small geometry collection as the first argument will usually give better performance
than orageo:sdoDistJoin.

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the SDO_JOIN operator in Oracle Spatial and Graph Developer's Guide.

Example

The following example finds pairs of U.S. Congressional district polygons that are within 100
meters of each other.

SELECT cdist1, cdist2
FROM table(sem_match(
'{ ?cdist1 orageo:hasExactGeometry ?cgeom1 .
 ?cdist2 orageo:hasExactGeometry ?cgeom2
 FILTER (orageo:sdoDistJoin(?cgeom1, ?cgeom2,
 "distance=100 unit=m")) } '
,sem_models('gov_all_vm'), null
,sem_aliases(
 sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
 sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))

Appendix B
Oracle-Specific Functions for Spatial Support

B-35

,null, null, ' ALLOW_DUP=T '
));

B.2.18 orageo:sdoJoin
Format

orageo:sdoJoin(geom1 : geomLiteral, geom2 : geomLiteral, param : Literal) :
xsd:boolean

Description

Performs a spatial join based on one or more topological relationships. Returns true if
geom1 and geom2 satisfy the spatial relationship specified by param; returns false
otherwise.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

geom2
Geometry object. Specified as a query variable or a constant geomLiteral value.

param
Specifies a list of mask relationships to check. The topological relationship of
interest.Valid values are 'mask=<value>' where <value> is one or more of the mask
values that are valid for the SDO_RELATE operator (TOUCH,
OVERLAPBDYDISJOINT, OVERLAPBDYINTERSECT, EQUAL, INSIDE,
COVEREDBY, CONTAINS, COVERS, ANYINTERACT, ON). Multiple masks are
combined with the logical Boolean operator OR (for example, "mask=inside+touch").

Usage Notes

orageo:sdoJoin should be used when performing a spatial join between two large
geometry collections. When performing a spatial join between one small geometry
collection and one large geometry collection, invoking orageo:relate with the small
geometry collection as the first argument will usually give better performance than
orageo:sdoJoin.

See Spatial Support for information about representing, indexing, and querying spatial
data in RDF.

See also the SDO_JOIN operator in Oracle Spatial and Graph Developer's Guide.

Example

The following example finds pairs of U.S. Congressional district polygons that have
any spatial interaction.

SELECT cdist1, cdist2
FROM table(sem_match(
'{ ?cdist1 orageo:hasExactGeometry ?cgeom1 .
 ?cdist2 orageo:hasExactGeometry ?cgeom2
 FILTER (orageo:sdoJoin(?cgeom1, ?cgeom2,
 "mask=anyinteract")) } '
,sem_models('gov_all_vm'), null
,sem_aliases(

Appendix B
Oracle-Specific Functions for Spatial Support

B-36

 sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
 sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))
,null, null, ' ALLOW_DUP=T '
));

B.2.19 orageo:union
Format

orageo:union(geom1 : geomLiteral, geom2 : geomLiteral) : geomLiteral

Description

Returns a geometry object that is the topological union (OR operation) of geom1 and geom2.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

geom2
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the SDO_GEOM.SDO_UNION function in Oracle Spatial and Graph Developer's
Guide.

Example

The following example finds the U.S. Congressional district polygons whose centroid is inside
the union of two specified polygons.

SELECT name, cdist
FROM table(sem_match(
'{ ?person usgovt:name ?name .
 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom
 FILTER (orageo:relate(orageo:centroid(?cgeom),
 orageo:union("Polygon((-83.6 34.1, -83.2 34.1, -83.2 34.5, -83.6 34.5, -83.6
34.1))"^^orageo:WKTLiteral,
 "Polygon((-83.2 34.3, -83.0 34.3, -83.0 34.5, -83.2 34.5, -83.2
34.3))"^^orageo:WKTLiteral),
 "mask=inside")) } '
,sem_models('gov_all_vm'), null
,sem_aliases(
 sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
 sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))
,null, null, ' ALLOW_DUP=T '));

Appendix B
Oracle-Specific Functions for Spatial Support

B-37

B.2.20 orageo:withinDistance
Format

orageo:withinDistance(geom1 : geomLiteral, geom2 : geomLiteral, distance :
xsd:decimal, unit : Literal) : xsd:boolean

Description

Returns true if the distance between geom1 and geom2 is less than or equal to
distance when measured in unit; returns false otherwise.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

geom2
Geometry object. Specified as a query variable or a constant geomLiteral value.

distance
Distance value.

unit
Unit of measurement: a quoted string with an SDO_UNIT value from the
MDSYS.SDO_DIST_UNITS table (for example, "unit=KM"). See the section about
unit of measurement support in Oracle Spatial and Graph Developer's Guide for more
information about unit of measurement specification.

Usage Notes

When invoking this function with a query variable and a constant geometry, always use
the query variable as the first parameter and the constant geometry as the second
parameter.

For best performance, geom1 should be a local variable (that is, a variable that appears
in the basic graph pattern that contains the orageo:withinDistance spatial filter).

It is a good idea to use a 'LEADING(?var)' HINT0 hint when your query involves a
restrictive orageo:withinDistance spatial filter on ?var.
See Spatial Support for information about representing, indexing, and querying spatial
data in RDF.

See also the SDO_WITHIN_DISTANCE operator in Oracle Spatial and Graph
Developer's Guide.

Example

The following example finds the U.S. Congressional districts that are within 100
kilometers of a specified point.

SELECT name, cdist
FROM table(sem_match(
'{ # HINT0={LEADING(?cgeom)}
 ?person usgovt:name ?name .
 ?person pol:hasRole ?role .

Appendix B
Oracle-Specific Functions for Spatial Support

B-38

 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom
 FILTER (orageo:withinDistance(?cgeom,
 "POINT(-71.46444 42.7575)"^^orageo:WKTLiteral,
 100, "KM")) } '
,sem_models('gov_all_vm'), null
,sem_aliases(
 sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
 sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))
,null, null, ' ALLOW_DUP=T '));

B.2.21 orageo:xor
Format

orageo:xor(geom1 : geomLiteral, geom2 : geomLiteral) : geomLiteral

Description

Returns a geometry object that is the topological symmetric difference (XOR operation) of
geom1 and geom2.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

geom2
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial data in
RDF.

See also the SDO_GEOM.SDO_XOR function in Oracle Spatial and Graph Developer's
Guide.

Example

The following example finds the U.S. Congressional district polygons whose centroid is inside
the symmetric difference of two specified polygons.

SELECT name, cdist
FROM table(sem_match(
'{ ?person usgovt:name ?name .
 ?person pol:hasRole ?role .
 ?role pol:forOffice ?office .
 ?office pol:represents ?cdist .
 ?cdist orageo:hasExactGeometry ?cgeom
 FILTER (orageo:relate(orageo:centroid(?cgeom),
 orageo:xor(
 "Polygon((-83.6 34.1, -83.2 34.1, -83.2 34.5, -83.6 34.5, -83.6
34.1))"^^orageo:WKTLiteral,
 "Polygon((-83.2 34.3, -83.0 34.3, -83.0 34.5, -83.2 34.5, -83.2
34.3))"^^orageo:WKTLiteral),
 "mask=inside")) } '
,sem_models('gov_all_vm'), null

Appendix B
Oracle-Specific Functions for Spatial Support

B-39

,sem_aliases(
 sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
 sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))
,null, null, ' ALLOW_DUP=T '));

Appendix B
Oracle-Specific Functions for Spatial Support

B-40

C
RDF Support in SQL Developer

You can use Oracle SQL Developer to perform operations related to the RDF Graph feature
of Oracle Graph.

• About RDF Support in SQL Developer
The RDF support in SQL Developer is available through the Connections navigator.

• Setting Up the RDF Semantic Graph Support In SQL Developer
This section applies only if you are using Oracle Database 19c or later. You must execute
a setup procedure to enable RDF Semantic Graph support in SQL Developer for
schema-private networks only.

• Working with RDF Semantic Networks Using SQL Developer
You can create an RDF semantic network to work with RDF data using SQL Developer.

• Bulk Loading RDF Data Using SQL Developer
RDF Bulk load operations can be invoked from SQL Developer.

C.1 About RDF Support in SQL Developer
The RDF support in SQL Developer is available through the Connections navigator.

You can use SQL Developer to create and manage RDF-related objects in an Oracle
database. Oracle Graph support for semantic technologies consists mainly of Resource
Description Framework (RDF) and a subset of the Web Ontology Language (OWL). These
capabilities are referred to as the RDF Knowledge Graph feature of Oracle Graph.

Support for SQL Developer is included in RDF if the following conditions are true:

• The database connection is to Oracle Database release 12.1 or later.

• RDF semantic graph support is enabled in the database. After this support is enabled,
the SDO_RDF_TRIPLE_S type will be available.

If you expand an Oracle Database connection that meets these conditions, near the bottom
of the child nodes for the connection is RDF Semantic Graph.

C.2 Setting Up the RDF Semantic Graph Support In SQL
Developer

This section applies only if you are using Oracle Database 19c or later. You must execute a
setup procedure to enable RDF Semantic Graph support in SQL Developer for schema-
private networks only.

C-1

Note:

This setup is not required for semantic networks in MDSYS schema. Starting
from Oracle Database 19c, it is always recommended to create semantic
networks in database user schemas.

Running this setup creates helper functions that are needed to populate RDF network
dictionary information in SQL Developer.

Note:

If you do not perform this one-time setup procedure, you may encounter an
error when trying to expand RDF network metadata nodes (such as
REGULAR_MODELS, RDF_VIEWS, RULEBASES, and so on) in SQL Developer.

To perform this setup:

1. Open SQL Developer.

2. Right-click the RDF Semantic Graph node and select Setup RDF Semantic
Graph to execute the one-time setup procedure.

Figure C-1 RDF Semantic Graph Setup

The following table helps you to determine if you require a DBA privilege to have
this option available.

Table C-1 RDF Semantic Graph Setup Specific To SQL Developer and
Oracle DB Version

Oracle DB
Version

SQL
Developer
Version

Type of User Expected Result

19c or later Earlier to
20.3

To be executed once by
a user with DBA
privilege

Required types and functions are
installed in MDSYS schema.

Appendix C
Setting Up the RDF Semantic Graph Support In SQL Developer

C-2

Table C-1 (Cont.) RDF Semantic Graph Setup Specific To SQL Developer
and Oracle DB Version

Oracle DB
Version

SQL
Developer
Version

Type of User Expected Result

19c or later 20.3 or
later

To be executed once
individually by each user

Required types and functions are
installed in the user's schema.

Note:

If you have already set up
the RDF Semantic Graph
support in Oracle
Database Release 19c or
later with a SQL Developer
version earlier than 20.3,
but you have started using
SQL Developer Release
20.3 or later, then you will
need to perform the setup
again, because the
metadata functions are
different from previous
ones that were installed in
the MDSYS schema.

3. Click Apply.
Optionally, you can also click the SQL tab to view the procedure.

Figure C-2 Apply RDF Semantic Graph Setup

Appendix C
Setting Up the RDF Semantic Graph Support In SQL Developer

C-3

The required types and function are installed in the appropriate schema. Once this
setup is executed, the RDF Semantic Graph option appears grayed out.

C.3 Working with RDF Semantic Networks Using SQL
Developer

You can create an RDF semantic network to work with RDF data using SQL
Developer.

You can view the available networks in the database schema associated with your
connection by expanding the Networks node in the RDF Semantic Graph tree.

From Release 19c onwards, an RDF semantic network is supported in both user
schema and MDSYS schema. See the following table to determine the semantic
network type recommended for you depending on your database version.

Table C-2 Recommended Semantic Network Type

Database Release Supported Network(s) Recommended Network

18c or earlier All RDF metadata belongs
only to MDSYS Network.

MDSYS Network

19c or later • MDSYS Network
• Schema-Private Network

Schema-Private Network

• Creating an RDF Semantic Network Using SQL Developer
Under the Networks node, you can create one or more RDF semantic networks.

• Refreshing Semantic Network Indexes Using SQL Developer
RDF uses semantic network indexes (some created automatically), which you can
refresh.

• Gathering RDF Statistics Using SQL Developer
You can gather statistics about RDF and OWL tables and their indexes.

• Purging Unused Values from a Network Using SQL Developer
You can purge unused (invalid) geometry literal values from the semantic network.

• Dropping a Semantic Network Using SQL Developer
Dropping a semantic network removes structures used for persistent storage of
semantic data..

C.3.1 Creating an RDF Semantic Network Using SQL Developer
Under the Networks node, you can create one or more RDF semantic networks.

To create a new semantic network:

1. Right-click Networks and select Create Semantic Network.
This operation is available for users depending on the Oracle Database version
and the SQL Developer version used. See the following table for more information:

Appendix C
Working with RDF Semantic Networks Using SQL Developer

C-4

Table C-3 Release Specific Instructions to Create a Semantic Network

Oracle DB
Release

SQL
Developer
Version

User Requirement

18c or
earlier

Any Only a user having a DBA role can create an MDSYS network.

For Release
19c- prior
19.3

Any Only a user having a DBA role can create a schema-private network.

19.3 or later Prior 20.3 Only a user having a DBA role can create a schema-private network.

19.3 or later 20.3 or later Any database user can create a schema-private network directly.

Create Semantic Network window opens as shown:

Figure C-3 Create Semantic Network

2. Select a Network Owner, that is, the database schema that will be the owner of the
network.

• For release 18c and earlier, the owner is always MDSYS.

• For release 19c before 19.3, select the network owner.

• For release 19.3 and later, the network owner is always the connection user schema.

3. Enter a Network Name.

Appendix C
Working with RDF Semantic Networks Using SQL Developer

C-5

Note:

For release 18c and earlier, this field is blank and not editable.

4. Select a Tablespace to be associated with the network. (If the tablespace or
tablespaces necessary for semantic networks do not already exist, see Creating
Tablespaces for Semantic Networks Using SQL Developer.)

5. Click Apply.
The RDF semantic network is created.

You can verify the RDF semantic network creation by viewing the following child
nodes under the created Nework:

• REGULAR_MODELS

• VIRTUAL_MODELS

• RDF_VIEWS

• RULEBASES

• ENTAILMENTS

• NETWORK_INDEXES (RDF_LINK$)

• DATATYPE_INDEXES (RDF_VALUE$)

• BULK_LOAD_TRACES

You can now perform the following operations on each created network:

• Gather Statistics

• Refresh semantic network indexes

• Purge unused values

• Drop semantic network

• Creating Tablespaces for Semantic Networks Using SQL Developer
If the tablespace or tablespaces required for semantic networks do not already
exist, you can create them.

C.3.1.1 Creating Tablespaces for Semantic Networks Using SQL Developer
If the tablespace or tablespaces required for semantic networks do not already exist,
you can create them.

You can adjust those that were created automatically as part of the semantic network
setup operation.

The recommended practice is to use three tablespaces for RDF Semantic Graph:

• Tablespace for RDF storage (create a new tablespace named RDFTBS)

• Tablespace for temporary data (create a new tablespace named TEMPTBS)

• Tablespace for other user data (use the existing tablespace named USERS)

In the DBA navigator (not the Connections navigator), for the system connection click
Storage, then Tablespaces. For the new tablespaces (right-click and select Create
New), and select any desired name (the ones listed here are just examples). Accept
default values or specified desired options.

Appendix C
Working with RDF Semantic Networks Using SQL Developer

C-6

1. Create RDFTBS for storing RDF data.

Name (tablespace name): RDFTBS
Tablespace Type: Permanent
Under File Specification, Name: 'RDFTBS.DBF'
Directory: Desired file system directory. For example: /u01/app/oracle/oradata/
orcl12c/orcl
File Size: Desired file initial size. For example: 1 G
Check Reuse and Auto Extend On.

Next Size: Desired size of each extension increment. For example: 512 M
Max Size: Desired file maximum size. For example: 10 G
Click OK.

2. Create TEMPTBS for temporary work space.

Right-click and select Create New.

Name (tablespace name): TEMPTBS
Tablespace Type: Temporary
Under File Specification, Name: 'TEMPTBS.DBF'
Directory: Desired file system directory. For example: /u01/app/oracle/oradata/
orcl12c/orcl
File Size: Desired file initial size. For example: 1 G
Check Reuse and Auto Extend On.

Next Size: Desired size of each extension increment. For example: 256 M
Max Size: Desired file maximum size. For example: 8 G

3. Make TEMPTBS the default temporary tablespace for the database, by using the SQL
Worksheet for the system connection’s SQL Worksheet to execute the following
statement:

SQL> alter database default temporary tablespace TEMPTBS;

C.3.2 Refreshing Semantic Network Indexes Using SQL Developer
RDF uses semantic network indexes (some created automatically), which you can refresh.

You can create additional semantic indexes if you wish, and you can adjust those that were
created automatically.

There are multicolumn B-Tree semantic indexes over the following columns:

• S - subject

• P - predicate

• C - canonical object

• G - graph

• M - model

Appendix C
Working with RDF Semantic Networks Using SQL Developer

C-7

Two indexes are created by default: PCSGM and PSCGM. However, you can use a
three-index setup to better cover more combinations of S, P, and C: PSCGM, SPCGM,
and CSPGM.

In the Connections navigator (not the DBA navigator), expand the system connection,
expand RDF Semantic Graph, then click Network Indexes (RDF_LINK).

1. Add the SPCGM index.

Right-click and select Create Semantic Index. Suggested Index code: SPCGM
Click OK.

2. Add the CSPGM index.

Right-click and select Create Semantic Index. Suggested Index code: CSPGM
Click OK.

3. Drop the PSCGM index.

Right-click RDF_LINK_PSCGM_IDX and select Drop Semantic Index.

The result will be these three indexes:

• RDF_LINK_PSCGM_IDX

• RDF_LINK_SPCGM_IDX

• RDF_LINK_CSPGM_IDX

C.3.3 Gathering RDF Statistics Using SQL Developer
You can gather statistics about RDF and OWL tables and their indexes.

To gather statistics about a semantic network, right-click the network name and select
Gather Statistics.

The following parameters can be defined in the dialog box:

Network Owner: The connection user (not editable).

Network Name: Name of the network (not editable).

Just on Values: If enabled (checked), collects statistics only on the table containing
the lexical values of triples. If not enabled (unchecked), collects statistics on all major
tables related to the storage of RDF and OWL data.

Degree of Parallelism: Number of parallel execution servers associated with the
operation.

To complete the network creation, click Apply.

C.3.4 Purging Unused Values from a Network Using SQL Developer
You can purge unused (invalid) geometry literal values from the semantic network.

Deletion of triples over time may lead to a subset of the values in the RDF_VALUE$
table becoming unused in any of the RDF triples or rules currently in the semantic
network. To delete such unused values from the RDF_VALUE$ table, right-click the
network name and select Purge Unused Values..

The following parameters can be defined in the dialog box:

Appendix C
Working with RDF Semantic Networks Using SQL Developer

C-8

Network Owner: The connection user (not editable).

Network Name: Name of the network (not editable).

MBV_METHOD=SHADOW: If enabled (checked), may result faster processing when a large
number of values need to be purged.

Degree of Parallelism: Number of parallel execution servers associated with the operation.

PUV_COMPUTE_VIDS_USED: If enabled (checked), may result faster processing when
most of the values are expected to be purged.

Extra Flags: Specify any additional keywords and values to be added in the flags parameter
for the SEM_APIS.PURGE_UNUSED_VALUES procedure that will be executed (click the
SQL tab to see the complete SQL statement).

To perform the operation, click Apply.

C.3.5 Dropping a Semantic Network Using SQL Developer
Dropping a semantic network removes structures used for persistent storage of semantic
data..

To drop a semantic network, right-click the network name and select Drop Semantic
Network.

The following parameters can be defined in the dialog box:

Network Owner: The connection user (not editable).

Network Name: Name of the network (not editable).

Cascade: If enabled (checked), also drops any existing semantic technology models and
rulebases for the network, and removes structures used for persistent storage of semantic
data for the network. If not enabled (unchecked), the operation will fail if any semantic
technology models or rulebases exist in the network.

To perform the operation, click Apply.

C.4 Bulk Loading RDF Data Using SQL Developer
RDF Bulk load operations can be invoked from SQL Developer.

Two major steps are required after some initial preparation: (1) loading data from the file
system into a “staging“ table and (2) loading data from a “staging“ table into a semantic
model.

Do the following to prepare for the actual bulk loading.

1. Prepare the RDF dataset or datasets.

• The data must be on the file system of the Database server – not on the client
system.

• The data must be in N-triple or N-quad format. (Apache Jena, for example, can be
used to convert other formats to N-triple/N-quad,)

• A Unix named pipe can be used to decompress zipped files on the fly.

For example, you can download RDF datasets from LinkedGeoData. For an introduction,
see http://linkedgeodata.org/Datasets and http://linkedgeodata.org/RDFMapping.

Appendix C
Bulk Loading RDF Data Using SQL Developer

C-9

http://linkedgeodata.org/docs/downloads
http://linkedgeodata.org/docs/rdf-mapping.html

To download from LinkedGeoData, go to https://hobbitdata.informatik.uni-
leipzig.de/LinkedGeoData/downloads.linkedgeodata.org/releases/ and browse the
listed directories. For a fairly small dataset you can download https://
hobbitdata.informatik.uni-leipzig.de/LinkedGeoData/downloads.linkedgeodata.org/
releases/2014-09-09/2014-09-09-ontology.sorted.nt.bz2.

Each .bz2 file is a compressed archive containing a comparable-named .nt file. To
specify an .nt file as a data source, you must extract (decompress) the
corresponding .bz2 file, unless you create a Unix named pipe to avoid having to
store uncompressed data.

2. Create a regular, non-DBA user to perform the load.

For example, using the DBA navigator (not the Connections navigator), expand
the system connection, expand Security, right-click Users, and select Create
New.

Create a user (for example, named RDFUSER) with CONNECT, RESOURCE, and
UNLIMITED TABLESPACE privileges.

3. Add a connection for this regular, non-DBA user (for example, a connection named
RDFUSER).

Default Tablespace: USERS
Temporary Tablespace: TEMPTBS

4. As the system user, create a directory in the database that points to your RDF
data directory.

Using the Connections navigator (not the DBA navigator), expand the system
connection, right-click Directory and select Create Directory.

Directory Name: Desired directory name. For example: RDFDIR
Database Server Directory: Desired location for the directory. For example: /
home/oracle/RDF/MyData
Click Apply.

5. Grant privileges on the directory to the regular, non-DBA user (for example,
RDFUSER). For example, using the system connection's SQL Worksheet:

SQL> grant read, write on directory RDFDIR to RDFUSER;

Tip: you can use a named pipe to avoid having to store uncompressed data. For
example:

$ mkfifo named_pipe.nt
$ bzcat myRdfFile.nt.bz2 > named_pipe.nt

6. Expand the regular, non-DBA user (for example, RDFUSER) connection and click
RDF Semantic Graph.

7. Create a model to hold the RDF data.

Click Model, then New Model.

Model Name: Enter a model name (for example, MY_ONTOLOGY)

Application Table: * Create new <Model_Name>_TPL table * (that is, have an
application table with a triple column named TRIPLE automatically created)

Appendix C
Bulk Loading RDF Data Using SQL Developer

C-10

https://hobbitdata.informatik.uni-leipzig.de/LinkedGeoData/downloads.linkedgeodata.org/releases/
https://hobbitdata.informatik.uni-leipzig.de/LinkedGeoData/downloads.linkedgeodata.org/releases/
https://hobbitdata.informatik.uni-leipzig.de/LinkedGeoData/downloads.linkedgeodata.org/releases/2014-09-09/2014-09-09-ontology.sorted.nt.bz2
https://hobbitdata.informatik.uni-leipzig.de/LinkedGeoData/downloads.linkedgeodata.org/releases/2014-09-09/2014-09-09-ontology.sorted.nt.bz2
https://hobbitdata.informatik.uni-leipzig.de/LinkedGeoData/downloads.linkedgeodata.org/releases/2014-09-09/2014-09-09-ontology.sorted.nt.bz2

Model Tablespace: tablespace to hold the RDF data (for example, RDFTBS)

Click Apply.

To see the model, expand Models in the object hierarchy, and click the model name to
bring up the SPARQL editor for that model.

You can run a query and see that the model is empty.

Using the Models menu, perform a bulk load from the Models menu. Bulk load has two
phases:

• Loading data from the file system into a simple "staging" table in the database. This uses
an external table to read from the file system.

• Loading data from the staging table into the semantic network. Load from the staging
table into the model (for example, MY_ONTOLOGY).

To perform these two phases:

1. Load data into the staging table.

Right-click REGULAR_MODELS (under the network name) and select Load RDF Data into
Staging Table from External Table.

For Source External Table, Source Table: Desired table name (for example,
MY_ONTOLOGY_EXT).

Log File: Desired file name (for example, my_ontology.log)

Bad File: Desired file name (for example, my_ontology.bad)

Source Table Owner: Schema of the table with RDF data (for example, RDFUSER)

For Input Files, Input Files: Input file (for example, named_pipe.nt).

For Staging Table, Staging table: Name for the staging table (for example,
MY_ONTOLOGY_STAGE).

If the table does not exist, check Create Staging Table.

Input Format: Desired format (for example, N-QUAD)

Staging Table Owner: Schema for the staging table (for example, RDFUSER)

2. Load from the staging table into the model.

Appendix C
Bulk Loading RDF Data Using SQL Developer

C-11

Note:

Unicode data in the staging table should be escaped as specified in
WC3 N-Triples format (http://www.w3.org/TR/rdf-testcases/#ntriples).
You can use the SEM_APIS.ESCAPE_RDF_TERM function to escape
Unicode values in the staging table. For example:

create table esc_stage_tab(rdfstc_sub, rdfstc_pred,
rdf$stc_obj);

insert /*+ append nologging parallel */ into esc_stage_tab
(rdfstc_sub, rdfstc_pred, rdf$stc_obj)
select sem_apis.escape_rdf_term(rdf$stc_sub, options=>’
UNI_ONLY=T '), sem_apis.escape_rdf_term(rdf$stc_pred,
options=>’ UNI_ONLY=T '),
sem_apis.escape_rdf_term(rdf$stc_obj, options=>’ UNI_ONLY=T
')
from stage_tab;

Right-click REGULAR_MODELS (under the network name) and select Bulk Load into
Model from staging Table.

Model: Name for the model (for example, MY_ONTOLOGY).

(If the model does not exist, check Create Model. However, in this example, the
model does already exist.)

Staging Table Owner: Schema of the staging table (for example, RDFUSER)

Staging Table Name: Name of the staging table (for example,
MY_ONTOLOGY_STAGE)

Parallel: Degree of parallelism (for example, 2)

Suggestion: Check the following options: MBV_METHOD=SHADOW, Rebuild
application table indexes, Create event trace table

Click Apply.

Do the following after the bulk load operation.

1. Gather statistics for the whole semantic network.

In the Connections navigator for a DBA user, expand the RDF Semantic Graph
node for the connection and select Gather Statistics (DBA)).

2. Run some SPARQL queries on our model.

In the Connections navigator, expand the RDF Semantic Graph node for the
connection and select the model.

Use the SPARQL Query Editor to enter and execute desired SPARQL queries.

3. Optionally, check the bulk load trace to get information about each step.

Expand RDF Semantic Graph and then expand Bulk Load Traces to display a list
of bulk load traces. Clicking one of them will show useful information about the
execution time for the load, number of distinct values and triples, number of
duplicate triples, and other details.

Appendix C
Bulk Loading RDF Data Using SQL Developer

C-12

http://www.w3.org/TR/rdf-testcases/#ntriples

Glossary

apply pattern
Part of a data access constraint defines additional graph patterns to be applied on the
resources that match the match pattern before they can be used to construct the query
results. See also: match pattern

basic graph pattern (BGP)
A set of triple patterns. From the W3C SPARQL Query Language for RDF Recommendation:
"SPARQL graph pattern matching is defined in terms of combining the results from matching
basic graph patterns. A sequence of triple patterns interrupted by a filter comprises a single
basic graph pattern. Any graph pattern terminates a basic graph pattern."

clique
A graph in which every node of it is connected to, bidirectionally, every other node in the
same graph.

Cytoscape
An open source bioinformatics software platform for visualizing molecular interaction
networks and integrating these interactions with gene expression profiles and other state
data. (See http://www.cytoscape.org/.) An RDF viewer (available for download) is
provided as a Cytoscape plug-in.

entailment
An object containing precomputed triples that can be inferred from applying a specified set of
rulebases to a specified set of models. See also: rulebase

extractor policy
A named dictionary entity that determines the characteristics of a semantic index that is
created using the policy. Each extractor policy refers, directly or indirectly, to an instance of
an extractor type.

graph pattern
A combination of triples constructed by combining triple patterns in various ways, including
conjunction of triple patterns into groups, optionally using filter conditions, and then

Glossary-1

http://www.cytoscape.org/

combining such groups using connectors similar to disjunctions, outer-joins, and so on.
SPARQL querying is based around graph pattern matching.

inferencing
The ability to make logical deductions based on rules. Inferencing enables you to
construct queries that perform semantic matching based on meaningful relationships
among pieces of data, as opposed to just syntactic matching based on string or other
values. Inferencing involves the use of rules, either supplied by Oracle or user-defined,
placed in rulebases.

information extractor
An application that processes unstructured documents and extract meaningful
information from them, often using natural-language processing engines with the aid of
ontologies.

match pattern
Part of a constraint that determines the type of access restriction it enforces and binds
one or more variables to the corresponding data instances accessed in the user query.
See also: apply pattern

model
A user-created semantic structure that has a model name, and refers to triples stored
in a specified table column. Examples in this manual are the Articles and Family
models.

ontology
A shared conceptualization of knowledge in a particular domain. It consists of a
collection of classes, properties, and optionally instances. Classes are typically related
by class hierarchy (subclass/ superclass relationship). Similarly, the properties can be
related by property hierarchy (subproperty/ superproperty relationship). Properties can
be symmetric or transitive, or both. Properties can also have domain, ranges, and
cardinality constraints specified for them.

OWLPrime
An Oracle-defined subset of OWL capabilities; refers to the elements of the OWL
standard supported by the RDF Semantic Graph native inferencing engine.

Glossary

Glossary-2

RDF Semantic Graph support for Apache Jena
An Oracle-supplied adapter (available for download) for Apache Jena, which is a Java
framework for building Semantic Web applications.

reasoning
See inferencing

rule
An object that can be applied to draw inferences from semantic data.

rulebase
An object that can contain rules. See also: rule

rules index
See: entailment

semantic index
An index of type MDSYS.SEMCONTEXT, created on textual documents stored in a column of
a table, and used with information extractors to locate and extract meaningful information
from unstructured documents. See also: information extractor

Simple Knowledge Organization System (SKOS)
A data model that is especially useful for representing thesauri, classification schemes,
taxonomies, and other types of controlled vocabulary. SKOS is based on standard semantic
web technologies including RDF and OWL, which makes it easy to define the formal
semantics for those knowledge organization systems and to share the semantics across
applications.

triple pattern
Similar to an RDF triple, but allows use of a variable in place of any of the three components
(subject, predicate, or object). Triple patterns are basic elements in graph patterns used in
SPARQL queries. A triple pattern used in a query against an RDF graph is said to match if,
substitution of RDF terms for the variables present in the triple pattern, creates a triple that is
present in the RDF graph. See also: graph pattern

Glossary

Glossary-3

Index

Symbols
.gv files (DOT files)

outputting, 7-34

A
ADD_DATATYPE_INDEX procedure, 15-4
ADD_DEPENDENT_POLICY procedure, 18-1
ADD_SEM_INDEX procedure, 15-5
Advanced Compression, 7-7
aggregates

user-defined, 9-28
aliases

SEM_ALIASES and SEM_ALIAS data types,
1-32, 5-7

ALL_AJ_HASH
query option for SEM_MATCH, 1-33

ALL_AJ_MERGE
query option for SEM_MATCH, 1-33

ALL_AJ_NL
query option for SEM_MATCH, 1-33

ALL_BGP_HASH
query option for SEM_MATCH, 1-33

ALL_BGP_NL
query option for SEM_MATCH, 1-33

ALL_LINK_HASH
query option for SEM_MATCH, 1-33

ALL_LINK_NL
query option for SEM_MATCH, 1-33

ALL_MAX_PP_DEPTH(n)
query option for SEM_MATCH, 1-33

ALL_NO_MERGE
query option for SEM_MATCH, 1-33

ALLOW_DUP=T
query option for SEM_MATCH, 1-33

ALTER_DATATYPE_INDEX procedure, 15-6
ALTER_ENTAILMENT procedure, 15-7
ALTER_MODEL procedure, 15-8
ALTER_SEM_INDEX_ON_ENTAILMENT

procedure, 15-9
ALTER_SEM_INDEX_ON_MODEL procedure,

15-11
ALTER_SEM_INDEXES procedure, 15-12
ANALYZE_AUX_TABLES procedure, 17-1

ANALYZE_ENTAILMENT procedure, 15-14
ANALYZE_MODEL procedure, 15-16
APPEND_SEM_NETWORK_DATA procedure,

15-18
APPLY_OLS_POLICY procedure, 19-1
APPLY_POLICY_TO_APP_TAB procedure, 16-1
AUTO_HINTS=T

query option for SEM_MATCH, 1-33

B
BASE keyword

global prefix, 1-61
basic graph pattern (BGP), 1-33
batch (bulk) loading, 15-24, 15-111
best effort

specifying for SPARQL query, 7-80
BGP (basic graph pattern), 1-33
bind variables

using with the SEM_APIS.SPARQL_TO_SQL
function, 1-137

blank nodes, 1-17
CLEANUP_BNODES procedure, 15-26
SPARQL update considerations, 1-181

BUILD_PG_RDFVIEW_INDEXES procedure,
15-19

bulk loading, 15-24, 15-111
bulk loading semantic data, 1-142
BULK_LOAD_FROM_STAGING_TABLE

procedure, 15-24

C
Calais

configuring the Calais extractor type, 5-12
canonical forms, 1-16
catsem.sql script, A-2
change tracking

disabling, 15-63
enabling, 15-80
getting information, 15-93

CLEANUP_BNODES procedure, 15-26
CLEANUP_FAILED procedure, 15-27
client identifiers, 7-7
cliques (sameAs), 3-12

Index-1

COMPOSE_RDF_TERM function, 15-28
connection pooling

support in RDF Semantic Graph support for
Apache Jena, 7-37

CONSTRUCT_STRICT=T
query option for SEM_MATCH, 1-34

CONSTRUCT_UNIQUE=T
query option for SEM_MATCH, 1-34

constructors for semantic data, 1-28
convert_old_rdf_data procedure, A-3, A-5
CONVERT_TO_GML311_LITERAL procedure,

15-30
CONVERT_TO_WKT_LITERAL procedure,

15-31
corpus-centric inference, 5-17
CREATE_ENTAILMENT procedure, 15-33
CREATE_INDEX_ON_SPM_TAB procedure,

15-42
CREATE_MATERIALIZED_VIEW procedure,

15-43
CREATE_PG_RDFVIEW procedure, 15-46
CREATE_POLICY procedure, 18-2
CREATE_RDFVIEW_MODEL procedure, 15-48
CREATE_RULEBASE procedure, 15-52
CREATE_SEM_MODEL procedure, 15-52
CREATE_SEM_NETWORK procedure, 15-54
CREATE_SOURCE_EXTERNAL_TABLE

procedure, 15-56
CREATE_VIRTUAL_MODEL procedure, 15-58

D
data migration

required after upgrade, A-4
data type indexes

adding, 15-4
altering, 15-6
dropping, 15-67
SEM_DTYPE_INDEX_INFO view, 1-157
using, 1-156

data types
for literals, 1-16

data types for semantic data, 1-28
default.xslt file

customizing, 7-81
DELETE_ENTAILMENT_STATS procedure,

15-61
DELETE_MODEL_STATS procedure, 15-62
DELETE_NETWORK_STATS procedure, 17-2
DISABLE_CHANGE_TRACKING procedure,

15-63
DISABLE_IM_VIRTUAL_COL

query option for SEM_MATCH, 1-34
DISABLE_INC_INFERENCE procedure, 15-63
DISABLE_INMEMORY procedure, 15-64

DISABLE_INMEMORY_FOR_ENT procedure,
15-65

DISABLE_INMEMORY_FOR_MODEL
procedure, 15-65

DISABLE_MVIEW
query option for SEM_MATCH, 1-34

DISABLE_NETWORK_SHARING procedure,
15-66

DISABLE_NULL_EXPR_JOIN
query option for SEM_MATCH, 1-34

DISABLE_OLS_POLICY procedure, 19-4
DISABLE_ORDER_COL option, 1-186
DISABLE_SAMEAS_BLOOM

query option for SEM_MATCH, 1-34
discussion forum

RDF Semantic Graph, 1-195
document-centric inference, 5-17
documents

semantic indexing for, 5-1
DOT files

outputting, 7-34
downgrading

RDF semantic graph support, A-7
downloads

RDF Semantic Graph, 1-195
DROP_DATATYPE_INDEX procedure, 15-67
DROP_ENTAILMENT procedure, 15-68
DROP_EXTENDED_STATS procedure, 17-3
DROP_PG_RDFVIEW procedure, 15-70
DROP_PG_RDFVIEW_INDEXES procedure,

15-71
DROP_POLICY procedure, 18-4
DROP_RDFVIEW_MODEL procedure, 15-72
DROP_RULEBASE procedure, 15-73
DROP_SEM_INDEX procedure, 15-74
DROP_SEM_MODEL procedure, 15-74
DROP_SEM_NETWORK procedure, 15-75
DROP_USER_INFERENCE_OBJS procedure,

15-79
DROP_VIRTUAL_MODEL procedure, 15-80
duplicate triples

checking for, 1-16
removing from model, 15-118, 15-121

E
ENABLE_CHANGE_TRACKING procedure,

15-80
ENABLE_INC_INFERENCE procedure, 15-81
ENABLE_INMEMORY procedure, 15-82
ENABLE_INMEMORY_FOR_ENT procedure,

15-83
ENABLE_INMEMORY_FOR_MODEL procedure,

15-84

Index

Index-2

ENABLE_NETWORK_SHARING procedure,
15-85

ENABLE_OLS_POLICY procedure, 19-5
ENABLE_SYNTAX_CHECKING optimizer hint,

3-8
entailment

invalid status, 1-32
entailment rules, 1-18
entailments, 1-20

altering, 15-7
deleting if in failed state, 15-27
incomplete status, 1-32, 3-22
invalid status, 3-22
SEM_RULES_INDEX_DATASETS view,

1-21
SEM_RULES_INDEX_INFO view, 1-20

ESCAPE_CLOB_TERM procedure, 15-85
ESCAPE_CLOB_VALUE procedure, 15-86
ESCAPE_RDF_TERM procedure, 15-87
ESCAPE_RDF_VALUE procedure, 15-88
examples

PL/SQL, 1-188
EXPORT_ENTAILMENT_STATS procedure,

15-89
EXPORT_MODEL_STATS procedure, 15-90
EXPORT_NETWORK_STATS procedure, 17-4
EXPORT_RDFVIEW_MODEL procedure, 15-90
exporting semantic data, 1-141
external documents

indexing, 5-11
external table

creating, 15-56
extractor policies, 5-5

RDFCTX_POLICIES view, 5-19
extractors

information, 5-3
policies, 5-5

F
failed state

rulebase or entailment, 15-27
federated queries, 1-74, 7-20
filter

attribute of SEM_MATCH, 1-32, 5-7
FINAL_VALUE_HASH

query option for SEM_MATCH, 1-34
FINAL_VALUE_NL

query option for SEM_MATCH, 1-34
functions

user-defined, 9-28

G
GATE (General Architecture for Text Engineering)

sample Java implementation, 5-14
using, 5-13

GATHER_STATS procedure, 17-5
General Architecture for Text Engineering (GATE)

sample Java implementation, 5-14
using, 5-13

geometry literal, 1-83
GET_CHANGE_TRACKING_INFO procedure,

15-93
GET_INC_INF_INFO procedure, 15-94
GET_MODEL_ID function, 15-95
GET_MODEL_NAME function, 15-96
GET_TRIPLE_ID function, 15-96
GETV$DATETIMETZVAL function, 15-97
GETV$DATETZVAL function, 15-98
GETV$GEOMETRYVAL function, 15-99
GETV$NUMERICVAL function, 15-100
GETV$STRINGVAL function, 15-101
GETV$TIMETZVAL function, 15-102
global prefix (BASE keyword), 1-61
GRANT_MODEL_ACCESS_PRIV procedure,

15-103
GRANT_MODEL_ACCESS_PRIVS procedure,

15-105
GRANT_NETWORK_ACCESS_PRIVS

procedure, 15-106
GRANT_NETWORK_SHARING_PRIVS

procedure, 15-107
GRAPH_MATCH_UNNAMED=T

query option for SEM_MATCH, 1-34
graphs

attribute of SEM_MATCH, 1-36

H
HINT0

query option for SEM_MATCH, 1-34
HTTP_METHOD=POST_PAR

query option for SEM_MATCH, 1-35

I
IMPORT_ENTAILMENT_STATS procedure,

15-108
IMPORT_MODEL_STATS procedure, 15-109
IMPORT_NETWORK_STATS procedure, 17-7
in-memory column store support in RDF, 1-182
in-memory virtual columns with RDF, 1-184
incremental inference, 3-14

disabling, 15-63
enabling, 15-81

Index

Index-3

incremental inferencing
getting information, 15-94

index_status
attribute of SEM_MATCH, 1-32, 3-22

inf_ext_user_func_name parameter, 9-2
inferencing, 1-17

user-defined, 9-1
information extractors, 5-3
inverseOf keyword

using to force use of semantic index, 3-25
invisible indexes

with RDF in-memory, 1-184
invisible semantic network indexes, 15-12
IS_TRIPLE function, 15-110

J
Java examples

GATE listener, 5-14
JavaScript Object Notation (JSON) format

support, 7-48
Join Push Down, 1-75
JSON format support, 7-48

L
literals

data types for, 1-16
load operations

SPARQL update considerations, 1-180
LOAD_INTO_STAGING_TABLE procedure,

15-111
loading semantic data, 1-141

bulk, 15-24, 15-111
long literals

SPARQL update considerations, 1-181
LOOKUP_ENTAILMENT procedure, 15-112

M
MAINTAIN_TRIPLES procedure, 18-4
materialized join views

RDF support for, 1-185
mdsys.SemContent index type, 5-5
MERGE_MODELS procedure, 15-113
metadata

semantic models, 1-12
metadata tables and views for semantic data,

1-27
methods for semantic data, 1-28
MIGRATE_DATA_TO_CURRENT procedure,

15-114
MIGRATE_DATA_TO_STORAGE_V2 procedure,

15-116

model ID
getting, 15-95

model name
getting, 15-96

models, 1-4
altering, 15-8
creating, 15-52
deleting (dropping), 15-74
disabling support in the database, 15-75
enabling support in the database, 15-54
grant a list of privileges to access a model,

15-105
grant a privilege to access a model, 15-103
merging, 15-113
renaming, 15-123
revokes access privilege on a model, 15-126
revokes access privileges on a model,

15-127
SEM_MODELS data type, 1-31
SEMI_entailment-name view, 1-20
SEMM_model-name view, 1-13
swapping names, 15-134
truncating, 15-134
updating, 15-138
validating geometries in, 15-142
virtual, 1-21

MOVE_SEM_NETWORK_DATA procedure,
15-117

Multi-Valued Property tables, 1-91
MVP (Multi-Valued Property) tables, 1-91

N
N-Quad format, 1-24
N-QUADS data format, 1-25
N-Triple format, 1-24
named graph based inference

global, 3-16
local, 3-16

named graphs
support for, 1-24

named_graphs
attribute of SEM_MATCH, 1-36

network access privileges
granting, 15-106
revoking, 15-129

network indexes
refreshing information, 15-120
SEM_NETWORK_INDEX_INFO view, 1-156

network sharing privileges
granting, 15-107
revoking, 15-130

network_name
attribute of SEM_MATCH, 1-36

Index

Index-4

network_owner
attribute of SEM_MATCH, 1-36

NGGI (named graph based global inference),
3-16

NGLI (named graph based local inference), 3-16

O
OBIEE

using SPARQL Gateway as an XML data
source, 7-90

objects, 1-17
ODCIAggregate interface

user-defined aggregates (RDF Semantic
Graph), 9-32

ogcf
boundary function, B-2
buffer function, B-2
convexHull function, B-3
difference function, B-4
distance function, B-5
envelope function, B-6
getSRID function, B-7
intersection function, B-8
relate function, B-9
sfContains function, B-10
sfCrosses function, B-11
sfDisjoint function, B-12
sfEquals function, B-13
sfIntersects function, B-14
sfOverlaps function, B-15
sfTouches function, B-16
sfWithin function, B-17
symDifference function, B-18
union function, B-19

OLTP compression, 7-7
OLTP index compression, 1-128
options

attribute of SEM_MATCH, 1-32
Oracle Advanced Compression

OLTP compression, 7-7
Oracle Business Intelligence Enterprise Edition

(OBIEE)
using SPARQL Gateway as an XML data

source, 7-90
Oracle Database In-Memory

disabling, 15-64
disabling for entailment, 15-65
disabling for model, 15-65
enabling, 15-82
enabling for entailment, 15-83
enabling for model, 15-84

Oracle Database In-Memory support by RDF,
1-182

enabling, 1-183

Oracle Database In-Memory support by RDF (continued)
using in-memory virtual columns, 1-184
using invisible indexes, 1-184

Oracle Label Security (OLS)
applying policy, 16-1, 19-1
disabling policy, 19-4
enabling policy, 19-5
removing policy, 16-2, 19-6
resetting labels associated with a model,

19-6
setting sensitivity label for a resource that

may be used in the subject and/or
object position of a triple, 19-10

setting sensitivity level for a predicate, 19-7
setting sensitivity level for a rule belonging to

a rulebase, 19-12
setting sensitivity level for RDFS schema

elements, 19-9
triple-level security, 6-1
using with RDF data, 6-1

Oracle Machine Learning
RDF support, 1-187

orageo
aggrCentroid function, B-20
aggrConvexHull function, B-21
aggrMBR function, B-22
aggrUnion function, B-22
area function, B-23
buffer function, B-24
centroid function, B-25
convexHull function, B-26
difference function, B-27
distance function, B-27
getSRID function, B-29
intersection function, B-29
length function, B-30
mbr function, B-31
nearestNeighbor function, B-32
relate function, B-33
sdoDistJoin function, B-35
sdoJoin function, B-36
union function, B-37
withinDistance function, B-38
xor function, B-39

ORARDFLDR Utility, 7-94
ORDER BY query processing, 1-186
OTN page

RDF Semantic Graph, 1-195
OVERLOADED_NL=T

query option for SEM_MATCH, 1-35
owl

sameAs
SEMCL_entailment-name view, 3-13

Index

Index-5

OWL
queries using the SEM_DISTANCE ancillary

operator, 3-22
queries using the SEM_RELATED operator,

3-20
SameAs

optimizing inference, 3-12
OWL 2 EL support, 3-4
OWL 2 RL support, 3-3
OWL2EL rulebase, 3-4
OWL2RL rulebase, 3-3

P
parallel inference, 3-15
PCN (Property Chain) tables, 1-92
PelletInfGraph class

support deprecated in RDF Semantic Graph
support for Apache Jena, 7-41

privilege considerations for RDF, 1-26
PRIVILEGE_ON_APP_TABLES procedure,

15-118
PROCAVFH=F option, 3-12
PROCSVFH=F option, 3-12
properties, 1-17
property chain handling, 4-4
Property Chain tables, 1-92
property graph data

RDF integration, 11-1
property paths

optimized handling by RDF Semantic Graph
support for Apache Jena, 7-14

PURGE_UNUSED_VALUES procedure, 15-118

Q
quality of search, 5-10
queries

using the SEM_APIS.SPARQL_TO_SQL
function, 1-136

using the SEM_DISTANCE ancillary
operator, 3-22

using the SEM_MATCH table function, 1-31
using the SEM_RELATED operator, 3-20

R
RDF Knowledge Graph, 1-1

overview, 1-1
RDF rulebase

subset of RDFS rulebase, 1-18
RDF semantic graph support

downgrading, A-7
RDF Semantic Graph support

removing, A-8

RDF Semantic Graph support for Apache Jena,
7-1

functions supported in SPARQL queries,
7-22

optimized handling of SPARQL queries, 7-13
optimized handling or property paths, 7-14
query examples, 7-54
RDFa support with prepareBulk, 7-43
SEM_MATCH and RDF Semantic Graph

support for Apache Jena queries
compared, 7-9

setting up software environment, 7-3
setting up SPARQL service, 7-4
support for connection pooling, 7-37
support for semantic model PL/SQL

interfaces, 7-38
support for virtual models, 7-36

RDF Semantic Graph support for Eclipse RDF4J,
8-1

best Practices for Oracle RDF Graph Adapter
for Eclipse RDF4J, 8-27

database connection management, 8-19
query examples, 8-30
setting up Oracle RDF Graph Adapter for

Eclipse RDF4J for use with Java
program, 8-4

setting up Oracle RDF Graph Adapter for
Eclipse RDF4J in RDF4J Workbench
and RDF4J Server, 8-7

setting up SPARQL service for Eclipse
RDF4J, 8-17

SPARQL Query Execution Model, 8-19
SPARQL Update Execution Model, 8-24
transaction management for SPARQL

Update, 8-25
unsupported features in Oracle RDF Graph

Adapter for Eclipse RDF4J, 8-30
using RDF4J Workbench for creating and

querying repositories., 8-15
RDF support for Oracle Machine Learning, 1-187
RDF support in SQL Developer, 1-186
RDF views, 10-1

creating, 15-48
dropping, 15-72
exporting, 15-90

RDF_PARAMETER table, 1-8
RDF_VALUE$ table, 1-14
RDF$ET_TAB table, 1-145
RDFa

support with prepareBulk (RDF Semantic
Graph support for Apache Jena),
7-43

RDFCTX_INDEX_EXCEPTIONS view, 5-20
RDFCTX_POLICIES view, 5-19
RDFS entailment rules, 1-18

Index

Index-6

RDFS rulebase
implements RDFS entailment rules, 1-18

REFRESH_SEM_NETWORK_INDEX_INFO
procedure, 15-120

relational data as RDF, 10-1
REMOVE_DUPLICATES procedure, 15-121
REMOVE_OLS_POLICY procedure, 19-6
REMOVE_POLICY_FROM_APP_TAB

procedure, 16-2
removing RDF Semantic Graph, A-8
RENAME_ENTAILMENT procedure, 15-122
RENAME_MODEL procedure, 15-123
REPLACE=T option, 15-58
RES2VID function, 15-124
RESET_MODEL_LABELS procedure, 19-6
Resource Description Framework

See RDF Knowledge Graph
RESTORE_SEM_NETWORK_DATA procedure,

15-125
resultsPerPage parameter, 7-88
REVOKE_MODEL_ACCESS_PRIV procedure,

15-126
REVOKE_MODEL_ACCESS_PRIVS procedure,

15-127
REVOKE_NETWORK_ACCESS_PRIVS

procedure, 15-129
REVOKE_NETWORK_SHARING_PRIVS

procedure, 15-130
rulebases, 1-17

attribute of SEM_MATCH, 3-22
deleting if in failed state, 15-27
SEM_RULEBASE_INFO view, 1-19
SEM_RULEBASES data type, 1-31
SEMR_rulebase-name view, 1-19

rules, 1-17
rules indexes

See entailments

S
sameAs

optimizing inference (OWL), 3-12
sameCanonTerm built-in function, 1-126
sameTerm built-in function, 1-126
schema-private semantic network, 1-6
AS_OF [SCN, <SCN_VALUE>]

query option for SEM_MATCH, 1-33
sdo_rdf_internal.convert_old_rdf_data procedure,

A-3, A-5
SDO_RDF_TERM data type, 9-28
SDO_RDF_TERM_LIST data type, 9-29
SDO_SEM_PDATE_CTX, 1-179
search

quality of, 5-10
security considerations, 1-26

SEM_ALIAS data type, 1-32, 5-7
SEM_ALIASES data type, 1-32, 5-7
SEM_APIS package

ADD_DATATYPE_INDEX, 15-4
ADD_SEM_INDEX, 15-5
ALTER_DATATYPE_INDEX, 15-6
ALTER_ENTAILMENT, 15-7
ALTER_MODEL, 15-8
ALTER_SEM_INDEX_ON_ENTAILMENT

semantic network indexes
altering on entailment, 15-9

ALTER_SEM_INDEX_ON_MODEL, 15-11
ALTER_SEM_INDEXES, 15-12
ANALYZE_ENTAILMENT, 15-14
ANALYZE_MODEL, 15-16
APPEND_SEM_NETWORK_DATA, 15-18
BUILD_PG_RDFVIEW_INDEXES, 15-19
BULK_LOAD_FROM_STAGING_TABLE,

15-24
CLEANUP_BNODES, 15-26
CLEANUP_FAILED, 15-27
COMPOSE_RDF_TERM, 15-28
CONVERT_TO_GML311_LITERAL, 15-30
CONVERT_TO_WKT_LITERAL, 15-31
CREATE_ENTAILMENT, 15-33
CREATE_INDEX_ON_SPM_TAB, 15-42
CREATE_MATERIALIZED_VIEW, 15-43
CREATE_MV_BITMAP_INDEX, 15-45
CREATE_PG_RDFVIEW, 15-46
CREATE_RDFVIEW_MODEL, 15-48
CREATE_RULEBASE, 15-52
CREATE_SEM_MODEL, 15-52
CREATE_SEM_NETWORK, 15-54
CREATE_SOURCE_EXTERNAL_TABLE,

15-56
CREATE_VIRTUAL_MODEL, 15-58
DELETE_ENTAILMENT_STATS, 15-61
DELETE_MODEL_STATS, 15-62
DISABLE_CHANGE_TRACKING, 15-63
DISABLE_INC_INFERENCE, 15-63
DISABLE_INMEMORY, 15-64
DISABLE_INMEMORY_FOR_ENT, 15-65
DISABLE_INMEMORY_FOR_MODEL,

15-65
DISABLE_NETWORK_SHARING, 15-66
DROP_DATATYPE_INDEX, 15-67
DROP_ENTAILMENT, 15-68
DROP_MATERIALIZED_VIEW, 15-69
DROP_MV_BITMAP_INDEX, 15-69
DROP_PG_RDFVIEW, 15-70
DROP_PG_RDFVIEW_INDEXES, 15-71
DROP_RDFVIEW_MODEL, 15-72
DROP_RULEBASE, 15-73
DROP_SEM_INDEX, 15-74
DROP_SEM_MODEL, 15-74

Index

Index-7

SEM_APIS package (continued)
DROP_SEM_NETWORK, 15-75
DROP_USER_INFERENCE_OBJS, 15-79
DROP_VIRTUAL_MODEL, 15-80
ENABLE_CHANGE_TRACKING, 15-80
ENABLE_INC_INFERENCE, 15-81
ENABLE_INMEMORY, 15-82
ENABLE_INMEMORY_FOR_ENT, 15-83
ENABLE_INMEMORY_FOR_MODEL, 15-84
ENABLE_NETWORK_SHARING, 15-85
ESCAPE_CLOB_TERM, 15-85
ESCAPE_CLOB_VALUE, 15-86
ESCAPE_RDF_TERM, 15-87
ESCAPE_RDF_VALUE, 15-88
EXPORT_ENTAILMENT_STATS, 15-89
EXPORT_MODEL_STATS, 15-90
EXPORT_RDFVIEW_MODEL, 15-90
GET_CHANGE_TRACKING_INFO, 15-93
GET_INC_INF_INFO, 15-94
GET_MODEL_ID, 15-95
GET_MODEL_NAME, 15-96
GET_TRIPLE_ID, 15-96
GETV$DATETIMETZVAL, 15-97
GETV$DATETZVAL, 15-98
GETV$GEOMETRYVAL, 15-99
GETV$NUMERICVAL, 15-100
GETV$STRINGVAL, 15-101
GETV$TIMETZVAL, 15-102
GRANT_MODEL_ACCESS_PRIV, 15-103
GRANT_MODEL_ACCESS_PRIVS, 15-105
GRANT_NETWORK_ACCESS_PRIVS,

15-106
GRANT_NETWORK_SHARING_PRIVS,

15-107
IMPORT_ENTAILMENT_STATS, 15-108
IMPORT_MODEL_STATS, 15-109
LOAD_INTO_STAGING_TABLE, 15-111
LOOKUP_ENTAILMENT, 15-112
MERGE_MODELS, 15-113
MIGRATE_DATA_TO_CURRENT, 15-114
MIGRATE_DATA_TO_STORAGE_V2,

15-116
MOVE_SEM_NETWORK_DATA, 15-117
PRIVILEGE_ON_APP_TABLES, 15-118
PURGE_UNUSED_VALUES, 15-118
reference information, 15-1, 17-1
REFRESH_MATERIALIZED_VIEW, 15-119
REFRESH_SEM_NETWORK_INDEX_INFO,

15-120
REMOVE_DUPLICATES, 15-121
RENAME_ENTAILMENT, 15-122
RENAME_MODEL, 15-123
RES2VID, 15-124
RESTORE_SEM_NETWORK_DATA, 15-125
REVOKE_MODEL_ACCESS_PRIV, 15-126

SEM_APIS package (continued)
REVOKE_MODEL_ACCESS_PRIVS,

15-127
REVOKE_NETWORK_ACCESS_PRIVSS,

15-129
REVOKE_NETWORK_SHARING_PRIVS,

15-130
SEM_APIS.ALTER_SPM_TAB, 15-13
SEM_APIS.BUILD_SPM_TAB, 15-22
SEM_APIS.CREATE_SPARQL_UPDATE_TA

BLES, 15-57
SEM_APIS.DROP_SPARQL_UPDATE_TAB

LES, 15-76
SEM_APIS.DROP_SPM_TAB, 15-77
SEM_APIS.GATHER_SPM_INFO, 15-92
SET_ENTAILMENT_STATS, 15-130
SET_MODEL_STATS, 15-131
SPARQL_TO_SQL, 15-132
SWAP_NAMES, 15-134
TRIPLE, 15-110
TRUNCATE_SEM_MODEL, 15-134
UNESCAPE_CLOB_TERM, 15-135
UNESCAPE_CLOB_VALUE, 15-136
UNESCAPE_RDF_TERM, 15-137
UNESCAPE_RDF_VALUE, 15-137
UPDATE_MODEL, 15-138
VALIDATE_ENTAILMENT, 15-141
VALIDATE_GEOMETRIES, 15-142
VALIDATE_MODEL, 15-144
VALUE_NAME_PREFIX, 15-145, 15-146

SEM_APIS.ALTER_SPM_TAB, 15-13
SEM_APIS.BUILD_SPM_TAB, 15-22
SEM_APIS.CREATE_MV_BITMAP_INDEX

procedure, 15-45
SEM_APIS.CREATE_SPARQL_UPDATE_TABL

ES procedure, 15-57
SEM_APIS.DROP_MATERIALIZED_VIEW

procedure, 15-69
SEM_APIS.DROP_MV_BITMAP_INDEX

procedure, 15-69
SEM_APIS.DROP_SPARQL_UPDATE_TABLES

procedure, 15-76
SEM_APIS.DROP_SPM_TAB, 15-77
SEM_APIS.GATHER_SPM_INFO, 15-92
SEM_APIS.REFRESH_MATERIALIZED_VIEW

procedure, 15-119
SEM_CONTAINS operator

syntax, 5-6
SEM_CONTAINS_COUNTancillary operator

syntax, 5-8
SEM_CONTAINS_SELECT ancillary operator

syntax, 5-7
using in queries, 5-9

SEM_DISTANCE ancillary operator, 3-22
SEM_DTYPE_INDEX_INFO view, 1-157

Index

Index-8

SEM_GRAPHS data type, 15-34
SEM_INDEXTYPE index type, 3-24
SEM_MATCH compared to SPARQL_TO_SQL,

1-141
SEM_MATCH table function, 1-31

Flashback Query support, 1-89
full-text search, 1-79
inline query optimizer hints, 1-77
spatial support, 1-82
SPM auxiliary tables, 1-90

SEM_MODEL$ view, 1-12
virtual model entries, 1-23

SEM_MODELS data type, 1-31
SEM_NETWORK_INDEX_INFO view, 1-156
SEM_OLS package

APPLY_POLICY_TO_APP_TAB, 16-1
REMOVE_POLICY_FROM_APP_TAB, 16-2

SEM_PERF package
ANALYZE_AUX_TABLES, 17-1
DELETE_NETWORK_STATS, 17-2
DROP_EXTENDED_STATS, 17-3
EXPORT_NETWORK_STATS, 17-4
GATHER_STATS, 17-5
IMPORT_NETWORK_STATS, 17-7

SEM_RDFCTX package
ADD_DEPENDENT_POLICY, 18-1
CREATE_POLICY, 18-2
DROP_POLICY, 18-4
MAINTAIN_TRIPLES, 18-4
reference information, 18-1
SET_DEFAULT_POLICY, 18-6
SET_EXTRACTOR_PARAM, 18-7

SEM_RDFSA package
APPLY_OLS_POLICY, 19-1
DISABLE_OLS_POLICY, 19-4
ENABLE_OLS_POLICY, 19-5
reference information, 16-1, 19-1
REMOVE_OLS_POLICY, 19-6
RESET_MODEL_LABELS, 19-6
SET_PREDICATE_LABEL, 19-7
SET_RDFS_LABEL, 19-9
SET_RESOURCE_LABEL, 19-10
SET_RULE_LABEL, 19-12

SEM_RELATED operator, 3-20
SEM_RULEBASE_INFO view, 1-19
SEM_RULEBASES data type, 1-31
SEM_RULES_INDEX_DATASETS view, 1-21
SEM_RULES_INDEX_INFO view, 1-20
SEM_VMODEL_DATASETS view, 1-23
SEM_VMODEL_INFO view, 1-23
semantic data

blank nodes, 1-17
constructors, 1-28
data types, 1-28
examples (PL/SQL), 1-188

semantic data (continued)
in the database, 1-4
metadata tables and views, 1-27
methods, 1-28
modeling, 1-4
objects, 1-17
privilege considerations, 1-26
properties, 1-17
queries using the

SEM_APIS.SPARQL_TO_SQL
function, 1-136

queries using the SEM_MATCH table
function, 1-31

security considerations, 1-26
statements, 1-14
steps for using, 2-1
subjects, 1-17

semantic index
creating (MDSYS.SEM_INDEXTYPE), 3-24
indexing documents, 5-5
using for documents, 5-1

semantic indexes
RDFCTX_INDEX_EXCEPTIONS view, 5-20

semantic models, 1-12
semantic network, 1-5

migrating from escaped to unescaped
storage form, 1-12

migrating from MDSYS to schema-private,
1-8

naming conventions for objects, 1-8
RDF_PARAMETER table, 1-8
schema-private, 1-6
sharing schema-private networks, 1-8
types of users, 1-7

semantic network indexes
adding, 15-5
altering, 15-12
altering on model, 15-11
dropping, 15-74
using, 1-154

semantic networks
disabling sharing, 15-66
enabling sharing, 15-85

semantic technologies support
enabling, A-1
upgrading from Release 11.1, 11.2, or 12.1,

A-2
SEMCL_entailment-name view, 3-13
SemContent

mdsys.SemContent index type, 5-5
SEMI_entailment-name view, 1-20
SEMM_model-name view, 1-13
SEMR_rulebase-name view, 1-19
semrelod.sql script, A-3, A-5
semremov.sql script, A-9

Index

Index-9

SERVICE_CLOB=f
query option for SEM_MATCH, 1-35

SERVICE_ESCAPE=f
query option for SEM_MATCH, 1-35

SERVICE_JPDWN=t
query option for SEM_MATCH, 1-35

SERVICE_PROXY
query option for SEM_MATCH, 1-36

SET_DEFAULT_POLICY procedure, 18-6
SET_ENTAILMENT_STATS procedure, 15-130
SET_EXTRACTOR_PARAM procedure, 18-7
SET_MODEL_STATS procedure, 15-131
SET_PREDICATE_LABEL procedure, 19-7
SET_RDFS_LABEL procedure, 19-9
SET_RESOURCE_LABEL procedure, 19-10
SET_RULE_LABEL procedure, 19-12
Simple Knowledge Organization System (SKOS)

property chain handling, 4-4
support for, 4-1

Single-Valued Property tables, 1-90
SKOS (Simple Knowledge Organization System)

property chain handling, 4-4
support for, 4-1

SNOMED CT (Systematized Nomenclature of
Medicine - Clinical Terms)

support for, 15-37
SPARQL

optimized handling of queries, 7-13
searching for documents using SPARQL

query pattern, 5-8
setting up service for RDF Semantic Graph

support for Apache Jena, 7-4
setting up SPARQL service for Oracle RDF

Graph Adapter for Eclipse RDF4J,
8-17

SPARQL endpoints
accessing with HTTP Basic authentication,

1-77
SPARQL Gateway, 7-74

customizing the default XSLT file, 7-81
features and benefits overview, 7-74
installing and configuring, 7-75
Java API, 7-81
specifying best effort for SPARQL query,

7-80
specifying content type other than text/xml,

7-80
specifying timeout value for SPARQL query,

7-79
using as an XML data source to OBIEE, 7-90
using with semantic data, 7-77

SPARQL SERVICE
federated queries, 1-74
Join Push Down, 1-75
SILENT keyword, 1-76

SPARQL SERVICE (continued)
using a proxy server with, 1-76

SPARQL Update operations on a model, 1-162
blank nodes, 1-181
bulk operations, 1-177
BULK_LOAD_FROM_STAGING_TABLE,

1-178
DEL_AS_INS=T, 1-179
load, 1-180
long literals, 1-181
performance tuning, 1-172
setting options at session level, 1-179
STREAMING=F, 1-177
transaction isolation levels, 1-176
transaction management, 1-174

SPARQL_TO_SQL compared to SEM_MATCH,
1-141

SPARQL_TO_SQL function, 15-132
using bind variables with, 1-137

spatial support
ogcf

boundary function, B-2
buffer function, B-2
convexHull function, B-3
difference function, B-4
distance function, B-5
envelope function, B-6
getSRID function, B-7
intersection function, B-8
relate function, B-9
sfContains function, B-10
sfCrossesfunction, B-11
sfDisjoint function, B-12
sfEquals function, B-13
sfIntersects function, B-14
sfOverlaps function, B-15
sfTouches function, B-16
sfWithin function, B-17
symDifference function, B-18
union function, B-19

orageo
aggrCentroid function, B-20
aggrConvexHull function, B-21
aggrMBR function, B-22
aggrUnion function, B-22
area function, B-23
buffer function, B-24
centroid function, B-25
convexHull function, B-26
difference function, B-27
distance function, B-27
getSRID function, B-29
intersection function, B-29
length function, B-30
mbr function, B-31

Index

Index-10

spatial support (continued)
orageo (continued)
nearestNeighbor function, B-32
relate function, B-33
sdoDistJoin function, B-35
sdoJoin function, B-36
union function, B-37
withinDistance function, B-38
xor function, B-39

SPM (Subject-Property-Matrix) tables, 1-90
bulk load operations, 1-124
DML operations, 1-123
MVP (Multi-Valued Property) tables, 1-91
PCN (Property Chain) tables, 1-92
SPARQL query options, 1-124
SVP (Single-Valued Property) tables, 1-90

SQL Developer
RDF support in, 1-186

staging table
loading data from, 15-24
loading data into, 15-111

staging table for bulk loading semantic data,
1-142

statements
RDF_VALUE$ table, 1-14

statistics
gathering for RDF and OWL, 17-5
gathering for SPM auxiliary tables, 17-1

STRICT_AGG_CARD=T
query option for SEM_MATCH, 1-36

Subject-Property-Matrix tables, 1-90
subjects, 1-17
subproperty chaining, 4-4
SVP (Single-Valued Property) tables, 1-90
SWAP_NAMES procedure, 15-134
Systematized Nomenclature of Medicine -

Clinical Terms (SNOMED CT)
support for, 15-37

T
timeout value

specifying for SPARQL query, 7-79
TriG data format, 1-25
triple-level security, 6-1
triples

constructors for inserting, 1-30
duplication checking, 1-16
IS_TRIPLE function, 15-110

TRUNCATE_SEM_MODEL procedure, 15-134

U
UNESCAPE_CLOB_TERM procedure, 15-135
UNESCAPE_CLOB_VALUE procedure, 15-136
UNESCAPE_RDF_TERM procedure, 15-137
UNESCAPE_RDF_VALUE procedure, 15-137
unescaped storage form, 15-116
uninstalling RDF Semantic Graph support, A-8
unused values

purging from semantic network, 15-118
UPDATE_MODEL procedure, 15-138
upgrading

required data migration after upgrade, A-4
semantic technologies support from Release

11.1, 11.2, or 12.1, A-2
URI prefix

using when values are not stored as URIs,
3-26

URIPREFIX keyword, 3-26
user-defined aggregates, 9-28
user-defined functions, 9-28
user-defined inferencing, 9-1
user-defined inferencing function, 9-3
user-defined querying, 9-1
using Graph Studio, 2-7

V
VALIDATE_ENTAILMENT procedure, 15-141
VALIDATE_GEOMETRIES procedure, 15-142
VALIDATE_MODEL procedure, 15-144
VALUE_NAME_PREFIX function, 15-145, 15-146
views

RDF, 10-1
creating, 15-48
dropping, 15-72
exporting, 15-90

virtual models, 1-21
SEM_MODEL$ view entries, 1-23
SEM_VMODEL_DATASETS view, 1-23
SEM_VMODEL_INFO view, 1-23
support in RDF Semantic Graph support for

Apache Jena, 7-36

X
XSLT file

customizing default for SPARQL Gateway,
7-81

Index

Index-11

	Contents
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Changes in This Release for This Guide
	Changes in Oracle Database Release 21c
	Changes in Oracle Database Release 19c
	Support Added for Schema-Private Semantic Networks
	Feature Name Change: RDF Knowledge Graph
	Support Added for Database Vault and Rolling Upgrades in 19.3
	Reduced Default Privileges for MDSYS
	Reduced Tablespace Privileges for MDSYS
	RDF Semantic Graph support added for Eclipse RDF4J

	Changes in Oracle Database Release 18.1
	Support Added for Oracle Database In-Memory
	Support Added for Semantic Networks with Composite Partitioning
	Enhanced CLOB Support for Bulk Load Operations
	Native Support for Turtle and Trig RDF Formats
	Support for RDF Added to SQL Developer

	How to Use This Book
	Part I Conceptual and Usage Information
	1 RDF Graph Overview
	1.1 Introduction to Oracle Semantic Technologies Support
	1.2 Semantic Data Modeling
	1.3 Semantic Data in the Database
	1.3.1 Semantic Networks
	1.3.1.1 Schema-Private Semantic Networks
	1.3.1.2 Types of Semantic Network Users
	1.3.1.3 Naming Conventions for Semantic Network Objects
	1.3.1.4 RDF_PARAMETER Table in Semantic Networks
	1.3.1.5 Migrating from MDSYS to Schema-Private Semantic Networks
	1.3.1.6 Sharing Schema-Private Semantic Networks
	1.3.1.7 Migrating from Escaped to Unescaped Storage Form

	1.3.2 Semantic Models
	1.3.3 Statements
	1.3.3.1 Triple Uniqueness and Data Types for Literals

	1.3.4 Subjects and Objects
	1.3.5 Blank Nodes
	1.3.6 Properties
	1.3.7 Inferencing: Rules and Rulebases
	1.3.8 Entailments (Rules Indexes)
	1.3.9 Virtual Models
	1.3.10 Named Graphs
	1.3.10.1 Data Formats Related to Named Graph Support

	1.3.11 Semantic Data Security Considerations
	1.3.12 RDF Privilege Considerations

	1.4 Semantic Metadata Tables and Views
	1.5 Semantic Data Types, Constructors, and Methods
	1.5.1 Constructors for Inserting Triples

	1.6 Using the SEM_MATCH Table Function to Query Semantic Data
	1.6.1 Performing Queries with Incomplete or Invalid Entailments
	1.6.2 Graph Patterns: Support for Curly Brace Syntax, and OPTIONAL, FILTER, UNION, and GRAPH Keywords
	1.6.2.1 GRAPH Keyword Support

	1.6.3 Graph Patterns: Support for SPARQL ASK Syntax
	1.6.4 Graph Patterns: Support for SPARQL CONSTRUCT Syntax
	1.6.4.1 Typical SPARQL CONSTRUCT Workflow

	1.6.5 Graph Patterns: Support for SPARQL DESCRIBE Syntax
	1.6.6 Graph Patterns: Support for SPARQL SELECT Syntax
	1.6.7 Graph Patterns: Support for SPARQL 1.1 Constructs
	1.6.7.1 Expressions in the SELECT Clause
	1.6.7.2 Subqueries
	1.6.7.3 Grouping and Aggregation
	1.6.7.4 Negation
	1.6.7.5 Value Assignment
	1.6.7.6 Property Paths

	1.6.8 Graph Patterns: Support for SPARQL 1.1 Federated Query
	1.6.8.1 Privileges Required to Execute Federated SPARQL Queries
	1.6.8.2 SPARQL SERVICE Join Push Down
	1.6.8.3 SPARQL SERVICE SILENT
	1.6.8.4 Using a Proxy Server with SPARQL SERVICE
	1.6.8.5 Accessing SPARQL Endpoints with HTTP Basic Authentication

	1.6.9 Inline Query Optimizer Hints
	1.6.10 Full-Text Search
	1.6.11 Spatial Support
	1.6.11.1 OGC GeoSPARQL Support
	1.6.11.2 Representing Spatial Data in RDF
	1.6.11.3 Validating Geometries
	1.6.11.4 Indexing Spatial Data
	1.6.11.5 Querying Spatial Data
	1.6.11.6 Using Long Literals with GeoSPARQL Queries

	1.6.12 Flashback Query Support
	1.6.13 Speeding up Query Execution with SPM Auxiliary Tables
	1.6.13.1 Single-Valued Property Tables
	1.6.13.2 Multi-Valued Property Tables
	1.6.13.3 Property Chain Tables
	1.6.13.4 Creating SPM Tables
	1.6.13.5 Including Lexical Values in SPM Auxiliary Tables
	1.6.13.6 Creating Secondary Indexes on SPM Auxiliary Tables
	1.6.13.7 Performing DML Operations on Models with SPM Auxiliary Tables
	1.6.13.8 Performing Bulk Load Operations on Models with SPM Auxiliary Tables
	1.6.13.9 Gathering Statistics on SPM Auxiliary Tables
	1.6.13.10 SPARQL Query Options for SPM Auxiliary Tables
	1.6.13.11 Special Considerations when Using SPM Auxiliary Tables

	1.6.14 Best Practices for Query Performance
	1.6.14.1 FILTER Constructs Involving xsd:dateTime, xsd:date, and xsd:time
	1.6.14.2 Indexes for FILTER Constructs Involving Typed Literals
	1.6.14.3 FILTER Constructs Involving Relational Expressions
	1.6.14.4 Optimizer Statistics and Dynamic Sampling
	1.6.14.5 Multi-Partition Queries
	1.6.14.6 Compression on Systems with OLTP Index Compression
	1.6.14.7 Unbounded Property Path Expressions
	1.6.14.8 Nested Loop Pushdown for Property Paths
	1.6.14.9 Grouping and Aggregation
	1.6.14.10 Use of Bind Variables to Reduce Compilation Time
	1.6.14.11 Non-Null Expression Hints
	1.6.14.12 Automatic JOIN Hints
	1.6.14.13 Semantic Network Indexes
	1.6.14.14 Using RDF with Oracle Database In-Memory
	1.6.14.15 Using Language Tags in FILTER Expressions
	1.6.14.16 Type Casting for More Efficient FILTER Evaluation
	1.6.14.17 Spatial Indexing for GeoSPARQL Queries

	1.6.15 Special Considerations When Using SEM_MATCH

	1.7 Using the SEM_APIS.SPARQL_TO_SQL Function to Query Semantic Data
	1.7.1 Using Bind Variables with SEM_APIS.SPARQL_TO_SQL
	1.7.2 SEM_MATCH and SEM_APIS.SPARQL_TO_SQL Compared

	1.8 Loading and Exporting Semantic Data
	1.8.1 Bulk Loading Semantic Data Using a Staging Table
	1.8.1.1 Loading the Staging Table
	1.8.1.1.1 Loading N-Triple Format Data into a Staging Table Using SQL*Loader
	1.8.1.1.2 Loading N-Quad Format Data into a Staging Table Using an External Table

	1.8.1.2 Recording Event Traces During Bulk Loading

	1.8.2 Loading Semantic Data Using INSERT Statements
	1.8.2.1 Loading Data into Named Graphs Using INSERT Statements

	1.8.3 Exporting Semantic Data
	1.8.3.1 Retrieving Semantic Data from an Application Table
	1.8.3.2 Retrieving Semantic Data from an RDF Model
	1.8.3.3 Removing Model and Graph Information from Retrieved Blank Node Identifiers

	1.8.4 Exporting or Importing a Semantic Network Using Oracle Data Pump
	1.8.5 Moving, Restoring, and Appending a Semantic Network
	1.8.6 Purging Unused Values

	1.9 Using Semantic Network Indexes
	1.9.1 SEM_NETWORK_INDEX_INFO View

	1.10 Using Data Type Indexes
	1.11 Managing Statistics for Semantic Models and the Semantic Network
	1.11.1 Saving Statistics at a Model Level
	1.11.2 Restoring Statistics at a Model Level
	1.11.3 Saving Statistics at the Network Level
	1.11.4 Dropping Extended Statistics at the Network Level
	1.11.5 Restoring Statistics at the Network Level
	1.11.6 Setting Statistics at a Model Level
	1.11.7 Deleting Statistics at a Model Level

	1.12 Support for SPARQL Update Operations on a Semantic Model
	1.12.1 Tuning the Performance of SPARQL Update Operations
	1.12.2 Transaction Management with SPARQL Update Operations
	1.12.2.1 Transaction Isolation Levels

	1.12.3 Support for Bulk Operations
	1.12.3.1 Materialization of Intermediate Data (STREAMING=F)
	1.12.3.2 Using SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE
	1.12.3.3 Using Delete as Insert (DEL_AS_INS=T)

	1.12.4 Setting UPDATE_MODEL Options at the Session Level
	1.12.5 Load Operations: Special Considerations for SPARQL Update
	1.12.6 Long Literals: Special Considerations for SPARQL Update
	1.12.7 Blank Nodes: Special Considerations for SPARQL Update

	1.13 RDF Support for Oracle Database In-Memory
	1.13.1 Enabling Oracle Database In-Memory for RDF
	1.13.2 Using In-Memory Virtual Columns with RDF
	1.13.3 Using Invisible Indexes with Oracle Database In-Memory

	1.14 RDF Support for Materialized Join Views
	1.15 RDF Support in Oracle SQL Developer
	1.16 Enhanced RDF ORDER BY Query Processing
	1.17 Applying Oracle Machine Learning Algorithms to RDF Data
	1.18 Semantic Data Examples (PL/SQL and Java)
	1.18.1 Example: Journal Article Information
	1.18.2 Example: Family Information

	1.19 Software Naming Changes Since Release 11.1
	1.20 For More Information About RDF Semantic Graph
	1.21 Required Migration of Pre-12.2 Semantic Data
	1.22 Oracle RDF Graph Features that Support Accessibility

	2 Quick Start for Using Semantic Data
	2.1 Getting Started with Semantic Data in a Schema-Private Network
	2.2 Getting Started with Semantic Data in an MDSYS-Owned Network
	2.3 Quick Start for Using RDF Semantic Data in Oracle Autonomous Database
	2.3.1 Getting Started with Semantic Data in Oracle Autonomous Database
	2.3.2 Deploying RDF Graph Server and Query UI from Oracle Cloud Marketplace
	2.3.3 Getting Started with RDF Graphs in Graph Studio

	3 OWL Concepts
	3.1 Ontologies
	3.1.1 Example: Disease Ontology
	3.1.2 Supported OWL Subsets

	3.2 Using OWL Inferencing
	3.2.1 Creating a Simple OWL Ontology
	3.2.2 Performing Native OWL inferencing
	3.2.3 Performing OWL and User-Defined Rules Inferencing
	3.2.4 Generating OWL inferencing Proofs
	3.2.5 Validating OWL Models and Entailments
	3.2.6 Using SEM_APIS.CREATE_ENTAILMENT for RDFS Inference
	3.2.7 Enhancing Inference Performance
	3.2.8 Optimizing owl:sameAs Inference
	3.2.8.1 Querying owl:sameAs Consolidated Inference Graphs

	3.2.9 Performing Incremental Inference
	3.2.10 Using Parallel Inference
	3.2.11 Using Named Graph Based Inferencing (Global and Local)
	3.2.11.1 Named Graph Based Global Inference (NGGI)
	3.2.11.2 Named Graph Based Local Inference (NGLI)
	3.2.11.3 Using NGGI and NGLI Together

	3.2.12 Performing Selective Inferencing (Advanced Information)

	3.3 Using Semantic Operators to Query Relational Data
	3.3.1 Using the SEM_RELATED Operator
	3.3.2 Using the SEM_DISTANCE Ancillary Operator
	3.3.2.1 Computation of Distance Information

	3.3.3 Creating a Semantic Index of Type MDSYS.SEM_INDEXTYPE
	3.3.4 Using SEM_RELATED and SEM_DISTANCE When the Indexed Column Is Not the First Parameter
	3.3.5 Using URIPREFIX When Values Are Not Stored as URIs

	4 Simple Knowledge Organization System (SKOS) Support
	4.1 Supported and Unsupported SKOS Semantics
	4.1.1 Supported SKOS Semantics
	4.1.2 Unsupported SKOS Semantics

	4.2 Performing Inference on SKOS Models
	4.2.1 Validating SKOS Models and Entailments
	4.2.2 Property Chain Handling

	5 Semantic Indexing for Documents
	5.1 Information Extractors for Semantically Indexing Documents
	5.2 Extractor Policies
	5.3 Semantically Indexing Documents
	5.4 SEM_CONTAINS and Ancillary Operators
	5.4.1 SEM_CONTAINS_SELECT Ancillary Operator
	5.4.2 SEM_CONTAINS_COUNT Ancillary Operator

	5.5 Searching for Documents Using SPARQL Query Patterns
	5.6 Bindings for SPARQL Variables in Matching Subgraphs in a Document (SEM_CONTAINS_SELECT Ancillary Operator)
	5.7 Improving the Quality of Document Search Operations
	5.8 Indexing External Documents
	5.9 Configuring the Calais Extractor type
	5.10 Working with General Architecture for Text Engineering (GATE)
	5.11 Creating a New Extractor Type
	5.12 Creating a Local Semantic Index on a Range-Partitioned Table
	5.13 Altering a Semantic Index
	5.13.1 Rebuilding Content for All Existing Policies in a Semantic Index
	5.13.2 Rebuilding to Add Content for a New Policy to a Semantic Index
	5.13.3 Rebuilding Content for an Existing Policy from a Semantic Index
	5.13.4 Rebuilding to Drop Content for an Existing Policy from a Semantic Index

	5.14 Passing Extractor-Specific Parameters in CREATE INDEX and ALTER INDEX
	5.15 Performing Document-Centric Inference
	5.16 Metadata Views for Semantic Indexing
	5.16.1 MDSYS.RDFCTX_POLICIES View
	5.16.2 RDFCTX_INDEX_POLICIES View
	5.16.3 RDFCTX_INDEX_EXCEPTIONS View

	5.17 Default Style Sheet for GATE Extractor Output

	6 Fine-Grained Access Control for RDF Data
	6.1 Triple-Level Security
	6.1.1 Fine-Grained Security for Inferred Data and Ladder-Based Inference (LBI)
	6.1.2 Extended Example: Applying OLS Triple-Level Security on Semantic Data

	7 RDF Semantic Graph Support for Apache Jena
	7.1 Setting Up the Software Environment
	7.1.1 If You Used a Previous Version of the Support for Apache Jena

	7.2 Setting Up the SPARQL Service
	7.2.1 Client Identifiers
	7.2.2 Using OLTP Compression for Application Tables and Staging Tables
	7.2.3 N-Triples Encoding for Non-ASCII Characters

	7.3 Setting Up the RDF Semantic Graph Environment
	7.4 SEM_MATCH and RDF Semantic Graph Support for Apache Jena Queries Compared
	7.5 Retrieving User-Friendly Java Objects from SEM_MATCH or SQL-Based Query Results
	7.6 Optimized Handling of SPARQL Queries
	7.6.1 Compilation of SPARQL Queries to a Single SEM_MATCH Call
	7.6.2 Optimized Handling of Property Paths

	7.7 Additions to the SPARQL Syntax to Support Other Features
	7.7.1 SQL Hints
	7.7.2 Using Bind Variables in SPARQL Queries
	7.7.3 Additional WHERE Clause Predicates
	7.7.4 Additional Query Options
	7.7.4.1 JOIN Option and Federated Queries
	7.7.4.2 S2S Option Benefits and Usage Information

	7.7.5 Midtier Resource Caching

	7.8 Functions Supported in SPARQL Queries through RDF Semantic Graph Support for Apache Jena
	7.8.1 Functions in the ARQ Function Library
	7.8.2 Native Oracle Database Functions for Projected Variables
	7.8.3 User-Defined Functions

	7.9 SPARQL Update Support
	7.10 Analytical Functions for RDF Data
	7.10.1 Generating Contextual Information about a Path in a Graph

	7.11 Support for Server-Side APIs
	7.11.1 Virtual Models Support
	7.11.2 Connection Pooling Support
	7.11.3 Semantic Model PL/SQL Interfaces
	7.11.4 Inference Options
	7.11.5 PelletInfGraph Class Support Deprecated

	7.12 Bulk Loading Using RDF Semantic Graph Support for Apache Jena
	7.12.1 Using prepareBulk in Parallel (Multithreaded) Mode
	7.12.2 Handling Illegal Syntax During Data Loading

	7.13 Automatic Variable Renaming
	7.14 JavaScript Object Notation (JSON) Format Support
	7.15 Other Recommendations and Guidelines
	7.15.1 BOUND or !BOUND Instead of EXISTS or NOT EXISTS
	7.15.2 SPARQL 1.1 SELECT Expressions
	7.15.3 Syntax Involving Bnodes (Blank Nodes)
	7.15.4 Limit in the SERVICE Clause
	7.15.5 OracleGraphWrapperForOntModel Class for Better Performance

	7.16 Example Queries Using RDF Semantic Graph Support for Apache Jena
	7.16.1 Test.java: Query Family Relationships
	7.16.2 Test6.java: Load OWL Ontology and Perform OWLPrime inference
	7.16.3 Test7.java: Bulk Load OWL Ontology and Perform OWLPrime inference
	7.16.4 Test8.java: SPARQL OPTIONAL Query
	7.16.5 Test9.java: SPARQL Query with LIMIT and OFFSET
	7.16.6 Test10.java: SPARQL Query with TIMEOUT and DOP
	7.16.7 Test11.java: Query Involving Named Graphs
	7.16.8 Test12.java: SPARQL ASK Query
	7.16.9 Test13.java: SPARQL DESCRIBE Query
	7.16.10 Test14.java: SPARQL CONSTRUCT Query
	7.16.11 Test15.java: Query Multiple Models and Specify "Allow Duplicates"
	7.16.12 Test16.java: SPARQL Update
	7.16.13 Test17.java: SPARQL Query with ARQ Built-In Functions
	7.16.14 Test18.java: SELECT Cast Query
	7.16.15 Test19.java: Instantiate Oracle Database Using OracleConnection
	7.16.16 Test20.java: Oracle Database Connection Pooling

	7.17 SPARQL Gateway and Semantic Data
	7.17.1 SPARQL Gateway Features and Benefits Overview
	7.17.2 Installing and Configuring SPARQL Gateway
	7.17.2.1 Download the RDF Semantic Graph Support for Apache Jena .zip File (if Not Already Done)
	7.17.2.2 Deploy SPARQL Gateway in WebLogic Server
	7.17.2.3 Modify Proxy Settings, if Necessary
	7.17.2.4 Configure the OracleSGDS Data Source, if Necessary
	7.17.2.5 Add and Configure the SparqlGatewayAdminGroup Group, if Desired

	7.17.3 Using SPARQL Gateway with Semantic Data
	7.17.3.1 Storing SPARQL Queries and XSL Transformations
	7.17.3.2 Specifying a Timeout Value
	7.17.3.3 Specifying Best Effort Query Execution
	7.17.3.4 Specifying a Content Type Other Than text/xml

	7.17.4 Customizing the Default XSLT File
	7.17.5 Using the SPARQL Gateway Java API
	7.17.6 Using the SPARQL Gateway Graphical Web Interface
	7.17.6.1 Main Page (index.html)
	7.17.6.2 Navigation and Browsing Page (browse.jsp)
	7.17.6.3 XSLT Management Page (xslt.jsp)
	7.17.6.4 SPARQL Management Page (sparql.jsp)

	7.17.7 Using SPARQL Gateway as an XML Data Source to OBIEE

	7.18 Deploying Fuseki in Apache Tomcat
	7.19 ORARDFLDR Utility for Bulk Loading RDF Data
	7.19.1 Using ORARDFLDR with Oracle Autonomous Database

	8 RDF Semantic Graph Support for Eclipse RDF4J
	8.1 Oracle RDF Graph Support for Eclipse RDF4J Overview
	8.2 Prerequisites for Using Oracle RDF Graph Adapter for Eclipse RDF4J
	8.3 Setup and Configuration for Using Oracle RDF Graph Adapter for Eclipse RDF4J
	8.3.1 Setting up Oracle RDF Graph Adapter for Eclipse RDF4J for Use with Java
	8.3.2 Setting Up Oracle RDF Graph Adapter for Eclipse RDF4J for Use in RDF4J Server and Workbench
	8.3.2.1 Using the Adapter for Eclipse RFD4J Through RDF4J Workbench

	8.3.3 Setting Up Oracle RDF Graph Adapter for Eclipse RDF4J for Use As SPARQL Service
	8.3.3.1 Using the Adapter Over SPARQL Endpoint in Eclipse RDF4J Workbench

	8.4 Database Connection Management
	8.5 SPARQL Query Execution Model
	8.5.1 Using BIND Values
	8.5.2 Using JDBC BIND Values
	8.5.2.1 Limitations for JDBC Bind Value Support

	8.5.3 Additions to the SPARQL Query Syntax to Support Other Features
	8.5.3.1 Query Execution Options
	8.5.3.2 SPARQL_TO_SQL (SEM_MATCH) Options

	8.5.4 Special Considerations for SPARQL Query Support

	8.6 SPARQL Update Execution Model
	8.6.1 Transaction Management for SPARQL Update
	8.6.2 Additions to the SPARQL Syntax to Support Other Features
	8.6.2.1 UPDATE_MODEL Options
	8.6.2.2 UPDATE_MODEL Match Options

	8.6.3 Special Considerations for SPARQL Update Support

	8.7 Efficiently Loading RDF Data
	8.8 Best Practices for Oracle RDF Graph Adapter for Eclipse RDF4J
	8.9 Blank Nodes Support in Oracle RDF Graph Adapter for Eclipse RDF4J
	8.10 Unsupported Features in Oracle RDF Graph Adapter for Eclipse RDF4J
	8.11 Example Queries Using Oracle RDF Graph Adapter for Eclipse RDF4J
	8.11.1 Example 1: Basic Operations
	8.11.2 Example 2: Add a Data File in TRIG Format
	8.11.3 Example 3: Simple Query
	8.11.4 Example 4: Simple Bulk Load
	8.11.5 Example 5: Bulk Load RDF/XML
	8.11.6 Example 6: SPARQL Ask Query
	8.11.7 Example 7: SPARQL CONSTRUCT Query
	8.11.8 Example 8: Named Graph Query
	8.11.9 Example 9: Get COUNT of Matches
	8.11.10 Example 10: Specify Bind Variable for Constant in Query Pattern
	8.11.11 Example 11: SPARQL Update
	8.11.12 Example 12: Oracle Hint
	8.11.13 Example 13: Using JDBC Bind Values
	8.11.14 Example 14: Simple Inference
	8.11.15 Example 15: Simple Virtual Model

	9 User-Defined Inferencing and Querying
	9.1 User-Defined Inferencing
	9.1.1 Problem Solved and Benefit Provided by User-Defined Inferencing
	9.1.2 API Support for User-Defined Inferencing
	9.1.2.1 User-Defined Inference Function Requirements

	9.1.3 User-Defined Inference Extension Function Examples
	9.1.3.1 Example 1: Adding Static Triples
	9.1.3.2 Example 2: Adding Dynamic Triples
	9.1.3.3 Example 3: Optimizing Performance
	9.1.3.4 Example 4: Temporal Reasoning (Several Related Examples)
	9.1.3.4.1 Example 4a: Duration Rule
	9.1.3.4.2 Example 4b: Overlap Rule
	9.1.3.4.3 Example 4c: Duration and Overlap Rules

	9.1.3.5 Example 5: Spatial Reasoning
	9.1.3.6 Example 6: Calling a Web Service

	9.2 User-Defined Functions and Aggregates
	9.2.1 Data Types for User-Defined Functions and Aggregates
	9.2.2 API Support for User-Defined Functions
	9.2.2.1 PL/SQL Function Implementation
	9.2.2.2 Invoking User-Defined Functions from a SPARQL Query Pattern
	9.2.2.3 User-Defined Function Examples

	9.2.3 API Support for User-Defined Aggregates
	9.2.3.1 ODCIAggregate Interface
	9.2.3.2 Invoking User-Defined Aggregates
	9.2.3.3 User-Defined Aggregate Examples

	10 RDF Views: Relational Data as RDF
	10.1 Why Use RDF Views on Relational Data?
	10.2 API Support for RDF Views
	10.2.1 Creating an RDF View Model with Direct Mapping
	10.2.2 Creating an RDF View Model with R2RML Mapping
	10.2.3 Dropping an RDF View Model
	10.2.4 Exporting Virtual Content of an RDF View Model into a Staging Table

	10.3 Example: Using an RDF View Model with Direct Mapping
	10.4 Combining Native RDF Data with Virtual RDB2RDF Data
	10.4.1 Nested Loop Pushdown with Overloaded Service

	11 RDF Integration with Property Graph Data Stored in Oracle Database
	11.1 About RDF Integration with Property Graph Data
	11.2 R2RML Mapping for the Property Graph Relational Schema
	11.3 PL/SQL API for Creating and Maintaining Property Graph RDF Views
	11.4 Sample RDF Workflow with Property Graph Data
	11.5 Special Considerations When Using Property Graph RDF Views

	Part II RDF Graph Server and Query UI
	12 Introduction to RDF Graph Server and Query UI
	13 RDF Graph Server and Query UI Concepts
	13.1 Data Sources
	13.1.1 Oracle Data Sources
	13.1.2 Endpoint URL Data Sources

	13.2 RDF Datasets
	13.3 REST Services

	14 Oracle RDF Graph Query UI
	14.1 Installing RDF Graph Query UI
	14.2 Managing User Roles for RDF Graph Query UI
	14.2.1 Managing Groups and Users in WebLogic Server
	14.2.1.1 Creating User Groups in WebLogic Server
	14.2.1.2 Creating RDF and Guest Users in WebLogic Server

	14.2.2 Managing Users and Roles in Tomcat Server

	14.3 Getting Started with RDF Graph Query UI
	14.3.1 Data Sources Page
	14.3.1.1 Creating a JDBC URL Data Source
	14.3.1.2 Creating an Oracle Container Data Source
	14.3.1.2.1 Creating a JDBC Data Source in WebLogic Server
	14.3.1.2.2 Creating a JDBC Data Source in Tomcat

	14.3.1.3 Creating an Oracle Wallet Data Source
	14.3.1.3.1 Storing User Credentials in a Wallet

	14.3.1.4 Creating an Endpoint URL Data Source

	14.3.2 RDF Data Page
	14.3.2.1 Data Source Selection
	14.3.2.2 Semantic Network Actions
	14.3.2.3 Importing Data
	14.3.2.4 SPARQL Query Cache Manager
	14.3.2.5 RDF Objects Navigator
	14.3.2.6 Data Source Published Datasets Navigator
	14.3.2.7 Performing SPARQL Query and SPARQL Update Operations
	14.3.2.8 Publishing Oracle RDF Models
	14.3.2.9 Published Dataset Playground
	14.3.2.10 Support for Auxiliary Tables
	14.3.2.10.1 Creating Auxiliary Tables
	14.3.2.10.2 Managing Auxiliary Tables

	14.3.2.11 Advanced Graph View
	14.3.2.11.1 Query Selector Panel
	14.3.2.11.2 Graph View

	14.3.2.12 Database Views from RDF Models
	14.3.2.12.1 Creating a Graph View
	14.3.2.12.2 Creating a Vertex View
	14.3.2.12.3 Creating an Edge View

	14.3.3 Configuration Files for RDF Server and Client
	14.3.3.1 Data Sources JSON Configuration File
	14.3.3.2 General JSON configuration file
	14.3.3.3 Proxy JSON Configuration File
	14.3.3.4 Logging JSON Configuration File

	14.4 Accessibility

	Part III Reference Information
	15 SEM_APIS Package Subprograms
	15.1 SEM_APIS.ADD_DATATYPE_INDEX
	15.2 SEM_APIS.ADD_SEM_INDEX
	15.3 SEM_APIS.ALTER_DATATYPE_INDEX
	15.4 SEM_APIS.ALTER_ENTAILMENT
	15.5 SEM_APIS.ALTER_MODEL
	15.6 SEM_APIS.ALTER_SEM_INDEX_ON_ENTAILMENT
	15.7 SEM_APIS.ALTER_SEM_INDEX_ON_MODEL
	15.8 SEM_APIS.ALTER_SEM_INDEXES
	15.9 SEM_APIS.ALTER_SPM_TAB
	15.10 SEM_APIS.ANALYZE_ENTAILMENT
	15.11 SEM_APIS.ANALYZE_MODEL
	15.12 SEM_APIS.APPEND_SEM_NETWORK_DATA
	15.13 SEM_APIS.BUILD_PG_RDFVIEW_INDEXES
	15.14 SEM_APIS.BUILD_SPM_TAB
	15.15 SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE
	15.16 SEM_APIS.CLEANUP_BNODES
	15.17 SEM_APIS.CLEANUP_FAILED
	15.18 SEM_APIS.COMPOSE_RDF_TERM
	15.19 SEM_APIS.CONVERT_TO_GML311_LITERAL
	15.20 SEM_APIS.CONVERT_TO_WKT_LITERAL
	15.21 SEM_APIS.CREATE_ENTAILMENT
	15.22 SEM_APIS.CREATE_INDEX_ON_SPM_TAB
	15.23 SEM_APIS.CREATE_MATERIALIZED_VIEW
	15.24 SEM_APIS.SEM_APIS.CREATE_MV_BITMAP_INDEX
	15.25 SEM_APIS.CREATE_PG_RDFVIEW
	15.26 SEM_APIS.CREATE_RDFVIEW_MODEL
	15.27 SEM_APIS.CREATE_RULEBASE
	15.28 SEM_APIS.CREATE_SEM_MODEL
	15.29 SEM_APIS.CREATE_SEM_NETWORK
	15.30 SEM_APIS.CREATE_SOURCE_EXTERNAL_TABLE
	15.31 SEM_APIS.CREATE_SPARQL_UPDATE_TABLES
	15.32 SEM_APIS.CREATE_VIRTUAL_MODEL
	15.33 SEM_APIS.DELETE_ENTAILMENT_STATS
	15.34 SEM_APIS.DELETE_MODEL_STATS
	15.35 SEM_APIS.DISABLE_CHANGE_TRACKING
	15.36 SEM_APIS.DISABLE_INC_INFERENCE
	15.37 SEM_APIS.DISABLE_INMEMORY
	15.38 SEM_APIS.DISABLE_INMEMORY_FOR_ENT
	15.39 SEM_APIS.DISABLE_INMEMORY_FOR_MODEL
	15.40 SEM_APIS.DISABLE_NETWORK_SHARING
	15.41 SEM_APIS.DROP_DATATYPE_INDEX
	15.42 SEM_APIS.DROP_ENTAILMENT
	15.43 SEM_APIS.SEM_APIS.DROP_MATERIALIZED_VIEW
	15.44 SEM_APIS.SEM_APIS.DROP_MV_BITMAP_INDEX
	15.45 SEM_APIS.DROP_PG_RDFVIEW
	15.46 SEM_APIS.DROP_PG_RDFVIEW_INDEXES
	15.47 SEM_APIS.DROP_RDFVIEW_MODEL
	15.48 SEM_APIS.DROP_RULEBASE
	15.49 SEM_APIS.DROP_SEM_INDEX
	15.50 SEM_APIS.DROP_SEM_MODEL
	15.51 SEM_APIS.DROP_SEM_NETWORK
	15.52 SEM_APIS.DROP_SPARQL_UPDATE_TABLES
	15.53 SEM_APIS.DROP_SPM_TAB
	15.54 SEM_APIS.DROP_USER_INFERENCE_OBJS
	15.55 SEM_APIS.DROP_VIRTUAL_MODEL
	15.56 SEM_APIS.ENABLE_CHANGE_TRACKING
	15.57 SEM_APIS.ENABLE_INC_INFERENCE
	15.58 SEM_APIS.ENABLE_INMEMORY
	15.59 SEM_APIS.ENABLE_INMEMORY_FOR_ENT
	15.60 SEM_APIS.ENABLE_INMEMORY_FOR_MODEL
	15.61 SEM_APIS.ENABLE_NETWORK_SHARING
	15.62 SEM_APIS.ESCAPE_CLOB_TERM
	15.63 SEM_APIS.ESCAPE_CLOB_VALUE
	15.64 SEM_APIS.ESCAPE_RDF_TERM
	15.65 SEM_APIS.ESCAPE_RDF_VALUE
	15.66 SEM_APIS.EXPORT_ENTAILMENT_STATS
	15.67 SEM_APIS.EXPORT_MODEL_STATS
	15.68 SEM_APIS.EXPORT_RDFVIEW_MODEL
	15.69 SEM_APIS.GATHER_SPM_INFO
	15.70 SEM_APIS.GET_CHANGE_TRACKING_INFO
	15.71 SEM_APIS.GET_INC_INF_INFO
	15.72 SEM_APIS.GET_MODEL_ID
	15.73 SEM_APIS.GET_MODEL_NAME
	15.74 SEM_APIS.GET_TRIPLE_ID
	15.75 SEM_APIS.GETV$DATETIMETZVAL
	15.76 SEM_APIS.GETV$DATETZVAL
	15.77 SEM_APIS.GETV$GEOMETRYVAL
	15.78 SEM_APIS.GETV$NUMERICVAL
	15.79 SEM_APIS.GETV$STRINGVAL
	15.80 SEM_APIS.GETV$TIMETZVAL
	15.81 SEM_APIS.GRANT_MODEL_ACCESS_PRIV
	15.82 SEM_APIS.GRANT_MODEL_ACCESS_PRIVS
	15.83 SEM_APIS.GRANT_NETWORK_ACCESS_PRIVS
	15.84 SEM_APIS.GRANT_NETWORK_SHARING_PRIVS
	15.85 SEM_APIS.IMPORT_ENTAILMENT_STATS
	15.86 SEM_APIS.IMPORT_MODEL_STATS
	15.87 SEM_APIS.IS_TRIPLE
	15.88 SEM_APIS.LOAD_INTO_STAGING_TABLE
	15.89 SEM_APIS.LOOKUP_ENTAILMENT
	15.90 SEM_APIS.MERGE_MODELS
	15.91 SEM_APIS.MIGRATE_DATA_TO_CURRENT
	15.92 SEM_APIS.MIGRATE_DATA_TO_STORAGE_V2
	15.93 SEM_APIS.MOVE_SEM_NETWORK_DATA
	15.94 SEM_APIS.PRIVILEGE_ON_APP_TABLES
	15.95 SEM_APIS.PURGE_UNUSED_VALUES
	15.96 SEM_APIS.SEM_APIS.REFRESH_MATERIALIZED_VIEW
	15.97 SEM_APIS.REFRESH_SEM_NETWORK_INDEX_INFO
	15.98 SEM_APIS.REMOVE_DUPLICATES
	15.99 SEM_APIS.RENAME_ENTAILMENT
	15.100 SEM_APIS.RENAME_MODEL
	15.101 SEM_APIS.RES2VID
	15.102 SEM_APIS.RESTORE_SEM_NETWORK_DATA
	15.103 SEM_APIS.REVOKE_MODEL_ACCESS_PRIV
	15.104 SEM_APIS.REVOKE_MODEL_ACCESS_PRIVS
	15.105 SEM_APIS.REVOKE_NETWORK_ACCESS_PRIVS
	15.106 SEM_APIS.REVOKE_NETWORK_SHARING_PRIVS
	15.107 SEM_APIS.SET_ENTAILMENT_STATS
	15.108 SEM_APIS.SET_MODEL_STATS
	15.109 SEM_APIS.SPARQL_TO_SQL
	15.110 SEM_APIS.SWAP_NAMES
	15.111 SEM_APIS.TRUNCATE_SEM_MODEL
	15.112 SEM_APIS.UNESCAPE_CLOB_TERM
	15.113 SEM_APIS.UNESCAPE_CLOB_VALUE
	15.114 SEM_APIS.UNESCAPE_RDF_TERM
	15.115 SEM_APIS.UNESCAPE_RDF_VALUE
	15.116 SEM_APIS.UPDATE_MODEL
	15.117 SEM_APIS.VALIDATE_ENTAILMENT
	15.118 SEM_APIS.VALIDATE_GEOMETRIES
	15.119 SEM_APIS.VALIDATE_MODEL
	15.120 SEM_APIS.VALUE_NAME_PREFIX
	15.121 SEM_APIS.VALUE_NAME_SUFFIX

	16 SEM_OLS Package Subprograms
	16.1 SEM_OLS.APPLY_POLICY_TO_APP_TAB
	16.2 SEM_OLS.REMOVE_POLICY_FROM_APP_TAB

	17 SEM_PERF Package Subprograms
	17.1 SEM_PERF.ANALYZE_AUX_TABLES
	17.2 SEM_PERF.DELETE_NETWORK_STATS
	17.3 SEM_PERF.DROP_EXTENDED_STATS
	17.4 SEM_PERF.EXPORT_NETWORK_STATS
	17.5 SEM_PERF.GATHER_STATS
	17.6 SEM_PERF.IMPORT_NETWORK_STATS

	18 SEM_RDFCTX Package Subprograms
	18.1 SEM_RDFCTX.ADD_DEPENDENT_POLICY
	18.2 SEM_RDFCTX.CREATE_POLICY
	18.3 SEM_RDFCTX.DROP_POLICY
	18.4 SEM_RDFCTX.MAINTAIN_TRIPLES
	18.5 SEM_RDFCTX.SET_DEFAULT_POLICY
	18.6 SEM_RDFCTX.SET_EXTRACTOR_PARAM

	19 SEM_RDFSA Package Subprograms
	19.1 SEM_RDFSA.APPLY_OLS_POLICY
	19.2 SEM_RDFSA.DISABLE_OLS_POLICY
	19.3 SEM_RDFSA.ENABLE_OLS_POLICY
	19.4 SEM_RDFSA.REMOVE_OLS_POLICY
	19.5 SEM_RDFSA.RESET_MODEL_LABELS
	19.6 SEM_RDFSA.SET_PREDICATE_LABEL
	19.7 SEM_RDFSA.SET_RDFS_LABEL
	19.8 SEM_RDFSA.SET_RESOURCE_LABEL
	19.9 SEM_RDFSA.SET_RULE_LABEL

	Part IV Appendixes
	A Enabling, Downgrading, or Removing RDF Semantic Graph Support
	A.1 Enabling RDF Semantic Graph Support
	A.1.1 Enabling RDF Semantic Graph Support in a New Database Installation
	A.1.2 Upgrading RDF Semantic Graph Support from Release 11.1, 11.2, or 12.1
	A.1.2.1 Required Data Migration After Upgrade
	A.1.2.2 Handling of Empty RDF Literals

	A.1.3 Workspace Manager and Virtual Private Database Desupport

	A.2 Downgrading RDF Semantic Graph Support to a Previous Release
	A.2.1 Downgrading to Release 12.1 Semantic Graph Support

	A.3 Removing RDF Semantic Graph Support

	B SEM_MATCH Support for Spatial Queries
	B.1 GeoSPARQL Functions for Spatial Support
	B.1.1 ogcf:boundary
	B.1.2 ogcf:buffer
	B.1.3 ogcf:convexHull
	B.1.4 ogcf:difference
	B.1.5 ogcf:distance
	B.1.6 ogcf:envelope
	B.1.7 ogcf:getSRID
	B.1.8 ogcf:intersection
	B.1.9 ogcf:relate
	B.1.10 ogcf:sfContains
	B.1.11 ogcf:sfCrosses
	B.1.12 ogcf:sfDisjoint
	B.1.13 ogcf:sfEquals
	B.1.14 ogcf:sfIntersects
	B.1.15 ogcf:sfOverlaps
	B.1.16 ogcf:sfTouches
	B.1.17 ogcf:sfWithin
	B.1.18 ogcf:symDifference
	B.1.19 ogcf:union

	B.2 Oracle-Specific Functions for Spatial Support
	B.2.1 orageo:aggrCentroid
	B.2.2 orageo:aggrConvexHull
	B.2.3 orageo:aggrMBR
	B.2.4 orageo:aggrUnion
	B.2.5 orageo:area
	B.2.6 orageo:buffer
	B.2.7 orageo:centroid
	B.2.8 orageo:convexHull
	B.2.9 orageo:difference
	B.2.10 orageo:distance
	B.2.11 orageo:getSRID
	B.2.12 orageo:intersection
	B.2.13 orageo:length
	B.2.14 orageo:mbr
	B.2.15 orageo:nearestNeighbor
	B.2.16 orageo:relate
	B.2.17 orageo:sdoDistJoin
	B.2.18 orageo:sdoJoin
	B.2.19 orageo:union
	B.2.20 orageo:withinDistance
	B.2.21 orageo:xor

	C RDF Support in SQL Developer
	C.1 About RDF Support in SQL Developer
	C.2 Setting Up the RDF Semantic Graph Support In SQL Developer
	C.3 Working with RDF Semantic Networks Using SQL Developer
	C.3.1 Creating an RDF Semantic Network Using SQL Developer
	C.3.1.1 Creating Tablespaces for Semantic Networks Using SQL Developer

	C.3.2 Refreshing Semantic Network Indexes Using SQL Developer
	C.3.3 Gathering RDF Statistics Using SQL Developer
	C.3.4 Purging Unused Values from a Network Using SQL Developer
	C.3.5 Dropping a Semantic Network Using SQL Developer

	C.4 Bulk Loading RDF Data Using SQL Developer

	Glossary
	apply pattern
	basic graph pattern (BGP)
	clique
	Cytoscape
	entailment
	extractor policy
	graph pattern
	inferencing
	information extractor
	match pattern
	model
	ontology
	OWLPrime
	RDF Semantic Graph support for Apache Jena
	reasoning
	rule
	rulebase
	rules index
	semantic index
	Simple Knowledge Organization System (SKOS)
	triple pattern

	Index

